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Abstract

Real-time demand response is essential for handling the uncertainties of renewable genera-

tion. Traditionally, demand response has been focused on large industrial and commercial

loads, however it is expected that a large number of small residential loads such as air con-

ditioners, dish washers, and electric vehicles will also participate in the coming years. The

electricity consumption of these smaller loads, which we call deferrable loads, can be shifted

over time, and thus be used (in aggregate) to compensate for the random fluctuations in

renewable generation.

In this thesis, we propose a real-time distributed deferrable load control algorithm to

reduce the variance of aggregate load (load minus renewable generation) by shifting the

power consumption of deferrable loads to periods with high renewable generation. The

algorithm is model predictive in nature, i.e., at every time step, the algorithm minimizes

the expected variance to go with updated predictions. We prove that suboptimality of this

model predictive algorithm vanishes as time horizon expands in the average case analysis.

Further, we prove strong concentration results on the distribution of the load variance

obtained by model predictive deferrable load control. These concentration results high-

light that the typical performance of model predictive deferrable load control is tightly

concentrated around the average-case performance. Finally, we evaluate the algorithm via

trace-based simulations.
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Chapter 1

Introduction

The electricity grid is expected to change dramatically over the coming decades. Conven-

tional coal and nuclear generation is being rapidly substituted by renewable generation such

as wind and solar [9]. However, these renewables are difficult to predict. For example, wind

generation prediction has a root-mean-square error of around 18% of the nameplate capac-

ity looking 24 hours ahead [23]. Such high uncertainty in generation calls the traditional

control strategy of “generation follows demand” into question.

Real-time demand response programs seek to induce dynamic demand management

of customers’ electricity load in response to power supply conditions, e.g., by reducing or

deferring power consumption in response to requests from the utility. Such programs have

the potential to compensate for the uncertainties in renewables in real-time so as to ease

the incorporation of renewable energy into the grid, and so are recognized as priority areas

for the future smart grid by both the National Institute of Standards and Technology [37]

and the Department of Energy [16].

The success of demand response depends on the willingness and ability of consumers’

electrical loads to be deferred over time. Such deferrable loads are expected to take many

forms, e.g., plug-in electric vehicles, dryers, air conditioners, etc. The penetration of de-

ferrable loads is expected to grow significantly in the coming years as a result of increasing

penetration of electric vehicles and smart appliances [17]. This expected increase high-
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lights the potential for scheduling deferrable loads in order to compensate for the random

fluctuations of renewable energy.

However, realizing the potential of deferrable loads requires the coordination of a large

number of distributed loads. Current approaches for achieving such coordination include 1)

direct load control (DLC) by load serving entities (LSE) [27, 34, 19, 20], and 2) time-of-use

pricing and other complex pricing structures [4, 11, 31]. DLC is the focus of this thesis since

the LSE has full control over the loads. Specifically, this thesis focuses on decentralized

DLC algorithms. The motivation for this approach is that, as the penetration of deferrable

loads grows, the scale of the task of controlling deferrable loads will prevent centralized

control and so distributed, decentralized coordination will become necessary.

Related work There is a growing body of work on decentralized direct load control

algorithms. This literature focuses on both evaluating algorithms in simulation-based eval-

uations [3, 36, 28] and on deriving theoretical performance guarantees [34, 19]. For example,

[34] proposes a decentralized charging strategy for electric vehicles (EV) that is optimal

if all EVs are identical, and [19] provides an algorithm for the setting when EVs are not

necessarily identical.

Typically, the algorithms proposed in the literature, e.g., [3, 36, 28, 34, 19], have not

considered uncertainties in renewable generation and deferrable load arrivals. However, of

course, only predictions of these quantities are known ahead of time in practice, and the

impact of prediction errors can be dramatic, e.g., see Figure 5.2.

Only very recently have algorithms that consider the uncertainties in renewable gener-

ation and deferrable load arrivals been proposed. Most of these works focus on simulation-

based studies, e.g., [14, 10, 15]; however some work does derive analytic performance guar-

antees [39, 13, 32, 8]. For example, reference [13] proposes an algorithm that achieves the

optimal competitive ratio in the case where renewable generation is precisely known (and

constant) and [32] proposes an algorithm with some worst-case performance guarantees.

Note that, while the algorithms proposed in [13, 32] are analyzed with a “worst-case”
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perspective, this thesis first focuses on the “average-case” perspective, then we show via

distributional analysis that the “average case” is indeed the representative case.

Summary of contributions We provide a model predictive algorithm for decentralized

deferrable load control in the context of uncertain predictions about both future loads and

future renewable generation. More specifically, in this thesis we propose a novel extension

of the “optimal deferrable load control problem” studied in [19]. This extension incorpo-

rates uncertainty about both deferrable and non-deferrable loads, in addition to inexact

predictions of renewable generation; and then uses this problem to derive a new algorithm

for deferrable load control. Further, we perform both analytic and trace-based perfor-

mance analysis of the algorithm in order to quantify the impact of prediction uncertainties

on deferrable load control. In particular, the contributions of the work are threefold.

First, we model renewable generation prediction as a Wiener filtering process [41] (Sec-

tion 2.1), that is able to model any zero mean, stationary prediction evolutions. Addi-

tionally, the formulation includes a very general model for deferable loads that allows for

heterogeneous deadlines and maximum charging rates, as well as stochastic arrivals.

Second, in the context of this model, we introduce a model predictive algorithm for

deferrable load control with uncertainty (Section 3.2). The model predictive algorithm

essentially solves a series of optimal control problems whose horizon lengths shrink with

time. At any time, the algorithm uses only the information that is available, i.e., specifi-

cations of deferrable loads that have already arrived and predictions on future loads and

renewable generation. In this sense, the algorithm we propose is a (non-trivial) extension

of the algorithm proposed in [19], which applies only in the case of exact knowledge of

loads and renewables. A key technique introduced by the algorithm is the concept of a

“pseudo deferrable load,” which is simulated at the utility to represent future deferrable

load arrivals.

Third, we perform a detailed performance analysis of our proposed algorithm. The per-

formance analysis uses both analytic results and trace-based experiments to study (i) the
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reduction in expected load variance achieved via deferrable load control, and (ii) the value

of using model predictive control via our algorithm when compared with static (open-loop)

control. The theorems in Section 4.1 characterize the impact of prediction inaccuracy on

deferrable load control. These analytic results highlight that as the time horizon expands,

the expected load variance obtained by our proposed algorithm approaches the optimal

value (Corollary 3). Also, as the time horizon expands, the algorithm obtains an increas-

ing variance reduction over the optimal static algorithm (Corollary 5, 6). Furthermore, in

Section 5 we provide trace-based experiments using data from Southern California Edison

and Alberta Electric System Operator to validate the analytic results. These experiments

highlight that our proposed algorithm obtains a small suboptimality under high uncer-

tainties of renewable generation, and has significant performance improvement over the

optimal static control.

The model predictive algorithm for controlling deferrable load as well as the average

case analysis of the performance is presented in [21], while the worst case analysis and

distributional analysis of the performance of this algorithm can be found in [12].
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Chapter 2

Real-time Deferrable Load Control

2.1 Model overview and Notation

this thesis studies the design and analysis of real-time control algorithms for scheduling

deferrable loads to compensate for the random fluctuations in renewable generation. In the

following we present a model of this scenario that serves as the basis for our algorithm de-

sign and performance evaluation. The model includes renewable generation, non-deferrable

loads, and deferrable loads, which are described in turn. The key differentiation of this

model from that of [19] is the inclusion of uncertainties (prediction errors) on future re-

newable generation and loads.

Throughout, we consider a discrete-time model over a finite time horizon. The time

horizon is divided into T time slots of equal length and labeled 1, . . . , T . In practice, the

time horizon could be one day and the length of a time slot could be 10 minutes.

2.2 Renewable generation and non-deferrable load

Renewable generation like wind is stochastic and difficult to predict. Similarly, non-

deferrable load including lights are hard to predict at a low aggregation level.

Since the focus is on scheduling deferrable loads, we aggregate renewable generation

and non-deferrable load into one process termed the base load, b = {b(τ)}Tτ=1, which is
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defined as the difference between non-deferrable load and renewable generation, and is a

stochastic process.

To model the uncertainty of base load, we use a causal filter based model described as

follows, and illustrated in Figure 2.1. In particular, the base load at time τ is modeled as

a random deviation δb = {δb(τ)}Tτ=1 around its expectation b̄ = {b̄(τ)}Tτ=1. The process

b̄ is specified externally to the model, e.g., from historical data and weather report, and

the process δb(τ) is further modeled as an uncorrelated sequence of identically distributed

random variables e = {e(τ)}Tτ=1 with mean 0 and variance σ2, passing through a causal

filter. Specifically, let f = {f(τ)}∞τ=−∞ denote the impulse response of this causal filter

and assume that f(0) = 1, then f(τ) = 0 for τ < 0 and

δb(τ) =
T∑
s=1

e(s)f(τ − s), τ = 1, . . . , T.

At time t = 1, . . . , T , a prediction algorithm can observe the sequence e(s) for s = 1, . . . , t,

and predicts b as1

bt(τ) = b̄(τ) +
t∑

s=1

e(s)f(τ − s), τ = 1, . . . , T. (2.1)

Note that bt(τ) = b(τ) for τ = 1, . . . , t since f is causal.

Figure 2.1: Diagram of the notation and structure of the model for base load, i.e., non-
deferrable load minus renewable generation.

This model allows for non-stationary base load through the specification of b̄ and a

broad class of models for uncertainty via f and e. In particular, two specific filters f that

1This prediction algorithm is a Wiener filter [41].
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we consider in detail later in the paper are:

1. A filter with finite but flat impulse response, i.e., there exists ∆ > 0 such that

f(t) =


1 if 0 ≤ t < ∆

0 otherwise;

2. A filter with an infinite and exponentially decaying impulse response, i.e., there exists

a ∈ (0, 1) such that

f(t) =


at if t ≥ 0

0 otherwise.

These two filters provide simple but informative examples for our discussion in Section 4.1.

2.3 Deferrable load

To model deferrable loads we consider a setting where N deferrable loads arrive over the

time horizon, each requiring a certain amount of electricity by a given deadline. Further,

a real-time algorithm has imperfect information about the arrival times and sizes of these

deferrable loads.

More specifically, we assume a total of N deferrable loads and label them in increasing

order of their arrival times by 1, . . . , N , i.e., load n arrives no later than load n + 1 for

n = 1, . . . , N − 1. Further, we define N(t) as the number of loads that arrive before (or at)

time t for t = 1, . . . , T and fix N(0) := 0. Thus, load 1, . . . , N(t) arrive before or at time t

for t = 1, . . . , T and N(T ) = N .

