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ABSTRACT
Identification of spatially-varying parameters in distributed
parameter systems given an observation of the state is as a rule an il11-
posed problem in the sense of Hadamard. Even in case when the solution
is unique, it does not depend continuous]y‘on the data. The identifi-
cation problem that motivated this work arises in the description of
petroleum reservoirs and subsurface aquifers; it consists of identifying
the spatially-varying parameter o(x,y) in the diffusion equation

up = (aux) + (auy)y + f given an observation of u at a discrete set of

X
spatial Tocations.

The question of uniqueness of o (identifiability problem) is first
investigated. The analysis is restricted to the one-dimensional version
of the above equation i.e. to up = (aux)X + f and an observation of u
at a single point. The identifiability problem is formulated as an
inverse Sturm-Liouville problem for (ay')' + ay = 0. It is proved
that the eigenvalues and the normalizing constants determine the above
Sturm-Liouville operator uniquely. Identifiability and non-identifi-
ability results are obtained for three special cases.

The problem of constructing stable approximate solutions to
identification problems in distributed parameter systems is next investi-
gated. The concept of regularization, widely used in solving ]inear
Fredholm integral equations, is developed for the solution of such
problems. A general regularization identification theory is presented
and applied to the identification of parabolic systems. Two alternative

numerical approaches for the minimization of the smoothing functional

are investigated: (i) classical Banach space gradient methods and
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(ii) discretized minimization methods. The Tatter use finite-dimensional
convergent approximations in Sobolev spaces and are based on an appro-
priate convergence theorem. The performance of the regularization
identification method is evaluated by numerical experiments on the
identification of spatially-varying diffusivity o in the diffusion

equation.
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CHAPTER I: INTRODUCTION



1. THE IDENTIFICATION PROBLEM OF PETROLEUM RESERVOIRS AND SUBSURFACE
AQUIFERS AND ITS ILL-POSED NATURE
The classic identification problem arising in the modeling of petroleum
reservoirs and subsurface aquifers is to éstimate the parameter a(x,y) in

the parabolic partial differential equation,

-2 u), 2 3u
5t 7 ax laloy) 5]+ ay(oc(_x,y) ay) + q(x,y,t) (1)
based on noisy measurements of u(x,y,t), uObS(xi,yi,t), at a set of dis-

crete spatial locations, i = 1,2,..., m. In such applications the depen-
dent variable u represents pressure, q accounts for the withdrawal or

injection of fluid in the region, and o is the transmissivity that deter-
mines the ease with which fluid flows in the reservoir. The initial con-

dition to (1) is u(x,y,0) = u_(x,y), and a typical boundary condition is

no fluid flow across the boundary of the region, i.e. %% = 0, where v

represents the normal to the boundary. This identification problem has

u
0

motivated the present thesis work.

Consider first the problem of solving (1) given a(x,y). It is well-
known that under appropriate regularity assumptions for a, g and u, as
well as strict positivity of a, there exists a unique solution u(x,y,t)
of the above boundary-value problem that depends continuously on o, g

and Uy Hence one can represent the solution u as

u= o (2)

where o¢ is some uniquely defined continuous mapping. Now the identifi-

cation problem is the inverse of that just stated, namely given data on u,



determine o. For this reason, identification problems of this sort are
frequently referred to as <nverse problems.

b . . .
S = @uis known, where € is an observation operator.

Assume that u®
For instance, € can be the operator that associates u(x,y,t) - u(xi,yi,t),
i=1,2,..., m. The identification or inverse problem can be conceptu-

ally formulated as solving the (nonlinear) operator equation

It is natural to inquire:
(i) Does € o I have a unique inverse?
(i1) 1Is the (unique or not) inverse operator (¥ ° J{)'l continuous?

obs

Alternately stated, will small changes in u result in arbitrarily small

changes in a? If the answer to both questions is affirmative, then our

obs € €(ox(F))), where F denotes

problem is well-posed for all u
the function space of a's. It is worth stressing that for the inverse
problem to be well-posed it is not enough to ensure uniqueness of o.
In fact, the crucial property will turn out to be the stability of the
solution with respect to changes in the observation data. It will be
shown later in this section that, even when the solution for a is guaran-
teed to be unique, the inverse problem is generally an unstable one.

The question of uniqueness of the identification problem is a very
involved one. Many authors have speculated in the past that a(x,y) cor-
responding a given set of observations u(xi,yi,t), i=1,..., mis non-

unique, the argument being that one cannot determine an infinite-

dimensional parameter from a “finite" set of measurements. Such an
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argument is wrong, since the measurements are infinite-dimensional with

respect to time and this permits (under certain assumptions) the unique
determination of the spectrum of the differential operator Ve{a(x,y)V)

and at the same time provides some information on its eigenfunctions.

Thus, the question of uniqueness of the identification problem can be for-
mulated within the framework of inverse Sturm-Liouville theory. This will
be done in Chapter II. However, with the available mathematical tools,
only special cases of the problem are solvable.

Although the complete discussion of these special cases will be post-
poned until Chapter II, we will consider one of these here. Consider the
idealized situation of an one-dimensional one-phase reservoir and suppose
that oil is extracted from just one well, Tocated at x = Xp’ and that the
extraction started at t = 0. Then the governing equation is

5t (00 B = atedsxex))

u(x,0)

u, = constant (4)
oy _Bu -

where q(t) is the flow rate, £ is the "length" of the reservoir and §(-)
is the Dirac delta "function".

If uObs(t) = u(xp,t), t € [0,T] and xp =
a(x) is nomunique. On the other hand, if u
then o(x) is wunique.

We can now proceed to the question of continuous dependence of the

(unique or not) « on the observation uObS(t) = (u(xi,t), i=1,..., m.
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It is apparent from (1) that o depends on u only through its derivatives

and it is well-known that given any function, a neighboring function can
be selected that has its derivatives arbitrarily far from that of the
given function. This ill-posedness manifgsts itself even in the numerical
approximation of derivatives.

In order to rigorously establish non-continuous dependence of o on u
one can use homogenization theory (Bensoussan, Lions and Papanicolaou,
1978). Homogenization theory shows that partial differential operators
with highly oscillatory coefficients can be "replaced" by very different
operators with flat coefficients and still yield practically the same re-
sponse. In the above reference, one can find homogenization results for
quite general partial differential operators. For the one-dimensional
version of (1), the result is amazingly simple:

Proposition: Let a(y), y € R be a function such that
a(y) is bounded a.e. in R
a(y) = a, >0 a.e. inR

a(y) is periodic with period 1

o“(x) =a( %), x€[0,1], €>0

and denote o = 7

Let u®(x,t) be the solution of



\
ou ] £ au '\ _
5w (5700 ) = flxon)
u(x,0) = uo(x)
> (5)
ou _
k, ™ (0,t) + %, u(0,t) = 0
ou _
k1 X (1,t) + 21 u(l,t) = O,/
and U(x,t) the solution of
2 N
LR ER (R
oX
u(x,0) = u (x)
. > (6)
u -
ko 5§~(O,t) N u(0,t) = 0
au _
k1 X (1,t) + % u(l,t) = 0 )

Then ue(x,t) converges uniformly to u(x,t) as e - 0.

The above lemma can be used to construct a broad class of counter-
examples to disprove well-posedness of the identification problem. To see
this, observe that as e +~ 0, o"'s are highly oscillatory functions whose
amplitude can be selected to be arbitrarily large and whose maximum and

minimum values can be arbitrarily far from o. For example, if

——l——l—,forxe[k,k+%—[,kél
1__

a(x) = M
M, for for x € [k + 5 , k + 1[, k € Z

where M is a very big positive number, then ug(x) is a highly oscillatory
“square-wave" function ranging from ~1 to M. On the other hand o = 2.
It is noteworthy that Lions (1978), based on homogenization results,

has cited the main difficulty in identifying distributed coefficients in
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partial differential equations as preventing excess of oscillations in
the coefficients. To overcome this difficulty, one has to somehow impose
a certain degree of smoothness on the estimate based on physical consid-
erations. In other words, one has to provide some extra qualitative in-
formation on the unknown solution.

As a concluding remark of this section, we want to emphasize that
the essential difficulty associated with estimating o in (1) is to allevi-
ate the inherent ill-posedness of the problem.

In the next two sections of this introductory chapter we will study
this identification problem with special attention to its ill-posedness
or ill-conditioning. §2 summarizes prior literature and §3 describes the
basic approaches that are available. Because of our focus on the ill-posed
nature of the current problem, we present a brief review of methods of
solution of general ill-posed problems in §4. These methods have motivated
the reqularization identification approach developed in Chapters III and IV

of the present thesis. Finally, in &5 we give an outline of the thesis.



8
2. SURVEY OF LITERATURE IN RESERVOIR AND AQUIFER IDENTIFICATION
The identification problem of interest has been defined in the pre-
vious section, namely to estimate a(x,y) in (1) based on spatially dis-

crete, noisy measurements of u(x,y,t), uo?s(

Xi’yi’t)’ i=1,2,...,m. It
appears that two principal Tines of attack have been followed with regard
to this problem. One consists of regarding (1) as a first-order partial
differential equation in o, where u and its spatial and temporal deriva-
tives are assumed to be known over the entire region based on the avail-
able data. Several authors have referred to this as the direct approach.
The uniqueness of the equation for o can be insured by prescribing the
value of o along a curve T that cuts all the streamlines of the flow or

by prescribing the flow, rather than o, at every streamline. With either
condition, the problem reduces simply to an initial-value problem for .
The second main Tine of attack, often referred to as the indirect approach,
consists of a trial and error procedure that seeks to improve an existing
estimate of o in an iterative manner until the predicted u is sufficiently
close to the observed u. Specifically, the identification problem is for-
mulated as the minimization of a suitable measure of the difference between
observed and predicted u(xi,yi,t). The so-called indirect approach seems
to offer several advantages over the direct approach in that it is far less
demanding in terms of the necessary observation data, specifically, the
spatial and temporal derivatives of u over the region need not be known,
only the temporal histories of u at the observation locations. The indi-
rect approach is, in fact, the Tine of attack of most distributed param-
eter identification problems (Kubrusly, 1977), and is the approach on

which we focus our attention later in this chapter.
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Table 1 presents a Tist of many of the prior studies on the current
identification problem. Upon a survey of the Titerature it becomes appar-
ent that two more or less independent lines of research on this problem
have existed, one associated with petroleum reservoirs and one directed
toward subsurface hydrological systems, although from time to time one
finds cross references between the two bodies of work. The papers Tisted
in the table are divided into three major topics, direct methods, indirect
methods, and those devoted to specific consideration of the ill-posed
nature of the problem and the statistical aspects of the parameter estima-
tion. These two aspects are treated together because a great deal of in-
sight into the ill-conditioning of the problem is available from a statis-
tical analysis of the estimates. In the papers adopting the indirect ap-
proach a large variety of minimization methods have been employed. Because
such methods have received extensive coverage in several textbooks and
review papers they need not be reviewed here (Eykhoff, 1974; Seinfeld
and Lapidus, 1974; Beck and Arnold, 1977; Kubrusly, 1977). In the next
section methods for solution of the identification problem are discussed,

with emphasis on dealing with the ill-conditioning.
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TABLE 1  Available Literature on the Estimation of Transmissivity a(x,y) in

ﬂj_=_a_
et ¥x

Reference

(o2 )+ &{o2)+ g

Approach

Staliman (1963)

Sammel (1964)

Nelson (1968)

Nelson and McCollum (1969)
Deininger (1969)

Kleinecke (1971)

Frind and Pinder (1973)
Sagar et al. (1975)
Yakowitz and Noren (1976)

Direct approach in which (1) is regarded as a first-
order p.d.e. in a(x,y) where u and its spatial and
temporal derivatives are assumed known over the entire
region.

Later papers have employed finite-element approxima-
tions for u and o, e.g. Frind and Pinder (1973)

Jacquard and Jain (1965)
Jahns (1966)

Haimes et al. (1968)
Vermuri and Karplus (1969)
Vemuri et al. (1969)
Coats et al. (1970)
Slater and Durrer (1971)
Yeh and Tauxe (1971ab)
Chen and Seinfeld (1972)
Marino and Yeh (1973)
Carter et al. (1974)

Chen et al. (1974)
Chavent et al. (1975)
Distefano and Rath (1975)
Wasserman et al. (1975)
Chang and Yeh (1976)
Gavalas et al. (1976)
Cooley (1977, 1979}

Shah et al. (1978)
Seinfeld and Chen (1978)

Indirect approach in which a(x,y) is determined to
minimize a performance index such as

T
3o [ xyyet) - ulxpyeth? at
0 1=l

subject to (1).

Many of the papers employ zonation in which the region
is divided into N subregions (zones) having uniform a.

Minimization methods used include direct gradient
methods, steepest descent algorithms derived from opti-
mal control theory, and linear programming.

Emsellem and de Marsily
(1971)

Lovell et al. (1972)

Neuman (1973,1980ab)

Gavalas et al. (1976)

Yeh and Yoon (1976)

Shah et al. (1978)

Neuman and Yakowitz (1979)

Yakowitz and Duckstein
{1980)

Treatments of the i1l1-posed nature of the problem
based on concepts of Bayesian estimation and incor-
poration of prior information about a into the problem.
Statistical analysis used to determine optimum number
of parameters, e.g. Yeh and Yoon (1976) and Shah et
al. {1978).
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3. METHODS FOR SOLUTION OF THE IDENTIFICATION PROBLEM

The solution of the identification problem can be divided into two
steps: (i) formulation of the problem, including the performance index
and the manner of representing o (x,y) and (ii) development of a method of
actually carrying out the estimation. As noted above, the key difficulty
is dealing with the ill-conditioning of the basic identification problem,
and that aspect must generally be faced when formulating the problem. As
noted, methods of actual parameter estimation have been discussed widely
and need not be reviewed here. Therefore, in this section we focus on
methods for solution of the identification problem that specifically
address the matter of jll-conditioning.

The only way to improve the ill-conditioning of the identification
problem is to incorporate additional a priori information into the problem
beyond that available in the model (1) and the observational data. Such
a priori information may take the form of assumptions concerning the nature
of o, such as its spatial variation or an assumed functional form to which o
is to adhere, or the a priori information may be introduced through terms
added to the identification performance index. A1l of these approaches act
to restrict the space of functions within which the estimate of o may lie.
Thus, the essence of how one alleviates the ill-conditioning of the iden-

tification problem is how one incorporates a priori information into it.

Zonation
Since (1) is frequently solved numerically on a grid lying over the
region, an obvious first approach is to assume that a(x,y) takes on dif-

ferent values in each grid cell. The number of such grid cells for even
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a modest sized reservoir can be quite large (the order of 103), leading

to an equally large number of unknown parameters. It is well known that
when one attempts to estimate such a large number of parameters, even
though the optimization routine may lead to an "optimal" set of estimates,
the accuracy associated with the estimateg is poor (Gavalas et al., 1976;
Shah et al., 1978).

The use of an array of grid cells to characterize the spatial hetero-
geneity of a reservoir is, of course, a computational convenience. That
the spatial heterogeneity of the parameters should conform to the same
grid is only a computational convenience. When this approach is used, how-
ever, not only do the estimated parameters lack uniqueness, but the esti-
mated distributions do not preserve the smoothness features inherent in
the geologists' concept of the reservoir. A common way to alleviate the
problem of nonuniqueness is what is sometimes referred to as zonation,
that is simply requiring that the parameters be uniform over regions of
the reservoir that contain multiple numbers of grid cells (Jacquard and
Jain, 1965; Jahns, 1966; Coats et al., 1970; Carter et al., 1974; Gavalas
et al., 1976; Cooley, 1977, 1979).

When prior information about the transmissivities is not taken into
account, the zonation approach makes intuitive sense, and, if the number N
of zones is sufficiently small, should lead to a well-behaved solution.

It is important to note, however, that when N is small, the modeling error
becomes Targe since the true o distribution cannot be represented even if
the solution is well-behaved. The question is how large N can become
before ill-conditioning sets in, and what should be the optimum size and

shape of each zone. The determination of an optimal zoning pattern was
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first addressed by Emsellem and de Marsily (1971), who proposed solving

a sequence of inverse problems starting with a small number of zones and
gradually increasing the number until there is no improvement in model

fit. Distefano and Rath (1975) adopted a criterion for deciding on the
optimal number of zones based on visual observation of the spatial behavior
of the estimated o field. Yeh and Yoon (1976) were apparently the first

to introduce statistical notions into the stepwise zoning process. They
used the variance of the estimation error as a criterion for deciding
whether a particular zone should be subdivided or kept intact at each step.
Shah et al. (1978) developed a detailed theoretical basis for the selection
of an optimum number of zones. The trace of the covariance matrix used as
a measure of the over-all accuracy of estimation was studied as a function
of N, and a procedure for selecting the optimum parametrization was de-
veloped. A brief summary of that analysis is presented later in this
section.

Neuman (1973) suggested that incorporating prior information about the
transmissivities directly into the statement of the identification problem
could alleviate ill-conditioning. A similar idea was advanced by Gavalas
et al. (1976) who formulated the identification problem in a Bayesian frame-
work. By using a priori statistical information on the unknown parameters,
the problem becomes statistically better determined. Shah et al. (1978)
showed that when reliable a priori statistics are available, the Bayesian
approach is superior in that it leads to a smaller variance of the estima-
tion error. Neuman and Yakowitz (1979) employed statistical theory in
estimating transmissivities on the basis of steady state data on u. They

formulated the identification problem as one of minimizing a performance



14
index consisting of two terms, one, the mismatch between predictions and
observations, and second, a Bayesian-like term accounting for deviations
from a priori estimate of a, similarly to Gavalas et al. (1976). The
selection of the arbitrary scaling parameter that multiplies the second
term of the performance index was studied in some detail. When reliable
a priori statistics are available, the Bayesian approach has been shown
to be effective in reducing the total estimation error. Such statistics
may not be available however.

An alternative to zonation is to specify the functional form obeyed
by o up to a set of unknown coefficients. For example, Distefano and Rath
(1975) used zonation and then assumed that o is a linear function of posi-
tion in each zone.

In either instance, the original problem of estimating a(x,y), a con-
tinuous function of spatial position, is converted into one of estimating
a finite number of parameters, Oy Closenes Opye The ill-conditioned nature
of the problem is, of course, not circumvented if N is sufficiently large.
The underlying nature of the problem can be nicely illustrated by consider-

ing its statistical aspects.

Statistical Aspects of the Identification Process

We have expressed the solution of (1) as u =3, and have discussed
the problems arising because of the nonuniqueness and lack of continuity
of the inverse operator. For the purpose of illustrating the i11-
conditioning of the basic identification problem, let us assume that (1)
has been discretized both spatially and temporally, so that u = Aa,

where u and o are vectors and A is a matrix, all of appropriate dimension.
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If A is invertible (this corresponds to dim u = dima = rank A),
then the solution is a = A_lu. When rank A < dim a, we have an over-
determined system of algebraic equations; the least-squares estimate is
given by
+

o = Aty 4 (7)

+ .
where A is the pseudo-inverse

at = (") " (8)

ane where A* is the adjoint of A. When dima> dim u, u = Aa has infi-
nitely many solutions given by£;= ATy + (I-A+A)Kwhere k 1s an arbitrary
vector with dimk = dim «. The first term 15 a particular solution and
the second represents any element from the null space of A. Since k is
arbitrary, the estimate ¢ may also be arbitrarily different from the true
value . In other words, the estimation error has no upper bound. The
dimension of the null space is the number of zero eigenvalues of A*A. In
this sense, A is singular. In a practical sense, overparametrization can
occur even without A being strictly singular. It is enough if A*A has one
or more of its eigenvalues much smaller than the rest. (A would then be
ill-conditioned.) The parameters along the associated eigenspace are vir-
tually indeterminable. As these eigenvalues approach zero, in the limit
the eigenspace becomes the null space. In the eigenspace a slight varia-
tion in the data u would be interpreted as being induced by a large change
in the parameters, since we have sa = A+(6u). Here A* has large eigen-
values in the eigenspace so that | 8a | is large even though | su is small.
The estimation is il11-posed even though A is invertible in the strict sense.
We have noted that one approach to achieving better-conditioned esti-

mates is to reduce the number of unknown parameters. This process can be
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represented as replacing the parameter vector o by its restriction to a
smaller subspace of the parameter space F. If we characterize this sub-
space by its basis vectors M, the parameter space can be resolved into M

and its orthogonal complement M' in F. Correspondingly, we can resolve a
into Oy and Ol by a = oy + Oy where uM’= MM+u, the projection of a into M.
The replacement of o by O leads to so-called parameterization error. Since
Oy Ties in a smaller space, we may characterize it as Oy = Mz, in terms

of a vector ¢ with fewer components. Thus, the estimation of o is replaced
as that of . If the data are represented as W o= u 4+ n, where n is the
error vector, then

o
u

[

u+n=~Ax+n

it

A(Vr + aM.) + 7

[(AM)Z]  + [Aay,] = (9)

Approximate  Parameterization Measurement
Model Error Error

which shows the composition of the observed quantity u®. The estimate is
¢ = (AM)+u0, or, in terms of the original parameter vector, a = M(AM)+uO.
The error in matching observed and predicted performance can be de-

fined as
38) = E{ | - AG D) (10)

where E{-} is the expectation. Eg. (10) thus becomes

il

J(a) = E{| I - (AM)(AM)+]u°H2}

= trace{p(AM) E(uouo*)p(AM)} (11)
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where o(aM) T I - (AM)(AM)+ is the projection into the null space of (AM)+.
The expectation E(uouo*) is E{(Aa + n)(Aa + n)* = Aau*A* + E(nn*). We
see that the estimation error can be reduced if p(AM) >0, i.e., as (AM)
assumes full rank. In other words, by in;reasing the number of parameters,
it is possible to produce a perfect match of observations and predictions,
regardless of measurement errors.

The parameter estimation error is defined as

J (&)= E{(]a-al? (12)

o

The estimate & is given by

M(AM) Tu°

~
a

M(AM) Aoy + ayi) + n] (13)

Thus,

3,(8) = Hegqr %+ trace u(am)" ECmn) (M(Am) )"} (14)

64
which consists of two terms, the parametrization error and the measure-
ment error. The parametrization error, ![uM.IIZ, approaches zero as v =
rank M approaches dim o, i.e., as the number of parameters is increased.
The second term contains M(AM)+, which has the eigenvalues 1/u1, 1/u2,...,
1/Uv’ where {ui} are the largest v eigenvalues of A*A. As v increases,
the degree of ill-conditioning of M(AM)+ alsoworsens because l/uv increases
with v. Thus, the effect of measurement error is amplified as the number
of parameters is increased. For every problem there is an optimum Tevel of
parametrization measured by v at which Ja(&) reaches a minimum. Padmanabhan

(1980) has included modeling error in the above analysis. Although we have

not considered modeling error here, i.e. the inexactness of A, it is
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frequently of more importance that measurement error in the identification

problem.

4. REGULARIZATION METHODS FOR THE SOLUTION OF ILL-POSED PROBLEMS

Introduction

In the preVious sections we have discussed the il11-posed nature of
the identification problem arising from nonuniqueness and instability of
solutions. No mathematical method can really alleviate nonuniqueness un-
Tess it selects some solution that has certain physically desirable prop-
erties (e.g. smoothness). However, as far decreasing instability is con-
cerned, mathematical methods do have a great potential.

The regularization approach is a stabjlity-oriented approach, with
which one obtains stable approximate solutions to il1-posed problems that
are in accordance with the level of error in the data. The regularization
method has two crucial properties:

i) In problems with inherent nonuniqueness, it selects (for a given level
of error) the smoothest solution, in the sense that it corresponds to
the least value of an appropriately chosen functional (called the sta-
bilizing functional).

ii) In problems where no nonuniqueness is present, the approximate solu-
tion it yields converges to the true solution in the 1limit as the

level of error in the data tends to zero.

The Concepts of Well-Posed and I11-Posed Problems

Consider the operator equation

Az = u (15)

where u and z are elements of the metric spaces U and F with metrics
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pU(ul,uz) for UysU, € U and pF(zl,zz) for 152, € F. We say that a solution z

R(u) of (15) is stable on the spaces (F,U) if for every positive number ¢,
there exists a positive number &(e) such that the inequality DU(ul’uz)-i
§(e) implies QF(Zl’ZZ) < €, where zy = R(ul) and z, = R(Uz) with u; and
Uy in U and zy and z, in F. ’

The problem of solving (15) is said to be well-posed on the pair of
metric spaces (F,U) if the following three conditions are satisfied:
i) for every u € U there exists a solution z € F
ii)  the solution is unique
ii1) the solution is stable on the spaces (F,U).
Problems that do not satisfy all the above conditions are said to be <71-
posed. Note that existence of a solution is assured if and only if U CAF;
uniqueness if and only if A is injective; stability if and only if A'] is
continuous. The (exact) solution of a well-posed problem of the form (15)

is simply
z=A"u (16)

For a long time, it was the accepted point of view that any mathematical
problem corresponding to any physical problem has to be well-posed. This
point of view, while natural as applied to certain phenomena that have
been studied over the years, is not valid for all problems. It is well-
established now that a great number of physically meaningful problems are
mathematically i11-posed.

In most practical problems, the RHS of (15) is not known exactly.
Rather, we have an approximation Us of the true, u, Ups with accuracy ¢,
i.e. DU(US’UT) < 8. It is natural then to seek an approximate solution

to (15) in the class Qd of elements z for which pU(Az,u ) < 8. The
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question is whcih element of Q6 to choose. If the problem is well-posed,

we may choose
(17)

If the problem is ill-posed, on the other hand, the result (17) is of

little value.

The Regularization Method

Consider again the solution of the operator equation (15) with approxi-
mately known right hand side ué(pu(ua’“T) < 6) and suppose that Al is
unique but not continuous. Then, an approximate solution Zs of (15) cannot
be obtained by (17).

