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Abstract

Understanding how transcriptional regulatory sequence maps to regulatory function remains a dif-

ficult problem in regulatory biology. Given a particular DNA sequence for a bacterial promoter

region, we would like to be able to say which transcription factors bind there, how strongly they

bind, and whether they interact with each other and/or RNA polymerase, with the ultimate objec-

tive of integrating knowledge of these parameters into a prediction of gene expression levels. The

theoretical framework of statistical thermodynamics provides a useful framework for doing so, en-

abling us to predict how gene expression levels depend on transcription factor binding energies and

concentrations. We used thermodynamic models, coupled with models of the sequence-dependent

binding energies of transcription factors and RNAP, to construct a genotype to phenotype map for

the level of repression exhibited by the lac promoter, and tested it experimentally using a set of pro-

moter variants from E. coli strains isolated from different natural environments. For this work, we

sought to “reverse engineer” naturally occurring promoter sequences to understand how variations

in promoter sequence affects gene expression. The natural inverse of this approach is to “forward

engineer” promoter sequences to obtain targeted levels of gene expression. We used a high precision

model of RNAP-DNA sequence dependent binding energy, coupled with a thermodynamic model

relating binding energy to gene expression, to predictively design and verify a suite of synthetic E.

coli promoters whose expression varied over nearly three orders of magnitude. However, although

thermodynamic models enable predictions of mean levels of gene expression, it has become evident

that cell-to-cell variability or “noise” in gene expression can also play a biologically important role.

In order to address this aspect of gene regulation, we developed models based on the chemical master

equation framework and used them to explore the noise properties of a number of common E. coli

regulatory motifs; these properties included the dependence of the noise on parameters such as tran-

scription factor binding strength and copy number. We then performed experiments in which these

parameters were systematically varied and measured the level of variability using mRNA FISH. The

results showed a clear dependence of the noise on these parameters, in accord with model predictions.

Finally, one shortcoming of the preceding modeling frameworks is that their applicability is

largely limited to systems that are already well-characterized, such as the lac promoter. Motivated

by this fact, we used a high throughput promoter mutagenesis assay called Sort-Seq to explore the
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completely uncharacterized transcriptional regulatory DNA of the E. coli mechanosensitive channel

of large conductance (MscL). We identified several candidate transcription factor binding sites, and

work is continuing to identify the associated proteins.
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Chapter 1

Introduction

1.1 The central dogma of molecular biology

The elucidation of the genetic code is one of the signal accomplishments of the field of molecular

biology. It was the culmination of a decades-long search to unravel the mechanism by which genetic

information is passed down from generation to generation in living organisms. Key insights along the

way include Oswald Avery’s discovery that DNA (and not protein) is the molecule by which genetic

information is propagated [1]; Chargaff’s observation that the fraction of As equals the fraction of

T’s in a DNA molecule, and likewise for Cs and Gs [2, 3]; and Watson and Crick’s discovery of

the structure of DNA, which “immediately suggests a possible copying mechanism for the genetic

material,” as Crick put it at the time [4]. Still, the precise mechanism by which a particular DNA

sequence mapped to a particular protein remained unknown. In 1961, Crick, Brenner, and coworkers

arrived at the now familiar result that a protein coding sequence consists of a series of trinucleotide

codons [5], by showing that insertions of three base pairs into the phage T4 rIIB gene yielded a

functioning protein (whereas insertions of one, two, or four bp yielded a non-functional protein).

Researchers in various laboratories subsequently determined the mapping between codon sequence

and amino acid identity; the ultimate result of these efforts was the codon table as seen in Figure 1.1.

The actual act of translating from DNA sequence to protein sequence occurs in the ribosomes, where

transfer RNAs recognize each codon of the messenger RNA in turn and add the appropriate amino

acid to the growing polypeptide chain. This entire process by which genetic information flows from

DNA to messenger RNA to protein was termed the “central dogma” of molecular biology by Crick

in 1958.

The net result of these efforts was mastery of the genetic code by which DNA sequence is mapped

to the chain of polypeptides that constitute a protein. However, encoding protein coding sequences is

far from the only function of DNA. DNA sequence also encodes information about how much and at

what times genes are expressed. Yet the nature of the code by which regulatory DNA sequence maps

to regulatory function remains largely unknown. Given the DNA sequence of any particular protein
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Figure 1.1: Codon table. The mapping between codon sequence and amino acid identity can be
read off the table from the inner to outer rings.

coding sequence, it is trivial to predict the exact amino acid sequence of the resulting protein. But

predicting the regulatory function of a given sequence of regulatory DNA is more or less completely

infeasible except in a limited number of special cases. The principal thrust of this thesis, then, will

be to arrive at a more detailed understanding of how DNA sequence maps to regulatory function.

“Regulatory function” is an admittedly malleable term, and could be taken to mean the level of

expression of a particular gene in terms of absolute numbers of proteins per cell; the degree to which

expression of a gene is turned off under certain environmental conditions (“repression”), or the level

of cell-to-cell variability or “noise” in expression. Each of these will be considered in detail in this

work.

1.2 Gene regulation

Gene regulation is essential for the fitness of living organisms. While gene coding sequences encode

the “raw materials” (proteins) out of which an organism is made, it is equally important that these

proteins are expressed in the right amount at the right time. One aspect of expressing the right

proteins at the right time is the fact that the cell simply needs more of some proteins than others.

For instance, ribosomes, multi-protein complexes that translate messenger RNAs into protein, lie

at the heart of all gene expression, to the extent that their production constitutes the rate-limiting

step in cell division of exponentially growing bacteria. Consequently, genes coding for ribosomal

RNA (in the rrnA-E,G,H operons) are some of the most highly transcribed in E. coli, to the extent

that their transcription can account for the majority of RNAP activity [6, 7]. In contrast, a mere
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10 copies per cell of the lac repressor are sufficient to repress expression of the lac operon by 1000

fold (see Chapter 2 of this work). To state the obvious, a cell with 10 ribosomes and 10,000 lac

repressor molecules would be wholly dysfunctional. Ensuring that global stoichiometries of cellular

components are appropriately balanced is thus an important aspect of gene regulation [6, 8].

Another important function of gene regulation is enabling cells to respond appropriately to envi-

ronmental conditions. For instance, the canonical lac promoter system “turns on” production of the

appropriate enzyme (LacZ) and membrane transporter (LacY) for metabolization of the dissacharide

lactose when lactose is present in the environment and glucose is not. Production of these proteins

is costly to the cell and thus cells that avoid expression when these conditions do not obtain have

a fitness advantage over cells that do [9, 10]. In B. subtilis, an array of transcription factors and

sigma factors is responsible for differentiation in times of nutritional stress into a sporulated state

characterized by a tough external coating and virtually no energy consumption, allowing the cell to

survive until environmental conditions are more favorable [11].

Gene regulation occurs at all the steps along the central dogma. In prokaryotes, transcription is

regulated by DNA-binding proteins called transcription factors (TFs) that bind a gene’s promoter

region and activate or repress transcription of that gene. Unlike in the eukaryotic setting, where

enhancers can be up to tens of kilobases away from the promoter, most prokaryotic transcription

factors bind within approximately 100 bp of the gene they regulate (M. Rydenfelt, manuscript in

preparation; data from [12]). In eukaryotes, it is well established that transcription is also regulated

by the chromatin state, as DNA condensation mediated by nucleosomes can render regions of DNA

inaccessible to transcription factors and RNA polymerase [13–16]. Although this mode of regulation

is less thoroughly explored in prokaryotes, there is evidence that nucleoid associated proteins like

H-NS, HU, Fis, and IHF, which are structurally similar to eukaryotic histone proteins, can also affect

gene expression by structural modification of the chromosome [17–20]. Similarly, the supercoiling

state of prokaryotic DNA can also play a role in determining gene expression [21, 22].

After transcription, translation is regulated by two principal mechanisms: small RNAs and the

sequence of the ribosomal binding site. The ribosomal binding site is located in the 5’ untranslated

region (5’ UTR) of an mRNA transcript, and its strength has important implications for how much

a particular mRNA transcript is transcribed. Factors involved in ribosome binding strength include

the interaction between the ribosome binding site and the 16s rRNA, the spacing between 16s

rRNA binding site and the start codon, start codon sequence, and the free energy cost of unfolding

any mRNA secondary structures in the RBS region [23, 24]. Small RNAs include both cis and

trans encoded sRNAs. The former are transcribed from the antisense strand to a particular protein

coding sequence and when paired to their complementary mRNA reduce gene expression by blocking

translation. The latter have less extensive complementarity with their respective mRNA targets,

and interactions between sRNA and mRNA are generally mediated by the RNA chaperone Hfq.
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Such sRNAs can repress translation by blocking the ribosomal binding site or enhancing mRNA

degradation; they can also increase translation by disrupting mRNA secondary structures that

sequester the ribosomal binding site [25–27]. Finally, the activity of already-produced proteins is

often modulated by post-translational modifications such as phosphorylation and dephosphorylation.

Given that gene regulation occurs at all steps along the central dogma, what determines the step

at which a particular gene is regulated? And what are the relative prevalences of the different forms

of gene regulation? Unfortunately, definitive answers are not available for either of these questions,

though it is certainly possible to speculate. Possible considerations include speed of response and

metabolic efficiency. Post-translational modifications require only a single phosphorylation reaction

to take place and thus can operate on a relatively fast timescale. However, this type of regulation

requires that the relevant proteins have already been produced. Transcriptional regulation occurs

at the very beginning of the path from gene to protein, and thus is more efficient in the sense

that cutting off gene expression at the source means that no resources need to be expended on

unnecessary gene expression. However, the timescale at which transcriptional regulation can respond

to changing environmental conditions is limited by the binding/unbinding kinetics of the relevant

transcription factors (often on the order of minutes), the time needed for RNA polymerase to produce

an mRNA transcript (tens of seconds), translation (tens of seconds), protein folding (variable; often

< 1 second [28]), and, in some cases, protein maturation. Thus it seems reasonable to postulate a

tradeoff between speed of response and efficiency between these modes of gene regulation. Another

possible consideration is the nature of the response function to environmental stimuli: computational

studies have found that small RNA regulation can produce qualitatively different response functions

compared with TF-mediated transcriptional regulation [27, 29, 30]. As for the relative prevalence of

different forms of regulation, despite the status of E. coli as a ubiquitous model organism for nearly

a century, there is insufficient data to make a definitive pronouncement. For instance, of the roughly

4000 genes in E. coli, roughly half lack any transcriptional regulatory annotation whatsoever. It

seems unlikely that all of these genes have no transcriptional regulation; far more likely is that this

state of affairs reflects simple ignorance. In a subsequent chapter, we use a high throughput promoter

mutagenesis experiment to explore the transcription of one such un-annotated gene, namely mscL

(the mechanosensitive channel of large conductance). We identify three putative transcription factor

binding sites. Of course, this n = 1 observation does not prove anything, but it lends support to the

idea that vast swathes of E. coli gene regulation remain uncharacterized, and hence that statements

about the relative importance of transcriptional vs. translational vs. post-translational regulation

are necessarily speculative in the absence of much-needed data.

In any case, it clear that transcriptional regulation is of profound importance in many biological

contexts. Perhaps the most dramatic example of this lies in the developmental biology of eukaryotes,

where highly conserved hox genes dictate body plan development across a vast array of species: while
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Figure 1.2: Repressor binding site positions. This histogram shows the number of repressor
binding sites overlapping each nucleotide position, where nucleotide positions are reported with
respect to the transcription start site. The plot was generated using data from the RegulonDB
database [12]. The majority of repressor binding sites are within 50 bp of the transcription start
site, although some are found as far as 200 bp upstream. Adapted from reference [34], courtesy of
M. Rydenfelt.

the genes themselves remain largely the same, differences in their regulation encoded by non-protein-

coding regulatory DNA yield the “endless forms most beautiful” remarked upon by Darwin. More

closely related to the subject of this thesis, transcriptional regulation is integral to phenomena

such as bacterial biofilm formation which depends on transcriptional activation of expression of

polysaccharides to form a relatively impregnable extracellular matrix [31]. Various other behaviors

related to quorum sensing and collective behavior are transcriptionally regulated as well [32, 33].

TF-mediated transcriptional regulation can be divided into two broad categories: repression and

activation. Depending on the context, it is possible for the same transcription factor to act as

both an activator and a repressor, sometimes even in regulation of the same gene. The principal

mechanism of repression is simple steric hindrance. Typically this means that a transcription factor

binds in the vicinity of the RNAP polymerase binding site and in doing so prevents the RNAP

molecule from binding and/or successfully initiating transcription. The lac promoter O1 binding

site, located immediately downstream of the transcription start site, is a good example of this type

of regulation [35, 36]. A survey of binding site positions in the transcriptional regulatory database

RegulonDB reveals that the majority of repressor binding sites are close to the RNAP binding

site (see Figure 1.2), allowing the repressor to directly interact with the RNA polymerase [12, 34].

However, there are an appreciable number of repressor binding sites outside of the immediate vicinity

of the transcription start site. An alternative mechanism of repression is what might be termed

“second-order” repression, in which a repressor indirectly downregulates transcription by preventing
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Figure 1.3: (a) Type I transcriptional activation. The activator protein (for instance, CRP) inter-
acts with the α C-terminal domain of the RNA polymerase holoenzyme; this favorable energetic
interaction increases the probability that RNAP binds the promoter. (b) Activation by arbitrary
protein-protein contact. The wild-type α-CTD has been replaced by the CTD of the λ cI protein,
which binds cooperatively to cI protein bound at an upstream binding site. The presence of cI at
the upstream binding site increases transcription by approximately six fold. Adapted from [45].

the binding of an activator. Finally, it is worth noting that repression via steric exclusion can still

be mediated by repressor binding sites away from the immediate vicinity of the transcription start

site via the formation of DNA loops, as in the cases of the lac and araC promoters [37–39].

The mechanisms of transcriptional activation are somewhat less straightforward than repression.

Activation can be brought about either by stabilizing the formation of the initial closed complex (and

thus reducing the dissociation constant of the RNAP holoenzyme-promoter complex), by increasing

the isomerization rate from the closed complex to the open complex, or by some combination of

both [40–42]. Activation is often divided into two broad classes, namely, Class I and Class II

[43, 44]. Class I transcriptional activation involves interactions between the RNAP alpha C terminal

domain (α-CTD) and an activator TF bound upstream (10s of bp) of the RNAP binding site.

Class II transcriptional activation involves activator TFs bound directly adjacent to or overlapping

the promoter -35 region. In class II activation, TFs can (in addition to interactions with the α-

CTD) interact with the RNAP at the alpha N terminal domain (α-NTD), or with region 4 of the

sigma factor. It has been shown that in the context of Class II activation by CRP, a ubiquitous

global TF, interactions between the α-CTD and CRP affect the equilibrium formation of the closed

complex, while interactions between the α-NTD and CRP affect the isomerization rate to the open

complex [41].

In addition to efforts to understand activation in the context of wild-type promoters, a number of

elegant experiments involving synthetic transcriptional activators have been performed. A striking

series of experiments from the lab of Ann Hochschild revealed that activation can be mediated

by essentially arbitrary protein-protein contacts between RNAP and an activator TF [45, 46]. In

Figure 1.3, one such experiment is shown, in which the wild-type RNAP α subunit was replaced

with a chimeric protein containing a wild-type N-terminal domain and linker, but with a C-terminal

domain replaced by the C-terminal domain of the lambda cI protein. The cI CTD mediates cI

dimer-dimer interaction, and so the cI CTDs of the chimeric RNAP α subunit can reasonably be

expected to interact with the CTDs of wild-type cI protein bound upstream of the promoter. Dove et
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al showed that this interaction did indeed occur and moreover was sufficient to cause transcriptional

activation [45]. In addition to activation via such “molecular velcro” type interactions, activation

can also be effected by “derepression,” where a protein serves as an effective activator by blocking

or inhibiting a repressor molecule. It has been shown that LacI itself, the canonical example of a

repressor, can serve as an activator, in the context of the E. coli bgl promoter, by disruption of

repression by H-NS [47].

1.3 Thermodynamic model of transcriptional regulation

The preceding discussion touched on many of the most important elements of transcriptional reg-

ulation. As physicists and quantitative scientists, we would like to go beyond descriptive cartoons

and qualitative descriptions of the effects of various molecular players to construct a more quanti-

tative picture. Adding urgency and relevance to this desire is the fact that many assays to measure

gene expression yield quantitative results in terms of the number of mRNA and protein molecules

produced. To fully engage with and and learn as much as possible from these measurements, we

need to be able to make falsifiable quantitative predictions.

One class of models that has been successful in making quantitative predictions about gene

regulation is that of thermodynamic or statistical mechanical models. This may seem surprising

at first glance since biological systems are perhaps the single most salient example of systems that

reside out of equilibrium; or, as the economist John Maynard Keynes put it, “In the long run we

are all dead”. Yet although in the long run biological systems are out of equilibrium, the separation

of timescales involved in different cellular processes means that a quasi-equilibrium description of

certain processes is not inappropriate. As we will see, many studies have used thermodynamic

models successfully to quantitatively model gene expression.

Thermodynamic models of gene regulation take as their foundational assumption the idea that

the level of gene expression is proportional to the equilibrium probability that RNA polymerase is

bound to the promoter. Later, we will explore the conditions under which a quasiequilibrium view

of transcription is accurate, using a simplified model of the kinetics of transcription initiation, but

in brief, we expect this assumption to be valid in the limit that RNAP binding and unbinding is fast

compared with the rate of transcription initiation. The procedure for constructing a thermodynamic

model is straightforward in principle: one enumerates all the possible configurations of the system,

and for each configuration computes the multiplicity (i.e., the number of ways of realizing a particular

configuration) and the energy of that configuration. The Boltzmann weight for a particular state

is then simply the multiplicity times e raised to the energy of that configuration divided by kBT ,

where kB is Boltzmann’s constant. According to the Boltzmann distribution, the probability of

any particular configuration is then given by the Boltzmann weight of that configuration divided
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Figure 1.4: States, multiplicities, and energies for simple repression. For the “simple repres-
sion” architecture, the promoter can take three possible states (shown top to bottom in the figure):
neither repressor nor polymerase bound, polymerase bound, or repressor bound. By assumption,
RNAP cannot bind the promoter when the repressor is bound. The multiplicities reflect the number
of ways of distributing P polymerases and R repressors among NNS non-specific binding sites, where
NNS is typically taken as the length of the genome. The nonspecific polymerase-DNA binding en-
ergy is given by εNSpd , while the specific polymerase-DNA binding energy of the promoter of interest

is given by εSpd. Likewise, the nonspecific repressor-DNA binding energy is εNSrd , and the specific

repressor-DNA binding energy is εSd . The Boltzmann weight of each state is given by Ω× e−E/kBT ,
where Ω is the multiplicity of the state, E is the energy of the state and kB is Boltzmann’s constant.
Figure adapted from reference [48].
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by the sum of the weights of all configurations (the partition function). The probabilities of all

configurations in which RNAP is bound at the promoter are summed, and the overall level of gene

expression is assumed to be proportional to this quantity. For instance, for the “simple repression”

scenario depicted in Figure 1.4, the probability that RNAP is bound is given by [35]:

pbound =

P
NNS

exp
(
−∆εpd
kBT

)
1 + P

NNS
exp

(
−∆εpd
kBT

)
+ R

NNS
exp

(
−∆εrd
kBT

) , (1.1)

where P is the number of polymerases, R is the number of repressors, NNS is the number of

nonspecific protein binding sites (usually taken to the be the length of the genome), ∆εpd = εSpd−εNSpd
is the difference between the specific and nonspecific binding energies for RNAP, and ∆εpd = εSrd−εNSrd
is the difference between specific and nonspecific binding energies for the repressor. More negative

values of ∆εpd and ∆εrd indicate stronger binding.

The constant of proportionality between gene expression and pbound depends on details such as

the rate of transcription initiation while RNAP is in the bound state, the mRNA degradation rate,

the translation rate, the protein degradation rate, and the rate of cell division. A convenient way

to sidestep the need to know all these parameters is to simply consider the ratios of gene expression

levels under different intracellular conditions. For instance, one can define the Repression as the

ratio of gene expression in the presence of a repressor TF to gene expression in the absence of the

repressor TF. Then (as long as the parameters mentioned above don’t depend on TF concentration),

the repression depends only on the ratio of pbound in the presence of repressor to pbound in the absence

of repressor, eliminating the possibly unknown constant of proportionality. For the simple repression

example in Figure 1.4, the repression is given by

Repression =
1 + P

NNS
exp

(
−∆εpd
kBT

)
1 + P

NNS
exp

(
−∆εpd
kBT

)
+ R

NNS
exp

(
−∆εrd
kBT

) . (1.2)

Thus, even if the exact constant of proportionality is unknown, direct comparisons between theory

and experiment can be made by taking the ratio of two gene expression measurements and comparing

with Equation 1.2 [35].

This framework has been successfully applied to gene regulation in a wide variety of contexts

in both prokaryotes and eukaryotes. The earliest example is a pair of classic papers by Ackers,

Johnson, and Shea in which transcriptional regulation of the lambda phage PR and PRM promoters

was modeled using the approach outlined above [49, 50]. The same type of analysis has been

applied to aspects of the lac promoter in E. coli including the energetics of DNA looping [51].

Thermodynamic analysis of the lac promoter culminated in the work of Kuhlman et al who presented

a complete model of regulation at the lac promoter incorporating all known molecular interactions,
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and rigorously tested this model in a series of carefully designed experiments [52]. See also [53] and

Chapter 2 of this work for an extension of these results. Bintu et al have systematized this overall

approach and presented a thermodynamic analysis of 10 common regulatory motifs in prokaryotes

[54, 55].

Thermodynamic models have also been applied successfully in the eukaryotic context including

yeast promoters [56] and the expression of genes responsible for segmentation in Drosophila develop-

ment [57]. In eukaryotes, an additional complication arises from the presence of nucleosomes, which

form the basic building block of chromatin and consist of 147 bp of DNA wrapped around a histone

protein octamer. DNA that is part of a nucleosome is inaccessible to binding by TFs or RNAP,

and hence the presence or absence of nucleosomes in the promoter region has a significant effect

on transcription. Like TFs, nucleosomes have distinct sequence preferences and thus nucleosome

positioning can be encoded by the DNA sequence of the genome [58, 59]. Nucleosome occupancy is

thus an additional molecular species to be accounted for when enumerating the possible states in a

thermodynamic model [16]. Proteins similar to eukaryotic histones appear in prokaryotes, including

H-NS, HU, and StpA. Although it appears that they too can play a significant role in transcrip-

tional regulation, this aspect of prokaryotic regulation has garnered somewhat less attention than

in eukaryotes. Later on in this thesis, we will explore the regulation of an E. coli promoter in which

H-NS appears to play a role, the mscL promoter.

A commonly used three-step model of transcription initiation comprises the following steps:

(1) (reversible) closed complex formation; (2) (irreversible) open complex formation; and (3) (irre-

versible) promoter clearance (which itself is comprised of rounds of abortive initiation followed by

clearance and RNA chain elongation) [60–62]. We will consider a slightly simplified two-step version

of the model in which closed complex formation occurs reversibly with association rate kPon and

dissociation rate kPoff , and transcription is initiated from the closed complex at a rate kt. This sim-

plification is appropriate in the limit that the the promoter escape rate is much larger than the open

complex formation rate (i.e., in the limit that transcription initiation has open complex formation

as a single rate-limiting step, which appears empirically to be the case [40, 61]). Figure 1.5a shows a

schematic of this two-step model of transcription initiation. This schematic can be applied directly

to the case of constitutive expression, where transcription occurs independently of any transcription

factors.

The standard assumption in equilibrium statistical mechanical models of gene expression is that

gene expression is proportional to the probability that RNA polymerase is bound at the promoter,

given equilibrium between the unbound and bound (i.e., closed complex) states. In the language of

rate constants in Figure 1.5a, this probability is given by

pbound =
kPon

kPon + kPoff
. (1.3)
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The constant of proportionality is given by the transcription rate kt divided by the degradation rate

γ, so that the overall predicted level of mean gene expression is given by

〈mRNA〉 =
kt
γ

kPon
kPon + kPoff

. (1.4)

With respect to our model of constitutive transcription, under which conditions do we expect

this assumption to hold? A moment’s reflection reveals that as long as the initiation rate from

the closed complex kt is much less than the dissociation rate of the closed complex kPoff (i.e.,

kt << kPoff ) there will be many association and dissociation events for each transcription event, and

the quasiequilibrium description will hold. If kt is comparable to or larger than kPoff , the system

will be continually driven out of equilibrium by irreversible transcription events, and an equilibrium

description is not appropriate. In Figure 1.6a, we compare the predictions of the equilibrium model

(given in Equation 1.4) with the gene expression levels obtained by performing Gillespie simulations

of the scenario shown in Figure 1.5a, for a range of values of kt/k
P
off . The Gillespie algorithm is

a well-known algorithm for performing exact stochastic simulations of chemical reaction networks

[63]. Briefly, the algorithm entails enumerating all possible reactions the system can undergo (e.g.

production of an mRNA transcript, degradation of a transcript, association and dissociation of

RNAP). At each time step of the simulation, the total rate ktot for all possible reactions is calculated

as the sum of the rates of the possible reactions, and the length of time until the next reaction occurs

is drawn from an exponential distribution with mean 1/ktot. The particular reaction that occurs is

chosen randomly weighted by the rates of the possible reactions. See Chapter 5.2.3 for additional

information.

As expected, the simulations show that the equilibrium model accurately predicts gene expression

when kt << kPoff , but diverges when kt ∼ kPoff . There is good (although indirect) experimental

evidence that this condition does hold for E. coli promoters. For instance, Hawley and McClure

performed abortive initiation assays in an in vitro transcription reaction, and found that the delay

time between addition of RNAP to the reaction and open complex formation was consistent with

rapid equilibrium of the closed complex and open complex formation as a single rate-limiting step

[61]. In a related assay, the same authors added a repressor TF (λ cI) to a similar in vitro reaction and

found that the formation of open complexes was immediately (within measurement precision) halted,

consistent with a picture in which rapid dissociation of RNAP immediately allows the repressor

to bind, while existing open complexes are unaffected [40]. To date, the rates of closed complex

formation and dissociation have not been directly measured in vivo.

What happens when transcription factors are involved? We next examine a slightly more compli-

cated scenario where transcription can be turned off by the binding of a repressor TF. A schematic of

the possible transitions for this system is shown in Figure 1.5b. The predicted equilibrium occupancy
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Figure 1.6: Gillespie simulations of scenarios depicted in Figure 1.5. For both constitutive
expression and simple repression, the thermodynamic model accurately predicts expression when
kt << kPon but diverges when kt ∼ kPon. The fact that the thermodynamic model overestimates
expression is due to the fact that transcription drives the system into the RNAP unbound state, and
thus the thermodynamic model overestimates the time spent in the RNAP bound state. In the case
of simple repression, the rates of repressor binding and unbinding do not affect the accuracy of the
thermodynamic model. To compute each data point, 100 Gillespie simulations are initiated at each
value of kt/koff and run until reaching equilibrium, at which the mean mRNA levels are computed.
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of the promoter is slightly more complex in this case and given by (compare with Equation 1.1)

pbound =

kPon
kPoff

1 +
kPon
kPoff

+
kRon
kRoff

, (1.5)

yielding a predicted gene expression level of

〈mRNA〉 =
kt
γ

kPon
kPoff

1 +
kPon
kPoff

+
kRon
kRoff

. (1.6)

As in the previous example, we can perform Gillespie simulations to exactly simulate the stochas-

tic reactions schematized in Figure 1.5b, and compare the results of these exact simulations with

the equilibrium binding prediction of Equation 1.6. We do so for two sets of values of the repres-

sor association and dissociation rates, one set exhibiting kinetics on the same timescale as RNAP

binding/unbinding, and one set exhibiting slower kinetics than RNAP binding/unbinding. In Fig-

ure 1.6b, we see that again, it is the ratio of the RNAP dissociation rate kPoff to the transcription

initiation rate that determines the accuracy of the equilibrium description. Interestingly, the relative

magnitude of the transcription factor kinetics does not play a role - the equilibrium thermodynamics

description accurately predicts mean gene expression even for TF kinetics substantially slower than

RNAP kinetics. Thus, it is not necessary to postulate that all relevant timescales in the system be

faster than transcription initiation kinetics - only that the RNAP unbinding rate be faster than kt.

Of course, the conclusions drawn from these models are only valid insofar as the schematics in

Figure 1.5 are an accurate depiction of reality. Nonetheless, it seems reasonable to conclude that

equilibrium statistical mechanics descriptions of gene regulation are likely to be applicable in a broad

range of situations. Of particular noteworthiness is the fact that the applicability of equilibrium

assumptions is determined only by the relative rates of RNAP dissociation (kPoff ) and transcription

initiation from the closed complex (kt), and not by the rates of transcription factor kinetics. This is

a good thing since the timescales of transcription factor association and dissociation are frequently

on the order of minutes, whereas transcription events can occur on the timescale of seconds. Thus it

would be unpromising indeed for the general applicability of thermodynamic models if TF kinetics

were required to occur on faster timescales than transcription.

1.4 Stochastic chemical kinetics model of transcriptional reg-

ulation

In a preceding paragraph, I wrote that “the equilibrium thermodynamics description accurately

predicts mean gene expression even for TF kinetics substantially slower than RNAP kinetics.” This
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statement is correct, but somewhat incomplete. The reason why it is incomplete is immediately

evident upon inspection of the full probability distribution functions for mRNA expression for each

of the two cases considered (slow and fast TF kinetics). As seen in Figure 1.7, while it is true

that both distributions have the same mean, the distribution corresponding to slow TF kinetics is

much broader than the distribution corresponding to fast TF kinetics. In fact, in the limit that

TF kinetics are much slower than mRNA degradation, the distribution will be bimodal. For fast

TF kinetics, the distribution is reasonably well-characterized by the mean value: the distribution is

unimodal and centered on the mean value. For slow TF kinetics, the mean value does a poor job

of characterizing the distribution: the distribution is not centered on the mean, and is very broad.

Although the thermodynamic model correctly predicts the mean expression for slow TF kinetics,

this prediction is arguably not a particularly useful or relevant characterization of gene expression

from the promoter. We are thus motivated to consider models of gene expression that allow us to

make predictions about higher moments of the probability distribution function for gene expression.

The fundamental theoretical tool for characterizing stochastic gene expression is the master

equation. The master equation is essentially a way of keeping track of the transitions between states

for a Markov process, and can be applied to any Markov process. A Markov process is a stochastic

process with no memory, for which the state of the system at time t3 depends only on the state

at time t2, and not on any previous history of the system. In its most general form, the master

equation is written
dPn
dt

=
∑
n′

(Wn′npn′ −Wnn′pn) , (1.7)

where Wn′n is the rate of transitions from state n′ to state n, and Wnn′ is the rate of transitions

from state n to state n′. The interpretation of this equation is quite straightforward: to determine

the rate at which the probability of being in state n changes, simply add up the transition rates from

all other states n into state n′, weighted by the current probability of being in state n, and subtract

the sum of the transition rates from state n′ to all other states n, again weighted by the current

probability of being in state n. In this most general form, the master equation can be applied to

any Markov process. It might be reasonable to ask whether modeling gene expression as a Markov

process is appropriate. After all, it is often the case that delay times introduced by processes such as

mRNA processing, protein folding, and protein maturation are an important part of the dynamics

of gene expression. The resolution to this apparent dilemma is that although on a macroscopic scale

non-memoryless phenomena like delay times are manifested, on a microscopic scale each individual

protein molecule is still undergoing memoryless transitions from one state to another. For instance,

in the context of eukaryotic transcription a number of processes have to take place before a messen-

ger RNA can be translated, such as splicing, addition of a polyadenylated tail, and export from the

nucleus to the cytoplasm; these steps cumulatively create a delay between transcription and transla-
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tion. But at a molecular level, each individual mRNA is simply diffusing around until it encounters

the appropriate enzyme or transporter to effect each of these reactions. From the perspective of an

individual mRNA, the time that has passed since transcription is irrelevant to the probability of

encountering the spliceosome in the next instant dt.

Equation 1.7 gives the most general form of the master equation. While dealing with gene

expression, we will generally be working with a particular class of Markov processes called “birth

and death processes” [64]. For this class of processes, the state of the system can only increase in

increments of one: i.e., Wij = 0 if |i − j| > 1. For instance, if n refers to the number of mRNA

transcripts present in the cell, n, can increase by one via a transcription event, or can decrease by

one via a degradation event. In Figure 1.8, we show a schematic of a simple birth and death model of

constitutive (unregulated) transcription. mRNA transcripts are produced with constant probability

per unit time at rate r, and are degraded with constant probability per mRNA per unit time at

rate γ. Note that in Figure 1.8 we are no longer explicitly considering the transitions between the

states in which RNAP is bound and unbound. As long as these transition rates (kPoff and kPon) are

fast compared to the initiation rate from the closed complex kt, these pre-initiation dynamics can

be modeled without loss of accuracy using a single effective transcription rate r, which is related to

kPoff , kPon and kt by the following expression:

r =
kPon

kPon + kPoff
kt. (1.8)

This expression for r can be interpreted as the fraction of time for which the promoter is bound by

RNAP times the transcription rate kt from the closed complex.

The master equation corresponding to Figure 1.8 can be written:

dp(m, t)

dt
= rp(m− 1, t) + γ(m+ 1)p(m+ 1, t)− rp(m, t)− γmp(m, t). (1.9)
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The first two terms of the master equation have positive signs and are concerned with transitions

to the state of having m mRNA: one could start with m− 1 mRNA, and produce one (first term),

or one could start with m+ 1 mRNA, and degrade one (second term). The third and fourth terms

deal with transitions away from m mRNA and hence have negative signs: one could start with m

mRNA and produce one (third term), or start with m mRNA and degrade one (fourth term). In

this work we will principally be concerned with the steady state probability distribution. It can be

shown (by setting the left hand side of Equation 1.9 to zero and directly substituting the following

expression) that the steady-state solution to Equation 1.9 is a Poisson distribution with mean r/γ:

p(m) =
(r/γ)m

m!
e−r/γ . (1.10)

For more complicated scenarios involving regulation by transcription factors, a closed form solution

to the master equation will not in general be available. However, we can still make progress by

calculating the various moments of the distribution analytically. For instance, to compute the

steady-state mean of Equation 1.9, we set the left hand side to zero, multiply by m, and sum from

m = 0 to infinity:

0 = r

∞∑
m=0

mp(m− 1) + γ

∞∑
m=0

m(m+ 1)p(m+ 1)− r
∞∑
m=0

mp(m)− γ
∞∑
m=0

m2p(m), (1.11)

0 = r

∞∑
m=0

(m+ 1)p(m) + γ

∞∑
m=0

m(m− 1)p(m)−−r
∞∑
m=0

mp(m)− γ
∞∑
m=0

m2p(m), (1.12)

0 = r〈m〉+ r + γ〈m2〉 − γ〈m〉 − γ〈m2〉, (1.13)

γ〈m〉 = r, (1.14)

〈m〉 =
r

γ
, (1.15)

where we have invoked the normalization condition that
∑∞
m=0 p(m) = 1. A similar procedure

can be carried out for all moments of the distribution. This means that, although we may not be

able to obtain analytic solutions for the full probability distribution function for more complicated

regulatory scenarios, we can still analytically compute useful properties of the distribution such

as the noise strength (standard deviation divided by mean) and Fano factor (variance divided by

mean).

The existence of noise in gene expression has been noted as early as 1976 [65, 66], and was vividly

placed in a quantitative framework in a 2002 paper by Elowitz et al [67]. In this work, accompanied

by theoretical work providing the mathematical justification [68], Elowitz and coworkers showed how

to experimentally decompose variability in gene expression into so-called “intrinsic” and “extrinsic”

components. “Intrinsic” variability refers to the variability resulting from the inherent stochasticity

of molecular reactions such as transcription factor binding and unbinding and transcription initiation.
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“Extrinsic” variability refers to the variability resulting from the fact that each of the molecular

rates depicted in Figure 1.5b is itself subject to variation due to e.g. fluctuations in repressor or

RNA polymerase copy numbers. Notably, the mathematical breakdown of intrinsic vs extrinsic

noise given in reference [68] relies on the assumption that extrinsic fluctuations are slower than

intrinsic fluctuations which is probably true at the level of mRNA expression, but not necessarily

at the protein expression level [69]. Other noteworthy experimental investigations of variability

in gene expression include a 2005 experiment by Ido Golding and coworkers, in which the MS2

mRNA tagging system was used to monitor the production of mRNA molecules in essentially “real

time,” allowing the authors to observe the distribution of waiting times between mRNA production

events [70]. One of the more surprising results to emerge from these experiments was the observation

that even in the fully induced state, the promoter still exhibited pronounced periods of inactivity,

even though in principle the repressor TF should have been inactivated by the presence of the inducer

molecule IPTG.

More recently, a series of publications have advanced the hypothesis that noise is “universal”

in prokaryotes in the sense that the level of variability is dictated solely by the mean level of gene

expression and not by the specific molecular details of promoter architecture such as transcription

factor binding site locations and strengths. This hypothesis was advanced most explicitly in a 2011

paper by So et al, in which the authors measured the level of variability in mRNA copy number

for a variety of E. coli promoters under a variety of induction conditions [71]. Similar results

were obtained in a study by Taniguchi et al of transcription from a library of some 2000 genes in E.

coli [72]. This observation of universality was extended to other microorganisms in a work by Salman

et al [73]. These experimental observations, combined with the observation from reference [70] of

“burst-like” mRNA production even in the fully induced case, have led to speculation that some as-

yet uncharacterized mechanism universally causes E. coli promoters to exhibit periods of activity and

inactivity, regardless of transcription factor binding. One possible mechanism is derived from the fact

that transcriptional silencing by nucleosomes is a well-known phenomenon in eukaryotes, and thus

it seems plausible that nucleoid-associated prokaryotic proteins homologous to eukaryotic histones

could be playing a similar role in prokaryotes. Later in this thesis, this question of universality will

be addressed directly; I will briefly note here that our experimental results argue rather strongly

against universality.

In any case we have seen that noise in gene expression is a fact of life, in both prokaryotes and

eukaryotes. Given that this is so, the question naturally arises whether noise is simply an uncom-

fortably reality that life simply has to deal with, or whether it can play an adaptive or functional

physiological role in living organisms [74]. One intriguing hypothesis is that phenotypic diversity

resulting from gene expression noise could confer fitness on a genetically identical population by

serving as a “bet-hedging” strategy against fluctuating environmental conditions [75–77]. Examples
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of environmental fluctuations include shifts from well-mixed to stagnant liquid growth conditions,

or changes in the availability of sugars to metabolize [78, 79]. The idea is that if a small subpopu-

lation of an overall population adopts a phenotype suitable for a different environmental condition,

if the environment changes rapidly the subpopulation will be poised to rapidly succeed in the new

environment. A key element of the bet-hedging concept is incomplete information about the envi-

ronment. With perfect knowledge of environmental conditions, bet-hedging would be suboptimal,

as the best strategy would be to deterministically adopt the the phenotype most suited to environ-

mental conditions. However, if conditions change unpredictably, or if acquiring information about

the environment is too costly, then bet-hedging can make sense.

As discussed above, theoretical efforts to characterize stochasticity in gene expression have cen-

tered around solving the chemical master equation. The majority of this work has been done starting

around the year 2000, reflecting the fact that it is only relatively recently that single-cell techniques

have allowed noise in gene expression to be characterized at the experimental level. In the early

2000s, theorists calculated the gene expression probability distributions resulting from “bursty” gene

expression [80, 81]. This corresponds to the scenario illustrated in Figure 1.5b in the limit that the

periods of active gene expression are short compared to the lifetime of an mRNA. In that case,

it is appropriate to model the transcripts as being produced essentially all at once. The resulting

distribution is a gamma distribution (or equivalently its discrete counterpart, the negative binomial

distribution), and is characterized by having a longer tail in the positive direction than a Poisson

distribution. Later, Raj and coworkers found an analytic expression for the resulting probability

distribution for the general case (i.e., the length of active period is not necessarily short compared

with the mRNA lifetime) [82, 83]. In work published in 2008, and also in Chapter 5 of this thesis

(published in 2010 in PLoS Computational Biology), Sanchez et al systematized and extended these

efforts to compute the variability for a variety of promoter architectures, much as Bintu et al had

previously done for mean gene expression using thermodynamic models [36, 54]. Notably, these the-

oretical efforts yield predictions for relationships between noise and mean expression that distinctly

depend on the details of promoter architecture, in contrast with some experimental results described

above.

While the work described in the preceding paragraph has been largely focused on computing how

gene expression variability depends on the details of regulation of a particular isolated gene, other

noteworthy efforts have examined how noise propagates through networks of genes [84], and have

derived fundamental limits on the ability of networks of interacting genes to suppress fluctuations

in gene expression [85, 86]. At the same time, Cox and Munsky have showed how fluctuations in

gene expression can be used to infer properties of gene expression networks [87, 88]. Another related

line of inquiry has been pursued by William Bialek and coworkers including Gaspar Tkacik, Thierry

Mora, and Aleksandra Walczak. These researchers have looked in-depth at the implications of noise
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in gene expression for information processing and signal transduction. The basic idea here is that the

concentration(s) of various transcription factor(s) encode some information about the environment.

In the process of converting from transcription factor concentrations (the input) to gene expression

level (the output), some information is inevitably lost due to noise in gene expression. These efforts

have sought to characterize how information is integrated and transduced by regulatory DNA, and

to examine the flow of information through genetic regulatory networks [89–92]. Finally, the effect of

the partitioning of proteins between daughter cells at cell division on cell-to-cell variability in protein

copy numbers has been examined. The authors concluded that in many cases, the variability due

to cell partitioning can be as important or more than the variability due to transcription [93],

highlighting the need to exercise caution in interpreting the results of gene expression variability

measurements.

The remainder of this thesis can be briefly summarized as follows. In Chapter 1, we employ the

thermodynamic modeling framework in the regulatory context of the wild-type lac operon. We use

models of the sequence-dependent binding energies of the relevant proteins (CRP, LacI, and RNAP)

to directly construct a genotype to phenotype map for the level of repression exhibited by the lac

promoter. In Chapter 2, we examine how a model of the sequence-dependent binding energy of

RNAP can be used in conjunction with a thermodynamic model of gene expression to design pro-

moter to yield targeted levels of gene expression, in the regulatory contexts of constitutive expression

and simple repression.In Chapter 3, we introduce a high-throughput promoter mutagenesis assay

called Sort-Seq and use it to explore the transcriptional regulation of the mechanosensitive chan-

nel of large conductance, whose transcriptional regulation had previously been almost completely

uncharacterized. In Chapter 4, we introduce a theoretical modeling framework for predicting the

level of cell-to-cell variability in gene expression as a function of the promoter architecture, and use

this framework to explore the noise properties of a number of common E. coli regulatory motifs.

Finally, in Chapter 5, we use mRNA FISH to test these theoretical predictions, and find that the

noise does distinctly depend on the promoter architectures in play.
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[90] Gašper Tkačik, Curtis Callan, and William Bialek. Information capacity of genetic regulatory

elements. Physical Review E, 78(1):1–17, July 2008.
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Chapter 2

Comparison of the theoretical and
real-world evolutionary potential of
a genetic circuit.

A version of this chapter originally appeared as: M. Razo-Mejia, J.Q. Boedicker, D. Jones, A. DeLuna, J.B. Kinney,

and R. Phillips (2014) Comparison of the theoretical and real-world evolutionary potential of a genetic circuit .

Physical Biology 11: 026005. doi:10.1088/1478-3975/11/2/026005

Author contribution note: for this chapter, I (DLJ) performed Sort-Seq experiments, wrote data analysis code,

and analyzed data to obtain the sequence-dependent binding energy models for CRP, RNAP, and LacI.

2.1 Introduction.

Despite efforts to understand genotypic variability within natural populations [1] and recent inter-

est in fine-tuning genetic circuits for synthetic biology [2], it still remains unclear how, with base

pair resolution, the sequence of a gene regulatory region can be translated into output levels of

gene expression [3]. Generally, classical population genetics has treated regulatory architectures as

changeless parameters, rather than potential evolutionary variables, focusing on changes in protein

structure rather than gene regulation. However, genetic regulatory architecture can also determine

the variation of traits, and thus the evolutionary potential of these genes [4]. After all, the structure

of bacterial promoters dictates interactions among the transcriptional apparatus, and through the

modification of this structure, regulatory circuits can be modified to potentially allow cells to occupy

different niches [5, 6].

Thermodynamic models of gene regulation have been widely used as a theoretical framework

to dissect and understand genetic architectures [7–11]. Such dissections have led to a quantitative

understanding of how parameters such as binding energies, transcription factor copy numbers, and

the mechanical properties of the DNA dictate expression levels. Recently the development of experi-

mental techniques combining these types of models with cell sorting and high-throughput sequencing
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have made it possible to understand gene regulation at single-base pair resolution [12–14], as well

as to deliberately design promoter architectures with desired input-output functions [15]. These

models connect the sequence of a promoter to the output phenotype, making it possible to predict

variability and evolutionary potential of gene regulatory circuits.

The lac operon has served as a paradigm of a genetic regulatory system for more than 60 years [16,

17]. This operon contains the molecular machinery that some bacterial species, including the model

organism E. coli, use to import and consume lactose. Extensive quantitative characterization of the

regulation of this genetic circuit [18, 19], as well as of the link between fitness and expression of the

operon [20–24] make it an ideal system for exploring the evolutionary potential of a regulatory circuit.

With previous exhaustive description and quantification of the parameters controlling the expression

level of this genetic circuit [19, 25–27] we now have what we think is a nearly complete picture of

the regulatory knobs that can modify the expression level, shown schematically in Figure 2.1(a). In

this article we build upon this understanding by directly linking the sequence of the promoter region

with these control parameters, thereby creating a map from genotype to transcriptional output.

Within a collection of E. coli isolated from different host organisms we observe significant variabil-

ity for the regulation of the lac operon, as shown in Figure 2.1(b). By characterizing the variability

of the regulatory control parameters shown in Figure 2.1(a) within these strains, we identified evolu-

tionary trends in which certain parameters or subsets of parameters are seen to vary more often than

others within this collection of natural isolates. Using the map of promoter sequence to transcrip-

tional output, we demonstrated that the regulatory input-output function for the lac promoter could

account for most of the natural variability in regulation we observed. We then implement the map

to explore the theoretical potential for this regulatory region to evolve. This level of analysis gives

us clues as to how selection could fine tune gene expression levels according to the environmental

conditions to which cells are exposed.

2.2 Results.

2.2.1 Quantitative model of the natural parameters that regulate gene

expression

Thermodynamic models of gene regulation have become a widely used theoretical tool to understand

and dissect different regulatory architectures [3, 12, 19, 26, 27, 31]. The lac promoter is one such

regulatory architecture that has been studied in detail [32]. Models have been constructed and

experimentally validated for both the wild-type lac promoter and synthetic promoter regions built

up from the lac operon’s regulatory components [12, 15, 19, 26, 27, 32–37]

In a simple dynamical model of transcription the number of messenger RNA (mRNA) is propor-
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Repressor ON, low expression of LacZ protein
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(b)

Figure 2.1: (a) Regulatory knobs that control the expression of the lac operon and the symbols used to characterize
these knobs in the thermodynamic model. The activator CRP increases expression, the Lac repressor binds to the
three operators to decreases expression, and looping can lock the repressor onto O1 leading to increased repression.
The interaction energy between RNAP and CRP reflects the stabilization of the open complex formation due to the
presence of the activator [28], and the interaction between the Lac repressor and CRP stabilizes the formation of the
upstream loop [29]. (b) Variability in the repression level of E. coli natural isolates and the lab control strain MG1655.
Strains are named after the host organism from which they were originally isolated [30]. Error bars represent the
standard deviation from at least three independent measurements. (c) Schematic representation of the repression
level, in which the role of the repressor in gene regulation is experimentally measured by comparing the ratio of
LacZ proteins in cells grown in the presence of 1 mM IPTG to cells grown in the absence of IPTG. LacZ protein
concentrations were measured using a colorimetric assay.

tional to the transcription rate and the degradation rate of the mRNA,

dm

dt
= −γ ·m+

∑
i

ri · pi, (2.1)

where γ is the mRNA degradation rate and m is the number of transcripts of the gene per cell;
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ri and pi are the transcription rate and the probability of state i respectively. We can think of

pi as a measure of the time spent in the different transcriptionally active states. Thermodynamic

models assume that the gene expression level is dictated by the probability of finding the RNA

polymerase (RNAP) bound to the promoter region of interest [7–9]. With a further quasi-equilibrium

assumption for the relevant processes leading to transcription initiation, we derive a statistical

mechanics description of how parameters such as transcription factor copy number and their relevant

binding energies, encoded in the DNA binding site sequence, affect this probability [10]. Quantitative

experimental tests of predictions derived from equilibrium models have suggested the reasonableness

of the assumption [15, 19, 26, 27], although caution should be used as the equilibrium assumption is

not necessarily valid in all cases. The validity of this equilibrium assumption relies on the different

time-scales of the processes involved in the transcription of a gene. Specifically the rate of binding

and unbinding of the transcription factors and the RNAP from the promoter region should be faster

than the open complex formation rate; if so, the probability of finding the RNAP bound to the

promoter is given by its equilibrium value [9, 38]. For the case of the Lac repressor, the rate of

unbinding from the operator is 0.022 1/s [39], and the binding of an unoccupied operator with 10

repressors per cell occurs at a similar rate [40]. Open complex formation, a rate limiting step in

promoter escape, has been measured at a rate of 2×10−3 1/s [41]. Promoter escape is about an order

of magnitude slower than the binding and unbinding of the Lac repressor, and this separation of

time scales supports the equilibrium assumption for this particular case. We enumerate the possible

states of the system and assign statistical weights according to the Boltzmann distribution as shown

in Figure 2.2.

