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Abstract

Power system is at the brink of change. Engineering needs, economic forces and environ-

mental factors are the main drivers of this change. The vision is to build a smart electrical

grid and a smarter market mechanism around it to fulfill mandates on clean energy. Looking

at engineering and economic issues in isolation is no longer an option today; it needs an

integrated design approach. In this thesis, I shall revisit some of the classical questions on

the engineering operation of power systems that deals with the nonconvexity of power flow

equations. Then I shall explore some issues of the interaction of these power flow equations

on the electricity markets to address the fundamental issue of market power in a deregulated

market environment. Finally, motivated by the emergence of new storage technologies, I

present an interesting result on the investment decision problem of placing storage over a

power network. The goal of this study is to demonstrate that modern optimization and game

theory can provide unique insights into this complex system. Some of the ideas carry over

to applications beyond power systems.
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Chapter 1

Introduction and outline

Power system in the United States of America has a rich history starting from the engineering

pioneers of the likes of Thomas Alva Edison and Nikola Tesla and business executives like

George Westinghouse and Samuel Insull. Over the years, roughly three different factors have

played major roles in shaping this system: engineering, economics and the environment.

As we argue below, these factors have spurred considerable research interests in different

eras, as shown in the timeline in Figure 1.1. Since these factors heavily interact among

themselves, modern power system design requires an “integrated systems” viewpoint; looking

at individual concerns in isolation is not enough to capture the complexity of the system.

In what follows, we first argue the role of each of these factors and delineate our work in

that context in Section 1.1. Next, we broadly define the modeling approach towards power

system taken in this thesis in Section 1.2. The outline of the ensuing chapters is presented

in Section 1.3. Finally, Section 1.4 defines a few recurring notations.

1.1 Drivers of change in power system

1920 1990 2000 
engineering  economics  environment  

Figure 1.1: Informal timeline of different driving forces of research in power system.
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1.1.1 The role of engineering

It is, perhaps, not surprising that engineering problems dominated research in power system

till around 1990’s. Starting from an alternating current (AC) based generator/ motor model

by Tesla, power system evolved into an interconnected network with generators, transmis-

sion lines and substations with a plethora of devices designed to convert mechanical energy

of turbines to electrical energy and deliver it to geographically distributed customers. For

such a massive engineering system, the main focus of research was to optimize generation

technologies and costs of production, maximize efficiencies and fault tolerances and con-

trol the dynamical system in an optimal yet robust manner. One of the classical problems

formulated during this period was the Optimal Power Flow (OPF) problem in 1962 by Car-

pentier [3]. It attempts to minimize the generation cost subject to all engineering constraints

of the system. There has been considerable interest in solving this problem optimally to find

“good” operating points in the network. Among others, the nonconvexity of power flow

equations defined by Kirchoff’s laws have prevented a principled approach to this optimiza-

tion problem. Recently, however, convex optimization theory has made major breakthroughs

in designing polynomial time algorithms for large classes of such problems, specially in conic

programming. In this thesis, we revisit this classical problem using the tools and techniques

of modern optimization in Chapters 2 and 3.

1.1.2 Rise of economics

As the power system industry moved towards an interconnected grid, the supply side got

concentrated under the umbrellas of large regulated utility companies. This business model,

with its roots in the ideas of Insull, took advantage of huge economies of scale in the grid.

But come 90’s, it was realized that such a monopoly would never have incentive to invest

in better and more efficient generation technologies. A natural solution to this problem

was deregulation; various big utilities were asked to disinvest in generation while they still

maintained the transmission and distribution operations of the grid. For example, the three

major utility companies in California (Southern California Edison, Pacific Gas & Electric

2



and San Diego Gas & Electric) divested 40% of their total generation assets [4]. In this

era, various prominent economists investigated problems pertaining to the right market

design as well as the ensuing dynamics of the electricity market. Deregulation had already

proven successful in other industries like railroad, airways and communication technologies,

e.g., see [5]. The results, however, in power system was met with an early challenge. The

Californian market showed very high price volatility and large utility companies like Pacific

Gas and Electric Corporation filed for bankruptcy around 2000. The flaw in the market

design became apparent and various market monitoring strategies were laid down to prevent

market collapse. In such an environment, there are two natural questions to ask: (a) how do

we detect firms with potential market power? (b) given that generators operate strategically,

what should be the right market design to mitigate market power? Informally, traditional

approaches to answer such questions have emanated from microeconomic theory. The nature

of electricity as a commodity, however, makes it difficult to generalize these approaches

to electricity markets. Consequently, the literature has remained fractured. In Chapters

4 and 5, we study these aspects in detail to characterize the effect of the network and

market clearing mechanisms in electricity markets. This analysis makes use of game-theoretic

techniques and optimization and their interaction with Kirchoff’s laws.

1.1.3 Environment poses a threat

Electricity generation in the United States primarily depended on fossil fuels, mainly on

natural gas and coal. Discovery of large deposits of shale in mainland US has been driving the

industry towards a steady uptake of natural gas in place of coal in the recent years. Though

generation technologies based on fossil fuels are reliable and economical, a major concern

has led us to look elsewhere for our energy needs: fossil fuels leave high carbon footprint.

Large quantities of greenhouse gases like carbon dioxide released in the atmosphere due to the

production process leads to adverse climate changes, most notably contributes to the increase

of earth’s average temperature. For example, it has been estimated that global sea surface

temperature has increased by 0.8◦ Celsius in the last century with the last three decades
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accounting for more than two-thirds of it [6]. With rapid industrial growth from highly

populated areas like India and China, this number is only expected to rise. It is not hard to

argue that a shift towards cleaner technologies is a rational choice. Under the leadership of

President B. Obama, a new plan called “New Energy for America” [7] was introduced during

the presidential campaign in 2008. The goal was to meet 10% of American electricity demand

through renewables by 2012; then, increase it to 25% by 2025. The current production is

estimated to be at 14.2% during the first half of 20131. It is clear that renewable energy

integration is being taken seriously at the policy level. This shift in policy at the federal level

has spurred a new era of research in power system to create a so-called smart grid. One major

direction is to cope with the intermittency of renewable sources like wind and solar. Meeting

an inelastic demand with stochastic supply is not an easy task both for engineering as well

as economics, specially when the hallmark of this system is maintaining very high reliability.

Electric energy storage, if available, can absorb some of the stochasticity. Though research

in storage had begun much earlier, the recent boost in clean energy investment has fueled

recent research efforts. The use of electric storage goes beyond mitigating stochasticity. An

example of such a use is load-shifting or peak shaving, i.e., to flatten out generation profile

to reduce total generation cost. In Chapter 6, we study the problem of optimal placement

and sizing of such storage resources with respect to load-shifting in the power grid using

tools from convex optimization theory.

1.2 The approach to modeling

With the motivation defined above, here we describe the general approach to modeling the

power system in this thesis. The following is based on power system dynamics and markets;

we refer the reader to [8, 9] for details. This section is meant to serve as a preamble and

justification to the problem formulations in the subsequent chapters.

In real-time operation, power system is a coupled dynamical system. The minor imbal-

ances between supply and demand in power manifests as changes in frequencies of generators.

1For more detailed statistics, please visit http://www.eia.gov
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The control loop that maintains this delicate balance is sometimes referred to as automatic

generation control. This control system has transients that typically settle down within

one to two minutes. Thus at five to ten minute time-scale, power system operation can be

assumed to be quasi-static. In this mode of operation, the frequency in the entire system

is assumed to be at the nominal level (60Hz in USA); this is called the synchronous mode.

Also, most power networks (at least in USA) are built as three phase systems. The three

phases usually correspond to three different sets of coils in a rotating synchronous machine

where the change of flux due to a rotating magnetic field produces voltages in these three

sets of coils. When these phases are balanced, the currents and voltages in these three coils

are sinusoidal which differ only in phases by 2π/3 with each other. In this balanced mode

of operation, we can simplify the representation of the circuit to a single phase equivalent.

Recall that we already assumed the frequencies to be constant throughout the network.

With sinusoidal voltage and current generation, the circuit can then be represented in the

Fourier frequency domain. In this representation, the voltages at each bus (for the single

phase equivalent circuit) is a phasor, which is essentially a complex number representing

the sinusoidal signal in the time domain. The transmission lines can then be represented

as complex impedances using electromagnetic theory and linear circuit theory. Then we get

Kirchoff’s laws in the complex domain as a linear relation between the current injections

into the circuit and the voltages. In summary, this balanced synchronous mode of opera-

tion of power system is succinctly representable using Kirchoff’s laws over a single phase

equivalent circuit with complex impedances. It should be emphasized that this quasi-static

model faithfully represents the large scale power system operation at 5-15 minute interval

snapshots. Roughly, the quasi-static model captures the overall operation when transients

in the circuit have faded out.

The quasi-static state of a power system defines the set points for the underlying control

systems to reach. These set points are calculated through a sequence of market clearing

operations. Generators and load-serving entities (LSEs) serve as the supply and demand

side of this electricity market with the ISO as the market maker as shown in Figure 1.2.

There are different time scales at which the demand and supply for each hour of each day is
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Figure 1.2: Visual representation of the structure of electricity spot markets. The arrows
represent interactions through bids and control signals.

cleared. Roughly, the current mode of operations in this wholesale electricity market can be

summarized into two steps: (a) Long term or forward contracts that happen through bilateral

trades between LSEs and generator firms, (b) Short term or spot market that balances the

demand and supply through a market clearing mechanism by the ISO over submitted bids.

Spot markets in various regions of USA have different designs. A common design (used

in California ISO and Pennsylvania-Jersey-Maryland ISO) consists of a day-ahead market

which clears (as the name suggests) a day before the time of realization. Then a real-time

market clears the residual imbalance 5-15 minutes before the actual time of consumption.

The prices of electricity at each bus is computed from the market clearing mechanism by the

ISO, which is usually by solving OPF with the submitted bids. The Lagrange multipliers

for real power balance at each bus is used as the price for electricity at that bus. This

scheme is popularly known as locational marginal pricing that is based on the seminal work

of Schweppe et al. in [10] on spot pricing. The market operations usually use a linearized

power flow model to clear the market. The actual dispatch, however, models the circuits

with its nonlinearities to obtain a feasible operating point for the quasi-static regime. Then

the control system of the network takes over to reach that operating point maintaining a

balance between the realized demand and supply. This defines the control hierarchy of the
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modern deregulated power system.

1.3 Organization of the thesis

1.3.1 Chapter 2: Kirchoff’s laws, conic relaxations and their relationships

In Chapter 2, we formulate a general optimization over a power network using two different

models to write Kirchoff’s laws, namely, the bus injection model and the branch flow model.

As would be evident, such an optimization problem is nonconvex due to the nature of

Kirchoff’s laws. Recently, conic relaxations for nonconvex problems have been proposed in

the literature. In Chapter 2, we establish the relationships among these convex relaxations

in terms of their feasible sets. In addition, we also provide simulation results for these

relaxations on various systems. The results in this chapter have been reported in [11].

1.3.2 Chapter 3: Quadratically constrained quadratic programs

on acyclic networks and tight conic relaxations

Our next analysis restricts attention to radial networks that are often found in distribution

networks. In Chapter 3, we investigate conditions under which the conic relaxations discussed

in Chapter 2 are tight, i.e., the optimization over the power network can be solved from the

optimal solution of its conic relaxation. To that end, we concentrate on solving optimal

power flow type problems that can be cast as quadratically constrained quadratic programs

(QCQPs). Power being quadratic in voltage, indeed many OPF type problems can be

cast as QCQPs in complex variables. To study these kind of problems, we first identify a

class of nonconvex QCQPs that can be efficiently solved through its conic relaxation. This

extends known classes of nonconvex QCQPs that admit polynomial time solutions. Then

we apply this result to the OPF type problems to obtain sufficient conditions under which

their relaxations are tight. The results in this chapter have been reported in [12].
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1.3.3 Chapter 4: Unifying structural market power analysis in

electricity markets

Next, we turn our attention towards electricity markets. Post deregulation, the OPF problem

is solved using submitted bids from the generator firms. As expected, this bidding process

is subject to gaming. In Chapter 4, we study the problem of identifying generator firms

with potential market power. In a transmission-constrained power network, this structural

analysis is supposed to identify must-run generators to successfully meet load requirements.

The intuition is simple: if a generator is pivotal in meeting demand, then it can exploit this

fact to extract more profits and hence abuse market power. In our studies, we unify different

market power measures in the literature and illustrate the complex interaction of economics

with the network model through simulations on IEEE benchmark systems. This reiterates

the fact that economics or engineering alone cannot faithfully analyze the operations of the

modern power system. The results of this chapter have been reported in [13].

1.3.4 Chapter 5: Role of market maker in Cournot competition

in electricity markets

One key difference between a general commodity market and electricity market is the pres-

ence of a market maker or the independent system operator (ISO). In most networks in

USA, the ISO is a regulatory body that facilitates the exchange of power between supply

and demand sides. The market clearing mechanism in the spot market, however, is a matter

of policy and intuitively should be designed to maximize the benefits of the entire network.

In Chapter 5, we study the role of this market mechanism on the equilibrium outcome of the

market. With a linearized network model, the game is modeled as a Cournot competition.

We consider three different market clearing mechanisms and study the existence of general-

ized Nash equilibrium of this one-shot Cournot game under such mechanisms. The results

of this chapter have been reported in [14].
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1.3.5 Chapter 6: Placing energy storage in a grid for load-shifting

The problems dealt till Chapter 4 only consider static problems (either optimization or

games). We introduce correlation across time through electricity storage in Chapter 5. In

particular, we investigate the investment decision problem of placing and sizing bulk storage

resources in a power network to flatten out generation profile over time and hence minimize

convex cost of conventional generation in the grid under a fixed available storage budget. In

the first half of this chapter, we provide simulation results using a conic relaxation framework.

Then in the next half, we simplify the model with linearized power flow and analytically

characterize some properties of the optimal placement. The results of this chapter have been

reported in [15,16].

1.4 Basic notations

Let R and C denote the sets of real and complex numbers respectively. For a complex

number z, let Re z and Im z denote the real and imaginary parts of z. For two vectors

x, y ∈ Rn, x ≤ y denotes inequality componentwise; if x, y ∈ Cn, x ≤ y means Re x ≤ Re y

and Im x ≤ Im y. For a matrix A, let Aij denote the entry in the i-th row and the j-th

column of A. For any matrix or vector A, let AH be its hermitian transpose and A> denote

its transpose. Let i :=
√
−1 and for any set B, let |B| denote its cardinality.
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Chapter 2

Kirchoff’s laws, conic relaxations and
their relationships

In a power network, Kirchoff’s laws define a linear relation between the current injections and

the voltages at different nodes. Power, being a product of voltage and current, turns out to

be quadratic in terms of the voltages. Any optimization problem in terms of power flows in

the network introduces quadratic constraints to include Kirchoff’s laws. Such a well-studied

optimization problem is the optimal power flow (OPF) problem that attempts to minimize

total generation cost subject to network constraints. It is well-known that the quadratic

constraints arising due to Kirchoff’s laws define a nonconvex feasible set and hence solving

such a problem is generally NP-hard. Several convex relaxations of the OPF problem have

been recently explored. These relaxations arise out of two different ways to write Kirchoff’s

laws, one using the bus injection model and the other using the branch flow model. In this

chapter, we establish relations among these relaxations in terms of feasible sets of these

relaxations. Our results imply that, for radial networks, all these relaxations are equivalent

and one should always solve a second-order cone relaxation. For mesh networks, we show

that a semidefinite relaxation is tighter than the second-order cone based relaxation but

requires a heavier computational effort. We further explore another relaxation based on the

chordal extension of the network graph and show that this approach strikes a good balance

in the tradeoff between speed and accuracy. The main theme of this chapter is to exploit

the sparsity pattern of the network graph to study conic relaxations. Simulations are used
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to illustrate these results.

2.1 Background

The OPF problem is quite central to any optimization framework on a power network; it

underlies many applications such as unit commitment, economic dispatch, state estimation,

volt/VAR control, and demand response. There has been a great deal of research since

Carpentier’s first formulation in 1962 [3] and an early solution by Dommel and Tinney [17];

recent surveys can be found in, e.g., [18–29]. OPF is generally nonconvex and NP-hard.

A large number of optimization algorithms and relaxations have been proposed, the most

popular of which is linearization (called DC OPF) [30–33]; See also [34] for a more accurate

linear approximation. An important observation was made in [35] that OPF can be formu-

lated as a quadratically constrained quadratic program and therefore can be approximated

by a semidefinite program (SDP). Instead of solving OPF directly, the authors in [36] pro-

pose to solve its convex Lagrangian dual problem. Sufficient conditions have been studied

by many authors under which an optimal solution for the non-convex problem can be de-

rived from an optimal solution of its SDP relaxation; e.g., [15, 37, 38] for radial networks

and in [36, 39, 40] for resistive networks. These papers all use the standard bus injection

model where the Kirchhoff’s laws are expressed in terms of the complex nodal voltages in

rectangular coordinates.

Branch flow models on the other hand formulate OPF in terms of branch power and

current flows in addition to nodal voltages, e.g., [41–48]. They have been mainly used for

modeling radial distribution networks. A branch flow model has been proposed in [49] to

study OPF for both radial and mesh networks and a relaxation based on second-order cone

program (SOCP) is developed. Sufficient conditions are obtained in [46,50,51] under which

the SOCP relaxation is exact for radial networks.
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2.1.1 Contributions of this chapter

Since the OPF problem in the bus injection model is a quadratically constrained quadratic

program it is equivalent to a rank-constrained SDP [35,36]. This formulation naturally leads

to an SDP relaxation that removes the rank constraint and solves for a full positive semidef-

inite matrix. If the rank condition is satisfied at an optimal point, the relaxation is said to

be exact and an optimal solution of OPF can be recovered through the spectral decomposi-

tion of the positive semidefinite matrix. Even though SDP is polynomial time solvable it is

nonetheless impractical to compute for large power networks. Practical networks, however,

are sparse. In this chapter, we develop two equivalent formulations of OPF using partial

matrices that involve much fewer variables than the full SDP.

The key idea is to characterize classes of partial matrices that are easy to compute and,

when the relaxations are exact, are completable to full positive semidefinite matrices of rank

1 from which a solution of OPF can be recovered through spectral decomposition. One

of these equivalent problems leads to an SDP relaxation based on chordal extension of the

network graph [52,53] and the other leads to an SOCP relaxation [54,55]. In this chapter, we

prove equivalence relations among these problems and their relaxations. Our results imply

that, for radial networks, all three relaxations are equivalent and we should always solve the

SOCP relaxation. For mesh networks there is a tradeoff between computational effort and

accuracy (in terms of exactness of relaxation) in deciding between solving SOCP relaxation

or the other two relaxations. Between the chordal relaxation and the full SDP, if all the

maximal cliques of a chordal extension of the network graph have been pre-computed offline

then solving the chordal relaxation is always better because it has the same accuracy as the

full SDP but typically involves far fewer variables and is faster to compute. This is explained

in Section 2.2. Chordal relaxation has been suggested in [48,56] for solving OPF, and SOCP

relaxation in the bus injection model has also been studied in [12,38,40,57]. Here we provide

a framework that unifies and contrasts these approaches.

In Section 2.3 we present the branch flow model of [49] for OPF and the corresponding

SOCP relaxation developed in [46,49]. In Section 2.4 we prove the equivalence of the branch
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flow model and the bus injection model by exhibiting a bijection between these two models

and their relaxations. Indeed the relations among the various problems in this chapter, both

in the bus injection model and the branch flow model, are established through relations

among their feasible sets.

It is important that we utilize both the bus injection and the branch flow models. Even

though they are equivalent, some relaxations are much easier to formulate and some sufficient

conditions for exact relaxation are much easier to prove in one model than the other. For

instance the semidefinite relaxation of power flows has a much cleaner formulation in the

bus injection model. The branch flow model especially for radial networks has a convenient

recursive structure that not only allows a more efficient computation of power flows e.g.

[58–60], but also plays a crucial role in proving the sufficient conditions for exact relaxation

in [61, 62]. Since the variables in the branch flow model correspond directly to physical

quantities such as branch power flows and injections it is sometimes more convenient in

applications.

In Section 2.5, we illustrate the relations among the various relaxations and OPF through

simulations. First, we visualize the feasible sets of a 3-bus example in [1]. Then we compare

the running times and accuracies of these relaxations on IEEE benchmark systems provided

in Matpower; see [63] for details.

2.2 Bus injection model and conic relaxations

In this section we formulate OPF in the bus injection model and describe three equivalent

problems. These problems lead naturally to semidefinite relaxation, chordal relaxation, and

second-order cone relaxation of OPF. We prove equivalence relations among these problems

and their exact relaxations.
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2.2.1 OPF formulation

Consider a power network modeled by a connected undirected graph G(N,E) where each

node in N := {1, 2, . . . , n} represents a bus and each edge in E represents a line. For each

edge (i, j) ∈ E let yij be its admittance [8]. A bus j ∈ N can have a generator, a load,

both or neither. Typically the loads are specified and the generations are variables to be

determined. Let sj be the net complex power injection (generation minus load) at bus j ∈ N .

Also, let Vj be the complex voltage at bus j ∈ N and |Vj| denote its magnitude. Bus 1 is the

slack bus with a fixed magnitude |V1| (normalized to 1). The bus injection model is defined

by the following power flow equations that describe Kirchhoff’s law1:

sj =
∑

k:(j,k)∈E

Vj(V
H
j − V H

k )yHjk for j ∈ N. (2.1)

The power injections at all buses satisfy

sj ≤ sj ≤ sj for j ∈ N, (2.2)

where sj and sj are known limits on the net injection at bus k. It is often assumed that the

slack bus (node 1) has a generator and there is no limit of s1; in this case −sj = sj = ∞.

We can eliminate the variables sk from the OPF formulation by combining (2.1)–(2.2) into

sj ≤
∑

k:(j,k)∈E

Vj(V
H
j − V H

k )yHjk ≤ sj for j ∈ N. (2.3)

Then OPF in the bus injection model can be formulated in terms of just the n × 1 voltage

vector V . All voltage magnitudes are constrained:

V j ≤ |Vj| ≤ V j for j ∈ N, (2.4)

1The current flowing from bus j to bus k is (Vj − Vk)yjk.
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where V j and V j are known lower and upper voltage limits. Typically |V1| = 1 = V 1 = V 1.

These constraints define the feasible set of the optimal power flow problem in the bus injection

model:

V := {V ∈ Cn | V satisfies (2.3)− (2.4)}. (2.5)

Let the cost function be c(V ). Typical costs include the total cost of generating real

power at all buses or line loss over the network. All these costs can be expressed as functions

of V . Thus, we obtain the following optimization problem.

Optimal power flow problem OPF :

minimize
V

c(V )

subject to V ∈ V.

Since (2.3) is quadratic, V is generally a nonconvex set. Thus OPF is nonconvex and NP-hard

to solve.

Remark 1. The OPF formulation usually includes additional constraints such as thermal

or stability limits on power or current flows on the lines, or security constraints; see surveys

in [18–22, 24–28]. Our results generalize to OPF with some of these constraints, e.g., line

limits [12, 49]. Our model can also include a shunt element at each bus. We omit these

refinements for ease of presentation.

2.2.2 SDP relaxation: P1 and R1

Note that (2.3) is linear in the variables Wjj := |Vj|2 for j ∈ N and Wjk := VjV
H
k for

(j, k) ∈ E. This motivates the definition of a G-partial matrix. Define the index set IG:

IG :=

{
(j, j) | j ∈ N

} ⋃ {
(j, k) | (j, k) ∈ E

}
.
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(a) Graph G1 (b) Graph G2

Figure 2.1: Simple graphs to illustrate G-partial matrices.

