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ABSTRACTPart 1:The rotational synchronization of an early type mainsequence star in a close binary system has been attributed toradiative damping of the dynamical component of the tide raised in the star by its companion (Zahn, 1975, 1977). An investigation of the dynamical tide is presented here, which includes the heretoforeneglected effects of stellar rotation. Foremost among theseeffects is the splitting of the tidal response into a set ofmodes whose latitudinal structures are controlled by thesolutions of Laplace's tidal equation.An approximate analytic expression is derived for the rateof tidal energy dissipation associated with each of these modes,which in turn determines the rate of synchronization of thestar’s rotation with its orbital motion. This analyticresult is supported by a numerical analysis of the dynamicaltide raised in a 5 M star. Combination of analytic and Θnumerical results yields synchronization timescales for starsin the mass range 2 M - 10 M . These timescales are a factorof 10 shorter than those obtained by Zahn, and are in goodagreement with the observational data concerning synchronismamong early type stars in close binaries. It is suggested,however, that the final stages of synchronization are controlledby another mechanism: the slow stellar expansion whichaccompanies the later stages of main sequence evolution.
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Part 2:Observations of the 1978 April 10 stellar occultation by therings of Uranus are presented. Nine rings were observed and theirradii and widths are calculated. Rings 7∣, γ, and δ are found tobe most likely circular and coplanar, in agreement with previousanalyses; the remaining rings are either non-circular or slightlyinclined. The width of the e ring is a linear function of itsradius from the center of Uranus, projected onto the satellites'orbital plane; this suggests that it forms one continuous non-circularring. The optical depth profile of the e ring has not changedsignificantly since 1977 March. A model of this ring which fits allavailable observations adequately is that of a uniformly precessingKeρlerian ellipse coplanar with the satellites’ orbits. Thismodel permits predictions of the radius and width of the e ringfor future occultations,.. The precession rate is. used todetermine for Uranus, on the assumption that precession is causedsolely by the planetary oblateness and not by satellite-ring interactionsPart 3:A three-body resonance model proposed to account for therings of Uranus is quantitatively analyzed and found to beunacceptable on several grounds. Calculation of the strengthsof two-body and three-body resonances involving all knownsatellites of Uranus, and which fall in the neighborhood of therings, reveals that the strongest resonances are the 4:1 and 5:1resonances with Miranda, and the three-body resonances involving
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Miranda and Ariel. Resonances invoked by the proposed model aremuch weaker. Despite the fact that four of these relativelystrong resonances approximately coincide with rings 5, a, γ, and e, they are too weak to explain the observed widths of therings. Finally, the simple ring model of densely packed particles librating about a resonance is shown to be secularly unstable.
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PART 1TIDAL SYNCHRONIZATION OF THE ROTATION OFEARLY MAIN SEQUENCE STARS IN CLOSE BINARIES
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I. INTRODUCTION

Rotational velocities of stars in close binary systems are, onthe average, considerably lower than those of single stars of the samespectral type. In fact, observations of an eclipsing binary, for which the radii of the stars may often be determined from analysesof the light and radial velocity curves, frequently indicate thatone or both stellar rotation rates are almost synchronous with theorbital motion (Olson, 1968; Plavec, 1970).While some form of interaction leading to such synchronizationdoes not seem implausible for stars which are separated by only a few radii, the precise mechanism has been elusive. Tidal interaction, long considered the obvious candidate, may lead to a transfer ofangular momentum from stellar rotation to the orbital motion of thesystem, but the tidal torque on, say, the primary depends on thephase lag between the tidal potential due to the secondary and theresulting tidal distortion of the primary. If this phase lag iszero, then the distortion of the primary is symmetric about the lineof centers of the two stars, and there can be no tidal torque.The amplitude of the phase lag depends, in turn, on the rate ofmechanical energy dissipation in the system which is attributable tothe tidal distortion. If the rotational angular velocity of theprimary and the mean orbital motion of the binary system are denotedby Ω and ω respectively, and the primary's moment of inertia by I,then it may readily be shown (see section 5b) that the rate of
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spin-down of the primary due to the tidal torque is given by
Ω I(Ω - ω) ’ <1∙1)

where E is the rate of tidal dissipation of mechanical energy in the primary. The problem of calculating the rate of synchronization of rotational and orbital motions thus amounts to calculating the rate of tidal energy dissipation.For main sequence Stars with deep convective envelopes (i.e., spectral type F or later), it has been shown (Zahn, 1966, 1977) that convectively induced turbulent viscosity acting on the tidal currents flowing in the envelopes of these stars results in significant energy dissipation. The calculated rate of dissipation, while quite uncertain because of the limitations of the mixing lengththeory of convection, coupled with the long main sequence lifetimes 9 11of such stars (10 -10 yr), readily explains the occurrence of synchronism for late type stars in close binaries.However, the great majority of stars in close binary systemsthat have had their rotational velocities measured are main sequence stars of spectral type A and B. Such stars possess stably stratified radiative envelopes and relatively small convective cores. Despitethe high Reynolds number associated with tidal currents in the envelope of such a star, it is generally believed (e.g., Zahn, 1977)that the stable stratification prevents the growth of turbulenceand the associated turbulent (or eddy) viscosity. The velocities oftidal currents in the core and the estimated turbulent viscosity
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there are both small, and result in negligible energy dissipation.The action of "molecular" viscosity or radiative damping on the envelope currents is also insignificant (Zahn, 1977).The only promising mechanism for tidal energy dissipation in early type main sequence stars has been advanced by Zahn (.1975, 1977), and involves the "dynamical" tide. This term refers to that smallpart of the time dependent tidal distortion of a star which is notgiven by the equilibrium response of the star to a quasi-statictidal potential. The velocities and distortions associated withthe dynamical tide are generally much smaller than those associatedwith the equilibrium component of the tide, and are usually neglected in studies of the dynamics of close binaries (e.g., Kopal, 1959).Zahn was able to show, however, that the dynamical tide, whichin the radiative envelope takes the form of radially propagating gravity waves, transports a significant flux of mechanical energyfrom the interior of the star to the surface layers. Radiativedamping of these gravity waves in the stellar atmosphere may result in the loss of a large fraction of this energy from the binary system. Zahn’s calculations indicated that the rate of transport and subsequent dissipation of mechanical energy by the dynamical tide was indeed sufficient to account for the synchronization of early type stars in binaries with orbital periods less than 2 or 3 days.This is in fair agreement with the observational evidence althoughsomewhat greater dissipation rates than those calculated by Zahnare indicated.
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The present work is essentially an independent version of Zahn's calculations, but with two major changes which bring the theorycloser to the real world. Zahn has neglected the effect of rotation (via the coriolis force) on the dynamical tide, even though the rotational periods of non-synchronous early type stars in closebinaries are of the order of 1 day or less. This has been remediedhere, although some approximations have been made to keep the problemtractable. The second improvement is the replacementof Zahn's zero-temperature outer boundary condition for the stellar model used in the calculations by a more realistic finite temperaturecondition. This matter bears on the question of what fraction ofthe energy transported by the dynamical tide is dissipated in thestellar atmosphere.In section II, the general theory of the dynamical tide in arotating, early type main sequence star is developed. Particular attention is paid to those features of the theory which arisepeculiarly as a consequence of stellar rotation, and have thus notpreviously been considered. Section III gives approximate analyticsolutions for the functions describing the radial dependence of thedynamical tide, and concludes with an approximate analytic expressionfor the energy dissipation rate.The analytic solutions of section III are supplemented, insection IV, by more accurate numerical solutions carried out for a 5 M star (spectral type ~ B6.5). In section V these numerical results, scaled to other stellar masses by use of the analytic
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expressions developed in section III, are employed to describe· theprocess of synchronization in a close binary. Synchronizationtime scales are calculated for a range of early type stars, andcompared with the available observational data. Section VIenumerates the principal results, relating both to the extension of the theory of dynamical tides, and to the degree of success of the theory in accounting for synchronism in early type close binaries.Throughout the theoretical development of sections II, III, IV, and V, the star suffering tidal distortion is referred to as the primary, and its companion as the secondary. The latter is treated as a point mass. No implication concerning the relative masses or luminosities of the two stars is intended. In the present terminology, each component of a real binary acts as both primary and secondary.
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II.THE DYNAMICAL TIDE IN A ROTATING STAR.a) The tidal potentialThe first step in calculating the amplitude of either the equilibrium or the dynamical tide is to write an expression for the tidalpotential, U, responsible for these distortions. It is assumed,for simplicity, that the rotation axis of the primary is normal tothe orbit plane, and that the binary orbit is circular. We use a spherical polar co-ordinate system centered on, and rotating with, the primary. Colatitude, 0, is measured from the north rotation pole, and longitude, φ, is measured in the prograde direction with φ = 0 corresponding to the direction of the secondary at time t = 0.Under the above assumptions, the tidal potential may be written as

IU(r,θ,φ,t) = - GIL· Σ√ Σ√ τfm p^m (cos θ) c.os(σmt+mφ) ,'f>2 m=0 (2.1)where
T m = (2- δ „) ⅛r⅛Γ ppm(°) -t mθz (-t+ m) ! -t v , (2.2)

(2.3)and σ = m (Ω - ω ) mis the mass of the secondary, and a the separation between thecenters of primary and secondary. The functions P m are associated Legendre functions. Since P^m(0) = 0 if -t-m is odd, only even m terms appear for L even, and only odd m for L odd. As long as the tidal response of the atar remains linear, each temporal Fouriercomponent of the tide may be considered separately, and the results
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subsequently summed. The dominant terms in the expansion of U, to which we will later restrict our attention, are given by
where

and
“ { ½ Ρθ (cos θ) + ⅛ P2 <-cos θ) c°s (σ2t + 2cp)

P^θ (cos Θ) = ⅛ (3 cos⅞ -1) ,
(cos θ) ~ 3 (l-cos⅞)

(2.4)



9
b) Derivation of the differential equationsThe differential equations governing stellar tidal oscillationsare derived from the familiar equations of motion of an inviscid,compressible fluid,, including coriolis and centrifugal terms:

(pv) + (v∙v) ρv = -Vp-p VV- 2p(Ωxv)
∣^=-V∙(pv) . (2.6)

The symbols are defined as follows: p = density, v = fluid velocity,p = pressure, Ω = stellar rotational angular velocity, and V = totalpotential, including the internal gravitational potential of thestar and a centrifugal term, as well as the tidal potential. The lastterm in equation (2.5) is the coriolis acceleration. The third fundamental equation comes from the requirement that the oscillationsbe adiabatic:i /ÖPP ∖δt M = I ( αPδt + v'Vρ (2.7)+ v
where Γ is the ratio of specific heats.Since the tidal oscillations are of very small amplitude, exceptin the stellar atmosphere, these basic equations may be linearized
in terms of the small departures (δp, δp, δV) from the equilibrium conditions (pθ, pθ, V ) which prevail in the absence of tidal forces. It is assumed that this equilibrium state has v = 0. The linearizedequations are:



10
ôv 3 o dt -Vδp - όρνν - 2p (Ω χν) - pnVδV U U ,~ ~ υ

_1Ρ
∂δpdt5δp

v∙(p0χ)
)δρ(⅛κ+ V∙vp√) (⅛+ V.θ ∖ dt ~ r0 / ρθ \ dt ’Μ

(2.8)
(2.9)
(2.10)

The equilibrium potential, V , includes the gravitational andcentrifugal potentials, while δV consists of two parts: the externallyapplied tidal potential, U, and the perturbations to the internal intgravitational potential, δV , caused by the tidal density perturbationsA fourth differential equation (Poisson's equation) is thus necessary ip tto relate δV ^ and δp:1ιnt,V δV (r,θ,φ)j = 4πGδρ(r,θ,φ) . (2.11)The solution of these linearized equations may be accomplishedby either of two methods. All of the normal modes of oscillation ofthe star might be identified, along with their natural frequencies,ω 1 . These modes are characterized by three indices - one eachmnkfor the longitudinal (m) and latitudinal (n) structure of the mode,and one for the radial structure (k). The fundamental radial mode hasω -i∖∕cp'~ 2π∕l^lθur, where p = average density of the star, mnoHigher order radial modes are divided into two sets: p-modes (k> 0)with tunThe number of radial nodes increases as ∣k∣ increases. It ispossible to consider the forcing of each of these normal modes by a particular temporal Fourier component of the tidal potential, denoted

as k → and g-modes (k<0) with tu 1-j 0 as k mnkmnk
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by the subscript m, and then sum up all of the separate responsesto obtain the total stellar distortion due to that Fourier component.This procedure, while conceptually straightforward, requires adetailed investigation of the normal modes of the star, and manyseparate forcing calculations. Ultimately, many of the forced modeswould make only negligible contributions to the total response.We thus choose to employ a second, more direct procedure which doesnot explicitly take account of the normal modes. Before continuing, however, we digress to introduce a very useful approximationsuggested by the above discussion.Tidal forcing periods, 2π∕σm, in close binaries typically liein the range ~ 12 to 100 hours, so σ « ω λ. Thus, all of the m m n 0p-modes and the low order g-modes are being forced at a frequencymuch lower than their natural frequencies, and the response of eachof these modes is essentially a static or equilibrium response,which is independent of σ . Now the internal potential perturbation, intÔV , is largely controlled by the density perturbations associatedwith normal modes with few radial nodes (i.e., the low order p-modesand g-modes), as the gravitational field associated with a rapidlyoscillating density component tends to cancel. Consequently, allof the significant individual normal mode contributions to δVint intare equilibrium responses, and thus δV itself may be approximatedby the equilibrium stellar response to the tidal potential. In terms thof the usual Love functions, k^(r), and for the m Fouriercomponent of the tidal potential, this result is expressed by
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0V^nt(r,6) ufm (r>θ) > (2.12)-t=mwhere U„m represents the (L,m) component of expression (2.1). The LLove functions may be calculated from the density profile of thestar, ρθ(r)s by solving Poisson's equation (2.11) for the equilibrium thtide. The m Fourier component of the total potential perturbationin equation (2.8) is thus given by
δV GM, [l + k^(r)] τjll(r∕a)'f' (cos θ)m h=m (2.13)cos [^σ t + mφll m 1 ’and the problem is reduced to the simultaneous solution of equations(2.8), (2.9), and (2.10).Let us now return to the second method for obtaining this thsolution. The m temporal Fourier component of the tidal responseis isolated, and all perturbed quantities assumed to have, the time and longitude dependence e'*'(c⅛t + mcfl) j where is given by equation (2.3). 

The perturbing potential is given by equation (2.13). We now maketwo approximations which greatly simplify both the analytic andnumerical solution of the equations.(1) The equilibrium structure of the star is taken to be spherically symmetric, i.e., pθ, pθ, and Vθ are functions of



13the radius, r, only. We are thus neglecting the rotationalflattening of the star, a procedure which is valid as long as 2 -Ω « Gp, where ρ is the average stellar density.(2) In calculating the coriolis force, -2pnΩxv, only the radialcomponent of Ω, Ω cos 0 r , is retained. This procedure isstandard in the theory of planetary atmospheric tides, andessentially amounts to asserting that the radial component ofthe coriolis force is small compared with the perturbed radial gravitational force, - δp W . This is correct in the radiativeenvelope and in the stellar atmosphere, where the radial wavelength of the tidal oscillations is small compared with the horizontal wavelength (see section 2e). We will justify this statement a poi.tQJbioħΛ, in Appendix 1. The above assertion is, however, incorrect when applied to the stellar core, and mustconsequently introduce some error in the solutions.The principal reason for making approximation (2) above isthat it leads to the separation of the equations in sphericalpolar co-ordinates. The details of this separation are relegated to Appendix 2, and the results simply quoted here. In the usual manner, an arbitrary separation constant, denoted by K, appears. Physical constraints imposed on the angular part of the solution restrict Kto take any of an infinite set of discrete values, Discussionof these constraints and of the form of the angular solutions isdeferred to section 2c for convenience. The complete solution to equations (2.8, (2.9), and (2.10) may thus be written as a sum of
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individual solutions corresponding to the different allowed valuesof K. The pressure perturbation and the radial component of thevelocity take the form:

δp δp (r)β (θ) ei<<⅛t+≈φ>' mn mn (2.14)n(V) - to ∖Λ ∞ 0 (8) elfe⅛t+mt∙,4 (2.15)~ r m ∕ j mn mn zand nwhile the density perturbation and the other two velocity componentsare given by similar expressions involving the functions δp , h , mn mnand θ , and their first derivatives. If, for the present, it is mnassumed that the functions & (θ) form a complete set in the intervalmn r0 < θ < π (see section 2c for a discussion of this point), thepotential δV^ may be similarly expanded:
δV δv ∞ ® (θ) el(Gmt + mCfj) . (2.16)m X~~√ mn mnnThe functions δpmn> ^1mn> an^ θnn satisfy the following ordinary differential equations, in which the subscript m is largely suppressed:

I/Γ d ∕ -I/Γ . p0 d? p0 4pn p0fo2-∖2>hn = -p0⅛<1h,nj ’ <2∙17>
σ p0 d 2 1/r . ∕ κm∏ σ P0 ∖ ,

(r P∩ h,J “ —-√ - hh7^~ δP
K P„ mn 02 I/Γ dr κ h0 n'r p0 Γpθ ∕ ∙ n ÔVmn (2.18)

d Z 1 - μ2 d 0n dμ∖f2-μ2 dμ , ,2 2 f -μ 2 2 "+ m(f +μ ) ? ? ? l-μ f(f -μ )m Kr, l. mn ⅝÷7 Θ ≈ 0. (.2.19) n
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In the third equation we have used the variable μ = cos θ, and the constant f ≡ 2®·. The quantity is the Brunt-Väisälä frequency (the natural frequency for small-scale adiabatic vertical oscillationsin a stratified fluid) and is given by

N
V

ι⅛ ,d pθ dr dr 1∕Γj0π,- 0 (2.20)
Cowling (1941), in his discussion of free oscillations in nonrotating stars, derived equations equivalent to (2.17) and (2.18),but with K = n(n+l) and with Θ (6) = P m(cos θ). Zahn (1975) mn mn nused equations identical with Cowling’s. The novel features introduced by rotation (via the coriolis force), namely the angular functionsθ and their associated separation constants K , are discussed in mn mnsection 2c.At this point, it is convenient to separate δp and h into mn mnwhat Zahn (1975) has referred to as "equilibrium" and "dynamical"components. The equilibrium component may be thought of as theresponse when all of the normal modes of the star are forced ata frequency much less than their resonant frequencies. It isobtained by setting σ = 0 in (2.17) and (2.18):θq _δpmn P∩ δV 0 mn

and h θq = p δV mn (J mn dp 0 - δV (2.21)dr mnwhere g is the local gravitational acceleration. The "dynamical tide"is defined by the quantities:
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öp.

and
dynmndyn mn

δp - δpeq mn rmnh - heq mn mn (2.22)
which satisfy the same differential equations (2.17) and (2.18), but with the right hand sides changed to ∕dpf2 XV ∕ θp„ oV ∕ ——0 mn t dr

and σ P0 d [ 2 i'dp0
-~Γ 57 r po δvm ∕ "5Γ (2.23)

respectively. dyn j , dynIn section 3, approximate analytic solutions for Op and n7 i j mn mnare derived, whilst more accurate numerical solutions are obtainedin section 4.
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c) The angular part of the tidal oscillationsEquation (2.19), which is independent of the structure of thestar and of the form of the perturbing potential δV , is known mnas Laplace’s tidal equation. Its solutions govern the oscillations of an ocean of uniform depth covering a rotating planet, and global atmospheric oscillations on a rotating planet. For a detailedreview of the latter subject, see Chapman and Lindzen (1970).The solution of Laplace's tidal equation, subject to the physicallynecessary condition that all solutions be regular and bounded inthe interval 0≤ 0 ≤ π, is an eigenvalue problem. For the case of 2free oscillations of an ocean of depth D, the constant e = K∕ f is given by 2 2 4Ω KgD (2.24)

(R = planetary radius, g = surface gravity), and regular, boundedsolutions exist only for certain discrete values of f = σ∣2Ω,. Thesame applies to free atmospheric oscillations, but with D replacedby a length scale characteristic of the atmospheric structure. Foran isothermal atmosphere with scale-height H, D = ΓH. When forcedoscillations are considered, as in the present problem, the value of£ is fixed by the forcing frequency and K (or e) may take only certaindiscrete values, denoted K . The solutions θ (θ) which correspond mn mnto these eigenvalues are usually known as Hough functions, after a pioneer in the study of Laplace's tidal equation. Various notations
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have been used for Hough functions and the related eigenvalues. In particular, workers such as Chapman and Lindzen (1970) who study atmospheric tides and oscillations use the "equivalent depth":

3f
2 2, n2 p2 σ R 4 Ω R _ mmn ge gKmn mn (2.25)

Longuet-Higgins (1967), in the most extensive published analysis of Laplace’s tidal equation, uses the eigenvalue e, Hough functions denoted by Z(θ), and the parameters λ = -f and s = m.The following brief description of Hough functions is adapted from Flattery (1967) and Longuet-Higgins (1967). For graphs of selected Hough functions, tables of eigenvalues, and various asymptoticapproximations the reader is referred to the latter reference.(1) As the operator tyι, defined by rewriting equation (2.19) inthe form ^(θ) + -⅝ θ = 0 (2.26)fis self-adjoint, the eigenvalues K are real and the eigenfunctions
θ orthogonal: mn 1