From these states and weights we derive an equation describing the probability of finding the

system in a transcriptionally active state, and therefore the production term from Equation 2.1,

∑
i

ripi =
∑
i

ri
Wi

Ztot
, (2.2)

where Wi is the statistical weight of states in which the polymerase is bound, which are assumed to

lead to the transcription of the operon (shaded blue in Figure 2.2), and Ztot =
∑

All states
Wstate is

the partition function, or the sum of the statistical weights of all states. We connect this model to

experimental measurements of repression, that is the ratio of gene expression in the absence of the

active repressor to gene expression in the presence of active repressor, using:

repression =
gene expression (R = 0)

gene expression (R 6= 0)
, (2.3)

where R is the number of repressor molecules per cell. The experimental equivalent of repression

is depicted in Figure 2.1(c). In experiments, isopropyl β-D-1-thiogalactopyranoside (IPTG) is used

to inactivate the Lac repressor, preventing it from binding to the genome with high affinity [19].
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Repression, as defined in Equation 2.3, has been a standard metric for the role of transcription

factors, including the Lac repressor, on gene expression [7, 42]. By measuring the ratio of steady-

state levels of a gene reporter protein, here LacZ, we are able to isolate the role of the repressor in

gene regulation, as described further in Section 2.5.11.

State Weight State Weight
1

A
NNS

e−β∆εa

P
NNS

e
−β∆εp (A)(P )

N2
NS

e
−β

(
∆εa+∆εp+∆εap

)

2R(P )

N2
NS

e
−β

(
∆εO2
r +∆εp

)
2R(P )

N2
NS

e
−β

(
∆εO3
r +∆εp

)

4R(R−1)(P )

N3
NS

e
−β

(
∆εO2
r +∆εO3

r +∆εp

)
2R(A)(P )

N3
NS

e
−β

(
∆εa+∆εO2

r +∆εp+∆εap

)

2R(A)(P )

N3
NS

e
−β

(
∆εa+∆εp+∆εO3

r

)
4R(R−1)(A)(P )

N4
NS

e
−β

(
∆εa+∆εp+∆εO2

r +∆εO3
r

)

2R
NNS

e
−β∆εO1

r 2R
NNS

e
−β∆εO2

r

2R
NNS

e
−β∆εO3

r
4R(R−1)

N2
NS

e
−β

(
∆εO1
r +∆εO2

r

)

4R(R−1)

N2
NS

e
−β

(
∆εO1
r +∆εO3

r

)
4R(R−1)

N2
NS

e
−β

(
∆εO2
r +∆εO3

r

)

8R(R−1)(R−2)

N3
NS

e
−β

(
∆εO1
r +∆εO2

r +∆εO3
r

)
2R(A)

N2
NS

e
−β

(
∆εa+∆εO1

r

)

2R(A)

N2
NS

e
−β

(
∆εa+∆εO2

r

)
4R(R−1)(A)

N3
NS

e
−β

(
∆εa+∆εO1

r +∆εO2
r

)

2R(A)

N2
NS

e
−β

(
∆εa+∆εO3

r

)
4R(R−1)(A)

N3
NS

e
−β

(
∆εa+∆εO1

r +∆εO3
r

)

4R(R−1)(A)

N3
NS

e
−β

(
∆εa+∆εO2

r +∆εO3
r

)
8R(R−1)(R−2)(A)

N4
NS

e
−β

(
∆εa+∆εO1

r +∆εO2
r +∆εO3

r

)

2R
NNS

e
−β

(
∆εO1
r +∆εO2

r +∆Floop(l12)
)

2R
NNS

e
−β

(
∆εO1
r +∆εO3

r +∆Floop(l13)
)

2R
NNS

e
−β

(
∆εO2
r +∆εO3

r +∆Floop(l23)
)

4R(R−1)

N2
NS

e
−β

(
∆εO1
r +∆εO2

r +∆εO3
r +∆Floop(l12)

)

4R(R−1)

N2
NS

e
−β

(
∆εO1
r +∆εO2

r +∆εO3
r +∆Floop(l13)

)
4R(R−1)

N2
NS

e
−β

(
∆εO1
r +∆εO2

r +∆εO3
r +∆Floop(l23)

)

2R(A)

N2
NS

e
−β

(
∆εO1
r +∆εO2

r +∆εa+∆Floop(l12)
)

4R(R−1)(A)

N3
NS

e
−β

(
∆εO1
r +∆εO2

r +∆εO3
r +∆εa+∆Floop(l12)

)

2R(A)

N2
NS

e
−β

(
∆εO1
r +∆εO3

r +∆εa+∆εar+∆Floop(l13)
)

4R(R−1)(A)

N3
NS

e
−β

(
∆εO1
r +∆εO2

r +∆εO3
r +∆εa+∆εar+∆Floop(l13)

)

1Figure 2.2: Thermodynamic model of gene regulation. The table shows all states permitted within the model and
their respective statistical weights as obtained using statistical mechanics. In these weights P = number of RNAP per

cell, R = number of repressor molecules per cell, A = number of activator molecules per cell, ∆ε
Oi
r = binding energy of

Lac repressor to the ith operator, ∆εp = binding energy of RNA polymerase to the promoter, ∆εa = activator binding
energy, ∆Floop(lij) = looping free energy between operator Oi and Oj , NNS = number of nonspecific binding sites on
the genome, ∆εap = interaction energy between the activator and the RNAP, ∆εar = interaction energy between the
activator and the repressor, and β = inverse of the Boltzmann constant times the temperature (see Supplementary
Information for further discussion). States with blue background are assumed to lead to transcription of the operon.

Various models of the wild-type lac promoter have been reported in the past using this simple

structure. Our work builds upon the work by Kinney et al. [12]. Kinney and collaborators combined

a thermodynamic model of regulation with high-throughput sequencing to predict gene expression

from statistical sequence information of the cAMP-receptor protein (CRP) and the RNAP binding

sites. To predict how the sequence of the entire regulatory region influences expression, we adapted

this model to account for how the binding site sequence and copy number of the Lac repressor

modulate gene expression. Our model also takes into account growth rate effects, captured in the

RNAP copy number [43, 44].

Based on previous work done on the lac operon [12, 19], we assumed that the presence of the

activator does not affect the rate of transcription (ri from Equation 2.1), but instead influences

the probability of recruiting the polymerase to the promoter (pi from Equation 2.1). Previous



40

experimental characterization of the repressor binding energy to the different operators [26], the

looping free energy for the upstream loop between O1 − O3 [27], activator concentration and its

interaction energy with RNAP [19], RNAP binding energy [15] and RNAP copy number as a function

of the growth rate [44], left us only with three unknown parameters for the model. One of these

missing parameters, a decrease in the looping free energy when CRP and Lac repressor are bound at

the same time, is a consequence of the experimental observation that the presence of CRP stabilizes

the formation of the loop between O1 − O3 [29, 45]. The remaining two parameters, the looping

energies for the O1 − O2 and O3 − O2 loops, are not well characterized. These looping energies

may differ from upstream loops due to the absence of the RNAP binding site which modifies the

mechanical properties of the loop [46]. We fit these parameters for our model using Oehler et al.

repression measurements on lac operon constructs with partially mutagenized or swapped binding

sites [42, 47] (see section S5 of the Supplementary Information for further details). Using these

parameters the model is consistent with previous measurements (Figure 2.12). We emphasize that

having the 14 parameters of the model characterized (see Table 2.2) provides testable predictions

without free parameters that we compare with our experimental results.

2.2.2 Sensitivity of expression to model parameters

As an exploratory tool, the model can predict the change in regulation due to modifications in the

promoter architecture. Figure 2.3 shows the fold-change in the repression level as a function of each

of the parameters, using the lab strain MG1655 as a reference state (see Supplementary Information

for further detail on these reference parameters). We have reported parameters using strain MG1655

as a reference strain because this strain served as the basis for which most parameter values were

determined and the gene expression model was derived.

From this figure we see that within the confines of this model, modifications in the O1 binding

energy have the most drastic effect on the repression of the operon. For the case of O2 we see that

increasing its affinity for the repressor does not translate into an increased ability to turn off the

operon; but by decreasing this operator affinity the model predicts a reduction in the repression

with respect to the reference strain.

Surprisingly the repression level is predicted to be insensitive to activator copy number. The

same cannot be said about the affinity of the activator, since decreasing the activator binding energy

greatly influences the repression level.

2.2.3 Mapping from sequence space to level of regulation

Recent developments of an experimental technique called Sort-Seq, involving cell sorting and high-

throughput sequencing, have proved to be very successful in revealing how regulatory information

is encoded in the genome with base pair resolution [12]. This technique generates energy matri-
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Figure 2.3: Sensitivity of phenotype to the parameters controlling the gene expression level. Each graph shows
how a specific model parameter changes the level of gene expression. The log10 ratio of repression is calculated with
respect to the predicted repression for the lab strain MG1655. The vertical axis spans between 1000 fold decrease to
1000 fold increase in repression with respect to this strain. The gray dotted line indicates the reference value for the
lab strain MG1655. Values above this line indicate the operon is more tightly repressed and values below this line
have a leakier expression profile (see Table 2.2 for further detail on the reference parameters).

ces that make it possible to map from a given binding site sequence to its corresponding binding

energy for a collection of different proteins and binding sites. Combining these energy matrices

with thermodynamic models enables us to convert promoter sequence to the output level of gene

expression. Recently these energy matrices have been used to deliberately design promoters with a

desired expression level, demonstrating the validity of these matrices as a design tool for synthetic

constructs [15]. We use the matrices for CRP and RNAP published previously [12]. We experi-

mentally determined the matrix for the LacI operator using previously published methods [12], as

discussed in Materials and Methods. Figure 2.4(a) shows a schematic representation of the relevant

protein binding sites involved in the regulation of the lac operon and their respective energy ma-

trices. Implementing these matrices into the thermodynamic model gives us a map from genotype

to phenotype. We use this map to calculate the fold-change in repression relative to MG1655 for

all possible point mutations in this region. Figure 2.4(b) shows the fold-changes in repression levels

for the two base pair substitutions at each position that result in the largest predicted increase or

decrease in repression.

Again we see that mutations in the O1 binding site have the largest effect on regulation since

a single base pair change can lower the ability of the cell to repress the operon by a factor of

≈ 20. With only two relevant mutations that could significantly increase the repression level, this

map reveals how this operator and its corresponding transcription factor diverged in a coordinated

fashion; the wild-type sequence has nearly maximum affinity for the repressor [48]. It is known that
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Figure 2.4: Mapping from promoter sequence to regulatory level. (a) Energy matrices for the relevant transcription
factors (Blue - RNAP, green - CRP, red - Lac repressor). These matrices allow us to map from sequence space to
the corresponding binding energy. The contribution of each base pair to the total binding energy is color coded. The
total binding energy for a given sequence is obtained by adding together the contribution of each individual base pair.
(b) Using the energy matrices from (a) and the model whose states are depicted in Figure 2.2, the log10 repression
change was calculated for all possible single point mutations of the promoter region. The height of the bars represents
the biggest possible changes in the repression level (gray bars for biggest predicted decrease in repression, orange bar
for biggest predicted increase in repression) given that the corresponding base pair is mutated with respect to the
reference sequence (lac promoter region of the lab strain MG1655). The black arrows indicate the transcription start
site.

the non-natural operator Oid binds more strongly than O1 [42]. Oid is one base pair shorter than

O1 and current maps made with Sort-Seq cannot predict changes in binding affinity for binding sites

of differing length, although accounting for length differences in binding sites is not a fundamental

limitation of this method.

For the auxiliary binding sites, the effect discussed in section 2.2.2 is reflected in this map:

increasing the Lac repressor affinity for the O2 binding site does not increase repression. Mutations

in almost all positions can decrease repression, and no base pair substitutions significantly increase

the repression level. Mutations in the O3 binding site have the potential to either increase or

decrease the repression level. With respect to the RNAP binding site, we can see that, as expected,

the most influential base pairs surround the well characterized -35 and -10 boxes. The CRP binding

site overlaps three base pairs with the upstream Lac repressor auxiliary operator. As the heat-

map reveals, the binding energy is relatively insensitive to changes in those base pairs, so we assume

independence when calculating the binding energy and capture the synergy between the Lac repressor

bound to O3 and CRP with an interaction energy term.
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The construction of the sequence to phenotype map enables us to predict the evolvability of the

lac promoter region. We calculated the effect that all possible double mutations would have in the

regulation of the operon, again with respect to the predicted repression level of the reference strain

MG1655. Figure 2.5 shows what we call the “phenotype change distribution” obtained by mutating

one or two base pairs from the reference sequence, under the assumption of same growth rate and

transcription factor copy numbers as the reference strain. The distribution peaks at zero for both

cases, meaning that the majority of mutations are predicted not to change the repression level with

respect to the reference strain, and would result in genetic drift. However it is interesting to note

that the range of repression values predicted by the model with only one mutation varied between

30 times lower and 4.6 times higher than the reference value, and with two mutations the repression

varied between 345 times lower and 15 times higher than the reference value. This suggests that

regulation of this operon could rapidly adapt and fine tune regulation given appropriate selection.
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Figure 2.5: Phenotype change distribution. Relative frequency of the predicted changes in repression level by
mutating one (solid blue line) or two (dashed red line) base pairs from the reference sequence (MG1655 promoter
region).

2.2.4 Promoter sequence variability of natural isolates and available se-

quenced genomes

In order to explore the natural variability of this regulatory circuit, we analyzed the lac promoter

region of 22 wild-type E. coli strains which were isolated from different organisms [30], along with

69 fully sequenced E. coli strains (including MG1655) available online (http://www.ncbi.nlm.

nih.gov/genomes/MICROBES/microbial_taxtree.html). Figure 2.6 summarizes the sequencing

results; for comparison, we plot the “genotype to phenotype map” from Figure 2.4(b) to gain insight

into how the sequence variability influences regulation in these strains. Figure 2.6(b) shows the

relative frequency of single nucleotide polymorphisms (SNPs) with respect to the consensus sequence.

Qualitatively we can appreciate that the mutations found in these strains fell mostly within base
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pairs which, according to the model, weakly regulated expression. To quantify this observation

we mapped the sequences to their corresponding binding energies. As shown in Figure 2.6(c) the

distribution of parameters is such that the observed mutations result in relatively small changes to

the binding energies, less than 1 kBT relative to the reference sequence, except for the O3 binding

energy that is predicted to increase >1 kBT in 16 strains.
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Figure 2.6: Mutational landscape of the regulatory region of the lac operon. (a) The genotype to phenotype map
is reproduced from Figure 2.4(b) in order to show how each base pair in the region influences gene regulation. (b)
Comparing the sequence of the lac promoter from 91 E. coli strains identifies which base pairs were mutated in this
region. The heights of the bars represent the relative frequency of a mutation with respect to the consensus sequence.
The red part of each bar represents the 22 natural isolates from different hosts [30] and the light blue part of these bars
represents the 69 fully sequenced genomes (http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.
html). Color coding of the binding sites and the transcription start site is as in Figure 2.4. (c) Using the energy
matrices of Figure 2.4(a), we calculate the variability of protein binding energies for all sequences. The red arrow
indicates reference binding energies for control strain MG1655.

2.2.5 Does the model account for variability in the natural isolates?

Next we further characterized the eight strains from Figure 2.1(b) in order to determine if the

observed variability in regulation could be accounted for in the model (see Section 2.5.2 for details

on the 16S rRNA of this subset of strains). In particular, we measured the in vivo repressor copy

number with quantitative immunoblots (see Material and Methods) and the growth rate. Table 2.1

shows the measured repressor copy number and the doubling time for these strains.

Using the thermodynamic model by taking into account the repressor copy number, the promoter



45

Strain Repressor/cell Doubling time [min]
Lab strain 21± 4 29.1± 0.2
Bat 12± 1 27.5± 0.2
Human-MA 20± 4 35.6± 0.6
Human-NY 23± 4 41.5± 0.4
Human-Sweden 28± 1 34.2± 0.3
Jaguar 21± 3 32.0± 0.2
Opossum 26± 2 33.5± 0.2
Perching bird 24± 4 30.2± 0.3

Table 2.1: Lac repressor copy number as measured with the immunodot blots and doubling time of
the eight strains with measured repression level shown in Figure 2.1(b). The errors represent the
standard error of three independent experiments.
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Figure 2.7: Comparison of model predictions with experimental measurements. Error bars represent the standard
deviation of at least three independent measurements each with three replicates. The dotted line plots x = y.

sequence and the growth rate, we predict the repression level for each of the isolates measured in

Figure 2.1(b). In Figure 2.7 we plot these predicted values vs. the experimental measurements. We

find that the model accounts for the overall trends observed in the isolates, with the predictions

for six of eight strains falling within two standard deviations of the measurements. A few of the

measured repression values fall outside of the prediction, suggesting that the model may not capture

the full set of control parameters operating in all of the strains.

2.2.6 Exploring the variability among different species

We extended our analysis to different microbial species with similar lac promoter architectures.

After identifying bacterial species containing the lac repressor, we used the Sort-Seq derived energy

matrices shown in Figure 2.4(a) to identify the positions of the transcription factor binding sites in

each of these candidate strains. We identified a set of eight species whose lac promoter architecture

was similar to E. coli. Figure 2.8 shows the 16S rRNA phylogenetic tree for these strains. The
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(a)

(b)

Figure 2.8: Predicted variability among different microbial species based on genome sequences and our model for
regulation derived for E. coli. (a) On the left a 16S rRNA phylogenetic tree of diverse species with a similar lac
promoter architecture done with the Neighbor-Joining algorithm. Vibrio cholerae was used as an outgroup species.
The scale bar represents the relative number of substitutions per sequence. On the right the predicted log10 fold-
change in repression with respect to E. coli MG1655 assuming the same growth rate and transcription factor copy
numbers. The outgroup species fold-change was not calculated. (b) Parameter distribution calculated using the
promoter region sequence and the energy matrices. The red arrow indicates the MG1655 reference value. Strains
lacking a binding site were binned as zero.

predicted change in regulation was calculated for these strains using the model whose states are

shown in Figure 2.2, the energy matrices in Figure 2.4(a), and assuming all strains have the same

growth rate and transcription factor copy numbers as the lab strain MG1655. The repression level

relative to E. coli among these species is predicted to increase as much as a factor of ≈ 20 and

decrease as much as a factor of ≈ 4. Regulation of the operon seems to follow phylogenetic patterns

in the 16S rRNA tree, with E. coli relatives having a similar predicted repression level, Citrobacter

evolved to increase repression, and Salmonella evolved to decrease repression.

2.3 Discussion

The approach presented here combines thermodynamic models of gene regulation with energy ma-

trices generated with Sort-Seq to produce a single-base pair resolution picture of the role that each
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position of the promoter region has in regulation. These types of models based on equilibrium

statistical mechanics have been used previously for the lac operon [19, 25], here we expanded the

model to account for important cellular parameters such as growth rate, the binding site strengths

of all transcription factors, and the binding site strength of RNAP. Thermodynamic models are

functions of the natural variables of the system as opposed to the widely used phenomenological Hill

functions [49], where it is less straightforward to judge how changes to a promoter region translate

to changes in regulatory parameters such as KM , the half saturation constant, and n, the Hill co-

efficient. Currently our model assumes that protein-protein interactions and DNA looping energies

are kept constant, but these variables could also be a function of the promoter sequence, affecting

the positioning of the transcription factors and therefore their interactions with the other molecules

involved.

The underlying framework developed here can be applied to any type of architecture. Here we

use the lac operon because it is well characterized. There is no reason to believe that this approach

could not be extended to other regulatory regions, however such an effort would require extensive

quantitative characterization of the control parameters of each genetic circuit, such as protein copy

numbers, interaction energies, and binding affinities. Although this level of characterization requires

additional experimental effort, we believe that developing such predictive, single-base pair models

of gene regulation can lead to significant insights into how genetic circuits function, interact with

each other, and evolve.

The majority of the natural variability found among the sequenced promoters tended to fall in

bases predicted to have low impact on overall regulation, as shown in Figure 2.6. As an example the

highly conserved mutation in the CRP binding energy or the mutations along the RNAP binding

site are predicted to change the binding energy by less than 1 kBT , having a very low impact on the

repression level. With respect to the repressor binding sites, among the sequenced natural isolates

only one mutation was found in the O2 binding site. Unlike the O1 and O3 operators, the evolution

of O2 may be constrained given that its sequence encodes both gene regulatory information and is

part of the coding region of the β-galactosidase gene.

As shown in Figure 2.7, after taking into account the variability in the promoter sequence, changes

in the repressor copy number, and changes in the growth rate, the model accounts for most of the

variability in regulation for the majority of the isolates. Linear regression of the entire experimental

dataset weighted by the inverse of their standard deviation gives a slope of 1.26 with an R2 of 0.24.

It can be seen that many of the points fall close to or on the x=y line, indicating that the poor fit

is a result of a few outliers within the dataset. Removing the outliers (Perching bird, Human-MA,

and Human-NY) results in a best fit line of slope 1.05 with R2 0.74, reiterating that the model is

consistent with the phenotype of five of eight isolates. It is interesting that the three isolates whose

regulatory outputs were predicted poorly by the model (Perching bird, Human-MA, and Human-NY
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in Figure 2.7) all have identical promoter sequences, which is the consensus promoter sequence as

shown in Figure 2.9. Although these three strains have identical sequences, two strains repressed

more than predicted and the other strain repressed less. This indicates there are likely other cellular

parameters that influence gene expression levels that are not included in the model. Currently the

model cannot take into account variation in the protein structure of the transcription factors or the

RNAP and its sigma factors. Changes in these proteins could account for some of the discrepancies

between the model and the observed levels of regulation. It is likely that some global parameters

that modulate transcriptional outputs which are not accounted for in the model also contribute to

the disagreement with model predictions. We note that repression is a measurement of expression

relative to expression in the absence of the repressor. This definition enables us to isolate the role of

a particular transcription factor in regulation. Therefore, as discussed in Section 2.5.11, some global

regulatory parameters such as ribosomal binding sites of the relevant genes and variables such as

the ribosome copy number should not impact repression levels.

From an evolutionary perspective, it is interesting that the regulation seems to be more sensitive

to changes in the activator binding energy than to the activator protein copy number, as shown in

Figure 2.3. This result might be attributed to the nature of this transcription factor. CRP is known

to be a “global” transcription factor that regulates >50% of the E. coli transcription units [50].

Given its important global role in the structure of the transcriptome, changing the copy number of

CRP would have a global impact on expression whereas tuning its binding affinity at a particular

regulatory region has a local impact on one promoter. The regulatory knob of CRP copy number

not influencing expression at the lac operon indicates this regulatory region may have evolved to be

robust against changes in this global regulatory parameter.

The fact that the O3 operator has the possibility to change in both directions (greater or lower

affinity) as reflected in Figure 2.4(b) suggests plasticity of the operon, allowing it to evolve according

to environmental conditions. In fact this parameter changed the most among the related microbial

species as shown in Figure 2.8(b), having species such as Citrobacter koseri with an operator pre-

dicted to be 5 kBT stronger than the reference value, and other species such as Salmonella bongori

that completely lost this binding site. Although we do not yet know whether these regulatory pre-

dictions will be borne out in experimental measurements, this analysis demonstrates the utility of

our sequence-to-phenotype map in interpreting the consequences of variability within the regulatory

regions of sequenced genomes.

To the best of our knowledge Figure 2.5 shows the first quantification of how easily regulation

can change given one or two point mutations along the entire promoter region. Previous studies were

limited to a subset of base pairs in the Lac repressor operators and two amino acid substitutions in

the Lac repressor [51]. The distribution of predicted phenotypes is very sharp close to the reference

value, and as a consequence the majority of the possible mutations would not be selected on. But
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given that regulation can change by an order of magnitude or more in both directions (increased

or decreased repression) with only two mutations, changing the regulatory region of the gene could

function as a fast response strategy of adaptation.

It is known from previous work that lac operon expression can have an impact on cell fitness

[20–22, 24]. Under laboratory conditions, high expression of the lac operon resulted in loss of

fitness due to expression of lacY, a transporter which imports lactose into the cell. This would

suggest regulation is essential to avoid the negative consequences of lacY overexpression, and tight

regulation would be selected. However it is possible that natural selection would act also to modulate

the magnitude of the response. Strains exposed to environments with periodical bursts of lactose

could trigger instantly a high gene dosage, resulting in a steeper slope on an induction curve, while

strains rarely exposed to lactose would have a moderate response, i.e. a less steep induction curve.

Our exploration and prediction of regulatory phenotypes in sequenced genomes shows that the

biggest changes in regulation were found to increase repression (Figure 2.6(c)), suggesting that

lactose might not be present regularly in the natural environment of some strains.

The combination of thermodynamic models with Sort-Seq-generated energy matrices presented

here promises to be an useful tool with which to study the evolution of gene regulation. This

theoretical framework allows us to explore the effect that the modification of control parameters can

have on the expression levels, and to predict how point mutations in gene promoter regions enable

cells to evolve their gene regulatory circuits.

2.4 Materials and methods

2.4.1 Growth conditions

Unless otherwise indicated, all experiments were started by inoculating the strains from frozen stocks

kept at -80◦C. Cultures were grown overnight in Luria Broth (EMD, Gibbstown, NJ) at 37◦C with

shaking at 250 rpm. In all of the experiments these cultures were used to inoculate three replicates

for each of the relevant conditions, diluting them 1:3000 into 3 mL of M9 buffer (2 mM MgSO4,

0.10 mM CaCl2, 48 mM Na2HPO4, 22 mM KH2PO4, 8.6 mM NaCl, 19 mM NH4Cl) with 0.5%

glucose and 0.2% casamino acids (here referred to as “supplemented M9”). Cells were cultured at

37◦C with shaking at 250 rpm and harvested at the indicated OD600.

2.4.2 Gene expression measurements

To perform the LacZ assay we followed the protocol used by Garcia and Phillips [26]. Strains were

grown in supplemented M9 for approximately 10 generations and harvested at an OD600 around 0.4.

A volume of the cells was added to Z-buffer (60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl,
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1 mM MgSO4, 50 mM β-mercaptoethanol, pH 7.0) for a total volume of 1 mL. For fully induced

cells we used 50 µL and for uninduced cultures we concentrated the cells by spinning down 1 mL

of culture and resuspending in Z-buffer. The cells were lysed by adding 25 µL of 0.1% SDS and

50 µL of chloroform and vortexing for 15 seconds. To obtain the readout, we added 200 µL of 4

mg/mL 2-nitrophenyl β-D-galactopiranoside (ONPG). Once the solution became noticeably yellow,

we stopped the reaction by adding 200 µL of 2.5 M Na2CO3.

To remove cell debris we spun down the tubes at 13000 × g for 3 minutes. 200 µL of the

supernatant were read at OD420 and OD550 on a microplate reader (Tecan Safire2). The absolute

activity of LacZ was measured in Miller units as

MU = 1000× OD420 − 1.75×OD550

t× v ×OD600
× 0.826, (2.4)

where t is the time for which we let the reaction run and v is the volume of cells used in mL. The

factor of 0.826 adjusts for the concentration of ONPG relative to the standard LacZ assay.

2.4.3 Measuring in-vivo lac repressor copy number

To measure the repressor copy number of the natural isolates we followed the same procedure

reported by Garcia and Phillips [26]. Strains were grown in 3 mL of supplemented M9 until they

reached an OD600 ≈ 0.4 − 0.6. Then they were transferred into 47 mL of warm media and grown

at 37◦C to an OD600 of 0.4-0.6. 45 mL of culture were spun down at 6000×g and resuspended into

900 µL of breaking buffer (0.2 M Tris-HCl, 0.2 M KCl, 0.01 M Magnesium acetate, 5% glucose, 0.3

mM DTT, 50 mg/100 mL lysozyme, 50µg/L phenylmethanesulfonylfluoride (PMSF), pH 7.6).

Cells were lysed by performing four freeze-thaw cycles, adding 4 µL of a 2,000 Kunitz/mL DNase

solution and 40 µL of a 1 M MgCl2 solution and incubating at 4◦C with mixing for 4 hours after

the first cycle. After the final cycle, cells were spun down at 13,000×g for 45 min at 4◦C. We

then obtained the supernatant and measured its volume. The pellet was resuspended in 900 µL of

breaking buffer and again spun down at 15,000×g for 45 min at 4◦C. In order to review the quality

of the lysing process, 2 µL of this resuspended pellet was used as a control to ensure the luminescent

signal of the resuspension was <30% of the sample.

To perform the immuno-blot we prewetted a nitrocellulose membrane (0.2 µM, Bio-Rad) in TBS

buffer (20 mM Tris−HCl, 500 mM NaCl) and left it to air dry. For the standard curve a purified

stock of Lac repressor tetramer [46] was serially diluted into HG105 (∆lacI strain) lysate. 2 µL were

spotted for each of the references and each of the samples. After the samples were visibly dry the

membrane was blocked using TBST (20 mM Tris Base, 140 mM NaCl, 0.1% Tween 20, pH 7.6) +2%

BSA +5% dry milk for 1 h at room temperature with mixing. We then incubated the membrane in

a 1:1000 dilution of anti-LacI monoclonal antibody (from mouse; Millipore) in blocking solution for
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1.5 h at room temperature with mixing. The membrane was gently washed with TBS ≈ 5 times.

To obtain the luminescent signal the membrane was incubated in a 1:2000 dilution of HRP-linked

anti-mouse secondary antibody (GE Healthcare) for 1.5 h at room temperature with mixing and

washed again ≈ five times with TBS. The membrane was dried and developed with Thermo Scientific

Super-Signal West Femto Substrate and imaged in a Bio-Rad VersaDoc 3000 system.

2.4.4 Constructing the in-vivo lac repressor energy matrix

The energy matrix was inferred from Sort-Seq data in a manner analogous to methods described in

Kinney PNAS 2010 [12]. Briefly, a library of mutant lac promoters was constructed in which the

region [-100:25] (where coordinates are with respect to the transcription start site) was mutagenized

with a 3% mutation rate. The transcriptional activity of each mutant promoter was measured by flow

cytometry using a GFP reporter. To fit the LacI energy matrix, we used a Markov chain Monte Carlo

algorithm to fit an energy matrix to the LacI O1 binding site by maximizing the mutual information

between energies predicted by the matrix and flow cytometry measurements. The justification for

maximizing mutual information is described in detail in [12, 52].

2.5 Supplementary information

2.5.1 Alignment of promoter sequences

Figure 2.9 shows the alignment of the promoter regions of the E. coli wild isolates sequenced.

Figure 2.9: Promoter alignment of the sequenced strains. Highlighted bases differ from the consensus sequence on
top. Colored boxes indicate the relevant binding sites for the Lac repressor (red), CRP (green) and RNAP (blue)

2.5.2 16S rRNA sequences

To confirm the identity of the strains we analyzed 490 bp of the 16S rRNA. Figure 2.10 shows a

schematic representation of the sequences. Colored basepairs represent mutations with respect to the
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consensus sequence. All sequences were found to be ≥99% similar to the reference E. coli MG1655

sequence.

Figure 2.10: 16S sequence alignment. Black lines represent mutations with respect to the consensus sequence.

2.5.3 Model parameters

Table 2.2 shows the values of the reference parameters for MG1655 obtained from different sources.

Table 2.2: Reference parameters for the strain MG1655.
Parameter Symbol Value Units Reference

O1 repressor operator binding energy ∆εO1
r -15.3 kBT [26]

O2 repressor operator binding energy ∆εO2
r -13.9 kBT [26]

O3 repressor operator binding energy ∆εO3
r -9.7 kBT [26]

Repressor copy number R 20 tetramer/cell Measured
Activator binding energy ∆εa -13 kBT [9, 19]

Number of active activators A 55 active molecules/cell [19]
RNAP binding energy for the lac promoter ∆εp -5.35 kBT [15]

RNAP copy number P 5500 active molecules/cell [44]
Number of nonspecific binding sites NNS 4.6 × 106 - GenBank: U00096.2

Looping free energy between O1 −O2 ∆Floop(l12) 4.7 kBT Fit to data from [42, 47]

Looping free energy between O1 −O3 ∆Floop(l13) 9 kBT [27]

Looping free energy between O2 −O3 ∆Floop(l23) 5.2 kBT Fit to data from [42, 47]

RNAP-CRP interaction energy ∆εap -5.3 kBT [12, 19]
Lac repressor - CRP interaction energy ∆εar -5.5 kBT Fit to data from [42, 47]

2.5.4 Derivation of the repression level equation

Thermodynamic models of gene regulation consider that the gene expression level is proportional

to the probability of finding the RNAP bound to the promoter region [7–9, 11]. This biologically

simplistic but powerful predictive tool allows us to study the effect of different transcription factors in

different promoter architectures. In the case of the wild-type (WT) lac operon promoter architecture,

where we have two different transcription factors involved in the regulation - the activator CRP and

the Lac repressor.

The Lac repressor molecule, when bound to the main operator O1, blocks the polymerase from

binding to the promoter region, stopping the transcription of the operon. CRP plays a double role

in the regulation of the operon, activating transcription by recruiting RNAP to the promoter region,

and as several experiments have shown, enhancing repression by facilitating the formation of the

upstream loop between the O1 − O3 operators [29, 45, 53]. Enhanced repression by CRP is due to

pre-bending the DNA between 90◦ and 120◦ [54], thereby increasing the probability of looping by

bringing the lac operators closer together. The model captures this effect by adding an interaction
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term ∆εar in the states where CRP is bound and the Lac repressor forms a loop between operators

O1 and O3.

Assuming quasi-equilibrium conditions for the relevant processes involved in transcription, we

can use the Boltzmann distribution to compute the probability of finding the RNAP bound to the

promoter region, obtaining

GE ∝
P
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where GE stands for gene expression and Ztot represents the partition function for the states shown

in Figure 2.2 in the main text. The presence of CRP in the promoter region is not assumed to

influence the kinetics of promoter escape, only the probability of RNAP binding. Tagami and

Aiba [28] found that the role of CRP in the activation of the lac operon is restricted to the steps up

to the formation of the open complex, in other words, the interaction between CRP and the RNAP

are not essential for transcription after the formation of the open complex. In our model we capture

this effect by including an interaction energy between CRP and the RNAP, ∆εap, that has been

measured experimentally [12, 19].

In the activation mechanism proposed by Tagami and Aiba [28] CRP bends the DNA and RNAP

recognizes the CRP-DNA bent complex. This model would imply that RNAP makes additional

contacts with the upstream region of the promoter. Based on this model we assume that the

presence of the Lac repressor bound on the O3 operator and CRP bound on its binding site (without

forming a DNA loop between O1−O3) allows transcription to occur. Since the RNAP cannot contact

the upstream region of the promoter because of the presence of the repressor, the interaction energy

between CRP and RNAP is not taken into account in these states.

In order to quantify the influence of Lac repressor on expression levels, we measure repression,

which is the fold change in gene expression as a result of the presence of the repressor. This metric

has the benefit of normalizing to a strain with an identical genetic background, thus isolating the

role of the repressor in regulation. This relative measurement is defined as

repression ≡ gene expression (R = 0)

gene expression (R 6= 0)
, (2.6)
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where R is the Lac repressor copy number. Computing this we obtain

repression =


P

NNS
e−β∆εp

[
1 + A

NNS
e−β(∆εa+∆εap)

]
1 + A

NNS
e−β∆εa + P

NNS
e−β∆εp

(
1 + A

NNS
e−β(∆εa+∆εap)

)
/{

P

NNS
e−β∆εp

{
1 +

2R

NNS

[
e−β∆εO2

r + e−β∆εO3
r

(
1 +

A

NNS
e−β∆εa

)]
+

4R (R− 1)

N2
NS

e−β(∆εO2
r +∆εO3

r )
(

1 +
A

NNS
e−β∆εa

)
+

A

NNS
e−β(∆εa+∆εap)

(
1 +

2R

NNS
e−β∆εO2

r

)}/
Ztot.

(2.7)

This can be further simplified, resulting in
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the expression we use to predict the repression level of the natural isolates.

2.5.5 Estimating the number of active CRP molecules

The Catabolite Activator Protein, also known as cAMP-receptor protein (CRP) is a global tran-

scriptional regulator in E. coli [50]. As it exists in two forms, the cAMP-CRP complex which is

considered as the active state and the inactive state without cAMP bound, the number of active

molecules is a function of the cAMP cellular concentration. From a thermodynamic perspective we

can estimate this number as

[CRP − cAMP ] = [CRP ]
[cAMP ]

KcAMP + [cAMP ]
, (2.9)

where [CRP − cAMP ] is the concentration of active proteins, [CRP ] is the total concentration of

this transcription factor, [cAMP ] is the cellular concentration of cAMP and KcAMP is the in vivo

dissociation constant of the cAMP-CRP complex.

Kuhlman et al. [19] reported the values for the CRP concentration ([CRP ] ≈ 1500 nM) and the

dissociation constant (KcAMP = 10 µM). Epstein et al. [55] measured the intracellular cAMP con-

centration in different media, including minimal media with glucose and casamino acids ([cAMP ] ≈
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0.38µM). Using these values we calculate the number of active CRP molecules as

A = 1500

(
0.38µM

10µM + 0.38µM

)
≈ 55

molecules

cell
, (2.10)

where we used the rule of thumb that 1 nM≈ 1moleculeE. coli . This rule of thumb is enough for our

predictions since the repression level is predicted to be largely insensitive to the activator copy

number as shown in Figure 2.3 in the main text.

2.5.6 Estimating the number of available RNAP

In order to estimate the available number of RNAP molecules, we appeal to the work of Klumpp

and Hwa [44] where they calculated the total number of RNAP molecules as well as the fraction of

these molecules available for transcription as a function of the growth rate. Figure 2.11 shows the

number of available RNAP as a function of the doubling cycles per hour.
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Figure 2.11: Adapted from Klumpp and Hwa [44]. RNAP available for transcription as a function of the number
of doubling cycles per hour.

Using these results, we estimate 5500 RNAP
cell for cells grown in 0.6% glucose + 0.2% casamino

acids (with a doubling time of ≈ 30 min.). We interpolate between these data to obtain the RNAP

copy number for each of the natural isolates.

2.5.7 Estimating CRP’s binding energy

The activator binding energy was estimated as reported by Bintu et al. [9]. Using the reported

dissociation constants from the specific binding site, KNS
CRP , and nonspecific sequences, KS

CRP , we

can compute the binding energy as

∆εa
kBT

= ln

(
KNS
CRP

KS
CRP

)
. (2.11)
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Bintu et al. also reported the following values for both dissociation constants (KNS
CRP = 104 nM and

KS
CRP = 0.02 nM), which gives us ∆εa ≈ −13 kBT .

2.5.8 Fitting parameters and testing the model

The three unknown parameters, the looping energies for the O1 − O2 and O3 − O2 loops and the

decrease in the looping free energy when CRP and Lac repressor are bound at the same time, were

inferred from the classic work of Oehler et al. [42, 47]. In these papers Oehler and collaborators

measured the repression level of different lac operon constructs with either mutagenized or swapped

Lac repressor binding sites while changing the repressor copy number. Because they reported the

mutagenized sequences for the repressor binding sites we used the Sort-Seq derived energy matrix

to calculate the residual energies of these modified binding sites. The three unknown parameters

were fitted by minimizing the mean square error of the measurements,

f(x∗) ≤ f(x) ∀ x ∈ R, (2.12)

f(x∗) =

{
min

N∑
i=1

(
Yi (x)− Ȳi

)2
N

: x ∈ R

}
, (2.13)

where Yi is the predicted value, Ȳi is the experimental repression level for each of the constructs

measured by Oehler et al. and x are the fitting parameters. Using this method we fit for the values

of ∆Floop(l13), ∆Floop(l23), and ∆εar using the data from references [42, 47]. The three parameter

values are listed in Table 2.2.

2.5.9 Testing the model with different data

We used the model to predict the repression level of constructs reported by Oehler et al. [42, 47] and

Müller et al. [56]. Figure 2.12 shows the comparison of the model predictions and the experimental

results. The calculations were done using the model whose states are depicted in Figure 2.2, assuming

a wild type repressor copy number of 10 repressors per cell, and calculating all the residual binding

energies with the Lac repressor Sort-Seq derived energy matrix.

2.5.10 Error propagation

To calculate a confidence interval of the model, we used the law of error propagation [57] where we

compute the contribution of the uncertainty in parameters to the uncertainty of the repression level

as

σrepression =

√√√√∑
i

(
∂repression

∂xi

)2

σ2
i , (2.14)
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Figure 2.12: Comparing the experimental data from Oehler et al. [42, 47] and Müller et al. [56] with the model
prediction.

where xi represents each of the parameters of the model (binding energies, transcription factors copy

number, looping energies, etc.) and σi represents the standard deviation of each of these parameters.

Paradoxically, calculating the contribution of each parameter to the uncertainty of the model

requires “certainty” about the variability of these parameters. This means that we can only include

the uncertainty of the parameters whose uncertainty measurements represent the natural variability

in their values and not mostly error due to experimental methods. Table 2.3 lists the uncertainty

of the parameters considered in this analysis given that the in vivo error was reported in the listed

bibliography.

Table 2.3: Standard deviation of the parameters considered for the calculation of the confidence
interval.

Parameter Deviation Units Reference
R Measured for each strain LacI/cell -

∆εO1
r ±0.2 kBT [26]

∆εO2
r ±0.2 kBT [26]

∆εO3
r ±0.1 kBT [26]

∆εa ±1.1 kBT [19]

We used a customized Mathematica script (Wolfram Research, Champaign, IL) to calculate the

partial derivatives. Figure 2.13 reproduces Figure 2.7 from the main text, including the predicted

standard deviation.
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Figure 2.13: Comparison of the model prediction with the experimental measurement. Vertical error bars represent
the standard deviation of at least three independent measurements each with three replicates. Horizontal error bars
represent the 68% confidence interval of the model calculated by using the law of error propagation with the parameter
uncertainties listed in Table 2.3.

2.5.11 Measuring repression level decouples growth rate effects in trans-

lation from effects in transcription

From previous work it was determined that one key regulatory parameter that is influenced by

growth rate is the RNAP copy number [58]. However other cellular parameters such as ribosomal

copy number and the dilution of mRNA concentration due to growth are also impacted. These

parameters will influence protein copy number by influencing the efficiency of mRNA translation.

In a very simple dynamical model of transcription, we can imagine that the change in the number of

messenger RNA (mRNA) is proportional to the transcription rate and the degradation rate of the

mRNA,
dmRNA

dt
= kt · pbound − βmRNA ·mRNA, (2.15)

where kt is the maximum transcription rate when the operon is fully induced and pbound is the prob-

ability of finding the RNAP bound to the relevant promoter, as derived using statistical mechanics;

βmRNA is the mRNA degradation rate and mRNA is the number of transcripts of the gene per

cell. This equation assumes that the most relevant effect for mRNA depletion is the degradation

of the transcripts, compared with the dilution effect due to the growth rate. It is known that this

degradation term is not strongly affected by the growth rate [58], so we assume that this term re-

mains constant. In steady state, when cells are in the exponential growth phase, the concentration
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of mRNA is

mRNA =
kt · pbound
βmRNA

. (2.16)

The Miller assay (LacZ assay) quantifies the level of LacZ expression, and we assume that the

number of proteins is directly proportional to the mRNA copy number. Due to the relatively fast

doubling time we assume that dilution is the relevant effect diminishing protein copy number, leading

us to
dLacZ

dt
= γ ·mRNA− µ · LacZ, (2.17)

where γ is the proportionality constant of how many proteins per mRNA are produced, µ is the

growth rate, and LacZ is the β-galactosidase enzyme copy number. γ can be a function of the growth

rate due to the changes in the number of available ribosomes, but still we argue that measuring the

repression level should reduce the importance of these effects. If we substitute Equation 2.16 into

2.17 and assume steady state we obtain

LacZ =
γ · kt · pbound
µ · βmRNA

. (2.18)

By computing the repression level as measured in the LacZ assay we obtain

repression =
LacZ(R = 0)

LacZ(R 6= 0)
=
pbound(R = 0, P )

pbound(R 6= 0, P )
. (2.19)

In this ratio γ, kt, µ, and βmRNA cancel each other, leaving only a ratio of pbounds.

2.5.12 Related microbial species lac operon phylogenetic tree

See Figure 2.14.

Salmonella enterica

Salmonella bongori

Serratia marcescens

Citrobacter rodentium

Citrobacter koseri

Shigella dysenteriae

E. coli MG1655

Shigella sonnei Ss046

Shigella sonnei 53G0.05

Figure 2.14: lac operon phylogenetic tree of diverse species with a similar lac promoter architecture done with the
Neighbor-Joining algorithm. The scale bar represents the relative number of substitutions per sequence.
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2.5.13 Epistasis analysis

Epistasis can be defined as the effect of mutations on the phenotypes caused by other mutations.

Our theoretical model explicitly ignores possible interactions between mutations when calculating

the transcription factor binding energies with the Sort-Seq energy matrices; but the same cannot be

directly assumed for the phenotypic output. As shown in Figure 2.3 in the main text, the phenotypic

response depends on the model parameters in a highly non-linear way. Given this non-linear relation

we decided to perform an epistasis analysis on the data, where we defined epistasis as [59, 60]

ε = Wxy −Wx ·Wy, (2.20)

where ε is the epistasis, Wxy is the repression value for the double mutant at positions x and y

normalized to the reference MG1655 repression level, and Wx and Wy are the repression values for

the single mutants in their respective positions also normalized to the same reference value. This

multiplicative epistasis model indicates the type of interaction between mutations; ε = 0 indicates

no epistasis, ε < 0 indicates antagonistic epistasis and ε > 0 indicates synergistic epistasis [59].

We calculated this epistasis metric for all the double mutants of the 134 base-pairs considered

in the regulatory region of the lac operon including the O2 downstream repressor binding site. For

each pair of bases we calculated the epistasis for the two nucleotides with the biggest change with

respect to our reference strain MG1655. Figure 2.15 shows the distribution of the epistasis values for

the 8911 possible double mutants. As we initially assumed, most of the base-pairs do not interact

with each other. Only 0.5% of the double mutants have an ε < −0.5, and 1% have an ε > 0.5.
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Figure 2.15: Epistasis level (Equation 2.20) distribution of all the possible double mutants of the lac operon
regulatory region.

In order to find the base-pairs in the regulatory region predicted to have the biggest interactions

Figure 2.16 shows the heat-map of the ε values. It is interesting to note that the few regions

predicted to have significant epistasis fall mostly within a single binding site, i.e., basically no
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interaction is predicted between mutations located in different binding sites. The RNAP binding

site is predicted to have antagonistic epistasis (ε < 0), while the CRP binding site is predicted to

have strong synergistic epistasis (ε > 0). The O3 binding site also presents synergistic interactions.