(a) G1-partial matrix (b) G2-partial ma-
trix

Figure 2.2: Index sets IG1 and IG2 illustrated as entries in a matrix. Entry (j, k) is marked
with a tick if (j, k) is in the corresponding index set; otherwise it is marked with a cross.

A G-partial matrix WG is a collection of complex numbers indexed by the set IG, i.e.,

[WG]jk is defined iff j = k ∈ N or (j, k) ∈ E. This is illustrated in Figure 2.1. For

graph G1, we have n = 5 nodes and IG1 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (2, 1), (2, 3),

(3, 2), (3, 4), (4, 3), (1, 4), (4, 1), (4, 5), (5, 4)} as shown in Figure 2.2(a) as a partially filled

matrix. For graph G2 in Figure 2.1(b), IG2 is represented in Figure 2.2(b). If G is a complete

graph, i.e., every pair of nodes share an edge, then WG is an n× n matrix.

The relations in (2.3)–(2.4) can be rewritten in terms of WG as:

sj ≤
∑

k:(j,k)∈E

([WG]jj − [WG]jk) y
H
jk ≤ sj for j ∈ N, (2.7a)

V 2
j ≤ [WG]jj ≤ V

2

j for j ∈ N. (2.7b)

We assume the cost function c(V ) in OPF depends on V only through the G-partial

matrix WG. For instance, if the objective is to minimize the total real power loss in the
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network then

c(V ) =
∑
j∈N

Re sj =
∑
j∈N

∑
k:(j,k)∈E

Re ([WG]jj − [WG]jk) y
H
jk.

If the objective is to minimize a weighted sum of real power generation at various nodes then

c(V ) =
∑
j∈N

cj
(
Re sj − pdj

)
=
∑
j∈N

cj

 ∑
k:(j,k)∈E

Re ([WG]jj − [WG]jk) y
H
jk − pDj

 ,

where pdj is the given real power demand at bus j ∈ N . Henceforth we refer to the cost

function as c(WG).

Consider an n × 1 voltage vector V . Then W = V V H is an n × n psd matrix of rank

1. Define the G-partial matrix W (G) as the collection of IG entries of W . To describe the

constraints V ∈ V, we use the equivalent constraints in terms of W (G) in (2.7a)-(2.7b).

Formally, OPF is equivalent to the following problem with n× n Hermitian matrix W :

Problem P1:

minimize
W

c(W (G))

subject to W (G) satisfies (2.7a)− (2.7b),

W � 0, rank W = 1.

Given an V ∈ V, W = V V H is feasible for P1; conversely given a feasible W it has a

unique spectral decomposition [64] W = V V H such that V ∈ V. Hence there is a one-one

correspondence between the feasible sets of OPF and P1, i.e., OPF is equivalent to P1.

Problem P1 is a rank-constrained SDP and NP-hard to solve. The nonconvex rank constraint

is relaxed to obtain the following SDP.
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Problem R1:

minimize
W

c(W (G))

subject to W (G) satisfies (2.7a)− (2.7b), W � 0.

R1 is an SDP [55, 65] and can be solved in polynomial time using interior-point algorithms

[66, 67]. Let W ∗ be an optimal solution of R1. If W ∗ is rank-1 then W ∗ also solves P1

optimally. We say the relaxation R1 is exact with respect to P1 if there exists an optimal

solution of R1 that satisfies the rank constraint in P1 and hence optimal for P1.

Remark 2. In this chapter we define a relaxation to be exact as long as one of its optimal

solutions satisfies the constraints of the original problem, even though a relaxation may have

multiple optimal solutions with possibly different ranks. The exactness of R1 in general does

not guarantee that we can compute efficiently a rank-1 optimal W∗ if non-rank-1 optimal

solutions also exist. Many sufficient conditions for exact relaxation in the recent literature,

however, do guarantee that every optimal solution of the relaxation is optimal for the original

problem, e.g., [37, 40, 68, 69] or they lead to a polynomial time algorithm to construct an

optimal solution of P1 from any optimal solution of the relaxation, e.g., [12,70].

2.2.3 Chordal relaxation: Pch and Rch

To define the next relaxation we need to extend the definitions of Hermitian, psd, and rank-1

for matrices to partial matrices:

1. The complex conjugate transpose of a G-partial matrix WG is the G-partial matrix

(WG)
H that satisfies

[(WG)
H ]jk = [WG]

H
kj for all (j, k) ∈ IG.

We say WG is Hermitian if WG = (WG)
H .

2. A matrix M is psd if and only if all its principal submatrices (including M itself)
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are psd. We extend the definition of psd to G-partial matrices using this property.

Informally a G-partial matrix is said to be psd if, when viewed as a partially filled

n × n matrix, all its fully-specified principal submatrices are psd. This notion can be

formalized as follows. A clique is a complete subgraph of a given graph. A clique on

k nodes is referred to as a k-clique. For the graph G1 in Figure 2.1(a), the cliques are

the edges. For the graph G2 in Figure 2.1(b), the cliques consist of the edges and the

triangles {1, 2, 3} and {1, 3, 4}. A k-clique C in graph G on nodes {n1, n2, . . . , nk} fully

specifies the k × k submatrix WG(C)
2:

WG(C) =


[WG]n1n1 [WG]n1n2 · · · [WG]n1nk

[WG]n2n1 [WG]n2n2 · · · [WG]n2nk

...
...

. . .
...

[WG]nkn1 [WG]nkn2 · · · [WG]nknk

 .

We say a G-partial matrix WG is positive semidefinite (psd), written as WG � 0, if and

only if WG(C) � 0 for all cliques C in graph G.

3. A matrix M has rank one if M has exactly one linearly independent row (or column).

We say a G-partial matrix WG has rank one, written as rank WG = 1, if and only if

rank WG(C) = 1 for all cliques C in G.

If G is a complete graph then WG specifies an n × n matrix and the definitions of psd and

rank-1 for the G-partial matrix WG coincide with the regular definitions.

A cycle on k nodes in graph G is a k-tuple (n1, n2, . . . , nk) such that (n1, n2), (n2, n3),

. . ., (nk, n1) are edges in G. A cycle (n1, n2, . . . , nk) in G is minimal if no strict subset of

{n1, n2, . . . , nk} defines a cycle in G. In graph G1 in Figure 2.1(a) the 4-tuple (1, 2, 3, 4)

defines a minimal cycle. In graph G2 in Figure 2.1(b) however the same 4-tuple is a cycle

but not minimal. The minimal cycles in G2 are (1, 2, 3) and (1, 3, 4). A graph is said to be

chordal if all its minimal cycles have at most 3 nodes. In Figure 2.1, G2 is a chordal graph

2For any graph F , a partial matrix WF , and a subgraph H of F , the partial matrix WF (H) is a submatrix
of WF corresponding to the IH entries of WF . If subgraph H is a k clique, then WF (H) is a k × k matrix.
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while G1 is not. A chordal extension of a graph G on n nodes is a chordal graph Gch on the

same n nodes that contains G as a subgraph. Note that all graphs have a chordal extension;

the complete graph on the same set of vertices is a trivial chordal extension of a graph. In

Figure 2.1, G2 is a chordal extension of G1.

Let Gch be any chordal extension of G. Define the following optimization problem over a

Hermitian Gch-partial matrix Wch := WGch
, where the constraints (2.7a)-(2.7b) are imposed

only on the index set IG ⊆ IGch
, i.e., in terms of the G-partial submatrix Wch(G) of the

Gch-partial matrix Wch.

Problem Pch:

minimize
Wch

c(Wch(G))

subject to Wch(G) satisfies (2.7a)− (2.7b),

Wch � 0, rank Wch = 1.

Let Rch be the rank-relaxation of Pch.

Problem Rch:

minimize
Wch

c(Wch(G))

subject to Wch(G) satisfies (2.7a)− (2.7b), Wch � 0.

Let W ∗
ch be an optimal solution of Rch. If W

∗
ch is rank-1 then W ∗

ch also solves Pch optimally.

Again, we say Rch is exact with respect to Pch if there exists an optimal solution W ∗
ch of Rch

that has rank 1 and hence optimal for Pch; see Remark 2 for more details.

To illustrate, consider graph G1 in Figure 2.1(a) and its chordal extension G2 in Figure

2.1(b). The cliques in G2 are {1, 2}, {2, 3}, {3, 4}, {4, 1}, {1, 3}, {1, 2, 3}, {1, 3, 4} and

{4, 5}. Thus the constraint Wch � 0 in Rch imposes positive semidefiniteness on Wch(C)

for each clique C in the above list. Indeed imposing Wch(C) � 0 for maximal cliques C

of G is sufficient, where a maximal clique of a graph is a clique that is not a subgraph of

another clique in the same graph. This is because Wch(C) � 0 for a maximal clique C
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impliesWch(C
′) � 0 for any clique C ′ that is a subgraph of C. The maximal cliques in graph

G2 are {1, 2, 3}, {1, 3, 4} and {4, 5} and thus Wch � 0 is equivalent to Wch(C) � 0 for all

maximal cliques C listed above. Even though listing all maximal cliques of a general graph

is NP-complete it can be done efficiently for a chordal graph. This is because a graph is

chordal if and only if it has a perfect elimination ordering [71] and computing this ordering

takes linear time in the number of nodes and edges [72]. Given a perfect elimination ordering

all maximal cliques C can be enumerated and Wch(C) constructed efficiently [52]. Moreover

the computation depends only on network topology, not on operational data, and therefore

can be done offline. For more details on chordal extension see [52]. A special case of chordal

relaxation is studied in [70] where the underlying chordal extension extends every basis cycle

of the network graph into a clique.

2.2.4 SOCP relaxation: P2 and R2

We say a G-partial matrix WG satisfies the cycle condition if, over every cycle (n1, . . . , nk)

in G, we have

∠[WG]n1n2 + ∠[WG]n2n3 + . . .+ ∠[WG]nkn1 = 0 mod 2π. (2.8)

Remark 3. Consider any spanning tree of G. A “basis cycle” in G is a cycle that has all

but one of its edges common with the spanning tree. If (2.8) holds over all basis cycles in G

with respect to a spanning tree then (2.8) holds over all cycles of G [73].

For any edge e = (i, j) in G, WG(e) is the 2 × 2 principal submatrix of WG defined by

the 2-clique e. Define the following optimization problem over Hermitian G-partial matrices

WG.
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Problem P2:

minimize
WG

c(WG)

subject to WG satisfies (2.7a)− (2.7b) and (2.8),

WG(e) � 0, rank WG(e) = 1 for all e ∈ E.

Both the cycle condition (2.8) and the rank-1 condition are nonconvex constraints. Relaxing

them, we get the following second-order cone program.

Problem R2:

minimize
WG

c(WG)

subject to WG satisfies (2.7a)− (2.7b),

WG(e) � 0 for all e ∈ E.

For e = (i, j) and Hermitian WG we have

WG(e) � 0 ⇔ [WG]ii[WG]jj ≥ |[WG]ij|2 . (2.9)

The right-hand side of (2.9) is a second-order cone constraint [55] and hence R2 can be

solved as an SOCP. If an optimal solution W ∗
G of R2 is rank-1 and also satisfies the cycle

condition then W ∗
G solves P2 optimally and we say that relaxation R2 is exact with respect

to P2.

2.2.5 Equivalent and exact relaxations

So far, we have defined the problems P1, Pch and P2 and obtained their convex relaxations

R1, Rch and R2 respectively. We now characterize the relations among these problems.

Let p∗ be the optimal cost of OPF. Let p∗1, p
∗
ch, p

∗
2 be the optimal cost of P1, Pch,

P2 respectively and let r∗1, r
∗
ch, r

∗
2 be the optimal cost of their relaxations R1, Rch, R2

respectively.
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Theorem 1. Let Gch denote any chordal extension of G. Then

(a) p∗1 = p∗ch = p∗2 = p∗.

(b) r∗1 = r∗ch ≥ r∗2. If G is acyclic, then r∗1 = r∗ch = r∗2.

(c) R1 is exact iff Rch is exact. R1 and Rch are exact if R2 is exact. If G is acyclic, then

R2 is exact iff R1 is exact.

We make three remarks. First, part (a) says that the optimal cost of P1, Pch and P2

are the same as that of OPF. Our proof claims a stronger result: the underlying G-partial

matrices in these problems are the same. Informally the feasible sets of these problems, and

hence the problems themselves, are equivalent and one can construct a solution of OPF from

a solution of any of these problems.

Second, since P1, Pch and P2 are nonconvex we will solve their relaxations R1, Rch or

R2 instead. Even though exactness is defined to be a relation between each pair (e.g., R2 is

exact means r∗2 = p∗2), part (a) says that if any pair is exact then the relaxed problem is exact

with respect to OPF as well. For instance if R2 is exact with respect to P2 then any optimal

G-partial matrix W ∗
G of R2 satisfies (2.8) and has rank W ∗

G(e) = 1 for all e ∈ E. Our proof

will construct a psd rank-1 n× n matrix W ∗ from W ∗
G that is optimal for P1. The spectral

decomposition of W ∗ then yields an optimal voltage vector V ∗ in V for OPF. Henceforth we

will simply say that a relaxation R1/Rch/R2 is “exact” instead of “exact with respect to

P1/Pch/P2.”

Third, part (c) says that solving R1 is the same as solving Rch and, in the case where G

is acyclic (a tree, since G is assumed to be connected), is the same as solving R2. R1 and Rch

are SDPs while R2 is an SOCP. Though they can all be solved in polynomial time [55, 65],

SOCP in general requires a much smaller computational effort than SDP. Part (b) suggests

that, when G is a tree, we should always solve R2. When G has cycles then there is a tradeoff

between computational effort and exactness in deciding between solving R2 or Rch/R1. As

our simulation results in Section 2.5 confirm, if all maximal cliques of a chordal extension are

available then solving Rch is always better than solving R1 as they have the same accuracy
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(in terms of exactness) but Rch is usually much faster to solve for large sparse networks G.

Indeed G is a subgraph of any chordal extension Gch of G which is, in turn, a subgraph of the

complete graph on n nodes (denoted as Cn), and hence IG ⊆ IGch
⊆ ICn . Therefore, typically,

the number of variables is the smallest in R2 (|IG|), the largest in R1 (|ICn|), with Rch in

between. However the actual number of variables in Rch is generally greater than |IGch
|,

depending on the choice of the chordal extension Gch. Choosing a good Gch is nontrivial;

see [52] for more details. This choice however does not affect the optimal value r∗ch.

Corollary 2. 1. If G is acyclic then p∗ = p∗1 = p∗ch = p∗2 ≥ r∗1 = r∗ch = r∗2.

2. If G has cycles then p∗ = p∗1 = p∗ch = p∗2 ≥ r∗1 = r∗ch ≥ r∗2.

Theorem 1 and Corollary 2 do not provide conditions that guarantee any of the relaxations

R1,Rch,R2 are exact. See [15,36–39,68–70] for such sufficient conditions in the bus injection

model. Corollary 2 implies that if R2 is exact, so are Rch and R1. Moreover Lemma 4

below relates the feasible sets of R1,Rch,R2, not just their optimal values. It implies that

R1,Rch,R2 are equivalent problems if G has no cycles.

2.2.6 Proof of Theorem 1

We now prove that the feasible sets of OPF and P1,Pch,P2 are equivalent when restricted

to the underlying G-partial matrices. Similarly, the feasible sets of their relaxations are

equivalent when G is a tree. When any of the relaxations are exact we can construct an

n-dimensional complex voltage vector V ∈ V that optimally solves OPF.

To define the set of G-partial matrices associated with P1,Pch,P2 suppose F is a graph

on n nodes such that G is a subgraph of F , i.e., IG ⊆ IF . An F -partial matrix WF is called

an F -completion of the G-partial matrix WG if

[WF ]ij = [WG]ij for all (i, j) ∈ IG ⊆ IF ,

i.e., WF agrees with WG on the index set IG. If F is Cn, the complete graph on n nodes,

then WF is an n × n matrix. WF is a Hermitian F -completion if WF = WH
F . WF is a psd
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F -completion if in addition WF � 0. WF is a rank-1 F -completion if rank WF = 1. It can

be checked that if WG 6� 0 then WG does not have a psd F -completion. If rank WG 6= 1

then it does not have a rank-1 F -completion. Define

W1 := {WG | WG satisfies (2.7a)− (2.7b),

∃ psd rank-1 Cn-completion of WG} .

Recall that for W , an n × n matrix, W (G) is the G-partial matrix corresponding to the

IG entries of W . Given an n × n psd rank-1 matrix W that is feasible for P1, W (G) is in

W1. Conversely given a WG ∈ W1, its psd rank-1 Cn-completion is a feasible solution for

P1. Hence W1 is the set of IG entries of all n× n matrices feasible for P1 and is nonconvex.

Define

W+
1 := {WG | WG satisfies (2.7a)− (2.7b),

∃ psd Cn-completion of WG} .

W+
1 is the set of IG entries of all n × n matrices feasible for R1. It is convex and contains

W1.

Similarly define the corresponding sets for Pch and Rch:

Wch := {WG | WG satisfies (2.7a)− (2.7b),

∃ psd rank-1 Gch-completion of WG} ,

W+
ch := {WG | WG satisfies (2.7a)− (2.7b),

∃ psd Gch-completion of WG} .

Wch and W+
ch are the sets of IG entries of Gch-partial matrices feasible for problems Pch and

Rch respectively. Again W+
ch is a convex set containing the nonconvex set Wch. For problems
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P2 and R2 define:

W2 := {WG | WG satisfies (2.7a)− (2.7b) and (2.8),

WG(e) � 0, rank WG(e) = 1 for all e ∈ E} ,

W+
2 := {WG | WG satisfies (2.7a)− (2.7b),

WG(e) � 0 for all e ∈ E} .

Informally the sets W1,W+
1 ,Wch,W+

ch,W2 and W+
2 describe the feasible sets of the various

problems restricted to the IG entries of their respective partial matrix variables.

To relate the sets to the feasible set of OPF, consider the map f from Cn to the set of

G-partial matrices defined as:

f(V ) := WG where [WG]kk = |Vk|2, k ∈ N, and

[WG]jk = VjV
H
k , (j, k) ∈ E.

Also, let f(V) := {f(V ) | V ∈ V}.

The sketch of the proof is as follows. We prove Theorem 1(a) in Lemma 3 and then

Theorem 1(b) in Lemma 4 below. Theorem 1(c) then follows from these two lemmas.

Lemma 3. f(V) = W1 = Wch = W2.

Proof. First, we show that f(V) = W1. Consider V ∈ V. Then W = V V H is feasible

for P1 and hence the G-partial matrix W (G) is in W1. Thus, f(V) ⊆ W1. To prove

W1 ⊆ f(V), consider the rank-1 psd Cn completion of a G-partial matrix in W1. Its unique

spectral decomposition yields a vector V that satisfies (2.3)–(2.4) and hence is in V. Hence,

f(V) = W1.

Now, fix a chordal extension Gch of G. We now prove:

W1 ⊆ Wch ⊆ W2 ⊆ W1.

To show W1 ⊆ Wch, consider WG ∈ W1, and let W be its rank-1 psd Cn-completion. Then
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it is easy to check that W (Gch) is feasible for Pch and hence WG is in Wch as well.

To show Wch ⊆ W2 consider a WG ∈ Wch and its psd rank-1 Gch-completion Wch. Since

every edge e of G is a 2-clique in Gch, WG(e) = Wch(e) is psd rank-1 by the definition of psd

and rank-1 for Wch. We are thus left to show that WG satisfies the cycle condition (2.8).

Consider the following statement Tk for 3 ≤ k ≤ n:

Sk: For all cycles (n1, n2, . . . , nk) of length k in Gch we have:

∠[Wch]n1n2
+ ∠[Wch]n2n3

+ . . .+ ∠[Wch]nkn1
= 0 mod 2π.

For k = 3, a cycle (n1, n2, n3) defines a 3-clique in Gch and thus Wch(n1, n2, n3) is psd rank-1

and Wch(n1, n2, n3) = uuH for some u := (u1, u2, u3) ∈ C3. Then

∠[Wch]n1n2 + ∠[Wch]n2n3 + ∠[Wch]n3n1

= ∠
[
(u1u

H
2 )(u2u

H
3 )(u3u

H
1 )
]
= 0 mod 2π.

Let Tr be true for all 3 ≤ r ≤ k and consider a cycle (n1, n2, . . . , nk+1) of length k+1 in Gch.

Since Gch is chordal, this cycle must have a chord, i.e., an edge between two nodes, say, n1

and nk′ , that are not adjacent on the cycle. Then (n1, n2, . . . , nk′) and (n1, nk′ , nk′+1, . . . , nk)

are two cycles in Gch. By hypothesis, Tk′ and Tk−k′+2 are true and hence

∠[Wch]n1n2
+ ∠[Wch]n2n3

+ . . .+ ∠[Wch]nk′n1

= ∠[Wch]n1nk′
+ ∠[Wch]nk′nk′+1

+ . . .+ ∠[Wch]nkn1

= 0 mod 2π.

We conclude that Tk+1 is true by adding the above equations and using ∠[Wch]n1nk′
=

−∠[Wch]nk′n1
mod 2π since Wch is Hermitian. By induction, Wch satisfies the cycle condi-

tion. Also, WG = Wch(G) satisfies the cycle condition and hence in W2. This completes the

proof of Wch ⊆ W2.

To show W2 ⊆ W1 suppose WG ∈ W2. We now construct a psd rank-1 Cn-completion of
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WG to show WG ∈ W1. Define θ ∈ Cn as follows. Let θ1 := 0. For j ∈ N \ {1} let (1, n2),

(n2, n3), . . . , (nk, j) be any path from node 1 to node j. Define

θj := −(∠[WG]1n2 + ∠[WG]n2n3 + . . .+ ∠[WG]nkj) mod 2π.

Note that the above definition is well-defined: if there is another sequence of edges from

node 1 to node j, the above relation still defines θj uniquely because WG satisfies the cycle

condition. Let

V :=
[√

[WG]11 e
iθ1 , · · ·

√
[WG]nn e

iθn
]
.

Then it can be verified that W := V V H is a psd rank-1 Cn-completion of WG. Hence

WG ∈ W1. This completes the proof of the lemma.

Lemma 4. W+
1 = W+

ch ⊆ W+
2 . If G is acyclic, then W+

1 = W+
ch = W+

2 .

Proof. It suffices to prove

W+
ch ⊆ W+

1 ⊆ W+
ch ⊆ W+

2 . (2.10)

To show W+
ch ⊆ W+

1 , suppose WG ∈ W+
ch. Let Wch be a psd Gch-completion of WG

for a chordal extension Gch. Since any psd partial matrix on a chordal graph has a psd

Cn-completion [74, Theorem 7],Wch has a psd Cn-completion. Obviously, any psd Cn-completion

of Wch is also a psd Cn-completion of WG, i.e., WG ∈ W+
1 . The relation W+

1 ⊆ W+
ch ⊆ W+

2

follows a similar argument to the proof of Lemma 3.

If G is acyclic, then G is itself chordal and hence WG has a psd Cn-completion, i.e.,

W+
2 ⊆ W+

1 . This implies W+
1 = W+

ch = W+
2 .

To prove Theorem 1(c) note that parts (a) and (b) imply

p∗ = p∗1 = p∗ch = p∗2 ≥ r∗1 = r∗ch ≥ r∗2.
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Hence R1 is exact (p∗1 = r∗1) iff Rch is exact (p∗ch = r∗ch). If R2 is exact, i.e., p∗2 = r∗2, then

both inequalities above become equalities, proving Theorem 1(c). This completes the proof

of Theorem 1.

2.3 Branch flow model and SOCP relaxation

2.3.1 OPF formulation

The branch flow model of [49] adopts a directed connected graph G̃ = (N, Ẽ) to represent

a power network where each node in N := {1, . . . , n} represents a bus and each edge in Ẽ

represents a line. The orientations of the edges are taken to be arbitrary. Denote the directed

edge from bus i to bus j by i→ j ∈ Ẽ and define m := |Ẽ| as the number of directed edges

in G. For each edge i→ j ∈ Ẽ, define the following quantities:

• zij: The complex impedance on the line. Thus zij = 1/yij.