0 (θ) θ (θ) dμ = 0 if n ∕ p. (2.27)mn mp
(2) For ∣fI >1, equation (2.19) is a Sturm-Liouville equation.
There are thus a countably infinite number of eigenvalues, allpositive, with -> ∞ as n → co. By convention, n takes the values
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m, m+l, m+2, ... . For any fixed m, the Hough functions form a complete set in the interval 0 ≤ θ ≤ π. That is, any regular boundedfunction F(θ) may be expanded in terms of these functions:

F(Θ)=7 a Θ (θ), 0≤θ<π
∕ j n inn n=m (2.28)

The expansion coefficients are given by1an (2.29)-1when the Hough functions are normalized to satisfy1 (2.30)
(3) For ∣f∣ ≤ 15 equation (2.19) has two regular singularities (at μ = ± f) in the range 0 ≤ Θ ≤ π, and does not rigorously satisfy the requirements for being a Sturm-Liouville equation. Nevertheless, the singularities are removable, and the eigenfunctions are assumed toform a complete set, though this has not been proved. Countablyinfinite sets of both positive and negative eigenvalues exist for ∣f I ≤ 1, the index n conventionally taking the values ±m, ± (m + l), ±(m+2), ... . The plus signs correspond to solutions of the first class (Hough, 1898 ∙, Longuet-Higgins, 1967 ), or "gravitational modes" (Flattery, 1967 ), and are associated with positive eigenvalues. As ∣f∣ → 0, the solutions of this class are concentrated towards μ = 0, i.e., towards the equator of the rotating body. The minus signs
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correspond to solutions of the second class, or "rotational modes," and are generally, though not always, associated with negative eigenvalues. For fixed f, there are only a finite number of positive second class eigenvalues. As ff f -> 1, the second class solutions are concentrated towards μ = ±1, i.e., towards the poles. It is apparent that, if the Hough functions do form a complete set for ∣f[ ≤ 1, both positive and negative values of n must be included in equations (2.28) and (2.29).(4) Solutions of the first class are symmetric about μ = 0 for even values of n-m, and antisymmetric for odd n -m. The opposite holds for solutions of the second class. Since the tidal potential (2.1) contains only symmetric terms, we shall only be interested in symmetric Hough functions.(5) In the limit ∣f∣ -→ ∞ , equation (2.19) becomes Legendre'sequation, and the Hough functions are associated Legendre functions:

& (0) → P (μ) .ran nThe eigenvalues K n(n+l), independent of m. This limit corresponds to Ω → 0 while σ remains finite, i.e., to a non-rotating body. We thus recover the equations of Cowling (1941) and Zahn (1975) for a non-rotating star, referred to above in section 2b. Note that theexpansion of the perturbing potential in equation (2.16) becomes trivial in this case, thus simplifying the calculations considerably.
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d) Eigenvalues and projection coefficientsIn this section the specific numerical properties of Houghfunctions which are of importance to the current investigation arecollected. These involve the eigenvalues K in equation (2.19), mnand the tidal potential coefficients δV in equation (2.16). Onlythe dominant terms in the tidal potential, as given by expression(2.4), are included in this investigation. Inclusion of smallerhigher order terms, while straightforward, seems superfluous in viewof the approximations already made in section 2b. Since the firstterm in (2.4) (the term) has no time dependence, it contributesonly to the equilibrium tide, and may be neglected. The second 2term (Jι ) consists of a single Fourier component with m = 2.In figure 1, the eigenvalues n for n = ±2, ±3, ±4, and ±5are displayed as functions of f in the range -1.8 ≤ f ≤ 1.8. For pcompactness, ∣K∣ 2 is plotted, but the sign of K is preserved; solid and dashed lines represent eigenvalues associated with symmetric and antisymmetric eigenfunctions respectively. The figure is based on tables given by Longuet-Higgins (1967). Referring to equation (2.3) and the definition of f, we see that f = 1 - ω∕Ω for m = 2. Consequently, for a binary whose orbital and rotational angular velocity vectors are parallel, f is initially less than, but close to, unity. As the rotational velocity slows towards synchronism, f decreasestowards zero. We shall thus be concerned with the range 0 < f < 1.In addition, negative eigenvalue solutions, while permissible, are
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FIGURE 1: Eigenvalues of Laplace's tidal equation, K^, for m = 2 and n = ±2, ±3, ±4, and ±5. The abscissa is f ≡ o^∣7Ω, = (Ω~ω)∕Ω, and the ordinate ∣K I 2, with the sign of K retained. Solid lines represent eigenvalues corresponding to symmetric eigenfunctions,dashed lines those corresponding to antisymmetric eigenfunctions.Positive and negative values of n correspond to Hough eigenfunctionsof the first and second classes respectively. Note that, for theeigenfunctions of the second class, Kmn(f∣ > 1 only positive eigenvalues exist. ωas f → ±1, and that for
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√f<7∣sgn(Kn)
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disregarded, since they contribute negligibly to energy dissipation by the dynamical tide. This is demonstrated by the WKB solutions obtained in section 2e. Finally, as noted in section 2c (4), only symmetric Hough modes are excited, since the tidal potential is symmetric.Figure 2 shows the first three eigenvalues corresponding to the solutions satisfying the above requirements, for the range 0.1 ≤ f ≤ 10.For f > 1/6, only Hough functions of the first class need be considered, and the eigenvalues are well represented by the approximation (due to Longuet-Higgins, 1967 ):

for 0 < f ≤ 1. For f <1/6, one or more symmetric Hough functions ofthe second class have positive eigenvalues and must thus be included in acomplete analysis» In this investigation we will restrict f to be greaterthan 1/6, and not consider the final stages of synchronization.The total perturbing potential is given by equation (2.13),2with T^ substituted from (2.4):
2 aw (2.32)

where the subscript 2 has been dropped from σ. The Hough mode potential functions of (2.16), (2.17), and (2.18) are then obtained by application of (2.29):
(2.33)
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FIGURE 2: Eigenvalues n corresponding to the first three symmetric eigenfunctions of the first class, for 0.1 ≤ f ≤ 10. The parameter V is the positive root of the equation v(v + l) =
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Zwith P2 ⅛) θ2,n(0> ⅛ 2, 4, 6, (2.34)
2 2 The normalized function P has been introduced to replace P :2

P22⅛) dμ (2.35)

η

P^ (cos 1) ∙ i I J - --- s ln
4The projection coefficients, , are functions of the parameter f, nand no complete tabulation of them has been published. Chapman and Lindzen (1970) provide tables up to n = 16 for ∖ralues of f applicable to Earth atmospheric tides, namely f = 0.966, and f = 1.000. Graphs of the functions 2 anc^ θ2 4 ^3'^ven Longuet-Higgins (1967) for a few specific values of the eigenvalue e have been used to estimatefor f = 1.1, 0.54, and 0.31, and for f = 0.81 and 0.47.Lastly, with the aid of asymptotic solutions of Laplace’s tidalequation valid for f « 1, formulas have been derived for , and

approximations for and as functions of
tv θ for small f. These asymptotic solutions are given in Appendix 3. All of these results are displayed in Figure 3. The dashed linesrepresent our adopted ,..t,1.------- ----- ------- . „f. These approximations do not seem likely to be in error by more than50%. The rapid decrease of 'the <5 ,s as f decreases is due to the nprogressive concentration of the Hough functions towardsμ = 0. For f — 0, Hough functions of the first class are essentially
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Delta functions at μ = 0. Meanwhile, the Hough functions of the secondclass are becoming less concentrated towards μ = ±1 as f decreases.The coefficient , for example, should be very small for f ~ 1,but increase towards unity as f -~> 0. This emphasizes the necessityof including these functions of the second class for very small valuesof f . Finally we note that etc. are progressively smallero othan f⅛D 2 a∏d This is illustrated on Figure 3 for f = 1, and is
an obvious consequence of the fact that, as n increases, the numberof nodes of the Hough functions increases. For f — 1, the coefficientsare represented approximately by

n „ 32(πn), (2.36)
In this investigation, only and are retained,
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FIGURE 3: The projection coefficients defined by equation (2.34). Circles represent values tabulated by Chapman and Lindzen (1970) for f = 1.0 and f ≈ 0.966, and originally calculated by Flattery (1967). Squares represent projection coefficients calculated from graphs of selected Hough functions given by Longuet-Higgins (1967). Asymptotic approximations for f « 1, given in Appendix 3, are shown as solid lines. The dashed lines indicate the approximateforms of an^ adopted for the present study.
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e) WKB radial solutions and the energy fluxIn this section, approximate WKB solutions are obtained for theradial functions 6p and h . These solutions are valid only in the mn mnradiative envelope of the star, and break down near the core-envelopeboundary and near the stellar surface. They do, however, provide a good approximation throughout a large part of the star, and provide a formula for calculating the mechanical energy flux carried by thedynamical tide. The subscript m will, henceforth, be suppressed andassumed to take the value 2.Consider the homogeneous solutions of equations (2.17) and (2.18).Throughout the stellar interior

2op K_____θ « -≤-
rP_ 20 r (2.37)

and the coefficient of δp^ in (2.18) may be simplified. For example, with conservative values for σ and of 10 sec and 10 respectively, and with the parameters of a typical (5 solar mass) early type star,the ratio of these quantities varies from 4 x 10 at the center, through~4 -33 X 10 at the core-envelope boundary, to 4 x 10 in the middle of the envelope. In the stellar atmosphere the ratio approaches unity.Using (2.18) to eliminate δρ^, and introducing the new variable
w(r) = r2 pθ(r) 2 h^ (2.38)

we obtain the following second order differential equation:
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= 01 <i^ ____1 jl 2 1∕Γ -½ d2 i r p0 p0 drσ 1- -2∕r a ∕ ι∕r -½<30p0 dr (p0 pO w

(2.39)-3 -1 -5 -INow, in the stellar envelope, ~ 10 sec , while 10 sec < σ <-4 -I 2/2 3+110 sec for most cases of interest, so ∕σ ~ 10 » 1. Also2K ~ 10 to 10 typically for Hough functions of the first class n(see Figure 2), and the term involving pθ and pθ is dimensionless and evidently of order unity. To a good approximation, then, (2.39) reducesto
d2w . h Nv « w72 ∖ ---------∕ ^2dr ∖ σ ' r 0 ,n=2,4,6, ..

.3
(2.40)

Since the quantity in parentheses is 10 , and varies slowly withr, the WKB technique is amply justified and the resulting independentsolutions are given by
K ,r N (r')iew± A±e ± Nv(r) exp 1± i nσ r r e (2.41)

where A and e are arbitrary real constants and r is the radius of ± ± ethe core-envelope boundary.Using equations (2,38) and (2.18), we obtain the WKB solutions:
h∏i (r) A±e i |/3p0(r) NvH 2 exp I iiκ∏^ g^r) ’ <2-42)

and ± le± δp (r) ± i A en i σ p (r)N (r) 0 VK r n exp j±i Kn½ g(r)} , (2.43)
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where 1 r N (r' )g(r) ≡ i f - dr' (2.44)

σ J r 
re _Lcj ùRecalling the time dependence of the solutions, e , we see that the . two solutions corresponding to the ± sign represent waves propagating radially inwards and outwards respectively. The radial wavelength ofthese waves is given approximately by

— (2.45)K ⅛ (r) η V~ 10 ^r to 10 ^r ,
and they are an example of "gravity waves" (see Eckart, 1960 ).So far we have assumed that K >0. For Hough functions of the nsecond class (n < 0) , < 0 for all odd n for 1/6 < f < 1. In thiscase, the solutions of (2.40) are exponential functions of r. Apositive exponential implies a. very large amplitude surface oscillation,which is not physically acceptable. The negative exponential solution is acceptable, but the amplitude of such a mode of oscillation rapidly becomes negligible with increasing radius and the mode transfers negligible mechanical energy to the outer regions of the star. We thus neglect all modes with negative eigenvalues, as foreshadowed insection 2d.Associated with these WKB solutions is a radial mechanical energy flux, analogous to the energy carried by a sound wave, given by:

F (Re (δp) Re [(v) ])~ r time (2.46)
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With the aid of equations (2.14), (2.15), (2.42), and (2.43), we obtain for the total radial energy flux:

⅛Σ <√>2 √s ⅛<θ>2n 2 „ -½ z∙> z^.2-Σ (A n)" K '2 0 (θ)
X—√ - η nn÷Σ Σ -⅛K 2 n Θ (θ) n ⅛(θ)n f≠n
A n A+ √ cos κn Kf½)g(r)

+A n + cos j~ 'κ h + n K^)g(r)
-A_n √ cos∣^ ½ + n √2)g(r)

. n I Γ ⅛ ½∖ Z X-A A cos Kn Mr)
of m and f, K ≠ K, n Ί for n

n £
:+ "e+ Jn'+ e- J

]n -t e_ +e +n jtJ ∖ .(2.4?)
.H.-tV A termsin this expression oscillate with increasing radius. These terms alsovanish when integrated over a sphere, because of the orthogonality ofHough functions. Thus they do not contribute to the overall transportof mechanical energy through the envelope. Restricting attention,therefore, to the first two terms, we see that the inward propagating gravity waves (A+n) transport energy outwards, and vice versa. This is a well-known property of gravity waves (see, for example, Eckart,1960 ), and is a consequence of the radial component of the waves' group velocity being directed oppositely to the radial component of



35 _2their phase velocity. Note that the r dependence of the flux implies that the total energy transported per second is independentof radius.We shall see in section 3, and again in section 4, that thesehomogeneous WKB solutions are, in fact, excellent approximations tothe complete forced solution in the stellar envelope. Thus, tocompute the energy flux carried by the dynamical tide, it is only necessary to determine the coefficients A^n. These coefficients depend principally on three things: the amplitude of the tidally forced solutions, 0p^ and h , in the core of the star; the properties of the core-envelope boundary; and the boundary conditions imposed onthe envelope solution by the stellar atmosphere. We now proceed toa discussion of the latter problem.
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f) Atmospheric boundary conditionsIn his treatment of the dynamical tide in non-rotating stars,Zahn (1975) adopted a simplified polytropic outer boundary for his stellar models whereby the temperature goes to zero at a specified radius. As a consequence, the outward-propagating waves are completely reflected at this boundary, and a standing wave pattern is set up with A+n = A_n. Clearly there is no net transport of energy in this situation. To resolve this apparent problem, Zahn relaxed therequirement of adiabaticity, equation (2.7), in the optically thin stellar atmosphere, replacing it with the more complicated (and realistic) equations governing radiative damping of the waves. In the presence of atmospheric dissipation - such as radiative damping - the waves are no longer perfectly reflected back into the stellarinterior. A n is smaller than A n, and there is a net outward flow— +of mechanical energy through the stellar envelope, which is ultimately deposited as heat in the stellar atmosphere or radiated directlyto space.However, if a more realistic atmospheric model is used, the outward propagating (in the group velocity sense) gravity waves are not necessarily reflected at all and may propagate outwards indefinitely.In this case, the amplitude of the waves increases as the gas pressure decreases, until the waves become nonlinear, possibly developing into shock waves. At this point the energy carried by the waves islikely to be dumped as heat into the gas, and ultimately radiated.
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Of course, radiative damping of the waves occurs as well, and simplyserves to increase the rate of dissipation of the waves’ mechanicalenergy.The conditions for propagation of gravity waves through, rather than their reflection by, the atmosphere of a rotating body are given by Chapman and Lindzen (1970) in chapter 3, equation ( 30 ). The functions h^(r) and δpn(r) are given byh (r) = hθ exp (^+ikx) , η n r 2and δp∏(r) = δp^θ exp (- y+ikx) ,
where x = - pθ(r), h^θ and l⅛nθ are constants, and k is given by the dispersion relation:4H

Xr
⅛A + ⅛-1 (2.48)k nH(r) is the atmospheric pressure scale height, and is theequivalent depth defined in equation (2.25). As an aside, we notethe exponential growth of h^ and δp^∕pθ with height, referred to above.Evidently, if the minimum temperature in the stellar atmosphere(at the top of the photosphere), T . , is associated with a scaleminheight H . , then the nt^1 mode will not be reflected, provided mm ’ r< ⅛(Lrii h .n i mini.e., provided (2.49)9 4(Γ-1) K gH .2 n minσ < ------------------------------
R
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where R is the stellar radius. For m = 2 and f ≤ 1, K is given mnquite accurately by equation (2.31), and the condition for propagation of the nt^ mode becomes:

of = σ2Ω 2(2n - 1) R (Γ-l) gH . ∖½________ minr ∕ (2.50)<
Clearly, if the nt^ mode propagates, so do the (n + 2)t^1, (n+4)t^1, 
etc. Also, since both σ and f decrease during the process of synchronization, the number of propagating modes gradually increases.If, for a particular mode, condition (2.50) is satisfied, thenthe boundary condition applied to the envelope solution is

A n = 0 , (2.51)
i.e., no reflection of the energy flux by the atmosphere*. Theoutward energy flux is given by:2 _i 2F =15K (A/) Θ (θ) . (2.52)n „ 2 n + n2rIf condition (2.50) is not satisfied, outward propagating waveswill be reflected at or below the level of T . , and Zahn's boundary minconditions involving radiative dissipation are appropriate. FollowingZahn, we introduce the damping constant, y, defined byieA,n e = ½ A (1 + γ ) + nie_A_n e = ⅛ A (1 - γ ) (2.53)
* This boundary condition is commonly known as the "radiation condition.
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When Y = 0with no netA n == 0 and, ηwith A. = +

(zero damping) A+n = A n and a standing wave pattern exists,transport of energy. When γ =1 (complete damping),the outward energy flux is given by equation (2.52),IA I. For intermediate values of v, the energy flux is 1 n1 _vσF = —„ K '2 γ∣A ( Θ (θ)' n „2 n 1 η n 2r (2.54)
It may be shown (see Zahn> 1975> equation [2.38]) that, when γ is varied while all other stellar parameters are held constant, theconstant A varies as: n A o~ (sin ‡ - iγ cos ψ)
where

(2.55)
(2.56)

n
N (r' )—- ------- dr' + constantr eRadii r and r are the radii of the core-envelope boundary and the

θ £Lreflecting layer in the stellar atmosphere respectively. Thus ψ is a measure of the total number of radial oscillations in the WKBsolutions (2.42) and (2,43), and has a value of the order of 2π x (10 to 100). Substituting expression (2.55) in equation (2.54) for the energy flux, we obtain: — F2,,. ∏n . 2, 2 z. I .sin I + γ cos Ψ (2.57)
which is the same asequation (5.2).As Ω, and henceψ increases steadily

Zahn's (1975) equation (2.50) and Zahn's (1977)
σ , decrease during the process of synchronization,Therefore, F oscillates between maxima Fθ∕γ and ? η n



40minima yF^ ∙ Zahn (1975) has pointed out that these maxima at ‡ = Nπ correspond to the tidal forcing frequency, σ, being in resonance withsuccessive high order g-modes, i.e., normal modes of oscillation ofthe star. As γ approaches 1 (complete damping of the waves) theseresonances become less and less important. Fortunately, if F is naveraged over a range of time corresponding to an increase in ⅞ of2π, the resulting average flux is almost independent of the damping constant y. Neglecting the small variation in ω, equation (1.1 ) for the rotational evolution of the star may be
do 4 E (o) dt Iowhere E is proportional to F. Thus,

written
(2.58)

o
^f F¾ * f

ο σ
dσF(σ)