This predicted epistasis can be attributed to the highly non-linear dependence of the repression

level on these binding energies. Since, for example, the linear regime of the O1 binding energy

extends over a larger range of values (Figure 2.3 on the main text) two mutations are unable to

move this parameter to the non-linear region and no epistasis would be expected at this binding

site. Interestingly the only interactions between different binding sites are predicted to be between

CRP and RNAP.
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Chapter 3

Sort-Seq: High-throughput
perturbation and characterization
of regulatory DNA

3.1 Introduction

Much of the experimental work concerning transcriptional regulation done in the Phillips lab follows

a similar paradigm: first, biophysical modeling is used to predict the effect on gene expression of

changes in the regulatory DNA; and second, constructs incorporating such changes are cloned into

E. coli and the level of gene expression is measured using mRNA FISH and/or a reporter gene (e.g.,

LacZ, or a fluorescent protein). These quantitative measurements are made with high precision and

have been carefully calibrated to yield results in terms of absolute numbers of mRNA or protein,

allowing rigorous comparisons to be made between theory and experiment. At the same time, the

throughput of this approach is somewhat limited by the need to generate and measure constructs

one at a time. Moreover, its usefulness is to some extent limited to regulatory DNA that is already

well characterized: for completely uncharacterized regulatory DNA, one would lack any basis for

making model predictions or for choosing interesting mutations to measure experimentally.

An alternative approach, exemplified by recent work by Kinney et al [1], is to leverage high

throughput techniques such as flow cytometry and DNA sequencing to measure gene expression from

a large (≈ 100, 000) library of mutants of some promoter region. As we will see, each individual

measurement is relatively noisy and imprecise, but using techniques from information theory and

machine learning, we can nonetheless characterize the function of regulatory DNA with quantitative

accuracy. Specifically, we can identify regions of regulatory DNA where transcription factors (TFs)

or RNA polymerase bind, fit quantitative models of TF-DNA and RNAP-DNA interaction, and fit

full thermodynamic models (including protein-protein interactions) of gene regulation to sort-seq

datasets. For the remainder of this introductory section, we will explore each of these points in more

detail, largely following the work described in Reference [1].
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3.1.1 Materials and methods

3.1.1.1 Overview

The workflow for a sort-seq experiment is schematized in Figure 3.1. First, a plasmid library is

constructed, in which each plasmid contains a mutated version of the promoter sequence for some

gene of interest driving expression of GFP. The plasmids are transformed into E. coli, yielding a

population of cells with a wide range of GFP expression levels. The population of cells is sorted

into batches using a fluorescence activated cell sorting (FACS) machine. Each batch contains cells

with similar levels of GFP fluorescence. The sorted cells are grown up, miniprepped, and PCR

amplified with primers containing batch specific barcodes. When the resulting amplicons are se-

quenced using high throughput sequencing, the resulting sequence data comprises a list of mutant

promoter sequences along with the batch that sequence was sorted into. Since the batch is in effect

a coarse-grained measurement of gene expression, we end with a list of sequences and associated

gene expression levels. Although the measurement of each sequence is relatively imprecise, we can

use this data to fit high precision models of gene regulation, as will be discussed below.

3.1.1.2 Cloning and library construction

As shown in Figure 3.1, a sort-seq experiment starts with generating a plasmid library in which

a promoter region of interest is mutated at a rate of around 10%. In reference [2], the authors

report the construction of a set of approximately 2000 plasmids, one for each transcriptional unit

in E. coli. Each plasmid in this set consists of a particular promoter driving expression of GFP.

These plasmids will serve as the starting point for the construction of the mutant promoter libraries

schematized in Figure 3.1B. Specifically, we start with the plasmid from the Zaslaver collection that

contains the particular promoter we want to mutagenize. For instance, for the lac promoter, we

start with the pUA66-lacZ plasmid from reference [2]. We next construct a cloning vector plasmid

based on the pUA66-lacZ plasmid by replacing the promoter region to be mutagenized with an insert

containing the ccdB gene flanked by BsmBI restriction sites. The ccdB toxin is fatal to E. coli that

do not express the corresponding antitoxin ccdA, and thus the cloning vector plasmid can only be

propagated in E. coli DB3.1 or other specialized strains containing the ccdA gene. At the same

time, we order DNA oligos (Integrated DNA Technologies, Inc.) containing the promoter region of

interest mutated at a given rate (around 10 % per base) flanked by BsaI restriction sites. We design

the insert and vector sequences such that, when digested by BsmsBI and BsaI (respectively), the

remaining sticky ends are complementary. Thus, to generate the plasmid library, we digest the insert

oligos and vector plasmids with BsaI and BsmBI, and directly ligate the digestion product. Since

the cloning vector plasmid contains the ccdB gene, and the plasmid libraries will be transformed into

non-immune E. coli strains such as MG1655, we do not need to perform gel purification on the vector,
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(a) Mutagenized promoter region for a sort-seq experiment.

(b) Workflow of a sort-seq experiment.

Figure 3.1: Overview of Sort-Seq. As described in the text, a mutant promoter library is con-
structed in which plasmids contain a mutagenized promoter region driving expression of GFP. This
library is then transformed into E. coli cells. In general, some of of the promoter mutations will
result in increased GFP expression, while some will result in decreased GFP expression. We use
a FACS machine to sort cells into four batches based on their GFP fluorescence. Each batch is
miniprepped and the mutagenized region is PCR amplified with batch-specific bar codes. Finally,
the PCR products are sent for high-throughput sequencing. The resulting dataset is composed of a
list of mutant promoter sequences σ, each associated with a batch number µ; the batch number for
each sequence is obtained by simply reading off the batch specific barcode. Adapted from [1] via [3].

but can proceed directly to ligation of the BsmBI digested product. This cloning strategy yields

typically on the order of 10 million transformants, which is more than sufficient library diversity for

our purposes. See section 3.2.2 for a detailed account of library cloning (including DNA sequences)

for sort-seq experiments performed on the mscL promoter.

Following the ligation reaction, we dialyze the ligation product for 1 hour (drop dialysis pads

from Millipore, Inc) to ensure maximum transformation efficiency, then immediately transform into

E. coli using electroporation. After 1 hour recovery in SOC medium, we plate a small fraction of

the transformation reaction to estimate the number of transformants, and dilute the rest into 50 mL

LB medium. This LB culture is allowed to grow overnight to saturation.
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3.1.1.3 Growth and flow cytometry

Approximately 8 to 10 hours prior to sorting, the saturated library cultures are diluted 1:4000 into

25 mL M9 + 0.5% glucose minimal media. The M9 cultures are grown until mid log phase (OD600

≈ 0.3), then diluted to OD600 ≈ 0.1 and placed on ice. This density usually yields a sorting rate

of ≈ 2000 cells per second. The cells are sorted into 4 batches based on GFP fluorescence as shown

in Figure 3.1. In reference [1], cells were sorted into 5 or 10 batches, but the authors found that

sorting into 5 batches did not negatively affect subsequent data analysis as compared to sorting

into 10 batches. This results from the fact that sorting into batches whose width is less than the

fluorescence variability of a monoclonal cell population does not yield more information than sorting

into broader fluorescence batches. Since four batches can be sorted at once using a FACSAria (BD

Biosciences) machine, we elected to sort into four batches to avoid the need to switch sets of FACS

tubes. One million cells are sorted into each batch. Following the sort, the cells are grown overnight

in 10 mL LB medium. (During the sort, the cells are sorted directly into FACS tubes containing LB

medium).

3.1.1.4 Library preparation

After overnight growth in LB, each batch is miniprepped separately, such that each miniprep corre-

sponds to one FACS sorted batch. The product comprises a mix of plasmids with different promoter

sequences. The miniprep product next serves as template for a PCR reaction to amplify the mutag-

enized promoter regions of the plasmids. The PCR primers used for this reaction include a four base

pair barcode unique to the particular batch. In addition, the primers contain the adapter sequence

required by the Illumina sequencing machine.

3.1.1.5 Sequencing

The PCR amplified products from each batch are mixed together and sequenced using an Illumina

HiSeq or MiSeq machine. Since each batch was amplified with a unique barcode, the resulting

sequencing data comprises a list of mutant promoter sequences along with a coarse-grained mea-

surement of gene expression for that sequence (i.e.,, the batch that the particular mutant promoter

was sorted into.) This data is schematized in Figure 3.1a.

3.1.2 Identifying TF and RNAP binding sites using “information foot-

prints”

One of the simplest and most straightforward ways to analyze the resulting data is to construct

an “information footprint” for the promoter region of interest. The underlying assumption is that

mutating base pairs where TFs or RNAP bind will have a larger effect on gene expression than
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(a) Information footprint in wild-type strain background

(b) Information footprint in CRP knockout strain.

Figure 3.2: Information footprint for the lac promoter region. The mutual information
between base identity and batch number is computed for each position along the mutagenized region.
As seen in the figure, regions of high mutual information correspond to transcription factor (in this
case, CRP, green) and RNAP (blue) binding sites. If the sort-seq experiment is performed in a
strain in which active CRP is not present, the footprint associated with CRP binding disappears,
as shown in part b. Adapted from [1] via [3].
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mutating base pairs where no proteins are bound. Put differently, the identity of a base pair where a

TF or RNAP is bound is more informative about the resulting gene expression than the identity of

a base pair where no DNA binding proteins are present. In Figure 3.2, we plot the informativeness

of base pair identity at each position along a segment of the lac promoter. We see that regions of

high informativeness correspond to positions where CRP or RNAP are bound.

We can formalize this notion of informativeness using the concept of mutual information. Specif-

ically, let bi be a random variable denoting the identity of the base pair (A,C,T,G) at the ith position

along the promoter. Let µ denote the batch that a particular promoter sequence was sorted into.

Then a sort-seq dataset allows us to define an empirical probability distribution pi(b, µ), where for

instance pi(A, 2) denotes the observed frequency of sequences that have an A at position i and were

sorted into batch 2, pi(C, 2) denotes the observed frequency of sequences that have a C at position i

and were sorted into batch 2, and so on. At the risk of being pedantic, this means that to compute

pi(A, 2) for a sort-seq dataset, we simply count the number of sequences in the dataset that were

sorted into batch 2 and contain an A at position i, and divide this number by the total number N

of sequences in the dataset. At a given base pair position i, then, the mutual information is defined

as

Ii =

T∑
b=A

4∑
µ=1

pi(b, µ)

pi(b)pi(µ)
, (3.1)

where pi(b) and pi(µ) are the marginal distributions of pi(b, µ); i.e., pi(b) =
∑4
µ=1 pi(b, µ) and

pi(µ) =
∑T
b=A pi(b, µ). The mutual information Ii can be understood as the amount of uncertainty

in gene expression that is removed on average by knowing the identity of the base pair at position

i, where uncertainty is quantified by the Shannon entropy H. For instance, say we have a dataset

containing equal numbers of sequences sorted into each of four batches. If we pick a random sequence,

it is equally likely to have come from any of the four batches; thus the entropy of the distribution

over batches is log2(4) = 2 bits. Now assume that knowing the identify of the base pair at position

i allows us to know exactly which batch the promoter is sorted into. Then the entirety of the

uncertainty about gene expression is removed by knowing this base pair, and hence Ii = 2. This is

an extreme example for illustration; in reality, no one basepair is nearly so informative about gene

expression.

In reference [1], Kinney et al estimated the mutual information of each base pair in the mutage-

nized lac promoter region (shown in Figure 3.2), using the correction for finite sample sizes derived

by Treves and Panzeri [4]. However, one drawback of using the mutual information as a metric of

base pair importance is that it depends on the base substitution rates (A→C, A→G, etc) achieved

for a particular experiment. Ideally these rates would be uniform (e.g. the rates of mutation from an

A to C, G, or T would all be identical) but in reality, the DNA synthesis process tends to introduce

nonuniformity in the substitution rates, because of variation in the efficiency with with different
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Figure 3.3: Non-uniform base substitution rates. Plot of observed base substitution rates for
a sort-seq experiment performed on the mscL promoter. For clarity, diagonal elements have been
set to zero. Looking at the bottom row (for instance), we see that the rate of T→G substitutions is
substantially greater than the rates of T→A or T→C substitutions.

bases are incorporated during oligo synthesis. See Figure 3.3 for an illustration of this nonunifor-

mity taken from sort-seq data. To see why the mutual information depends on these substitution

rates, we rewrite equation 3.1 as follows (omitting the subscript i for convenience, and remembering
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that we are dealing implicitly with the mutual information at the ith base pair along the promoter):

I =

T∑
b=A

4∑
µ=1

p(b, µ) log2

(
p(b, µ)

p(b)p(µ)

)
, (3.2)

I = −
T∑
b=A

4∑
µ=1

p(b, µ) log2(p(µ)) +

T∑
b=A

4∑
µ=1

p(b, µ) log2

(
p(b, µ)

p(b)

)
, (3.3)

I = −
4∑

µ=1

p(µ) log2(p(µ)) +

T∑
b=A

4∑
µ=1

p(µ|b)p(b) log2(p(µ|b)), (3.4)

I = H(µ) +

T∑
b=A

p(b)

4∑
µ=1

p(µ|b) log2(p(µ|b)), (3.5)

I = H(µ)−
T∑
b=A

p(b)H(µ|b = b), (3.6)

where H(µ) is the Shannon entropy of the distribution over batches p(µ), and (in a slight abuse

of notation) H(µ|b = b) is the conditional Shannon entropy of the distribution over batches given

a particular base pair b. From this last equation (3.6) we see that the mutual information de-

pends on the individual base probabilities p(b). To see why this is the case, consider a hypothetical

scenario in which the presence of A, C, or T at a particular position has no effect on gene ex-

pression, but the presence of G is extremely favorable for gene expression. Thus, when A, C, or

T are present, sequences are sorted with equal probability into any of the four batches, and hence

H(µ|b = A) = H(µ|b = C) = H(µ|b = T ) = 2. But when a G is present, sequences are always sorted

into the highest expression batch, and hence H(µ|b = G) = 0. From equation 3.6, it is thus evident

that the mutual information is highly dependent on the fraction p(G) of sequences containing a G,

with higher values of p(G) leading to higher computed mutual information. This can be understood

as resulting from the fact that the mutual information quantifies the average uncertainty that is

removed from the distribution over batches by knowing the base pair b. Even if knowing that a

G is present removes the entirety of the uncertainty in the batch number (as in this hypothetical

example), if Gs are extremely rare, then knowing the base identity b still doesn’t tell us very much

about batch number on average (since most of the time, the base identity is not a G).

Since, as shown in Figure 3.3, we see that there is some nonuniformity in the base substitution

rates, we would like to define a metric that independent of the base substitution rates. Specifically,

we define a “renormalized” mutual information Irenorm as follows:

Irenorm = H(µ)−
T∑
b=A

1

4
H(µ|b = b). (3.7)

Comparing the preceding equation with equation 3.6, we see that the only difference is that p(b) has

been replaced with 1/4. The quantity Irenorm can be interpreted as an estimate of what the mutual
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Figure 3.4: Binding energy matrix for RNAP σ70 -35 recognition domain. This matrix
inferred from sort-seq experiments on the lac promoter, and covers the canonical -35 hexamer (posi-
tions -36 to -31) as well four flanking basepairs upstream and downstream. To compute the binding
energy of a given sequence, sum the contributions from the appropriate base pairs at each position
from left to right across the matrix. More negative matrix values (blue colors) correspond to more
favorable binding, and more positive values (red colors) to unfavorable binding. The consensus -35
recognition sequence TTGACA is clearly visible in positions -36 to -31, corresponding to the lowest
possible binding energy sequence for those positions.

information would be if all four base pairs were equally probable. For the remainder of this chapter,

we will use this renormalized mutual information defined in equation 3.7 rather than the “naive”

mutual information shown in equation 3.6.

3.1.3 Fitting models of protein-DNA interaction

In addition to determining where TFs and RNAP bind along a promoter region, we can use sort-

seq data to fit high precision models of the sequence-dependent binding energies of DNA binding

proteins. Such a model would take as input a particular DNA sequence, and output the binding

energy of a given TF to that sequence. To do so, Kinney et al define a quantity called the error-

model-averaged likelihood. We will next motivate this quantity and show how it can be used to fit

models of sequence-dependent binding energies [5].

Let the symbol θ collectively denote a set of model parameters describing the sequence dependent

binding energy of a DNA-binding protein. For instance, in the case of a linear binding energy model

for a protein binding site of length L, θ denotes a binding energy matrix whose ijth element θij is

the energetic contribution of having base pair j present at position i along the binding site, where

i ∈ {1..L} and j ∈ {A,C,T,G}. An example of such a linear “energy matrix,” describing binding

of RNAP to the lac promoter -35 region, is shown in figure 3.4. In probability and statistics, the

“likelihood” refers to the function

p({µs}|θ), (3.8)

which describes the probability of an observed dataset {µs} (where s runs from 1 to N , the number

of sequences in the dataset) given a set of binding energy model parameters θ. In the case of sort-seq
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data, the dataset {µs} consists of a set of batch numbers associated with each promoter sequence as

described above. We will make two additional assumptions about the form of the likelihood function:

(1) the measurements {µs} are independent, so that p({µs}|θ) =
∏N
s=1 p(µs|θ); (2) the likelihood

of the observed data depends on the model parameters through the model predictions {xs} only,

where xs is the predicted binding for the sth sequence, and hence p(µs|θ) = p(µs|xs). Putting these

assumptions together, we obtain

p({µs}|θ) =

N∏
s=1

p(µs|xs). (3.9)

A key element of equation 3.9 is the quantity p(µs|xs), referred to as the “error model.” In the

case where we are trying to model the sequence dependent binding energy of a TF to DNA, xs

denotes the TF binding energy for the sth mutant promoter, and p(µs|xs) denotes the probability

that the mutant was sorted into batch µs given that the binding energy is xs. A moment’s reflection

reveals that this quantity would be extremely difficult to calculate a priori, as it depends on the

physical relationship between binding energy xs and gene expression (which could, in principle, be

calculated from a thermodynamic model), the distribution of mutations in other TF binding sites in

the mutagenized region, the particular GFP fluorescence range chosen for each batch on the FACS

machine, the noise in FACS GFP fluorescence measurements, and the rate of mis-sorting events.

The impracticability of calculating the error model p(µs|xs) led Kinney et al to consider the

effect of averaging over an ensemble of error models [5]. Specifically, they computed the form of the

likelihood p({µs}|θ) if one averages over all possible error models p(µs|xs) with a uniform prior on

the space of error models, and found that in the large data limit N >> 1, the likelihood can be

written as

p({µs}|θ) = const× 2NI(µ,x), (3.10)

where N is the number of sequences, and I(µ, x) is the mutual information between predicted binding

energies {xs} and batch numbers {µs}, estimated from the sort-seq dataset. If we assume a uniform

prior on the space of model parameters θ, the probability distribution p(θ|{µs}) over values of θ

given the observed data {µs} is directly proportional to the likelihood since

p(θ|{µs}) =
p({µs}|θ)p(θ)
p({µs})

, (3.11)

p(θ|{µs}) ∝ p({µs}|θ), (3.12)

and hence (from equation 3.10)

p(θ|{µs}) = const× 2NI(µ,x). (3.13)

Now that we have an expression for the posterior distribution of θ, we can use Markov Chain Monte
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Carlo methods to sample from the distribution, and thus can compute the expected value (as well as

other statistical quantities) of model parameters θ given the observed data. But in order to do so, we

will need to estimate the mutual information I(µ, x) between observed data and model predictions,

which as we will see is not a trivial problem.

3.1.3.1 Estimating mutual information between observed data and model predictions

One difficulty with estimating I(µ, x) is that unlike in the information footprint calculations above,

where basepair identity {A,C,T,G} and batch number µ are both discrete variables, the batch number

µ is discrete while the binding energy x is a continuous variable. Formally, the mutual information

is given by

I(µ, x) =

∫ x=+∞

x=−∞
dx

∑
µ={1,2,3,4}

p(x, µ) log2

(
p(x, µ)

p(x)p(µ)

)
. (3.14)

The problem is that we don’t have direct access to the continuous probability distribution p(x), but

instead have only a set of values {xs} corresponding to predicted binding energies for each sequence

in the dataset. In general, estimating continuous probability distributions based on discrete data is

a highly nontrivial problem. To sidestep this issue, we will use the fact that for any transformation

z(xs) that preserves the rank order of the xs (for instance, adding a constant to each prediction xs),

the mutual information is unchanged; that is,

I(µ, x) = I(µ, z(x)). (3.15)

In order to work with discrete quantities, we will define zi(xs) as the rank order in binding energy

of the sth sequence, and will estimate I(µ, z). Again at the risk of being pedantic, to find the “rank

order” we compute the predicted energy xs for each sequence, then sort the sequences from lowest

to highest according to their predicted binding energy. Then the sequence with rank order 1 is the

sequence with the lowest predicted binding energy, the sequence with rank order 2 has the second

lowest predicted energy, and so on. Thus, z runs from 1 to N where N is the total number of

sequences under consideration. To estimate I(µ, z), Kinney et al used a procedure that, while not

strictly mathematically rigorous, appears to work well in practice [1]. We bin the rank orders zi into

1000 bins and define an empirical frequency matrix F (µ,M) as the number of sequences sorted into

batch µ that are in the Mth rank order bin. To make this a bit more concrete, let’s consider a scaled

down scenario in which 20 sequences are sorted into 2 batches, and the rank orders are binned into

4 bins. Then F (1, 1) is the number of sequences sorted into batch one whose energy rank orders are

between 1 and 5 inclusive, F (1, 2) is the number of sequences sorted into batch 1 whose energy rank

orders are between 6 and 10 inclusive, F (2, 3) is the number of sequences sorted into batch 2 whose

energy rank orders are between 11 and 15 inclusive, and so on. Finally, so that sum of all matrix

elements is one, we define a normalized version of F as f̃(µ,M) = 1
N F (µ,M).
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(a) Energy matrix for σ70 -35 region; same as in
Figure 3.4
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(b) Joint probability distribution function
f(µ,M) used in equation 3.16 to estimate the
mutual information between model predictions
and observed data. This distribution was com-
puted using the energy matrix in part (a).
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(c) Random energy matrix, used to initialize a
MCMC run.
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(d) Joint probability distribution function
f(µ,M) used in equation 3.16 to estimate the
mutual information between model predictions
and observed data. This distribution was com-
puted using the energy matrix in part (c).

Figure 3.5: Energy matrices and regularized distributions f(µ,M). For the distributions
f(µ,M), shown in parts (b) and (d), red indicates regions of higher probability while blue indicates
regions of lower probability. The x axis corresponds to the rank order of predicted binding energy,
and the y axis to observed batch number. For the optimized energy matrix (part (a)), we see
sequences whose rank ordered binding energies are low (i.e., strong binding sequences) are clustered
in the highest expression batch (batch 3), while sequences whose rank ordered binding energies are
high (poor binding sequences) are clustered in the lowest expression batch. The estimated mutual
information value is relatively high, at 1.03 bits. For the random energy matrix, shown in part (c),
there is no clear association between predicted energy and batch number, which is reflected in the
low estimate mutual information, at 0.04 bits.
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Empirically, it turns out that using this matrix f̃ to directly estimate mutual information (and in

turn, likelihood) yields landscapes that are excessively rough in θ space. To ameliorate this issue, we

define finally a regularized matrix f(µ,M) that is simply f̃ convolved along the binned rank order

axis with a Gaussian with standard deviation equal to 40 (or 4% of the total number of sequences).

(It should be noted that there is no principled or rigorous justification for this procedure: it is simply

something that seems to work well in practice. See reference [1] for additional discussion of these

issues.) We can now use f(µ,M) to estimate mutual information using the formula

Ismooth(µ, z) =

1000∑
M=1

4∑
µ=1

f(µ,M) log2

(
f(µ,M)

f(µ)f(M)

)
. (3.16)

Hence, to compute the posterior probability of model parameters θ, we simply plug the estimated

mutual information Ismooth(µ, z) into equation 3.13, yielding

p(θ|{µs}) = const× 2NIsmooth(µ,z). (3.17)

3.1.3.2 Markov Chain Monte Carlo (MCMC) sampling of model parameters θ

A full discussion of Markov Chain Monte Carlo (MCMC) methods is beyond the scope of this work,

but a brief introduction will be provided here for clarity. For this author, the technical report by

Neal [6] was a valuable resource, and many textbooks and other resources exist as well. Markov

Chain Monte Carlo methods are frequently used to compute properties of probability distribution

functions that are not amenable to analytic calculations. To compute statistical properties such

as the expected value 〈θ〉 =
∫
θp(θ)dθ of a distribution p(θ), it is necessary to perform various

integrals over the distribution; if p(θ) takes a complicated functional form (as it does in many “real

life” probabilistic models), it is often infeasible to perform these integrals analytically. For the

current case of inferring models of protein-DNA interaction, equation 3.17 allows us to compute

the probability p(θ|{µs}) of a particular set of model parameters θ given a set of experimental

measurements {µs}. The expected value of θ is given by

〈θ〉 =

∫
θ × const× 2NIsmooth(µ,z)dθ∫

const× 2NIsmooth(µ,z)dθ
, (3.18)

where the integrals run over all possible values of theta (and the denominator accounts for the

unknown constant in equation 3.17). Unfortunately, it is not possible to perform the integrals

analytically.

The idea behind MCMC methods is that even if we can’t directly compute these integrals, as

long we can draw samples according to the distribution, we can still use these samples to estimate

properties of the distribution. For instance, to estimate the expected value 〈θ〉, we draw (say) 100



82

samples {θ1, θ2, . . . , θ100} according to p(θ), and then compute the sample mean:

ˆ〈θ〉 =

∑100
l=1 θl
100

. (3.19)

We want to construct a Markov chain whose stationary distribution converges to the distribution

of interest p(θ). A Markov chain is a sequence of values {θ1, θ2, . . . , θ100} that has no memory; that

is, the probability that the lth value in the chain takes a value θl depends only on the (l−1)th value

in the chain. To make things a bit more concrete, let’s leave aside θ for the time being. Imagine

that we have a light switch, and we know the switch is “on” 25% of the time, and “off” 75% of

the time, so that p(on) = 0.25 and p(off) = 0.75. Once a second, we can change the state of the

switch; if the switch is on, we turn it off with probability koff , and if the switch is off, we turn it

on with probability kon. The sequence of states {on, off, off, on, off, off, off, off} of the light switch

constitutes a Markov chain (this is just one possible sequence of states for illustration). To find

the stationary distribution of this Markov chain, we would let it run for a long time, then compute

the fraction ps(on) of states in the chain that are “on”, and the fraction ps(off) of states that are

“off”. Our goal here is to choose values for kon and koff such that ps(on) = 0.25 and ps(off) = 0.75;

or, in other words, to construct a Markov chain whose stationary distribution ps is equal to the

distribution p of on and off values.

A Markov chain is stationary if (but not only if) detailed balance is satisfied between its states.

The condition of detailed balance obtains if the total rate of transitions from on to off is the same

as the total rate of transitions from off to on. Mathematically, this condition can be written as

kon × p(off) = koff × p(on). (3.20)

This equation means that if we choose values for kon and koff such that equation 3.20 is satisfied,

we will have constructed a Markov chain whose stationary distribution is given by p(on) and p(off).

Rearranging equation 3.20, we obtain

kon
koff

=
p(on)

p(off)
, (3.21)

kon
koff

=
0.25

0.75
=

1

3
, (3.22)

where we have substituted the values of p(on) and p(off) given above. This equation tells us the ratio

between the transition probabilities kon and koff , but not their absolute scale. For convenience, we

set koff = 1, and hence kon = 1/3. Thus, to construct a Markov chain with the desired stationary

distribution, we start in either the on or the off state. Every second, we can undergo a transition

to the other state; if we are on, we transition to the off state with probability 1, and if we are off,
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we transition to the on state with probability 1/3 and remain in the off state with probability 2/3.

If we let the chain run for a sufficiently long time (in general, there is no simple definition of what

constitutes a sufficiently long time, so various empirical convergence tests are used), the distribution

of on and off states will converge to the desired distribution p(on) = 0.25 and p(off) = 0.75.

This is obviously a highly simplified example, but it nonetheless effectively illustrates several

general points. Even for more complicated scenarios where more than two states are possible, it

remains the case that detailed balance is a pairwise condition. As long as the transition rates ki→j

kj→i for any pair of states i and j are chosen such that detailed balance is satisfied, i.e.,

ki→j × p(i) = kj→i × p(j), (3.23)

then the resulting Markov chain will have a stationary distribution given by p(i) and p(j). The same

is also true for continuous variables.

Returning to the case of sampling model parameters from the distribution p(θ) defined in equa-

tion 3.17, we define the following algorithm. It is nothing more than the standard Metropolis-

Hastings algorithm applied to our particular scenario. (Recall that θ denotes a binding energy

matrix whose ijth element θij is the energetic contribution of having base pair j present at position

i along the binding site, where i ∈ {1..L} and j ∈ {A,C,T,G}. However, the analysis described here

could equally well apply to more complicated models incorporating dinucleotide interactions.)

1. Start with a random energy matrix θ0.

2. Make a random perturbation dθ to θ0.

3. Compute the probabilities p(θ0) and p(θ0 + dθ) using equation 3.17. (Recall that p(θ) is

proportional to 2 raised to the power of N times the mutuppal information between model

predictions and observed data).

4. If p(θ0 +dθ) > p(θ0), accept θ0 +dθ as the next element θ1 of the Markov chain. Otherwise, ac-

cept θ0 +dθ with probability p(θ0 +dθ)/p(θ0), and reject with probability 1−p(θ0 +dθ)/p(θ0).

Rejection means that the next element θ1 in the Markov chain is again θ0. These accep-

tance/rejection probabilities mean that detailed balance is satisfied between the states θ0 and

θ0 + dθ.

5. Go to step 2 (replacing θ0 and θ1 with the appropriate elements θl and θl+1) and repeat until

the chain converges to the stationary distribution. In practice, convergence can be monitored

by tracking the mutual information as shown in Figure 3.6.

The end result of these model-fitting efforts is an optimized linear binding energy matrix like

the one shown in Figure 3.4 or 3.5a. One question that has been neglected thus far is that of units,
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Figure 3.6: MCMC convergence. Plot of estimated mutual information vs. MCMC iteration
number. The Markov chain is initialized with a random matrix as in Figure 3.5c, and converges to
the “correct” (or at the very least, locally optimal) energy matrix of Figure 3.5a by about the 600th
iteration. To ensure that we aren’t stuck in a local minimum, we initialize multiple (≈ 100) chains
from random starting points and check that all chains converge to the same matrix.
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which we will now address. The short answer to this question is that the units are arbitrary, and

can only be calibrated to physical units (e.g. kBT or kcal) using external information, such as two

sequences with known binding energies.

The more involved answer can perhaps be safely skipped, but will briefly be presented here. We

begin by noting that some “degrees of freedom” are unconstrained by this model-fitting procedure. In

particular, adding a constant to all matrix elements or to all elements in a particular column will not

change the energy difference between two particular DNA sequences. In a similar vein, multiplying

all matrix elements by a constant will change the energy difference between two sequences, but not

which sequence has a greater predicted energy than the other. Thus, neither of these transformations

to an energy matrix will affect the mutual information between predicted energies and observed

batch number for a sort-seq dataset, since the rank orders of the predicted binding energies will be

unchanged. Consequently, we (somewhat) arbitrarily impose the gauge conditions that (1) the sum

of matrix elements in each column is zero (2) the sum of the squares of all matrix elements is one.

These choices have two convenient properties; namely, that (1) the average energy across all possible

random DNA sequences is zero (2) the standard deviation in energy across all possible random

sequences is one. This means that the predicted binding for a particular sequence can instantly be

interpreted as a sort of “z-score,” in the sense that e.g. a sequence with a predicted energy of -1 has

a binding energy one standard deviation less than the average binding energy of random DNA. To

convert from these arbitrary energy units to physical units, we can perform a calibration using two

sequences of known energy. The details of how to do so are described in the following chapter, in

section 4.5.3. Finally, we note that in Figure 3.4 and all subsequent figures showing energy matrices,

the smallest matrix element has been subtracted from each column. This is simply to make the

matrices easier to interpret visually, as the optimal base pair at each position (i.e., in each column)

will always be dark blue, and the other elements in each column can be interpreted as the difference

in energy between a particular choice of base pair and the optimal base pair. However, this has no

effect on the physical information conveyed by the matrix, and is simply for convenience.

3.2 Exploring uncharacterized regulatory DNA: the mscL

promoter as a case study

3.2.1 Introduction

Mechanosensitive channels - ion channels embedded in cell membranes that gate based on membrane

tension - are ubiquitous in living organisms. Homologs of the E. coli mechanosensitive channels of

large and small conductance (mscL and mscS, respectively) are found in organisms ranging from E.

coli to Arabidopsis thaliana, while E. coli alone contains genes encoding no less than seven distinct
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mechanosensitive channels. Yet the function and physiology of these channels remains unclear.

The conventional view is that these channels protect the integrity of the cell membrane in the

event of osmotic downshock (i.e., the transfer of cells from an environment of high osmolarity to

an environment of low osmolarity) [7]. If the resulting osmotic pressure threatens to rupture the

cell membrane, the mechanosensitive channels will gate in response to increased membrane tension,

thereby alleviating osmotic pressure. This view appears to be at least partially correct, in the sense

that physiological experiments have demonstrated that deleting the mechanosensitive channels MscS

and MscL from E. coli decreases survivability by at least tenfold in osmotic downshock assays [8].

Conversely, the presence of either mscS or mscL alone is sufficient to confer the same level of

osmoprotection as all seven channels in osmotic downshock assays [8]. Moreover, the number of

MscL proteins present in E. coli appears to be as many as 100 times greater than the number

required to confer osmoprotection [9–11].

These uncertainties about channel physiology and function are mirrored in the scant information

available about their regulation. In fact, the mscL gene is completely un-annotated in the tran-

scriptional regulatory database RegulonDB [12]. The only information directly known about its

transcriptional regulation is that its expression is upregulated by the stress response sigma factor

RpoS (also referred to as σS and σ38) [9]. For these reasons, we decided to use sort-seq methods

described above to attempt to illuminate the transcriptional regulation of mscL. We hoped that

learning about its transcriptional regulation could help to shed light on its physiology and function,

and furthermore, that these efforts could serve as a case study in the use of biophysical methods to

understand transcriptional regulation de novo in a poorly characterized system.

3.2.2 Materials and methods.

We took as a starting point the pUA66-mscL plasmid from the Zaslaver collection (Figure 3.7a) [2].

This plasmid contains the intergenic region between mscL and its upstream neighbor trkA, extending

97 base pairs upstream into the trkA open reading frame (ORF) and 94 base pairs into the mscL

ORF, driving expression of GFP, as seen in Figure 3.7a. We mutagenized the region indicated in

the schematic; this mutagenized region extends from 118 bp upstream of the transcription start site

(12 bp into the trkA ORF) to 36 bp downstream of the transcription start site (13 bp into the mscL

ORF). Our target mutation rate for this region was 12%, but unfortunately a miscommunication

with IDT caused the actual mutation rate to be 3%.

In order to construct the mutant promoter library, we first created a cloning vector plasmid

(pDJ12) based on pUA66-mscL (Figure 3.7b). pDJ12 differs from pUA66-mscL in that the region of

pUA66-mscL to be mutagenized has been replaced with an insert (annotated in red in Figure 3.7b)

containing the ccdB gene, which encodes a toxin that is fatal to E. coli which do not carry the

corresponding antitoxin ccdA. The insert also carries the high-copy pBR322 origin of replication for



87

200
400

600

800

1k

1.2k

1.4k

1.6k

1.8k

2k
2.2k2.4k

2.6k

2.8k

3k

3.2k

3.4k

3.6k

3.8k

4k

4.2k

4.4k
4.6k4640

mscL 5'UTR
mscL (5' end)

trkA (3' end)

Mutagenized_Region

replaced in pDJ12

par_locus

gfpmut2

AmpR

RepA reg

pSC101 functional sequence

pSC101 origin

pUA66 mscL
4640 bp

(a) Map of plasmid pUA66-mscL. This plasmid contains the mscL promoter driv-
ing expression of GFP. The mutagenized region and the region replaced in the cloning
vector pDJ12 are indicated (between 3.6k and 3.8k). The red region (replaced in
pDJ12) contains the mutagenized region with an additional 3 bp flanking each side.
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(b) Map of plasmid pDJ12. This plasmid is essentially a cloning vector version
of pUA66-mscL. The region indicated in red in part (a) is replaced by an insert (red,
≈3.6k - 4.8k) containing the ccdB gene, which is toxic in standard laboratory E. coli
strains. The insert is flanked by dual BsmBI restriction sites (detail in Figure 3.9).
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Figure 3.8: Schematic of insert iDJ1 ordered for library cloning. The insert consists of the
mutagenized region flanked by BsaI binding sites. BsaI is a type II restriction enzyme and thus upon
digestion leaves an overhang (green annotations) downstream of its binding site (blue annotations),
as indicated in the schematic. The sequence is designed such that the overhangs are complementary
to the overhangs resulting from digestion of pDJ12 with BsmBI, enabling convenient ligation. See
Figure 3.9 for a detailed schematic of the ligation.

convenience (in the sense that fewer cells are needed to obtain a given yield of plasmid DNA in

minipreps). The insert region is flanked by BsmBI restriction enzyme binding sites. Aside from the

insert region indicated in red in Figure 3.7b, pDJ12 is identical to pUA66-mscL.

To obtain the actual mutant promoter library, we ordered DNA oligos from Integrated DNA

Technologies, Inc. A schematic of the insert DNA oligo iDJ1 is shown in Figure 3.8. The insert oligo

consists of the mutagenized region flanked on either side by 7 bp of constant DNA, flanked in turn

by BsaI restriction enzyme binding sites. The insert oligos are synthesized as single stranded and

are thus made double stranded by PCR prior to ligation. These insert oligos are of course comprised

of a pool of millions of variants of the mscL promoter flanked by constant regions as shown in the

schematic (Figure 3.8).

To perform the ligation, we first perform a miniprep to obtain purified pDJ12 plasmid. 30 µL

of 100 ng/µL plasmid is a typical yield for a single miniprep. Because of the presence of the ccdB

gene, pDJ12 must be propagated in a specialized E. coli strain such as DB3.1 containing the gene

for the corresponding antitoxin ccdA. pDJ12 miniprep product is then digested with BsmBI, cutting

out the region annotated in red in Figure 3.7b. At the same time, the double stranded insert iDJ1

is digested with BsaI. The products of the two digestion reactions are then mixed together (10

fmol of pDJ12 digestion product and 30 fmol of iDJ1 digestion product) and ligated with T4 DNA

Ligase (Invitrogen, Inc.). Figure 3.9 shows a detailed view of the restriction and ligation reactions.

The sequences were designed such that digestion of pDJ12 with BsmBI and iDJ1 with BsaI yields

complementary sticky ends, as shown in Figure 3.9. The net result of the ligation reaction is a pool

of plasmids identical to pUA66-mscL except that each contains a slightly different version of the

mutagenized promoter sequence. One notable feature of this cloning strategy is that the presence

of ccdB in plasmid pDJ12 means that gel purification of the vector backbone after BsmBI digestion

is not necessary. Although in some cases the red insert region in Figure 3.7b will be re-ligated

into the vector backbone (instead of the desired iDJ1 insert containing the mutagenized promoter

region), because the ligation product is being transformed into a strain that is not immune to the
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(a) Detail of insert iDJ1 (top, also shown in Figure 3.8) and cloning vector plasmid pDJ12 (bottom, also shown in

Figure 3.7b) at the upstream end of the mutagenized region. Digestion of the insert with BsaI and cloning vector with

BsmBI yields complementary AAGC sticky ends (indicated in green), as the DNA to the left of the BsaI overhang

(insert) and to the right of the BsmBI overhang (vector) is digested away. The resulting ligation product is the same

as plasmid pUA66-mscL (shown in Figure 3.7a), except for the mutagenized region.

Insert

Vector

(b) Detail of insert iDJ1 (top, also shown in Figure 3.8) and cloning vector plasmid pDJ12 (bottom, also shown

in Figure 3.7b) at the downstream end of the mutagenized region. Digestion of the insert with BsaI and cloning

vector with BsmBI yields complementary AATT sticky ends (indicated in green), as the DNA to the right of the BsaI

overhang (insert) and to the left of the BsmBI overhang (vector) is digested away. The resulting ligation product is

the same as plasmid pUA66-mscL (shown in Figure 3.7a), except for the mutagenized region.

Figure 3.9: Detail of ligation reactions at upstream and downstream ends of the mutagenized region.
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ccdB toxin, cells containing these plasmids will simply fail to grow. The resulting slight decrease in

ligation efficiency is more than compensated by the fact that gel purification is unnecessary, and in

any case is ameliorated by adding digested iDJ1 product in molar excess.

3.2.3 Gene expression assays under various environmental conditions.

In preparation for performing sort-seq experiments, gene expression from the wild-type pUA66-mscL

plasmid (which contains the wild-type mscL promoter driving GFP expression) was measured under

various genetic backgrounds and environmental conditions. Expression was measured by measuring

median GFP fluorescence across a population of 50,000 cells using a BD Biosciences LSRII flow

cytometer. As shown in Figure 3.10, we measured expression in strains MG1655, MG1655 with rpoS

deleted, MG1655, with mscL deleted, and strain MG1655, in which the mscS (mechanosensitive

channel of small conductance), mscK (mechanosensitive channel of medium conductance), and mscL

genes are deleted. The rpoS gene encodes for the E. coli stationary phase/stress response sigma

factor RpoS, also known as σS and σ38. Previous work has shown that MscL expression is upregulated

by RpoS [9], and thus deletion of the rpoS gene is expected to reduce expression of MscL. In

Figure 3.10 we see that this is indeed the case, as expression from the mscL promoter is reduced by

about two thirds in the rpoS deletion strain.

Many genes in E. coli exhibit autoregulatory function, and though there is no direct evidence

that mscL does so, we were thus motivated to measure the effect of deletion of mscL on gene

expression. However, as seen in Figure 3.10, we found that deletion of mscL has no observable effect

on expression from the mscL promoter. We thus elected not to continue with sort-seq experiments

in the ∆mscL genetic background.

We also examined transcription from the mscL promoter in strain MJF465, in which the mscS,

mscK, and mscL genes are deleted. We observed an approximately 4.5 fold increase in expression

relative to strain MG1655. One possible explanation lies in the observation that RpoS expression

levels are significantly elevated in the MJF465 strain (M. Bialecka and H.J. Lee, unpublished data).

Of course, this explanation merely shifts the phenomenon to be explained up a level in the gene

regulatory network. It is possible that deletion of all three channels negatively impacts the cell’s

ability to maintain turgor pressure homeostasis, thereby placing the cell under stress and upregu-

lating RpoS expression. However, the specific pathways by which this could occur are unclear. An

important caveat to these MFJ465 results is that the mechanosensitive channel gene deletions in

MJF465 are in the context of a different strain background, strain Frag1, than the deletions of rpoS

and mscL, which were performed in strain MG1655. While Frag1 and MG1655 differ only at four

genetic loci, none of which seem likely to affect mechanosensitive channel transcriptional regulation,

the possibility must nonetheless be admitted [13, 14].

Finally, as seen in Figure 3.10, we performed gene expression assays in each of the varying genetic
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Figure 3.10: MscL gene expression assays. GFP expression from the pUA66-mscL plasmid was
measured under various genetic backgrounds and environmental conditions. Measurements were
obtained using a BD Biosciences LSRII flow cytometer; 50,000 cells were measured for each sample,
and the median values are reported on this plot. Cells were grown in either M9 minimal media +
0.5% glucose or M9 minimal media + 0.5% glucose + 250 mM supplemental NacL, as indicated in
the legend. See the text for a detailed discussion of these results.

backgrounds in both normal M9 + 0.5% glucose minimal media, and M9 + 0.5% glucose minimal

media supplemented with 250 mM NaCl. Previous work by members of the Phillips lab has indicated

that expression of MscL is upregulated in cells grown in high salt conditions [11]. We found that

growth in supplemental NaCl increased expression from the mscL promoter by 43% in MG1655, 82%

in MG1655 ∆rpoS, 46% in strain MG1655 ∆mscL, and 6% in strain MJF465. The 82% increase

in MG1655 ∆rpoS is somewhat surprising, since RpoS expression is known to be upregulated in

high salt conditions, and thus deletion of rpoS might be expected to impair upregulation of MscL

expression in high salt conditions [15, 16]. Also of note is the fact that in strain MJF465, differential

expression in normal and high salt conditions is almost completely abolished, suggesting again

that deletion of mscL, mscS, and mscK introduces some kind of substantial perturbation into mscL

regulation. Finally, an important caveat to these results is the fact that growth in high salt conditions

causes a slight decrease in the growth rate, and thus caution must be exercised in comparing the
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(a) Renormalized information footprint for MscL sort-seq experiment in MG1655.

(b) Renormalized information footprint for MscL sort-seq experiment in strain MG1655 ∆rpoS.

results from cells grown in normal and high salt media.

3.2.4 Analysis of putative binding sites.

As described above and in equation 3.7, we can construct an “information footprint” from sort-seq

data to gain an understanding of where transcription factors and RNAP are binding. We performed

sort-seq experiments in the following strain backgrounds and environmental conditions (all strains

were grown in M9+0.5% glucose minimal media with supplemental NaCl where indicated):

1. MG1655

2. MG1655 ∆rpoS

3. MJF465

4. MG1655 grown in M9+0.5% glucose + 250 mM NaCl.
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(c) Renormalized information footprint for MscL sort-seq experiment in strain MJF465
(∆mscL,mscS,mscK).

(d) Renormalized information footprint for MscL sort-seq experiment in strain MG1655, grown in M9 media
supplemented by 250 mM NaCl.

Figure 3.11: Renormalized mscL promoter information footprints. Renormalized information
footprints (as defined in equation 3.7) in various strain background and growth conditions. The
features of these footprints are described in detail in the main text. Briefly, the RNAP binding
site is clearly visible around positions -40 to -20. The ribosomal binding site is visible around
positions 15 to 20. Farther upstream, we identify three potential TF binding sites, centered around
approximately -65, -75, and -110.



94

Information footprints computed using equation 3.7 for each of these conditions are shown in Fig-

ure 3.11. Before examining the features of these footprints in detail, we will begin by noting the

fact that despite the differing conditions between sort-seq experiments, the footprints are remark-

ably consistent from experiment to experiment. This seems particularly interesting when comparing

the cases of background strains MG1655 and MJF465, which as shown above differ by nearly a

factor of five in expression from the wild-type mscL promoter. If this change in gene expression

were mediated by differential binding of some transcription factor in the two strain backgrounds,

we would expect the information footprints to be different. For instance, if a repressor were binding

the promoter region in MG1655, but this repressor was not binding the promoter in MJF465, the

“footprint” of the repressor present in MG1655 would no longer be visible in MJF465. The fact that

the overall footprints are so similar for these two strains suggests that the increase in gene expression

is mediated by something other than differential transcription factor binding.

Since the information footprints appear qualitatively the same for the four sort-seq experiments,

we will focus here on the MG1655 experiment seen in Figure 3.11a. In addition to the RNAP binding

site (clearly visible between roughly -40 and -3), several informative regions that look like potential

transcription factor binding sites are immediately apparent. This is promising, since as mentioned

above, the current state of transcriptional regulatory annotation for the mscL gene comprises only

the transcription start site. We will start at the downstream end of the mutagenized region and

work our way upstream, considering each potential binding site in turn. For each potential binding

site, we fit an energy matrix to model the sequence dependent binding energy of the putative TF.

It should be noted that the coordinates corresponding to each putative binding site are based on

visual inspection of the information footprints in figure 3.11, and are thus unavoidably somewhat

subjective.

The first informative region appears in the region [10:29] (coordinates are with respect to the

transcription start site at 0). The energy matrix for this region is shown in Figure 3.12. Examination

of the energy matrix reveals that this region actually corresponds to the ribosomal binding site and

start codon. The optimal binding sequence for positions 12 to 18 can be read off the energy matrix

as AGGAGG which corresponds to the canonical Shine-Dalgarno ribosome binding site sequence.