For each deferrable load, its arrival time and deadline, as well as other constraints on

its power consumption, are captured via upper and lower bounds on its possible power

consumption during each time. Specifically, the power consumption of deferrable load n at
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time t, pn(t), must be between given lower and upper bounds p
n
(t) and pn(t), i.e.,

p
n
(t) ≤ pn(t) ≤ pn(t), n = 1, . . . , N, t = 1, . . . , T. (2.2)

These are specified externally to the model. For example, if an electric vehicle plugs in

with Level II charging, then its power consumption must be within [0, 3.3]kW. However,

if it is not plugged in (has either not arrived yet or has already departed) then its power

consumption is 0kW, i.e., within [0, 0]kW. Further, we assume that a deferrable load n

must withdraw a fixed amount of energy Pn by its deadline, i.e.,

T∑
t=1

pn(t) = Pn, n = 1, . . . , N. (2.3)

Finally, the N deferrable loads arrive randomly throughout the time horizon. Define

a(t) :=

N(t)∑
n=N(t−1)+1

Pn (2.4)

as the total energy request of all deferrable loads that arrive at time t for t = 1, . . . , T . We

assume that {a(t)}Tt=1 is a sequence of independent identically distributed random variables

with mean λ and variance s2. Further, define

A(t) :=

T∑
τ=t+1

a(τ) (2.5)

as the total energy requested after time t for t = 1, . . . , T .

In summary, at time t = 1, . . . , T , a real-time algorithm has full information about the

deferrable loads that have arrived, i.e., p
n
, pn, and Pn for n = 1, . . . , N(t), and knows the

expectation of future deferrable load total energy request E(A(t)). However, a real-time

algorithm has no other knowledge about deferrable loads that arrive after time t.
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2.4 The deferrable load control problem

We can now formally state the deferrable load control problem that is the focus of this

thesis. Recall that the objective of real-time deferrable load control is to compensate for the

random fluctuations in renewable generation and non-deferrable load in order to “flatten”

the aggregate load d = {d(t)}Tt=1, which is defined as

d(t) = b(t) +
N∑
n=1

pn(t), t = 1, . . . , T. (2.6)

In this thesis, we focus on minimizing the sample path variance of the aggregate load d,

V (d), as a measure of “flatness”, that is defined as

V (d) =
1

T

T∑
t=1

(
d(t)− 1

T

T∑
τ=1

d(τ)

)2

. (2.7)

We can now formally specify the optimal deferrable load control (ODLC) problem that

we seek to solve:

ODLC: min
1

T

T∑
t=1

(
d(t)− 1

T

T∑
τ=1

d(τ)

)2

(2.8)

over pn(t), d(t), ∀n, t

s.t. d(t) = b(t) +
N∑
n=1

pn(t), ∀t;

p
n
(t) ≤ pn(t) ≤ pn(t), ∀n, t;

T∑
t=1

pn(t) = Pn, ∀n.

In the above ODLC, the objective is simply the sample path variance of the aggregate

load, V (d), and the constraints correspond to equations (2.6), (2.2), and (2.3), respectively.

We chose V (d) as the objective for ODLC because of its significance for microgrid operators

[26]. However, additionally, [19] has proven that the optimal solution does not change if
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the objective function V (d) is replaced by f(d) =
∑T

t=1 U(d(t)) where U : R→ R is strictly

convex. Hence, we can use V (d) without loss of generality.



11

Chapter 3

Model Predictive Algorithm

Given the optimal deferrable load control (ODLC) problem defined in (2.8), the first con-

tribution of this thesis is to design an algorithm that solves ODLC in real-time, given

uncertain predictions of base and deferrable loads.

There are two key challenges for the algorithm design. First, the algorithm has access

only to uncertain predictions at any given time, i.e., at time t the algorithm only knows

deferrable loads 1 to N(t) rather than 1 to N , and only knows the prediction bt instead of b

itself. Second, even if there was no uncertainty in predictions, solving the ODLC problem

requires significant computational effort when there are a large number of deferrable loads.

Motivated by these challenges, in this section we design a decentralized algorithm with

strong performance guarantees even when there is uncertainty in the predictions. The

algorithm builds on the work of [19], which provides a decentralized algorithm for the case

without uncertainty in predictions. We present the details of the algorithm from [19] in

Section 3.1 and then present a modification of the algorithm to handle uncertain predictions

in Section 3.2.

3.1 Load control without uncertainty

We start with the case where the algorithm has complete knowledge (no uncertainty) about

base load and deferrable loads. In this context, the key algorithmic challenge is to solve
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the ODLC problem in (2.8) via a decentralized algorithm. Such a decentralized algorithm

was proposed in [19], and we summarize the algorithm and its analysis here.

Algorithm definition: The algorithm from [19] is given in Algorithm 1. It is iterative

and the superscripts in brackets denote the round of iteration. In each iteration k ≥ 0,

there are two key steps: Step (ii) and (iii). In Step (ii), the utility calculates the average

load g(k) and broadcasts it to all deferrable loads. Note that the utility only needs to know

the reported schedule p
(k)
n , the base load b, and the number of deferrable loads N . It does

not need to know the constraints of the deferable loads. In Step (iii), each deferrable load

n updates p
(k+1)
n by solving a convex optimization. The objective function has two terms.

The first term can be interpreted as the electricity bill if the electricity price was set to

g(k). The second term vanishes as iterations continue.

Algorithm convergence results: Importantly, though Algorithm 1 is iterative, it

converges very fast. In fact, the simulations in [19] stop the iterations after 15 rounds (i.e.,

K=15) in all cases because convergence is already achieved. Further, Algorithm 1 provably

solves the ODLC problem given in (2.8) when there is no uncertainty, i.e., when N(t) = N

and bt = b for t = 1, . . . , T [19]. More precisely, let O denote the set of optimal solutions to

(2.8), and define d(p,O) := minp̂∈O ‖p− p̂‖ as the distance from a deferrable load schedule

p to optimal deferrable load schedules O.

Proposition 1 ([19]). When there is no uncertainty, i.e., N(t) = N and bt = b for

t = 1, . . . , T , the deferrable load schedules p(k) obtained by Algorithm 1 converge to optimal

schedules to ODLC, i.e., d(p(k),O)→ 0 as k →∞.

A particular class of optimal solutions will be of interest to us later in the paper, so we

define them here. Specifically, we call a feasible deferrable load schedule p = (p1, . . . , pN )

valley-filling, if there exists some constant C ∈ R such that
∑N

n=1 pn(t) = (C − b(t))+ for

t = 1, . . . , T .

Proposition 2 ([19]). If a valley-filling deferrable load schedule exists, then it solves
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ODLC. Further, in such cases, all optimal schedules to ODLC have the same aggregate

load.

Note that valley-filling schedules tend to exist if there is a large number of deferrable

loads, in such settings optimal solutions to ODLC are valley-filling.

3.2 Load control with uncertainty

Algorithm 1 provides a decentralized approach for solving the ODLC problem; however it

assumes exact knowledge (certainty) about base load and deferrable loads. In this section,

we adapt Algorithm 1 to the setting where there is uncertainty in base load and deferrable

load predictions, while maintaining strong performance guarantees. In particular, in this

section we assume that at time t, only the prediction bt is known, not b itself, and only

information about deferrable loads 1 to N(t) and the expectation of future energy requests

E(A(t)) are known.

Algorithm definition: To adapt Algorithm 1 to deal with uncertainty, the first step

is straightforward. In particular, it is natural to replace the base load b by its prediction

bt in Algorithm 1 to deal with the unavailability of b.

However, dealing with unavailable future deferrable load information is trickier. To

do this we use a pseudo deferrable load, which is simulated at the utility, to represent

future deferrable loads. More specifically, let q = {q(τ)}Tτ=t with q(t) = 0 denote the power

consumption of the pseudo load, and assume that it requests E(A(t)) amount of energy,

i.e.,
T∑
τ=t

q(τ) = E(A(t)). (3.1)

We also assume that q is point-wise upper and lower bounded by some upper and lower

bounds q and q, i.e.,

q(τ) ≤ q(τ) ≤ q(τ), τ = t, . . . , T. (3.2)
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Note that q(t) = q(t) = 0. The bounds q and q should be set according to historical data.

Here, for simplicity, we consider them to be q(τ) = 0 and q(τ) =∞ for τ = t+ 1, . . . , T .

Given the above setup, the utility solves the following problem at every time slot

t = 1, . . . , T , to accommodate the availability of only partial information.

ODLC-t: min
T∑
τ=t

(
d(τ)− 1

T − t+ 1

T∑
s=t

d(s)

)2

(3.3)

over pn(τ), q(τ), d(τ), n ≤ N(t), τ ≥ t

s.t. d(τ) = bt(τ) +

N(t)∑
n=1

pn(τ) + q(τ), τ ≥ t;

p
n
(τ) ≤ pn(τ) ≤ pn(τ), n ≤ N(t), τ ≥ t;

T∑
τ=t

pn(τ) = Pn(t), n ≤ N(t);

q(τ) ≤ q(τ) ≤ q(τ), τ ≥ t;
T∑
τ=t

q(τ) = E(A(t))

where Pn(t) = Pn −
∑t−1

τ=1 pn(τ) is the energy to be consumed at or after time t, for

n = 1, . . . , N(t) and t = 1, . . . , T .

Now, adjusting Algorithm 1 to solve ODLC-t gives Algorithm 2, which is real-time and

shrinking-horizon. Note that if base load prediction is exact (i.e., bt = b for t = 1, . . . , T )

and all deferrable loads arrive at the beginning of the time horizon (i.e., N(t) = N for

t = 1, . . . , T ), then ODLC-1 reduces to ODLC and Algorithm 2 reduces to Algorithm 1.

Algorithm convergence results: We provide analytic guarantees on the convergence

and optimality of Algorithm 2. In particular, we prove that Algorithm 2 solves ODLC-t

at every time slot t. Specifically, let O(t) denote the set of optimal schedules to ODLC-t,

and define d(p,O(t)) := min(p̂,q̂)∈O(t) ‖p− p̂‖ as the distance from a schedule p to optimal

schedules O(t) at time t, for t = 1, . . . , T .

Theorem 1. At time t = 1, . . . , T , the deferrable load schedules p(k) obtained by Algorithm
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2 converge to optimal schedules to ODLC-t, i.e., d(p(k),O(t))→ 0 as k →∞.

The theorem is proved in Appendix A.1. Though iterative, Algorithm 2 converges fast,

similar to Algorithm 1. In the simulations, setting K = 15 is enough for all test cases.

Similar to Proposition 2, “t-valley-filling” provides a simple characterization of the

solutions to ODLC-t. Specifically, at time t = 1, . . . , T , a feasible schedule (p, q) is called

t-valley-filling, if there exists some constant C(t) ∈ R such that

q(τ) +

N(t)∑
n=1

pn(τ) = (C(t)− bt(τ))+, τ = t, . . . , T. (3.4)

Given this definition of t-valley-filling, the following corollary follows immediately from

Proposition 2.

Corollary 1. At time t = 1, . . . , T , a t-valley-filling deferrable load schedule, if exists,

solves ODLC-t. Furthermore, in such cases, all optimal schedules to ODLC-t have the

same aggregate load.

This corollary serves as the basis for the performance analysis we perform in Section

4.1. Remember that t-valley-filling schedules tend to exist in cases where there are a large

numbers of deferrable loads.
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Algorithm 1 Deferrable load control without uncertainty

Input: The utility knows the base load b and the number N of deferrable loads. Each
load n ∈ {1, . . . , N} knows its energy request Pn and power consumption bounds pn and
p
n
. The utility sets K, the number of iterations.