Now, the appropriate time-averaged value of F is given byt' - t≈- ∙^∣∙ (σ' -σ)
σ

SO <F> -1 doF(o)^ (2.59)σ - σ
Using expression (2.57) for F, and integrating over an interval corresponding to ∆ψ ~ 2π, we obtain
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<F>--^--Fθ . (2.60)1 + yZahn (1977) incorrectly obtained (F) = F^θ, by simply averaging

expression (2.57) over ψ, and not taking into account the non-linearvariation of a (and hence ψ) with time due to the enhancement of -~- dtnear the resonances. At any rate, for γ > 0.5, (F) does not differ greatly from F^θ, and is thus reasonably independent of the precise 
value of y, as advertised above.We will therefore α6∙6UΠ)e, for the purpose of estimating the average flux, that y = 1 and, in consequence, (F) = F^θ. The detailed 
atmospheric calculations necessary to obtain a realistic value for y are not attempted here. Evidently, should such calculations showthat y « 1, the present estimate of the net energy flux carried by modes which do not satisfy the propagation condition, (2.50), mustbe reduced according to (2.60).The relevant boundary condition to be applied to the envelope solution is obtained from (2.53), setting y =1: A_ =0.This is the familiar radiation condition, (2.51), which also appliesto modes which satisfy the propagation condition. We thus reach the important conclusion that, unless y « 1, the radiation condition may be applied to all modes, whether porpagating or reflected, for thepurpose of calculating the average net energy flux.All solutions obtained in sections 3 and 4 satisfy the radiationcondition. In section 4e, however, the conditions are discussed, unde: which the propagation condition (2.50) is satisfied for a 5Mθ star, and the radiation condition thus rigorously applicable.
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g) SummaryFor each temporal Fourier component, e^^σmt + mψ)j of t∣ιe

tidal potential, the response of the star is given as a sum of modes.The angular dependence of these modes is defined by Laplace’s tidalequation (2.19), and the angular functions are known as Hough functionsThe radial depencence of the tidal response is given, for each mode,in terms of the functions δp (r) and h (r), which satisfy the ran mncoupled equations (2.17) and (2.18). The constant K in the latter mnequation is an eigenvalue which depends on the parameter f, as well as on the Fourier component (m) and the particular Hough mode (n).The tidal potential, U, has been calculated for a circularorbit of zero inclination, and only the dominant term (2.4) in thepotential has been retained. In consequence, only the m = 2Fourier component appears in the tidal response of the star. The per^ turbing potential functions, δV2 n^r), which appear in the forcing terms (2.23) for the dynamical component of the tide, and in expression (2.21) for the equilibrium component, are given by equation (2.33), in terms of the projection coefficients Negative eigenvaluemodes (second class Hough functions) and modes higher than n = 4are neglected.In the radiative envelope of the star, the dynamical tide iswell represented by the WKB solutions (2.42) and (2.43), which takethe form of gravity waves propagating radially inwards and outwards.The mechanical energy flux carried by these waves is given by equation
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(2.47) in terms of the unknown amplitudes A^n. These amplitudes depend on both the nature of the dynamical tide in the stellar core and on the atmospheric boundary conditions. The latter depend strictly on whether each particular Hough mode propagates through the atmosphere or is reflected at some level (equations [2.49] and [2.50]). However, as long as radiative damping or some other dissi pative mechanism is reasonably effective, the radiation condition(equation [2.5l]) is an appropriate boundary condition and the net energy flux is given by (2.52).
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111∙ ANALYTIC developmentIn this section approximate analytic solutions are obtained for the radial part of the dynamical tide, in both the stellar core and envelope. The solutions are matched at the core-envelope boundary,and boundary conditions are applied at the center of the star and in the outer part of the envelope (the radiation condition [2.5l]) . The mechanical energy flux is then calculated from equation (2.52).The equations to be solved are (2.17) and (2.18), with the righthand sides replaced by (2.23) for the dynamical tide.a) Core solutionIn the convective core, the pressure-density profile is essentiallyΓ 2adiabatic, i.e., pθ cc ρθ . Thus ~ 0 (see [2.20]) and maybe neglected when compared with σ Also, in the stellar interior,2 2σ p^∕Γprι « K ∕r , as discussed in section 2e. With these two 0 0 nsimplifications, is eliminated between (2.17) and (2.18),to yield the following equation for δp dynwn2 d2⅛ i I, rp0 ∖ d5pnr ----- „---- 1- r 2 - -— 2rpi 1 ∕r⅛∖2dr P0 ∕ dr

i(⅛(ιM
n Γp,

r p. δp 2 2 2 σ porΓp δV (r)mn
(3.1)K + 0 r

0 n 0The primes denote derivatives with respect to r, and the superscript"dyn" has been suppressed. ΓThe adiabatic relation pθ o- pθ implies that the core may betreated as a polytrope of index (i"'-l) -1 The density and pressure
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profiles may then be expanded as power series in the dimensionless variable x Ξ aτ, where

a

∕ o r, 2 ∖ 2π G p ∖-3ΓιH
ρ and p^ are the central density and pressure respectively. The first few terms in the series are given by:

po<r> ^ h
1 2 /13 Γ ∖ A fw 6.1 ^x + 10" 2 x +θ(χ >pθ(r) = pc [l - Γχ2 + jy- + O(χ6)j

(3.2)

(3.3)
As may be seen from Table I, x — 0.7 ± 0.1 at the core-envelopeboundary for stars in the mass range 2 to 10 solar masses'.By substituting these expressions for pθ and pθ into equation(3.1), along with expression (2.33) for δV^ n(r), a solution for δp^ is obtained in the form of a power series in x. It is convenient to introduce the constant v, defined as the positive root of theequation

v(v-H) ≈ κ . (3.4)nThe complete solution is a sum of a particular-integral solutionand the general homogeneous solution. The first few terms in theexpansion of these two components of the solution are, respectively:
δpnP 3(1+ k ) GM σ2p 2__________ z_______2 ∏______ c√Cl5 (5+v)(4-v)Γp (5+ y) (4 - y) I r _

(7 + v)(6-v)∖ (3.5)2v (y + 1) — 24 ∖ 2v (y + 1) + 9 "(2v + 3)(2v-l)∕ (2v + 3)(2v-l) z 4, + 0 (x ) v ≠ 4;
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and

ôpnH V + 3 ∖ 2 5 + V I p 8 V + 3 ∖ 42v + 3yx 2(5 + 2v)ξ 5 Σ∖Γ+3 ) x
+ 0(χ6) (3.6)⅛ r n

where is an arbitrary constant. The Love function k^(r) has been approximated by its average value in the core, k . A secondindependent homogeneous solution is obtained by substituting thenegative root of (3.4) for v in equation (3.6). However, thissolution is unbounded as r → 0, and is discarded. This constitutesthe central boundary condition on the solutions. Note that for v = 4 4δp τ, and δp „ have the same r behavior for small r, and that the nt nHcoefficient of δp τ, is singular. In fact the correct form of the nPparticular-integral solution for v = 4 has form
δp „ cc r &n r hPfor small r.Expressions (3.5) and 3.6) are substituted in equation (2.17)to obtain the following power series solutions for the particular-integral and homogeneous components of h , respectively:3(l + k,) GM2¾Pc r ' ' 5 + (5+v)(4-v)nP ∖Zl5 a^ 2Γ α2p + o(>∕i) (3.7)h 8

and
nH S v n' 2σ P. v-1 v + 2 2v + 3 χ2 + (3.8)

2(5 + 2v) (r^f + 2iτt)χ4 + θ(χ6)!v + 4
1 +
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For convenience in manipulation, we denote the series 11 + ax +bx -I- . . . in equations (3.5), (3.6), (3.7), and (3.8) respectively by § ,S∑5 4^, and $Each of these series is of order unity throughout the core, possibly approaching 2 or 3 at the core-envelope boundarywhere x — 0.7.The complete solution for the nt^ mode of the dynamical tide in 
the core is : δpndyn(r) - δpnr + δρηΗ

h dyn (r) = h + h n nP nH
(3.9)
(3.10)
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b) Envelope solutionTo obtain the solution for the dynamical tide in the envelope,we follow the procedure used in section 2e for the WKB solutions, introducing the variable w(r) = r pθ¾∩ y (compare [2.38j). With the dynamical tide forcing terms given by (2.23), w(r) satisfiesthe approximate differential equation:

,2 ∕K N (r) d w I n y,2 2 2 dr ∖ σ r w =
K O3/2 KnP0 δV2 ,n po ~po⅛~ 1∕Γ _d_ dr p0p0 -ι∕r d I pordr δV2 ,n (3.11)P ’0dp 0where pθi ≡ ∙ Tbe homogeneous part of this equation is, of course,identical with equation (2.40) from which the WKB solutions werederived. However, we must now consider the form of the solutionsjust outside the core-envelope boundary, r = r , in order to correctly match the core and envelope solutions. Far from this boundary, theWKB solutions may be used for the homogeneous solutions, and theparticular-integral solution will be shown to be unimportant.In the core, the pressure-density profile is essentially adiabatic,2 2 and ~ 0 (see equation [2.20j). Outside the core, increasesvirtually linearly with r, until it stabilizes at about r =1.5 rθ ~* 6 “2with a value of ~ 10 sec . This generalization is confirmed by 2Figure 4, which presents radial profiles of calculated frommodels of 2, 5, 7, and 10 solar mass stars. We are thus led, followingZahn (1975), to define a dimensionless parameter v (σ,K ) by setting
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FIGURE 4 : The linear variation of the square of the Brunt-Väisälä frequency with radius immediately outside the convective core, asexhibited by each of the stellar models in Table I.
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2 . ∕r - rλt 2 σ 2 eN — — .v I-------V K n ∖ rη ∖ e (3.12)

for r ≤ r ≤ 1.5 r e eWe also define a dimensionless independent variable z:
2/3 ∕ r re (3.13)

Table I gives values of dNdr 2 o a 2K vn ncalculated from the profiles of Figure 4. The parameter v^ dependson σ and K , but for typical values of σ = 5 x 10. 3 sec ∖ and K η n2/3= 100, and for a 5 solar mass star, v 350, and v — 50.η , nEquation (3.11) may now be written, for r ≤ r ≤ 1.5 r , as:θ θd2wdz2 + Zw = 2 (z) n (3.14)

Vn

where
2 (z) = r 2v 4/3x(RHS of [3.1lJ). n en u ∙j (3.15)

The independent homogeneous solutions of this equation are the Airy functions Ai(-z) and Bi(-z) (Abramowitz and Stegun, p 446). The general homogeneous solution, in terms of the arbitrary constants1ι and ß , is : η n w (z) = T∣ Ai(-z) + β Bi(-z) . (3.16)Η η nAiry functions may be written in terms of Bessel functions of order1/3:
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Ai(-z) -† [ju3(O + <1∕3<ζ)] 
Bι(-z) - 3 [j-1γ3tt) - j1∕3tf,] (3.17)

with ζ ≡ 2/3 z3/2_
A particular-integral solution of equation (3.14) may be written in terms of these homogeneous solutions. We choose

Wp(z) = π A±(-z)J^ Bi(-zz )j2^(z7 ) dzz 0
∏ Bi(-z) zc,

f Ai(-z')^? (z') dz' - 2∕3^ ( 
J η n (0) (3.18)

These solutions are valid wherever N^ (r) is given by equation (3.12),2/3i.e., for 0<z≤v ∕2~25. Note that the function ≈Z (z), whichη ndepends on ρθ(r) and Pθ(r), does not vary greatly over this range.The asymptotic forms of wr and wp for z » 1 are governed by thecorresponding asymptotic expressions for Airy functions (Abramowitz and Stegun, pp. 448, 449):
Ai(-z) -~y7 sin (ζ +y∙) nV 41

(3.19)
Bi(-z) n-r 2 4π z

ΰ cos (ς+¾
for z » 1

(3.20)
Ai(-zz )dzz — ττ A3/4

1 If cπλcos (ζ+^) (3.21)
Bi(-zz )dzz !m sin (3.22)

f

J
0

½∏ z
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If (z) is approximated by its value at z = 0, the integrals in (3.18) may be evaluated using the above expressions to give:(0) ,w (z) ——— for z » 1 » (3.23)P zThus wrt rapidly becomes much smaller than w as r increases, and may P Hsafely be neglected except in the immediate vicinity of the coreenvelope boundary.The complete solution for the dynamical tide in the inner envelope(r ≤ r ≤ 1.5 r ) is obtained from (3.16), (3.18), (2.18), and (2.23): e e V "I1 dyn , . _ , 2 ∙⅛λh (r) ~ (r ρn )n T∣ Ai(-z) + β Bi(-z) + w (z) n n F (3.24)

δpdy" (r) n 2 2/3 ½σ v P∩n 0 \£EA1(-dI ∙iΛ⅛I⅛M
dwp(z)vdz g2p0 a (r⅛v2,nK dr n

(3.25)K r n e
+ +
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c) Boundary conditionsThe boundary condition at the center of the star, i.e., that the solutions remain bounded as r -» 0, has already been satisfied by rejecting the negative root of equation (3.4). There are three boundary conditions that remain to be satisfied: continuity of h^ and δp^ at the core-envelope boundary, and the outer boundary condition on the envelope solution. The latter is supplied by the radiation condition, defined by equations (2.51) and (2.41). Application of these three conditions permits us to solve for the three arbitraryconstants ξ , Ti , and ß in the above radial solutions, η η nConsider first the outer boundary condition. Examination of thehomogeneous terms in equations (3.24) and (3.25) for z » 1 reveals them to be, as expected, a special case of the WKB solutions (2.42) and (2linear .43), wherein r is set equal to rθ and is given by the relation (3.12):

K 'i * N (r' )K g(r) n σ dr∕ 2 3/23 Z
If the, Π e i 4’related by

arbitrary phases, e±, of the WKB solutions are set equal tothen the WKB and homogeneous inner envelope solutions are

and ∖ = i (A+" - A_")
β = SP ele (A n + A r,)n n + (3.26)

where

Jη Γ V
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9>

∕ V ∖i-π K 2r '2n en 2/3∖ σv∖ n I In consequence of equation (3.23), in (3.24) and (3=25) Involving w (z) mayand thus do not contribute significantly The last term in equation (3.25) for δpn the homogeneous terms, but neither is it

(3.27)
the particular-integral termsbe neglected for z » 1, to the WKB amplitudes A^n. is not small compared withan oscillatory function of r,so it also does not contribute to A^n. Therefore, only the homogeneous terms in the envelope solution need be considered in the application ofthe radiation condition, and in the calculation of the net mechanicalenergy flux, F.Applying the radiation condition, A_n =0, to the relations (3.26), we obtain 1∣ = iβ η n (3.28)

and n - ∣en∣+ & 1 . (3.29)nThus the mechanical energy flux,given by (2.52) in terms of A n,may be calculated once ∣β ∣ is determined.We now eliminate ξ and solve for 8 by requiring that δp η η nand h^ be continuous at the core-envelope boundary, r = r . First, the envelope solutions must be evaluated at z = 0. Small z expansionsof the Airy functions are given by Abramowitz and Stegun, p. 446:Ai(-z) ~ c-^ + c^ zBi(-z) “ yf~2 (c-, - c2 z) (3.30)
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where
and

c1 = [32/3 Γ(j)] 1 - 0.355
c2 = [31/3 Γ(j∙)] 1 0.259

The homogeneous components of δpn and h∏ at z = 0 are thus determined. The first two terms in wp are quadratic in z for z « 1, so2πc,
and

wp(z) (0)n (3.31)
dwp(z)dzThe function may be expanded as a power series in the core variable X ≡Q,r, using equations (3.3) for ρn(r) and ρθ(r). For r = r~, weobtain 3(1 + k„) GM ∏ c1r 3 p 3/2 (K - 6)wp (z=0) - 2 2 n 1 e c n4/3 2 rV a i pn c Φ,(x ) , (3.32)6 e
Î2 6 ⅛1 + a xZ + bx + .. . I Again, is theaverage value of the Love function in the core. Similarly, the particular-integral component of δp^ is expanded as a power series, togive: δpnp(z = θ) = 3(1+ k) GM 3 2 2 2.o v - σ p r 2 n ce√15^ a3 2α2 Γ p (3.33)

0

Kc nwhere ⅛^(x) is also of the formal + aχ2 + b>∕* + ... ∣ .
With these expressions in hand, and using the core solutionsobtained in section 3a, it is a straightforward matter to match δp andh at the core-envelope boundary (r = r , x = x , n e e or z = 0), eliminate
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the constant ξ , and obtain the following expression for the nconstant β n

n ¾(l÷k2) M2re3 ⅞4√∏ πv 2/3 a3p ⅛ ne2v(αr ) $________ e 1( 5 + V ) ( 4 - V ). 2

3 , 3v 45 1 2∏cι<κn-t0 ∕pc' ' ∖pe,≈i + K 4 n
c2(√3 - i) pc' c1(√3+ i)^1~1 

k ) „ 2/3, (3.34)

?2 Λ n
e ∕ Vn

In this expression, p - p„(r ) and all ⅛.,s are evaluated at x e 0 e ι X .e
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d) The mechanical energy fluxExcept for the minor approximations made in the derivations of thedifferential equation (3.11) and of expression (3.23) for w^, this isan exact solution of equations (2.17), (2.18), and (2.23) subject tothe radiation condition. An accurate numerical result for β could nbe obtained if the six quantities k(xg) were known. In principle they are given by power series in x (e.g., equations [3.5] to [3.8]) whose coefficients are calculable, but in practice xθ ~ 0.7 and the series converge rather slowly. An alternative procedure is to determine through by numerical solution of the differentialequations in the core, and and from tabulated density and pressureprofiles. This is essentially the course followed by Zahn (1975), in his combination analytical/numerical solution for the dynamicaltide . In order to obtain a completely analytic, albeit numerically approximate, estimate of β^ (and hence A+n and the energy flux) we make the approximationi.(xe) =- 1 1 2 j ∙ ∙ ■ f 6

The expression for is further simplified by neglecting the twosmall terms of order v and v ^∕3 anc∣ by setting ---- ? (v+l)η n (5+v)(4-v)equal to -1. The latter approximation is quite good for v > 10(i.e., > 100), and avoids the apparent singularity at v = 4.(Referring back to equation [3.5j, we see that our particular-integralsolution in the core is not valid for v = 4, and that a logarithmic
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term should be introduced.) The results derived below by making theseapproximations are compared in section 4 with the results of completelynumerical solutions, and are found to be in error by a factor of≤ 2 for β .nThe simplified expression for β is

n, 9 (v - 1) r (l + ⅛ m28 √15 π v 2/3 1'-2“e c2 (3.35)nnSubstitution of this expression in relation (3.29) yields
n+ Q ∕ 1∖ 5/2 ⅛9 (v - 1 ) r σ eq ,1, 3/2 1/3 v ⅛ ½8 √15 π v K c„pη n 2 e

<1 + ⅛ M2 ψ 3 ⅝ (3.36)
for the amplitude of the WKB solution. The radial mechanical energy tlιflux associated with the n mode is determined from this amplitude, via equation (2.52):

«2 3 5
27(v - 1) σ r( r, Θ ) —2 2/3 ^^2~640 π v K c p (l + k2) M2 Θn<er (3.37)'n 2 en n

With the Hough function normalization of (2.30), the total rate ofmechanical energy transport by this mode is2π πFn(r) = y^ J^ Fn(r»6) sin θ dθ dφ0 0
7 3 527 (v - 1) or_____________ ________ e__________qoλ 2 2/3 v 2320 π v K c„ p ∣η n 2 e L

(l + k2)M2 (3.38)
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This result is, as already mentioned in the discussion of the WKBsolutions in section 2e, independent of radius. The envelope is thus a region of transport, but not generation, of mechanical energy in the form of gravity waves. The generation of this energy by the tidalpotential occurs in the convective core of the star, and its conversion into gravity waves takes place at the core-envelope boundary. The 2size of the core and the parameters of this boundary, r , p , and v 
e e nd⅛2"dr re tHalong with the amplitude of the n component of thetidal potential, thus determine the rate of energy generation.Note, tħah is. not explicitly dependent on the stellar radius.After being transported through the envelope to the surface of thestar, this mechanical energy is either deposited as heat in the stellar atmosphere, (due. to viscous, damping or shock formation at low pressure levels) or is. radiated directly to space as a consequence of the mechanism of radiative damping. In either case, there is a loss of mechanical energy from the binary system which is attributable to the. action of tidal forces on the primary. The rate of this energy loss,' E,, determines the rate of synchronization, via equation (1.1 ).For purposes of comparison with the results of numerical calculations, with Zahn’s (1975) results, and with observational material,we rewrite, the. expression for in terms of the binary orbital period, P (in days)., and use. equation (3.12) to substitute for the parameter v . The. explicit dependence, on the tidal frequency, σ, is also factored out, and expressed in terms of "σ10 sec '. i.e., in units of
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With the
σ Rη -511/3 ^(l + k2)_ P2 Ί 2 (3.39)

masses of primary and secondary denoted by M and respectively, the constant μ = Μ^/ζΜ^+Μ^). Our approximate analytic expression for is then obtained from (3.38):.56.07 X 10 32 fe√V∖1∕3 (v-l)2 K 4∕3 ergs/sec, ndNr “1— < p dr ∕r θ ' e (3.AO)n

Eη

n

∖ V

where rθ has been expressed in units of the solar radius, R , and the remaining quantities are in CGS units.In figure 5, is presented as a function of the eigenvalueK÷n for a primary of 5 solar masses. Stellar parameters used weretaken from Table I. The curve is dashed for K < 100, to indicate the nbreakdown of some of the approximations made in simplifying expression (3.3A) for β . For a different primary, only the constant coefficientof X is different; consequently, only the scale of the ordinate in nfigure 5 need be changed. To facilitate this change of scale, values Ao f $ for K = 100 are given in Table II for stars of 2,5,7,tι τn 3 3 3 andη n10 solar massesZahn's (1975) result for the rate of energy transport by the dynamical tide may be cast in a similar form:
E(Zahπ) = $ 11/3 AL·,2 (3.41)σ
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FIGURE 5: The variation of with K^2 for a 5 Mθ star, as givenby the approximate analytic expression (3.40). The dashed segment ofthe curve indicates the region where the approximation becomes poor.Zahn’s (1975) result for the radial energy flux, expressed in termsof the quantity,S^Z in equation (3.41), is represented by a single
point at K =6. n
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TABLE IParameters of Zero Age Main Sequence Stellar Models.