The start codon ATG is also clearly visible in the energy matrix at positions 23 to 25. The red

matrix elements in positions 24 and 25 mean that any sequence other than TG at those positions is

very detrimental for gene expression. The initial A is also clearly optimal, but a G (light blue matrix

element) can also be substituted at this position without an excessive penalty. This is consistent

with the fact that GTG is an alternative start codon in E. coli and is the second most abundant

start codon after ATG. Although this informative region does not correspond to a TF binding site, it

is encouraging that our analysis recapitulates known biology of translation initiation. However, this

analysis also serves to inject a note of caution in that it illustrates that sort-seq information footprints
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Figure 3.12: Energy matrix for RBS region. The Shine-Dalgarno sequence AGGAGG can be seen
as the optimal sequence for positions 12 to 18. The start codon ATG is also clearly visible as the
optimal sequence for positions 23 to 25. The alternative start codon GTG is also visible as the
second most favorable sequence at positions 23 to 25.

and “energy matrices” will pick up any basepair changes that affect the downstream measurement

of gene expression (in this case, GFP expression), without prejudice as to the mechanism (i.e.,

transcriptional or translational regulation) whereby those changes affect the downstream readout

of expression. In a hypothetical sort-seq experiment in which gene expression is measured at the

mRNA level, we would not expect to observe these translational effects.

The next informative region is found at the coordinates [-40:-3] and corresponds to the RNAP

binding site. We will begin by examining the -10 region. The consensus -10 hexamer sequence for

RNAP σS has been reported as (T/C)ATA(C/A)T; this sequence is very similar to the RNAP σ70

(the E. coli “housekeeping” sigma factor) consensus sequence TATAAT [16]. In the energy matrix

shown in Figure 3.13a, this consensus sequence is clearly visible at positions -13 to -8. In addition,

there appears to be at least one σS-specific promoter element present in the RNAP energy matrix

shown in Figure 3.13a: namely, a strong preference for C immediately upstream of the -10 hexamer,

at position -14. Becker and Hengge-Aronis have reported that this C is directly contacted by the

residue Lys-173 of σS region 2.5 [17]. Moreover, changing this residue to a glutamate, which is the

residue found at the corresponding position in σ70, changes the sequence preference to a G, which

is the sequence preference of σ70 at this position [17]. These effects are clearly visible in the energy

matrices shown in Figure 3.13. In Figure 3.13a, the energy matrix shows a clear preference for C at

position -14, while in Figure 3.13b, inferred in the MG1655 ∆ rpoS strain, there is a slight preference

for G at position -14. Finally, the presence of a TG at positions -16 to -15 has been termed the

“extended -10” promoter element [18]. This element generally increases the strength of the promoter.

It has been proposed that RNAP σ70 can recognize the extended -10 element strictly at positions

-16 to -15, whereas RNAP σS can also recognize the element at positions -17 or -18 [16, 19]. In any

case we clearly see the extended -10 element at position -16 in both energy matrices in Figure 3.13,

so this cannot be considered a σS-specific promoter element.
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(a) Inferred binding energy matrix for RNAP in strain MG1655.
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(b) Inferred binding energy matrix for RNAP in strain MG1655 ∆rpoS.

Figure 3.13: RNAP binding energy matrices in MG1655 and MG1655 ∆ rpoS strain backgrounds.
Cooler (blue) colors indicate favorable binding interactions, while hotter (red) colors indicate un-
favorable interactions. The -35 hexamer corresponds to positions -36 to -31, and the -10 hexamer
corresponds to positions -13 to -8.
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The -35 region exhibits less sequence specificity than the -10 region, as evidenced graphically by

the generally cooler colors in the heat map in this region. The optimal binding sequence for the

-35 region is given by the matrix as TTGCCA, which is nearly same as the -35 consensus sequence

TTGACA for σ70. There is considerably variability in the -35 regions of σS promoters [20], so it is

somewhat difficult to interpret the observed optimal sequence of TTGCCA in light of σS sequence

specificity, but this variability in σS -35 recognition sequence does seem to be consistent with the

overall reduced specificity in the -35 region of the energy matrix compared with the -10 region. In

conclusion, the RNAP binding energy matrix seems broadly consistent with transcription by both

σ70 and σS, in agreement with reports that transcription from the same promoter can be initiated

by either sigma factor [21, 22].

Based on the information footprint, we identity three additional putative transcription factor

binding sites, found at the following coordinates: [-65:-46], [-86:-67], and [-118:-95]. The strength of

the “signature” of these binding sites in the information footprint is less than for the RNAP binding

site and RBS, and the choice of starting and ending coordinates for each of these sites is inevitably

somewhat arbitrary. Moreover, the optimized mutual information values for these three binding sites

are substantially lower: 0.01, 0.02, and 0.02 bits, respectively, vs 0.14 bits for the RNAP binding

site. This means that the energy matrices for these binding sites are about tenfold less informative

about gene expression than the energy matrix for the RNAP binding sites. So it will not be possible

to analyze these energy matrices in the same level of detail as the RNAP binding site, not least

because we have no idea which proteins (if any) are actually binding there. Nonetheless, we will

attempt to provide what insight we can, and will offer some speculation as to the possible identities

of the proteins in play.

The energy matrix for the binding site in the region [-65:-46] is shown in Figure 3.14c. We

identify this binding site as a repressor, based on the fact that across the sort-seq dataset the

binding energies of this sequence are positively correlated with gene expression. (In other words,

lower (better) binding energies are associated with lower levels of gene expression, and vice versa;

which is what one would expect for a repressor binding site). Interestingly, the sequence of this region

in the wild-type mscL promoter differs from the predicted optimal binding sequence (according to

the energy matrix) at 10 of 19 positions, suggesting that this is not a particularly strong binding

site. Along these lines, it is interesting to note that the position with the largest difference by a

substantial margin between best and worst base identity is found at -59, and the wild-type sequence

indeed contains the worst possible base pair, a G. Pull-down assays by graduate student Nathan

Belliveau of the Phillips lab have suggested that the glycine cleavage system transcriptional activator

GcvA binds to this region of DNA. However, more work needs to be done to verify whether this is

the case. To that end, efforts are currently underway to perform sort-seq experiments on the mscL

promoter in a strain in which gcvA is deleted; if GcvA is indeed binding to this region, we would
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(a) Energy matrix for putative binding site at position [-118:-95], inferred from sort-seq experiments in strain
MG1655.
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(b) Energy matrix for putative binding site at position [-86:-67], inferred from sort-seq experiments in strain
MG1655.
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(c) Energy matrix for putative binding site at position [-65:-46], inferred from sort-seq experiments in strain
MG1655.

Figure 3.14: Energy matrices for putative binding sites. See section 3.1.3 for details of
model fitting procedures. Putative binding sites were identified based on analysis of the information
footprint shown in Figure 3.11a. Blue colors indicate favorable binding, while red colors indicate
unfavorable binding.
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expect the region of high information in the information footprint to disappear, as in Figure 3.2.

Pull-down assays also indicate significant enrichment of the histone-like protein H-NS in this region.

The energy matrix for the binding site in the region [-86:-67] is shown in Figure 3.14b. Again,

based on the positive correlation between binding energies and gene expression across the sort-seq

dataset, we identify this as a repressor binding site. The wild-type binding sequence differs from the

predicted optimal sequence at 4 of 19 positions (-74,-73,-71, and -68), although a ‘G’ at position -68

is virtually the same as the optimal ‘T’. Pull-down assays indicate enhanced binding of the probable

helix-turn-helix (HTH) type transcriptional regulator LrhA in this region (N. Belliveau, unpublished

data). An alternative approach to determining TF identity is to compare the binding energy matrix

with known transcription factor binding motifs. A software program called TOMTOM has been

developed to perform precisely this function [23]. Comparing the binding energy matrix with known

TF binding motifs from the RegulonDB database, we find that the transcription factor fis is the top

hit. A comparison between the two binding motifs is shown in Figure 3.15. By eye, the agreement

looks reasonably convincing, although on the other hand Fis was not identified in the pull-down

binding assays. In any case, it is clear that more work is required to unearth the identity of this

putative binding site.

Finally, the energy matrix for the binding site in the region [-118:-95] is shown in Figure 3.14a.

This binding site is also identified as a repressor. The wild-type sequence differs from the inferred

optimal sequence at only one position (-116) out of 23. This fact is curious in light of the fact that

wild-type transcription factor binding sites rarely (if every) correspond exactly to the optimal or

“consensus” sequence for the particular TF in play. Another interesting feature of the matrix is the

preponderance of ‘A’s and ‘T’s in the optimal binding sequence: the optimal sequence is 65% AT,

or 70% if the optimal base at position 110 is taken to be ‘T’. (The same is true, incidentally, of the

optimal sequence for the region [-86:-67], which has 74% AT content). Pull-down assays indicate

enhanced binding of H-NS and StpA to this region, both of which are known to bind relatively

non-specifically to AT rich regions.

Much work remains to be done in identifying the molecular players involved in transcriptional

regulation of mscL. Nonetheless, we find that our analysis successfully reproduces known aspects

of mscL regulation, including the role of RpoS in promoting transcription of mscL. It also seems

highly likely that H-NS and/or StpA are involved, on the basis of both pull-down mass spectroscopy

analysis, and the fact that both the observed wild-type promoter sequence and the inferred optimal

binding sequences are AT rich for the binding sites identified at [-118:-95] and [-86:-67]. Moreover,

though the inferred energy matrix for the region [-65:-46] shows an optimal sequence with only

53% (10/19) AT content, the wild-type sequence for this region has a whopping 84% AT content.

A role for H-NS is also corroborated by CHIP-Seq data that indicates H-NS binding in the mscL

promoter region [24], as well as the fact that H-NS plays a role in regulation of many RpoS-dependent
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Figure 3.15: Output of binding motif comparison tool. TOMTOM output comparing inferred
binding energy matrix for the region [-86:67] (bottom) with known Fis binding motif. TOMTOM is
a software program that compares a particular binding motif with a database of motifs to search for
the best match. There appears to be reasonably good similarity between the motifs, but not good
enough to draw definitive conclusions in the absence of additional corroboration.

genes [25], as well in regulation of RpoS itself [15]. Efforts are currently underway to perform sort-

seq experiments in strains in which the various candidate TFs identified above are knocked out, in

order to identify whether knocking out those particular genes abolishes any of the putative binding

sites identified here. However, it also seems worth noting that the putative TF binding sites appear

to have a substantially smaller effect on gene expression than the RNAP binding site. This can be

seen in the information footprints (Figure 3.11) where the mutual information values in the RNAP

binding region are higher than in the upstream binding sites, and can also be seen in the fact that

the informativeness of the RNAP energy matrix is about tenfold higher than the informativeness of

the putative TF energy matrices (0.14 bits vs 0.01 or 0.02 bits). This disproportionate importance

of the RNAP binding site is borne out in the next section.

3.2.5 Testing the energy matrices using designed variants of the mscL

promoter.

Finally, although we do not know the identities of the molecular players, we do know whether the

putative binding sites increase or decrease gene expression. We can thus use the inferred binding

energy matrices to design sequences predicted to increase or decrease gene expression. In Figure 3.16,

we show measured gene expression from the wild type promoter, from a promoter in which the three

unknown putative binding sites have been mutated to enhance binding, and a promoter in which

the RNAP binding site has been enhanced in addition to the putative binding sites. We find that

enhancing the unknown repressor binding sites decreases gene expression by 30%. Enhancing the

RNAP binding increases gene expression by approximately 10 fold. These results are consistent with

the results in the previous section that the unknown binding sites are associated with repression of

gene expression, yet their effect on gene expression seems to be substantially less than the RNAP

binding site. (Data courtesy of Nathan Belliveau.)
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Figure 3.16: Gene expression from “designed” mscL promoters. We used the energy matrices
for putative TF binding sites and for RNAP to design promoter variants. Although we do not know
the identities of the putative TFs, we do know that they are predicted to function as repressors.
As seen in the plot (center column), increasing the strength of these binding sites decreases gene
expression by 20%. However, if in addition the RNAP binding site is optimized, gene expression
increases by about tenfold. This result agrees qualitatively with the idea that the putative TF
binding sites have a smaller effect on gene expression than the RNAP binding site.
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Chapter 4

Tuning promoter strength through
RNA polymerase binding site
design in Escherichia coli

A version of this chapter originally appeared as: Brewster RC*, Jones DL*, Phillips R (2012) Tuning Promoter

Strength through RNA Polymerase Binding Site Design in Escherichia coli. PLoS Comput Biol 8(12): e1002811.

doi:10.1371/journal.pcbi.100281

4.1 Introduction

The regulation of gene expression is one of the primary ways that cells respond to their environments.

The quantitative dissection of the networks that control such expression as well as the construction of

designed networks has been a central preoccupation of regulatory biology. As sketched in Figure 4.1,

the level of gene expression exhibited by a cell can be targeted at multiple levels along the path from

DNA to protein. Key biological tuning variables include the copy number of the transcription factors

that act on a gene of interest, the strength of their binding sites, the strength of RNA polymerase

binding, the strength of ribosomal binding sites and the degradation rates of the protein products of

the gene of interest. Many of these tuning parameters have been studied in quantitative detail. For

instance, Salis et al. [1] developed a model to describe the interaction energy between the ribosomal

binding site (RBS) of an mRNA transcript and the 30S ribosomal subunit, which they relate to

translation initiation rate using statistical thermodynamics. Using this model, gene expression can

be predictively tuned over five orders of magnitude by modulating translation efficiency for a given

gene [1, 2]. Translation initiation (and hence protein expression) is thus tuned by choosing an

RBS sequence with the desired interaction energy. The rate of protein degradation is another key

determinant of intracellular protein concentration. Protein degradation can be modulated by the

use of degradation tags appended to the C-terminal domain of a given protein. The ssrA tag [3],

for instance, targets proteins for destruction by the E. coli degradation machinery, which includes
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Figure 4.1: Regulatory control knobs. A schematic view of the available knobs which can be
systematically tuned to change the mRNA and protein distributions. In this work we begin by study-
ing constitutive expression, eliminating the extra layer of complexity associated with transcription
factors, and systematically control the RNAP binding affinity through control of the promoter se-
quence. These results are then generalized to the case in which these same promoters are subjected
to regulation by repressor binding, with the level of repressor (i.e. TF copy number) controlled
systematically.

proteases ClpXP, ClpAP and SspB [4]. This degradation system has been artificially implemented

in yeast, where ClpXP is expressed from an inducible promoter, and degradation rates of ssrA-

tagged proteins can be tuned over a factor of ≈ five by controlling the ClpXP concentration in the

cell [5]. Similarly, manipulating the decay rate of the protein’s transcript allows for modulation of

the steady-state protein copy number [6, 7].

In this paper, we focus on two sets of these transcriptional parameters: namely, the strength with

which polymerase binds the promoter, and the number of transcription factors present when that

promoter is controlled by simple repression. We begin by focusing on the simplest case where there

are no repressor proteins present in the cell. Our interest in such “constitutive” promoters (those not

regulated by transcription factors) stems from the goal of creating a set of promoters in which we can

systematically vary both the mean and the noise to test recent models of transcriptional kinetics [8].

These experiments are further motivated by measurements which question our understanding of

how the mean and noise in transcription depend on the architecture of the promoter [9]. To test

these ideas on noise in transcription, we must know how to predictively tune the binding strength

of RNAP to the promoter.

Precise physical modeling of protein-DNA interaction energies is a difficult problem involving

many degrees of freedom. Such binding energies are at the heart of the molecular interactions which

result in (or, in the case of repressor transcription factors, prevent) transcription events. Hence,

precise control of protein-DNA binding is an essential prerequisite for quantitative control of tran-

scription. Despite the complexity of protein-DNA interactions and numerous molecular mechanisms

involved in transcription initiation [10–14], simple linear models of sequence-dependent binding en-

ergies are often sufficient to describe the interactions of transcription factors (TFs) or RNAP with

DNA [15–20]. A “linear model” treats each base along the binding site as independently contribut-
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ing a defined amount to the total binding energy. The total binding energy is then the sum of

the contributions from each base along the binding site. In one recent study, the authors inferred

the 4 × 41 parameters describing the interaction of RNAP σ70 holoenzyme with DNA [20]. This

matrix is shown pictorially in Figure 4.2 and the numerical values are provided in Supplementary

Information (SI) Text S2. Mathematically, the binding energy of RNAP to a specific sequence is

calculated using a matrix Mi,j of 4×41 energy values where i represents the base identity (A,C,T,G),

and j represents the base pair position along the binding site. For instance, M2,8 represents the

contribution from having a C present at position 8 along the binding site. We represent a particular

promoter sequence by a 41 × 4 matrix Sj,i which is unity if the jth base pair has identity i and

zero otherwise. The total energy of the sequence in question is the inner product of these matrices,

namely,

E(S) =
∑
ij

Mi,jSj,i. (4.1)

For convenience, we have added a constant offset to the matrix such that the average value of E(S)

across the E. coli genome is zero (see SI Text S1 for the original matrix from reference [20], SI Text

S2 for the adapted matrix, and SI Text S3 for the Python source code to perform the adaptation).

Since only differences in energy (such as between two different promoter sequences) are physically

meaningful, we can add the same constant value to each element of the matrix without affecting its

physical interpretation.

We use this correspondence between promoter sequence and RNAP binding affinity to generate

a suite of promoters with a wide range of binding affinities. We then show how a simple thermo-

dynamic model of transcription, which postulates that transcriptional activity is proportional to

the probability of finding the RNAP bound at the promoter, accurately predicts the scaling of the

expression with RNAP binding energy. In addition, these measurements allow us to determine the

proportionality between RNAP binding probability and transcriptional output for our gene. With

this information, we can make absolute predictions for the transcriptional output of our designed

promoters under other regulatory conditions. We test and confirm these predictions by measuring

the transcriptional output of some of our promoters in the architectural context of simple repres-

sion (similar to reference [2]) and show we are able to make accurate, absolute predictions of the

transcription as a function of average repressor copy number.

4.2 Results

We set out to design sets of unique RNAP sites with specific binding energies separated by ≈ 0.5 kBT

steps. Taking as a starting point the wild-type lac and lacUV5 promoters, we used the RNAP

binding energy model in Figure 4.2 to choose appropriate base pair mutations (concentrated in the
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Figure 4.2: Energy matrix for RNAP binding. Figure adapted from Kinney et al [20]. The
contribution of each basepair to the total binding energy is represented by color. The total binding
energy of a particular sequence can be calculated by summing the contribution from each base
pair. Positive values indicate disfavorable contributions to binding energy. As expected, the most
influential base pairs are those in the −10 and −35 region which interact directly with the binding
domains of RNAP σ70. Numeric matrix entries are available in SI Text S2. The sequence displayed
above the energy matrix corresponds to the wild-type lac promoter; the bold bases mark 10 base
pair increments. x-axis coordinates are with respect to the transcription start site.

-10 and -35 boxes, where mutations carry the most weight) which result in our desired energy levels.

The 18 strains designed by this process have binding energies spanning roughly 6 kBT and levels of

constitutive gene expression from roughly 50 times less to 10 times greater than that of the wild-type

lac operon. The specific sequences of these 18 promoters are listed in the table shown in Figure 4.3

along with their predicted “model” RNAP binding energy for that sequence. Four promoters are

marked with a colored dot; this color coding will be preserved throughout every figure. While the

lacO2 site is present in our reporter construct, the strain used to measure constitutive expression

does not produce LacI, the repressor which specifically binds to this site (see Methods). In addition,

the CRP binding site which would otherwise serve to activate the lac promoter has been removed.

Based on intuition from thermodynamic models of transcription regulation [21–25], we expect that

the expression level of a given promoter will scale with the probability that RNAP is bound at that

promoter. A derivation of this probability as a function of RNAP binding energy for our promoter

architecture is shown below. To test the predictive power of our design process in conjunction with

the thermodynamic model, we used single-cell mRNA fluorescence in-situ hybridization (mRNA

FISH) and a colorimetric enzymatic assay to measure, for each construct, the average mRNA and

protein copy number per cell of LacZ reporter. We then compared these results with those predicted

by the calculated RNAP binding energy of that promoter. Finally, we use this same strategy to

examine simple repression in the context of our designed promoters.
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Figure 4.3: Schematic of DNA construct inserted in the galK region. The area between
the promoter and the LacZ start codon is shown in more detail below along with a table displaying
the specific RNAP binding sites (promoters) listed in order of descending binding affinity. The
wild-type binding sequence is shown in red text, the lacUV5 sequence is shown in magenta text, and
two additional promoters are marked by blue text and green text. The data points involving these
four promoters will maintain this color coding throughout every figure. The −35 and −10 RNAP
recognition sequences are highlighted in a green box and a red box, respectively. The bases in these
regions carry the most weight in the energy matrix. Sequences are available in text format in SI
Text S4.

4.2.1 Thermodynamic model for constitutive expression

To construct promoters with a targeted level of gene expression, we compute the RNAP binding

probability using a simple thermodynamic model based upon the RNAP binding energy matrix from

the work of Kinney et al [20] (shown in Figure 4.2). A schematic of the allowed microscopic states

of the promoter in the constitutive expression system, along with their thermodynamic weights, is

shown in Figure 4.4. This model treats all non-specific binding sites (i.e., binding sites other than

the promoter of interest) as binding RNAP with a fixed energy εNS . More nuanced treatments of

the non-specific background can be found in Refs. [19, 26, 27], for example. Consider a cell with

P RNAP molecules which can bind non-specifically with energy εNS to NNS non-specific RNAP

binding sites and with energy εS to the promoter of interest [21–25]. The energy of the state in which

the promoter is unoccupied is PεNS which can occur in NNS !
P !(NNS−P )! unique configurations. Similarly,

the energy of the state in which RNAP is specifically bound is given by εS + (P − 1)εNS , and its

multiplicity is given by NNS !
(P−1)!(NNS−P−1)! . The probability that RNAP is bound is the Boltzmann
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Figure 4.4: States and weights of the unregulated promoter. In the thermodynamic model,
the promoter can be in one of two configurations: unoccupied by RNA polymerase (top) or occupied
by RNA polymerase (bottom). The remaining polymerases are bound nonspecifically on the E. coli
genome. The total energy is the sum of all the nonspecific binding energies and the specific energy
of binding at the promoter (when occupied). The multiplicity factor accounts for the number of
different ways of arranging polymerases on the genome.

factor of the bound state normalized by the partition function of the system, which simplifies to

Pbound =
P

NNS
e−∆ε/kBT

1 + P
NNS

e−∆ε/kBT
, (4.2)

where ∆ε = (εS − εNS) and where we have used the fact that NNS !
(NNS−P )! ≈ NP

NS for NNS >> P . In

the simplifying case of a “weak promoter”, where P
NNS

e−∆ε/kBT << 1, this expression reduces to

Pbound =
P

NNS
e−∆ε/kBT . (4.3)

Note that the microscopic language used to make these derivations is convenient for interpreting

binding energies and the dependence on number of polymerases. However, all of these results can

be naturally derived and written in the alternative language of dissociation constants without ever

making reference to the nonspecific background [23]. For example, we can write

Pbound =

[P ]
Kd

1 + [P ]
Kd

, (4.4)

where Kd is the in vivo dissociation constant for RNAP from the promoter of interest.

With these results, we can now explore the connection between the measured and the corre-

sponding predicted level of expression. Since gene expression is (by assumption) proportional to
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Figure 4.5: Gene expression as a function of RNAP binding energy. (A) LacZ activity
measured in Miller units and (B) average mRNA per cell vs. promoter binding energy in units of kBT
(with the zero of energy set to be the average interaction energy between RNAP and the the entire
E. coli chromosome). To illustrate the reproducibility of our measurements, the translucent points
represent individual measurements and the solid points represent the averaged value over repeated
experiments. The solid black line in each plot is the Boltzmann factor scaling, ∝ e(−∆ε/kBT ). The
red data points correspond to the wild-type lac promoter, which was used to calibrate the arbitrary
units of our energy matrix to (physical) kBT units. The magenta, red, blue, and green data points
represent promoters which we examine in the context of simple repression.

Pbound, we can use equation 4.3 to conclude that

log (Gene Expression) = log(n0)− ∆ε

kBT
, (4.5)

where n0 is an unknown constant of proportionality related to the number of mRNA or proteins

expected from a promoter with ∆ε = 0. With this relation in hand, we are now equipped to take the

predicted energy for each RNAP binding site and compare the resulting expression to that predicted

from equation 4.5.

4.2.2 Constitutive gene expression measurements: mRNA and protein

To test the predictive power of the binding energy model, we measured protein expression and

mRNA copy numbers for constitutive expression from each of our unique promoters. Based on

equation 4.5, a semi-log plot of these data against their respective predicted binding energies in units

of kBT should fall along a straight line with slope equal to -1, consistent with Boltzmann scaling.

Indeed, with the unknown constant n0 as our single fit parameter, we find that gene expression

follows the exponential relation predicted from the thermodynamic model in equation 4.5, as seen
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in Figure 4.5. In this figure, we have taken the zero of energy to be the average energy of RNAP

binding across the whole E. coli genome calculated from the energy matrix of Figure 4.2, as detailed

in the Methods section below. The root-mean-square deviations of our fits are 1.02 for mRNA and

1.06 for protein. Since these values are the deviations of the natural logarithm of gene expression,

we must exponentiate them to get a sense of the deviation in physical units. We conclude that our

design process accurately predicts expression to within a factor of e1 ≈ 3 over nearly three orders of

magnitude. In addition, the table in Figure 4.3 shows the predicted energy for each promoter (the

column labeled “Model”), calculated using the matrix in Figure 4.2, as well as the experimentally

measured energies of each promoter. To compute these measured energies, we solve equation 4.5

for ∆ε, yielding ∆ε = log (n0/Gene Expression) × kBT . We then plug in the measured expression

for each promoter and the inferred value for n0 (the y-intercept of the black line in Figure 4.5)

to compute ∆ε for each promoter. The measured values for the RNAP binding energies for the

LacZ and mRNA data are listed in Figure 4.3. The promoters with colored entries will be further

examined in the context of simple repression later in this work. The direct correlation between these

two measurements of gene expression are shown in Figure 4.8 where protein expression is plotted

vs. average mRNA copy number for every promoter strength, exhibiting an excellent linear relation

between these two readouts of expression.

Fitting the data in Figure 4.5 to the full form for Pbound in equation 4.2, allowing both P/NNS

and the unknown proportionality constant between Pbound to vary, we find P/NNS ≈ 10−4 for both

the mRNA and the protein data. This is consistent with typical values for RNA polymerase copy

number and the length of the E. coli genome (1 − 3 × 103 [28–31] and 107, respectively), and thus

the weak promoter limit appears to hold over the range of promoter strengths tested.

4.2.3 Protein burst size

Since mRNA and protein are linked by translation, their levels for a given promoter should be

related. Individual mRNAs can be translated multiple times and it has been shown that the number

of translations per mRNA is well described by an exponential distribution with mean b, known as the

protein burst size, which is the average number of proteins produced per mRNA [8, 32, 33]. Using

the data described above, we can extract the burst size, defined as the ratio of protein production

rate and the mRNA production rate, b =< rprotein > / < rmRNA > [8, 34]. The quantity we

measure, however, is the steady-state copy number n =< r > /γ, where < r > is the average rate of

mRNA or protein production and γ is the associated decay rate. Figures 4.5A and B demonstrate

that the copy number n is well described by Boltzmann scaling with n = n0 exp (−∆ε/kBT ). Using

this knowledge, we rewrite the burst size as

b = (nLacZ
0 /nmRNA

0 )(γLacZ/γmRNA), (4.6)
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Figure 4.6: Expected relation between predictions and measurement for simple repressor
titration. Figure (A) shows three hypothetical promoters for which the predictions of the promoter
design are either numerically correct (?), underestimated (5) or overestimated (�). The three smaller
figures in (B) show the expected result as repressors are added in a simple repression architecture.
The predicted theory line and the data points differ on average by the same percent as they do at
R = 0.

with γmRNA = 1/1.5 minutes−1 [35] and γLacZ = 1/60 minutes−1 (equal to the inverse of the cell

division time). This gives us a measurement of the LacZ activity (measured in Miller units, described

in the methods section) per mRNA; from available biochemical data we convert from Miller units to

number of LacZ tetramers [36–39] (1 Miller unit ≈ 0.5 LacZ tetramers/cell [39]). Plugging these

values into equation 4.6 we find the protein burst size, b, for the particular RBS we have used, is

roughly 5− 6 LacZ tetramers or 20− 24 individual LacZ proteins per mRNA.

4.2.4 Thermodynamic model for simple repression

Our discussion so far has focused on the behavior of the designed promoters in the absence of any

regulatory interventions. We were interested in examining the portability of these promoters to other

contexts such as when they are regulated by transcription factor binding. In the E. coli genome,

there are hundreds of genes that are regulated by motifs involving simple repression [40]. For these

architectures, there is a single binding site for a repressor protein which reduces the expression from

the gene of interest.

Addition of a repressor which binds to a proximal binding site necessitates the addition of a term

to the partition function of the RNAP binding probability given by equation 4.2. This additional

term corresponds to the probability of repressor binding and making the promoter unavailable to

polymerase. The resulting expression level in the context of thermodynamic models is then given
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by

Pbound =
P

NNS
e−∆ε/kBT

1 + P
NNS

e−∆ε/kBT + 2R
NNS

e−∆εR/kBT
, (4.7)

where R is the number of repressors (the factor of two originates from the fact that LacI has two

binding heads) and ∆εR is the binding strength of that repressor to the specific binding site [2, 25].

In the weak promoter limit the expression can be simplified to,

LacZ expression = nLacZ
0 e−∆ε/kBT (1 +

2R

NNS
e−∆εR/kBT )−1, (4.8)

where nLacZ
0 was determined in the previous section by fitting equation 4.5 to the constitutive

expression data in Fig. 4.5A. We therefore have an absolute prediction for the level of gene expression

in our LacZ measurements. The prefactor nLacZ
0 exp (−∆ε/kBT ) is the constitutive (R=0) prediction

for expression. It is a constant prefactor for all values of R (at a given promoter strength) and thus

the model predicts that any discrepancies between predicted and measured RNAP binding energies

will be inherited through all repressor concentrations. This point is illustrated in Figure 4.6 where

we show how the repressor titration predictions depend upon how well the original constitutive

promoters follow the simple Boltzmann scaling. In particular, we show the level of expression

for three hypothetical promoters, one whose constitutive properties are underestimated, one whose

constitutive properties are overestimated and one for which the Boltzmann scaling is obeyed precisely.

What we see is that the repressor titration (Figure 4.6B) inherits the error already present in the

constitutive promoters from incorrectly predicting the RNAP binding energy.

4.2.5 Gene expression in simple repression

In each of our strains, the LacI O2 binding site is present near the promoter (see Figure 4.3). We

reintroduce the repressor into our strains by integrating a cassette into the genome which expresses

LacI. Specific LacI concentrations are obtained through modulation of the ribosomal binding se-

quence of the LacI gene. Using this process we create five unique strains with average LacI copy

numbers between 10 and 140 repressors per cell. Using equation 4.8, we can make parameter-free

predictions for the overall level of gene expression as a function of promoter strength, repressor

binding strength and repressor copy number for the simple repression architecture. In Figure 4.7A,

we show a comparison between predicted and measured protein expression in the case of simple

repression, as a function of repressor copy number and of predicted promoter binding strength (us-

ing ∆ε from the “model” column of Figure 4.3, and ∆εR = −14.3 kBT as found in reference [2]).

Our measurements (using the same LacZ assay as for the constitutive data above) for three distinct

promoters along with data from the lacUV5 promoter (from reference [2]) are shown as points color
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Figure 4.7: Gene expression in the simple repression case. (A) Solid surface: predicted gene
expression of equation 4.7 as a function of repressor copy number R and RNAP binding energy
∆ε. Data points represent measurements of gene expression in a strain with a given promoter and
repressor copy number. (B) Data from part (A) collapsed onto the RNAP binding energy axis. The
solid lines are the zero parameter predictions from the theory in equation 4.7 using ∆ε predicted
from the position-weight matrix in Figure 4.2 (numerical values listed in Figure 4.3 under “model”).
There is a systematic deviation between the theory and the experimental data which is inherited
from the imperfect prediction of ∆ε by the RNAP binding strength model (illustrated schematically
in Figure 4.6. In (c) the same data are shown after we have corrected ∆ε to fall on the theory fit line
based on the constitutive expression (numerical values listed in Figure 4.3 under “LacZ”). Here we
see that by correcting for the initial uncertainty in the binding energy prediction we observe good
agreement between the theory and experimental data which indicates that our designed promoters
function as expected even in a different regulatory context.

coded by expression level; Figure 4.7B shows the same comparison between theory and experiment

collapsed along the promoter-strength axis. Each color represents a different promoter strength,

with points representing measurements and the solid line representing the theoretical prediction for

that promoter.

The data in Figure 4.7B show a clear trend, for any one promoter, to either over or under predict

the expression as was sketched in Figure 4.6. We attribute this to imperfect predictive powers of the

RNAP binding energy model from Kinney et al (shown in Figure 4.2) [20]: if the thermodynamic

theory underpredicts the measured expression at R=0 using the model value for the RNAP binding

energy (for instance, the magenta point in Figure 4.5A), the theory will continue to underpredict

the measured expression as repressors are added (as seen for the magenta points in Figure 4.7B). In

Figure 4.7(C) we show the result of using the measured RNAP binding energies (from the column

labeled “LacZ” in Fig. 4.3) for the promoter binding strength and the accordance between theory

and experimental data is evident. It is clear from these measurements that our promoter library

exhibits the kind of “transferability” required in order to use them in different regulatory contexts.
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In particular, the comparison between theory and experiment is very favorable even for the repressed

architectures and the imperfect agreement is actually primarily an inheritance of the imperfect accord

between theory and experiment for the unregulated promoters themselves.

4.3 Discussion

In this paper, we have shown how high throughput data obtained from experiments like those in

reference [20] provide a foundation that, together with quantitative predictions from simple ther-

modynamic models [21–25], can be used to predictively tune protein-DNA interactions to produce

a desired output from a gene with high precision. This approach contrasts with previous promoter

engineering efforts, which have typically relied upon generating promoter libraries using random mu-

tagenesis, followed by selection for mutants with desired expression levels [41–43]. We believe that

predictive, model-based engineering of promoters represents a significant technical improvement over

random mutagenesis, and moreover points the way to simultaneously engineering multiple aspects of

promoter function (such as repressor or activator binding strengths) in a scalable way. We demon-

strate the validity of our approach by simultaneously varying RNAP-promoter binding strength and

the copy number of a transcription factor that represses these promoters. In this case, we can predict

the absolute level of gene expression (once the conversion constant between binding probability and

expression units, n0, is known) as a function of transcription factor concentration.

While the binding site design procedure described here focused on alterations to the -10 and -35

region of promoters, we have made preliminary studies in which promoters are subjected to more

severe perturbations, which indicate that the energy function does not describe these situations

nearly so well. It is clear that changes in the linker region can have subtle effects on the twist registry

and absolute spacing of the -10 and -35 binding sites that are not well accounted for by a linear

weight matrix, which ignores correlations in multiple basepair changes [44]. Despite these challenges,

constitutive expression from promoters designed in this study agrees well with the scaling predicted

from the simple thermodynamic model presented here, and we have shown that our knowledge of

simple repression can be applied on top of our understanding of constitutive expression to accurately

predict the absolute expression from a gene when repression is introduced.

4.4 Methods

4.4.1 Energy matrix

The energy matrix from [20] is given in arbitrary energy units (AU). To calibrate these arbitrary

units to physical units, we need two known reference energies, since only differences in energy are

physically significant. From [45], we know that RNAP binds the wild-type (WT) lac promoter
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with a binding energy 5.35 kBT more favorable than the non-specific background. Using the matrix

from [20], we find that the wild-type lac promoter has a binding energy of 53.4 AU, while the average

binding energy of all 41 bp segments in the E. coli strain MG1655 is 91.3 AU (recall that the more

positive the energy value, the less favorable the binding interaction). To obtain this value, we began

at the chromosomal origin of replication and applied the matrix sequentially to each 41 bp segment

(both forward and reverse strands) around the chromosome, and computed the mean of the resulting

∼ 107 energy values. Thus, we find that a difference of 91.3 − 53.4 = 37.9 AU is equivalent to a

difference of 5.35 kBT , providing us with a conversion factor of 37.9/5.35 = 7.08 AU per kBT .

To see how this plays out in practice, consider a hypothetical sequence whose binding energy is

computed to be 60.0 AU. The number we are actually interested in is ∆ε = (εS − εNS). For this

promoter sequence, we find that ∆ε = (60.0− 91.3)/7.08 = −4.42 kBT . We used the same approach

to convert from AU to the kBT units on the x-axis of Figure 4.5 for each of our distinct promoter

sequences.

4.4.2 Strains

All strains used are wild-type E.coli (MG1655) with a complete deletion of the lacIZYA genes

[39]. Modified promoters are created through site-directed mutagenesis of plasmid pZS2502+11-

lacz [2, 46], which has the lacUV5 promoter expressing LacZ (our reporter gene). These constructs

are then integrated into the galK region using recombineering [47]. A schematic of the integrated

region is shown in Figure 4.3. The end result is a strain with a desired, multi-basepair change

to the lacUV5 promoter which expresses LacZ and a complete deletion of the LacI protein. Our

designed promoters span roughly three orders of magnitude in constitutive expression and vary from

the wild-type promoter by as few as one or as many as nine individual basepair changes. The site

labeled “O2” is a binding site for the LacI repressor protein.

For the strains involving simple repression, we took our constitutive expression strains and created

as many as eight different strains with the LacI cassettes from reference [2] integrated at the ybcN

site. The cassettes contain LacI expressed from an unregulated tet promoter with unique ribosomal

binding sequences to produce varying LacI copy numbers. The exception is the data point at

an average LacI copy number of 11, which corresponds to the native wild-type LacI gene. The

measurements for repressors per cell are from quantitative immunoblots in Ref [2]. One of our strains,

the one with 10 repressors/cell, has not been characterized this way, but instead the repressors/cell

has been inferred from the measured expression of the lacUV5 promoter.

4.4.3 Growth

Cultures were grown overnight (at least 8 hours) in LB and diluted 1:4000 into 30 mL of M9 minimal

media supplemented with 0.5% glucose in a 125mL baffled flask. Cells were grown approximately 8
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hours and harvested in exponential phase when OD600= 0.3− 0.5 was reached.

4.4.4 LacZ assay

Our assay for measuring LacZ activity is the same as described in reference [2], which is a slightly

modified version of that described in Ref [36]. A volume of cells from each sample between 5 µL and

200 µL was added to Z-buffer (60mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4,

50 mM β-mercaptoethanol, pH 7.0) to reach a total of 1 mL. This volume is chosen to minimize

the uncertainty in measuring the time of reaction (∼ 1 − 10’s of hours) and the yellow color is

easily distinguishable from a blank sample of 1 mL of Z-buffer. The assay was performed in 1.5 mL

Eppendorf tubes. The cells were lysed by addition of 25 µL of 0.1% SDS followed by 50 µL of

chloroform, mixed by a 10 s vortex. The reaction was started with the addition of 200 µL of

4mg/mL 2-nitrophenyl β-D-galactopyranoside (ONPG) in Z-buffer. The developing yellow color

(proportional to the concentration of the product ONP) was monitored visually. Once sufficient

yellow had developed in a tube (easily measurable by OD550 and OD420, without saturating the

reading), the reaction was stopped by adding 200 µL of 2.5 M Na2CO3. (Typically 500 µL of a 1M

solution is added in other protocols, but this change allows for the entire reaction to take place in a

1.5 mL Eppendorf tube.) Once all samples were stopped, the tubes were spun at > 13, 000 g for 3

min in order to reduce the contribution of cell debris to the measurement. 200 µL of each sample

were loaded into a 96 well plate and OD420 and OD550 measurements were taken on a Tecan Safire2

with the Z-buffer sample as a blank. In addition, the OD600 of 200 µL of each culture was taken

with the same instrument. The absolute activity of LacZ is measured in Miller units,

MU = 1000
OD420− 1.75×OD550

t× v ×OD600
0.826, (4.9)

where t is the reaction time in minutes, v is the volume of cells used in milliliters and OD refers to

the optical density measurements obtained from the plate reader. The factor of 0.826 accounts for

the use of 200 muL Na2CO3 as opposed to 500 µL which changes the concentration of ONPG in

the final solution.

4.4.5 Single Cell mRNA FISH

Our assay is based on that used in reference [9]. Once a culture reaches OD600= 0.3 − 0.5, it

is immersed in ice for 15 minutes before being harvested in a large centrifuge chilled to 4◦C for 5

minutes at 4500 g. The cells are then fixed by resuspending in 1 mL of 3.7% formaldehyde in 1x PBS

which is then allowed to mix gently at room temperature for 30 minutes. Next, they are centrifuged

(8 minutes at 400 g) and washed twice in 1 mL of 1x PBS twice. The cells are permeabilized by

resuspension in 70% Ethanol which proceeds, with mixing, for 1 hour at room temperature. The
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cells are then pelleted (centrifuge at 600 g for 7 minutes) and resuspended in 1 mL of 20% wash

solution (200 µL formamide, 100 µL 20x SSC, 700 µL water) and resuspended in 50 µL of DNA

probes (consisting of an mix of 72 unique DNA probes, individual oligo sequences available as SI Text

S5) labeled with ATTO532 dye (Atto-tec) in hybridization solution (0.1 g dextran sulfate, 0.2 mL

formamide, 1 mg E.coli tRNA, 0.1 mL 20x SSC, 0.2 mg BSA, 10 µL of 200 mM Ribonucleoside

vanadyl complex). This hybridization reaction is allowed to proceed overnight. The hybridized

product is then washed four times in 20% wash solution before imaging in 2x SSC.

4.4.6 FISH data acquisition

Samples are imaged on a 1.5% agarose pad made from PBS buffer. Each field of view is imaged

with phase contrast at the focal plane and with 532 nm epifluorescence (Verdi V2 laser, Coherent

Inc.) both at the focal plane and in 8 z-slices spaced 200 nm above and below the focal plane,

sufficient to cover the entire depth of the E. coli. The images are taken with an EMCCD camera

(Andor Ixon2). The phase image is used for cell segmentation and the fluorescence images are used

in mRNA detection. A total of 100 unique fields of view are imaged in each sample and a typical

field of view has between 5 and 15 viable cells (cells which are touching and cells that have visibly

begun to divide are ignored) resulting in roughly 1000 individual cells per sample.

4.4.7 FISH analysis

The FISH data is analyzed in a series of Matlab (The Mathworks) routines. The overview of the

workflow is as follows: identifying individual cells, segmenting the fluorescence to identify possible

mRNA, quantifying the mRNA which are found (because of the small size of E. coli, at high copy

number mRNA can be difficult to distinguish and count by eye).

4.4.7.1 Cell identification and segmentation

In phase contrast imaging, E. coli are easily distinguishable from the background and automated

programs can identify, segment and label cells with high fidelity. The results of the phase segmenta-

tion are manually checked for accuracy and bad segmentations are rejected. Cells which are touching

or overlapping other cells, misidentification of cells or their boundaries or cells which have visibly

begun to undergo division, etc are all discarded manually.

4.4.7.2 Fluorescence segmentation

First we perform several steps to process the raw intensity images. The images are flattened, a

process to correct for any uneven elements in the illumination profile, using a fluorescence image of

an agarose pad coated with a small drop of fluorescein (such that the drop spreads evenly across most
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of the pad), each pixel of every fluorescence image is scaled such that the corresponding pixel in the

flattening image would be a uniform brightness (typically each pixel is scaled up to the level of the

brightest pixel). This can be achieved by renormalizing each pixel in the data images and dividing

by the ratio of the intensity of the corresponding pixel in the flattening image to the intensity of the

brightest pixel. For instance, if one pixel in the flattening image was half as bright as the brightest

pixel, the signal at that pixel’s position in the raw intensity images would be doubled. We then

subtract from every pixel the contribution to our signal associated with autofluorescence. The value

for the autofluorescence is obtained by averaging over the fluorescence of every pixel in a control

sample (one which underwent the entire FISH protocol but did not possess the LacZ gene). Finally,

all local 3D maxima (where x − y is the image plane) in fluorescence are identified. We require

that the maxima be above a threshold in fluorescence (typically 300− 400% above the background

autofluorescence signal). This threshold eliminates all fluorescence maxima in the control sample,

which does not contain the LacZ gene.

4.4.7.3 mRNA quantification

Each identified maximum pixel is dilated in the image plane to a 5 × 5 box of surrounding pixels.

If this causes maxima (herein called “spots” to avoid confusion) to overlap, the pixels which make

up each overlapping spot are merged into one larger spot to avoid double counting the signal from

any one pixel. Since, due to the small size of the E. coli, we can not guarantee that every spot

corresponds to exactly one mRNA, we must divide the total summed intensity of each spot by the

average intensity produced from a single mRNA. This value can be found by taking the average of

the unmerged spots in very low expression samples (where the mean� 1 and mRNA are statistically

very unlikely to overlap). We use several of our low expression strains to ensure that as we increase

the mean expression it simply increases the frequency of spots with the single mRNA intensity but

does not increase the mean intensity of each spot. The mean mRNA copy number can then be

calculated by dividing each spot by the single mRNA intensity and averaging the total number of

such mRNA in the entire collection of cells for each sample.

4.5 Supplementary information
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Figure 4.8: mRNA vs. Protein Expression. Scatter plot of mRNA vs. protein expression
for each of our designed promoters. Each data point represents mRNA and protein expression
measurements for a particular promoter. To obtain these values, expression of a LacZ reporter was
measured at both the mRNA level (using mRNA FISH) and protein level (using the Miller assay of
LacZ activity described in the methods). As would be expected from a simple model in which each
mRNA produces a “burst” of translated protein molecules characterized by a fixed “burst size” b,
these dual measurements display a linear relationship. The inset pictures are representative mRNA
FISH images from the indicated strains. The scale bar is 5 µm.

4.5.1 Supplementary information text S1

Energy matrix for RNAP σ70 binding affinity Energy matrix for RNAP σ70 in arbitrary energy

units. The energy matrix is determined from experiments in strain TK310 with no supplemental

cAMP which means that these cells have no CRP. The matrix covers base pairs [-41:-1] where

0 denotes the transcription start site. Each row corresponds to a given position; each column

corresponds to a value for that base pair. The columns are ordered [A,C,G,T].

# Energy matrix for RNAP in arbitrary units. Inferred from an

# experiment done in TK310 with no supplemental cAMP (and hence, no

# CRP present in the cells). The matrix covers base pairs [-41:-1]

# where 0 denotes the transcription start site. Each row corresponds

# to a given position; each column corresponds to a value for that

# base pair. The columns are ordered [A,C,G,T].

3.3090086e-02 8.4338901e-01 1.9145915e-01 5.7156605e-01

2.3776175e-01 1.5712752e+00 6.7058076e-03 1.3919617e+00

1.0944116e+00 8.2535084e-01 7.1361981e-01 2.2328462e-06
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5.9864426e-02 1.0066429e+00 6.9407124e-02 9.7620436e-01

2.6802048e+00 1.2734957e+00 0.0000000e+00 5.7258818e+00

4.3852720e+00 7.0449035e+00 4.7688539e+00 0.0000000e+00

3.0848289e+00 3.9709489e+00 3.4340292e+00 0.0000000e+00

1.2843899e+01 1.2775114e+01 0.0000000e+00 6.7068567e+00

0.0000000e+00 9.5273671e+00 1.2366599e+00 7.1684270e+00

9.7567254e+00 7.0366632e-01 1.0145991e+01 0.0000000e+00

0.0000000e+00 6.8593905e+00 4.3133704e+00 2.3905484e+00

0.0000000e+00 1.7594332e+00 1.3839752e+00 6.8668172e-01

7.5845192e-01 1.5786643e+00 0.0000000e+00 7.0599327e-01

2.8890547e-01 9.5169374e-01 2.8413340e-02 1.0598483e+00

5.3030278e-01 9.4433893e-01 6.7437472e-01 7.2803717e-05

0.0000000e+00 1.9163061e+00 9.9594277e-01 1.7259675e+00

1.4990845e+00 1.0768794e+00 7.7364760e-01 0.0000000e+00

0.0000000e+00 2.9917723e+00 2.1527347e+00 4.1632716e+00

4.1263772e-01 7.9893094e-03 1.9843027e-01 1.2690202e+00

4.9869143e-01 7.2434231e-01 5.6449291e-01 2.7238914e-04

2.5038165e-01 6.5802748e-01 2.1211249e-01 4.2288681e-02

0.0000000e+00 1.0634132e+00 1.0747566e+00 8.7305312e-01

2.8977506e-01 4.9904053e-01 8.8848304e-02 1.1179347e-01

3.2567358e-01 1.2689945e+00 1.1829313e+00 6.0211464e-03

2.7597944e+00 2.4891846e+00 2.6693995e+00 0.0000000e+00

0.0000000e+00 3.3573277e+00 1.2712026e+00 4.6265286e+00

1.8671571e+00 2.9598860e+00 0.0000000e+00 2.3774089e+00

4.2376464e+00 8.0605587e+00 0.0000000e+00 4.6122469e+00

1.9201763e+00 1.4430513e+00 0.0000000e+00 7.6884400e-01

4.9396224e+00 7.8252084e+00 9.9642909e+00 0.0000000e+00

0.0000000e+00 1.1449195e+01 1.0351181e+01 1.1048615e+01

1.3484172e+00 3.4139074e+00 4.2597235e+00 0.0000000e+00

0.0000000e+00 4.2758871e+00 5.5404763e+00 6.0569935e+00

0.0000000e+00 2.1330405e+00 5.5662408e+00 5.8880615e+00

7.0033761e+00 1.0815480e+01 9.2473926e+00 0.0000000e+00

0.0000000e+00 3.4444978e+00 1.7185707e+00 3.0026213e+00

2.0895130e-01 2.5615064e+00 9.1081798e-01 1.1727280e-02

1.3337890e-05 1.1660204e+00 1.1205350e+00 7.2778078e-01

1.9009344e-01 1.0398295e+00 2.5208391e-01 3.1778086e-02
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0.0000000e+00 3.1166170e+00 2.7723361e+00 2.4297976e+00

4.3042402e-01 5.1900833e-01 8.7572299e-01 1.2296102e-03

4.5.2 Supplementary information text S2

Energy matrix for RNAP σ70 binding affinity Energy matrix for RNAP σ70 in units of kBT .

