
Design Strategies for Ultra-high Efficiency

Photovoltaics

Thesis by
Emily Cathryn Warmann

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California

2014

(Defended May 9, 2014)



c© 2014

Emily Cathryn Warmann

All Rights Reserved

ii



Acknowledgements

The people I have worked and interacted with during my time here have been

absolutely essential to the work described in this thesis and have been an integral

part of my education and development as a scientist. The material and intellectual

contributions of those I have worked with are so numerous it would be impossible to

list them all here, but there are some I must thank in particular.

I must begin by thanking my advisor, Professor Harry Atwater. He has provided

guidance, encouragement, insight and inspiration throughout my studies. He has also

been a model of optimism and curiosity that I hope to emulate.

I also thank the other members of my candidacy and thesis committees: Profes-

sors Kaushik Bhattacharya, Julia Greer, and Austin Minnich, for their guidance and

feedback on my work.

I am especially grateful to Professor Bhattacharya and Professor Guruswami

Ravichandran for being kind enough to let me join in their group meetings for a

time and stay in touch with my mechanical engineering roots.

Much of my work has been part of various team efforts. I would not have been

able to accomplish what I did on my own, and so I must thank my collaborators on

my various projects. Prof. Koray Aydin, Dennis Callahan, Prof. Marina Leite and

Erika Garcia were all vital to my work on novel epitaxial templates. I learned so much

from all of them. My last two years have been immeasurably enriched by being a

part of the Full Spectrum Team. Many, many thanks to Carissa Eisler, Emily Kosten,

Cris Flowers, John LLoyd, Sunita Darbe, Kelsey Whitesell, Prof. Matt Escarra and

Michelle Dee. Go Rainbow Warriors!

I am fortunate to have had the opportunity to work with the members of the

Atwater group. To interact on a daily basis with an interdisciplinary group of such

brilliant individuals has been an amazing experience. Those I am particularly thank-

ful to include Melissa Archer, Anna Beck, Jeff Bosco, Ryan Briggs, Ana Brown,

Stanley Burgos, Chris Chen, Carrie Hofmann, Min Jang, Seokmin Jeon, Greg Kim-

ball, Lise Lahourcade, Prof. Jiun-Haw Lee, Andrew Leenheer, Gerald Miller, Prof.

Deirdre O’Carroll, Ragip Pala, Imogen Pryce, Elizabeth Santori, Matthew Shaner,

iii



Matt Sheldon, Amanda Shing, Pierpaolo Spinelli, Josh Spurgeon, Prof. Nick Strand-

witz, Luke Sweatlock, Faisal Tajdar, Victor Brar, and Samantha Wilson.

I am particularly thankful for the officemates I have had while at Caltech. Dan

Turner-Evans, Carissa Eisler, Gerald Miller, Ana Brown, and Krista Langeland, thank

you for putting up with my tendency to talk to myself. I am grateful for all the

conversations about data, what’s going wrong and what’s going right.

In the Atwater group, April Neidholdt, Lyra Haas, Jennifer Blankenship, and

Tiffany Kimoto, have enriched my experience, not only by making sure everything

runs smoothly and organizing our group retreats and events, but also for helping to

make the Atwater group a friendly and enjoyable place to work. I would also like to

thank the Mechanical Engineering administrative staff, particularly Cheryl Geer, for

smoothing out the inevitable paperwork and keeping us all from slipping through the

cracks.

Finally, I would like to thank my family and friends for all the love and support

that has kept me going during the highs and lows. Especially Darrel Jenerette, who

reminds me that this is fun and interesting.

iv



Abstract

While concentrator photovoltaic cells have shown significant improvements in effi-

ciency in the past ten years, once these cells are integrated into concentrating optics,

connected to a power conditioning system and deployed in the field, the over all

module efficiency drops to only 34 to 36%. This efficiency is impressive compared

to conventional flat plate modules, but it is far short of the theoretical limits for

solar energy conversion. Designing a system capable of achieving ultra-high efficiency

of 50% or greater cannot be achieved by refinement and iteration of current design

approaches.

This thesis takes a systems approach to designing a photovoltaic system capable of

50% efficient performance using conventional diode-based solar cells. The effort began

with an exploration of the limiting efficiency of spectrum splitting ensembles with 2

to 20 sub-cells in different electrical configurations. Incorporating realistic non-ideal

performance with the computationally simple detailed balance approach resulted in

practical limits that are useful to identify specific cell performance requirements. This

effort quantified the relative benefit of additional cells and concentration for system

efficiency, which will help in designing practical optical systems.

Efforts to improve the quality of the solar cells themselves focused on the devel-

opment of tunable lattice constant epitaxial templates. Initially intended to enable

lattice-matched multijunction solar cells, these templates would enable increased flex-

ibility in band gap selection for spectrum splitting ensembles and enhanced radiative

quality relative to metamorphic growth. The III-V material family is commonly used

for multijunction solar cells both for its high radiative quality and for the ease of

integrating multiple band gaps into one monolithic growth. The band gap flexibility

is limited by the lattice constant of available growth templates. The virtual substrate

consists of a thin III-V film with the desired lattice constant. The film is grown

strained on an available wafer substrate, but the thickness is below the dislocation

nucleation threshhold. By removing the film from the growth substrate, allowing the

strain to relax elastically, and bonding it to a supportive handle, a template with the

desired lattice constant is formed. Experimental efforts towards this structure and
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initial proof of concept are presented.

Cells with high radiative quality present the opportunity to recover a large amount

of their radiative losses if they are incorporated in an ensemble that couples emission

from one cell to another. This effect is well-known, but has been explored previously

in the context of sub-cells that independently operate at their maximum power point.

This analysis explicitly accounts for the system interaction and identifies ways to

enhance over-all performance by operating some cells in an ensemble at voltages that

reduce the power converted in the individual cell. Series-connected multijunctions,

which by their nature fascilitate strong optical coupling between sub-cells, are re-

optimized with substantial performance benefit.

Photovoltaic efficiency is usually measured relative to a standard incident spec-

trum to allow comparison between systems. Deployed in the field systems may differ

in energy production due to sensitivity to changes in the spectrum. The series-

connection constraint in particular causes system efficiency to decrease as the indicent

spectrum deviates from the standard spectral composition. This thesis performs a

case study comparing performance of systems over a year at a particular location to

identify the energy production penalty caused by series-connection relative to inde-

pendent electrical connection.
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Chapter 1

Introduction

1.1 Solar energy: potential, progress and room for

improvement

Photovoltaics, which convert light from the sun into electrical energy, are a growing

part of the world’s energy production portfolio. The sun delivers 1.6×105 TW [1].

Current combined power consumption across the globe is approximately 17 Tw [2],

which indicates that harnessing a small fraction of the sun’s power would be sufficient

to meet all of present and projected energy needs without requiring any additional

fuel. The prospect of harnessing the sun for cheap, clean energy has made photo-

voltaics one of the most prominent renewable energy technologies under development

today. Presently less than 1.5% of the world’s energy is produced by photovoltaics

[2]. While this is a small number, it has grown on average 57% annually over the

past 6 years [3]. In 2013, 20% of the new electricity generation capacity added in the

United States was solar power [4].

In order to be adopted at a very large scale and produce a large percentage of the

world’s electricity, photovoltaics must be able to produce power at a cost comparable

to or lower than conventional energy generation technologies. A useful figure of

merit that allows comparisons between different energy production technologies is

the Levelized Cost of Energy or LCOE [5]. At its simplest, this calculation divides

the total costs of a power plant, both initial capital and ongoing fuel consumption,

by the total energy production expected from a power plant. The cost of ongoing

fuel requirements and value of the ongoing energy production are both reduced to
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Figure 1.1. Projected LCOE for various electricity generation tech-

nologies in 2018.

a net present value by discounting the value of future transactions. Figure 1.1

shows the DOE projection of the 2018 LCOE for a variety of different generation

technologies relative to coal-fired power, with the capital and ongoing components

separated cite. The LCOE for fossil fuel-based energy sources such as coal or gas

plants is largely driven by the cost of the fuel source required per unit of energy

produced [3]. By contrast, for solar installations, this cost is primarily determined by

the cost of installing the plant initially, the discount rate, and the amount of energy

the installation produces over the course of its service life.
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Figure 1.2. The LCOE of a fixed area installation with $3 per m2

fixed costs and different $/W module cost scenarios. The fixed costs

independent of generating capacity, such as permitting and land ac-

quisition, create a strong benefit to increased efficiency at any mod-

ule cost level.

1.2 Efficiency improvements can be a way to re-

duce energy costs

Given that the cost of solar energy is determined when the system is installed, there

are essentially only two ways to reduce the LCOE of photovoltaics. Either the cost

of installing a system must be reduced or the amount of energy the system produces

for a given installation cost must be increased. Consider a hypothetical photovoltaic

installation. At present prices, that facility will cost $4 to $6/W to install [5], with

about half of that cost taken by the photovoltaic modules themselves. The price of

the modules themselves is typically reported relative to their rated generating capac-

ity under standard test conditions in $/Wp. Two different modules with different

efficiency but the same $/Wp (and the same relative performance over the course

of a year, a good first order assumption for similar technologies) will have the same

LCOE, all other things being equal. Figure 1.2 shows the LCOE of this hypothetical

installation as a function of efficiency for different module $/Wp values, assuming a

discount rate of 8% and a fixed cost per area of $3/m2.
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Decreasing the cost of a photovoltaic installation can be done through improve-

ments in the manufacturing process, reduction of materials consumption, design im-

provements that reduce the cost of mounting hardware and installation labor or sim-

plification of the permitting and approval process. These are all active areas of

research in both industrial, government and academic settings. There are also many

efforts to increase the efficiency of photovoltaic systems, such as by improving the

design of specific cell types, improving material quality, improving manufacturing

consistency or control, and other means. Most of these efforts are likely to produce

only small (but not unmeaningful) improvements in efficiency. This thesis instead

explores design changes that can achieve ultra-high efficiency.

1.3 Efficiency limits for photovoltaics

There are several possible limits to the efficiency of solar energy conversion. The

Carnot limit for an ideal process operating between the temperature of the sun (5600

K) and the temperature of the earth (300K) is 95% [6]. This limit assumes a purely

one-way transfer of energy from the sun to the earth and a reversible process con-

verting that energy to work. For solar cells, the limit is reduced to 92%, because

the specific energy transfer process is radiation [7]. Because radiation is a recipro-

cal process, any object receiving radiant energy from the sun will also return some

radiation to the sun. In a closed system this reciprocal radiation would not change

the efficiency limit, but the solar system cannot be considered closed. Thus 93.3%

efficiency, sometimes termed the Landsberg limit, is the maximum possible efficiency

for a solar cell at 300 K, assuming no entropy generation.

1.3.1 Conventional photovoltaic operation

Solar cells are typically made of semiconductor materials that have a particular type

of electronic structure. These materials have completely filled valence bands and com-

pletely empty conduction bands at absolute zero. The valence and conduction bands

are separated in energy by a value Eg, the band gap value. When a semiconductor

4



absorbs light, some of the electrons in the semiconductor are promoted into that ma-

terial’s mostly empty valence band. The excited electrons leave empty states, termed

“holes”, behind in the valence band. In an isolated chunk of semiconductor with no

additional electronic structure, the excited conduction band electrons will fall back

to the valence band holes, termed “recombine”, and the material will return to its

original state. The electron-hole recombination may be radiative, in which case it will

result in the emission of a photon with the same energy as the band gap, Eg, or it may

come through interaction with some defect in the material, which will disipate the

excess electron energy through a combination of lattice vibrations and lower energy

photon emission. Defect-mediated recombination is termed “nonradiative”, because

it results in no photons that can be re-absorbed by the material. In an ideal material,

all recombination will be radiative [8].

Under steady illumination with a constant flux of photons onto the semiconductor,

the absorbed photons will result in a population of excited electron-hole pairs with a

chemical potential, as described by Wurfel [9]. The rate of electron-hole recombina-

tion is proportional to the chemical potential. Consequently, under illumination the

population of excited electron-hole pairs will accumulate until the recombination and

absorption rates are equal.

In a solar cell, an internal diode separates the excited electron-hole pairs and

allows current to be extracted from the device. At short circuit in an ideal cell, the

extracted current is equal to the absorbed photon flux and no carriers are lost to

recombination. However, no power is extracted at short circuit, because the voltage

across the device is zero [8]. The diode allows current to be extracted at higher

voltages, but the voltage is equal to the chemical potential of the excited carrier

populations, meaning that some radiative recombination is inevitable. Figure 1.3

shows the J-V relationship for an ideal solar cell that results from the recombination

rate relationship. At open circuit, the recombination rate is equal to the photon

absorption rate and no current is collected.

5
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Figure 1.3. J-V relation for an ideal solar cell of 1.4 eV band gap.

The voltage and current density of the maximum power operating

point (mpp) are indicated.

1.3.2 Efficiency limits specific to conventional photovoltaics

The thermodynamic limits discussed in the section 1.3 make no assumptions as to

the mechanism of energy conversion. If the heat engine is a photovoltaic cell, a variety

of other limits combine to reduce the achievable conversion efficiency. A typical single

junction solar cell will efficiently convert photons that have energy equal to or slightly

greater than the energy band gap value of the material, Eg. Photons with energy less

than Eg are not absorbed by the semiconductor, and are simply transmitted through

the material. Any photon energy in excess of Eg is transferred to the material’s crystal

lattice vibrations through thermalization [8]. The energy radiated from the sun closely

resembles the spectrum of a black body at 5600 K. As such, that energy is distributed

over a wide range of photon energies. Choosing the band gap value of the solar cell to

maximize conversion efficiency is then a matter of optimizing the trade-off between

photons lost to transmission and photon energy lost to thermalization. Shockley and

Queisser used the detailed balance approach to determine that the optimal band gap

value for a solar cell receiving light from a 6000 K black body and operating at 300 K

is 1.1 eV and the limiting efficiency for this device is 30% [10]. The light incident on

a solar cell at the earth’s surface has passed through the atmosphere and will have a
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Figure 1.4. Reference spectra representing indicent light from the

sun with the power converted by a 1.4 eV single junction solar cell

indicated. Losses due to transmission and thermalization are also

indicated. Additional losses are due to entropy generation.

different spectral composition due to absorption and scattering by various gases and

suspended particles. Repeating this calculation for a solar cell operating at 300 K

and receiving a standard spectrum, AM1.5G, that is more representative of the light

that penetrates the atmosphere to reach the earths surface identifies a new optimum

band gap of 1.34 eV at 33.7% efficiency [11]. Figure 1.4 shows the performance of an

ideal solar cell with 1.4 eV band gap relative to the standard AM1.5G spectrum, with

the converted power, transmission losses and thermalization losses shaded separately.