Mass (M ) 2 5 7 10Radius (Rθ) 1.38 2.70 3.30 4.05log (L∕Lθ) 1.36 2.71 3.22 3.74ι°s(τθfp 4.033 4.224 4.309 4.393Approx. Spectral Type A6 B6.5 B4.5 B3
Central Density, p (g cm""3) 70.88 18.75 12.25 8.136
Central Pressure, p^ (10^6 dynes cm 21.09 6.68 4.77 3.50
Core radius (Rθ) 0.200 0.483 0.650 0.900X ≡ α r e e 0.62 0.71 0.76 0.83Boundary Γ 1.664 1.649 1.638 1.616Boundary Density, p⅛ c-3) 47.8 11.2 6.85 4.25
[r(dNv2∕dr)]r-fi -9e(10 sec ) 8.4 3.0 1.8 1.2
All models have hydrogen mass fraction, X ~ 0.70. 2 Mθ model has "metal"mass fraction, Z = 0.01; other models have Z - 0.03.
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TABLE IIAnalytic results for the normalizedmechanical energy transport rate, .n

2

Mass (M)
<r√⅛>5

2 5 7 10
Pe[r(dNv2∕dr)]r ez -1 3 2.(g cm sec ) 3.30x10~4 0.163 1.39 13.1
(£ A for K ½ = 10 η n no3.12x10 1.54 X 1031 321.31x10 331.24 X10
E2 1 1.45 x 10~8 1.53 X10"7 3.80X10~7 1.O2x1O~6
⅛ζ(ergssec ^^)Zj 274.84x10 303.23 X10 313.61X10 324.52x10¾a(io)∕⅛z 6 .4 4.8 3.6 2.7
1 Zahn (1975) Table I.2 Derived from E^, via equation (3.42).
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Z 8.26 X 10 (R1∕⅛)where √z = —-----------——7-777-------— E . (3.42)

(m1∕mθ)4zj λ

is the radius of the primary. is a constant which depends onthe structure of the star, and which is tabulated by Zahn (1975).2 —It depends particularly on r , [r(dN^ ∕dr)] , and (1+ k^), ande v reappears to have hidden R and M dependences, which cancel the anomalousexplicit dependence on these two quantities exhibited by expression (3.42). Since the non-rotating case considered by Zahn corresponds, in our terminology, to f = ”, Hough functions are replaced by associated Legendre functions (see section 2c[5]) and
2 ,n (3.43)

(See equation [2.34] for the definition of 2<ζ1∙) Thus, only the n = 2 mode contributes to E, and the appropriate corresponding value ofK = n(n + l) is 6. The single point, and K =6, for a 5n n nsolar mass star, is plotted on figure 5 for comparison with thepresent analytical results. Values of 5?^ and E^ for a range of primary masses are given in Table II. Note that and Z arc not exactlycomparable quantities, inasmuch as the latter effectively includes2the factor (l + k^) . In section 5a it is shown that 1 + k^ ~ 3.75,(K - 6). This is evidently η nso that we would expect to find 2<√*" ~ 14not true, and we shall return to this point when the numerical resultsare discussed in section 4d.Finally, we note an important feature of the present result for the rate of energy transport and loss, equation (3.39), which does not appear in Zahn’s work:



67Ê ≈ <⅞ 2 . (3.44)η n
As the rotation of the primary approaches synchronization with theorbital motion, f decreases towards zero and <⅜>n decreases rapidlyfor all n (see figure 3), thus greatly reducing and the synchroniza- I dΩ Itιon rate -— ., dt1
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e) SummaryAnalytic solutions are obtained to the differential equations (2.17), (2.18), and (2.23) governing the radial part of the dynamical tide. The convective core and the radiative envelope of the star areconsidered separately, and the solutions required to be continuous atthe core-envelope boundary. Complete core solutions are given by(3.9) and (3.10), in terms of the dimensionless quantities $_^(x),2i - 1,2,3,4. In the inner part of the envelope, where is givenby the linear relation (3.12), complete solutions take the form of (3.24) and (3.25). At greater radii, the more general WK.B solutionsderived in section 2e describe the homogeneous part of the dynamicaltide. The arbitrary WKB amplitudes A,n are related to the inner ±envelope arbitrary constants 1∣ and by (3.26).These two constants, along with the constant in the coresolution, are determined by application of (1) the radiation condition to the envelope solution, and (2) the requirement of continuity for δpn and h^ at the core-envelope boundary. The resulting exact expression for β is given as equation (3.34), and is simplified to produce the approximate expressions (3.35) and (3.36) for and A+n.The rate of radial transport of mechanical energy through the envelope by the nt'n mode is calculated from the latter expression and 

equation (2.52), and is given in (3.38). An auxiliary quantity,from which the explicit dependence on the tidal frequency and potentialamplitude has been removed, is introduced and plotted in figure 5
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as a function of the eigenvalue for a 5 solar mass star. Table IIindicates the way in which the results scale to other stars. Theresults of the analytic theory are compared with those of Zahn (1975), expressed in terms of the quantity



70
IV. NUMERICAL SOLUTIONS FOR A 5 SOLAR MASS STARThere are several methods by which our estimate, (3.38), ofthe mechanical energy transport rate by the dynamical tide might be improved. The dimensionless quantities L(×g) might be accurately computed by evaluating many of the coefficients of the corresponding power series (e.g. [3.5] and [3.6j), and substituting the results in expression (3.34) for β^. Alternatively, the core solutions δρ^ρ, δPn∣∣> ∖1p, an^ ħng might be computed numerically, and subsequently matched to the analytic envelope solutions (3.24) and (3.25).A third approach, and the one to be followed here, is to compute numerical solutions of the differential equations (2.17) and (2.18) spanning both the core and envelope of the star. It is then no longer necessary to match solutions at the core-envelope boundary, sinceeach of the numerical solutions is already continuous at this point.Only the central boundary condition (δp must be bounded and h go η nto zero) and the radiation condition must be applied to these completely numerical solutions. The latter raises some problems, as we shallsee in section 4c.The numerical solutions to be presented here all apply to a mainsequence star of 5 solar masses. In section 5, the analytic expressionsderived in section 3d are used to scale these numerical results toother early main sequence stars.
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a) The stellar modelThe first requirement for a numerical solution is a realistic stellar model. Specifically, the variation of pθ, pθ, Γ, and with radius throughout the stellar interior must be known. Since adetailed surface boundary condition has been replaced, for our purposes,by the simple radiation condition applied to the envelope solution,an accurate model of the stellar atmosphere is unnecessary.A crude profile of the 5 solar mass zero-age-main-sequence stellar model used in the present calculations is given in Table III.This model is one of a set of four (2, 5, 7, and 10 solar masses) computed for the writer by C. Alcock, using a stellar evolution program developed by B. Paczynski. Parameters for all of these models are to be found in Table I, and are used in section 3d in the evaluation of the analytic expression for equation (3.40), to produce figure5 and Table II.
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TABLE IIIProfile of the 5Mθ stellar model used in the numerical calculations (selected points only).

2Radius* Mass Density Temperature Pressure Γ Nv(10^*^θ cm) (Mθ) (gem ^) (10^° K) (10^θ dynes cm ) (10 sec ^)
.5034 0.005 18.55 2.583 6.554 1.641 0.0.014 0.040 17 .92 2.527 6.196 1.642 0.0,513 0.128 16.92 2.439 5.641 1.643 0.0.043 0.300 15.52 2.313 4.901 1.644 0.0,495 0.518 14.12 2.183 4.202 1.646 0.0,048 0.871 12.26 2.000 3.340 1.648 0.0.368(r ) 1.114 e 11.16 1.885 2.860 1.649 0.0,090 1.735 8.57 1.637 1.904 1.652 0.621013 2.565 5.48 1.365 1.015 1.653 1.253007 3.352 3.09 1.116 0.467 1.653 1.540,940 3.918 1.69 0.933 0.213 1.653 1.715053 4.376 0.79 0.755 0.081 1.651 1.415
Total radius = 18.792 ι∩1°X 10 cm.
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b) Boundary conditionsEquations (2.17) and (2.18) must be integrated outwards from the center of the star; a procedure dictated by the nature of thesolutions near r = 0 and by the central boundary condition. It waspointed out in section 3a that the second homogeneous solution forδpn is singular at r = 0, and the same holds for the correspondingsolution for h . In fact, n - (v+l)‰ ~r
and h ~ r nH2' - (v+2) (4.1)

Any attempt to numerically integrate the equations inwards wouldinevitably result in contamination by this rapidly growing singular solution, and the central boundary condition could not be satisfied.On the other hand, outward integration is stable inasmuch as theundesirable singular solution decreases rapidly outwards, while theregular homogeneous and particular integral solutions increase outwards.These latter two solutions automatically satisfy the central boundarycondition, since both δρ and h go to zero at r = 0. η nIn order to match the outer boundary condition, i.e., the radiationcondition, it is necessary to compute both the regular homogeneoussolution and a particular-integral solution. This boundary conditionmay be stated as follows, in a form suitable for use with the numericalsolutions: the oscillatory component of the solution in the envelopemust take the form



74, A nh = A n + r"i p (r) N (r)Ο V -1/2 exp i , τ _ 1 ∕ 2 » ηKn g(r) + c (4.2)
with g(r) given by equation (2.44). A,n and e*1 are real constants to be determined by matching this expression to the final numerical solutionLet us assume that, in the envelope of the star, the oscillatoryparts of the particular-integral and regular homogeneous numerical solutions are given by the appropriate WKB expressions:

3 -1/2 1/2 . .g(r) + e1h n AinP 1 r p (r) N (r) r O V
cos

and H cs* ÀnH 2 r3 p (r) N (r) r O V

-1/2
COS Kn 8(r) + e2J

(4.3)
(4.4)

where A , A^, e^, and e? are adjusted to fit these solutions. (It will be shown presently that these WKB expressions do indeed accurately represent the oscillatory component of the numerical solutions.)Then we seek a complex constant B, such that the combined solutionhn h + B h nP nH (4.5)
takes the form of expression (4.2). After a little manipulation, weobtain the result AB j(e2 eP 1 (4.6)
and, for the parameters of the combined solution,

A+n = A1 sin (e2-eχ) , (4.7)
and en ≈ e2 + y . (4.8)
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The outer boundary condition has now been satisfied, and the mechanical thenergy flux carried by the n component of the dynamical tide is calculated from A^n using expression (2.52):

rn<r-e> -⅛√s<√72⅛<θ>2 ∙
t-τ
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c) Numerical procedureEquations (2.17) and (2.18) are integrated simultaneously by thenumerical integration routine ,DIFSYS', to obtain the functions δp∏(r) and h^(r). Necessary values of pθ(r), pθ(r), Γ(r), and Nv(r) are obtained by tabular interpolation. Since only the dynamicalcomponent of the tide is of interest in the present investigation,the righthand sides of (2.17) and (2.18) are replaced by (2.23).The potential function, δV^ , given by equation (2.33), is set 2equal to Vθr , where Vθ is a constant. We thus neglect the small (< 15⅝) variation of k^(r) through the core of the star (see figure 12),From (2.33), 3GMV. = ----- U + ko)⅛ (4.9)0 15 a' n

= 4.096 X 10 (l+k2)μ<^n
-11 -2All numerical solutions are computed for Vθ = 10 sec , but, asthe equations are linear, the results may be scaled to any other value ofV . Clearly, the functions δp and h (and therefore the amplituden nA+n) scale linearly with V , while the energy flux scales quadratically. The numerical integration procedure is started at a small radiusin the core - usually at rθ ≈ values given by either : (1) 1 X 101° cm = 0.14 R, with initial©

δpn^ro^ = c r0 (4.10)and h (r ) ≈ C -v-- - r v~1W l 2 r0σ p„
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for the regular homogeneous solution; or (2)equations (3.5) and (3.7)⅛for the particular-integral solution. For ≥ 12, any small homogeneouscomponent in the particular-integral solution grows so rapidly with rthat it overwhelms the particular-integral component. In this situation,an initial radius of 2 x 10^^θ cm is used to reduce the range over which
the homogeneous solution may grow.Integration of the equations proceeds through the core, across 10the core-envelope boundary at r “ 3.36 x 10 cm, and into the envelope, before being terminated at a radius of 7.5 x 10^^θ cm. This is still 
only half way to the surface of the star, but is well into the regionof the envelope where the solutions may be represented by WKBformulae. Both regular homogeneous and particular-integral solutions are computed for each pair of parameters, σ and K .To determine the WKB amplitude and phase, and e^, for each of these two solutions, the function

(b + dr) + A r Po(r) Nv(r) -1/2 cos (K l∕2g(r) + e) (4.11)
is least-squares fitted to a short radial segment of h (r) by adjusting the parameters b, d, A, and e. Parameters b and d serve to locallydescribe the non-oscillatory part of the particular-integral solution.The final composite solution which satisfies the outer boundary condition is given, in terms of these amplitudes and phases, by equations(4.5) and (4.6). The amplitude of this composite solution, from which the mechanical energy flux is computed, is given by (4.7).
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In principle, the numerical solution of equations (2.17) and (2.18)is now complete. However, in most cases investigated, sin (eo-e1) 0, and the amplitude A n is not well determined.In this situation a second particular-integral solution must becomputed, from different initial conditions, which differs more inphase from the homogeneous solution. In practice, a satisfactorysecond particular-integral solution may be obtained by using thecomposite initial conditions:

δpnir<2 ^ δp∏p'rθ> + C' r0Vand (4 .12)
with the functions δρ^ and δh ? given by equations (3.5) and (3.7) and the constant Cz by A1C' = - —- C cos (e2 - eι∙) " (4.13)

All numerical computations were performed on the IBM 370/158 at the Booth Computing Center,, California Institute of Technology.
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d) ResultsNumerical solutions have been obtained for values of the tidalfrequency in the range 2 x 10 $ sec ≤ σ ≤ 10 sec ∖ and for valuesμof the Hough eigenvalue in the range 6 ≤ K ≤ 544, or 2.45 ≤ K 2 ≤ 23.33 η nCorresponding values of the synchronization parameter f range from co down to 0.13 for the n = 2 Hough mode, and from co down to 0.30 for the n = 4 Hough mode (see figure 2). Table IV gives a completelist of the numerical solutions, with the following parameters foreach solution:σ , Kn i f (2nd and 4t^1 modes) , WKB amplitude A+n (for Vθ = -11 -210 sec ) , phase difference ~ e^) between the homogeneousand final particular-integral solutions, radial mechanical energy -11 -2flux (for Vθ = 10 sec ) and normalized energy transportrate nThe final parameter, £is defined by equation (3.39):2'n σ-5

n11/3 (I + k2) μ
<Λj, ∙

n
and is independent of the strength of the tidal potential, Vθ. In the approximate analytic theory of section 3, and in Zahn’s (1975) work, £ is also independent of σ. In terms of the numerical WKB√, ealeulatea for V„ -

n 9-7 -5 v -½ -5/3 . n.25.27 X 10 K σ r, (A, )n -5 + (4.14)
£In figure 6, is displayed as a function of K for each η nvalue of σ used in the numerical computations. The analytic expression
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FIGURE 6: Numerical results for as a function of K 2, for different values of the tidal frequency σ, and calculated for a 5 Mθ star. Each curve is labeled by the appropriate value of σ, in units of 10 sec ∖ The uppermost curve is the analytic approximation of figure 5, plotted for comparison, and the circleagain represents Zahn's (1975) result. Squares indicate the numerical solutions shown in figures 7-10. At the top of the figure, scalesof the parameter f are given for n = 2, 4, and 6.
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for from figure 5, is also shown. It is immediately apparentthat, while Q? is not independent of σ, its dependence on this quantity is quite weak. In this respect, then, the analytic theory does rather well. However, the dependence of on K 2 does notn nclosely follow the analytic expression, especially for K ≤ 10where the analytic theory is expected to break down. In fact, thenumerical <⅛L goes to zero for K 2 ~ n 3.05, corresponding to f =“ 1.20n,ndfor the 2 Hough mode. ,ndy μFor Kn 2 =6 2 2.45, corresponding to f = “ for the 2““ mode, or,in other words, to a non-rotating star, the numerical value ofis in excellent agreement with the quantity obtained fromZahn’s (1975) results (see equations [3.41] and [3.42]) and alsoplotted in figure 6. This agreement is rather puzzling since, as Z

n

was pointed out in section 3d, cZ√ effectively includes the factordoes not. For the 5 Mθ model used in the present(l + k2)2, while n- 2calculations, (l + k2) 14 (see section 5a) . Zahn does not givea value for this parameter, but it is clearly included in his numerical calculation of the structure constant E2. Either 1+k2 is of order unity for the stellar model used by Zahn, which seems highly unlikelyin view of the discussion in section 5a, or there is some otherdifference between the two numerical calculations which neatly cancelsthe factor of 14.Some examples of the numerical solutions for h (r) and δp (r) η nare presented in figures 7 through 10. Figures 7 and 8 show thehomogeneous and particular-integral solutions respectively for σ =
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2 X 10 sec and = 6, i.e., for a non-rotating star. The phase difference between the two solutions in the envelope is 80o.8 . Dashed curves show the envelopes of the WKB solutions (2.42) and (2.43), whose amplitude A is determined by a least-squares fit of the numerical solution from r = 6 x 10^θ cm to 6.5 x 10^θ cm, as described in 
section 4c. The agreement between the WKB envelopes and the envelopes of the numerical solutions, even quite close to the core, is bothimpressive and typical of all of the numerical solutions examined.In figure 8, a dot-dashed curve has been superimposed on the ôp^ir) solution,which corresponds to the non-oεcillatory part of the particular solution (3.25):

V 2σ Pr0 κn _d_dr r p.
This aspect of the numerical solutions is also evidently in closeagreement with the analytic theory. Finally, note that the non-oscillatory part of h^(r) i∏ figure 8 is, as predicted, quite small.Figures 9 and 10 show the homogeneous and particular-integral -5 -1solutions respectively for σ = 2 x 10 sec and K^ ≈ 56.25, correspond ing to f = 0.40 for the 2nc^ mode or f = 0.86 for the 4t^ mode. The phase difference between the solutions is 77°.O∙
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FIGURES 7 and 8 : Numerical solutions for h (r) and δp^(r) for a5 M„ star, and for the parameters σ = 2 x 10 sec and κ =6.G> nFigures 7 and 8 display the homogeneous and particular-integralsolutions respectively. Dashed curves indicate the envelopes ofthe WKB solutions, whose arbitrary amplitudes were determined by least-squares fits to h (r) for 6.0 x 10^θ cm ≤ r < 6.5 x 10^θ cm. 
The dot-dashed curve in figure 8 represents the non-oscillatory part of ⅛n, as predicted by the analytic theory of section 3. The non- oscillatory part of h^ in figure 8 is also apparent for large r, but is small.
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FIGURESand K = ηpart of
9 and 10: Same as figures 7 and 8, but for σ = 56.25. WKB envelopes are not shown, but theδp^ is again indicated in figure 10.

■ 2 X 10 5 sec 
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e) Atmospheric propagationAll numerical solutions presented in this section have beencomputed with the radiation condition (A_n = 0) as the outer boundary-condition. It was stated in section 2f that this condition is only fctlrigorously applicable when the gravity waves constituting the n Hough mode can propagate through the region of minimum temperature in the stellar atmosphere. This propagation condition is expressed by equation (2.50):

σf < 2(2n- 1) (Γ-l) g HmmR rIin terms of the surface gravity, g, and the minimum scale height,H . . When this condition is not satisfied for a particular mode, minapplication of the radiation condition amounts to an assumption thatthe damping constant γ i≥ 0.5.For the 5 Mθ stellar model used in the present calculations, the effective temperature, Tθ^^, is 16,750° K (see Table I). The minimum temperature of the optically thin region above the photosphere must be ≥ = 14>lθθ° K’ basθd on simple concepts of radiativeequilibrium. Therefore, k TgH minmin μ M1 k Tef f (4.15)Ήwhere k is Boltzmann's constant, M is one atomic mass unit, and μ His the mean atomic weight of the gas. In terms of the standardstellar abundances X and Y, and the hydrogen ionization fraction x,



93μ - [(l+×) X + Υ/4] 1 (4.16)
-0.96where we have substituted X = 0.70 and Y = 0.27 from Table I andobtained x from Allen (1973).A conservative propagation condition for the 5 Mθ stellar model is thus of < 0.74 X 10 5 (2n-l) sec ^*^ . (4.17)

The precise value of the numerical constant in this expression israther dependent on the stellar model employed. Using parametersfor a 5 Mθ main sequence star from Allen (1973) and Cox and Giuli (1968) -5 -1 -5 -1we obtain 0.54 x 10 sec and 0.97 x 10 sec respectively.In figure 11 tidal evolutionary tracks of binary systems in the f, σ plane are displayed for orbital periods of 1, 2, 4, and 8 days.This evolution is discussed in detail in section 5b. Also shownare the regions where (4.17) is satisfied for n = 2, 4, and 6.Taking as an example a binary with a period of 4 days, we see that, for f > 0.75jonly the 8th and higher Hough modes can propagate through the stellar atmosphere. As f decreases below 0.75, and then below 0.68, the 6t^h and 4t^ modes, respectively, begin to propagate.Finally, for f < 0.54, the 2n^ (and lowest) mode may propagate, as well as all higher order modes.If radiative or viscous damping of non-propagating modes should prove, upon detailed examination, to be insignificant (i.e., γ « 1), then only propagating modes contribute to the net transport of mechanical energy through the stellar envelope. In this situation,
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it is apparent from figure 11 and from the decrease of the projection coefficients £ with increasing n that the energy dissipation rate is greatly reduced in the early stages of synchronization.However, for the calculations of synchronization rates in thenext section, we shall assume that the radiation condition Zδapplicable for all values of σ and f.
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FIGURE 11: Variation of σ (in units of 10 sec ^^) and f during the 
process of tidal synchronization, for binaries with orbital periods of 1, 2, 4, and 8 days. Arrows indicate the direction of rotational evolution. Dashed lines separate the fσ plane into regions where the propagation condition (4.17) [applicable to a 5 Mθ star] is satisfied for the indicated Hough modes. See text for furtherinterpretation.
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f) Extrapolation to other starsTo the extent that the numerical results for the 5 solar massstar agree with the analytic theory developed in section 3, one maybe justified in scaling the present numerical results to otherearly-type main sequence stars, using the analytic expressions asa guide. The weak dependence of on σ, and the reasonable agreement nbetween ζ∕β (analytic) and (numerical) for K 2 > 10 are two suchη η npoints of agreement which can probably be extrapolated safely. On theother hand, the dependence of on K 2 for K 2 ≤ 10, which is not η η nwell predicted, at least by the approximate analytic expression (3.40),may vary considerably for different stellar models. In particular,there seems to be nothing fundamental about the value of K for which o n$ = 0, and this value might well be different for other models,n However, in the interests of simplicity, it will be assumed inthe next section that the form of the function <£ (K ½) -ii, approximately η nthe same for all early-type main sequence stars, and that its absolute value may be scaled according to expression (3.40).
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V. SYNCHRONIZATION TIMESCALESUsing the numerical results of section 4, we describe here theprocess of tidal synchronization of the rotation of a 5 M star.The time scale for synchronization· is given as a function of the binary orbital period P, and the secondary mass fraction μ. These resultsare extrapolated to other early-type stars with the aid of theanalytic expressions derived in section 3.Observations of synchronization in close binaries are summarized, and compared with the theoretical predictions.a) The Love functionTo apply the formulas of sections 3 or 4 for E, the energydissipation rate due to the dynamical tide, we must estimate the effective average value of the Love function, kg(r), in the stellar core. This quantity is obtained by integrating Poisson’s equation (2.11), with the density perturbation corresponding to the equilibrium tidal perturbations given by (2.21). The integration is carried to the surface of the star, where appropriate boundary conditions areapplied.Because the stellar model used for the numerical calculations insection 4 was computed for only the inner 50% of the radius of the star (including, however, 90% of the mass), the integration of Poisson's equation cannot be carried to the surface. In consequence, the function 1 + ^(r) may be computed for the interior, but it contains anarbitrary multiplicative constant. However, the structure of a starwhich is largely in radiative equilibrium, such as an early-type