The numerical values here are shown pictorially in Figure 4.2. The matrix covers base pairs [-41:-1]

where 0 denotes the transcription start site. Each row corresponds to a given position; each column

corresponds to a value for that base pair. The columns are ordered [A,C,G,T].

# Energy matrix for RNAP in kT. Inferred from an experiment done in

# TK310 with no supplemental cAMP (and hence, no CRP present in the

# cells). The matrix covers base pairs [-41:-1] where 0 denotes the

# transcription start site. Each row corresponds to a given position;

# each column corresponds to a value for that base pair. The columns

# are ordered [A,C,G,T].

-3.1342732e-01 -1.9897832e-01 -2.9105881e-01 -2.3737140e-01

-2.8079230e-01 -9.2442945e-02 -3.1342732e-01 -1.1776971e-01

-1.5884973e-01 -1.9685266e-01 -2.1263388e-01 -3.1342732e-01

-3.1342732e-01 -1.7970155e-01 -3.1207948e-01 -1.8400078e-01

6.5132678e-02 -1.3355505e-01 -3.1342732e-01 4.9531304e-01

3.0596138e-01 6.8161554e-01 3.6013961e-01 -3.1342732e-01

1.2228297e-01 2.4744117e-01 1.7160505e-01 -3.1342732e-01

1.5006827e+00 1.4909673e+00 -3.1342732e-01 6.3386882e-01

-3.1342732e-01 1.0322460e+00 -1.3875785e-01 6.9906237e-01

1.0646412e+00 -2.1403942e-01 1.1196223e+00 -3.1342732e-01

-3.1342732e-01 6.5541314e-01 2.9580578e-01 2.4220757e-02

-3.1342732e-01 -6.4919808e-02 -1.1795060e-01 -2.1643838e-01

-2.0630135e-01 -9.0452139e-02 -3.1342732e-01 -2.1371076e-01

-2.7663465e-01 -1.8302049e-01 -3.1342732e-01 -1.6774442e-01

-2.3853608e-01 -1.8005640e-01 -2.1818694e-01 -3.1342732e-01

-3.1342732e-01 -4.2762619e-02 -1.7275744e-01 -6.9646602e-02

-1.0169222e-01 -1.6132571e-01 -2.0415506e-01 -3.1342732e-01

-3.1342732e-01 1.0913939e-01 -9.3687490e-03 2.7460539e-01

-2.5627359e-01 -3.1342732e-01 -2.8652888e-01 -1.3531561e-01

-2.4302915e-01 -2.1115756e-01 -2.3373516e-01 -3.1342732e-01

-2.8403566e-01 -2.2645857e-01 -2.8944091e-01 -3.1342732e-01

-3.1342732e-01 -1.6322772e-01 -1.6162554e-01 -1.9011473e-01
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-2.8504784e-01 -2.5549057e-01 -3.1342732e-01 -3.1018648e-01

-2.6827867e-01 -1.3504126e-01 -1.4719707e-01 -3.1342732e-01

7.6374146e-02 3.8152423e-02 6.3606505e-02 -3.1342732e-01

-3.1342732e-01 1.6077151e-01 -1.3387893e-01 3.4003717e-01

-4.9704568e-02 1.0463567e-01 -3.1342732e-01 2.2364895e-02

2.8511030e-01 8.2506967e-01 -3.1342732e-01 3.3801998e-01

-4.2215981e-02 -1.0960652e-01 -3.1342732e-01 -2.0483354e-01

3.8425946e-01 7.9182810e-01 1.0939584e+00 -3.1342732e-01

-3.1342732e-01 1.3036906e+00 1.1486039e+00 1.2471115e+00

-1.2297292e-01 1.6876299e-01 2.8822854e-01 -3.1342732e-01

-3.1342732e-01 2.9051153e-01 4.6912583e-01 5.4208023e-01

-3.1342732e-01 -1.2150416e-02 4.7276488e-01 5.1821978e-01

6.7575009e-01 1.2141828e+00 9.9270158e-01 -3.1342732e-01

-3.1342732e-01 1.7308367e-01 -7.0691348e-02 1.1067173e-01

-2.8557082e-01 4.6710971e-02 -1.8643711e-01 -3.1342732e-01

-3.1342732e-01 -1.4873706e-01 -1.5516155e-01 -2.1063531e-01

-2.9106640e-01 -1.7104718e-01 -2.8231068e-01 -3.1342732e-01

-3.1342732e-01 1.2677282e-01 7.8145573e-02 2.9764429e-02

-2.5280664e-01 -2.4029473e-01 -1.8991131e-01 -3.1342732e-01

4.5.3 Supplementary information text S3

Source code to adapt energy matrix from Kinney et. al [20] This code converts from

the arbitrary units of SI text S1 to the values in units of kBT as in SI Text S2. This code adds

a constant offset to the matrix such that the average value of E(S) across the E. coli genome is

zero. The basis for this conversion is the reference of −5.35 kBT [45] for the binding energy of the

wild-type promoter.

#!/usr/bin/python

import numpy as np

# import the original energy from Kinney et al

emat_orig = np.genfromtxt(’rnap-full-0_emat.txt’)

# set conversion factor from AU to k_B T. See "Methods" for details on

# how this number was obtained.

AU_per_kT = 7.08

# average energy value for non-specific binding as computed using the
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# original, unmodified energy matrix

avg_nonspecific_AU = 91.3 # AU

# length of the binding site as defined by our matrix.

site_len = 41

# Set the best binding base of each row to zero. This is so that all

# values are in terms of an energy *difference*: the difference

# between that particular base and the best binding base. Remember,

# adding a constant to each element in a particular row has no

# physical meaning.

# For later, we’ll need to keep track of how much we’ve subtracted

# from the original matrix.

sum = 0 # how much we’ve subtracted

emat_zeroed = np.zeros(emat_orig.shape)

for i,row in enumerate(emat_orig):

emat_zeroed[i,:] = row - min(row)

sum = sum + min(row)

# Convert the units of the matrix from AU to k_B T. Now all nonzero

# matrix element are energy *differences* in terms of k_B T.

emat_rescaled = emat_zeroed/AU_per_kT

# Finally, add an offset to the matrix so that the average binding

# across the MG1655 genome is zero. This is for convenience only, and

# has no physical meaning. It’s not immediately obvious how to do this

# for the rescaled matrix, but it is easy to see how to do it for the

# original matrix. Since the original matrix has an average

# nonspecific binding of 91.3 AU, we could just subtract 91.3 from all

# elements in a particular row. Or, to make things a bit more

# equitable, we could subtract 91.3/41 = 2.23 AU from each row in the

# matrix. Now that we’ve figured out how many AU to subtract from each

# row in the original matrix, we realize that we can simply subtract

# 2.23/AU_per_KT = 2.23/7.08 = 0.315 from each row in the rescaled

# matrix to obtain the matrix we want. This is almost right, but

# remember that we’ve already subtracted the minimum of each each from

# each row. The total amount subtracted is contained in the variable
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# <sum> defined above. If we used the emat_zeroed matrix to compute

# the average nonspecific energy, we would obtain

# <avg_nonspecific_AU - sum> as an answer. So "91.3" needs to be

# replaced with "91.3 - sum" everywhere in the preceding paragraph.

emat_rescaled_zeroed_to_MG1655 = (emat_rescaled -

((avg_nonspecific_AU-sum)/site_len)/AU_per_kT)

# save the matrix in a text file

np.savetxt(’rnap-full-0_emat_relativetoMG1655background_kT.txt’,

emat_rescaled_zeroed_to_MG1655)

4.5.4 Supplementary information text S4

Promoter sequence for constitutive expression strains This spreadsheet contains the collo-

quial name and promoter sequence for each of the unique constitutive expression strains generated

for this study. The following column contains the calculated energy for each promoter using the

energy matrix in SI text S1 (from [20]). The final column is the result for the binding affinity of

each promoter in units of kBT and zeroed to the E. coli chromosome using the energy matrix given

in Figure 4.2 and SI text S2, as described in the methods section.

Name,Sequence,Energy (AU),Energy (kT)

UV5,TCGAGTTTACACTTTATGCTTCCGGCTCGTATAATGTGTGG,41.79623115,-6.992057748

WT,CAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGG,53.44611685,-5.346593665

WTDL10,CAGGCATTACACTTTATGCTTCCGGCTCGTATGTTGTGTGG,57.83138885,-4.727204964

WTDL20,CAGGCTTAAGACTTTATGCTTCCGGCTCGTATGTTGTGTGG,69.02548383,-3.146118103

WTDL20v2,CAGGCCTTAGACTTTATGCTTCCGGCTCGTATGTTGTGTGG,69.93334503,-3.01788912

WTDL30,CAGGCCTCAGACTTTATGCTTCCGGCTCGTATGTTGTGTGG,76.00160233,-2.160790631

WTDR30,CAGGCTTTACACTTTATGCTTCCGGCTCGGTTGTAGTGTGG,81.46239885,-1.389491687

5DL1,TCGCGTTTACACTTTATGCTTCCGGCTCGTATAATGTGTGG,42.74300962,-6.858331975

5DL5,TCGTGTTTACCCTTTATGCTTCCGGCTCGTATAATGTGTGG,49.57196158,-5.893790737

5DL10,TCGAGATTACACTTTATGCTTCCGGCTCGTATAATGTGTGG,46.18150315,-6.372669047

5DL20,TCGAGTTAAGACTTTATGCTTCCGGCTCGTATAATGTGTGG,57.37559813,-4.791582186

5DL30,TCGAGCTCAGACTTTATGCTTCCGGCTCGTATAATGTGTGG,64.35171663,-3.806254714

5DR1,TCGAGTTTACACTTTATGCTTCCGGCTCGTATAATGGGTGG,42.69532185,-6.865067536

5DR1v2,TCGAGTTTACACTTTATGCTTCCGGCTCGTATAATGGGAGG,42.8536372,-6.84270661

5DR5,TCGAGTTTACACTTTATGCTTCCGGCTCGAATAATGTGTGG,46.73585355,-6.294370968
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5DR10,TCGAGTTTACACTTTATGCTTCCGGCTCGGATAATGTGTGG,51.76052205,-5.584672028

5DR20,TCGAGTTTACACTTTATGCTTCCGGCTCGGATAACGTGTGG,62.57600205,-4.057061858

5DR30,TCGAGTTTACACTTTATGCTTCCGGCTCGGTTAAAGTGTGG,69.81251315,-3.03495577

4.5.5 Supplementary information text S5

List of FISH probe sequences A list of all 72 probes and their sequences used in the mRNA

FISH protocol. See Table 6.1.
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Chapter 5

Effect of promoter architecture on
the cell-to-cell variability in gene
expression

A version of this chapter originally appeared as: Sanchez A, Garcia HG, Jones D, Phillips R, Kondev J (2011) Effect

of Promoter Architecture on the Cell-to-Cell Variability in Gene Expression. PLoS Comput Biol 7(3): e1001100.

doi:10.1371/journal.pcbi.1001100

Author contribution note: for this chapter, I (DLJ) wrote code for and performed Gillespie simulations, and wrote

code for and performed numerical computations of mRNA probability distribution functions.

5.1 Introduction

A fundamental property of all living organisms is their ability to gather information about their

environment and adjust their internal physiological state in response to environmental conditions.

This property, shared by all organisms, includes the ability of single-cells to respond to changes in

their environment by regulating their patterns of gene expression. By regulating the genes they

express, cells are able to survive, for example, changes in the extracellular pH or osmotic pressure,

switch the mode of sugar utilization when the sugar content in their medium changes, or respond

to shortages in key metabolites by adapting their metabolic pathways. Perhaps more interesting

is the organization of patterns of gene expression in space and time resulting in the differentiation

of cells into different types, which is one of the defining features of multicellular organisms. Much

of this regulation occurs at the level of transcription initiation, and is mediated by simple physical

interactions between transcription factor proteins and DNA, leading to genes being turned on or off.

Understanding how genes are turned on or off (as well as the more nuanced expression patterns in

which the level of expression takes intermediate levels) at a mechanistic level has been one of the

great challenges of molecular biology and has attracted intense attention over the past 50 years.

The current view of transcription and transcriptional regulation has been strongly influenced
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by recent experiments with single-cell and and single-molecule resolution [111]. These experiments

have confirmed the long-suspected idea that gene expression is stochastic [12,13], meaning that

different steps on the path from gene to protein occur at random. This stochasticity also causes

variability in the number of messenger RNAs (mRNA) and proteins produced from cell to cell in a

colony of isogenic cells [11,1417]. The question of how transcriptional regulatory networks function

reliably in spite of the noisy character of the inputs and outputs has attracted much experimental

and theoretical interest [18,19]. A different, but also very relevant, question is whether cells actually

exploit this stochasticity to fulfill any physiologically important task. This issue has been investigated

in many different cell types and it has been found that stochasticity in gene expression plays a pivotal

role in processes as diverse as cell fate determination in the retina of Drosophila melanogaster [20],

entrance to the competent state of B. subtilis [7], resistance of yeast colonies to antibiotic challenge

[17], maintenance of HIV latency [21], promoting host infection by pathogens [22] or the induction

of the lactose operon in E. coli [23]. Other examples have been found and reviewed elsewhere

[24,25]. The overall conclusion of all of these studies is that stochasticity in gene expression can

have important physiological consequences in natural and synthetic systems and that the overall

architecture of the gene regulatory network can greatly affect the level of stochasticity.

A number of theoretical and experimental studies have revealed multiple ways in which the archi-

tecture of the gene regulatory network affects cell-to-cell variability in gene expression. Examples of

mechanisms for the control of stochasticity have been proposed and tested, including the regulation

of translational efficiency [8], the presence of negative feedback loops [26,27,28], or the propagation of

fluctuations from upstream regulatory components [29]. Another important source of stochasticity

in gene expression is fluctuations in promoter activity, caused by stochastic association and disso-

ciation of transcription factors, chromatin remodeling events, and formation of stable pre-initiation

complexes [5,15,16,23,30]. In particular, it has been reported that perturbations to the architec-

ture of yeast and bacterial promoters, such as varying the strength of transcription factor binding

sites[17], the number and location of such binding sites [11,31], the presence of auxiliary operators

that mediate DNA looping [23], or the competition of activators and repressors for binding to the

same stretch of DNA associated with the promoter [32], may strongly affect the level of variability.

Our goal is to examine all of these different promoter architectures from a unifying perspective

provided by stochastic models of transcription leading to mRNA production. The logic here is

the same as in earlier work where we examined a host of different promoter architectures using

thermodynamic models of transcriptional regulation [33,34]. We now generalize those systematic

efforts to examine the same architectures, but now from the point of view of stochastic models.

These models allow us to assess the unique signature provided by a particular regulatory architecture

in terms of the cell-to-cell variability it produces.

First, we investigate in general theoretical terms how the architecture of a promoter affects the
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level of cell-to-cell variability. The architecture of a promoter is defined by the collection of tran-

scription factor binding sites (also known as operators), their number, position within the promoter,

their strength, as well as what kind of transcription factors bind them (repressors, activators or

both), and how those transcription factors bind to the operators (independently, cooperatively, si-

multaneously). We apply the master-equation model of stochastic gene expression [35,36, 37,38] to

increasingly complex promoter architectures [30], and compute the moments of the mRNA and pro-

tein distributions expected for these promoters. Our results provide an expectation for how different

architectural elements affect cell-to-cell variability in gene expression.

The second point of this paper is to make use of stochastic kinetic models of gene regulation to

put forth in vivo tests of the molecular mechanisms of gene regulation by transcription factors that

have been proposed as a result of in vitro biochemical experiments. The idea of using spontaneous

fluctuations in gene expression to infer properties of gene regulatory circuits is an area of growing

interest, given its non-invasive nature and its potential to reveal regulatory mechanisms in vivo.

Different theoretical methods have recently been proposed, which could be employed to distinguish

between different modes (e.g. AND/OR) of combinatorial gene regulation, and to rule out candidate

regulatory circuits [27,39,40] based solely on properties of noise in gene expression, such as the

autocorrelation function of the fluctuations [27] or the three-point steady state correlations between

multiple inputs and outputs [39,40].

Here, we make experimentally testable predictions about the level of cell-to-cell variability in

gene expression expected for different bacterial promoters, based on the physical kinetic models of

gene regulation that are believed to describe these promoters in vivo. In particular, we focus on how

varying the different parameters (i.e., mutating operators to make them stronger or weaker, varying

the intracellular concentration of transcription factors, etc.) should affect the level of variability.

This way, cell-to-cell variability in gene expression is used as a tool for testing kinetic models of

transcription factor-mediated regulation of gene expression in vivo.

The remainder of the paper is organized as follows: First we describe the theoretical formalism

we use to determine analytic expressions for the moments of the probability distribution for both

mRNA and protein abundances per cell. Next, we examine how the architecture of the promoter

affects cell-to-cell variability in gene expression. We focus on simple and cooperative repression,

simple and cooperative activation, and transcriptional regulation by distal operators mediated by

DNA looping. We investigate how noise in gene expression caused by promoter activation differs

from repression, how operator multiplicity affects noise in gene expression, the effect of cooperative

binding of transcription factors, as well as DNA looping. For each one of these architectures we

present a prediction of cell-to-cell variability in gene expression for a bacterial promoter that has

been well characterized experimentally in terms of their mean expression values. These predictions

suggest a new round of experiments to test the current mechanistic models of gene regulation at
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these promoters.

5.2 Methods

In order to investigate how promoter architecture affects cell-to- cell variability in gene expression,

we use a model based on classical chemical kinetics (illustrated in Figure 5.1A), in which a promoter

containing multiple operators may exist in as many biochemical states as allowed by the combinato-

rial binding of transcription factors to its operators. The promoter transitions stochastically between

the different states as transcription factors bind and fall off. Synthesis of mRNA is assumed to occur

stochastically at a constant rate that is different for each promoter state. Further, transcripts are

assumed to be degraded at a constant rate per molecule.

This kind of model is the kinetic counterpart of the so-called thermodynamic model of tran-

scriptional regulation [41], and it is the standard framework for interpreting the kinetics of gene

regulation in biochemical experiments, both in vivo [2,23] and in vitro [42,43]. This class of kinetic

models can easily accommodate stochastic effects, and it leads to a master equation from which the

probability distribution of mRNA and protein copy number per cell can be computed. It is often

referred to as the standard model of stochastic gene expression [38,44,45]. The degree of cell-to-cell

variability in gene expression can be quantified by the stationary variance, defined as the ratio of the

standard deviation and the mean of the probability distribution of mRNA or protein copy number

per cell [35], or else by the Fano factor, the ratio between the variance and the mean. These two

are the two most common metrics of noise in gene expression, and the relation between them will

be discussed later.

In order to compute the noise strength from this class of models, we follow the same approach as

in a previous article [30], which extends a master equation derived elsewhere [36,37,46] to promoters

with arbitrary combinatorial complexity. The complexity refers to the existence of a number of

discrete promoter states corresponding to different arrangements of transcription factors on the

promoter DNA. Promoter dynamics are described by trajectories involving stochastic transitions

between promoter states which are induced by the binding and unbinding of transcription factors.

A detailed derivation of the equations which describe promoter dynamics can be found in the Text

S1, but the essentials are described below.

There are only two stochastic variables in the model: the number of mRNA transcripts per cell,

which is represented by the unitless state variable m, and the state of the promoter, which is defined

by the pattern of transcription factors bound to their operator sites. The promoter state is described

by a discrete and finite stochastic variable (s) (for an example, see Figure 5.1A). The example in

Figure 5.1A illustrates the simplest model of transcriptional activation by a transcription factor.

When the activator is not bound (state 1), mRNA is synthesized at rate r1. When the activator is
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Figure 5.1: Two-state promoter. (A) Simple two-state bacterial promoter undergoing stochastic
activation by a transcriptional activator binding to a single operator site. The rates of activator
association and dissociation are given by kon

A and koff
A , respectively and the rates of mRNA production

for the basal and active states are r1 and r2 respectively. The mRNA degradation rate is assumed
to be constant for each molecule, and is given by the parameter γ. (B) List of all possible stochastic
transitions affecting either the copy number of mRNA (m) or the state of the promoter (s) and their
respective statistical weights. State 1 has the operator free. State 2 is the activator bound state.
The weights represent the probability that each change of state will occur during a time increment
∆t. The master equation is constructed based on these rules.
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bound to the promoter (state 2), mRNA is synthesized at the higher rate r2. The promoter switches

stochastically from state 1 to state 2 with rate kon
A , and from state 2 to state 1 with rate koff

A . Each

mRNA molecule is degraded with rate γ.

The time evolution for the joint probability of having the promoter in states 1 or 2, with m

mRNAs in the cell (which we write as p(1,m) and p(2,m), respectively), is given by a master

equation, which we can build by listing all possible reactions that lead to a change in cellular state,

either by changing m or by changing s (Figure 5.1b). The master equation takes the form:

d

dt
p(1,m) = −kon

A p(1,m) + koff
A p(2,m)− r1p(1,m)− γmp(1,m)+

r1p(1,m− 1) + γ(m+ 1)p(1,m+ 1), (5.1)

d

dt
p(2,m) = kon

A p(1,m)− koff
A p(2,m)− r2p(2,m)− γmp(2,m)+

r2p(2,m− 1) + γ(m+ 1)p(2,m+ 1). (5.2)

Inspecting this system of equations, we notice that by defining the vector:

~p(m) =

p(1,m)

p(2,m)

 , (5.3)

and the matrices

K̂ =

−kon
A koff

A

kon
A −koff

A

 , (5.4)

R̂ =

r1 0

0 r2

 , (5.5)

and

Î =

1 0

0 1

 , (5.6)

we can rewrite the system of equations 5.1 and 5.2 in matrix form.

d

dt
~p(m) =

[
K̂ − R̂−mγÎ

]
~p(m) + R̂~p(m− 1) + (m+ 1)γÎ~p(m+ 1). (5.7)

This has several advantages, but the most important one is that the matrix approach reduces

the task of obtaining analytical expressions for the moments of the steady state mRNA distribution

for an arbitrarily complex promoter to solving two simple linear matrix equations (more details are

given in the Text S1).

The matrices appearing in equation 5.7 all have simple and intuitive interpretations. The matrix

K̂ describes the stochastic transitions between promoter states: the off-diagonal elements of the
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matrix K̂ij are the rates of making transitions from promoter state j to promoter state i. The

diagonal elements of the matrix K̂ij are negative, and they represent the net probability flux out of

state j: K̂ij =
∑
i 6=j −K̂ij . The matrix R̂ is a diagonal matrix whose element R̂jj gives the rate of

transcription initiation when the promoter is in state j. Finally, the matrix Î is the identity matrix.

An example of matrices K̂ and R̂ is presented pictorially in Figure 1 in Text S1. It is straightfor-

ward to see that even though equation 5.7 has been derived for a two-state promoter, it also applies

to any other promoter architecture. What will change for different architectures are the dimensions

of the matrices and vectors (these are given by the number of promoter states) as well as the values

of the rate constants that make up the matrix elements of the various matrices.

An important limit of the master equation, which is often attained experimentally, is the steady

state limit, where the probability distribution for mRNA number per cell does not change with

time. Although the time dependence of the moments of the mRNA distribution can be easily

computed from our model, for the sake of simplicity and because most experimental studies have

been performed on cells in steady state, we focus on this limit. As shown in Text S1, analytic

expressions for the first two moments of the steady state mRNA probability distribution are found

by multiplying both sides of equation 5.7 by m and m2 respectively, and then summing m from zero

to infinity. After some algebra (elaborated in an earlier paper and in Text S1), we find that the first

two moments can be written as:

〈m〉 =
~r · ~m(0)

γ
, (5.8)

〈m2〉 = 〈m〉+
~r · ~m(1)

γ
. (5.9)

The vector ~r contains the ordered list of rates of transcription initiation for each promoter state.

For the two-state promoter shown in Figure 5.1, ~r = (r1, r2). The vector ~m(0) contains the steady

state probabilities for finding the promoter in each one of the possible promoter states, while ~m(1)

is the steady-state mean mRNA number in each promoter state. The vector ~m(0) is the solution to

the matrix equation

K̂ ~m(0) = 0, (5.10)

while the vector ~m(1) is obtained from

(K̂ − γÎ)~m(1) + R̂~m(0) = 0. (5.11)

Figure 5.1 illustrates the following algorithm for computing the intrinsic variability of mRNA

number for promoter of arbitrarily complex architecture:

1. Make a list of all possible promoter states and their kinetic transitions (Figure 5.1B)

2. Construct the matrices K̂ and R̂, and the vector ~r (Figure 1 in Text S1).
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3. Solve equations 5.10-5.11 to obtain ~m(0) and ~m(1).

4. Plug solutions of 5.10-5.11 into equations 5.8-5.9 to obtain the moments.

The normalized variance of the mRNA distribution in steady state is then computed from the

equation

η2 =
Var(m)

〈m〉2
=
〈m2〉 − 〈m〉2

〈m〉2
=

1

〈m〉
+

1

〈m〉2

(
~r · ~m(1)

γ
− 〈m〉2

)
. (5.12)

Equation 5.12 reveals that, regardless of the specific details characterizing promoter architecture,

the intrinsic noise is always the sum of two components, and it can be written as

η2 =
1

〈m〉
+ η2

promoter. (5.13)

The first component is due to spontaneous stochastic production and degradation of single mRNA

molecules, is always equal to the Poissonian expectation of 1/〈m〉, and is independent of the archi-

tecture of the promoter. For an unregulated promoter that is always active and does not switch

between multiple states (or does so very fast compared to the rates of transcription and mRNA

degradation), the mRNA distribution is well described by a Poisson distribution [45,47], and the

normalized variance is equal to 1/〈m〉. The second component (“promoter noise”) results from pro-

moter state fluctuations, and captures the effect of the promoters architecture on the cell-to-cell

variability in mRNA:

η2
promoter =

1

〈m〉2

(
~r · ~m(1)

γ
− 〈m〉2

)
. (5.14)

In order to quantify the effect of the promoter architecture in the level of cell-to-cell variability

in mRNA expression, we define the deviation in the normalized variance caused by gene regulation

relative to the baseline Poisson noise for the same mean (see Figure 2):

Fold-change mRNA noise =
η2

η2
Poisson

(5.15)

=
Var(m)/〈m〉2

1/〈m〉
=

Var(m)

〈m〉
. (5.16)

Therefore, the deviation in the normalized variance caused by gene regulation is equal to the ratio

between the variance and the mean. This parameter is also known as the Fano factor. Thus, for

any given promoter architecture, the Fano factor quantitatively characterizes how large the mRNA

noise is relative to that of a Poisson distribution of the same mean (i.e. how much the noise for the

regulated promoter elevates with respect to the Poisson noise). This is the parameter that we will

use throughout the paper as the metric of cell-to-cell variability in gene expression.
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5.2.1 Promoter noise and variability of mRNA and protein numbers

For proteins, the picture is only slightly more complicated. As shown in the Text S1, in the limit

where the lifetime of mRNA is much shorter than that of the protein it encodes for (a limit that is

often fulfilled [30]), the noise strength of the probability distribution of proteins per cell takes the

following form (where we define n as a state variable that represents the copy number of proteins

per cell):
Var(n)

〈n〉2
=
〈n2〉 − 〈n〉2

〈n〉2
=

1 + b

〈n〉
+

1

〈n〉2

(
b
~r · ~n(1)

δ
− 〈n〉2

)
, (5.17)

where δ stands for the protein degradation rate, and the constant b is equal to the protein burst size

(the average number of proteins produced by one mRNA molecule). The mean protein per cell is

given by

〈n〉 = b
~r · ~m(0)

δ
, (5.18)

and the vector ~n(1) is the solution to the algebraic equation:

(K̂ − δÎ)~n(1) + bR̂~m(0) = 0. (5.19)

The reader is referred to the Text S1 for a detailed derivation and interpretation of these equa-

tions. In the previous section we have shown that the noise for proteins and mRNA take very similar

analytical forms. Indeed, if we define ~rn = b~r and R̂n = bR̂ as the vector and matrix containing the

average rates of protein synthesis for each promoter state, it is straightforward to see that equations

5.11 and 5.19 are mathematically equivalent, with the only difference being that in equation 5.19,

the matrix R̂n represents the rates of protein synthesis, so all the rates of transcription are multiplied

by the translation burst size b. Therefore, the vectors ~m(0) and ~m(1) are only going to differ in the

prefactor b multiplying all the different transcription rates. We conclude that the promoter contri-

bution to the noise takes the exact same analytical form both for proteins and for mRNA, with the

only other quantitative difference being the different rates of degradation for proteins and mRNA.

Therefore, promoter architecture has the same qualitative effect on cell-to-cell variability in mRNA

and protein numbers. All the conclusions about the effect of promoter architecture on cell-to-cell

variability in mRNA expression are also valid for proteins, even though quantitative differences do

generally exist. For the sake of simplicity we focus on mRNA noise for the remainder of the paper.
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Figure 5.2: Simple repression architecture. (Caption continues on next page.)
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Figure 5.2: (A) Time traces for promoter activity, mRNA and protein copy number are shown
for both the weak operator and the strong operator. The mRNA histograms are also shown. The
weaker operator with a faster repressor dissociation rate leads to small promoter noise and an mRNA
probability distribution resembling a Poisson distribution (shown by the blue-bar histogram), in
which most cells express mRNA near the population average. In contrast, the stronger operator
with a slower repressor dissociation rate leads to larger promoter noise and strongly non-Poissonian
mRNA statistics. (B) Kinetic mechanism of repression for an architecture involving a single repressor
binding site. The repressor turns off the gene when it binds to the promoter (with rate kon

R ), and
transcription occurs at a constant rate r when the repressor falls off (with rate koff

R ). (C) Normalized
variance as a function of the fold-change in mean mRNA copy number. The parameters used are
drawn from Table 1. The value of koff

R = 0.0023s−1 from Table 1 corresponds to the in vitro
dissociation constant of the Lac repressor from the Oid operator (black). The results for an off-rate
10 times higher are also plotted (red). As a reference for the size of the fluctuations, we show the
normalized variance for a Poisson promoter. (D) Fano factor for two promoters bearing the same
off-rates as in (B). Inset. Prediction for the Fano factor for the ∆O3 ∆O2 PlacUV5 promoter, a variant
of the PlacUV5 promoter for which the two auxiliary operators have been deleted. The fold-change
in mRNA noise is plotted as a function of the fold-change in mean mRNA copy number for mutants
of the promoter that replace O1 for Oid, O2 or O3. The parameters are taken from Table 1 and
[33]. Lifetimes of the operator-repressor complex are 7 min for Oid, 2.4 min for O1, 11s for O2 and
0.47 s for O3. (E) Fold-change in protein noise as a function of the fold-change in mean expression.
As expected, the effect of operator strength is the same as observed for mRNA noise.

5.2.2 Parameters and assumptions

In order to evaluate the equations in our model, we use parameters that are consistent with experi-

mental measurements of rates and equilibrium constants in vivo and in vitro, which we summarize

in Table 1. Although these values correspond to specific examples of E. coli promoters, like the Plac

or the PRM promoter, we extend their reach by using them as “typical” parameters characteristic

of bacterial promoters, the idea being that we are trying to demonstrate the classes of effects that

can be expected, rather than dissecting in detail any particular promoter. The rate of association

for transcription factors to operators in vivo is assumed to be the same as the recently measured

value for the Lac repressor, which is close to the diffusion limited rate [48]. In order to test whether

the particular selection of parameters in Table 1 is biasing our results, we have also done several

controls (see Figures 24 in Text S1) in which the kinetic parameters were randomly sampled. We

found that the conclusions reached for the set of parameters in Table 1 are valid for other parameter

sets as well.

Operator strength reflects how tightly operators bind their transcription factors, and it is quan-

titatively characterized by the equilibrium dissociation constant KO−TF . The dissociation constant

has units of concentration and is equal to the concentration of free transcription factor at which

the probability for the operator to be occupied is one half. KO−TF is related to the association

and dissociation rates by KO−TF = koff/k
0
on, where koff is the rate (i.e., the probability per unit

time) at which a transcription factor dissociates from the promoter, and k0
on is a second order rate

constant, which represents the association rate per unit of concentration of transcription factors,

i.e., kon = k0
on[NTF ]. Note that in the last formula, kon, which has units of s−1, is written as a



143

Table 5.1: Kinetic parameters used to the make the quantitative estimates in the text and plots in
the figures.

Kinetic rate Symbol Value Reference
Unregulated promoter transcription rate r 0.33 s−1 [99]
Repressor and activator association rates k0

R, k0
A 0.0027 (s nM)−1 [2]

Repressor and activator dissociation rates koff
R , koff

A 0.0023 s−1 [42]
mRNA decay rate γ 0.011 s−1 [10]
Ratio between transcription rates due to activation f = r1/r2 11 [50]
Cooperativity in repression Ωrepression 0.013 [50]
Cooperativity in activation Ωactivation 0.1 [33]
Looping J-factor [J ] 660 nM [33]
Protein translation burst size b 31.2 proteins/mRNA [5]
Protein decay rate δ 0.00083 s−1 [99]

product of two quantities: [NTF ], which is the concentration (in units of (mol/liter)) of transcription

factors inside the cell, and k0
on, a second order rate constant that has units of (mol/liter)

−1
s−1. For

simplicity, we assume that the binding reaction is diffusion limited; namely, k0
on is already close

to its maximum possible value, so the only parameter that can differ from operator to operator is

the dissociation rate: strong operators have slow dissociation rates, and weak operators have large

dissociation rates.

Throughout this paper, we also make the assumption that the mean expression level is controlled

by varying the intracellular concentration of transcription factors, a scenario that is very common

experimentally [49,50,51]. We also assume that changing the intracellular concentration of tran-

scription factors only affects the association rate of transcription factors to the operators, but the

dissociation rate and the rates of transcription at each promoter state are not affected. In other

words, koff is a constant parameter for each operator, and it is not changed when we change the

mean by titrating the intracellular repressor level. All of these general assumptions need to be revis-

ited when studying a specific gene-regulatory system. Here our focus is on illustrating the general

principles associated with different promoter architectures typical of those found in prokaryotes.

5.2.3 Simulations

To generate mRNA time traces, we applied the Gillespie algorithm [52] to the master equation

described in the text. A single time step of the simulation is performed as follows: one of the set of

possible trajectories is chosen according to its relative weight, and the state of the system is updated

appropriately. At the same time, the time elapsed since the last step is chosen from an exponential

distribution, whose rate parameter equals the sum of rate parameters of all possible trajectories.

This process is repeated iteratively to generate trajectories that exactly reflect dynamics of the

underlying master equation. For the figures, simulation lengths were set long enough for the system

to reach steady state and for several promoter state transitions to occur.

To generate the probability distributions, it is convenient to reformulate the entire system of
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mRNA master equations in terms of a single matrix equation. To do this, we first define a vector

~P =



p(1, 0)

p(2, 0)
...

p(N, 0)

p(1, 1)
...

p(N, 1)

p(1, 2)
...

p(N, 2)
...



=


~p(0)

~p(1)

~p(2)
...

 , (5.20)

where p(i,m) is the probability of having m mRNAs and being in the ith promoter state. Then the

master equation for time evolution of this probability vector is

d~P

dt
=



K̂ − R̂ γÎ 0 · · ·

R̂ K̂ − (R̂+ γÎ) 2γÎ · · ·

0 R̂ K̂ − (R̂+ 2γÎ) · · ·

0 0 R̂ · · ·
...

...
...

. . .





~p(0)

~p(1)

~p(2)

~p(3)
...


, (5.21)

where each element of the matrix is itself an N by N matrix as described in the text. Then finding the

steady-state distribution ~Pss is equivalent to finding the eigenvector of the above matrix associated

with eigenvalue 0. To perform this calculation numerically, one must first choose an upper bound on

mRNA copy number in order to work with finite matrices. In this work, we chose an upper bound

six standard deviations above mean mRNA copy number as an initial guess, and then modified

this bound if necessary. Computations were performed using the SciPy (Scientific Python) software

package.

5.3 Results

5.3.1 Promoters with a single repressor binding site

We first investigate a promoter architecture consisting of a single repressor binding site, and examine

how operator strength affects intrinsic variability in gene expression. Although this particular mode
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Figure 5.3: Dual repression architec-
ture. (A) Kinetic mechanism of repression
for a dual-repression architecture. The pa-
rameters koff

R and kon
R are the rates of repres-

sor dissociation and association to the op-
erators, and Ω is a parameter reflecting the
effect of cooperative binding on the dissoci-
ation rate. For independent binding, Ω = 1
and for cooperative binding Ω = 0.013 (see
Table 1). (B) Fold-change in the mRNA
noise caused by gene regulation for indepen-
dent (red) and cooperative (black) repression
as a function of the mean mRNA copy num-
ber. Inset: Prediction for a variant of the
λ PR promoter where the upstream opera-
tors OL1, OL2, and OL3 are deleted. The
promoter mRNA noise is plotted as a func-
tion of the mean mRNA number for both
wild-type cI repressor (blue line) and a re-
pressor mutant (Y210H) that abolishes coop-
erativity (red line). Parameters taken from
[43,97]. The lifetime of the OR1-cI complex
is 4 min. Lifetime of OR2-cI complex is 9.5s.
(C) mRNA distribution for the same param-
eters used in (B).
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of gene regulation has been well studied theoretically before [1,16,36,37,45], it is a useful starting

point for illustrating the utility of this class of models. Within this class of models, when the repressor

is bound to the operator, it interferes with transcription initiation and transcription does not occur.

When the repressor dissociates and the operator is free, RNAP can bind and initiate transcription

at a constant rate r. The probability per unit time that a bound repressor dissociates is koff
R , and

the probability per unit time that a free repressor binds the empty operator is kon
R = k0

on[NR], where

k0
on is the second-order association constant and [NR] is the intracellular repressor concentration.

The rate of mRNA degradation per molecule is γ. This mechanism is illustrated in Figure 5.2B.

We compute the mean and the Fano factor for this architecture following the algorithm described

in Text S1. The kinetic rate and transcription rate matrices K̂ and R̂ are shown in Table S1 in Text

S1. For this simple architecture, the mean of the mRNA probability distribution and the normalized

variance take simple analytical forms:

〈m〉 =
r

γ

koff
R

koff
R + kon

R

=
r

γ

1

1 + kon
R /koff

R

, (5.22)

η2 =
1

〈m〉
+
koff

R

kon
R

γ

1 + koff
R + kon

R

. (5.23)

Using the relationship between kon
R and the intracellular concentration of repressor, we can write

the mean as:

〈m〉 =
r

γ

1

1 + k0
on[NR]/koff

R

= 〈m〉max
1

1 + [NR]/KOR
. (5.24)

Here we have defined the equilibrium dissociation constant between the repressor and the operator

as KOR = koff
R /k0

on. It is interesting to note that equation 5.24 could have been derived using the

thermodynamic model approach [33,34,41,53]. In particular we see that this expression is equal to

the product of the maximal activity in the absence of repressor 〈m〉max = r/γ, and the so-called

fold-change in gene expression [34]:

fold-change = (1 + kon
R /koff

R )−1 = (1 + [NR]/KOR)−1. (5.25)

The fold-change is defined as the ratio of the level of expression in the presence of the transcription

factor of interest, and the level of expression in the absence of the transcription factor.

The Fano factor for the mRNA distribution can be computed from equation 5.16, and we obtain:

Fano = 1 +

(
kon

R

koff
R + kon

R

)
r

γ + koff
R + kon

R

, (5.26)

which is also shown as the first entry of Table S2 in Text S1. In many experiments [4,15,31,50], the

concentration of repressor [NR] (and therefore the association rate kon
R = k0

on[NR]) can be varied

by either expressing the repressor from an inducible promoter, or by adding an inducer that binds
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Figure 5.4: Repression by DNA looping. (A) Kinetic mechanism of repression. koff
R and kon

R

are the rates of repressor dissociation and association. The rate of loop formation is kloop = [J ]k0
R,

where [J ] can be thought of as the local concentration of repressor in the vicinity of one operator
when it is bound to the other operator. The rate of dissociation of the operator-repressor complex in
the looped conformation is given by kunloop = ckoff

R . The parameter c captures the rate of repressor
dissociation in the looped state relative to the rate of dissociation in a non-looped state. (B) Effect
of DNA looping on cell-to-cell variability. The Fano factor is plotted as a function of the fold-change
in the mean expression level, in the absence (blue) and presence (black) of the auxiliary operator,
and assuming that dissociation of the operator from Om is the same in the looped and the unlooped
state (c = 1). The presence of the auxiliary operator, which enables repression by DNA looping,
increases the cell-to-cell variability. The regions over which the state with two repressors bound, the
state with one repressor bound, or the looped DNA state are dominant are indicated by the shading
in the background. The noise is larger at intermediate repression levels, where only one repressor
is found bound to the promoter region, simultaneously occupying the auxiliary and main operators
through DNA looping. (Caption continues on next page.)
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Figure 5.4: (Caption continued from previous page.) The rate of DNA loop formation is
kloop(660 nM)k0

R [33]. We also show the effect of DNA looping in the case where the kinetics of
dissociation from the looped state are 100 times faster than the kinetics of dissociation from the
unlooped state: c = kunloop/k

off
R = 100 (red). In this limit, the presence of the auxiliary operator

leads to less gene expression noise. (C) Prediction for a library of PlacUV5 promoter variants, har-
boring an O2 deletion, and with the position of O3 moved upstream by multiples of 11 bp while
keeping its identity (red), or replaced by the operator by Oid (black). Parameters are taken from
the analysis in [33] of the data in [98]. We assume a concentration of 50 Lac repressor tetramers
per cell. The association rate of the tetrameric repressor to the operators is taken from Table 1.
The lifetimes of the operator-repressor complex are given in the caption to Figure 5.2. The de-
pendence of the rate of DNA looping on the inter-operator distance is taken from [33], and equal
to: kloop = kon

R × exp
[
− u
D − v log(D) + wD + z

]
, where u = 140.6, v = 2.52, w = 0.0014, and

z = 19.9. Note that the Fano factor is not plotted as a function of the mean, but as a function of
the inter-operator distance D. In this case, as we change D, we vary both the mean and the Fano
factor.

directly to the repressor rendering it incapable of binding specifically to the operators in the promoter

region. When such an operation is performed, the only parameter that is varied is typically kon
R ,

and all other kinetic rates are constant. The Fano factor can thus be rewritten as a function of the

mean mRNA, and we obtain:

Fano = 1 + 〈m〉
(

1− 〈m〉/〈m〉max

koff
R /γ + 〈m〉/〈m〉max

)
. (5.27)

Therefore, for any given value of the mean, the Fano factor depends only on two parameters:

the maximal mRNA or protein expression per cell, and a parameter that reflects the strength of

binding between the repressor and the operator: koff
R /γ. Equations 5.24 and 5.27 reveal that changes

in the mean due to repressor titration affect the noise as well as the mean. Since neither the re-

pressor dissociation rate koff
R nor the mRNA degradation rates are affected by the concentration of

repressor, koff
R /γ is a constant parameter that will determine how large the cell-to-cell variability

is: the Fano factor is maximal for promoter with very strong operators (koff
R << 1), and it goes to

one (i.e., the distribution tends to a Poisson distribution) when the operator is very weak and the

rate of dissociation extremely fast (koff
R >> 1). In the latter limit of fast promoter kinetics, the fast

fluctuations in promoter occupancy are filtered by the long lifetime of mRNA. Effectively, mRNA

degradation acts as a low-pass frequency filter [54,55], and fast fluctuations in promoter occupancy

are not propagated into mRNA fluctuations. Therefore, promoters with strong operators are ex-

pected to be noisier than promoters with weak operators [56]. From this discussion it should also be

clear that the mRNA degradation rate critically affects cell-to-cell variability. Any processes that

tend to accelerate degradation will tend to increase noise, and mRNA stabilization (i.e., protection

of the transcript by RNA binding proteins) leads to reduction of variability. However, the focus of

this article is on promoter architecture and transcriptional regulation. Therefore, we do not consider

regulation of transcription by mRNA degradation, and assume that all the promoters transcribe the
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same mRNA as is often the case in experimental studies.

The effect of operator strength on the output of transcription and translation is illustrated in

Figure 5.2A, where we show results from a stochastic simulation of the model depicted in Figure

5.2B, for the case of a weak and a strong operator. The simulation yields trajectories in time for the

promoter state, the mRNA, and protein number, as well as the steady state distribution of mRNA

number. Concentrations of repressor in the simulations were chosen so that the mean expression

level was equal for the two different promoter architectures. As expected from the general arguments

presented above, we clearly see that the level of variability is smaller for the weak operator than for

the strong operator, due to faster promoter switching leading to smaller mRNA fluctuations and a

more Poisson-like mRNA distribution (Figure 5.2A, weak promoter). Slow dissociation from a strong

operator, on the other hand, causes slow promoter state fluctuations and a highly non-Poissonian

mRNA distribution, with few cells near the mean expression level (see Figure 5.2A, strong promoter).

In order to show that the effect of operator strength on the cell-to-cell variability is general and

does not depend on the particular set of parameters chosen in the simulation, in figures 2C and 2D,

we show the normalized variance and the Fano factor as a function of the fold-change in the mean

mRNA concentration for a strong operator whose dissociation rate is koff
R = 0.0027s−1 (a value that

is representative of well-characterized repressor-operator interactions such as Lac repressor with the

lac Oid binding site, or the lambda phage cI dimer with OR1), and for a single weak operator whose

dissociation rate koff
R is 10 times larger.

The Fano factor has a characteristic shape whereby it takes values approaching one at low and

high transcription levels with a peak at intermediate values. The reason for this shape is that

for very low transcription levels the promoter is nearly always inactive, firing only very rarely. In

this limit successive transcription events become uncorrelated and the time in between them is

exponentially distributed, leading to a distribution of mRNA per cell that approaches a Poisson

distribution characterized by a Fano factor equal to one. In contrast, for very high transcription

levels the promoter is nearly always active, switching off very rarely and staying in the off state for

short times. In this limit, transcription events are again uncorrelated and exponentially distributed,

leading once again to a Poisson distribution of mRNA number. It is only for intermediate values of

the mean that the promoter is switching between a transcriptionally active and an inactive state.

This causes transcription to occur in bursts, and the mRNA distribution to deviate from Poisson,

leading to a Fano factor that is larger than one.

In Figure 5.2E we plot the fold-change in protein noise due to gene regulation for the simple

repression architecture. As expected, we find that the effect of operator strength in protein noise is

qualitatively identical to that which we found for mRNA. Since the same can be said of all the rest of

the architectures studied, we will limit the discussion to mRNA noise for the rest of the paper, with

the understanding that for the class of models considered here, all the conclusions about the effect
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of promoter architecture in cell-to-cell variability that are valid for mRNA, are true for intrinsic

protein noise as well.

