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PREFACE

This thesis represents three separate investigations, one
of which deals with close binary stellar systems and the other
two with the rings of Uranus.

Part 1 is an unpublished theoretical study of the synchroniza-
tion of rotational and orbital motions of early type main
sequence stars in close binaries.

Part 2 concerns the observation and analysis of a.stellar
occultation by the rings of Uranus. The observations were
made by Drs. Eric Persson, Gerry Neugebauer, and Keith Matthews,
while the writer is responsible for the data analysis and for
the construction of the model for the ¢ ring. This work is
to be published, as presented here, in the October 1978 issue
of the Astronomical Journal.

Part 3 is a quantitative analysis of a resonance model
proposed for the rings of Uranus. This work was carried out
in collaboration with Dr. Peter Goldreich, and has been published

as a Letter to Nature (Nature 269 (1977) pp. 783-785).
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ABSTRACT
Part 1:

The rotational synchronization of an early type main
sequence star in a close binary system has been attributed to
radiative damping of the dynamical component of the tide raised
in the star by its companion (Zahn, 1975, 1977). An investigation
of the dynamical tide is presented here, which includes the heretofore
neglected effects of stellar rotation. Foremost among these
effects is the splitting of the tidal response into a set of
modes whose latitudinal structures are controlled by the
solutions of Laplace's tidal equation.

An approximate analytic expression is derived for the rate
of tidal energy dissipation associated with each of these modes,
which in turn determines the rate of synchronization of the
star's rotation with its orbital motion. This analytic
result is supported by a numerical analysis of the dynamical
tide raised in a 5 %3 star. Combination of analytic and
numerical results yields synchronization timescales for stars
in the mass range 2 %3 - 10 %D' These timescales are a factor
of 10 shorter than those obtained by Zahn, and are in good
agreement with the observational data concerning synchronism
among early type stars in close binaries. It is suggested,
however, that the final stages of synchronization are controlled
by another mechanism: the slow stellar expansion which

accompanies the later stages of main sequence evolution.



vii

Part 2:

Observations of the 1978 April 10 stellar occultation by the
rings of Uranus are presented. Nine rings were observed and their
radii and widths are calculated. Rings 1j, vy, and § are found to
be most likely circular and coplanar, in agreement with previous
analyses; the remaining rings are either non-circular or slightly
inclined. The width of the ¢ ring is a linear function of its
radius from the center of Uranus, projected onto the satellites'
orbital plane; this suggests that it forms one continuous nonjcircular
ring. The optical depth profile of the ¢ ring has not changed
significantly since 1977 March. A model of this ring which fits all
available observations adequately is that of a uniformly precessing
Keplerian ellipse coplanar with the satellites' orbits. This
model permits predictions of the radius and width of the ¢ ring

for future occultations. The precession rate is used to
determine JZ for Uranus, on the assumption that precession is caused
solely by the planetary oblateness and not by satellite-ring interactions.
Part 3:
A three-body resonance model proposed to account for the
rings of Uranus is quantitatively analyzed and found to be
unacceptable on several grounds. Calculation of the strengths
of two-body and three-body resonances involving all known
satellites of Uranus, and which fall in the neighborhood of the

rings, reveals that the strongest resonances are the 4:1 and 5:1

resonances with Miranda, and the three-body resonances involving
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Miranda and Ariel. Resonances invoked by the proposed model are
much weaker. Despite the fact that four of these relatively
strong resonances approximately coincide with rings 5, «, Y

and ¢, they are too weak to explain the observed widths of the
rings. Finally, the simple ring model of densely packed particles

librating about a resonance is shown to be secularly unstable.
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PART 1
TIDAL SYNCHRONIZATION OF THE ROTATION OF

EARLY MAIN SEQUENCE STARS IN CLOSE BINARIES.



I. INTRODUCTION

Rotational velocities of stars in close binary systems are, on
the average, considerably lower than those of single stars of the same
spectral type. 1In fact, observations of an eclipsing binary, for
which the radii of the stars may often be determined from analyses
of the light and radial velocity curves, frequently indicate that
one or both stellar rotation rates are almost synchronous with the
orbital motion (Olson, 1968; Plavec, 1970).

While some form of interaction leading to such synchronization
does not seem implausible for stars which are separated by only a
few radii, the precise mechanism has been elusive. Tidal interaction,
long considered the obvious candidate, may lead to a transfer of
angular momentum from stellar rotation to the orbital motion of the
system, but the tidal torque on, say, the primary depends on the
phase lag between the tidal potential due to the secondary and the
resulting tidal distortion of the primary. If this phase lag is
zero, then the distortion of the primary is symmetric about the line
of centers of the two stars, and there can be no tidal torque.

The amplitude of the phase lag depends, in turn, on the rate of
mechanical energy dissipation in the system which is attributable to
the tidal distortion. If the rotational angular velocity of the
primary and the mean orbital motion of the binary system are denoted
by 2 and w respectively, and the primary's moment of inertia by I,

then it may readily be shown (see section 5b) that the rate of



spin-down of the primary due to the tidal torque is given by

. 2
Q= TTQ - w) > (1.1)

where E is the rate of tidal dissipation of mechanical energy in the
primary. The problem of calculating the rate of synchronization of
rotational and orbital motions thus amounts to calculating the rate of
tidal energy dissipation.

For main sequence stars with deep convective envelopes (i.e.,
spectral type F or later), it has been shown (Zahn, 1966, 1977)
that convectively induced turbulent viscosity acting on the tidal
currents flowing in the envelopes of these stars results in signifi-
cant energy dissipation. The calculated rate of dissipation, while
quite uncertain because of the limitations of the mixing length
theory of convection, coupled with the long main sequence lifetimes
of such stars (_109—10ll yr), readily explains the occurrence of
synchronism for late type stars in close binaries.

However, the great majority of stars in close binary systems
that have had their rotational velocities measured are main sequence
stars of spectral type A and B. Such stars possess stably stratified
radiative envelopes and relatively small convective cores. Despite
the high Reynolds number associated with tidal currents in the
envelope of such a star, it is generally believed (e.g., Zahn, 1977)
that the stable stratification prevents the growth of turbulence
and the associated turbulent (or eddy) viscosity. The velocities of

tidal currents in the core and the estimated turbulent viscosity



there are both small, and result in negligible energy dissipation.
"The action of "molecular" viscosity or radiative damping on the
envelope currents is also insignificant (Zahn, 1977).

The only promising mechanism for tidal energy dissipation in
early type main sequence stars has been advanced by Zahn (1975, 1977),
and involves the 'dynamical' tide. This term refers to that small
part of the time dependent tidal distortion of a star which is not
given by the equilibrium response of the star to a quasi-static
tidal potential. The velocities and distortions associated with
the dynamical tide are generally much smaller than those associated
with the equilibrium component of the tide, and are usually neglected
in studies of the dynamics of close binaries (e.g., Kopal, 1959).

Zahn was able to show, however, that the dynamical tide, which
in the radiative envelope takes the form of radially propagating
gravity waves, transports a significant flux of mechanical energy
from the interior of the star to the surface layers. Radiative
damping of these gravity waves in the stellar atmosphere’may result
in the loss of a large fraction of this energy from the binary
system. Zahn's calculations indicated that the rate of transport
and subsequent dissipation of mechanical energy by the dynamical tide
was indeed sufficient to account for the synchronization of early
type stars in binaries with orbital periods less than 2 or 3 days.
This is in fair agreement with the observational evidence although
somewhat greater dissipation rates than those calculated by Zahn

are indicated.



The present work is essentially an independent version of Zahn's
calculations, but with two major changes which bring the theory
closer to the real world. Zahn has neglected the effect of rotation
(via the coriolis force) on the dynamical tide, even though the
rotational periods of non-synchronous early type stars in close
binaries are of the order of 1 day or less. This has been remedied
here, although some approximations have been made to keep the problem
tractable. The second improvement is the replacement
of Zahn's zero-temperature outer boundary condition for the stellar
model used in the calculations by a more realistic finite temperature
condition. This matter bears on the question of what fraction of
the energy transported by the dynamical tide is dissipated in the
stellar atmosphere.

In section II, the general theory of the dynamical tide in a
rotating, early type main sequence star is developed. Particular
attention is paid to those features of the theory which arise
peculiarly as a consequence of stellar rotation, and have thus not
previously been considered. Section III gives approximate analytic
solutions for the functions describing the radial dependence of the
dynamical tide, and concludes with an approximate analytic expression
for the energy dissipation rate.

The analytic solutions of section III are supplemented, in
section IV, by more accurate numerical solutions carried out for a
5 @3 star (spectral type ~ B6.5). 1In section V these numerical

results, scaled to other stellar masses by use of the analytic



expressions developed in section III, are employed to describe the
process of synchronization in a close binary. Synchronization
time scales are calculated for a range of early type stars, and
compared with the available observational data. Section VI
enumerates the principal results, relating both to the extension of
the theory of dynamical tides, and to the degree of success of the
theory in accounting for synchronism in early type close binaries.
Throughout the theoretical development of sections II, III, IV,
and V, the star suffering tidal distortion is referred to as thg
primary, and its companion as the secondary. The latter is treated
as a point mass. No implication concerning the relative masses or
luminosities of the two stars is intended. In the present
terminology, each component of a real binary acts as both primary

and secondary.



IT. THE DYNAMICAL TIDE IN A ROTATING STAR.

a) The tidal potential

The first step in calculating the amplitude of either the equili-
brium or the dynamical tide is to write an expression for the tidal
potential, U, responsible for these distortions. It is assumed,
for simplicity, that the rotation axis of the primary is normal to
the orbit plane, and that the binary orbit is circular. We use a
spherical polar co-ordinate system centered on, and rotating with, the
primary. Colatitude, 9, is measured from the north rotation pole,
and longitude, ¢, is measured in the prograde direction with ¢ = 0
corresponding to the direction of the secondary at time t = 0.

Under the above assumptions, the tidal potential may be written as

U(r,0,p,t) = 3 2{: 2;“ (r/a) " (cos ) cos(o t-%m@) s
£=2 m=0 (2.1)
where
T s (2o ) Lmmb P,"(0) (2.2)
4 m0” (£+m)! > :
and o, = m(Q-w) . (2.3)

MZ is the mass of the secondary, and a the separation between the
centers of primary and secondary. The functions P{? are associated
Legendre functions. Since P{?(O) = 0 if £-m is odd, only even m
terms appear for 4 even, and only odd m for £ odd. As long as the

tidal response of the star remains linear, each temporal Fourier

component of the tide may be considered separately, and the results



subsequently summed. The dominant terms in the expansion of U, to

which we will later restrict our attention, are given by

G, .2 0 2
- (5) {—‘/2 P2 (cos 8) + % P2 (cos ) cos (02t+2cp)} , (2.4)
0 a 2
where P2 (cos §) =% (3 cos"®-1) ,
2 2
and P (cos 6) = 3 (1 -cos’9)

2



b) Derivation of the differential equations

The differential equations governing stellar tidal oscillations
are derived from the familiar equations of motion of an inviscid,

compressible fluid, including coriolis and centrifugal terms:

o . = —yp - -
5c PV + (vev) ey Vp - p VV - 20(QxV) (2.5)

O/|O/
Tt |
1l

- ve(pv) . (2.6)

The symbols are defined as follows: p = density, v = fluid velocity,
P = pressure, 9}= stellar rotational angular velocity, and V = total
potential, including the internal gravitational potential of the

star and a centrifugal term, as well as the tidal potential. The last
term in equation (2.5) is the coriolis acceleration. The third
fundamental equation comes from the requirement that the oscillations

be adiabatic:

g5

O/IOJ
o

+yveve) (2.7)

(

where ' is the ratio of specific heats.

+yevp) =

Since the tidal oscillations are of very small amplitude, except

in the stellar atmcsphere, these basic equations may be linearized

in terms of the small departures (6p, 6p, &V) from the equilibrium
conditions (po, Py VO) which prevail in the absence of tidal forces.
It is assumed that this equilibrium state has v, = 0. The linearized

~0

equations are:
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v
po SE-Z *Vép—-prVo - 290@2xx) - POV6V (2.8)
'a—é—g = — L ]
5t v (pog) (2.9)
1 /a6p I" /36p
—_ + ° = .
> SR AL o (Se +xveg) ' (2.10)

The equilibrium potential, VO, includes the gravitational and
centrifugal potentials, while &V consists of two parts: the externally
applied tidal potential, U, and the perturbations to the internal
gravitational potential,évint, caused by the tidal density perturbations.
A fourth differential equation (Poisson's equation) is thus necessary

to relate 6V1nt and 6p:

V2 kvint(r,e,@)] = 4G 6p (xr,€,9) . (2.11)
The solution of these linearized equations may be accomplished
by either of two methods. All of the normal modes of oscillation of
the star might be identified, along with their natural frequencies,

w .
mnk

for the longitudinal (m) and latitudinal (n) structure of the mode,

These modes are characterized by three indices - one each

and one for the radial structure (k). The fundamental radial mode has
w o >=/é§l~ Zﬂ/lhour, where 5 = average density of the star.

Higher order radial modes are divided into two sets: p-modes (k> 0)
with W 7 e as k = ®; and g-modes (k<0) with w1 0 as k = -=,

The number of radial nodes increases as |k| increases. It is

possible to consider the forcing of each of these normal modes by a

particular temporal Fourier component of the tidal potential, denoted
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by the subscript m, and then sum up all of the separate responses
to obtain the total stellar distortion due to that Fourier component.
This procedure, while conceptually straightforward, requires a
detailed investigation of the normal modes of the star, and many
separate forcing calculations. Ultimately, many of the forced modes
would make only negligible contributions to the total response.
We thus choose to employ a second, more direct procedure which does
not explicitly take account of the normal modes. ‘Before continuing,
however, we digress to introduce a very useful approximation
suggested by the above discussion.

Tidal forcing periods, 2n/0m, in close binaries typically lie

in the range ~ 12 to 2 100 hours, so o << w

. Thus, all of the
mnO

p-modes and the low order g-modes are being forced at a frequency
much lower than their natural frequencies, and the respouse of each
of these modes is essentially a static or equilibrium response,
which is independent of o Now the internal potential perturbation,
int . . .
oV , is largely controlled by the density perturbations associated
with normal modes with few radial nodes (i.e., the low order p-modes
and g-modes ), as the gravitational field associated with a rapidly
oscillating density component tends to cancel. Consequently, all
AP AP . . ., int
of the significant individual normal mode contributions to oV
e ey s int | : .
are equilibrium responses, and thus &V itself may be approximated
by the equilibrium stellar response to the tidal potential. In terms

of the usual Love functions, k&(r), and for the mth Fourier

component of the tidal potential, this result is expressed by
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v M0 = ) k@ Ul e, (2.12)
{=m

where U{é represents the (L,m) component of expression (2.1). The
Love functions may be calculated from the density profile of the
star, po(r), by solving Poisson's equation (2.11) for the equilibrium
tide. The mth Fourier component of the total potential perturbation

in equation (2.8) is thus given by

GM2 - I 4, m
oV = - = E [1+k, ()] T, (r/a)” P~ (cos 0)

t=m (2.13)

cos [cmt + mep]
and the problem is reduced to the simultaneous solution of equations
(2.8), (2.9), and (2.10).
Let us now return to the second method for obtaining this
solution. The mth temporal Fourier component of the tidal response
is isolated, and all perturbed quantities assumed to have the time and

longitude dependence el(cmt—km@)

, where o is given by equation (2.3).
The perturbing potential is given by equation (2.13). We now make

two approximations which greatly simplify both the analytic and
numerical solution of the equations.

(1) The equilibrium structure of the star is taken to be

spherically symmetric, i.e., po, pO, and V. are functions of

0
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the radius, r, only. We are thus neglecting the rotational
flattening of the star, a procedure which is valid as long as

Qz << GE, where ; is the average stellar density.

(2) 1In calculating the coriolis force, —Zpogyizﬁ only the radial
component of Qﬁ {} cos ©§ £,’ is retained. This procedure is
standard in the theory of planetary atmospheric tides, and
essentially amounts to asserting that the radial component of

the coriolis force is small compared with the perturbed radial

gravitational force, - 6p VvV This is correct in the radiative

0°
envelope and in the stellar atmosphere, wheré the radial wave-
blength of the tidal oscillations is small compared with the
horizontal wavelength (see section 2e). We will justify this
statement a poste/lordi in Appendix 1. The above assertion is,
however, incorrect when applied to the stellar core, and must
consequently introduce some error in the solutions.
The principal reason for making approximation (2) above is

that it leads to the separation of the equations in spherical

polar co-ordinates. The details of this separation are relegated to

Appendix 2, and the results simply quoted here. In the usual manner,

an arbitrary separation constant, denoted by K, appears. Physical

constraints imposed on the angular part of the solution restrict K

to take any of an infinite set of discrete values, {Kmn}' Discussion

of these constraints and of the form of the angular solutions is

deferred to section 2c¢ for convenience. The complete solution to

eqﬁations (2.8, (2.9), and (2.10) may thus be written as a sum of
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individual solutions corresponding to the different allowed values
of K. The pressure perturbation and the radial component of the

velocity take the form:

=D o (1) () TORTTD (2.14)
n
and V), = o thn(r) @mn(e) ei(gmt+mcp); (2.15)
n

while the density perturbation and the other two velocity components
are given by similar expressions involving the functions 6pmn’ hmn’
and é%nf and their first derivatives. 1If, for the present, it is‘
assumed that the functions C%n(e) form a complete set in the interval

0 <06 =1 (see section 2c for a discussion of this point), the

potential 6Vm may be similarly expanded:

6V&l==ZE: v (r) @ (8) ol (omt +myp) X (2.16)

n

The functions 6p__, h _, and € satisfy the following ordinary
mn’ mn mn

differential equations, in which the subscript m is largely suppressed:

Po G (po 6pn) Polo” =N ) h == ey g (V)5 (2.17)
2 2
c p . K o p K ¢
0 d 2 1/1 _f{_m _~ "0 __m 0 )
2 1/I ar 0 h) ( 2 Ip ) op 5 OV 3 (2.18)
r pO 0 r

2 de 2 2 2 K
d [1-p ny\ 1 r;ELh~ n(f™+p7)} mn _
——( ) f2 + & + — @n = 0. (2.19)
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In the third equation we have used the variable p = cos 6, and the con-

o} veq s
stant f = Egu The quantity Nv is the Brunt-Viisdli frequency (the

natural frequency for small-scale adiabatic vertical oscillations

in a stratified fluid) and is given by

dp pl/r
2 1 0 d |, 0 (2.20)

v po dr dr pO -

Cowling (1941), in his diséussion of fIree oscillations in non-
rotating stars, derived equations equivalent to (2.17) and (2.18),
but with K.Hm = n(n+1) and with C%n(e) = an(cos 8). Zahn (}975)
used equations identical with Cowling's. The novel features intro-
duced by rotation (via the coriolis force), namely the angular functions
()mn and their associated separation constants Kmn’ are discussed in
section 2c.

At this point, it is convenient to separate 6pmn and hmn into
what Zahn (1975) has referred to as "equilibrium" and "dynamical"
components. The equilibrium component may be thought of as the
response when all of the normal modes of the star are forced at
a frequency much less than their resonant frequencies. It is

obtained by setting o = 0 in (2.17) and (2.18):

_eq _ _ ,
6pmn pO bvmn >
o dpQ (2.21)
= —_— = = V
and hmn pO é)an// dr o mn//g

where g is the local gravitational acceleration. The "dynamical tide"

is defined by the quantities:
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. dyn _ eq
Opmn B 6pmn Z‘)pmn ’
2.22
and A A ( )
mn mn mn ’
which satisfy the same differential equaticns (2.17) and (2.18),
but with the right band sides changed to
I il
9 Po ““mnf Tdr ’
2 d (2.23)
. 2Pfoa 2 o /T
an r2 dr pO mn dr

respectively.
- . . . _dyn dyn
In section 3, approximate analytic solutions for bpmn and hmn

are derived, whilst more accurate numerical solutions are obtained

in section 4.
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c¢) The angular part of the tidal oscillations

Equation (2.19), which is independent of the structure of the
star and of the form of the perturbing potential 6an, is known
as Laplace's tidal equation. Its solutions govern the oscillations
of an ocean of uniform depth covering a rotating planet, and global
atmospheric oscillations on a rotating planet. For a detailed
review of the latter subject, see Chapman and Lindzen (1970).
The solution of Laplace's tidal equation, subject to the physically
necessary condition that all solutions be regular and bounded in
the interval 0< 6 < 1, is an eigenvalue problem. For the case of
free oscillations of an ocean of depth D, the constant e = K/f2 is

given by

w2

~—éD (2.24)
(R = planetary radius, g = surface gravity), and regular, bounded
solutions exist only for certain discrete values of f = o¢/2Q. The

same applies to free atmospheric oscillations, but with D replaced

by a length scale characteristic of the atmospheric structure. For

an isothermal atmosphere with scale-height H, D = ['H. When forced
oscillations are considered, as in the present problem, the value of

f is fixed by the forcing frequency and K (or ¢) may take only certain
discrete values, denoted Kmn' The solutions ng(e) which correspond

to these eigenvalues are usually known as Hough functions, after a

pioneer in the study of lLaplace's tidal equation. Various notations
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have been used for Hough functions and the related eigenvalues. :In
particular, workers such as Chapman and Lindzen (1970) who study
atmospheric tides and oscillations use the "equivalent depth':

2 2 o %R°

) _ 4@ R _ Om
tﬁ";m = s = K ) (2.25)

mn mn

Longuet~Higgins (1967), in-the most extensive published analysis of
Laplace's tidal equation, uses the eigenvalue e, Hough functions
denoted by Z(6), and the parameters A = —f and s = m.

The following brief description of Hough functions is adapted
from Flattery (1967) and Longuet-Higgins (1967). For graphs of
selected Hough functions, tables of eigenvalues, and various asymptotic
approximations the reader is referred to the latter reference.
(1) As the operator 35; defined by rewriting equation (2.19) in

the form

Fe)+EX£ =0 (2.26)

is self-adjoint, the eigenvalues Kmn are real and the eigenfunctions
(S orthogonal:
mn

1
6.0 @mp(e) dp. =0 if n # p. (2.27)
~1

(2) For }fl > 1, equation (2.19) is a Sturm-Liouville equation.