99
main sequence star, is given to a reasonable approximation by that ofa polytrope of index 3 (cf. Eddington's 'Standard Model').Chandrasekhar (1933) has calculated the internal potential intidally distorted polytropic models; these results have been converted to our function 1 + k^(r), and plotted in figure 12 for polytropes of index 2, 3, and 4 with radii scaled to the radius of the 5 solar mass model. Also plotted is 1 + k^(r) for this model, with the arbitrary constant chosen by matching the form of the function to the formsexhibited by the polytropic sequence. As expected, the index 3polytrope provides an excellent representation of the Love functionof the "real" stellar model.Since the particular-integral solutions for the dynamical tide in the core, equations (3.5) and (3.7), are increasing functions of radius, the effective average value of k£(r) should be weighted towards the outer part of the core. We adopt the value1 + k2 = 3.75 . (5.1)This value is essentially a characteristic of the index 3 polytrope, so it will subsequently be used for stars of 2, 7, and 10 Mθ also.
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FIGURE 12: The dimensionless function 1 + ^(r) for polytropic 10models of index 2, 3, and 4 (scaled to a radius of 18.79 x 10 cm)and for the 5 stellar model. The radius of the core is indicatedby r . j e
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b) Tidal synchronizationConsider a binary system in which the components (1) move in circular orbits about their common center of mass, and (2) rotateabout axes perpendicular to the orbital plane. For simplicity, weneglect the rotational energy and angular momentum of the secondaryand concentrate attention on the primary. Denoting the center-to-center distance between the two stars by a, the orbital angular velocity by ω, the primary's rotational angular velocity by Ω, the masses of primary and secondary byM^ and respectively, and the moment of inertia of the primary by I, we obtain the following expressions for the total angular momentum of the system about its center of mass, and for the total mechanical energy of the system:2/3G ' M1M2(M +M2) 1/3 ~l∕3 4. T∩ ω + IΩ (5.2)

E = g2∕⅜1m22(M1 + M2) 1/3 ω2/3 + ⅛ IΩ2 (5.3)
Kepler’s third lawω2a3 = G(M + M ) (5.4)
has been used to eliminate a, and ω is assumed to be positive. Thereis no restriction on the sign of Ω.Tidal interactions between the two components cannot change thetotal angular momentum, L, but do change both ω and Ω. In consequence,the total mechanical energy must also change. Applying this constraint
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on L, and denoting the rate of decΛeα2>C of total mechanical energy by E, we obtain

and
I(Ω-ω)2EIσn

(5.5)
(5.6)

. 3(M1+M2)u31 4/ω = — „ ,√--------------- ω £2G ' ¾χM (5.7)
31torb (5.8)

In the latter expression for a), ^-0r5 t^ιe orbital moment of inertiaof the system about its center of mass:
orb Vi

m! + m2 (5.9)

Ω ' E

Ω

Since I ~ 0.06 , where is the radius of the primary, and2(B^/a) « 1 generally, we haveI « Iorb (5.10)
and consequently ∣ω∣ « ∣Ω∣ . (5.11)From equation (5.5), we see that dissipation of mechanicalenergy by tidal interactions (e.g., by the driving and ultimatedissipation of gravity waves, as we have considered) causes Ω toapproach ω, i.e., causes synchronization of rotation and orbital

«motions. If Ω>tu, then Ω < 0, while if Ω < ω (including negative Ω) ,
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«∏> 0» At the same time, ω is also changing, and, by (5.8), in the same direction as Ω∙ However, as long as I > 31, which is always the case in real binary star systems, ω changes more slowly than Ω, and the system evolves towards a stable state of synchronous, rotationand orbital motion.From equation (5.6>, the evolution of the tidal frequency σ2(hereafter denoted by σ) is given by• ∙ ∙ Δ Fσ ≡ 2 (Ω ~ ω). — , (5.12)• ∙where we have neglected ω in comparison with Ω. As Ω → w, σ ~, 0.The synchronization parameter f, of Laplace's tidal equation (2.19),also evolves : pf = f(l-f)~ . (5.i3)

As Ω ∙→ ω, f -» 0 also. Figure 13 shows σ∕2ω and Ω∕ιt> as functions off. This figure is a modification of figure 11, in which thedifferent evolutionary tracks have been combined into a singletrack by plotting σ∕⅛ rather than σ. A tidally evolvingbinary system must follow this track towards f = 0, σ = 0,and Ω = ω, at a rate determined by the energy dissipationrate Ê via equation (5.12) r,
Thus far, the discussion of tidal synchronization has been deliberately general in nature. Let us now consider the specifics ofsynchronization due to eventual dissipation of the mechanical energy generated and transported outwards through the primary by the dynamical tide. Since' E depends in a complex fashion on f, via the eigenvalues
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FIGURE 13: The relation between σ∕2ω, Ω∕ω, and f for Ω ≥ ω.The decrease of σ and f accompanying the process of synchronizationis indicated by the arrow. Since the orbital iöean motion no does not change significantly during synchronization, the f-σ evolution curves of figure 11 are essentially this curve, scaled to differentvalues of ω.
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K (f), the evolution of the system is best examined in terms of this n jparameter, rather than in terms of σ or Ω.Combining equations (5.12) and (5.13), substituting expression (3.39) for, E^, and eliminating σ in terms of f and the orbital period, P (in days), we obtain the equation governing the evolutionof f :

1τ̂ :8/3(1 - f) 2/3f = Σ 6ξ(f,σ)∣⅛lθfo)] 1⅞(f)2] ∙ (5.14)n=2
Si (σ) represents the value of j^(f,σ) corresponding to K^2 = 10, and is a convenient normalization for ≈⅛^(f,σ). The analytic approximation for , which is independent of σ, has been given inTable II for stars of 2, 5, 7, and 10 Mθ. The time constant τ is a function of P, μ, and the structure of the primary:

9.141 X 10 -21 17/3 (5.15)I P
α÷k2r yri^iυ(σ)

,17/30 2μ (5.16)
where τθ is a function only of the primary’s structure.To integrate equation (5.14), we retain only the n - 2 and n = 4terms in the sum over Hough modes. The numerical solution for t2ζ(f,σ)for a 5 Mθ star is given in figure 6. We neglect the slight dependenceof æ on σ, and adopt the curve Si (f) for σ = 6 x 10 ^,sec ^*^ as η na representative average21.. With projection coefficients (f) and f^,^(f) as shown in figure 3, the sum in equation (5.14) is evaluated
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and displayed as a function of f in figure 14. The increase of this sum as f decreases from 1.0 to ~ 0.6 is due to the growth of ¾(f) 
in this range, while the decrease for f ≤ 0.6 is due to the rapid diminishing of ¾(f) and as f becomes small.Equation (5.14) may now be numerically integrated, startingwith f = 1.0 at t = 0, to yield f(t∕τ), as shown in figure 15.Not surprisingly, the rate of evolution of f decreases considerably asf decreases below 0.5. Thus the time scale for synchronization,'rsyn> dθP∞ds critically on the adopted practical criterion for a system to be considered synchronous. On the other hand, this timescale is relatively independent of the initial value of f, as longas this is not too small. Referring to both figures 15 and 13, we note the following values of T n for various synchronization criteria : = 2/3 or Ωsyn = 3ω

= 1/2 or Ω = 2ωsyn = 1/3 or Ω = 1.5ωsyn
τ syn = τ 9

T syn = 2.4 τ 5

T = 12.0 τ >syn
(5.17)

Note that the function f(t∕τ) and the results above strictlyrefer only to a 5 Mθ primary, for which (σ,f) is given in figure 6.However, if it is assumed that the form of the function (σ,f) is napproximately the same for all early-type stars, and that only the amplitude (specified by Sj^θ) changes, then these results may be 
applied to other early-type stars, with appropriate values of Tθ.
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FIGURE 14: The numerical results for and <S^(σ,f)-5 -1for a 5 Mθ star, plotted as a function of f for σ = 6 x 10 sec ,and derived from figure 6. Also shown is the sum Σ π Ά ίο ∖ which n=2 n 'i-'nappears in equation (5.14). The parameter derived from Zahn'swork,is independent of f.
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FIGURE 15 : Evolution of the synchronization parameter f, as a function of the dimensionless time variable t∕τ, for a 5 Mθ star. This curve was obtained by the numerical integration of equation (5.14), and represents the contributions by the 2nd and 4th Hough modes to the dynamical tide, as shown in figure 14.
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c) Synchronization times and critical periods For the 5 Mθ stellar model, is obtained from the numericalresults displayed in figure 6:J?10 0.95 X 10^1 ergs sec 1 . (5.18)

The moment of inertia, I, is calculated from the density profile of the model: I = (2.2 ± 0.3) x 10^ g cra"∖ With 1 + = 3.75 (see
section 5a), the parameter τθ of equation (5.16) isτθ= 1500 yr . (5.19)To estimate τθ for other early-type stars, recall the approximateanalytic expression for c⅞z > equation (3.40):

[r<dtiv Mr)L peeWith stellar parameters from Table I, this expression has previously ⅛been evaluated for K =10, and the results listed in Table II. For nthe 5 M model we obtained(analytic) = 1.54 x 10^ ergs sec . (5.20)
A comparison of this result with the more accurate numerical result(5.18), reveals that the analytic estimates of should be reduced2by a factor of 0.62. The moment of inertia factor, I/M R , isassumed to be the same for all stars in the mass range 2 to 10 M Θ(see e.g.s Zahn, 1975 Table I), and to take the value 0.063,derived for the 5 Mθ model. Finally, as intimated in section 5a, the constant 1 + k^ is taken to be 3.75 for all early-type stars.
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We thus obtain the following estimates for τθ:τθ = 78,000 yr (M1 = 2 Mθ)

τθ = 370 yr (M1 = 7 Mθ) (5.21)
τθ = 84 yr (H1 ≈ 10 Mo)

A convenient power-law representation of τθ as a function of primary mass is
τθ - 1.5 X 106 (M1∕Mθ)~4∙25 yr (5.22)

which yields the following approximate form of equation (5.16)-4.251.5 X 10 , M 6/ 1 ,17/3M yr. (5.23)Θj μIn order to compare these results with observational material,we ask the following question: What is the critical value of theorbital period, P . , such that most observed close binaries with crιtP ≤ should exhibit essentially synchronous rotational velocities?The answer depends somewhat on "most", since not all observed binariesare the same age, and on the criterion for synchronization, as wasdiscussed in section 5b. Following Zahn (1977), we require thesynchronization time,lifetime, τ , of the ivx□by
p .cπt

τgyn5 cθ be n0 more than ¾ or the main sequence primary. The critical period is then given
’ 2μ T MS4 τrι(τ ∕τ)0 syn

3/17 (5.24)
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where the ratio (τ ∕τ) depends on the adopted criterion for syn- synchronization. For example, from (5.17) we have T ∕τ = 2.4 for synf = ⅛. syn Table V gives the critical periods for stars of 2, 5, 7, and10 M . evaluated for μ = ½ and f = ⅛ and 1/3. These results may Θ synbe easily scaled to different values of μ or f by reference to synequation (5.24) and figure 15. The main-sequence lifetimes in the table were obtained by adopting the value 7 x 10? yr for the 5 M
model (Cox and Giuli, 1968 , vol. 2, p. 988), and then scaling this according to mass/luminosity (see Table I) for the other stellar models. An excellent approximation is

ι,-^3.2xlθ9 (Μ/M)-2'38 yr∙- (5.25)MS O
TABLE VCritical orbital periods for thesynchronization of close binaries.

Mass (M ) 2 5 7 10
⅛S (yr) 6 x 10 7 x 107 3 x 107 1.3 x 107
τθ (yr) 7.8 x 104 1.5 x 103 3.7 2x 10 8.4 x 101
P ..(days) crιt j , if = ⅜ 1.92 2.63 2.91 3.26syn 3for μ = 0.5 f = I 2.55 3.50 3.86 4.33syn 2P . (days) crιt j ' (Zahn [1977]) 1.59 2.19 2.69 3.30
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An approximate expression for the critical period may be derived from expressions (5.22) for τθ and (5.25) for τ^s :

3/17P . ~ 3.03crιt τ ∕τ syn (M1∕Mθ) 0.33 (5.26)JL
for 2Mθ ≤ M1 ≤ 10Mθ

The last line in Table V gives the critical periods forsynchronization calculated by Zahn (1977). Zahn has adopted a slightly different definition of the synchronization time τr-5/3 syn
syn A (.SL∖ d t ∖2ω ∕ (5.27)1

which reflects the fact that and are independent of fη n Zwhen the rotation of the star is neglected. Evidently, τsyn thetime taken for the system to evolve from f = 1.0 (σ∕2ω = “) tof = 0.5 (σ∕2ω = 1). Zahn's values for the critical periods shouldthus be compared with the present values of P . for f = ⅛^.crιt syn 2In terms of Zahn's dimensionless parameter (see Table II),
syn 6.64 X 10 56 (M1∕Mθ)4∕3 

e2<ri∕Rθ)9 IP17/3' yr (5.28)
Comparing this expression with equation (5.15) for τ, and substituting Zfor in terms of

Z = 3 (l + k )2 syn 5-------- ⅛-
2For a primary of 5 K,. Tr ©’ syn

(see equation [3.42]), we find
10

(5.29)

24.8 τ, or about 10 times longer than

μ
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our f = ⅛ synchronization time of 2.4 τ. This factor of 10 syndifference in predicted synchronization times results in the factor -3/17of ~ 10 2/3 difference between Zahn’s critical periods and thoseobtained in the present study. We shall presently see that the shortersynchronization times and correspondingly greater critical periods arein closer agreement with the observational evidence.Before turning to a discussion of the observations pertaining to synchronization, we digress briefly to consider a point of interpretation raised by Zahn (1977).The rate of dissipation of mechanical energy associated with thedynamical tide, and hence the time scale for synchronization, depends basically on three things: (1) the strength of the tidal potential;(2) the tidal frequency σ; and (3) the structure of the core andinner envelope of the primary. Concentrating on the first of theseparameters, we have 'M2∖2 μ(M1 + M2)' 2^ (5.30)E <≈ 2
Since σ also depends on P, it is apparent that P is indeed a fundamental parameter of the process of tidal synchronization.Zahn, however, recommends the use of the fractional radius, R^∕a, in place of P in the analysis of observational material and in comparisons of these data with theory. This parameter, as well as P, may be obtained directly from an analysis of the light curves ofeclipsing binaries.
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This recommendation is ill-advised, inasmuch as the primary’sradius R^ does not directly enter into the calculation of the dynamicaltide. This seems at odds with equation (5.28), but in fact dependsstrongly on through Zahn’s practice of normalizing the radius3 bvariable by R and the tidal frequency by (GM^∕R^ )2. In the present work this apparent dependence on R^ has been removed by avoiding such normalizations.The significance of this distinction between the use of theparameters P and R^/a lies in the fact that the radii of stellarmodels are quite uncertain. For example, for a 5 solar mass zero-agemain sequence star, we find the following radii in use: 2.24 Rθ(Cox and Giuli, 1968 , vol. 2, p. 982), 2.35 Rq (Zahn, 1975, 1977 ),2.70 Rθ (present calculations), and 3.31 Rθ (Allen, 1973 ). Referringto equation (5.15) for the tidal synchronization time scale, we have 17/3τ α τθ P . If this equation is rewritten in terms of the fractional radius, it becomes

T cc τ i ∕JL∖17∕20 ∖R1 ) (5.31)
17/3but the new constant τθ cc τθR^ ' and is consequently quite uncertain.
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d) Comparison with observations Rotational velocities have been measured for ~ 100 early type(0-F) stars in close binary systems, by modeling the rotationaldoppler broadening of sharp spectral lines. Unfortunately there aretwo serious problems connected with the interpretation of these data.First, only the radial component of the rotational velocity ismeasured i.e., v sin i, where i is the inclination of the star’s κequatorial plane to the plane of the sky. Second, to compute the rotational angular velocity Ω, or, equivalently, the expected "synchronous rotational velocity" v , the radius of the star mustbe known. 1) Eclipsing binariesBoth of these problems may be solved for one class of closebinaries - the eclipsing binaries. These systems are seen, by definition, almost edge-on, so that, with the assumption that the stellar equatorial plane is coincident with the orbit plane, sin i≈,l. From the analysis of the light curve of an eclipsing binary, the inclination and one or both fractional stellar radii, R ∕a and R^/a, may often be obtained. If the radial velocity curves for both primary and secondary are measurable, the total mass and the semi-majoraxis ,a, may be computed, thus yielding absolute radii. Alternatively, the absolute radii may be estimated from the apparent magnitudes of thestars, if the distance to the binary is known.Koch, Olson, and Yoss (1965) and Olson (1968) have measured therotational velocities v of 40 early type stars in 29 close-binary R
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systems, most of which are eclipsing, and compared these velocities withthe "synchronous velocities" v . These data have been carefully discussed, and four more systems added, by Plavec (1970).The simplest and most obvious conclusion to be drawn from thedata on eclipsing binaries is that, for each spectral type, the∖average rotational velocities are about one-half of the typical fieldstar rotational velocities (see Plavec, Fig. 1). Either the componentsof binaries are formed with comparatively low rotation rates, which isquite plausible since most of the angular momentum of these systemsresides in their orbital motion, or some process of synchronizationis at work. An examination of Olson's (1968) plot of v against v R s(Olson, Fig. 2; Plavec, Fig. 2) led Plavec to draw the followingconclusions:"(1) No case is known of a component rotating considerably more slowly than required by synchronism.(2) As a rule, the rotation is synchronized with orbital motion, or may be somewhat faster.(3) A few stars rotate considerably more rapidly than they should if synchronism applied to them."(Plavec, 1970, p. 137)Most of the "synchronously" rotating (Ω ≤1.5ω) stars discussedby the above writers have orbital periods ≤ 4 days, and fractionalradii > 0.15, while most of the definitely non-synchronous rotatorsdo not satisfy these inequalities. There are, however, exceptions inboth cases, e.g., the primary of V380 Cyg, which rotates synchronouslywith a period of 12.4 days; and the primary of U Cep, which has anorbital period of 2.5 days but rotates 5.25 times faster than
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synchronism requires. Moreover, most of the systems studied haveperiods less than 6 days. Plavec concludes that "...nothing statistically meaningful c⅛n be said about periods longer than 4 days."The 33 systems considered in the above studies are used here inan observational test of the theory of synchronization by the actionof dynamical tides. The component stars range in spectral type from F0(M~1.6 Mθ) to 08.5 ( M~23 M ) , most falling within the mass range 2 M - 10 Mθ covered by our theoretical analysis. We have seen already that the predicted critical period for synchronization (Table V) is 2-3 days for f n = y (Ω = 1.5ω), or 3-4 days for fgy∏ = ⅛(Ω = 2ω) . These periods are of the same order as, but perhaps somewhat shorter than, the critical period of 4 days suggested bythe observational data.A more detailed test may be performed by calculating the tidalsynchronization time constant, τ, for each binary component whoserotation has been measured, and comparing this with the star's main- sequence lifetime, τ^g∙ Equations (5.23) and (5.25), extrapolated to> 10 Mθ when necessary, are used to obtain τ and T^g, resPectively The primary mass M^jand the secondary mass fraction μ are obtained by reference to Batten's (1967) Sixth Catalogue. When both primary and secondary radial velocity curves have been measured for a system, andthe inclination estimated, both masses are known. For systems withonly one measured radial velocity curve, the primary's mass has been estimated from its spectral type (with the calibration from Allen [1973]), and μ has been set equal to 0.5.
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Table VI gives the resulting values of .t∕tmq, along with Γlθmeasured v ∕v , for 44 components in 34 close binaries. These results 

K bare also plotted in figure 16, in the form of log(v^∕vg) ≡ log(Ω∕ω)against τ/τ^^. Recall (equation [5.17j) that the time for a star tospin down from an initially rapid rate to Ω = 1.5ω is ~ 12τ. We thusexpect to find Ω∕ω ≤ 1.5 for most stars with τ∕τ < 0.02, and forl*lθvery few stars with t∕tms > 0.08. On the other hand, if the loosersynchronization criterion of Ω ≤ 2ω is adopted, these limitsbecome τ∕τ, < 0.1 and τ∕τ,,r, > 0.4, respectively.M MSDisregarding certain obvious exceptions, figure 16 reveals thatmost stars with < 1 satisfy the tighter criterion Ω∕ω <1.5.For > 1, the distribution of Ω∕ω appears, at present, to berandom. (Because of the strong dependence of τ on the period P, figure 16 is not greatly different in the distribution of data points from Plavec’s plot of log(vr∕vg) against P.) The theory is thus qualitatively successful in ranking most binaries according to their synchronization time scales. Quantitatively, however, the predicted times for spin-down to Ω∕cυ ~ 1.5 are about one order of magnitude too long to explain many observed cases of "tight" synchronism, although the times predicted for spin down to Ω∕ω = 2 ("loose" synchronism) are compatible with the observations.It appears, therefore, that the problems of the dynamical tidemodel of synchronization lie not with the basic time constant T, butwith the long "tail" exhibited by figure 15. For values of f < 0.5, or Ω∕ω < 2, the predicted rate of synchronization decreases rapidly,
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TABLE VIRotational velocities and synchronization time constants for 44components of 34 close binaries. Systems denoted by asterisks areeclipsing - others are single- or double-line spectroscopic binaries.Values of v ∕v from Olson (1968) and Plavec (1970); all other data K Ofrom Batten (1967). Values of τ∕τ^g calculated with a mass inferred from the spectral type are indicated by a †.