Since the numerical parameter § characterizes the error in the right-
hand side of (15), it is natural to define Zs with the aid of an operator
depending on a parameter having a value chosen in accordance with the error
6 in the data u.. Specifically, as § ~ 0, i.e. as Us approaches (in the

6
metric of the space U) the exact value Urs the approximate solution z. must

§

approach (in the metric of the space F) the exact solution Zr-

Suppose that the elements 21 € F and ur € U are related by AzT = Ug.
An operator R(u,B8) depending on a parameter 8 is said to be a regularizing
operator for the equation Az = u in a neighborhood of u = Ur if:
(i) There exists 61 > 0 such that R(u,B) is defined for every g > 0

and every u € U for which pU(u,uT) <6 f-ﬁl’ and

(i)  There exists a function B = B(8) such that, for every e > 0, there

exists a number &(&) 5_61 such that U € U and DU(UT’U6) < &(e)

imply that pF(zT,zB) < g, where Zg = R(ué,B(B)).
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If pU(uT’ué) < 6, we can take for an approximate solution of (15) with

approximate RHS us the element z, = R(uﬁ,B) obtained with the aid of the

B
regularizing operator R{u,B), where 8 = B(§’u5) is in accordance with the
error in the initial data Us- This solution is called a regularized solu-
tion of (15), and the numerical parameter'B is called the regularization
parameter. This method of constructing approximate solutions is called

the regularization method.

Tikhonov Regularization

Consider the operator equation

Az

u (18)

]

where A is a Fredholm integral operator of the first kind, i.e. Az
b

Jr K(x,z)z(z) dz. The problem of solving (18) with K being any measurable

a

kernel 1is an il1-posed one. This is a consequence of the Riemann-Lebesque

lemma.
b .
S K(G)sin(ug) dz > 0 as w > + =
a
b
In fact, if Uy and z; satisfy (18) and UZ(X) = ul(x) +p ,[‘K(X,C)sin(wg)dg,

a
then the difference u = Uy-Uy can be arbitrarily small for sufficiently

large w. However, the corresponding change in the solution 8§z = z, - 24

p sin{wx) can be arbitrarily large with an appropriate choice of p.

Now suppose that u. is a measurement of u with mean square error < 3,

S

o - e { S Tueta) - urtor%en )| < s
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where Uy denotes the exact value of u,and let Q(z) be a functional, called
p-th order stabilizing functional, of the form

P d'z
oz) = f X qr(c)(—~—)« dc (19)
a

=0

~

where qr(c) are continuous strictly positive functions.
Tikhonov (1963a, 1963b) proposed the minimization of the so-called

smoothing functional
B — 2
M*(z,ug) = Az - ug | + 8a(z) (20)

as a means of constructing regularized solutions to the operator equa-
tion (18).

He showed:
Result 1: For any square-integrable function Us and for every B8 > 0 there

exists a unique continuous p-times differentiable function z, that mini-

8
mizes the smoothing functional MB(z,ué).
Result 2:
If usis such that ||u6 - ug | <8
e B 2 2
1
zg minimizes M (z,uﬁ), where c16 <B §_c26
with 0 < Cy <6 ]
dz
then zg converges uniformly to z as § » 0. Also converges uni-
r dx
formly to dz for 1 < r < p-1.

Y. 9
dx
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Tikhonov's results are readily extendable to the case where A is an

arbitrary bounded linear operator from a Banach space F into a Banach
space U with unbounded inverse (Ivanov, 1966; Morozov, 1966). In this
case one can construct regularized solutions of (18) by minimizing the

smoothing functional
B _ 2
M>(z,u,) = | Az - u6[§u + Bo(z)
where
2
Q(z) = ”Z ”w

with W being a Hilbert space compactly imbedded in F.  One can show:

Result 1: For every Us € U and B > 0 there exists a unique z, € W that

B8
minimizes the smoothing functional MB(z,ué).
Result 2:
AzT = Ups with 2 €W
If us is such that[lua - uTHU <8
Zs minimizes MB(z,uﬁ), where cléz < B §_c262

with 0 < Cq < c2

then l{z6 -z ”F ~0as &~ 0.

The regularization approach can be further extended to a class of
nonlinear problems (Tikhonov and Arsenin, 1977). We will not discuss
this extension at this point. The reader is referred to Chapter III of
this work, where we present a generalization of the Tikhonov-Arsenin
theory which is suitable for identification problems in partial differen-

tial equations.
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The Approach of Miller

Consider again the problem of solving an operator equation of the
form (15). Miller (1970) reformulated the problem as follows:

Given the Hilbert spaces F, U and w,.the bounded 1inear operators
A: F>Uand B: F > W, and an element u € U, and assuming that B'1 exists

and is bounded, suppose that zy € F satisfies
[Azp - ul < (21)

[Bzy || <& (22)

The problem is to find an element Z € F that approximates Z7 in the sense
that the seminorm <2~2T> is small for & small.
Consider first the case where both & and A are known. Miller

defines

u(8,8) = supf{<z>:z € F, Az | < ¢, Bz | < &}

2
uy(s 8) = supf<z>:z € F, Az | 2+ (2) Bz | 2 < 26%)
and shows that if Zq satisfies (21) and (22) then it also satisfies

2

2
lazg - ul?+ (&) 182,012 < 26 (23)

Conversely, any zq satisfying (23) also satisfies (21) and (22), except

for a factor of at most v2. Furthermore,
u(8,8) < uy(8,8) < v2Z u(s,4)

This result suggests that we may combine the two constraints (21) and (22)

and sacrifice at most a factor of V2.
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Method 1. Miller proposed to take as an approximate solution the ele-

ment Z € F that minimizes
2
2 8 2
[az-u 2+ (&) JBz |

This element is given by
2 -1
* *
i:(AA+(-§-)BB) A"y

where superscript * denotes the adjoint of an operator. Note that the
s 2

* x
operator (A A + (Z) B B) has a bounded inverse under the assumptions made

for the operators A and B. This guarantees stability of the approximate
solution Z.
Miller also gives an error estimate

<Z - zp><uy(6,0)

provided that z; satisfies (23).

Next Miller presents a more general approach for which it is not
necessary that both § and A are specified. A pair (8,A) is said to be
permissible if there exists a z € F satisfying (21) and (22).

Now let ZB be a minimizer of

lAz-u |2 + g | Bz |2

and et &g = HAZB-UII and 4, = I!BZBII. Clearly z, minimizes |Az-u |

B

with respect to the constraint | Bz | < fg. Likewise z, minimizes | Bz |

with respect to the constraint [Az-u| < ¢ It is also easily seen that

8*
68 and AB are continuously increasing and decreasing functions of B8,

respectively. Thus, the set E of permissible pairs is exactly the set of

points that are above and to the right of the curve (SB,A » 0 <B <=

g)
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(Figure 1). Here the case B = 0 corresponds to the minimization of

| Az-u| alone, in which case bg may be =, and the case g = = corresponds

to minimization of |Bz | alone, in which case 8, = |u| and &, = 0.

B B
Moreover, it is easily shown that E is a convex set, hence computation of
only a finite number of points on its boundary curve is needed to ascertain

the curve.

Method 2. If § and A are known, the unknown solution must lie in the sha-

ded area of Figure 1. Furthermore, any z, whose corresponding (SB,AB)

B
touches the shaded area can be taken as an approximate solution. Note

that 2g-zp> < 2u(8,8).

Method 3. Assume that only & is known. Miller proposes to take as an
approximate solution Z that element of F that minimizes |[Bz | subject to
| Az-u| < &. Then 7 = Zg1» Where B' is the value of 8 such that 8g1 = 85
as shown in Figqure 1.

Method 4. Assume that only A is known. Miller proposes to take as an
approximate solution Z that element of F that minimizes | Az-u| subject
to Bz || < A. Then Z = z_,, where 8" is the value of B such that A, = A,

B8 B
as shown in Figure 1.

Aﬁ“

Figure 1
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Discussion. Upon examining Method 1, we note that Miller's theory relies

heavily on the fact that A is a linear operator, whereas the regularization
method of the previous section is applicable to nonlinear operators as
well. HBz]l2 can be interpreted as a stabilizing functional, but the
assumption that B is bounded is too restrfctive for the probiems of inter-
est. The operator B corresponding to stabilizing functionals of the form

S )2

(19) is unbounded. The regularization parameter ( n

function of the error in the data, which is consistent with Result 2

is a quadratic

(c1 = ¢y = %3-).

In methods 2-4, I[Az—ull2 + BI\BZIIZ stands for a smoothing functional
with B8 the regularization parameter. Methods 2-4 suggest an interesting
method of selection of the regularization parameter. Note however that
if the operator A is nonlinear, the set £ will no longer in general be con-
vex and the functions 68<B) and AB(B) no longer single-valued. Hence,
for a nonlinear operator A it is possible that g' and B" do not exist for
given & and A. This fact creates a serious complication when dealing with

nonlinear problems, in which case the local convexity of E must be investi-

gated either theoretically or numerically.

Wahba's Version of the Regularization Method - Weighted Cross Validation

Wahba's approach to regularization consists of constructing regular-
ized approximate solutions by minimizing a smoothing functional. The dif-
ference of this approach from the previously described ones is the method
of selection of the regularization parameter. The method, termed weighted
eross-validation does not require any a priori statistical information
concerning measurement error. The weighted cross-validation technique

seems to have originated from problems of interpolation, and has been
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applied to solution of Fredholm integral equations of the first kind. The
idea is quite general, however, so that extension to general nonlinear
j11-posed problems seems possible but far from trivial (Neuman and Yako-
witz, 1979; Wahba, 1980). ‘

Consider for the moment the problem of solving the operator equation

Az(x) = u(x) (24)

from discrete noisy measurements ugbs, ugbs, cees ugbs, of u(x) at the
points X015 Xos vy X If A is the identity operator, then this is the
standard interpolation problem. (Note that although the identity operator
is obviously continuous, the interpolation problem is ill-posed since solu-

tions are not unique). The interpolation problem can be approached by the

regularization method. Assuming that the true z(x) has continous second

as a stabilizing functional, one can obtain regularized solutions to the
interpolation problem by minimizing the smoothing functional

2
MB(Z,UObS) =~r11— f_l,l[u?bs - Z(Xi)] + B _/-anjz"(x)]2 dx (25)
i= X
1

It can be shown that the solution of the minimization problem leads to a
natural cubic spline,
s(x) = a, + b.(x-x;) + c,(x-x )2 + d.(x-x )3
i i i i i i i

] (26)

x € [Xi’xi+1

Expressions for the coefficients are given in the literature (Reinsch,

1967; Merz, 1978). For this discussion we are interested only in the
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expression for a = (al, PRI an).

Let P be a symmetric, tridiagonal, (n-2)x(n-2) dimensional matrix

with elements,

_ 2 - -1
P73 i) Py T P, T3 Bga )

and let Q be the tridiagonal nx(n-2) dimensional matrix with elements

q :.___1_.__._ q :_[ 1 + 1 ] q =_1_—.
T XamXy +1,1 Xi017%5 X5427%541 2.7 Xi07%i0
then (Merz, 1978)
a = LyoPs (27)

where L = I - Q(QTQ + HBP)QT

Reinsch (1967) suggested that if the standard deviation o of the errors

in the data is approximately known, 8 should be chosen such that

1 <~ , obs 2 _ 2
w o (U = slxg))T =0
i=1
or
L) (1-L(e))u®s 1 2 = P (28)

where | - | denotes Euclidian norm. This method for determining B gives
excellent results for most practical purposes, but breaks down whenever
error statistics are unavailable.

The determination of g by cross-validation proceeds as follows (Wahba
and Wold, 1975; Craven and Wahba, 1979). Let sék] be the spline using all
data points except the kth. We take the ability of sgk] to predict the

obs

missing data point U, " as a measure of the effectiveness of B. An overall

measure of this effectiveness is the value of
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1 & b
Vo(®) =5 2 [sE D) -] (29)

It can be shown from (27) and some algebra that

[LJO'DS’-ak(B)].2

(=1 [1-L,, (8)12

vo(e) =1

a weighted sum of squared residuals of the fit to the data.

One could use the minimizer of VO(B) as the optimum g, a procedure
known as ordinary cross-validation. Using statistical arguments, Wahba
suggested that ordinary cross-validation be used only for periodic splines
with equally-spaced data points. Note that in this case the weights
(1-ka(6))'2 of squared residuals are all equal. In the general case one

should minimize
n ?
1 [k] obs
== Z; [ - U ] w, (8) (31)

vhere Wy account for non-equally spaced data and possible non-perijodicity

of the spline. Equation (31) can be written as

[u2S-a, (8)1° (32)

L
& T (7
kk
According to Wahba, wk(B) have to be chosen in such a way that the weights
wk(B)/[l—ka(B)]2 are all equal and V(B) = VO(B) in the special case of

equally-spaced data and periodic spline. Then
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1 -1, (807
i (8) {1 ek ] (33)
ﬁ-tP(I-L(B))
and
L1(1-L(8))u0P5 |2
V(8) ==y 5 (34)
[L tr(1-L(e))]
where | « | denotes Euclidian norm. The minimization of V(B) given by (34)

yields the weighted cross-validation estimate of B.
Consider now the problem of approximately solving the integral equa-
tion

|
JO K(x,z)z(z) dz = u(x) (35)

given discrete noisy measurements u?bs, ugbs’ ceas uﬁbs at the points

XqsXpseres X .
Assuming that z € LZ[O,I] and choosing a stabilizing functional of
zeroth order, one can obtain regularized solutions zg(x) by minimizing

the smoothing functional,

n 1 2
(2™ = 5 2 [{ K(x;»2)z(2) de - u‘?bﬂ + 8 J [2(2)7%4c (36)
&

i

Wahba (1977) has shown that

- 3 -1, obs obs obs\T
z,(x) = (K(xl,X),K(xz,X),..., K(xn,X)) (Q + nel) “(up 7huy Tseees U )

(37)

where
1

ﬁjk = bf K(xj,c)K(xk,c) dg

Now the weighted cross-validation function is given by
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n 1 2
V() =+ % [Of Kix-)zH () dc-uﬁbs] w, (8) (38)

where zgk](x) is the regularized solution obtained by omitting the k-th

data point, uﬁbs.

Wahba (1977, 1980), using a similar argument as in the interpolation

problem, has shown that the appropriate choice of wk(B) is

2
1-L,, (8) (39)
Wk(B) = 1
ﬁ-tr(I—L(B))

where

Q(Q + ngI)”

—
—~
w
~—
H

Then

Z
11 (1-L(2))u®Ps)
V(g) = (40)

(L tr(1-L( 8))*

The idea of cross-validation is quite general and is applicable nonlinear

problems. The key problem is how to select the weights wk(B) in the
cross-validation function V(B). As pointed out by Wahba (1980), the prob-
1em of choosing the weights wk(B) for nonlinear problems has not yet been
solved. However, one may use ordinary cross-validation, or even (40)

when the operator is "mildly" nonlinear.
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5.  THESIS OUTLINE

The identification problem of petroleum reservoirs and subsurface
aquifers, due to its extreme economic importance, has motivated the pres-
ent thesis. The work was oriented in two'directions. First, to study
the fundamental question of uniqueness of the identification problem; sec-
ond, and most important, to develop well-conditioned algorithms for its
numerical solution. The work in Chapter II is along the first direction;
Chapters III and IV are along the second.

It is noteworthy that the ill-posed nature of the petroleum reser-
voir/subsurface aquifer problem is typical in all identification problems
in distributed parameter systems with spatially-varying parameters (Lions,
1978). This motivates the study of more general identification problems,
the objective being to develop well-conditioned numerical algorithms.

For this reason, in the regularization identification approaches presented
in Chapters III and IV, we have not restricted ourselves to (1); we have
considered much more general distributed parameter systems. It is also
noteworthy that the inverse Sturm-Liouville framework, developed in Chap-
ter II for the study of the uniqueness question, is potentially applic-
able to more general identification problems. However, since the theory
is still at early stages and far from answering the uniqueness problem

for (1) in its full generality, such a consideration would not be
meaningful.

In Chapter II, we consider the one-dimensional analog of (1) and
address  the question of uniqueness of a(x) from a measurement of u at a

single point. More specifically, we consider
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3.2 (o(x) .g_g) = f(x,t),  in 10,2[x]0,T]

ot X

u(x,0) = us (constant) , in ]0,2[
o(0) 43 (0,t) = g(t) . in J0,T]
o) 4 (2,t) =6(t) . in ]0.T]

and the point measurement uObS(t) = u(xp,t), t € 10,T] at some Xq € [0,42].

The uniqueness question is answered in the following special cases

(i) f = 0, either g or G = 0, X, = 0

(ii) f =0, either gor G = 0, X, = 2
171 = = = :8.’.

(iii) f = q(t)é(x-xp), g=G=0, xp 5

by proving their equivalence to an inverse Sturm-Liouville problem and
extending the available Gel'fand-Levitan theory.

In Chapter III we develop a very general regularization identifica-
tion approach by extending the Tikhonov regularization. The theory is
presented in three levels: (i) abstract identification problems (ii) Iden-
tification of general 2m-order Tinear parabolic systems (iii) identifica-
tion of spatially-varying diffusivity in the diffusion equation (1).

In level (iii), the n-dimensional version of (1) is considered with
two different types of observation: distributed observation and point

observation. In level (ii), the dynamic system

g%-+ A(t)u = f, in 9 x 10,T[
u(x,0) = ug . in Q

. j=0,..., m=1, on T x]0,T[



35

where 2 € R" with boundary T and 0 < T < « and where

A u= (-D1Pl2a (x,) %)
Iplslql<m

= h 1 = -
Bju = E bjh(x,t)Dxu , J=0,..., m1
lhifmj

with O f‘mj = order of Bj < 2m-1
is considered with distributed or point observation. Level (i) refers to

abstract identification problems of the form
Y(A(X),u) = f

where ¥ is an abstract mapping, A is a partial differential operator
depending on a set of spatially-varying parameters A (which are to be
jdentified) and u is the state of the dynamic system (for which an obser-
vation u°PS = @y is given).

The last section of Chapter III refers to a numerical implementation
of the regularization approach. A gradient method for the minimization of
the smoothing functional is presented, as a natural consequence of the
theory. The gradient approach is tested by numerical experiments in the
one-dimensional version of (1).

Chapter IV focuses on the development of practical, computationally
efficient numerical schemes for the minimization of the smoothing func-
tional. The proposed approach is to perform the minimization of the

smoothing functional over an appropriate finite-dimensional space and

thus reduce the original infinite-dimensional identification problem to a
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finite-parameter estimation problem. The approach is based on a conver-
gence theorem for the discretized minimization of the smoothing functional
as well as available techniques for constructing piecewise-polynomial
approximations in Sobolev spaces. The performance of this discrete regu-
larization approach is tested by numerical experiments in the identifica-

tion problem associated with (1).
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CHAPTER II: IDENTIFIABILITY OF SPATIALLY-VARYING CONDUCTIVITY
FROM POINT OBSERVATION AS AN INVERSE STURM-LIOUVILLE
PROBLEM
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1. INTRODUCTION. The partial differential equation

) B2 ety ) - (et B )= eyt

governs the temperature distribution in a nonhomogeneous isotropic solid or
the pressure distribution in a fluid-containing porous medium. The conductivity
a{x,y) is inaccessible to direct measurement and, consequently, its value must
be inferred from measurements of u at a finite number of points. A fundamen-
tal question arising in such problems is that of identifiability, namely, do
the measurements provide sufficient information to determine o uniquely.
Relatively little work has been carried out on the identifiability of o
in (1.1). Early work by Cannon and coworkers [1-3] is concerned with the
steady-state version of (1.1) and identifiability given the temperature u and the
heat flux along the boundary. Kitamura and Nakagiri [4] have studied the iden-
tifiability of a(x) in the one-dimensional version of (1.1) given measurements
of u(x,t) at all x and t. The most relevant measurement configuration is that
of one or more point measurements of u and we concentrate on that situation
here. Specifically, we consider the problem of identifying a(x) in the one-

dimensional version of (1.1),

(1.2) -g—‘;-a?; (a(x)—g-g)=f(x,t)

given measurement of u at a singie point x_, u(xﬁ,t). The appropriate method

p
of attack to obtain uniqueness and non-uniqueness results is to formulate the

problem as an inverse Sturm-Liouville problem.
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2.  INVERSE STURM-LIOUVILLE PROBLEMS. THEIR RELATION TO IDENTIFIABILITY

PROBLEMS. The inverse Sturm-Liouville problem was first posed in 1946

by Borg [5] as follows: Given the eigenvalues A, of the Sturm-Liouwville problem

(2.1) y"+ [x-q(x)]y =0
(2.2) y'(0) - hy(0) =0
(2.3) y'(2) + Hy(2) =0

determine q(x). Borg showed that knowledge of the spectrum alone is not suf-
ficient to determine q{x) uniquely. Since that early work, two not altogether
equivalent inverse Sturm-Liouville problems have been considered.

One approach, which has become associated with Gel‘fand and Levitan [6],
uses the spectral function o()) as a starting point. If ¢(x;1) denotes the

solution of (2.1) satisfying y(0) = 1 and y'(0) = h and if we define

L

E-(2) = f f(x)e(x:n) dx
(o]

where f is an arbitrary element of LZ(O,Q), then by Parseval's theorem,
2 2 .2
J 20 dax = S E20) do(n)
o -C0

where
o(A) =2 é—
xn<x n

and

2
e, = J ofln,) dx
0
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Gel'fand and Levitan have shown that knowledge of o(}), or equivalently, of
the spectrum {An} and the normalizing constants {gn}, determine the potential
q(x) uniquely. Furthermore, they provided a method of constructing q(x) from
o{)), as well as necessary and sufficient conditions for existence. Note
that since £, = [yn(O)]'z, where yn(x) are the normalized eigenfunctions of
the Sturm-Liouville problem (2.1)-(2.3), the results of Gel'fand and Levitan
can be interpreted as applicable to the problem of constructing a Sturm-Liouville
operator of the form (2.1) given {An} and {lyn(O)l}.

The other approach to the inverse Sturm-Liouville problem consists in using
two spectra, such as {An} associated with (2.1)-{(2.3) and {un} associated with
(2.1) and a different set of boundary conditions, to determine q(x) [7]. Krein
[8,9] provided a method of constructing q(x) from two spectra as well as neces-
sary and sufficient conditions for existence. The issue of existence was inves-
tigated further by Levitan [10] who showed how the normalizing constants En
can be evaluated from {An} and {un}.

It is noteworthy that the prior work on inverse Sturm-Liouville theory is
based on the Liouville normal form (2.1)-(2.3). As we shall see shortly, the
problem of interest in the present work requires us to consider inverse Sturm-
Liouville problems that are not in normal form.

Consider for amoment the parabolic system,

A2 {o(x) ) +q(x)u = £(x,1), in J0,2[ X 10,T]
u(x,0) = u (x) » in ]0,¢[
(2.4) 2X0,t) - h u(0,t) = g(t) . in 10,7]

| %%—(g,t) + H u(e,t) = G(t) » in ]0,T]
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where f(x,t),uo(x), g(t), G(t), h, and H are known. Given the point measure-
ment zd(t) = u(xp,t), t € ]O,T], at some xp € [0,2], the question is can a(x)
and q(x) be uniquely determined.

Note that the solution (1) of (2.4) can be expressed in terms of the eigen-

values xn and the eigenfunctions yn(x) of

%;(a(x‘)'%) + [-alx)]y =

(2.5) y'(0) - hy(0) =0
y' () +Hy(e) =0
as follows
o £ -x t
u(x,t) Z [f u (x)y (x)dx] yn(x)e n
t ot A (t-1)
+ f f{?; .Vn(X).Yh(X')e T }f(x','r) dx'dr
(2.6) - (1)
S L a0y (0l (e " ba(r) ot
0 =
-2 (t-1)
* f { _.oc(ﬁ yo(2)y,(x)e " ' }G(T) dr
0 n=1

and thus the measurement

e At
z4(t) = ulx;.t) = n§=:1 yn(xp)[fuo(X)yn(X) dx:]e ;

-2 (t-1)

t 8 o
+ af.g'{ 2;& yn(xp)yn(x')e n }f(x',r) dx'dt

1')w1th a(x) str1ct1y positive and o, q,f,u_,g and G sufficiently regular, there
exists a unique strong solution of (2 4) See [11, pp. 320-1] for appropri-
ate Holder continuity and compatibility conditions.

0
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t = -An(t-r)l
- S {Z a0y, (0, (x e lg(e) ae

0 n=1
=A (t-1)

% w
: n
@1+ ST e ba(nydr

Kitamura and Nakagiri [4] (see also-[12]) considered (2.4) with a and q

both being constant. Using (2.7), they have shown that (under certain assump-

tions) in the following special cases

0, g(t) =6G(t) =0

(i)  f(x,t)
(i1)  f(x,t) = 0, uo(x) = 0, one of g(t) or G(t) vanishes
(111) u (x) =0, g(t) = 6(t) =0, f(x,t) = f;(x)}f,(t)

the eigenvalues An can be uniquely determined. Thus the constants o and q
can be easily obtained.

When o and g are spatially varying, one can still (under certain assump-
tions) determine the eigenvalues An as well as some information on the eigen-
functions yn(x) for the cases (i)-(iii) ([13]). Thus the identifiability
problem reduces to an inverse Sturm-Liouville problem related to (2.5). Notice
that (2.5) is in normal form only if a(x) = 1, in which case the results of
Gel'fand and Levitan [6] and Levinson [7] provide identifiability in very spe-
cial cases.

In the present work we are going to consider the case a(x) = 0, i.e.