Output: Deferrable load schedule p = (p1, . . . , pN ).

(i) Set k ← 0 and intitialize the schedule p(k) as

p
(k)
n (t)← 0, t = 1, . . . , T , n = 1, . . . , N .

(ii) The utility calculates the average load g(k) = d(k)/N ,

g(k)(t)← 1

N

(
b(t) +

N∑
n=1

p(k)n (t)

)
, t = 1, . . . , T,

and broadcasts g(k) to all deferrable loads.

(iii) Each load n updates a new schedule p
(k+1)
n by solving

min
T∑
τ=1

g(k)(τ)pn(τ) +
1

2

(
pn(τ)− p(k)n (τ)

)2
over pn(1), . . . , pn(T )

s.t. p
n
(τ) ≤ pn(τ) ≤ pn(τ), ∀τ ;

T∑
τ=1

pn(τ) = Pn,

and reports p
(k+1)
n to the utility.

(iv) Set k ← k + 1. If k < K, go to Step (ii).
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Algorithm 2 Deferrable load control with uncertainty

Input: At time t, the utility knows the prediction bt of base load and the number N(t)
of deferrable loads. Each deferrable load n ∈ {1, . . . , N(t)} knows its future energy
request Pn(t) and power consumption bounds pn and p

n
. The utility sets K, the number

iterations.
Output: At time t, output the power consumption pn(t) for deferrable loads 1, . . . , N(t).

At time slot t = 1, . . . , T :

(i) Set k ← 0. Each deferrable load n ∈ {1, . . . , N(t)} initializes its schedule {p(0)n (τ)}Tτ=t
as

p(0)n (τ)←

{
p
(K)
n (τ) if n ≤ N(t− 1)

0 if n > N(t− 1)
, τ = t, . . . , T

where p
(K)
n is the schedule of load n in iteration K of the previous time slot t− 1.

(ii) The utility solves

min

T∑
τ=t

bt(τ) +

N(t)∑
n=1

p(k)n (τ) + q(τ)

2

over q(t), . . . , q(T )

s.t. q(τ) ≤ q(τ) ≤ q(τ), τ ≥ t;
T∑
τ=t

q(τ) = E(A(t))

to obtain a pseudo schedule {q(k)(τ)}Tτ=t. The utility then calculates the average
aggregate load per deferrable load g(k) as

g(k)(τ)← 1

N(t)

bt(τ) +

N(t)∑
n=1

p(k)n (τ) + q(k)(τ)


for τ = t, . . . , T, and broadcasts {g(k)(τ)}Tτ=t to deferrable loads n = 1, . . . , N(t).

(iii) Each deferrable load n = 1, . . . , N(t) solves

min
T∑
τ=t

g(k)(τ)pn(τ) +
1

2

(
pn(τ)− p(k)n (τ)

)2
over pn(t), . . . , pn(T )

s.t. p
n
(τ) ≤ pn(τ) ≤ pn(τ), τ ≥ t;

T∑
τ=t

pn(τ) = Pn(t),

to obtain a new schedule {p(k+1)
n (τ)}Tτ=t, and reports {pk+1

n (τ)}Tτ=t to the utility.

(iv) Set k ← k + 1. If k < K, go to Step (ii).

(v) Deferrable load n ∈ {1, . . . , N(t)} sets pn(t)← pKn (t) and Pn(t+ 1)← Pn(t)− pn(t).
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Chapter 4

Performance Analysis

4.1 Average-case Analysis

To this point, we have shown that Algorithm 2 makes “optimal” decisions with the in-

formation available at every time slot, i.e., it solves ODLC-t at time t for t = 1, . . . , T .

However, these decisions are still suboptimal compared to what could be achieved if ex-

act information was available. In this section, our goal is to understand the impact of

uncertainty on the performance. In particular, we study two questions:

(i) How do the uncertainties about base load and deferrable loads impact the expected

sample path load variance obtained by Algorithm 2?

(ii) What is the improvement of using the real-time control provided by Algorithm 2 over

using the optimal static control?

Our answers to these questions are below. Throughout, we focus on the special, but

practically relevant, case when a t-valley-filling schedule exists at every time t = 1, . . . , T .

As we have mentioned previously, when the number of deferrable loads is large this is

a natural assumption that holds for practical load profiles. The reason for making this

assumption is that it allows us to use the characterization of optimal schedules given in

(3.4). In fact, without loss of generality, we further assume C(t) ≥ bt(τ) for τ = t, . . . , T ,
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under which (3.4) implies

d(t) = C(t) =
1

T − t+ 1

 T∑
τ=t

bt(τ) + E(A(t)) +

N(t)∑
n=1

Pn(t)

 (4.1)

for t = 1, . . . , T . Thus, equation (4.1) defines the model we use for the performance analysis

of Algorithm 2.

4.1.1 The expected load variance of Algorithm 2

We start by calculating the expected load variance, E(V ), of Algorithm 2. The goal is

to understand how uncertainty about base load and deferrable loads impacts the load

variance. Note that, if there are no base load prediction errors and deferrable loads arrive

at the beginning of the time horizon, then Algorithm 2 obtains optimal schedules that have

zero load variance. In contrast, when there are base load prediction errors and stochastic

deferrable load arrivals, the expected load variance is given by the following theorem.

To state the result, recall that {f(t)}∞t=−∞ is the causal filter modeling the correlation

of base load and define F (t) :=
∑t

s=0 f(s) for t = 0, . . . , T .

Theorem 2. The expected load variance E(V ) obtained by Algorithm 2 is

E(V ) =
s2

T

T∑
t=2

1

t
+
σ2

T 2

T−1∑
t=0

F 2(t)
T − t− 1

t+ 1
. (4.2)

The theorem is proved in Appendix A.4.

Theorem 2 explicitly states the interaction of the variability of base load prediction (σ)

and deferrable load prediction (s) with the horizon length T . Besides, it highlights the

correlation of base load prediction error through F . More specifically, the expected load

variance E(V ) tends to 0 as the uncertainties in base load and deferrable loads vanish, i.e.,

σ → 0 and s→ 0.

Corollary 2. The expected load variance E(V )→ 0 as σ → 0 and s→ 0.
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Another remark about Theorem 2 is that the two terms in (4.2) correspond to the

impact of the uncertainties in deferrable loads and base load respectively. In particular,

Theorem 2 is proved in Section A.4 by analyzing these two cases separately and then

combining the results. Specifically, the following two lemmas are the key pieces in the

proof of Theorem 2, but are also of interest in their own right.

Lemma 1. If there is no base load prediction error, i.e., bt = b for t = 1, . . . , T , then the

expected load variance obtained by Algorithm 2 is

E(V ) = s2
∑T

t=2
1
t

T
≈ s2 lnT

T
.

The lemma is proved in Appendix A.2.

Lemma 2. If there are no deferrable load arrivals after time 1, i.e., N(t) = N for t =

1, . . . , T , then the expected load variance obtained by Algorithm 2 is

E(V ) =
σ2

T 2

T−1∑
t=0

F 2(t)
T − t− 1

t+ 1
.

The lemma is proved in Appendix A.3.

Lemma 1 highlights that the more uncertainty in deferrable load arrival, i.e., the larger

s, the larger the expected load variance E(V ). On the other hand, the longer the time

horizon T , the smaller the expected load variance E(V ).

Similarly, Lemma 2 highlights that a larger base load prediction error, i.e., a larger

σ, results in a larger expected load variance E(V ). However, if the impulse response

{f(t)}∞t=−∞ of the modeling filter of the base load decays fast enough with t, then the

following corollary highlights that the expected load variance actually tends to 0 as time

horizon T increases despite the uncertainty of base load predictions.

Corollary 3. If there are no deferrable load arrivals after time 1, i.e., N(t) = N for

t = 1, . . . , T , and |f(t)| ∼ O(t−1/2−α) for some α > 0, then the expected load variance
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obtained by Algorithm 2 satisfies E(V )→ 0 as T →∞.

The corollary is proved in Appendix A.5.

4.1.2 Improvement over static control

The goal of this section is to quantify the improvement of real-time control via Algorithm 2

over the optimal static (open-loop) control. To be more specific, we compare the expected

load variance E(V ) obtained by the real-time control Algorithm 2, with the expected load

variance E(V ′) obtained by the optimal static control, which only uses base load prediction

at the beginning of the time horizon (i.e., b̄) to compute deferrable load schedules. We

assume N(t) = N for t = 1, . . . , T in this section since otherwise any static control cannot

obtain a schedule for all deferrable loads. Thus, the interpretation of the results that follow

is as a quantification of the value of incorporating updated base load predictions into the

deferrable load controller.

To begin the analysis, note that E(V ) for this setting is given in Lemma 2. Further, it

can be verified that the optimal static control is to solve ODLC with b replaced by b̄, and

the corresponding expected load variance E(V ′) is given by the following lemma.

Lemma 3. If there is no stochastic load arrival, i.e., N(t) = N for t = 1, . . . , T , then the

expected load variance E(V ′) obtained by the optimal static control is

E(V ′) =
σ2

T 2

T−1∑
t=0

(
T (T − t)f2(t)− F 2(t)

)
.

The lemma is proved in Appendix A.6.

Next, comparing E(V ) and E(V ′) given in Lemma 2 and 3 shows that Algorithm 2 al-

ways obtains a smaller expected load variance than the optimal static control. Specifically,

Corollary 4. If there is no deferrable load arrival after time 1, i.e., N(t) = N for t =
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1, . . . , T , then

E(V ′)− E(V ) =
σ2

T

T∑
t=1

1

2t

t−1∑
m=0

t−1∑
n=0

(f(m)− f(n))2 ≥ 0.

The corollary is proved in the extended version [22].

Corollary 4 highlights that Algorithm 2 is guaranteed to obtain a smaller expected load

variance than the optimal static control. The next step is to quantify how much smaller

E(V ) is in comparison with E(V ′).

To do this we compute the ratio E(V ′)/E(V ). Unfortunately, the general expression

for the ratio is too complex to provide insight, so we consider two representative cases

for the impulse response f(t) of the causal filter in order to obtain insights. Specifically,

we consider examples (i) and (ii) from Section 2.2. Briefly, in (i) f(t) is finite and in (ii)

f(t) is infinite but decays exponentially in t. For these two cases, the ratio E(V ′)/E(V ) is

summarized in the following corollaries.

Corollary 5. If there is no deferrable load arrival after time 1, i.e., N(t) = N for t =

1, . . . , T , and there exists ∆ > 0 such that

f(t) =


1 if 0 ≤ t < ∆

0 otherwise,

then
E(V ′)

E(V )
=

T/∆

ln(T/∆)

(
1 +O

(
1

ln(T/∆)

))
.

The corollary is proved in the extended version [22].

Corollary 6. If there is no deferrable load arrival after time 1, i.e., N(t) = N for t =
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1, . . . , T , and there exists a ∈ (0, 1) such that

f(t) =


at if t ≥ 0

0 otherwise,

then
E(V ′)

E(V )
=

1− a
1 + a

T

lnT

(
1 +O

(
ln lnT

lnT

))
.