• Iij: The complex current from bus i to bus j.

• Sij: The sending-end complex power from buses i to j.

Recall that for each node i ∈ N , Vi is the complex voltage at bus i and si is the net complex

power injection (generation minus load) at bus i.

The branch flow model of [49] is defined by the following set of power flow equations:

sj =
∑
k:j→k

Sjk −
∑
i:i→j

(
Sij − zij|Iij|2

)
for j ∈ N, (2.11a)

Sij = Vi I
H
ij and Iij = yij(Vi − Vj) for i→ j ∈ Ẽ, (2.11b)

where (2.11a) imposes power balance at each bus and (2.11b) defines branch power and

describes Ohm’s law. The power injections at all buses satisfy

sj ≤ sj ≤ sj for j ∈ N, (2.12)
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where sj and sj are known limits on the net generation at bus j. It is often assumed that

the slack bus (node 1) has a generator and there is no limit of s1; in this case −sj = sj = ∞.

As in the bus injection model, we can eliminate the variables sj by combining (2.11a) and

(2.12) into:

sj ≤
∑
k:j→k

Sjk −
∑
i:i→j

(
Sij − zij|Iij|2

)
≤ sj for j ∈ N. (2.13)

All voltage magnitudes are constrained as follows:

V j ≤ |Vj| ≤ V j for j ∈ N, (2.14)

where V j and V j are known lower and upper voltage limits, with |V1| = 1 = V 1 = V 1.

Denote the variables in the branch flow model by x̃ := (S, I, V ) ∈ Cn+2m. These constraints

define the feasible set of the OPF problem in the branch flow model:

X := {x̃ ∈ Cn+2m | x̃ satisfies (2.11b), (2.13), (2.14)}. (2.15)

To define OPF, consider a cost function c(x̃). For example, if the objective is to minimize

the real power loss in the network, then we have

c(x̃) =
∑
j∈N

Re sj =
∑
j∈N

Re

[∑
k:j→k

Sjk −
∑
i:i→j

(
Sij − zij|Iij|2

)]
.

Similarly, if the objective is to minimize the weighted sum of real power generation in the

network, then

c(x̃) =
∑
j∈N

cj
(
Re sj − pdj

)
=
∑
j∈N

cj

[
Re

(∑
k:j→k

Sjk −
∑
i:i→j

(
Sij − zij|Iij|2

))
− pdj

]
,

where pdj is the given real power demand at bus j ∈ N .
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Optimal power flow problem OPF :

minimize
x̃

c(x̃) subject to x̃ ∈ X. (2.16)

Since (2.11) is quadratic, X is generally a nonconvex set. As before, OPF is a nonconvex

problem.

2.3.2 SOCP relaxation: P̃2, R̃nc
2 and R̃2

The SOCP relaxation of (2.16) developed in [49] consists of two steps. First, we use (2.11b)

to eliminate the phase angles from the complex voltages V and currents I to obtain for each

i→ j ∈ Ẽ,

vj = vi − 2 Re (zHij Sij) + |zij|2`ij, (2.17)

`ijvi = |Sij|2. (2.18)

where vi := |Vi|2 and `ij := |Iij|2. This is the model first proposed by Baran-Wu in [41, 42]

for distribution systems. Second the quadratic equalities in (2.18) are nonconvex; relax them

to inequalities:

`ijvi ≥ |Sij|2 for i→ j ∈ Ẽ. (2.19)

Let x := (S, `, v) ∈ Rn+3m denote the new variables. Note that we use S to denote both

a complex variable in Cm and the real variables (Re S, Im S) in R2m depending on context.

Define the nonconvex set:

Xnc
2 := {x ∈ Rn+3m | x satisfies (2.13), (2.14), (2.17), (2.18)},

and the convex superset that is a second-order cone:

X+
2 := {x ∈ Rn+3m | x satisfies (2.13), (2.14), (2.17), (2.19)}.
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As we discuss below solving OPF over X+
2 is an SOCP and hence efficiently computable.

Whether the solution of the SOCP relaxation yields an optimal for OPF depends on two

factors [49]: (a) whether the optimal solution over X+
2 actually lies in Xnc

2 , (b) whether the

phase angles of V and I can be recovered from such a solution, as we now explain.

For an n × 1 vector θ ∈ [−π, π)n define the map hθ : Rn+3m → Cn+2m by hθ(S, `, v) =

(S, I, V ) where

Vi :=
√
vi e

iθi for i ∈ N,

Iij :=
√
`ij e

i(θi−∠Sij) for i→ j ∈ Ẽ.

Given an x := (S, `, v) ∈ X+
2 our goal is to find θ so that hθ(x) ∈ X is feasible for OPF. To

determine whether such a θ exists, define β(x) ∈ Rm by

βij(x) := ∠
(
vi − zHij Sij

)
for i→ j ∈ Ẽ. (2.20)

Essentially, x ∈ X+
2 implies a phase angle difference across each line i → j ∈ Ẽ given by

βij(x) [49, Theorem 2]. We are interested in the set of x such that βij(x) can be expressed

as θi − θj where θi can be the phase of voltage at node i ∈ N . In particular, let C be the

n×m incidence matrix of G̃ defined as

Cie =


1 if edge e ∈ Ẽ leaves node i ∈ N,

−1 if edge e ∈ Ẽ enters node i ∈ N,

0 otherwise.

The first row of C corresponds to the slack bus. Define the m × (n − 1) reduced incidence

matrix B obtained from C by removing the first row and taking the transpose. Consider the

set of x such that

∃ θ that solves Bθ = β(x) mod 2π. (2.21)
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A solution θ, if exists, is unique in [−π, π)n. Moreover the necessary and sufficient condition

for the existence of a solution to (2.21) has a familiar interpretation: the implied voltage

angle differences β(x) sum to zero (mod 2π) around any cycle [49, Theorem 2].

Define the set:

X2 := {x ∈ Rn+3m | x satisfies (2.13), (2.14), (2.17), (2.18), (2.21)}.

Clearly X2 ⊆ Xnc
2 ⊆ X+

2 . These three sets define the following optimization problems.3

Problem P̃2:

minimize
x

c(x) subject to x ∈ X2.

Problem R̃nc
2 :

minimize
x

c(x) subject to x ∈ Xnc
2 .

Problem R̃2:

minimize
x

c(x) subject to x ∈ X+
2 .

We say R̃2 is exact with respect to R̃nc
2 if there exists an optimal solution x∗ of R̃2 that

attains equality in (2.19), i.e., x∗ lies in Xnc
2 . We say R̃nc

2 is exact with respect to P̃2 if there

exists an optimal solution x∗ of R̃nc
2 that satisfies (2.21), i.e., x∗ lies in X2 and solves P̃2

optimally.

The problems P̃2 and R̃nc
2 are nonconvex and hence NP-hard, but problem R̃2 is an

SOCP and hence can be solved in polynomial time [55, 75]. Let p∗ be the optimal cost of

OPF (2.16) in the branch flow model. Let p̃∗2, r̃
nc
2 , r̃∗2 be the optimal costs of P̃2, R̃nc

2 , R̃2

respectively. The next result follows directly from [49, Theorems 2, 4].

3Recall that cost c(·) was defined over (S, I, V ) ∈ Cn+2m. For the cost functions considered, it can be
equivalently written as a function of (S, `, v) ∈ Rn+3m.

33



Theorem 5. (a) There is a bijection between X and X2.

(b) p∗ = p̃∗2 ≥ r̃nc2 ≥ r̃∗2 where the first inequality is an equality if G̃ is acyclic.

We make two remarks on this relaxation over radial (tree) networks G̃. First, for such a

graph, Theorem 5 says that if R̃2 is exact with respect to R̃nc
2 , then it is exact with respect

to OPF (2.16). Indeed, for any optimal solution x∗ of R̃2 that attains equality in (2.19), the

relation in (2.21) always has a unique solution θ∗ in [−π, π)n and hence hθ∗(x
∗) is optimal

for OPF.

Second, Theorem 5 does not provide conditions that guarantee R̃2 or R̃nc
2 is exact. See

[46, 49–51] for sufficient conditions for exact SOCP relaxation in radial networks. Even

though, here, we define a relaxation to be exact as long as one of its optimal solutions

satisfies the constraints of the original problem, all the sufficient conditions in these papers

guarantee that every optimal solution of the relaxation is optimal for the original problem.

2.4 Equivalence of bus injection model and branch flow

model

In this section we establish equivalence relations between the bus injection model and the

branch flow model and their relaxations. Specifically we establish two sets of bijections (a)

between the feasible sets of problems P2 and P̃2, i.e., W2 and X2, and (b) between the feasible

sets of problems R2 and R̃2, i.e., W+
2 and X+

2 .

For a HermitianG-partial matrixWG, define the (n+3m)×1 vector x = (S, `, v) := g(WG)

as follows. For i ∈ N and i→ j ∈ Ẽ,

vi := [WG]ii, (2.25)

Sij := yHij ([WG]ii − [WG]ij) , (2.26)

`ij := |yij|2 ([WG]ii + [WG]jj − [WG]ij − [WG]ji) . (2.27)

Define the mapping g−1 from Rn+3m to the set of Hermitian G-partial matrices as follows.
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Let WG := g−1(x) where

[WG]ii := vi for i ∈ N, (2.28)

[WG]ij := vi − zHij Sij = [WG]
H
ji for i→ j ∈ Ẽ. (2.29)

The next result implies that g and g−1 restricted to W+
2 (W2) and X+

2 (X2) respectively

are indeed inverse of each other. This establishes a bijection between the respective sets.

Theorem 6. (a) The mapping g : W2 → X2 is a bijection with g−1 as its inverse.

(b) The mapping g : W+
2 → X+

2 is a bijection with g−1 as its inverse.

Before we present its proof we make three remarks. First, Lemma 3 implies a bijection

between W2 and the feasible set V of OPF in the bus injection model. Theorem 5(a) implies

a bijection between X2 and the feasible set X of OPF in the branch flow model. Theorem

6 hence implies a bijection between the feasible sets V and X of OPF in the bus injection

model and the branch flow model respectively. It is in this sense that these two models are

equivalent.

Second, it is important that we utilize both models because some relaxations are much

easier to formulate and some sufficient conditions for exact relaxation are much easier to

prove in one model than the other. For instance the semidefinite relaxation of power flows

has a much cleaner formulation in the bus injection model. The branch flow model especially

for radial networks has a convenient recursive structure that not only allows a more efficient

computation of power flows e.g. [58–60], but also plays a crucial role in proving the sufficient

conditions for exact relaxation in [61, 62]. Since the variables in the branch flow model

correspond directly to physical quantities such as branch power flows and injections it is

sometimes more convenient in applications.

Third, define the set of G-partial matrices that are in W+
2 but do not satisfy the cycle
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condition (2.8):

Wnc
2 := {WG | WG satisfies (2.7a)− (2.7b),

WG(e) � 0, rank WG(e) = 1 for e ∈ E} . (2.30)

Clearly, W2 ⊆ Wnc
2 ⊆ W+

2 . Then the same argument as in Theorem 6 implies that g and

g−1 define a bijection between Wnc
2 and Xnc

2 .

Proof of Theorem 6. We only prove part (a); part (b) follows similarly. Recall the definitions

of sets W2 and X2:

W2 := {WG | WG satisfies (2.7a)− (2.7b) and (2.8),

WG(e) � 0, rank WG(e) = 1 for all e ∈ E} ,

X2 := {x ∈ Rn+3m | x satisfies (2.13), (2.14), (2.17), (2.18), (2.21)}.

We need to show that

(i) g(W2) ⊆ X2 so that g : W2 → X2 is well defined.

(ii) g is injective, i.e., g(x) 6= g(x′) if x 6= x′.

(iii) g is surjective and hence its inverse exists; moreover g−1 defined in (2.28)–(2.29) is

indeed g’s inverse.

The proof of (i) is similar to that of (iii) and omitted. That g is injective follows directly

from (2.25)–(2.27). To prove (iii), we need to show that given any x := (S, `, v) ∈ X2,

WG := g−1(x) defined by (2.28)–(2.29) is in W2 and x = g(WG). We now prove this in four

steps.

Step 1: Proof that WG satisfies (2.7a)–(2.7b). Clearly (2.7b) follows from (2.14). We now

show that (2.7a) is equivalent to (2.13). For node j ∈ N , separate the edges in the summation

in (2.7a) into outgoing edges j → k ∈ Ẽ from node j and incoming edges k → j ∈ Ẽ to
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node j. For each incoming edge k → j ∈ Ẽ we have from (2.28)–(2.29)

[WG]jj − [WG]jk = vj −
(
vk − zHkjSkj

)H
= −

(
vk − vj − zkjS

H
kj

)
= −

(
zHkjSkj − |zkj|2`kj

)
,

where the last equality follows from (2.17). Substituting this and (2.28)–(2.29) into (2.7a)

we get, for each j ∈ N :

∑
k:(j,k)∈E

([WG]jj − [WG]jk) y
H
jk

=
∑

k:j→k∈Ẽ

([WG]jj − [WG]jk) y
H
jk

+
∑

k:k→j∈Ẽ

([WG]jj − [WG]jk) y
H
jk

=
∑

k:j→k∈Ẽ

(
vj − (vj − zHjkSjk)

)
yHjk

−
∑

k:k→j∈Ẽ

(
zHkjSkj − |zkj|2`kj

)
yHkj

=
∑
k:j→k

Sjk −
∑
k:k→j

(Skj − zkj`kj) .

Hence, (2.7a) is equivalent to (2.13).

Step 2: Proof that WG satisfies (2.8). Without loss of generality let c := (1, 2, . . . , k) be

a cycle. For each directed edge i → j ∈ Ẽ, recall βij(x) := ∠(vi − zHij Sij) defined in

(2.20) and define βji(x) = −βij(x) in the opposite direction. Since x = (S, `, v) satisfies

(2.21), [49, Theorem 2] implies that

β12(x) + · · ·+ βk1(x) = 0 mod 2π, (2.31)

where each (i, j) in c may be in the same or opposite orientation as the orientation of the
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directed graph G̃. Observe from (2.29) that, for each directed edge i → j ∈ Ẽ, ∠[WG]ij =

βij(x) and ∠[WG]ji = βji(x). Hence (2.31) is equivalent to (2.8), i.e.,
∑

(i,j)∈c ∠[WG]ij = 0

mod 2π.

Step 3: Proof that WG(e) � 0, rank WG(e) = 1 for all e ∈ E. For each edge i → j ∈ Ẽ we

have

[WG]ii[WG]jj − [WG]ij[WG]
H
ij (2.32)

= vivj −
∣∣vi − zHij Sij

∣∣2
= vivj −

(
v2i − vi(zijS

H
ij + zHij Sij) + |zij|2|Sij|2

)
= −vi

(
vi − vj − (zijS

H
ij + zHij Sij) + |zij|2`ij

)
, (2.33)

where the last equality follows from (2.18). Substituting (2.17) into (2.33) yeilds [WG]ii[WG]jj =

|[WG]ij|2. This together with [WG]ii ≥ 0 (from (2.28)) meansWG(i, j) � 0 and rank WG(i, j) =

1.

Step 4: Proof that g(WG) = x. Steps 1–3 show that WG := g−1(x) ∈ W2 and hence g has

an inverse. We now prove this inverse is g−1 defined by (2.28)–(2.29). It is easy to see that

(2.25)–(2.26) follow directly from (2.28)–(2.29). We hence are left to show that WG satisfies

(2.27). For each edge i→ j ∈ Ẽ we have from (2.28)–(2.29)

|yij|2 ([WG]ii + [WG]jj − [WG]ij − [WG]ji)

= |yij|2
(
vi + vj − 2Re (vi − zHij Sij)

)
= |yij|2

(
vj − vi + 2Re (zHij Sij)

)
= `ij,

where the last equality follows from (2.17). Hence WG satisfies (2.27) and g(WG) = x.

We end this section with a visualization of Theorems 1, 5 and 6 in Figure 2.3. For any

chordal extension Gch of graph G, the bus-injection model leads to three sets of problems

P1,Pch, and P2 and their corresponding relaxationsR1,Rch andR2 respectively. The branch
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W1 = Wch = W2

W+
1 = W+

ch

W+
2 X+

2

Xnc
2

X2

g/g�1

g/g�1

bus injection model

branch flow model

Figure 2.3: Feasible sets of conic formulations and their relaxations, and the relations
among these sets.

flow model leads to an equivalent OPF problem P̃2, a nonconvex relaxation R̃nc
2 obtained

by eliminating the voltage phase angles, and its convex relaxation R̃2. The feasible sets of

these problems, their relations, and the equivalence of the two models are shown in Figure

2.3. As evident from the figure, the sets W1 = Wch = W2 on the left are the nonconvex

feasible sets of equivalent OPF problems P1, Pch, P2 respectively in the bus injection model,

and W+
1 = W+

ch ⊆ W+
2 are the convex feasible sets of their respective relaxations R1,Rch,

R2. On the right, X2 is the nonconvex feasible set of an equivalent OPF problem P̃2 in

the branch flow model. Xnc
2 is the nonconex feasible set of the relaxation R̃nc

2 obtained by

eliminating the voltage phase angles and X+
2 is the convex feasible set of the relaxation R̃2.

The equivalence of the sets W2 (or W+
2 ) and X2 (or X+

2 ) is represented by the linear maps

g/g−1. When G is a tree, W+
1 = W+

ch = W+
2 in the bus injection model and Xnc

2 = X+
2 in the

branch flow model. Note that neither of W+
1 and Xnc

2 (or, more precisely g−1(Xnc
2 ) ) contains

the other.
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2.5 Numerics

We now illustrate the theory developed so far through simulations. First we visualize in

Section 2.5.1 the feasible sets of OPF and their relaxations for a simple 3-bus example

from [1]. Next we report in Section 2.5.2 the running times and accuracies (in terms of

exactness) of different relaxations on IEEE benchmark systems.

~	  ~	  

~	  

     

V = 1.00\✓1 V = 1.00\✓2

V = 1.00\✓3

Gen1 Gen2

Gen3

Figure 2.4: A 3-bus network from [1].

Parameter Value
y11 i0.3750
y22 i0.5
y33 i0.5750
y12 0.0517 - i1.1087
y13 0.1673 - i1.5954
y23 0.0444 - i1.3319

Table 2.1: Admittances for the 3-bus network.

2.5.1 A 3-bus example

Consider the 3-bus example in Figure 2.4 taken from [1] (but we do not impose line limits)

with line parameters in per units in Table 2.1. Note that this network has shunt elements.

For this example, P1 is the same problem as Pch and R1 is the same problem as Rch. Hence

we will focus on the feasible sets of P1 (which is the same as that of P2) and the feasible

sets of R1, R2. Each problem has a Hermitian 3 × 3 matrix W as its variable. Recall that

sj = pj + iqj is the complex power injection at node j ∈ N and thus for each Hermitian
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matrix W , we have the following map:

pj(W ) + iqj(W ) = Wjj yjj +
∑

k:(j,k)∈E

(Wjj −Wjk) y
H
jk.

To visualize the various feasible sets, define the following set in 2 dimensions:

A1 := {(p1(W ), p2(W )) | W ∈ W1,

W11 = W22 = W33 = 1, p3(W ) = −0.95} . (2.34)

This is the projection of the feasible set of P1 on the p1 − p2 plane. Similarly, define

the sets A+
1 and A+

2 where the Hermitian matrix W is restricted to be in W+
1 and W+

2 ,

respectively. We plot A1, A+
1 and A+

2 in Figure 2.5(a). It illustrates the relationship among

the sets in Figure 2.3, i.e., W1 ⊆ W+
1 ⊆ W+

2 . From Figure 2.5(a), A1 is non-convex while

A+
1 and A+

2 are convex. Since W → (p1(W ), p2(W )) is a linear map, this confirms that W1

is non-convex while W+
1 and W+

2 are convex. To investigate the exactness of relaxations,

consider the Pareto fronts of the various sets (magnified in Figure 2.5(b)). The Pareto front

of A+
1 coincides with that of A1 and thus relaxation R1 is exact; relaxation R2, however, is

not.4

Consider the set Wnc
2 defined in (2.30) that is equivalent to Xnc

2 . For this example, Wnc
2 is

the set of 3×3 matricesW that satisfy (2.7a)-(2.7b) and the submatricesW (1, 2),W (2, 3),W (1, 3)

are psd rank-1. The full matrix W , however, may not be psd or rank-1. Extend the defini-

tion of A1 in (2.34) to define the set Anc
2 where the matrix W is restricted to be in Wnc

2 . In

Figure 2.6, we plot Anc
2 along with A+

2 and A. This equivalently illustrates the relation of

the sets on the right in Figure 2.3.

4SDP here are exact while some of the simulations in [1] are not exact because we do not impose line
limits here.
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Figure 2.5: (a) Projections of feasible regions on p1 − p2 space for the 3-bus system in
Figure 2.4.

(b) Zoomed-in Pareto fronts of these sets.

For the projections on the q1 − q2 plane define the set

B1 := {(q1(W ), q2(W )) | W ∈ W1,

W11 = W22 = W33 = 1, p3(W ) = −0.95} .

As before, extend the definitions to B+
1 , B+

2 , and Bnc
2 . We plot B1, B+

1 and B+
2 in Figure

2.7(a) and B1, Bnc
2 and B+

2 in Figure 2.7(b). This plot illustrates that the set Wnc
2 is not

simply connected (a set is said to be simply connected if any 2 paths from one point to

another can be continuously transformed, staying within the set). Note that neither of B+
1

and Bnc
2 contains the other.

2.5.2 IEEE benchmark systems

For IEEE benchmark systems [63], we solve R1, R2 and Rch in MATLAB using CVX [76]

with the solver SeDuMi [77] after some minor modifications to the resistances on some

lines [36]5. The objective values and running times are presented in Table 2.2. The problems

5A resistance of 10−5 p.u. is added to lines with zero resistance.
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Test case Objective value Running times Lambda ratio
R1, Rch R2 R1 Rch R2

9 bus 5297.4 5297.4 0.2 0.2 0.2 1.15× 10−9

14 bus 8081.7 8075.3 0.2 0.2 0.2 8.69× 10−9

30 bus 574.5 573.6 0.4 0.3 0.3 1.67× 10−9

39 bus 41889.1 41881.5 0.7 0.3 0.3 1.02× 10−10

57 bus 41738.3 41712.0 1.3 0.5 0.3 3.98× 10−9

118 bus 129668.6 129372.4 6.9 0.7 0.6 2.16× 10−10

300 bus 720031.0 719006.5 109.4 2.9 1.8 1.26× 10−4

2383wp bus 1840270 1789500.0 - 1005.6 155.3 median = 3.33× 10−5, max =0.0034.

Table 2.2: Performance comparison of relaxation techniques for IEEE benchmark systems.

R1 and Rch have the same optimal objective value, i.e., r∗1 = r∗ch, as predicted by Theorem

1. We also report the ratios of the first two eigenvalues of the optimal W ∗ in R1
6; for most

cases, it is small indicating that the relaxation is exact. The optimal objective value of R2

is lower (r∗2 < r∗1), indicating that the optimum of the SOCP relaxation that is computed

is not feasible for P1. As Table 2.2 shows, Rch is much faster than R1 for large networks.

The chordal extensions of the graphs are computed a priori for each case [53]. R2 is faster

than both R1 and Rch, but yields an infeasible solution for most IEEE benchmark systems

considered.