B ax) &)= f(x,t) ., in 0,2l x 10,7

(2.8) U(X,O) = UO(X) ® in ]O,ﬁ[

]

2 (0.t) - hu(0,t)

3u
3;‘(2,t) + H u(g,t)

g(t) , in ]osT]
G(t) , in J0,T]

it
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the general problem being to determine a(x) knowing f(x,t), qo(x), g(t),

G(t), h and H and given the point measurement
(2.9) z4(t) = ulx,t) , t € ]0,T]
at some xp € [0,2]. The Sturm-LiouVi]1e'prob1em associated with (2.8) is
o Cdy
HY( alx) dx) *

(2.10) y'(0) ~ h y(0)

>
]
o

Y

1]
o

]
o

y'(2) + H h(r)

and the eigenfunction expansion of the solution of (2.8) is still given by (2.6).
In Section 3 we define three special cases of (2.8) corresponding to models
of physical systems and formulate identifiability problems as inverse Sturm-
Liouville problems. In Section 4 we state and prove the analog of Gel'fand and
Levitan's result for the Sturm-Liouville problem (2.10). In Section 5 we obtain
uniqueness and nonuniqueness results for the identification problems of Sec-

tion 3.
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3. PROBLEM STATEMENT. In the previous section we have stated a general identi-

fiability problem associated to the system (2.8) and the measurement (2.9).
With the available tools it does not appear to be possible to attack the prob-
lem in its full generality; rather, it is necessary to consider special cases.
It will, however, be very important to select cases that are physically rele-
vant and of practical significance. OQOur selection is based on the following
considerations:

(i) In practice one generally has point actuators and thus boundary control
and/or point control at some interior point(s) exist as opposed to distributed
control

(i1) Before performing a heat conduction experiment, it is natural to assume
that the system is at ambient temperature, i.e. u = constant. Thus, the most
important special case for uo(x) is uo(x) = constant.

In the present work the analysis will be restricted to the SISO case. In
other words, we are going to assume either that only one of g(t), G(t) is non-
zero and f(x,t) = 0 or g(t) = G(t) = 0 and f(x,t) = Q(t)é(x-xp). Also, we will
restrict ourselves to the special case of uo(x) = U, (constant.)

We consider

=X (a0 2) L inJoal x 0,7
u(x,0) = ug , in ]0,2[

(3.1) au .
a(0) 8% (0,¢) = Q(t) , in J0,T]

- 3u _ .
3; (l,t) =0 s n ]OST]
where o € Cl([O,RJ) and 3cx0 > 0: ax) > aOVx € [0,2]

Q€ H(0,T)and A e>0: Q(t) =0 vt €0, €[

l%)e R
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PROBLEM 1. To a known input Q(t), a known initial state u and a given

measurement Zd(t) = u(0,t), t € ]0,T],does there correspond a unique o(x)?
PROBLEM 2. To a known input Q(t), a knowm initial state Uo and a given
measurement zd(t) = u(2,t), t € J0,T], does there correspond a unique a(x)?

Now consider

-2 (a0 B)+ qe)stexy) s in 10,20 x 10,T]
(3.2) u(x,0) = Uy , in J0,8[
2 (0,t) = 2 (a,t) = 0 . in 10,7
where

o € c1([0,2]) and Fa_ > 0: alx) > o) Vx €[0,e]
Qe H(0,T) and F e>0: Q(t) =0 wte€ J0,el
.%)é R

X, € 10,2

PROBLEM 3. To a known input Q(t), a known initial stateu_and a given

]
measurement zd(t) = u(xp,t), t € ]0,T], does there correspond a unique o(x)?
To be able to formulate Problems 1-3 as inverse Sturm-Liouville problems,
we will need the following lemmata:
LEMMA 1: Let {An} be a strictly increasing sequence tending to infinity.

If {cn} 8 a bounded sequence and

© =it

c.e L) vt € ]0,T]
n=1

then

c. =0 Yné€eN
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Proof: See [14, p. 170].

LEMMA 2: Let {Ah} and {in} be strictly increasing sequences tending to
infinity and {cn} and {En} be bounded sequences. Suppose
oo =x t g -at

n"_ ~ n
-,'nz=:1 c, e vt €]0,T]

(3.3) c.e
n=1

(i) Ifcn#Oandcn#O, n=131,..., N then )\n=)\nand C, = Cps n=1,..., N

(i'i)Ian#Oandcni‘O Vné€Nzthen A\, = A andc, =c,  VnéN

Proof: The proof is similar to that of a similar proposition in [15,
p. 476].
We will first prove (i) for N =1 i.e. we will prove that if ¢ #0

and assume A, < A
Lt 1 1

~

andEI#OthenA =3, and ¢

1 1 17 - Suppose that )\1 # A

1

without loss of generality. Multiplying both sides of (3.3) by e 1 , we obtain
Oyt = st @ . =(A At
c,-cte 11 4T e "V LUST ce "I o0 ywiteo,1]
1 1 nep N neo N

Since all the exponents in the above equation are # 0 it follows from Lemma 1

that ¢, = 0. This contradicts our hypothesis. Hence >‘1 = >‘1‘ Thus we can

1
write (3.3) as follows

A =X t oo -X t o A =A t
(cl-cl)e 1 +che n -che "0 vteio,T]
n=2 n=2 ‘
or
A ® (A =20t = . -3 -2t
(Cl'cl) + ) c.e L > c,e LI 0 vteé ]0,T]
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With the same argument as before we conclude that ¢y = ¢ So (i) 1is true

for N = 1.
Assume that (i) is true for N = k. Let <, # 0 and c, #0,n=1,...,
k + 1. Then (3.3) becomes
© -2t ©
2 ce =% ce "
n=k+1 " n=k+1 "
and by repeating the same argument we deduce that Ak+1 = Ak+1 and Chtl = Cka1®
which shows that (i) is true for N=k+1.
This completes the proof of (i). Condition (ii) is an immediate consequence
of (1).
LEMMA 3 [16, p. 325]: Let ¥, Q € LI(O,T) and assume

ﬁe >0: Q(t) =0 a.e. in [0,€l.
Ir
t
f ¥(t-1)Q(1) dt = 0 a.e. in J0.T[
)
then

¥(t) = 0 a.e. in 10,7[
COROLLARY: Iet Q € L1(0,T) and assume

Ae>0: Q(t) =0  aee in 10,el

If the integral equation

t
f ¥(t-1)Q(1) dt = R(t)

0

admits a solution ¥ € Ll(O,T)then Y is unique
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Next consider

- d (a(x)‘%%) + Ay =0

dx
(3.4) y'(0) =0
y'(2) =0

where o € Cl([O,Q]) and Baoz af(x) > o, Y x € [0,2] and denote by A the
eigenvalues of the above Sturm-Liouville problem and by yn(x) its normalized

eigenfunctions.
WO

PROBLEM 1'. Referring to (3.4), is knowledge of {xn}:_l and {ly, (0|} 4

sufficient to determine o(Xx) uniquely?
Proof of Equivalence of Problems 1 and 1°'.
We will show that knowing Q(t) and Us
(1) z4(t) is sufficient to determine {An}n=1 and {[yn(O)I}n=1 uniquely.

(i1) O

nn=1 and {}yn(o)l}n=1 are sufficient to determine zd(t) uniquely.

The eigenfunction expansion of the solution of (3.1) is given by
t = -2 (t-1)
- : n
a(,t) = vy = S {2y, (0y, (e fa(n) dr

Hence

oo

‘ t -2 (t-1)
(3.5) z4(t) = u(0,8) =uy - S { X ly (0% e " ' la(r) ar

0 n=1
Now given Q(t), u, and zd(t), it follows from the Corollary of Lemma 3 that
the function
o -at
¥(t) = X Iy, (0% e "

n=1
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is uniquely determined. Now since'{A&»and {yn(x)} are eigenvalues and eigen-

functions, respecti9e1y, of the regular Sturm-Liouville problem (3.4), they
clearly satisfy the assumptions of Lemma 2. Hence {}}and {[y,(0)]} are
uniquely determined by ¥(t). This proves (i). Condition (ii) is an obvious
consequence of (3.5).

PROBLEM 2'. Referring to (3.4), ie knowledge of {An}:z] and {yn(O)yn(K)}:zl
sufficient to determine o(X) uniquely?

Proof of Equivalence of Problems 2 and 2'

The eigenfunction expansion of the solution of (3.1) is given by

u(x,t) = u, - Sfx{ Egi ¥, (0)y, (x)e x"(t-T)}Q(T) dt
Hence

-Xn(t-T)
(0)y,(2) e o) e

w &=

¥t ©
SIS

n=1

~—
w
o
(=)

~

Zd(t) = “(Q,

t) =u_ - f
o7 n
0

Using (3.6) and repeating the same argument as with Problems 1 and 1', we

conclude that Problems 2 and 2' are equivalent.

co

PROBLEM 3'. Referring to (3.4), is knowledge of {An}n=1 and {]yn(xp)}}n=1

eufficient to determine a(x) uniquely?
Problem 8 is equivalent to Problem 3' provided that yn(xp) #0 VneN.

Indeed, using the eigenfunction expansion of the solution of (3.2),

. t, o -A (t-1)
u(x,t) = u  + 6[ { nz=:1 yn(xp)yn(X)e n }Q(T) dt
we have
t o s =X (t-1)
(3.7)  z4(t) = ulx .t) =g+ 6/' {n};l (e )% e " }Q(T) dr
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Thus, repeating the same argument as with Problems 1 and 1', we conclude that

Problems 3 and 3' are equivalent, provided that yn(xp) #0 Vné€N.
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4. AN ASSOCIATED INVERSE STURM-LIOUVILLE PROBLEM.

As mentioned in Section 2, Gel'fand and Levitan (fﬁ]) have solved
the inverse Sturm-Liouville problem for a Sturm-Liouville operator in normal
form. Their result (as applied to a finite interval) can be stated as follows:
THEOREM 1 (GEL'FAND AND LEVITAN): ZLet {An} and {€n} be two sequences of

positive real numbers obeying the asymptotic formulas

: b b
Ny e e ol
-a
om0 e ofl)

where 2y bl’ b3 are constante. Then there exists a unique differential opera-

tor, defined by a differential expression of the form
L(y) = y" - alx)y 0<x<2

with a(x) € C([0,2]) and by boundary eonditions of the form

"
o

y'(0) - h y(0)

it

y'(2) +Hy(2) =0

which has {An} as eigenvalues and {En} as normalizing constants. The function

q(x) and the number h can be computed via the formulae

gix) = § Kleax) h = K(0,0)

where K(X,t) is the solution of the linear integral equation

X
F(x,t) + K(x,t) + f K(x,s)F(s,t) ds = 0
0

and where
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_1 . ‘1
F(x,t) --E; cos(Vigx). cos(VK;t) o+
w [cos(Vix)cosWr t) 5 fn o
i n=1 [ ) &n ; T2 COS('EE x) C°S(zﬂ't)

Note that the above theorem gives at the same time existence, uniqueness
and method of construction of the differential operator from its eigenvalues
and its normalizing constants. For the purpose of studying identifiability
problems, one needs only uniqueness. With this in mind, and the fact that
£, = [yn(D)]'z, where yn(x) are the normalized eigenfunctions of the Sturm-

Liouville operator, what we wish to retain is

THEOREM 1' (GEL'FAND AND LEVITAN)

Consider
y* + [-q{x)]y = 0
(4.1) y'(0) - hy(0) =0
y' (&) + Hy(e) =0

where q € C([0,2]) and denote by An its eigenvalues and yn(x) its normalized

eigenfunctions. Also, consider

y'"+ [-r(x)ly =0
(4.2) y'(0) - h y(0) = 0
y'(2) + H y(2) =0

where v € C({0,2]) and denote by My its eigenvalues and zn(x) its normalized

eigenfunctions. If

n_ "n

(4.3) ‘
1y,(0)] = |z, (0)]

Yné N
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then
q(x) = r(x)
h=h
Ho=H

The purpose of this section will be to obtain a similar result for the
Sturm-Liouville problem (3.4). Note that (3.4) can be reduced to (4.1) via
the so-calledLliouville transform ([17]). Therefore, it is natural to try
to "back Liouville-transform" the result of Gel'fand and Levitan. In fact,
this is possible and it leads to the following result:

Given a(0), A, and Iyn(O)] for a differential operator of the form (3.4),
there corresponds a unique a(x).

Using an entirely different approach than that of Gel'fand and Levitan
we will show that A, and [yn(o)l are sufficient to determine a(x) uniquely.

In fact, we will prove the following theorem:

THEOREM 2: Consider

Tdi'i (a(x) %)+ Ay =0
(4.4) y'(0) - hy(0) =0

y'(2) + H y(2)
with o € C¥[0,2]),and Fo > 0: alx) > a)  Vx € [0,2] and denote by A its

0

etgenvalues and yn(x) its normalized eigenfunctions. Also, consider
d dy )
&(B(X) dx)+ Ay 0

(4.5) y' (o) - b y(0) = 0
y'(2) +Hy(r) =0
with 8 € C1([0,2]), and 3 By > 0: B(x) > By V x € [0,2] and denote by H

its eigenvalues and zn(x) its normalized eigenfunctions. If
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Ao = Hn

(4.6)
ly,(0)] = [z,(0)]

‘v’nﬁN

then

a{x) = B(x)

x> o>

h
H
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Before proving Theorem 2, we will first prove a number of Temmata.

LEMMA 4: Consider the class M of differential operators of the form

a(X) )

densely defined in L (0,2), where o € Cl([O,l]) bounded below by a positive

constant. If Alf.AV and AZE-AV have the same spectrum, then

£ L
_I- dx__ _ ./- dx
0 'Val(x) 0 Vaz(;)

Proof: For every A € .# , the eigenvalues An satisfy the following asymp-

totic formula (see e.g. [18])

Vi = -—"T 4 0(1)
n £ dx
3 Va(x)

. _d d _d
Now if the operators A1 = HY( al(x) ——-)and A2 = Ix ( (x) ax ) have the same

eigenvalues An, then

2 £
Vi dX_ - pr+o0(1) = ﬂ—[ dx
n !"al(-x) n ) Yo (x)

2
L L
S vr( --(?L-f-—?—’&—)wm
"le Yot g Youlx)
X dx 1 1
: - = 0 — |= 0= ¥YnéN
7 [f}ﬁfom (ﬁ') AN

Hence

iaz(x)
Q.E.D.
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LEMMA 5: Let o, B € Cl([O.fL]) bounded below by positive constants and

L
satisfying f dx
0

2 : .
= . Denote p € C°([0,4]) the solution of
(X) o VB(x)

%0 101 M2 a(0)112

p(0) =

Then p is a bijection of [0,%] onto itself.
Proof: Since g > 0, p is strictly increasing. Furthermore, from the
definition of p, we have
do - dx
[a(e)1/2  [a(x)11/2

which upon integration gives

o(2) 2
f dx =[ dx
) Yo(x) 2 V&(x)
Hence
(%)
jdx
V"x’) 5 VT o *’a(x)

But since a(x) is strictly positive, f js a strictly increasing func-

Va(x)

tion. Hence p(2) = 2. So p is a stmct]_y increasing continuous mapping of

[0,2] onto [0,2]. Hence p is a bijection.

LEMMA 6: et o, B, p as in Lemma § and let U3 L2(0,2) ~ L%(0,2) Be
defined by L
X |
u(e) = oot ety + Skt et

0

where « € R and K € C([0,2] x [0,21). U will be wnitary iff « =1 and K = 0.
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Proof: Let

r., 1/4
T(f) [ig%-%l] f(p(x))

X
V(F) = [ K(x,t)f(p(t)) dt
(o]

so that

U=xT +V

To prove the "if" part of the lemma, we need to show that T is unitary. A

straightforward calculation gives the adjoint of T

1/4
-1
T*H(f) = [@i"—(ﬂ%ﬁ] £(o71(x))

and thus TT* = T*T = I,
To prove the "only if" part of the lemma, we will first show that the

spectral radius of V is zero. To see this, observe that

(n-1)°
(V") (x) |2 gﬁzﬁf,fr{—(——l—’;—?nflfz 21y e [0,2]

where

<
|

_sup [ B(x) ] 1/2
O<x<f )
i (o(x) M2
r - oo, [

SUPTK(x,t)]2

M Qi?iﬁfﬁ

(This can be easily shown by induction.) Hence



f(V) = Tim [V " = 0

i
Now

V=U-=-«T

Since U and T are unitary, it is easy to show that (U-«T) and (U-«<T)* commute,
i.e. V = U~T is normal. But for every normal operator, the spectral radius

equals the norm of the operator. Hence HVH2 = 0>K(x,t) = 0. So
L

u

[}

KT

since they are both unitary and « > 0, it follows that « = 1. This com-
pletes the proof of the lemma.

LEMMA 7: et o(x) and B(x) be ¢! ~functions bounded below by positive constante.

Furthermore, let ¢(x;)) be the solution of

fl

g—‘(a(x) Qﬂ,)+ aw = 0, x>0

dx dx
(4.7) w(0) =1
w'(0) = h

Y(x;1) be the solution of

g—;(e(x)%’—% w = 0, x>0
(4.8) w(0) =1
w'(0) = h

Then there exists a continuous kernel K(x,t) such that
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1/4 174 X
¥xs) [2%8;] [“g%g’] oot + S K(x,te(p(t)51) dt

0

¥Yx>0

—

where p(x) ie the solution of

9 - 1800772 [ale)1?/?
(4.9)
p(0) = 0
Proof: Let u(x,y;A) = o(x;A)p(y:r).
It can be easily seen that u satisfies the hyperbolic P.D.E.

(4.10) 2 (a0 2)- & (en) &)= 0

and the initial conditions

(4.11) U)y=0 = ¢{x;2)
(4.12) aly=o = P 6x:2)

The Cauchy problem (4.10)-(4.12) admits a unigue solution which can be
computed by Riemann's method (See Appendix for details). First, we make the

change of variable

dx'
4.13 X = = o
(4.13) ‘ofm (x)
(4.14) VY A T
o Ve(y')

Then, applying (A.9) we find
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1/4 N \
T(,Y53) = -%[}~iﬁiﬁ——] {a0en 140500 + Lalon 1400y 50)
B(Y)a(X)
| XsY_
(4.15) +% W(X,Y,t)a(t;n) dt
X2y

where W(X,Y,t) = W (X,Y,t) + hW,y(X,Y,t). Applying (4.15) at X = O we obtain

ol

8(0) T/ *La(-)1/%(- E x)+[a<v)1“4~ Y;))

w(Y:2) = u(0,Y;
W( A) U( >\) «(0) [B(Y)]
Y~ -~
(4.16) +-12- _[W(O,Y,t)¢(t;>\)dt
Y

Now, if the function a(x) is continued so as to be even, it is easy to see

that ¢(x;x) = ¢(-x3)). Thus we easily deduce that
(4.17)

Furthermore

Y Y
(4.18) fﬁ(O,Y,t)é(t;A)dt f W(0,Y t)¢ t:)) dt + f ;I(O,Y,-t)cp(t;k) dt
=Y 0
Y

0
f W(0,Y,t) + W(O.Y, t)}¢>(t A) dt
0

Thus setting

K(Y,t) = 3 {M(0,Y,1) + W(0,Y,-t) |

O] =2

it follows from (4.16), (4.17) and (4.18) that
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Y
3 /81~ y\11/8 - .
(a.19)  wvsn) =[E08) [:E:;] 3¥2) +fK(Y,t)¢(t,x)dt
0O

It remains to back-transformto the original variables. It is easy to

see that

o] =d-1°$

Also recall (from Appendix) the notation & = qoud

etc. Thus (4.19) becomes
/4 1/4 ¥
oty =[EQT" [elebu)] ¢<o<y>;x>+fK<y,t>¢<o(t>;x) dt
0

QED

Proof of Theorem 2. Let ¢(x;)) be the solution of

[}
o

%;-(Q(X) %%»)+ Ay
(4.20) y(0) =1

y'(0) = h

and y(x;)) the solution of

[{]
o

%;-(B(XI %%-)+ Ay
(4.21) y(0) =1

y'(0) = h

Clearly,

Yp(x) = y (0)6(x;n,)

¥YnéN

z (x) =z (0)y(x;A,)

From Lemma 7 we have
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X

(4.22)  w(x;) -[8(0)] JEE "))] "o + f K(x,t)a(o(t):2)dt
0
Hence,

1/4 1/4
z_(x) {B 0)] J—TTQ ‘é(i ] ¥<O<x))+fr<(x t)y, (o(t))dt

n
(4.23) 2107 - yT0)

Now define the operator U; LZ(O,Q) -+ LZ(O,Q) by

U(F) ={al0) Bx) p(x)) + K(x,t)f(p(t))dt
0

Since every f € LZ(O,Z) can be expanded as

D IRAACY
n=1

where 1y

fn = f f(x)yn(x) dx

[=)

X

1/4
£§)i] f(p(x))-+g/-K(X,t)f(p(t))dt
0

1/4 1/4 o X w
] [ é%((x):] 6):::1 f Yo (e(x)) +f K(x,t) n};:l £y (o(t)) dt

0

1/4

® 1747 , Y
- X f,,[[gé—g%] [“‘B(i”] ¥, (p(x)) +fK(x,t)yn(o(t)) at

0
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and taking into account (4.23),

(UF)(x) = 2_: fn ———(—7- z_(x)

Thus, from Parseval's theorem we obtain -

!2 _ 22 yn(o) 2
horllz = n>=:1 fn 7,00
and since [y (0)] = |z (0)] VnéN (by (4.6)),
2 .« 2
UFll S = 3 L =
ol 7 = 2 = eI

1/4
which means that U is unitary. But from Lemma 6, this implies [5%%))—] =1

and K(x,t) = 0. So
(4.24) a(0) = g(0)

1/4
(4.25) W(x32) [%f%)—)] 3(o(x)32)

Now, due to (4.25), we have

2 s
4 (a0 )+ 20 = [ale(x))1 4 8(207% éuiﬁegilL&l .
X

X

1/4 | 1/4 -

[ ]
vy 1174

¢ {%z( 8(x) %;([“é ix))] ))}q»(p(x) )+ A[“( ("”] EORY
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| 174 Craien.
- [*—r)—‘“épix”] {EE?&T (a(ou)) %‘H—) + m(p(x);x)}
TororuyT1/8
+{‘3? (B(X) %I( [gﬁ(s—%%l] ))}MO(X);A)

Since ¢(x;A) and y(x;r) are solutions of (4.20) and (4.21) respectively, it

_ . 1/4
g (o0 & ([05])) -

Integrating and taking into account (4.24) we find

CIE) 1A X _de
" v

follows that

hence

p(x)

"
°N
T
e 3
+
(@]
™y
™
o
ﬂm
o
N
(s
[1aa1

n

X
) ) dr . ) . . s
Finally, since p(2) = & and is a strictly increasing positive func-
o)

tion, it easily follows that ¢ = 0. So p(x) = x, hence a(x) = B(x), hence

v(x;2) = ¢(x;2), hence h = h and H = H. This completes the proof.
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5.  IDENTIFIABILITY AND NON-IDENTIFIABILITY RESULTS. Using Theorem 2 we can
now solve completely Problems 1 and 2, which were posed in Section 3. Also
we can solve a special case of Problem 3, namely that for which Xp =-% .

RESULT 1: Consider Problem 1. To a known input Q(t), a known initial
state u_ and a given measurement, Zd(t) = u(0,t) , t € ]J0,T] there corresponds
a unique o(x).

Proof: Immediate consequence of Theorem 2.

It is noteworthy that Kitamura and Nakagiri [4, p. 794] claimed that it
is impossible to identify a spatially varying parameter uniquely from a single
point measurement u(xp,t). The above result is a counterexample to their
claim. The next result will establish the fact that Problem 2 has in general
a non-unique solution. We first establish the following lemma:

LEMMA 8: Consider (3.4) with eigenvalues An and normalized eigenfunctions

yn(x). Also consider

4 (a(ex) Y} ay = 0

(5.1) y'(0) =0

y'(2)

0
with eigenvalues Xn and normalized eigenfunctions 9n(x). Then
(5.2) non vne N
Yplx) =y, (2-x)
Proof: Under the affine transformation
X =2 -X

(5.1) reduces to (3.4). (5.2) follows immediately.
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RESULT 2. If u(x,t) is the solution of (3.1) and u(x,t) is the solution

of
—'S—ﬁ = —% (u(z-x) —g-)%) » tn 10,2[ x JO,T]
u(x,0) = Uo s in 10,4[
(5.3) Sy
0,(0) "é"i (O!t) = Q(t) 2 n ]OsT]
'g‘% (Q'st) =0 s 17 ]OsT]
then
(5.4) u(2,t) = u(e,t)

Proof: We have

t = -2 (t-1)
uet) =u - S {5 y @y @e " Jon) dr
- Y o " on=l
_ t ® _ -An(t—r)
ie,8) =y - f{ T 5,050 Ja(o) dr

Using Lemma 8, we immediately conclude that
Yp(0)y,(2) = y (0)y (2) ¥neN

Hence the result.
LEMMA 9: Consider again (3.4). If o(x) is seymmetric, i.e. a(x) =
a(f-x), then

(5.5) Yo%) =y, (2=x).

Proof: Immediate consequence of Lemma 8.
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RESULT 3: Comsider again (3.1) and assume that o(X) is symmetric. Then

to a known Q(t), a known Uy and a given measurement

24(t) = u(2,t)
there corresponds a wnique a(x).
Proof: We have

t -2 (t-1)

R P RACIAC IR U
0 n=

From (5.5) we have yn(O) = yn(z), hence

t, = -2 (t-1)
z4(t) = u(e,t) =u, - f {2_:1 y (0% " o) dr

0

Thus the problem of identifying a(x) from Q(t), Uy and zd(t) reduces

to the one of identifying a(x) from {An} and {lyn(O)l}e Hence by Theorem 2
a(x) is unique.

The next two results solve the special case xp = %—for Problem 3.