The corollary is proved in the extended version [22].

Corollary 5 highlights that, in the case where f is finite, if we define λ = T/∆ as the

ratio of time horizon to filter length, then the load reduction roughly scales as λ/ ln(λ).

Thus, the longer the time horizon is in comparison to the filter length, the larger expected

load variance reduction we obtain from using Algorithm 2 as compared with the optimal

static control.

Similarly, Corollary 6 highlights that, in the case where f is infinite and exponentially

decaying, the expected load variance reduction scales with T as T/ lnT with coefficient

(1 − a)/(1 + a). Thus, the smaller a is, which means the faster f dies out, the more load

variance reduction we obtain by using real-time control. This is similar to having a smaller

∆ in the previous case.

4.2 Worst-case analysis

The results surveyed above highlight that Algorithm 2 performs well on average; however,

it is often important to guarantee more than good average case performance. For that

reason, many results in the literature focus on worst case analysis, e.g., [30, 33, 6]. While

no existing results apply directly to the setting of this thesis, it is straightforward to see

that the worst-case performance of Algorithm 2 is quite bad.

To see this, let us consider a setting where the prediction error for generation, e, and

deferrable load, a, have bounded deviations from their means (0 and λ respectively).
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Definition 1. We say that prediction errors are bounded if there exist ε1 and ε2 such

that, at any time t = 1, . . . , T ,

|a(t)− λ| ≤ ε1, |e(t)| ≤ ε2. (4.3)

In this situation, it is straightforward to see that the worst case performance of Al-

gorithm 2 can potentially be quite bad. For two real numbers a, b ∈ R, define a ∨ b :=

max{a, b}.

Proposition 3. If a t-valley-filling solution exists for t = 1, 2, . . . , T , and prediction errors

are bounded by ε1 and ε2 as in (4.3), then the worst-case load variance supa,e V achieved

by Algorithm 2 is

sup
a,e

V = ε21

(
1− 1

T

T∑
k=1

1

k

)

+
ε22
T 2

T−1∑
τ=0

T−1∑
s=0

(
T

τ ∨ s+ 1
− 1

)
|F (τ)F (s)|.

The worst-case performance is achieved when all prediction errors on the load arrivals

are equal to ε1 while all prediction errors on the generation are equal to ε2 in magnitude

with the appropriate signs—the case where a(t) = λ+ ε1 and e(t) = ε2 · sgn(F (T − t)) for

all t.

Corollary 7. If a t-valley-filling solution exists for t = 1, 2, . . . , T , and prediction errors

are bounded by ε1 and ε2 as in (4.3), then the worst-case load variance supa,e V achieved

by Algorithm 2 is lower bounded as

sup
a,e

V ≥ ε21

(
1− 1

T

T∑
k=1

1

k

)
≈ ε21

(
1− lnT

T

)
.
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Interestingly, the form of Corollary 7 implies that, in the worst-case, Algorithm 2 can

be as bad as having no control at all: the time averaged load variance behaves like the

worst one step load variance. Meanwhile, recall from Proposition ?? that the average

performance E(V )→ 0 as T →∞. Hence, while the the load variance V has a small mean

E(V ), it can be quite large in the worst case.

4.3 Distributional analysis

The contrast between the worst-case analysis (Proposition 3) and average-case analysis

(Proposition ??) motivates the main goal of this thesis – to understand how often the “bad

cases,” where V takes large values, happen. That is, we want to understand what typical

variations of V under Algorithm 2 look like.

4.3.1 Concentration bounds

We start with analyzing the tail probability of V . Concretely, our focus is on

Vη := min{c ∈ R | V ≤ c with probability η},

which denotes the minimum value c such that V ≤ c with probability η for η ∈ [0, 1]. Our

main result provides upper bounds on Vη, for large values of η, for arbitrary of prediction

error distributions.

More specifically, we prove that with high probability, the load variance of Algorithm

2 does not deviate much from its average-case performance, i.e., we prove a concentration

result for model predictive deferable load control.

Theorem 3. Suppose a t-valley filling solution exists for t = 1, 2, . . . , T , and prediction

errors bounded by ε1 and ε2 as in (4.3). Then the distribution of the load variance V
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obtained by Algorithm 2 satisfies a Bernstein type concentration, i.e.,

P(V − EV > t) ≤ exp

(
−t2

16ε2λ1(2EV + t)

)
(4.4)

where ε = max(ε1, ε2) and

λ1 =
lnT

T
+

1

T 2

T−1∑
t=0

F 2(t)
T − t+ 1

t+ 1
.

The theorem is proven in Appendix B.2.

To build intuition, the tail probability bound of V in (4.4) can be simplified for two

different regimes of t as

P(V − EV > t) ≤


exp

(
−t2

48ε2λ1EV

)
, t < EV

exp
(
−t

48ε2λ1

)
, t ≥ EV.

(4.5)

Though looser than that in (4.4), the tail bound in (4.5) highlights that V has a Gaussian

tail probability bound when t < EV and an Exponential tail probability bound when

t ≥ EV .

Theorem 3 relates the tail behavior of V with the maximum prediction error ε and the

error correlation F over time. It implies that the actual performance of Algorithm 2 does

not deviate much from its mean. To illustrate this, consider the following example where

the prediction on baseload is precise, since the parameter λ1 has a simple expression in

this scenario.

Example 1. Suppose that the baseload prediction is precise, i.e., ε2 = 0. Then the average

load variance is

E[V ] =
s2

T

T∑
t=2

1

t
≈ s2 lnT/T
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and the tail bound in Theorem 3 can be simplified as

P(V − EV > cEV ) ≤ exp

(
− c2

2 + c

s2

16ε2

)
.

Recall that constant s is the variance of a and constant ε is the maximum deviation of

a from its mean. The above expression shows that, with high probability, V is at most a

constant c+ 1 times of its mean EV .

More generally, the quantity λ1 controls the decaying speed of the tail bound in (4.4):

the smaller λ1, the faster the tail bound P(V −EV > t) decays in t, and the load variance V

achieved by Algorithm 2 concentrates sharper around its mean EV . The following corollary

highlights that λ1 tends to 0 as T increases, provided that the error correlation f(t) decays

fast enough in t. Note that the condition on f is the same for Corollary 8 and Proposition

??.

Corollary 8. Under the assumptions of Theorem 3, if the error correlation f ∼ O(t−
1
2
−α)

for some α > 0, then λ1 → 0 as T →∞.

A detailed proof of Theorem 3 is included in the Appendix; however it is useful to

provide some informal intuition for the argument used.

In general, tail probability bounds can be obtained by controlling the moments of a

random variable. For example, the Markov inequality gives inverse linear tail probability

bound using the first moment, and the Chebyshev inequality provides inverse quadratic tail

probability bound using the second moment. However, the bound we obtained in Theorem

3 approaches 0 much faster for large t than the aforementioned Markov and Chebyshev

bounds. This is done by controlling the moment generating function of V using the convex

Log-Sobolev inequality.

A challenge in controlling the moment generating function of V is that, the most com-

monly used approach—the Martingale bounded difference approach [35]—only obtains very

loose tail probability bounds in our case. This is because V can change dramatically when
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one of the sources a(t) or e(t) of the randomness changes. Instead, we exploit the fact

that the gradient of V is bounded by a linear function of itself (similar but slightly differ-

ent from the “self-bounding” property defined in [7]). Using this property together with

Log-Sobolev inequality in the product measure gives us a nice way to bound the entropy

of V . After this we apply the Herbst’s argument [29] to compute a good estimate on the

concentration of V .

4.3.2 Bounds on the variance

To further understand the scale of typical load variance V under Algorithm 2, it is useful

to also study the variance. In addition, the form of the variance highlights the impact of

the tight concentration shown in Theorem 3.

Theorem 4. Suppose a t-valley-filling solution exists for t = 1, 2, . . . , T , and prediction

errors are bounded by ε1 and ε2 as in (4.3). Then the variance var(V ) of V obtained by

Algorithm 2 is bounded above by

var(V ) ≤
(

4ε1s lnT

T

)2

+

(
4ε2σ

T 2

T−1∑
t=0

F 2(t)
T − t+ 1

t+ 1

)2

. (4.6)

To interpret this result, let var(V ) denote the upper bound on var(V ) provided in (4.6).

Theorem 4 implies that EV and

√
var(V ) scale similarly with T . In particular, the first

term s2

T

∑T
t=2

1
t in EV scales with T as Ω(lnT/T ) while the first term (4ε1s lnT/T )2 in

var(V ) scales with T as Ω
(
(lnT/T )2

)
, and the second terms in EV and var(V ) have the

same relationship. Hence, the standard deviation
√

var(V ), which is upper bounded by√
var(V ), is at most on the same scale as EV as T expands. It immediately follows from

the Chebyshev inequality that V can only deviate significantly from E(V ) with a small

probability.
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Corollary 9. Under the assumptions in Theorem 4, for t > 0,

P(|V − EV | > t)

≤ 1

t2

(4ε1s lnT

T

)2

+

(
4ε2σ

T 2

T−1∑
τ=0

F 2(τ)
T − τ + 1

τ + 1

)2
 . (4.7)

While the tail bound (4.4) in Theorem 3 scales at least exponentially in t, the Chebyshev

inequality only provides a tail bound (4.7) that scales inverse quadratically in t. Hence for

large t, (4.4) provides a much tighter tail bound. However for small values of t, the tail

bound (4.7) is usually tighter since the variance var(V ) is well estimated in (4.6).

Furthermore, the variance var(V ) vanishes as T expands, provided that f(t) decays

sufficiently fast as t grows, as formally stated in the following corollary.

Corollary 10. Under the assumptions of Theorem 4, if the error correlation f ∼ O(t−
1
2
−α)

for some α > 0, then var(V )→ 0 as T →∞.

Note that the condition on f parallels that in Proposition ??.
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Chapter 5

Simulation

In this Chapter we use trace-based experiments to explore the generality of the analytic

results in the previous section. In particular, the results in the previous section characterize

the expected load variance obtained by Algorithm 2 as a function of prediction uncertain-

ties, and quantify the improvement of Algorithm 2 over the optimal static (open-loop)

controller. However, the analytic results make simplifying assumptions on the form of un-

certainties and solution schedules (equation (4.1)). Therefore, it is important to assess the

performance of the algorithm using real-world data.

5.1 Experimental setup

The numerical experiments we perform use a time horizon of 24 hours, from 20:00 to 20:00

on the following day. The time slot length is 10 minutes, which is the granularity of the

data we have obtained about renewable generation.

Base load Recall that base load is a combination of non-deferrable load and renewable

generation. The non-deferrable load traces used in the experiments come from the average

residential load in the service area of Southern California Edison in 2012 [38]. In the

simulations, we assume that non-deferrable load is precisely known so that uncertainties

in the base load only come from renewable generation. In particular, non-deferrable load
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Figure 5.1: Illustration of the traces used in the experiments. (a) shows the average residential
load in the service area of Southern California Edison in 2012. (b) shows the total wind power
generation of the Alberta Electric System Operator scaled to represent 20% penetration. (c) shows
the normalized root-mean-square wind prediction error as a function of the time looking ahead for
the model used in the experiments.

over the time horizon of a day is taken to be the average over the 366 days in 2012 as in

Figure 5.1a, and assumed to be known to the utility at the beginning of the time horizon.