6For the 2383-bus system, we only run Rch. For the optimal Gch-partial matrix W ∗
ch, we report the

maximum and the median of the non-zero ratios of the first and second eigenvalues of W ∗
ch(C) over all

cliques C in Gch.
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Figure 2.6: Projections of feasible regions on p1 − p2 space for the 3-bus system in Figure
2.4.

(a) (b)

Figure 2.7: Projections of feasible regions on q1 − q2 space for 3-bus system in Figure 2.4.
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Chapter 3

Quadratically constrained quadratic
programs on acyclic networks and
tight conic relaxations

As we saw in the last chapter, Kirchoff’s laws can be written in two ways using the bus

injection and branch flow models. The power flow equations arising from such models can

then be relaxed to convex sets; hence the feasible sets of the optimal power flow (OPF)

problem can be represented as intersection of second-order or semidefinite cones. In this

chapter, we explore sufficient conditions under which the nonconvex OPF problem can be

solved using its conic relaxations. To that end, we restrict our attention to the bus injection

model of Kirchoff’s laws. As we have mentioned before, the OPF problem can be formulated

as a quadratically constrained quadratic program (QCQP). We first prove a general result on

QCQP on acyclic graphs that extends the class of nonconvex QCQPs solvable in polynomial

time. Then we explore the application of this result to the OPF problem on acyclic networks.

3.1 Background on QCQP

A quadratically constrained quadratic program (QCQP) is an optimization problem in which

both the objective function and the constraints are quadratic. Many engineering problems

can be represented as QCQPs, e.g., [78–81], sensor network localization [82], principal com-

ponent analysis [83] and optimal power flow [35, 36, 45]. A wide-range of combinatorial
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problems can also be cast as QCQPs, e.g., the max-cut problem [84, 85] and the maximum

stable set problem [86, 87]. In general, QCQPs are nonconvex, and therefore lack computa-

tionally efficient solution methods. The contribution of this chapter is to identify a class of

nonconvex QCQPs for which globally optimal solutions can be guaranteed. The standard

approach in the literature to solving a QCQP, optimally or approximately, is to relax this

nonconvex problem to a convex conic program [55, 65]. There are polynomial-time interior-

point algorithms to solve these relaxed programs cast as second-order cone programs (SOCP)

or semidefinite programs (SDP) [66,67,88]. For applications of this technique to engineering

problems, we refer the reader to [65, 89]. Several authors have investigated the accuracy of

these relaxations [84] [90–93]. Others have studied conditions under which a conic relaxation

of the QCQP is exact, i.e., an optimal solution of the QCQP can be computed from an opti-

mal solution of its relaxation [94,95]. We extend such results by proving a sufficient condition

under which QCQPs with complex variables whose underlying graph structures are acyclic

admit an efficient polynomial time solution through an SOCP or SDP relaxation. Note that

QCQPs in complex variables can be recast as QCQPs in real variables; our result, however,

is not implied by previous results. The result here generalizes our earlier result in [15] using

a Lagrangian dual argument. For completeness, we also present an alternative proof using

the optimal solution of the conic relaxation that is equivalent to an earlier independent result

in [70].

In Section 3.2, we present a sufficient condition for a nonconvex QCQP over acyclic graphs

to be solvable in polynomial time and prove it using two different techniques in Section 3.3.

In Section 3.4, we compare our result with known results in the literature. Finally we discuss

the application of our result on QCQP to the OPF problem in Section 3.5.
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3.2 Formulation and result for a QCQP in complex

variables

Consider the following QCQP with complex variable x ∈ Cn, where C is the set of complex

numbers.

Primal problem P :

minimize
x∈Cn

xHC0x

subject to: xHCpx ≤ bp, p = 1, 2, . . . ,m.

where xH denotes the conjugate transpose of x, b0, b1, . . . , bm are scalars and C := {C0, C1, . . . , Cm}

is a set of n × n complex Hermitian matrices. If the matrices C0, C1, . . . , Cm are posi-

tive semidefinite, then problem P is a convex program and can be solved in polynomial

time [55, 96]. Otherwise, problem P is generally non-convex and NP-hard. The main result

of this chapter is to characterize the set C such that problem P can be solved in polynomial

time.

Re

Im

(a)

Re

Im

(b)

Re

Im

(c)

Figure 3.1: (a) and (b) are examples of sets of complex numbers that are linearly separable
from the origin. (c) is an example of set that is not.

We first define some notation. For a Hermitian matrix Q, we define the graph of matrix

Q (denoted by G(Q)) as the undirected graph on n nodes, where nodes j and k (j 6= k, 1 ≤

j, k ≤ n) share an edge if and only if Qjk 6= 0. Intuitively, the graph G(Q) represents the

sparsity pattern of the matrix Q. For the collection of matrices C, extend this definition

to the graph of C (denoted by G(C)) as the undirected graph on n nodes, where j and k
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(j 6= k, 1 ≤ j, k ≤ n) share an edge if and only if j and k share an edge in at least one among

G(C0), G(C1), . . . , G(Cm), i.e., the complex numbers {[C0]jk, [C1]jk, . . . , [Cm]jk} are not all

identically zero.

A set of complex numbers is said to be linearly separable from the origin if there exists a

line through the origin of the complex plane such that the points represented by this set of

complex numbers lie on one side of that line. To illustrate this, consider the sets of complex

numbers in Figure 3.1. While the sets in (a) and (b) are linearly separable from the origin,

the set in (c) is not. The collection C is said to be off-diagonally linearly separable from the

origin if for each j 6= k, 1 ≤ j, k ≤ n, the set of complex numbers {[C0]jk, [C1]jk, . . . , [Cm]jk}

are linearly separable from the origin. Using this notation, we now present the main result

of the chapter.

Theorem 7. For QCQP P , suppose the feasible set is non-empty and bounded and the

collection of matrices C satisfies:

1. G(C) is acyclic,

2. C is off-diagonally linearly separable from the origin.

Then, P can be solved in polynomial time.

For a continuous optimization problem, we say it can be solved in polynomial time if given

any ζ > 0, there is an algorithm that finds a feasible solution to the optimization problem

with an objective value within ζ of the theoretical optimum in polynomial time [55,65,96].

3.3 Proof approaches

We now provide two proof techniques in Sections 3.3.1 and 3.3.2. Without loss of generality,

assume throughout that the graph G(C) is connected and acyclic, i.e., it is a tree.
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3.3.1 Proof using the dual problem

Here we prove Theorem 7 by characterizing the optimal solution of the Lagrangian dual

problem of P . This approach requires an additional assumption: problem P is strictly

feasible. It generalizes the result of [15].

For vector a, let a � 0 denote that all its elements are strictly positive. The proof

proceeds in two steps:

1. First, we prove the result for the following case. For all a� 0, suppose:

a0[C0]jk + a1[C1]jk + . . .+ am[Cm]jk 6= 0. (3.1)

The relation in (3.1) implies that the convex hull of the set of complex numbers

[C0]jk, [C1]jk, . . . , [Cm]jk does not contain the origin of the complex plane in its in-

terior. If this set is linearly separable from the origin, then (3.1) is generally satisfied

unless all the points lie on a line through the origin of the complex plane.

2. Next, we relax the condition in equation (3.1).

Step 1: Consider the following semidefinite program RP where W is an n × n complex

positive semidefinite matrix.

Relaxed Problem RP :

minimize
W�0

tr(C0W )

subject to: tr (CpW ) ≤ bp, p = 1, 2, . . . ,m. (3.2)

RP is an SDP and hence can be solved in polynomial time using interior-point methods

[66, 67, 88]. Define p∗ and r∗ as the optimum values of the objective functions for problems

P and RP respectively.

Lemma 8. p∗, r∗ are finite and p∗ ≥ r∗. If W∗ solves RP optimally and rank W∗ ≤ 1, then

p∗ = r∗ and x∗ solves P optimally, where x∗ uniquely solves W∗ = x∗x
H
∗ .
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Proof. Since the feasible set of P (and hence of RP ) are bounded, p∗ and r∗ are finite. Given

any feasible solution x of P , W := xxH is a feasible solution of RP . Hence RP is feasible

and p∗ ≥ r∗. If rank W∗ = 0, then W∗ = 0, and an optimal solution to P is x∗ = 0, and

therefore r∗ = p∗. If rank W∗ = 1 then W∗ has a unique decomposition W∗ = x∗x
H
∗ , where

r∗ = tr(C0W∗) = xH∗ C0x∗ = p∗.

Next, we show that there exists a finiteW∗ that solves RP optimally and has rank W∗ ≤

1. Let the Lagrange multipliers for the inequalities in (3.2) be λp ≥ 0 for p = 1, 2, . . . ,m.

Then the Lagrangian dual of P (and also of RP ) is

Dual problem DP :

maximize
λ≥0

−
m∑
p=1

λpbp

subject to: C0 +
m∑
p=1

λpCp︸ ︷︷ ︸
:=A(λ)

� 0.

It can be checked that the graph of the matrix A(λ) (denoted by G(A(λ)) is a subgraph

of G(C). For some values of λ however, edge (j, k) may exist in G(C) but not in G(A(λ));

in this case G(A(λ)) is acyclic but may not be connected, and hence it may be a forest of

two or more disconnected trees rather than a single connected tree that spans all vertices in

the graph. From the relation in (3.1), it follows that for all λ � 0, the graph G(A(λ)) is

connected.

Next we characterize the relationship between the optimal points of RP and DP . The

feasible sets of P (and hence of RP ) are bounded. Thus r∗ is attained by a finite optimum.

Let d∗ denote the optimal objective value of problem DP . Problems P and hence RP are

strictly feasible. From Slater’s condition [55], it then follows that r∗ = d∗ and d∗ is attained.

Thus, RP/DP has a finite primal dual optimal point (W∗, λ∗).

For convenience, define A∗ := A(λ∗).

Lemma 9. If G(A∗) is connected then rank W∗ ≤ 1.
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Proof. We observe that rank A∗ ≥ n−1. This follows from a result in the literature [97], [98,

Theorem 3.4] and [99, Corollary 3.9] that states that for any n×n positive semidefinite matrix

Q where the associated graph G(Q) is a connected acyclic graph (i.e., a tree), rank Q ≥ n−1.

Next we show that rank W∗ ≤ 1. The complementary slackness condition for optimality

of (W∗, λ∗) implies tr(A∗W∗) = 0. Let W∗ =
∑

i ρiwiw
H
i be the spectral decomposition of

W∗. Then, tr(A∗W∗) =
∑

i ρi w
H
i A∗wi = 0. Since A∗ � 0, the eigenvectors wi of W∗

corresponding to nonzero eigenvalues ρi are all in the null space of A∗. The rank of A∗ is

at least n − 1 and hence its null space has dimension at most 1, from which it follows that

rank W∗ ≤ 1.

G(A∗) can be connected in one of two ways: (a) For each edge (j, k) in G(C), the origin of

the complex plane lies strictly outside the convex hull of the points [C0]jk, [C1]jk, . . . , [Cm]jk,

or (b) λ∗ � 0. In both cases, lemma 9 guarantees that rank W∗ ≤ 1.

If the origin lies on the boundary of the convex hull, then G(A∗) may not be connected

when λ∗ 6� 0 and rank W∗ ≤ 1 may not hold. We use a perturbation [100,101] of RP/DP ,

where G(A∗) is connected in the perturbed problem. In particular, define the perturbed

problems for parameter ε > 0:

Perturbed relaxed problem RP ε:

minimize
W�0

tr(C0W )− ε
m∑
p=1

[bp − tr (CpW )]

subject to: tr (CpW ) ≤ bp, p = 1, 2, . . . ,m.

Perturbed dual problem DP ε:

maximize
λ

−
m∑
p=1

λpbp

subject to: A (λ) � 0, λp ≥ ε, p = 1, 2, . . . ,m.

For any variable z in the original problem, let zε denote the corresponding variable in the

perturbed problem with perturbation parameter ε. The feasible sets of RP and RP ε are
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identical and hence bounded. Thus, rε∗ is finite and attained. Moreover, RP ε is strictly

feasible. From Slater’s condition, it follows that rε∗ = dε∗ and RP ε/DP ε has a finite primal

dual optimal point (W ε
∗ , λ

ε
∗). Moreover, λε∗ ≥ ε1 � 0 and hence G(Aε

∗) is connected. Then

it implies rank W ε
∗ ≤ 1.

Now consider a decreasing sequence of ε ↓ 0. For each ε > 0, the optimal solution W ε
∗

of RP ε has rank at most 1 and lies in the (bounded) feasible set of RP ε. Since the space

of positive semidefinite matrices with rank at most 1 is a closed set [64], the sequence W ε
∗

resides in a compact space and hence admits a convergent subsequence. It is easy to check

that the limit point Ŵ of this convergent subsequence is indeed feasible for RP and satisfies

rank Ŵ ≤ 1. Next, we show that Ŵ solves RP optimally, i.e., r∗ = tr(C0Ŵ ).

For any matrix W feasible for RP (and RP ε), we have

tr(C0W )− ε

m∑
p=1

[bp − tr (CpW )] ≤ tr(C0W ).

Minimizing over the feasible sets of RP (or equivalently RP ε), we obtain rε∗ ≤ r∗. Taking

limit over the convergent subsequence, we have tr(C0Ŵ ) ≤ r∗. Moreover, r∗ is the optimum

value of RP and hence r∗ ≤ tr(C0Ŵ ). Thus, r∗ = tr(C0Ŵ ).

So far we have shown that RP has a minimizer Ŵ that satisfies rank Ŵ ≤ 1 and

p∗ = r∗. But in general, it is hard to guarantee that solving RP would yield the minimum

rank optimizer if the set of optimizers of RP is non-unique. Next, we provide an algorithm

to use the perturbed problems to solve P in polynomial time.

First, solve RP in polynomial time to obtain r∗. If the associated optimizer W∗ has rank

at most 1, then construct x∗ from W∗ as in lemma 8 and we are done. Otherwise, fix a small

ε0 and solve RP ε0 in polynomial time. For any ε in (0, ε0), we have

rε∗ = tr(C0W
ε
∗ )− ε

m∑
p=1

[bp − tr(CpW
ε
∗ )] ≤ r∗ ≤ tr(C0W

ε
∗ ),

Also, comparing the objective function values of RP ε and RP ε0 atW ε
∗ andW ε0

∗ , respectively,

52



we obtain

m∑
p=1

[bp − tr(CpW
ε
∗ )] ≤

m∑
p=1

[bp − tr(CpW
ε0
∗ )] .

Combining the above two equations, we get

|r∗ − tr(C0W
ε
∗ )| ≤ ε

m∑
p=1

[bp − tr(CpW
ε0
∗ )] .

Given ζ > 0, choose ε in (0, ε0) such that ε
∑m

p=1 [bp − tr(CpW
ε0
∗ )] ≤ ζ. Now solve RP ε in

polynomial time to get W ε
∗ that satisfies rank W ε

∗ ≤ 1 and compute xε∗ from it. Then xε∗ is a

feasible point of P and p∗ ≤ (xε∗)
HC0(x

ε
∗) ≤ p∗ + ζ and we have computed xε∗ in polynomial

time. This completes Step 1.

Step 2: Here we relax the extra condition required in (3.1). The proof relies on another

perturbation of RP such that the matrices in the perturbed problem satisfies (3.1). We use

Step 1 to solve this perturbed problem in polynomial time and use it to solve P in polynomial

time.

Suppose there exists an edge (j, k), such that the set of complex numbers [C0]jk, [C1]jk, . . . , [Cm]jk

lie on a line through the origin. This set does not satisfy (3.1) but is linearly separable from

the origin. Given the set [C0]jk, [C1]jk, . . . , [Cm]jk, there exists a complex number ujk such

that for all a� 0, we have

a0
(
[C0]jk − ujk

)
+ a1[C1]jk + . . .+ am[Cm]jk 6= 0.

Construct an n × n Hermitian matrix U jk, where all entries are zeros, except [U jk]jj =

[U jk]kk = |ujk| and [U jk]jk = [U jk]Hkj = −ujk. Then U jk � 0. Now, suppose (3.1) is violated

at edges (j1, k1), (j2, k2), . . . , (js, ks) in G(C). Then construct U j1k1 , U j2k2 , . . . , U jsks as above

and define

U := U j1k1 + U j2k2 + . . .+ U jsks � 0.

Consider the perturbed problems for δ > 0:
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Perturbed primal problem P (δ):

minimize
x∈Cn

xH(C0 + δU)x

subject to: xHCpx ≤ bp, p = 1, 2, . . . ,m.

Perturbed relaxed problem RP (δ):

minimize
W�0

tr[(C0 + δU)W ]

subject to: tr (CpW ) ≤ bp, p = 1, 2, . . . ,m,

For any variable z in P/RP , let z(δ) denote the corresponding variable in P (δ)/RP (δ). First,

we show that RP has an optimizer W∗ with rank at most 1 and conclude p∗ = r∗. Then we

use this to provide a polynomial time computation for P .

The matrices in the perturbed problems satisfy the relation in (3.1). From Step 1, there

exists W
(δ)
∗ � 0 that solves RP (δ) and rank W

(δ)
∗ ≤ 1. Following the arguments for Lemma

8, we have

p(δ)∗ = r(δ)∗ = tr[(C0 + δU)W (δ)
∗ ].

The feasible region of RP (and hence of RP (δ)) is bounded. Taking δ ↓ 0 and following

the perturbation argument for RP ε, we have a convergent subsequence of W
(δ)
∗ with the

limit point Ŵ . Then Ŵ is feasible for RP . Now, we show that it is optimal for RP , i.e.,

r∗ = tr(C0Ŵ ).

r
(δ)
∗ is non-decreasing in δ. Then r∗ ≤ tr(C0Ŵ ) ≤ r

(δ)
∗ . Suppose r∗ < tr(C0Ŵ ), i.e., the

inequality is strict. Let W ′
∗ be any optimizer of RP and choose a small enough δ > 0, such

that

r∗ + δ tr(UW ′
∗) < tr(C0Ŵ ) ≤ r(δ)∗ .

For this δ, (W ′
∗ +W

(δ)
∗ )/2 is a feasible point of RP (δ). Since r

(δ)
∗ is the optimal objective
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value of RP (δ), it follows that

r(δ)∗ ≤ tr

[
(C0 + δU)

(
W ′

∗ +W
(δ)
∗

2

)]
=

1

2
r(δ)∗ +

1

2
[r∗ + δ tr(UW ′

∗)]

< r(δ)∗ .

This is a contradiction and hence r∗ = tr(C0Ŵ ).

Now, we show how to use this perturbation technique to solve P in polynomial time.

Solve RP to get r∗ = p∗. If the optimizer W∗ of RP has rank at most 1, compute x∗ from

W∗ as in lemma 8 then we have solved P in polynomial time. Otherwise, choose a small

δ0 > 0 and solve RP (δ0) in polynomial time to get the minimizer W
(δ0)
∗ and the minimum

r
(δ0)
∗ = p

(δ0)
∗ . For any δ in (0, δ0),

p∗ = r∗ ≤ tr(C0W
(δ)
∗ ) ≤ p(δ)∗ . (3.3)

Also, p
(δ)
∗ is convex in δ [101] and hence

p(δ)∗ ≤ p∗ +
δ

δ0

(
p(δ0)∗ − p∗

)
. (3.4)

Given ζ > 0, choose δ sufficiently small so that δ
δ0

(
p
(δ0)
∗ − p∗

)
≤ ζ. For this δ, solve RP (δ)

arbitrarily closely in polynomial time to get W
(δ)
∗ that has rank at most 1 and compute x

(δ)
∗ .

From equations (3.3) and (3.4), x
(δ)
∗ satisfies p∗ ≤ (x

(δ)
∗ )HC0(x

(δ)
∗ ) ≤ p∗ + ζ. In summary, we

have computed x
(δ)
∗ in polynomial time, that is feasible for P with an objective value within

ζ of the theoretical optimum. This completes Step 2.

3.3.2 Proof using the relaxed problem

Here we use an optimal solution of the relaxed problem RP to construct an optimal solution

of P . It is equivalent to an earlier proof in [70] and included here for completeness.
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The feasible set of RP is bounded (since feasible set of P is bounded) and hence RP can

be solved in polynomial time [66, 67, 88] to obtain a finite optimizer W∗. Now we construct

an optimal solution of P from W∗, thus solving P in polynomial time.

Lemma 10. Suppose x ∈ Cn satisfies xHCx ≤ tr(CW∗) for all C ∈ C. Then x is an optimal

solution of P .

Proof. We have xHCpx ≤ tr(CpW∗) ≤ bp, p = 1, 2, . . . ,m and hence x is feasible. Also,

xHC0x = tr(C0xx
H) ≤ tr(C0W∗). But xxH is feasible in RP . Since W∗ is optimal for RP ,

we obtain xHC0x = tr(C0W∗). The result then follows from the fact that x achieves the

optimal objective value of its relaxation RP .

In what follows, we construct such an n-dimensional complex vector x, in two steps. First

we construct an n×n Hermitian matrix R with RjjRkk = |Rjk|2 for each (j, k) in G(C) that

satisfies tr(CR) ≤ tr(CW∗) for all C ∈ C. Next we construct x from R that satisfies

xHCx = tr(CR) ≤ tr(CW∗) for all C ∈ C (3.5)

Step 1: Constructing R from W∗. For each (j, k) in G(C), the set of complex numbers

[C0]jk, [C1]jk, . . . , [Cm]jk is linearly separable from the origin. Thus for each (j, k) in G(C),

there exists an angle αjk ∈ [0, 2π], such that for all p = 0, 1, . . . ,m,

αjk ≤ ∠[Cp]jk ≤ αjk + π. (3.6)

Since the matrices in C are Hermitian, αkj = π − αjk mod 2π. Define Rjj := [W∗]jj. For

each (j, k) in G(C), let

Rkj = [W∗]kj + wkj exp[i(−π/2 + αkj)],

for some wkj ≥ 0 to be determined below. Note that we leave Rjk unspecified for (j, k) not

in G(C); we will return to this point later.
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We now show that the inequality in (3.5) is satisfied as long as wkj ≥ 0 and then choose

wkj to satisfy RjjRkk = |Rjk|2 for each (j, k) in G(C). We have for each C ∈ C,

tr[C(R−W∗)]

=
n∑

j=1

Cjj (Rjj − [W∗]jj)︸ ︷︷ ︸
=0 by construction

+
∑
j 6=k,

1≤j,k≤n

Cjk(Rkj − [W∗]kj)

=
∑

(j,k) in G(C)

Re {Cjk(Rkj − [W∗]kj)}

=
∑

(j,k) in G(C)

|Cjk|wkj cos (∠Cjk − π/2 + αkj)︸ ︷︷ ︸
∈[π/2, 3π/2] from (3.6)

≤ 0

as required in (3.5). We now choose wkj such that RjjRkk = |Rkj|2, i.e.,

[W∗]jj[W∗]kk =
∣∣∣[W∗]kj + wkj exp[i(−π/2 + αkj)]

∣∣∣2.
This is a quadratic in wkj and admits a solution wkj =

√
b2 + c− b, where

b := Re {[W∗]kj exp[i(π/2− αkj)]} ,

c := [W∗]jj[W∗]kk − |[W∗]kj|2 .

SinceW∗ � 0, the 2×2 principal minor corresponding to the i-th and j-th rows and columns

is positive semidefinite. Thus, [W∗]jj[W∗]kk − |[W∗]kj|2 = c ≥ 0 that implies wkj ≥ 0.

Step 2: Constructing x from R.