RESULT 4: If u(x,t) is the solution of (3.2) and u(x,t) is the solution

of
-2 (e )+ atdex -3) . in 10,20 x 10,T]
u(X,O) = u0 s in J0,4[
B (0,1) =5 (1) = 0 > in 10.T]



73

Proof: We have

t = - (t-1)
c G s ST @ ™ e &
0 ‘n=l
t, « -x (t-1)
R R Aol A L [TOR

Using Lemma 8, we immediately conclude that
[ -
) =5 (3) vneN

Hence the result.
RESULT 5: Comsider again (3.2) and assume that a(x) is symmetric. Then

to a known Q(t), a known Uy and a given measurement
=yl
zd(t) - u(z st)

there corresponds a unique ofX).
Proof: Since a(x) is symmetric, yn(x) are symmetric VY né€ N by Lemma 9.

Hence,
v =0 Vne€N
n2

Now consider the Sturm-Liouville problem

%;‘{a(x) g§)+ Ay =0

(5.7) y'(0) =0
&y o
y (5) =0
and observe that (3.4) and (5.7) have the same eigenvalues An and the same

normalized eigenfunctions yn(x), x € [0, %-. Thus the problem of identifying
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a(x) from Q(t), Ug and zd(t) reduces to the one of identifying a(x) in (5.7)

from {An} and {Iyn(%) |}. Hence by Theorem 2 a(x) is unique.
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6. CONCLUSIONS AND SIGNIFICANCE

In this paper the problem of identifiability of spatially Varying con-
ductivity from point measurement of temperature in the linear, one-dimensional
heat equation is addressed. Uniqueness and non-uniqueness results are derived
referring to special cases of the above general problem. More specifically,
in Problem 1 (system (3.1)) we have shown that in a rod, which is insulated at
one end and heated at the other end (with known heat flux), measurement of the
temperature as a function of time at the heated end determines uniquely the
conductivity as a function of position. Uniqueness is not obtained, however,
when in the above physical system the measurement is placed at the insulated
end (Problem 2). In Problem 3 (system (3.2)) we have addressed the case of a
rod, which is insulated at both ends, with a known heat source at the point
x = x_ and a temperature measurement as a function of time at xp. We have

p
shown that in the special case where both the heat source and the sensor are

placed in the middle of the rod (xp = %-), there corresponds in general a non-
unique conductivity. Only in the highly exceptional case where the conductivity
is a symmetric function (with respect to the middle of the rod) Problems 2 and 3
can have a unique solution.

There are still important questions that remain unanswered, such as
(i) Is the system described by (3.1) identifiable if 0 < Xg < 2? In other

words, is uniqueness the "rule" or the "exception"?

an "exceptional”

ol

(ii) In the system described by (3.2), is the point xp =
or a ”typica]f point? What happens for other xp's?

The above questions reduce to inverse Sturm-Liouville problems for which,
at the moment, results are not available. However, we intuitively expect that

uniqueness will be the case for all xp‘s, except for a set of measure zero.
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The motivation of undertaking this work is to establish identifiability
conditions for (1.1). Since, for example, (1.1) governs the pressure distri-
bution in petroleum reservoirs and subsurface aquifers, and since the iden-
tification of a(x,y) is a key problem in describing these systems, elucida-
tion of the fundamental question of identifiability will have a significant

impact on the estimation of such parameters.
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APPENDIX: SOLUTION OF THE CAUCHY PROBLEM FOR (aux)x - (BUy)y =0 By

RIEMANN'S METHOD.

Consider
o (a0 ) - Z(ey) 3= 0
(A.1) ”)y=o = f(x) |
g—;)ym = g(x)

(A.2)

(A.1) becomes

2~ 2 ~ - ~
g°u _ou = au ou
~—5 - =5 + 23(X) I+ 2b(Y) v = O
BXZ 8Y2 oX oY
(A.3) u)y_, = F(x)
3. =Vs(0) §)
Y=0
where
do
g = —9X
4
(AR.4)
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and where we have used the symbols u{X,Y), &(X), b(Y), ;(X), ;(X) in
place of u(@ X(x), ® (1)), a(@ 1(x)), (@ 1), F@7 X)), gl i(x))
respectively.
For the solution of (A.3) we make use of Riemann's formula [19, p. 81]

(See Figure 1),

(A.5) T(P) = 1 [F(Q)(Q) + G(RIF(R)] + 3 QfR(S S E—g—\;’ - 2buv) dx

w ey,
+(v - Uax T Zauv) dy

where G(X,Y;XO,YO) is the solution of

0%y 9%y 2a(X) U _ 2b(Y) 2V - (QE.+ QE); =0

2 2 aX oY dX dY

) Y

2V 9V NN

— - = = (atb)v onY+X=Y_ +X
(A.6) a{ 8i 0 0

BV , BV _ o T oy = _

= * 57 ° (a-b)v onY - X Xo Xo
v(XO,YD) =1

It can be easily seen that the boundary conditions in (A.6) are equivalent

to

r X Y Y + X o + X0
(A.7) v = exp[-x]” a(Xxt)dx' - b(Y')dY{] on the lines

0 Yo Y - X

L1}
-

[}
-

¢
><

Thus (A.5) gives
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X -Y
~ Y - ~ 0 0~
1 $ ] ? 1]
(A.8)  u(x.Y) =3 exp[f o By )dY]{ FIX Y exp[i[ a(x )dX]
-0 0
) X |
+ f(Xo + Yo) exp[[ a(Xx*) dX':”
X
O .
1 X0+YO XO+Y0
-~ 1 -~
s ey ofe) el [ w0 YL t(t) at

X =Y XO—Y

0 O 0

where

-

v . N .
- 57—(t,0,X0,Y0) - 2b(0)v(t,0,Xo,Yo)

]

Wy(X Yot
Hp(X Yo t) = VE(OIW(t,0:X ,Y,)

Finally, taking into account (A.4), the integrals of the first term of (A.8)

can be easily evaluated. Thus (A.8) (dropping the subscript o) gives
y p

~

- 1/4 1/4. . i
(A.9)  u(X,Y) = %[wﬁ—@ -{] {[a(X-Y)] £(x-¥) + [a(x+1) 14 (xe1) }

B(Y)a(X)
X+Y ) X+Y -
. % x{ W (X,Y,E)F(t) dt + % Xfy Wo(X,Y,t)g(t) dt

where a(+) = a(@ 1(+)) and 8(+) = 8(B1(+)).
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CHAPTER III: [IDENTIFICATION OF PARAMETERS IN DISTRIBUTED
PARAMETER SYSTEMS BY REGULARIZATION
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1.  INTRODUCTION

Consider the following distributed parameter dynamic system:

Hanthu=f , in @ x 10,T[ (1.1)
u(x,0) = Uy . in Q (1.2)
Bju = gj s J=0,..., m-1, on I'x JO,T[ (1.3)

where 9 C R" with boundary T and 0 < T < « and where

- _1yIplgp q
A(t) u Z (-1) Dx(apq(x,t) Dgu) (1.4)
Ipls]q|<m
h :
B.u = Z b.. (x,t)Du , 3 =0,..., m1 (1.5)
) Ihljmj I X

with 0 f.mj = order of Bj < 2m-1.
The parameter identification problem associated with (1.1)-(1.5) can
be stated as follows: Assuming the input function f, the initial condition
and the boundary condition(s) to be known, and given an observation of u,
determine the system operator A(t), i.e. the parameters apq(x,t).1

A number of important physical identification problems fall within the

above framework. For example, the partial differential equation

1The boundary condition parameters b.h(x,t) may also be unknown, although
we do not consider that case here.
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B2 (o) B) - 2 (atxn) &) = txyat) (1.6)

governs the temperature distribution in an inhomogeneous solfd or the pres-
sure distribution in a fluid-containing porous medium. The local flux of
energy or fluid is dependent on the va1ué of the parameter a. For example,
in the case of fluid flow in a porous medium, a is termed the transmissivity.
For models of petroleum reservoirs and subsurface aquifers the transmissivity
is generally inaccessible to direct measurement, and its value must be in-
ferred from measurements of the pressure u at wells. Because of the economic
importance of knowing accurately the properties of subsurface aquifers and
petroleum reservoirs, a great deal of effort has been expended in developing
techniques for determining transmissivity from measurements of pressure ([5],
[9], 04, [12], [14], [24], [25], [32]). The determination of o from data
on u is a special case of the general linear parabolic system identification
problem introduced at the outset. Specifically, given f, the initial condi-
tion and appropriate boundary conditions, and given measurements Zdi of
u(xi,yi,t) at a set of discrete spatial locations, i = 1,2,..., u, it is
desired to determine, or identify, a(x,y).

The key difficulty in developing successful numerical techniques for
identifying spatially-dependent parameters is the fact that such problems
are ill-posed. To see this, consider (1.6) as a first order hyperbolic
equation in a. One can easily show that the characteristics w(x,y) = ¢ are
orthogonal to the lines of constant u. Thus, one can define a new curvi-

Tinear coordinate system (Eﬁ’gw) so that Zu is unitary in R2 and the metric

factor in the w-coordinate is 1. Equation (1.6) can be written as
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3
vu| = (aIVul) =2 . (1.7)

2 . 2\1/2
where |Vu| = ((%%) + (%%) ) . Upon integration of (1.7), we obtain

) N | f)de
alx,y) = f(Té : v | (1.8)
U

where integration is performed along the characteristics and Qw denotes
Lebesgue measure along the characteristics. I11-posedness follows from
the fact that the differentiation operator is not continuous with respect to
any physically meaningful observation topology. The fact that the identifi-
cation problem associjated with (1.6) is not well-posed can also be jllustrated
by counterexample ([32]). In summary, the problem of identifying spatially-
dependent coefficients appearing in the differential operator of a partial
differential equation is, in general, both nonlinear and il11-posed ([16],[17]).
The customary way to approach the identification of o in (1.6) has

been by least-squares, i.e. by minimizing the functional
T
_ 2
Ji s —_! 12‘; [u(xi,yi,t) - Zdi] dt (1.9)

subject to (1.6), initial and boundary conditions. There have been two ways
of treating the unknown parameter a. In the first, o is considered as an
element of an infinite-dimensional function space ([ 9],[5]), whereas in
the second, the minimization is performed over a finite-dimensional sub-
space, reducing the problem to one of determining a finite number of con-
stant parameters ([10],[12]). When the number of parameters is kept small

in this approach, a well-behaved solution results. However, the modeling

error introduced is significant, since the corresponding subspace of a's is
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too restricted to provide a good approximation of an arbitrary a. As the

number of parameters is increased, on the other hand, numerical instabjli-
ties appear, manifested by spatial oscillations in the estimated o, the fre-
quency and amplitude of which are inconsistent with the expected smoothness
of the true a. The symptoms usually also include a flat global minimum in
JLS ([24], [25], [32]). The same instability phenomena characterize the mini-
ma of JLS over an infinite-dimensional function space. One approach that has
been somewhat successful in alleviating numerical instabilities involves

the incorporation of a priori statistics concerning o into the minimization
by adding a Bayesian term in the performance index (1.9) ([14], [24]). The
major drawback to this approach is that reliable a priori statistics for o
are seldom available. Thus, there is a need to develop a rigorously based
approach for identifying parameters in partial differential equations from
noisy data that is numerically stable and physically consistent with the
expected character of the unknown parameters.

The numerical instabilities and ill-posed nature of the problem of
interest strongly suggest a regularization approach. "Regularization" of a
problem refers in general to solving a related problem, called the regular-
jzed problem, the solutjon of which is more regular, in a sense, than that
of the original problem and approximates the solution of the original prob-
lTem. When referring to ill-posed problems, regularization is an approach to
circumvent lack of continuous dependence on the data. The regularized prob-
lem is a well-posed problem whose solution yields a physically meaningful
answer to the given il1l-posed problem.

The idea of regularization of ill-posed problems was first proposed

by. Tikhonov ([27], [28]) as a method of solving linear Fredholm integral
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equations of the first kind. Further development of the theory for §11-posed
Tinear operator equations followed ([23]). Modern practical numerical methods
for the solution of linear Fredhoim integral equations involve regulariza-
tion ([31]).

The object of the present work is to develop a regularization theory for
the identification of parameters in distributed parameter systems. In §2 we
define the parameter identification problem in an abstract manner that
facilitates proof of the major theorems. The concept of identifiability is
discussed in §3. In §4 and §5 a general regularization identification theory
is presented. In §6, §7 and §8 the theory is applied to the identification of
parabolic systems from distributed and point observations. Finally, in §9
numerical results are given for the identification of a spatially-varying

diffusivity in the one-dimensional diffusion equation.



89
2. PROBLEM STATEMENT

To develop a general identification theory, we introduce the following

~ abstract problem.

Let.#, U and F be Banach spaces. Consider a system described by

Y(A,u) = f (2.1)
where ¥ is a mapping, not necessarily linear, from.#x U into F. We assume:
(Al) ¥ is of cKoclass (k > 1)

(A2) There is an open subset.x% of & and an open subset Uc of U such that

YA €, (2.1) admits a unique solution u € Ue-
(A3) \ﬂAe_sé Yu € UC %% (A,u) is a linear homeomorphismof U onto F.

Furthermore, consider that A depends on a set of parameters X belonging
to the Banach space A. The set of physically admissible A is Aad ¢ A, We

assume:
(A4) A; A+ is of Ck-c1ass (k > 1)
(A5) Aad is a norm-closed convex subset of A

(R6)  A(hyq) co

Now from the implicit function theorem ({26, pp.277-304]) we have:
PROPOSITION 2.1: Asswme (Al1)-(A3)are valid. Then the implicit functiom,
u = o(A), defined as the solution of (2.1) is of (¥-cZass from.zé into Uc'

Its first derivative is given by
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-1 . ’
o' (A) = [—3% (_A,u)] ° [-g-g- (_A.u)] VA € (2.2)

Equivalently, ®'(A) associates SA €. + du 8'(A) - SR € U, where Su is

the solution of

@

[}
o

¥ v ’
-é-J(A,U) « Su + ﬁ (A,U) - A (2.3)

As an immediate consequence, we have:

PROPOSITION 2.2. Assume that (Al1)-(A4) and (A6) are valid. Then
Boh; Aad + U is of Ck-class. Its first derivative (®°A)'(A) associqtes

Sx € Aad -+ 8u € U, where Su is the solution of

3 (a)u) - su+ 2 (AQ)W) oA () -

Now the identification problem can be posed as follows:

Knowing the mappings ¥;»¥x U -+ F and A; A +.«f and the element f € F
and given an observation of u, find X € b 4 to satisfy (2.1).

We need to be precise about the nature of the observation of u. Thus,
consider a Hilbert Space o#(Observation Space). Denote by lbrthe canonical
isomorphism of ¥ onto ¢ '. Also, consider an observation operator, not

necessarily linear, €; U >3 and assume

(A7) @ is of C¥-class (k > 1)

The situation is depicted in Figure 1.
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3.  IDENTIFIABILITY

The identification problem, as defined in §2 can be viewed as solving

in A4 the (nonlinear) operator equation

(€ 200 AY(N) = Z4 (3.1)

Before one develops an identification method, a key issue to be examined

is the well-posedness (in the sense of Hadamard) of the problem of solving (3.1).
Existence of a solution of (3.1) for arbitrary z4 € o is of no interest,

since in any physical identification problem there is always a true A in Aad

corresponding to an error-free observation of u. In other words, well-posedness

needs to be examined for z € @(@(A(Aad))).

Uniqueness of the solution of (3.1) is commonly termed identifiability.

DEFINITION 3.1 ([4], {151, [7]1): A parameter X is said to be identifiable
in A 4 for the observation operator @, if the mapping (parameter - observation)

is injective, i.e. if€ c o0 Aj Aad + K has a unique inverse.

DEFINITION 3.2: A parameter XA is said to be stable in Aad for the observation

operator @, if (€ < ¢ o A)'1 is continuous.

Remark: In case of non-identifiable A, stability is understood in the sense

of continuity of multiple-valued mappings.

The identifiability of the parameter a(x) in

B3 (a0 3) = (3.2

(o3

from a distributed observation of u, i.e. an observation of u(x,t) in
Qx]0,T[, has been studied by [15] (one spatial dimension) and [4 ] (several
spatial dimensions). It has been shown that in general o(x) need not be

unique [15]. However, if the set E(t) = {x € 51 g%-(x,t) = O} is nonempty
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for every t € ]0,T[ and {") E(t) is of measure zero, then o(x) is unique.
The result in [4] is sim?ﬁgaoégtthat in [15], but involves quite restrictive
assumptions concerning vz 4 and szd. Thus, the available results establish
| .that a{x) in (3.2) is not identifiable in the sense of Definition 3.1; how-
ever, under certain additional conditions on z4, there corresponds a unique a(x).
No results appear to be available concerning the identifiability of a(x)
in (3.2) from point observation of u. It is, however, possible to establish
uniqueness of a(x) in special cases, by reducing the problem to an inverse
Sturm-Liouville problem.
For a review of the (limited) available identifiability results in various
distributed parameter identification problems, the reader is referred to [7].

Due to the conditional nature of most identifiability results, we find it

important to introduce a weaker concept of identifiability.

DEFINITION 3.3: A parameter X is said to be conditionally identifiable in A,
with respect to dﬂz C o, if the restriction of ;he mapping €c ¢ © A; Aad > H
on the set (€ ¢ ° A)'1 Jf; has a unique inverse.

A degenerate case of conditional identifiability is obtained when Jﬁz

is a point set, i.e. éﬂz = {z4} Cﬁi?(d%A(Aad))).

DEFINITION 3.4: A parameter XA is said to be pointwise identifiable in Aad
for the observation Zd € i?(@(A(Aad)» ,Tfid has a unique preimage with respect
to the mapping &°d o A; Aad >,

The concept of pointwise identifiability is the weakest possible concept

of identifiability. It will be used in §4 and §5 (Theorems 4.3 and 5.3).
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As we have noted, the identification of distributed coefficients appearing
in the differential operator of a partial differential equation is, as a rule,
an unstable problem ([17]). The homogenization theory ([2 ]) shows that opera-
tors with highly oscillatory coefficients can be "rep]acedf by very different
operators and still yield practically the same response. Lions [17] has, in
fact, cited the main difficulty in identifying distributed coefficients in par-
tial differential equations as preventing excess of oscillations in the
coefficients.

To illustrate the power of homogenization theory in proving instability
of identification problems, let us consider the problem of identifying o(x)
in (3.2).

Let Y = ]O,y?[x]O,yg[x.-'x]O,yﬁ[ CR" and a; R" +R a function with
properties
(i) «el™®R"

(ii)  aly) > > 0 a.e. iny
(i1i) «aly) is Y-periodic i.e. it admits a period yg in the direction Yy

i=1,...,n

Denote aE(X) = a(%) s € > 0. Now given 2 a bounded open subset

of R"and T > 0, consider

su n ou
€ 3 ( E( E)__ : T
_— - —la (x) =— 1= f, inQ XJO,TL.\
3 =1 ij axj
uE(x,O) = uo(x) s in Q (3.3)

Boundary Condition

Observe that as € -~ 0, the af's are highly oscillating functions. They

converge in a weak sense:
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af + M) in L7(Q) weak - * (3.4)

(i.e. fae¢ dx +fM(a)¢ dx Ve € Ll(Q))
9] Q

where M{a) = me:s v ?[01()’) dy

The question now concerns the behavior of the solution u_ of (3.3) as

e + 0. It is tempting to believe that u converges to the solution of

2 - Ma) au=f o, 00 x]0,T[
u(x,0) = uo(x) , in Q (3.5)

Boundary Condition
But this is untrue ([2 , p.242]). The correct result is given by the follow-
ing proposition, which is an immediate consequence of a general result for
second-order parabolic systems ([2, pp. 241-243 ]).

2

PROPOSITION 3.1: The solution u_ of (3.3) comverges in L°(Q) to the solu-

tion of the following homogenized problem

au 1 = :
i y .l) bu=f in @ x JO,T[
61
u(x,0) = uo(x) . in D (3.6)
Boundary Condition

Thus, for sufficiently small €, u. js approximately ecual to the solution of

(3.6); however of and ——lT— can be very different.
u(1)
The least-squares approach to distributed parameter system identifica-
tion ([4], [8]) can be stated as follows:

Given z; € s, find A€ A g to minimize the functional

st =t e(e(ai)) - 2412, (3.7)

Conceptually, the least-squares approach'consists of two steps:

(a) Project zq in id on the set Q?(Q(A(Aad)))
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(b) Find in A, a preimage A of z4 for the mapping @ ¢ o A
It is therefore natural to inquire if a projection of an arbitrary zy €o¢
on the set @(@(A(Aad))) exists and is unique. Also, when z; is perturbed

slightly, does the perturbation correspond to a small change in A?

DEFINITION 3.3 ([6]): A parameter A is said to be output least-square iden-
tifiable (OLSI) in Aad for the observation operator @, if there exists a
neighborhood A4 > %’(@(A(Aad))) such that for every z, €4 the least-squares
estimate is unique and depends continuously on Z4-

It is easy to see that the following are necessary conditions for OLSI:
(i) Existence of a neighborhood # 2 € (@(A(Aad))} such that every z, € ¢
has a unique projection on £(¢(A(Aad)) J.
(1i) Well-posedness of the identification problem for every z € €| <I>(A(Aad))) R
i.e. both identifiability and stability of A in Aad w.r.t %‘

It has been shown in [6 ] that with Aad convex and € °» & » A sufficiently
regular, satisfaction of (i) can be guaranteed. Condition (ii) is the key
one; unless a parameter is both identifiable and stable, the least squares

approach will not produce a reliable estimate.
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4. IDENTIFICATION BY REGULARIZATION
Let us return to the general identification problem of §2. In order to
regularize the parameter A, we introduce a more regular space &, for which

we assume:

(A8) 4@ is a Hilbert space.
(A9) #® is imbedded in A.

(A10) The imbedding operator from g into A is compact.

Define E SPf\Aad. With (A5) and (A9) it readily follows that R4
is a norm-closed convex subset of @%.
We now introduce the stabilizing functional

2
Js(k) = Hkﬂgf . A€ Ryg (4.1)

and the smoothing functional
JB(A) = JLS()‘) + BJs(A): A E'Qad (4.2)

where B > 0 is the regularization parameter. Identification by regulariza-
tion proceeds as follows. Given Z4 €#and 8 > 0, find AB € 8Eéd so as to
minimize JB(X).

In this section we establish the basic results concerning the regulari-

zation method. Our first result concerns differentiability of the functional

JB(A).
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THEOREM 4.1: Assume that (Al)-(A4) and (A6)-(A9) are valid. Then the fime-

tional

JB(A) = 1 €| o(A(2))) - qu§(+ BHAM§? (4.3)

is of Ck-class. Its first derivative Jé(k); R+ R is given by’
35061 = (X (A ,u) oA (A)+62up) pv + 28(53,0) (4.4)
B m ’ sP FF? ) R .

where u is the solution of Y(A(A),u) = f and p is the solution of

[—g% (A(A),u)] p=-2[ ?'(u)]*A‘X,{'g(u) - zd) (4.5)

k

Proof: (A1)-(A4) and (A7) imply that JLS(A) = H%ﬁ(@(A(x))) - zdrz is of C -

e
class with respect to the A-topology. Due to (A9), JLS(A) will also be of
Ck-class with respect to theg®-topology. Hence JB(X) is also of Ck-c1ass.
Existence and uniqueness of the solution of Y(A(A),u) = f is guaranteed
by (A2) and (A6).
Existence and uniqueness of the solution of (4.5) follows from the
following facts:
(2) - 2L € (W] N (€(u) - z) € U,
(€(u) - zd) €A
since (N _; o~ !
[€'(W] ¢ > U

*
(b) [%% (A(A),u{] is a linear homeomorphism of F' onto U', as a
result of (A3).

2Given a Banach space X and its dual X', we denote by (-, <),,, the duality
between X and X'. Given a Hilbert space H, we denote by (-7 -)H the inner
product in H.
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Let us now calculate the first derivative of JB(A). For every &) € A

we have

"

Jg(2) 82 2(@'(u)-5u, €(u) -_zd}”f 28 (32,2

2(%€" (u)-su,n 0 €(u) - 2g)) st 280N

*
1 - A,
2(6“,[% (U)]Ax(%’(l]) zd))UU. + 28(6 » ZQ
Taking into account (4.5),

Jg(a)-sr = - ( Su, [%\f} (A,u)] p)UU' +28(8x, ),

Y

;_( E}i’ £ R AY 6 \ o -~ 16-. -~
I e LAsU) usplFFl + 46( AaAg

u
Finally, from Proposition 2.2,

3300 -6x = (35 (Au)e A (0)+63,0 | g, + 28(80 0

This completes the proof.

The next theorem establishes the existence of a global minimum of JB(A) on

R,y We first prove the following lemma:
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LEMMA 4.1: Let & and A be Banach spaces and assume that R is compactly

weak-top of & norm-top of A

imbedded in A . If X X, then X X.

weak-top of & X

Proof: Take Xn

Then there exists M > 0 so that 'Txn".ﬁ’

of functions {x ¥ is a subset of the ball BM = {x € /IXI
N’ o1 R

the imbedding @& -+ A is compact, it follows that BM is precompact in the norm-

<M ¥YneN. In other words, the family

<M} Since

topology of A. Hence, there is a subseguence {xn } that (strongly) converges
- k
in A. Due to the uniqueness of the Timit, it follows that

norm-top. of A X
Mk
{xn} cannot have cluster point other than x

So x is the umique cluster point of the sequence {xn} with respect to the
norm-topology of A. And since {x_} is contained in the precompact set BM’

norm-top. of A, = This completes the proof.

it follows ([1,p.68]) that X

THEOREM 4.2: Under assumptions (Al)-(Al10), the funectional

3,00 =H€ (o(AD)) - zgia+ BN

admits a global minimum on Ryq-

Proof: Let m = inf JB(}\). Clearly, m > 0. There is a minimizing sequence
AeFRa g /

{2} in 4., such that 1im J.(x_)} = m. Clearly, we may assume that
n ad oo B''n

eee _<_ JB()\TH'].) __<_ JB(;\H) _<_"" _<_ JB()‘I)

Then, for every n € N
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2 .1 1
Mle < 5 Jo(A,) <5 95(3)

i.e. {An} is norm-bounded in . Hence, there is a subsequence {An } that

- k
converges in the weak topology of & to some A€ . Since Qad is norm-

closed and convex, it is also weakly closed and hence X € Ryq SO

weak top. of & reE R

A

n ad
It follows from Lemma 4.1 that

5 form top. of A )\ eR

nk ad

Finally, using the continuity of the functional JLS()\) = €[ o(A(N)))- zdlbz?,'in

the norm - topology of A, as well as the weak Tower semicontinuity of

- 2 .
JS(A) = nxna, in &, we conclude

. . 2 . 2
m=TimJ_ (A ) = Vimug[o(A(r_ ))] - z 015,+ B Vim Ix_
oo B n, kovco { Ny d'o¥ koo Mg R
> el ¢(A(Tim A )] -zdn2+enh'm A |2
- ko "k H koo Nk R
= Jg(%)

Hence JB(A) =m. This completes the proof of Theorem 4.2,

Remark: We can say nothing about uniqueness of the minimum, since the func-

tional JB(A) will in general be non-convex.
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Now we can give a necessary condition for optimality (following [20, p. 9]).