In practice, non-deferrable load at the substation feeder level can be predicted within 1–3%

root-mean-square error looking 24 hours ahead [18].

The renewable generation traces we use come from the 10-minute historical data for

total wind power generation of the Alberta Electric System Operator from 2004 to 2009 [5].

In the simulations, we scale the wind power generation so that its average over the 6 years

corresponds to a number of penetration levels in the range between 5% and 30%, and pick

the wind power generation of a randomly chosen day as the renewable generation during

each run. Figure 5.1b shows the wind power generation for four representative days, one

for each season, after scaling to 20% penetration.

We assume that the renewable generation is not precisely known until it is realized, but

that a prediction of the generation, which improves over time, is available to the utility. The

modeling of prediction evolution over time is according to a martingale forecasting process

[25, 24], which is a standard model for an unbiased prediction process that improves over

time.

Specifically, the prediction model is as follows: For wind generation w(τ) at time τ ,
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the prediction error wt(τ) − w(τ) at time t < τ is the sum of a sequence of independent

random variables ns(τ) as

wt(τ) = w(τ) +
τ∑

s=t+1

ns(τ), 0 ≤ t < τ ≤ T.

Here w0(τ) is the wind prediction without any observation, i.e., the expected wind gener-

ation w̄(τ) at the beginning of the time horizon (used by static control).

The random variables ns(τ) are assumed to be Gaussian with mean 0. Their variances

are chosen as

E(n2s(τ)) =
σ2

τ − s+ 1
, 1 ≤ s ≤ τ ≤ T

where σ > 0 is such that the root-mean-square prediction error
√

E(w0(T )− w(T ))2 look-

ing T time slots (i.e., 24 hours) ahead is 0%–22.5% of the nameplate wind generation

capacity.1 According to this choice of the variances of ns(τ), root-mean-square prediction

error only depends on how far ahead the prediction is, in particular as in Figure 5.1c. This

choice is motivated by [23].

Deferrable loads For simplicity, we consider the hypothetical case where all deferrable

loads are electric vehicles. Since historical data for electric vehicle usage is not available,

we are forced to use synthetic traces for this component of the experiments. Specifically,

in the simulations the electric vehicles are considered to be identical, each requests 10kWh

electricity by a deadline 8 hours after it arrives, and each must consume power at a rate

within [0, 3.3]kW after it arrives and before its deadline.

In the simulations, the arrival process starts at 20:00 and ends at 12:00 the next day

so that the deadlines of all electric vehicles lie within the time horizon of 24 hours. In

each time slot during the arrival process, we assume that the number of arriving electric

vehicles is uniformly distributed in [0.8λ, 1.2λ], where λ is chosen so that electric vehicles

1Average wind generation is 15% of the nameplate capacity, so the root-mean-square prediction error
looking T time slots ahead is 0%–150% the average wind generation.
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(on average) account for 5%–30% of the non-deferrable loads. While this synthetic workload

is simplistic, the results we report are representative of more complex setups as well.

Uncertainty about deferrable load arrivals is captured as follows. The prediction

E(A(t)) of future deferrable load total energy request is simply the arrival rate λ times

the length of the rest of the arrival process T ′− t where T ′ is the end of the arrival process

(12:00), i.e.,

E(A(t)) = λ(T ′ − t), t = 1, . . . , T ′.

If t > T ′, i.e., the deferrable load arrival process has ended, then E(A(t)) = 0.

Baselines for comparison Our goal in the simulations is to contrast the performance of

Algorithm 2 with a number of common benchmarks to tease apart the impact of real-time

control and the impact of different forms of uncertainty. To this end, we consider four

controllers in our experiments:

(i) Offline optimal control: The controller has full knowledge about the base load and

deferrable loads, and solves the ODLC problem offline. It is not realistic in practice,

but serves as a benchmark for the other controllers since offline optimal control

obtains the smallest possible load variance.

(ii) Static control with exact deferrable load arrival information: The controller has full

knowledge about deferrable loads (including those that have not arrived), but uses

only the prediction of base load that is available at the beginning of the time horizon

to compute a deferrable load schedule that minimizes the expected load variance.

This static control is still unrealistic since a deferrable load is known only after it

arrives. But, this controller corresponds to what is considered in prior works, e.g.,

[34, 19, 20].

(iii) Real-time control with exact deferrable load arrival information. The controller has

full knowledge about deferrable loads (including those that have not arrived), and
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uses the prediction of base load that is available at the current time slot to update the

deferrable load schedule by minimizing the expected load variance to go, i.e., Algo-

rithm 2 with N(t) = N for t = 1, . . . , T . The control is unrealistic since a deferrable

load is known only after it arrives; however it provides the natural comparison for

case (ii) above.

(iv) Real-time control without exact deferrable load arrival information, i.e., Algorithm 2.

This corresponds to the realistic scenario where only predictions are available about

future deferrable loads and base load. The comparison with case (iii) highlights the

impact of deferrable load arrival uncertainties.

The performance measure that we show in all plots is the “suboptimality” of the con-

trollers, which we define as

η :=
V − V opt

V opt
,

where V is the load variance obtained by the controller and V opt is the load variance

obtained by the offline optimal, i.e., case (i) above. Thus, the lines in the figures correspond

to cases (ii)-(iv).

5.2 Experimental results

Our experimental results focus on two main goals: (i) understanding the impact of predic-

tion accuracy on the expected load variance obtained by deferrable load control algorithms,

and (ii) contrasting the real-time (closed-loop) control of Algorithm 2 with the optimal

static (open-loop) controller. We focus on the impact of three key factors: wind prediction

error, the penetration of deferrable load, and the penetration of renewable energy.

The impact of prediction error To study the impact of prediction error, we fix the

penetration of both renewable generation (wind) and deferrable loads at 10% of non-

deferrable load, and simulate the load variance obtained under different levels of root-
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mean-square wind prediction errors (0%–22.5% of the nameplate capacity looking 24 hours

ahead). The results are summarized in Figure 5.2a. It is not surprising that suboptimality

of both the static and the real-time controllers that have exact information about deferrable

load arrivals is zero when the wind prediction error is 0, since there is no uncertainty for

these controllers in this case.
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Figure 5.2: Illustration of the impact of wind prediction error on suboptimality of load
variance.

As prediction error increases, the suboptimality of both the static and the real-time con-

trol increases. However, notably, the suboptimality of real-time control grows much more

slowly than that of static control, and remains small (¡4.7%) if deferrable load arrivals are

known, over the whole range 0%–22.5% of wind prediction error. At 22.5% prediction error,

the suboptimality of static control is 4.2 times that of real-time control. This highlights

that real-time control mitigates the influence of imprecise base load prediction over time.

Moving to the scenario where deferrable load arrivals are not known precisely, we see

that the impact of this inexact information is less than 6.6% of the optimal variance.

However, real-time control yields a load variance that is surprisingly resilient to the growth

of wind prediction error, and eventually beats the optimal static control at around 10% wind

prediction error, even though the optimal static control has exact knowledge of deferrable
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loads and the adaptive control does not.

As prediction error increases, the suboptimality of the real-time control with or with-

out deferrable load arrival information gets close, i.e., the benefit of knowing additional

information on future deferrable load arrivals vanishes as base load uncertainty increases.

This is because the additional information is used to overfit the base load prediction error.

The same comparison is shown in Figure 5.2b for the case where renewable and de-

ferrable load penetration are both 20%. Qualitatively the conclusions are the same, however

at this higher penetration the contrast between the resilience of adaptive control and static

control is magnified, while the benefit of knowing deferrable load arrival information is

minified. In particular, real-time control without arrival information beats static control

with arrival information, at a lower (around 7%) wind prediction error, and knowing de-

ferrable load arrival information does not reduce suboptimality of real-time control with

22.5% wind prediction error.

The impact of deferrable load penetration Next, we look at the impact of deferrable

load penetration on the performance of the various controllers. To do this, we fix the wind

penetration level to be 20% and wind prediction error looking 24 hours ahead to be 18%,

and simulate the load variance obtained under different deferrable load penetration levels

(5%–30%). The results are summarized in Figure 5.3a.

Not surprisingly, if future deferrable loads are known and uncertainty only comes from

base load prediction error, then the suboptimality of real-time control is very small (¡11.2%)

over the whole range 5%–30% of deferrable load penetration, while the suboptimality of

static control increases with deferrable load penetration, up to as high as 166% (14.9 times

that of real-time control) at 30% deferrable load penetration.

However, without knowing future deferrable loads, the suboptimality of real-time con-

trol increases with the deferrable load penetration. This is because larger amount of de-

ferrable loads introduces larger uncertainties in deferrable load arrivals. But the sub-

optimality remains smaller than that of static control over the whole range 5%–30% of
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Figure 5.3: Suboptimality of load variance as a function of (a) deferrable load penetration and (b)
wind penetration. In (a) the wind penetration is 20% and in (b) the deferrable load penetration is
20%. In both, the wind prediction error looking 24 hours ahead is 18%.

deferrable load penetration. The highest suboptimality 25.7% occurs at 30% deferrable

load penetration, and is less than 1/6 of the suboptimality of static control, which assumes

exact deferrable load arrival information.

The impact of renewable penetration Finally, we study the impact of renewable

penetration. To do this we fix the deferrable load penetration level to be 20% and the

wind prediction error looking 24 hours ahead to be 18%, and simulate the load variance

obtained by the 4 test cases under different wind penetration levels (5%–25%). The results

are summarized in Figure 5.3b.

A key observation is that if future deferrable loads are known and uncertainty only

comes from base load prediction error, then the suboptimality of real-time control grows

much slower than that of static control, as wind penetration level increases. As explained

before, this highlights that real-time control mitigates the impact of base load prediction

error over time. In fact, the suboptimality of real-time control is small (¡15%) over the

whole range 5%–25% of wind penetration levels. Of course, without knowledge of future
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deferrable loads, the suboptimality of real-time control becomes bigger. However, it still

eventually outperforms the optimal static controller at around 6% wind penetration, despite

the fact that the optimal static controller is using exact information about deferrable loads.

5.3 A case study

Theorems 3 and 4 provide theoretical guarantees that the load variance V obtained by

Algorithm 2 concentrates around its mean, if prediction errors are bounded as in (4.3) and

error correlation decays sufficiently fast (c.f. Corollary 2). Thus, they give the intuition

that the expected performance of Algorithm 2 is a useful metric to focus on, and does

indeed give an indication of the “typical” performance of the algorithm.

However, our analysis is based on the assumption that a t-valley-filling solution exists,

which relies on the penetration of deferrable load being high enough. This is a neces-

sary technical assumption for our analysis, and has been used by the previous analysis of

Algorithm 2 as well, e.g., [21].