In Figure 5.2, and throughout this paper, we plot the Fano factor as a function of transcription

level, which is characterized by the fold-change in gene expression. The fold-change in gene expression

is defined as the mean mRNA number in the presence of the transcription factor, normalized by

the mean mRNA in the absence of the transcription factor. For architectures based on repression,

the fold-change in gene expression is always less than one, since the repressor reduces the level of

transcription. For example, a fold-change in gene expression of 0.1 means that in the presence of

repressor, the transcription level is 10% of the value it would have if the repressor concentration

dropped to zero. For the case of activators, the fold-change is always greater than one, since

activators raise the level of transcription.

An example of the single repressor-binding site architecture is a simplified version of the PlacUV5

promoter. Based on a simple kinetic model of repression, in which the Lac repressor competes with

RNAP for binding at the promoter, we can write down the K̂ and R̂ matrices and compute the cell-

to-cell variability in mRNA copy number. The matrices are presented in Table S1 in Text S1. Based

on our previous analysis, we know that stronger operators are expected to cause larger noise and

higher values of the Fano factor than weaker operators. Therefore, we expect that if we replace the

wild-type O1 operator by the 10 times weaker O2 operator, or by the ≈ 500 times weaker operator

O3, the fold-change in noise should go down. Using our best estimates and available measurements

for the kinetic parameters involved, we find that noise is indeed much larger for O1 than for O2,

and it is negligible for O3. This prediction is presented as an inset in Figure 5.2C.

5.3.2 Promoter with two repressor-binding operators

Dual repression occurs when promoters contain two or more repressor binding sites. Here, we con-

sider three different scenarios for architectures with two operators: 1) repressors bind independently

to the two operators, 2) repressors bind cooperatively to the two operators and 3) one single repres-

sor may be bound to the two operators simultaneously thereby looping the intervening DNA. At

the molecular level, cooperative repression is achieved by two weak operators that form long-lived

repressor-bound complexes when both operators are simultaneously occupied. Transcription factors

may stabilize each other either through direct protein- protein interactions [53], or through indirect

mechanisms mediated by alteration of DNA conformation [57].

5.3.2.1 Cooperative and independent repression.

The kinetic mechanisms of gene repression for both the cooperative and independent repressor

architectures are reproduced in Figure 5.3A. For simplicity, we assume that both sites are of equal

strength, so the rates of association and dissociation to both sites are equal. Cooperative binding is
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reflected in the fact that the rate of dissociation from the state where the two operators are occupied

is slower (by a factor Ω << 1) than the dissociation from a single operator. This parameter is related

to the cooperativity factor ω often found in thermodynamic models [54] by Ω = 1/ω. Typical values

of Ω are ∼ 10−3− 10−2 [50,53]. By way of contrast, independent binding is characterized by a value

of Ω = 1, which reflects the fact that the rate of dissociation from each operator is not affected by

the presence of the other operator.

The K̂ and R̂ matrices for these two architectures are defined in Table S1 in Text S1. Using these

matrices, we can compute the mean gene expression and the Fano factor for these two architectures

as a function of the concentrations of repressor. The resulting expression for the fold-change in

noise is shown as entry number 3 of Table S2 in Text S1. As shown in Figure 5.3B, the noise for

cooperative repression is substantially larger than for the independent repression architecture. The

high levels of intrinsic noise associated with cooperative repression can be understood intuitively in

terms of the kinetics of repressor-operator interactions. At low repressor concentration, the lifetime

of the states where only one repressor is bound to either one of the two operators can be shorter

than the time it takes for a second repressor to bind. This makes simultaneous binding of two

repressors to the two operators a rare event. However, when it occurs, the two repressors stabilize

each other, forming a very long-lived complex with the operator DNA. This mode of repression, with

rare but long-lived repression events, is intrinsically very noisy, since the promoter switches slowly

between active (unrepressed) and inactive (repressed) states, generating wide bimodal distributions

of mRNA (see Figure 3C). On the other hand, independent binding to two operators causes more

frequent transitions between repressed and unrepressed states, leading to lower levels of intrinsic noise

and long-tailed mRNA distributions (see Figure 5.3C). In order to illustrate these conclusions, we

have evaluated the model with a specific parameter set that is representative of this kind of bacterial

promoter, and plotted the Fano factor as a function of the mean, under the assumption that we vary

the mean by titrating the amount of repressor inside the cell. Furthermore, so as to demonstrate

that our conclusions are not dependent on choice of parameters, we have randomly generated 10,000

different sets of kinetic parameters and compared the Fano factor for cooperative and independent

binding. The result of this analysis is shown in Figure 2 in Text S1, where we demonstrate that

cooperative binding always results in larger cell-to-cell variability than non-cooperative binding.

As an example of the two repressor-binding sites architecture, we consider a simplified version

of the lytic phage λ PR promoter, which is controlled by the lysogenic repressor cI. The wild-type

PR promoter consists of three proximal repressor binding sites, OR1, OR2, and OR3, with different

affinities for the repressor (OR2 is about 25 times weaker than OR1) [58], and three distal operators

OL1, OL2, and OL3. For simplicity, we consider a simpler version of PR, harboring a deletion of the

three distal operators. In the absence these operators, the OR3 operator plays only a very minor

role in the repression of this promoter, and can thus be ignored [50,59]. We are then left with
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only OR1 and OR2. The cI repressor binds cooperatively to OR1 and OR2, and that cooperativity

is mediated by direct protein-protein interactions between cI bound at each operator [59]. Mutant

forms of cI that are cooperativity deficient (i.e., not able to bind cooperatively to the promoter)

have been designed [60]. In the inset in Figure 5.3B, we compare the normalized variance of the

mRNA distribution, both for wild-type cI repressor, and for a cooperativity deficient mutant such

as Y210H [60]. The cooperative repressor is predicted to have significantly larger promoter noise

than the cooperativity deficient mutant.

5.3.2.2 Simultaneous binding of one repressor to two operators: DNA looping.

Repression may also be enhanced by the presence of distant operators, which stabilize the repressed

state by allowing certain repressors to simultaneously bind to both distant and proximal operators,

forming a DNA loop [61,62]. The P lac promoter is a prominent example of this architecture. The

kinetic mechanism of repression characterizing this promoter architecture is presented in Figure

5.4A. The repressor only prevents transcription when it is bound to the main operator Om, but not

when it is only bound to the auxiliary operator Oa. DNA loop formation is characterized by a kinetic

rate kloop = k0
on[J ], where [J ], the looping J factor, can be thought of as the local concentration of

repressor in the vicinity of one operator when the repressor is bound to the other operator [33,34].

The rate of dissociation of the operator-repressor complex in the looped conformation is given by

kunloop = ckoff
R . The parameters [J ] and c have both been measured in vitro for the particular case

of the Lac repressor [42,63], and also estimated from in vivo data [33,64]. The K̂ and R̂ matrices for

this architecture are defined in Table S1 in Text S1. We use these matrices to compute the mean

and the noise strength according to equations 5.8-5.16, resulting in the fifth entry of Table S2 in

Text S1.

We first examine how the presence of the auxiliary operator affects the level of cell-to-cell vari-

ability in mRNA expression. In Figure 5.4B we compare the Fano factor in the absence of the

auxiliary operator with the Fano factor in the presence of the auxiliary operator, which is assumed

to be of the same strength as the main operator. We use parameters in Table 1, and we first assume

that the dissociation rate of the operator-repressor complex in the looped state is the same as the

dissociation rate in the unlooped state, so c = 1 and kunloop = koff
R . This assumption is supported

by single-molecule experiments in which the two operators are on the same side of the DNA double-

helix, separated by multiples of the helical period of DNA [42,63]. Under these conditions we find

that the presence of an auxiliary operator results in a larger Fano factor, in spite of the fact that

the auxiliary operator Oa does not stabilize the binding of the repressor to the main operator Om.

Interestingly, we find that the Fano factor is maximal at intermediate concentrations of repressor

for which only one repressor is bound to the promoter, making the simultaneous occupancy of the

auxiliary and main operators mediated by DNA looping possible. In contrast, the Fano factor is
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identical to that of the simple repression case if the concentration of repressor is so large that it

saturates both operators and looping never occurs. It had been previously hypothesized that DNA

looping might be a means to reduce noise in gene expression, due to rapid re-association kinetics

between Om and a repressor that is still bound to Oa, which may cause short and frequent bursts

of transcription [64,65]. Here, by applying a simple stochastic model of gene regulation, we show

that the presence of the auxiliary operator does not, by itself, decrease cell-to-cell variability. On

the contrary, it is expected to increase it. The reason for this increase is that the rate of dissociation

from the main operator is not made faster by DNA looping; instead the presence of the auxiliary

operator causes the repressor to rapidly rebind the main operator, extending the effective period of

time when the promoter is repressed.

Indeed, we find that it is only if the dissociation rate for a repressor in the looped state is faster

than in the unlooped state that the presence of the auxiliary operator might reduce the cell-to-cell

variability. To illustrate this limit, we have assumed a value of c = 100, so that kunloop = 100koff
R , and

find that the Fano factor goes down, below the expectation for the simple repression architecture. A

modest increase in the dissociation rate in the looped conformation has been reported in recent single-

molecule experiments for promoter architectures in which the two operators are out of phase (located

on different faces of the DNA) [42]. In order to verify the general validity of these conclusions, we

have randomly chosen 10,000 different sets of kinetic parameters and compared the Fano factor

for an architecture with an auxiliary operator and an architecture without the auxiliary operator

(simple repressor). In this analysis the operator strength, rate of transcription, rate of DNA loop

formation and mean mRNA are randomly sampled over up to four orders of magnitude. The results

are shown in Figure 4 in Text S1. In the limit where dissociation of the repressor from the operator

is not affected by DNA looping (c = 1), we find that the presence of the auxiliary operator leads

to an increase in noise (Figure 4A in Text S1). In contrast, we find that when this parameter c is

allowed to be larger than one, the presence of the auxiliary operator reduces cell-to-cell variability

in many instances (Figure 4B in Text S1).

An example of this type of architecture is a simplified variant of the PlacUV5 promoter, which

consists of one main operator and one auxiliary operator upstream from the promoter. The kinetic

mechanism of repression is believed to be identical to the one depicted in Figure 5.4A [23,42,63,64].

We can use the stochastic model of gene regulation described in the theory section to make precise

predictions that will test this kinetic model of gene regulation by DNA looping. We find that the

kinetic model predicts that, if we move the center of the auxiliary operator further upstream from

its wild-type location, in increments of distance given by the helical period of the DNA, such that

both operators stay in phase, the fold-change in noise should behave as represented in Figure 5.4C.

In order to model the effect of DNA looping, we assume that the dependence of the rate of DNA
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looping on the inter-operator distance D (in units of base-pairs) is given by ([33]):

kloop = kon
R × exp

[
− u
D
− v log(D) + wD + z

]
, (5.28)

where u = 140.6, v = 2.52, w = 0.0014, z = 19.9, and we assume the same concentration of

repressors (and therefore the same value for kon
R ) for all of the different loop lengths. Note that

in Figure 5.4C, the Fano factor is not plotted as a function of the mean, but as a function of the

inter-operator distance D. That is, we keep the number of repressors constant, and instead we alter

the distance between the two operators. In particular, as the operator distance is changed, both the

mean and the variance will change, and therefore a direct comparison between Figures 4C and 4B

cannot be made. If we had plotted the Fano factor as a function of the mean (as we do in Figure

4B) we would have seen that, for the same mean, the Fano factor for looping is always larger than

for a simple repression motif, consistent with Figure 5.4B.

5.3.3 Simple activation

Transcriptional activators bind to specific sites at the promoter from which they increase the rate

of transcription initiation by either direct contact with one or more RNAP subunits or indirectly

by modifying the conformation of DNA around the promoter [57]. The simplest example of an

activating promoter architecture consists of a single binding site for an activator in the vicinity

of the RNAP binding site. When the activator is not bound, transcription occurs at a low basal

rate. When the activator is bound, transcription occurs at a higher, activated rate. Stochastic

association and dissociation of the activator causes fluctuations in transcription rate which in turn

cause fluctuations in mRNA copy number.

This simple activation architecture is illustrated in Figure 5.1A. The K̂ and R̂ matrices for this

architecture are given in Table S1 in Text S1. Solving equations 5.8-5.11 for this particular case, we

find that the mean mRNA copy number per cell takes the form:

〈m〉 =
r2

γ

kon
A

kon
A + koff

A

+
r1

γ

koff
A

kon
A + koff

A

. (5.29)

The mean mRNA can be changed by adjusting the intracellular concentration of the activator.

The rate at which one of the activators binds to the promoter is proportional to the activator

concentration: kon
A = k0

on[NA]. Following the same argument as we used in the simple repression

case, the equilibrium dissociation constant for the activator-promoter interaction is given by KOA =

koff
A /k0

on. Finally, it is convenient to define the enhancement factor: the ratio between the rate of

transcription in the active and the basal states f = r2/r1. The mean mRNA can be written in terms
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Figure 5.5: Simple activation architec-
ture.(A) The Fano factor is plotted as a
function of the fold-change gene expression
(blue line). In red, we show the effect of re-
ducing operator strength (i.e., reducing the
lifetime of the operator-activator complex)
by a factor of 10. Just as we observed with
single repression, weak activator binding op-
erators generate less promoter noise than
strong activating operators. The parameters
used are shown in Table 1 with the exception
of r1 = 0.33s−1/f , where f is the enhance-
ment factor. Inset: Prediction for the activa-
tion of the P lac promoter. The fold-change
in noise is plotted as a function of the fold-
change in mean mRNA expression for both
the wild-type Plac (CRP dissociation time
= 8 min), represented by a blue line, and
a Plac promoter variant where the lac CRP
binding site has been replaced by the weaker
gal CRP binding site (dissociation time =
1 min). The enhancement factor was set to
f = 50 [33]. These parameters are taken
from [67] and [33]. The remaining parame-
ters are taken from Table 1. (B) Fano factor
as a function of 〈mRNA〉/〈mRNA〉max for a
repressor (black) and an activator (red) with
the same transcription factor affinity. The
transcription rate in the absence of activa-
tor is assumed to be zero. The transcription
rate in the fully activated case is equal to the
transcription rate of the repression construct
in the absence of repressor and is r = 0.33s−1

as specified by Table 1. For low expression
levels, 〈mRNA〉/〈mRNA〉max < 0.5, simple
activation is considerably noisier than sim-
ple repression. (C) The results of a stochas-
tic simulation for the simple activation and
simple repression architectures. We assume
identical dissociation rates for the activator
and repressor, and identical rates of tran-
scription in their respective active states. As
shown in (B), low concentrations of an acti-
vator result in few, but very productive tran-
scription events, whereas high concentrations
of a repressor lead to frequent but short lived
excursions into the active state.
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of these parameters as:

〈m〉 =
r1

γ

(
KOA

[NA] +KOA
+ f

[NA]

[NA] +KOA

)
. (5.30)

The Fano factor can be computed using equations 5.8-5.16 and is shown as entry 2 of Table S2 in

Text S1. We can rewrite the equation appearing in Table S2 in Text S1 by writing kon
A as a function

of the mean:

Fano = 1 + 〈m〉
(
f − 〈m〉/〈m〉basal

〈m〉/〈m〉basal

)2 〈m〉〈m〉basal − 1

(f − 〈m〉/〈m〉basal) +
koff

A

γ (f − 1)
. (5.31)

With these equations in hand, we explore how operator strength affects noise in gene expression

in the case of activation. Stronger operators bind to the activator more tightly than weak operators,

leading to longer residence times of the promoter in the active state.

In Figure 5.5A we plot the Fano factor as a function of the fold- change in mean expression for a

strong operator as well as a 10 times weaker operator. We have used the parameters in Table 1. Just

as we saw for the simple repression architecture, it is also true for the simple activation architecture

that stronger operators cause larger levels of noise for activators than weaker operators.

To get a sense of the differences between these two standard regulatory mechanisms, we compare

simple repression with simple activation. In Figure 5.5B, we plot the Fano factor as a function of

the mean for a repressor and an activator with identical dissociation rates. We assume that the

promoter switches between a transcription rate r = 0 in its inactive state (which happens when the

repressor is bound in the simple repression case, or the activator is not bound in the simple activation

case), and a rate equal to r = 0.33s−1 (see Table 1) in the active state (repressor not bound in the

simple repression case, activator bound in the simple activation case). As shown in Figure 5.5B,

at low expression levels the simple activation is considerably (> 20 times) noisier than the simple

repression promoter. At high expression levels both architectures yield very similar noise levels,

with the simple repression architecture being slightly noisier. A low level of gene expression may

be achieved either by low concentrations of an activator, or by high concentrations of a repressor.

Low concentrations of an activator will lead to rare activation events. High concentrations of a

repressor will lead to frequent but short lasting windows of time for which the promoter is available

for transcription. As a result, and as we illustrate in Figure 5.5C, the activation mechanism leads

to bursty mRNA expression whereas the repressor leads to Poissonian mRNA production. This

result suggests that in order to maintain a homogeneously low expression level, a repressive strategy

in which a high concentration of repressor ensures low expression levels may be more adequate

than a low activation strategy. We confirmed that this statement is true for other parameter sets

in addition to the particular choice used above. We randomly sampled the rates of activator and

repressor dissociation, as well as the rates of basal and maximum transcription. As shown in Figure 3

in Text S1, the statement that the simple activation architecture is noisier than the simple repression
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architecture at low expression (less than 10 mRNA/cell) levels is valid for a wide range of parameter

values, with over 99% of the conditions sampled leading to this conclusion.

An example of simple activation is the wild-type Plac promoter, which is activated by CRP when

complexed with cyclic AMP (cAMP). CRP is a ubiquitous transcription factor, and is involved in

the regulation of dozens of promoters, which contain CRP binding sites of different strengths [66]. In

the inset of Figure 5.5A we include CRP as an example of simple activation, and make predictions

for how changing the wild-type CRP binding site in the Plac promoter by the CRP binding site

of the Pgal (which is ≈ 8 times weaker [67]) should affect the Fano factor. As expected from our

analysis of this class of promoters, the noise goes down.

5.3.4 Dual activation: Independent and cooperative activation

Dual activation architectures have two operator binding sites. Simultaneous binding of two activators

to the two operators may lead to a larger promoter activity in different ways. For instance, in some

promoters each of the activators may independently contact the polymerase, recruiting it to the

promoter. As a result, the probability of finding RNAP bound at the promoter increases and so

does the rate of transcription [33,68]. In other instances, there is no increase in enhancement factor

when the two activators are bound. However, the first activator recruits the second one through

protein-protein or protein-DNA interactions, stabilizing the active state and increasing the fraction

of time that the promoter is active [59]. These two modes are not mutually exclusive, and some

promoters exhibit a combination of both mechanisms [69].

We first investigate the effect of dual activation in the limit where binding of the two transcription

factors is not cooperative. Assuming that activators bound at the two operators independently

recruit the polymerase, we compare this architecture with the simple activation architecture. The

mechanism of activation is depicted in Figure 5.6A, and matrices K̂ and R̂ are presented in Table

S1 in Text S1. For simplicity, we assume that both operators have the same strength, and both have

the same enhancement factor f = r2/r1 = r3/r1. When the two activators are bound, the total

enhancement factor is given by the product of the individual enhancement factors, which in this case

is f × f = r4/r1 [33]. All of the other relevant kinetic parameters are given in Table 1. The Fano

factor is plotted in Figure 5.6B. We find that compared to the single operator architecture, the second

operator increases the level of variability, even when binding to the operators is non-cooperative.

We then ask whether this is also true when the binding of activators is cooperative. We assume

a small cooperativity factor Ω = 0.1. Just as we found for repressors, cooperative binding of

activators generates larger cell-to-cell variability than independent binding, which in turn generates

larger cell-to-cell variability than simple activation. This is illustrated in the stochastic simulation

in Figure 5.6C. As expected the dual activation architectures are noisier than the simple activation,

characterized by rare but long-lived activation events that lead to large fluctuations in mRNA levels.
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In contrast, the simple activation architecture leads to more frequent but less intense activation

events.

Together with the results from the dual repressor mechanism, these results indicate that mul-

tiplicity in operator number may introduce significant intrinsic noise in gene expression. Multiple

repeats of operators commonly appear in eukaryotic promoters [1,70,71], but are often found in

prokaryotic promoters as well [59,68,72]. It is interesting to note that this prediction of the model

is in qualitative agreement with the findings of Raj et al [2] who report an increase in cell-to-cell

variability in mRNA when the number of activator binding sites was changed from one to seven.

An example of cooperative activation is the lysogenic phage λPRM promoter [59]. This promoter

contains three operators (OR1, OR2, and OR3) for the cI protein, which acts as an activator. When

OR2 is occupied, cI activates transcription. OR1 has no direct effect on the transcription rate, but it

helps recruit cI to OR2, since cI binds cooperatively to the two operators. Finally, OR3 binds cI very

weakly, but when it is occupied, PRM becomes repressed. There are variants of this promoter [50]

that harbor mutations in OR3 that make it unable to bind cI. In Figure 6D, we include one of these

variants, r1-PRM [51] as an example of dual activation, and we present a theoretical prediction for the

promoter noise as a function of the mean mRNA. We examine the role of cooperativity by comparing

the wild-type cI, with a cooperativity deficient mutant. We find that the cooperative activator

causes substantially larger cell-to-cell variability than the mutant, emphasizing our expectation that

cooperativity may cause substantial noise in gene expression in bacterial promoters such as PRM.

5.4 Discussion

The DNA sequence of a promoter encodes the binding sites for transcriptional regulators. In turn,

the collection of these regulatory sites, known as the architecture of the promoter, determines the

mechanism of gene regulation. The mechanism of gene regulation determines the transcriptional

response of a promoter to a specific input in the form of the concentration of one or more transcription

factors or inducer molecules. In recent years we have witnessed an increasing call for quantitative

models of gene regulation that can serve as a conceptual framework for reflecting on the explosion

of recent quantitative data, testing hypotheses, and proposing new rounds of experiments [34,73,74].

Much of this data has come from bulk transcription experiments with large numbers of cells, in which

the average transcriptional response from a population of cells (typically in the form of the level of

expression of a reporter protein) was measured as a function of the concentration of a transcription

factor or inducer molecule [50,75]. Thermodynamic models [34,41,53] of gene regulation are a general

framework for modeling gene regulation and dealing with this kind of bulk transcriptional regulation

experiments This class of models has proven to be very successful at predicting gene expression

patterns from the promoter architecture encoded in the DNA sequence [49,7377]. However, a new
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Figure 5.6: Dual activation architecture. (A) Kinetic mechanism of dual activation. The
parameters koff

A and kon
A are the rates of activator dissociation and association, and Ω is a parameter

reflecting the effect cooperative binding the dissociation rate. (B) Fano factor as a function of the
mean mRNA for independent (Ω = 1, black), cooperative (Ω = 0.1, red), and for simple activation
(blue). The parameters are taken from Table 1 and r1 = 0.33 s−1/f , r2 = f × r1, r3 = f × r1, and
r4 = f2×r1; f is the enhancement factor. (C) A stochastic simulation shows the effect of independent
and cooperative binding in creating a sustained state of high promoter activity, resulting in high
levels of mRNA in the active state and large cell-to-cell variability. (D) Prediction for the r1-
PRM promoter (a PRM promoter variant that does not exhibit OR3 mediated repression [51]). This
promoter is activated by cI, which binds cooperatively to OR1 and OR2. The prediction is shown
for wild-type cI (Ω = 0.013) and for a cooperativity deficient mutant (Y210H, Ω = 1). Parameters
are taken from [33,43,58,97]. The lifetime of OR1-cI complex is 4 min. Lifetime of OR2-cI complex
is 9.5 s.
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generation of experiments now provides information about gene expression at the level of single-

cells, with single-molecule resolution [2,4,5,6,9,10,23,31,47,51]. These experiments provide much

richer information than just how the mean expression changes as a function of an input signal:

they tell us how that response is spread among the population of cells, distinguishing homogeneous

responses, in which all cells express the same amount of proteins or mRNA for the same input,

from heterogeneous responses in which some cells achieve very high expression levels while others

maintain low expression. Thermodynamic models are unable to explain the single-cell statistics of

gene expression, and therefore are an incomplete framework for modeling gene regulation at the

single-cell level.

A class of stochastic kinetic models have been formulated that make it possible to calculate

either the probability distribution of mRNA, or proteins per cell, or its moments, for simple models

of gene regulation involving one active and one inactive promoter state [36,37,45,78]. Recently,

we have extended that formalism to account for any number of promoter states [30], allowing us

to model any promoter architecture within the same mathematical framework. Armed with this

model, we can now ask how promoter architecture affects not only the response function, but also

how that response is distributed among different cells.

In this paper we have explored the feasibility of this stochastic analog of thermodynamic models

as a general framework through which to understand gene regulation at the single-cell level. Using

this approach we have examined a series of common promoter architectures of increasing complexity,

and established how they affect the level of cell-to-cell variability of the number of mRNA molecules,

and proteins, in steady state. We have found that, given the known kinetic rates of transcription

factor association and dissociation from operators, the level of variability in gene expression for many

well studied bacterial promoters is expected to be larger than the simple Poissonian expectation,

particularly for mRNA and short-lived proteins. We have investigated how the level of variability

generated by a simple promoter consisting of one single operator differs from more complex promoters

containing more than one operator, and found that the presence of multiple operators increases the

level of cell-to-cell variability even in the absence of cooperative binding. Cooperative binding

makes the effect of operator multiplicity even larger. We also found that operator strength is one of

the major determinants of cell-to-cell variability. Strong operators cause larger levels of cell-to-cell

variability than weak operators. We have also examined the case where one single repressor may bind

simultaneously to two operators by looping the DNA in between. We have found that the stability of

the DNA loop is the key parameter in determining whether DNA looping increases or decreases the

level of variability, suggesting a potential role of DNA mechanics in regulating cell-to-cell variability.

We have examined the difference between activators and repressors, and found that repressors

tend to generate less cell-to-cell variability than activators at low expression levels, whereas at

high expression levels repressors and activators generate similar levels of cell-to-cell variability. We
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conclude that induction of gene expression by increasing the concentration of an activator leads

to a more heterogeneous response at low and moderate expression levels than induction of gene

expression by degradation, sequestration or dilution of a repressor. In addition, we have used this

model to make quantitative predictions for a few well characterized bacterial promoters, connecting

the kinetic mechanism of gene regulation that we believe applies for these promoters in vivo with

single-cell gene expression data. Direct comparison between the model and experimental data offers

an opportunity to validate these kinetic mechanisms of gene regulation.

5.4.1 Intrinsic and extrinsic noise

There are two different classes of sources of cell-to-cell variability in gene expression. The first class

has its origins in the intrinsically stochastic nature of the chemical reactions leading to the production

and degradation of mRNAs and proteins, including the binding and unbinding of transcription

factors, transcription initiation, mRNA degradation, translation, and protein degradation. The

noise coming from these sources is known as intrinsic noise [79]. A different source of variability

originates in cell-to-cell differences in cell size, metabolic state, copy number of transcription factors,

RNA polymerases, ribosomes, nucleotides, etc. This second kind of noise is termed extrinsic noise

[79]. The contributions from intrinsic and extrinsic sources can be separated experimentally, and

the total noise can be written as the sum of intrinsic and extrinsic components [3]. In this paper we

focus exclusively on intrinsic noise, and the emphasis is on bacterial promoters. This double focus

requires us to discuss to what extent intrinsic noise is relevant in bacteria.

The experimental evidence gathered so far indicates that intrinsic noise is the dominant source

of cell-to-cell variability in bacteria of the mRNA copy number. In a recent single-molecule study,

transcription was monitored in real time for two different E. coli promoters, PRM and Plac/ara [4].

The authors measured the rates of mRNA synthesis and dilution, as well as the rates of promoter

activation and inactivation in single cells. The intrinsic noise contribution was calculated from all

of these rates. It was found to be responsible for the majority of the total cell-to-cell variability,

accounting for over 75% of the total variance. Another recent experiment in B. subtilis [7] found

that mRNA expressed from the ComK promoter is also dominated by intrinsic noise. Furthermore,

this study indicated that intrinsic mRNA noise is responsible for activation of a phenotypic switch

that drives a fraction of the cells to competence for the uptake of DNA [7]. A third recent report

investigated the activation of the genetic switch in E. coli, which drives the entrance of a fraction

of cells into a lactose metabolizing phenotype [23]. The authors of the study found evidence that

stochastic binding and unbinding of the Lac repressor to the main operator was responsible for

the observed cell-to-cell variability in gene expression and, consequently the choice of phenotype.

Furthermore, the authors discovered that the deletion of an auxiliary operator that permits tran-

scriptional repression by DNA looping leads to a strong increase in the level of cell to cell variability
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in the expression of the lactose genes, indicating that promoter architecture plays a big role in de-

termining the level of noise and variability in this system. Taken all together, these experiments

suggest that intrinsic mRNA noise is dominant and may have important consequences for cell fate

determination. In addition, at least in one case, promoter architecture has been shown to be of

considerable importance.

At the protein level, the contribution of extrinsic and intrinsic noise to the total cell-to-cell

variability has also been determined experimentally for a variety of promoters and different kinds

of bacteria. The first reports examined intrinsic and extrinsic protein noise in E. coli and found

that extrinsic noise was the dominant source of cell-to-cell variability in protein expressed from a

variant of the PL promoter in a variety of different strains [3]. However, the intrinsic component was

non-negligible and for some strains, dominant [3]. A second team of researchers examined a different

set of E. coli promoters involved in the biosynthetic pathway of lysine [80]. The authors found that

the intrinsic noise contribution was significant for some promoters (i.e. lysA), but not for others.

In a third study the total protein noise was measured for a Lac repressor-controlled promoter in

B. subtilis, and it was reported that the data could be well explained by a model consisting only

of intrinsic noise [8]. The authors found that the rates of transcription and translation could be

determined by directly comparing the total cell-to-cell variability to the predictions of a simple

stochastic model that considered only intrinsic sources of noise. They also found that the model

had predictive power, and that mutations that enhanced the rate of translation or transcription

produced expected effects in the total noise.

In summary, all studies that have measured mRNA noise in bacteria so far report that intrinsic

noise contributes substantially to the total cell-to-cell variability. This is further supported by

observations that most of the mRNA variability comes from intrinsic sources in yeast [31] and

mammalian cells [1]. The issue is less clear for protein noise. Some reports indicate that it is mostly

extrinsic [3], but others suggest that intrinsic noise may also be important [8,23,80]. It seems likely

that the relative importance of intrinsic and extrinsic noise depends on the context, and that for

some promoters and genes extrinsic noise will be larger, whereas for others the intrinsic component

may dominate. In any case, it is clear that both contributions are important, and both need to be

understood.

5.4.2 Comparison with experimental results

The aim of this paper is to formulate a set of predictions that reflect the class of kinetic models

of gene regulation in bacteria that one routinely finds in the literature [42,64,8184]. Our analysis

indicates that if these models are correct, and if the kinetic and thermodynamic parameters that

have been measured over the years are also reasonably close to their real values in live cells [85],

the effect of promoter architecture in cell-to-cell variability in bacteria should be rather large and
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easily observable. In this sense, our intention is more to motivate new experiments than to explain

or fit any currently available data. We only know of one published report in which the effect of

perturbing the architecture of a bacterial promoter on the cell-to-cell variability in gene expression

has been determined [23]. Given that there are several examples of promoters in bacteria for which a

molecular kinetic mechanism of gene regulation has been formulated [42,64,81-84,86], we hope that

the computational analysis in this paper may serve as an encouragement for researchers to do for

bacteria the same kind of experiments that have been already performed in eukaryotes [1,11,15,17,31].

Indeed, several different studies have examined the effect of promoter architectural elements in cell-

to-cell variability in protein and mRNA in eukaryotic cells. Although our efforts in this paper have

focused on bacterial promoters rather than eukaryotic promoters, it is worthwhile to discuss the

findings of these studies and compare them (if only qualitatively) with the predictions made in this

paper.

Two recent studies measured intrinsic mRNA noise in yeast [31] and mammalian cells [1]. Both

papers concluded that stochastic promoter activation and inactivation was the leading source of

intrinsic noise. While stochastic chromatin remodeling is suspected to be the origin of those acti-

vation events, neither one of these studies was conclusive about the precise molecular mechanism

responsible for promoter activation. However, both studies found that promoter architecture had

an important role and strongly affected the level of total mRNA noise. In both studies, the authors

found that when the number of binding sites for a transcriptional activator was raised from one

to seven, the normalized variance increased several-fold. This qualitative behavior is in agreement

with our prediction that dual activation causes larger intrinsic mRNA noise than simple activation.

It is possible that this agreement is coincidental, since the actual mechanism of gene regulation at

these promoters could be much more complicated than the simple description of gene activation at

a bacterial promoter adopted here.

Other studies [11,15,17] have measured the total protein noise from variants of the GAL1 pro-

moter in yeast, and found that their data could be well explained by a model that considered only

intrinsic noise sources. These studies also concluded that the main sources of intrinsic noise were

stochastic activation and inactivation of the promoter due to chromatin remodeling. However, it was

also found that the stable formation of pre-initiation complex at the TATA box and the stochastic

binding and unbinding of transcriptional repressors contributed to the total noise [11,15,17]. The

authors of these studies found that for point mutations in the TATA box of the GAL1 promoter in

yeast, which made the box weaker, the level of cell-to-cell variability went down significantly. This

is also in good agreement with our prediction that the stronger the binding site of a transcriptional

activator, the larger the intrinsic noise should be. However, since this study measured the total

noise strength, and did not isolate the intrinsic noise, the observed decrease in noise strength as a

result of making the TATA box weaker may have other origins. These experiments were conducted
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under induction conditions that minimize repression by nucleosomes and activation by chromatin

remodeling. A more recent report by the same lab [11] found that the copy number and location

of a transcriptional repressor binding site greatly affects the total protein noise. The authors found

that when they increased the number of repressor binding sites, the noise went up. This is also in

qualitative agreement with our prediction that operator number positively correlates with intrinsic

noise in the case of dual repression. However, the same caveat applies here as in the previous case

studies, which is that only the total noise was measured. Although the authors of this study at-

tributed all of the noise to intrinsic sources, it is still possible that extrinsic noise was responsible

for the observed dependence of noise strength on operator number.

Finally, it is worth going back to bacteria, and discussing the only study that has yet examined

the effect of a promoter architecture motif on cell-to-cell variability in gene expression. In this paper,

the authors investigated the effect of DNA looping on the total cell-to-cell variability for the PlacUV5

promoter in E. coli [23]. Using a novel single-protein counting technique, Choi and co-workers

measured protein distributions for promoters whose auxiliary operator had been deleted (leaving

them with a simple repression architecture), and compared them to promoters with the auxiliary

operator O3 present, which allows for DNA looping. They report a reduction in protein noise due

to the presence of O3, which according to our analysis, may indicate that the dissociation of the

repressor from the looped state is faster than the normal dissociation rate. The authors attributed

this looping-dependent decrease in noise to intrinsic origins, related to the different kinetics of

repressor binding and rebinding to the main operator in the presence of the auxiliary operator, and

in its absence. However, their measurements also reflect the total noise,

More recently, several impressive experimental studies have measured the noise in mRNA in

bacteria for a host of different promoters ([87], and Ido Golding, private communication). In both

of these cases, simplified low-dimensional models which do not consider the details of the promoter

architecture have been exploited to provide a theoretical framework for thinking about the data.

Our own studies indicate that the differences between a generic two-state model and specific models

that attempt to capture the details of a given architecture are sometimes subtle and that the acid

test of ideas like those presented in this paper can only come from experiments which systematically

tune parameters, such as the repressor concentration, for a given transcriptional architecture.

5.4.3 Future Directions

Some recent theoretical work has analyzed the effect of cooperative binding of activators in the

context of particular examples of eukaryotic promoters [88,89]. The main focus of this study is

bacterial promoters. The simplicity of the microscopic mechanisms of transcriptional regulation for

bacterial promoters makes them a better starting point for a systematic study like the one we propose.

However, many examples of eukaryotic promoters have been found whose architecture affects the
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cell-to-cell variability [1,11,17,31,32]. Although the molecular mechanisms of gene regulation in these

promoters are much more complex, with many intervening global and specific regulators [90], the

stochastic model employed in this paper can be applied to any number of promoter states, and thus

can be applied to these more complex promoters. Recent experimental work is starting to reveal the

dynamics of nucleosomes and transcription factors with single-molecule sensitivity [91,92], allowing

the formulation of quantitative kinetic and thermodynamic mechanistic models of transcriptional

regulation at the molecular level [73,77]. The framework for analyzing gene expression at the single-

cell level developed in this paper will be helpful to investigate the kinetic mechanisms of gene

regulation in eukaryotic promoters, as the experimental studies switch from ensemble, to single-cell.

5.4.4 Shortcomings of the approach

Although the model of transcriptional regulation used in this paper is standard in the field, it is

important to remark that it is a very simplified model of what really happens during transcription

initiation. There are many ways in which this kind of model can fail to describe real situations. For

instance, mRNA degradation requires the action of RNases. These may become saturated if the

global transcriptional activity is very large and the degradation becomes non-linear [55]. Transcrip-

tion initiation and elongation are assumed to be jointly captured in a single constant rate of mRNA

synthesis for each promoter state. This is an oversimplification also. When considered explicitly,

and in certain parameter ranges, the kinetics of RNAP-promoter interaction may cause noticeable

effects in the overall variability [46]. Similarly, as pointed out elsewhere [93,94,95], translational

pausing, back-tracking or road-blocking may also cause significant deviations in mRNA variability

from the predictions of the model used in this paper. How serious these deviations are depends on

the specifics of each promoter-gene system. The model explored in this paper also assumes that

the cell is a well-mixed environment. Deviations from that approximation can significantly affect

cell-to-cell variability [56,96]. Another simplification refers to cell growth and division, which are not

treated explicitly by the model used in this paper: cell division and DNA replication cause doubling

of gene and promoter copy number every cell cycle, as well as binomial partitioning of mRNAs

between mother and daughter cells [3]. In eukaryotes, mRNA often needs to be further processed

by the splicing apparatus before it becomes transcriptionally active. It also needs to be exported

out of the nucleus, where it can be translated by ribosomes.

To study the effect of transcription factor dynamics on mRNA noise we assume that the unregu-

lated promoter produces mRNA in a Poisson manner, at a constant rate. This assumption can turn

out to be wrong if there is another process, independent of transcription factors, that independently

turns the promoter on and off. In eukaryotes examples of such processes are nucleosome positioning

and chromatin remodeling, while in prokaryotes analogous processes are not as established, but could

include the action of non-specifically bound nucleoid proteins such as HU and HNS, or DNA super-
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coiling. Experiments that measure cell-to-cell distributions of mRNA copy number in the absence

of transcription factors (say without Lac repressor for the lac operon case) can settle this question.

In case the Fano factor for this distribution is not one (as expected for a Poisson distribution) this

can signal a possible transcription factor-independent source of variability. The stochastic models

studied here can be extended to account for this situation. For example, the promoter can be made

to switch between an on and an off state, where the transcription factors are allowed to interact with

promoter DNA only while it is in the on state. In this case the mRNA fluctuations produced by

an unregulated promoter will not be Poissonian. One can still investigate the affect of transcription

factors by measuring how they change the nature of mRNA fluctuations from this new baseline.

Comparison of this extended model with single-cell transcription experiments would then have the

exciting potential for uncovering novel modes of transcriptional regulation in prokaryotes.

For the purpose of isolating the effect of individual promoter architectural elements on cell-to-cell

variability in gene expression, we have artificially changed the value of one of those parameters, while

keeping the other parameters constant. For instance, we have investigated the effect of altering the

strength of an operator on the total cell-to-cell variability. In order to do this, we ask how changes in

the dissociation rate of the transcription factor alter the cell-to-cell variability, given that all other

rates (say the rate of transcription, or mRNA degradation) remain constant. This assumption is

not necessarily always correct, since very often the operator sequence overlaps the promoter, and

therefore changes in the sequence that alter operator strength also affect the sequence from which

RNAP initiates transcription, which can potentially affect the overall rates of transcription. As

is usually the case, biology presents us with a great diversity of forms, shapes and functions, and

promoters are no exception. One needs to examine each promoter independently on the basis of the

assumptions made in this paper, as many of these assumptions may apply for some promoters, but

not for others.

For the same reason of isolating the effect of promoter architecture and cis-transcriptional reg-

ulation on cell-to-cell variability in gene expression, when we compare different architectures we

make the simplifying assumption that they are transcribing the same gene, and therefore that the

mRNA transcript has the same degradation rate. Care must be taken to take this into account

when promoters transcribing different genes are investigated, since the mRNA degradation rate has

a large effect on the level of cell-to-cell variability.

We have also assumed that when transcription factors dissociate from the operator, they disso-

ciate into an averaged out, well-mixed, mean-field concentration of transcription factors inside the

cell. The possibility of transcription factors being recaptured by the same or another operator in

the promoter right after they fall off the operator is not captured by the class of models considered

here. Recent in vivo experiments suggest that this scenario may be important in yeast promoters

containing arrays of operators [31].
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In spite of all of the simplifications inherent in the class of models analyzed in this paper,

we believe they are an adequate jumping off point for developing an intuition about how promoter

architecture contributes to variability in gene expression. Our approach is to take a highly simplified

model of stochastic gene expression, based on a kinetic model for the processes of the central dogma

of molecular biology, and add promoter dynamics explicitly to see how different architectural features

affect variability. This allows us to isolate the effect of promoter dynamics, and develop an intuitive

understanding of how they affect the statistics of gene expression.

It must be emphasized, however, that the predictions made by the model may be wrong if any

of the complications mentioned above are significant. This is not necessarily a bad outcome. If the

comparison between experimental data and the predictions made by the theory for any particular

system reveals inconsistencies, then the model will need to be refined and new experiments are

required to identify which of the sources of variability that are not accounted for by the model are

in play. In other words, experiments that test the quantitative predictions outlined stand a chance

of gaining new insights about the physical mechanisms that underlie prokaryotic transcriptional

regulation.

5.4.5 Supporting information

Text S1. Mathematical derivations and supplementary information. A derivation of all equations

in the text is presented, together with its corresponding tables and figures.
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The moments of the mRNA probability distribution 

We start by considering the same mechanism as in the text (see figure 1), in which the promoter 

switches between one active and one inactive state. There are only two stochastic variables in the 

model: the number of mRNA transcripts per cell (m), and the state of the promoter which reflects 

which transcription factors are bound where. The promoter state is always a discrete and finite 

stochastic variable (s) (for an example, see figure 1a). The example in figure 1a illustrates the 

simplest model of transcriptional activation by a transcription factor.  

When the activator is bound to the promoter (state 1) mRNA is synthesized at rate 1r . When the 

activator is not bound (state 2) mRNA is synthesized at a lower rate 2r . The promoter switches 

stochastically from state 1 to state 2 with rate off

Ak , and from state 2 to state 1 with rate on

Ak . Each 

mRNA molecule is degraded with rate  .  

The time evolution for the joint probability of having the promoter in states 1 or 2, with m  

mRNAs in the cell (which we write as (1, )p m  and (2, )p m , respectively), is given by a master 

equation, which we can build by listing all possible reactions that lead to a change in cellular 

state, either by changing m  or by changing s  (figure 1b). The master equation takes the form: 
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2 2
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Inspecting this system of equations, we notice that by defining the vector: 

(1, )
( ) ,

(2, )

p m
p m

p m

 
  
 

  (2) 

and the matrices 

1

2
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ˆ ˆ ˆ  ;    ;  ,

0 0 1
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we can rewrite the system of equations (1) in matrix form.  

ˆ ˆ ˆ ˆ ˆ( ) ( )  ( 1) ( 1)  ( 1)  .
d

p m K R m I p m R p m m I p m
dt

         
 

 (3) 

This approach can be generalized to any mechanism of transcriptional regulation at the promoter 

level. The only difference between the mechanisms rests on the particular dimensionality and 

form of the three matrices defined above. Examples of those matrices for all of the architectures 

and mechanisms investigated on this paper are given in Table S1 in Text S1. In steady state, the 

left hand side of equation (4) is equal to 0: 

ˆ ˆ ˆ ˆ ˆ0 ( )  ( 1) ( 1)  ( 1)  .K R m I p m R p m m I p m         
 

 (4) 

In order to find the first two moments of the steady state mRNA probability distribution, we 

follow the same strategy as in references [1,2]: we multiply both sides of equation (5) by m  and 
2m respectively, and then sum over all values of m , from 0 to . We start from the first moment 

of the mRNA distribution, which requires us to multiply equation (5) by m  and then sum: 
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       (5) 

Since none of the three matrices K̂ , R̂ and Î are functions of m, they can be taken out of the 

sums, and we find:  

2
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It will be convenient in what follows to define the following vectors of partial moments of the 

mRNA probability distribution:  
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m m p m

m p m

m p m

m m p m

m p m































 
 

 
     
   
 
 

 
 
  
 
 
 

 
 
  
 
 
 
















 (7) 

 

The usefulness of these vectors of partial moments of the mRNA distribution lies in the fact that 

they are related to the moments of the probability distribution. For instance, the mean mRNA is 

given by  

2

1 0 0 0

 ( , )  (1, )  (2, )  .
s m m m

m m p s m m p m m p m
  

   

      (8) 

If we define, again for convenience, the vector  1,1u  , we find that the mean of the mRNA 

distribution is related to the vectors of partial moments by (1) m u m . Following this example, 

it is also straightforward to prove that the second moment of the mRNA distribution is given by: 
2

(2) m u m . 

Given these definitions, we return to equation (7) which we can now write as: 

(1) (2) (1)

0 0

ˆ ˆ ˆ ˆ ˆ    ( 1)  ( 1) ( 1) 0  .
m m

K m I m R m R m p m I m m p m 
 

 

          (9) 

We can re-arrange terms in the last two sums so that we write them as operations on the vectors 

of partial moments of the probability distributions. For instance, by making the change of 

variables: 1m m   , and taking into account the fact that the number of mRNA molecules 

inside the cell can never fall below 0 (so that  ( 1) 0p   ), we find: 

(1) (0)

0 0

 ( 1) ( 1) ( )   .
m m

m p m m p m m m
 

 

     
 

 (10) 
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Similarly, by making the change of variables 1m m  , the last sum takes the simpler form: 

(2) (1)

0 0

  ( 1) ( 1) ( 1) ( )   .
m m

m m p m m m p m m m
 

 

        (11) 

Entering these results into equation (10), we finally find: 

   (1) (2) (1) (1) (0) (2) (1) (1) (1) (0)
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ        .K m I m R m R m m I m m K m I m R m            (12) 

The vector of partial moments (1)m  is therefore the solution to the matrix equation: 

  (1) (0)
ˆ ˆ ˆ  0  .K I m R m     (13) 

The final step is to multiply both sides of equation (14) by the vector (1,1)u  . Because of how it 

was constructed (i.e. p(1,m)s loss is p(2,m)s gain during transitions between promoter states), the 

matrix K̂  has the property that the sum of the elements of any one of its columns is always 0. 

Therefore, we find that ˆ 0u K  . The matrix R̂  is diagonal, so if we multiply matrix R̂  on the 

left by vector u , we get a vector that is equal to the list of diagonal elements of matrix R̂ . Thus, 

we define the vector    11 22 1 2
ˆ ˆ, ,r R R r r  , as the vector for which it is true that ˆ u R r . 

Finally, the identity matrix is 
1 0

ˆ
0 1

I
 

  
 

 . Therefore, multiplying ˆ I on the left by the vector u  

leads us to: ˆ u I u . Therefore, when we multiply equation  (14) by the vector u  we find: 

(1) (1) (0) (1) (0)
ˆ ˆ ˆ0           .u K m u I m u R m u m r m        (14) 

Knowing that the mean of the mRNA distribution is related to the vector of partial moments by:  

(1) m u m , we find that: 

(0) 
  .

r m
m


   (15) 

Note that, by definition,  

0

00

(0)

0 0

0

(1, )
(1)

( )   .
(2)

(2, )

m

m

m

m p m
p

m m p m
p

m p m











 
 

 
     
   
 
 





        (16) 
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In other words, the first element of vector (0)m   is the steady state probability to find the 

promoter in state 1, and the second element is the steady state probability to find the promoter in 

state 2. This vector is straightforward to obtain by summing equation (5) over all m, and it is the 

solution of  (0)
ˆ  0K m  , normalized so that (1) (2) 1p p  . 