System Orbital Period Spectral Type v∕v Ι∕τ∕ η ∖ ∙K o Mo(days)
γ And B 2.67 B9.5 V 1.22: 0.03σ Aql* 1.95 B3 1.11 0.003B3 1.61 0.003β Aur* 3.96 A2 IV 1.16 0.97A2 IV 1.14 0.97WW Aur* 2.53 A7 1.08 0.12A7 1.03 0.12R CMa* 1.14 F0 1.26 0.0014δ Cap* 1.02 Am 0.83: ~ 0.0006AO Cas* 3.52 08.5n 0.80 ~ 0.01↑08.5n 0.97 ~ o.orAR Cas* 6.07 B3 4.06 ÷0.9RZ Cas* 1.20 A2 1.30 0.0008YZ Cas* 4.47 A2 0.97 1.4†AH Cep* 1.77 BOn 1.21 ~ 0.0004BOn 1.13 ~ 0.0003U Cep* 2.49 B8 5.25 0.02+
a CrB* 17.4 A0 14 - 100†V380 Cyg* 12.42 B1.5 0.98 - 42Y Cyg* 3.00 09.5n 1.46 ~ 0.00509.5n 1.41 - 0.005AI Dra* 1.20 A0 1.15 0.0006’66 Eri 5.52 B9 0.70: 2.6 '
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TABLE VI (Continued)

System Orbital Period (days) Spectral Type v√vs τ ∕τ z MS
68 Her* 2.05 B3 1.01 0.00161RX Her* 1.78 B9.5 1.15 0.008Al 1.19 0.008δ Lib* 2.33 AO V 1.03 0.024 t̂^δ Ori A* 5.73 BI 0.94 ~0.3†W Ori* 1.49 B2 0.62: 0.007U Oph* 1.68 B4 1.05 0.002B5 0.94 0.002AW Peg* 10.62 A5e 6 4500EE Peg* 2.63 A4 IV 1.13 0.1†AG Per*1 2.03 B3 0.99 0.006— 1.11 0.006b Per 1.53 A2 0.91: 0.003+o Per 4.42 BI III 0.98: 0.062- 1.22: 0.06RY Per* 6.86 B4 10 ~ 2†U Sge* 3.38 B9n 0.86 O.161"RZ Set* 15.19 B2 4 ~ 100+
λ Tau* 3.95 B3 V 0.97 0.8RS Vul* 4.48 B5 1.96 2.4HD 98088 5.91 A2p 1.003 ~ 12
1) Probable age of ~ member of II Persei association, 1.6 X Iθ6 yr. which has a kinematic
2) τ∕τMS Probably invalid, since primary is not on the main sequence.3) Synchronism based on spectrum and magnetic variations, not on rotational velocity.
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FIGURE 16: Plot of lot (v ∕v ) against τ∕τ for components of theit, o Kobinary systems listed in Table VI. Open circles represent systems for which the masses of both primary and secondary are given by Batten (1967). For the systems indicated by filled circles, theprimary mass was estimated from the spectral type and the massfraction μ set equal to 0.5. Perfect synchronism is indicated by the solid line, and the "tight" synchronization criterion by the dashed line. Unusual or non-synchronous systems are identifiedfor convenient reference.
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due to the decrease of the projection coefficients & . The theory thus npredicts that a large number of systems with 0.01 ≤i τ∕τ 1 should exhibit values of Ω∕ω in the neighborhood of, or somewhat less than, 2. Further reduction of Ω∕ω (to 1.5 or less) should only have occurred for those systems with τ∕τ^g ≤ 0.02, a prediction which is clearly at odds with the observations.One process which might be responsible for the subsequentreduction of Ω∕ω from ~ 2 to ~ 1, and also for the several values of Ω∕ω <∙ 1 shown in figure 16, is the slow evolutionary expansion of early type main sequence stars. In order to conserve angular momentum,the star's rotation rate must decrease as the star expands - evenbelow the synchronous rate, if the tidal interactions are too weakto transfer sufficient angular momentum from the orbital motion tocompensate. Olson (1968) has already speculated that this effect might be operating, based on a correlation between values of Ω∕ω < 1 and low stellar surface gravities. Zahn (1977, fig. 3) included this expansion in a calculation of the rotational evolution of a 15 Mθ star, and showed it to be quite important, especially in the latter stages of the star's main sequence lifetime. We shall have cause toreturn to this matter presently.Besides the inevitable processes of tidal interaction and evolutionary expansion, other factors may control the rotational evolution of the components of some close binaries. About 40Z of the systemslisted in Table VI are classified as semi-detached binaries, i.e., systems in which one component (usually the secondary, dimmer star)
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fills its Roche lobe and is transferring mass to the other component (usually a main sequence star). This transfer of mass must be associated with a transfer of angular momentum, which probably serves to spin-up at least the surface layers of the mass-gaining component (Plavec,1970 ). This latter component is usually the more massive and the brighter of the two stars, and is the one whose rotational velocity is most commonly measured.Of the 6 clearly non-synchronous stars shown in figure 16,RZ Set, RS Vul, RY Per, and U Cep all represent the primaries ofsuch semi-detached systems. The same is true of AW Peg, for which 
t/t^s ~ ^500, and which consequently does not appear in figure 16.U Cep, in particular, is well known for the spectroscopic effects whichaccompany the transfer of mass, and, in light of its period of only 2.49 days and its value of τ∕τ 0.02, is a likely candidate for spin-up due to mass transfer.The other two stars shown in figure 16 which are clearly non-synchronous, a Cr B and AR Cas, represent the primaries of ordinary detached binaries. The long period (17.4 days) of the former is responsible for the large value of τ∕τ^g “ 100 and, as pointed out by Plavec, it is not surprising that it is still in a state of rapidrotation. The primary of AR Cas, on the other hand, has a period of6.07 days and τ∕τ 0.9 - both comparable to some other synchronous Iviostars, although longer than most. It is quite possible that this issimply a young star whose rotation has not yet been greatly affected bytidal interactions with its small companion.



129Finally, we consider the last entry in Table VI, HD 98088, which suggests still another possible influence on rotation rates in certain close binaries. The primary in this system is an star, a member of a group of stars which is very poorly represented in closebinaries, but is characterized by slow rotation rates (among other things). The rotational velocity of the star has not been directly measured, but it exhibits spectrum variations which are perfectly synchronous with the orbital period of 5.91 days (Abt, et al [1968]).A stellar magnetic field has been identified (another common property of Ap stars), and its observed strength also varies synchronously with the orbital period. Dynamical tides cannot possibly explain the precise synchronism exhibited by this system. The obvious candidate for a synchronization mechanism in such a system is some form of magnetic brak ing, which may conceivably act only on the surface layers of the star.
(2) Other binariesA separate analysis of observational material pertaining tosynchronization in binaries has been carried out by Levato (1976),who considered all binary systems with measured stellar rotationalvelocities, v sin i, and tx V b yβ spectral parameters. Since most of κthe 122 systems considered are not eclipsing, the inclinations andfractional stellar radii are unknown. The measured stars were dividedinto eight spectral categories, corresponding to the average spectraltypes B2, B7, A5, and F5 (~ 11, 5, 2, and 1.3 M, respectively), and, for each spectral type, to "non-evolved" and "evolved" main sequence stars. The boundary between non-evolved and evolved stars was drawn
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such as to place approximately equal numbers of stars in each of thesetwo classes. Standard radii were adopted for each category and used, with the orbital period, to calculate the "synchronized velocity" v .Using a loose synchronization criterion of Ω∕ω ≤ 2, Levatoestablished a critical period -lange. for synchronization for eachcategory. His results are given in Table VII.

TABLE VIICritical period ranges for synchronizationof close binaries (Levato, 1976 ).
Average spectral Critical period range (days)

Non-evolved stars Evolved starstype
B2 (~ 11 mθ) 4 -7.5 9.5-12.5B7 (~ 5 Me) 3.5-4.5 4 - 6.5A5 (~ 2 Mθ) 2 3 - 4.5F5 (~ 1.3 Mθ) 10.5-14.5 9.5-17.5

Comparison of the critical periods for "non-evolved" stars withthe theoretical predictions of Table V for f = ⅛ reveals excellent synagreement for the first three average spectral types. Stars of mass ≤ 1.6 M (e.g., F5 stars) possess extensive convective envelopes.Zahn (1966, 1977) has shown that tidal energy dissipation by turbulent viscosity in the envelopes of such stars is quite efficient and leads to rapid synchronization, even for orbital periods of the order
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of 10 days. The dynamical tide model of synchronization is thus again shown to successfully predict the occurrence of "loose" synchronization (i.e., Ω∕ω ≤ 2) in early-type stars which have not yet evolvedsignificantly from their zero age main sequence configurations.However, when Levato’s results for "evolved" main sequencestars are compared with the predictions of Table V, it is apparent thatsome much more efficient synchronization mechanism is at work. Fromequation (5.15), we see that an increase of a factor of 2 in the orbital period implies an increase of a factor of 50 in the required synchronization time, all else being equal. Thus the greateraverage age of the evolved stars does not, by itself, seem to account for the considerably greater critical periods. An obvious candidatefor the synchronization mechanism which seems to be so effective inevolved stars is the expansion which accompanies evolution. We havealready discussed this expansion in connection with the observations of "tight" synchronization (Ω∕ω < 1.5) and sub-synchronous rotation (Ω∕ω < 1) in eclipsing binaries.
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VI. CONCLUSIONS(1) The investigation of the dynamical tide generated in an early type main sequence component of a close binary, first carried out by Zahn (1975), has been successfully extended to include the most important effects of the stellar rotation. These effects enterthrough the coriolis term in the equations of motion of the fluid inthe stellar interior, and have previously been neglected.By retaining only the radial component of the rotationalangular velocity of the star in the evaluation of this term, it hasproved possible to separate the linearized fluid equations in sphericalpolar co-ordinates, thus considerably simplifying the analysis.The validity of this approximation in the radiative envelope of thestar has been demonstrated, but when applied in the convective core,it must introduce some error in the calculated amplitude of thedynamical tide.(2) The functions which describe the angular dependence of theseparated solutions are of the form θ (θ) e1™^, where θ is a mn mnsolution of Laplace’s tidal equation. These functions replace the spherical harmonics P^m(θ) elmTj which arise when the coriolis term is completely neglected, and have been previously encountered in thestudy of oceanic and atmospheric oscillations on rotating planets.The equations governing the radial dependence of the dynamical tideare unchanged by the inclusion of the coriolis term, except for theappearance of an eigenvalue K which replaces the constant L(∙L+1). mn
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(3) Each temporal Fourier component of the tidal potential,ττ m, λ. i(mφ + σmt) . . . , ,'∙r>θ∙>e » excites a response which is composed of manydifferent modes of oscillation, corresponding to n = ±m, ±(m + l),±(m + 2), ... . The amplitudes of these excited modes are controlled by the projection coefficients the most important modescorresponding to small, positive, even values of n. A rapid decrease of these coefficients as the rotation of the star approaches the synchronous state causes a decrease in the energy dissipation rate and, consequently, in the rate of synchronization. This result implies that, in most cases, dynamical tides are incapable of reducingthe rotation rate Ω to much less than twice the orbital mean motionω in the lifetime of the star.(4) An approximate analytic solution for the radial dependence of the dynamical tide's various modes has been obtained. It is apparent from this solution that the mechanical energy transported by the dynamical tide is generated by the tidal forces acting on the convective core of the star. The radiative envelope is a region of transport through which this energy is carried to the stellar surface in theform of gravity waves. Subject to the validity of the radiation condition applied to this solution, the energy generation and transport rate for the nt^ mode is given by equations (3.39) and (3.40):

En (l + k2) μ 2
P 2
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with -1/3r (d Ny2∕dr)£ reThe strong dependence of oG on r , the radius of the core, is a nenoteworthy feature of this result, and one to x√ħicħ Zahn (1977)has also drawn attention.(5) Zahn’s zero-temperature surface boundary condition has been-¾-replaced by a finite temperature stellar atmosphere with T ≥ 2 ± ££·A consequence of this improvement is the result that the gravity waves corresponding to certain of the modes of tidal oscillation arenot reflected at the surface of the star, but may propagate outwardsuntil they become non-linear and are damped. The eventual dissipationof the mechanical energy transported outwards by these modes isthus ensured, and is not dependent on the efficiency of radiativedamping, as was stated by Zahn (1975, 1977).(6) An extensive series of numerical solutions for a 5 I∙L star havebeen carried out to complement and check the validity of theanalytic solution. The analytic expression for is found tobe accurate to better than a factor of 2, except for small values of the eigenvalue Kjnn∙ As predicted, is almost independent ofthe tidal frequency σ.(7) These numerical results have been used to investigate the rotational evolution of a 5 Mθ star in a close binary system, and to determine the time constant τ for the synchronization process. Withthe aid of the analytic expression for the parameter the resultsnhave been extrapolated to other early type stars to give (equation
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[5.23])

1.5 X 10 Ml\ 4'25 17/3 -2Λ p μ yr'
This expression is valid over the stellar mass range 2Mθ ≤≤ 10 M , and possibly for larger masses. Predicted synchronizationtimes are strongly dependent on the adopted criterion for synchronization, but for spin-down from Ω∕ω = ζα to Ω∕ιu = 2 are about a factor of 10 shorter than those calculated by Zahn (1977).(8) The strong dependence of τ on the orbital period P suggests theexistence of well-defined "critical orbital periods", P . , such that crιtthe components of most binaries satisfying P < P r^t exhibit synchronous rotation. For the synchronization criterion Ω∕ω ≤ 2, the predicted critical periods range from 2.5 days (2 M primary) to 4.3 days (10 Mθ primary). Tighter synchronization criteria (e.g.,Ω∕ιu ≤ 1.5) imply considerably longer synchronization times and correspondingly smaller critical periods.Observations of the rotational velocities of early typecomponents of eclipsing binaries are in general agreement with thepredicted synchronization times and critical periods for the criterion Ω∕ω ≤ 2, but in many cases the observed synchronism between rotational and orbital periods is considerably better than expected. Moreextensive data concerning the projected rotational velocities ofspectroscopic binaries, although somewhat corrupted by the inclination effect and by uncertain stellar radii, suggest critical periods forunevolved early type main sequence stars which agree quite well
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with the predicted values (again for the criterion Ω∕ω ≤ 2).However, for somewhat evolved early type main sequence stars, thesame study indicates much greater critical periods.Considerable support for the basic hypothesis of some sort oftidal mechanism for rotational synchronization in close binariesis provided by the very existence of such critical periods. Thisfollows from the strong dependence of the tidal potential on the period -3 -2U ~ a ~ P . The present specific model of tidal synchronization for early type stars, vZz., the dissipation of mechanical energy transported through a star by the dynamical tide, does successfullypredict the time scales, and the corresponding critical periods, for spin-down from a state of rapid rotation to a state in which Ω∕ω ~ 2.Further reduction in the rotational angular velocity due to thedynamical tide proceeds very slowly because of the rapidly diminishing values of the projection coefficients (see [3j above). It is concluded therefore, that while the dynamical tide model adequately describesthe initial stages of synchronization, an additional mechanism is required to explain both the prevalence of "tight" synchronism (Ω ≤ 1.5ω) amongst eclipsing binaries and the much greater critical periods associated with "evolved" main sequence stars. Slow stellar expansion, especially in the later stages of main sequence evolution,may provide this mechanism.
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APPENDIX 1The coriolls force approximationWith the aid of the analytic solutions developed in section 3,and of the WKB solutions of section 2, the validity of approximation(2) made in section 2b is examined. This approximation involved the neglect of the non-radial (or "horizontal”) component of the rotational angular velocity in calculating the coriolis force.We return to the linearized equations of motion (2.8), (2.9),and (.2.10), and rewrite them in a schematic form so that the relativesizes of the ternis may be ascertained. Vectors v, Ω, and Vareseparated into radial (v , Ω = Ω cos θ, V ) and horizontal (v , r r r HΩ = Ω sin θ, V ) components, as is the momentum equation (2.8).

H HIntroducing the characteristic radial and horizontal scales of the perturbed quantities, L and L , we make the following schematicHsubstitutions :

and

Vr(δx) δxL
Vπ(δx) ~ h lh
δt (δx)

vrv0 = § %dr rρ

δx = δp, 0p, or v (Al.l)

(A1.2)
i σ δ X

0 0where g is the gravitational acceleration. The momentum equationbecomes :
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and

„ 4- ⅛ ’Ο δfσpOvr +ιΓ+-fξ7 r 0σpOvH + ⅛ + 2p0 ®r VH + ¾ ∖> hi
+ 2pO ⅞ V θ

0
(2.8')
(2.8")

where we have dropped the forcing term VδV. The continuity equation (2.9) takes the form:
P,σ δ p + — V +p∩[y^-+τ^∙r r °∖lγ ⅛ 0 (2.9’)

More care is required with the adiabatic condition (2.10). Notingthat 21 dp0 Γ dp0 _ γnvPo dr po dr (A1.3)
(2.10) is rewritten schematically as2

√> + -M + 
kp0 po∕

NV V =0 g r (2.10’)
In the convective core, NV 0, and we have

ρn
(2.10")

but in the envelope ∕g ~ 1/r and this term may not be neglected.Our objective is to determine whether or not the Ω terms in H(2.8’) and (2.8") may be safely neglected. To make this decision,it is necessary to use (2.9') and (2.10,) to estimate the magnitudes ofδp and V in terms of δp and v . We consider the envelope and core τ Hsolutions separately.
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a) Envelope scalingSubstituting the WKB solutions for δp and v^ into equation (2.10’),we find

V

δp σΓY --— ----po NVΓ2 in the
K V

V

nterm is unimportant and (2.10’) becomesN 2 Vop V r--·— - ■ ------ γ r^, ----

(A1.4)

(2.10"’)σg r αr0Turning now to the continuity equation (2.9'), we observe that the first two terms are comparable and may be combined as one. To extract more information from this equation, we note that
L ~ K r ≤ r Η n(from the latitudinal range of the Hough functions: - f ≤ μ ≤ f )and that is given by the WKB wavelength (2.45):—⅛ o —2L ~ K 2 τy- r ~ 10 Lττr n N H

VConsequently v ∕r « v ∕L and (2.9 ’) becomes r r r
Lr ,∩-2

r ~ ⅛ h h

(A1.5)

(A1.6)

(A1.7)
i.e., the two velocity components scale linearly with the correspondingcharacteristic length scales.Armed with this result, we see immediately that the Ω term in Hthe horizontal momentum equation (2.8") may indeed be neglected in
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comparison with both the Ω^ coriolis term (except for θ π∕2) and the inertial term σ pn v . The latter follows from the fact that, for tidally induced oscillations, σ ~Ω. It is thus apparent that thesetwo comparable large terms must be balanced by the pressure term δp∕⅛.∙ δp ~ σ Lr Pθ vr . (A1.8)

We are now equipped to analyze the radial momentum equation(2.8,), which takes the following form when expressions (2.10,"), (A1.7), and (A1.8) are substituted for δp, v , and δρ:
σ P0 VH ⅛ + ⅛ + ∕_______ __lh Lr ∖σ2P0Λ ⅛ + ⅛ lh σ (A1.9)0 0

It has been shown previously (see equation [2.37] and discussion 2 2following) that pθ∕σ pθr » 1, so that the third term, whichrepresents the vertical gravitational acceleration, may not be neglecteddespite the factor of L ∕L . However, in comparison with the second r H(vertical perturbed pressure gradient) term, both the first (inertial)and fourth (Ω coriolis) terms may be neglected. Thus the vertical Hmomentum equation is seen to reduce essentially to an equation ofhydrostatic equilibrium in the stellar envelope, and we have shownthat the coriolis terms due to Ω may be safely neglected in both the horizontal and radial momentum equations.
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b) Core scalingIn the core, δp is given by (2.10") and the discussion is«somewhat simplified. The horizontal scale is again given by

⅛ ~ Kn rbut, since the analytic core solutions are non-oscillatory,theradial scale is not small. Noting that δp ~ rv and v ~ rV ∖
with v(v+l) = K , we take n

(A1.5)

L ~ ~ K ⅛r v n H (A1.10)
As δρ is given in terms of δp rather than v in the core.we next consider the horizontal momentum equation (2.8") to obtain an estimate for δp. Noting that σ ~ ~ Ω , and assuming that thethree terms involving these quantities do not cancel one another,we obtain

δp ~ σ L∏ pθ v (Al.ll)
where v represents the larger of v and v„.r HSubstitution of this expression for δp in equation (2.10") for δp yields an estimate for the first term in the continuity equation (2.9 , ) : 2 2-

σδp
'σ P0r ∖ lh

jo
2 p0v (A1.12)

By equation (2.37), the quantity in parentheses is small, and L ∕rz H-½, τ x-1K ∕r ~ (K^L^) , so this term may again be neglected in comparison
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with the other terms in the continuity equation. However, since-½Lr ~ ~ Kr r in the core, we must now conclude from the continuityequation that V ~ V (Al.13)r Hin contrast to the result (A1.7) which holds in the envelope.Therefore, all three velocity terms in the horizontal momentum equationare comparable, including the Ω coriolis term.