Given this assumption in the analytic results, it is important to understand the ro-

bustness of the results to this assumption. To that end, here we provide a case study to

demonstrate that this intuition is robust to the t-valley-filling assumption.

In our case study, we mimic the setting of [21], where an average-case analysis of

Algorithm 2 is performed. In particular, we use 24 hour residential load trace in the

Southern California Edison (SCE) service area averaged over the year 2012 and 2013 [2] as

the non-deferrable load, and wind power generation data from the Alberta Electric System

Operator from 2004 to 2012 [1]. The wind power generation data is scaled so that its

average over 9 years corresponds to 30% penetration level, and pick the wind generation

of a random day as renewable during each run. We generate random prediction error in

baseload and arrival of deferrable load similar to [21].

Given this setting, we simulate 100 instances in each scenario and compare the results

with the Theorems 3. The results are shown in Fig. 5.4 where we plot the cumulative
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Figure 5.4: The empirical cumulative distribution function of the load variance under Algorithm
2 over 24 hour control horizon using real data. The red line represents the analytic bound on the
90% confidence interval computed from Theorem 3, and the black line shows the empirical mean.

distribution (CDF) of the load variance produced by Algorithm 2 under two different sce-

narios. Specifically, in Fig. 5.4a, we assume the prediction error in wind power generation

is 30%, and in Fig. 5.4b, we assume the prediction error is 10%. We plot the CDF on the

same scale in both plots and additionally show an analytic bound on the 90% confidence

interval computed from Theorem 3. For both cases, the results highlight a strong concen-

tration around the mean, and the analytic bound from Theorem 3 is valid despite the fact

that the t-valley-filling assumption is not satisfied. Further, note that the analytic bound

is much tighter when prediction error is small, which coincides the statement of Theorem

3.
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Chapter 6

Concluding Remarks

We have proposed a model predictive algorithm for decentralized deferrable load control

that can schedule a large number of deferrable loads to compensate for the random fluctua-

tions in renewable generation. At any time, the algorithm incorporates updated predictions

about deferrable loads and renewable generation to minimize the expected load variance to

go. Further, by modeling the base load prediction updates as a Wiener filtering process, we

have conducted performance analysis to our algorithm in average case analysis and distribu-

tional analysis. We derived an explicit expression for the aggregate load variance obtained

by the average case performance of the algorithm, which quantitatively showed the im-

provement of model predictive control over static control. Interestingly, the sub-optimality

of static control is O(T/ lnT ) times that of real-time control in two representative cases of

base load prediction updates. Besides average case analysis, we have provided a distribu-

tional analysis of the algorithm and shown that the load variance is tightly concentrated

around its mean. Thus, our results highlight that the typical performance one should

expect to see under model predictive deferrable load control is not-too-different from the

average-case analysis. Importantly, the proof technique we develop may be useful for the

analysis of model predictive control in more general settings as well. The qualitative in-

sights from the analytic results were validated using trace-based simulations, which confirm

that the algorithm has significantly smaller sub-optimality than the optimal static control.
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The main limitation in our analysis (which is also true for the prior stochastic analysis

of model predictive deferrable load control) is the assumption that a t-valley-filling solution

exists. Practically, one can expect this to be satisfied if the penetration of deferrable loads

is high; however, relaxing the need for this technical assumption remains an interesting

and important challenge. Interestingly, the numerical results we report here highlight that

one should also expect a tight concentration in the case where a t-valley-filling solution

does not exist.

There remain many open questions on deferrable load control. For example, is it possi-

ble to reduce the communication and computation requirements of the proposed algorithm

by assuming achievability of t-valley-filling? How to extend the algorithm to a receding

horizon implementation? Additionally, how to apply the technique used here to incorporate

prediction evolution for other demand response settings.
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Appendix A

Proofs of average case results

In this section, we only include proofs of the main results due to space restrictions. The

remainder of the proofs can be found in the extended version [22].

A.1 Proof of Theorem 1

For brevity and without loss of generality, we prove Theorem 1 for t = 1 only. Thus, we

can abbreviate bt and N(t) by b and N respectively without introducing confusion.

For feasible p, q to ODLC-t and p = (p1, . . . , pN ), define

L(p, q) =

T∑
τ=1

(
b(τ) +

N∑
n=1

pn(τ) + q(τ)

)2

.

Since the sum of the aggregate load
∑T

τ=1 d(τ) is a constant, minimizing the `2 norm of

the aggregate load is equivalent to minimizing its variance. Hence, if subject to the same

constraints, the minimizer of L is also the solution to ODLC-t. According to the proof of

Proposition 1 in [19], we have

L(p(k+1), q(k)) ≤ L(p(k), q(k))

for k ≥ 0, and the equality is attained if and only if p(k+1) = p(k) and p(k) minimizes
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L(p, q(k)) over all feasible p, i.e., (the first order optimality condition)

〈
b+

N∑
n=1

p(k)n + q(k), p′n − p(k)n

〉
≥ 0

for n = 1, . . . , N and all feasible p′n. According to Step (ii) of Algorithm 2, it is straight-

forward that

L(p(k+1), q(k+1)) ≤ L(p(k+1), q(k))

for k ≥ 0, and the equality is attained if and only if q(k+1) = q(k) and q(k) minimizes

L(p(k+1), q) over all feasible q, i.e., (the first order optimality condition)

〈
b+

N∑
n=1

p(k+1)
n + q(k), q′ − q(k)

〉
≥ 0

for all feasible q′. It then follows that

L(p(k+1), q(k+1)) ≤ L(p(k), q(k))

and the equality if attained if and only if (p(k+1), q(k+1)) = (p(k), q(k)), and

〈
b+

N∑
n=1

p(k)n + q(k), p′n − p(k)n

〉
≥ 0,〈

b+

N∑
n=1

p(k)n + q(k), q′ − q(k)
〉
≥ 0

for all feasible p and q, i.e., (p(k), q(k)) minimizes L(p, q). Then by Lasalle’s Theorem [40],

we have d(p(k),O(t))→ 0 as k →∞. �
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A.2 Proof of Lemma 1

When bt = b and E(a(t)) = λ for t = 1, . . . , T , the model (4.1) for Algorithm 2 reduces to

d(t) =
1

T − t+ 1

 T∑
τ=t

b(τ) + λ(T − t) +

N(t)∑
n=1

Pn(t)

 (A.1)

for t = 1, . . . , T . Then

(T − t+ 1)d(t) =

T∑
τ=t

b(τ) + λ(T − t) +

N(t)∑
n=1

Pn(t)

(T − t+ 2)d(t− 1) =
T∑

τ=t−1
b(τ) + λ(T − t+ 1) +

N(t−1)∑
n=1

Pn(t− 1)

for t = 2, . . . , T . Subtract the two equations and simplify using the fact that b(t − 1) +∑N(t−1)
n=1 (Pn(t− 1)− Pn(t)) = b(t− 1) +

∑N(t−1)
n=1 pn(t− 1) = d(t− 1) and the definition of

a(t) to obtain

d(t)− d(t− 1) =
1

T − t+ 1
(a(t)− λ)

for t = 2, . . . , T . Substituting t = 1 into (A.1), it can be verified that d(1) = λ +∑T
τ=1 b(τ)/T + (a(1)− λ)/T , therefore

d(t) = λ+
1

T

T∑
τ=1

b(τ) +
t∑

τ=1

1

T − τ + 1
(a(τ)− λ)

for t = 1, . . . , T . The average aggregate load is

u =
1

T

T∑
t=1

d(t) = λ+
1

T

(
T∑
τ=1

b(τ) +

T∑
τ=1

(a(τ)− λ)

)
.
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Hence,

E(d(t)− u)2

= E

(
t∑

τ=1

1

T − τ + 1
(a(τ)− λ)− 1

T

T∑
τ=1

(a(τ)− λ)

)2

= E

(
t∑

τ=1

τ − 1

T (T − τ + 1)
(a(τ)− λ)− 1

T

T∑
τ=t+1

(a(τ)− λ)

)2

=
s2

T 2

(
t∑

τ=1

(τ − 1)2

(T − τ + 1)2
+ T − t

)

for t = 1, . . . , T . The last equality holds because (a(τ)− λ) are independent for all τ and

each of them have mean zero and variance s2. It follows that

E(V ) =
1

T

T∑
t=1

E(d(t)− u)2

=
s2

T 3

(
T∑
t=1

t∑
τ=1

(τ − 1)2

(T − τ + 1)2
+

T∑
t=1

(T − t)

)

=
s2

T 3

(
T∑
τ=1

(τ − 1)2

T − τ + 1
+

T∑
t=1

(T − t)

)

=
s2

T 3

(
T∑
t=1

(T − t)2

t
+

T∑
t=1

(T − t)t
t

)

= s2
∑T

t=2
1
t

T
∼ s2 lnT

T
. �

A.3 Proof of Lemma 2

In the case where no deferrable arrival after t = 1, i.e., N(t) = N for t = 1, . . . , T , the

model (4.1) for Algorithm 2 reduces to

(T − t+ 1)d(t) =
T∑
τ=t

bt(τ) +
N∑
n=1

Pn(t) (A.2)
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for t = 1, . . . , T . Substitute t by t− 1 to obtain

(T − t+ 2)d(t− 1) =
T∑

τ=t−1
bt−1(τ) +

N∑
n=1

Pn(t− 1)

for t = 2, . . . , T . Subtract the two equations to obtain

(T − t+ 1)d(t)− (T − t+ 2)d(t− 1)

=
T∑
τ=t

e(t)f(τ − t)− b(t− 1)−
N∑
n=1

pn(t− 1)

= e(t)F (T − t)− d(t− 1),

which implies

d(t)− d(t− 1) =
1

T − t+ 1
e(t)F (T − t)

for t = 2, . . . , T . Substituting t = 1 into (A.2) and recalling the definition of bt in (2.1), it

can be verified that

d(1) =
1

T

(
N∑
n=1

Pn +
T∑
τ=1

b̄(τ)

)
+

1

T
e(1)F (T − 1).