1. Define |xj| :=
√
Rjj for each 1 ≤ j ≤ n.

2. Define ∠x1 := 0. For any node 2 ≤ j ≤ n, find the unique path from node 1 to node j in

the acyclic graphG(C), given by the sequence of edges (`0 = 1, `1), (`1, `2), . . . , (`i, `i+1 =

j). Then define ∠xj := −
∑i

k=0 ∠R`k`k+1
.
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Note that for (j, k) in G(C), ∠Rkj = ∠xk −∠xj. Then the equality in (3.5) is satisfied since

xHCx− tr(CR)

=
n∑

j=1

Cjj (|xj|2 −Rjj)︸ ︷︷ ︸
=0 by construction

+
∑
j 6=k,

1≤j,k≤n

Cjk(x
H
j xk −Rkj)

=
∑

(j,k) in G(C)

Re
{
Cjk(x

H
j xk −Rkj)

}
=

∑
(j,k) in G(C)

Re {Cjk(|xj||xk| exp[i(∠xk − ∠xj)]−Rkj)}

=
∑

(j,k) in G(C)

Re

Cjk(
√
RjjRkk exp[i∠Rkj]︸ ︷︷ ︸
=Rkj by construction

−Rkj)


= 0.

Note that our construction does not require Rjk nor [W∗]jk for (j, k) not in G(C).

We only use the fact that [W∗]jj[W∗]kk − |[W∗]kj|2 ≥ 0 for (j, k) in G(C). We can in-

deed formulate another relaxation of P in terms of the variables {Wjj, 1 ≤ j ≤ n} and

{Wjk,Wkj = WH
jk , (j, k) in G(C)} with the constraint

WjjWkk − |Wjk|2 ≥ 0.

The above defines a second-order cone [55] and hence this relaxation is an SOCP. The

feasible set of this relaxation is bounded and can be solved in polynomial time. The above

construction then yields an optimal solution of P from the optimal solution of this SOCP

relaxation.

3.4 QCQP in real variables

In the QCQP P , suppose the matrices in set C are real and symmetric, then all off-diagonal

elements of the matrices in C are always linearly separable from the origin. If in addition,
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the graph G(C) is acyclic, then Theorem 7 implies an optimal solution x∗ ∈ Cn of P can be

solved in polynomial time.

Let R denote the set of real numbers. Authors of [94,95] have considered the case where

P is solved over x ∈ Rn and RP is solved over real symmetric matrices W ∈ Rn×n. The

authors of [94] consider QCQPs where G(C) may contain cycles, but require a particular sign

pattern of its off-diagonal entries. Restricted to acyclic graphs, this condition is equivalent to

[C0]jk, [C1]jk, . . . [Cm]jk having the same sign for each edge (j, k) in G(C). It can be checked

that the proof technique in Section 3.3.2 is a generalization of the approach in [94, Theorem

3.4] and can be used to prove the result in [94, Theorem 3.4] with minor modifications.

Theorem 7, however, generalizes to complex QCQPs and cannot be obtained by transforming

a QCQP in the complex domain to an equivalent QCQP in the real domain using the following

transformation [55,65] of the quadratic forms:

xHCx =

Re x

Im x

T Re C −Im C

Im C Re C

Re x

Im x

 ,

where for any vector or matrix y, yT denotes its transpose. This discussion is summarized

in the following.

Corollary 11. Suppose QCQP P has a non-empty and bounded feasible set. For all C ∈ C

let C be symmetric and in Rn×n. If G(C) is acyclic,

1. Then an optimal solution x∗ ∈ Cn of P can be obtained in polynomial time.

2. If for each edge (j, k) in G(C), the real numbers Cjk, C ∈ C have the same sign, then

an optimal solution x∗ ∈ Rn of P can be obtained in polynomial time.

Remark 4. The authors in [94, 95] consider an additional convex constraint in P of the

form x2 ∈ F , where x2 is the n × 1 vector with (xi)
2 as its i-th component and F is a

bounded convex set. This adds the constraint diag(W ) ∈ F in the relaxation RP . Our proofs

in Section 3.3.1 and 3.3.2 remain unchanged with this additional constraint on the diagonal

elements of W .
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3.5 Optimal Power Flow: An application

As previously discussed, OPF can be cast as a QCQP. In Chapter 2, we discussed the

formulations of OPF and its conic relaxations through the bus injection and branch flow

models. In this section, we only use the bus injection model. In what follows, we examine

the application of Theorem 7 to derive sufficient conditions on the tightness of such conic

relaxations. For completeness of this chapter, we start by summarizing recent results on

OPF relaxations in Section 3.5.1, though most have been discussed in detail in Chapter

2. In Section 3.5.2 we formulate OPF as a QCQP. Our formulation here is a much more

detailed exposition of the formulation of the bus injection model presented in the chapter

before. Then, we restrict ourselves to OPF over radial networks and use Theorem 7 to

provide a sufficient condition under which the OPF problem can be solved efficiently in

Section 3.5.3. Notice that radial networks are important for power systems because most

distribution systems are indeed radial.

3.5.1 Relation to prior work

The SDP based relaxation for OPF is proposed in [35,102] and its use is illustrated on several

IEEE test systems in [63] using an interior-point method. The authors in [36] propose to

solve the convex Lagrangian dual of the OPF problem and derive a sufficient condition that

allows the optimal solution for the OPF to be recovered from that of the dual. Though

an SDP relaxation recovers an OPF solution for most IEEE test systems, it does not work

on all problem instances; such limitations have been most recently discussed in [1]. The

non-convexity of power flow solutions, has however, been studied earlier, e.g., in [37,103–105].

This motivates the study of sufficient conditions under which the SDP-based conic relaxation

provides an optimal solution of the OPF problem.

Recently a series of works have studied OPF over radial networks and proved a variety

of sufficient conditions that guarantee exact convex relaxations. It has been independently

reported in [15, 37, 38] that the semidefinite relaxation of OPF is exact for radial networks

provided certain conditions on the power flow constraints are satisfied. Note that such
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sufficient conditions have also been explored for the branch flow models, e.g., authors in

[46, 50, 51] prove that this relaxation is exact for radial networks when there are no upper

bounds on loads, or when there are no upper bounds on voltage magnitudes. Using the

equivalence result from Chapter 2, we notice that such results also carry over to the bus

injection models.

3.5.2 Problem Formulation

Consider a power system network with n nodes (buses). The admittance-to-ground at bus

i, for 1 ≤ i ∈ Z ≤ n, is yii and the admittance of the line between connected nodes i and

j (denoted by i ∼ j) is yij = gij − ibij. Typically, gij ≥ 0 and bij ≥ 0, i.e., the lines are

resistive and inductive. Define the corresponding n× n admittance matrix Y as

Yij =



yii +
∑
j∼i

yij, if i = j,

−yij, if i 6= j and i ∼ j,

0 otherwise.

Remark 5. Y is symmetric but not necessarily Hermitian.

The remaining circuit parameters and their relations are defined as follows.

• V and I are n-dimensional complex voltage and current injection vectors, where Vk, Ik

denote the nodal voltage and the injection current at bus 1 ≤ k ≤ n respectively. The

voltage magnitude |Vk| is bounded as

0 < W k ≤ |Vk|2 ≤ W k.

• Sk = Pk + iQk is the complex power injection at node 1 ≤ k ≤ n, where Pk and Qk,

respectively, denote the real and reactive power injections and

Sk = VkI
H
k . (3.7)
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• PD
k and QD

k are the real and reactive power demands at bus 1 ≤ k ≤ n, which are

assumed to be fixed and given.

• PG
k and QG

k are the real and reactive power generation at bus 1 ≤ k ≤ n. They are

decision variables that satisfy the constraints PG
k ≤ PG

k ≤ P
G

k and QG

k
≤ QG

k ≤ Q
G

k .

Power balance at each bus 1 ≤ k ≤ n requires PG
k = PD

k + Pk and QG
k = QD

k + Qk, which

leads us to define

P k := PG
k − PD

k , P k := P
G

k − PD
k

Q
k

:= QG

k
−QD

k , Qk := Q
G

k −QD
k .

The power injections at each bus 1 ≤ k ≤ n are then bounded as

P k ≤ Pk ≤ P k, Q
k
≤ Qk ≤ Qk.

The branch power flows and their limits are defined as follows.

• Sij = Pij + iQij is the sending-end complex power flow from node i to node j, where

Pij and Qij are the real and reactive power flows respectively. The real power flows

are constrained as |Pij| ≤ F ij where F ij is the line-flow limit between nodes i and j

and F ij = F ji.

• Lij = Pij+Pji is the power loss over the line between nodes i and j, satisfying Lij ≤ Lij

where Lij is the thermal line limit and Lij = Lji. Also, observe that since Lij ≥ 0, we

have |Pij| ≤ F ij, |Pji| ≤ F ji if and only if Pij ≤ F ij, Pji ≤ F ji.

For 1 ≤ k ≤ n, let Jk = eke
H
k where ek is the k-th canonical basis vector in Cn. Define

Yk := eke
H
k Y . Substituting these expressions into (3.7) yields

Sk = eHk V I
Hek = tr

(
V V H(Y Heke

H
k )
)
= V HY H

k V

= V H

(
Y H
k + Yk

2

)
︸ ︷︷ ︸

=:Φk

V + i V H

(
Y H
k − Yk
2i

)
︸ ︷︷ ︸

=:Ψk

V,
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where Φk and Ψk are Hermitian matrices. Thus, the two quantities V HΦkV and V HΨkV

are real numbers and

Pk = V HΦkV, Qk = V HΨkV.

The real power flow from i to j can be expressed as a quadratic form as follows.

Pij = Re {Vi(Vi − Vj)
HyHij } = V HM ijV,

where M ij is an n× n Hermitian matrix.

The thermal loss of the line connecting buses i and j is

Lij = Lji = Pij + Pji = V HT ijV

where T ij = T ji :=M ij +M ji � 0. The entries of the matrices Ψk, Φk, 1 ≤ k ≤ n, M ij, T ij,

i ∼ j are described in detail in the appendix.

We can now write the OPF problem. Given a Hermitian n× n matrix C0, we have

Optimal power flow problem OPF :

minimize
V ∈Cn

V HC0V

subject to: P k ≤ V HΦkV ≤ P k, 1 ≤ k ≤ n, (3.8a)

Q
k
≤ V HΨkV ≤ Qk, 1 ≤ k ≤ n, (3.8b)

W k ≤ V HJkV ≤ W k, 1 ≤ k ≤ n, (3.8c)

V HM ijV ≤ F ij, i ∼ j, (3.8d)

V HT ijV ≤ Lij, i ∼ j, (3.8e)

where (3.8a)–(3.8e) are, respectively, constraints on the real and reactive powers, the voltage

magnitudes, the line flows and thermal losses.

We do not include line-flow constraints that impose an upper bound on the apparent
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power
√
P 2
ij +Q2

ij on each branch i ∼ j because such constraints are not quadratic in the

voltages and hence beyond the scope of our model.

Remark 6 (Objective Functions). We can consider different optimality criteria by changing

C0 as follows:

(i) Voltages: C0 = In×n (identity matrix) where we aim to minimize ‖V ‖2 =
∑

k |Vk|2.

(ii) Power loss: C0 = (Y +Y H)/2 where we aim to minimize
∑

i gii|Vi|2+
∑

i<j gij|Vi−Vj|2.

(iii) Production costs: C0 =
∑

k ckΦk where we aim to minimize
∑

k ckP
G
k , ck ≥ 0.

3.5.3 Conic relaxation over radial networks

Assume hereafter that OPF is feasible. To conform to the notation of problem P in Section

3.2, we replace the constraint in (3.8a) by the equivalent constraints

V H [Φk]V ≤ P k, 1 ≤ k ≤ n,

V H [−Φk]V ≤ −P k, 1 ≤ k ≤ n.

Similarly we rewrite (3.8b) and (3.8c). Then the set of matrices {C1, . . . Cm} and the set of

scalars {b1, . . . , bm} in the OPF problem are defined as

{C1, . . . Cm} := {Φk,−Φk,Ψk,−Ψk, Jk,−Jk, 1 ≤ k ≤ n}⋃ {
M ij, T ij, i ∼ j

}
,

{b1, . . . , bm} :=
{
P k,−P k, Qk,−Qk

,W k,−W k, 1 ≤ k ≤ n
}

⋃ {
F

ij
, L

ij
, i ∼ j

}
.

We now limit the discussion to OPF instances where the graph of the power network is

acyclic and denote this graph on n nodes as T . Then, one can show that for all objective
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functions considered, the set C = {C0, C1, . . . , Cm} for OPF satisfies

G(C) = T , (3.9)

i.e., the sparsity pattern of the matrices in the set C follows the acyclic graph T of the power

network. To explore the linear separability condition for OPF over T , consider an edge (i, j)

in T with yij = gij − ibij. Next, we compute the complex numbers [Cp]ij, p = 1, . . . ,m from

the matrices described as follows. For 1 ≤ k ≤ n, and (p, q) and (i, j) in T , we have:

[Φk]ij =


1
2
Yij = 1

2
(−gij + ibij) if k = i

1
2
Y H
ij = 1

2
(−gij − ibij) if k = j

0 otherwise,

(3.10)

[Ψk]ij =


−1
2i
Yij = 1

2
(−bij − igij) if k = i

1
2i
Y H
ij = 1

2
(−bij + igij) if k = j

0 otherwise,

(3.11)

[Mpq]ij =



gpq if i = j = p

1
2
(−gpq + ibpq) if (i, j) = (p, q)

1
2
(−gpq − ibpq) if (i, j) = (q, p)

0 otherwise,

(3.12)

65



[T pq]ij =


gpq if i = j = p or i = j = q

−gpq if (i, j) = (p, q) or (i, j) = (q, p)

0 otherwise.

(3.13)

Succinctly, the (i, j) entries of the matrices that contribute are given as:

(a) [Φi] : −gij/2 + ibij/2,

(b) [Φj] : −gij/2− ibij/2,

(c) [Ψi] : −bij/2− igij/2,

(d) [Ψj] : −bij/2 + igij/2,

(e) [M ij] : −gij/2 + ibij/2,

(f) [M ji] : −gij/2− ibij/2,

(g) [T ij] : −gij,

(h) [T ji] : −gij.

For the same edge (i, j) ∈ T , the objective functions in Remark 6 will respectively have

the following entries

(i) Voltages: [C0]ij = 0,

(ii) Power loss: [C0]ij = −gij,

(iii) Production costs: [C0]ij = −gij(ci + cj)/2 + ibij(ci − cj)/2.

For the purpose of this discussion, consider power loss minimization as the objective, i.e.,

[C0]ij = −gij and assume gij > bij > 0. We plot the non-zero (i, j)-th entries of the matrices

in C on the complex plane in Figure 3.2 and label each point with its corresponding matrix.

Clearly if we consider all the points in Figure 3.2, they are not linearly separable from the

origin. To apply Theorem 7 to OPF, consider an index-set M ⊆ {1, 2, . . . ,m} such that the

set of matrices C0 and {Cp, p ∈ M} are off-diagonally linearly separable. This corresponds

to removing certain inequalities in OPF, i.e., bp = +∞ for p ∈ {1, 2, . . . ,m} \ M. For

example, removing −Φj from the set {C1, . . . , Cm} corresponds to setting P j = −∞. Then

Theorem 7 can be used to prove the following result.
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Ψi

−ΨiΨj

−Ψj

−Φj
Φi, M ij

Φj , M ji

T ij , T ji, C

Figure 3.2: Cij and non-zero [Cp]ij, p = 1, . . .m on the complex plane for OPF for a fixed
line (i, j) in tree T .

Corollary 12. The OPF problem over an acyclic power network T with an off-diagonally

linearly separable set of matrices C̃ = {C0, Cp, p ∈ M} can be solved in polynomial time using

its SDP or SOCP relaxation.

We next explore, through examples, some constraint patterns for OPF over T for which

the conic relaxations can be used to solve OPF.

Example 1: In Figure 3.2, consider the (i, j)-th elements of the following set of matrices:

{
Φi,Φj,Ψi,Ψj,−Ψi,M

ij,M ji, T ij = T ji, C0

}
.

This set of points is linearly separable from the origin. With these points, associate a

constraint pattern defined as follows. For any point in the diagram that is not a part of

this set, the inequality associated with that matrix is removed from OPF. For example, the
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matrices −Φj, −Φi and −Ψj are removed, which leads to

P j = P i = Q
j
= −∞.

This can be generalized to a constraint pattern over T by removing the lower bounds on the

real powers at all nodes and the lower bounds on reactive powers at alternate nodes.

Example 2: Suppose P k = Q
k
= −∞ for all nodes k in T . This corresponds to considering

points only on the left-half plane in Figure 3.2 for all edges (i, j) in T and constitutes a set

that is linearly separable from the origin. In Figure 3.2, we assume gij > bij > 0. However,

regardless of the ordering between gij and bij for edges (i, j) in T , the set of points considered

in this constraint pattern always lies in the left half of the complex plane.

Removing the lower bounds on the real and reactive power can be interpreted as load

over-satisfaction, i.e., the real and reactive powers supplied to a node 1 ≤ k ≤ n can be

greater than their respective real and reactive power demands PD
k and QD

k . Results showing

that OPF on a radial network with load over-satisfaction can be efficiently solved were

previously reported in [15,37,38].

Example 3: Consider voltage minimization, i.e., C0 is the n× n identity matrix. In

Figure 3.2, consider the (i, j)-th entries of the following set of matrices:

{−Φi,Φj,−Φj,Ψi,−Ψj, C0} .

The constraint pattern associated with this set of points is

P i = Qj = Lij = Lji = F ij = F ji = +∞, Q
i
= −∞.

We can construct a constraint pattern for the OPF problem using the above that can be

solved efficiently.
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Chapter 4

Unifying structural market power
analysis in electricity markets

In the 1990s, the Federal Energy Regulatory Commission (FERC) began to deregulate elec-

tricity markets in various states by replacing cost-of-service regulated rates with market-

based prices. The goal was to increase competition among generators and lower prices to

end-consumers. However, the consequences of deregulation were unexpected; in 2000 and

2001, market manipulations led to the California electricity crisis which involved multiple

large-scale blackouts and skyrocketing prices [4]. It is estimated that about $5.55 billion was

paid in excess of costs between 1998 and 2001 alone [106]. Subsequently, various measures

were introduced in the markets to curb such behavior. Nevertheless, market manipulation

continues to exist. For instance, JP Morgan was fined $410 million for market manipula-

tion in electricity markets in California and the Midwest from September 2010 to November

2012 [107]. To avoid such over-payments, monitoring and mitigating market power is es-

sential. It is expected to become even more critical as new smart grid technologies such

as intermittent renewable generation, energy storage, and demand-response programs start

picking up presenting more opportunities to exploit. In this chapter, we propose a new func-

tional market power measure, termed transmission constrained network flow (TCNF), that

unifies different classes of structural market power indices in the literature. We study this

measure with three different models for the power flow equations: (a) a DC approximation,

(b) a semidefinite relaxation, and (c) interior-point algorithms from Matpower. Finally,
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we provide extensive simulations on IEEE benchmark systems and highlight the complex

interaction of engineering constraints with market power assessment.

4.1 Background on market power analysis

The Department of Justice defines market power as the ability of a firm to profitably alter

prices away from competitive levels [108, 109]. In other words, market power is a form of

market “dominance”, where a player can increase its profitability by behaving independently

of competitors and consumers. The major reason for the potential to exploit is that electric-

ity markets are complex and operate on multiple time-scales. Power delivered at a particular

instant of time is first procured months (or even years) ahead via long-term bilateral con-

tracts between generators and retailers. Between one week and one day ahead of delivery,

generators and retailers begin to trade in centralized electricity markets to clear imbalances.

These centralized markets typically operate over multiple stages to allow market participants

to exploit the increased information about supply and demand closer to delivery. The proce-

dures for each stage are similar – generators and retailers submit offers and bids respectively

and the market operator clears the market by solving a centralized dispatch problem to

minimize system costs subject to operating constraints. Payments are calculated based on

locational marginal prices (LMP) which are designed to reflect local costs of generation.

Market power in generic markets has been extensively studied using microeconomics, e.g.,

in [110]. The theory, however, does not apply directly to electricity markets due to various

reasons, such as: (a) Unlike in most commodity markets, electricity cannot be stored cheaply;

therefore generators have significant short-run capacity constraints. (b) Electricity demand is

typically inelastic because of limited price-responsiveness of consumers. (c) Trade agreement

between a supplier and a consumer is not enough to guarantee feasible power delivery over

a transmission grid since power transfer respects physical laws as well as market outcomes.

Economics or engineering alone cannot handle such issues adequately. In electricity market,

such dominance can be global, e.g., by a supplier with a large enough generation capacity,

or local, e.g., by a supplier in a region which has limited ability to import less expensive
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electricity due to transmission constraints [111].

4.1.1 Prior work

Classically, the literature on market power is fractured. Recently, however, a principled

design has begun to emerge, e.g., see [109] for a survey. The analysis of market power can be

divided into three distinct categories: (a) structural analysis, (b) competition models, and

(c) behavioral analysis.

Structural analysis of market power is based on an ex ante approach where the emphasis

is on identifying firms that own “must-run” generators and hence have strategic advantage in

terms of market share, location in the network, etc. Such market power studies are also useful

in the long-run to evaluate mergers, plan transmission capacity expansions, etc. Competition

models analyze the electricity market either as a supply function or a Cournot competition

with or without transmission constraints and establish competitive benchmarks for firm

behavior using extensive simulations, e.g., see [112–115]. Real data is then compared ex post

to such benchmarks to identify abuses of market power. In contrast, the behavioral analysis

is another ex post approach that detects actual supply withholding or high price-to-cost

markups in the spot market as opposed to comparing it with perfectly competitive behavior.

We make two observations. First, such ex post analysis indeed correlates with structural

indices [116, 117]. Second, ex post analysis with real data can be highly challenging to

identify intentional abuse of market power [118,119]. Thus ex ante structural analysis helps

to prevent rather than cure such abuse. In this chapter, we focus on the same.

Early work on structural market power analysis, emerging from microeconomics, sug-

gested measures that focussed exclusively on market share based on generator capacities,

e.g., Herfindahl-Hirschmann index (HHI) [120]. The major shortcoming of such an analysis

in electricity markets is in defining the relevant market. Due to demand variations and lack

of storage, electricity across different periods of time are not substitutes. Similarly supplies

that are geographically located on different ends of a congested transmission line are not

substitutes as well. Thus, market power indices that are agnostic to demand variations and
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transmission constraints have limited applicability to electricity markets.

To incorporate the demand side, Bushnell et al. introduced the pivotal supplier index

(PSI) as a binary indicator examining whether the capacity of a generator is larger than

the supply surplus, i.e., the difference between the total supply and the total demand [121].

Later, Sheffrin et al. refined PSI by measuring market power on a continuous scale, and

proposed the residual supply index (RSI) in [122]. This index is used by the California ISO

to assure price competitiveness [123]. The electric reliability council of Texas (ERCOT) uses

a similar measure called the element competitiveness index (ECI) [124], based on HHI [120].

Issues arising due to transmission constraints have also been addressed in the literature. A

traditional approach used the SSNIP (small but significant non-transitory increase in price)

test [125] to identify geographically isolated “load pockets”. Many authors have studied

Cournot-based or supply-function based markets with congestion, e.g., see [112–115,126,127].

Structural indices on a transmission constrained network, however, have remained fractured.

We have attempted to bridge that gap in this work.

4.1.2 Our contributions

The contributions of this chapter are as follows: (1) we introduce a functional market power

measure for structural analysis that unifies the theory1 (2) we incorporate a detailed AC

model of the underlying power system to study the complex interactions of this measure with

the engineering constraints. Structural indices identify pivotal suppliers, i.e., generators that

are crucial to meet demand subject to engineering constraints. These constraints, however,

are not limited to transmission capacities of the network only. Our study shows that an AC

power flow model significantly affects the conclusions. The new measure, termed “transmis-

sion constrained network flow” unifies the three broad classes of long-term structural mea-

sures in the literature: “network flow based” [129, 130], “residual supply based” [126, 131],

and “minimal generation based” [132, 133]. We introduce each of these classes in detail in

Section 4.2. Calculating the new measure in Section 4.3 requires us to solve a nonconvex

1A preliminary version of this work has appeared in [128].
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optimization program resulting from the nature of the AC power flow equations. We deal

with this nonconvexity in three ways: (a) use DC approximation [134,135] and solve a linear

program (LP) , (b) use interior-point based methods implemented in Matpower [63], (c)

use recent advances in semidefinite programming (SDP) based relaxations [65] to AC power

flow equations [11, 12, 35, 36]. In Section 4.4, we provide extensive simulations on IEEE

benchmark systems [63] and illustrate the importance of modeling engineering constraints

in identifying market power. We compare the different computational approaches in Section

4.5 and extend the index to the case where firms can own generators at multiple locations

in Section 4.6.