There are thus a countably infinite number of eigenvalues, all

positive, with Kmn — ® as n — «@. By convention, n takes the values
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m, m+1, m+2, ... . For any fixed m, the Hough functions form a
complete set in the interval 0 = § < mw. That is, any regular bounded

function F(9) may be expanded in terms of these functions:

@

F(o) = Z a_ @mn(e) , 0<@o=m ] (2.28)

n=m
The expansion coefficients are given by

1
a =f F(e) @ (8) dp ) (2.29)
I1 :

when the Hough functions are normalized to satisfy

f O @ d=1 . (2.30)

mn
=1

(3) For If] < 1, equation (2.19) has two regular singularities

(at p = % f) in the range 0 <= 6 < 1, and does not rigorously satisfy
the requirements for being a Sturm-Liouville equation. Nevertheless,
the singularities are removable, and the eigenfunctions are assumed to
form a complete set, though this has not been proved. Countably
infinite sets of both positive and negative eigenvalues exist for

]f[ < 1, the index n conventionally taking the values £m, =+ (m+1),
L(m+2), ... . The plus signs correspond to solutions of the first
class (Hough, 1898 3 Longuet-Higgins, 1967 ), or 'gravitational modes"
(Flattery, 1967 ), and are associated with positive eigenvalues. As

]f[ — 0, the solutions of this class are concentrated towards u = 0,

i.e., towards the equator of the rotating body. The minus signs
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correspond to solutions of the second class, or ''rotational modes,“
and are generally, though not always, associated with negative
eigenvalues. For fixed f, there are only a finite number of positive
second class eigenvalues. As ff’ — 1, the second class solutions are
concentrated towards p = +1, i.e., towards the poles. It is apparent
that, if the Hough functions do form a complete set for |f| = 1,

both positive and negative values of n must be included in equations
(2.28) and (2.29).

(4) Solutions of the first class are symmetric about-pu = 0 for even
values of n-m, and antisymmetric for oddn -m. The opposite holds
for solutions of the second class. Since the tidal potential (2.1)
contains only symmetric terms, we shall only be interested in symmetric
Hough functions.

(5) In the limit Ifl - ® | equation (2.19) becoues Legendre's

equation, and the Hough functions are associated Legendre functions:

m
& () -P ().

The eigenvalues Kmn - n(n+1), independent of m. This limit corresponds
to 2 » 0 while ¢ remains finite, i.e., to a non-rotating body. We

thus recover the equations of Cowling (1941) and Zahn (1975) for a
non-rotating star, referred to above in section 2b. Note that the
expansion of the perturbing potential in equation (2.16) becomes

trivialin this case, thus simplifying the calculations considerably.
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d) Eigenvalues and projection coefficients

In this section the specific numerical properties of Hough
functions which are of importance to the current investigation are
collected. These involve the eigenvalues Kmn in equation (2.19),
and the tidal potential coefficients 6an in equation (2.16). Only
the dominant terms in the tidal potential, as given by expression
(2.4), are included in this investigation. Inclusion of smaller
higher order terms, while straightforward, seems superfluous in view

of the approximations already made in section 2b. Since the first

o

term in (2.4) (the T2

term) has no time dependence, it contributes
only to the equilibrium tide, and may be neglected. The second
term (T22) consists of a single Fourier component with m = 2.

In figure 1, the eigenvalues K2,n for n = £2, £3, £4, and +£5
are displayed as functions of f in the range -1.8 = f < 1.8. For
compactness, [K]l/2 is plotted, but the sign of K is preserved; solid
and dashed lines represent eigenvalues associated with symmetric and
antisymmetric eigenfunctions respectively. The figure is based
on tables given by Longuet-Higgins (1967). Referring to equation (2.3)
and the definition of f, we see that £ =1 - w/(G for m = 2. Consequently,
for a binary whose orbital and rotational angular velocity vectors
are parallel, f is initially less than, but close to, unity. As
the rotational velocity slows towards synchronism, f decreases

towards zero. We shall thus be concerned with the range 0 < f < 1.

In addition, negative eigenvalue solutions, while permissible, are
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FIGURE 1: Eigenvalues of Laplace's tidal equation, Kmn’ form = 2
and n = £2, £3, £4, and £5. The abscissa is f = 02/29 =Q-w)/Q,
| Y

and the ordinate ]K

, with the sign of K retained. Solid lines
mn mn

represent eigenvalues corresponding to symmetric eigenfunctions,
dashed lines those corresponding to antisymmetric eigenfunctions.
Positive and negative values of n correspbnd to Hough eigenfunctions
of the first and second classes respectively. Note that, for the
eigenfunctions of the second class, K.mn - - oas f - 1, and that for

If[ > 1 only positive eigenvalues exist.
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disregarded, since they contribute negligibly to energy dissipation by
the dynamical tide. This is demonstrated by the WKB solutions obtained
in section 2e. Finally, as noted in section 2c (4), only symmetric

Hough modes are excited, since the tidal potential is symmetric.

Figure 2 shows the first three eigenvalues corresponding to the solutions
satisfying the above requirements, for the range 0.1 < £ < 10.

For f > 1/6, only Hough functions of the first class need be considered,
and the eigenvalues are well represented by the approximation (due

to Longuet-Higgins, 1967 ):

2:(lZn--l)z

2,n f2

K (2.31)

for 0 < f s1. For £ <1/6, one or more symmetric Hough functions of
the second class have positive eigenvalues and must thus be included in a
complete analysis, In this investigation we will restrict f to be greater
than 1/6, and not consider the final stages of synchronization.

The total perturbing potential is given by equation (2.13),

with T22 substituted from (2.4):

- GM 2
2 4a3

oV (1+k, (1)) r2P22 (cos g) et @EF2P) (2.32)

where the subscript 2 has been dropped from o. The Hough mode potential
functions of (2.16), (2.17), and (2.18) are then obtained by appli-

cation of (2.29):

3G
; 2 2
V. (r) = —4—[1+k ()] = & , (2.33)
2,n( ) /15 a3 [ 2 J n
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FIGURE 2: Eigenvalues K corresponding to the first three symmetric

2,n

eigenfunctions of the first class, for 0.1 < f < 10. The parameter

v is the positive root of the equation v(v+1) = K2 0"
b
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. - 2 -
with Q%; = Jf Py (1) Cg,n(e) dp >, n=2,4, 6, ... .
-1 (2.34)
. . 2 . 2
The normalized function P2 has been introduced to replace P2 :
) 2
PG| dp =1 >
-1 (2.35)
2 _V15 .2
P2 (cos 9)= 5 sin’e .

The projection coefficients, ?8;, are functions of the parameter f,

and no complete tabulation of them has been published. Chapman and
Lindzen (1970) provide tables up to n = 16 for values of f applicable

to Farth atmospheric tides, namely f = 0.966, and f = 1.000. Graphs

of the functions 65,2 and 65,4 given by Longuet-Higgins (1967) for

a few specific values of the eigenvalue ¢ have been used to estimate
€, for £ =1.1, 0.54, and 0.31, and ??; for f = 0.81 and 0.47.

Lastly, with the aid of asymptotic solutions of Laplace's tidal

equation valid for f << 1, formulas have been derived for ?g;, ég4 , and
%?6 for small f. These asymptotic solutions are given in Appendix 3.

All of these results are displayed in Figure 3. The dashed lines

represent our adopted approximations for ?f; and ‘éi as functions of

f. These approximations do not seem likely to be in error by more than
50%. The rapid decrease of ‘the Qg;'s as f decreases is due to the
progressive concentration of the Hough functions towards

p = 0. For f = 0,Hough functions of the first class are essentially
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Delta functions at p = 0. Meanwhile, the Hough functions of the ‘second
‘class are becoming less concentrated towards p = =1 as f decreases.

The coefﬁcient?? for example, should be very small for f =1,

-3?
but increase towards unity as f — O. This emphasizes the necessity
of including these functions of the second class for very small values
of f.

Finally we note that ?g;, ?g , etc. are progressively smaller
than %?2 and ?5;. This is illustrated on Figure 3 for f = 1, and is
an obvious consequence of the fact that, as n increases, the number

of nodes of the Hough functions increases. For f =1, the coefficients

are represented approximately by

@ -2
n (nn)z . (2.?6)

In this investigation, only Qg; and ?g; are retained.
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FIGURE 3: The projection coefficients ﬁgn defined by equation

(2.34). Circles represent values tabulated by Chapman and Lindzen
(1970) for f = 1.0 and £ = 0.966, and originally calculated by
Flattery (1967). Squares represent projection coefficients calculated
from graphs of selected Hough functions given by Longuet;HigginS
(1967). Asymptotic approximations for f << 1, given in Appendix 3,

are shown as solid lines. The dashed lines indicate the approximate

forms of %52 and égg adopted for the present study.
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e) WKB radial solutions and the energy flux

In this section, approximate WKB solutions are obtained for the
radial functions bpmn and hmn' These solutions are valid only in the
radiative envelope of the star, and break down near the core-envelope
boundary and near the stellar surface. They do, however, provide
a good approximation throughout a large part of the star, and provide
a formula for calculating the mechanical energy flux carried by the
dynamical tide. The subscript m will, henceforth, be suppressed and
assumed to take the value 2.

Consider the homogeneous solutions of equations (2.17) and (2.18).
Throughout the stellar interior

2 ,
(o} po_ K

»L)._
Iy «< = s (2.37)

0 r

and the coefficient of 6pn in (2.18) may be simplified. For example,
with conservative values for ¢ and Kn of 10—4 sec~1'and 10 respectively,
and with the parameters of a typical (5 solar mass) early type star,

the ratio of these quantities varies from 4 x 10”6 at the center, through

4

3 x 10 ' at the core-envelope boundary, to 4 x lO—3 in the middle of

the envelope. 1In the stellar atmosphere the ratio approaches unity.

Using (2.18) to eliminate 6pn, and introducing the new variable

w(r) = r po(r)‘% h , (2.38)

we obtain the following second order differential ecuntion:



2 N . )
@’ i 2 r s [ =20 1/p | w
> FAK Tt ey Pg T g [PoPo ar (po o ) 2" 0

(2.39)
Now, in the stellar envelope, NV ~ lO—3 sec~l, while lO—S sec~l <o <
l()“4 sec*l for most cases of interest, so NV%/GZ ~r103il >> 1. Also
Kn ~ 10 to 102 typically for Hough functions of the first class
(see Figure 2 ), and the term involving po and P is dimensionless and

evidently of order unity. To a good approximation, then, (2.39) reduces

to

20 (konCm )
Z +[on 2v =0 ,n =2, 4, 6, ... . (2.40)
dr

o
Since the quantity in parentheses is > 103, and varies slowly with
r, the WKB technique is amply justified and the resulting independent

solutions are given by

L r

fe, [ \% K SN D)
w, = A e - exp {+1i .[ dr’ 5 (2.41)
+ ES (Nv(r)> (¢} re r

wvhere Ai and ¢, are arbitrary real constants and r, is the radius of

the core-envelope boundary.

Using equations (2,38) and (2.18), we obtain the WKB solutions:

le .
+ - T i ~L L
hn (r) S:Aie * LrSpO(r) Nv(r)} 2 exp{ ij_an g(r)} S (2.42)

and 9
. L
16:!: c pO (r)NV(r) 3

K r
n

( L
6pni(r) ~iiAe exp {ii an g(r)} s (2.43)



33

where
1 F ~
g(r) = g‘]ﬁ‘—z——~* dr’ (2.44)
r

e
. . ict ,
Recalling the time dependence of the solutions, e , we see that the .

two solutions corresponding to the * sign represent waves propagating
radially inwards and outwards respectively. The radial wavelength of

these waves is given approximately by

=200 r ”1/2‘5 z ) (2.45)
K °N (r
n v
~107% o 107,

and they are an example of "gravity waves'" (see Eckart, 1960 ).

So far we have assumed that Kh.> 0. For Hough functions of the
second class (n < 0), Kn < 0 for all odd n for 1/6 < £ < 1. 1In this
case, the solutions of (2.40) are exponential functions of r. A

positive exponential implies a very large amplitude surface oscillation,

which is not physically acceptable. The negative exponential solution
is acceptable, but the amplitude of such a mode of oscillation rapidly
becomes negligible with increasing radius and the mode transfers
negligible mechanical energy to the outer regions of the star. We
thus neglect all modes with negative eigenvalues, as foreshadcwed in
section 2d.

Associated with these WKB solutions is a radial mechanical

energy flux, analogous to the energy carried by a sound wave, given by:

F = (Re (ép) Re [(X)rD (2.46)

time
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With the aid of equations (2.14), (2.15), (2.42), and (2.43), we

obtain for the total radial energy flux:

F~—9~2— A ™2k 770 (9)2
B 2r2 2{: + n n 0)
n

-1
SN ke ()’
o - n n

+303 k76 (0) 6,0
n {#n

-A " A_{' cos[(K&/z—Kn }g(r) +e - e_&]}) .k2.47)
£

Since for given values of m and f, Kn # K& for n # 4, the A"A" terms

in this expression oscillate with increasing radius. These terms also
vanish when integrated over a sphere, because of the orthogonality of
Hough functions. Thus they do not contribute to the overall transport
of mechanical energy through the envelope. Restricting attention,
therefore, to the first two terms, we see that the inward propagating
gravity waves (A+n) transport energy outwards, and vice versa. This
is a well-known property of gravity waves (see, for example, Eckart,
1960 ), and is a consequence of the radial component of the waves'

group velocity being directed oppositely to the radial component of
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their phase velocity. Note that the r”2 dependence of the flux
implies that the total energy transported per second is independent
of radius.

We shall see in section 3, and again in section 4, that these
homogeneous WKB solutions are, in fact, excellent approximations to
the complete forced solution in the stellar envelope. Thus, to
compute the energy flux carried by the dynamical tide, it is only
necessary to determine the coefficients Ain. These coefficients
depend principally on three things: the amplitude of the tidally
forced solutions, 6pn and hn’ in the core of the star; the éroperties
of the core-envelope boundary; and the boundary conditions imposed on
the envelope solution by the stellar atmosphere. We now proceed to

a discussion of the latter problem.
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f) Atmospheric boundary conditions

In his treatment of the dynamical tide in non-rotating stars,
Zahn (1975) adopted a simplified polytropic outer boundary for his
stellar models whereby the temperature goes to zero at a specified
radius. As a consequence, the outward-propagating waves are completely
reflected at this boundary, and a standing wave pattern is set up
with A+n = A_n. Clearly there is no net transport of energy in this
situation. To resolve this apparent problem, Zahn relaxed the
requirement of adiabaticity, equation (2.7), in the optically thin
stellar atmosphere, replacing it with the more complicated (énd
realistic) equations governing radiative damping of the waves. In
the presence of atmospheric dissipation - such as radiative damping -
the waves are no longer perfectly reflected back into the stellar
interior. A_n is smaller than A+n, and there is a net outward flow
of mechanical energy through the stellar envelope, which is ultimately
deposited as heat in the stellar atmosphere or radiated directly
to space.

However, if a more realistic atmospheric model is used, the outward
propagating (in the group velocity sense) gravity waves are not
necessarily reflected at all and may propagate outwards indefinitely.
In this case, the amplitude of the waves increases as the gas pressure
decreases, until the waves become nonlinear, possibly developing into
shock waves. At this point the energy carried by the waves is

likely to be dumped as heat into the gas, and ultimately radiated.
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Of course, radiative damping of the waves occurs as well, and simply
serves to increase the rate of dissipation of the waves' mechanical
energy.

The conditions for propagation of gravity waves through, rather
than their reflection by, the atmosphere of a rotating body are given
by Chapman and Lindzen (1970) in chapter 3, equation ( 30 ). The

functions hn(r) and 6pn(r) are given by

0 X
h = — 1
n(r) hn exp (24-1kx) s
and op (r) = 68p 0 exp (- z<—-l—ikx)
n n 2 ’
- 0 .0 : . .
where x = —»@zpo(r), hn and bpn are constants, and k is given by

the dispersion relation:

2 _1p4H (1-1 , dH) |
k” = (r +dr) 1 . (2.48)

4 é}%%

H(r) is the atmospheric pressure scale height, and éﬂi is the

equivalent depth defined in equation (2.25). As an aside, we note

the exponential growth of hn and 6pn/p0 with height, referred to above.
Evidently, if the minimum temperature in the stellar atmosphere

(at the top of the photosphere), Tm. , is associated with a scale

in

height Hmin’ then the nth mode will not be reflected, provided

n I min
i.e., provided (2.49)
4 (1 -
2 W=D Kn & Hm:'Ln
o < > J

R2
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where R is the stellar radius. For m = 2 and f £ 1, Kmn is given
quite accurately by equation (2.31), and the condition for propagation

th
of the n mode becomes:

(2.50)

-0 2(2n-1) (-1 min
2Q R I

0o

jas)
~——
Ny

Clearly, if the nth mode propagates, so do the (n-FZ)th, (n4-4)th,
etc. Also, since both ¢ and f decrease during the process of synchro-
nization, the number of propagating modes gradually increases.

If, for a particular mode, condition (2.50) is satisfied,_then

the boundary condition applied to the envelope solution is
A =0 s (2.51)

i.e., no reflection of the energy flux by the atmosphere*, The

outward energy flux is given by:

2 2

1
e

9 n 2
F o= 2 K_ A, @n(e) . (2.52)

If condition (2.50) is not satisfied, outward propagating waves
will be reflected at or below the level of Tmin’ and Zahn's boundary
conditions involving radiative dissipation are appropriate. Following

Zahn, we introduce the damping constant, y, defined by

n -+ - L
A e =% A (Q+y)
ie_ (2.53)
A" e =5 A (1-y) .

* This boundary condition is commonly known as the "radiation condition."
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When v = 0 (zero damping) A+n = A_n and a standing wave pattern exists,
with no net transport of energy. When y = 1 (complete damping),
A" = 0 and the outward energy flux is given by equation (2.52),
with A+n = IAn[. For intermediate values of vy, the energy flux is
02 -1 2 2
F =2— K y!Al O () B (2.54)
n 2r2 n n n

It may be shown (see Zahn, 1975, equation [2.38]) that, when y is
varied while all other stellar parameters are held constant, the

constant An varies as:

A (sin y - iy cos ot (2.55)
where K e ‘a N (')
y = - Y dr’ + constant . (2.56)
o ‘
r
T
e

Radii r, and r_are the radii of the core-envelope boundary and the
reflecting layer in the stellar atmosphere respectively. Thus ¥} is
a measure of the total number of radial oscillations in the WKB
solutions (2.42) and (2.43), and has a value of the order of 2m x
(10 to 100). Substituting expression (2.55) in equation (2.54) for

the energy flux, we obtain:

0
F = Y F R (2.57)

sinzw + y2c032¢ !

which is the same as Zahn's (1975) equation (2.50) and Zahn's (1977)
equation (5.2).
As @, and hence o, decrease during the process of synchronization,

. 0
¥ increases steadily. Therefore, Fn oscillates between maxima Fn/y and
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minima YFnO- Zahn (1975) has pointed out that these maxima at § = Nu
correspond to the tidal forcing frequency, o, being in resonance with
successive high order g-modes, i.e., normal modes of oscillation of
the star. As y approaches 1 (complete damping of the waves) these
resonances become less and less important. Fortunately, if Fn is
averaged over a range of time corresponding to an increase in } of
21, the resulting average flux is almost independent of the damping
constant y. Neglecting the small variation in w, equation (1.1 )

for the rotational evolution of the star may be written

_do _ 4E (@)

dt Io > (2.58)

where E is proportional to F. Thus,

(0]
! ~e=41{ - " do
E(o)
(%)
OI
"/ F() <°>f F(c) )
(0]

Now, the appropriate time-averaged value of F is given by

: 3 /
t’ - t e - %(a -0)

SO

(F) ] o . (2.59)
O -0
(¢}

Using expression (2.57) for F, and integrating over an interval

corresponding to Ay = 21, we obtain
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(Fy =~ —EL— 5 o (2.60)

1+y° O
Zahn (1977) incorrectly obtained (F) = Fno, by simply averaging
expression (2.57) over y, and not taking into account the non-linear
variation of ¢ (and hence {) with time due to the enhancement of‘%%
near the resonances. At any rate, for y = 0.5, (F) does not differ
greatly from Fno, and is thus reasonably independent of the precise
value of vy, as advertised above.
We will therefore assume, for the purpose of estimating the

Q. The detailed

average flux, that y = 1 and, in consequence, (F) = Fn
atmospheric calculations necessary to obtain a realistic value for ¥y
are not attempted here. Evidently, should such calculations show
that y << 1, the present estimate of the net energy flux carried by
modes which do not satisfy the propagation condition, (2.50), must
be reduced according to (2.60).

The relevant boundary condition to be applied to the envelope

solution is obtained from (2.53), setting y = 1: A "= 0.

This is the familiar radiation condition, (2.51), which also applies
to modes which satisfy the propagation condition. We thus reach the
important conclusion that, unless y << 1, the radiation condition may
be applied to all modes, whether porpagating or reflected, for the
purpose of calculating the average net energy flux.

All solutions obtained in sections 3 and 4 satisfy the radiation
condition.’ In section 4e, however, the conditions are discussed, under

which the propagation condition (2.50) is satisfied for a SMQ star,

and the radiation condition thus rigorously applicable.
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g) Summary

1‘(Gmt + mep) . of the

For each temporal Fourier component, e
tidal potential, the response of the star is given as a sum of modes.
The angular dependence of these modes is defined by Laplace's tidal
equation (2.19), and the angular functions are known as Hough functionms.
The radial depencence of the tidal response is given, for each mode,
in terms of the functions épmn(r) and hmn(r), which satisfy the
coupled equations (2.17) and (2.18). The constant Kmn in the latter
equation is an eigenvalue which depends on the parameter f, as well
as on the Fourier component (m) and the particular Hough mode (n).