Therefore,

d(t) =
1

T

(
N∑
n=1

Pn +

T∑
τ=1

b̄(τ)

)
+

t∑
τ=1

1

T − τ + 1
e(τ)F (T − τ)

for t = 1, . . . , T . The average aggregate load is

u =
1

T

(
N∑
n=1

Pn +

T∑
t=1

b̄(t)

)
+

1

T

T∑
τ=1

e(τ)F (T − τ).
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Hence,

E(d(t)− u)2

= E

(
t∑

τ=1

1

T − τ + 1
e(τ)F (T − τ)−

T∑
τ=1

1

T
e(τ)F (T − τ)

)2

= E

(
t∑

τ=1

τ − 1

T (T − τ + 1)
e(τ)F (T − τ)

−
T∑

τ=t+1

1

T
e(τ)F (T − τ)

)2

=
σ2

T 2

(
t∑

τ=1

(τ − 1)2

(T − τ + 1)2
F 2(T − τ) +

T∑
τ=t+1

F 2(T − τ)

)

for t = 1, . . . , T . The last equality holds because e(τ) are uncorrelated random variables

with mean zero and variance σ2. It follows that

E(V ) =
1

T

T∑
t=1

E(d(t)− u)2

=
σ2

T 3

T∑
t=1

(
t∑

τ=1

(τ − 1)2

(T − τ + 1)2
F 2(T − τ) +

T∑
τ=t+1

F 2(T − τ)

)

=
σ2

T 3

T∑
τ=1

F 2(T − τ)
(τ − 1)2

T − τ + 1
+
σ2

T 3

T∑
τ=2

(τ − 1)F 2(T − τ)

=
σ2

T 2

T∑
τ=1

F 2(T − τ)
τ − 1

T − τ + 1
=
σ2

T 2

T−1∑
t=0

F 2(t)
T − t− 1

t+ 1
.�

A.4 Proof of Theorem 2

Similar to the proof of Lemma 1 and 2, use the model (4.1) to obtain

d(t) = λ+
1

T

T∑
τ=1

b̄(τ) +

t∑
τ=1

1

T − τ + 1
(e(τ)F (T − τ) + a(τ)− λ)
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for t = 1, . . . , T and

u = λ+
1

T

T∑
τ=1

b̄(τ) +
T∑
τ=1

1

T
(e(τ)F (T − τ) + a(τ)− λ) .

Hence,

E(d(t)− u)2

= E

(
t∑

τ=1

1

T − τ + 1
e(τ)F (T − τ)−

T∑
τ=1

1

T
e(τ)F (T − τ)

)2

+E

(
t∑

τ=1

1

T − τ + 1
(a(τ)− λ)−

T∑
τ=1

1

T
(a(τ)− λ)

)2

.

The first term is exactly that in Lemma 2, and the second term is exactly that in Lemma

1. Hence, the expected load variance is

E(V ) =
σ2

T 2

T−1∑
t=0

F 2(t)
T − t− 1

t+ 1
+
s2

T

T∑
t=2

1

t
. �

A.5 Proof of Corollary 3

If |f(t)| ∼ O(t−1/2−α) for some α > 0, then |f(t)| ≤ Ct−1/2−α for some C > 0 and all

t ≥ 1. Without loss of generality, assume that 0 < α < 1/2 and C ≥ (1 − 2α)/(1 + 2α).

Then F (0) = 1 and

|F (t)| =

∣∣∣∣∣
t∑

τ=0

f(τ)

∣∣∣∣∣ ≤ 1 +
t∑

τ=1

Cτ−1/2−α ≤ 2C

1− 2α
t1/2−α
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for t = 1, . . . , T . The last inequality holds because C ≥ (1 − 2α)/(1 + 2α). Therefore it

follows from Lemma 2 that

E(V ) ≤ σ2

T

T−1∑
s=0

F 2(s)
1

s+ 1

≤ σ2

T
+
σ2

T

T−1∑
s=1

4C2

(1− 2α)2
s1−2α

1

s+ 1

≤ σ2

T
+
σ2

T

4C2

(1− 2α)2

T−1∑
s=1

1

s2α

≤ σ2

T
+

4σ2C2

(1− 2α)2T
+

4σ2C2

(1− 2α)3T 2α
.

Hence, E(V )→ 0 as T →∞. �

A.6 Proof of Lemma 3

The aggregate load d obtained by the optimal static algorithm is

d(t) =
1

T

(
N∑
n=1

Pn +
T∑
τ=1

b̄(τ)

)
− b̄(t) + b(t)

=
1

T

(
N∑
n=1

Pn +

T∑
τ=1

b̄(τ)

)
+

T∑
τ=1

e(τ)f(t− τ)

for t = 1, . . . , T . Hence,

E(d(t)− u)2

= E

(
T∑
τ=1

e(τ)

(
f(t− τ)− 1

T
F (T − τ)

))2

=
σ2

T 2

T∑
τ=1

T 2f2(t− τ)− 2Tf(t− τ)F (T − τ) + F 2(T − τ)
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for t = 1, . . . , T . It follows that

E(V ′) =
1

T

T∑
t=1

E(d(t)− u)2

=
σ2

T

T∑
t=1

T∑
τ=1

f2(t− τ)− 2σ2

T 2

T∑
τ=1

F (T − τ)
T∑
t=1

f(t− τ)

+
σ2

T 2

T∑
τ=1

F 2(T − τ)

=
σ2

T

T∑
t=1

t−1∑
τ=0

f2(τ)− σ2

T 2

T∑
τ=1

F 2(T − τ)

=
σ2

T

T−1∑
τ=0

(T − τ)f2(τ)− σ2

T 2

T−1∑
τ=0

F 2(τ)

=
σ2

T 2

T−1∑
t=0

(
T (T − t)f2(t)− F 2(t)

)
. �
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Appendix B

Proofs of distributional results

B.1 Proof of Proposition 3

It has been computed in [21] that the load variance V obtained by Algorithm 2 is composed

of two parts:

V = V1 + V2

where

V1 :=
1

T

T∑
t=1

[
t∑

τ=1

τ − 1

T (T − τ + 1)
(a(τ)− λ)

−
T∑

τ=t+1

1

T
(a(τ)− λ)

]2

is the variance due to the prediction error on deferrable load and

V2 :=
1

T

T∑
t=1

[
t∑

τ=1

τ − 1

T (T − τ + 1)
e(τ)F (T − τ)

−
T∑

τ=t+1

1

T
e(τ)F (T − τ)

]2
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is the variance due to the prediction error on baseload. Now we compute the worst-case

V1 and V2 under the bounded prediction error assumption (4.3).

We start with computing the worst-case V1. Let x(τ) := a(τ) − λ for τ = 1, 2, . . . , T ,

then

V1 =
1

T

T∑
t=1

[
t∑

τ=1

τ − 1

T (T − τ + 1)
x(τ)−

T∑
τ=t+1

1

T
x(τ)

]2

=
1

T

T∑
t=1

[
t∑

τ=1

1

T − τ + 1
x(τ)−

T∑
τ=1

1

T
x(τ)

]2

=
1

T

T∑
t=1

[
t∑

τ=1

1

T − τ + 1
x(τ)

]2
+

1

T

T∑
t=1

[
T∑
τ=1

1

T
x(τ)

]2

− 2

T

T∑
t=1

t∑
τ=1

1

T − τ + 1
x(τ)

T∑
s=1

1

T
x(s)

=
1

T

T∑
t=1

[
t∑

τ=1

1

T − τ + 1
x(τ)

]2
+

[
T∑
τ=1

1

T
x(τ)

]2

− 2

T 2

T∑
s=1

x(s)

T∑
τ=1

T∑
t=τ

1

T − τ + 1
x(τ)

=
1

T

T∑
t=1

[
t∑

τ=1

1

T − τ + 1
x(τ)

]2
+

1

T 2

[
T∑
τ=1

x(τ)

]2

− 2

T 2

T∑
s=1

x(s)
T∑
τ=1

x(τ)

=
1

T

T∑
t=1

[
t∑

τ=1

1

T − τ + 1
x(τ)

]2
− 1

T 2

[
T∑
τ=1

x(τ)

]2
.
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The first term

1

T

T∑
t=1

[
t∑

τ=1

1

T − τ + 1
x(τ)

]2

=
1

T

T∑
t=1

t∑
τ=1

[
1

T − τ + 1
x(τ)

]2
+

2

T

T∑
t=1

t∑
τ=1

1

T − τ + 1
x(τ)

t∑
s=τ+1

1

T − s+ 1
x(s)

=
1

T

T∑
τ=1

T∑
t=τ

1

(T − τ + 1)2
x2(τ)

+
2

T

T∑
τ=1

T∑
s=τ+1

T∑
t=s

1

T − τ + 1

1

T − s+ 1
x(τ)x(s)

=
1

T

T∑
τ=1

1

T − τ + 1
x2(τ)

+
2

T

T∑
τ=1

T∑
s=τ+1

1

T − τ + 1
x(τ)x(s)

=
1

T

T∑
τ=1

T∑
s=1

1

T − τ ∧ s+ 1
x(τ)x(s)

where a ∧ b := min{a, b} for a, b ∈ R. Let the matrix A ∈ RT×T be given by

Aτs :=
T

T − τ ∧ s+ 1

for τ, s = 1, 2, . . . , T , i.e.,

A =



T
T

T
T

T
T · · · T

T

T
T

T
T−1

T
T−1 · · · T

T−1
T
T

T
T−1

T
T−2 · · · T

T−2
...

...
...

. . .
...

T
T

T
T−1

T
T−2 · · · T

1 ,
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then

V1 =
1

T 2
xT
(
A− 11T

)
x

where the vector x := (x(1), x(2), . . . , x(T ))T . When prediction error is bounded as in

(4.3), one has |x(t)| ≤ ε1 for all t, and therefore

V1 =
1

T 2

T∑
τ=1

T∑
s=1

(Aτs − 1)x(τ)x(s)

≤ 1

T 2

T∑
τ=1

T∑
s=1

τ ∧ s− 1

T − τ ∧ s+ 1
ε21

and the equality is attained if and only if x(t) = ε1 for all t, or x(t) = −ε1 for all t. Finally,

we simplify the worst-case expression of V1 as follows:

sup
a

V1 =
1

T 2

T∑
τ=1

T∑
s=1

τ ∧ s− 1

T − τ ∧ s+ 1
ε21

=
ε21
T 2

T∑
k=1

k − 1

T − k + 1
(2T + 1− 2k)

= ε21

(
1− 1

T

T∑
k=1

1

k

)
≈ ε21

(
1− lnT

T

)
.

We proceed to compute the worst-case V2. Using the same derivation, it can be com-

puted that

V2 =
1

T 2
yT
(
A− 11T

)
y

where

y := (y(1), y(2), . . . , y(T ))T ,

y(t) := e(t)F (T − t), t = 1, 2, . . . , T.
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It follows that

V2 =
1

T 2

T∑
τ=1

T∑
s=1

(Aτs − 1) y(τ)y(s)

≤ 1

T 2

T∑
τ=1

T∑
s=1

τ ∧ s− 1

T − τ ∧ s+ 1
ε22|F (T − τ)F (T − s)|

and that the equality is attained if and only if e(t) = ε2 · sgn(F (T − t)) for all t, or

e(t) = −ε2 · sgn(F (T − t)) for all t. Finally, we simplify the worst-case expression of V2 as

follows:

sup
e

V2 =
1

T 2

T∑
τ=1

T∑
s=1

τ ∧ s− 1

T − τ ∧ s+ 1
ε22|F (T − τ)F (T − s)|

=
ε22
T 2

T−1∑
τ=0

T−1∑
s=0

(
T

τ ∨ s+ 1
− 1

)
|F (τ)F (s)|

To summarize, the worst-case load variance V obtained by Algorithm 2 is

sup
a,e

V = ε21

(
1− 1

T

T∑
k=1

1

k

)

+
ε22
T 2

T−1∑
τ=0

T−1∑
s=0

(
T

τ ∨ s+ 1
− 1

)
|F (τ)F (s)|.