4.2 Market power measures

Recently, many indices have been introduced to include the effect of transmission constraints

in structural market power indices; we categorize them as: “residual supply based”, “network

flow based”, and “minimal generation based”. In what follows, we introduce each of them

in detail.

4.2.1 Residual supply based measures

Residual supply based measures propose to quantify the maximum total load that the

transmission-constrained electricity market can meet if generator of interest, s, is excluded.

Following [126, 131], the transmission-constrained residual supply index (TCRSI) for gener-

ator s is defined as:

TCRSIs = maximize
q,t

t

subject to 1>q = 1>(d̄t),

− b ≤ Hqq −Hd(d̄t) ≤ b,

qs = 0, 0 ≤ qi ≤ q̄i, i 6= s.

(4.1)
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where q is the supply vector, t is the demand scaling parameter, Hq is the generation shift

factor matrix, Hd is load shift factor matrix, b is the transmission line capacity vector, q̄i is

the capacity of generator i, d̄j is the demand of load j, 1 is a unit vector, and > denotes

transposition. If TCRSIs < 1, then generator s can potentially exercise market power.

Consider the network in Figure 4.1. For G1, TCRSI is 3.2/7, the fraction of demand that

can be met with available supply.

bus 1

bus 2

bus 3

z
=

1.
0,

b
=

1
z
=

1.0
,
b
=

3.5
z =

1.2,
b =
∞

8

8

7

G1

G2

Figure 4.1: A small network to illustrate market power indices. All quantities are measured
in per units (p.u.). z denotes impedance and b denotes line capacity.

4.2.2 Network flow based measures

Network flow based measures are exemplified by [129,130], which model market power in the

presence of transmission constraints in terms of the maximal network flow (MNF) achievable

without the generator of interest. Conceptually, these measures are similar to TCRSI, but

they do not use power flow equations to model the underlying power systems. A key result

in [129, 130] is that market power is supermodular, i.e., there is always an incentive for

generators to collude. This conclusion, however, does not hold if the power flow respects

impedance and follows Kirchoff’s laws. See Section 4.6 for an example in IEEE test systems.

Intuitively, one would expect that there is always an incentive to collude since any individual
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strategy for generators would likely be a valid strategy for a collusion of generators. Market

power index, however, measures the demand shortfall due to the absence of a generator.

Consider the network in Figure 4.1. When G1 withholds generation, G2 can only supply

3.2pu; demand shortfall is 3.8pu. Similarly, when G2 withholds generation, demand shortfall

is 4.33pu. When both generators withhold, shortfall is the total demand of 7pu, which is lower

than the sum of the two shortfalls computer before. Thus market power is not supermodular.

Roughly, when power injection from two different generators lead to opposing power flows

on a capacity-limited transmission line, then these two generators acting together may not

be able to cause more demand shortfall than shortfalls due to each generator withholding

alone. This intuition holds for the network in Figure 4.1.

4.2.3 Minimal generation based measures

The above two definitions of market power focus on the fraction of unmet demand when

generator at bus s is not in service. An alternate approach is to calculate the minimum

generation required from generator s to meet the total target demand. In particular, mini-

mal generation based measures typically identify “must run generators”, e.g., [132, 133] are

exemplified by the transmission-constrained minimal generator index (TCMGI):

TCMGIs = minimize
q

qs

subject to 1>q = 1>d̄,

− b ≤ Hqq −Hdd̄ ≤ b,

0 ≤ qi ≤ q̄i.

(4.2)

Note that in (4.1), we have qs = 0 and the total load is scaled by a variable factor t. In

(4.2), however, the output of generator s is a variable and the total demand is a constant.

If TCMGIs > 0, then generator s can exercise market power. In general, TCMGIs does

not equal the unmet demand in the network when generator at bus s is not operational.

For example, consider the network in Figure 4.1. It can be checked that TCMGI1 = 4.2pu
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while the shortfall is actually 3.8pu when the same generator is not in service. TCRSIs and

TCMGIs are indeed related; we explore this below.

4.3 Functional measure of market power

Prior work on long term market power measures in Section 4.2 suggests that while a wide

variety of measures exist, the literature lacks a unified theory that incorporates economic

and engineering constraints. Here we propose a functional market power measure rather

than a market power index that represents a step toward such a unifying measure.

To motivate the measure, consider the following informal definition:

TCNFs(ρ) = maximize total demand met

subject to supply from generator s ≤ ρ,

other network constraints.

The functional TCNFs maps every scalar ρ ∈ [0, q̄i] into the maximum demand that can

be satisfied when the (real) power output of generator s is no more than ρ. TCNFs(ρ) can

also be interpreted as a measure of the minimum amount of load that has to be shed (or

dispatched, through demand-side management2), provided that the supply of generator s is

up to ρ. At different levels of ρ, it measures the relative importance of each generator to

meet additional demand, abiding by the network constraints.

The definition can also be interpreted as follows. Consider the optimal power flow (OPF)

problem where the objective is to only satisfy demand and the production level of generator

s is upper bounded by the parameter ρ. Then, the optimal objective value of this OPF type

problem is a function of that variable ρ and hence defines a “functional” measure of market

power for generator s.

In the rest of this section, we show how a detailed power flow model can be included

to arrive at a unifying market power measure that is applicable to the evolving smart grid.

2When there is a deficit in electricity supply, the system operator may call upon consumers to adjust
their demand so as to match the supply − an approach which is usually referred to as demand response.
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Next, we formally define TCNFs(ρ) with the engineering constraints.

4.3.1 Definition

We begin with some notation. Let i =
√
−1 and for any complex matrix or number z, let

zH be the complex conjugate transpose of z. Consider a network on n nodes (buses) labeled

1, 2, . . . , n. Let pGk and qGk be the real and reactive power generations at node k. Also let

pDk and qDk be the real and reactive power demands that are met at node k. We denote

skj := pkj + iqkj as the apparent power flowing from bus k to bus j, where pkj and qkj are

the real and reactive power flows, respectively. Thus, power balance equation at each node

k becomes

(pGk − pDk ) + i(qGk − qDk ) =
∑
j:j∼k

skj, (4.3)

where j ∼ k denotes that buses k and j are connected in the power network. The power

generations are assumed to satisfy

0 ≤ pGk ≤ pGk , −βk pGk ≤ qGk ≤ βk p
G
k , (4.4)

where βk > 0 is a known constant that depends on the technology, i.e., each generator is

assumed to vary its reactive power output within a certain power factor of the real power

generation. The total load to be supported at bus k has a target real demand pDk and a

target power factor αk. The target power factor depends on the type of load at bus k. Thus,

the supported demand pDk + iqDk satisfies

0 ≤ pDk ≤ pDk , qDk = tan(cos−1 αk) p
D
k . (4.5)

Power factors typically range from 0.95 to 0.98 lagging. The apparent power flowing from

bus k to bus j is skj and is bounded by the thermal and stability limits of the transmission
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lines as

|skj| ≤ fkj, (4.6)

where fkj is the known capacity of the line between buses k and j. Let the voltage at bus

k be Vk, and the admittance of the line between buses k and j be ykj. The current flowing

from bus k to bus j is ykj(Vk − Vj) and we have

skj = Vk [ykj(Vk − Vj)]
H . (4.7)

To maintain power quality and the system stability, the voltage magnitude |Vk| at bus k is

required to be bounded as follows:

W k ≤ |Vk|2 ≤ W k, (4.8)

where W k and W k are known constants.

Using the notations introduced above, we are now ready to formally introduce a measure

the market power of a generator at node s as follows:

TCNFs(ρ) = maximize
∑
k

pDk

subject to pGs ≤ ρ,

(4.3), (4.4), (4.5), (4.6), (4.7), (4.8),

over pGk , q
G
k , p

D
k , q

D
k , k = 1, . . . , n,

skj, k ∼ j.

(4.9)

We refer to this measure as the transmission-constrained network flow. The constraints

in (4.3)-(4.8) impose the impact of the network topology, the underlying circuits, and the

transmission line capacities. These constraints make our analysis different from a traditional

economic approach to market power. Note that, TCNFs(ρ) is a functional measure, i.e., it
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evaluates market power for every given value of parameter ρ.

In Section 4.3.3, we describe how this measure in (4.9) unifies the three general classes of

long-term market power measures discussed in Section 4.2. Next, we describe the solution

approaches to the optimization program to calculate TCNFs.

4.3.2 Relaxations and approximations

Perhaps the first observation one makes about the definition of TCNFs is that it requires

solving optimization problems that are NP-hard. This is because the relation in (4.7) is

a quadratic equality and hence the feasible set is, in general, non-convex. This makes it

difficult to compute (4.9) to quantify market power. There are three general approaches to

compute the measure: (i) linearizing the quadratic constraint around a set-point and use DC

approximation (ii) using heuristic iterative nonconvex optimization techniques, (iii) relaxing

the non-convex quadratic equality constraint to a convex semidefinite constraint and use

conic program solvers.

Nonconvexity of power-flow equations have played a significant role in optimization prob-

lems over power networks [23]. Traditionally, the engineering problems and market compu-

tations have differed in the approaches taken to deal with this nonconvexity. While market

outcomes have relied on the DC approximation [121,122,124,128,129,131], engineering prob-

lems such as real-time economic dispatch have applied heuristics or iterative techniques to

reach an implementable operating point [22,63]. The conic relaxation approach, however, is

a recent development and is finding applications in both the engineering and market consid-

erations, e.g., see [11,35,36] for its use in optimal power flow and see [136,137] for its use in

electricity markets. Next, we present all three computational approaches; we compare them

in Section 4.5.

4.3.2.1 The DC approximation approach

The most popular approximation for power flow equations is linearization, e.g., see [134,135].

This approach makes the following assumptions:
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• Voltage magnitude |Vk| at each node k is assumed to be at its nominal value, where

Vk = |Vk| exp(iθk). Thus |Vk| = 1pu.

• Transmission lines are assumed to be loss-less, i.e., ykj = ibkj is purely imaginary for

all pairs k ∼ j.

• For any pair of buses k ∼ j, the voltage phase angle differences θk − θj are assumed to

be small, i.e., sin(θk − θj) ≈ θk − θj and cos(θk − θj) ≈ 1.

Using this approximation, for any pair k ∼ j, we have

skj = pkj = bkj(θk − θj).

It can be checked that there is no reactive power that flows in this model and hence ignoring

the reactive power demand constraint in (4.5), this definition of TCNFs coincides with the

one studied in [128] and can be solved as an LP. Henceforth, we refer to this computation

as the DC case, denoted by TCNFDC
s (ρ).

4.3.2.2 Non-linear optimization technique

Many iterative techniques have been used to solve optimization problems in power systems,

specifically the optimal power flow problem; see [22, 23] for surveys. Some notable exam-

ples are quadratic programming, variations of gradient methods, Newton-based techniques,

sequential quadratic programming, and interior-point based methods. The problem is NP-

hard, these iterative algorithms are not guaranteed to converge to the global optimal solution,

though some of them provably converge to local minima in polynomial time. For many test

cases, these approaches have been known to converge to “good” operating points. In this

work, we use the primal-dual interior-point solver in Matpower [63]. When this converges,

we refer to it as TCNFNL
s and call this computation as the NL case. Though it is hard to

comment on the optimality of the point obtained through this heuristic, the use of Matpower

solver provides insights as we explore the simulations on the IEEE benchmark systems.
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4.3.2.3 The SDP relaxation approach

Recently, a conic relaxation has been proposed to deal with the nonconvexity of power-flow

equation in (4.7), e.g., see [11,12,35,36]. In particular, consider the n×n positive semidefinite

matrix W = V V H that has rank one (denoted as W � 0, rank W = 1). For each pair of

buses k ∼ j, we express skj as a linear matrix relation in W as follows. Define an n × n

matrix Mkj, where

[Mkj]kk = yHkj, [Mkj]jk = −yHkj,

and rest of the entries of Mkj are zero. In terms of Mkj, the equality in (4.7) can be written

as

skj = tr(MkjW ).

Accordingly, the optimization problem to calculate TCNF becomes a rank-constrained SDP

[65] in terms of matrix W . It still remains nonconvex due to the rank constraint. Next, we

relax the rank constraint to obtain TCNFAC
s (ρ) and refer to this computation as the AC

case.

4.3.3 Properties of TCNFs

In Section 4.3.2, we introduced the functional measure TCNFs(ρ) and its computational

versions TCNFDC
s (ρ), TCNFAC

s (ρ) and TCNFNL
s (ρ) to assess market power. Now, we explore

their salient features.

TCNFDC
s (ρ) generalizes network flow based and residual supply based measures. When

ρ = 0, it indicates the maximal network flow satisfying the DC power flow constraints when

generator s withholds generation. TCNFAC
s (0) and TCNFNL

s (0) measure the same with AC

power flow models.

To relate TCNFs to the minimum generation based measure, consider the transmission-
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constrained minimal generation TCMGs(D) for generator s to be defined as follows:

TCMGs(D) = minimize pGs ,

subject to
∑
k

pDk = D,

(4.3), (4.4), (4.5), (4.6), (4.7), (4.8),

over pGk , q
G
k , p

D
k , q

D
k , k = 1, . . . , n,

skj, k ∼ j.

This generalizes the minimum generation based measures in [129, 130] to a functional form

and uses AC power flow to model the physical power system. It is easy to extend the

definition of TCMGs(·) to the following computable versions: TCMGDC
s (·) with the DC-

approximation and TCMGAC
s (·) with the SDP-based relaxation. First, we explore the rela-

tionship of the functions TCNFs(·) and TCMGs(·) for the DC and the AC cases; proof is

included in the appendix.

Theorem 13. For each generator s:

1. TCNFDC
s (·) is a continuous, concave, piecewise linear and non-decreasing function;

TCMGDC
s (·) is a continuous, convex, piecewise linear and non-decreasing function.

Moreover, TCNFDC
s (·) and TCMGDC

s (·) are inverses of each other, i.e., for any 0 ≤

D ≤ TCNFDC
s (∞),

TCNFDC
s

[
TCMGDC

s (D)
]
= D.

2. TCNFAC
s (·) is a continuous, concave, and non-decreasing function; TCMGAC

s (·) is a

continuous, convex, and non-decreasing function. Moreover, TCNFAC
s (·) and TCMGAC

s (·)

are inverses of each other, i.e., for any 0 ≤ D ≤ TCNFAC
s (∞),

TCNFAC
s

[
TCMGAC

s (D)
]
= D.

Before we present the proof, we make a few observations about the result. Note that the
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Figure 4.2: TCNFDC
s (·) of generators in the 3-bus network shown in Figure 4.1. Quantities

are measured in per units (p.u.).

functions TCNFDC
s (·) satisfies all properties of TCNFAC

s (·); in addition, it is also piecewise

linear, because the optimization problem to compute TCNFDC
s is a linear-parametric LP.

This property does not generalize to linear-parametric SDPs; see [65] for a counterexample.

The concavity and monotonicity follow from standard arguments on the feasible set of the

respective optimization programs.

The inverse relationship between TCNFDC
s (·) and TCMGDC

s (·) holds for all 0 ≤ D ≤

TCNFDC
s (∞). Here, TCNFDC

s (∞) is the total demand in the network that can be met when

the power generated by generator s is not constrained (it, however, satisfies the generation

capacity constraint 0 ≤ pGs ≤ pGs in (4.4)). Beyond that, the network cannot satisfy the

target demand and hence TCMGDC
s (D) only exists for 0 ≤ D ≤ TCNFDC

s (∞). Similar

result holds for the AC case. Unlike the DC and AC approximations, when TCNFs(·) is

instantiated with the true AC power flow equations (i.e., not the SDP relaxation), then

it may not be concave since the feasible set of the corresponding optimization problem is

not convex. The function TCNFs(·) may not be monotonically increasing in the interval

[0,TCMGs(TCNFs(∞))] in this case, and thus not invertible. The NL case is similar.

Next, we illustrate the result of Theorem 13 through an example. Consider the network

shown in Figure 4.1. TCNFDC
s (·) is plotted for generators at buses 1 and 2 in Figure 4.2.
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Functions TCNFDC
1 (·) and TCNFDC

2 (·) are continuous, convex, piecewise linear and non-

decreasing. As noted earlier, TCNFDC
s (0) equals the TCRSI for generator s. Also, TCMGI

for generator s is given by min{ρ ≥ 0 | TCNFs(ρ) = TCNFs(∞)}. TCRSI and TCMGI for

each generator are indicated in the figure.

Lower the value of TCNFDC
s (·), higher the market power of generator s. Thus we plot

mins TCNF
DC
s by considering the lower envelope of TCNFDC

1 (·) and TCNFDC
2 (·) to indicate

the market power of the dominant generator for each ρ ≥ 0. In this example, the genera-

tor with maximum market power changes as ρ changes. This suggests that market power

assessment is complex and cannot be sufficiently captured through a single index.

Proof of Theorem 13. We only prove the DC case; proof for the AC case is similar and is

omitted for brevity. For the DC-case, the optimization is an LP lineally parameterized by

ρ. Then it is well-known that the optimal objective function (in this case TCNFDC
s (ρ))

is continuous and piecewise linear in the parameter ρ; see [65]. Thus, TCNFDC
s (ρ) is a

continuous and piecewise linear function of ρ ≥ 0. For 0 ≤ ρ1 < ρ2, the feasible set for the

optimization problem to compute TCNFDC
s (ρ1) is a subset of that of TCNFDC

s (ρ2) and thus

TCNFDC
s (ρ) is non-decreasing in ρ ≥ 0. Let the optimal points for problems TCNFDC

s (ρ1)

and TCNFDC
s (ρ2) be x1 and x2, respectively. For any 0 ≤ γ ≤ 1, the point γx1+(1−γ)x2 is

a feasible point for the problem TCNFDC
s (γρ1+(1−γ)ρ2). Then it follows that TCNFDC

s (ρ)

is concave.

Next, we show that TCNFDC
s (·) and TCMGDC

s (·) are inverses of each other. For any

ρ ≥ 0, consider the optimal point for the optimization problem to compute TCNFDC
s (ρ).

This optimum is feasible for the optimization problem TCMGDC
s [TCNFDC

s (ρ)] and we have

TCMGDC
s [TCNFDC

s (ρ)] ≤ ρ. (4.10)

Similarly, it can be checked that for any 0 ≤ D ≤ TCNFDC
s (∞),

TCNFDC
s [TCMGDC

s (D)] ≥ D. (4.11)
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For ρ ∈ [0,TCMGDC
s [TCNFDC

s (∞)], replacing D = TCNFDC
s (ρ) in (4.11), we obtain

TCNFDC
s

[
TCMGDC

s (TCNFDC
s (ρ))

]
≥ TCNFDC

s (ρ). (4.12)

Now, for ρ ∈ [0,TCMGDC
s [TCNFDC

s (∞)], we have TCNFDC
s (ρ) is concave and non-decreasing.

Then it is easy to check that TCNFDC
s (ρ) is monotonically increasing in this interval and

hence from (4.12), it follows that

TCMGDC
s [TCNFDC

s (ρ)] ≥ ρ.

Combining the above relation with (4.10), we have

TCMGDC
s [TCNFDC

s (ρ)] = ρ. (4.13)

The rest follows from the fact that for 0 ≤ ρ ≤ TCMGDC
s [TCNFDC

s (∞)], the map TCNFDC
s (ρ)

is monotonically increasing and hence one-one in this interval.

4.4 Case Studies

In this section, we use our proposed unifying measure to assess market power of generators

in various IEEE test systems [63]. In particular, we show how market power can be affected

by different factors such as the variation of target demand due to distributed renewable gen-

eration, changes in dispatchable load in presence of demand-response programs, and changes

in load power-factors. We also compare the results obtained from TCNFDC
s , TCNFAC

s and

TCNFNL
s and point out the important role of nonconvexity of power flow equations in as-

sessing market power. This underlines the significance of engineering constraints on market

outcomes in electricity markets.

In our simulations, we consider the IEEE 6-bus and 39-bus test systems. In each case,

we look at a variety of scalings of the target demands in the test systems to understand

the impact of demand fluctuation and distributed renewable generation. Specifically, target
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demands are scaled uniformly by a scalar t ≥ 0, i.e., each target demand pDk in the database is

multiplied by a factor t to obtain the new target demand for our simulations. We assume that

for all generators, the minimum level of generation is zero, i.e., pGk ≥ 0. Most systems have

a reactive generation capability defined by qG
k
≤ qGk ≤ qGk . We modify this box constraint on

qGk to −βkpGk ≤ qGk ≤ βkp
G
k as in (4.4), where βk is chosen accordingly for each case study. To

compute TCNFDC
s (·) and TCNFAC

s (·), we use the convex programming package CVX [76]

in MATLAB with SDPT3 as the SDP solver [138]. Finally, TCNFNL
s is computed using the

primal-dual interior-point method in Matpower [63].

4.4.1 IEEE 6-bus Test System

The IEEE 6-bus test system has three generators at nodes 1, 2 and 3. For all generators,

we assume that βk = 0.6 and for all loads we assume that the power-factors are αk = 0.98

lagging. In Figure 4.3, we plot TCNFDC
s (ρ), TCNFNL

s (ρ), and TCNFAC
s (ρ) for demand

scalings of t = 1.2 and t = 1.9. Note that, there is a remarkable difference between the AC

and the DC cases, while the results from the NL case are similar to that of the AC model.

Therefore, we can conclude that in this case study, the SDP relaxation finds a feasible and

close to optimal solution of the non-convex optimization problem in (4.9).

In Theorem 13, the TCNF functions for the DC and AC cases in Figure 4.3 are increasing

and concave for all generators. This property does not generalize for the NL case. Note

that, for generator 3, the optimization problem for calculating TCNFAC
s remains infeasible

for ρ ≤ 0.35pu. This indicates that generator 3 is needed to supply at least 0.35pu in order

to maintain system stability. It is interesting to note that if the SDP relaxation is infeasible,

so is the non-linear optimization problem in (4.9) and hence the interior-point method does

not converge to a feasible point for ρ ≤ 0.35pu. We can also see that TCNFNL
s and TCNFAC

s

are quite similar except for generators 1 and 2 at ρ = 0, where TCNFNL
s is greater than

TCNFAC
s . For such a non-convex optimization problem, determining feasibility is NP-hard

and hence it is hard to comment whether the problem in (4.9) is infeasible at ρ = 0. The SDP

relaxation TCNFAC
s , however, is feasible. Moreover, it is continuous at ρ = 0 as expected
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

1

1.5

2

2.5

3

3.5

ρ in p.u.

T
C
N
F

N
L

s
(ρ

)
in

p
.u
.

 

 

Gen1, t = 1.2

Gen2, t = 1.2

Gen3, t = 1.2

Gen1, t = 1.9

Gen2, t = 1.9

Gen3, t = 1.9

(b) TCNF with Matpower

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

1

1.5

2

2.5

3

3.5

ρ in p.u.

T
C
N
F

A
C

s
(ρ

)
in

p
.u
.