PROPOSITION 4.1: A4 necessary condition for )\E%d to be global minimum of

.JB(A) on the set R, 4 is
Jé(k)'(v-k) >0 VVesRy

Proof: Let A be a global minimum of JB(A) on R, 4> i.e. JB(X) _<_J6(u)
Vuve &4 Since &, 4 is convex, for any v € R, and 6 € [0,1] we have

((1-8)x + 6v) € F,q- Thus JB(A)_f JB((l-e)A + 6v) Vv e & 4 Hence,

1
3 [JB(Me(v-k))- JB()\)] >0
Since JB()‘) is differentiable, we can pass to the limit and obtain

.1
Tim = [J,.(a+68(v-2)) - J.(A)] >0
’lm6 8 A" 8 2

i.e. J'B(A)-(\)-;\) >0

This completes the proof.
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So far we have established existence of a minimum of the smoothing func-
tional on srad and have given a necessary condition for optimality. Now we
qi]l show that minima of JB depend continuously on the observation. This
will be the key result of the regularization approach. Roughly speaking,
what the next theorem says is the following:

Let ; be the "truef value of the parameter and id.= 9?(®(A(i))), what
we would have observed with a zero-error observation. Provided that

(i) X is the unique preimage of id

(ii) B is an appropriately chosen function of the observation error
any minimum of JB(A) converges (in the norm of A) to ;, as the observation
error tends (in the norm of¥) to zero.

Note that our theorem is a local version of the Tikhonov-Arsenin con-
vergence theorem [29, p.65] in the sense that:

(a) We relax their global identifiability assumption (i.e. in the sense
of Definition 3.1).

(b) We refer to a specific pair (i,;d) for which it is assumed that ;
is the unique preimage of id in Mg (pointwise identifiability assumption).

The need of such a generalization has been motivated by the fact that
identifiability results are as a rule conditional identifiability results (see §3)
Note that the pointwise identifiability assumption (b) is the weakest possible
assumption to ensure that the estimated parameter is "close enough” to the true
parameter. (If id has e.g. two preimages 11 and ;2, no mathematical method can
"predict" which one is the true 1).

We first prove the following lemma:

LEMMA 4_._2: Let <X;d >, <Y’dY> be metric spaces, T; X = Y a continuous
mapping, K a precompact subset of X. Furthermore, we are given y° € f(K)
to which there corresponds a unique X° € X with y° = f(x°). Then We > 0

Jv(e) > 0 such that vx €K dY(f(x),y°) <y %dx(x,x") < e,



103

Proof: It suffices to prove that for every sequence {xn} in K such that
f(xn) -+ y° we have Xp x°. Since K is precompact, {xn} has a subsequence
{xnk} that converges to some X € X. Since f is continuous, f(xnk) + f(X).
But f(xn) + y°. Hence, f(X) = y°. And since x° is the unique preimage of
y°, X = x°. So, x_ - X°.

The same argument shows that {xn} cannot have any cluster point other
than x>. Thus x° is the unique cluster point of {xn}, which is contained

in the precompact set K. Hence ([1, p.68]) Xp > X, This completes the

proof.

THEOREM 4.3: Forany8 > 0 and z4 € 9 denote by AB €X | any minimum of JB()\) on
R4 Also, denote by T(S the ‘cZass of functions that are nomnegative,
1

nondecreasing and continuous on the interval [0,61]. Suppose

'id € K
3 a unique A Gﬁ’ad with id = @(@(A(A))‘]
Then Ye>0 VBl, 82 ET(,5 with

1
B,(0) = 0

;2
B (8] < B,(8)

360(8,31,82) < 51 such that \‘i’zd e V§<§
I2g - 2l 6 =5 A, - Al < e

2
. . §
for all B satisfying —BT@—)— <B< 82(6).
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Proof: We have

BINgS < 1€(2(A0)) - z g2+ XA
. < nefe(a)) - zd;»» euxn;
= zg - 24l sni:f;,
< &+ e

2 ~
S 4 2]
| £ g2

8B, (6) + nieé]

| A

< B[B;(8;) + nig]

_ T, 243
Denote H = [81(61) + HM}?] . Clearly, glg < Hy and nxl&, H,- Thus

we have shown that the elements A and Ae belong to the set

AH = {)\ € .%ad/mn iHo}

o R
which is precompact in the norm-topology of A. It follows from Lemma 4.2. that

ve >0 3Jv(e) > 0 such that WAXE€ Ay
o]

re(a(a))) - 24l ¥ ui-iuAf_e

NoQ observe that
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n@(@(A(AB))) - zdx[;, gl e(A(x, Nl -z u2 + g Ae"eg»?

I A

Il?l‘f’(A(;\))l - zd&; Sn;u;,

~ 2 2
sz —'Zdb?+ Bll)\llgP

&% + 82(6)!!;\'1;

A

It follows that

1e{o(A(x g - gl <tie{ oA D)) - zyl* iz - Z I

(5 + Bz(s)mu2 )% + 6

The function y(38) = (62 + 82(6)”A%;)% + & is a continuous monotonically
increasing function satisfying ¢(0) = 0. Hence, one can choose 8y = w-l(y(s))
and have Hi?(®(A(k ))) - zd.af< v(e) W& 5_60. Thus we see that for all B
satisfying ——T—y <B< Bz( ), the inequality hzy - id?ﬁ?f-é implies the

inequality HAB - AﬂA < €. This completes the proof.
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5.  SELECTION OF THE REGULARIZATION PARAMETER

In 84 we established that the regularization approach provides a stable
method for distributed system identification. One question was not addressed,
«the selection of the regularization parameter 8. In this section we will
discuss two methods for selection of B..

Let ; € 3?ad be the "true" value of the parameter X and Zd be the error-free
observation, Z4 = i?(@(A(i))). We assume that (i) \ is the unique preimage

of id; (i1) An upper bound in the observation error is known, i.e.
hzy = Zylyp< 6.

Method 1. When an apriori upper bound on u)dbgis known, i.e. kXl < A,

H

Miller [22] suggests B(&) = (6/A)2. (When &R is a Sobolev space, || g is

a measure of smoothness.) We note first that this choice of B satisfies

the assumptions of Theorem 4.3. Furthermore, if AB(“ is a minimizer of
M

2
2500 = 1€ (a(A0))) - 2l (S) 1 (5.1)
on 4 then
2
l;?(@(A(AB(d)))) - zd|1§(+ (%) “AB(é) ,,;=
= J50(s))
< 90

N 2 .
el e(A(1))) - zdtﬁf+ (%) nxu;

< 262
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Hence,

1€{ 0B )) - 2glps /2 8

. (5.2)

i.e. regularized solutions satisfy the constraints up to a factor of V2.

Method 2: This method has been suggested by Tikhonov and Arsenin [29].

Their suggestion is to choose B8(8) so that

Il@(@(A(AB(S)))) - 24l = 6

where xe(ﬁ) minimizes

I (0) = 1€l oA - zdlf.,+ 8(6)”“@%

Before one discusses the stability of the method, one has to examine the
existence of such a B.

To this end, we follow a different approach than Tikhonov and Arsenin,
who give a simple sufficient condition for existence. We give here a much
weaker condition which is both necessary and sufficient. In the development
of this condition we have used concepts and results from the theory of mini-

mization of vector-valued functionals.

DEFINITION 5.1 (Ordering Relations in R"): Let x = (Xqsevs X;) and y =
(y},..., yn) be two arbitrary elements of R". We will write

(i) x <y iff X; < y; for all i

(i) x <y iff x <y and X; <Y, for at least one i

(iii) x <y iff x; < y; for all 1.
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DEFINITION 5.2:
Let T; A »~R™. We will say that A is a Pareto-minimal point of the
vector-valued functional T if Axe A with T(2) ?T(X). The set

{T(x)/x is a Pareto-minimal point of T} is called the Pareto-minimal set of T.

PROPOSITION 5.1 ([30, p.94]):
Let T(A\) = (T]()\),..., Tn(x)) be a vector-valued functional on A. An

element A € A is a Pareto-minimal point iff for every j € {l,..., n} A

minimizes TJ.(A) on the set

=D e T () <) wie {I,..., n}with i # j)

LEMMA 5.1: LZet

Anin = the minimen-norm element of .ﬂ’
= - 2
Smax = s Pmin = “?( o(A0x, ))) d"s¢
S .. =dinf JAr) = 1nfﬁ%’®(A>\))-zn
min S egp LS ( ) d'¥

ad ANER ad

Given § > émi n* there exists an element A 5 minimizing the functional
2 .
JS(A) on the set {\ € a,ad/ !I?(@(A()\))) - Zd’l’t’ < 8}. Furthermore, if

8 < & o then ::%(@(A(xa))) - zdi&, 5.

Remark: Lemma 5.1 holds for & = § . if JLS(A) admits a minimum on &, .

THEOREM 5.1: ILet 2., § as in Lemma 5.1. The function

6% “max
o(§) = JS(A(S) s 6< & ax
ig monotonically decreasing. Its graph coincides with the Pareto-minimal

set of the vector-valued functional T; Ryq R2 defined by T(A) =
(3500, 3().
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Proof of Lemma 5.1: The proof of existence of a minimum is almost the same

as that of Theorem 4.2.
Consider a minimizing sequence {kn}. This will have a subsequence
{x_} that converges in the weak topology of & to some €. We conclude

Ny
that

)\Eﬁ?ad

3 strong topology A
N of A

Also, due to the continuity of €o ¢ o A, it is easy to see that the limit

has to satisfy
2
ie{e(A(r)) - 24l < &

Finally, using the weak Jower semicontinuity of JS(A) in 4, we conclude

that A minimizes J(A) on the set {xe&_,/I€(a(A)))) - zdt1§,< £,

To prove the second part of the lemma, suppose
2 _
1@ {a(A(2))) - 24l = & < 6

Since o & e A is continuous, there is a ball B(xﬁ), centered at Aé, such

that

1€le(a(0))) - @la(a(n ))) 12 e Vie B(A) N &
[ 9 LS A \ |} ' 6 ‘ﬁt’ —T— 6’ ad

[N

Now observe that

X . " . e
(i) We can always have Apin € B(ké), since &* < § implies A # Ao

X n

(11) BN gr,y C1x € g, /1€le(A(N)] - zd{‘,zfi 6}
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since

1€ [o(AN))) - 24l < e (e(A())] - €[o(AO))) e + I €[0(ALD) = zg1y,

But from (i) and convexity of Qad it follows that Frx*x N B()\é) N R4

so that ux*:lx < 1 xéna,. :
This contradicts with the definition of Ag and (ii).

Proof of Theorem 5.1: If Aé minimizes JS(A) subject to the constraint

JLS(A) <6< 6max’ then from Lemma 5.1,

T(0,) = (6,9(6))

It is clear that 8 2 85 < implies ©(¢,) 5'9(61) i.e. 0 is

émax
monotonically decreasing. Furthermore, Proposition 5.1 implies
that the Pareto-minimal set of T is a subset of the graph of ©.

Finally, if T(A) ?'T(ké) for some A € &, 4 and § < 8oy this would

mean
f‘ ~
JLS(X) < §
ejther
| 3500 < 350)
(' ~
JLS(A) <86

or .
1‘35“) < Jg(xg)

Both cases are impossible since they contradict the definition of Aé and/or
Lemma 5.1. Hence, T(Aé) = (8,0(¢)) is Pareto-minimal.

This completes the proof of the theorem.
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Before we proceed to the main result of this section, we will state an
important proposition by Yu[33], which will be needed in the proof. We

first give the definition of cone convexity, introduced in the same paper.

DEFINITION 5.3: lLet SC Rn and C a convex cone in Rn. S will be called

C~convex if S + L is convex.

PROPOSITION 5.2. ([33, p.28])
Zet T; A+ R" and suppose that Ran T is R:-convex, where R: = {x € R"/

x > 0}. If X is a Pareto-minimal point, there exists n > 0 such that

T

n'7(3) <n T(})) VX € A

THEOREM 5.2.

Let © and T be as in Theorem 5.1. Then the following assertions are
equivalent:

(i) For every & € ]émin’ 8 ax[ there is & > 0 and a minimizer ), of the

m

functional

31 = 3 5(0) + 8Ig00)
on Qa q° such that

Islrg) = ¢

(ii) Ran 7T is R:—conve:c.

(iii) © <is convex.

We first prove the following lemma:
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LEMMA 5.2:

) 8(8), for & <68 .

Jo(X . ), for § > &

S min max

Then*  Ran T + R[ = Epi 0.

Proof of Lemma 6.2: Take (x,y)€ Epi ¢ . If x> 8 ax® then (x,y) € {T(xmin)} +

n ; n .
R,. Ifxz< Srax® then (x,y) € {T\)\x)} +R,, \::here A, minimizes Js(k) on & 4

subject toJLS(A) < x. So: RanT +R2 2Epi ©
Now take z € Ran T +R:. This means 3 € g?ad 3v € RZ with z = T(X) + v.

Assume that z ¢ Epi €, hence 3¢ > 0 with z < (68,0(5)).

Casel: & < §
- max

ThenT(2) + v < T(Aé), where Ag minimizes Js(x) G e 4 subject to
JLS(X) < &. This implies that X is not Pareto-minimal.

Case2: & > &
— max

Then T(X) + v < T(Amin) > Aip s not Pareto-minimal. ~
Thus, we see that in all cases the assumption z { Epi © Teads to

contradiction. Hence, Ran T +R2 C Epi 6 . This completes the proof.

“By the symbol Epi F we mean the epigraph of a function F, i.e. the set
{(x,y) € R%/y > F(x)}.
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Proof of Theorem &.2.
(i) = (ii)

Given B > 0 denote by A, a minimizer of JB(A) = JLS(A) + BJS()‘) on &_, and define

8
1Y) € RE/x + gy > 3 S00) + BI00,)}

[(x.y) € Ry > Jg(Ain)?

Pe

P

o0

f

L}

Furthermore, define
{(XsY) € R%/x > 0} U {(x,y) € R /x =0,y > JS(A)}, if X minimizes Jys(A) onaz
° (x,y) €R /x > 0}, if J S(}\) does not admit  a minimum of &4

We will show that M P =RanT+R". Clearly VA € & vE >0
O<Bee R + ad

T(X) € P.. Hence Vi€ R VzERﬂ VB >0 T(A) +z€P

g ad B’
Thus Ran T + R: c PB Ve >0. Itis also trivial to see that the above
relation holds for 8 = 0 and £ = =, Hence Ran T «‘li!:tI ¢ N PB'
<Bgo

To show that y P, CRan T + R we will take (X,y) ¢ Ran T + R and
0<B<o X .

show that 38 such that (x,y) ¢' P We only need to consider the case

x € ] Sin max[’ since x = Smin clearly implies (x,y) ¢ P0 and x > 8 ax implies
(x,y) € P_. By (i), 380 I minimizer A5 of the functional

Jé(x) = JLS(X) + BJS(A) on & 4 satisfying JLS(Aé) = x. Observe that JS(Aé) > ¥,

since otherwise T(kg) < (x,y) which would imply that (x,y) € Ran T + R:. But

JLS(AB) - x ~ ~ AN ~ A

%JLS(Ag) + BJS(Aé) > x + By > (x,y) € Pg
Jg(Ag) >y

So:

N P, =RanT+R"
0cgee P )

Taking into account the convexity of the sets PB we conclude that

n .
Ran T +R+ is convex.
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(i1) 5 (i)

Consider an arbitrary 6§ € ]38 [ and denote by Aé a minimizer of

min’émax
JS(A) on R4 subject to the constraint JLS(A) < 8.

Since Ran T is R: - convex, by Proposition 5.2, there is n = (nl,nz)'§ 0

such that
HIJLS(AS) + nZJS(AG) f'nldLS(A) + nZJS(A) Vi€ R4

Since & > 6mi . ké does not minimize JLS on éﬁ;d. Hence n, # 0.

n

Since 6<:6max, we hav§ Aa # A

So we may choose B =-ﬁg > 0 and have
1

min® Hence i # 0.

Js(Ag) + BIg(hg) <9 (0) +8I(X) Ve,

But by construction of X

s and Lemma 5.1 it follows that JLS(XG) = 6.

(i1)& (1)
. _n Lemma 5.2 o~ o~
Ran T is R+ - convex &= Epi O is convex&> © is convex

And since 0 is decreasing, the latter is equivalent to © convex.

This completes the proof of the theorem.

What remains to show is that regularized solutions obtained by this
method converge (in the norm of A) to i as the observation error tends (in
the norm of¥) to zero. This will be done independently of the theory of
Section 4. Note, however, that the argument is almost the same as in

Theorem 4.3.



115

THEOREM 5.3

zdex

Suppose { da unique X € R 4 with Zd = %((b(A(;)))

- The function © defined in Theorem 5.1 i& convex

Then Ye > 0 360(5) > 0 euch that WYz, € X Vs < 8,

de dx<(§%”>\ (6)-)\“[\ < g

R(8) denotes a regularization parameter
where
)\8(6) denotes a minimizer of JB(@)(X) on R4

satisfying I!@\CP(A(AB((S)))) - 24llyp= 8

Proof: Denote A = {) € .&ﬁ’ad/ “”Qi lfxﬂa} which is preccmpact in the norm-

topoloay of A. It follows from Lemma 4.2 that

Ve > 0 3Jy(e) > 0 such that V;\ € ;\
T€(e(A(R))) - ?d‘.’x’iY A - )\HA <E

Clearly, >‘8(6) minimizes JS()‘) on R, subject to the constraint
€ (e(A(N))) - Zd‘,’yg’f— 8. Since

1L(E(AN))) - 24lly,= 112, - Z4ll < 6
it is obvious that ‘JSU‘B(S)) < JS(A) j.e. xe(é) € A . Also, observe that
n%’(@(A(AB(é)))) - Z4l,< n%’(é(A(kB(é)))) - gl llzy - 2yl < 26

Thus we can choose & = _‘Y_Z(E_). and have

g (e(Alrg5)))) - Zyi < v(e) V6 <&,
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= 1(_6_2_ 5 5 -
Thus we see that for all § 5;60 5 s the inequality sz ZdQﬁﬂi 8
implies the inequality “AB(G) - AHA <E.

This completes the proof.
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6. IDENTIFICATION OF LINEAR PARABOLIC SYSTEMS FROM DISTRIBUTED OBSERVATION
Let V and H be Hilbert spaces such that

VCH
continuous injection ' (6.1)
dense inclusion

Identifying H with its dual and denoting by V' the dual of V, we have
VCHCy"
continuous injections (6.2)
dense inclusions

Consider the following operator differential equation

g%—+ A(t)u = f
(6.3)
u(0) = uy
and take
Operator space:
A= 17(0,T; 2(V, V")) (6.4)

= space of essentially bounded measurable mappings [0,T] -~ £(V,V')

Subspace of coercive operators:

2 2
o ={ A€ /3 €R 3n> 0: (A(thu,u)yuy + Ul > mui

a.e. in ]O,T[} (6.5) |

Space of right-hand sides:

F = L2(D,T;V') x H (6.6)



118

Space of solutions:
U= u(o,m = {uu e L20,Tv), § € L2(0,Tv)} (6.7)

PROPOSITION 6.1 ([20, p.1021): Given A(t) €4 , f € LZ(0,T5V') and u_ € H,
the problem (6.3) admits a wnique solution u € W(0,T). The solution depends

continuously on the data t and Ug-
Now define the mapping

Y;(A,u) € x U +-(%%-+ Au, u(D)) €F (6.8)

Clearly, ¥ is of c”-class, hence assumption (A1) is satisfied. Also, we have

B (Au)-u (%‘,—iﬂ + Adu, euw)) (6.9)
25 (Au)-0n = (sAu, 0) (6.10)

Proposition 6.1 establishes satisfaction of (A2) and (A3).
Next consider that A depends on a parameter X that belongs to the

Banach space A. If

(» €A~ A(Nit)€eA) € L (N, ) (6.11)
A(Aad)g.n% (6.12)
€ € £ (W(0,T),o#) (6.13)
& is a Hilbert space imbedded in A (6.14)

(A1)-(A4) and (A6)-(A9) are satisfied.

THEOREM 6.1: The functional

3,00 = 18{o(A)) - zg1 + siAIg
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is of € -class. Its first derivative is gii)en by

i

Jy(A)-6n = 0} (A(8X)u, p oy dt + 28(83,1) 5 (6.15)

where u € W(0,T) is the solution of (6.3) and p € W(0,T) is the solution of
the adjoint equation

9Py ax(t)p = - 2@*A_(%u - 2,)
dt g d (6.16)

p(T) =0
Proof: Apply Theorem 4.1. The adjoint state p € F' is of the form o = (¥, )~0')
with p € LZ(O,T;V), pe LZ(Q). Taking into account (6.10), we immediately
get (6.15) from (4.4). Taking into account (6.9), (4.5) becomes

T ~
S e G+ m)yye et v Cravtony = - 2@t L) - 230

or

i .
S & e mr gy ot 4 Comavmy + e plo)v(o))y =

= - 2[E*n (€ (u) - 24)](v)

from which (6.16) follows.
This completes the proof of the theorem.

As an application of the above theory, let

é Q a bounded open subset of R"

T the boundary of Q, a clmanifold with Q Tocally on one side of T

a real number with 0 < T < e

-
Q = x]0,T[
£ =T x ]0,7[
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and consider the following linear parabolic system

2u :E:: ylPlgp £)0u) = £ (x,t), i )
3t Iplslql<m DT R apg (oI o+l 10 @

u(x,0) = u_(x) LAt ? (6.17)

' h
B.u = :E:: b, (x,t)Du=0 , j=0,...,m1,0n¢Z

. © 2 2 o
with 35q €L (Q), fo€L (Q), u, €L (2), bjh €L (Z) and O < m < 2m-1.
The boundary operators are numbered in increasing order and let s be the number

of stable boundary conditions, i.e.

mj< m , forj=20,..., s-1

(6.18)
mjzm , for j =s,..., m-1
If there exist® boundary operators {Bj}?;i such that
(i) {B,s-.-» B_y»Bgs--os By 4} is @ Dirichlet system.
(i1) ®j = Bj s J = Ss5..., m-1 where {Qj}?;é is the adjoint to
B ,...,B_ ., B's..., B .} with respect to Green's formula
0 s-1* "s m-1
}' :E:: apqngubivdx = -[ E (-1)|pt[D£(aqu§u)]vdx
2 [p[,lal<m Q [pls|q]<m
(6.19)

¥ | 5 d
- d.uB.vdo - . uBtvdo
.l[ j=o J J . j=s J 3

SIn general, such boundary operators need not exist ([21] Vol. I, p. 205).
However, inall practical applications they do.
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then problem (6.17) can be put in a variational formulation as follows:

f 2u vdx +f Z a unDdex = ffovvdx
9]

o ot 2 Ipl,lqlm PAX X
Y v such that ij =0, j=0,..., s-1, on I P (6.20)
u(x,0) = u (x), ingQ J

To see that (6.20) is a special case of (6.3), make the following choices of

function spaces
V= {v/v e H"(q), Bjv=0,J=0,.., s} (6.21)

which is a Hilbert space with the norm induced by H™(9)

H = L2(0) (6.22)
A >< L™(Q) (6.23)
lplslal<m
which is a Banach space with norm lIAll, = max ha_ | and define f and
2 1plslal<m Pola
- L (Q)
A(X;t) by
fv) = [ £ vix (6.24)
Q
(ACstyu) ey = [ ) 3 (x:t)0Judbvdx  Vu,v eV (6.25)

2 Ipls|pl<m
Observe that the mapping (A € A -~ A(Xx;t) € #) € & (A, ), hence it is of
C”-class, i.e. (A4) is satisfied. Also, if, given z € R and n > 0, one

defines
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pa 2 .
Mg = {) € A/(A(A;t)v,v)v.v + gHVNH > niviy Yv eV a.e. in ]O,T[} (6.26)

then A, is closed and convex and A(Aad) 2 A, e, (A5) and (A6) are satisfied.