1.3.3 Multijunction solar cells

Breaking the solar spectrum into various sub-bands and directing them to different

sub-cells that have band gap values better matched to the range of photon energies

incident upon them is a well-known way to reduce both thermalization and transmis-

sion losses. The current world record for efficiency belongs to a multijunction solar
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Figure 1.5. Schematic showing the operating principle of multijunc-

tion solar cells (MJSCs). Sub-cells are monolithically stacked and

connected in electrical series. The spectrum is split amongst the

sub-cells by sequential absorption.

cell (MJSC) with four sub-cells [12]. Most commonly, the broadband solar spectrum

is divided among the sub-cells by means of sequential absorption. The sub-cells are

stacked such that the highest band gap material is on top, where it receives all in-

cident light. The highest band gap sub-cell will absorb the highest energy photons

and transmit all other light to the sub-cells below [11]. The various sub-bands of

the incident spectrum will be sequentially absorbed by the sub-cells with decreasing

band gap values, until the last sub-cell absorbs its share and the remaining low energy

photons are lost to transmission. This process is shown schematically in Figure 1.5.

At the limit of an infinite stack of sub-cells with infinitessimally different band gaps,

the limiting efficiency of this concept is 87% [13].

Practical devices will necessarily have a finite number of sub-cells, and yet they

might include many more than the four in the current record device. The benefit of

adding additional cells has not yet been explored systematically. Most work in this

field has concentrated on extending existing material systems, and the prospective

designs are constrained in the number and range of band gaps that can be consid-

ered [14]. Practical devices also exhibit loss mechanisms in addition to the radiative

emission considered by the classical detailed balance calculation, and they may be

integrated into optical and electrical systems that add further losses. Chapter 2 of
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this thesis develops modifications to the detailed balance calculation that account

for non-ideal behavior and applies this modified calculation to surveying the design

space of MJSCs that can achieve ultra high efficiency, even once integrated into a full

system with optical and electrical losses.

1.3.4 Alternatives to conventional photovoltaics

The efficiency limits detailed in the sections above assume the photovoltaic system

is an ensemble of conventional solar cells. As such, the limits are defined by the

absorption and radiative characteristics specific to this type of device. There are

concepts for other types of photovoltaic devices, often termed “Third Generation”

photovoltaics, that are not necessarily subject to these limits [6]. Cells capable of

multiple exciton generation could in principle employ a low band gap material and

still minimize thermalization losses by exciting many electrons with each high-energy

photon absorbed [15]. Devices that prevent or delay interaction of excited electrons

and phonons and allow extraction of only electrons with a specific energy, so-called

“hot carrier” solar cells, could in theory operate at the Landsberg limit [16]. While

these concepts are theoretically capable of ultra-high efficiency under ideal or near

ideal circumstances, as yet no experimental demonstration has achieved efficiency

approaching that of conventional photovoltaics. In addition, once realistic non-ideal

material behavior is accounted for, the likely performance of these concepts drops

to much less impressive levels. For these reasons, this thesis considers only concepts

that employ conventional photovoltaic cells in search of ensemble designs capable of

ultra-high efficiency.

1.4 Recovering radiative losses

As mentioned in section 1.3.1, all solar cells emit light when operating at a positive

voltage. In a single junction cell, this radiative emission is an inevitable loss mecha-

nism that can be minimized by careful engineering of the optical environment of the

cell, but never eliminated. In multijunction solar cells, some portion of this radiative
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emission may be recovered by directing it to be absorbed in subsequent sub-cells of

the ensemble [17]. This process happens naturally in monolithically integrated cells,

due to the close index of refraction match between sub-cells [18]. Recent experimental

results have documented this phenomenon [19]. Recovering these radiative losses in

distributed ensembles of cells can be more challenging due to the need for an addi-

tional optical element to engineer the desired photon transmission between sub-cells.

If the challenges can be met, the benefits of radiative coupling can be substantial: up

to 1% improvement in absolute efficiency, depending on the number of sub-cells in

the ensemble [20].

Historically, examinations of the benefit of radiative coupling have assumed that

each sub-cell in the ensemble will operate at its individual maximum power point.

However, the sub-cell max power point is the voltage and current at which the power

benefit of any additional voltage is offset by the loss in power due to increased radiative

losses. In a system with radiative coupling, some fraction of the radiated loss is

recovered in a different sub-cell. As a consequence, the coupling must be taken into

account when calculating the maximum power point of the ensemble as a whole.

Chapter 4 of this thesis explores the additional benefit of taking radiative coupling

into account when designing an ensemble and determining its maximum power point.

1.5 Designing for energy production

While the efficiency of a photovoltaic system is fairly straightforward to measure and is

a convenient metric for comparing different systems, it is not directly used to calculate

the LCOE of a system. Instead, the amount of energy the system will generate over its

life is used. In cases where the efficiency of a system is fairly constant regardless of the

illumination conditions, it can be fair to extrapolate energy production directly from

the average irradiance at a particular location over the course of a year. However, not

all photovoltaic systems are equally robust under varying spectral conditions [21].

The standard test conditions for measuring photovoltaic system efficiency specify

the cell temperature (25C), the illumination level and the spectrum of illumination
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[22, 23]. There are a variety of standard spectra intended to represent some average

terrestrial or extraterrestrial illumination. In space all spectral variation is due to

fluctuations in the sun, and the overall level of variation is small [24]. At any mo-

ment, the spectrum at the top of the earth’s atmosphere will closely resemble the

AM0 (for zero air mass) standard spectrum. To reach the earth’s surface, that spec-

trum must transmit through the atmosphere with a path length that depends on the

location, elevation, and time of day and year. The path length is typically reported

as the “air mass”, or AM, where an air mass of 1 corresponds to the atmospheric

depth. The spectrum is attenuated due to molecular and particulate absorption and

scattering, and the amount of attenuation is generally proportional to the air mass.

As an additional complication, the amount of attenuation is sensitive to the partic-

ular composition of the atmosphere along the light path [25]. The atmosphere is

not well mixed, and there can be substantial variation in the amount of C02, ozone,

water vapor and particulate matter in the air column in the region of a photovoltaic

device. The standard terrestrial reference spectra, AM1.5G and AM1.5D, that are

most commonly used for photovoltaic efficiency measurements specify an air mass of

1.5 and a spectral composition that corresponds to a particular set of atmospheric

conditions cite [26]. While these conditions in some sense constitute an average of the

mid-latitude, mid-day, mid-year environment, at any point in time the actual incident

spectrum will have substantial deviation from these references. Because photovoltaics

are compared by efficiency measured under these reference spectra, photovoltaic de-

sign is shaped by the specific details of these spectra. Spectrum splitting ensembles

are optimized for maximum efficiency converting AM1.5D or G. Systems with series-

connected cells are designed such that each sub-cell is designated an equal number of

photons under the reference spectrum. When the actual incident spectrum deviates

from the reference, the system may perform better or worse [21]. Chapter 5 of this

thesis explores the impact of the projected spectral variation over the course of a year

on spectral splitting ensembles with different numbers of sub-cells and different types

of electrical configurations.
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Figure 1.6. Schematic of air mass, unit of measurement for atmo-

spheric transmission length. AM0 corresponds to a point at the top

of the atmosphere, and AM1 to the atmospheric depth normal to the

earth’s surface at sea level. Other air mass values are path lengths

relative to the value of AM1.

1.6 New substrates for monolithic MJSCs

While ultra-high efficiency is a valuable goal for reducing LCOE, improving the ef-

ficiency and reducing cost of conventional MJSCs also has the potential to reduce

energy costs. The monolithic MJSC consists of sub-cells that are grown one on top of

another in a series of chemical vapor deposition steps on the same substrate. Ensur-

ing high material quality requires either that the materials all have the same crystal

lattice constant as the substrate material or that some intermediate layer be able

to provide a transition in lattice constant while introducing a minimum of lattice

defects. Currently high-efficiency MJSCs are made from different alloys in the III-V

family of materials [14, 27]. As figure 1.7 shows, these materials span a large range of

band gap values and lattice constants. However, focusing on the InAlGaAsP subset

of materials, there is a very limited range of lattice constants that offer a substantial

range of lattice-matched band gap values. Unfortunately, the lattice constants that

do offer a desirable range of band gaps do not correspond to lattice constant of the

commercially available substrates, which are GaAs and InP. At the lattice constant
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Figure 1.7. Band gap versus lattice constant for a subset of the III-V

material family. Dots represent binary compounds, curves represent

ternary alloys of their binary endpoints, and the space enclosed by

curves consists of quaternary alloys. Elemental semiconductors sili-

con and germanium added for reference.

of InP, the highest available band gap value is 1.55 eV, which is too low for high

efficiency two or three junction MJSCs. Conversely, the minimum band gap available

at the GaAs lattice constant is 1.42 eV, which is far too high. Extending the system

to include germanium, shown on figure 1.7, still results in the middle junction band

gap being constrained to be too high.

The conventional approach to circumvent the problem of the substrate lattice

constant constraining band gap selection is to use compositionally graded buffer layers

to transition the substrate lattice constant to a different value [28]. The buffer layer

growth is optimized to provide the maximum amount of strain relief in the material

per individual dislocation, but it inevitably results in at least 105 dislocations per

cm2 to be introduced. These electrically active dislocations propagate upward into

the solar cells grown on top of them and will tend to increase the amount of non-

radiative recombination in the cells. Another approach expands the available material

family to include InGaAsSbN, which can be grown lattice-matched to GaAs at a band
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Efficiency

Figure 1.8. Map of detailed balance efficiency of lattice-matched

triple junction cells vs lattice constant and top cell band gap. The

bottom cell is InGaAs with the specific composition determined by

the lattice constant. The middle cell is optimized for each top

cell/bottom cell combination. Cells are connected in electrical se-

ries.

gap of close to 1 eV [29]. While this substantially improves the combination of band

gap values available at this lattice constant, the material must be grown by the

more expensive and slower molecular beam epitaxy process rather than conventional

metalorganic chemical vapor deposition (MOCVD) [29].

Were a substrate with tunable lattice parameter available, it would facilitate

growth of MJSCs with more optimal band gap combinations and fewer internal elec-

trical defects. These factors combined could result in a substantial improvement in

efficiency over current MJSC record devices. Chapter 3 details a concept for a “vir-

tual substrate”, a growth template where the lattice constant can be specified, and

presents experimental results on fabrication. Figure 1.8 shows the detailed balance

efficiency of potential triple junction designs constrained such that all sub-cells are

lattice matched to one another at lattice constants intermediate to InP and GaAs.

The peak efficiency corresponds to a lattice constant of 5.80 A, which identifies a

target lattice constant for virtual substrate fabrication efforts.
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1.7 Overview of thesis

Chapter 2 of this thesis develops the detailed balance calculation in more detail and

identifies two additional parameters that can capture a large amount of non-ideal

solar cell behavior. This modified detailed balance approach is then used to identify

optimal band gap combinations for solar cell ensembles with 2 to 20 sub-cells. The

expected performance of these ensembles is compared under different material quality

scenarios and combined with realistic optical and electrical losses to identify design

strategies that could achieve system efficiencies of 50% or higher.

Chapter 3 of this thesis presents the results of experimental efforts to fabricate epi-

taxial growth templates for lattice-matched MJSCs. This “virtual substrate” concept

consists of a template allowing epitaxial growth at any desired crystal lattice constant

without requiring metamorphic growth. Efforts focused on creating templates of In-

GaAs with a lattice constant of 5.80 A to enable growth of a lattice-matched triple

junction MJSC with high theoretical efficiency.

Chapter 4 examines the radiative emission from a solar cell as a loss mechanism

and the possible efficiency gains from recovering that radiation for conversion in a dif-

ferent sub-cell of an ensemble. While some amount of radiative emission is inevitable,

it is possible to alter the amount somewhat. The rate of internal recombination is a

function of the chemical potential, but once a photon is emitted internally, it might

either be reabsorbed or escape the cell. Designing the cell optical environment to

direct radiated photons to other sub-cells in an ensemble can improve overall system

efficiency. Taking the radiative coupling of sub-cells into account when choosing the

band gap values of the sub-cells can yield further efficiency improvements.

Chapter 5 analyzes the annual energy production potential of the ensembles

optimized in Chapter 2. By incorporating average atmospheric conditions into a

multiple scattering and absorption model of the atmosphere, the degree of spectral

variation over the course of a day and year for multiple different locations is analyzed.

These spectra are then used as the input for detailed balance performance calculations

for spectra splitting ensembles with 2 to 20 sub-cells and with both electrically in-
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series and independent sub-cells. The expected annual energy production for these

ensembles is calculated and analyzed.
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Chapter 2

Spectral splitting strategies for ultra-high

efficiency

2.1 What is spectral splitting

Spectral splitting is the concept of dividing the solar spectrum among multiple sub-

cells with different band gaps to minimize thermalization and transmission losses

[30, 31]. Because a single-junction solar cell loses 67% of the energy in the inci-

dent spectrum to the combination of transmission and thermalization [13], spectral

splitting is a straightforward way to increase conversion efficiency while still using

conventional photovoltaics .

2.1.1 Spectral Efficiency

The potential benefit of spectral splitting and the fine-ness of sub-bands required to

achieve various efficiency targets can be understood to first order by examining the

spectral efficiency of an ensemble. This thesis defines the spectral efficiency of a solar

cell in Equation 2.1. All photon energy in excess of the band gap, Eg, is considered

waste in this definition, as is the energy of photons lost to transmission.

S.E. =

∫∞
Eg
EgAM1.5DdE∫∞

0
EAM1.5DdE

(2.1)

In an ensemble of sub-cells, the photons with energy below the lowest sub-cell

band gap are lost, and the ensemble spectral efficiency will be no greater than the

average (weighted by photon) spectral efficiency of the various sub-cells, as shown in
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Figure 2.1. Spectral efficiency of a single junction cell exposed to

spectral sub-bands of different energy width. In this case, the spec-

trum is truncated at the cell band gap value to eliminate losses due

to transmission.

Equation 2.2.