The tidal potential, U, has been calculated for a circular
orbit of zero inclination, and only the dominant term (2.4) in the
potential has been retained. 1In consequence, only the m = 2
Fourier component appears in the tidal response of the star. The per-—
turbing potential functions, 6V2?n(r), which appear in the forcing
terms (2.23) for the dynamical component of the tide, and in expression
(2.21) for the equilibrium component, are given by equation (2.33),
in terms of the projection coefficients Q%;. Negative eigenvalue
modes (second class Hough functions) and modes higher than n = 4
are neglected.

In the radiative envelope of the star, the dynamical tide is
well represented by the WKB solutions (2.42) and (2.43), which take

the form of gravity waves propagating radially inwards and outwards.

The mechanical energy flux carried by these waves is given by equation
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(2.47) in terms of the unknown amplitudes Ain. These amplitudes
depend on both the nature of the dynamical tide in the stellar core,
and on the atmospheric boundary conditions. The latter depend
strictly on whether each particular Hough mode propagates through
the atmosphere or is reflected at some level (equations [2.49] and
[2.50]). However, as long as radiative damping or some other dissi-
pative mechanism is reasonably effective, the radiation condition
(equation [[2.51]) is an appropriate boundary condition and the

net energy flux is given by (2.52).
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III. ANALYTIC DEVELOPMENT

In this section approximate analytic solutions are obtained
for the radial part of the dynamical tide, in both the stellar core
and envelope. The solutions are matched at the core-envelope boundary,
and boundary conditions are applied at the center of the star and in
the outer part of the envelope (the radiation condition [2.51]). The
mechanical energy flux is then calculated from equation (2.52).

The equations to be solved are (2.17) and (2.18), with the right-
hand sides replaced by (2.23) for the dynamical tide.

a) Core solution

In the convective core, the pressure-density profile is essentially
adiabatic, i.e., Py < pol. Thus NV =0 (see [2.20]) and Nv2 may
be neglected when compared with 02. Also, in the stellar interior,

opo/FpO << Kn/rz, as discussed in section 2e. With these two

simplifications, hndyn is eliminated between (2.17) and (2.18),

to yield the following equation for 6pndyn:
dzép rp! dép 2rp’ rpl\2
2 n 0 n 0 I'-1 0
r 2 +]:(2——~—\.jﬂj_“ Kn+ Ip, 2 (p )
dr Po / 0 I 0
(3.1)
ro! rp! r2p« OZPZrZ
1 0 0 1 0 _ 0
—f(p—)(z‘)w .3 1 % =T V™
0! 0 0o 2 0

The primes denote derivatives with respect to r, and the superscript

"dyn" has been suppressed .

0 implies that the core may be

The adiabatic relation pO x< p

treated as a polytrope of index (IU-l)—l. The density and pressure
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profiles may then be expanded as power series in the dimensionless
variable x = or, where
1

(2n(3pcz)'é

o = —_—— 5 (3'2)
l >

\ 3 Pe

pc and p. are the central density and pressure respectively. The

first few terms in the series are given by:

po(r) =p {1 - x>+ (lé-— £)x4 + O(x6) > {

c 10 2
(3.3)

I

p [l - Il %; <+ O(Xé)l

Cc

po(r)

o

As may be seen from Table I, x == 0.7 * 0.1 at the core-envelope
boundary for stars in the mass range 2 to 10 solgr masses.

By substituting these expressions for p0 and Py into equation
(3.1), along with expression (2.33) for 6V2’n(r), a solution for
6pn is obtained in the form of a power series in x. It is convenient
to introduce the constant v, defined as the positive root of the
equation

viv+1l) = Krl . (3.4)

The complete solution is a sum of a particular-integral solution
and the general homogeneous solution. The first few terms in the

expansion of these two components of the solution are, respectively:

k w 2,2
op = 20 vky) @y € o7, R P RO U (r 1.
/15 a2’ (5+v)(4-v) Ip (T+w) (6-v) \

(3.5)
2v(v+1) - 24 ) 2v(v+1) +9 ‘, 2 yoeh v oF 4

2v+3)(2v-1) (2v +3)(2v - 1)
/ -
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and

8 —c v |1 - v+3 V2 _ o5+v (p_8 _v+3 4
N 2v + 3 2(5+2v) 5 2w+3]”

+ O(X6)} s

(3.6)

where én is an arbitrary constant. The Love function kz(r) has been

approximated by its average value in the core, k A second

9
independent homogeneous solution is obtained by substituting the

negative root of (3.4) for v in equation (3.6). However, this

solution is unbounded as r = 0, and is discarded. This constitutes

the central boundary condition on the solutioné. Note that for v = 4

6pnP and 6an have the same r4 behavior for small r, and that the
coefficient of épnP is singular.  In fact the correct form of the

particular-integral solution for v = 4 has form

for small r.

Expressions (3.5) and 3.6) are substituted in equation (2.17)
to obtain the following power series solutions for the particular-

integral and homogeneous components of hn, respectively:

= ‘
31+ky) 6, G e, { |'3 8 ] 2
1 + X

hop ZJB 3 or CZzpc L§+ (G+v)(4-v)
+ O(XA)} R
and )
S v
b =;j;pc e {1 + 2::_2 x*

(3.7)

(3.8)
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For convenience in manipulation, we denote the series {l—#axz-kbxhﬂ-...}
in equations (3.5), (3.6), (3.7), and (3.8) respectively by él’
@2, @3, and §4' Each of these series is of order unity throughout
the core, possibly approaching 2 or 3 at the core-envelope boundary
where x = 0.7.
. th .
The complete solution for the n mode of the dynamical tide in

the core is:

dyn

op (r) = ¢p p + OP o H (3.9)

dyn _
h (r) = hp th . (3.10)
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b) Envelope solution

To obtain the solution for the dynamical tide in the envelope,
we follow the procedure used in section 2e for the WKB solutions,
. , . 2 Y% dyn - .
introducing the variable w(r) =r pozhn (compare [2.38]). With

the dynamical tide forcing terms given by (2.23), w(r) satisfies

the approximate differential equation:

+

2
d2w /Kan (r) w =

2 2.2 -
r N

K p3/2 r . 0 r2
00 S VA < -1/1d (fo” o
. V20" P0 Po dr [PoP0 ar Vo> 6D
pO p 1
dp 0
where pO' = 7£?~ The homogeneous part of this equation is, of course,

identical with equation (2.40) from which the WKB solutions were
derived. However, we must now consider the form of the solutions

just outside the core-envelope boundary, r = L in order to correctly

match the core and envelope solutions. Far from this boundary, the
WKB solutions may be used for the homogeneous solutions, and the
particular-integral solution will be shown to be unimportant.

In the core, the pressure-density profile is essentially adiabatic,
and NV2 > (0 (see equation [2.20]). Outside the core, NV2 increases
virtually linearly with r, until it stabilizes at about r = 1.5 r

6

with a value of ~ 10 sec—Z. This generalization is confirmed by

e

2
Figure 4, which presents radial profiles of Nv calculated from
models of 2, 5, 7, and 10 solar mass stars. We are thus led, following

Zahn (1975), to define a dimensionless parameter vn(o,Kn) by setting
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FIGURE 4: The linear variation of the square of the Brunt-Vaisild
frequency with radius immediately outside the convective core, as

exhibited by each of the stellar models in Table I.
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2 r—-r
2 __ ¢ 2 e
NV =< V. - (3.12)
n e
forr srsl.5r .
e e
We also define a dimensionless independent variable z:
r-r
z =V 2/3<-—~—~j3) . . (3.13)
n r
e
Table I gives values of
2
dN
r v :givz
dr . Kn n
e

calculated from the profiles of Figure 4. The parameter v depends
on ¢ and Kn, but for typical values of ¢ = 5 x 10,_5 sec_l, and Kn
2/3

= 100, and for a 5 solar mass star, v = 350, and v, = 50.

Equation (3.11) may now be written, for r, <r 1.5 r,, as:

2

= 2 () (3.14)
N
dz
where
é?n(z) = rezvn_4/3x(RHS of [3.11]). (3.15)

The independent homogeneous solutions of this equation are the Airy
functions Ai(-z) and Bi(-z) (Abramowitz and Stegun, p 446). The
general homogeneous solution, in terms of the arbitrary constants

1, and § is:

ln n Bn> 1

wH(z) = ﬂn Ai(-z) + Bn Bi(-z) . (3.16)

Airy functions may be written in terms of Bessel functions of order

1/3:
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. _zsr
Ai(=2) = 57 [Jy 50 +I_, ,,@©]
L (3.17)

Il

Bi(-2) = 3 [I_15@) - Iy ,500]

with ¢ = 2/3 23/2.

A particular—integral solution of equation (3.14) may be written

in terms of these homogeneous solutions. We choose
Z
uy(z) = m Ai(—z)[ pi(-#) 2 (') az'
. 0 i

z
- 17 Bi(-2z) j Ai (-2’ )Qn(zf) dz' - 2/3Qn(0) . (3.18)
0

These solutions are valid wherever sz(r) is given by equation (3.12),

, 2/3
v
n

i.e., for 0 < z /2 ~ 25. Note that the function %(z), which

depends on po(r) and po(r), does not vary greatly over this range.
The asymptotic forms of Wy and vy for z >> 1 are governed by the

corresponding asymptotic expressions for Airy functions (Abramowitz

and Stegun, pp. 448, 449):

. . 1 . L, T
Ai(-2) =173 sin « +Z . (3.19)
Tz
. ~ 1 i
Bi(-z) PR cos (¢ +Z s (3.20)
Tz
z ) for z>> 1
. ‘ ¢ L 1 T
fAJ.(—Z )dz 3 \_;I/‘* 374 cos (Q+Z) . (3.21)
1z
0
z
AN e L 1]
J[Bl( z' )dz ﬂ‘1/223/4 sin (¢ +Z . i (3.22)

0
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If,ggn(z) is approximated by its value at z = 0, the integrals in

(3.18) may be evaluated using the above expressions to give:

2,0
wP(z) 2=—~—E~—— for z > 1 , (3.23)
Thus vy rapidly becomes much smaller than Wy asr increases, and may

safely be neglected except in the immediate vicinity of the core-

envelope boundary.

The complete solution for the dynamical tide in the inner envelope

(re =r 1.5 re) is obtained from (3.16), (3.18), (2.18), and (2.23):

e

dyn 2 L L[ 1
h (r) = (r po ) [ﬂn Ai(-z) + Bn Bi(-z) + wP(z)J . (3.24)

n
czv 2/3p 5
dyn - n 0 d e 4 s
6pn () Kr (nn dz LAl( zﬂ + Bn dz [Bl( 28
ne
\ 2 2. (3.25)
N de(z)) .\ o po a4 r pOOV2,n
dz K dr , :

/ n Py
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c) Boundary conditions

The boundary condition at the center of the star, i.e., that the
solutions remain bounded as r — 0, has already been satisfied by reject-
ing the negative root of equation (3.4). There are three boundary
conditions that remain to be satisfied: continuity of hn and 6pn
at the core—envelope boundary, and the outer boundary condition
on the envelope solution. The latter is supplied by the radiation
condition, defined by equations (2.51) and (2.41). Application of
these three conditions permits us to solve for the three arbitrary

constants gn, ﬂn, and Bn in the above radial solutions.

Consider first the outer boﬁndéry condition. Examination of the
homogeneous terms in equations (3.24) and (3.25) for z >> 1 reveals
them to be, as expected, a special case of the WKB solutions (2.42)
and (2.43), wherein r is set equal to re and NV2 is given by the
linear relation (3.12):

1
2

r
“n | ar’ =2 ;32 - C
o r’ 3 - '
T
e

111

-
0 g(r)

If the arbitrary phases, €, of the WKB solutions are set equal to
T .
€ i'Z, then the WKB and homogeneous inner envelope solutions are

related by

. ie n n
'“n = 1 ,?;e (A_*_ - A- ) >

(3.26)

and

g = (92 eie (A+n " A“n) ,

where



55

\._‘

1
m K ér
é?? = n_e ‘ ,
n 2/3 (3.27)
ov
\"'n
In consequence of equation (3.23), the particular-integral terms
in (3.24) and (3.25) involving wP(z) may be neglected for z >> 1,
and thus do not contribute significantly to the WKB amplitudes Ai?'
The last term in equation (3.25) for 6pn is not small compared with
the homogeneous terms, but neither is it an oscillatory function of r,
so it also does not contribute to Ain. Therefore, only the homogeneous
terms in the envelope solution need be considered in the application of
the radiation condition, and in the calculation of the net mechanical
energy flux, F.
Applying the radiation condition, A__n = 0, to the relations

(3.26), we obtain

ﬂn = iBn > (3.28)
and
n _ -1
A" = [Bn} J”n . (3.29)

Thus the mechanical energy flux,given by (2.52) in terms of A+n,
may be calculated once IBnl is determined.

We now eliminate §n and solve for Bn by requiring that 6pn
and hn be continuous at the core-envelope boundary, r = r,- First,
the envelope solutions must be evaluated at z = 0. Small z expansions
of the Airy functions are given by Abramowitz and Stegun, p. 446:

Ai(-z) = ¢y + cy 2

(3.30)
Bi(-z) = 3 (c, - c, 2)
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2/3

where c. =[3 r(%)]"l ~0.355

and c

1/3 .1 -1 _
, =377 @I =025 .

The homogeneous components of ép, and hn at z = 0 are thus determined.

The first two terms in w_ are quadratic in z for z << 1, so

P

21c

vp(2) = —= @ ©
\/37 (3.31)

and
dw_(z)
P ~
o O :

The function g?n may be expanded as a power series in the core variable
X Z@vy, using equations (3.3) for po(r) and po(r). For r = r, we
obtain

3. 3/2
lre pc (Kn—.6)

15 /3 v o I'p
\/— \/- n4/32

31 +k,) om, (én m e

g (z=0) = @6(Xe) » (3.32)

c
. 2 . 4 o=
where é6(x) is of the form{l +ax" +bx + ... }. Again, k2 is the

average value of the Love function in the ccre. Similarly, the

particular-integral component of épn is expanded as a power series, to

give:
. ' 2 2 2
_30+E,) o, Q‘fn 30%

V15 a3 2a2 I'p K
c n

where @S(X) is also of the form{l + ax2 + bx4 S R }.

op p(z2=0) = 8 (x) . (3.33)

With these expressions in hand, and using the core solutions
obtained in section 3a, it is a straightforward matter to match 6pn and

hn at the core-envelecpe boundary (r = re, X =X, 0r z = 0), eliminate



the constant § , and obtain the following
n

constant § :
n

_ 3 G

9(1+k,) Myr_ fn

273 3

TV a’p
n

n

B

1
A 3

e

!

2v(ar )2
" e

6+v)@—v}g

In this expression, pe =

57

R
=7

E (V/_:-l)

(v-+l)é,

|}
pO(re) and all @i

expression for the

2TTC (K -6)

4/3
.!. S
<pe>

s are evaluated at

cy (\/5+1)

2/3
Va 4

(
|

Fe
p

I

K

5
g,

)

. (3.34)
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d) The mechanical energy flux

Except for the minor approximations made in the derivations of the
differential equation (3.11) and of expression (3.23) for Vs this is
an exact solution of equations (2.17), (2.18), and (2.23) subject to
the radiation condition. An accurate numerical result for Bn could
be obtained if the six quantities @i(xe) were known. In principle
they are given by power series in x (e.g., equations [3.5] to [3.8])
whosg coefficients are calculable, but in practice X, ~ 0.7 and
the series converge rather slowly. An alternative procedure is to

determine @1 through ¢, by numerical solution of the differential

4

equations in the core, and ¢, and @6 from tabulated density and pressure

5
profiles. This is essentially the course followed by Zahn (1975),
in his combination analytical/numerical solution for the dynamical
tide.

In order to obtain a completely analytic, albeit numerically
approximate, estimate of Bn (and hence A+n and the energy flux) we
make the approximation

éi(xe) =1 s i=1,2,...,6

The expression for Bn is further simplified by neglecting the two

473 -2/3 o 2vlere)”
and v , and by setting (5+) (h=v) (v+1)

small terms of order vy
equal to -1. The latter approximation is quite good for v =z 10
(i.e., Kn » 100), and avoids the apparent singularity at v = 4.

(Referring back to equation [3.5], we see that our particular~integral

solution in the core is not valid for v = 4, and that a logarithmic
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term should be introduced.) The results derived below by making these
approximations are compared in section 4 with the results of completely
numerical solutions, and are found to be in error by a factor of

S2f .

s or Bn

The simplified expression for Bn is

3 -
9(v-1) r (1+k.) M
o | = e ___ < 2@ . (3.35)
n 2/3 3 3 n
8V15 v P c, a
n e 2

Substitution of this expression in relation (3.29) yields

L -
a 9(v-1) r95/2 ks (1+k2) M, ¢
A = - 7 (3.36)
- 3/2  1/3 & 5 3 n
8v15 m vn Kn CZpe a

for the amplitude of the WKB solution. The radial mechanical energy
flux associated with the nth mode is determined from this amplitude,

via equation (2.52):

27(\)—-1)2 03 r > ((1+E ) M ) 2 6] (6)2
- . e | 2 2 (€ n
Fn(r,e) 3 273 2 3 On —‘_”—‘-2 (3.37)
640 17 v Kc.7p L a r
n nz2'e

With the Hough function normalization of (2.30), the total rate of
mechanical energy transport by this mode is

2T

2 .
n(L) .[ffn(r,e) r" sin g dodg
0 O

2 3 5 = ‘
27(v-1)" © r, [(l+k2) MZ
2 2/3 2

320 v Kncz Po | a

trje

@
3 én i (3.38)
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This result is, as already mentioned in the discussion of the WKB

solutions in section 2e, independent of radius. The envelope is thus

a region of transport, but not generation, of mechanical energy in

the form of gravity waves. The generation of this energy by the tidal
potential occurs in the convective core of the star, and its conversion
into gravity waves takes place at the core-envelope boundary. The

size of the core and the parameters of this boundary, r , p , and v 2
e e n

o [% gggz]r , along with the amplitude of the nth component of the
e

tidal potential, thus determine the rate of energy genergtion.

Note,thatfﬁh is. ﬁoﬁ explicitly dependent on the stellar radius.

After being transported through the envelope to the surface of the
star, this mechanical energy is either deposited as heat in the stellar
atmosphere (due to viscous. damping or shock formation at low pressure
levels) or is radiated directly to space as a consequence of the
mechanism of radiative damping. In either case, there is a loss of
mechanical energy from the binary system which is attributable to
the action of tidal forces on the primary. The rate of this energy
loss,?ﬁ, determines the rate of synchronization, via equation (1.1 ).

For purposes of comparison with the results of numerical calcula-
tions, with Zahn's (1975) results, and with observational material,
we rewrite the expression for:ﬁh in terms of the binary orbital period,
P (in days), and use equation (3.12) to substitute for the parameter
v The explicit dependence on the tidal frequency, ¢, is also

factored out, and expressed in terms of 'G 5", i.e., in units of
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= 2
. a+i) v &
‘E = y 0—511/3 g n . (3.39)

n n P

With the masses of primary and secondary denoted by Ml and M2 respec—

tively, the constant p = Mz/(Ml-FMZ). Our approximate analytic

expression for £Z; is then obtained from (3.38):

A (re/R@)5

_ 32 4/3
Zn 6.07 x 10 73

(v-—l)2 K ergs/sec,
n

(3.40)

where r, has been expressed in units of the solar radius, RO’ and
the remaining quantities are in CGS units.
. A . ,

In figure 5, éz; is presented as a function of the eigenvalue
Kn for a primary of 5 solar masses. Stellar parameters used were
taken from Table I. The curve is dashed for Kn < 100, to indicate the
breakdown of some of the approximations made in simplifying expression
(3.34) for Bn. For a different primary, only the constant coefficient

£g7A . . . .

of o is different; consequently, only the scale of the ordinate in
figure 5 need be changed. To facilitate this change of scale, values

P A ; . .
of i%; for Kn = 100 are given in Table II for stars of 2,5,7, and
10 solar masses.

Zahn's (1975) result for the rate of energy transport by the

dynamical tide may be cast in a similar form:

z 2
ey =¥ o M (%) (3.41)
P !
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1
FIGURE 5: The variation of‘ggn with Kn/2 for a 5 M, star, as given
by the approximate analytic expression (3.40). The dashed segment of
the curve indicates the region where the approximation becomes poor.
Zahn's (1975) result for the radial energy flux, expressed in terms
. zZ . . .
of the quant1tyg§€ in equation (3.41), isrepresented by a single

point at K = 6.
n
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64

TABLE I

Sequence Stellar Models.

Mass (M@) 2 7 10
Rad ius (%3) 1.38 3.30 4.05
log (L/LO) 1.36 3.22 3.74
1og(Teff) 4.033 4.309 4.393
Approx. Spectral Type A6 B4.5 B3
Central Density, p ;
-3 ¢ 70.88 12.25 8.136
(g cm 7)
Central Pressure, pC
(1016 dynes Cm—z) 21.09 4.77 3.50
Core radius (RO) 0.200 0.650 0.900
X Zoar 0.62 0.76 0.83
e e
Boundary I’ 1.664 1.638 1.616
Boundary Density, p
-3 ¢ 47.8 6.85 4.25
(g cm ™)
[r(dN 2/dr)]
Yo o 8.4 1.8 1.2
(10 sec )

A1l models have hydrogen mass fraction, X = 0.70.
mass fraction, Z = 0.01; other models have Z

0.03.

2 Mg model has "metal"
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TABLE IT
Analytic results for the normalized

. A
mechanical energy transport rate, SZ; .

Mass (M) 2 5 7 10
5
(re/%D)
2
po [r(an, /dr)]re 3.30x107%  0.163 1.39 13.1
(g—lcm3sec2)
. |
SKHA for K_*=10 3.12x10%%  1.54x10°1  1.31x10%%  1.24x10°°
E, 1 1.45x10°% 1.53x107/  3.80x10°7  1.02x10°°
q 1.2 27 30 31 32
jz(erg.q sec 1) 4 .84 x 10 3.23x 10 3.61 % 10 4.52 % 10
QHA(IO)/gZ 6.4 4.8 3.6 2.7
1

Zahn (1975) Table I.