Finally, suppose that we want to identify A = (apq) by observing u(x,t)
in Q. We take

o = L2(Q) (6.27)
A, = identity (6.28)
@ = injection of W(0,T) into L2(Q) (6.29)
21,22
R = H (Q) (6.30)
Ipl,lq]<m
9,],2

jfﬁq,ﬂz such that H 2(Q) is compactly imbedded in L™(Q)
with

1/2
- 2
LMHQ -( Z wpq”apqﬂ QI’QZ ) s wpq >0
H (Q)

Ip|slql<m
and (A7)-(A10) are satisfied.
The smoothing functional JB(A) now becomes

V‘\

3,0 - g (o t3) - zg0utD? aat + 8 2, wona

N (6.31)
Iplslq]<m L 2(Q)

where u{x,t;) denotes the weak solution of (6.17). Theorem 6.1 gives the

following result:

THEOREM 6.2: The first derivative of the functional JB()\) given by (6.31) is

Jp(1)-6n = z [JGaqugubgpdxdt + zewpq(sapq,apq) 0.5, ] (6.32)
Ip]s|g]<m H (Q)
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where u € W(0,T) is the weak solution of (6.17) and p € W(0,T) is the weak

solution of

- %t,z (- l)lp'Dp(aquz” = - 2(u(x,t) - Zd(x,t)) N\
Ip[slql<m
ij =0 s 3= 0,..., 8-1 > (6.33)
¢*p =0 9j=5,-.., m-1
p(x,T) = 0 J

2 ' )
In the above theorem, {<I>J}J =o 15 the adjoint of {B ,..., B, ;5 Bgseuvs By 4}

with respect to Green's formula

Z aqugngudx = IZ (- )lpl[Dg(aqpbgv)] udx

lpl,lp|<m 2 |pls|ql<m
- m-1
- f}_j #3vB udo - [ Z ARVIE (6.34)
j=o J [
T r

As a further application of the theory, consider the Neumann problem in the

isotropic diffusion equation

Qu . i__a__ Ul = f (x,t) , inQ
ot =a ( axj 0"’ i

]
u(x,0) = u_(x) Ling P (6.35)
ou _

-5_\3 =0 s ON X W,

As a result of Proposition 6.1 we have that for every
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a(x) € L7(Q) with a(x) >0, >0 a.e. in @
£, (x,t) € L2(Q)
u,(x) € L%(q)

(6.35) admits a unique weak solution u € LZ(O,T;HI(Q)).

How take
A= L7(Q)
Mg = {a € L7(2)]|al(x) >a > 0 a.e. in Q}
hg Ts @ closed and convex subset of L (5).
g =wQ) , with g >3

Hyy =R N, = o€ H(Q)|alx) > >0 a.e. in ol

When we observe u(x,t) in Q, we can estimate a(x) by minimizing the functional

3,(a) =£[u(x,t;a) - 2,(x,1)7? dxdt + Buanﬁz(m (6.36)

Theorem 6.2 shows that JB(a) is of CT-class and

.
Jpla)so = faa[’f S 3% dt] dx + 28(80,a) , (6.37)

5 Lo 35175 % (@)

where u is the solution of (6.35) and p is the solution of

n
_g)% + 3-5;31 52_3_ (a(x) g-i’-;)= 2(ulx,t) = z4(x,t)), in Q

=0  ,onz > (6.38)

o8

p\XgT) = 0 s in Q )
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7. IDENTIFICATION OF LINEAR PARABOLIC SYSTEMS FROM POINT OBSERVATION
Given a set of discrete points xjgs,,, xlle 2, we now consider the iden-
tification of a linear parabolic system by observing u(xi,t), i=1,..., 4.
We have seen in §6 that weak solutions of linear parabolic systems lie
in L2(O,T;Hm(9)). Thus, for a weak solution u, the point value u(xi,t) has
meaning if H™(2) C C%(Q) & n < 2m. Since such an assumption is overly
restrictive, we will consider here strong solutions, which are more regular.

Let Q, T, T, Q and Z as in §6. Consider

U _ . A
=5 * A(t)u = F , in Q
u(x,0) = Uy , in Q > (7.1)
Bju = gj s J = 0,...,m1onzI _J
where
_ Iplnp q
A(t) u = :E:: (-1) Dx (apq(x,t)Dxu) (7.2)
[p|s]q|<m
B.u = Z b.. (x,t)dMu j=0 m-1
j Jh Y X H gecasy
[h]<m, (7.3)

with O f_mj = order of Bj < 2m-1
Following [21], suppose®

I is an (n-1)-dimensicnal sz-manifold, with @ Tocally on one side of T

3y € cIPsals1(g) , where |p.q] = max (|p].lq]) (7.5)
2m-mj,2m-mj+1 -
bjh € C (z) (7.6)
m-1 .
Vt, € [0,T], the system {Bj(x’to’Dx)}j=o is normal on T (7.7)
®(ions and Magenes use sharper regularity conditions for T, a.. and b, than

(7.4)-(7.6). However, the result remains unaltered. See Reﬁgrk 6.13hin

[21, p. 35] and Theorem 3.3 in [4, p. 32].

(7.4)
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T T N
m _i6.2m : $

{A(X,to,Dx) +(-1)" e Dy . Bj(x’to’Dx)} (7.8)
is a regular elliptic system in Q ><R D

PROPOSITION 7.1 ([21] Vol. I1.p.33): dssume that ({ 2)-(7.8) hold. Given
> m 2m-m . - %., {2m- ms Y/2m
f € L°(Q), u, € HY () and g; € H (z) satisfying the

compatibility relations

- for all j such that
Bj(x,O,Dx)uo(X)) gj(x,O) , (7.9)

. < m-
. mJ_ml
problem (7.1) admits a unique solution u € Hzm’l(Q). The solution depends
eontinuously on the data f, Uy and gj.

Now we take

Parameter space:
A = >( clp-alsl(g) (7.10)
lpl,lql<m

which is a Banach space with norm Xy, = max fla “
A Pal 1p.ql,1
tplslql<m A ()

Operator space:

@ - (neee?™@ud@m= y,  nlPlPa o9

Ip)-]al<m ik

with a . € clpalsl(g] (7.11)

which is a Banach space with norm HIAl_, = max Hapq,;
1
pl.lalam clPsalilqg)
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and we denote by EA its open subset

uﬂz = {A € /(7.8) is satisfied} (7.12)

Y

Space of right-hand sides:

F=12(Q) x (7.13)

cm- L(opem - 1
2m mj 2,(2m mj 2)/Zm

where F = {(uo,gj,j=50,..., m-l)/u0 € Hm(Q),gj € H ()

and (7.9) is satisfied}
Space of Solutions:
2m,
u = w™1l(g) (7.14)
Now define the mapping
. U
¥; (A,u) € x U > (5¥ + Au, u(x,0), Bou,..., Bm—l“) €F (7.15)

Clearly, ¥ is of Cw-c1ass, hence assumption (Al) is satisfied. Also, we have

v _[ 28u

53-(A,u)-6u -( = ¥ Asu, Su(x,0), Bosu,..., Bm_léu) (7.16)
oY _

A (A,u)-8A = (SAu, O, 0, ..., 0) (7.17)

Proposition 7.1 establishes satisfaction of (A2) and (A3). Observe that the
mapping )\ = (apq) € A~ A(\;t) € & is clearly of C-class, hence (A4) is
also satisfied.
Before we proceed to the statement of the main result of this section,
we will briefly state a number of results from[21]and [4] that will permit
us to interpret the adjoint state as a distributional solution of an irregular

parabolic problem.
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m-1

Let {Bj}j=o be a system of boundary operators normal on I'. If {Bj}?;g is

"completed" by a system'{Sj}?;é with 0 < Wy = order of Sj < 2m-1 so that
{Bys-vvs By 15 Sgse--s Sy} is normal and of Dirichlet on T, then there exist

~2m boundary operators Cj, Tj’ J = 0,..., m-1, uniquely defined, with properties

a) the order of Cj is 2m - My - 1

b) the order of Tj is 2m - my - 1

€) {Cyseves Cpys Tgowers Ty g} is a Dirichlet system on T

such that the following (formal) Green's formula holds:

({u ( Av +—g—:—) dxdt - ({(A*u -—g—%) v dxdt =

m-1 QE}
= ‘5_; ijijudz > fijTJ.udL +
j=o 3 3=o 3

v Jutmyvlomex - ,f u(x,0)v(x,0)dx  vu, ve®@d  (7.18)
Q 0

where A* denotes the formal adjoint of A

A*y = Z (-l)lp[Di(aqu?(u) (7.19)
lplslal<m

Now denote

X(Q) = {v/v € ¥¥™1(q), BjV=0, 3 =0,y m1, w(x,0) = 0} (7.20)
which is a Hilbert space with norm

- 2 : LAV 214
NVHX(Q) = (Hv&ngl(Q) + ”EE'+ Av] )

and

D) = {u/u € L2(Q), - &+ avy € =27 Yg) (7.21)
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which is a Hilbert space with norm

2 Bu
full = [huy + n- + A ufl
Dp (Q) ( 2@ °F

PROPOSITION 7.2 (Trace Theorem. [21] Vol. II pp. 49,55 and [4 ] p. 83):
a)  The mapping u + Cju of @(Q) in D(I) extends by continuity to a eontinuous

linear mapping, still denoted by C., of

JMu+?(mw +)Rm
Dp(Q) ~ H J (z)

b)  The mapping u + u(x,T) of @(Q) in D(Q) extends by continuity to a con-

tinuous linear mapping of Dp,(Q) in H(0).

PROPOSITION 7.3 (Partial Green's Formulas. [21] Vol. II pp.53,57 and [ 4] p.84)

a) (u,Av+—g—%>=<A*u-§9-,v>+Z <Sv Cu)
2m,1 _ ¢ _
for u € DP*(Q), v € H 0(Q), ij =0, j=0,..., m-1
p) <u, Av+—,§%) = (A*y -——, vy o+ u(x,T), v(x,T)D>

for u €D, (), v € ™), v(x,0) = 0, Byv = S;v =0, 3= 0,ueey el

Note that Propositions 7.2 and 7.3 will not be used in the sequel. They
only serve for the precise interpretation of Proposition 7.4, which follows.
PROPOSITION 7.4 ([21] vol.ITp. 60 and [ 4] p.86 ): Assume that (7.2)-(7.8)

-2t g _(-2muge 3)/2m

2)
() and Uy (5’2)

hold. Given ¢ € = 2M"1(q), hy € H

there exists a unique distribution U € DP*(Q) satisfying
<u, + A = (o) + §: ChysSivD + Cupuv(x,T))
=0

for ebery v € X(Q).
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In other words, U is a distributional solution of

LY )
-3t t A*u = ¢ » in Q
- Cju = hj’ j=0,...,m1l,0nt & (7.22)
u(x,T) = Uy . in O J

where Cjucmuiu(x,T) are understood in the sense of Proposition 71.2. Further-
more, u depends continuously on the data ¢, hj and Ur.
Now to identify A = (apq) in (7.1) from an observation of u at the points

X., 1 =1,...,u take

= (L2(0,T))" (7.23)
Agp = identity (7.24)
@ulx,t) € HL(Q) » (ulx,,t), 1 = 1,..., ) € (L2(0,T))" (7.25)
2 = (g, (V)00 7 (£)) € (L2(0,T)) (7.26)
R = a Hilbert space compactly imbedded in A (7.27)

and minimize the smoothing functional

u T o 2
20 = 2 oj [ulxgtin) - 24 (0750t + g (7.28)

where u(x,t;)) denotes the strong solution of (7.1).
Notice that since u € Hzm’l(Q), it follows that u € L2(O,T;H2m(Q)).
Hence u(xi,t) has meaning and (t -+ u(xi,t)) € LZ(O,T) if Hzm(ﬂ) C %) & n < 4m.

So we assume

n < 4m-1 (7.29)



131

Also notice that clearly & is of C*-class, so that (A7) is satisfied.
To each observation (z (t),..., zd‘(t)) € (LZ(O,T))p we associate the distri-
1 ,

u
bution

b=-2 % (ulxgt) - 24 (£))® 8(xx;) € @'(2) (7.30)
91 i

Due to (7.29), it is easy to verify that
¢ € ="M} (7.31)
Thus we have the following

THEOREM 7.1: The functional JB(X) given by (7.28) is of C -class. Its first

derivative is given by
JI(X)e8x = j.A(BA)u pdxdt + 28(83,1), (7.32)
D Q e
where u € Hzm’l(Q) 18 the unique solution of (7.1) and p € LZ(Q) is the

unique solution of

f v _ U IT v
2 P(-gf + Av) dxdt = - 2;;% 5 (ulx;,t) - Zdi(t)) (x;>t) dt

(7.33)
2m,1 . - . _ =
Yv € H (Q) with ij =0, j=0,..., m=1, v(x,0) = 0
In other words, P is a distributional solution of
ap S
- *y = . - - 3
Y3 + A*p 2 121;1 (U(Xi,t) Zd-,(t)) ®6(X x.i)s in Q
C.p=0 ,3j=0,...,m1l,0ntk (7.34)

-J
p(x,T) =0 s, In
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Proof: Apply Theorem 4.1. The adjoint state p € F' is of the form

p=(pape 5 d=0see, m1) with p € L2(Q), p € H(0),

1 4 1
-2m+mj+~§,(-2m+mj+ 7)/2m

~ € H (). Taking into account (7.17), we immediately

get (7.32) from (4.4). Taking into account (7.16), (4.5) becomes

oy 5 b
[r (2 Av] dxdt + < pv(x,0)) + 3 <43:B;v =
Q T

= - 2[?*(@11 - zd)](v)

from which (7.33) follows.
Uniqueness of the solution of (7.33) follows from Proposition 7.4. (7.34)

also follows from Proposition 7.4. This completes the proof of the theorem.

!_. ) P ¢ Y . ~ e ad RN
Remark 7.1: For A()) = E (-l)lp'Di(apq(x,t)Ug) with apq € Llp,q!,l\Q}’

. . Ipl,lg]<m ,
the first term in (7.32) can be formally rewritten as

]'éa

quqqup dxdt
Q

Ipls]ql<m

by using Green's formula.

Remark 7.2: As in the case of distributed observations, the usual choice

. ::><:j Hzl’ﬂz . :E : 2 :
of & will be (Q) with norm %J%ﬂ o

2,2
Ipl,lq]<m Ipl,|q]<m H L 2(Q)

wpq > 0. Ql(p,q) and xz(p,q) will be chosen so that the compact imbedding

2.,82
H 1°7z clp,q],l is valid-
As an application of the theory, consider the Neumann problem in the

n-dimensional isotropic diffusion equation (n < 3):



_ no Cay
SR 1ECE A RCC R

J=1 77 J
u(x,0) = u_(x) < Lina ) (7.35)
3u _
'5-\')——0 s ON T

o
Applying Proposition 7.1 we have that for every

a(x) € Cl(ﬁ) satisfying a(x) > o, V x € Q for some o, > 0

f(x,t) € L2(Q)

u,(x) € K (o)

the problem (7.35) admits a unique solution u € HZ’I(Q),

Now take

=4

. 1,
A= L07(8)

Mg = {aeCi@/alx) >0, >0  Vxegq
Aad is a closed and convex subset of Cl(ﬁ).

& = HY(q) , with 2> 5+ 1

Byq =F D hyq = {a€ HQ(Q)/OL(X)3%>0 Vxe o}

When we observe u at a number of points Xis i=1,...,u in Q, we can estimate

a(x) by minimizing the functional

I
JB(a) = }E f [u(x;,t;a) - 3 (t)]2 dt + gllan?
i=1 6 1 i

7.36
i) (7.36)
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Theorem 7.1 shows that J (u) is of C -class and

. % hy o
JB(oc)-da —é 60{6[ g —8-2_5;; ]dx + ZB(GQ’Q)HQ(Q) (7.37)

LY

where u is the solution of (7.35) and pis the solution of

I R (a(x)i—) =2 }: (ulx;8) - 24 (£)O5(x-x,), in Q
J
(7.38)
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8.  IDENTIFICATION OF A NONLINEAR PARABOLIC SYSTEM

In 56 and §7 we have studied the identification of linear parabolic sys-
tems. The purpose of this section is to show that the regularization approach
Sis applicable to systems described by nonlinear evolution equations and, at
the same time, point out the difficulties involved in regularizing nonlinear
identification problems.

It has been apparent from g6 and §7 that in order to apply regularization
methods to the identification of distributed parameter systems, what is needed
is an appropriate P.D.E. framework. And it is a well-known fact that nonlinear
P.D.E. theories are not sufficiently general. Furthermore, unlike the linear
case, an existence-uniqueness-continuous dependence theorem for the P.D.E. is
insufficient to satisfy assumption (A3) and give (By Proposition 2.2) differ-
entiability of the solution with respect to the coefficients. To satisfy (A3),
additional assumptions will usually be required.

For the above reasons, it does not seem to be possible to develop a fairly
general theory for nonlinear parabolic identification problems; they must be
treated on a case-by-case basis. In this section we study the identification

of the spatially varying coefficients aij(x) in

n
wu_ Y 8 u_ Yoo
5t axi( aij(x) ax.) +b(x)u+ |ulfu=f ,inQ

i,3=1 J
u(x,0) = uo(x) . in Q (8.1)
u=20 s ON I

from distributed observation, where y > 0 and b(x) is bounded from below by a
positive number. Note that the 1nitia1/boundary—9a1ue problem (8.1) is a

classical example of application of the theory of monotone operators. The
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resulting existence-uniqueness-continuous dependence theorem (Propos_ition 8.1)
is not enough to verify assumption (A3). The result of Proposition 8.2, that
uses additional assumptions, Wiﬁ, howe\)er, establish satisfaction of (A3).

= Following [13] and [19], we take

V= HL(2) | (8.2)

H = L2(q) (8.3)

A = 2(VN") (Operator space) (8.4)

= {A€/3 n>0with (Av,v),,y > n::vns VveV? (8.5)

(subspace of coercive operators)

n
= >< L7(2) (Parameter space) (8.6)

V= (a]. .)€ L we correspond A € ¢ given by
’ (8.7)

du_ dv_
(Au, V)VV f E 355 ax ax dx Yu, vev
131

Using methods of monotone operators ([13] Ch. vI &1, [19] Ch. 2 §1) it is straight-
forward to prove

PROPOSITION 8.1: Given

r
vy >0

‘A € A
o

ﬂ b € L7(q) satisfying b(x) > bo >0 ag.e in §
12

feL2(0,Tv) ®L Q)

_ Yp € LZ(Q)
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the problem

‘%% +Au+bu+ |uffu=f

(8.8)
- u(0) = Ug

admits a unique solution u € LZ(O,T;V) N LY+2(Q) such that

L x+te
e 1?0,1;v) @ L7 (q).7

It is easily seen that the above result is not enough to verify (A3) unless
additional assumptions are made. Using the maximum principle one obtains

(see [4, p. 371)

PROPOSITION B.2: Under the additional assumption

3 Cq9Co with 0 < ¢y <6 such that )

f(x,t) .
0 < C-‘ _<_—‘b—6<T'i CZ a.e. in Q } (89)
0 < f_uo(x) <cy a.e in Q .J

problem (8.8) admits a unique solution u in

U ={uu € 12(0,Tv) N L7(Q), G5 + Au € L7(Q), u(0) € L7(a) ] (8.10)
satisfying
u(x,t) > c a.e. in Q (8.11)
Now denote
U = {u € U/3cy > 0 such that u(x,t) > ¢; a.e. in Q} (8.12)
Footnote on following page
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Footnote for page 137

’The space LZ(O,T;V) mLY+2(Q) is a Banach space with norm

20y g

Y2 ' y+e
The space L%(0,T;v) @ L Y*}(q) = {u +y /u€L30,Tv'), v e L)
is the dual of L2(0,T;V) N LY*2(Q). It is a Banach space with norm

fwlt = inf max( utl vl y+2
5 L=(o,T;v")? LY+1(Q)
u € L°(0,T;V")
x*+2
e L"'(Q)

%
i

u-+v
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F=L"(Q) x L"() (8.13)
Observe that and U, are open in & and U, respectiVéTy, and define

d
¥i(A) € ug, x U (384 pu e bu + [u[", u(0)) € F (8.14)

As an immediate consequence of Proposition 8.2, (A2) is satisfied.

Clearly, V¥ is of Cl-class, hence (A1) is satisfied. Furthermore,
2 (A,u)-su =(QL8u) 4 sy + bou + (v+1) |u]You, 6u(0)) (8.15)

25 (Au)-6A = (Au,0) (8.16)

To show (A3), observe that the equation

%%~+ Az + bz + (y+1)[u]"z = £
(8.17)
z(0) = Eo

admits for every fe L(Q) and every Eo € L7(n) a unigue solution
z € LZ(O,T;V). Furthermore, z € L7(Q) by using the maximum principle. Hence,
z € U.

Observe that the mapping A = (aij) € A > A()) € o is clearly of C -class,

hence (A4) is satisfied. Also, givena > 0, define

2

n
= = ; n .
haa = {" = (a;;) € A/ ﬁ; ay(0)EE; 2a |E]° VEER' a.e. in sz} (8.18)

a

i,3=1
A is closed and convex and A(Aad) q ,dé; i.e. (A5) and (A6) are satisfied.
Finally, suppose that we want to identify A = (aij) by obserVing u(x,t). We
take
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o = L2(Q) (8.19)
Ayp = identity (8.20)
& = injection of L™(Q) into LZ(Q) (8.21)
n
R =j>x</H2(g) (8.22)
i,j=1
2 >~%
with
Al = :E:: W, .lfa; . s >
4 i3 %50 0 iJ
{51 H(2)

and have (A7)-(A10) being satisfied.

THEOREM 8.1: The smoothing functional
n

300 = {(u(x,t;k) - 2g(x, )% dxdt + D wia ’J”s o) (8.23)
i,3=1

is8 of Cl-class. Its derivative is given by

' e = ou __&
JB(A) SA :E:: [_/.6a13 ax ax; dxdt + Zgwij(ﬁaij’aij)HQ(Q)] (8.24)
i,j=1

where u € U ig the weak solution of (8.1) and P € LZ(O,T;Hé(Q)) ig the weak

solution of

n

'%% ¥ :E:: 35%7( aji(x) %5%")' [b(x) + (v+1)|u]Y1 p = 2(u-z4), in Q
R ’ (8.25)
p= 0, on I

p(x,T) =0, inQ
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Proof: Apply Theorem 4.1. The adjoint state p is of the form p = { p, ;) with
p € [Lm(Q)]‘ and p € [Lm(Q)]'. Taking into account (8.15), (4.5) becomes:

b, g—{- + Av + bv + (y+1)|u]vD + <_;, v(0) ) = -2 Qf(u—zd)v' dxdt

(8.26)
YV vey
(8.26) is satisfied if we define
iOGL?(O,T;Hg(Q))CZLZ(Q) C Ll(Q) C [Lm(Q)]. as solution of (8.25)

peL?(e) c Li(e) cIL™)] by p = p(0)

Finally, (8.24) results from equation (4.4).

This completes the proof of the theorem.

Remark: If the data are more regular, e.qg. 355 € Cl(ﬁ), u, € Hé(Q), the

solution u of (8.1) will be in HZ’I(Q). Hence, one will be able to consider

point observation as well.
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9.  NUMERICAL IMPLEMENTATION OF THE REGULARIZATION METHOD

The minimization of JB(J\) can be conveniently carried out by a gradient
method ([3 1,[11]), in which JB is iteratively minimized along the gradient
direction, aJB/aA » which is defined as the unique element ¢ € & satisfying
Jé(x)-h = (¢,h)$ Vhege . To illustrate the theory, we will consider the
identification of o(x) in the one-dimensional diffusion equation from point

observations zZy (t) of u(xi,t), i=1,...5
i

\
—g—q=—a%(a(x)—g—g)+f s in Q@ x J0,T[
u(x,0) = ug(x) , in Q ? (9.1)
U _
-5;-0 ,onI‘x]O,T[/
The smoothing functional is
ROED> fT[u(x t) - z, ()%t + gl (9.2)
8 i1 5 i d; H2 (2)
If HZ(Q) is equipped with the norm
3
ifll 5 = ( f(fz + f"z)dx) (9.3)
H (Q) Q
the gradient BJB/aa is given by
BJB
3o (@) =y + 28a (9.4)

where ¢ is the weak solution of
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‘\
9——%+w=f3”—9dt Lin R
dx $
" =0 ,onT (9.5)
y" =0, onT . /

with u and p being the solutions of the state and adjoint equations respec-

tively. The gradient algorithm in this case proceeds as follows:

(1)
(2)
(3)
(4)
(5)

fry
{%)

(7)

Initialize o € H2(Q)
Solve the state and ad301nt equations

Calculate J (a) and .[ U 9p 4t

g X Bx
If IJB(a°1d) - JB(an Yy| < Tolerance, stop
od
Solve (9.5) for y and calculate 555 (o)
od
Set o'o" = a°1d + € 5&§ (a°1d) where € is a step length parameter to be

determined by one-dimensional line-search.

Go to (2).

We have considered the three cases given in Table 1. Data were gener-

ated by first numerically solving (9.1) using the Crank-Nicholson scheme

with 50 grid points and then adding to u(xi,t) random numbers with zero mean

and standard deviation o = 0.2.
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The smoothing functional

.5 10

Jglo) = (ulx;,t) - zdi(t))z dt +

1

O Yewwmm, ©
o)

1
o8 [ [b? + (")) dx (2.6)
(o]

was minimized by applying the gradient algorithm described above. The state
and adjoint equations were solved by the Crank-Nicholson method. The fourth
order 0.D.E. giving y was solved by a finite-difference scheme. The one-
dimensional line search for the step length was performed by the golden section

search method. Finally, the test for stopping the iterations was

(anew)

B (%)) < 107

8 - g
The initial gquess for a(x), the true o(x) and the result after six iterations
of the gradient method are shown for Case 1 in Figure 2. Similarly, the esti-
mated a(x) after six iterations is shown for Case 2 in Figure 3. In each of
Cases 1 and 2 the value of the regularization parameter B was selected based

on the suggestion of Miller (see §5). In Case 1, with an assumed upper bound

of 0.05 for the squared error and an assumed upper bound for smoothness of

“atrueuzz < 1, we obtain B = 5x10'2. In Case 2, with the same assumed upper
W2 -
bound of 0.05 for the squared error and that for smoothness of “atrue”22 < 10,
H
3

we have 8 = 5x10 °. !