S.E. =

∑Egn
Eg1

∫∞
Egi

EgiAM1.5DdE∫∞
0
EAM1.5DdE

(2.2)

Figure 2.1 shows the spectral efficiency of a single sub-cell exposed to sub-bands

of the AM1.5D spectrum of varying width, δ as the band gap of the sub-cell varies.

The spectral efficiency of a sub-cell exposed to the complete spectrum above its band

gap is also plotted for comparison. In this plot, transmission losses are neglected

due to the assumption of the presence of additional sub-cells. This figure shows that

spectral efficiency for any delta rises with sub-cell band gap, which is expected. The

features in the curves between 0.4 and 1.1 eV correspond to molecular absorption

bands in the AM1.5D spectrum, where there are few photons available. The plot

indicates that achieving a high average spectral efficiency will require very narrow

sub-bands in the lower energy ranges of the spectrum, while wider sub-bands can be

tolerated at higher energies.
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2.1.2 Spectral splitting approaches

There are two practical approaches to spectral splitting. The most common em-

bodiment of spectral splitting is in monolithically stacked multijunction solar cells

(MJSCs), which consist of two or more sub-cells grown one on top of the other, with

the highest band gap cell exposed to the incident light [13, 14]. The spectral splitting

is accomplished by sequential absorption of the sub-bands as they pass through the

sub-cells. Each sub-cell absorbs the photons with energy greater than or equal to

the cell band gap value and transmits the remaining photons to the sub-cells below,

until all photons are either absorbed or lost through transmission through the entire

ensemble. In general, the monolithic integration makes it impractical to make elec-

trical contact to each sub-cell individually, so the sub-cells are connected in series

electrically by means of tunnel junctions grown between the sub-cells [16]. As a con-

sequence of the electrical series connection, all sub-cells must pass the same amount of

current, and so for efficient performance, all sub-cells must absorb the same number

of photons. The need to split the spectrum into different sub-bands with the same

number of photons constrains the combination of band gaps for an optimal MJSC.

Alternatively a separate optical element can divide the spectrum and direct it

onto an array of physically isolated sub-cells[30]. This concept has the advantage

of allowing band gap combinations that are not constrained by series connection

requirements or the demands of monolithic crystal growth. The cost of this freedom

is the need to construct a separate optical system to accomplish the spectral splitting.

It is quite possible to combine the two approaches and construct a system that

incorporates an optical element for spectral splitting and uses MJSCs as one or more of

the sub-cells in the array [32]. The merits of such a system would be highly dependent

on the specifics of the optical system and the band gap combinations selected for the

sub-cells. This thesis restricts its analysis to systems with sub-cells that are either

completely series-connected or completely independent electrically. In both cases it

is assumed that an optical system is present to concentrate and/or split the spectrum

as needed, but the details of that system are left for future development. This work
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Figure 2.2. Conceptual drawing contrasting (a) spectrum splitting

where a separate optic is used to distribute different sub-bands of

the incident spectrum onto isolated sub-cells and (b) monolithically

integrated MJSCs where the spectrum is split through sequential

absorption.

is an exploration of the design strategies for the ensemble of sub-cells in spectrum

splitting in pursuit of ultra-high efficiency.

2.2 Optimizing spectra splitting ensembles

While the efficiency limits of spectrum splitting ensembles with an infinite number

of sub-cells are well defined, the benefit of adding sub-cells to systems with a small

number of sub-cells has not yet been thoroughly explored. One challenge is the dif-

ficulty of optimizing the combination of band gaps for these ensembles. When the

sub-cells are electrically in-series, the requirement that each sub-cell absorb an equal

number of photons provides a constraint to the design space, and the optimization

can be done through a direct comparison of all possible current-matched band gap

combinations for a particular number of sub-cells. The band gap combinations that

are current-matched are determined from a simple numeric integration of the inci-

dent spectrum (in photons/cm2-eV) [33], and the number of possible combinations is
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small regardless of the ensemble size. The efficiency of each candidate ensemble is de-

termined through a detailed-balance calculation that enforces the current-matching

condition on the sub-cells and simulates the J-V behavior of the monolithic stack.

Radiative coupling between the sub-cells was neglected for this optimization.

2.2.1 Simulated Annealing

Optimizing the combination of band gaps for the ensembles with electrically indepen-

dent sub-cells presents an additional challenge. Without the requirement that each

sub-cell absorb the same number of photons, the design space grows exponentially

with the number of sub-cells in the ensemble. Performing a full combinatorial compar-

ison of possible designs is computationally intractable for ensembles with more than

6 or 7 sub-cells. For the larger ensembles, the band gap combinations were optimized

through a Monte Carlo technique termed “simulated annealing”. The optimization

tests sample candidate designs starting with a randomly generated seed design. At

each step of the optimization, a new candidate is generated by randomly perturbing

the current best design. If the performance of the new candidate exceeds the current

best performance, the candidate is adopted as the new best design and forms the ba-

sis for the next step of the optimization. To help ensure that the full design space is

sampled adequately, simulated annealing allows an inferior candidate can be adopted

as the new basis for perturbation in the next optimization step, if the deficit between

the performance of the best design and the candidate is smaller than some threshhold

value. Typically, the threshhold for adopting a lower-performing candidate narrows

as the optimization progresses, and the name “simulated annealing” comes from the

similarity of this gradual restriction to the cooling temperature of an actual annealing

process.

To find a global optimum, the simulated annealing algorithm must be able to

search the entire design space widely in the early steps, which requires the random

perturbations that generate new candidates to be large. The criteria for accepting a

lower-performing candidate as the base for further perturbation must also be loose

enough for a high percentage of early-stage candidates to pass the test. Ideally the
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early stages of the process will identify the region of the design space that contains

the global optimum. At later stages of the optimization, it is preferable that the

algorithm search the more restricted portion of the design space around that global

optimum. The tightening threshold (analogous to a decreasing annealing tempera-

ture) is intended to serve this purpose and allow the random sampling to find the top

of the performance peak without restricting the magnitude of the random perturba-

tions applied to the design at every step of the optimization. Ideally the optimization

will be repeated multiple times and result in the same optimum. This does not prove

that the optimum is the true global optimum, but it is a necessary condition.

In optimizing the band gap combinations for the electrically independent spec-

trum splitting ensembles, the design consisted of the set of n band gap values for

an n-cell ensemble. The perturbation was a set of n band gap deviations, with each

deviation randomly sampled from a normal distribution centered on zero and with a

standard deviation that varied with the size of n. At each step the base ensemble of

band gaps was perturbed and then re-ordered in ascending value, as ensembles with

non-monotonically increasing band gap value are not considered valid designs. The

detailed balance efficiency of each design was calculated and that value compared to

the efficiency of the current champion, and the new base for perturbation selected.

Initial attempts at optimization were unsuccessful at achieving repeated optimum

values and often returned designs with obviously non-optimal features (such as band

gap separations that were too small or too large). In many cases the best performing

design was effectively equivalent to an ensemble with fewer sub-cells due to one sub-

cell being starved for current. Apparently the large perturbation required to sample

the design space effectively created a low probability of perturbing a high-efficiency

design to an optimal one. To solve this, a second round of simulated annealing was

added to the optimization process. The second round used the first round best design

as the seed and used a much narrower perturbation. The threshold for adopting

a lower-performing candidate as the base for perturbation was also much higher.

With the addition of this second round of annealing, the optimization was able to

produce repeated optimum designs for spectrum splitting ensembles with independent
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electrical connection and 2 to 20 sub-cells.

2.2.2 Optimized efficiency of spectral splitting ensembles

Figure 2.3 shows the detailed balance efficiencies of optimized spectral splitting

ensembles with 2 to 20 sub-cells at different concentration values. Also plotted is

the spectral efficiency of the electrically independent ensembles. The plot shows

the increase in efficiency with increasing number of sub-cells is closely correlated

with the increase in spectral efficiency, which suggests that most efficiency gains are

due to reduced thermalization and transmission losses. The increase in efficiency is

most dramatic (17 percentage points) up to 8 cells, with only 4 percentage points of

efficiency gained by increasing from 8 to 20 cells. Achieving a spectral efficiency of

90% requires an ensemble of at least 8 cells. Finally, the dashed lines for the series-

connected spectral splitting ensembles are consistently 1-2 percentage points lower

than those for the independently connected designs. This is a consequence of the

current matching constraint forcing the selection of band gap combinations with a

lower spectral efficiency.

Figure 2.3 also shows that increasing the concentration on the system from 1 sun

to 1000 suns results in approximately 10 percentage points in efficiency improvement.

Current record efficiency photovoltaic systems use concentration both to increase

efficiency and to decrease the amount of solar cell area required in a module [29].

Concentration improves efficiency for solar cells by increasing the ratio of the short

circuit current to the dark current, which increases the open circuit and operating

voltages of the device [6]. If ultra-high efficiency is one of the design goals for a

system, then increasing the concentration is a valuable design tool.

2.3 Modifying the detailed balance calculation

The efficiencies in Figure 2.3 suggest that 50% efficiency can be exceeded by a four

cell ensemble at any concentration. However, these efficiency limits assume ideal

behavior for photon absorption and radiation and perfect carrier collection. Practical
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Figure 2.3. Detailed balance efficiency for ideal spectrum splitting

ensembles with 2 to 20 sub-cells. Ensembles with electrically inde-

pendent sub-cells are shown in solid lines, and electrically in-series

ensembles in dotted lines. The spectral efficiency of the electrically

independent ensembles is plotted as well.

cells will have less than ideal absorption due to reflection and transmission losses

and will have some non-radiative recombination due to material imperfections. A

more realistic model is required for identifying concepts that can achieve ultra-high

efficiency in practical implementation. A device physics simulation can account for

the specific material properties and design parameters of each sub cell [34], but it is

computationally prohibitive to perform such simulations for each of the many cells

considered in the optimization process. Instead, non-ideal material behavior can be

incorporated into the detailed balance calculations through the introduction of two

parameters: absorption efficiency and the external radiative efficiency, or ERE. The

absorption efficiency modifies the short circuit current of the cell. This accounts

for losses due to parasitic absorption by free carriers or in dead regions of the cell,

reflection losses from the cell’s top surface and for transmission losses due to finite cell

thickness. The ERE is the percentage of internal carrier recombination events that

result in an externally emitted photon, allowing the incorporation of non-radiative

recombination losses into the detailed balance calculations [35, 36]. The cell’s open

circuit voltage decreases with non-unity ERE, as does the fill factor. Together, the

absorption efficiency and ERE can account for the most common loss mechanisms in
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high quality solar cells.

The advantage of this approach is that it retains the computational simplicity and

speed offered by the detailed balance and therefore allows an extensive search of the

design space. However, there is a real risk of misrepresenting the realistic non-ideal

behavior of possible cells. The absorption efficiency and ERE are affected by both

the material quality of a cell and the design specifics of that cell. For example, the

absorption efficiency can typically be increased by increasing the thickness of a cell, by

improving the anti-reflection coating on its top surface and by decreasing the optical

thickness of any window or passivating layers. However, practical cells may have

limits on these aspects of the design due to cost or material availability. Furthermore,

changing the cell thickness and passivating layers may reduce the cell’s ERE. The

specifics of the interaction between absorption efficiency, ERE and material quality

will not be constant over the entire range of materials and band gap values under

consideration for spectrum splitting designs, but average or representative values can

be used.

2.3.1 Device physics simulations for ERE and absorption ef-

ficiency

While there are experimental values for ERE and absorption efficiency for solar cells

made from some of the materials under consideration, there are not enough data

to generate a realistic average value for these parameters. The values from litera-

ture were augmented with a series of device physics simulations of solar cells made

from five materials that span a large range of band gap values. The simulations

were restricted to one dimension and performed on candidate designs of cells made

from these materials using Afors-Het[34], a free device physics simulation tool built

for photovoltaics. We incorporated realistic doping-dependent mobility and lifetime

data for the candidate materials [37, 38, 39] to optimize device designs for each cell,

including doping and thicknesses for emitter, base, front and back window layers and

contact layers. The design parameters and efficiency results for these simulations are
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Cell

Band

Gap

Composition Ideal

Voc

(V)

Ideal

Jsc

(mA)

ideal FF Voc

(V)

Jsc

(mA)

FF ERE Absorption Source

0.74 In0.53Ga0.47As 0.3999 6.68 0.7718 0.388 5.91 0.7641 5.06% 0.888 model

0.94 In0.71Ga0.29As0.62P0.38 0.5946 8.57 0.8271 0.548 8.46 0.7886 1.60% 0.932 model

1.15 In0.87Ga0.13As0.28P0.72 0.7977 9.75 0.8608 0.751 9.23 0.831 1.20% 0.94 model

1.42 GaAs 1.154 32 0.8946 1.107 29.43 0.8757 22.50% 0.92 [19]

1.8 Ga0.52In0.48P 1.506 19.7 0.914 1.458 16 0.887 8% 0.816 [24]

2.13 Al0.20Ga0.32In0.48P 1.7333 6.13 0.9242 1.64 5.77 0.8882 0.19% 0.945 model

Table 2.1. Ideal and realistic performance for candidate spectrum

splitting cell materials as obtained by device physics simulations or

literature sources. The ERE and absorption values corresponding to

cell Voc and Jsc are shown.

summarized in Table 2.3.1. In all cases the simulated efficiency of each cell was

substantially lower than the ideal detailed balance efficiency, as expected. However,

the lowest band gap cells exhibited the largest departure from the ideal efficiency.

This trend suggested the need to re-optimize the band gaps for the ensembles to ac-

count for realistic material behavior. Table 1 also includes the ERE values extracted

from the simulated device performance parameters for each cell material [36] and the

absorption efficiency, which is the short circuit current as a percentage of the value

predicted by detailed balance. The values for the GaAs and InGaP cells are taken

from record cell performance reported in the literature [19, 36].