Derived from E2 via equation (3.42).



66

z  8.26 x 10°° (Rl/RQ)g
where <9? = E . (3.42)
4/3 2
(M, /M)

Rl is the radius of the primary. E2 is a constant which depends on
the structure of the star, and which is tabulated by Zahn (1975).
It depends particularly on r s [r(dNVZ/dr)]r , and (14-E2), and

e

appears to have hidden Rl and M. dependences. which cancel the anomalous

1
explicit dependence on these two quantities exhibited by expression
(3.42). Since the non-rotating case considered by Zahn corresponds,

in our terminology, to f = ¢, Hough functions are replaced by associated

Legendre functions (see section 2c[5]) and
¢ = ¢ . (3.43)

(See equation [2.34] for the definition of 9%;.) Thus, only the n = 2
mode contributes to‘ﬁ, and the appropriate corresponding value of
Kn = n(n+1) is 6. The single point, gz; =£Z7Z and Kn =6, for a 5
solar mass star, is plotted on figure 5 for comparison with the

. 5?2 .
present analytical results., Values of &~ and E2 for a range of primary
masses are given in Table II. Note that(&?n andiz)é arc not cxactly
coriparable quantities, inasmuch as the latter effectively includes

the factor (lﬂ-Ez)z. In section 5a it is shown that 1+k = 3,75,

2
so that we would expect to find §Zz = 14 ;gzl(Kn=/6). This is evidently

not true, and we shall return to this point when the numerical results

are discussed in section 4d.

Finally, we note an important feature of the present result for
the rate of energy transport and loss, equation (3.39), which does

not appear in Zahn's work:
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B e @ 2 : (3.44)

As the rotation of the primary approaches synchronization with the
orbital motion, f decreases towards zero and ?%; decreases rapidly

for all n (see figure 3), thus greatly reducing En and the synchroniza-

tion rate ]%%—.
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e) Summary

Analytic solutions are obtained to the differential equations
(2.17), (2.18), and (2.23) governing the radial part of the dynamical
tide. The convective core and the radiative‘envelope of the star are
considered separately, and the solutions required to be continuous at
the core-envelope boundary. Complete core solutions are given by
(3.9) and (3.10), in terms of the dimensionless quantities @i(x),
i=1,2,3,4. 1In the inner part of the envelope, where NV2 is given
by the linear relation (3.12), complete solutions take the form of
(3.24) and (3.25). At greater radii, the more general WKB solutions
derived in section 2e describe the homogeneous part of the dynamical
tide. The arbitrary WKB amplitudes Ain are related to the inner
envelope arbitrary constants “n and Bn by (3.26).

These two constants, along with the constant §n in the core
solution, are determined by application of (1) the radiation condition
to the envelope solution, and (2) the requirement of continuity for
6pn and hn at the core-envelope boundary. The resulting exact expression
for Bn is given as equation (3.34), and is simplified to produce
the approximate expressions (3.35) and (3.36) for Bn and A+n.

The rate of radial transport of mechanical energy through the
envelope by the nth mode is calculated from the latter expression and
equation (2.52), and is given in (3.38). An auxiliary quantity, éZi,
from which the explicit dependence on the tidal frequency and potential

amplitude has been removed, is introduced and plotted in figure 5
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as a function of the eigenvalue Kn for a 5 solar mass star. Table II
indicates the way in which the results scale to other stars. The
results of the analytic theory are compared with those of Zahn (1975),

. . Z
expressed in terms of the quantity g} .
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IV. NUMERICAL SOLUTIONS FOR A 5 SOLAR MASS STAR

There are several methods by which our estimate, (3.38), of
the mechanical energy transport rate by the dynamical tide might be
improved. The dimensionless quantities @i(xe) might be accurately
computed by evaluating many of the coefficients of the corresponding
power series (e.g. [3.5] and [3.6]), and substituting the results in
expression (3.34) for Bn. Alternatively, the core solutions 6pnP’
éan, th, and hnH might be computed numerically, and subsequently
matched to the analytic envelope solutions (3.24) and (3.25).

A third approach, and the one to be followed here, is to compute
numerical solutions of the differential equations (2.17) and (2.18)
spanning both the core and envelope of the star. It is then no longer
necessary to match solutions at the core-—envelope boundary, since
each of the numerical solutions is already continuous at this point.
Only the central boundary condition (6pn must be bounded and hn go
to zero) and the radiation condition must be applied to these completely
numerical solutions. The latter raises some problems, as we shall
see in section 4c.

The numerical solutions to be presented here all apply to a main
sequence star of 5 solar masses. In section 5, the analytic expressions
derived in section 3d are used to scale these numerical results to

other early main sequence stars.
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a) The stellar model

The first requirement for a numerical solution is a realistic
stellar model. Specifically, the variation of po, Pg> I', and NV
with radius throughout the stellar interior must be known. Since a
detailed surface boundary condition has been replaced, for our purposes,
by the simple radiation condition applied to the envelope solution,
an accurate model of the stellar atmosphere is unnecessary.

A crude profile of the 5 solar mass zero-age-main-sequence
stellar model used in the present calculations is given in Table III.
This model is one of a set of four (2, 5, 7, and 10 solér masses)
computed for the writer by C. Alcock, using a stellar evolution program
developed by B. Paczynski. Parameters for all of these models are to be
found in Table I, and are used in section 3d in the evaluation of
the analytic expression for éz;, equation (3.40), to produce figure

5 and Table II.



Profile of the SMb stellar model used in the
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TABLE TIII

numerical calculations (selected points only).

Radius* Mass Density Temperature Pressure r N 2
(101/O cm) (Ma) (gcm_3) '(107°K) (lOlédynescm (10—6 sec~2
0.5034 0.005 18.55 2.583 6.554 1.641 0.0
1.014 0.040 17.92 2.527 6.196 1.642 0.0
1.513 0.128 16.92 2.439 5.641 1.643 0.0
2.043 0.300 15.52 2.313 4.901 1.644 0.0
2.495 0.518 14.12 2.183 4.202 1.646 0.0
3.048 0.871 12.26 2.000 3.340 1.648 0.0
3.368(re) 1.114 11.16 1.885 2.860 1.649 0.0
4.090 1.735 8.57 1.637 1.904 1.652 0.621
5.013 2.565 5.48 1.365 1.015 1.653 1.253
6.007 3.352 3.09 1.116 0.467 1.653 1.540
6.940 3.918 1.69 0.933 0.213 1.653 1.715
8.053 4.376 0.79 0.755 0.081 1.651 1.415

Total radius

18

.792 x lO10 cm.
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b) Boundary conditions

Equations (2.17) and (2.18) must be integrated outwards from
the center of the star; a procedure dictated by the nature of the
solutions near r = 0 and by the ceantral boundafy condition. It was
pointed out in section 3a that the second homogeneous solution for
6pn is singular at r = 0, and the same holds for the corresponding
solution for hn' In fact,

- (v+l)
OP gy ~ T

N r—(v+2) (4.1)

and hono

Any attempt to numerically integrate the equations inwards would
inevitably result in contamination by this rapidly growing singular
solution, and the central boundary condition could not be satisfied.

On the other hand, outward integration is stable inasmuch as the
undesirable singular solution decreases rapidly outwards, while the
regular homogeneous and particular integral solutions increase outwards.
These latter two solutions automatically satisfy the central boundary
condition, since both 6pn and hn go to zero at r = 0.

In order to match the outer boundary condition, i.e., the radiation
condition, it is necessary to compute both the regular homogeneous
solution and a particular-integral solution. This boundary condition
may be stated as follows, in a form suitable for use with the numerical
solutions: the oscillatory component of the solution in the envelope

must take the form
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~1/2 1/2

e o (x) N (r) exp 1 (K Y0) + M, (4.2)

. p . . n
with g(r) given by equation (2.44). A+n and ¢ are real constants to

be determined by matching this expression to the final numerical solution.
Let us assume that, in the envelope of the star, the oscillatory

parts of the particular-integral and regular homogeneous numerical

solutions are given by the appropriate WKB expressions:

[ 5 7 -1/2 [ 172 1
th ~ Al r po(r) Nv(r) cos Kn g(r) + €1 > (4.3)
| i .
[, |- ( 1/2
and hnH o A2 Lr po(r) Nv(r) cos Kn g(r) + €, ’ (474)

where Al’ A2, €1 and ¢, are adjusted to fit these solutions. (It will

2
be shown presently that these WKB expressions do indeed accurately

represent the oscillatory component of the numerical solutions.)

Then we seek a complex constant B, such that the combined solution

hn = th + B hnH (4.5)

takes the form of expression (4.2). After a little manipulation, we
obtain the result

A

B = - ol(€27¢1) A, 4.6)

and, for the parameters of the combined solution,

g
i

+ A1 sin (62'—61) , (4.7)

and e =e, + (4.8)

2

N3
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The outer boundary condition has now been satisfied, and the mechanical
energy flux carried by the nth component of the dynamical tide is
calculated from A+n using expression (2.52):

2
o

-1 n, 2 2
F (r,8) = —5 K 2(A+ ) ®n(e) .

2r
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c) Numerical procedure

Equations (2.17) and (2.18) are integrated simultaneously by the
numerical integration routine 'DIFSYS', to obtain the functions
6pn(r) and hn(r). Necessary values of po(r), pO(r), I'(r), and Nv(r)
are obtained by tabular interpolation. Since only the dynamical
component of the tide is of interest in the present investigation,
the righthagd sides of (2.17) and (2.18) are replaced by (2.23).

The potential function, 6V2 o given by equation (2.33), is set

b

rz, where V

equal to V is a constant. We thus neglect the small

0 0
(< 15%) variation of kz(r) through the core of the star (see figure 12).

From (2.33
(2.33), _ 36, @
vV, = 1+ k) (4.9)
0 3 2” “n
15 a
9 (l+i—<2)u(€]
= 4.096 x 10 T S
P
, . -11 -2
All numerical solutions are computed for VO =10 sec 7, but, as

the equations are linear, the results may be scaled to any other value of

VO. Clearly, the functions bpn and hn (and therefore the amplitude

A+n) scale linearly with VO, while the energy flux scales quadratically.
The numerical integration procedure is started at é small radius

in the core - usually at r, =1 x lOlO cm = 0.14 R® - with initial

0

values given by either : (1)

_ )
6pn(r0) =C I,
(4.10)
- v v-1
and hn(ro) =C 5 Iy
o p
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for the regular homogeneous solution; or (2)
equations (3.5) and (3.7)

L
for the particular-integral solution. For an

P 12,bany small homogeneous
component in the particular-integral solution grows so rapidly with r
that it overwhelms the particular—-integral component. In this situation,
an initial radius of 2 x 1010 cm is used to reduce the range over which
the homogeneous solution may grow.
Integration of the equations proceeds through the core, across
‘the core-envelope boundary at r == 3.36 x 1010 cm, and in;o the envelope,
before being terminated at a radius of 7.5 x 1010 cm. This is still
only half way to the surface of the star, but is well into the region
of the envelope where the solutions may be represented by WKB
formulae. Both regular homogeneous and particular-integral solutions
are computed for each pair of parameters, ¢ and Kn.
To determine the WKB amplitude and phase, Ai and € for each
of these two solutions, the function
3 ~1/2 1/2

b +dr) +A |1 po(r) Nv(r) cos (Kn g(r) + ¢) (4.11)
is least-squares fitted to a short radial segment of hn(r) by adjusting
the parameters b, d, A, and e. Parameters b and d serve to locally
describe the non-oscillatory part of the particular-integral solution.
The final composite solution which satisfies the outer boundary condition
is given, in terms of these amplitudes and phases, by equations

(4.5) and (4.6). The amplitude of this composite solution, from which

the mechanical energy flux is computed, is given by (4.7).
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In principle, the numerical solution of equations (2.17) and
(2.18)is now complete. However, in most cases investigated,
sin (62"61) = 0, and the amplitude A.+n is not well determined.
In this situation a second particular-integral solution must be
computed, from different initial conditions, which differs more in
phase from the homogeneous solution. In practice, a satisfactory
second particular-integral solution may be obtained by using the

composite initial conditions:

= ‘ v .
bp (ry) 6pnP(rO) +C o, R
and (4.12)
- p_ v vl
hn(rO) th (ro) + C 5 rO .
o pc

with the functions 6pnP and bth given by equations (3.5) and (3.7)

and the constant C’' by

A

1 )
N 5 . _
¢ = A2 C cos (ez el) . (4.13)

All numerical computations were performed on the IBM 370/158 at

the Booth Computing Center, California Institute of Technology.
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d) Results
Numerical solutions have been obtained for values of the tidal
. -5 -1 -4 -1
frequency in the range 2 x 10 sec <o =10 sec ~, and for values
1
of the Hough eigenvalue in the range 6 < Kn < 544, or 2.45 < Kn/2 < 23.33.
Corresponding values of the synchronization parameter f range from
® down to 0.13 for the n = 2 Hough mode, and from ® down to 0.30
for the n = 4 Hough mode (see figure 2). Table IV gives a complete
list of the numerical solutions, with the following parameters for
each solution:
1/2

o‘,Kn , £ (2

10_1l sec _2) , phase difference (62 - el) between the homogeneous

nd and 4th modes) , WKB amplitude A+n (for V0 =

and final particular-integral solutions, radial mechanical energy

flux Fn (for V_ = 10"ll sec -2) and normalized energy transport

0
rate %n'

The final parameter, 52;, is defined by equation (3.39):

- 2
= % o 11/3 (J-+k2) P 8n )
. n o -5 2 ’

P

jeald

n

and is independent of the strength of the tidal potential, VO. In
the approximate analytic theory of section 3, and in Zahn's (1975) work,

&p is also independent of g. 1In terms of the numerical WKB
n

amplitudes A+n, calculated for V0 = ].O—ll secuz,

B o =5/3 A"

_s A, (4.14)

&P -5.27x107° K
n n

1
In figure 6, ﬁ?; is displayed as a function of Kn/2 for each

value of o used in the numerical computations. The analytic expression
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FIGURE 6: Numerical results for‘ggn as a function of Kn%’ for
different values of the tidal frequency o, and calculated for a

5 Mb star. Each curve is labeled by the appropriate value of g,

in units of 10_5 sec-l. The uppermost curve is the analytic
approximation of figure 5,plotted for comparison, and the circle
again represents Zahn's (1975) result. Squares indicate the numerical

solutions shown in figures 7-10. At the top of the figure, scales

of the parameter f are given for n = 2, 4, and 6.
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for 521, from figure 5, is also shown. It is immediately apparent
. éZ’ . . . .
.that, while n is not independent of ¢, its dependence on this
quantity is quite weak. In this respect, then, the analytic theory
( L
does rather well. However, the dependence of df; on an does not

1
el

closely follow the analytic expression, especially for K * £ 10

n

where the analytic ‘theory is expected to break down. In fact, the
1
numerical :%% goes to zero for Kn = 3.05, corresponding to f =1.20
for the 2nd Hough mode.
53 : nd

For Kn =6 == 2.45, corresponding to f = ©® for the 2~ mode, or,
in other words, to a non-rotating star, the numerical value ofvé%;
. ; . Z ;
is in excellent agreement with the quantlty,gg obtained from
Zahn's (1975) results (see equations [3.41] and [3.42]) and also
plotted in figure 6. This agreement is rather puzzling since, as
was pointed out in section 3d, effectively includes the factor

= 2 . % .
(1-Fk2) , while n does not. For the 5 Mb model used in the present
calculations, (l-FEZ)z =~ 14 (see section 5a). Zahn does not give
a value for this parameter, but it is clearly included in his numerical
calculation of the structure constant E2. Either 14-E2 is of order -
unity for the stellar model used by Zahn, which seems highly unlikely
in view of the discussion in section 5a, or there is some other
difference between the two numerical calculations which neatly cancels
the factor of 14.

Some examples of the numerical solutions for hn(r) and 6pn(r)

are presented in figures 7 through 10. Figures 7 and 8 show the

homogeneous and particular-integral solutions respectively for ¢ =
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-5 ~1 .
2 x 10 sec and Kn = 6, i.e., for a non-rotating star. The phase

difference between the two solutions in/the envelope is 80°8. Dashed
curves show the envelopes of the WKB solutions (2.42) and (2.43),
whose amplitude A is determined by a least-squares fit of the numerical
solution from r = 6 x lOlO cm to 6.5 x lOlO cm, as described in
section 4c. The agreement between the WKB envelopes and the envelopes
of the numerical solutions, even quite close to the core, is both
impressive and typical of all of the numerical solutions examined.
In figure 8, a dot-dashed curve has been superimposed on the 6pn(r)
solution,which corresponds to the non-oscillatory part of the particular
solution (3.25):

2 . 4

O Py 4 (r fo

Yo X ar
n

¢

P o

This aspect of the numerical solutions is also evidently in close

agreement with the analytic theory. Finally, note that the non-

oécillatory part of hn(r) in figure 8 is, as predicted, quite small.
Figures 9 and 10 show the homogeneous and particular-integral

solutions respectively for ¢ = 2 x 10"5 sec_l and Kn = 56.25, correspond-

ing to f = 0.40 for the 2" mode or f = 0.86 for the 4™ mode. The

phase difference between the solutions is 77°%0.
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FIGURES 7 and 8: Numerical solutions for hn(r) and 6pn(r) for a

5 M@ star, and for the parameters ¢ = 2 x 10_5 sec~l and Kn = 6.

Figures 7 and 8 display the homogeneous and particular-integral

solutions respectively. Dashed curves indicate the envelopes of
the WKB solutions, whose arbitrary amplitudes were determined by

. 10 ) 10
least-squares fits to hn(r) for 6.0 x 100 cm=7r £ 6.5 x 107 cn.
The dot-dashed curve in figure 8 represents the non-oscillatory part
of épn, as predicted by the analytic theory of section 3. The non-

oscillatory part of hn in figure 8 is also apparent for large r,

but is small.
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FIGURES 9 and 10: Same as figures 7 and 8, but for ¢ = 2 x 10-5 sec"l

and Kn = 56.25. WKB envelopes are not shown, but the non-oscillatory

part of 6pn is again indicated in figure 10.
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e) Atmospheric propagation

All numerical solutions presented in this section have been
computed with the radiation condition (A__n = 0) as the outer boundary
condition. It was stated in section 2f that this condition is only
’rigorously applicable when the gravity waves constituting the nth Hough
mode can propagate through the region of minimum temperature in the
stellar atmosphere. This propagation condition is expressed by
equation (2.50):

1
v 2
2(2n-1) (I'-1) 8 Hmin
Rl T ?

of <

in terms of the surface gravity, g, and the minimum scale height,
Hmin' When this condition is not satisfied for a particular mode,
application of the radiation condition amounts to an assumption that
the damping constant vy 2 0.5.

For the 5 M@ stellar model used in the present calculations,
the effective temperature, Teff’ is 16,750° K (see Table I). The minimum
temperature of the optically thin region above the photosphere must

/4

: 1
be = gff/z = 14,100° K, based on simple concepts of radiative

equilibrium. Therefore,

- min eff (4.15)

where k is Boltzmann's constant, MH is one atomic mass unit, and p
is the mean atomic weight of the gas. 1In terms of the standard

stellar abundances X and Y, and the hydrogen ionization fraction x,
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;u'[(ux) x+Y/4]"JL (4.16)
= 0.96 >

where we have substituted X = 0.70 and Y = 0.27 from Table I and
obtained x from Allen (1973).

A conservative propagation condition for the 5 MO stellar model
is thus

of <0.74 x 10_5 (2n-1) sec“l . 4.17)

The precise value of the numerical constant in this expression is
rather dependent on the stellar model employed. Using parameters
for a 5 Mb main sequence star from Allen (1973) and Cox and Giuli (1968)
we obtain 0.54 x 10_5 secml and 0.97 x lO—5 sec~l respectively.

In figure 11 tidal evolutionary tracks of binary systems in
the f, o plane are displayed for orbital periods of 1, 2, 4, and 8 days.
This evolution is discussed in detail in section 5b. Also shown
are the regions where (4.17) is satisfied for n = 2, 4, and 6.
Taking as an example a binary with a period of 4 days, we see that, for
f > 0.75,only the 8th and higher Hough modes can propagate through
the stellar atmosphere. As f decreases below 0.75, and then below
0.68, the 6th and Ath modes, respectively, begin to propagate.
Finally, for f < 0.54, the 2nd (and lowest) mode may propagate, as
well as all higher order modes.

If radiative or viscous damping of non-propagating modes should
prove, upon detailed examination, to be insignificant (i.e., y << 1),
then only propagating modes contribute to the net transport of

mechanical energy through the stellar envelope. In this situation,
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it is apparent from figure 11 and from the decrease of the projection
coefficients ﬁ;n with increasing n that the energy dissipation rate is
greatly reduced in the early stages of synchronization.

However, for the calculations of synchronization rates in the
next section, we shall assume that the radiation condition A4

applicable for all values of ¢ and f.



3 sec_l) and f during the

FIGURE 11: Variation of ¢ (in units of 10
process of tidal synchronization, for binaries with orbital periods of
1, 2, 4, and 8 days. Arrows indicate the direction of rotational
evolution. Dashed lines separate the fg plane into regions where

the propagation condition (4.17) [applicable to a 5 Mé star] is

satisfied for the indicated Hough modes. See text for further

interpretation.
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f) Extrapolation to other stars

To the extent that the numerical results for the 5 solar mass
star agree with the analytic theory developed in section 3, one may
be justified in scaling the present numerical results to other
early—-type main sequence stars, using the analytic expressions as
a guide. The weak dependence of éZ; on 0, and the reasonable agreement
bétween ﬁz; (analytic) and ﬁ?; (numerical) for Knl/2 > 10 are two such
points of agreement which can probably be extrapolated safely. On the

2

y 1 1

other hand, the dependence of 55; on Kn/2 for Kn < 10, which is not
well predicted, at least by the approximate analytic expression (3.40),
may vary considerably for different stellar models. In particular,
there seems to be nothing fundamental about the value of Kn for which
<9?n = 0, and this value might well be different for other models.