The effect of the choice of B is examined in Case 3. Figure 4 shows three

4 2

estimated a(x) profiles corresponding to g = 10", 10"

2

, and 1. The value

107

B js consistent with the suggestion of Miller. We note that when

B 10°% the oscillations in a(x), characteristic of numerical instability, are
- setting in. In the absence of a good estimate for the errors and/or smoothness,

it is a good idea to examine the solution as a function of B.
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FIGURE CAPTIONS

Figure 1. Function spaces for the abstract identification problem
Figure 2. True and estimated profiles of o for Case 1
Figure 3. True and estimated profiles of o for Case 2

Figure 4. True and estimated profiles of a for Case 3
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CHAPTER IV: IDENTIFICATION OF SPATIALLY-VARYING PARAMETERS
IN DISTRIBUTED PARAMETER SYSTEMS BY DISCRETE
REGULARIZATION
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1. INTRODUCTION

Consider the following distributed parameter dynamic system:

ou _ .
=t Au = f , in © x J0,T[
(1.1) u(x,0) = uy , in 0
Bju = gj 5 J=0,..., m1, on T x ]0O,T[

where @ C R" with boundary I and 0 < T < = and where

Au = Z (—1)Iplop(apq(x)oqu)
[Pl 1g]<m

Bu = E bjh(x)Dhu ,5=0,..., m1
lhlfmj

with 0 E.mj = order of Bj 5_2m—1

The parameter identification problem associated with the above dynam-
ic system can be stated as follows:

Assuming the input function f, the initial condition and the bound-
ary condition(s) to be known, and given an observation of u, determine

the system operator A, i.e. the parameters a q(x).

p
A number of important physical identification problems fall within
the above framework. For example, the partial differential equation

(1.2) 2= 2 oty B) - 2 (alon) §) = fxy,t)

governs the temperature distribution in an inhomogeneous solid or the

pressure distribution in a fluid-containing porous medium. In the case
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of fluid flow in a porous medium, o is termed the transmissivity. For
models of petroleum reservoirs and subsurface aquifers the transmissivity
is generally inaccessible to direct measurement, and its value must be
inferred from measurements of the pressure u at wells.

The key difficulty in developing sucéessfu1 numerical techniques for
identifying spatially-dependent parameters in partial differential equa-
tions is the fact that such problems are ill-posed in the sense of Hada-
mard ([4],[5]). In recent work of the authors ([3]), a general regulariza-
tion identification approach has been developed to overcome this diffi-
culty. In the present work we are concerned with the practical implemen-
tation of the regularization approach, i.e. the development of computa-
tionally efficient numerical algorithms. In §2 the abstract regulariza-
tion theory is reviewed and applied to the identification of
a{x,y) in (1.2) from point observation. In §3 a numerical method
is proposed with a corresponding convergence theorem. The numerical method
involves the use of finite-dimensional convergent approximations of Hilbert
spaces. 84 presents a review of methods of construction of piecewise-
polynomial approximations in the Sobolev spaces Hm(Q), which can be used
in all practical identification problems. Finally, §5 is concerned with
the practical implementation of this discrete regularization approach by

studying the identification problem associated with (1.2).

2. PARAMETER IDENTIFICATION BY REGULARIZATION-REVIEW OF BASIC RESULTS
This section consists of a brief necessary review of the general

identification approach developed in previous work of the authors ([3]).
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Let .#, U and F be Banach spaces. & represents a space of partial
differential operators, U represents the space of solutions and F the

space of right hand sides. Consider a system described by
(2.1) y(A,u) = f

where ¥ is a mapping, not necessarily linear, from & x U into F. We

assume:

(A1) V¥ is of cK-class (k > 1)

(A2) There is an open subset A of <« and an open subset Uc of U such
that VA € u&E(Z.l) admits a unique solution u € U_.

Y

(A3) VAG.;{C VuéUC v

(A,u) is a linear homeomorphism of U onto F.

Thus, one can define an implicit function u = ¢(A) as the solution

of (2.1). @ is of cKoclass from < into U.
Furthermore, consider that A depends on a set of parameters ) belong-
ing to the Banach space A. The set of physically admissible X is Aad
We assume:
(A4) A; A > o is of ckocrass (k > 1)
(A5) Aad is a norm-closed convex subset of A
(A6) A(Aad)'g A
Now the identification problem can be posed as follows:
Knowing the mappings ¥; «& x U ~ F and A; A ~ & and the element
f € F and given an observation of u, find A € Aad to satisfy (2.1).
We need to be precise about the nature of the observation of u. Thus,
consider a Hilbert space gn?(Observatioh Space). Also, consider an obser-

vation operator, not necessarily linear, @®; U - 3% and assume
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(A7) € is of Ck-class (k > 1)
Thus, the identification problem can be viewed as solving in Aad

the (nonlinear) operator equation
(2.2) (€ o @ o A)(N) = z4

If the operator @ o o A; Aad -~ X has a unique inverse and the inverse
is continuous, one can apply the least-squares method. It consists of

minimizing over Aad the functional
(2.3) 9 ) = € (e(a)) - 2415
) LS d'or

As mentioned in the introduction, the identification of spatially-
varying parameters in distributed parameter systems is, as a rule, an ill-
posed problem. In other words, the problem of solving (2.2) is ill-posed.
Hence, minima of JLS(X) over Aad (if any) will not depend continuously on
the data Z4-

In order to regularize the parameter X, we introduce a more regular

space 9, for which we assume:

(A8) @ 1is a Hilbert space.

(AS) R is densely imbedded in A.

(A10) The imbedding operator from 92 into A is compact.
Define 8€ad

d is a norm-closed convex subset of 4%.

=N g~ With (A5) and (A9) is readily follows that

%y

We now introduce the stabilizing functional

(2.4) Jg(A) =] & l!;?, rER

and the smoothing functional
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JB(A) = J5(2) + BIs(X)

(2.5) H’f(@(ﬁ\(x))) - zdu; +’BHM1;,, A E R,

where B > 0 is the regularization parameter. Ildentification by regulari-
zation proceeds as follows. Given zd’e H and B > 0, find XS € éﬁ%d SO

as to minimize JB(A).

PROPOSITION 2.1: The functional J,(3) ie of cK_class.
Proof: Immediate consequence of (Al)-(A4), (A7) and (A9).

Remark 2.1: One can derive a formula for the first derivative of JB(X)

in terms of an adjoint state. See [3].

THEOREM 2.1: The functional JB(X) admite a global minimum on Ryq-

Proof: Let {} } be a minimizing sequence and m = inf JB(X). Without loss
n NER

of generality we may assume that ad

cos < |J (}\

<Jq ) 2 () < e 2 35(0)

n+l

Hence, for every n € N,

1 1
gl <5 9500, <5 95(4)

12
R
i.e. {xn} is norm-bounded in 42. Hence, there is a subsequence {Ank}
that converges in the weak topology of 42 to some r» € #&. Since éﬁ%d is
norm-closed and convex , it is also weakly closed and hence A eeﬁ%d.

Due to (A10), {Ank} converges to A in the norm topology of A as well.
Finally, using the continuity of the functional JLS(A) in the norm-
topology of A and the weak lower semicontinuity of JS(A) in R, it is

not difficult to see that m = JB(X).
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The next theorem establishes that minima of JB depend continuously on the
observation. This is the key result of the regularization approach.
Roughly speaking, what the next theorem says is the following:

Let X be the "true" value of the parameter and 24 = €(3(A(N))), what
we would have observed with a zero-error 6bservation. Provided that
(i) X 1is the unique preimage of 4
(ii) B 1is an appropriately chosen function of the observation error,
any minimum of JS(A) converges (in the norm of A) to X, as the observation

error tends (in the norm of &¥) to zero.

THEOREM 2.2: For any 8 > 0 and z € ¥, denote by AB € Ry VY minimum
of JB(X) on Ry Also, denote by T(S the class of functions that are
1

nonnegative, nondecreasing and continuous on the interval [0,61]. Suppose

-

zd €

3 q unique X € R qwith 24 = €(2(A(N)))

Then Ve >0 ‘V’BI,B2 € T(81 with

BZ(O) =0
s° ()
< B,{S
81165 -2
360(6,81,82) < 61 such that Vz4 € -# Ve < 60

| zg - 2gl, <=1 2 -2l <e

2
. . $
for all B satisfying m <B< 82(6)

Proof. See [3].
The regularization parameter B can be selected as a function of an upper

bound & on the observation error (i.e. |z, - 2, er < 8).
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In [3] the following methods have been discussed:

Method 1: When an a priori upper bound on | is known, i.e.

"
< A, one can choose B(68) = (6/A)2. (When 92 is a Sobolev space,

is a measure of smoothness.)
Method 2: Choose B(S8) so that

| € (605 - 241, = ¢

where KB(é) minimizes

3,000 = 1€ (o(A0)-2415, + 88215

In order to apply the above abstract regularization identification
theory to concrete examples, all that is needed is an appropriate PDE
framework that will permit one to select physically meaningful function

spaces A, «, U, F, o€ and sets Aad’ A U_ so that assumptions (A1)-(A7)

c
are satisfied. Then one can choose & = Hm(Q) (for sufficiently large m)
and have (A8)-(Al10) be satisfied. (In case that several parameters are
to be identified, 9 will be a cartesian product of Sobolev spaces).
Finally, one will need a convergent numerical method to carry out the
minimization of the smoothing functional.

In [3] the selection of function spaces for the identification of
second-order parabolic systems (general linear case and a nonlinear exam-
ple) has been extensively discussed. Here we consider the special case
of identification of spatially-varying diffusivity in the diffusion equa-

tion from point observations z; (t) of u(x,,y:st), 1 = 1,..., w.
.i
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(" g_ut_ = 5% alx,y) —g;% +% a(x,y) —%‘; + f(x,y,t) , in Q
(2.6) ¢ u(x,y,0) = u (x,y) . in@
‘a‘% =0 . in %
.

where Q is a bounded open subset of R? with boundary T,
Q=0xJ0,T[, £ =T x JO,T[ with 0 < T < .,

Following [3], we can choose

A ad = {o € Ma(x,y) > a, > 0 Vix,y) € 0}

fﬂ

{A e 2N, LA@) /A= & (o) Z)+ 2 (o) ]

where o € Cl(fz)}

ie 3% 3 : o
—5 » 5-5} is a regular elliptic system on 2 xR

0z
i i
V 8€ [- 7 s EZ] }

A = {A € A/ {A-e

=y = nésl
U=U_=H"HQ)

o = (L%(0,T)¥
# = 1(q)

and assumptions (A1)-(Al0) are satisfied. Thus, one can identify a(x,y)
by minimizing the smoothing functional
T

.3 , 2 2
(2.7) 3g(e) = 1_5;“ 6[ [u(x;»y4st50) - Zdi] dt+ gla “HB(Q

Pt



163

over the set

_ 3

: 2)/a(x,y) > oy > 0 Vix,y) € 2}
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3. DISCRETIZED MINIMIZATIQN OF THE SMOOTHING FUNCTIONAL

In this section we are concerned with the numerical minimization of
the smoothing functional JB(X). Since JB(X) is differentiable, a natural
approach would be to use classical Banach space gradient methods. This
has been proposed in previous work of the ‘authors ([3]) and implemented
in a numerical example. Such an approach is computationally quite time-
consuming, since it involves simultaneous solution of three coupled PDE's
in each jteration: the state equation, the adjoint equation and an
equation for the calculation of the gradient. In this work, we consider
an alternate numerical approach that is computationally attractive. It
involves minimization of JB(A) over an appropriate finite-dimensional sub-
space of & (with sufficiently large dimension) to obtain an approximate
minimum of JB(X) over . We will first give the definition of a conver-
gent approximation of a Hilbert space and then state and prove our main

approximation theorem.

DEFINITION 3.1 ([1]): Let V be a separable Hilbert space. We define an
approximation (VN, Py rN) associated with a parameter N € N tending to
infinity by the following:
(1) Vy is a Hilbert space
(i) Py is an isomorphism(l) from VN onto its closed range PN inV
(i) ry s a linear operator from V onto Vy. We name

VN the discrete space

Py the prolongation

N the restriction

Py the space of approzimants

[V

i.e. linear homeomorphism
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DEFINITION 3.2 ([1]): The approximation (VN, Py > rN) is said to be

econvergent if

limllv—erNvHV=O Vv €V
N-seo |

Remark 3.1: In most applications, VN will be the finite-dimensional space

N

R°. This justifies the nomenclature "discrete space."

Remark 3.2: The fact that Py is an isomorphism from VN onto its closed
range in V implies that pNis a left-invertible operator. In fact, in most
practical situations, it makes intuitive sense to select ry @s a left in-
verse of Py> i.e. NPy T 1. In this case PN'N is a projection operator

from V onto PN'

Remark 3.3: Sometimes it is convenient to consider convergent approxi-
mations (Vh,ph,rh) associated with a small parameter h converging to zero.

The corresponding definitions are identical to 3.1 and 3.2.

THEOREM 3.1: et (@N, Py r‘N) be a convergent approximation of R and
* *

A a minimizer of JB(A) over @ad' Assume that erNA € Ry for suf-
ficiently large N. If A; minimizes JB(A) over . N PN’ then

Tim J_(A) = 3,(0")
m =

aim dgliy) = Jg

*
and all weak limit points of {AN}, at least one of which exists, minimize

JB(A) over '?ad'

Remark 3.4: As a consequence of assumption (A10), all #-weak limit

%*
points of {XN} will be A-strong 1imit points.
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*
Remark 3.5: The assumption erNA € 3ﬂéd is a very weak one. It says
*
only that the projection of A on space of approximants PN has to satisfy

the constraints that characterize the set of admissible parameters.

Proof of Theorem 3.1: Existence of a minimum A* of JB(A) over 5kad
has been established by Theorem 2.1. Existence of a minimum A; of
JB(A) over ezsd F\PN can be established by using exactly the same argu-
ment and the fact that 5€adf“ PN is a weakly closed set (both a@ad and
PN are closed and convex).

Now observe that

J Oy =dnf J.(A) <in f 3500 = 3,00

B 8 T
)\Eg?ad M‘%adeN

*
and since erNA € R, 4> W have
* *
JB(XN) 5‘J6(erNX )
Defining

Sy = U

* *
N = Jg(Pymit ) - Jg(2)

we can combine the above inequalities as follows:

* * *
JB(A ) f_JB(AN) E_Je(x ) + SN

Now due to the fact that JS(A) is continuous is the norm-topology .6f & .

and that ;i:[lk—erNklg? = 0 we conclude that lim & = 0.

N-»c0

* X %*
So: JB(A ) = ;12 JB(xN)
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Now 5N is a sequence of positive numbers converging to zero. Without

loss of generality we can consider it to be decreasing

O("'<6 (..-(6

&2 2 296

Hence

* * *
JB(AN) <ot JB(A ) 5_61-+ JB(A )

1

_ ”)\; Hg? i[‘é‘(él“ JB(K*))]z

*
i.e. {AN} is a norm-bounded sequence. Thus, it will have a weak limit

~ *
point A, i.e. there will be a subsequence {AN } such that
i

%* : ~
KN weak top of 59>. A
i

Due to the weak closedness of the set R 4 all weak 1imit points A
*
of {XN} will be in Ry g Furthermore, due to the weak lower semicontinuity

of JB(A) in &,

3o < lin inf JB(x;i) = 3,007)
Hence i minimizes JB(A) over g?ad‘ This completes the proof.
It remains to indicate how to select convergent approximations for
the space . Since for all practical purposes #& will be a Sobolev space

Hm(Q), the next section is devoted to the construction of piecewise-

polynomial convergent approximations of Hm(Q).



168

4. CONVERGENT APPROXIMATIONS OF THE SOBOLEV SPACES H"(Q), 0 cR"

In this section we present a systematic procedure of constructing
convergent approximations of the Sobolev spaces Hm(Q) in the sense of
definitions 3.1 and 3.2, following [1, Chapters 4, 5]. At first, con-
vergent approximations will be constructed for HmORn). Using their pro-
Tongation and restriction operators, it will then be possible to con-
struct convergent approximations for Hm(Q), where @ cR".

Let % be the characteristic function of [0,1[ and denote by x*m its

m-fold convolution, i.e.

*m=x*x* * X
N s
Y
m times

*
Note that ¥ m(x) are B-spline functions. In fact, a straightforward

computation gives:

X R if x €[0,1]

*2 .
x “(x) = 1-x , if x €[1,2]
0 s otherwise
2
(> , if x €[0,1]
L) - em)? i x e 1.2
X*?;(X) = < ]2 ) 2
3 (x-2) + (X'Z) ., if x €[2,3]
- 0 . otherwise
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\‘
w

% , if x €[0,1]
2 3
1 -1 -1 -1 .
3 + X2 + (X 2) - (X 2) , ifx ¢ [1,2]
*4 B 3
x 0= g A (g)? 4 (D) , 4f x €[2,3]
2 3
%— ’23 + (X‘g) - (X‘g) , if x € [3,4]
L~O » Otherwise
In general,
/A m Xj
L a (0,j) =7 , if x €1[0,1]
~n ‘m !
j=0
m _1)d
L oa(1,3) (X-P , if x € [1,2]
j=0 m J.
G T 2
X (x) =< m g
Loa (k,j) (X-‘,‘) , if x € [k,k+1]
5o m it
m J
L oa(mi) XM i x € [mm]
jo M !
\.. 0 , otherwise
k . . \M=J
oy i om+ 1y (k-1)
where a_(k,j) = E (-1) ( ; ) T

It is also straightforward to verify that the piecewise m-th degree

*(m+l)( 1

polynomials Y x) are C"' functions.

Now let h = (h], cees hq) eR" be a parameter with positive compo-
nents associated with a grid of points (j1h], cees jnhn) where
j= (j], cens jn) ranges over zZ". We denote by &Z(En) the space of

square-summable sequences v, = -N%} n and define the operator

jez
S 2(7") » L2(R) by
- ix(m1) 1. *(m+l) *m .
(4.1) v, = L wv)x (= = 3q) *o* X (= - 3)
hh = i gn ' Ry 1 p, ” On



170
It can be easily seen that for every Vi € LZ(ZZn),
p?}vh € HkGRn)‘V'k < m. Moreover, p? is an isomorphism from Lz(ﬂln) onto
its closed range in HkOPn).
Now Tet v be a bounded Radon measure such that (i) v has compact

support and (ii) [ dv = 1. Denote by v,; the measure defined by

[ w(x], ...,xn)dvh = f w(h]x], ...,hnxn)dv ¥ continuous functionw
RN RN

With such a measure v, we associate the restriction h E&?(LZ(RH),&Z(Zm))

defined by
(4.2) (rv)d = [ ovlxq + 35y, oo, X, *+3ph )dvy,
RN

For exampie, if dv = 9(0 1)(x)dx, where 9(0 1)(x; is the character-
istic function of the unit cube [0,1[x --- x [0,1[ and dx is the

Lebesgue measure, then the corresponding restriction is given by

v(x], cees xn)dx1 cee dxn

As a second example, we mention that if v is the Dirac measure 6(0),

then the corresponding restriction is given by

J_ . .
(rhv) = v(31h1, cees Jnhn)

PROPOSITION 4.1 ([1]): When pﬁ and ry, are defined by (4.1) and (4.2),

the triples (&z(Zin), p:, rh) are convergent approximations of HkﬂRn)
Tk<m:

) m -
(4.3) Tim jv - P rnv“ K 0

h=0 HY®R™)
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Moreover, if h is a left inverse of pﬁ (i.e.rhpﬁ = 1), the following

estimate holds:

(@.4) v - ol vl ML vy

n Hk(Rn)EC lhl

Vk<m
Hm'l‘l (]Rn) —

where |h| = max(hy, ..., h ) and c is a constant independent of h.

We can now proceed to define convergent approximations of Hm(Q),
where 1 is a bounded open subset of R".

Let p be the restriction operator that assocites with a function
v € Hm(Rn) its restriction pu = u)Q to Q. p is a bounded linear opera-
tor from HmﬂRn) onto Hm(Q). Hence, there exists a continuous right in-

verse 1 of p:

e (H(Q), H"®R™M)

(4.5) m
piv = v Vv €H(Q)

It is not difficult (see [2]) to construct such an extension opera-

tor m. Besides (4.5), one can select m to satisfy

pDkrrv = Dkv Vk: |kl<m

Now we define the diserete space

(4.6) Hh(Q) = space of finite sequences v, =‘-Wﬁ}
jEGh(Q)
where Gh(Q) is the finite grid
Ceioon *m+l) X1 *(m+1) Xn _ . -
(4.7) G () ="{jeZ /o N supplx (FTI"J])""X -3

n
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Clearly, Hh(Q) is the finite-dimensional space RN(h) when N(h) is the
number of multiintegers belonging to the finite grid Gh(Q).

We define

(4.8) Ph.o = PPh

i.e. givenyv € Hh(Q)

S X

v, = J *(m+1)(i(_1_ . )...x*(mﬂ)(ﬁﬂ—jn) , where x €Q
1 n

1

It is easy to see that pm Q Ese(Hh(Q), H'(Q)) and that it is an isomor-

phism of Hh(Q) onto its closed range in Hm(Q). Furthermore, define

(4.11) "oV = {rhUTV)J%EG () € Hh(Q)

h

Now Proposition 4.1 transforms into

PROPOSITION 4.2: When pp o and v, ( ave defined by (4.9) and (4.11),
the triples (Hh(Q), pE,Q, rh,Q) are convergent approximations of

HYY) Yk<m:

(4.12) Tim v - p" ~ r. vl =0
o0 h,e "h, 0%k o)

Moreover, if "h.0 18 a left inverse of pﬁ a the following estimate holds:

YVk<m

(4.13)  v-of g vl < e ™Ky

Hk(Q) Hm+1(

Q)
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5. NUMERICAL EXAMPLE

To illustrate the theory developed in §3
the identification of a(x,y) in (2.6) with Q

point observations

(5.1) Zd.(t) u(x'i"y‘i’t)

1

In order to minimize the smoothing funct
we will need to define a convergent approxima

R = H3(Q). This can be done by applying the

Given two positive integers K,L let h = (h],h

6, () = Wiy.dy) €Z2[-3<j; <K-1,-3<

h(

Hh(Q) space of finite sequences w = {w

ipady
Clearly, H, (0) = RV, where N = (K + 3)(L +3).

tion operator

we will now apply it to

bl

10,al[x]J0,b[ given the

T, ooey Mo

ional JB(a) given by (2.7),
tion of the space
techniques of &4 as follows.
- (@ b
'("K’aL)
L-1}

2)
Ip
} .
(37+3,) €6, (0)

Now define the prolonga-

3
Py o3 R > K (D)
by .
* *
(5.2) pg qWw= L ) YW 5 X 4(7]’5—-j1)x 4(;%’——3'2)
’ (31,d,)66, ()  ~1°Y2 1 2
1292/%9,
K-1 L-1 . .
- W XK G dy)
§15-3 jo==3 J1°92 1 2
1 2
K+#1 L+l () )
= w,, B, (x) B,ly
ey S ey S
*
where Bk(x) = x*46€i -~k +2), B&(y) =y 4(ﬁi -4+ 2)
1 2

Clearly, pﬁ aQ coincides with the one defined

by (4.9) when
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m=3, =70,a[x10,b[, h = (2, D).
3

space of approximants Ph Q= pg ngN is simply the subspace of H3(Q)

Note that the corresponding

spanned by the functions B (x) By(y), -T<k<K+1,-1<4<L+1.
Also, define the restriction operator "hoq as the one that asso-
. 3 . . N . .
ciates a € H'(Q) -~ W, ,} =r. ~Q €R where {w, ,} is
AR PO TS IS kT j<ksktl
S I=HRL+H -1<I<L+H

the solution of the following system of (K+3)(L+3) = N linear algebraic

equations
1 1 1
36 "k-1,4-1 T 9 Y, 2-1 T 36 Wke1,2-1
1 4 1
T g1, e YW
k < K
, L 1 1 =

= a(kh],£h

36 "k-1,441 ¥ 9 Wi, ee1 T 36 Wil 4 2 o<i<L

1 1

Wo1,2-11 7R

"

=

(5.3) -

w 4 1 :_a__a'
-1,441 12h1 Wl,&+1 oX

1

Wk-1,2-17 T2, Wi+l ,4-1

R

12h1
1

W
] K1, + 3R

1 1 oo

Wk-1,4-17 T2hy Wki1,241 T Bx

lH

k41,4

w

h

(a,4h

128, 0<t<lL

2)9



.

- W - W W
2h, "k-1,-1 3h, "k,-1 I2h, "k+1,-1
PO S + ol PR S L(kh,,0), 0 <k<K
I2h, "k-1,1 3h, "k, 1 12h, "k+1,17 ay 1° =
1 1 1
" Th, "k-1,1-1  ~ 3h, iL-1 iZhé'Wk+1,L—1
P S PR S + ot (kh ,b), 0 <k<K
T2h, "k-1,L+1 3h, "k, L+1 12h, Wkel,L+1 "By ==
2
1 1 1 1 A
W T - + oW (0,0)
Bhihy Y-1,-1 ahihy “1,-1 T AR -1,1 T ARGRM,1 T axay
2
1 1 1 1 35
T W - - W + W —%—(a,0)
ah by Yk-1,-1 Bhyhy Wyyp oy Ry Mk-1,17 3R R ke, 1~ 3xoy
2
1 1 1 1 o,
S - W -t PR S % _(0,b)
Thihy Wy | Fhh, "1,L-1 7 7h R, Yo1,141 Th ho"1, L+1 ~ 3xoy
1 1 1 1 32
- - =_Q
&hh, We-1,1-1 &h.h, WiH1,L-1 4h£ﬁ2Wk 1 L+1*’4h1H§Wk+1,L+1 axay(a’b)

o+

It is not difficult to see that the above restriction LA is a
9

bounded linear operator from H3(Q) onto RN of the form (4.11). Further-

more, it is straightforward to verify that oo is a left inverse of
3 . 3 N
ph,Q i.e. rh,Q ph,Q W=w VweéeR".