The ERE values in Table 2.3.1 vary over a wide range among the cells. Because

the cell open circuit voltage decreases linearly with the natural logarithm of ERE,

a direct average of ERE values will overstate the expected average performance of

these cells. Instead, taking the average of the natural log of the ERE values results

in an average ERE of 3%. The performance of an ensemble of cells with these band

gaps and that average ERE value will have the same total efficiency as the ensemble

with the cell-specific ERE values. While this value is higher than the simulated

value for most of the cells, the highest ERE values included in the average come from

experimentally realized cells, suggesting that optimization of growth and other device

parameters can produce III-V devices with very high radiative efficiency. The mean

of the absorption efficiency values is 90.6%. For simulation purposes the value 90%

was chosen as a conservative yet realistic de-rating value.
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2.3.2 Efficiency under modified detailed balance

It is straightforward to incorporate these ERE and absorption efficiency parameters

into the detailed balance calculation, as shown in the following equation

J(V ) =

[
abs

∫ ∞
0

AM1.5DdE − 1

ERE

n2sin2θc
4π2~3c2

∫ ∞
Eg

E2

e(E−qV )/kBT − 1
dE

]
(2.3)

where n is the cell index of refraction, θc is the emission angle of the cell and

AM1.5D is the flux density per eV of the standard spectrum. Again, the modified

equation balances the incident flux as modified by the absorption efficiency (abs)

with the collected carriers and the radiative and non-radiative recombination. The

cell’s radiative emission is assumed to follow the same Kirchhoff relation as in the

unmodified calculation [9], but that quantity is now assumed to be a percentage equal

to the ERE of the total recombination. With these assumptions we calculate a new

J-V relation for each cell and determine its fill factor and maximum power point under

illumination by its particular spectral slice. Note that we assume unity absorptivity

for photons with energy at or above the cell’s band gap value, and zero absorptivity

for lower energy photons. This allows us to disregard the cell’s thickness in these

calculations.

Including non-unity ERE and absorption efficiency did not change the optimal

band gaps for the series-connected ensembles. The constraint of in-series electrical

connection and the need to maximize spectral efficiency dominate the sub-cell band

gap selection regardless of material quality. However, the band gaps for the indepen-

dently connected designs did change upon the inclusion of non-ideal material behavior.

The designs of ensembles with fewer than 10 cells exhibited the strongest dependence

on material quality. Once optimized with non-unity ERE and absorption efficiency,

the electrically independent designs uniformly increased the band gap energy of the

lowest energy sub-cell. This trend is a result of low band gap cells being particularly

sensitive to decreases in ERE. At low band gap energies the loss of voltage due to

non-unity ERE consumes a greater percentage of the open circuit voltage, and the

27



fill factor also degrades more significantly, which combine to eliminate the benefit of

capturing more low energy photons. Ensembles with more than 10 cells did not have

large changes in sub-cell band gap values after optimization with non-ideal material

parameters. The expected efficiencies with 3% ERE and 90% absorption efficiency

are 10 percentage points lower than the ideal detailed balance efficiencies.

2.4 Systems that can achieve ultra-high efficiency

While the modified detailed balance approach gives a realistic prediction of the ef-

ficiency of an ensemble of cells, the total system has additional losses that must be

taken into account. A practical spectrum splitting photovoltaic system will require

some optical system to split and concentrate the incident spectrum into the desired

spectral range for each sub cell in the design. Such a system will inevitably intro-

duce inefficiency through misallocation of photons to the wrong cell and internal and

external reflections. In addition, an electrical system to combine the power of the

sub-cells at a single output voltage will add electrical losses. In order to accommo-

date these optical and electrical losses and still produce system efficiency greater than

50%, the ensemble of sub-cells must have a combined efficiency of much greater than

50%. Figure 2.4 shows the two-dimensional plot of efficiency versus number of cells

and concentration for independently connected systems with 2 to 20 sub-cells. The

two panels of the figure show the cell ensemble efficiency under two different mate-

rial parameters: (a) 3% ERE and 90% absorption efficiency, and (b) 5% ERE and

90% absorption efficiency. Marked on each plot are contours showing total system

efficiency with a spectrum splitting optic with 90% optical efficiency and electrical

system of 95% efficiency.

These plots show the importance of ERE for achieving a high system efficiency.

With the lower external radiative efficiency, it requires at least 7 sub-cells at a con-

centration of 560 suns to achieve a total system power conversion efficiency of 50%

with 90% efficient optics and 95% efficient electronics. By contrast, the set of de-

signs with 5% ERE and 90% absorption efficiency can achieve 50% system efficiency
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Figure 2.4. Efficiency of independent ensembles with different num-

bers of sub-cells at different concentrations for (a) 3% ERE and 90%

absorption, and (b) 5% ERE and 90% absorption. The contours

plot the required concentration and cell number required to achieve

different overall system efficiency levels given 90% optical and 95%

electrical system efficiencies.

with realistic optical and electrical losses using a design with 6 sub-cells at 841 suns

concentration. The concentration required decreases with larger numbers of sub-cells,

and only 59 suns are required to achieve 50% system efficiency with 10 sub-cells. This

highlights the trade-off in complexity between the optical design and the cell design

in achieving very high system efficiency.

Figure ?? presents another view of the interaction between number of cells, con-

centration and ERE in determining overall system efficiency. This plot shows the

efficiency of independently connected cell ensembles at 10 suns and 500 suns concen-

tration with different ERE values. The contours again show total module efficiency

with 90% efficient optics and a 95% efficient electrical system. Considering first panel

(b), the plot at 500 suns concentration, at 1% ERE, this plot indicates that 9 sub

cells will be required to achieve 50% module efficiency. The steepness of the contours

in the region from 4 to 10 cells highlights the value of improvements in ERE. An

increase from 1% to 2% ERE reduces the number of sub cells required to achieve

50% from 9 to 8, which would constitute a significant reduction in potential cost and
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Figure 2.5. Efficiency of independent ensembles with different num-

bers of sub-cells at different ERE values for (a) 10X concentration

and 90% absorption, and (b) 500X concentration and 90% absorp-

tion. The contours plot the required concentration and cell number

required to achieve different overall system efficiency levels given

90% optical and 95% electrical system efficiencies.

complexity. By contrast, the plot for 10 suns shows that low concentration systems

will require 10 or more cells with average radiative efficiency equal to current record

performance devices.

Figure ?? and ?? also indirectly highlight the challenge of achieving very high

system efficiency with series connected cells. As Figure 1 showed, series connection

reduces the efficiency of an ensemble with a given number of cells by 1.5 to 2 percent-

age points. This means such a system will require either a much higher concentration

(100 to 300 additional suns) or a larger number of cells to achieve a comparable perfor-

mance. The series-connected ensemble could recover some marginal advantage due to

the need for a simpler electrical system, but increasing the electrical system efficiency

from 95% to 97% only recovers one third of the efficiency handicap. Therefore, while

series connection may allow for simpler cell integration and electrical configuration,

it is not a practical design approach for exceeding the 50% efficiency target.
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2.5 Chapter conclusion

Achieving ultra-high system efficiency ( 50% or greater) for photovoltaic solar con-

version requires a combination of a large number of high quality cells, an efficient

optical system to split the incident spectrum correctly among those cells and a mod-

erate to high degree of concentration. The radiative quality of the cells will determine

the optimum band gaps of the cells in an ensemble and the radiative and absorption

efficiencies together determine how far the cell performance departs from the ideal

detailed balance limit. By including these two parameters into the detailed balance

calculation, we have predicted that a system efficiency of 50% or greater will be possi-

ble with 7 to 10 electrically independent cells in a spectral splitting optic at 300 to 500

suns concentration, assuming a 90% optical efficiency and 95% electrical efficiency.
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Chapter 3

A virtual substrate for conventional

monolithic MJSCs

This chapter details experimental efforts to fabricate templates for improved mono-

lithic MJSCs as part of the effort to achieve ultra-high efficiency solar cells. As de-

scribed in chapter 1, current record efficiency cells are series-connected triple-junction

cells grown in a monolithic stack [12, 14, 29]. The sub-cells are connected in electri-

cal series by means of tunnel junctions, and therefore all sub-cells will pass an equal

amount of current. In an optimal design, all sub-cells will absorb the same number of

photons and thus be able to operate at their maximum power point. If one sub-cell

absorbs extra photons, most of that additional power will be lost. Conversely, if one

sub-cell absorbs fewer photons than the others, its lower current will constrain the

entire ensemble.

Optimizing a set of band gaps for equal spectrum splitting and efficient series-

connected performance requires a set of materials that can be grown sequentially

with high quality at the particular band gaps that allow equal current. In practice,

high efficiency MJCSs are most commonly made using the III-V family of materials,

and deposition occurs through epitaxial crystal growth by metalorganic chemical

vapor deposition (MOCVD) or molecular beam epitaxy (MBE). Figure 3.1 shows

the III-V family with the material band gap plotted versus lattice constant. The

dots correspond to binary compounds, the curves to ternary alloys of the binary

compounds at their end points, and the space enclosed by curves corresponds to

quaternary alloys. This plot also includes the optimal band gap values for series-

connected three and four junction MJSCs [33].
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Figure 3.1. Band gap versus lattice constant for a subset of the III-V

material family. Dots represent binary compounds, curves represent

ternary alloys of their binary endpoints, and the space enclosed by

curves consists of quaternary alloys. Elemental semiconductors sili-

con and germanium added for reference. The red lines indicate the

optimal band gaps for a series-connected triple junction MJSC and

the blue lines indicate the optimal band gaps for a series-connected

four-junction cell.
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Presently it is only possible to buy single crystal wafers of the binary compounds

on this plot, as well as the group IV elemental semiconductors silicon and germanium,

also shown on the plot. At the lattice constant of these wafer materials, it is not

possible to grow lattice-matched MJSCs with three or four sub-cells and ideal band

gap combinations with the materials shown on this map.

3.1 The need for better epitaxial templates

The lack of a single-crystal wafer substrate with a lattice constant that allows opti-

mal band gap combinations limits the potential efficiency of MJSC designs. The best

current lattice-matched concept uses a germanium substrate and germanium bottom

cell [27]. This allows a lattice-matched GaAs middle cell and InGaP top cell. While

the top and middle sub-cells are nearly current matched, the Ge bottom cell absorbs

many more photons and adds less voltage to the ensemble performance than is opti-

mal. The ideal limiting efficiency for this design (at 500 suns) is 50.5%, as compared

to the optimal triple junction detailed balance efficiency of 57% [27]. The design gives

up a lot of potential performance for the sake of lattice matched growth.

As figure 3.1 shows, there are lattice constants with available band gap com-

binations much closer to the optimal designs. Unfortunately, attempting to grow

them on the available wafer substrates is unlikely to result in high material quality.

Epitaxial growth uses the substrate crystal to serve as a template for deposition of

the film crystal. As the atoms of the film material accumulate on the surface, they

organize themselves in the lowest energy configuration possible. Initially this means

a continuation of the substrate crystal structure at the substrate lattice constant, but

with the film composition. If the film material has a different lattice constant than

the substrate, the film crystal will distort to adopt the substrate lattice parameter in

the plane of the growth surface, with a compensating distortion out of the plane to

conserve the unit cell’s volume [40]. This is shown schematically in Figure 3.2.

The distortion of the film’s crystal results in strain energy, which increases with the

thickness of the film. Once the film reaches a particular thickness, the energy required
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(a) (b)

Figure 3.2. Conceptual drawing of dislocation formation in strained

epitaxy. Initially (a) the film lattice distorts to match substrate lat-

tice in-plane and deforms in the out-of-plane dimension to maintain

unit cell volume. At some thickness, (b) it becomes energetically

favorable to form dislocations and allow the film to take its natural

lattice parameter in all dimensions.

to form a strain-relieving dislocation becomes less than the amount of strain energy

reduced by the dislocation. This critical thickness, as determined by Matthews and

Blakeslee [40], is plotted in Figure 3.3 for InGaAs films grown on InP substrates and

InGaP films grown on GaAs. In both cases the critical thickness drops off rapidly

as the lattice parameter deviates from the substrate, and it falls below the 1000

nm required for optically thick solar cells that can achieve good absorption of their

designated photons.

The low critical thickness at lattice parameters far from that of the wafer substrate

suggests that a thick film grown with significant lattice mismatch will contain a high

density of strain-relieving dislocations. By disrupting the order of the crystal lattice,

dislocations introduce electron states within the material’s band gap that serve as

centers for non-radiative recombination. High dislocation density will correspond to

low quality in these materials and will degrade performance through reduced voltage.

In practice, the process of dislocation nucleation is kinetically limited, and there-

fore films can be grown much thicker than the critical thickness and remain under

strain. At the low temperatures possible with MBE, it is possible to achieve film

100 - 200 nm thick despite composition-dictated critical thickness of 10 to 20 nm
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Figure 3.3. Matthews-Blakesly critical thickness of InGaP grown on

GaAs and InGaAs grown on InP. In both cases the critical thickness

decreases rapidly as the film’s native lattice parameter diverges from

the substrate lattice constant.

[41]. This thickness is still not sufficient for one optically thick solar cell, let alone a

multi-cell stack. The MOCVD process requires higher growth temperatures, and con-

sequently is even more limited in the ability to produce thick strained films. Growth

of high quality material with a lattice constant different from that of the wafer sub-

strate therefore requires some alternate strategy to manage or prevent dislocation

nucleation.

3.1.1 Metamorphic growth

While dislocation formation is inevitable for thick films with different lattice param-

eter than the substrate, the final density of dislocations can be controlled to some

degree [41]. By changing composition gradually and growing slowly, the amount of

strain energy that each dislocation relieves can be maximized. This process of using

compositionally stepped or graded buffers results in metamorphic growth, where most

of the lattice strain is relieved and the film is close to its natural lattice parameter in

all directions.
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Top Eg Middle Eg Bottom Eg Ideal efficiency Experimental efficiency

1.9 1.42 0.67 50.5% 41.6%

1.84 1.32 0.67 54.5% 41.1%

1.84 1.32 1 53.4% 40.8%

1.9 1.42 1 53.0% 44%

Table 3.1. Band gap values and theoretical and record achieved effi-

ciency for lattice matched and metamorphic triple junction MJSCs.

Metamorphic growth is a common strategy for MJSC designs with more optimal

band gap compositions [28, 42, 43]. Eliminating the constraint that all band gaps in

the design must be available at the same lattice constant expands the possible band

gap combinations greatly. However, this freedom comes with the penalty of requiring

a thick graded buffer for every new lattice constant included in the design. Further,

the buffer must be designed to minimize parasitic absorption of light intended for the

sub-cells below it, and the time required to grow the ensemble increases substantially

with each buffer included. Optimizing the design for cell performance and cost may

result in complicated manipulation of the structure, such as growing the ensemble

upside down and removing it from its substrate or growing sub-cells on both the top

and bottom of the wafer. Table 3.2 lists a few high-efficiency metamorphic designs

and the experimental efficiencies achieved. While the theoretical efficiency of these

ensembles is higher than that of the lattice-matched design, the observed performance

is not much better. This suggests the dislocation density resulting from mismatched

growth restricts the external radiative efficiency of these designs.