However, in the interests of simplicity, it will be assumed in
the next section that the form of the function n(Kn ) A4 approximately

the same for all early-type main sequence stars, and that its absolute

value may be scaled according to expression (3.40).
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V. SYNCHRONIZATION TIMESCALES

.Using the numerical results of section 4, we describe here the
process of tidal synchronization of the rotation of a 5 QD star.
The time scale for synchronization is given as a function of the binary
orbital period P, and the secondary mass fraction p. These results
are extrapolated to other early-type stars with the aid of the
analytic expressions derived in section 3.

Observations of synchronization in close binaries are summarized,
and compared with the theoretical predictions.

a) The Love function

To apply the formulas of sections 3 or 4 for i, the energy
dissipation rate due to the dynamical tide, we must estimate the
effective average value of the Love function, kz(r), in the stellar
core. This quantity is obtained by integrating Poisson's equation
(2.11), with the density perturbation corresponding to the equilibrium
tidal perturbations. given by (2.21). The integration is carried to
the surface of the star, where appropriate boundary conditions are
applied.

Because the stellar model used for the numerical calculations in
section 4 was computed for only the inner 507 of the radius of the
star (including, however, 90% of the mass), the integration of Poisson's
equation cannot be carried to the surface. In.consequence, the function
1+ kz(r) may be computed for the interior, but it contains an
arbitrary multiplicative constant. However, the structure of a star

which is largely in radiative equilibrium, such as an early-type
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main sequence star, is giveﬁ to a reasonable approximation by that of
a polytrope of index 3 (cf. Eddington's 'Standard Model').

Chandrasekhar (1933) has calculated the internal potential in
tidally distorted polytropic models; these results have been converted
to our function 1 + kz(r), and plotted in figure 12 for polytropes of
index 2, 3, and 4 with radii scaled to the radius of the 5 solar mass
model. Also plotted is 1 + kz(r) for this model, with the arbitrary
constant chosen by matching the form of the function to the forms
exhibited by the polytropic sequence. As expected, the index 3
polytrope provides an excellent representation of the Love function
of the "real" stellar model.

Since the particular-integral solutions for the dynamical tide
in the core, equations (3.5) and (3.7), are increasing functions
of radius, the effective average value of kz(r) should be weighted
towards the outer part of the core. We adopt the value

1+ k2 = 3.75 . (5.1)

This value is essentially a characteristic of the index 3 polytrope,

so it will subsequently be used for stars of 2, 7, and 10 M@ also.
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FIGURE 12: The dimensionless function 1 + kz(r) for polytropic

0 cm)

models of index 2, 3, and 4 (scaled to a radius of 18.79 x ].Ol
and for the 5 %D stellar model, The radius of the core is indicated

by re.
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b) Tidal synchronization

Consider a binary system in which the components (1) move in
circular orbits about their common center of mass, and (2) rotate
about axes perpendicular to the orbital plane. For simplicity, we
neglect the rotational energy and angular momentum of the secondary
and concentrate attention on the primary. Denoting the center—to-
center distance between the two stars by a, the orbital angular
velocity by w, the primary's rotational angular velocity by Q, the

and M, respectively, and the

masses of primary and secondary bybil )

moment of inertia of the primary by I, we obtain the following
expressions for the total angular momentum of the system about its

center of mass, and for the total mechanical energy of the system:

G2/3Mle R
L=———"9,5u + IQ , (5.2)
(M1+M2)
G2/3M1M2 2/3
E= - 75 v + %5 102 . (5.3)
201, +M,)
Kepler's third law
2 3
wa = G(Ml + M2) (5.4)

has been used to eliminate a, and w is assumed to be positive. There
is no restriction on the sign of Q.

Tidal interactions between the two components cannot change the
total angular momentum, L, but do change both w and Q. In consequence,

the total mechanical energy must also change. Applying this constraint
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on L, and denoting the rate of dectrease of total mechanical eﬁergy

by E, we obtain

2 - " E
' = - 5.5
Q TR (5.5)
z—% , (5.6)
2
and 3(M, +M )1/3 I
. 1 2 4/3 « .
w = 273 w Q (5.7)
G Mle
=3L g . (5.8)
orb
In the latter expression for_&, Iorb is the orbital moment of inertia

of the system about its center of mass:

1 =12 2 . (5.9)

Since I ~ 0.06 M.R 2, where R, is the radius of the primary, and

11
(Rl/a)2 << 1 generally, we have

1

I << IO (5.10)

rb ?
and consequently
lo] << [&] . (5.11)
From equation (5.5), we see that dissipation of mechanical
energy by tidal interactions (e.g., by the driving and ultimate
dissipation of gravity waves, as we have considered) causes (Q to
approach w, i.e., causes synchronization of rotation and orbital

motions. If Q > w, then 0 < 0, while if Q < (including negative Q),



104

Q> 0. At the same time, w is also changing, and, by (5.8), in the

same direction as (. However, as long as IO > 3I, which is always

rb
the case in real binary star systems, w changes more slowly than (),
and the system evolves towards a stable state of synchronous rotation

and orbital motion.

From equation (5.6), the evolution of the tidal frequency ¢

2
(hereafter denoted by g) is given by
o s e LE _
o = Z(Q—w).a‘—“fc—' : s (5.12)

where we have neglected & in comparison with é. As QO ~ w, o = 0.
The synchronization parameter f, of Laplace's tidal equation (2.19),

also evolves:

the

= f(1L-f) (5.13)

QjQe

As Q - w, f - 0 also. Figure 13 shows ¢/2w and Q/w as functions of
f. This figure is 2 mpdification of figure 11, in which the
different evolutionary tracks have been combined into a single
track by plotting o/2» rather than g. A tidally evolving

binary system must follow this track towards f = 0, ¢ = 0,

and Q = w, at a rate determined by the energy dissipation

raﬁe E via equation (5.12).

Thus far, the discussion of tidal synchronization has been delib-
erately general in nature. Let us now consider the specifics of
synchronization due to eventual dissipation of the mechanical energy
generated and transported outwards through the primary by the dynamical

tide. Since E depends in a complex fashion on f, via the eigenvalues
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FIGURE 13: The relation between o/2u, Q/w, and f for Q = w.

The decrease of ¢ and f accompanying the process of synchronization
is indicated by the arrow. Since the orbital mean motion w does
not change significantly during synchronization, the f-u evolution
curves of figure 11 are essentially this curve, scaled to different

values of .
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Kn(f)’ the evolution of the system is best examined in terms of this
parameter, rather than in terms of ¢ or Q.

Combining equations (5.12) and (5.13), substituting expression
(3.39) for‘ﬁn, and eliminating ¢ in terms of f and the orbital

period, P (in days), we obtain the equation governing the evolution

of f:
. 8/3 = . -1
1-f)
n=2

L

10
éy (o) represents the value of Sé;(f,o) corresponding to an = 10,
. . . . é}? .
and is a convenient normalization for ,n(f,c). The analytic
. . ) . .
approximation fOrwgglO, which is independent of ¢, has been given in
Table II for stars of 2, 5, 7, and 10 Mb. The time constant 7 is

a function of P, p, and the structure of the primary:

17/3
T =9.141 x 10721 —— yr (5.15)
1L+k)" W F @)
p17/3
= TO 2 N (5-16)
0

where TO is a function only of the primary's structure,

To integrate equation (5.14), we retain only the n = 2 and n = 4
terms in the sum over Hough modes. The numerical solution for‘gz;(f,o)
for a 5 %} star is given in figure 6. We neglecﬁ the slight dependence
of éZl on o, and adopt the curve 5%;(f) for o = 6 x lo_ssecml as

. _ 7
a representative average. With projection coefficients 62(f) and

%?Z(f) as shown in figure 3, the sum in equation (5.14) is evaluated
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and displayed as a function of f in figure 14. The increase of this
sum as f decreases from 1.0 to ~ 0.6 is due to the growth of §Zé(f)
in this range, while the decrease for f € 0.6 is due to the rapid
diminishing of %gz(f) and Qg;(f) as f becomes small.

Equation (5.14) may now be numerically integrated, starting
with f = 1.0 at t = 0, to yield f(t/T), as shown in figure 15.
Not surprisingly, the rate of evolution of f decreases considerably as
f decreases below 0.5. Thus the time scale for synchronization,
Tsyn’ depends critically on the adopted practical criterion for a
system to be considered synchronous. On the other hand, this time
scale is relatively independent of the initial value of f, as long

as this is not too small. Referring to both figures 15 and 13, we

note the following values of Tsyn for various synchronization

criteria:
f =2/30or Q=30 s T =T ;
syn syn
fsyn =1/20r Q=2 ?syn - 2.4 ; (5.17)
f =1/30rQ =1.50 5 T =12.07 5
syn s

Note that the function f(t/T) and the results above strictly
refer only to a 5 MO primary, for which éthc’f) is given in figure 6.
However, if it is assumed that the form of the function ggh(c,f) is
approximately the same for all early-type stars, and that only the

. .o 10
amplitude (specified by &ﬁ ) changes, then these results may be

applied to other early-type stars, with appropriate values of TO.
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FIGURE 14: The numerical results for gz(c,f)_ and g&, (c,f)
for a 5 M@ star, plotted as a function of f for o = 6 x 10_5 sec—l,
4 2
and derived from figure 6. Also shown is the sum %:2 gn %n , which
. . C Z . ]
appears in equation (5.14). The parameterdg , derived from Zahn's

worksyis independent of f.
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FIGURE 15: Evolution of the synchronization parameter f, as a
function of the dimensionless time variable t/T, for a 5 ﬂa star.
This curve was obtained by the numerical integration of equation
(5.14), and represents the contributions by the 2nd and 4th Hough

modes to the dynamical tide, as shown in figure 14.
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c¢) Synchronization times and critical periods

For the 5 %3 stellar model, Q?lo is obtained from the numerical

results displayed in figure 6:

£Z710 = (0.95 x 1031 ergs sec 1 . (5.18)

The moment of inertia, I, is calculated from the density profile of

the model: I = (2.2 + 0.3) x 1055 g cmz. With 1 + EZ = 3.75 (see
section 5a), the parameter TO of equation (5.16) is
T,= 1500 yr . (5.19)
To estimate 7, for other early-type stars, recall the approximate

0

analytic expression for éz;, equation (3.40):

5
T

e
o

‘n [r (dez/dr)] rl/3 pe .
' e

With stellar parameters from Table I, this expression has previously
L
been evaluated for an = 10, and the results listed in Table II. For

the 5 MO model we obtained

@0 (analytic) = 1.54 x 107! ergs sec™ . (5.20)
A comparison of this result with the more accurate numerical result
(5.18), reveals that the analytic estimates of.g?lo should be reduced

by a factor of 0.62. The moment of inertia factor, I/MlRlz,

is
assumed to be the same for all stars in the mass range 2 to 10 M
(see e.g., Zahn, 1975 Table I), and to take the value 0,063,
derived for the 5 MO model. Finally, as intimated in section 5a,

the constant 1 + k, is taken to be 3.75 for all early-type stars.

2
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We thus obtain the following estimates for T

o
Tg = 78,000 yr 041 = 2 MQ) ,
Ty = 370 yr @41 = 7 MO) s (5.21)
TO = 84 yr 041 = 10 MO)

A convenient power-law representation of T, as a function of

0

primary mass 1is

_ 6 =425 “
o 1.5 x 10 (Ml/MG) yr s (5.22)

which yields the following approximate form of equation (5.16):

T=1.5x 107 == —“—  yr. (5.23)
M 2
© P

In order to compare these results with observational material,
we ask the following question: What is the critical value of the

orbital period, Pcrit’ such that most observed close binaries with

P < PCrit should exhibit essentially synchronous rotational velocities?

The answer depends somewhat on ‘'most', since not all observed binaries
are the same age, and on the criterion for synchronization, as was

discussed in section 5b. Following Zahn (1977), we require the

synchronization time, Tsyn’ to be no more than % of the main sequence

lifetime, T,., of the primary. The critical period is then given

MS
by

2 3/17

[T
‘MS
P . = (5.24)
/)
crit } TO(TSYn/T) J
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where the ratio (Tsyn/T) depends on the adopted criterion for syn-
chronization. For example, from‘(5.17) we have Tsyn/T = 2.4 for
f = L.
syn
Table V gives the critical periods for stars of 2, 5, 7, and
10 M, evaluated for p = % and fsyn =% and 1/3. These results may

be easily scaled to different values of p or fSyn by reference to

equation (5,24) and figure 15. The main-sequence lifetimes in the

table were obtained by adopting the value 7 x 107 yr for the 5 MO

model (Cox and Giuli, 1968 , vol. 2, p. 988), and then scaling this
according to mass/luminosity (see Table I) for the other stellar

models. An excellent approximation is

9 -2.38
o % i yrt 5.25)
s 3.2 x 10 (%/MQ) ‘ (

TABLE V
Critical orbital periods for the

synchronization of close binaries.

Mass (MO) 2 5 7 10
Tyg (97D 6x10°  7x10 3x10 1.3x 10
T, (1) 7.8 x 10 1.5 x 10° 3.7 x 10> 8.4 x 10
P ( f -1 1.92 2.63 2.91 3.26
crit ays) syn 3
for p = 0.5 f -1 2.55 3.50 3.86 4.33
syn 2

P ri¢ (days) (Zahn [1977]) 1.59 2.19 2.69 3.30
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An approximate expression for the critical period may be derived from

expressions (5.22) for TO and (5.25) for Tvs®
2 3/17 0.33
>3, . M. /M : s 5.26
Pcrit: 3.03 Tsyn/T (1/ C)) ( )

for 2M® =M = lOMO .

1
The last line in Table V gives the critical periods for

synchronization calculated by Zahn (1977). Zahn has adopted a

slightly different definition of the synchronization time Tsyn

-5/3

(5.27)

T z t
syn

1 _ d ( o )

w2

which reflects the fact that iZi and ?%; are independent of f
when the rotation of the star is neglected. Evidently, Tsyi is the
time taken for the system to evolve from £ = 1.0 (c/2w = «®) to

f = 0.5 (6/2w = 1). Zahn's values for the critical periods should

=1
for fsyn =5

In terms of Zahn's dimensionless parameter E2 (see Table I1),

6.64 x 10 (Ml/MG) IP17/3]

T = vr . (5.28)
syn 9 [ 2
EZ(RI/RS) i J

thus be compared with the present values of Pcrit

Comparing this expression with equation (5.15) for T, and substituting

for EZ in terms of é?z (see equation [3.42]), we find

= \2cp 10
s 2.3 0+k7Y,
syn 5 T . (5.29)

&?Z

For a primary of 5 Mb, Tsyi = 24.8 7, or about 10 times longer than
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our fsyn = Y gynchronization time of 2.4 T. This factor of 10

difference in predicted synchronization times results in the factor

of ~,10*3/17

= 2/3 difference between Zahn's critical periods and those
obtained in the present study. We shall presently see that the shorter
synchronization times and correspondingly greater critical periods are

in closer agreement with the observational evidence.

Before turning to a discussion of the observations pertaining to
synchronization, we digress briefly to consider a point of interpre-
tation raised by Zahn (1977).

The rate of ‘dissipation of mechanical energy associated with the
dynamical tide, and hence the time scale for synchronization, depends
basically on three things: (1) the strength of the tidal potential;
(2) the tidal frequency o; and (3) the structure of the core and

inner envelope of the primary. Concentrating on the first of these

parameters, we have

N

2
M\2 (pM, +M)
1‘(_{ __2 :__.__]Z._._._Z__. oc L
e 2) (1) l5) .30

a a

Since ¢ also depends on P, it is apparent that P is indeed a
fundamental parameter of the process of tidal synchronization.
Zahn, however, recommends the use of the fractional radius, Rl/a,
in place of P in the analysis of observational material and in
comparisons of these data with theory. This parameter, as well as
P, may be obtained directly from an analysis of the light curves of

eclipsing binaries.,
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This recommendation is ill-advised, inasmuch as the primary's

radius Rl does not directly enter into the calculation of the dynamical

tide. This seems at odds with equation (5.28), but in fact E2 depends

1 1 through Zahn's practice of normalizing the radius

strongly on R

L
variable by R, and the tidal frequency by (GMl/Rl3)2' In the present

1

work this apparent dependence on Rl has been removed by avoiding such
normalizations.

The significance of this distinction between the use of the
parameters P and Rl/a lies in the fact that thg radii of stellar
models are quite uncertain. For example, for a 5 solar mass zero-age
main sequence star, we find the following radii in use: 2.24 RO
(Cox and Giuli, 1968 , vol. 2, p. 982), 2.35 %D (Zahn, 1975, 1977 ),
2.70 RO (present calculations), end 3.31 E@ (Allen, 1973 ). Referring
to equation (5.15) for the tidal synchronization time scale, we have

1 .
T <7 P 7/3. If this equation is rewritten in terms of the fractional

0

radius, it becomes

e ()7 : 30

but the new constant Tb « T R 17/3 and is consequently quite uncertain.

01
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d) Comparison with observations

Rotational velocities have been measured for ~ 100 early type
(0-F) stars in close binary systems, by modeling the rotational
doppler broadening of sharp spectral lines. Unfortunately there are
two serious problems connected with the interpretation of these data.
First, only the radial component of the rotational velocity is

measured i.e., v_ sin i, where i is the inclination of the star's

R
equatorial plane to the plane of the sky. Second, to compute the
rotational angular veldeity Q, or, equivalently, the expected

"synchronous rotational velocity" Vs the radius of the star must

be known.

1) Eclipsing binaries

Both of these problems may be solved for one class of close
binaries ~ the eclipsing binaries. These systems are seen, by defini-
tion, almost edge-on, so that, with the assumption that the stellar
equatorial plane is coincident with the orbit plane, sin i == 1. From
the analysis of the light curve of an eclipsing binary, the inclination
and one or both fractional stellar radii, Rl/a and Rz/a, may often
be obtained. If the radial velocity curves for both primary and

secondary are measurable, the total mass (M —FMZ) and the semi-major

1
axis 4'may be computed, thus yielding absolute radii. Alternatively,
the absolute radii may be estimated from the apparent magnitudes of the
stars, if the distance to the binary is known.

Koch, Olson, and Yoss (1965) and Olson (1968) have measured the

rotational velocities Vo of 40 early type stars in 29 close-binary
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systems, most of which are eclipsing, and compared these velocities with
the "synchronous velocities" v These data have been carefully
discussed, and four more systems added, by Plavec (1970).

The simplest and most obvious conclusion to be drawn from the
data on eclipsing binaries is that, for each spectral type, the
average rotational v;locities are about one-half of the typical field
star rotational velocities (see Plavec, Fig. 1). Either the components
of binaries are formed with comparatively low rotation rates, which is
quite plausible since most of the angular momentum of these systems
resides in their orbital motion, or some process of synchronization

is at work. An examination of Olson's (1968) plot of v_ against vy

R
(Olson, Fig. 2; Plavec, Fig. 2) led Plavec to draw the following

conclusions:
"(1) No case is known of a component rotating considerably
more slowly than required by synchronism.
(2) As a rule, the rotation is synchronized with orbital
motion, or may be somewhat faster.
(3) A few stars rotate considerably more rapidly than they
should if synchronism applied to them."
(Plavec, 1970, p. 137)

Most of the "synchronously'" rotating (0 < 1.5w ) stars discussed
by the above writers have orbital periods < 4 days, and fractional
radii 2 0.15, while most of the definitely non-synchronous rotators
do not satisfy these inequalities. There are, however, exceptions in
both cases, e.g., the primary of V380 Cyg, which rotates synchronously

with a period of 12.4 days; and the primary of U Cep, which has an

orbital period of 2.5 days but rotates 5.25 times faster than
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synchronism requires. Moreover, most of the systems studied have

"...nothing statis-

periods less than 6 days. Plavec concludes that
tically meaningful can be said about periods longer than 4 days."

The 33 systems considered in the above studies are used here in
an observational test of the theory of synchronization by the action
of dynamical tides. The component stars range in spectral type from
FO(M~1.6 Mb) to 08.5 ( M~23 Mb), most falling within the mass
range 2 MG-IO Mb covered by our theoretical analysis. We have seen
already that the predicted critical period for synchronization
(Table V) is 2-3 days for fSyn ='% Q=1.5w), or 3-4 days for

syn = 5(Q =2w). These periods are of the same order as, but perhaps
somewhat shorter than, the critical period of 2 4 days suggested by
the observational data.

A more detailed test may be performed by calculating the tidal
synchronization time constant, T, for each binary component whose
rotation has been measured, and comparing this with the star's main-

sequence lifetime, T Equations (5.23) and (5.25), extrapolated to

MS®
Ml > 10 M@ when necessary, are used to obtain T and TMS’ respectively.
The primary mass Ml,and the secondary mass fraction p are obtained by
reference to Batten's (1967) Sixth Catalogue. When both primary and
secondary radial velocity curves have been measured for a system, and
the inclination estimated, both masses are known. For systems with
only one measured radial velocity curve, the primary's mass has been

estimated from its spectral type (with the calibraticn from Allen

[1973]), and p has been set equal to 0.5.
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Table VI gives the resulting values of'T/TM , along with

S

measured vR/v for 44 components in 34 close binaries. These results

S’
log (Q/w)

2]

are also plotted in figure 16, in the form of log(vr/vs)

against 'r/'rM . Recall (equation [5.17]) that the time for a star to

S

spin down from an initially rapid rate to Q = 1.5w is ~ 127. We thus

expect to find Q/w € 1.5 for most stars with T/TM < 0.02, and for

S

very few stars with 1/7 > 0,08. On the other hand, if the looser

MS
synchronization criterion of O £ 2w is adopted, these limits

become T/TM < 0.1 and T/TM > 0.4, respectively.

S
Disregarding certain obvious exceptions, figure 16 reveals that

most stars with 7/7 < 1 satisfy the tighter criterion Q/w < 1.5.