Thus, we now have a finite-dimensional convergent approximation

(RN, pﬁ’Q, rh,Q) of the space &= H3(Q). Theorem 3.1 suggests minimizing

JB(a) over the corresponding space of approximants i.e. the subspace of
H3(Q) spanned by Bk(x) By(y), -1 <k<K+l, -1<t<L+l. So one can minimize

(5.4) JB(W) = JLS(W) + BJS(W)
" Kbl L4l )
2; gf X5sYsstsw) -z 1( )] dt+8ik:f1 Lfa W .8, (x)B, (y)HH3(Q)

where u(x ,y ,t ;w) dis the solution of
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g (/K+1 L+1
ou o Y‘ du
5t o B, (x) B (y)-——> *
st - ox \\ & 5 Wee Pk PR
K+1 L+1
< DY Wi B (x) B, (y) —2—“-> * flxy,t)
ke—1 4=-1 K Y

u(x,,0) = ug(x,y)

au _ ou -
( 9.yst) - X (a,.yst) - 0

du _ ou -
\ay(y 0 t) = —a“)'; (X,b,t) = 0

The minimization of JB(w) can be conveniently carried out

via a Newton-1ike method as follows:

(1)

(2)

(3)

- (5)

Make an initial guess a(o)(x,y)

Calculate w(o) e a(o) i.e. solve the system (5.3) for « = a(o)
(0) K+1 L+1 (0) (x) ( )“2

Calculate J = > 2 W B (x) B, (y as well as its
s k— == B L R A TN

gradient ggo) and its Hessian Ggo).

-~

Solve (5.5) for w = w(o) and calculate

g T 2
3D = L1 Tulepygetn(®) -z (907 at

i=l1 0 1
as well as its gradient gfg) and approximate Hessian Géo).
Set

-1
0

W2 (0) Y(GES) + eGéo)) (962) + Bgé ))

where y is a step length parameter chosen by one-dimensional line

search (e.g. golden section search).
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(1) K+1 L+1 (1) 2
(6) Calculate J;°/ = (I 2: Wep! By (x) By (y)ll 3 as well as
k==1 4=- , H™(Q)
its gradient gél) and its Hessian Ggl) .

~

(7) Solve (5.5) for w = w(l) and calculate

1 T 1 2
JES) = 151 IO [u(xi,yi,t;w( )) - Zdi(t)] dt

1) (1)

and an approximate Hessian GLS

=

as well as its gradient 9

(8) If (JES) + Bdgo)) (J (1) + BJ( ))‘ < Tolerance, Stop.

Ls s * 9s ° gLs * "Ls Ls
Otherwise, set e ~ %

(0)
s

S0 L ) (0)

and go to step (5).

Note that the stabilizing functional Js(w), its gradient Jg and its

Hessian GS can be calculated exactly, since Js(w) is a quadratic form.

~
~

Appendix A gives the appropriate formulae. In Appendix B a procedure

for estimating the gradient gL and the approximate Hessian GL is sug-

TR

gested based on the so-called Gauss Newton approach ([6]).

In our simulation study, we have considered (2.6) with spatial do-
main Q = ]0,12[x]0,9[ , time domain ]O,T[ = 10,10[,input f(x,t) = 0 and
initial condition uo(x,y) = 10y + 10. The objective was to identify
a(x,y) given the observation Zdi(t) = u(xi,yi,t) at u = 30 distinct
points of Q.

At first (2.6) was solved numerically with
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: , :
(5.6) a(x,y) = 7 [%Xp {_ (x-4) 4%(y-5.5)

2 2
[ {x-10)"+ (y-5.5)")

j+ e | 7 |

as "true" a, using the alternating direction implicit scheme with a

13 x 10 spatial grid and timestep At = 0.25. Then data z, . were gener-

1J
ated by adding to

u(xi,yi,tj), tj = 0.5, 1, 1.5, ..., 10

normally distributed random numbers with zero mean and standard deriva-

tion 0.1.

For the approximate minimization of the smoothing functional we
have used the bicubic spline approximation of H3(Q) defined by (5.2) and

(5.3) with K =4 and L = 3. Hence, h] = h2 =3, N = 42 and

5 4
3
D W= > w,, B (x) B,(y).
h,Q k__._._l ’ff:‘"l K’f/ K ’L

The smoothing functional

30 20 2
(5.7) Jgw) = 1§1 jél [u(xi,yi,tj;w) - Zdij] +
5 4 2
+ BHE ;;>j::‘1wk4’> B, (x) B’C(y)“;ﬁ(n)

was minimized using the Newton-1ike algorithm described previously. The

test for stopping the iterations was

10800 - gl < qp72
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Two alternate norms for H3(Q) have been used

i 2 (B0 L (BN () () )
(5.8) = T3 +3( +3< 2 +( ) e
HUHHB é-{u <ax3) \ax26y> Oxdy ) E£;§ J "
and '.
2 2 2
2 2 /.2 f.2 2

2 _ 1 2[5 ) \ 2 ° )

(5.9)  Jull%; gz{u {%)(5%/(;2>2(“a—57>(5?) '

2 . .2
3 3 3 3
+<3u>+3(52u)+3 5 Ja‘s“ dxdy
x> ax“ay axoy’ ) \ayd)

A close initial guess was first used; it was generated by adding

to h Cgtrue normally distributed random numbers with zero mean and

standard derivation 0.2. Next, the flat initial guess a(x,y) = 1.7 was
used. Table 1 summarizes the results of these simulations for various
values of the regularization parameter 8. The corresponding estimated
surfaces are depicted in Figures 2-15. The true a(x,y) given by (5.7)

is depicted in Figure 1.
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Upon a visual examination of Figures 2-15 one clearly observes
that as B increases, the "humps" tend to get smoothed out. On the
other hand, as B decreases, the estimates become less and less smooth.
It is remarkable that despite the low level of discretization
(K =14, L =3), anomalies do show up at the edge of the estimated surface
forg= 0,10"4, as a result of ill-conditioning. It is seen from Table 1

that JLS and BJS are of the same order of magnitude when g= 10'2 or

g =107

; to these values of B there correspond estimated surfaces that
are neither too flat nor too anomalous.

It is noteworthy that

30 20
= true 2
L L [u(X:sY:stes p, -r. o ) -z, ]°=126.1
i=1 3=1 1717737 Th, h,Q dij
and
Nph’th’Qatrue“ 5 = 1185.6
true _
e “L3 = 1509.1
and thus
Squared derivation of predicted u(xi,yi,t)
62 = corresponding to Ph.ch Cgtrue from = 0(102)
observed u(x;,¥,,t)
A2 = (Smoothness of ph’ﬂrh,ﬁgtrue) = 0(103)

2
which suggests (2) B = (%) = 0(10'])

(?)6 and A include here the effect of the discretization on the observa-
tion and smoothness respectively. If the level of discretization N were

sgfg;cient1y large, we could have used 6 and A in the sense of Method 1
0 .
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Comparison of Figures 2-6 and Figures 7-11, in conjunction with

Table 1, indicates the effect of the initial guess on the estimated sur-

final
Ls

guess; on the other hand Jsf1na1 seems to be significantly influenced by

faces. It is seen that J is rather insensitive to the initial

the initial guess for Tow values of 8 (0;10'4) as a result of ill-con-

ditioning.
For a given value of g, the estimates obtained with Jg = i m23, are
H
smoother and make a poorer match with the observation than the ones ob-
tained with J_ = || HZ ; this is due to the fact that J |} - > || || , and
s H3 H3 H3
thus the smoothing term in Jg s given more weight when Jg = Il m23. How-
H
ever, the effect is not significant in our simulation results. (See

Table 1 and compare Figures 7-11 to Figures 12-15).
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APPENDIX A: EXACT EVALUATION OF THE STABILIZING FUNCTIONAL, ITS GRADIENT
AND ITS HESSIAN.

Consider

K+1 L+1 2

(A.1) I (w) = h}: Z: Wiep B (X) B&(y){ng,(Q)

where Q = ]0,a[x]0,b[.

The most frequently used norms for HB(Q) are of the form

A2l ¢ Iaj’b dxdy + ¢ J“af ()" | dxd
. u = u- dxdy + - xdy
(@ 0 %% 1oo[ aYJ
abl.2 2 2 2
o u o u
ro [ 1S 22y | axay
ab 2 3 3 2
+ o [ {—% + 3+ (2 ]dxdy
00 OX OX oy ay

with ¢y > 0, & 20, €, 20, €3 > 0. Although the exact evaluation of
JS, its gradient 9 and its Hessian GS is possible for other norms as
well, the formulae given here are restricted to norms of the form (A.2).

Define the following matrices:
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0x 0x ) a
A Ay = jo B, (x)B . (x)dx
a0y Ay, - J’b B, (y)B, . (y)d
a2 w! 0 L \YIBp i lyIdy
1x 1x _ 2 ) '
i A = Jg Bk(x)Bk.(x)dx
ly ly _ b ' '
2X Z2X _ a u &
A A = % By (x)B .+ (x)dx
b
2 2 _ P
A%y A = fo By (¥)Bj . (¥)dy
3x 3x - a “ w
A A = J; B, (x)B,\ (x)dx
3y 3y _ b 17 i
A A = %Bé(y)B&.(y)dy
The entries of these matrices are given in Tables 2-5.
It is easy to see that Js(w) is a quadratic form. Furthermore,
32d
its hessian GS = (BWEZSWiT—T) is a symmetric matrix with entries
= k't
aZJ
s - Ox ,0y Ix A0y ,,0x ,ly
S W1 2[QOAkk'AM'+€1(Akk‘Am'+Akk'Au;')+
ket k'L
2x 0y Ix 1y ,.0x ,2y
(A.3) QZ(AKK‘AM'-‘-ZAKKI %I+Akkl Mi)
3x 40y 2X 4 ly 1x 42y ,,0x 3y
+ Gy (Age Ay 3R Ay 3R Ay e A )
Thus
(A.4) - G.w = w6
g s ~ ~ s

2
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APPENDIX B : CALCULATION OF THE GRADIENT AND THE APPROXIMATE HESSIAN
OF JLS(W)

Consider

T 2

] J(’) [ulx;sy;stsw) - 24, (1] dt

n pc

(B.1) JLS(W) =
i
Since (5.6) is solved numerically, u(xi,yi,t;w) is not known at

all times but rather at t = tj’ where tj = At, 20t, ..., T. Thus, in

practice, one will minimize

( 5o = E T L )z (0]
B.2) J, (w) = u(x.,ysstasw) - z, (t.)]
Ls i=1 j=1 7973 di J
1 % fT 2
o Lu(x.sy.,tsw) - z, (t)] dt
At i=1 ‘0 i di
aLA]Ls
The gradient g_ = (5———) and the approximate hessian
2 Wkt
aZSL
G. = (=——=5") can be calculated via the formulae([6]):
S OW, , OW, 1,54
P ki k'L
BSLS % Té%t[ ( ) (£.] au(xi,yi,tj;w)
(B.3) =2 U(XssyYsstusw) = z, (t.
My =1 g=1 VAT d;* 1l Mg
20 , . .
CRVI _ u T/At au(xi,yi,tj,w) au(xi,yi,tj,w)
(B.4) oW, , oW =2 L L ow
ke k'4! i=1 j=1 kL awk,%.
CUICPPVAR PN
The derivatives S J can be approximated by the finite-differ-

ence expression
U(Xi :.Y.i :tj swt Awk/ﬁ) - U(Xi "y'i ’tj 3W)
Aw

kL
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which requires that the basic program be run once for the base case and

then once for each Wk& where the value w,_, + &w,, is used.

kL ki
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Table 1. Simulation Results
initial final final final # of
Case JB Jg JLs S iterations
Close Initial Guess(*), J_ =] MZ
S H3
g =0 126.1 29.9 29.9 1155.9 12
B = ]0_4 126.2 30.8 30.6 1156.9 12
B = 10-2 137.9 45.9 35.6 1029.7 11
g =107 224.6 130.5 | 50.6 798.4 6
B = 0.5 718.9 379.0 82.3 593.4 17
Flat Initial Guess(**z J_= HZ
S H3
B =120 17,671.5 33.4 33.4 1270.9 26
B = 10—4 17,671.5 34.2 34.1 1465.4 22
B = 10—2 17,674.6 47.8 36.5 1129.4 23
R = TO_] 17,702.7 150.1 74.1 759.1 15
g = 0.5 17,827.5 372.3 80.3 584.1 21
Flat Initial Guess(**), J_ =i HZ
S H3
B =20 17,671.5 33.4 33.4 1790.0 26
B o= 10_4 17,671.5 35.1 34.9 2165.8 22
B = ]0-2 17,674.6 58.4 43,7 1463.3 16
B =107 17,702.7 | 159.7 | 67.6 921.7| 20
B = 0.5 17,827.5 471.6 ] 100.8 741.6 18

(*)
J

(**)

L

J

S

Ls

L. P
initial _ 126.1, JS.mha, - 1185.6

initial _ 17,671.5, Jsinitial - 31201
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Table 2 : Entries of the matrices é?x and ﬁéy
a 2 h1 b 2 h2
J"[B_1<x)1 dx = o5y J;)[B_l(y)] dy - o

2 151 h, b ) 151 h,
J [B x)] dx = B30 {)[BO(Y)] dy =630

599 h, b .2 599 h,

,% [Bl(X)] dx = T80 Jg[Bl(Y)] dy = 1760
a 2 151 h, b 2 151 h,
%[Bk(x)] dx = —7s 2_<_k§K-2J;)[B&(y)] dy = 35 > 2sAsL-2
a 2 599 h, b 2 599 h,
{)[BK-I(X)] dx = 760 {)[BL 1( )] dy = 1760
a 2 151 hy b 2 151 h,
%[BK(X)] dx = 35 J;)[BL(y)] dy = 530
a h1 b 2 h2
J;[BK Olde - »57 .J;)[BLH(y)] dy =555
a 43 h, b 43h,
J;)B (x)dx = Tgg5 J;B 1(V)Boly)dy = 7555
a 59 h, b 59 h,
J(‘)Bo(x)Bl(x)dx = 585 J;)Bo(y) (y)dy = g5
a 397 hy b 397 h,
J;)Bk(x)Bk_l_l(x)dx = Tggg > L<k<K-2 jOB)L( YIBy i (W)dy = qpggt 1<tel-2
a 59 h, b 59 h,
JO By (X)By(x)dx = - %BL_l(y)BL(y)dy = 50
a 43h, b 43h,
[ B x)Bay (0dx = 7655 J BB Ay = 7eg
ra h] b h2
I L(X)B (X)dx =7 Jo B_ (¥)By(ydy =47
a h1 b h2
{)Bk(x)8k+2(x)dx = g7 » O<ksK-2 %)B&(y) Byio(y)dy =5, 0<t<l-2
a h] b h2
§, B (0B (e = g J BB )y = g7
a h1 b h2
%Bk(x)8k+3(x)dx = zoqg> - 1<k<K-2 jo By (¥)Byys(¥)dy = ggpg » -1<tel-2
a b
‘%Bk(x)Bk.(x)dx =0, if }k-k']>3%8&(y)BL.(y)dy =0, if |[4-4']>3
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Table 3 : Entries of the matrices ﬁlx and Aly
a 2 b NZ ~
[IB'(x)] dx -1 ' =1
) - 20, fo (B2, (¥)] dy 20,
a 2 b 2
[ BA(x)" — B! =1
15 i NN o
a 2 b . 2
[B(x)' dx = ore ‘ -
J; 1 601, %[Bl(y)] dy 60T,
Ia[ ( )]2 o b 2 5
B, (x)] dx = e , 2<k<K-2 ' = 5 -
5 k 3h1 <K< %[B,ﬂ(}’)] dy 3h2 N 2i'ﬂil_ 2
a 2 b 2
[BL . (x)] dx = =0 - .37
% K-1 50, %[BL-l(y)] dy 60,
ja[ ( )]2 . b 2 .
B, (x dx = = B! =
sy a7 RETNE s
fa[ 2 X b 2 .
B! x)1 d = ' _
A ke1 ()] dx 20T, %[Bm(m ¥ = zom,
a b
B'. (x)BA{x)dx = I B! ' -1
% 21 (xJ)B I20, fo 11 (y)Bgly)dy 120M,
ja ( 11 b 1
B'(x)B!(x)dx S L . B! ' S ¥
) Bot0B 60, % 0(¥)B; (y)dy 601,
a b
1 ] — 1 i 1
josk(x)akﬂ(x)dx - - 5 1<k<K-2 %Bé(y)sm(y)dy - - .gl.@ ,1<t<L-2
ja 11 b 11
B! . (x)BL(x)dx = - —iie ' ' = -
Bk (0B (X)dx = - 5 J Bl 8L (¥)dy 60,
a b
: 7
BL(x)B!, , (x)dx = i ' (y)8! = ol
J B x)Bray (X)dx = 130, ) BB (e = 55m,
a b
B (x)B! (x)dx = - —o ' - N
5, Bl 0IB1 (%) TOH, J Bl (I8 ()dy I0h,
a b
I3 ] — 1 i i
%Bk(x)8k+2(x)dx 1T ,0<k<K-2 %BL(y)BHZ(y)dy = .5_%_2 , 0<d<L-2
a b
] [ | - - 1 ] t 1
B (0B ()ex = - o ) BB (N = - 5
a b
* BI Bl - 1 7 N ] i - 1
5 BB g (X)dx = - g lskek-dy By(y)Brglyldy = - g, o-lstel-2
a b
%Bk(x)Bk.(x)dx =0, if |k-k'|>3 kJ;JB;V(y)B;V.(y)c\y =0, if |4-2'|>3



Table 4 : Entries of the matrices ﬂ2x and ﬁ y
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2

a ., .2 1 S 1
JB ()] dx = — J (B, (¥)1 dy =—
0 3h, 0 3ha
a ¥V’ 2 4 b " 2 4
J [Bg(x)7 dx = — J [Bo(y)1 dy = —g
0 3n, 0 3n;
a 2 7 b w2 7
JIB5(x)] dx = J B](»71 dy = —5
(o 3h, 0 3h;,
a 2 8 b 2 8
%[B&(X)] dx = 5‘}:}"’3‘ s ZikiK—Z ‘%[Bz()’)] dy = EF_! 2i&_<_L-2
a " 2 7-l b L 2 72
0 3h, 0 3n;
a 2 4 b , 2 4
J [BL(x)] dx = — J I8/ (y)] dy =3
0 3n, 0 3n;
et 01 : e 1 !

B x)] dx = B . (y)] dy = —
o Kl 3hy° o H*l 3h
.faB” (x)BY(x)dx = - —o an" (y)Bn(y)d = - 1

11%/150 3 J B_1\¥IBply)dy 3
0 2h, 2h;,
a

v 1 7 1
J Bg(x)B] (x)dx = - — J By(y)B (y)dy = -
0 h, 0 h2
a b
j‘B'l;(x)B';(_Fl(x)dx = - 33,]ik§K—1 J B:é(y)82+l(y)dy = - 33 ,1<d<L-1
0 2h, 0 2hs
a b

4 p a 1 “ y _ 1

1 2

a b

" o o o 1
J BBl (x)dx = - =1y LBy (y)B] 1 (¥)dy = - =
0 2h, 0 2h3
ra " " _ b 4 4 —
J B (XBY(x)dx =0 J B (y)Bl(y)dy = 0
0 1 1 0 1 1
a ] ] - b “ “ —
[ B (x)Bpo(x)dx =0, Osk<k-2  |J By(y)By,,(y)dy = 0, 0t<l-2
0 0
a b

" 4 - # I/
j(')BK_l(x)BKH(x)dx 0 %BL-l(Y)BLH(y)dy 0
a b
J By (X)Bl,5(x)dx = ——1—3-,-1_<_k§1<-2 [ Bg(y)Bz_l_B(y)dy = —13 , T<t<l-2
0 6h, 0 6h

b
(x)dx =0, if |k-k'| >3 (y)dy =0, if |4-4'|> 3
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=0,

if |k-k'P>3

0, if |4-2']>3

Table 5 : Entries of the matrices Q?X and Q?y
m 2 1 b 2 2 ].
f “1(x)] dx =—5 I [B”;(y)] dy = 5=
% h] h2
J» [B///(X)] dx - 10 j‘ [B'” ] dy = 10
o O ho o 0 h
a ! b 2 2
“ _ 19 ,' _ 19
J [BI(x)] dx === J B - 22
0 h 0 h
a " 2 210 b /// 2%
%[Bk(x)] dx = =5 2<k<K-2 J;)[B& ] dy = 5 2<4<L-2
1 2
fa[Bw (X)]de - 19 J"b[B )]Zd = 19
o K-1 "5 o L-1 (¥)1 dy 5
a2 10 b 2 5
J [By(x)] dx = =% J I8 (V)] dy ==
0 h1 0 h2
& 2 1 b_ ., 2 1
0 h1 0 h2
a " w 3 b /// /// 3
J B (x)BJ(x)dx = - —¢ J B” (y)dy = -
0 N 0 h2
a P _ 12 b i w _ 12
J BB (x)dx = - =% J B (y)BY(y)dy = - 2
0 h 0 h
3 1 b 2
/ 1/ 15 /74 ¢ 15
j(’)B"(x)B;(ﬂ(x)dx = - F,1_<_k_<_K—2 %Bjc(v)sjéﬂ( Jdy = - ) ,1<4<L-2
1 2
87 (0B (x)dx = - L& fbe"' (y)B“(y)dt = - 12
o K-11775K 5 o L-1 LY 5
1 2
a b
7 3 “w " 3
I BIIZ(X)B}I2+1(X)dX = - _—g j BL( )BL+1(.Y)d.y = - —5
0 h 0 h
1 2
j:aB/// ( )BW(X)dX - i JsbB,,, ( )Bm(y)dy - 3
0 -1 h 5 0 -1 1 EF
1 2
a b
" " 6 He " 6
1 2
‘Jan (X)Bm (X)dX 3 J"me ( )B/// (y)d _-3_
K-1'%/"K+1 5 L-1WY/BL WA = g
0 h 0 h
1 2
N R S c ol
J Br(x)By 5 (x)dx = - —p,T<k<k-2 |[ By(y)By,5(y)dy = - 5, T<t<l-
a b
J By J
0 0




192

A3544NS 3ANdL

Figure 1



193

auw * 653N9 TBILINI 350712

Figure 2



194

h-30° 1

‘ WHON [-8-8-1 °

SS3aMND TYILINI 3S0713

Figure 3



195

Num&.ﬁum * WHON T1-B-0-T ° SS3aNJ TIBILINI 3S013

, , %\\\\\\\\\\MMMMMNNMMMMMN\N\Ww
I
OOth [[]] \\\W\\W&Q@#\\\\\\“\
L] 11T A L A
170227585
mnmnxdnumﬁwmm“‘mmmwv
%

u/wnnszA.v

Figure 4



196

Tm&.ﬁuw * WHON T-@-8-1 ° SS3ND WILINI 350713
T
%ﬂﬁ, _
.‘.‘“‘Mﬁ.ﬁ.‘i&‘&ﬁ\\ﬂi\#QﬁtV
a7
L AL 550777777
i
11777411
i

Figure 5



197

COTT Y/

MAAEAN

. .

_AlliI!A!laﬁz!iz.;ssm.nﬂ.nﬂn&ms&&‘
oy --§E~N§5

G'@=¢ ¢ WHON 1-0-8-1 °

]

SS3NY YILINI 350710

Figure 6



S /” o
SIS

198

Figure 7






200

¢-30° ﬁu& * WHON 1-0-8-1

2 s

S _ [ 77 e SRSz

NSRRI 78055507
ARV 7
NS

_ W\NQQQQQ QNN\\\
W) 4

//l&"OO X QQN\“\
N
%4

R

Figure 9



201

1-30° 1=¢ * WHON 1-8-0-1

OOIQQQNWWW«WN.\\V‘WM,MI«/V
L] 7 T2 75570 KR 5522

s
e
2

Figure 10



202

m.sn& * WHON T-8-0-1

£L 7/
XA AT T A7 775 AL 17T
S

=2 loww‘\\

Figure 11



203

F-38°T=4 ¢ WHON 1-1-1-1

Figure 12



204

Figure 13



205

Tm_&.ﬁn& * WHON 1-1-1-1

VMV“VWMM’//\IV‘ _
L P R
AT 111722855 5O )
LT 1177225 R KN
<K
e AuNIV!

Figure 14



206

S @=9 ¢ WHON 1-1-1-1

N hﬂ\hﬁﬂ»ﬂ&»ﬂ»ﬁ»\%ﬁ@xﬁ%
%gh%«%#&&«ss“&“\“\
N\ AL ehiggyltibpprs?;

AL LAY
&L

Figure 15



207

CONCLUSIONS

There are two basic problems in the area of identification of
spatially-varying parameters in distributed parameter systems. The
first is the so-called identifiability problem, which faces the question
of whether measurements provide enough information to determine the
unknown parameters uniquely. Since the unknown parameters, as a rule,
do not depend continuously on the measurement of the state, the second
problem concerns the construction of stable approximate solutions of the
identification problem.

In Chapter II the first problem was addressed. It was demonstrated
that identifiability from point observation (which is the only physically
implementable type of observation) can be studied within the framework
of inverse Sturm Liouville theory. The well-known Gel'fand-Levitan
theory has been extended for inverse Sturm-Liouville problems which are
not in normal form. As a conseguence, identifiability and non-identifi-
ability results have been obtained for the first time in the one-dimen-
sional heat equation (with the spatially-varying conductivity as the
unknown parameter).

In Chapters III and IV the second problem was addressed. The
concept of regularization, which is widely used in solving linear
Fredholm integral equations, has been extended for the identification of
parameters in distributed parameter systems. A general regularization
identification approach has been developed for the first time; it has
been proved that this approach (under certain assumptions) generates

stable approximate solutions to parameter identification problems.
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The regularization identification approach has been proved to be appli-
cable to a very broad class of parabolic systems. The numerical
implementation of the reguiarization approach has been studied via two
alternative numerical algorithms: classical Banach space gradient
algorithm (Chapter III) and a discretized regularization algorithm
(Chapter IV). Numerical experiments on the identification of spatially-
varying diffusivity in the diffusion equation have demonstrated the

power of the regularization identification approach.