 

 

Gen1, t = 1.2

Gen2, t = 1.2

Gen3, t = 1.2

Gen1, t = 1.9

Gen2, t = 1.9

Gen3, t = 1.9

(c) TCNF with AC power flow

Figure 4.3: TCNF calculation based on different approaches for various generators in the
IEEE 6-bus system.
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Figure 4.4: TCNFAC(ρ) for generators 2 and 3 plotted for load power factors from 0.95 to
0.99 lagging in the IEEE 6-bus system.

from Theorem 13.

The results in Figure 4.3 can be further interpreted as follows. For the AC case at t = 1.9,

consider the total demand level (y-axis) of 3pu, which is lower than the total target demand

level. At this demand level, TCNFAC
3 has a larger slope than TCNFAC

1 . Therefore, to satisfy

an extra unit of demand at 3pu, generator 3 has to supply less additional power and hence

it is more valuable to the system operator. This means that generator 3 has more market

power in an incremental market.

Another key observation is about the importance of each generator at various demand

levels, in presence of dispatchable load. In this regard, we see that at the same demand level,
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TCNFDC
s in Figure 4.3(a) and TCNFAC

s in Figure 4.3(c) give conflicting conclusions, while

TCNFNL
s in Figure 4.3(b) agrees with TCNFAC

s , indicating that the relaxation approach

of AC power flow model is efficient in quantifying market power in the IEEE 6-bus system.

This further confirms that the market outcome depends on the underlying power engineering

model.

Finally, to illustrate the importance of reactive power flows, consider TCNFAC
s (ρ) in

Figures 4.4(a) for generator 2 and in Figure 4.4(b) for generator 3, respectively. The plots

have been generated with t = 1.2 and t = 1.9 and the load power factors have been varied

from 0.95 to 0.99 lagging uniformly for all buses in each case. TCNFAC
2 (ρ) and TCNFAC

3 (ρ)

show considerable variations with changes in load power factors and thus reactive power

flow has a significant effect on market power and must be taken into consideration for an

efficient long-term planning. For example, as load power factor decreases, generators 1 and

3 are needed to supply more power in order to meet the same level of demand, placing

these generators in better positions to gain market power. Another interesting observation

is that although changing the load power factor can significantly change the slope of the

TCNFAC
s (ρ) function at different points, it does not have direct impact on the cut off rate

of TCNFAC
3 (ρ), i.e., the choice of ρ for which the optimization problem in (4.9) for s = 3

becomes infeasible. Similar results can be observed for TCNFNL
s (ρ) (not shown here).

4.4.2 IEEE 39-bus Test System

We now assess our proposed approach for market power analysis in a larger IEEE test

system with 39 buses. At each bus s, the value of parameter ρ in function TCNFs(ρ) can be

interpreted as the amount of curtailable load that is available for dispatch at bus s, in case of

losing the generator at bus s. The higher the amount of dispatchable load at a bus, the better

the grid operator can handle the loss of a generator at that bus, preventing such generator

from gaining market power. However, the effectiveness of the same amount of dispatchable

load in mitigating market power may not be the same at different buses. In other words,

dispatchable load can be more (or less) valuable at certaint locations. For example, consider
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the simulation results in Figure 4.5. Here, we are considering the TCNFs for generators at

buses 31, 35 and 38. For the purpose of our analysis, we plot the lower envelope of TCNFs

only, namely mins∈{31,35,38}TCNFs(·) for demand levels ranging from t = 1.0 to t = 1.15.

For the case where t = 1.15, increasing the dispatchable load capacity is most beneficial

when it is done at bus 38 because the generator at bus 38 has the highest potential to gain

market power in this case. As another example, for the case where t = 1.05, if there is

1pu of dispatchable load capacity already in place in all generator buses, then increasing the

dispatchable load capacity is most beneficial at bus 31, but if there is 3pu of dispatchable

load capacity already in place in all generator buses, then increasing the dispatchable load

capacity at bus 35 is most beneficial.

We can also make the following observations based on the results in Figure 4.5: (a)

In the DC approximation case, depending on the value of ρ, different generators may gain

the maximum market power. However, in the AC case, it is only generator 38 that always

maintains the maximum market power for all values of ρ. (b) The DC and the NL cases

are more similar to each other than the corresponding AC case. (c) For demand scaling of

t = 1.15, the DC and NL cases indicate that the total demand that can be met is lower than

the total target demand. In the AC case, however, the total target demand of about 71.1pu

can be satisfied.

4.4.3 Summary of findings

First, our proposed market power measure can capture the impact of changes in load power

factor. Specifically, it can identify reliability must-run generators. Note that, this capability

in our measure is the direct result of using the more accurate AC power flow models. Second,

our proposed measure is suitable to incorporate the impact of demand-response in market

power analysis. One option is to analyze demand response by looking at the results at

a certain demand level, as we explained in Section 4.4.1. Another option is to analyze

demand response in form of quantifying the value of dispatchable loads at different buses,

as we explained in Section 4.4.2. Note that, since we study structural market power, our
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Figure 4.5: The lower envelope of TCNF, i.e., minsTCNFs for selected generators in the
IEEE 39-bus system.

analysis does not involve pricing. Accordingly, it does not address price-elasticity in load

demand. However, our case study in Section 4.4.2 provided an example on how we can

utilize dispatchable loads as an elastic demand resource to mitigate market power. Finally,

the results in our case studies can also be used to understand the role of renewable generation.

For example, similar to the analysis in Section 4.4.2, we can assess renewable generators by

examining their impact on parameter ρ. Note that, at a bus where a traditional generator is

co-located with a renewable generator, the value of ρ is calculated as the total power injection

by both generators combined. Therefore, we can analyze how the variations in the output

of renewable generator may aggravate or mitigate market power of a co-located traditional

generator.
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4.5 Comparison of Computational Approaches

Now that we have presented our simulation results, we discuss the relative pros and cons

of the three computational approaches to evaluate market power, namely, TCNFDC
s (·),

TCNFNL
s (·) and TCNFAC

s (·).

DC Approximation Case

This approach uses an approximation of the underlying system and formulates the optimiza-

tion as an LP that is fast and scalable with the size of the network. Since TCNFDC
s (·) is

continuous and piecewise linear, we can characterize the slopes of the linear segments of

TCNFDC
s (·) using Lagrangian duality [65]; furthermore, we can use these slopes to provide

an efficient way to compute the function. Specifically, for generator s, let µ be the Lagrange

multiplier for the constraint pGs ≤ ρ. For any function f(z) in variable z, define (df(z)/dz)+

as its right-hand derivative . We can relate the slopes of the linear segments of the functions

TCNFDC
s (ρ) as follows:

(
d

dρ
TCNFDC

s (ρ)

)+

= µ∗, (4.14)

where µ∗ is the Lagrange multiplier at the optimum. Recall that TCNFs(ρ) is piecewise

linear and is non-differentiable at the end-points of each line segment, but the right-hand

derivative in (4.14) is well-defined. Using (4.14), a recursive algorithm can be developed to

compute TCNFDC
s (ρ) for ρ in any interval [a, b]; see [128] for details.

Using Matpower

Matpower is a MATLAB toolbox that implements a primal-dual interior-point algorithm to

solve the power flow equations [63]. Interior-point methods were popularized by Karmarkar

for LPs [139] and Nesterov et al. for SDPs [140]. For LPs and SDPs, it is proved that interior

point methods converge to a global optimal solution in polynomial time. For nonlinear

nonconvex problems, they rather provide a heuristic approach to obtain a local optimal
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solution. Matpower has been known to perform well for economic dispatch problems over

various IEEE test systems. As evidenced by our simulations, the NL case often shows

similarity to the DC and the AC cases and provides a yard stick to measure the performance

of our proposed DC approximation and the AC relaxation approaches. However, we reiterate

that computing TCNF in (4.9) is NP-hard and thus it is hard to comment on the optimality

of the solution obtained using Matpower.

AC Relaxation Approach

The DC approximation completely ignores the reactive power flows; our studies on IEEE

benchmark systems, however, indicate that reactive power flows play an important role in

characterizing market power potential. To tackle such limitations, we use the SDP relaxation

approach with an AC power flow model. When the relaxation is exact, it indeed provides

a global optimal solution as opposed to the heuristic NL case. The sufficient conditions

for exact relaxation, however, are specific to particular network topologies and constraint

patterns [12, 36]. When line-flow constraints are active, the relaxation is often inexact, as

in [1] and the optimization yields a non rank-1 optimal W∗. We encounter similar results

in our simulations. To better understand the accuracy of our simulations, we report the

statistics of the quantity η := λ2(W∗)/λ1(W∗) for the IEEE benchmark systems in Table 4.1,

where λ1(W∗), λ2(W∗) are the first and second eigenvalues of the positive semidefinite matrix

W∗, respectively. A lower value for this ratio indicates a smaller optimality gap and hence

more accurate results. We see that η is typically very small in our simulations. However, the

optimality gaps may not be accurate to find optimal operating points in economic dispatch,

but as far as structural market power analysis is concerned, the results provide valuable

insights to the system planner that is often not obvious using the DC power flow model.

We comment that the SDP relaxation approach is known to scale poorly with the size of

the network. Recent results in [11, 48], suggest that the sparsity of the power network can

be suitably exploited to obtain fast and scalable conic relaxations; these ideas have been

extensively explored in Chapter 2.
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Test Case # of Scenarios Mean η Max η
6-bus 834 0.0015 0.0044
9-bus 900 0.0034 0.0093
39-bus 900 0.0099 0.0171

Table 4.1: Statistics of η for IEEE benchmark systems.

4.6 Firm behavior

Our focus so far has been on identifying market power of a single generator. However, our

analysis can easily be extended to the case where a single firm owns multiple generators at

different locations. Let S denote the set of locations (buses) where the firm has a generator.

The TCNF index of the firm can be defined using the optimization problem (4.9) with a

modified constraint that the total supply of the firm’s generators does not exceed ρ, i.e.,∑
s∈S p

G
s ≤ ρ. Similarly, the TCMG index of a firm can be defined as the minimum total

supply needed from the generators of this firm in order to meet a certain demand level D.

This index can be calculated by modifying the objective function to
∑

s∈S p
G
s in the definition

of TCMGs.

Note that, if an “adversarial” firm acts strategically to degrade the performance of the

grid, then the behavior of each individual generator (of the firm) might be potentially dif-

ferent if it acted as a separate entity. A game theoretic analysis will be needed to measure

the “worst-case” market power of an adversarial firm, which is an area left for future work.

We end this discussion with a note on supermodularity of market power. When market

power is supermodular, it suggests that there is an incentive for generators to collude and

form large firms. In fact, previous work in [129,130] has suggested that there is always such

an incentive. However, [129,130] did not use power-flow equations in their study, and so we

revisit this question here. Interestingly, it is indeed the case that, most of the time, market

power is supermodular. This is not always the case though, e.g., for the IEEE 39-bus system,

supermodularity does not hold for TCNFDC
s (0) for generators at nodes s = 31 and s = 32

when the line-flow limits are uniformly scaled down to 70% of their given values. Other

examples can also be found. While it is often the case that firms have incentive to collude,
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this is not universally true.

4.7 Concluding remarks

In this chapter, we proposed a functional market power measure for structural analysis, called

the transmission constrained network flow. This measure unifies three directions within

market power research – residual supply based measures, network flow based measures, and

minimal generation based measures. Additionally, our analysis uses detailed power flow

equations to model the underlying physical power system. In current practice, units that

impact voltages or reactive powers alone are separately identified as reliability must-run

units; market power is then calculated among the other generators to identify pivotal units

with respect to real power supply. In this work, we unify this in a common framework

and identify must-run generators from an operational standpoint. Our simulations on the

IEEE benchmark systems highlight that this distinction is of fundamental importance, i.e.,

using the detailed AC model as opposed to the DC model yields fundamentally different

conclusions about market power. This highlights the fact that a pure economic analysis is

not enough to accurately analyze market power in electricity markets.
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Chapter 5

Role of market maker in Cournot
competition in electricity markets

In the last chapter, we formulated the problem of detecting market power through structural

analysis. Perhaps, the first thing a curious reader notices is that we did not model the

strategic interaction of the generator firms explicitly. Rather our approach only assessed

the potential to exploit for each firm. In this chapter, we turn toward filling that gap, i.e.,

we model the spot market as a Cournot game between the generator firms and the market

maker or the independent system operator (ISO). Our goal is specifically to study the role

of the ISO on the equilibrium outcome of the game. To make it precise, notice that the spot

market is cleared using a specific market clearing mechanism, like solving the optimal power

flow (OPF) problem with the submitted supply bids of the generators. In this chapter, we

consider three such different market clearing mechanisms. First, we study the existence of

equilibria in such settings. Then we illustrate through a 2-node network that the equilibrium

outcome can be very different with the employed mechanism. The main goal of this chapter

is to emphasize the role of a market maker in the electricity market.

95



5.1 Background on competition models for electricity

markets

Electricity markets are challenging to model and analyze due to the multiple time-scales,

non-convex generation costs, network constraints and generation supply constraints. Nev-

ertheless, there is a sizable literature focused on analyzing the key strategic incentives of

generators. The models that have been used can be largely classified into two categories –

supply function competition and Cournot competition. In both approaches, it is common to

assume that demand is exogenous and focus on analyzing the resulting strategic game among

generators. Here, we briefly review prior work using supply function and Cournot competi-

tion in single-stage settings. We recognize that there is also significant work in multi-stage

models, but we do not discuss that here as forward contracting is not the focus of the current

chapter.

Supply function competition: Introduced by Klemperer et al. in [141], the key feature

of supply function competition is that firms (or generators) compete by choosing supply

functions specifying how much power it is willing to supply at each price. This model is ap-

pealing due to its similarity to how electricity markets operate in practice where generators

typically submit step-wise increasing offer functions. Hence, this model has been frequently

used both analytically and numerically to obtain insights on generator behavior [142–148].

In certain cases, strong theoretical results were obtained by restricting the functional form

of the supply functions to a parameterized class [143, 147–149] (typically affine or logarith-

mic). More recent work has analyzed supply function competition in settings with network

transmission constraints [126, 127, 150]. However, to our knowledge, no work has addressed

the role of the market maker under supply function competition.

Cournot competition: Cournot competition is a well-known competitive model in eco-

nomics dating back to 1838 [151]. In contrast with the supply function approach where

generators submit an offer function, in Cournot competition, generators submit a single

quantity specifying how much they are willing to supply at any price. Hence, this formula-
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tion amounts to generators specifying a supply function with zero price elasticity. Although

this offer model is significantly different from how electricity markets operate in practice, it

was found that the Cournot model often provides good explanations of observed price varia-

tions [152,153]. Further, the Cournot model is appealing due to its tractability, e.g. bounds

on the loss in system efficiency due to strategic behavior have been obtained [154–156].

Networked Cournot competition: Cournot competition has also been applied to settings

with network transmission constraints [157–163]. Such frameworks have also been applied

to domains outside electricity within a broader framework referred to as networked Cournot

competition [164]. However, the results in [164] are not directly applicable to electricity mar-

kets because they ignore network flow constraints. To our knowledge, in both non-networked

and networked Cournot competition, no work has studied the role of the market maker which

is the main focus of this chapter.

5.1.1 Contributions of this chapter

We make two main contributions: (i) we characterize the existence of equilibria under each

of the three market maker objectives, and (ii) we show that, when equilibria exists, the equi-

librium flow could be completely different under the three objectives. Our results highlight

the importance of designing the market in a way that takes into account strategic generator

behavior and physical system constraints. The equilibrium concept we adopt in this chapter

is known as Generalized Nash Equilibrium (GNE). As will be clear in Section 5.2, the strat-

egy set of the market maker depends on the actions of generators, and so the conventional

Nash equilibrium framework does not apply to our setting. Hence, we resort to GNE which

is an extension of Nash equilibrium for such settings.

Our first main result is that a GNE always exists under the social welfare and residual

social welfare objectives but it might not exist under the consumer surplus objective. For

the latter, we provide a simple 2-node example under which GNE does not exist. Our proof

shows that one of the key factors that leads to non-existence of GNE is that the consumer

surplus is not a concave function of the market maker’s decision variable. Non-existence
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of equilibria could have numerous negative implications on market efficiency, e.g. more

volatile prices leading to higher risk premium that eventually translates into higher costs

for consumers. Also, market power measures might need to be adjusted to use longer-term

metrics in order to account for the unreliable observations of market outcomes (e.g. see

Chapter 4).

Our second main result shows that, when equilibria exist, the market outcomes could

differ significantly under the three regulatory objectives. In particular, we focus on a 2-node

example and show that the equilibrium flow could be positive with social welfare maximiza-

tion, zero with residual social welfare maximization, and negative with consumer surplus

maximization. Hence, although all three regulatory objectives attempt to maximize con-

sumer benefit, the exact methodology by which system costs are reflected in the objective

impacts how generators behave in the market and determines the resulting equilibrium and

system efficiency.

5.2 Problem Formulation

Our goal in this chapter is to understand how the decision of the market maker impacts

the strategic incentives and the resulting market equilibrium of generators in an electricity

market. Hence, we model the market as a game between two entities: generators located at

different nodes of the network, and a market maker that balances demand and supply. Since

nodal pricing is a key feature in many electricity markets, we seek to capture this feature in

our model by having generators and demand face different prices depending on their location

in the network.

5.2.1 Notation

Let R denote the set of real numbers and R+ denote the set of non-negative real numbers.

For any two vectors u, v of the same size, we say u ≥ v if the vector u − v is element-wise

non-negative. Also, let 1 denote the vector of all ones of appropriate size. For any vector
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v ∈ Rn, we denote its transpose by v>. We also let v−i = (v1, . . . , vi−1, vi+1, . . . , vn) denote

the vector of all elements other than the i-th element.

5.2.2 Network model

We consider a power network with n nodes 1, 2, . . . , n and ` edges. Each node k has a

generator Gk that supplies a quantity of power qk ≥ 0 and incurs a cost ckq
2
k for some ck > 0.

We assume that demand at each node k can be represented by a linear demand function:

pk(dk) := ak − bkdk,

for some ak > 0 and bk ≥ 0. Here, pk(dk) is the price that demand at node k is willing to

pay as a function of the quantity of power dk it receives. This form of demand function is a

common assumption in economics [151] and prior studies of electricity markets models [160–

162] and corresponds to an aggregate consumer having a quadratic utility function. We also

assume that all demand functions are fixed and known to all market participants, which is

reasonable when demand is highly predictable.

We assume that there is a single market maker M that balances supply and demand

by choosing re-balancing quantities rk at each node such that demand at node k receives a

quantity:

dk := qk + rk.

At each node k, the market maker charges the demand and pays the generator at a price

pk(qk+ rk). This model for nodal pricing is motivated by prior studies of electricity markets,

e.g. [160–162].

Let the vector q := (q1, q2, . . . , qn) denote the production quantities of the generators

and the vector r := (r1, r2, . . . , rn) denote the re-balancing quantities chosen by the market

maker. We assume that the market maker chooses the vector r of re-balancing quantities

subject to the following constraints:

(i) Demand at each node is non-negative, i.e., q + r ≥ 0.
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Wsoc(q, r) :=
∑

1≤k≤n

(∫ qk+rk

0

pk(wk)dwk − c̃k(qk)

)
. (5.1)

Wres(q, r) := Wsoc(q, r)−
∑

1≤k≤n

πG
k (q, r) =

∑
1≤k≤n

(∫ qk+rk

0

pk(wk)dwk − qkpk(qk + rk)

)
.

(5.2)

Wcon(r, q) :=
∑

1≤k≤n

(∫ qk+rk

0

pk(wk)dwk − (qk + rk)pk(qk + rk)

)
. (5.3)

(ii) Power flow on each transmission line respects the line limits, i.e., −f ≤ −Hr ≤ f ,

where H ∈ R`×n is the shift-factor matrix that relates the flows on all ` lines as a

function of the power injection vector −r and f ∈ R` is the vector of all line capacities.

(iii) Re-balancing quantities sum to zero, i.e., 1>r = 0.

Note that the set of allowable re-balancing quantities depends on the production quan-

tities q. We denote the set of allowable re-balancing quantities by:

SM(q) :=

{
r ∈ Rn

∣∣ q + r ≥ 0, |Hr| ≤ f,1>r = 0

}
.

Figure 5.1 shows an example of a 2-node network, which we study in detail in Section 5.4.

We remark that the shift-factor matrix depends on the admittances of the transmission

lines of the power network and encapsulates Kirchoff’s laws [108]. This representation as-

sumes a linearized DC power-flow model [32] for the network. Though widely used in the

literature, this representation of the power flow equations has its limitations for power sys-

tem operation, e.g., see [33]. However, in electricity markets, locational marginal prices are

typically calculated using the DC power-flow model [165–167]. Hence, this is a reasonable

model for the purpose of studying generator bidding behavior in the market.
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5.2.3 Generator profit

Within the context described above, the profit of generator Gk is given by:

πG
k (qk, q−k, r) := qkpk(qk + rk)− ckq

2
k. (5.4)

We assume that each generator seeks to maximize its profit πG
k (qk, q−k, r) over its production

quantity qk ∈ SG
k where SG

k = R+ denotes the set of allowable production quantities of

generator k. That is, we assume that generators have infinite capacities.

This is a common assumption in prior studies of market power [142, 143]. The analysis

of the case of finite generation capacities is clearly important, but it is left for future work.

Notice that, without the strategic market-maker and geographically distributed gener-

ators, this model reduces to the standard Cournot oligopoly in the microeconomics litera-

ture [151].

5.2.4 Market maker objectives

Our focus in this chapter is on the role of the market maker. In electricity markets, the

market makers are often regulatory authorities, e.g., ISOs; thus our goal is to study the role

of market design in this regulatory framework.

The market maker designs we consider assume that the market maker maximizes some

objective function πM(q, r) over the re-balancing quantities r ∈ SM(q). Note that the market

maker is a regulatory authority and is free to choose a suitable payoff function. This is the

market design question of interest, and in this chapter we analyze different candidates for

the payoff function πM(q, r).

Specifically, inspired from the microeconomics literature [151], we consider the following

candidates for πM(q, r):

(a) Social welfare: This is the net benefit to society. It refers to the consumers’ utility less

generation costs (also referred to as overall network utility). We denote it by Wsoc(q, r)

in (5.1). If generators are not strategic, this corresponds to the original optimal power
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flow formulation in [3].

(b) Residual social welfare: In practice, generator costs are unlikely to be known to the

market maker. Hence, an alternative regulatory objective is to maximize the social

welfare, less the profits of the generators. This is equivalent to the consumers’ utility

less the revenue of the generators. We denote it by Wres(q, r) in (5.2).

(c) Consumer surplus: This is the net benefit to consumers. It refers to the consumers’

utility less their payments. We denote it by Wcon(q, r) in (5.3).

We remark that at each node k, the amount paid by the consumers is (qk + rk)pk(qk +

rk), and the amount paid to the generator Gk is qkpk(qk + rk). Hence, the market is not

necessarily budget-balanced. The difference between the total payment by demand and the

total revenue of the generators has previously been referred to asmerchandising surplus [168].

A consequence of the market not being always budget-balanced is that the residual social

welfare is not necessarily equal to the consumer surplus. Hence, it is important to explore

the impact of both objectives on the market.

5.2.5 Competitive model

Given the models of the generators and the market maker, we now need to model their

interaction. To do this, we consider a game with: (a) players (G1, G2, . . . , Gn,M); (b)

strategy sets (SG
1 , S

G
2 , . . . , S

G
n , S

M); and (c) payoffs (πG
1 , π

G
2 , . . . , π

G
n , π

M), where πM is chosen

to be one of the functions in {Wsoc,Wres,Wcon}. Throughout, we assume that the game is

feasible, i.e., the set {(q ∈ Rn
+, r ∈ Rn) | (q, r) ∈ (SG

k , 1 ≤ k ≤ n, SM(q))} is non-empty.

Since the strategy set SM(q) of the market-maker depends on the actions q of the gen-

erators, we focus on a type of equilibrium known as Generalized Nash Equilibria (GNE).