MS

For 7/7,., > 1, the distribution of Q/w appears, at present, to be

MS
random. (Because of the strong dependence of’T on the period P,
figure 16 is not greatly different in the distribution of data points
from Plavec's plot of log(vr/vs) against P.) The theory is thus
qualitatively successful in ranking most binaries according to their
synchronization time scales. Quantitatively, however, the predicted
times for spin-down to (/w = 1.5 are about one order of magnitude too
long to explain many observed cases of "tight" synchronism, although the
times predicted for spin down to Q/w = 2 ("loose'" synchronism) are
compatible with the observations.

It appears, therefore, that the problems of the dynamical tide
model of synchronization lie not with the basic time constant 7, but

with the long '"tail" exhibited by figure 15. For values of f < 0.5,

cr Q/w < 2, the predicted rate of synchronization decreases rapidly,
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TABLE VI

Rotational velocities and synchronization time constants for 44
components of 34 close binaries. Systems denoted by asterisks are
eclipsing - others are single- or double-line spectroscopic binaries.

Values of vR/vS from Olson (1968) and Plavec (1970); all other data

from Batten (1967). Values of T/TMS calculated with a mass inferred

from the spectral type are indicated by a +.

System Orbital Period Spectral Type v, /v T/T
®'Vs MS
(days)
v And B 2.67 B9.5 V 1.22: 0.03"
c Aql* 1.95 B3 1.11 0.003
B3 1.61 0.003
8 Aur% 3.96 A2 TV 1.16 0.97
A2 TV 1.14 0.97
WW Aur# 2.53 A7 1.08 0.12
A7 1.03 0.12
R CMa%* 1.14 FO 1.26 0.0014
& Cap* 1.02 Am 0.83:  ~ 0.0006"
AO Cas* 3.52 08.5n 0.80 ~10.01i
08.5n 0.97 ~ 0.01
AR Cas* 6.07 B3 4.06 0.97
RZ Cas* 1.20 A2 1.30 0.0008"
YZ Cas* 447 A2 0.97 1.47
AH Cep* 1.77 BOn 1.21 ~ 0.0004
BOn 1.13 ~ 0.0003
U Cep* 2.49 B8 5.25 0.027
o CrB* 17.4 AO 14 ~ 1007
V380 Cyg* 12.42 B1.5 0.98 ~ 42
Y Cyg#* 3.00 09.5n 1.46 ~ 0.005
09.5n 1.41 ~ 0.005
AT Drak 1.20 AO 1.15 0.0006"
66 Eri 5.52 B9 0.70: 2.6"
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TABLE VI (Continued)

System OrblESiyzirlOd Spectral Type VR/VS T/TMS
68 Her* 2.05 B3 1.01 0.0016"
RX Her* 1.78 B9.5 1.15 0.008

Al 1.19 0.008
§ Lib% 2.33 A0 V 1.03 0.024"
6 Ori A% 5.73 B1 0.94 ~0.3"
VW Ori¥ 1.49 B2 0.62: 0.007
U Oph* 1.68 B4 1.05 0.002
B5 0.94 0.002
AW Peg* 10.62 ASe 6 4500
EE Peg* 2.63 A4 TV 1.13 0.1"
AG Per#! 2.03 B3 0.99 0.006
- 1.11 0.006
b Per 1.53 A2 0.91: 0.003"
o Per 4 .42 Bl ITT 0.98: 0.06°
- 1.22; 0.06
RY Per* 6.86 B4 10 ~ 2f
U sge* 3.38 B9n 0.86 0.16"
RZ Sct¥ 15.19 B2 4 ~ 1007
A Tauk 3.95 B3 V 0.97 0.8
RS Vul®* 4.48 B5 1.96 2.4
HD 98088 5.91 A2p 1.000 <12

1) Probable member of II Persei association, which has a kinematic
age of ~ 1.6 x 106 yr.

2) T/TMS probably invalid, since primary is not on the main sequence.

3) Synchronism based on spectrum and magnetic variations, not on
rotational velocity.
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FIGURE 16: Plot of lot (VR/VS) against T/7 for components of the

MS
binary systems listed in Table VI. Open circles represent systems
for which the masses of both primary and secondary are given by
Batten (1967). For the systems indicated by filled circles, the
primary mass was estimated from the spectral .type and the mass
fraction p set equal to 0.5. Perfect synchronism is indicated by
the solid line, and the "tight" synchronization criterion by the

dashed line. Unusual or non-synchronous systems are identified

for convenient reference.
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due to the decrease of the projection coefficients ggn' The theory thus
predicts that a large number of systems with 0.01 < T/TMS &£ 1 should
exhibit values of Q/w in the neighborhood of, or somewha; less than, 2.
Further reduction of (Q/w (to 1.5 or less) should only have occurred for

those systems with 7/7T, . < 0.02, a prediction which is clearly at

MS
odds with the observations.

One process which might be responsible for the subsequent
reduction of Q/w from ~ 2 to ~ 1, and also for the several values of
Q/w <1 shown in figure 16, is the slow evolutionary expansion of
early type main sequence stars. In order to conserve angular momentum,
the star's rotation rate must decrease as the star expands - even
below the synchronous rate, if the tidal interactions are too weak
to transfer sufficient angular momentum from the orbital motion to
compensate. Olson (1968) has already speculated that this effect
might be operating, based on a correlation between values of Q/w <1
and low stellar surface gravities. Zahn (1977, fig. 3) included this
expansion in a calculation of the rotational evolution of a 15 M@
star, and showed it to be gquite important, especially in the latter
stages of the star's main sequence lifetime. We shall have cause to
return to this matter presently.

Besides the inevitable processes of tidal interaction and evolu-
tionary expansion, other factors may control thevrotational evolution
of the components of some close binaries. About 407 of the systems

listed in Table VI are classified as semi-detached binaries, i.e.,

systems in which one component (usually the secondary, dimmer star)
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fills its Roche lobe and is transferring mass to the other component
(usually a main sequence star). This transfer of mass must be associated
with a transfer of angular momentum, which probably serves to spin-up
at least the surface layers of the mass-gaining component (Plavec,

1970 ). This latter component is usually the more massive and the
brighter of the two stars, and is the one whose rotational velocity

is most commonly measured.

Of the 6 clearly non-synchronous stars shown in figure 16,

RZ Sct, RS Vul, RY Per, and U Cep all represent the primaries of

such semi-detached systems. The same is true of AW Peg, for which

T/

TMS = 4500, and which consequently does not appear in figure 16.
U Cep, in particular, is well known for the spectroscopic effects which
accompany the transfer of mass, and, in light of its period of only

2.49 days and its value of T/TM = 0.02, is a likely candidate for

S
spin-up due to mass transfer.
The other two stars shown in figure 16 which are clearly non-
synchronous, o Cr B and AR Cas, represent the primaries of ordinary
detached binaries. The long period (17.4 days) of the former is

responsible for the large value of 7/T, . = 100 and, as pointed out

MS
by Plavec, it is not surprising that it is still in a state of rapid
rotation. The primary of AR Cas, on the other hand, has a period of
6.07 days and 'r/'rMS > (0.9 - both comparable to some other synchronous
stars, although longer than most. It is quite possible that this is

simply a young star whose rotation has not yet been greatly affected by

tidal interactions with its small companion.
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Finally, we consider the last entry in Table VI, HD 98088,
which suggests still another possible influence on rotation rates in
certain close binaries. The primary in this system is an A_ star, a
member of a group of stars which is very poorly represented in close
binaries, but is characterized by slow rotation rates (among other
things). The rotational velocity of the star has not been directly
measured, but it exhibits spectrum variations which are perfectly
synchronous with the orbital period of 5.91 days (Abt, et al [1968]).
A stellar magnetic field has been identified (another common property
of Ap stars), and its observed strength also'§aries synchronously with
the orbital period. Dynamical tides cannot possibly explain the precise
synchronism exhibited by this system. The obvious candidate for a
synchronization mechanism in such a system is some form of magnetic brak-

ing, which may conceivably act only on the surface layers of the star.

(2) Other binaries

A separate analysis of observational material pertaining to
synchronization in binaries has been carried out by Levato (1976),
who considered all binary systems with measured stellar rotational

velocities, v_ sin i, and wuvbyp spectral parameters. Since most of

R
the 122 systems considered are not eclipsing, the inclinations and
fractional stellar radii are unknown. The measured stars were divided
into eight spectral categories, corresponding to the average spectral
types B2, B7, A5, and F5 (~ 11, 5, 2, and 1.3 Mb, respectively), and,

for each spectral type, to "non-evolved'" and "evolved" main sequence

stars. The boundary between non-evolved and evolved stars was drawn
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such as to place approximately equal numbers of stars in each of these
two classes. Standard radii were adopted for each category and used,
with the orbital period, to calculate the 'synchronized velocity" v
Using a loose synchronization criterion of Q/w < 2, Levato
established a critical period nange for synchronization for each

category. His results are given in Table VII.

TABLE VII
Critical period ranges for synchronization

of close binaries (Levato, 1976 ).

Critical period range (days)

Average spectral

type Non-evolved stars Evolved stars
B2 (~ 11 MD) 4 -7.5 9.5-12.5
B7 (~ 5 %D) 3.5-4.5 4 -6.5
~ 2 - 4.
A5 (~ 2 Mb) 3 4.5
F5 (~ 1.3 MG) 10.5-14.5 9.5-17.5

Comparison of the critical periods for 'mon-evolved" stars with
the theoretical predictions of Table V for fsyn = L reveals excellent
agreement for the first three average spectral types. Stars of mass
£ 1.6 ﬂa (e.g., F5 stars) possess extensive convective envelopes.

Zahn (1966, 1977) has shown that tidal energy dissipation by turbulent
viscosity in the envelopes of such stars is quite efficient and

leads to rapid synchronization, even for orbital periods of the order
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of 10 days. The dynamical tide model of synchronization is thus again
shown to successfully predict the occurrence of "loose" synchronization
(i.e., Q/w =< 2) in early-type stars which have not yet evolved
significantly from their zero age main sequence configurationS.
However, when Levato's results for "evolved" main sequence
stars are compared with the predictions of Table V, it is apparent that
some much more efficient synchronization mechanism is at work. From
equation (5.15), we see that an increase of a factor of 2 in the
orbital period implies an increase of a factor of 50 in the required
synchronization time, all else being equal. Thus the greater
average age of the evolved stars does not, by itself, seem to account
for the considerably greater critical periods. An obvious candidate
for the synchronization mechanism which seems to be so effective in
evolved stars is the expansion which accompanies evolution. We have
already discussed this expansion in connection with the observations
of "tight" synchronization (Q/w < 1.5) and sub-synchronous rotation

(Q/w < 1) in eclipsing binaries.
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VI. CONCLUSIONS
(1) The investigation of the dynamical tide generated in an early
type main sequence component of a close binary, first carried out by
Zahn (1975), has been successfully extended to include the most
important effects of the stellar rotation. These effects enter
through the coriolis term in the equations of motion of the fluid in
the stellar interior, and have previously been neglected.

By retaining only the radial component of the rotational
angular velocity of the star in the evaluation of this term, it has
proved possible to separate the linearized fluid equations in spherical
polar co-ordinates, thus considerably simplifying the analysis.

The validity of this approximation in the radiative envelope of the
star has been demonstrated, but when applied in the convective core,
it must introduce some error in the calculated amplitude of the
dynamical tide.

(2) The functions which describe the angular dependence of the
separated solutions are of the form é?mn(e) eim@, where éamn is a
solution of Laplace's tidal equation. These functions replace the
spherical harmonics P{é(e) eim?, which arise when the coriolis term
is completely neglected, and have been previously encountered in the
study of oceanic and atmospheric oscillations on rotating planets.
The equations governing the radial dependence of the dynamical tide

are unchanged by the inclusion of the coriolis term, except for the

appearance of an eigenvalue Kmn which replaces the constant 4(L+1).
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(3) Each temporal Fourier component of the tidal potential,

U{n(r,e)ei(m@-kcmt)’

excites a response which is composed of many
different modes of oscillation, corresponding to n = xm, x(m+1),
+(m+2), ... . The amplitudes of these excited modes are controlled
by the projection coefficients %gh, the most important modes
corresponding to small, positive, even valuesbof n. A rapid decrease
of these coefficients as the rotation of the star approaches the
synchronous state causes a decrease in the energy dissipation rate
and, consequently, in the rate of synchronization. This result
implies that, in most cases, dynamical tides are incapable of reducing
the rotation rate ) to much less than twice the orbital mean motion

w in the lifetime of the star.

(4) An approximate analytic solution for the radial dependence of

the dynamical tide's various modes has been obtained. It is apparent
from this solution that the mechanical energy transported by the
dynamical tide is generated by the tidal forces acting on the convective
core of the star. The radiative envelope is a region of transport
through which this energy is carried to the stellar surface in the
form of gravity waves. Subject to the validity of the radiation
condition applied to this solution, the energy generation and

transport rate for the nth mode is given by equations (3.39) and

(3.40):
2

E
n

L g, 13 i) @
n

-5 P2
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with Z -1/3
w51 [ 2 ]
0 r, pe r(de /dr)

r
e

The strong dependence of §En on r _, the radius of the core, is a
noteworthy feature of this result, and one to which Zahn (1977)

has also drawn attention. |

(5) Zahn's zero-temperature surface boundary condition has been
replaced by a finite temperature stellar atmosphere with T = 2—%Teff'
A consequence of this improvement is the result that the gravity
waves corresponding to certain of the mgdes of tidal oscillation are
not reflected at the surface of the star, but may propagate outwards
until they become non-linear and are damped. The eventual dissipation
of the mechanical energy transported outwards by these modes is

thus ensured, and is not depéndent on the efficiency of radiative
damping, as was stated by Zahn (1975, 1977).

(6) An extensivelseries of numerical solutions for a 5 Mé star have
been carried out to complement and check the validity of the
analytic solution. The analytic expression for §€n is found to

be accurate to better than a factor of 2, except for small values

of the eigenvalue Kmn' As predicted, §Zh is almost independent of
the tidal frequency o.

(7) These numerical results have been used to investigate the
rotational evolution of a 5 MO star in a close binary system, and to
determine the time constant T for the synchronization process. With
the aid of the analytic expression for the parametertig;, the results

have been extrapolated to other early type stars to give (equation
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(5.23D)

M, \-4.25
T=1.5x 106 L Pl7/3p—2 yr
M@

This expression is valid over the stellar mass range ZMb < Ml

< 10 MD’ and possibly for larger masses. ?redicted synchronization
times are strongly dependent on the adopted criterion for synchroni-
zation, but for spin-down from Qﬂu = ® to Q/w = 2 are about a factor of
10 shorter than those calculated by Zahn (1977).

(8) The strong dependence of T on the Qrbital period P suggests the

existence of well-defined "critical orbital periods", PC such that

rit’
the components of most binaries satisfying P,< Pcrit exhibit
synchronous rotation. For the synchronization criterion Q/w < 2,

the predicted critical periods range from 2.5 days (2 Mb primary) to
4.3 days (10 %D primary). Tighter synchronization criteria (e.g.,

Q/w < 1.5) imply considerably longer synchronization times and
correspondingly smaller critical periods.

Observations of the rotational velocities of early type
components of eclipsing binaries are in genefal agreement with the
predicted synchronization times and critical periods for the criterion
Q/w < 2, but in many cases the observed synchronism between rotational
and orbital periods is considerably better than expected. More
extensive data concerning the projected rotational velocities of
spectrcscopic binaries, although somewhat corruﬁted by the inclination

effect and by uncertain stellar radii, suggest critical periods for

unevolved early type main sequence stars which agree quite well
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with the predicted values (again for the criterion Q/w < 2).
However, for somewhat evoived early type main sequence stars, the
same study indicates much greater critical periods.
Considerable support for the basic hypothesis of some sort of
tidal mechanism for rotational synchronization in close binaries
is provided by the very existence of such critical periods. This
follows from the strong dependence of the tidal potential on the period:
U ~:a_3 ~ P_2 . The present specific model of tidal synchronization
for early type stars, V{%Z., the dissipation of mechanical energy
transported through a star by the dynamical tide, does successfully
predict the time scaleé, and the corresponding critical periods, for
spin-down from a state of rapid rotation to a state in which Q/w ~ 2.
Further reduction in the rotational angular velocity due to the
dynamical tide proceeds very slowly because of the rapidly diminishing
values of the projection coefficients (see [3] above). It is concluded,
therefore, that while the dynamical tide model adequately describes
the initial stages of synchronization, an additional mechanism is
required to explain both the prevalence‘of "tight" synchronism
(@ £ 1.50w) amongst eclipsing binaries and the much greater critical
periods associated with "evolved'" main sequence stars. Slow stellar

expansion, especially in the later stages of main sequence evolution,

may provide this mechanism.
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APPENDIX 1

The coriolis force approximation

With the aid of the analytic solutions developed in section 3,
and of the WKB solutions of section 2, the validity of approximation
(2) made in section 2b is examined. This approximation involved
the neglect of the non-radial (or '"horizontal') component of the
rotational angular velocity in calculating the coriolis force.

We return to the linearized equations of motion (2.8), (2.9),
and (2.10), and rewrite them in a schematicnform so that the relative
sizes of the terms may be ascertained. Vectors Vs g,rand vare
separated into radial (vr, Qr = () cos B, Vr) and horizontal (VH,

QH = () sin 6, VH) components, as is the momentum equation (2.8).

Introducing the characteristic radial and horizontal scales of the

perturbed quantities, Lr and LH, we make the following schematic

substitutions:
ox
Vr(éx) ""']:" s
T
Ox X
VH(éx) ~ 1 . éx = §p, 8p, or v (Al1.1)
H ~~
9 ,. .
at(ox) =iogdx s
and dp p
R o o __0
VrVO -8 " po dr rpo ’ (A1.2)

where g is the gravitational acceleration. The momentum equation

becomes:



138

P, 6P
GPp.V +6—p+—0——+2p Q. v. =90 (2.8%)
0 'r Lr rpo 0 H 'H s .

and
(2.8")

]
o

Sp
0Py Vy + LH + 2pO(QrvH+ QHvr)

where we have dropped the forcing term voV. The continuity equation

(2.9) takes the form:

p v v
0 r H
06P+Tvr+Po(f;+LH>=0 : (2.9")

More care is required with the adiabatic condition (2.10). Noting

that ; .

. (A1.3)

(2.10) is rewritten schematically as
2
N
Y ICT-RC) 5 IR AN ) (2.10")
PO PO g r

. 2
In the convective core, Nv = 0, and we have

op Sp (2.10™

o P ’

but in the envelope sz/g ~ 1/r and this term may not be neglected.
Our objective is to determine whether or not the QH terms in

(2.8') and (2.8") may be safely neglected. To make this decision,

it is necessary to use (2.9') and (2.10') to estimate the magnitudes of

in terms of ¢ép and v We consider the envelope and core

6p and vr e

solutions separately.
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a) Envelope scaling

Substituting the WKB solutions for 6p and vr into equation (2.10"),

we find

2
9 o -4 Nv
o —+—~—K ?|l—v . (A1.4)
N n r

Since O/NV ~ 10—-2 in the envelope, and Kh_> 1, evidently the 6p/p0

term is unimportant and (2.10') becomes

v

6 N
o v i (2.10"")
og r Gr ;

Turning now to the continuity equation (2.9'), we observe that the
first two terms are comparable and may be combined as one. To extract

more information from this equation, we note that

-4
LH ~ Kn T ST (Al1.5)

- (from the latitudinal range of the Hough functions: - f <p < f),
and that Lr is given by the WKB wavelength (2.45):

1
20 -2
L ~K T 1077 L, . (A1.6)

. Consequently vr/r < v /Lr and (2.9') becomes

r
Lr -2
v n'i;-vH ~ 10 vy 3 (A1.7)

i.e., the two velocity components scale linearly with the corresponding
characteristic length scales.
Armed with this result, we see immediately that the QH term in

the horizontal momentum equation (2.8") may indeed be neglected in
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comparison with both the Qr coriolis term (except for ¢ ==1/2) and
the inertial term o pO Vi The latter follows from the fact that, for
tidally induced oscillations, ¢ ~ (2. It is thus apparent that these
two comparable large terms must be balanced by the pressure term
ép/LH:
dp A«S LH po Yy . (A1.8)
We are now equipped to analyze the radial momentum equation
(2.8'), which takes the following form when expressions (2.10"'),
(A1.7), and (Al.8) are substituted for .bp, Vo and ép:
opovﬁ[i+i+<§()—-2-> ;5+—252ﬂ =0 (A1.9)

L Lr por H (e}

LH
It has been shown previously (see equation [2.37] énd discussion
folleowing) that pO/Opor2 >> 1, so that the third term, which
represents the vertical gravitational acceleration, may not be neglected
despite the factor of Lr/LH° However, in comparison with the second
(vertical perturbed pressure gradient) term, both the first (inertial)
and fourth (QH coriolis) terms may be neglected. Thus the vertical
momentum equation is seen to reduce essentially to an equation of
hydrostatic equilibrium in the stellar envelope, and we have shown
that the coriolis terms due to QH may be safely neglected in both

the horizontal and radial momentum equations.
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b) Core scaling

In the core, 6p is given by (2.10") and the discussion is
@
somewhat simplified. The horizontal scale is again given by

1
=3

L.~ K T s (AL.5)
H n

but, since the analytic core solutions are non-oscillatory,the

radial scale is not small. Noting that &p ~ 1’ and v A'rv—l,
with v(v+1) = Kn, we take
_1
L ~—n~nK r~lL . (A1.10)
r Y n -H

As 6p is given in terms of ép rather than vr in the core,
we next consider the horizontal momentum equation (2.8") to obtain an

estimate for 6p. Noting that o ~:Qr ~ Q and assuming that the

H,
three terms involving these quantities do not cancel one another,

we obtain

ép ~0o LH Po v , (A1.11)

where v represents the larger of v, and Vi
Substitution of this expression for &p in equation (2.10")

for O6p yields an estimate for the first term in the continuity

equation (2.9"):

2

o por LH

gbp ~| ——— — va . (A1.12)
Py ¥

By equation (2.27), the quantity in parentheses is small, and LH/r2 ~

-1 -1
Kn 2y A:(KnLH) , so this term may again be neglected in comparison
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with the other terms in the continuity equation. However, since

-1
L ~L ~K 2
r n

H r in the core, we must now conclude from the continuity

equation that

V.~V (A1.13)

in contrast to the result (Al.7) which holds in the envelope.
Therefore, all three velocity terms in the horizontal momentum equation
are comparable, including the QH coriolis term.