3.1.2 Dilute Nitrides

The collection of alloys shown on Figure 3.1 does not include all possible materials.

Adding a small amount of nitrogen to the InGaAsPSb family of materials creates

new alloys. In particular, there is a GaAsNSb alloy that is lattice-matched to GaAs

and has a band gap of 1̃eV [29]. Using this material as the bottom sub-cell allows

lattice-matched growth of a GaAsNSb/GaAs/InGaP triple junction with a detailed
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balance efficiency of 53.0% (at 500 suns). Cells with this design have achieved a

record efficiency of 44% [29]. Unfortunately, this material is very sensitive to contam-

ination during growth, and must be grown by MBE to achieve high quality. While

incorporating dilute nitride materials into the design toolbox does extend the range

of lattice-matched band gaps available on the GaAs substrate, the approach leaves

the alloys at other lattice constants still inaccessible for cell designs.

3.2 Virtual substrate concept

High-quality epitaxial crystal growth requires only a few tens of nanometers of sub-

strate crystal to establish the structure of the subsequent film. If such a thin crystal

with the desired lattice constant were supported on a mechanical support to provide

structural integrity, the combination would serve as a “virtual substrate” with all the

same function as a single crystal wafer of the desired material. In order to function

well as an epitaxial template, the film and handle substrate must be securely bonded

to one another and able to withstand growth temperatures of 500 to 700 C. The film

surface must be planar, smooth and free of defects. Further, the film itself must have

a low dislocation density, preferably at least as low as the 103 per cm2 commonly

guaranteed by wafer suppliers. Finally, the film must be unstrained as it is bonded to

the handle substrate. In order to serve as a template with the desired lattice constant,

the film crystal must not be distorted.

This chapter presents a process for fabricating such a substrate and documents

the results, including attempts to grow solar cell structures on “virtual substrates”

with lattice parameters that are not available as single-crystal wafers [44].

3.3 Virtual substrate fabrication process

The virtual substrate is fabricated by removing a thin crystal film from its growth

substrate and transfering it to a reactor-compatible handle such as a silicon wafer.

The film composition is selected to provide the desired lattice parameter, and after
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transfer the film is under no strain. The film is initially grown under strain on a wafer

substrate, but the thickness is lower than the practical threshhold for dislocation

nucleation. The transfer process must allow the as-grown strain in the film to relax

elastically while maintaining a clean, atomically smooth, flat surface for bonding to

the handle. The process is illustrated in Figure 3.4 below.

First, the film is grown elastically strained on a single crystal wafer substrate. As

grown, the in-plane lattice parameter will be equal to that of the substrate, and the

unit cell will be tetragonally distorted. Because the thickness is only 40 to 80 nm, no

significant dislocation nucleation will occur even if the thickness is greater than the

Matthews-Blakeslee critical thickness.

Second, a compliant wax handle is applied to the film. The wax is viscoelastic

and will support the film while allowing the strain to relax elastically in subsequent

steps.

Third, the film is removed from the growth substrate by chemical etching. In these

experiments, the entire substrate thickness was removed through chemical etching.

At this stage the film is supported only by the wax handle, and the strain relaxes,

restoring the lattice to its native cubic configuration.

Fourth, the film, still supported on wax, is placed onto a silicon wafer with 100 to

300 nm of thermal oxide with a small droplet of water at the interface. Left for 24

hours, the water will evaporate and capillary force will draw the film into intimate

contact with the handle wafer. If both surfaces are smooth to within approximately

1 nm, Van der Waals interactions will hold the film in place.

Finally, the wax handle is removed with solvent, leaving the film bonded to the

handle and ready to serve as a template for subsequent growth.

3.4 Results of virtual substrate fabrication

The experimental effort resulted in fabrication of virtual substrates with size rang-

ing from 1 cm2 to 12 cm2 and with lattice parameters ranging from 5.80 to 5.89

Angstroms. These templates all featured completely relaxed films bonded to silicon
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Thin film with desired lattice 
constant grown strained on wafer

Compliant wax handle applied to 
film

Wafer material is removed by etching   
Film strain relaxes elastically

Wax--supported film placed on handle 
substrate with water at interface

Water evaporates and capillary forces draw 
film into close contact with handle

Wax is removed by solvent
Film remains bonded to handle substrate

Virtual substrate now serves as template 
for subsequent epitaxial growth

Figure 3.4. Fabrication steps for the virtual substrate.
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wafers, as verified by x-ray diffraction. Attempts to grow solar cells on these sub-

strates resulted in crystalline material of the desired lattice parameter, but of low

optoelectronic quality.

3.4.1 Initial growth of strained layer

The first requirement for virtual substrate fabrication is a single-crystal film with the

desired lattice constant and high quality. This film must be grown strained on an

available wafer substrate to obtain lattice constants not currently available commer-

cially. High crystalline quality requires a film thickness lower than the dislocation

nucleation threshhold.

These experiments focused on two material systems: strained InGaAs films grown

on InP wafers and strained InGaP films grown on GaAs. These ternary alloys can

span the range of lattice constants between the 5.8685 Angstroms of InP and the

5.6325 Angstroms of GaAs. Lattice constants in this region correspond to a wide

range of band gap values and have the potential to be suitable for MJSCs or other

optoelectronic devices. In addition, in both of these material systems there are chemi-

cal etches with strong selectivity between the film and the substrate, which facilitates

removing the film for transfer to the handle.

Table 3.2 lists the different film compositions grown, their substrate material,

thickness, native lattice parameter, critical thickness, and degree of strain. Positive

strain values correspond to tensile strain. The thickness of the InGaP films was chosen

to be only 30 nm in order to accommodate the larger amount of strain in those films.

The InGaAs films were grown at either 40 or 80 nm thickness. In most cases the film

thickness was well excess of the Matthews-Blakeslee critical thickness. In all cases

these films were grown by MOCVD by Sumika Electronic Materials.

The as-grown films were assessed for relaxation through high resolution x-ray

diffraction (XRD) measurements, including symmetric and asymmetric rocking curves

and reciprocal space maps. Figure 3.5 shows the (004) and (224) rocking curves of

the 40 nm InGaAs film set, and Figure 3.6 shows the InGaP film set. The InGaAs

films all show a strong, broad film peak, as expected for 40 nm thickness. The
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Film material Substrate Strain Critical thickness Film thickness

In0.53Ga0.47As InP 0 N/A 40 nm

In0.58Ga0.42As InP -0.30% 43 40 nm

In0.48Ga0.52As InP 0.30% 38 40 nm

In0.45Ga0.55As InP 0.50% 22 40 nm

In0.43Ga0.57As InP 0.70% 17 40 nm

In0.43Ga0.57As InP 0.70% 17 80 nm

In0.36Ga0.64As InP 1.20% 9 80 nm

In0.43Ga0.57As InP 0.70% 17 40 nm

In0.36Ga0.64As InP 1.20% 9 40 nm

In0.62Ga0.38P GaAs -1% 11 40 nm

In0.70Ga0.30P GaAs -1.50% 6 40 nm

In0.72Ga0.28P GaAs -2.0% 4 40 nm

Table 3.2. Composition, mismatch and thickness for films grown for

virtual substrate fabrication.

film is oriented along the same crystal axis as the substrate and the clear fringe

pattern around the peak indicates smooth, high quality growth. In all cases the 004

plane spacing is as expected for perfectly strained films of the designed composition.

Verifying the in-plane lattice spacing requires an asymmetric scan that probes lattice

planes not parallel to the surface of the film. The 224 plane spacing is determined

by both the in-plane and out-of-plane spacing. In combination with the information

from the symmetric scan and the assumption of symmetry about the 110 direction,

these measurements determine the dimensions of the unit cell and verify the film

composition. The symmetry assumption can be tested by performing a second 004

scan with the sample rotated 90 degrees about the surface normal (or phi axis),

which will detect any tilt angle between the film and substrate. Thus three simple

measurements can verify the film composition, thickness and strain state.

As the scans in Figure 3.5 show, all the 40 nm InGaAs films were grown initially

fully elastically strained, suggesting a low dislocation density. These films were judged
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Figure 3.5. X-ray diffraction measurement of symmetric (004) peak

and asymmetric (224) peak for InGaAs films grown strained on InP

wafers for virtual substrate fabrication.
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to be good candidates for transfer and virtual substrate fabrication.

The XRD scans of the InGaP films revealed lower quality material, as shown in

Figure 3.6. Of the three compositions attempted, In0.72Ga0.28P at -2.5% strain ap-

peared to be completely relaxed. The 004 scan shows minimal fringes around the film

peak, indicating thickness inconsistencies associated with a rough surface. Indeed,

this sample appeared noticeably hazy relative to a pristine wafer or the InGaAs sam-

ples. The peak on the 224 scan is very low and broad, which can result from mosaicity

or phase separation in the film. Regardless, this sample was judged inadequate for

virtual substrate fabrication.

The intermediate InGaP composition, with 70% indium and -2% strain, exhibited

partial relaxation. Approximately 30% of the lattice mismatch has been relaxed

through dislocation formation. Finally, the least strained InGaP composition, with

62% indium and -1.5% strain, had low relaxation of 5%. While both of these materials

are sub-optimal for virtual substrate fabrication, they remained in the experiment

pool in order to broaden the range of lattice constants examined.

3.4.2 Film removal from growth substrate

Experiments with a variety of film removal techniques and transfer handle materials

identified a few key requirements. First, the transfer handle material must be both

soft and viscoelastic to allow strain relaxation in the film once it is removed from

the substrate. The most successful handle was Apiezon W wax, a commonly used

mounting wax soluble in trichloroethylene (TCE). The wax (technically a hydrocar-

bon mixture rather than a true wax) has a very high viscosity at room temperature

and softens at 100 C, but remains very viscous. Both melting and solvent casting

were viable application methods, but solvent casting enabled more consistent wax

thickness and coverage, and was therefore the dominant method.

Experiments with Crystal Bond, another mounting wax that softens at 150 C and

is soluble in acetone, were also successful when the wax was melted onto the sample.

Because the performance of this wax was no improvement on the Apiezon W, it was

not adopted. Attempts to transfer the films with a paraffin-based mounting wax, a
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Figure 3.6. X-ray diffraction measurement of symmetric (004) peak

and asymmetric (224) peak for InGaP films grown strained on InP

wafers for virtual substrate fabrication.
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true wax with a solid-liquid phase transition, did not result in strain relaxation in

the film after substrate removal. This indicates that the viscoelastic nature of the

transfer handle material is essential for allowing the film to relax to its native lattice

parameter.

While the Apiezon W is quite hard at room temperature, the combined ensemble

of a 40 nm film supported on 500 microns of wax is very delicate and sensitive to

handling. Adding a secondary handle in the form of a glass coverslide or square of

Kapton film was necessary to facilitate handling of the film during the etching transfer

process.

The InGaAs films were freed from their substrates by a high-concentration HCl

etch that completely removed the entire InP wafer. The HCl removed InP at 50,000

nm per minute and would reliably stop at the InGaAs surface, even in cases where the

InP etched unevenly. The InGaP films were removed by etching a buried sacrificial

AlAs layer 15 nm thick grown as part of the film structure with a 100 nm GaAs

buffer separating the AlAs and InGaP layers. The thin GaAs buffer was subsequently

removed by etching in a citric acid/H2O2 solution.

Once the films were removed from their growth substrates, they were rinsed in

deionized water and dried with nitrogen. The films were bonded to silicon handle

substrates with 100 to 300 nm of thermal oxide, by placing a droplet of deionized

water on the silicon wafer and then placing the film - wax ensemble onto the water

and pressing lightly to ensure a complete layer of water between the two surfaces to

be bonded. The entire assembly was then placed in a fume hood for a minimum of

12 hours to allow the water to evaporate and capillary forces to draw the film into

intimate contact with the silicon wafer surface. With the water evaporated, the wax

was removed in TCE (or other appropriate solvent), leaving the film bonded to the

handle through Van der Waals interactions. All wax residue was removed by rinsing

in TCE, acetone, IPA and finally deionized water, and the completed virtual substrate

dried with nitrogen gas. The bond between the film and handle substrate was strong

enough to withstand these cleaning steps as long as all interface water had evaporated

away and the film surface was sufficiently smooth.
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(a) (b)

In0.43Ga0.57As - 5.83 A In0.36Ga0.64As  - 5.80 A

1 cm 1 cm

Figure 3.7. Photographs of virtual substrates consisting of 40 nm

of InGaAs bonded to a silicon wafer with 300 nm of thermal oxide.

Panel (a) shows a film with 43% indium and a lattice constant of

5.83 A, while the film in panel (b) is 36% indium at a lattice constant

of 5.80 A.

Figure 3.7 shows photographs of a selection of virtual subtrates with the film

composition and lattice constant indicated.

3.4.3 Film transfer to handle substrate

Once the virtual substrates were fabricated, high resolution x-ray diffraction (XRD)

measurements were repeated to verify full film relaxation. Figure 3.8 presents the 004

scans of the InGaAs films as grown on InP and after virtual substrate fabrication.

In all cases, the film peak shifts significantly after transfer, indicating a change in

the 004 plane spacing consistent with strain relaxation. Importantly, the peak width

and magnitude of the film is comparable before and after transfer, which suggests

comparable crystal quality, at least in the aggregate.

A more complete picture of the crystal state before and after transfer is obtained

by making a full reciprocal space map around the position of the diffraction peak of

interest. By taking a series of scans in 2θ with varying θ/2θ offset, a reciprocal space

map can measure the in-plane and out-of-plane scattering vector of the film relative
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Figure 3.8. X-ray diffraction rocking curve measurement of the (004)

reflection of InGaAs virtual substrate films before and after transfer

to silicon. Post-transfer peak position shows complete strain relax-

ation and corresponds to simulated profile.
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Figure 3.9. Reciprocal space map of the (224) peak for 5.83 A In-

GaAs virtual substrate film before (a) and after (b) transfer to the

silicon handle wafer. The scattering vector change in panel (b) indi-

cates full elastic strain relaxation.

to the substrate. Figure 3.9 shows the reciprocal space map for the 5.83 A InGaAs

film (224) peak both before (a) and after (b) transfer to the silicon handle. As grown

on the InP wafer, the film in-plane scattering vector Qx has the same value as the

InP in-plane scattering vector. After transfer, both Qx and Qz shift to new values

corresponding to full relaxation to a cubic structure.