HFurthermore, substitution of expressions (2.10") and (Al.ll)for δp and δp into the vertical momentum equation (2.8') revealsthat all four terms in this equation are of order σPθvr ~ σPθv∏,including the Ω coriolis term. Equation (2.8') evidently does not 
rlreduce to a requirement of hydrostatic equilibrium in the core, asit does in the envelope. By definition, if the core is unstable toconvective motions, it cannot support stable quasi-hydrostatic verticaloscillations. An equivalent statement is that the Brunt-Väisälä frequency goes to zero in the convective core.An accurate solution for the dynamical tide in the core must thus include the Ω coriolis terms, and in consequence is not separable in spherical polar co-ordinates.
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APPENDIX 2The separation of the fluid equations The linearized vector equations (2.8), (2.9), and (2.10), whichdescribe the motion of the fluid in the star under the influence ofthe perturbing potential δV, are here separated in spherical polar co-ordinates. The final result is the set of scalar ordinary differential equations (2.17), (2.18), and (2.19). The two assumptions listed in section 2b are used, namely (1) that the equilibrium state of the star is spherically symmetric, and (2) that only the radialcomponent of Ω is retained in calculating the. coriolis force, i.e.,Ω = Ω^d^. The temporal and longitudinal dependence of all perturbedquantities is written as eA(σt+mψ) where we have set σ ≈ σ.mWith the introduction of the variable h (the vector displacement)<-'W'defined by v = iσh, and replacing all time derivatives by iσ, thelinearized equations become:- σ2ph = - Vδp - δpWn- 2iσρn(Ωxh) - ρn 7 δV , (A2.1)

δp = - 7, ∙ (pθh) (A2.2)and -, P-~(δp + h p' ) = —- (δp+h p' ) (A2.3)p0 p0In (A2.3) we have introduced the scalar h ≡ (h) and the primes∙~ rto denote derivatives with respect to r.After some manipulation, which makes use of the assumed purelyradial nature of the vectors vV and Ω, equation (A2.1) may be rearranged to take the explicit form:
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σ pθħ = 7δp + δpvVθ + pθV0V

2 2-1 + (σ -4Ω )r 2iσQx νΗ(δρ + ρθδν) + 4Ωr V∏ (δ + pθδV)
<A2.4)The symbol ,V , represents the non-radial component of the V operator. HAlso, the radial component of (A2.1) is2n δδp . 0δV δp ,σ p,,h = n-j- + prι —---------— prx ,0 δr ‘0 δr pθ 0

where 7Vθ has been replaced by - Pθ∕Pθ∙Taking the divergence of (A2.4), making use of (A2.5), andsubstituting the result into equation (A2.2), we obtain2 . σ2 a , 2 , , 2 ,σ δp + -i — (r p h) - - vh Ï -r

(A2.5)

-1V ∙ (σ^^ - 4Ω [^2iσΩx 7 Y + 4Ω 7 YH∣ r L ~ H r H (A2.6)
where Y = δp + ρθδV. We denote the right hand side of this equation by -⅛⅜)
and note that the operator O, involves only derivatives with respect to the angular co-ordinates θ and φ.Equation (A2.3) is used to eliminate δp from (A2.6), whichbecomes 2' f7 ' i ⅞2σ ρ δp - - W) ∙o ö Z 2 ι∕r , 

1∕Γ ar^∣r P.^ hl + r
2 σ p0 (A2.7)

jo 0
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Similarly, (A2.5) becomes
where N1

1∕Γ Öδr % -ι∕rδp) - ρθ(σ -Nv ) h ∂δV 30 or (A2.8)
∑θ A Pθ dr fc 'Α> (2.20)

0
V

These two equations are separable in our spherical polarco-ordinate system. We seth(r,θ,φ) = h1<r) h2(θ) eimφ
δp(r,θ,φ) = δp1(r) δp2<θ) elmφ and δV(r,θ,φ) =

(A2.9)

(A2.10)
' , ,γy 1' ' 2'v,Equation (A2.8) evidently requires thath2(θ) = δp2(θ) = δV2(θ) ≡Θ(Θ)

becoming then the ordinary differential equation:
dδV1(r)1∕Γ d Z -I/Γ , . Λ . 2 w 2. , f .P0 dr ∖p0 δpl∞)~ P0<σ ~NV λ hl(r) = “ p0 dr

This is the first of our final equations - (2.17).From (A2.10) we haveT(r,θ,φ) = [δp1(r) + pθδV1(r) Θ(θ)
and

(A2.11)
^(Y) = δp1(r) + ρnδV. (r)] ^(Θ) ιimφ (A2.12)

Substituting this result in (A2.7), and dividing both sides of the equation by [δp^ + PθδV^] 0 , we see that (A2.7) does indeed separate to produce the two ordinary differential equations:
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2 1∕Γ drr po r2p∩vih1 (r) K_2 2rP∩ δp1(r) = 2 >,O5vi<r>
2σ p Ο K

and• ^EΘ(Θ)3 + κ Θ(θ) = ο » (A2.13)where Κ is an arbitrary separation constant. The first of these is our final equation (2.18), with K = .The expression [ ©(θ)] may be written most conveniently in terms of the variable μ = cos θ. Setting Ω = Ω^ ê = (Ωμ) ê*_, and introducing the constant f = σ∕2Ω, we obtain the following explicit expression after considerable manipulation:
⅛'CΘte)J - f2⅜ dΘdμ m1 -μ +

2
2

,,2 , m(f + μf(f2-μ (A2.14)
Ï

)
Θ

Substitution of this result in (A2.13) produces the third of our ordinary differential equations, (2.19).In general, the solutions of equation (2.19) are singular at μ=±l, i.e., θ =0 and π, and thus physically unacceptable. However,for a discrete set of values of the arbitrary constant K, whichdepend on the parameters m and f, the function Θ is bounded for all θin the range 0 ≤ θ ≤ π. These values are designated Km (f)> withcorresponding solutions Θ , and are discussed in sections 2c and mn2d. The most general, physically acceptable solution to equations (2.8), (2.9), and (2.10) must thus be a sum of solutions of the
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form (A2.9):
and δρ (r,θ,φ)m τ

hmU,θ,φ) - Σ hmn(r) Θmn(θ) e1""∣, , (A2.15)- ∑ ⅛n<'>V> ei"φ ; ⅛2∙16>
Mlth 5Vm(r,θ,φ) = Σ «„„(Ο βmn(θ) ei"P . (A2.17)
Equations (2.14) and (2.15) of section 2b are just (A2.16) and (A2.15).If the functions Θ form a complete set on 0 ≤ θ ≤ π (see section 2c), mnthen any arbitrary potential function of the form f(r)g(θ>φ) may be written as (A2.17).The separation of the linearized equations outlined in thisappendix is due to Dr. Peter Goldreich.
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APPENDIX 3Projection Coefficients for ∣f∣ « 1

For (f∣ « 1, Hough functions of the first class take the approximate form (Longuet-Higgins, 1967):
Θ (θ)-A iy→⅛iew2H (T∣) 

mv V I dμ f J V (A3.1)
0, 1, 2, .where η ≡ (K/f ) 4μ ∏v (T∣) is an Hermite polynomial, and A^ is anormalization constant. The corresponding eigenvalues K are givenby

mv (2y + l)' (A3.2)K
so ϊζ - (2v + l)½ μ∕∣f I . (A3.3)
From(A3.1) and (A3.3) it is apparent that the Hough functions areessentially confined to the region

- (2v + l)~½∣f∣ <μ< (2v + l)^½∣f∣which is a narrow equatorial band for small values of jf J.The index v is related to the usual Hough function index n bythe relationsf > 0
f < 0

z n m
, n ≈ ÏÏ1 + V - 1n = m + V + 1

for V = 0for V = 1,2,3,.for V = 0,1,2,. (A3.4)
As may be seen from figure 1, which corresponds to m ≈ 2, the v = 0 Hough function for f > 0 actually belongs to the second class of solutions to Laplace’s tidal equation.
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The projection coefficients are defined by equation (2.34).1 P2 (μ) ®2 ∏(θ) dμ n = 2,4,6,...

when Θo is normalized by (2.30): <c } ΤΊ z Θ2,nω>J dμ ’ 1
Applying this normalization condition, we obtain

(2v + 1)3/2 rr1/2 2v 1 v! (A3.5)
Substitution of expression (A3.1) for Θ into the equation for the projection coefficients, and a subsequent integration by parts,leads to the result

gn-<<¾ZF f τ∣ Hv01) e 71 /2 dη (A3.6)
m = 2with v = n - 10 < f « 1A second term in the expression for ⅛9n has been neglected, as it is smaller by a factor of ~ f.The above integral has been evaluated for n = 2,4, and 6:

CO∕ T∣ H1(Tj) e~τi /2 dT∣ = 2√2π
•Ar.



150
CO T∣ H3(T∣) e τ* /2 dl∣

∕
—co

co
η h C∏) e ‘‘ ,2 dη 120 √2π

9

to produce the projection coefficients g2-s⅞L<Mi f3∕2(1+f)
= 1.066 f3/2(l + f)

gι, “ 3/V7")ia t3,2<ι÷t>

= 0.296 f3/2 (l + f) 
and 1

g6 " j⅞4F2^" f372(l + f)
= 0.150 f3/2(l + f)

These three expressions are plotted as the solid curves in figure 3 The derivation of equation (A3.6) is due to Dr. Peter Goldreich.
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PART 2
THE RINGS OF URANUS: RESULTS OF THE 1978 APRIL 10OCCULTATION.
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I. introductionThe Uranus ring system was discovered on 1977 March 10, by Elliot, et al. (1977), during observations of an occultation by the planet of the star SA0 158687 (V ~ 8.8). Other observers obtained less complete data, but nevertheless confirmed theexistence of four narrow (≤ 10 km) essentially circularco-planar rings, christened a, β, γ, and δ, and the wider (~ 100 km) non-circular or inclined e ring (Millis, Wasserman, and Birch 1977; Bhattacharyya and Kuppuswamy 1977a; Churms 1977; Zellner 1977; Mahra and Gupta 1977). Subsequently, Elliot et al. (1978) have identified four more rings: 1], 4, 5, and 6. On 1977 December 23, Millis and Wasserman (1978) observed a partialoccultation by the ring system of BD-15o3969 (V = 10.4). Despite poor observing conditions near dawn, they detected and timed occultations by the e, δ, γ, and (possibly) a rings on one side of the planet.Predictions of further occultations by the Uranian system were made by Klemola and Marsden (1977). This paper reports observations of the events of 1978 April 4 and 10, designated

#4 and #5 respectively by Klemola and Marsden (1977). Both observations were made at a wavelength of 2.2 μm, where a strong methane band greatly depresses the reflected light from the planet Table I gives the V and 2.2 μm magnitudes of Uranus and the two
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stars∖

The results from the 1978 April 10 occultation are the mainsubject of this paper. The 1978 April 4 occultation yielded littlemeaningful data on the rings.
TABLE IMagnitude of Uranus and Occulted Stars

Object Magnitude
V [2.2 μm]

Uranus 5.5 12.9 ± 0.21Star #4 213.4 11.9Star #5 211.6 10.1
1) See footnote 1.2) Liller (1977).

On 1978 January 8, the 2.2 μm magnitude of Uranus was measured to be 12.9 ±0.2 with a 5" diameter aperture which excluded any direct contribution by the rings (diameter ~ 8"). Subsequent observations on 1978 May 7 with a 16" aperture gave [2.2 μm] = 11,6 ± 0.2.Joyce et al. (1977), using an unspecified aperture size, have also reported a 2.2 μm magnitude of 11.5 to 12.0 for Uranus. These results suggest that the integrated 2.2 μm magnitude of the ring system is ~ 12.0. If the average effective width of the rings is 90 km, this implies a geometric albedo at this wavelength of 0,025.
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11. OBSERVATIONSThe observations were made using an infrared photometer mounted on the 2.5 m DuPont telescope at Las Campanas Observatoryin Chile. A standard K filter (λ = 2.20 pm; ∆λ = 0.4 pm) wasused with an InSb detector cooled to 55 K. Sky subtractionwas performed by chopping at 15 Hz to a secondary beam located30" to the north.Star #5 is considerably brighter than the Uranus system (planet + rings) at 2.2 pm: bright enough to give a signal-to-noise ratio of ~ 10 with a time resolution of ~ 0.1 second.The noise was due almost completely to background radiationfrom the telescope and sky, and it was thus necessary to usea small focal plane aperture centered on the star. An aperturediameter of 7,.,5 was selected to reduce thermal background noise without introducing noise from guiding and seeing effects.Fortunately, the observing conditions were excellent and the seeing less than 1". The star was centered by finding the half-power points of the 2.2 pm signal one hour before the first e ringoccultation, and centering was maintained thereafter by using an offset guider/Quantex television system. The chopped signalfrom the detector was demodulated in a conventional lock-inamplifier and recorded on a strip chart, with an overall systemtime constant of 0.1 second. Absolute timing accurate to <0.3sec was obtained from WWV.
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Star #4 is of comparable brightness to the Uranus system at 2.2 μm, and the signal-to-noise ratio at a time resolutionof 0.1 sec was ~ 1. The dawn sky rendered guiding impossibleabout 10 minutes after planetary emersion.



158III. RESULTSThe apparent tracks of the two occulted stars behind Uranus and its rings are shown in Figure 1. For comparison,the 1977 March 10 and 1977 December 23 tracks are shown also.On 1978 April 10 the inclination of the ring plane (assumed to be the satellites’ orbit plane) to the sky was 32Î85.On 1978 April 10, two complementary sets of nine ring occultations were recorded. All of the ring occultations, as recorded on the strip chart, are displayed in Figure 2.Analysis of the data (Section IV (a)) reveals that these nine rings correspond in radius to the nine rings described by Elliot et al. (1978), and they have been identified accordingly.In an initial report of these observations (Persson et al. 1978), the designations θ, £, and K were used for the rings referred to as 4, 5, and 6 respectively by Elliot et al (1978). To avoid confusion, the terminology of the latter authors is used throughout this paper. Table II gives the times, durations, and fractional depths of the occultations. The depths have not been corrected for the presence of any planetary or ring component in the observed 2.2 μm flux, but this component is ≤ 10% of the total. Relative timing is accurate to ~ 0.1 sec, andabsolute timing to < 0.3 sec. Continuous observations wereobtained between 5^rQ9m^-n anc∣ yhrθ^min except for ≤ 30 sec,hr~,√nin , ,hr,,,min ,gaps at o 39 and 0 48 , but the data do not reveal anyfurther significant occultations which might correspond to those
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Fig. 1 - 1977-78 aspect of Uranus and rings. The η ring lies between β and γ, while 4, 5, and 6 are just inside a. The straight lines show the apparent paths of the occulted starsbehind the ring system, as they were observed from the various earth stations. The upper track labeled 10 March ’77 corresponds to Perth, Western Australia and the lower track to the Kuiper Airborne Observatory.
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104 km
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Fig. 2 - Excerpts from the strip-chart recording of the 1978 April 10 occultation, showing all identified ring occultations. The time axis of the emersion records has been reversed, so thatthey may be more readily compared with the immersion records above them. Occultation times, as indicated by the tick marks, are given in Table II. Note that the e ring occultations were, in reality, not symmetrically placed in time with respect tothe other occultations.
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reported by Churms (1977) and Millis and Wasserman (1978) during the 1977 March and 1977 December events. The recordshows no evidence at the 57, level of any smoothly varyingbackground absorption. No planetary occultation occurred,consistent with the prediction.On 1978 April 4, a planetary occultation with a durationbetween half-light points of 44min 48 ± 10 sec occurred at LasCampanas. The mid-point of this event, at 10^ir09m^n50 ± 10sec
UT, was 4 min ahead of the prediction by Klemola and Marsden(1977). Only one convincing ring occultation, at 9^lr31mπ'-n 

SGC00 UT, is identifiable in the very noisy record. This occultation lasted ~ 1 sec and presumably represents the e ring. Guiding became impossible in the dawn twilight before the predicted time of the second e ring occultation. The poor signal-to-noise ratio of the record precludes any useful analysis of the planetary occultation profiles, except perhaps to determine average atmospheric scale heights.
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IV. ANALYSIS