In order to find the second moment, we just multiply equation (5) by 2m and sum over all m from 

0 to  . As a result of this manipulation, we find:  

 2 2 3

0 0 0

2 2 2

0 0 0

2

(2) (3) (2)

0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )  ( 1) ( 1)  ( 1)   ( )   ( )

ˆ ˆ ˆ  ( )   ( 1)  ( 1)  ( 1)

ˆ ˆ ˆ ˆ     ( 1)

m m m

m m m

m

m K R m I p m R p m m I p m m K p m m I p m

m R p m m R p m m m I p m

K m I m R m m R p m m

  





  

  

  

  





         
 

      

    

  

  

 2

0

ˆ ( 1)  ( 1)  .
m

m I p m




 

 (17) 

The last two terms of the right hand side of equation (18) can be simplified by writing the two 

sums in terms of the vectors of partial moments.  In order to do that, we must make the same 

changes of variables that we invoked above when dealing with the mean. First, the change of 

variables 1m m   allows us to rewrite the first sum as:  

2 2

(2) (1) (0)

0 0

 ( 1) ( 1)  ( ) 2   .
m m

m p m m p m m m m
 

 

        (18) 

Finally, the change of variables 1m m  , allows us to re-write the last sum as: 

2 2

(3) (2) (1)

0 0

( 1) ( 1) ( 1)  ( ) 2   .
 

 

       
m m

m m p m m m p m m m m  (19) 

Entering these last two sums in equation (18), we find:  

   

   

(2) (3) (2) (2) (1) (0) (3) (2) (1)

(2) (1) (0) (2) (1)

ˆ ˆ ˆ ˆ ˆ   2 2

ˆ ˆ ˆ 2 2 0  .

K m I m R m R m m m I m m m

K m R m m I m m

 



        

     
 (20) 

As we did before, we can transform this equation into an equation for the moments of the mRNA 

distribution by multiplying both sides of this equation on the left by the vector u . Performing 

these operations, we find: 

       (2) (1) (0) (2) (1) (1) (0) (2) (1)

2

(1) (0)

ˆ ˆ ˆ   2  2 2  2

2   2 0  .

u K m u R m m u I m m r m m u m m

r m r m m m

 

 

          

   
 (21) 
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Therefore, the second moment of the mRNA distribution in steady state is given by: 

(1) (0)2
  

  .
2

r m r m m
m



 


    (22) 

Using the fact that the first moment is given by:  

(0) 
  .

r m
m


                 (23)

 

We can further simplify the second moment as: 

(1)2
 

  .
r m

m m


    (24) 

Therefore, the normalized variance can be written as: 

22

2(1)2

2 2

 1 1
  .

m m r m
m

mm m




  
    

 
 (25) 

 

The moments of the protein probability distribution

We can use the same method to compute the normalized variance of the protein distribution. We 

will start from a promoter that is constitutively active, and then extend our analysis to a promoter 

that switches between two or more active and inactive states. We assume that each transcription 

event leads to the production of multiple proteins (a “burst”). The number of proteins produced 

per mRNA (which we denote as  ) obeys a geometric distribution [3,4,5] with an average burst 

size b . Therefore, the probability for   is given by:  
 

1
1

b
h

b










. We assume that proteins 

are also degraded with a constant rate per molecule of  . In order to write down the master 

equation for this process, we have to consider all the possible ways in which the cell can enter or 

leave a state with n proteins during a small increment of time dt. If we assume that mRNA 

lifetime is much shorter than protein lifetime (an approximation that is realistic in many 

experimental systems –see refs [4,5,6]), then all of the proteins may be assumed to be made 

simultaneously. Therefore, we need to consider the possibility that the cell will jump from a state 

with n proteins to a state with n  , for all possible values of  . The probability that the cell 

will leave a state with n proteins, by making a transition to a state with n   proteins is equal to 

the product of the probability that the cell is in a state with n proteins  ( )p n , the probability that 

the cell will make a transcript during dt  rdt , and the probability that the transcript makes 
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 proteins before it is degraded   h  . Thus, the total probability per unit time to abandon a 

state with n proteins is given by   ( )r h p n . Since   can in principle take any integer value, 

the total probability to abandon the state with n proteins by the occurrence of a protein burst is 

given by the sum of   ( )r h p n over all possible values of  .   This term will be given by: 

   
1 1

 ( )  ( )r h p n r p n h
 

 
 

 

  . Also, we need to consider that the cell may enter a state with n 

proteins from any state with less than n proteins. The probability per unit time that the cell enters 

a state with n proteins, from a state with n  proteins is given by:   ( )rh p n  . Therefore, 

following the same logic as we did before, the net probability per unit time that the cell enters a 

state with n proteins is  
1

 ( )
n

r h p n


 


 . With these considerations, the master equation for a 

constitutive promoter is given by: 

   
1 1

( ) ( ) ( ) ( ) ( 1) ( 1)  .
nd

p n rh p n rh p n np n n p n
dt  

    


 

               (26) 

As discussed above, the first sum can be further simplified to: 

   
 

1
1 1 1

( )  ( )  ( ) ( )
11

b b
rh p n r p n h r p n r p n

bb




  

 
  


  

 
    

 
   .   (27) 

As a result, the master equation takes the form: 

 
1

( ) ( ) ( ) ( ) ( 1) ( 1)
1

nd b
p n r p n rh p n np n n p n

dt b 

   


 
        

 
 .   (28) 

In steady state, the right hand side of equation (29) is equal to 0, and we have: 

 
1

0 ( ) ( ) ( ) ( 1) ( 1)
1

nb
r p n rh p n np n n p n

b 

   


 
        

 
 .    (29) 

The first two moments of the steady state protein distribution ( )p n can be obtained, in exactly 

the same way we used to find out the moments of the mRNA distribution in the previous section: 

by multiplying both sides of equation (30) by n and 2n  respectively, and then summing over all 

n . Before we do that, it is useful to evaluate the sums  2

0 1

( )
n

n

n rh p n


 


 

   and 

 
0 1

( )
n

n

n rh p n


 


 

  . We can find the general term of the first sum by expanding the series: 
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       

     

  

2 2 2 2

0 1

2 2 2 2 2 2 2 2 2

2

0 1

( ) 1 (1) (0) 2 (1) (1) (2) (0) 3 (1) (2) (2) (1) (3) (0) ...

1 (1) 2 (2) 3 (3)... (0) 2 (1) 3 (2) 4 (3)... (1) 3 (1) 4 (2) 5 (3)... (2) ...

( )

n

n

n

n h p n h p h p h p h p h p h p

h h h p h h h p h h h p

p n h n





 

 



 

 

 

        

         

 
  

 

 

  2 2

0

2 2 ( )  .
1n

b
b b bn n p n

b





 
   

 


      (30) 

We can do the same for the second sum, and we find: 

       

     

  

0 1

0 1

( ) 1 (1) (0) 2 (1) (1) (2) (0) 3 (1) (2) (2) (1) (3) (0) ...

(1) 2 (2) 3 (3)... (0) 2 (1) 3 (2) 4 (3)... (1) 3 (1) 4 (2) 5 (3)... (2) ...

( ) (
1

n

n

n

n h p n h p h p h p h p h p h p

h h h p h h h p h h h p

b
p n h n b n p

b





 

 



 

 

 

        

         

   
     

  

 

 
0

)  .
n

n






 (31) 

Likewise, it will be necessary to recall from the first section of this supplement, that the sum 

0

( 1) ( 1)
n

n n p n




   can be computed by using the change of variables: 1n n  , and we find: 

0 0

( 1) ( 1) ( 1) ( )
n n

n n p n n n p n
 

 

      .       (32) 

With these results in hand, we can finally solve the first two moments of the protein distribution 

( )p n . As explained above, we can find the first moment by multiplying both sides of equation 

(30) by n and then summing over all n. In order to find the second moment, we multiply both 

sides of equation (30) by 2n and then sum over all n. For the first moment, we find: 

  2

0 0 1 0 0

2 2

0 ( ) ( ) ( ) ( 1) ( 1)
1

  .
1 1

n

n n n n

b
r np n r n h p n n p n n n p n

b

b b
r n r b n n n n rb n

b b



   

   

   

    

 
         

 

   
           

    

    
 (33) 

Solving this equation, we find that the mean protein per cell is equal to: 

rb
n


 .           (34) 

For the second moment, we find: 
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 

 

2 2 3 2

0 0 1 0 0

2 2 3 3 2

2 2

0 ( ) ( ) ( ) ( 1) ( 1)
1

  2 2 2
1 1

  2 2 2 .

n

n n n n

b
r n p n r n h p n n p n n n p n

b

b b
r n r b b b n n n n n n

b b

r b b b n n n



   

   

 

   

    

 
         

 

   
             

    

    

    

(35) 

Solving this last equation, we find that the second moment of the protein distribution is equal to: 

 
22 22 2 1

2 2 2 2

nr r r
n b b b n b n n

  
       .     (36) 

Therefore, the normalized variance of the protein distribution for a constitutive promoter takes 

the form: 

   
2 2 22

2 2 2

1 1( )
  .

n n b n n n bVar n

nn n n

    
        (37) 

If now we consider that the promoter can exist in two states, characterized by having different 

rates of transcription, then the cell’s state is characterized not only by the number of proteins 

present, but also by the state of the promoter. Therefore, the master equation must consider two   

variables: one characterizing the state of the promoter (s), and one representing the number of 

proteins per cell (n). By analogy with the mRNA master equation, and the master equation for 

the protein distribution of a constitutive promoter, the two-state master equation for the protein 

distribution can be written as: 

   

   

1 1

1 1

2 2

1 1

(1, ) (1, ) (2, ) (1, ) (1, ) (1, ) ( 1) (1, 1),

(2, ) (1, ) (2, ) (2, ) (2, ) (2, ) ( 1) (2, 1)  .

n
on off

A A

n
on off

A A

d
p n k p n k p n r h p n r h p n np n n p n

dt

d
p n k p n k p n r h p n r h p n np n n p n

dt

 

 

    

    



 



 

         

        

 

 

   (38) 

Just as we did in order to compute the moments of the mRNA distribution, we can define the 

vector  ( ) (1, ), (2, )p n p n p n . By doing so, we will be able to re-write the master equation (39) 

as a matrix equation, that will be applicable to any promoter with any number of states. This 

matrix equation can be written in terms of exactly the same matrices we used for the mRNA 

probability distribution. We find: 

    

1

ˆ ˆ ˆ ˆ ˆ( )  ( ) ( ) ( ) ( 1)   ( 1)  .
1

nd b
p n K R n I p n R h p n n I p n

dt b 

   


 
         

  (39) 
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In steady state, the left side of equation (40) is equal to 0, and the master equation has the form: 

1

ˆ ˆ ˆ ˆ ˆ0  ( ) ( ) ( ) ( 1)   ( 1)  .
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 
         

  (40) 

Just as we did in order to calculate the moments of the mRNA distribution, it will be convenient 

to define the vectors of partial moments: 
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  (41) 

It is straightforward to see that the vector (0)n  is exactly identical to the vector (0)m . The next two 

vectors (1)n and (2)n can be obtained by multiplying equation (41) by n and 2n respectively, and 

then summing over all n. We end up with the following two equations: 

 

 

0 0 1 0

(1) (1) (2) (2) (1) (1) (0)

(1) (0)

ˆ ˆ ˆ ˆ ˆ0  ( ) ( ) ( ) ( 1)  ( 1)
1

ˆ ˆ ˆ ˆ ˆ       
1 1

ˆ ˆ ˆ      ,

n

n n n

b
n K R n I p n R n h p n n n I p n

b

b b
K n R n I n I n n R n bn

b b

K I n b R n



   

 



  

   

 
           

 
       

  

  

   

             (42)
 

and 

177



 

2 2 2

0 0 1 0

(2) (2) (3) (3) (2) (1) (2) (1) (0)

(2)

ˆ ˆ ˆ ˆ ˆ0  ( ) ( ) ( ) ( 1)  ( 1)
1

ˆ ˆ ˆ ˆ ˆ       2 2 (1 2 )
1 1

ˆ ˆ   

n

n n n

b
n K R n I p n R n h p n n n I p n

b

b b
K n R n I n I n n n R n bn b b n

b b

K n I



   

 



  

   

 
           

 
           

  

 

   

   

   
(2) (1) (1) (0)

(2) (1) (0)

ˆ2 2 (1 2 )

ˆ ˆ ˆ ˆ ˆ   2 2 (1 2 )    .

n n R bn b b n

K I n I bR n b b R n 

     

     

            (43) 

Now by multiplying the vector  1,1u   on the left of equations (43) and (44), we find 

(0)0     n b r n ,                          (44) 

and:
 

2

(1) (0)0 2 2   (1 2 )    .      n n b r n b b r n                                                                         (45) 

Thus, we find analytical equations for the first two moments of the protein distribution: 
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Where (1)n  is the solution of equation (43): 
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(48) 

Armed with these equations, we can finally compute the stationary variance of the protein 

distribution: 
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Exploration of the space of parameter values 

In order to test how some of the key qualitative and quantitative conclusions discussed in the 

main text depend on choice of rate constants that characterize the different architectures, we 

computed the Fano factor for a large set of parameter values drawn randomly from the space of 

possible values. The results of these calculations are shown in figures S2, S3, and S4.  
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SUPPLEMENTARY FIGURES 

 

 

 

Figure 1. Cartoon depiction of the construction of kinetic rate matrices and vectors. (A) 

Cartoon representation of the kinetic rate matrix K̂ . The diagonal elements represent the net rate 

at which the promoter abandons each state. For instance, element  
11

K̂   is the rate at which the 

promoter abandons state 1 due to stochastic association of the activator with the promoter: 

 
11

ˆ on

AK k  , and element  
22

ˆ off

AK k    is the rate of dissociation of the activator from the 

promoter, abandoning state 2. The non-diagonal element  
21

ˆ on

AK k  is the rate at which the 

promoter makes a transition from state 1 to state 2 (by dissociation association of one activator to 

the promoter), and the non-diagonal element  
12

ˆ off

AK k  is the rate at which the promoter makes 

a transition from state 2 to state 1 (by dissociation of the activator). (B) The transcription rate 

matrix R̂ contains, in its diagonal elements, the net rate of transcription at each promoter state. 

Element   1
11

R̂ r  is the rate of transcription in promoter state 1 and  2
22

R̂ r   is the rate of 

transcription in promoter state 2. (C) The vector  1 2,r r r  contains the rates of transcription at 

states 1 and 2, and is identical to the diagonal of matrix R̂ . 
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Figure 2. Effect of parameter choice on Fano factor for independent and cooperative 

repression architectures. We sample the parameter space by randomly selecting 10,000 

different values for the mean mRNA m  (within 0.005 and 100), off

Rk  (from off

Rk  =0.01 to 

off

Rk  =100), 
max

m  (from 5 to 100), and  (from 0.001 to 1). The Fano factor is calculated for 

both independent and cooperative repression architectures, when the mean is the same for both. 

In the X axis we plot the Fano Factor for independent repression. In the Y axis we plot the Fano 

factor for cooperative repression. As is the case throughout the paper, we assume that we vary 

the mean by titrating the amount of repressor inside the cell. Each point in the figure corresponds 

to two architectures with the same mean. We find that cooperative binding always results in 

larger cell-to-cell variability than non-cooperative binding. The red solid line marks the region 

where the Fano factor is the same for both architectures. 
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Figure 3. Simple activation tends to be noisier than simple repression at low expression 

levels. We follow the same procedure as in figure S1, and sample the parameter space by 

randomly selecting 1,000 different values for the mean mRNA m  (within 0.01 and 100), 

off

Rk and off

Ak  (from 0.01to 100), 
max

m , the enhancement factor f  (from 10 to 100). For 

each one of these 10,000 sets of parameters, we compute the Fano factor for the simple 

activation and the simple repression architectures. We plot the ratio between the Fano factor for 

simple activation and repression as a function of the mean. We find that at low mRNA levels 

 10m , the simple activation architecture is noisier than the simple repression architecture in 

over 99% of the sets of rates tested here. In contrast, at high mRNA levels, it is the other way 

around. In order for the comparison between both architectures to be meaningful, we have 

assumed that the repressor and the activator have the same affinity for their operators (even if we 

vary this affinity over 4 orders of magnitude). The red solid line marks the region where the Fano 

factor is the same for both architectures (and thus the ratio between the two is 1) 

  

 

 

 

 

 

 

 

 

 

182



 

 

 

 

 

 

 

Figure 4. Effect of parameter choice on Fano factor for the repression by DNA looping 

architecture We sample the parameter space by randomly selecting 10,000 different values for 

the mean mRNA m  (within 0.005 and 100), off

Rk  (from off

Rk  =0.01 to off

Rk  =100), 
max

m  

(from 5 to 100), loopk (from 0.01to 100), and the parameter characterizing the rate of 

dissociation in the presence of the auxiliary operator, relative to that in its absence (c). We first 

assume that c = 1 for all parameter sets (A), and then we randomly sample it within 1 and 10 (B).  

In the X axis we plot the Fano Factor for simple repression. In the Y axis we plot the Fano factor 

for repression by DNA looping. As is the case throughout the paper, we assume that we vary the 

mean by titrating the amount of repressor inside the cell. Each point in the figure corresponds to 

two architectures with the same mean. We find that whether DNA looping enhances or 

diminishes noise depends on the value of c. If c = 1, meaning that DNA looping does not affect 

the rate of dissociation of the repressor from the operator, the Fano factor for the DNA looping 

architecture is larger than the Fano factor for the simple repression architecture. On the other 

hand, if 1c , DNA looping may decrease noise (as observed for ~40% of the parameters 

chosen). The red solid line marks the region where the Fano factor is the same for both 

architectures. 
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Table S1: Kinetic rate matrices for all mechanisms in the text. In the first column, we 

represent the kinetic mechanisms of gene regulation for all of the architectures considered in the 

text. In the second and third columns, we show the corresponding promoter kinetic transition rate 

matrices K̂ and the vector ˆ r u R for all of the mechanisms.  

 

 

 

 

 

 

 

 

 

Table S2: Fold-change in noise for different promoter architectures. The fold-change in 

promoter noise is shown as a function of the different kinetic parameters corresponding to each 

promoter architecture considered throughout the text. Refer to Table I for the definition and 

value of each rate. 
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Chapter 6

Promoter architecture dictates
cell-to-cell variability in gene
expression

6.1 Introduction

The molecular events underlying gene expression are inherently stochastic. Examples of such events

include transcription factor (TF) binding and unbinding [1, 2]; RNA polymerase (RNAP) open

complex formation, abortive transcript production, and promoter escape [3, 4]; and the formation

and dissolution of transcription-factor-mediated DNA loops [5]. This stochasticity means that gene

expression is in turn inherently stochastic. Over the past decade, an array of studies have investigated

variability in gene expression [6–10] and the possible phenotypic consequences of transcriptional

noise [6, 10–12]. It has further been postulated that noise in gene expression may affect the fitness

of microbial populations by e.g. providing phenotypic variability in a population of genetically

identical cells [13–17]. Against this backdrop, theorists have sought to elucidate how changes in

molecular-kinetic parameters such as TF binding and unbinding rates affect variability in expression

from their target gene [18–20], while experimentalists have measured variability in gene expression

at both the mRNA and protein level in prokaryotes and eukaryotes [11, 21–25].

The theoretical efforts result in models of transcription that hinge on the molecular details of the

promoter. These models make quantitative predictions for the level of variability as the details of

the target gene’s promoter are varied. For example, two extremely common promoter architectures

are shown schematically in Figure 6.1. Each rate parameter (r, koff
R , kon

R and γ) in this cartoon has

a physical interpretation (Figure 6.1C) as an element that can be tuned independently by careful

genetic manipulation. The effect of promoter architecture on mean levels of gene expression is

well established in prokaryotes, where thermodynamic models incorporating details of promoter

architecture such as the numbers, locations, and strengths of TF binding sites have been deployed

successfully to predict gene expression as a function of these parameters [26–29]. However, the
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Figure 6.1: Schematics of the kinetics of transcription for two simple regulatory archi-
tectures. (A) Constitutive expression. mRNA are produced with constant probability per unit
time at average rate r, and degraded at average rate γ per mRNA. (B) Gene controlled by binding
of a repressor. The promoter takes two states: in the active state, left, the repressor is not bound
and transcription and degradation occur as in constitutive expression. In the inactive state, right,
the repressor is bound and transcription cannot occur. The promoter switches from the active to
inactive state at rate kRon (the rate at which repressor binds on to the promoter) and from the in-
active to active state at rate koff

R (the rate at which repressor dissociates off of the promoter). (C)
Examples of the experimental knobs available for tuning the various model rate parameters.

associated predictions for how transcriptional noise depends on these parameters remains untested

in any systematic way. In direct contrast, some high-throughput experiments have culminated in

the assertion that the cell-to-cell variability in gene expression is “universal”, dictated solely by

the mean level of expression and insensitive to the details of the promoter driving the expression

[9, 23, 24]. Thus, there is a serious divide between the experiments and theory in this field that can

potentially be healed by a systematic study of transcriptional noise as any given genetically-accessible

transcriptional knob is tuned.

Here, we have constructed a library of synthetic promoters driving a LacZ reporter in Escherichia

coli and measured the resulting mRNA copy number distributions using single molecule mRNA

fluorescence in situ hybridization (FISH) [30]. Crucially, changes in promoter sequence between

constructs have clear interpretations in terms of the molecular parameters underlying transcription

(e.g., TF unbinding rate, basal transcription rate). This allows us to directly compare predictions

of models incorporating those parameters with experimentally observed mRNA distributions, and

hence to directly link the molecular events underlying transcription with observed variability in gene

expression.
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6.2 Results

6.2.1 Transcriptional Variability in Constitutive Expression

The theoretical foundation of our modeling efforts is the master equation detailing how the proba-

bility distribution of mRNA expression levels changes with respect to time [19, 20]. These changes

are written in terms of molecular processes within the cell such as mRNA decay, and binding and

unbinding of the proteins involved in transcription. As shown schematically in Figure 6.1A for the

case of constitutive expression, mRNA transcripts are produced at average rate r and degraded at

average rate γ, in both cases with constant probability per unit time. It can be shown [31] that the

resulting steady-state mRNA copy number distribution is given by a Poisson distribution

P (m) =
λm

λ!
e−λ, (6.1)

where P (m) is the probability of observing m mRNA in a cell, and λ = r/γ. This distribution has a

mean r/γ. In the following experimental results, we will use the Fano factor, defined as the variance

divided by the mean, to characterize variability in gene expression. This metric characterizes the

fold change in the squared coefficient of variation (σ2/µ2) relative to a Poisson process, for which

σ2/µ2 = 1/µ. Therefore the predicted Fano factor for constitutive expression equals one identically;

namely,

Fano =
variance

mean
= 1. (6.2)

This simple result is inconsistent with previous studies which have concluded that even constitutive

mRNA production is non-Poissonian or “bursty,” with observed Fano factors significantly greater

than one [23, 32]. Moreover, we also observe Fano factor values greater than one in constitutive

expression data, with a trend of higher Fano factors associated with higher expression levels (Fig-

ure 6.2A) (this data is discussed in more detail below). It is apparent that the preceding analysis

encapsulated in equation 6.2 is incomplete, as we will now discuss. The schematics of Figure 6.1

represent the dynamics of the stochastic processes (TF binding/unbinding, mRNA degradation,

transcription initiation) that contribute to so-called “intrinsic” variability in gene expression. How-

ever, rate parameters such as the repressor binding rate kon
R and transcription rate r are themselves

subject to fluctuations due to cell-to-cell variability in repressor and RNAP copy numbers, respec-

tively. Such effects, collectively termed “extrinsic variability,” increase the measured variability and

possibly obscure the intrinsic component of the variability arising from transcription itself [33, 34].

As we will see, the variability in gene copy number within a population due to chromosome

replication is a particularly important source of extrinsic variability [35]. We thus turn to modeling

its effect. In the following experiments, our reporter constructs are chromosomally integrated at the

galK locus. At our growth rates (roughly 60 minutes) and chromosomal locus of integration [36],
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Figure 6.2: Fano factor vs mean mRNA copy number for constitutive expression library.
(A) Fano factor (gene copy number variation not subtracted) vs. mean expression is plotted for
each of 18 constitutive promoters along with estimates of the effects of gene copy number variation
(blue), RNAP copy number fluctuations (red), and image analysis error (green). See supplementary
text for details of these estimates. These factors can account for essentially the entirety of the
deviation from Fano = 1. (B) Measured Fano factor for various promoters under constitutive
expression, with gene copy number variation subtracted. Each strain is represented by a unique
symbol and each instance represents repeated measurements. Error bars in Fano factor are the result
of bootstrap sampling expression measurements of individual cells. For reference, the predictions of
pure Poissonian production (black solid line) and the “universal noise” curve observed in [23] (red
dashed) theories are shown. The data are clearly inconsistent with the “universal” curve and are
reasonably well fit by the model of Poissonian transcription. Error bars in Fano factor in both (A)
and (B) are the result of bootstrap sampling expression measurements of individual cells.

we expect that a cell has one copy of the reporter gene for the first ≈ 1/3 of the cell cycle and two

copies for the remainder of the cell cycle. We will characterize this with the variable f = 2/3, the

fraction of the cell cycle for which two copies of the gene of interest exist. Then the probability

distribution for mRNA copy number in our population of cells, P (m), is generically

P (m) = (1− f)× p1(m) + f × p2(m), (6.3)

where p1(m) and p2(m) are the probability distributions for mRNA copy number when one or two

copies of the gene are present, respectively. If the gene copies are assumed to be independent [37],

the mean expression level from a population of genetically identical cells, obtained by summing

equation 6.3 over all m, is 〈m〉 = (1 + f)〈m〉1 where (1 + f) is the mean gene copy number and

〈m〉1 is the average expression expected from a single copy of the gene, 〈m〉1 =
∑∞
m=0mp1(m).

The noise in gene expression due to the variability in gene copy number can also be calculated in
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this general framework. It can be shown (supplementary text) that the effect of gene copy number

variation on the variability in expression is independent and additive to the variability predicted

from transcriptional noise such that

Fano =
〈m2〉1 − 〈m〉21
〈m〉1︸ ︷︷ ︸

Transcription

+
f(1− f)

1 + f
〈m〉1︸ ︷︷ ︸

Gene copy number

, (6.4)

where 〈m2〉1−〈m〉21 is the variance predicted from a single copy of the gene. The first term, labeled

“Transcription”, is simply the (promoter architecture dependent) Fano factor of a single copy of a

gene. The predicted contribution to the Fano factor from copy number variation is labeled “Gene

copy number”. The effect is directly proportional to the mean expression per gene copy 〈m〉1, with

a proportionality constant that depends on f . As expected, if the copy number has a defined, static

value (f = 0 or f = 1) there is no contribution to the Fano factor from gene copy number variation.

At f = 2/3, corresponding to our locus of integration and growth conditions, the gene copy number

contribution to the Fano factor is roughly 1.3 for the most highly expressed strain (and decreases

with decreasing expression; see Figure 6.10).

With these results in hand, we return to our experimental investigation of constitutive expres-

sion. In a previous work [38], we demonstrated the ability to predictively tune the transcription rate

r (and hence mean expression r/γ) by changing the RNAP binding site sequence. We designed a set

of 18 constitutive promoters whose mean expression spanned nearly three orders of magnitude [38].

In order to quantitatively test the predictions of the model presented above for the dynamics of

transcription under constitutive expression, we measure the resulting mRNA copy number distribu-

tion using mRNA FISH for each of these 18 unique promoters. Representative mRNA copy number

histograms are shown in Figure 6.3 for each strain, with the strain names above each histogram for

reference. For each strain, we plot the predicted mRNA copy number distributions both with (black

lines) and without (blue dashed lines) accounting for gene copy number variation. Specifically, the

blue curves are given by equation 6.1 with λ set equal to the observed mean 〈m〉 of each strain:

P (m) = (〈m〉m/〈m〉!) e−〈m〉. (6.5)

The black curves are given by combining the preceding equation with equation 6.3, namely,

P (m) = (1− f)(〈m〉m1 /〈m〉1!) e−〈m〉1 + (f)((2〈m〉1)m/(2〈m〉1)!) e−2〈m〉1 , (6.6)

where 〈m〉1 = 〈m〉/(1 + f), f = 2/3, and 〈m〉 is the observed mean for each strain. It can readily

be seen that accounting for gene copy number variation improves the agreement between theory

and experiment without requiring additional free parameters. To quantify this improvement, we
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Figure 6.3: mRNA copy number histograms for constitutive expression. Observed mRNA
copy number distributions for library of 18 constitutive promoters. For each promoter, we plot the
predicted mRNA copy number distribution assuming Poissonian production and degradation, both
with (black circles) and without (dashed blue lines) accounting for gene copy number variation.
The log-likelihood ratio (LLR) of the observed data with and without accounting for copy number
variation is shown on each histogram. Accounting for gene copy number variation substantially
improves agreement between theory and data, as indicated by positive LLRs. The mean number of
cells included in a histogram is 1238± 267 cells for each sample.

report the log-likelihood ratio (LLR) for each strain. This quantity is the logarithm of the ratio

of the likelihood of the data given the variable copy number probability distribution (black circles,

equation 6.6) to the likelihood of the data given by the simple Poisson prediction (blue dashed line,

equation 6.5). LLR = 0 implies that the observed data is equally likely given either theoretical

distribution, whereas LLR > 0 implies that the data is more likely to have been observed given the

variable gene copy distribution of equation 6.6. We obtain positive LLR values for every strain, with

the most positive values tending to occur at high mRNA expression, where the difference between

equation 6.5 and equation 6.6 is most pronounced.

In Figure 6.2A, we plot the Fano factor vs. mean expression for each of this set of promoters.

For clarity, each strain has a unique colored symbol (symbol key in Figure 6.2B) and the individual

results of repeated measurements are shown. The solid black line is the bare Poisson prediction

(equation 6.2) for the noise in constitutive expression. The shaded regions represent the effects of

what we believe are the three most important additional sources of noise. The green shaded region,

quantization error, is the variability introduced by our measurement and analysis process (supple-

mentary text). The red shaded region covers the expected contribution from cell-to-cell differences

in RNAP copy number (supplementary text) and the blue region is the expected contribution from
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gene copy number variation (described above). The data and theoretical predictions are in good

accord, implying that the dynamics of constitutive transcription are, at a basic level, Poissonian

with some additional extrinsic noise resulting from cell-to-cell inhomogeneities. We find no need

to invoke transcriptional bursting or related hypotheses to explain the deviation from Fano = 1.

Further corroborating this analysis, in Figure 6.14, we show that gene copy number noise is largely

removed by gating on cell size such that all cells analyzed for a given data point have either one or

two chromosome copies. Thus we feel confident that the gene copy number contribution to the over-

all variability is well characterized and we will subtract it from the observed data for the remainder

of this work, in order to highlight the transcriptional contribution to the noise. In Figure 6.2B, we

plot the Fano factor minus the predicted gene copy number contribution and observe a quantita-

tive disagreement between the measured noise in expression to that predicted by the “universal”

noise model as reported in [23]. But to conclusively demonstrate the architecture dependence of

the variability we need to look at alternative regulatory architectures. To that end we now consider

architectures controlled by a repressor.

6.2.2 Transcriptional variability in simple repression

We will next consider a slightly more complex architecture in which transcription can be blocked

by a repressor TF. Despite the simplicity of this architecture, simple repression and activation are

the most common regulatory motifs in E. coli after constitutive expression, and thus have direct

physiological relevance [39]. As shown in Figure 6.1B, the promoter can transition between an active

state in which no repressor is bound and transcription occurs at rate r (as in the constitutive case),

and an inactive state in which a repressor is bound and transcription cannot occur. The promoter

transitions from the active to inactive state at rate kon
R , and from the inactive to active state at rate

koff
R . It can be shown [19] that the mean mRNA copy number is given by

〈m〉 =
koff

R

koff
R + kon

R

r

γ
, (6.7)

where r/γ is the mean expression of the same gene constitutively expressed. The Fano factor is

given by

Fano = 1 +
kon

R(
koff

R + kon
R

) r(
γ + koff

R + kon
R

) . (6.8)

An expression for the full probability distribution function can be found in reference [40]. If binding

of repressor to its binding site is diffusion limited, then kon
R will be proportional to the concentration

of repressor TF in the cell: kon
R = k0[R]. Similarly, koff

R will be a function of the interaction energy

∆εR between the repressor and its binding site: koff
R ∝ e∆εR . This interaction energy is itself a

function of the repressor binding site sequence. We can thus tune kon
R by changing the concentration

of repressor in the cell (by, in this work, expressing it from an inducible promoter), and can tune



199

A BIncreasing repressor copy number Increasing repressor binding strength

10
−2

10
−1

10
0

10
1

1

2

3

4

5

6

7

8

9

Mean mRNA copy number per gene copy

F
an

o 
F

ac
to

r

constitutive expression

r/γ=15.7 (lacUV5)
r/γ=8.0 (5DL1)

Oid: k =1/(420s)−1 with

10
−1

10
0

10
1

1

2

3

4

5

6

7

8

9

10

11

F
an

o 
F

ac
to

r

Mean mRNA copy number per gene copy

k =1.0x10−3

k =2.6x10−2

k =2.2x10−1

R
off R

on

R
on

on
R

Figure 6.4: Measurements of variability in gene expression for systematic tuning of pro-
moter architecture. (A) Fano factor vs. mean mRNA copy number for two promoters (choices
of r/γ): 5DL1 (red points) and lacUV5 (green points) while tuning kR

on by inducing LacI to varying
levels. The parameter-free predictions from the kinetic theory of transcription are shown as dashed
lines in the corresponding color holding promoter (r/γ) and repressor binding strength (kR

off) con-
stant. For reference, the black data is the constitutive data from Figure 6.2. (B) Fano factor vs.
mean mRNA copy number for lacUV5 while tuning kR

off by changing repressor binding site identity
at fixed repressor copy number. Each color is a different induction condition from red (lowest LacI
induction) to blue (highest LacI induction). Again, the predictions from the kinetic theory of tran-
scription are shown as dashed lines in the corresponding color. In both cases, the Fano factor at a
given mean depends on the choice of molecular parameters and agrees with the expectations from
theory. The effect of gene copy number variation was subtracted from all data points and error bars
in Fano factor are the result of bootstrap sampling expression measurements of individual cells.

koff
R by changing the repressor binding site sequence. It is important to note that these physical

interpretations of kinetic parameters are for the moment only tentative assumptions; however, these

assumptions will be subjected to rigorous experimental scrutiny.

The mean expression 〈m〉 can be tuned via either of the parameters kon
R or koff

R . Importantly,

the predicted relationship between the mean and the Fano factor is unique depending on which

of these rates is being tuned to explore the range of means (Figure 6.4A and B, dashed lines).

To test the predicted effect of changing of kon
R , we take two of the constitutive promoters from

the preceding section (lacUV5 and 5DL1) and place them under simple repression via a LacI Oid

binding site immediately downstream of the promoter [30]. The difference in transcription rate for

the two constructs (lacUV5 and 5DL1) is reflected in different values of r/γ. When LacI is bound

to its binding site, transcription is prevented via steric inhibition, as schematized in Figure 6.1B.

At the same time, we introduced into our constructs a genetic circuit enabling inducible control

of LacI expression via the small molecule anhydrotetracycline (aTc). In Figure 6.4A, we plot the

measured Fano factor (with the effect of gene copy number variation subtracted) as a function of
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the mean expression over LacI concentrations ranging from ≈ 0 to 80 nM, for both promoters. In

addition, we plot the zero-free-parameter theoretical prediction for the Fano factor as a function of

mean using the measured value of r/γ from the constitutive data and the LacI unbinding rate from

reference [41]. We find excellent agreement between model predictions and observed data.

To test the effect of changing koff
R on variability, we can change the LacI-DNA binding energy by

altering the sequence of the LacI binding site. Holding the RNAP binding site constant (and thus

〈m〉max = r/γ constant), we created constructs corresponding to four different LacI binding sites

(the LacI Oid, O1, O2, and O3 sites) [30]. At constant repressor concentration (i.e., constant kon
R ),

tuning mean expression by altering koff
R is predicted to yield a characteristic curve, while different

repressor concentrations (and hence kon
R values) correspond to distinct instances of this curve (see

Figure 6.4B). We measure the mRNA distributions resulting from changing koff
R at each of three

different repressor concentrations. Since different repressor concentrations are achieved by varying

the degree of induction, we exploit the well-characterized nature of simple repression [38, 42] to infer

the intracellular repressor concentration by measuring the fold-change in expression for our strains

at each inducer concentration. The remainder of the molecular rates are available in the litera-

ture [41] (see also supplementary text and Table 6.2). Figure 6.4B shows the measured Fano factor

(again, with gene copy variability subtracted) vs. mean expression for the three distinct repressor

concentrations. Points of the same color differ in their repressor binding site. We find agreement in

the trends between theory and experiment, although less good than in the case of tuning kon
R . One

possible explanation comes from recent work showing that changing TF-DNA binding affinity affects

the TF-DNA association rate kon
R as well as the dissociation rate koff

R [41]. Thus, our assumption

that the same value of kon
R obtains along each of the red, green, and blue curves is probably not

strictly correct, and this is reflected in less precise agreement between theory and experiment. That

being said, the most important outcome of this set of measurements is a demonstration of the qual-

itatively distinct variability profile when a different set of transcriptional parameters are controlled,

illustrating once again the systematic dependence of variability on promoter architecture.

6.3 Discussion

We have demonstrated the ability to predict mRNA copy number distributions based on biophysical

models of the underlying molecular events. Here we have shown that transcriptional noise is well

predicted by molecularly detailed models for the two most common promoter architectures in E. coli

as the various genetic knobs are tuned. Moreover, this agreement is emphatically not the result of

fitting theory curves to data, since the predicted curves are generated using physical parameter values

reported elsewhere in the literature and in that sense are zero-parameter predictions for the expected

variability in gene expression. For instance, the repressor binding rate kon
R was measured using
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fluorescence microscopy with fluorescently tagged LacI molecules, an experiment wholly unrelated

to measuring mRNA distributions [2]. This transferability between disparate experimental contexts

gives us confidence that what we have constructed is not simply a “phenomenological model” but

instead is a real, physical description of the molecular processes underlying transcription. Somewhat

surprisingly, we are able to omit a number of potential sources of variability, including extrinsic

noise due TF copy number fluctuations (although, in the case of constitutive expression, we do

seem to inherit some measurable noise from RNAP fluctuations), DNA supercoiling, and DNA

condensation due to nucleoid-associated proteins like HU and H-NS. Despite these omissions, we see

good agreement between model predictions and observed data.

Although previous studies have observed that transcription is “bursty” even in the case of fully

induced expression [23, 32], we do not find this to be the case. The claim of “bursty” constitutive

transcription is based on the observation that the Fano factor is greater than one for constitutive

mRNA production (as well as direct kinetic measurements). Various explanatory hypotheses have

been proposed, including transcriptional silencing via DNA condensation by nucleoid proteins [43],

negative supercoiling induced by transcription, or the formation of long-lived “dead-end” initiation

complexes [44]. Although our data does not completely rule out these hypotheses, we find that

gene copy number variation is sufficient to explain most of the deviation from Fano = 1 in our

constitutive expression data. If furthermore we incorporate a simple model of the effects of RNAP

copy number fluctuations (supplementary text), and account for the contribution of measurement

error (supplementary text), we find that we can explain essentially the entirety of the deviation from

Fano = 1 (Figure 6.2B). Thus, we find no need to invoke these alternative hypotheses to explain the

observed “burstiness” of constitutive transcription. Indeed, “burstiness” would be something of a

misnomer in this case, as what we are describing is not so much periods of inactivity punctuated by

bursts of activity, as it is constant activity at a fluctuating average rate.

We wish also to highlight a philosophical difference between this work and other recent studies

in the field. Recent work from other labs has examined the noise properties of a broad swath of

naturally occurring E. coli promoters [9, 23]. In [23], the authors examined a number of promoters

under varying induction conditions and concluded that variability as a function of the mean follows a

“universal” curve described by an effective two-state model. From our perspective, these experiments

make it difficult to interpret differences between promoters and induction conditions in terms of

distinct physical parameters because of the wide variety of promoter architectures in play as well

as the diverse mechanisms of induction. In this work, we have instead taken a “synthetic biology”

approach of building promoters from the ground up. By directly controlling aspects of the promoter

architecture, our goal has been to directly relate changes in promoter architecture to changes in

observed gene expression variability. We believe that this work has convincingly demonstrated our

ability to do so, and leads us inexorably to the conclusions that variability in gene expression does
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depend on promoter architecture, and that mutations in regulatory DNA can alter gene expression

noise. This suggests that gene expression noise may be a tunable property subject to evolutionary

selection pressure, as mutations in regulatory DNA could provide greater fitness by increasing (or

decreasing) variability. Demonstrating the relevance of this hypothesis in natural environments and

extending these results to the often complex and poorly characterized promoter architectures of

wild-type E. coli and other organisms remain ongoing challenges for researchers in this field.



203

6.4 Materials and Methods

6.4.1 Strains

The genetic modifications used to create the strains used in the various sections of the main paper

are listed below with a bold heading characterizing which parameter is tuned within that class of

strains.

Constitutive expression: tuning r. As described in [38], promoter constructs consist of an

RNAP binding site with a LacI O2 binding site immediately downstream of the transcription start

site, as shown in Figure 6.1A. (The O2 binding site does not affect expression because lacI is deleted

from the host strain used in gene expression measurements.) Expression of a LacZ reporter is tuned

over a factor of ≈ 500 by changing the DNA sequence of the RNAP binding site. Promoter +

reporter constructs are chromosomally integrated at the gal locus in an E. coli strain (HG105) in

which lacI and lacZYA are deleted.

Simple repression: tuning kon
R . In two of the constitutive promoter constructs (lacUV5

and 5DL1) the O2 LacI binding site is replaced with an Oid LacI binding site. This construct is

integrated into an E. coli strain (RCB110) in which wild-type lacIZYA is deleted as before, but with

the addition of a genetic circuit allowing inducible control of LacI expression. This circuit consists of

two components: first, the tet repressor TetR is chromosomally integrated at the gspI locus under

the control of the strong constitutive promoter PN25; and second, LacI is integrated at the ybcN

locus under the control of the PLtetO-1 promoter [45], which is repressed by TetR. Expression of

LacI can thus be induced by the small molecule anhydrotetracycline (aTc), which interacts with

TetR and prevents it from repressing transcription of LacI. The ribosomal binding sequence of the

LacI is the “1147” version from reference [42]: at full induction this produces roughly 40 LacI per

cell. By varying the aTc concentration, we tune mean gene expression by tuning the intracellular

concentration of LacI, yielding the curves shown in Figure 6.4A.

Simple repression: tuning koff
R . These measurements exploit the same strain (RCB110) from

the kon
R tuning; however in this case we use only the lacUV5 promoter strain and create constructs

in which the O2 LacI binding site is replaced by O1, O3 or Oid. These constructs are integrated into

the galK locus as before, yielding four constructs total each with a different LacI binding site. These

strains are measured at constant inducer concentration (to achieve equal repressor copy numbers

across all samples) for three distinct induction conditions. This was done for each of three different

LacI concentrations as shown in Figure 6.4B.

6.4.2 Growth

Cultures are grown overnight to saturation (at least 8 hours) in LB and diluted 1:4000 into 30

mL of M9 minimal media supplemented with 0.5% glucose in a 125mL baffled flask. Growth in



204

minimal media continues approximately 8 hours and cells are harvested in exponential phase when

OD600= 0.3− 0.5 is reached.

6.4.3 mRNA FISH

6.4.3.1 Fixation and labeling

Our assay is based on that used in reference [23]. Once a culture reaches OD600= 0.3 − 0.5, it

is immersed in ice for 15 minutes before being harvested in a large centrifuge chilled to 4◦C for 5

minutes at 4500 g. The cells are then fixed by resuspending in 1 mL of 3.7% formaldehyde in 1x PBS

which is then allowed to mix gently at room temperature for 30 minutes. Next, they are centrifuged

(8 minutes at 400 g) and washed twice in 1 mL of 1x PBS twice. The cells are permeabilized by

resuspension in 70% Ethanol which proceeds, with mixing, for 1 hour at room temperature. The cells

are then pelleted (centrifuge at 600 g for 7 minutes) and resuspended in 1 mL of 20% wash solution

(200 µL formamide, 100 µL 20x SSC, 700 µL water). This mixture is allowed to sit several minutes

before centrifugation (7 minutes at 600g) and resuspended in 50 µL of DNA probes (consisting

of a mix of 72 unique DNA probes; individual oligo sequences listed in Table 6.1) labeled with

ATTO532 dye (Atto-tec) in hybridization solution (0.1 g dextran sulfate, 0.2 mL formamide, 1 mg

E.coli tRNA, 0.1 mL 20x SSC, 0.2 mg BSA, 10 µL of 200 mM Ribonucleoside vanadyl complex).

This hybridization reaction is allowed to proceed overnight. The hybridized product is then washed

four times in 20% wash solution before imaging in 2x SSC.

6.4.3.2 FISH data acquisition

Samples are imaged on a 1.5% agarose pad made from PBS buffer. Each field of view is imaged

with phase contrast at the focal plane and with 532 nm epifluorescence (Verdi V2 laser, Coherent

Inc.) both at the focal plane and in 8 z-slices spaced 200 nm above and below the focal plane (for

a total of 17 slices), sufficient to cover the entire depth of the E. coli. The images are taken with

an EMCCD camera (Andor Ixon2) under 150× magnification. The phase image is used for cell

segmentation and the fluorescence images are used in mRNA detection. A total of 100 unique fields

of view are imaged in each sample and a typical field of view has between 5 and 15 viable cells (cells

which are touching and cells that have visibly begun to divide are ignored) resulting in roughly 900

individual cells per sample on average. However, due to differences in plating density and position

quality, the actual number can vary. A histogram of the sample size for all samples in this study is

shown in Figure 6.5.
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6.4.3.3 FISH analysis

The FISH data is analyzed in a series of Matlab (The Mathworks) routines. The overview of the

workflow is as follows: identifying individual cells, segmenting the fluorescence to identify possible

mRNA, quantifying the mRNA which are found (because of the small size of E. coli, at high copy

number mRNA can be difficult to distinguish and count by eye).

Cell identification and segmentation: In phase contrast imaging, E. coli are easily distin-

guishable from the background and automated programs can identify, segment and label cells with

high fidelity. The results of the phase segmentation are manually checked for accuracy: cells which

are touching or overlapping other cells, misidentification of cells or their boundaries or cells which

have visibly begun to undergo division are all discarded manually.

Fluorescence segmentation: First we perform several steps to process the raw intensity im-

ages. The images are flattened, a process to correct for any uneven elements in the illumination

profile, using a flattening image. The flattening image is an average over 10−15 images of an agarose

pad coated with a small drop of fluorescein (such that the drop spreads evenly across most of the

pad); the resulting image is a map of illumination intensity at any given pixel Iflat. Each pixel of

every fluorescence image is scaled such that the corresponding pixel in the flattening image would

be of a uniform brightness (typically each pixel is scaled up to the level of the brightest pixel). This

can be achieved by renormalizing each pixel in the data images and dividing by the ratio of the

intensity of the corresponding pixel in the flattening image to the intensity of the brightest pixel. In

other words the raw images, I, are renormalized such that for pixel i, j with raw intensity I(i,j),

I
(i,j)
corrected =

(
I(i,j) − I(i,j)

dark

)
×

(
maxi,j(I

(i,j)
flat − I

(i,j)
dark)

I
(i,j)
flat − I

(i,j)
dark

)
, (6.9)

where Idark corresponds to an image taken with no illumination (mostly these counts are from

camera offset). In the preceding equation, the first term in parentheses is the signal from the i, jth

pixel, while the second term in parentheses corrects the signal for nonuniform illumination using the

flattening image. We then subtract from every pixel the contribution to our signal associated with

autofluorescence. The value for the autofluorescence is obtained by averaging over the fluorescence

of every pixel in a control sample (one which underwent the entire FISH protocol but did not possess

the lacZ gene). Finally, all local 3D maxima (where x − y is the image plane) in fluorescence are

identified. We require that the maxima be above a threshold in fluorescence (typically 300− 400%

above the background autofluorescence signal). This threshold eliminates all fluorescence maxima

in the control sample, which does not contain the lacZ gene.

mRNA quantification: Each identified maximum pixel is dilated in the image plane to a 5×5

box of surrounding pixels. These 5×5 boxes are referred to as “spots”. If multiple spots overlap, the

pixels which make up each overlapping spot are merged into one larger spot to avoid double counting
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the signal from any one pixel. Since, due to the small size of the E. coli we cannot guarantee that

every spot corresponds to exactly one mRNA, we must have a way to quantify the relation between

signal and mRNA copy number. An example histogram of the intensity of identified spots is shown

in Figure 6.6A. The histogram has two clear peaks in probability: one corresponding to background

noise, at approximately zero intensity, and the other corresponding to the intensity of a single mRNA.