3.4.4 Cracks

While the XRD measurements of many virtual substrate samples indicated high-

quality, elastically relaxed films in the aggregate, all the post-transfer films exhibited

an extensive network of cracks. These cracks penetrated through the film to the

handle substrate and resulted in 1-5 micron gaps between the continuous areas of

film. Figure 3.10 shows a selection of optical micrographs revealing the extent and
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Figure 3.10. Optical microscope images of virtual substrate films as

transferred to silicon. All films exhibit a network of cracks following

the [110] cleavage direction.

nature of these crack networks on a variety of different samples. In most cases the

transferred film had several uncracked areas 100 to 400 microns square, as well as

regions with more closely spaced cracks. Almost all cracks were aligned with the 110

cleavage planes.

The crack network is evident as soon as the film is removed from the substrate

etch while it is still on the wax handle. The crack spacing is not correlated with the

amount of strain in the film as grown. Increasing the thickness of the film resulted in

a much denser crack network.

The InGaP films were more severely cracked than the InGaAs films due to the

architecture of the film structure in combination with the buried sacrificial etch. The

buried AlAs etch layer was separated from the InGaP film by a 100 nm buffer of

GaAs. The buffer was intended to protect the thin InGaP film from exposure to the

HF acid etch used to remove the AlAs. While it did provide etch protection, the

bilayer combination of buffer and InGaP film had a large strain differential between

the two layers. Because the two materials have a similar modulus that is much greater
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than that of the wax, the bilayer system tends to buckle until the internal forces are

balanced. The wax cannot supply enough traction to constrain the film-buffer bilayer

to a planar configuration. Both InGaP and GaAs are materials with low fracture

toughness, and therefore the buckling pattern results in cracks.

The failure of the InGaP films suggests that local buckling may be a factor in the

crack network development of the InGaAs films as well [45, 46]. As the last micron of

InP is removed, it will also form a strained bilayer with the InGaAs. The non-planar

nature of the InP etching will result in different regions of the film being vulnerable

to buckling at different times and with different spatial period.

If buckling due to the wax handle being unable to restrain the strained film/thin

substrate ensemble to a planar configuration is the root cause of the cracks in the

relaxed film, then a transfer method that provides a more rigid out-of-plane restraint

should be able to prevent cracks from forming. Using a layer of wax thinner than the

amplitude of the likely buckling pattern is one possibility. Attempts to achieve this

experimentally were not successful.

3.5 Growth on the virtual substrate

In order to serve as growth templates, the virtual substrates must be able to withstand

temperature cycling up to 500 C without film delamination or damage. Heating

experiments in a rapid thermal annealer (RTA) with ambient nitrogen flow indicated

that the virtual substrate could withstand growth temperatures provided that the

temperature was raised slowly to 500 C. A 20 minute ramp time was sufficient to

allow volatile species trapped at the bond interface to escape slowly without causing

blisters or local delaminations. The virtual substrate exhibited no visible changes

after being heated to 500 C gradually over the course of 20 minutes. The substrate

was held at 500 C for only 5 minutes to prevent loss of arsenic due to the lack of a

group V reactant overpressure.

While all virtual substrates showed crack networks, the prevalence of uncracked

areas hundreds of microns square was deemed sufficient to attempt growth on the
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Figure 3.11. SEM images of first growth attempt on 5.83 A virtual

substrate.

virtual substrate. A virtual substrate consisting of a 2 inch diameter InGaAs film

with lattice parameter 5.83 Angstroms and 47% indium on a 4 inch diameter Si/SiO2

wafer was sent to Sumika, who attempted to grow a lattice-matched InAlAs/InGaAs

double-heterostructure 200 nm thick.

Unfortunately, this growth attempt was not successful, as is evident from the

SEM images in Figure 3.11. These micrographs show that growth failed to nucleate

properly on the virtual substrate surface. The high magnification image in panel (a)

shows the virtual substrate film still bonded to the SiO2 layer on the silicon wafer.

In the region where no material deposited onto the virtual substrate, there are small

features which suggest possible surface contamination. It is also possible that a thin

native oxide was present and inhibited epitaxial growth.

3.5.1 Surface preparation for virtual substrate

Further growth attempts on the virtual substrate required a method to identify and

remove any surface oxide. X-ray photoelectron spectroscopy (XPS) measurements

verified that the As 3d, In 3d5/2 and Ga 2p3/2 peaks had shoulders consistent with

the presence of a mixed oxide at the surface [47, 48]. After a 30 second etch in 10%

HF solution, the peak shapes return to the profile associated with a pristine surface,

as shown in Figure 3.12. The brief etch does remove some of the thermal oxide from

the silicon handle wafer, but it does not remove it completely, and the SiO2 remaining
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Figure 3.12. XPS measurements of the virtual substrate surface

before and after a 30 second etch in 10% HF. The (a) As 3d, (b)

In3d5/2 and (c) Ga2p3/2 peaks all show reduction of secondary

peaks consistent with oxide removal.

is sufficient to prevent subsequent III-V growth on regions of the virtual substrate

that are not covered by the InGaAs film.

Project collaborators at Boeing Spectrolab were instructed to perform a 30 second

etch with 10% HF on the virtual substrates, followed by a deionized water rinse and

nitrogen drying, immediately prior to placement in the MOCVD reactor for future

growth attempts.

3.5.2 Solar cell structures grown on virtual substrates

The second round of growth experiments attempted to grow lattice-matched material

on InGaAs virtual substrates with 5.80 and 5.83 Angstrom lattice constants. Spec-

trolab was supplied with multiple virtual substrates at each lattice constant, mostly

consisting of 1/4 of a 2” wafer area transferred to a 2” Si/SiO2 handle. Spectrolab

used a sub-set of the virtual substrates to calibrate composition and growth condi-
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Silicon/SiO2 wafer

Virtual substrate layer 40 nm

InGaAs p+ 1e19 500 nm buffer

InGaAs p- or intrinsic 900 nm base

InGaAs n 1e18 100 nm emitter
InGaP n+ 1e19 250 nm window

InGaP p+ 5e18 100 nm BSF

Figure 3.13. Schematic of layer thickness, composition and doping

for solar cell structure grown on virtual substrate by Boeing Spec-

trolab.

tions for both the InGaAs absorber material and the InGaP window material. Finally,

Spectrolab attempted to grow a single-junction solar cell lattice matched to the vir-

tual substrates. The designed structure of the solar cell is shown schematically in

Figure 3.13.

Figure 3.14 shows the virtual substrates used in the second-round growth attempt

both before and after growth. The specific type of structure is listed with the images.

The growth is visibly low-quality, and crack defects in the virtual substrate propagate

into the structure on top. Figure 3.15 shows optical micrographs of the solar cell

structures.

3.5.3 Crystal quality of growth

While the quality of the growth experiments was disappointing, xrd measurements

verified that the material is mostly crystalline and lattice matched to the virtual

substrate. Figure 3.16 shows the 224 reciprocal space map of the 5.83 solar cell

growths and the virtual substrates on which they were grown, and Figure 3.17 shows

these maps for the 5.80 A solar cell. In both cases the solar cell material peak is

aligned with the virtual substrate peak. However, the growth peak is very broad,

indicating the presence of dislocations and/or mis-oriented growth throughout the

material. This is not surprising, given the visibly defective nature of the material.
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In0.43Ga0.57As  - 5.83 A

In0.36Ga0.64As  - 5.80 A

(a) (b)

(c) (d)

1 cm

Figure 3.14. Photographs of virtual substrate templates before and

after growth of solar cell structure.

400 μm 400 μm 400 μm

(a) (b) (c)

In0.36Ga0.64As 5.80 A In0.43Ga0.57As 5.83 A In0.43Ga0.57As 5.83 A

Figure 3.15. Optical microscope images of virtual substrate tem-

plates after growth of solar cell structure.
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Figure 3.16. Reciprocal space map of 5.83 A virtual substrate tem-

plate (a) as grown on InP, (b) after template fabrication, and (c)

after solar cell growth attempt. The Qx and Qz scattering vector

of the solar cell material match those of the relaxed template film.

The broad peak suggests defective material.
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Figure 3.17. Reciprocal space map of 5.80 A virtual substrate tem-

plate (a) as grown on InP, (b) after template fabrication, and (c)

after solar cell growth attempt. The Qx and Qz scattering vector

of the solar cell material match those of the relaxed template film.

The broad peak suggests defective material.

57



40 nm

1 μm

5 nm

200 nm

(a) (b)

(c) (d)

InGaAs

Silicon

SiO2

AdhesiveVirtual substrate film

Figure 3.18. Cross sectional TEM measurement of 5.83 A InGaAs

solar cell grown lattice matched to virtual substrate template.

Cross-section TEM measurements of the solar cell structure revealed a network

of voids at the interface between the virtual substrate film and the growth material.

Between these voids, the growth is epitaxial, and there is no visible differentiation

between the template and growth material. However each void results in a high

density dislocation network, and these networks coalesce as the material thickness

increases. Figure 3.18 shows the TEM results. While all the TEM samples prepared

had a gap between the virtual substrate film and the SiO2 layer on the handle, the

SEM images suggest this delamination occurred during sample preparation rather

than during growth. Further study is needed to definitively verify that the virtual

substrate film remains bonded to the handle during growth, however.
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3.6 Conclusion

These experimental efforts establish the initial proof of concept for the virtual sub-

strate template. Future work must determine the source of the pervasive crack net-

work during fabrication and identify methods to prevent crack formation. Once crack-

free templates can be fabricated consistently, the next step is to determine the source

of the voids at the epitaxial growth front. Improved surface preparation and treat-

ment to ensure complete removal of all trapped volatiles prior to growth are both good

avenues of inquiry towards making the virtual substrate a truly functional epitaxial

template. Finally, the virtual substrates fabricated thus far do not completely span

the range of lattice constants between InP and GaAs. Dislocation nucleation was

substantial in the as-grown films with more than 1.5% lattice mismatch. Exceeding

this strain limit may require much thinner virtual substrate films, perhaps grown by

MBE rather than MOCVD. Experiments testing the minimum required thickness for

the virtual substrate to function as an epitaxial template will be useful in expanding

the range of lattice constants the virtual substrate can supply.
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Chapter 4

Optimizing ensembles for radiative

coupling

As described in Chapter 1, all conventional solar cells emit light when operating at

positive voltage [35].

While conventional diode-based solar cells inevitably emit light through radia-

tive recombination at positive voltage, that emitted light need not necessarily be

completely lost. A system with multiple sub-cells presents the opportunity for light

emitted from one sub-cell to be absorbed by a different sub-cell of lower band gap,

which will then recover some of the energy in those photons and convert it to elec-

tricity [20, 49]. The amount of energy recovery depends on the proportion of emitted

photons that are re-absorbed and the band gap difference between the emitting and

absorbing sub-cells.

Even systems with fractional transfer of emission can benefit from radiative cou-

pling if the sub-cells have sufficient radiative efficiency. Taking full advantage of

radiative coupling requires incorporating the phenomenon into the system design and

optimization that includes the interaction of sub-cells. Most obviously, this means de-

signing an optical system to facilitate radiative coupling. Beyond the optical design,

this chapter explores the benefit of adjusting band gap combination and sub-cell oper-

ating point to maximize the benefit of radiative coupling and increase overall system

efficiency.
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4.1 What is the max power point?

Traditional treatment of radiative coupling between isolated cells assumes all cells

operate at their individual max power point. The max power point is the voltage at

which the maximum power is extracted from the device. It corresponds to the thresh-

old at which increasing radiative emission outweighs the additional power gained by

collecting current at a higher voltage [8]. Because the radiative emission from a cell

is purely a function of its band gap and voltage, the max power point is affected only

by the amount of light the cell absorbs (its short-circuit current).

If all sub-cells operate at their individual max power point, the amount of photons

transferred between sub-cells is determined by each sub-cell’s short circuit current,

and the entire ensemble’s performance is calculated sequentially.

4.1.1 Operating at higher voltage

The max power point determination assumes that all radiatively emitted photons

are completely lost. A system with radiative coupling between sub-cells allows some

portion of this emitted photon energy to be recovered, and this recovery raises the

possibility that operating at a higher voltage might result in larger power collection

overall.

A graphical interpretation of this phenomenon is presented in Figure ‘4.1.

Panel (a) shows the ideal J-V curve of a 1.42 eV solar cell. When the cell oper-

ates at its max power point voltage, the power converted corresponds to the area of

the purple rectange. If all radiatively emitted photons are directed to a cell below

operating at some particular voltage, some of the lost radiated power is recovered,

corresponding to the green rectange. In panel (b) the 1.42 eV cell operates at a voltage

higher than its Vmpp value, which causes the radiative losses to increase. Again, most

of the radiative losses are converted in a second cell (shown by the green rectangle),

and the yellow rectangle shows the extra radiative losses that are not recovered in the

downstream cell. By operating at a higher voltage, the 1.42 eV cell is able to extract

a bit more energy from the photons absorbed. This additional power corresponds to
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Figure 4.1. Schematic of system interaction changing the maximum

power point voltage for the top cell due to radiative loss recovery in

a lower band gap cell.

the dark purple box in panel (b). If the area of the dark purple box is greater than

the yellow box, the system of the two cells will convert more power with the 1.42

eV cell operating at a voltage higher than its isolated maximum power point. This

schematic illustrates the way system effects can combine to increase efficiency.

4.1.2 Voltage-enhanced radiative coupling in the two sub-cell

case

To explore the potential benefit of voltage-enhanced radiative coupling and learn how

much additional voltage might be beneficial, a simple test case consists of a system

with two ideal sub-cells with perfect radiative coupling from the top cell to the bottom.

Figure 4.2 maps the system efficiency as a function of top and bottom sub-cell band

gap. For each combination of band gaps, the total efficiency was calculated, with the

top cell operating at its individual maximum power point and at voltages from ten to

fifty millivolts higher than Vmpp. The highest of these six efficiency values is mapped

versus the sub-cell band gap values in panel (a). Panel(b) of Figure 4.2 shows the

optimal top cell operating voltage relative to Vmpp for each band gap combination.
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Figure 4.2. Radiative coupling in a system with two sub-cells. Panel

(a) shows the efficiency versus top and middle cell band gap. Panel

(b) shows the optimal top cell voltage relative to the isolated max

power point voltage.
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Unsurprisingly, the maximum efficiency point corresponds to a top cell band gap

of 1.64 eV and a bottom cell of 0.94 eV. These are the optimal band gap values for a

two-cell spectrum splitting ensemble with electrically independent sub-cells under the

AM1.5D spectrum (at one sun). Interestingly, the peak efficiency value corresponds

to a point where the top cell operates 10 mV above its Vmpp value. The efficiency of

the system with the top cell operating at this higher voltage is 0.19% higher (relative)

than when the top cell operates at Vmpp.