Furthermore, substitution of expressions (2.10") and (Al.11)
for 6p and é&p into the vertical momentum equation (2.8") reveals
that all four terms in this equation are of order opovr A'chVH,
including the QH coriolis term. Equation (2.8') evidently does noft
reduce to a requirement of hydrostatic equilibrium in the core, as
it does in the envelope. By definition, if the core is unstable to
convective motions, it cannot support stable quasi-hydrostatic vertical
oscillations. An equivalent statement is that the Brunt-Vdis&dld
frequency goes to zero in the convective core.

An aceurate solution for the dynamical tide in the core must
thus include the QH coriolis terms, and in consequence is not

separable in spherical polar co-ordinates.
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APPENDIX 2

The separation of the fluid equations

The linearized vector equations (2.8), (2.9), and (2.10), which
describe the motion of the fluid in the star under the influence of
the perturbing potential 8V, are here separated in spherical polar
co-ordinates. The final result is the set of scalar ordinary
differential equations (2.17), (2.18), and (2.19). The two assumptions
listed in section 2b are used, namely (1) that the equilibrium state
of the star is spherically symmetric, and (2) that only the radial
component of 9 is retained in calculating the coriolis force, i.e.,
{0 =Q & . The temporal and longitudinal dependence of all perturbed

e . . i(ot+m
quantities is written as e (© )

, where we have set o, =0
With the introduction of the variable h (the vector displacement)

defined by v = ich, and replacing all time derivatives by ic, the

linearized equations become:

- ozp‘}l = - Vép - 6vaO— 2iop0(gxh) - P v oV , (A2.1)
bp = =V + (ppyh) (A2.2)
and 1 r
— (4p+h pl) = — (Gp+h p%) (A2.3)
P 0 p 0
0 0
In (A2.3) we have introduced the scalar h = (h)r and the primes

to denote derivatives with respect to r.
After some manipulation, which makes use of the assumed purely
radial nature of the vectors VVO and Q, equation (A2.1) may be

rearranged to take the explicit form:
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2
o] pog =vyoép + 6va0 + pOV6V

1

2
Y
u (Gp + 906V)J

2 2.-1 T..
+ @ - [210 0 % 7 (6p+p V) + 40

(A2.4)

The symbol 'V ' represents the non-radial component of the vV operator.

H

Also, the radial component of (A2.1) is

o oV Sp
0 or 0 or

P > (A2.5)
Pg O

where VVO has been replaced by - pb/po.

Taking the divergence of (A2.4), making use of (A2.5), and
substituting the result into equation (A2.2), we obtain

2
2 - 2 - _ 2
o 6p + rz 5t (r pOh) v

B oY

-1 (A2.6)

2 2 . 2 ]
vy {(0 ) [2oax vy + i uy }

where ¥ = op + poév. We denote the right hand side of this equation by

N

-5 G :
r

and note that the operator’gg involves only derivatives with respect
to the angular co-ordinates © and .
Equation (A2.3) is used to eliminate 6p from (A2.6), which

becomes

1/ or 0

2 .
op o P
0 Q (rzp 1/Fh> + r2 0 ép = - @g(Y) : (42.7)
Po



145

Similarly, (A2.5) becomes

1/ -1/T _ 2 2 _ 36V
P - (po 6p) 90(0. SV ) h==-p, S
where )y
2_ _ 70 d 1/r
Ny~ = b, dr [&z(po /po)]

These two equations are separable in our spherical polar

co-ordinate system. We set

h(r,6,9) = h, (r) h,(g) ™ ,
1 2
6p(r,0,9) = 8p; (¥) 6p,y(8) eF
and 6V(r,8,9) = 6V1(r) 6V2(e) eimP

Equation (A2.8) evidently requires that

h,(8) = 6p,(8) = 6V,(0) @)

becoming then the ordinary differential equation:

/I d
p0 dr

This is the first of our final equations - (2.17).

From (A2.10) we have
#(r,0,9) = [0, (1) + PV, ()] @C0) TP,

and

9 )

]

[6p,(0) + ooV, ()| Geo) ™™ .

(2o ™" o0, ) 0% =32 by () =

d6Vl

(A2.8)

(2.20)

(A2.9)

(A2.10)

(r)

- pO dr

(A2.11)

(A2.12)

Substituting this result in (A2.7), and dividing both sides of the

equation by [épl + poévl](j » we see that (A2.7) does indeed

separate to produce the two ordinary differential equations:
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o p \
0 d 2 1/1 (K _ 0 _ K
5 —l—/—l-—: ar <r po hl (r)> < P Fp0> 6Pl(l") 2 POGVl(I‘) 5

r

and

Y0Oe®]l+K O®K) =0 , (A2.13)

where K is an arbitrary separation constant. The first of these is

our final equation (2.18), with K = Kmn’

The expression {5/{ ® (6) ] may be written most conveniently in

A

terms of the variable p = cos 6. Setting 2 =Q & = ©Qu) és and

introducing the constant f = 0/2Q, we obtain the following explicit

expression after considerable manipulation:

2 2 2
) 2 d{1-p d® f m
CreeE)] = (1= 92) 5 _
e
dul\g2_ 2 a | g2 20

2 2 (A2.14)
m(f" +p7) )
f(fz—uz)

Substitution of this result in (A2.13) produces the third of our
ordinary differential equations, (2.19).

In general, the solutions of equation (2.19) are singular at
p==+1, i.e., 6 = 0 and 1, and thus physically unacceptable. However,
for a discrete set of values of the arbitrary constant K, which
depend on the parameters m and f, the function ® is bounded for all ¢
in the range 0 < ¢ < . These values are designated Kmn(f), with
corresponding solutions (Dmn’ and are discussed in sections 2c and
2d. The most general, physically acceptable solution to equations

(2.8), (2.9), and (2.10) must thus be a sum of solutions of the
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form (A2.9):

h (r,8,¢) = Z h () @ (©) S ) (A2.15)
n

and 6p_(r,6,9) = 2. 6p () ©_(6) '™ ; (A2.16)
n

VER ey (0,9 = ; V() @_(e) M : (A2.17)

Equations (2.14) and (2.15) of section 2b are just (A2.16) and (A2.15).
If the functions ()mn form a complete set on 0 < § < 1 (see section 2¢),
then any arbitrary potential function of the form f(r)g(6,9) may be
written as (A2.17).

The separation of the linearized equations outlined in this

appendix is due to Dr. Peter Goldreich.
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APPENDIX 3

Projection Coefficients for |f| << 1

For |f[ << 1, Hough functions of the first class take the

approximate form (Longuet-Higgins, 1967):

2
I - TR N (2
@mv(e) A (dp 3 ) e HV(TD (A3.1)
v=0,1, 2, ... s
L
where 1| = (K/fz)“p . Hv(ﬂ) is an Hermite polynomial, and Av is a

normalization constant. The corresponding eigenvalues Kmv are given

by
K (2v +1)2
my = =l , , (A3.2)
2
£
sO
1
1, = 2v+1)2 /| f] . (A3.3)

From(A3.1) and (A3.3) it is apparent that the Hough functions are
essentially confined to the region
- (2v+l)-1/2]f| <p< (2v+1)-1/"'|fi ,
which is a narrow equatorial band for small.valuesof’f}.
The index v is related to the usual Hough function index n by

the relations

f > 0: n=-m for v =0
n=m+v -1 for v = 1,2,3,... (A3.4)
f <0: n=m+v +1 for v = 0,1,2,...

As may be seen from figure 1, which corresponds to m = 2, thev =0
Hough function for f > 0 actually belongs to the second class of

solutions to Laplace's tidal equation.
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The projection coefficients are defined by equation (2.34):

1
2
gn =f P, (1) @2’n(e) du , n=2,4,6,...
21

when (32 a is normalized by (2.30):

12
[G)z,n(e)J dp =1 .
21

Applying this normalization condition, we obtain

-

1
]

f
A= Z . (A3.5)
\ [(2v-¥l)3/2 n1/2 v 1 V!
Substitution of expression (A3.1) for C%N into the equation for the

projection coefficients, and a subsequent integration by parts,

leads to the result

@

L 22
~ 2 [15\° £(m+ 2f) TH)e dl , (A3.6)
8n M16) 2v+1 v
e o)
m= 2
with v=n-1
I R C i | R

A second term in the expression for %3n has been neglected, as it is
smaller by a factor of ~ f.

The above integral has been evaluated for n = 2,4, and 6:

[e5}

2
/n H, (1) /2 af = 2/2nm s

(&)
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[e 4]

2
j 11K () e W/2 gy - 12 Vom ,

(9]

2 al
/ Ti Hg (11) W2 4 = 120 /2m :

-0

to produce the projection coefficients

k
e, VAT) SO0 3720,

3/2

= 1.066 £ (1+1£) >

_3V5 (7n)l/“ 3/2
@4 I £+ )

/

0.296 £/2 (1+£) ,

]

and

L
.15 (aim™ .3/2
e 247 @+

3/

0.150 £ 2(14—f)

These three expressions are plotted as the solid curves in figure 3.

The derivation of equation (A3.6) is due to Dr. Peter Goldreich.
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I. INTRODUCTION

The Uranus ring system was discovered on 1977 March 10,
by Elliot, et al. (1977), during observations of an occultation
by the planet of the star SA0 158687 (V ~ 8.8). Other observers
obtained less complete data, but nevertheless confirmed the
existence of four narrow (£ 10 km) essentially circular
co-planar rings, christened o, B, ¥, and 6, and the wider (~ 100
km) non-circular or inclined ¢ ring (Millis, Wasserman, and Birch
1977; Bhattacharyya and Kuppuswamy 1977a; Churms 197?; Zellner
1977; Mahra and éupta 1977). Subsequently, Elliot et al. (1978)
have identified four more rings: 1, 4, 5, and 6. On 1977
December 23, Millis and Wasserman (1978) observed a partial
occultation by the ring system of BD-15°3969 (V = 10.4). Despite
poor observing conditions near dawn, they detected and timed
occultations by the ¢, 8, vy, and (possibly) « rings on one side
of thé planet.

Predictions of further occultations by the Uranian system
were made by Klemola and Marsden (1977). This paper reports

observations of the events of 1978 April 4 and 10, designated

#4 and #5 respectively by Klemola and Marsden (1977). Both
observations were made at a wavelength of 2.2 pm, where a strong
methane band greatly depresses the reflected light from the planet.

Table I gives the V and 2.2 pum magnitudes of Uranus and the two
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starsl.
The results from the 1978 April 10 occultation are the main
subject of this paper. The 1978 April 4 occultation yielded little

meaningful data on the rings.

TABLE I

Magnitude of Uranus and Occulted Stars

Magnitude
Object
v [2.2 pm]
-1
Uranus 5.5 12.9 + 6.2
Star #4 13.42 11.9
Star #5 11.62 10.1

1) See footnote 1.

2) Liller (1977).

On 1978 January 8, the 2.2 pm magnitude of Uranus was measured to
be 12.9 + 0.2 with a 5" diameter aperture which excluded any direct
contribution by the rings (diameter ~ 8"). Subsequent observations
on 1978 May 7 with a 16" aperture gave [2.2 pm] = 11.6 + 0.2,

Joyce et al. (1977), using an unspecified aperture size, have also
reported a 2.2 um magnitude of 11.5 to 12.0 for Uranus. These
results suggest that the integrated 2.2 um magnitude of the ring
system is ~ 12.,0. ‘If the average effective width of the rings is
90 km, this implies a geometric albedo at this wavelength of 0,025,
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ITI. OBSERVATIONS

Thé observations were made using an infrared photometer
mounted on the 2.5 m DuPont telescope at Las Campanas Observatory
in Chile. A standard K filter (xo = 2,20 pm; AA = 0.4 pm) was
used with an InSb detector cooled to’55 K. Sky subtraction
was performed by chopping at 15 Hz to a secondary beam located
30" to the north.

Star #5 is considerably brighter than the)Uranus system
(planet + rings) at 2.2 pum: bright enough to give a signal-
to-noise ratio of ~ 10 with a time resolution of ~ 0.1 second.
The noise was due almost completely to background radiation
from the telescope and sky, and it was thus necessary to use
a small focal plane aperture centered on the star. An aperture
diameter of 7V5 was selected to reduce thermal background noise
without introducing noise from guiding and seeing effects,
Fortunately, the observing conditions were excellent and the seeing
less than 1". The star was centered by finding the half-power
points of the 2.2 pym signal one hour before the first ¢ ring
occultation, and centering was maintained thereafter by using
an offset guider/Quantex television system. The chopped signal
from the detector was demodulated in a conventional lock-in
amplifier and recorded on a strip chart, with an overall system
time constant of 0.1 second. Absolute timing accurate to <0.3

sec was obtained from WWV."
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Star #4 is of comparable brightness to the Uranus system
at 2.2 pm, and the signal-to-noise ratio at a time resolution
of 0.1 sec was ~ 1, The dawn sky rendered guiding impossible

about 10 minutes after planetary emersion.
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ITI, RESULTS

The apparent tracks of the two occulted stars behind
Uranus and its rings are shown in Figure 1. For comparison,
the 1977 March 10 and 1977 December 23 tracks are shown also.
On 1978 Aprille the inclination of the ring plane (assumed to
be the satellites' orbit plane) to the sky was 32285,

On 1978 April 10, two complementary sets of nine ring
occultations were recorded. All of the ring occultationms,
as recorded on the strip chart, are displayed in Figure 2.
Analysis of the data (Section IV (a)) reveals that these nine
rings correspond in radius to the nine rings described by
Elliot et al. (1978), and they have been identified accordingly.
In an initial report of these observations (Persson et al. 1978),
the designations 6, z and KX were used for the rings referred
to as 4, 5, and 6 respectively by Elliot et al (1978). To
avoid confusion, the terminology of the latter authors is
used throughout this paper. Table II gives the times, durationms,
and fractional depths of the occultations. The depths have not
been corrected for the presence of any planetary or ring component
in the observed 2.2 pm flux, but this component is < 10%
of the total., Relative timing is accurate to ~ 0.1 sec, and
absolute timing to < 0.3 seé. Continuous observations were
min

min

obtained between Shr09 and 7hr05 UT, except for < 30 sec

gaps at 6hr39m1n and 6hr48m1n’ but the data do not reveal any

further significant occultations which might correspond to those
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Fig. 1 - 1977-78 aspect of Uranus and rings. The T ring lies
between 8 and vy, while 4, 5, and 6 are just inside w. The
straight lines show the apparent paths of thé occulted stars
behind the ring system, as they were observed from the various
earth stations. The upper track labeled 10 March '77 corresponds
to Perth, Western Australia and the lower track to the Kuiper

Airborne Observatory.
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Fig. 2 - Excerpts from the strip-chart recording of the 1978
April 10 occultation, showing all identified ring occultations.
The time axis of the emersion records has been reversed, so that
they may be more readily compared with the immersion records
above them. Occultation times, as indicated by the tick marks,
are given in Table II. Note that the ¢ ring occultations were,
in reality, not symmetrically placed in time with respect to

the other occultations.,
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reported by Churms (1977) and Millis and Wasserman (1978)
during the 1977 March and 1977 December events. The record
shows no evidence at the 5% level of any smoothly varying
background absorption. No planetary occultation occurred,
consistent with the prediction.

On 1978 April 4, a planetary occultation with a duration
between half-light points of 44min 48 + 10 sec occurred at Las
Campanas. The mid-point of this event, at 10hr09min50 + 10°°¢
UT, was 4 min ahead of the prediction by Klemola and Marsden

(1977). Only one convincing ring occultation, at 9hr3lm1n

sec . ‘e . . .
UT, is identifiable in the very noisy record. This

00
occultation lasted ~ 1 sec and presumably represents the
€ ring. Guiding became impossible in the dawn twilight before
the predicted time of the second e ring occultation. The poor
signal-to-noise ratio of the record precludes any useful

analysis of the planetary occultation profiles, except perhaps

to determine average atmospheric scale heights,
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IV. ANALYSIS

a) Overall Ring Geometry

Because only a single set of observations of the 1978
April 10 occultation is available, it is not possible to solve
internally for corrections to the star's position or to Uranus'
ephemeris, and hence perform an independent calculation of ring
radii, etc., However, if the y and § rings are, in fact, circular,
as suggested by the 1977 March occultation (Elliot et al., 1978),
then their known radii can be used to solve for the position of the
star relative to the path of Uranus across the sky.

As a check on the assumption of circularity, the mid-time
for each pair of ring occultations is given in Table III: a set of
concentric circles (or similar, aligned central ellipses)
with a common inclination should all exhibit the same mid-time
Evidently, the vy and 6 rings satisfy this requirement to the
accuracy of the timing measurements; consequently they define
the adopted mid-time of 5"752™"35,25%°C UT, We make the
plausible assumption that these two rings are both coplanar and
circular. The mid-times of the ¢ and B rings are measurably
different from the adopted value, indicating either departures
of 210 km from circularity, or small inclinations relative to
Y and §. Of the remaining five rings, only 1] exhibits a
mid-time consistent with both circularity and zero relative

inclination., For the remainder of the analysis, we shall,
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however, assume that all of the rings are coplanar (though not
necessarily circular), and furthermore, that they lie in the
common orbital plane of Uranus' five satellites,
From Earth-Uranus geometry as given in the American Ephemeris
and Nautical Almanac, together with mean radii for the a; B»
v, and § rings calculated by Elliot et al. (1978) from the 1977
observations, and the timing data in Table II, the projected
close-approach distance of the center of each ring to the star
is determined. The adopted topocentric velocity of Uranus,
projected on the sky, is 20.056 km/sec. The results are
given in the fourth column of Table III. The consistency of the
results for B, y, and & shows that our observations of these
three rings are consistent with their mean radii as determined
by Elliot, et al, (1978). The discrepant result for the
« ring suggests that it departs from circularity by at least 40 km.
Finally, the average close-approach distance of 30,985 km
defined by the B, y, and 6§ rings is used with the timing data to
calculate the positions in the ring plane of all of the occulting
ring segments, The results are given in Table IV. The last
two columns of Table IV give, for comparison, the mean radii
derived by Elliot et al, (1978). It is emphasized that our
absolute radii depend, through the close-approach distance, on
the radii of B, y, and 8 adopted by these workers, Any systematic
error in these adopted radii will thus also be present in the

radii in Table IV. The ring widths are discussed in section IV (b).
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As indicated in section III, a comparison of the radii in
Table IV shows that the nine rings observed on 1978 April 10
may indeed be identified with the nine rings reported by Elliot
et al. (1978). However, the large variation in radii for rings
6 (180 km) and 5 (135 km) compared with their mutual separation
of 300 to 400 km throws some doubt on their existence as two
complete rings, rather than as a collection of incomplete arcs,
Aside from the well-known ¢, B, Y, & and ¢ rings, rings 4 and 5
have also been reported by Millis et al. (1977), and rings
N, 4, and 5 by Bhattacharyya and Bappu (1977) (as their spikes
#4, 5, and 6 respectively).

Radii calculated for rings 4 and ¢ differ by up to 45 and 53 km
respectively, suggesting eccentricities e = 0.0005, or
equivalent small relative inclinations. The B ring shows a
somewhat smaller range in radius of 27 km (e » 0.0003), while the
v and § rings are essentially circular. All of these results
are quite consistent with the conclusions of Elliot et al.
(1978). However, the 7 ring has appeared circular on both 1977
March 10 and 1978 April 10, but with radii differing by ~ 23 km.
Elliot et. al. (1978) have also reported a width of ~50 km for this
ring, at variance with our estimate of <5 km (see IV(b)),

The ¢ ring is discussed separately in section IV(d).

The apparent path of the star projected on the ring plane

had a minimum radius of ~ 31,000 km (~5,000 km above the planet's
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atmosphere) and maximum radii of 69,400 km on the west side and
107,500 km on the east side. For comparison, the innermost
known satellite, Miranda, has a semi-major axis of 130,000 km,
~and Uranus' Roche limit lies at ~ 70,000 km.

The analysis of the single 1978 April 4 ring occultation is

deferred to section IV(c).
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b) Ring Widths and Profiles

The observed radial widths of the ring segments projected
onto the satellite orbital plane are given in Table IV. These
widths have not been corrected for any of the following important
broadening mechanisms:

(1) finite time resolution of the system electronics

(equivalent to ~ 2 km);

(2) diffraction of starlight around the edges of the rings
(Fresnel scale ~ [\ (distance from Earth to’Uranus)]l/
= 2.4 km);

(3) finite angular diameter of the star (equivalent to
~ 0.6 km at Uranus, as estimated from the B-V color
and V magnitude given by Liller (1977)).

To examine the effect of (1) and (2), the dominant factors for

this occultation, the model profile shown in Figure 3 was computed.
The model consists of an opaque ring 5 km wide, whose observed
profile is modified by diffraction at a wavelength of 2.2 um

and smoothed with an exponential time constant of 0.1 sec. No
correction for the 0.4 pm spectral bandwidth of the observations
has been included. This model profile, with a width of 8 km

and a relative depth of 0.85, is a reasonable representation of

the w, Y, and 6 profiles if allowance is made for some variation

in true widfhs and opacities. Millis and Wasserman (1978)
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Fig. 3 - Theoretical 2.2 ym occultation profile of a 5 km wide
opaque ring at the distance of Uranus. The profile was obtained

by computing the appropriate Fresnel diffraction pattern, assuming
an infinitely distant point source of starlight, and passing

this spatial pattern at a velocity of 18 km/sec through a

filter with an exponential time constant of 0.1 second. This
filter approximately simulates the response of the system

electronics.
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reported apparent widths of ~ 8 km for y and 6 in 1977 December,
broadened largely by the effects of diffraction at A = 0.86 pm
(~ 1.5 km) and the stellar diameter (~ 1 km at Uranus).