The lower bound in the lemma can be obtained from the case where all prediction errors
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of the load arrival is equal to d1/2, then

sup
a
V ≥ d21

4T

T∑
t=1

(
t∑

τ=1

τ − 1

T (T − τ + 1)
−

T∑
τ=t+1

1

T

)2

=
d21

4T 3

T∑
t=1

(
t∑

τ=1

T

T − τ + 1
− T

)2

=
d21
4T

T∑
t=1

(
t∑

τ=1

1

T − τ + 1
− 1

)2

=
d21
4T

(
T∑
t=1

(
T∑

τ=T−t+1

1

τ
)2 − T

)

≥ d21
4T

(
T∑
t=1

(

∫ T

T−t+1

1

u
du)2 − T

)

=
d21
4T

(
T∑
k=1

(ln(
T

k
))2 − T

)

B.2 Proof of Theorem 3

The theorem relies on a variant of the Log-Sobolev inequality provided in the following

lemma.

Lemma 4 (Theorem 3.2, [29]). Let f : Rn 7→ R be convex and X be supported on

[−d/2, d/2]n, then

E[exp(f(X))f(X)]− E[exp(f(X))] logE[exp(f(X))]

≤ d2

2
E[exp(f(X))||∇f(X)||2]. (B.1)

If f is further “self-bounded”, then its tail probability can be bounded as in the following

lemma.
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Lemma 5. Let f : Rn 7→ R be convex and X be supported on [−d/2, d/2]n. If E[f(X)] = 0

and f satisfies the following self-bounding property

||∇f ||2 ≤ af + b, (B.2)

then the tail probability of f(X) can be bound as

P {f(X) > t} ≤ exp

(
−t2

2b+ at

)
. (B.3)

Proof. Denote the moment generating function of f(X) by

m(θ) := Eeθf(X), θ > 0.

The function θf : Rn 7→ R is convex, and therefore it follows from Lemma 4 that

E
[
eθfθf

]
− E

[
eθf
]

lnE
[
eθf
]
≤ d2

2
E
[
eθf ||θ∇f ||2

]
,

θm′(θ)−m(θ) lnm(θ) ≤ 1

2
θ2d2E[eθf ||∇f ||2].

According to the self-bounding property (B.2), one has

θm′(θ)−m(θ) lnm(θ) ≤ 1

2
θ2d2E[eθf (af + b)]

=
1

2
θ2d2

[
am′(θ) + bm(θ)

]
.

Divide both sides by θ2m(θ) to get

d

dθ

[(
1

θ
− ad2

2

)
lnm(θ)

]
≤ bd2

2
.
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Integrate both sides from 0 to s to get

(
1

θ
− ad2

2

)
lnm(θ)

∣∣∣∣s
θ=0

≤ 1

2
bd2s

for s ≥ 0. Noting that m(0) = 1 and m′(0) = Ef = 0, one has

lim
θ→0+

(
1

θ
− ad2

2

)
lnm(θ) = 0,

and therefore (
1

s
− ad2

2

)
lnm(s) ≤ 1

2
bd2s (B.4)

for s ≥ 0. We can bound the tail probability P{f > t} with the control (B.4) over the

moment generating function m(s).

In particular, one has

P{f > t} = P
{
esf > est

}
≤ e−stE

[
esf
]

= exp[−st+ lnm(s)]

≤ exp

[
−st+

bd2s2

2− asd2

]

for s ≥ 0. Choose s = t/(bd2 + ad2t/2) to get

P{f > t} ≤ exp

(
−t2

d2(2b+ at)

)
.

Proof of Theorem 3. It has been computed in [21] that the load variance V obtained by

Algorithm 2 is composed of two parts:

V = V1 + V2
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where

V1 :=
1

T

T∑
t=1

[
t∑

τ=1

τ − 1

T (T − τ + 1)
(a(τ)− λ)

−
T∑

τ=t+1

1

T
(a(τ)− λ)

]2

is the variance due to the prediction error on deferrable load and

V2 :=
1

T

T∑
t=1

[
t∑

τ=1

τ − 1

T (T − τ + 1)
e(τ)F (T − τ)

−
T∑

τ=t+1

1

T
e(τ)F (T − τ)

]2

is the variance due to the prediction error on baseload.

Let x(τ) := a(τ)− λ for τ = 1, 2, . . . , T , then

V1 =
1

T

T∑
t=1

[
t∑

τ=1

τ − 1

T (T − τ + 1)
x(τ)−

T∑
τ=t+1

1

T
x(τ)

]2
=

1

T
||Bx||22

where the T × T matrix B is given by

Btτ :=


τ−1

T (T−τ+1) τ ≤ t

− 1
T τ > t

, 1 ≤ t, τ ≤ T.

Similarly, the variance V2 due to the prediction error on baseload can be written as

V2 = g(e) =
1

T
||Ce||22
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where the T × T matrix C is given by

Ctτ :=


τ−1

T (T−τ+1)F (T − τ), τ ≤ t

− 1
T F (T − τ), τ > t

for 1 ≤ t, τ ≤ T . Therefore, the load variance

V = V1 + V2 =
1

T
‖Ay‖22

where

A =

B 0

0 C

 , y =

x
e

 .
Define a centered random variable

Z := h(y) := V − EV =
1

T
||Ay||2 − EV

and note that the function h is convex. Let λmax be the maximum eigenvalue of AAT /T ,

then

||∇h(y)||2 =
4

T 2
||ATAy||2 =

4

T
(Ay)T

(
AAT

T

)
(Ay)

≤ 4λmax

T
(Ay)T (Ay) = 4λmax[h(y) + EV ].

According to the bounded prediction error assumption (4.3), one has |y| ≤ ε component-

wise. Then, apply Lemma 5 to the random variable Z to obtain

P{Z > t} ≤ exp

(
− t2

16λmaxε2(2EV + t)

)

for t > 0, i.e.,

P{V − EV > t} ≤ exp

(
− t2

16λmaxε2(2EV + t)

)
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for t > 0. Finally, the largest eigenvalue λmax of AAT /T can be bounded above as

λmax ≤ tr

(
AAT

T

)
= tr

(
BBT

T

)
+ tr

(
CCT

T

)
=

1

T

(
T∑
t=2

1

t

)
+

1

T 2

T−1∑
t=0

F 2(t)
T − t− 1

t+ 1

≤ lnT

T
+

1

T 2

T−1∑
t=0

F 2(t)
T − t− 1

t+ 1
=: λ1,

which completes the proof of Theorem 3.

B.3 Proof of Theorem 4

The derivation of the theorem is based on the following two lemma, which separates the

cases when there is only one type of prediction error.

Lemma 6. If there is no prediction error in the base load, then the variance of the perfor-

mance of Algorithm 2 is bounded by

Var(V ) ≤ 4d21s
2

(
lnT

T

)2

. (B.5)

Lemma 7. If there is no prediction error in the deferrable load, then the variance of the

performance of Algorithm 2 is bounded by

Var(V ) ≤ 4d22σ
2

(
1

T 2

T−1∑
t=0

F 2(t)
T − t+ 1

t+ 1

)2

. (B.6)

Firstly we will prove Lemma 6, where we only consider prediction error in deferrable
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load.

Proof of Lemma 6. Let x(τ) = a(τ) − λ, then x(τ) is centered, with variance s2. Let

x = (x(1), . . . , x(T )). From the results in [21] Lemma 1, we have

V =
1

T

T∑
t=1

(
t∑

τ=1

τ − 1

T (T − τ + 1)
x(τ)−

T∑
τ=t+1

1

T
x(τ)

)2

Define an auxilary matrix B such that

Btτ =


τ−1

T (T−τ+1) τ ≤ t

− 1
T τ > t.

Then we have

V1 = f(x(1), x(2), . . . , x(T )) =
1

T
||Bx||22.

Hence V1 = f(x) is a convex function, by convex Poincaré inequality, we have

Var(V ) ≤ d21E[||∇f(x)||2]. (B.7)

Whereas

E
[
||∇f(x)||2

]
=

4

T 2
E
[
||BTBx||2

]
≤ 4

T 2
λmax(BTB)E

[
||Bx||2

]
≤ 4tr

(
1

T
BTB

)
E
[

1

T
||Bx||2

]
= 4s2

[
tr

(
1

T
BTB

)]2
≤ 4s2

(
lnT

T

)2
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The last inequality is because

tr
(
BTB

)
=

1

T

T∑
i=1

(BTB)ii

=
T∑
i=1

T∑
k=1

(Bki)
2

=
1

T 2

T∑
i=1

(
i∑

k=1

(k − 1)2

(T − k + 1)2
+ (T − i)

)

=
1

T 2

T∑
k=1

(
(k − 1)2

(T − k + 1)
+

T∑
i=1

(T − i)

=
1

T 2

T∑
k=1

(T − k)2

k
+

T∑
k=1

(T − k)k

k

=
T∑
k=2

1

k
≤ lnT.

Next we proof lemma 7 the case where we only consider the prediction error in the base

load.

Proof of Lemma 7. Let e = (e(1), . . . , e(T )), when there is no prediction error in the de-

ferrable load arrival, we have

V =
1

T

T∑
t=1

(
t∑

τ=1

τ − 1

T (T − τ + 1)
F (T − τ)e(τ)

−
T∑

τ=t+1

1

T
F (T − τ)e(τ))2.

If we define an auxilary matrix C such that

Ctτ =


τ−1

T (T−τ+1)F (T − τ), τ ≤ t

− 1
T F (T − τ), τ > t



69

Then we have

V = g(e(1), e(2), . . . , e(T )) =
1

T
||Ce||22.

Hence V = g(e) is a convex function in e. By similar argument as Lemma 6

Var(V ) ≤ d22E[||∇g(e)||2]. (B.8)

Whereas

E
[
||∇g(e)||2

]
=

4

T 2
E
[
||CTCe||2

]
≤ 4

T 2
λmax(CTC)E

[
||Ce||2

]
≤ 4tr

(
1

T
CTC

)
E
[

1

T
||Ce||2

]
= 4σ2

[
tr

(
1

T
CTC

)]2
= 4σ2

(
1

T 2

T−1∑
t=0

F 2(t)
T − t+ 1

t+ 1

)2

.

The last equality is because

tr(CTC)

=

T∑
i=1

(
T∑
k=1

C2
ki

)

=
1

T 2

T∑
i=1

(
i∑

k=1

(k − 1)2

(T − k + 1)2
F 2(T − k) +

T∑
k=i+1

F 2(T − k)

)

=
1

T 2

(
T∑
k=2

(k − 1)2

T − k + 1
F 2(T − k) +

T∑
k=2

(k − 1)F 2(T − k)

)

=
1

T

T∑
k=2

F 2(T − k)
k − 1

T − k + 1
.
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Next, we bring the two results together to get a proof of Theorem 4.

Proof of Theorem 2. Let V1 be the load variance without prediction error in base load and

V2 be the load variance without prediction error in the deferrable load.

V = V1 + V2.

By independence of x and e, the variance of V is bounded by

Var(V ) = Var(V1) + Var(V2)

≤
(

2d1s lnT

T

)2

+

(
2d2σ

T 2

T−1∑
t=0

F 2(t)
T − t+ 1

t+ 1

)2

.