The relative benefit of voltage-enhanced radiative coupling is small for the optimal

two sub-cell ensemble, because the need to match the solar spectrum results in a large

difference in band gap between the two sub-cells. In turn, this means that a large

percentage of the radiatively emitted photon energy is lost to thermalization after it

is absorbed in the bottom sub-cell. Were the sub-cells more closely spaced in band

gap value, as in a spectral splitting ensemble with more sub-cells, the optimal voltage

would be higher. The diagonal cut-off line in Figure 4.2 corresponds to the case where

the bottom cell is equal to the top cell in band gap. The optimal voltage values in

panel b increase with proximity to that line, particularly as the top cell band gap

decreases, because the percentage of emitted photon energy recovered in the bottom

cell increases both as the top cell band gap (and emitted photon energy) decreases

and as the separation between sub-cell band gap decreases. With a high percentage

of emitted energy recovered, the benefit of collecting the top cell current at a higher

voltage outweighs the loss of current due to enhanced radiative emission.

Figure 4.3 maps the relative efficiency benefit of operating the top cell at a higher

voltage relative to Vmpp versus the top and bottom cell band gap for the two-cell case.

At the optimal band gap combination, the relative benefit is very slight at 0.19%, but

the benefit increases to a 4% improvement in the region near the cut-off line. This

improvement is relative to ideal radiative coupling with the top cell operating at

Vmpp. This trend indicates that voltage-enhanced radiative coupling is a strategy

worth pursuing in ensembles with closely-spaced band gap values, particularly in the

higher band gap sub-cells.
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Figure 4.3. Performance improvement from voltage-enhanced radia-

tive coupling relative to radiative coupling with the top cell operating

at its isolated Vmpp.

4.2 Practical approaches to radiative coupling de-

sign

The analysis in section 4.1.2 assumes both ideal sub-cells and complete transfer of

photons emitted by the top cell to the bottom cell. Achieving this perfect transfer

requires some optical device that is non-reciprocal in its behavior, because the top cell

must be able to absorb all incident light with energy greater than or equal to its band

gap value, yet none of its emission is allowed to radiate back in the direction of the

sun [6, 20]. While some non-reciprocal optical structures have been experimentally

realized, none are practically capable of providing one-way transmission for unpolar-

ized light. In the absence of a practical non-reciprocal structure, realistic radiative

coupling designs will inevitably have only partial transmission of radiatively emitted

photons to down-stream sub-cells.

The percentage of emission transmitted to the lower sub-cells depends on the opti-

cal integration of the system. Various integration schemes are depicted schematically

in Figure 4.1. If the cells are physically isolated, as in panel (a), negligible transmis-
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sion will occur. Ensembles with sub-cells that are vertically stacked but separated

by a medium with a refractive index different than the cell material, as shown in

panel (b), will send approximately half of radiative emission to the correct sub-cell.

Finally, ensembles where the cells are monolithically integrated, as in panel (c), can

potentially result in most radiative emission being directed to the desired downstream

sub-cell. As discussed in Chapter 1, the radiative emission of a solar cell is affected by

the cell’s optical environment. When the cell is placed on a substrate with a refractive

index similar to the cell’s, light emitted internally in the direction of the substrate

can pass directly out of the cell without reflection. In contrast, internally emitted

light directed towards the top of the cell will not escape the cell unless it is inside the

escape cone determined by the refractive index of air and the cell’s refractive index.

All the sub-cells in a monolithic stack typically have very similar refractive index val-

ues, which conveniently allows high transmission of light through the device. Because

sub-cells are substantially transparent to light emitted by sub-cells with lower band

gap, in practice all sub-cells can be treated as having the same optical environment:

with air on top, and an index-matched substrate below. In this configuration, with

an index of refraction of 1 for air and 3.6 for the semiconductor 93% of light escaping

a cell will be transmitted to the sub-cell below it.

4.2.1 Radiative coupling in series-connected ensembles

Monolithically integrated spectrum splitting ensembles typically require the sub-cells

to be wired in electrical series due to the practical challenge of contacting the sub-cells

independently. Designing series-connected ensembles for radiative coupling presents

a particular challenge, because the series connection forces all sub-cells to pass the

same amount of current. In operation, when a sub-cell is forced to operate at a

lower current than its Jmpp, the sub-cell voltage increases, thereby increasing its

radiative emission and lowering its current to the constrained level. That excess

radiative emission could conceivably be directed to the sub-cell that was restricting

the ensemble current, creating a complicated feedback in the ensemble behavior.

The interaction between radiative coupling and current matching in series-connected
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(a)

(b) (c)

Figure 4.4. Schematic of spectrum splitting sub-cell configurations

and the potential for radiative coupling between sub-cells. The

monolithic stack directs a high percentage of a sub-cell’s radiatively

emitted photons to the sub-cell below, where they can be absorbed.

ensembles can be accounted for by the following procedure. First, consider the top

two sub-cells of the ensemble. Each has a J-V relationship determined by the de-

tailed balance equation. The series-connection constrains the sub-cells to operate at

the same current density, resulting in equations 4.1 - 4.3 .

J1(V1) = Jabs1 − Jrad1up(V1) − Jrad1down
(V1) (4.1)

J2(V2, V1) = Jabs2 − Jrad2up(V2) − Jrad2down
(V2) + Jrad1down

(V1) (4.2)

Jabs1 − Jrad1up(V1) − Jrad1down
(V1) = Jabs2 − Jrad2up(V2) − Jrad2down

(V2) + Jrad1down
(V1)

(4.3)

Note that radiative coupling results in the current for sub-cell 2 containing a term

dependent on sub-cell 1’s voltage, Jraddown1(V1). To identify the values of V1 and V2

that correspond to J1 and J2 being equal, subtract Jraddown1(V1) from both sides of
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equation 4.3 to get equation 4.4. This equation now gives a new pair of matched J-V

relationships that can be solved numerically for V1 and V2 over a range of current

values.

Jabs1 − Jrad1up(V1) − 2Jrad1down
(V1) = Jabs2 − Jrad2up(V2) − Jrad2down

(V2) (4.4)

Finally, Jraddown1(V1) is added back to both new J-V relationships. Performing

this current-matching operation for each pair of sub-cells sequentially from highest to

lowest gives a current matching J-V relation for each sub-cell, and these collectively

give the J-V relationship for the entire ensemble.

Accounting for radiative coupling in series-connected ensembles can drastically

change the projected performance of some band gap combinations. Figure 4.5 shows

the simulated J-V behavior of three different triple junction series-connected ensem-

bles. The first design has band gaps that are current-matched under AM1.5D. The

second is the lattice-matched Ge/GaAs/InGaP design, and the third design has band

gaps chosen to be deliberately not current matched under AM1.5D. The ensemble

band gaps and efficiencies without radiative coupling are shown in table 4.2.1. In all

cases the red, blue and black lines correspond to the individual sub-cell J-V curves

with (solid) and without (dotted) radiative coupling. The black dashed curves corre-

spond to the ensemble J-V relation with radiative coupling.

The effect of radiative coupling on these designs is radically different. The current-

matched ensemble has an efficiency of 47.32% without and 49.22% with radiative

coupling (one sun). The lattice-matched design efficiencies are 42.45% and 44.49%,

respectively. This design gets much less benefit from radiative coupling, because its

total current is limited by its top and middle sub-cells. In both cases the efficiency

increase comes from a slight increase in the middle and bottom sub-cell operating

point. By contrast, the third design has an efficiency of 37.74% without and 46.72%

with radiative coupling. The design is severely current-limited by its middle sub-cell

without radiative coupling but nicely current matched with it, and consequently it has
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Figure 4.5. Series-connected performance of candidate ideal triple

junction ensembles with and without radiative coupling between sub-

cells. Panel (2) shows the ensemble with optimal current matching

under AM1.5D. Panel (b) shows the commercially available lattice-

matched Ge/GaAs/InGaP design. Panel (c) shows a 1.03/1.42/1.8

eV design.
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Top Eg Middle Eg Bottom Eg Efficiency with no coupling Efficiency with coupling

1.84 1.33 0.93 47.32% 49.22%

1.9 1.42 0.67 42.45% 44.49%

1.8 1.42 1.03 37.74% 46.72%

Table 4.1. Band gap values and efficiency for three series-connected

triple junction shown in figure 4.5 both with and without radiative

coupling between sub-cells.

a higher efficiency than the lattice-matched design once radiative coupling is taken

into account. While the current-matched design still outperforms design 3, a designer

does not always have complete freedom in choosing the band gaps of monolithically

integrated sub-cells. The high efficiency of design 3’s very counter-intuitive band gap

combination indicates that some designs that were previously dismissed as inefficient

may deserve new consideration.

4.2.2 Optimizing series-connected ensembles for radiative cou-

pling

Optimizing series-connected spectrum splitting ensembles to account for radiative

coupling presents many of the same challenges as optimizing the electrically indepen-

dent ensembles in Chapter 2. While the ensembles will ideally be current-matched

with the radiative coupling included, there is no simple way to predict which band

gap combinations will meet this requirement. Fortunately, the simulated annealing

approach described in Chapter 2 is easily applied to the task. Rather than start

with a randomly-generated initial design, the optimization was seeded with the op-

timized series-connected ensemble from Chapter 2. The optimization again included

two rounds, first with a widely-varying fluctuation applied to the ensemble and then

with a narrow fluctuation. Each candidate design was evaluated for series-connected

performance with radiative coupling, where 93% of each sub-cell’s total emission was

assumed to be absorbed in the subsequent sub-cell. The radiative emission was cal-

culated based on an air interface at the top of each sub-cell and an index-matched
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Figure 4.6. Efficiency of ideal series-connected ensembles with ra-

diative coupling. Points in black correspond to ensembles optimized

to be current-matched under AM1.5D, with radiative coupling ne-

glected. Points in red correspond to ensembles optimized for maxi-

mum efficiency with radiative coupling.

interface at the bottom, with all cells having an index of 3.6.

Figure 4.6 shows the efficiency of series-connected ensembles with radiative cou-

pling with 2 to 8 sub-cell. The black curve shows the efficiency of designs optimized

such that each sub-cell absorbs an equal number of photons under AM1.5D. These

are the same ensembles discussed in Chapter 2. The red curve shows the efficiency

of ensembles with band gaps optimized to take advantage of radiative coupling. The

plot shows a significant performance advantage for designs optimized with radiative

coupling in mind. The benefit increases with increasing sub-cell number, which is

consistent with the trend shown in Figure 4.3 of increased benefit as sub-cell spacing

decreases. The lower level of improvement for the 7 sub-cell ensemble likely comes

from the increasing sensitivity of these ensembles to current starvation when one sub-

cell is under-illuminated. The optimization was not able to select repeated optimum

values for these ensembles, and so a higher efficiency may be attainable. However, the

performance of these designs is very sensitive to slight variations in band gap value,

and consequently the optimum design may require an impractical level of control over

sub-cell band gap (in the proxy of material composition) for experimental realization.

71



4.3 Conclusion

The examination of ensemble effects resulting from radiative coupling, while not com-

plete, suggests additional efficiency benefits are achievable by accounting for this phe-

nomenon in the design process. Future work should focus on adapting these results

to account for realistic material quality, ptimizing electrically independent ensem-

bles with sub-cells operating above their isolated max power point voltage, and the

performance of other optical systems to determine how robust the effect is in other

settings.
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Chapter 5

Annual energy production of spectral

splitting ensembles

The efficiency of photovoltaic systems is evaluated under standardized test condi-

tions, which include the spectral composition and intensity of illumination [22, 23].

While standardization allows a fair basis for comparison of systems, performance in

the installation environment must be extrapolated based on expected differences in

temperature and illumination [21]. A variety of models attempt to predict energy pro-

duction performance based on system efficiency and site-specific conditions, but these

models typically restrict the variation in illumination to changes in intensity (total

irradiance) and neglect spectral variation under the assumption that the efficiency of

the photovoltaic system is not sensitive to the spectral composition of illumination.

This chapter examines that assumption for the spectral splitting designs discussed in

Chapter 2.

While it is simple to evaluate photovoltaic systems’ efficiency under standard

conditions, a truly efficient system will be able to convert a substantial portion of

incident light into electricity regardless of the specific irradiance conditions. Solar

power already suffers from the intermittent (though predictable) nature of sunlight

and the corresponding low capacity factor relative to other electricity generation

technologies. Therefore it is important to design for high performance under a variety

of conditions.

Here, a year’s worth of sunny day spectra were generated for a particular location

to provide an estimate of the degree of spectral variation a system might experience

over the course of a year. Using these spectra as the input for a detailed balance

73



calculation for different spectrum splitting ensembles resulted in a prediction of the

relative cumulative performance of different designs.

5.1 Variability of incident solar illumination

The spectrum of sunlight incident on the earth’s surface varies due to three main

factors. The first is variation in the spectrum emitted by the sun. This source of

variation is small, and accounts for no more than 0.3% of the photon flux variation

at any wavelength [24]. The rest of this analysis therefor neglects accounting for

variation in the spectrum incident at the top of the earth’s atmosphere. The second

source of variation is the path length of light through the atmosphere to the earth’s

surface [26]. This path length is typically reported in units of “air mass” where an

air mass of 1 (AM1) corresponds to the depth of the atmosphere at the equator. As

light passes through the atmosphere, some photons are absorbed or scattered by gases

and suspended particles. The amount of attenuation at any particular wavelength is

strongly dependent on the path length, which is in turn dependent on location and

time of day and year. The final significant source of spectral variation is the specific

composition of the atmosphere along the light path. The atmosphere has substantial

variation in the local concentration of trace gases such as CO2, ozone, water vapor,

and other pollutants, as well as variation in the amount and type of particulate matter

suspended in the air. All of these materials have specific absorption and scattering

properties which affect the transmission of light at different wavelengths [25].