The B ring is clearly resolved in the 1978 April 10 data
(see Figure 2), and has an intrinsic width of ~ 15 km. This is
consistent with Millis et al.'s (1977) measurement of ~ 1.5
sec for the duration of the B occultation on 1977 March 10, Elliot
et al.'s (1977) estimates of ~ 1 sec (implying ~ 10 km width) for
the o, B, ¥, and & occultation durations were severely affected
by the comparatively large angular diameter (~ 6’km at Uranus)
of SAO 158687. This large size does, however, place a useful
lower limit of ~ 2 km on the width of any ring which obscured
a significant fraction of the starlight, as the ¢, B, Yy, and
6 rings did.

We conclude that rings «, Yy, and § are probably quite
opaque and have widths of 2 to 5 km. The optical depth and
width of the g ring are ~ 0.5 and ~ 15 km respectively. The
widths of rings T, 4, 5, and 6 evidently lie in the range 0.5
to 5 km, the lower limit being set by the occultation depths
and the angular diameter of star #5. Their optical depths are,

at present, indeterminate,

The only published observation at odds with these conclusions
is Elliot et al.'s (1978) reported width of ~ 50 km for the 1
ring in 1977 March, already alluded to in IV(a). There is no
e§idence in Figure 2 for such a broad feature at the location of

the 7| ring.
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c) The 1978 April 4 Ring Occultation

The radius of the single ring identified in the 1978 April 4
océultation data can be estimated from the timing observations and
an assumed radius of Uranus. The projected topocentric velocity
of Uranus  relative to star #4 was 18.466 km/sec, which gives
a plénétary occultation chord of749,640 + 190 km. Elliot et al.
(1978) determined a radius of 26,200 km for Uranus from the
1977 March 10 occultation. The derived radius of the occulting
material is then 50,670 + 220 km, where the unce;tainty
represents mainly the 10 sec uncertainty in the mid~time of the
planetary occultation. The oblateness of Uranus, which is of
the order of 0.01 (Danielson et al. 1972), has been neglected as
it introduces corrections to this radius of only ~ 20 knm.

A radial width of the ring segment of 20 + 10 km follows from
the ~ 1 sec duration of the occultation,

Evidently, these observations refer to the ¢ ring, and the
derived radius and width are reasonably consistent with the
observations obtained six days later (at the 1978 April 10

occultation immersion) for a nearby part of that ring.
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d) The e Ring

The most interesting of the rings of Uranus is the outermost
e ring, On 1977 March 10, the two observed segments of this ring
exhibited different, well-resolved widths, and, if the ring is
coplanar with the others, radii that differed by ~ 700 km
(Elliot et al. 1977, 1978). On 1977 December 23, Millis and Wasserman
(1978) observed the ¢ ring. to have intermediate width and radius.
In this instance, only pre-immersion observations were obtained.
The observations on 1978 April 10 now add two more points to
this data set, and the noisy 1978 April 4 data provide another,
less accurate, point. These six observations of radial width
and radius of the ¢ ring are plotted in Figure 4, and show a
linear relation down to a width of ~ 20 km. Any inclination of
€ 10° relative to the other rings would not significantly
change the calculated widths; neither are the widths appreciably
affected by diffraction or the other broadening effects discussed
above in section IV(b).

In light of the relation exhibited in Figure 4, the concept
of the ¢ ring as a set of fragmentary circular arcs'(e.g.,
Dermott and Gold 1977) is clearly untenable. Furthermore, it
now seems highly unlikely that the apparent variation in radius
can be explained by an inclined circular ring (e.g., Milliis and
Wasserman 1978), since this would require a rather fortuitous

combination of varying width around the ring and Earth-Uranus
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Fig., 4 - Radial width plotted against radius for the ¢ ring for
the six occultations observed to date, The multiple observations
obtained on 1977 March 10 are represented’as two averége points.
The uncertainty of the 1978 April 4 point isrdiscussed in the
text. Error limits on the other points are only slightly larger
than the points themselves. The radius scale could contain a

systematic error of ~ 100 km.
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observational geometry. The linear relation is, however, consistent
with an elliptical ring, coplanar with the other rings, whose

inner and outer boundaries are two Keplerian ellipses with slightly
different semi-major axes and eccentricities. A model of this

type which accurately fits the observations is described below

in section IV(e).

Further information on the nature of the ¢ ring is provided
by a comparison of occultation profiles obtained at different
times. Figure 5 shows the 99 km wide immersion profile obtained
by Millis et al. (1977) on 1977 March 10, and the 72 km wide
emersion profile of 1978 April 10. The two profiles are very
similar, even in the finer details of the structure. Although
the optical depths appear to be comparable, no correction has
been made to the 1978 April 10 profile to allow for the
~ 10% contribution of the planet and rings to the observed flux.
Such a correction would increase the optical depth for this
occultation by ~ 257, and thus support the conclusion of Elliot
et al. (1978) that the integrated optical depth of the e ring
is independent of its width, Figure 5 also shows that the edges
of the ring remain sharp, even at improved resolution.

The similarity of these two profiles, observed 13 months
apart, is rendered truly remarkable when the orbital and
precessional motion of the ring particles is considered. The

’orbital period of the particles is 8.4 4+ 0.1 hours, the uncertainty

corresponding to the observed range of radii, so that each
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Fig. 5 — Comparison of two wide profileskof the ¢ ring, obtained
on 1977 March 10 (Millis et al. 1977) and 1978 April 10.
Differing width scales are due to different projected velocities
of Uranus relative to the two stars. A temporary loss of data
on 1977 March 10 is indicated by a dashed line., The ~ 10%
contribution by the planet and rings to the observed 2.2 um

flux has not been subtracted from the 1978 April 10 profile.
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particle has completed ~ 1100 orbits in the intervening time,
Differential Keplerian motion between the inner and outer edges of
the ring (i.e., Ar/r ~ 50km/50,000 km) amounts to at least one
complete revolution. Differential precession of the apsidal lines
of the elliptical particle orbits (or of thg nodal lines of
circular orbits) would be expected to further smear and broaden

the ring, although it is possible that interparticle collisions

act to prevent this and maintain instead a uniform average
precession rate, Despite these motions, negligible change

has occurred in the shape of the ring profile,
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(e) A Model of the ¢ Ring

An attempt was made to construct an elliptical model of the
¢ ring which would satisfy the available observations. The
simplest physically plausible model consists of a Keplerian
ellipse which lies in the satellites' orbital plane, and whose
apsidal line precesses due to the oblateness of Uranusz. As
discussed above, the observed profiles and widths of the ¢ ring
suggest that the whole ring precesses as a unit. We therefore
chose to fit the model to the centerline of the ring, rather than
to the outer and inner edges separately.

Four parameters were adjusted - the semi-major axis,
eccentricity, orientation, and apsidal precession rate - to give
the best least-squares fit to the observed radii and azimuths of
the ¢ ring. Figure 6 presents the ten available data points
and the best fitting model. The data are taken from Table 7
of Elliot et al. (1978) (using the average of their radii
for the inner and outer edges of the ring); Millis and Wasserman
(1978); and Table IV. The 1978 April 4 point is of much lower

accuracy than the others and has been omitted from the fit. Also,

numerous attempts to match all four 1977 March 10 immersion

2 . . . . .
Dr. Guiseppe Colombo (private communication) first demonstrated

that such an ellipse, given the right precession rate, is a
reasonable representation of the observations.
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points failed; only their average location could be fitted.
For the final fit, shown in Figure 6, the Kavalur and Peking
points at radii of 51,713 and 51,740 km were omitted, and only
the Perth and KAO points at ~51,678 km were used3. This
omission makes little difference to the residuals of the other
five points, and produces only minor changes in the model
parameters. The elements of the model ellipse for epoch 1977

March 10, 2077% UT (JD 244 3213.33 are:

51,284 + 6 knm,

;'(semi—major axis)

(7.80 & 0.12) x 107>

212 & 2

E-(eccentricity)

Azimuth of periapse

é (apsidal precession rate) = 1%374 + 07006 dayﬁl.
Azimuth is measured in the ring plane, assumed to be the
satellite orbit plane, in the prograde direction from the

ascending node of this plane on the earth equator of date, The
r.m,s. deviation in radius of the seven data points from the

model is 7 km, well within the uncertainties. Since this

solution might not be unique, initial estimates of w covering

3 If the Peking occultation time reported (New Scientist (1977)
74, 584) referred to the beginning of the 9.5 sec occultation,
rather than to the central time as assumed by Elliot et al.
(1978), then the corresponding radius should be reduced by

~ 52 km, bringing the poi:nt into excellent agreement with the
model. Several different times have been reported for the
Kavalur e ring occultation (Bappu 1977; Bhattacharyya and
Kuppuswamy 1977a,b; Bhattacharyya and Bappu 1977; Elliot et al.
1978) and conceivably some error remains in the time adopted
by Elliot et al. (1978).
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Fig. 6 —~ Observed radius vs. azimuth for the € ring, and the
precessing Keplerian ellipse model which best fits these data.

Open symbols represent the observed points, while the corresponding
filled symbols at the same radii represent these same points
corrected to a common epoch (1977 March 10, ZOhrS UT) by removal

of precession, The arrows indicate the direction in which the

observed points were moved.
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the range 1° da};~1 to 1¢° day.‘1 were used in the least-squares
analysis. Ten more solutions were discovered in this manner,

but all exhibited r.m.s. deviations = 26 km, and typically

~ 75 km. The validity of this model for the e ring can be

readily tested by future occultations, since the apparent precision
of'$ should permit extrapolation of the precession for at

least ten years.

Combination of the elements a and e determined above with
the width~radius relation of Figure 4 leads to elements for the
ellipses which form the outer and inner edges of the ¢ ring.
If these ellipses have semi-major axes and eccentricities
a + Aa and e + Ae, the radial width W of the ring, as a
function of central radius ';, is given to first order in e by:

W = 2Aa + 2(Aa/a + Aefe) (r - 2) | .
Fitting this linear relation to Figure 4 yields:

30 km

]

Aa

0.36 x 107> .

]

Ae

Finally, Uranus' J, (the dimensionless second gravitational

2
harmonic coefficient), can be derived from the apsidal precession
rate, since contributions to'i by satellite perturbations should
be negligible. Assuming a planetary equatorial radius of
26,200 km (Elliot, et al. 1978), we obtain

J, = (3.43 £ 0.02) x 1073 .

The quoted uncertainty is a formal probable error associated with
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the least-squares fitting procedure; it does not allow for any
systematic errors in the occultation analyses, It is assumed

the the ¢ ring is inded a freely precessing Keplerian ellipse,

unaffected by resonant interactions. Subject to this assumption,

this value of J, can be used to predict apsidal precession rates

2
for the other supposed elliptical rings:
Ez = 2561 day—l .
T = 220 day t
- o y s
and Eé = 2%04 dayn1 .

When reduced to a common epoch with these preéession rates, the
available radius—azimuth data for these three rings are
consistent with elliptical models. The ¢ ring data show a
variation in radius much larger than the uncertainties and are
well distributed in orbital phase, defining an elliptical model

with the elements:

Il

a= 44,839 + 1 km

(0.63 + 0.03) x 1072

I

e
azimuth of periapse = 325° + 2 (epoch 1977 March 10, 20°7S yr).
The r.m,s. deviation in radius of the eight points from this model
is 1.6 km. Models for rings 4 and B are less well-defined,
because of poor orbital phase distribution of the data. Previous
estimates of Jz have been based on determinations of the apsidal
precession of the satellites Ariel (Dunham 1971) and Miranda
(Whitaker and Greenberg 1973), which yielded values of 12 x lO—-3

and 5 x 10_3 respectively. Such determinations of J2 are

complicated by the effects of the satellites' mutual interactions.
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V. CONCLUSIONS
(1) The nine rings observed on 1978 April 10 are the same
as those described by Elliot et al., (1978) in their analysis
of the 1977 March 10 observations. No additional rings were
observed, out to a radius limit of 107,000 km, and no evidence
was found for background absorption exceeding 5%.
(2) Observations of the T, y, and & rings are consistent with
these three rings being coplanar and circular, although the
present 1) ring data are inconsistent in both radius and width
with the 1977 March results (Elliot et al. 1978).
(3) Minimum eccentricities for rings 4, ¢, and B, based on
the 1977 and 1978 occultations, are 0.0005, 0.0005, and 0.0003
respectively, under the assumption that all of the rings are
coplanar.
(4) Calculated radii for rings 5 and 6 exhibit ranges of
~ 150 km, comparable to the spacing between these two rings.
Further occultation observations are necessary to sort out the
structure of this region.
(5) Occultation profiles suggest that rings «, 7y, and &
are rather opaque and have radial widths in the range 2 to 5 km.
The B ring is clearly resolved, and has an average optical depth
of ~ 0,5 and width of ~ 15 km. The widths of rings 7, 4, 5,
and 6 probably lie between 0.5 and 5 km, but see (2) above.
(6) The width and radius of the ¢ ring exhibit a linear

relation, which strongly suggests that it is a single, continuous,
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non-circular ring.
(7) The optical depth profile of the e¢ ring, including the
sharp edges, has remained essentially unchanged in 13 months,
despite differential orbital motion and precession.
(8) Observations of the ¢ ring obtained in 1977 March, 1977
December, and 1978 April all fit a model of a Keplerian ellipse
whose apsidal line is advancing at a rate of 1337 dayhl. This

rate gives a value of Uranus' J, of 3.43 x 10—3, 1f resonant

2

interactions are unimportant.
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PART 3

ON THE RESONANCE THEORY OF THE RINGS OF URANUS.

P. Goldreich

and

P, D, Nicholson

published under the title "Revenge of Tiny Miranda', Nature 269

(1977) pp. 783-785.
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Dermott and Gold1 have proposed a resonance model for the
rings of Uranus. They assume the rings are, in fact, arcs
composed of small particles librating about stable resonances
determined by pairs of satellites, either Ariel and Titania
or Ariel and Oberon, Dermott and Gold dismiss, as insignificant,
resonances involving tiny Miranda. We find that, by a wide
margin, the strongest resonances are all associated with Miranda.
Furthermore, we show that the hypothesis thatjthe rings are
made up of librating particles, while original and ingenious,
is incorrect.

Before considering the quantitative analysis of the resonance
model, we make two minor points. First, when allowance is made
for the orbital motion (assumed prograde) of the ring material
between occultations, it is found that the two occulting regions
of each ring were physically only 35° (y ring) to 46° (¢ ring)
apart. Thus, only short arcs are required to fit the observa-
tions. Second, while large systematic errors may remain in the
calculated absolute ring radii, the spacings between the rings
are well determinedand must be accurately predicted by a
resonance theory. 1In Table 1, the spacings predicted by Dermott
and Gold are compared with those deduced by Elliot et al,2
and Marsden3, The discrepancies appear to be larger than

observational error and exhibit no systematic trend.
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We have calculated the strengths of the resonances between
a ring particle in circular orbit and either a single satellite
or a pair of satellites. The resonance strength is expressed
as the magnitude of the resonant term in the disturbing potential,
;9?, felt by the ring particle. Figure 1 shows the strengths
of the most important resonances in the radial range 42 x lO3 km
< a< 54 x 103 km, which spans the ring radii. The only two-body
resonances included in Figure 1 are tﬁe 4:1 and 5:1 resonances
with Miranda. Two-body resonances involving other satellites also
lie in the range of the rings, but their strengths are toc
small for them to appear in Figure 1.

The strongest resonances are the two-body resonances with

Miranda which occur where

d&ﬁ
4nM -n-~-3 TS = 0
or
dmM d
4 - - — =L =
T T e 2 dc 0 y
Here, n, and n are the mean motions of Miranda and the ring

M

particle, (O is the longitude of the ascending node of the ring

on the orbit of Miranda, and EZ;M is the longitude of Miranda's

periapse. The resonance strengths are given by Brouwer

and ClemenceS:

4 2
gp” _ M ™ a 3[_ d 2 4°
'”’Ql"asam » e, 256a+<l42+114g =t 2l X

3
3 47 L (D
do
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Fig. 1 - The strengths of two and three~body resonances in the
neighborhood of Uranus' rings. ®'s represent therézl and 5:1
resonances with Miranda discussed in the text and identified

by e = and g = sin (i/2); circles represent the three-body

Yl
resonances for q = 1 and values of p as indicated. The

. 1 . . .
resonances previously  associated with the rings are shown

as Crosses,
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and

4

g’ _GM™a 02 4y, @
‘/32"4 M aMeM(Sln 1/2) [<8+°’do,>b3/2 (O‘)] >

where M is the mass of Uranus, My and ey the mass and eccentricity

of Miranda, i the mutual inclination of the ring and Miranda's

orbit, and « = a/aM. The functions béj) are Laplace coefficients.

There are three 5:1 resonances, corresponding to

d’LB’M /
My TR Ah g <0 ’
i
M dQ
My ~r-2g it 0
dQ :
and SnM - n - 4 ac - 0 .

. 6 .
Using formulae given by Peirce , we obtain the resonance

strengths:
é%?ﬁ GM mM a 4 d 2 d2
3
34 4 a* V. }
+ 360 —. + o — b (o)
B 4/ 1/2
.%’5 o @ ™M oa 2 i/z)?‘[(ssa + 2000 g P gf_)b(z) (a)J
2 16a Mn aM eM \ da daz 36
P 3GM M 41 2 (3)
Ry - G o emnt b ) |
M 9&
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where a and ¢ now refer to the position of the 5:1 resonance,

All of these strengths depend sensitively on the uncertain values
of ey and i, Greenberg4 has determined that ey == 0,012

and i == 4°, though he regards the latter as "extremely model
dependent'". Using these values, and noting, therefore, that

onlxgzé andéﬁ?s are likely to be reasonably accurate, we obtain
1 1

S
~
v
(o)
o
]
S
&
2

[

5
R, ~ 3.0x100 &
a
3 14
and R, ~ s2x107 &
a

Next, we consider three-body resonances of the form

qn - (p + Q)ng + pn, =0,
where p and q are integers and the n's are mean motions with the
subscripts A and B denoting the outer and inner satellites.
Both satellite orbits are assumed to be circles and to be outside

the rings. The dominant resonant term in the disturbing
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potential arises as follows. Outer satellite A perturbs the
orbit of inner satellite B, producing oscillatory variations in
its radius and longitude with frequencies p(nA - nB). The
potential at the ring due to B moving on its perturbed orbit

contains terms with frequencies qn - (p + q)nB + pn These

A®
include the resonant term and many short period terms. Additional,
but smaller (by a factor € 0.l1l), resonant terms arise from the
attraction of A moving on an orbit perturbed by B. Finally, there
are much smaller resonant terms due to the interaction between

the direct perturbations of the ring by each satellite moving

on its unperturbed circular orbit. The dominant resonant term

is easily shown to be

2 2
- S "a"p 2p% n
g 2a : 2 2 *
ag [p (nB - nA) - nB]
ZnB
h £ -—
{q«y) [ o® - et gp(@} "
2
3n 2n
g (CY)[(1+ B )g 3) ._-._T_.Ii___.f p]
q pz(nB_nA)z p p(ny-n ) NEME

where the a's are orbital radii, the m's are satellite masses

and ¢ = a/aB, B = aB/aA. The functions fk’ 8,» and hk may be
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expressed in terms of Laplace coefficientss b(J) by

> s

_ (k) 1. (k+1) (k-1)
f.(x) =xb (x) -=|b x) +b x)| + 6
k 3, 2 [ % 3, x ] k1
1. (k-1) (k+1)
g (x) ==1|b (x) ~b ) [-6 s
k 2[ %, 3, ] k1
1 -
h (x) = [b(k D oy + b§k+l) <x)] by x4 2,

Yo ¥ %

We have calculated the strengths of all q = 1 resonances
due to each pair of satellites using power series approximations
for the Laplace coefficients and satellite parameters from
Greenberga. The results are displayed in Figure 1, with a
smooth curve connecting the resonances due to each satellite
pair. It is apparent that resonances involving tiny Miranda,
the innermost satellite, dominate the field., The Ariel-Titania
and Ariel-Oberon resonances advocated by Dermott and Goldl are
relatively weak and presumably incapable of determining the ring
locations.

Examination of Figure 1 reveals that the strong Miranda-
Ariel resonances lie close to four of the rings: Millis et al.'s

#5 and Elliot et al.'s2 as Y and ¢ Differences between

2.
3 - .
Marsden's™ calculated positions for these rings and the resonances

corresponding to p = 10, 9, 8 and 7 are 155, 96, 157 and 111 km,
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respectively, for an assumed J2 = 0.013 for Uranus. As a
consequence of the approximate Laplace relation satisfied

by the mean motions of Miranda, Ariel and Umbrie18, several
weaker Miranda-Umbriel and Ariel-Umbriel resonances also
approximately coincide with the above rings. Furthermore,
the 4:1 resonance with Miranda is located about 114 km inside

Marsden's3 position for the e, ring.

1
Despite the near coincidences between the locations of the

strongest resonances and some of the rings, the rings cannot

be made up of librating material. The maximum radial width

of an arc of librating particles is

1/2
o s(a,%’

M| @ -

From the resonance strengths, we obtain W= 0.7 km for the

4:1 resonance and W € 0.07 km for the strongest Miranda-Ariel
resonances. By comparison, the widths of the observed rings
range from 1-10 km for the inner rings and 30-100 km for the

¢ ring or rings. Furthermore, libration occurs about a relative
maximum of the potential energy in the frame rotating with the
resonant mean motion. Thus, inelastic collisions among the
particles would be destabilizing and lead to the dissolution

of a compact arc of librating material. We conclude that if

the ring positions are determined by resonances, the control
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is more subtle than previously suggested. One possibility is
that the rings are the crests of nonlinear density waves in an
optically thin disk of particles. Calculations of the resonant
excitation of density waves in Saturn's rings have shown that

even weak resonances produce nonlinear waves .
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