a) Overall Ring GeometryBecause only a single set of observations of the 1978April 10 occultation is available, it is not possible to solve internally for corrections to the star’s position or to Uranus’ ephemeris, and hence perform an independent calculation of ringradii, etc. However, if the γ and δ rings are, in fact, circular, as suggested by the 1977 March occultation (Elliot et al., 1978), then their known radii can be used to solve for the position of thestar relative to the path of Uranus across the sky.As a check on the assumption of circularity, the mid-time for each pair of ring occultations is given in Table III: a set of concentric circles (or similar, aligned central ellipses)with a common inclination should all exhibit the same mid-timeEvidently, the γ and δ rings satisfy this requirement to the accuracy of the timing measurements; consequently they define the adopted mid-time of 5^ir52m^n35.25sec UT. We make the 
plausible assumption that these two rings are both coplanar and circular. The mid-times of the a and β rings are measurably different from the adopted value, indicating either departures of > 10 km from circularity, or small inclinations relative to γ and δ. Of the remaining five rings, only T) exhibits a mid-time consistent with both circularity and zero relativeinclination. For the remainder of the analysis, we shall,
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however, assume that all of the rings are coplanar (though not necessarily circular), and furthermore, that they lie in the common orbital plane of Uranus* five satellites.From Earth-Uranus geometry as given in the American Ephemeris and Nautical Almanac, together with mean radii for the q,, β, γ, and δ rings calculated by Elliot et al. (1978) from the 1977 observations, and the timing data in Table II, the projected close-approach distance of the center of each ring to the star is determined. The adopted topocentric velocity of Uranus, projected on the sky, is 20.056 km∕sec. The results aregiven in the fourth column of Table III. The consistency pf the results for β, γ, and δ shows that our observations of thesethree rings are consistent with their mean radii as determined by Elliot, et al. (1978), The discrepant result for the 
a ring suggests that it departs from circularity by at least 40 km.Finally, the average close-approach distance of 30,985 km defined by the β, γ, and δ rings is used with the timing data to calculate the positions in the ring plane of all of the occulting ring segments. The results are given in Table IV. The lasttwo columns of Table IV give, for comparison, the mean radii derived by Elliot et al, (1978). It is emphasized that our absolute radii depend, through the close-approach distance, on the radii of β, γ, and δ adopted by these workers. Any systematic error in these adopted radii will thus also be present in theradii in Table IV. The ring widths are discussed in section IV (b)
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As indicated in section III, a comparison of the radii in Table IV shows that the nine rings observed on 1978 April 10 may indeed be identified with the nine rings reported by Elliot et al. (1978). However, the large variation in radii for rings 6 (180 km) and 5 (135 km) compared with their mutual separationof 300 to 400 km throws some doubt on their existence as twocomplete rings, rather than as a collection of incomplete arcs.Aside from the well-known a, β, γ, δ and e rings, rings 4 and 5 have also been reported by Millis et al. (1977), and rings T], 4, and 5 by Bhattacharyya and Bappu (1977) (as their spikes #4, 5, and 6 respectively).Radii calculated for rings 4 and a differ by up to 45 and 53 km respectively, suggesting eccentricities e ≥ 0.0005, orequivalent small relative inclinations. The β ring shows a somewhat smaller range in radius of 27 km (e 0.0003), while the γ and δ rings are essentially circular. All of these resultsare quite consistent with the conclusions of Elliot et al.(1978). However, the η ring has appeared circular on both 1977 March 10 and 1978 April 10, but with radii differing by ~ 23 km. Elliot et. al. (1978) have also reported a width of ~50 km for this ring, at variance with our estimate of ≤5 km (see IV(b)),The e ring is discussed separately in section IV(d).
The apparent path of the star projected on the ring plane had a minimum radius of ~ 31,000 km (~5,000 km above the planet's
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atmosphere) and maximum radii of 69,400 km on the west side and 107,500 km on the east side. For comparison, the innermost known satellite, Miranda, has a semi-major axis of 130,000 km, and Uranus’ Roche limit lies at ~ 70,000 km.The analysis of the single 1978 April 4 ring occultation isdeferred to section IV(c).
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b) Ring Widths and ProfilesThe observed radial widths of the ring segments projectedonto the satellite orbital plane are given in Table IV. Thesewidths have not been corrected for any of the following importantbroadening mechanisms:(1) finite time resolution of the system electronics (equivalent to ~ 2 km);(2) diffraction of starlight around the edges of the rings1/2(Fresnel scale ~ [λ (distance from Earth to Uranus)]≈ 2.4 km) ;(3) finite angular diameter of the star (equivalent to ~ 0.6 km at Uranus, as estimated from the Β-Ύ color and V magnitude given by Liller (1977)).To examine the effect of (1) and (2), the dominant factors for this occultation, the model profile shown in Figure 3 was computed The model consists of an opaque ring 5 km wide, whose observedprofile is modified by diffraction at a wavelength of 2.2 μmand smoothed with an exponential time constant of 0.1 sec. Nocorrection for the 0.4 μm spectral bandwidth of the observationshas been included. This model profile, with a width of 8 kmand a relative depth of 0.85, is a reasonable representation of the a, γ, and δ profiles if allowance is made for some variation in true widths and opacities. Millis and Wasserman (1978)
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Fig. 3 - Theoretical 2.2 μm occultation profile of a 5 km wide opaque ring at the distance of Uranus. The profile was obtainedby computing the appropriate Fresnel diffraction pattern, assuming an infinitely distant point source of starlight, and passing this spatial pattern at a velocity of 18 km/sec through a filter with an exponential time constant of 0.1 second. Thisfilter approximately simulates the response of the systemelectronics.
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reported apparent widths of ~ 8 km for γ and δ in 1977 December, broadened largely by the effects of diffraction at λ = 0.86 μ,m (~ 1.5 km) and the stellar diameter (~ 1 ha at Uranus).The β ring is clearly resolved in the 1978 April 10 data (see Figure 2), and has an intrinsic width of ~ 15 km. This is consistent with Millis et al.’s (1977) measurement of ~ 1.5sec for the duration of the βoccultation on 1977 March 10. Elliot et al.’s (1977) estimates of ~ 1 sec (implying ~ 10 km width) for the or, β, γ, and δ occultation durations were severely affected by the comparatively large angular diameter (~ 6 km at Uranus) of SAO 158687. This large size does, however, place a useful lower limit of ~ 2 km on the width of any ring which obscured a significant fraction of the starlight, as the a, β, γ, andδ rings did.We conclude that rings αr, V, and δ are probably quite opaque and have widths of 2 to 5 km. The optical depth and width of the β ring are ~ 0.5 and ~ 15 km respectively. The widths of rings η, 4, 5, and 6 evidently lie in the range 0.5 to 5 km, the lower limit being set by the occultation depths and the angular diameter of star #5. Their optical depths are,at present, indeterminate.The only published observation at odds with these conclusions is Elliot et al.’s (1978) reported width of ~ 50 km for the η ring in 1977 March, already alluded to in IV(a). There is no evidence in Figure 2 for such a broad feature at the location of the η ring.
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c) The 1978 April 4 Ring OccultationThe radius of the single ring identified in the 1978 April 4occultation data can be estimated from the timing observations andan assumed radius of Uranus. The projected topocentric velocity of Uranus relative to star #4 was 18.466 km∕sec, which gives a planetary occultation chord of 49,640 ± 190 km. Elliot et al. (1978) determined a radius of 26,200 km for Uranus from the 1977 March 10 occultation. The derived radius of the occulting material is then 50,670 ± 220 km, where the uncertaintyrepresents mainly the 10 sec uncertainty in the mid-time of theplanetary occultation. The oblateness of Uranus, which is of the order of 0.01 (Danielson et al. 1972), has been neglected as it introduces corrections to this radius of only ~ 20 km.A radial width of the ring segment of 20 ± 10 km follows fromthe ~ 1 sec duration of the occultation.Evidently, these observations refer to the e ring, and the derived radius and width are reasonably consistent with the observations obtained six days later (at the 1978 April 10 occultation immersion) for a nearby part of that ring.
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d) The e RingThe most interesting of the rings of Uranus is the outermoste ring. On 1977 March 10, the two observed segments of this ringexhibited different, well-resolved widths, and, if the ring iscoplanar with the others, radii that differed by ~ 700 km(Elliot et al. 1977, 1978). On 1977 December 23, Millis and Wasserman(1978) observed the e ring to have intermediate width and radius.In this instance, only pre-immersion observations were obtained.The observations on 1978 April 10 now add two more points to this data set, and the noisy 1978 April 4 data provide another, less accurate, point. These six observations of radial width and radius of the e ring are plotted in Figure 4, and show a linear relation down to a width of ~ 20 km. Any inclination of ≤ 10° relative to the other rings would not significantly change the calculated widths; neither are the widths appreciably affected by diffraction or the other broadening effects discussed above in section IV(b).In light of the relation exhibited in Figure 4, the concept of the e ring as a set of fragmentary circular arcs (e.g.,Dermott and Gold 1977) is clearly untenable. Furthermore, it now seems highly unlikely that the apparent variation in radius can be explained by an inclined circular ring (e.g., Millis and Wasserman 1978), since this would require a rather fortuitous combination of varying width around the ring and Earth-Uranus
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Fig. 4 - Radial width plotted against radius for the e ring forthe six occultations observed to date. The multiple observationsobtained on 1977 March 10 are represented as two average points.The uncertainty of the 1978 April 4 point is discussed in thetext. Error limits on the other points are only slightly largerthan the points themselves. The radius scale could contain asystematic error of ~ 100 km.
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180observational geometry. The linear relation is, however, consistentwith an elliptical ring, coρlanar with the other rings, whoseinner and outer boundaries are two Keplerian ellipses with slightlydifferent semi-major axes and eccentricities. A model of thistype which accurately fits the observations is described belowin section IV(e).Further information on the nature of the e ring is providedby a comparison of occultation profiles obtained at differenttimes. Figure 5 shows the 99 km wide immersion profile obtainedby Millis et al. (1977) on 1977 March 10, and the 72 km wide emersion profile of 1978 April 10. The two profiles are verysimilar, even in the finer details of the structure. Althoughthe optical depths appear to be comparable, no correction has been made to the 1978 April 10 profile to allow for the~ 10% contribution of the planet and rings to the observed flux.Such a correction would increase the optical depth for thisoccultation by ~ 25%, and thus support the conclusion of Elliot et al. (1978) that the integrated optical depth of the e ring is independent of its width. Figure 5 also shows that the edges of the ring remain sharp, even at improved resolution.The similarity of these two profiles, observed 13 monthsapart, is rendered truly remarkable when the orbital andprecessional motion of the ring particles is considered. Theorbital period of the particles is 8.4 ± 0.1 hours, the uncertaintycorresponding to the observed range of radii, so that each
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Fig. 5 - Comparison of two wide profiles of the e ring, obtained on 1977 March 10 (Millis et al. 1977) and 1978 April 10. Differing width scales are due to different projected velocitiesof Uranus relative to the two stars. A temporary loss of data on 1977 March 10 is indicated by a dashed line. The ~ 10% contribution by the planet and rings to the observed 2.2 μm flux has not been subtracted from the 1978 April 10 profile.
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183particle has completed ~ 1100 orbits in the intervening time. Differential Keplerian motion between the inner and outer edges of the ring (i.e., ∆r∕r ~ 50km∕50,000 km) amounts to at least one complete revolution. Differential precession of the apsidal linesof the elliptical particle orbits (or of the nodal lines ofcircular orbits) would be expected to further smear and broaden the ring, although it is possible that interparticle collisions act to prevent this and maintain instead a uniform average precession rate. Despite these motions, negligible changehas occurred in the shape of the ring profile.
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(e) A Model of the e RingAn attempt was made to construct an elliptical model of thee ring which would satisfy the available observations. Thesimplest physically plausible model consists of a Keplerianellipse which lies in the satellites' orbital plane, and whose 2apsidal line precesses due to the oblateness of Uranus . Asdiscussed above, the observed profiles and widths of the e ring suggest that the whole ring precesses as a unit. We therefore chose to fit the model to the centerline of the ring, rather than to the outer and inner edges separately.Four parameters were adjusted - the semi-major axis, eccentricity, orientation, and apsidal precession rate - to give the best least-squares fit to the observed radii and azimuths of the e ring. Figure 6 presents the ten available data points and the best fitting model. The data are taken from Table 7 of Elliot et al. (1978) (using the average of their radii for the inner and outer edges of the ring); Millis and Wasserman(1978); and Table TV. The 1978 April 4 point is of much loweraccuracy than the others and has been omitted from the fit. Also,

numerous attempts to match all four 1977 March 10 immersion
2 Dr. Guiseppe Colombo (private communication) first demonstrated that such an ellipse, given the right precession rate, is a reasonable representation of the observations.
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points failed; only their average location could be fitted.For the final fit, shown in Figure 6, the Kavalur and Pekingpoints at radii of 51,713 and 51,740 km were omitted, and only 3the Perth and KAO points at ~51,678 km were used . Thisomission makes little difference to the residuals of the otherfive points, and produces only minor changes in the modelparameters. The elements of the model ellipse for epoch 1977 bτςMarch 10, 20 UT (JD 244 3213.33 are:a (semi-major axis) = 51,284 ± 6 km, e (eccentricity) = (7.80 ± 0.12) x 10 Azimuth of periapse = 212° ± 2° ω (apsidal precession rate) = 1°374 ± CP. 006 dayAzimuth is measured in the ring plane, assumed to be thesatellite orbit plane, in the prograde direction from the ascending node of this plane on the earth equator of date. Ther.m.s. deviation in radius of the seven data points from themodel is 7 km, well within the uncertainties. Since thissolution might not be unique, initial estimates of ω covering

3 If the Peking occultation time reported (New Scientist (1977)74, 584) referred to the beginning of the 9.5 sec occultation, rather than to the central time as assumed by Elliot et al. (1978), then the corresponding radius should be reduced by ~ 52 km, bringing the point into excellent agreement with the model. Several different times have been reported for the Kavalur e ring occultation (Bappu 1977; Bhattacharyya and Kuppuswamy 1977a,b; Bhattacharyya and Bappu 1977; Elliot et al. 1978) and conceivably some error remains in the time adopted by Elliot et al. (1978).
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Fig. 6 - Observed radius vs. azimuth for the e ring, and the precessing Keplerian ellipse model which best fits these data.Open symbols represent the observed points, while the corresponding filled symbols at the same radii represent these same points corrected to a common epoch (1977 March 10, 20^irs UT) by removal of precession. The arrows indicate the direction in which theobserved points were moved.



187
52

.0

A
Z
IM

U
TH

H 2o⅛)s∩ιαvy



188
the range lθ day 3 to 1CP day 3 were used in the least-squares 
analysis. Ten more solutions were discovered in this manner,but all exhibited r.m.s. deviations ≥ 26 km, and typically~ 75 km. The validity of this model for the e ring can bereadily tested by future occultations, since the apparent precisionof ω should permit extrapolation of the precession for atleast ten years.Combination of the elements a and e determined above withthe width-radius relation of Figure 4 leads to elements for theellipses which form the outer and inner edges of the e ring.If these ellipses have semi-major axes and eccentricitiesa ± ∆a and e ± ∆e, the radial width W of the ring, as afunction of central radius r, is given to first order in e by:W = 2∆a + 2(∆a∕a + ∆e∕e) (r - a) .Fitting this linear relation to Figure 4 yields:∆a = 30 km -3∆e ≈ 0.36 X 10Finally, Uranus’ J? (the dimensionless second gravitationalharmonic coefficient), can be derived from the apsidal precession

«l*⅛<rate, since contributions to ω by satellite perturbations shouldbe negligible. Assuming a planetary equatorial radius of26,200 km (Elliot, et al. 1978), we obtain J2 = (3.43 ± 0.02) X 10~3
The quoted uncertainty is a formal probable error associated with



189
the least-squares fitting procedure; it does not allow for anysystematic errors in the occultation analyses. It is assumedthe the e ring is inded a freely precessing Keplerian ellipse,unaffected by resonant interactions. Subject to this assumption, this value of can be used to predict apsidal precession rates for the other supposed elliptical rings:= 2°. 61 day 3 ,ω = 2o.20 day“1 

aΛ. —1and to = 2° 04 dayPWhen reduced to a common epoch with these precession rates, theavailable radius-azimuth data for these three rings areconsistent with elliptical models. The a ring data show avariation in radius much larger than the uncertainties and arewell distributed in orbital phase, defining an elliptical modelwith the elements:a = 44,839 ± 1 km e = (0.63 ± 0.03) x 10~3azimuth of periapse = 3255 ± 2° (epoch 1977 March 10, 20^irs UT) 
The r.m.s. deviation in radius of the eight points from this model is 1.6 km. Models for rings 4 and β are less well-defined,because of poor orbital phase distribution of the data. Previousestimates of have been based on determinations of the apsidalprecession of the satellites Ariel (Dunham 1971) and Miranda -3(Whitaker and Greenberg 1973), which yielded values of 12 x 10-3and 5 x 10 respectively. Such determinations of arecomplicated by the effects of the satellites’ mutual interactions.
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V. CONCLUSIONS(1) The nine rings observed on 1978 April 10 are the same as those described by Elliot et al. (1978) in their analysisof the 1977 March 10 observations. No additional rings wereobserved, out to a radius limit of 107,000 km, and no evidence was found for background absorption exceeding 5%.(2) Observations of the η, γ, and δ rings are consistent with these three rings being coplanar and circular, although thepresent Tj ring data are inconsistent in both radius and width with the 1977 March results (Elliot et al. 1978).(3) Minimum eccentricities for rings 4, a, and β, based on the 1977 and 1978 occultations, are 0.0005, 0.0005, and 0.0003respectively, under the assumption that all of the rings arecoplanar.(4) Calculated radii for rings 5 and 6 exhibit ranges of~ 150 km, comparable to the spacing between these two rings.Further occultation observations are necessary to sort out thestructure of this region.(5) Occultation profiles suggest that rings q-, γ, and δare rather opaque and have radial widths in the range 2 to 5 km.The β ring is clearly resolved, and has an average optical depth of ■— 0.5 and width of ~ 15 km. The widths of rings η, 4, 5, and 6 probably lie between 0.5 and 5 km, but see (2) above.(6) The width and radius of the e ring exhibit a linearrelation, which strongly suggests that it is a single, continuous,



191non-circular ring.(7) The optical depth profile of the e ring, including the sharp edges, has remained essentially unchanged in 13 months,despite differential orbital motion and precession.(8) Observations of the ε ring obtained in 1977 March, 1977December, and 1978 April all fit a model of a Keplerian ellipse —1whose apsidal line is advancing at a rate of 1°37 day . This -3rate gives a value of Uranus’ J? of 3.43 x 10 , if resonantinteractions are unimportant.
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PART 3
ON THE RESONANCE THEORY OF THE RINGS OF URANUS.

P. GoldreichandP. D. Nicholson

Published under the title "Revenge of Tiny Miranda", Nature 269(1977) pp. 783-785
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Dermott and Gold have proposed a resonance model for therings of Uranus. They assume the rings are, In fact, arcscomposed of small particles librating about stable resonancesdetermined by pairs of satellites, either Ariel and Titaniaor Ariel and Oberon. Dermott and Gold dismiss, as insignificant,resonances involving tiny Miranda. We find that, by a widemargin, the strongest resonances are all associated with Miranda.Furthermore, we show that the hypothesis that the rings are made up of librating particles, while original and ingenious,is incorrect.Before considering the quantitative analysis of the resonance model, we make two minor points. First, when allowance is made for the orbital motion (assumed prograde) of the ring material between occultations, it is found that the two occulting regions of each ring were physically only 35p (a ring) to 46 p (e ring) apart. Thus, only short arcs are required to fit the observations. Second, while large systematic errors may remain in the calculated absolute ring radii, the spacings between the rings are well determined and must be accurately predicted by aresonance theory. In Table 1, the spacings predicted by Dermott 2and Gold are compared with those deduced by Elliot et al.3and Marsden , The discrepancies appear to be larger thanobservational error and exhibit no systematic trend.
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We have calculated the strengths of the resonances betweena ring particle in circular orbit and either a single satelliteor a pair of satellites. The resonance strength is expressedas the magnitude of the resonant term in the disturbing potential,, felt by the ring particle. Figure 1 shows the strengths 3of the most important resonances in the radial range 42 x 10 km 3< a < 54 x 10 km, which spans the ring radii. The only two-bodyresonances included in Figure 1 are the 4:1 and 5:1 resonanceswith Miranda. Two-body resonances involving other satellites also lie in the range of the rings, but their strengths are. toosmall for them to appear in Figure 1.The strongest resonances are the two-body resonances withMiranda which occur where

or 4nft - n - dt
Si ~ n dt

3 0
0

Here, ιr, and n are the mean motions of Miranda and the ring Mparticle, Ω is the longitude of the ascending node of the ringon the orbit of Miranda, and ur is the longitude of Miranda’s Mperiapse. The resonance strengths are given by Brouwerand Clemence := gm Z⅛,48a M a^ -256cv + + 114α _d_dα + 21α dor3α (1)1/2
2 d 2

+
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Fig. 1 - The strengths of two and three-body resonances in the neighborhood of Uranus’ rings. 0's represent the 4:1 and 5:1resonances with Miranda discussed in the text and identifiedby e = and σ = sin (i∕2); circles represent the three-body resonances for q = 1 and values of p as indicated. The resonances previously^ associated with the rings are shown 
as crosses.
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and

67)4 GM mM a . . . 2-∕i „ = 7— —------- e (sin ι∕2)2 4a M a^ M (δ+σ⅛)b3∕2 ’
where M is the mass of Uranus, and e^ the mass and eccentricityof Miranda, i the mutual inclination of the ring and Miranda’s (i )orbit, and a - a∕a^. Tħe functions b^j are Laplace coefficients. There are three 5:1 resonances, corresponding to

n - 4>nM d®
dt

M = 0

and
5nt, - π - 2
5n - n - 4 M

dtKdtdΩdt
M 2⅛- 0 ’

= 0
Using formulae given by Peirce , we obtain the resonancestrengths;
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where a and a now refer to the position of the 5:1 resonance.All of these strengths depend sensitively on the uncertain values 4of e^ and i. Greenberg has determined that e^ =“ 0.012and i =“ 4°, though he regards the latter as "extremely model dependent". Using these values, and noting, therefore, that only^^ and are likely to be reasonably accurate, we obtain

and

6.6 X 10-13 GM
1.1 X 10
9.1 X 10'
3.0 X 10'
5.2 X 10

-11 GM
-15 GM
-13 GM
-14 GM

Next, we consider three-body resonances of the form
qn - (p + q)nβ + pnA = 0 ,

where p and q are integers and the n’s are mean motions with the subscripts A and B denoting the outer and inner satellites.Both satellite orbits are assumed to be circles and to be outsidethe rings. The dominant resonant term in the disturbing
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potential arises as follows. Outer satellite A perturbs theorbit of inner satellite B, producing oscillatory variations in its radius and longitude with frequencies p(n^ ~ ng)∙ The potential at the ring due to B moving on its perturbed orbit contains terms with frequencies qn - (p + q)n + pn . These include the resonant term and many short period terms. Additional, but smaller (by a factor ≤ 0.1), resonant terms arise from the attraction of A moving on an orbit perturbed by B. Finally, thereare much smaller resonant terms due to the interaction betweenthe direct perturbations of the ring by each satellite movingon its unperturbed circular orbit. The dominant resonant termis easily shown to be

GM2a m mτ, A B

hq(σ)
gqfo) 3n

2n √β>
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1 ÷
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+

where the a’s are orbital radii, the m’s are satellite masses and a = a∕aβ, β = The functions ffc, gfc, and hfe may be
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5 ( j )expressed in terms of Laplace coefficients b by ’ , s
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We have calculated the strengths of all q = 1 resonancesdue to each pair of satellites using power series approximationsfor the Laplace coefficients and satellite parameters from 4Greenberg . The results are displayed in Figure 1, with asmooth curve connecting the resonances due to each satellitepair. It is apparent that resonances involving tiny Miranda,the innermost satellite, dominate the field. The Ariel-Titania and Ariel-Oberon resonances advocated by Dermott and Gold^ are 
relatively weak and presumably incapable of determining the ringlocations.Examination of Figure 1 reveals that the strong Miranda-Ariel resonances lie close to four of the rings: Millis et al.’s? 2#5 and Elliot et al.’s a, γ and e^. Differences between 3Marsden's calculated positions for these rings and the resonances corresponding to p = 10, 9, 8 and 7 are 155, 96, 157 and 111 km,
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respectively, for an assumed = 0.013 for Uranus. As aconsequence of the approximate Laplace relation satisfied 8by the mean motions of Miranda, Ariel and Umbriel , severalweaker Miranda-Umbriel and Ariel-Umbriel resonances alsoapproximately coincide with the above rings. Furthermore,the 4:1 resonance with Miranda is located about 114 km inside 3Marsden's position for the ring.Despite the near coincidences between the locations of thestrongest resonances and some of the rings, the rings cannotbe made up of librating material. The maximum radial widthof an arc of librating particles is
W = 8 a/f3GM 1/2a

From the resonance strengths, we obtain W ≈ 0.7 km for the4:1 resonance and W ≤ 0.07 km for the strongest Miranda-Arielresonances. By comparison, the widths of the observed ringsrange from 1-10 km for the inner rings and 30-100 km for thee ring or rings. Furthermore, libration occurs about a relative maximum of the potential energy in the frame rotating with the resonant mean motion. Thus, inelastic collisions among the particles would be destabilizing and lead to the dissolutionof a compact arc of librating material. We conclude that ifthe ring positions are determined by resonances, the control
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is more subtle than previously suggested. One possibility isthat the rings are the crests of nonlinear density waves in anoptically thin disk of particles. Calculations of the resonantexcitation of density waves in Saturn’s rings have shown that 9even weak resonances produce nonlinear waves .
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