The low intensity peak, corresponding to background noise, is removed by thresholding the spots

and rejecting spots that are less bright than the threshold. The threshold is selected to eliminate

spots in a control sample that does not contain the target mRNA. However, we find choice of this

threshold does not alter our results significantly since these spots are already significantly dimmer

than an mRNA. To determine the calibration between signal intensity and mRNA copy number

we take an average over all remaining isolated spots (meaning no merge events with other, nearby

spots) in very low expression samples (where the mean � 1 and mRNA are statistically unlikely

to overlap); see Figure 6.7A and B for examples of these thresholded histograms. Once this single

mRNA intensity value is identified, when possible we also verify in other low expression strains

that as we increase the mean expression it simply increases the frequency of spots with the single

mRNA intensity but does not increase the mean intensity of each spot. An example of this is shown

in Figure 6.7A where the single spot intensity histograms of seven unique strains are shown with

each histogram normalized by the number of cells in each sample. The growing peak at 1 mRNA

shows that as we transition from low expression towards having upwards of 1 mRNA per cell, the

increased signal is primarily due to an increased number of identified single mRNA, although some

brighter spots begin to appear corresponding to multiple mRNA per spot. Normalizing these same

histograms by the total number of identified spots, as shown in fig 6.7B, demonstrates that the

identified spots have the same character in each sample regardless of mean. The dashed black line

shows the result of a Gaussian fit to the combined data from all seven samples in the figure. Finally,

the day-to-day variability in these histograms is shown in Figure 6.7C for five different acquisitions

on two distinct constitutive expression strains.

With this calibration in hand, we sum the signal from all identified spots in a given cell and

determine how many mRNA are in that cell by dividing by the single mRNA intensity calibration

found previously. A different technique, used in some studies, is to first quantify every individual

identified spot then determine the copy number by summing the total number of identified spots in

each cell. Figure 6.8 shows a direct comparison of these methods on simulated data (crosses) and

real data (circles) with red corresponding to the “whole cell” method used in our study, where signal

is summed over the whole cell and black corresponding to the single spot analysis where each spot is

quantized and rounded to the nearest whole number of mRNA. The methods gives roughly identical

values for the mean; however, the corresponding Fano factor is very slightly systematically higher

using the single spot analysis, probably due to the rounding performed on each spot.
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6.4.4 Miller LacZ assay

Concurrent with the mRNA FISH protocol, each sample also has LacZ activity measured by Miller

assay. The protocol is identical to that described previously [38, 42], which is a slightly modified

from that described in Ref [46]. Once cultures are ready for measurement, the OD600 of each

sample is recorded. Next, a volume of cells between 5 µL and 200 µL is added to Z-buffer (60mM

Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4, 50 mM β-mercaptoethanol, pH 7.0) to

reach a total of 1 mL in a 1.5 mL Eppendorf tube. The time of the enzymatic reaction is inversely

proportional to the volume of cells, and thus low expression samples require more volume and high

expression samples require less to ensure that the time of reaction is reasonable (∼ 1−10’s of hours)

to avoid measurement uncertainty, and to ensure that the yellow color is easily distinguishable

from a blank sample of 1 mL of Z-buffer. The cells are lysed with 25 µL of 0.1% SDS and 50 µL

of chloroform, mixed by a 10s vortex. To begin the reaction, 200 µL of 4mg/mL 2-nitrophenyl

β-D-galactopyranoside (ONPG) in Z-buffer is added to the Eppendorf tube. The tube is monitored

for the development of yellow color and once sufficient yellow has developed in a sample (sufficient

absorbance at 420nm, without saturating the reading), the reaction is stopped through the addition

of 200 µL of 2.5 M Na2CO3. Once all samples have been stopped, cell debris is removed from the

supernatant by centrifugation at > 13, 000 g for 3 min. 200 µL of each sample, including the blank

which contains no cells, are loaded into a 96 well plate and absorbance at 420nm and 550nm is

measured for each well with a Tecan Safire2. The LacZ activity in Miller units is then,

MU = 1000
OD420− 1.75×OD550

t× v ×OD600
0.826, (6.10)

where t is the reaction time in minutes, v is the volume of cells used in mL and OD refers to the

optical density measurements obtained from the plate reader. The factor of 0.826 accounts for the

use of 200 muL Na2CO3 as opposed to 500 µL which changes the concentration of ONPG in the

final solution. While some alternative protocols involve time-resolved measurements of LacZ activity

over a range of cell densities, we believe the protocol used here is a simple and accurate method

for providing a consistent relative calibration for our mRNA measurements that has been shown

to be equivalent in terms of accuracy and reproducibility to more complicated and time-consuming

measurement protocols [42].

6.5 Supplementary text

6.5.1 Calibration of mRNA FISH data versus Miller assay

As a test of our ability to accurately measure mean mRNA copy number with mRNA FISH, we

directly compare our results to simultaneously acquired measurements of mean LacZ enzymatic
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activity (the protein produced by the mRNA targeted in our FISH labelling). In Figure 6.9, we show

the mean mRNA expression vs. mean LacZ activity in Miller units for every measurement of every

strain in this study. These two measurements of expression give consistent results as demonstrated by

direct proportionality between these two measurement techniques over several orders of magnitude

of expression. Error bars represent the standard deviation from repeated measurements.

6.5.2 Estimation of additional noise sources

6.5.2.1 Quantification error in image analysis

As described in the main text, the intensity of a single mRNA molecule is determined using a

low mRNA expression sample such that detected spots are most likely to contain either zero (i.e.

the fluorescence maxima is due to background noise) or one mRNA. A representative histogram

of detected spots is shown in Figure 6.6A. However, this identification and quantification process

is not without uncertainty of its own. While ideally each spot should have the same clear value

for its integrated intensity, the intensity of a given identified mRNA varies significantly, and we

attribute this to factors such as fluctuations in probe hybridization efficiency and non-specifically

bound probes. We wish to estimate the effect that variability in the single mRNA intensity has on

the overall observed variability. In order to do so, we will make the following assumptions:

• mRNA copy numbers are distributed with mean µm and variance σ2
m. Aside from this, we

make no assumptions about the specific form of the mRNA distribution.

• Integrated intensities for a single mRNA are distributed with mean 〈I1〉 and variance σ2
I .

• Intensities for more than one mRNA are independent and additive. For cells containing k

mRNA, integrated intensities have mean k〈I1〉 and variance kσ2
I (since variances add for inde-

pendent random variables).

In this work we sought to measure the Fano factor for various mRNA copy number distributions.

However, what we actually measure experimentally (as described above) is the following:

Fanoexp = Fano

(
I

〈I1〉

)
=

1

〈I1〉
var(I)

〈I〉
, (6.11)

where I is a random variable denoting the integrated intensity of a cell, 〈I1〉 is the mean intensity

of a single mRNA. That is, we measure the Fano factor of a set of observed integrated intensities

divided by the single mRNA intensity. We will now use the assumptions listed above to further

investigate equation 6.11, and proceed by computing the mean and variance of I.
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The random variable I is distributed according to:

P (I) =

∞∑
k=0

pm(k)pI(I|k) (6.12)

where pm(k) is the probability that a cell contains k mRNA, and pI(I|k) is the probability of

obtaining intensity I given that a cell contains k mRNA. We will denote the conditional expectation

of the nth moment of I given k as 〈In|k〉: i.e., 〈In|k〉 =
∫
InpI(I|k)dI. Then the expected value of

I is given by

〈I〉 =

∫ ∞
−∞

IP (I)dI, (6.13)

〈I〉 =

∫ ∞
−∞

I

∞∑
k=0

pm(k)pI(I|k)dI, (6.14)

〈I〉 =

∞∑
k=0

pm(k)

∫
IpI(I|k)dI, (6.15)

〈I〉 =

∞∑
k=0

pm(k)〈I|k〉, (6.16)

〈I〉 =

∞∑
k=0

pm(k)k〈I1〉 = 〈k〉〈I1〉, (6.17)

〈I〉 = µm〈I1〉, (6.18)

which is exactly what one would naively expect (the mean integrated intensity equals the mean

number of mRNA times the mean single mRNA intensity). To compute the variance of I, we next

need to compute the expected value of I2:

〈I2〉 =

∫ ∞
−∞

I2P (I)dI, (6.19)

〈I2〉 =

∫ ∞
−∞

I2
∞∑
k=0

pm(k)pI(I|k)dI, (6.20)

〈I2〉 =

∞∑
k=0

pm(k)

∫ ∞
−∞

I2pI(I|k)dI, (6.21)

〈I2〉 =

∞∑
k=0

pm(k)〈I2|k〉. (6.22)

According to the assumptions above,

var(I|k) = 〈I2|k〉 − 〈I|k〉2 = kσ2
I (6.23)

and hence,

〈I2|k〉 = k2〈I1〉2 + kσ2
I . (6.24)
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Plugging this back into equation 6.22, we obtain:

〈I2〉 = 〈I1〉2
∞∑
k=0

k2pm(k) + σ2
I

∞∑
k=0

kpm(k), (6.25)

〈I2〉 = 〈k2〉〈I1〉2 + 〈k〉σ2
I , (6.26)

〈I2〉 = (µ2
m + σ2

m)〈I1〉2 + µmσ
2
I , (6.27)

where we have used the fact that 〈k2〉 = σ2
m + µ2

m. Hence

var(I) = (µ2
m + σ2

m)〈I1〉2 + µmσ
2
I − µ2

m〈I1〉2, (6.28)

var(I) = σ2
m〈I1〉2 + µmσ

2
I , (6.29)

and

Fanoexp =
1

〈I1〉
σ2
m〈I1〉2 + µmσ

2
I

µm〈I1〉
, (6.30)

Fanoexp =
σ2
m

µm
+

σ2
I

〈I1〉2
. (6.31)

The two terms in equation 6.31 have simple interpretations. The first term is the Fano factor of

the actual underlying mRNA distribution. The second term reflects uncertainty in the intensity of

a single mRNA spot and is essentially the squared coefficient of variation of the intensity of a single

mRNA spot. This value depends slightly on the conditions of the specific acquisition. For instance,

the single mRNA peaks from one experiment are shown in Figure 6.7B. For this acquisition, one

can fit a Gaussian to the observed single spot mRNA intensity distribution (dashed black line) and

make a measurement of both the mean and standard deviation of this distribution to calculate the

expected contribution to the Fano factor from quantization error, as in equation 6.31. For this

acquisition, we see that σ2
I/〈I1〉2 = 0.16. This result is typical (as demonstrated in Figure 6.7C) and

therefore the green shaded region in Figure 6.2A has a height equal to 0.16. Of course, this value

is not static and depends on the particular acquisition conditions and could be calculated for each

separate acquisition independently. However, these values are small enough relative to the range

of Fano factors (≈ one to eight) observed in our experiments that this effect will not change the

qualitative conclusions reached in this work.

As a complementary test of the performance of our image analysis routines, we created simulated

FISH data sets at a variety of mRNA expression levels. Our goal was as much as possible to

faithfully reproduce the images coming off of our microscope. We acquire raw microscopy data by

spotting FISHed E. coli cells on agarose pads, mounting the cells on the microscope, and running

an automated acquisition script. The script generates a grid of ≈ 100 positions on each pad; at
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each position, a phase contrast image is taken for segmentation purposes, followed by a fluorescence

z stack (separated by 0.2 µm) to image mRNAs. Our simulated data thus also consisted of sets of

≈ 100 “positions”, with each position consisting of a simulated phase contrast image and a simulated

fluorescence z stack. The data generation algorithm at each position can be roughly described as

follows:

1. Generate a phase contrast image. 25 “E. coli” cells are placed at random in a field of view.

Cells are modeled as ellipsoids 22 pixels in length, 10 pixels wide, and 4 pixels tall.

2. Determine the number of mRNA copies in each cell. For each cell, the number of mRNA it will

contain is drawn from the appropriate probability distribution (for instance, from a Poisson

distribution with a given mean).

3. Determine the spatial distribution of mRNAs within a cell. For each cell, mRNA are distributed

uniformly at random within the cell. For instance, if a cell has four mRNA assigned to it, then

four pixels within the cell are chosen at random, with each one corresponding to the center of

an mRNA.

4. Determine the intensity of each mRNA. As seen in Figure 6.6, the integrated fluorescence

intensity of a single mRNA can vary substantially. We choose the intensity of each mRNA

from a Gaussian distribution with mean 0.4 and standard deviation 0.16 (thus σ2
I/〈I1〉2 = 0.16

as in Figure 6.7B). These values were chosen as reasonable representations of our physical

data sets. Each mRNA pixel (as determined in the previous step) is assigned a fluorescence

intensity drawn from this distribution.

5. Convolve with point-spread-function. In reality mRNA do not show up as single bright pixels

but rather as diffraction-limited spots. To simulate this we convolve the fluorescence stack

with a Gaussian point-spread function with a standard deviation of 0.875 pixels. This value

was chosen as a reasonable representation of the point spread functions observed in our actual

data.

6. Generate background and noise. In addition to the signal from actual mRNA molecules,

our images are subject to background from cellular autofluorescence and the agarose pad, as

well as noise from unbound or non-specifically bound fluorescent probes. To simulate this,

a random fluorescence background is generated for each cell by drawing pixel values from

a geometric distribution with mean 466 (reflecting typical mean background fluorescences

encountered in experimental data), convolving with a Gaussian with mean 1.0 pixels (to reflect

spatially correlated noise from e.g. unbound probes), then adding these values to the “signal”

as determined in the previous step. This background is added to a constant offset of 1080

counts to mimic a typical camera offset.
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In Figure 6.8 we show the measured Fano factor for simulated data for a population of cells with

Poisson distributed mRNA copy number (circles) using two distinct mRNA quantification schemes

as described in the methods. As expected, even at low mRNA expression, the measured Fano factor

is greater than the correct value of one, due to the variability in intensity measured for a single

mRNA. The single mRNA intensity distribution is a Gaussian with σ2
I/〈I1〉2 = 0.16 and is designed

to mimic our experimental data (see Figure 6.6B). Equation 6.31 thus predicts that the measured

Fano factor will be 1.16, this prediction is shown as the green bar in Figure 6.8 for comparison

to the Fano factor in the simulated data. For reference, our Fano factor measurements (with gene

copy number noise subtracted) for the constitutive expression strains are shown as crosses. While

the quantification noise matches at low means, at higher means RNAP fluctuations in the real data

are likely also contributing to the measured noise and pushing the experimental noise above the

simulations’ noise.

6.5.2.2 Gene copy number variation

As cells grow and divide, their chromosomes are replicated, causing the copy number of a given gene

to change over the course of the cell cycle. This effect can potentially obscure our measurements of

transcriptional noise. To that end, we wish to calculate the effect of changes in gene copy number on

variability in gene expression. Under the growth conditions of our experiments, E. coli cells contain

one or two chromosomes, and hence one or two copies of the gene of interest. Let 1− f denote the

fraction of the cell cycle for which one copy of the gene of interest is present. Then f is the fraction

for which two gene copies are present. The probability that m mRNA are present in a cell is given

by

p(m) = (1− f) p1(m) + f p2(m), (6.32)

where p1(m) is the probability of m mRNA given one gene copy, and p2(m) is the probability of m

mRNA given two gene copies. We will assume that, when two gene copies are present, expression

from the two copies is statistically independent. Thus, we can use well-known properties of sums of

independent random variables to calculate properties of p2(m).

We will proceed by computing the mean and variance of p(m) given in equation 6.32.

〈m〉 =

∞∑
m=0

mp(m) = (1− f)

∞∑
m=0

mp1(m) + f

∞∑
m=0

mp2(m) (6.33)

= (1− f)〈m〉1 + f〈m〉2. (6.34)

It can easily be shown that 〈m〉2 = 2〈m〉1 and hence

〈m〉 = (1 + f)〈m〉1. (6.35)
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Similarly for 〈m2〉, we have:

〈m2〉 = (1− f)〈m2〉1 + f〈m2〉2. (6.36)

It can be shown that 〈m2〉2 = 2〈m2〉1 + 2〈m〉21 (this follows from the fact that the variance of a sum

of independent random variables is equal to the sum of the variances). Thus we obtain

〈m2〉 = (1− f)〈m2〉1 + f
[
2〈m2〉1 + 2〈m〉21

]
. (6.37)

Putting these expressions together, we find that

var(m) = 〈m2〉 − 〈m〉2 (6.38)

= (1 + f)〈m2〉1 + 2f〈m〉21 − (1 + f)2〈m〉21 (6.39)

= (1 + f)〈m2〉1 − (1 + f2)〈m〉21 (6.40)

The Fano factor is then

F = var(m)/〈m〉

=
(1 + f)〈m2〉1 − (1 + f2)〈m〉21

(1 + f)〈m〉1

=
〈m2〉1
〈m〉1

− (1 + f)〈m〉21 − f(1− f)〈m〉21
(1 + f)〈m〉1

F =
〈m2〉1 − 〈m〉21
〈m〉1︸ ︷︷ ︸

Transcription

+
f(1− f)

1 + f
〈m〉1︸ ︷︷ ︸

Gene copy number

, (6.41)

reproducing equation 2 from the main text. The two terms of this expression each have straightfor-

ward interpretations. The first term is simply the (architecture-dependent) Fano factor of a single

copy of a gene. The second term is the contribution from copy number variation. We can make

two observations. First, the contributions to overall noise from promoter architecture and from gene

copy number change are independent and additive. This is unsurprising since the two processes are

(by assumption) independent and uncorrelated. Second, the contribution due to gene copy number

increases linearly with expression. The predicted contribution to the Fano factor from copy number

variation, the second term in equation 6.41, is shown in Figure 6.10 as a function of the average

gene copy number (= 2− f). As expected, if the copy number has a defined, static value (f = 0 or

f = 1) there is no contribution to the Fano factor from variation in copy number. However, between

these two minima, the variance reaches a maximum at f = 0.5, when the cell spends equal time

with one or two copies, and thus the contribution to Fano factor has a maximum shifted towards

slightly lower means (which appears in the denominator of Fano factor). In a section to follow and

in Figure 6.14, we show that as predicted, if the cells are binned into a population expected (based
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on physical size) to have only one or only two copies of the measured gene, the Fano factor deceases

by roughly the same magnitude as that expected from copy number variations.

6.5.2.3 Extrinsic noise due to repressor copy number fluctuations

In addition to the “intrinsic” variability characterized by our modeling efforts, extrinsic sources of

variability including (e.g.) changes in TF copy number can also contribute to overall variability

in gene expression. To investigate the potential effects of fluctuations in repressor copy number,

we performed numerical studies in which the repressor copy number was allowed to vary across a

population of cells. Let Parc(m|R = k) denote the promoter architecture-dependent probability that

a cell contains m mRNA given k copies of a repressor TF. Let PTF (R = k) denote the probability

that a cell contains k repressor copies. (Our analysis of “intrinsic” cell-to-cell variability implicitly

assumes that all cells have the same repressor copy number - that is, PTF (R = k) = δkk′ for some

k′.) Then the overall probability of observing m mRNA in a cell is given by

P (m) =

∞∑
k=0

Parc(m|R = k) · PTF (R = k). (6.42)

The quantity Parc(m|R = k) can be computed numerically as described in [19], and thus we can

compute P (m) numerically for any repressor copy number distribution PTF (R = k).

Here, we analyzed a population of cells in which the repressor copy numbers of individual cells

are distributed according to a negative binomial distribution. The negative binomial distribution

PTF (k;n, p) =

(
n+ k − 1

n− 1

)
pn(1− p)k (6.43)

gives the probability that the nth success occurs on the (k + n)th trial, where the probability of

success on any single trial is p. It is often used to model a more dispersed or long-tailed distribution

than the Poisson distribution, and has been shown to correspond to constitutive mRNA production

with a geometrically distributed number of proteins translated from each mRNA [18]. The degree of

dispersal can be tuned via the parameter n as shown in Figure 6.11A. For a range of different n values,

we tuned mean repressor expression via the parameter p while holding n constant. The resulting

Fano vs. mean curves for the target gene are shown in Figure 6.11B. We observe that, despite

substantial variability in repressor copy number, the overall variability is predominantly contributed

by intrinsic sources. This conclusion is robust across both relatively narrow and relatively dispersed

repressor copy number distributions.
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6.5.2.4 Extrinsic noise due to RNAP copy number fluctuations

In addition to repressor copy number fluctuations, RNAP copy number fluctuations also have the

potential to contribute to the overall observed variability. We will follow an approach similar to the

one outlined in the previous section. The distribution of RNAP copy numbers will be estimated from

sources in the literature. The average RNAP copy number is reported as≈ 10, 000 per cell [47]. In [9],

the authors report that for a typical protein with 10,000 copies per cell, the standard deviation in

protein copy number is approximately 3200. We will thus model the RNAP copy number distribution

as a negative binomial distribution with mean equal to 10,000 and standard deviation equal to 3200,

show in Figure 6.12A. We assume that the transcription rate r is proportional to the RNAP copy

number in the cell. The resulting Fano vs. mean curves are plotted in Figure 6.12B for both the

constitutive expression and simple repression architectures. In both cases, we see that extrinsic

variability due to RNAP fluctuations increases with increasing mean expression. In the case of

constitutive expression, this increasing trend in the Fano vs. mean curve is markedly similar to the

increasing trend we observe in our constitutive expression data. In the case of simple repression,

the addition of extrinsic variability does not change the overall qualitative features of the predicted

curve. However, it does lead to the prediction that the overall observed Fano factor will not fall all

the way back down to one in the absence of repressor, which is consistent with our experimental

observations.

In the case of constitutive expression, it is possible to derive an informative analytical expression

for the extrinsic noise contributed by variation in r. While this is a general approach to variations

in r, later we will relate this to the specific circumstance of RNAP fluctuations expected in our

constitutive expression measurements.

Let the probability distribution for values of r be denoted by Pext(r). As in the main text (equa-

tion 6.1), the steady-state probability distribution for mRNA copy number, m, given a particular

value of r is a Poisson distribution with mean r/γ, such that

Parc(m|r) =
(r/γ)m

m!
e−r/γ . (6.44)

We assume that r changes on a timescale sufficiently long compared to 1/γ that we can use the

steady-state probability distribution. Then the overall probability distribution for mRNA copy

number, integrated over all possible values of r, is given by

P (m) =

∫
Parc(m|r)Pext(r)dr. (6.45)

To compute the Fano factor for this overall distribution, we will as usual proceed by computing 〈m〉
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and 〈m2〉.

〈m〉 =

∞∑
m=0

m

∫
Parc(m|r)Pext(r)dr, (6.46)

〈m〉 =

∫
Pext(r)

∞∑
m=0

mParc(m|r)dr, (6.47)

〈m〉 =

∫
Pext(r)

r

γ
dr, (6.48)

〈m〉 =
〈r〉
γ
, (6.49)

where 〈r〉 is the mean value of r. Similarly, for 〈m2〉,

〈m2〉 =

∞∑
m=0

m2

∫
Parc(m|r)Pext(r)dr, (6.50)

〈m2〉 =

∫
Pext(r)

∞∑
m=0

m2Parc(m|r)dr, (6.51)

〈m2〉 =

∫
Pext(r)

(
r2

γ2
+
r

γ

)
dr, (6.52)

〈m2〉 =
〈r〉
γ

+
〈r2〉
γ2

. (6.53)

Hence, the Fano factor is given by

Fano =
〈m2〉 − 〈m〉2

〈m〉
, (6.54)

Fano =

〈r〉
γ + 〈r2〉

γ2 − 〈r〉
2

γ2

〈r〉
γ

, (6.55)

Fano = 1 +
1

γ

〈r2〉 − 〈r〉2

〈r〉
, (6.56)

Fano = 1 +
1

γ
Fano(r). (6.57)

Thus far, we have assumed nothing about the specific mechanism causing fluctuations in r. Let’s

now explore the case in which fluctuations in r are caused by fluctuations in RNAP copy number. We

will assume that the transcription rate r is proportional to the RNAP copy number, so that r = r0E

where E is the RNAP polymerase copy number and r0 is a constant of proportionality that can be

thought of as roughly the transcription rate per RNAP molecule. The constant of proportionality

r0 is assumed to depend on the strength of the promoter, so that when we tune mean expression

by tuning promoter strength, it is really (by assumption) the parameter r0 that we are changing.
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Under this assumption, equation 6.57 becomes:

Fano = 1 +
1

γ
Fano(r0E), (6.58)

Fano = 1 +
r0

γ
Fano(E), (6.59)

Fano = 1 +
〈m〉
〈E〉

Fano(E), (6.60)

Fano = 1 + 〈m〉 σ
2
E

〈E〉2
, (6.61)

Fano = 1 +
1

10
〈m〉, (6.62)

where we have used the fact that by assumption 〈m〉 = 〈r〉/γ = r0〈E〉/γ, and used the result of [9]

that the squared coefficient of variation σ2
E/〈E〉2 ≈ 10−1 for a protein with ≈ 104 copies per cell.

Equation 6.62 tells us simply that fluctuations in RNAP copy number contribute an additional term

to the Fano factor that increases linearly with mean gene expression, with a slope equal to the

squared coefficient of variation of the RNAP copy number.

However, it is worth noting that RNAP copy number fluctuations are by no means the only

extrinsic mechanism capable of generating this linear relationship between Fano factor and mean

expression. For instance, one could imagine that DNA supercoiling renders the promoter inacces-

sible and thus silences transcription some fraction s of the time. We could model this scenario by

saying that the effective RNAP copy number is zero for a fraction s of the time, and E0 for the

remainder (i.e., 1 − s) of the time, where E0 is some number of order 104. As before, we assume

that the transcription rate is proportional to the RNAP copy number. We can thus proceed from

equation 6.59. It can easily be shown that Fano(E) = sE0 in this case, and hence equation 6.59

becomes

Fano = 1 +
r0

γ
sE0. (6.63)

If we use the fact that 〈m〉 = r0〈E〉/γ = r0(1− s)E0/γ, we obtain finally

Fano = 1 +
s

1− s
〈m〉. (6.64)

So again, we have an extrinsic noise term that increases linearly with mean expression, here with a

slope that depends on the fraction of time s for which expression is silenced. The implications of

this result will be discussed in the following section.

6.5.2.5 Extrinsic sources of noise: Concluding remarks

To conclude this exploration of sources of extrinsic noise, we will offer a few observations concerning

model selection and the interpretation of experimental evidence. In a 2011 paper, Huh and Paulsson
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pointed out that protein partitioning at cell division yields the same 1/〈x〉 overall scaling in the

cell-to-cell variability in protein levels as does Poissonian transcription [48]. Thus, experimental

observation of 1/〈x〉 noise scaling does not in itself provide a basis for distinguishing between these

two mechanisms. Although this specific point is not relevant in the case of our experiments, since

mRNA lifetimes are sufficiently short compared with division times that partitioning effects are

negligible, the overall spirit of Huh and Paulsson’s argument is relevant.

In particular, we found that the effect of gene copy number variation on the Fano factor increases

linearly with mean gene expression. However, in the case of constitutive expression, we also find

that the effect of RNAP fluctuations on the Fano factor increases linearly with mean expression.

Furthermore, the same would be true (in the case of constitutive expression) if one postulated that

a mechanism such as DNA supercoiling causes transcriptional silencing e.g. 25% of the time: one

would find a linear relationship between Fano factor and mean expression. So how can we have any

confidence in the breakdown of noise sources in Figure 6.2? In our view, this discussion highlights the

importance of independent corroboration of each of the pieces shown in Figure 6.2. The quantization

error is corroborated through both theoretical calculation and analysis of simulated data (above).

The gene copy number variation effect is corroborated below by using cell size as a proxy for gene

copy number (older, larger cells will have two chromosome copies, while younger, smaller cells

will have one). The RNAP fluctuation effect is the most speculative. Although we believe it is

defensible both in terms of the underlying assumption that expression is proportional to RNAP

copy number [49], and in the magnitude of RNAP fluctuations taken from literature sources [9, 50],

our data does not provide us with a means to independently corroborate this effect. (To do so, one

might perform an experiment in which fluorescently tagged RNAP molecules are used to quantify

RNAP fluctuations.) Thus, it is possible that the RNAP fluctuation effect is instead something

else entirely, such as transcriptional silencing by DNA supercoiling. This is the reasoning behind

our statement in the Discussion of the main text that “our data does not completely rule out these

[alternative] hypotheses.”

6.5.3 Error bars in Fano factor measurements

In the main text Figures 6.2 and 6.4 as well as SI Figures 6.13 and 6.14B contain experimental

measurements for the Fano factor. Typically there are at least three repeats of any given condition

and each individual data point represents an individual experiment; all available data points are

plotted on every figure. Error bars are determined by bootstrapping the single cell copy number

distribution 1000 times and calculating the standard deviation in the Fano factor for those 1000

independent bootstrapped data sets. In other words, the single cell mRNA copy number distribution,

which typically contains roughly 900 entries of the number of mRNA in a given cell, is randomly

resampled with replacement (the same cell may appear multiple times in a given bootstrapped data
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set) to create a new data set with the equivalent number of entries. This is repeated 1000 times

and the standard deviation of the Fano factor in these measurements is used as an error bar for the

measurement.

6.5.4 Copy number variation: Uncorrected figures

In the main text, our focus was on the promoter architecture-dependent component of gene expres-

sion variability, and thus we subtracted the gene copy number-dependent term (as defined by the

second term in equation 6.41) from the measured Fano factor in Figures 6.2 and 6.4 of the main

text. However, doing so does not change the qualitative conclusion that variability is promoter ar-

chitecture dependent. In Figure 6.13, we plot the data from Figures 6.2 and 6.4 without subtracting

the gene copy number-dependent term.

6.5.5 Testing gene copy number noise by cell size segregation

In the main text we claim that one significant contribution to the measured cell-to-cell mRNA copy

number variability stems from the fact that our measurements contain a mix of cells with one or two

copies of the gene of interest. To test this claim, we take the data from each measurement of our

constitutive strains and divide the data into two subsets based on their physical size. The idea is to

use our knowledge of the cell cycle, based on growth rate and gene position in the chromosome, to

divide each data set into one set with cells likely to have a single copy of the target gene (referred to

as “small cells”) and cells likely to have two copies of the target gene (referred to as “large cells”).

As mentioned in the main text, at 60 minute growth rate we expect that the galK locus has a copy

number of 1.66 [36], which implies that we should set our division line at roughly 1/3 of the way

through the cell cycle. We determine this point by plotting the cumulative probability distribution

of the cell area of every cell in every sample and identifying the area value where 1/3 of the cells are

smaller and 2/3 are larger. For our cells this is at an area of roughly 3.75 µm2. To help ensure that

this division is “clean” we discard cells 1/8 above and below the division line so that our small cells

contain the smallest 21% of cells and the large cells are the 54% largest cells.

In Figure 6.14A, we show the result of plotting the mean mRNA copy number of the small cells

bin versus the mean mRNA copy number of the large cells bin for every measurement of every

constitutive strain (black points). As stated previously while deriving gene copy number noise, we

expect that the large cells, binned to have two copies of the reporter gene, should have twice the

transcriptional activity of the small cells. This is precisely what is observed, the red line is a line of

slope two and intercept zero. While we do not expect this method to achieve a perfect division of

the total population, this test indicates that these subsets of data contain primarily cells with one

and two copies of the reporter gene.



220

In Figure 6.14B, we show the Fano factor of each of these two data subsets (black squares for

small cells, black circles for large cells) as well as the Fano factor of the full data sets as red diamonds.

Once again, the relevant sources of intrinsic and quantization noise are shaded in green (quantization

error), red (RNAP fluctuation error) and blue (gene copy number noise). First, when the mean is

small (< 1 per cell per gene copy) the expected contribution from copy number variations is small

(the blue shaded region is small) and thus the two subsets and the full data set give similar results

for the Fano factor as expected. Above this threshold we begin to see that the Fano factor of

either subset of data (both large cells and small cells) falls below the corresponding Fano factor

of the full data set. Furthermore, we see that the reduction in Fano factor causes the subsets to

fall approximately on the interface between the shaded blue and red region; the subset data is now

consistent with a Poisson process with quantization error and RNAP fluctuations but without gene

copy number fluctuations.

6.5.6 Determination of rate parameter values

The values of koff
R used in this work are taken from [51] and [19], and are shown in Table 6.2. More

specifically, reference [51] used a single molecule in vitro assay to measure the dissociation rate

from the LacI Oid operator. Reference [19] used this rate, along with knowledge of the dissociation

constants of the Oid, O1, O2, and O3 operators (reported in [26]), to estimate the dissociation rates

for the three additional operators, using the assumption that the ratio of the dissociation rates for

two particular operators is equal to the ratio of their dissociation constants. In order to determine

the three different values of kon
R used in Figure 6.4B of the main text, slightly more work was required.

Recall that we are assuming a diffusion-limited on rate for which kon
R = k0[R]. Reference [2] reports

that k0 = 2.7 × 10−3(s nM)−1. To determine kon
R for each of the three aTc concentrations, we

must determine the repressor concentration [R] at each aTc concentration. Unfortunately we do

not independently possess the exact input-output relation between aTc concentration and repressor

copy number, but we can estimate the repressor concentration at each aTc concentration by looking

at how strongly gene expression is repressed at each aTc concentration.

More specifically, in a recent work [42], the authors defined the “repression” as the ratio be-

tween gene expression in the absence of repressor transcription factors (TFs) and gene expression

in the presence of repressor TFs. They showed that, for the type of “simple repression” promoter

architecture used in this paper, the repression is given by

Repression = 1 +
2R

NNS
e−∆εrd/kBT , (6.65)

where R is the repressor copy number, NNS is the number of non-specific binding sites (taken to

be equal to the size of the E. coli genome, or 2× 5× 106), and ∆εrd is the repressor-DNA binding
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energy (−17.3 kBT ) for the Oid LacI binding site. This expression can be solved to determine the

repressor copy number R as a function of the repression

R = (Repression− 1)× NNS
2

e∆εrd/kBT . (6.66)

Garcia and Phillips [42] used this equation to determine the effective repressor copy number R,

and verified their results using quantitative Western blot analysis. We used a similar approach by

computing the repression at each of the aTc concentrations for the Oid operator construct, then

using equation 6.66 coupled with the fact that the volume of an E. coli cell is approximately 1 fL

to determine the repressor concentration at each aTc concentration. Finally, we multiplied these

concentrations by k0 to determine the appropriate value of kon
R . The results are summarized in Table

6.3.
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6.5.7 Supplemental Figures
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Figure 6.5: Histogram of the number of cells per FISH sample.
Each sample has 100 unique positions imaged. Due to differences in cell density and position quality
(positions are chosen in an automated process), samples range in size and have roughly 900 cells on
average per sample.
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Figure 6.6: Histograms of detected spot intensities for low expression FISH data.
Detected spots (local maxima in fluorescence signal), in principle, correspond to either zero or one
mRNA. Part (A) shows a representative histogram from FISH experiments, while part (B) shows
a histogram from simulated data. The signal of each spot has been normalized by the “single
mRNA intensity”. For both histograms, we identify a “noise” or background peak at fluorescence
intensity ≈ 0. This peak corresponds to unbound or nonspecifically bound probes. In both cases,
although we can discern distinct peaks, distinguishing between zero and one mRNA is not completely
unambiguous.
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Figure 6.7: Comparison of identified single spot intensities across different samples and
experimental acquisitions.
(A) Histograms of single spot intensities for seven samples, normalized by the number of cells in
each sample. The value on the y-axis corresponds to the probability of finding a spot with a given
intensity in any one cell in the sample. Mean expression in the samples ranges between 0.077 mRNA
per cell and 1.02 mRNA per cell. When expression is low, increases in the mean expression level
increase the probability of finding a spot with intensity equal to a single mRNA, rather than, for
instance, increasing the intensity of identified spots. (B) Histograms of single spot intensity values
for the same seven samples, normalized by the total number of identified spots in each sample. In
this case, the value on the y-axis corresponds to the probability that a given identified spot has a
particular intensity. The spots have roughly the same properties in each of these samples, although
in the highest expression samples, we begin to see increased probability of having spots with intensity
corresponding to more than 1 mRNA. The day-to-day reproducibility in this identification process
is shown in part (C) where two different strains (5DL30 and WTDL30) are shown measured across
five different acquisitions.
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Figure 6.8: Fano factor vs mean plot for simulated Poisson distributed data.
Simulated mRNA FISH data with Poisson distributed mRNA copy numbers (circles) is analyzed over
a range of mean mRNA levels to evaluate our analysis code. Since the simulated data is Poisson
distributed, the true value of the Fano factor is one. However, we see here that the measured
Fano factor is always slightly greater than one. This persistent noise represents the “quantization
error” discussed in the text; the expected contribution to the Fano factor from quantization error is
indicated by the height of the green bar. For comparison, the crosses are the Fano factors (corrected
for gene copy number noise) from our constitutive expression strains (data from Figure 6.2A). The
different colors (black and red) represent two distinct methods for quantifying the resulting mRNA
signal. For the black symbols, individual mRNA spots are identified and quantified (divided by
the intensity of a single mRNA) and rounded to the nearest whole number of mRNA and the copy
number in a cell is the sum of the number of mRNA in each identified spot for a given cell. The
red symbols correspond to summing the signal of all identified spots in a cell and determining a
cell’s copy number by dividing the summed signal by the single mRNA intensity (and, in this case,
not rounding). This second method (red symbols) is used in this work, but this choice does not
significantly influence the outcome.
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Figure 6.9: Experimental comparison of mean mRNA FISH measurements to enzymatic
assay.
Direct comparison of the average mRNA copy number to the average enzymatic activity of the
encoded protein for every data strain and condition used in the text. The red line is a linear fit to
the data. Error bars are standard deviation from multiple measurements.
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Figure 6.10: Fano factor contribution from gene copy number variation.
Predicted contribution to the Fano factor from gene copy number variation for three distinct mean
expression levels, 1 (blue curve), 5 (red curve) and 10 (green curve) mRNA copies per cell per gene
copy. The effect increases with transcription rate and is largest when the gene spends approximately
half the cell cycle with 1 copy and the other half with 2 copies.
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Figure 6.11: Quantifying the extrinsic noise contribution of repressor copy number vari-
ation.
(A) Single-cell repressor distribution for the negative binomial distribution with various choices for
the parameter n and for a Poisson distribution. (B) Predicted Fano factor for simple repression
with a static value for the repressor copy number without distribution (solid black line) along with
the Fano factor for the distributions shown in (A) of this figure. Even when the distribution is quite
wide, the added noise above the intrinsic piece is relatively small.
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Figure 6.12: Quantifying the extrinsic noise contribution of RNAP copy number varia-
tion.
(A) Negative binomial model of RNAP copy number distribution with width chosen to coincide
with reported literature values [9]. (B) The resulting contribution to the Fano factor from extrinsic
noise in RNAP copy number. The solid lines are the theoretical predictions without any source
of extrinsic noise for constitutive (red solid line) and simple repression (black solid line) and with
RNAP fluctuation noise (corresponding dashed lines).
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Figure 6.13: Fano factor vs. mean mRNA copy number. The data from Figure 6.4 of the main
text are plotted without subtracting the effect of gene copy number variation. (A) Fano factor vs.
mean mRNA copy number for two promoters (choices of r/γ): 5DL1 (red points) and lacUV5 (green
points) while tuning kR

on by inducing LacI to varying levels. The parameter-free predictions from the
kinetic theory of transcription are shown as dashed lines in the corresponding color holding promoter
(r/γ) and repressor binding strength (kR

off) constant. For reference, the black data is the constitutive
data from Figure 6.2. (B) Fano factor vs. mean mRNA copy number for lacUV5 while tuning kR

off

by changing repressor binding site identity at fixed repressor copy number, each color is a different
induction condition from red (lowest LacI induction) to blue (highest LacI induction). Again, the
predictions from the kinetic theory of transcription are shown as dashed lines in the corresponding
color. For both panels, not subtracting gene copy number variation slightly worsens the fit between
theory and data, but the overall conclusion that variability is promoter architecture dependent is
not affected. Error bars are the result of bootstrap sampling of the expression measurements in each
sample
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Figure 6.14: Analysis of small cell and large cell data subsets in constitutive expression.
Each individual constitutive expression sample measurement (multiple measurements of all 18
strains) is divided into two subsets of “large” and “small” cells based on cell area. The division
line between these sets is chosen such that small cells are expected to have one copy of the reporter
gene while large cells are expected to contain two copies. (A) Mean mRNA copy number of large
cells vs. mean mRNA copy number of small cells within the same sample. The mean copy number
of the large cells is double the mean copy number of the small cells, supporting the assertion that
the data sets are correctly divided based on gene copy number. (B) Fano factor vs. mean mRNA
copy number for the full data sets (red points, as from Figure 6.2B), large cells (black circles) and
small cells (black squares). The Fano factor for the full data samples agrees with the noise pre-
diction including quantization noise, RNAP fluctuation noise and gene copy number noise. The
subsets, divided to remove gene copy number variation in a sample, are described best without the
gene copy number noise term. All error bars are the result of bootstrap sampling of the expression
measurements in each sample.
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6.5.8 Supplementary Tables

Name Sequence Name Sequence

lacZ1 gtgaatccgtaatcatggtc lacZ37 gatcgacagatttgatccag

lacZ2 tcacgacgttgtaaaacgac lacZ38 aaataatatcggtggccgtg

lacZ3 attaagttgggtaacgccag lacZ39 tttgatggaccatttcggca

lacZ4 tattacgccagctggcgaaa lacZ40 tattcgcaaaggatcagcgg

lacZ5 attcaggctgcgcaactgtt lacZ41 aagactgttacccatcgcgt

lacZ6 aaaccaggcaaagcgccatt lacZ42 tgccagtatttagcgaaacc

lacZ7 agtatcggcctcaggaagat lacZ43 aaacggggatactgacgaaa

lacZ8 aaccgtgcatctgccagttt lacZ44 taatcagcgactgatccacc

lacZ9 taggtcacgttggtgtagat lacZ45 gggttgccgttttcatcata

lacZ10 aatgtgagcgagtaacaacc lacZ46 tcggcgtatcgccaaaatca

lacZ11 gtagccagctttcatcaaca lacZ47 ttcatacagaactggcgatc

lacZ12 aataattcgcgtctggcctt lacZ48 tggtgttttgcttccgtcag

lacZ13 agatgaaacgccgagttaac lacZ49 acggaactggaaaaactgct

lacZ14 aattcagacggcaaacgact lacZ50 tattcgctggtcacttcgat

lacZ15 tttctccggcgcgtaaaaat lacZ51 gttatcgctatgacggaaca

lacZ16 atcttccagataactgccgt lacZ52 tttaccttgtggagcgacat

lacZ17 aacgagacgtcacggaaaat lacZ53 gttcaggcagttcaatcaac

lacZ18 gctgatttgtgtagtcggtt lacZ54 ttgcactacgcgtactgtga

lacZ19 ttaaagcgagtggcaacatg lacZ55 agcgtcacactgaggttttc

lacZ20 aactgttacccgtaggtagt lacZ56 atttcgctggtggtcagatg

lacZ21 ataatttcaccgccgaaagg lacZ57 acccagctcgatgcaaaaat

lacZ22 tttcgacgttcagacgtagt lacZ58 cggttaaattgccaacgctt

lacZ23 atagagattcgggatttcgg lacZ59 ctgtgaaagaaagcctgact

lacZ24 ttctgcttcaatcagcgtgc lacZ60 ggcgtcagcagttgtttttt

lacZ25 accattttcaatccgcacct lacZ61 tacgccaatgtcgttatcca

lacZ26 ttaacgcctcgaatcagcaa lacZ62 taaggttttcccctgatgct

lacZ27 atgcagaggatgatgctcgt lacZ63 atcaatccggtaggttttcc

lacZ28 tctgctcatccatgacctga lacZ64 gtaatcgccatttgaccact

lacZ29 ttcatcagcaggatatcctg lacZ65 agttttcttgcggccctaat

lacZ30 cacggcgttaaagttgttct lacZ66 atgtctgacaatggcagatc

lacZ31 tggttcggataatgcgaaca lacZ67 ataattcaattcgcgcgtcc

lacZ32 ttcatccaccacatacaggc lacZ68 tgatgttgaactggaagtcg

lacZ33 tgccgtgggtttcaatattg lacZ69 tcagttgctgttgactgtag
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lacZ34 atcggtcagacgattcattg lacZ70 attcagccatgtgccttctt

lacZ35 tgatcacactcgggtgatta lacZ71 aatccccatatggaaaccgt

lacZ36 atacagcgcgtcgtgattag lacZ72 agaccaactggtaatggtag

Table 6.1: Names and sequences of LacZ mRNA probes.
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Operator koff
R (s−1)

Oid 0.0023
O1 0.0069
O2 0.091
O3 2.1

Table 6.2: Repressor dissociation rates. These rates are taken directly from refs. [19] and [51].
The dissociation rate of the Oid operator was directly measured in vitro, while the O1, O2, and O3
dissociation rates were computed using the ratios of these binding sites’ equilibrium occupancies to
that of Oid.

aTc concentration R (copy number) [R] (nM) kon
R (s−1)

0.5 ng/mL 0.21 0.35 0.0010
2 ng/mL 5.9 9.8 0.026
10 ng/mL 50 83 0.22

Table 6.3: Repressor binding rates. As described in the supplementary text, these rates were
computed by combining the association rate per repressor reported in reference [2] with an estimate
of the repressor copy number at each aTc concentration. The overall association rate is then the
product of the estimated repressor copy number with the association rate per repressor molecule.



235

Bibliography

[1] P H von Hippel and O G Berg. Facilitated target location in biological systems. Journal of

Biological Chemistry, 264(2):675–8, January 1989.

[2] J. Elf, G. W. Li, and X. S. Xie. Probing transcription factor dynamics at the single-molecule

level in a living cell. Science, 316(5828):1191–4, 2007.

[3] H. Buc and W. R. McClure. Kinetics of open complex formation between Escherichia coli RNA

polymerase and the lac UV5 promoter. Evidence for a sequential mechanism involving three

steps. Biochemistry, 24(11):2712–23, 1985.

[4] Achillefs N Kapanidis, Emmanuel Margeat, Sam On Ho, Ekaterine Kortkhonjia, Shimon Weiss,

and Richard H Ebright. Initial transcription by RNA polymerase proceeds through a DNA-

scrunching mechanism. Science, 314(5802):1144–7, November 2006.

[5] Carlo Manzo, Chiara Zurla, David D. Dunlap, and Laura Finzi. The effect of nonspecific binding

of lambda repressor on DNA looping dynamics. Biophysical Journal, 103(8):1753 – 1761, 2012.

[6] H. Maamar, A. Raj, and D. Dubnau. Noise in gene expression determines cell fate in Bacillus

subtilis. Science, 317(5837):526–9, 2007.

[7] A. Raj and A. van Oudenaarden. Nature, nurture, or chance: Stochastic gene expression and

its consequences. Cell, 135(2):216–26, 2008.

[8] D. Zenklusen, D. R. Larson, and R. H. Singer. Single-RNA counting reveals alternative modes

of gene expression in yeast. Nature Structural and Molecular Biology, 15(12):1263–71, 2008.

[9] Yuichi Taniguchi, Paul J. Choi, Gene-Wei Li, Huiyi Chen, Mohan Babu, Jeremy Hearn, Andrew

Emili, and X. Sunney Xie. Quantifying E. coli proteome and transcriptome with single-molecule

sensitivity in single cells. Science, 329:533, 2010.

[10] A. Eldar and M. B. Elowitz. Functional roles for noise in genetic circuits. Nature, 467(7312):167–

73, 2010.

[11] W. J. Blake, G. Balazsi, M. A. Kohanski, F. J. Isaacs, K. F. Murphy, Y. Kuang, C. R. Cantor,

D. R. Walt, and J. J. Collins. Phenotypic consequences of promoter-mediated transcriptional

noise. Molecular Cell, 24(6):853–65, 2006.
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