The effect of atmospheric composition and air mass on the incident spectrum can

be simulated using a multiple scattering and absorption model, SMARTS, which is

available from the National Renewable Energy Lab [50]. This model allows the user

to specify a wide variety of atmospheric conditions as well as location and time. The

user can simulate a variety of spectra, including the direct and diffuse components.

This analysis chose Phoenix, Az as a location, because it is a city with a large direct

component of the total irradiance. Because the designs capable of ultra-high efficiency

identified in Chapter 2 all had moderate to high concentration, the analysis used only
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Figure 5.1. Irradiance at 8 am, 10 am, and noon versus day of year,

as simulated for Phoenix, Az, using the SMARTS multiple scattering

and absorption model and average atmospheric conditions.

the direct component of the irradiance. The acceptance angle of concentrating optics

excludes most diffuse illumination from reaching the solar cell.

For each day of the year we generated spectra hourly from 8 am to 5 pm. Atmo-

spheric conditions were taken from NOAA data for hourly normal values of temper-

ature, pressure and dew point. These values are averages of measurements recorded

from 1980 to 2010. Aerosol optical depth and precipitable water were generated daily

from monthly mean and standard deviation values taken from the AERONET data

set [51]. Atmospheric CO2 concentration was set to 370 ppm and ozone concentration

set to the standard in the SMARTS model. Figure 5.1 shows the total irradiance

for each hour from 8 am, 10 am and noon over the course of the year. There is a

wide range of values for each time of day, with a seasonal trend towards increased

irradiance in the summer, as expected. The larger degree of variation for the 8 am

curve is a result of the larger air mass at this time of day increasing sensitivity to

atmospheric composition.
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5.2 Spectrum splitting performance under varying

illumination

Each of the 3650 spectra generated was used as the input spectrum for a detailed

balance calculation of energy production for the spectrum splitting ensembles under

consideration. In all cases the cells were treated as ideal, with unity absorption of

photons designated for each sub-cell and purely radiative recombination. All calcu-

lations were performed at 500 suns concentration, and the captured power for each

ensemble multiplied by one hour, thereby obtaining an average energy production for

each active hour of the year per square centimeter of cell area.

The results of this calculation are shown in Figure 5.2. Panel (a) shows the

efficiency of electrically independent, “independent” and electrically series-connected,

“series” ensembles under the AM1.5D spectrum at 500 suns concentration. Panel b

shows the projected annual energy production for independent and series ensembles

based on the spectra generated for Phoenix. In all cases the series ensembles generate

substantially less energy over the year than the corresponding independent ensemble

with the same number of cells. The energy production difference ranges from 10%

for the ensembles with 2 sub-cells to 25% for the ensembles with 20 sub-cells. The

amount of energy produced increases with number of sub-cells for the independent

ensembles, in contrast to the series ensembles. The energy production of these series-

connected ensembles saturates with 10 cells and performance degrades slightly as

additional sub-cells are added, despite the improvement in design efficiency. Clearly

the performance of a series-connected spectral splitting ensemble under the standard

AM1.5D spectrum is not an accurate prediction of its energy production capabilities

under varying spectra.

5.3 How spectral variation affects efficiency

The large deficit in energy production for the series ensembles comes from spectral

mismatch between the ensembles and the different realistic spectra. Spectral mis-
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spectra in each bin.

match is defined as 1 minus the ratio of the smallest sub-cell flux to the largest

sub-cell flux. An ensemble with perfect current matching across all sub-cells will have

a spectral mismatch of zero, while an ensemble with one sub-cell completely starved

for current will have a mismatch of 1. Figure 5.3 shows the spectral mismatch of

the series ensembles relative to irradiance level. The incident spectra are separated

into one hundred power bins and the spectral mismatch for each ensemble averaged

over the spectra in each bin. This plot shows a minimum spectral mismatch for all

series ensembles at power levels of 900 to 950 W/m2, which is comparable to the 900

W/m2 of the AM1.5D standard. All series ensembles have increasing mismatch as the

irradiance deviates from that level. Further, no ensemble has an average mismatch of

zero at any power level. All ensembles are losing conversion efficiency due to the series

connection constraint. Finally, at every power level, the average mismatch increases

with the number of sub-cells.

There are two possible mechanisms that can cause spectral mismatch. In the first

mechanism, the incident spectrum is close to the AM1.5D spectrum, but it includes

extra photons in the sub-band for one or more sub-cells. The series electrical con-
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nection will not allow the ensemble to collect the extra current absorbed in these

sub-cells and the extra power is simply re-emitted radiatively, while the total ensem-

ble produces as much power as it would under the AM1.5D spectrum. The second

mechanism occurs when one or more sub-cells of the series-connected ensemble is

starved of photons due to increased atmospheric absorption or scattering relative to

AM1.5D. If one or more sub-cells is converting many fewer photons than it is allotted

under the design spectrum, the series electrical connection will constrain the entire

ensemble to this reduced current level. The current reduction will tend to create a

large reduction in power conversion even when the incident power is close to the 900

W/m2 of the AM1.5D spectrum. Identifying the dominant cause of the efficiency

deficit may suggest design alterations that can improve the relative performance of

the series connected ensembles.

The independent ensembles were also designed for optimal performance under the

specific AM1.5D spectrum, and therefore are likely to suffer a decrease in spectral

efficiency under different illumination conditions. However, the penalty due to lower

spectral efficiency is much lower than the penalty due to spectral mismatch experi-

enced by the series ensembles. Figure 5.4 shows the average efficiency of the series

and independent ensembles relative to irradiance level for different numbers of sub-

cells. The ensembles with electrically-independent sub-cells, shown in panel (a), have

average efficiencies that vary 5 to 6 absolute percent over the different irradiance lev-

els, and efficiency increases with additional sub-cells at all irradiance levels. The far

right section of panel (a) shows the efficiency of these ensembles under the AM1.5D

spectrum. The design efficiency value for these ensembles is very close to the average

efficiency over incident powers ranging from 500 to 1000 W/m2. This plot indicates

that the instantaneous efficiency of electrically independent ensembles in the field

under direct sunlight is likely to be very close to the design efficiency under AM1.5D

throughout the year.

In contrast, the series ensembles, shown in Figure 2 panel (b) have efficiencies

that vary by a minimum of 13 percentage points for the ensemble with 2 sub-cells.

Ensembles with more sub-cells have an even larger range of efficiencies. The series
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ensembles have their highest average efficiency under spectra in the 850 to 900 W/m2

irradiance level, and their efficiency drops off steeply at lower incident irradiance

levels. Interestingly this efficiency drop-off is steeper as more sub-cells are included

in the ensemble, so that at very low irradiance levels the efficiency decreases with

additional sub-cells. The highest average efficiency for series-connected ensembles

is achieved not by the 20 cell ensemble, but by the 16 cell ensemble. Again, the far

right panel shows the ensemble efficiencies under AM1.5D illumination, and all design

efficiencies are higher than the average ensemble performance at any irradiance level.

The deficit between design and peak efficiency is only 0.8% absolute for the 2 cell

ensemble, but it increases to 10% absolute for the 20 cell ensemble, indicating that

the average field performance for series-connected ensembles with large numbers of

cells will not be predicted well by the performance under the standard spectrum.

5.4 Impact on annual energy production

The effect of the power-dependent efficiency of the series-connected ensembles on

annual energy production is illustrated by Figure 5.5. Panel a contains a plot showing

the excess energy independent ensembles produce relative to the series ensembles

with the same number of cells totaled over the power bins in panel shown in panel b.

The electrically-independent ensembles have a substantial efficiency advantage in the

lower power bins, resulting in a cumulative excess energy production of one quarter

to one third of the excess in the high power bins, despite there being many fewer

individual spectra and much less incident power in those bins. In particular, the bin

for 600 to 700 W/m2 holds almost the same excess energy generation as the bin for

800 to 850 W/m2, despite the higher power bin representing more than twice that

amount of total incident energy. More broadly, 75.6% of the annual incident energy

is contributed by spectra with more than 800W/m2, yet 41% of the excess energy

production by independent ensembles comes from converting the spectra with less

than 800 W/m2, which is mostly due to the series-connected ensembles having very

low efficiency for these spectra. This low-power conversion performance constitutes
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Figure 5.5. Panel (a) shows cumulative additional energy produced

by independent ensembles relative to series ensembles over the year’s

worth of simulated spectra. Panel (b) shows the number of simulated

spectra falling in each power level range.

an advantage in capacity factor for the electrically-independent ensembles.

While Figure 5.4 illustrates that series connected ensembles have a significant

performance loss under lower incident power, Figure 5.6 compares the performance

of series-connected and electrically independent ensembles over the course of the year.

Panel a shows the average series-connected efficiency as a percentage of the average

electrically independent ensemble efficiency for each month of the year while panel

b shows the mean, minimum and maximum incident power for each month. Under

AM1.5D the efficiency of a series ensemble as a percentage of the efficiency of the

independent ensemble with the same number of cells ranges from 98% for the 2 cell
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efficiency of series-connected ensembles relative to independent en-

sembles with the same number of sub-cells. Panel (b) shows the

monthly minimum, mean and maximum incident power levels.

ensemble to 95% for the 20 cell ensemble. All the relative efficiencies in Figure 3

are lower than the design values. As expected from the efficiency behavior shown

in Figure 5.4, the 2 and 3 cell series ensembles have the best performance relative

to their independent counterparts. For all ensembles the relative performance is low

in the winter months, which have low minimum irradiance levels, comparatively low

mean irradiance levels and produce the majority of the low power spectra. Relative

performance improves as mean and minimum irradiance increase in spring and early

summer and peak in May, before the highest mean irradiance levels. Interestingly,

however, the lowest relative performance corresponds to the months of July, August

and September, despite the high mean and minimum irradiance levels in those months.

The slight decrease in irradiance in the months of July and August corresponds
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to the typical peak of the Arizona monsoon season, which brings increased water

vapor in the air column and also increased aerosol optical depth. The absorption

and scattering caused by aerosols and water slightly decrease the direct transmission

and change the spectral composition, which in turn degrades the series ensemble

performance relative to the independent ensembles. Despite irradiance levels that

are very close to the AM1.5D level, the performance of the series ensembles is much

lower than expected from their design efficiency. It is particularly unfortunate that

the series ensemble performance degrades in the peak of summer, when daytime

electricity demand is highest in the Phoenix, Arizona area.

5.5 Conclusion

The analysis for Phoenix shows that a photovoltaic system’s performance under the

standard AM1.5D spectrum may not be a good prediction of its energy production

potential under the varying spectral conditions in deployment. Models for projecting

energy production that do not account for spectral variation are likely to severely

underestimate the advantage of more complex electrical designs.

Choosing the appropriate design for a photovoltaic system at a particular location

would benefit from a more detailed energy production prediction like the one described

in this chapter. Future work should focus on developing a test standard that can

predict energy production performance based on a manageable number of test spectra

and atmospheric data for the installation location.
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Chapter 6

Conclusions and future directions

The several threads of this thesis are all focused on the design and fabrication of

photovoltaic systems with very high efficiency. This is motivated primarily by the

sense that efficiency, if it can be obtained at a reasonable cost of manufacture, is highly

valuable for reducing the cost of electricity generated from sunlight. In another sense,

the pursuit of high efficiency by its nature requires high performance from every aspect

of a system’s design, in this case band-gap selection, cell radiative efficiency, and

optical and electrical system efficiency. Some performance improvements are easier

to obtain than others, but aggressively attempting to minimize all loss mechanisms

will often identify techniques that can be broadly applied in cost-effective fashion. In

particular, the performance enhancement gained from re-optimizing series-connected

ensembles accounting for radiative coupling could be integrated straightforwardly into

standard MJSC systems.

The annual energy production modeling of Chapter 5, combined with the radiative

coupling analysis, suggests another opportunity for performance enhancement. Series-

connected designs have traditionally been thought to require close current matching

between sub-cells to maximize performance. As Chapter 5 showed, optimizing designs

for a particular spectrum will result in lower performance under realistically variable

conditions. As chapter 4 showed with the series-connected triple junction example,

radiative coupling can mitigate many of the losses caused by current mismatch be-

tween sub-cells, provided the system is not current-limited by its top sub-cell. Thus

radiative coupling could potentially improve the over-all performance of a system by

stabilizing the system efficiency under irradiance conditions that deviate from the

design spectrum. This approach may cost the system in “headline” efficiency but
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result in greater energy production over the course of a day and year.

In order to validate photovoltaic system designs for energy production, some mea-

surement of system efficiency under varying spectral conditions is required. Ideally

such a measurement could be used in combination with site-specific climate data to

predict the energy production performance of a system installed in the field. Such

a tool would improve the cost projections used to determine the financial viability

of a photovoltaic installation. While Chapter 5 shows that electrically independent

systems will perform at a level comparable to their performance under the standard

spectrum, all current commercially-available high-efficiency solar cells are series con-

nected. The strong correlation between system efficiency and incident irradiance level

shown in Chapter 5 suggests a possible test method. A set of new standard spec-

tra, each at a different irradiance level with a spectral composition representative of

that level, could be created. Photovoltaic systems would then be tested under each of

these new spectra and a power-weighted average efficiency determined. Some amount

of location-specific prediction could be achieved by adjusting the weighting factors in

the average to reflect the relative prevalence of each irradiance level at the desired

location. Using a simple power weighting scheme would allow predictions using direct

and diffuse irradiance measurements which are currently available for a wide range of

locations, rather than requiring spectrally-resolved irradiance data.

The virtual substrate project was inspired by the advantage lattice-matched growth

has over metamorphic growth in terms of optoelectronic quality. While the introduc-

tion and successful commercialization of the dilute nitride material family decreases

the motivation to pursue new template lattice constants somewhat, the virtual sub-

strate still has potential as a template for other device applications. The next steps

of this project should begin with a thorough analytic or numeric analysis of the dy-

namics of crack formation and strain relaxation in the film during the etching and

transfer process. The system is not trivial, and such an analysis will identify limiting

dimensions and strain relaxation mechanisms, and would potentially help design an

improved transfer method. Once substrates with larger continuous uncracked area

can be consistently produced, a thorough examination of the surface quality and bond
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strength evolution under growth conditions will be essential.

The analysis of the system effects in radiative coupling is the least developed and,

I think, the most exciting direction of work in this thesis. The results presented here,

showing potential efficiency improvements for designing series-connected ensembles

to account for radiative coupling are preliminary. Future work should extend this

analysis to electrically independent ensembles and to systems with non-ideal behavior

accounted for.
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