Formally, an action profile (q∗, r∗) constitutes a GNE if, for each 1 ≤ k ≤ n, we have:

πG
k (q

∗
k, q

∗
−k, r

∗) ≥ πG
k (qk, q

∗
−k, r

∗) for all qk ∈ SG
k ,

πM(q∗, r∗) ≥ πM(q∗, r) for all r ∈ SM(q∗).

102



Capacity =
f
12

2

q2

q2 + r2

G2

1

q1

q1 + r1

G1

Figure 5.1: Example of a 2-node network. This example illustrates how the model in this
chapter can be used to study a caricature of the market in California. Here, northern and
southern California are represented as two aggregate nodes connected by a transmission

line - Path 15 - that is often congested [2].

This equilibrium concept was first introduced in 1952 by Debreu [169]. It is an extension

of Nash equilibrium where the strategy sets of players do not depend on the actions of the

other players. We refer the reader to [170] for a detailed survey.

5.3 Existence of equilibrium

Within the context of the model described in the previous question, we seek to investigate

the following two questions in this chapter:

1. Does a GNE always exist for every each of the market maker objectives we have

described, i.e., πM ∈ {Wsoc,Wres,Wcon}?

2. In the cases where a GNE exists, how do the market outcomes (in terms of flows,

profits of generators and social welfare) differ for different market maker objectives?
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We focus on the first question in this section and treat the second question in Section

5.4.

The following is our main result on the existence of GNE.

Theorem 14. A GNE exists if πM = Wsoc or πM = Wres. However, a GNE may not exist

if πM = Wcon.

The theorem shows that the market maker objective has a significant impact on the ex-

istence of a GNE in the market. One of the key factors that lead to non-existence of GNE

is that the consumer surplus Wcon is not a concave function of the re-balancing quantities

r. Hence, when πM = Wres, the optimal re-balancing quantities are at the boundaries of

the feasible set SM(q). When the generator production q changes, the optimal re-balancing

quantities r∗ could jump from one boundary point to another, i.e. it is not always contin-

uous in q, especially when network capacity constraints are binding. Hence, there does not

necessarily exist a fixed-point in (q, r). In the proof, we explicitly construct an example that

exhibits this phenomena using the 2-node network in Figure 5.1.

Given Theorem 14, let us briefly emphasize the importance of choosing a regulatory

objective that leads to existence of equilibria. Non-existence of equilibria could have numer-

ous negative implications. It could lead to volatile market prices as the market oscillates

between different outcomes which would increase the risk premium and the cost of forward

contracting. Market power measures might need to be adjusted to use longer-term metrics in

order to account for the unreliable observations of market outcomes (e.g. see [13]). Further,

more sophisticated models and equilibria concepts (e.g. repeated game models, dynamic

equilibria) might have to be used in theoretical and empirical analysis of market behavior.

To prove the existence results in Theorem 14, we use a result that can be traced back

to Debreu [169]. However, the version we apply is a slightly simplified statement given

in [170,171]. Below, we state Debreu’s theorem before giving a proof of Theorem 14.

Theorem. (Debreu [169]) Consider a game between N players defined as follows. For each

player ν, denote its action by xν ∈ Rnν and its payoff function by θν : Rn → R where

n =
∑N

ν=1 nν. Assume that each player ν has a strategy set Xν(x−ν) ⊆ Rnν that could
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depend on the actions x−ν of all other players. Hence, given the actions x−ν of all other

players, each player ν chooses a strategy xν that solves:

max
xν∈Xν(x−ν)

θν(xν , x−ν).

Suppose that:

1. There exists N nonempty, convex and compact sets Kν ⊂ Rnν such that for every x ∈

Rn with xν ∈ Kν for every ν, Xν(x−ν) is nonempty, closed and convex, Xν(x−ν) ⊆ Kν,

and Xν, as a point-to-set map, is both upper and lower semicontinuous.

2. For every player ν, the function θν(·, x−ν) is quasi-concave on Xν(x−ν).

Then a GNE exists.

Proof of Theorem 14. We divide the proof into three cases, depending on the form of the

market maker objective πM .

Case 1: πM = Wsoc. Here, we prove that a GNE always exists. Condition 1 in Debreu’s

Theorem requires strategy sets to be compact. It can be shown that the shift-factor matrix

H has rank n − 1 for any power network and 1> is linearly independent from the rows of

H. It then follows that the feasible region of injection is compact and hence the strategy set

SM(q) of the market maker is also compact. Now, we turn our attention to the strategy sets

of generators SG
k . Though S

G
k of generators are not compact, they can be restricted to some

compact subset [0, s̄] since any equilibrium production q∗k can be upper bounded by some s̄.

To see the latter, first observe that, if r∗k is an equilibrium re-balancing quantity, then it is

bounded from above since:

∫ qk+r∗k

0

pk(wk)dwk = ak(qk + r∗k)−
bk
2
(qk + r∗k)

2,

and that for large r∗k, the quadratic term (which has a negative coefficient) dominates the

linear term. Hence, suppose r∗k ≤ r̄ for all k. Let s̄ = ak/bk + (n − 1)r̄/bk. Note that, if
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q∗k > s̄, then the equilibrium price at node k is:

p∗k = ak − bk

(
q∗k −

∑
k′ 6=k

r∗k′

)
< 0.

This is a contradiction since generator k cannot be facing a negative price p∗k < 0 and yet

producing a positive quantity q∗k > s̄. For the rest of this proof, we shall assume that

SG
k = [0, s̄].

It is straightforward to show that our game satisfies conditions 1 and 2 in Debreu’s

Theorem. Condition 2 holds trivially since the generator and market maker payoffs are

strictly concave over their respectively strategy sets. To see that condition 1 holds, choose

Kν in Debreu’s Theorem in the following manner: (a) for each generator k, choose Kν = SG
k ;

and (b) for the market maker, choose Kν = {r ∈ Rn | |Hr| ≤ f, 1>r = 0}. It is clear that

Kν are nonempty, convex, and compact.

While the generator strategy sets SG
k are constant correspondences, the market maker

strategy set SM(q) is a polytope that is linearly parametric. Thus, the strategy sets are both

upper and lower semicontinuous in terms of players’ actions.

Case 2: πM = Wres. Here, we prove that a GNE always exists. Observe that any

equilibrium re-balancing quantity r∗k is bounded from above since:

∫ qk+rk

0

pk(wk)dwk − qkpk(qk + rk) = akrk −
bk
2
(r2k − q2k).

The rest of the proof is similar to that for case 1.

Case 3: πM = Wcon. Here, we construct an example where GNE does not exist using the

2-node network in Figure 5.1. Our construction is based on the following lemma, proven in

Section 5.5.

Lemma 15. Consider the 2-node network in Figure 5.1. Let πM = Wcon. Suppose a1 =
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a2 = a, 1 < b1/b2 ≤ 3, c1 = c2 = c, and f12 satisfies:

a

3b1 + 2c
< f12 < min

{
a

b2 + 2c
,
a

b1
, f0

}
, (5.5)

where:

f0 :=
ab2

[
b1 + b2 + c(3− b1/b2)

]
b1b2(b1 + b2) + b1(b1 + 5b2)c+ 2(b1 + b2)c2

.

Then there does not exist a GNE.

The following parameter values: a = 10, b1 = 1.2, b2 = 1, c = 1 and f12 = 2, satisfy the

conditions in the lemma and provides an example in which GNE does not exist.

5.4 Regulatory objectives and market outcomes

Given the existence results in the previous section, we now move to analyzing the impact

of regulatory objectives on the market outcomes. To provide clear insight, we focus our

analysis on the case of a the 2-node network in Figure 5.1, which represents a caricature

of the situation in California. Though simple, this 2-node network is already enough to

highlight significant differences in the impact of regulatory objectives.

We begin with a case of unbounded line capacities. This allows us to consider a situation

where the market equilibrium always exists for each regulatory objective. Additionally, it

highlights that the behaviors of the three regulatory objectives we are studying can differ

dramatically even in the simplest of settings. The proof is included in Section 5.5

Theorem 16. Consider the 2-node network in Figure 5.1. Let a1 = a2 := a, 1 < b1/b2 ≤ 3,

c1 = c2 := c and f12 = ∞. Then a GNE exists for all πM ∈ {Wsoc,Wres,Wcon}. Moreover,

the equilibrium re-balancing quantity r∗1 = −r∗2 under the three regulatory objectives are as

follows:

(a) If πM = Wsoc, then r
∗
1 < 0,

(b) if πM = Wres, then r
∗
1 = 0,
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Figure 5.2: Plots of various quantities at equilibrium with varying line capacities f12 in the
2-node network in Figure 5.1. Parameters chosen for this example are: a1 = a2 = 1, b1 = 1,

b2 = 0.65, c1 = c2 = 1.

(c) If πM = Wcon, then r
∗
1 > 0.

Note that, even though there are no line constraints (i.e., f12 = ∞), the 2-node network

is not equivalent to an aggregated market since the price at each node is a function of the

local demand function at that node.

Our result illustrates how a simple market can exhibit very different equilibria under

different regulatory objectives. In particular, though all three market maker objectives are

motivated qualitatively by the identical goal of maximizing consumer benefit; one results

in flow going north, one in flow going south, and one in no flow between the nodes. So,

the exact choice of how costs are reflected in the objective is a significant determinant of

how generators behave in the market, which affects the equilibrium power flows and system

efficiency dramatically. Hence the market design question is important in the operation of

a deregulated market. Although Theorem 16 assumes that the line capacity f12 = ∞, our

numerical calculations indicate that the sign of r∗1 exhibit the same properties even under a

binding line constraint.

To further emphasize the significance of the market maker objective on the efficiency of

the market, we compare the social welfare (Figure 5.2(a)), consumer surplus (Figure 5.2(b)),

and generator profits (Figure 5.2(c)), at the unique equilibrium under each of the three

market maker objectives as the line capacity f12 is increased. Here, we choose the parameters

in the following manner: a1 = a2 = 1, b1 = 1, b2 = 0.65, and c1 = c2 = 1; but the qualitative
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features in the plots continue to hold for other parameter values that we experimented with.

For the case where πM = Wcon, the gap in the plot indicates that equilibrium does not exist

for those values of f12. The plots reveal the counter-intuitive phenomena that: increasing

the line capacity could decrease social welfare if πM = Wcon. There is also a clear tradeoff

between market maker objectives: having πM = Wsoc leads to higher social welfare but lower

consumer surplus versus having πM = Wcon.

The three market maker objectives also lead to completely different scaling of generator

profits as the line capacity f12 is increased – generator G1 benefits from line expansion when

πM = Wsoc but generator G2 benefits from line expansion when πM = Wcon. This implies

that, although the market maker objective is only used in the short-term market, it also has

implications on long-term incentives to expand transmission.

5.5 Proofs of main results

Here we present the proofs of Lemma 15 and Theorem 16. These results are specific to the

2-node network in Figure 5.1. Hence, we simplify the notation by defining r := r1 = −r2.

Furthermore, we drop the subscript in f12 := f .1

By applying the assumption that a1 = a2 := a, we can write the derivatives of the

generator profits with respect to their production quantities as:

∂π1
∂q1

= (a− b1r)− 2(b1 + c)q1, (5.6)

∂π2
∂q2

= (a+ b2r)− 2(b2 + c)q2. (5.7)

We make repeated references to these expressions throughout the proofs.

1The notations f and r in this proof should not be confused with the vectors in Section 5.2.
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Proof of Lemma 15:

Here πM(q1, q2, (r,−r)) = Wcon(q1, q2, (r,−r)). From equation (5.3), we get:

πM((q1, q2), (r,−r)) =
b1
2
(q1 + r)2 +

b2
2
(q2 − r)2︸ ︷︷ ︸

:=Π(r)/2

.

The market maker maximizes Π(r) subject to −q1 ≤ r ≤ q2 and −f ≤ r ≤ f . Our proof

technique is to completely characterize all possible equilibria (q∗1, q
∗
2, r

∗) and the conditions

on f that lead to each of the equilibria. Since those conditions on f do not contain the

relation in (5.5), we then infer that GNE does not exist when f satisfies (5.5).

We divide our analysis into two cases based on whether f ≥ a/(b2+2c) or f < a/(b2+2c).

The first case can be interpreted as the scenario in which network constraints are not tight.

Case 1: f ≥ a/(b2 + 2c). Here, we show that a GNE always exists by constructing

one. In particular, we construct a GNE such that r∗ = q∗2. Note that, since Π is convex,

its maximizers occur at −q∗1, q∗2, −f , or f . By using b1 > b2, we can check that, for any

q∗1, q
∗
2 ≥ 0, we have:

Π(q∗2) ≥ Π(max{−q∗1,−f}).

Since a+ b2r
∗ = a+ b2q

∗
2 ≥ 0, we can solve for q∗2 by setting ∂π2

∂q2

∣∣∣
q∗2

= 0 in (5.7), which gives:

q∗2 = r∗ =
a

b2 + 2c
.

Now note that q∗2 < f which verifies that q∗2 maximizes Π(r) over r ∈ [−q∗1, q∗2] ∩ [−f, f ].

Next, using (5.6) to solve for q∗1 gives:

q∗1 =

a
2c+b2−b1

2(b1+c)(b2+2c)
, if b1 < b2 + 2c,

0, otherwise.

This defines a GNE.

Case 2: f < a/(b2 + 2c). First, we argue that any equilibrium must satisfy q∗2 ≥ f .
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Suppose there exists an equilibrium with q∗2 < f . The analysis in case 1 implies that

r∗ = q∗2. However, the first-order condition for generator 2 (c.f. (5.7)) implies that q∗2 = r∗ =

a/(b2 + 2c) > f which is a contradiction. Hence, any equilibrium must satisfy q∗2 ≥ f .

Recall that Π is strictly convex. The condition that q∗2 ≥ f imply that the maximizers of

Π can only occur at −q∗1, −f , or f . We consider each case separately. Due to lack of space,

we only give the proof of the case where −f ≤ −q∗1 and r∗ = +f in this chapter. However,

the approach for the other cases is similar.

Suppose −f ≤ −q∗1 and r∗ = +f . From (5.6) and (5.7), we have:

q∗2 =
a+ b2f

2(b2 + c)
, q∗1 =


a−b1f
2(b1+c)

, if f ≤ a
b1
,

0, otherwise.

For this case, we need the following conditions to be satisfied: (a) q∗2 ≥ f , (b) q∗1 ≤ f , and (c)

Π(+f) ≥ Π(−q∗1). We derive conditions on f for (a), (b) and (c) to hold. It can be checked

that f < a/(b2 + 2c) implies (a) is always satisfied. To deal with conditions (b) and (c), we

consider the two possibilities separately: (i) f ≤ a/b1, and (ii) f > a/b1.

(i) Suppose f ≤ a/b1. Then (b) q∗1 ≤ f if and only if:

f ≥ a

3b1 + 2c
.

Also, (c) Π(+f) ≥ Π(−q∗1) is true if and only if the following quantity is non-negative.

Π(+f)− Π(−q∗1)

= b1(q
∗
1 + f)2 + b2(q

∗
2 − f)2 − b2(q

∗
1 + q∗2)

2

= (q∗1 + f)︸ ︷︷ ︸
≥0

[
b1(q

∗
1 + f)− b2(2q

∗
2 − f + q∗1)

]
.︸ ︷︷ ︸

:=λ

Substituting the expressions for q∗1 and q∗2 for this case, it can be verified that λ ≥ 0 if and
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only if:

f ≥
ab2

[
b1 + b2 + c(3− b1/b2)

]
b1b2(b1 + b2) + b1(b1 + 5b2)c+ 2(b1 + b2)c2

:= f0.

(ii) Suppose f > a/b1. Then (b) q∗1 = 0 ≤ f is trivially satisfied. Also, (b) Π(+f) ≥

Π(−q∗1) if and only if λ ≥ 0, where:

λ = b1(q
∗
1 + f)− b2(2q

∗
2 − f + q∗1)

= (b1 + b2)f − 2b2

[ a+ b2f

2(b2 + c)

]
=
b1b2 + c(b1 + b2)

(b2 + c)
f − ab2

(b2 + c)
.

Now, we also have:

f ≥ a

b1
>

a

b1 + c(1 + b1/b2)
=⇒ λ ≥ 0.

By working through the other cases in a similar manner, we discover that there exists a

GNE if and only if:

1. f ≥ a/(b2 + 2c); or,

2. f < a/(b2 + 2c), f ≤ a/b1, f ≥ a/(3b1 + 2c), and f ≥ f0; or,

3. f < a/(b2 + 2c) and f > a/b1; or,

4. f < a/(b2 + 2c), f ≤ a/b1, f ≤ a/(3b1 + 2c), and f ≤ f1,

where f1 :=
ac(b1−b2)

b1b2(b1+b2)+c(b21+b22)
. Since the relation in (5.5) is not contained in any of the above

cases, this completes the proof of Lemma 15. �
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Proof of Theorem 16:

Case (a): πM = Wsoc. Simplifying the expression for Wsoc in (5.1) gives:

2πM(q1, q2, (r,−r)) = −b1(q1 + r)2 − b2(q2 − r)2︸ ︷︷ ︸
:=Π(r)

+ 2a(q1 + q2)− 2c1q
2
1 − 2c2q

2
2.

Maximizing πM(q1, q2, r) is equivalent to maximizing Π(r) over r ∈ [−q1,+q2]. It can be

checked that Π(r) is always maximized at an interior point and hence, at equilibrium, the

quantities q∗1, q
∗
2, r

∗ satisfy:

r∗ =
b2q

∗
2 − b1q

∗
1

b1 + b2
. (5.8)

To compute q∗1 and q
∗
2, note that there are four possible configurations of equilibria depending

on the signs of a− b1r
∗ and a+ b2r

∗. We deal with each case separately.

(i) a− b1r
∗ < 0, a+ b2r

∗ < 0: From (5.6) and (5.7), it follows that q∗1 = q∗2 = r∗ = 0. But

then we have a − b1r
∗ = a > 0 and hence a contradiction. Hence, an equilibrium of

this form does not exist.

(ii) a − b1r
∗ < 0, a + b2r

∗ ≥ 0: From (5.6) and (5.7), we have q∗1 = 0, and q∗2 = (a +

b2r
∗)/(2b2 + 2c). Substituting this into (5.8) and simplifying, we get:

r∗ =
b2

b1 + b2
q∗2 =

ab2
2(b1 + b2)(b2 + c)− b22

.

But it can be checked that a−b1r∗ ≥ 0 which is a contradiction. Hence, an equilibrium

of this form does not exist.

(iii) a − b1r
∗ ≥ 0, a + b2r

∗ < 0: From (5.6), (5.7) and using arguments similar to the last
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case, we have q∗2 = 0 and:

r∗ =
−ab1

2(b1 + b2)(b1 + c)− b21
.

Again, it can be checked that a+ b2r
∗ ≥ 0 which is a contradiction. Hence, an equilib-

rium of this form does not exist.

(iv) a − b1r
∗ ≥ 0, a + b2r

∗ ≥ 0: For this case the triplet (q∗1, q
∗
2, r

∗) satisfies the relation in

(5.8) and:

q∗1 =
a− b1r

∗

2(b1 + c)
, and q∗2 =

a+ b2r
∗

2(b2 + c)
.

Solving these linear equations, we obtain:

r∗ =
ac(b2 − b1)

(b1 + b2)(b1b2 + 2c2) + c(b21 + b22 + 4b1b2)
< 0.

With some algebraic manipulations, it can be shown that indeed a − b1r
∗ ≥ 0 and

a+ b2r
∗ ≥ 0. This defines an equilibrium.

This proves the claim in Theorem 16(a).

Case (b): πM = Wres. Simplifying the expression for Wres in (5.2) gives:

2πM(q1, q2, (r,−r)) = −(b1 + b2)r
2 + b1q

2
1 + b2q

2
2.

Since πM is strictly concave in r, it is maximized at r∗ = 0. The resulting equilibria values

for q∗1 and q∗2 can be computed from the generator profits. This proves the claim in Theorem

16(b).

Case (c): πM = Wcon. Since f > a/(b2 + 2c), this corresponds to case 1 in the proof of

Lemma 15. Hence, equilibrium always exists and we have:

r∗ =
a

b2 + 2c
> 0.
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This proves the claim in Theorem 16(c), which completes the proof of the theorem. �

5.6 Concluding remarks and future directions

In this chapter, we introduce a networked Cournot model for studying the impact of regula-

tory objectives on the outcomes in electricity markets. In particular, the model we introduce

formulates a game between the electricity market maker (or the ISO) and generators. Within

this game, our main results explore the contrasts between three natural market maker ob-

jectives – social welfare, residual social welfare, and consumer surplus. The results in this

chapter reveal that the design of the market has significant implications on both the ex-

istence and form of equilibria. In particular, equilibria might not exist when the market

maker maximizes the consumer surplus and the network is capacity constrained. Further,

even when equilibria exist, the equilibrium allocation of power flows can be completely dif-

ferent under the three market maker objectives. Hence, the results in this chapter highlight

that design of market maker objective is delicate and needs to be further investigated in a

principled manner.
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Chapter 6

Placing energy storage in a grid for
load-shifting

An optimization or game over a time horizon reduces to a one stage problem when the

states of the system are not coupled across time. The problems considered in Chapters 2 –

5 belong to this category. In this chapter, we introduce electric energy storage that couples

the system states across time. Energy storage has many potential applications in power

systems. On a fast time scale (on a seconds to minutes scale), it can mitigate intermittency

of renewable sources like wind and solar. On a slower time scale (across hours), it can

flatten out generation profile rather than supply simply following demand. In this chapter,

we concentrate on the second application, that is often referred to as load-shifting. Recall

that cost of conventional generation is often quadratic and hence convex. Given such a

convex cost, a flatter generation profile reduces total cost over a time horizon. Our focus

is on placement and sizing of storage resources across a network to reduce the system-wide

generation cost, given an available storage budget. The investment decision problem, by

construction, is an infinite horizon problem. With cyclic variation in demand, it is sufficient

to optimize the cost over one time period of the cycle. We do two studies in this chapter: (1)

simulations using a semidefinite relaxation of AC optimal power flow on IEEE benchmark

systems, (2) theoretical characterization of a property of the optimal placement using DC

power flow approximations.
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6.1 Background

6.1.1 Motivation

One key difference between electricity and other commodities is the concept of inventory, i.e.,

ability to store excess supply at one point in time and use that in conjunction with current

supply to serve demand. This is precisely the flexibility that electric energy storage would

provide to the power grid; in essence balancing any realized demand with instantaneous

supply would no longer be necessary. This flexibility is envisioned to have many potential

applications to the grid, see [172, 173] for a detailed survey. There has been much interest

in building the physical devices; technologies such as pumped hydro, compressed air and

Lithium ion electrochemical batteries have shown promise. No doubt, grid scale storage is

still very expensive to deploy. However, their costs have shown significant drops over the last

decade or so [174,175]. For a more comprehensive literature review on storage technologies,

we refer the reader to [172,176–183]. This chapter is devoted to integration of storage in the

power grid.

As argued before, storage can reduce variability of intermittent sources of energy like

wind or solar [184–187]. At slower time scales, it can be used for load shifting [174, 180],

i.e., generate when it is cheaper and use storage dynamics to follow the demand. Our focus

in this chapter is on the latter. In this setting, there are two natural questions to ask:

(a) What is the optimal investment policy for storage? Where to place them, and how to

size them? (b) Once installed, what is the optimal control policy for the storage as well as

the generation schedule to minimize generation costs? In this chapter, we formulate both

problems for slower time-scales in a common framework and present results on the optimal

placement, sizing and control of storage units.

6.1.2 Prior work in this area

Optimal control policy for installed storage units has received a lot of attention recently.

While the authors in [188–190] examine the control of a single storage device without a

117



network, the authors in [191,192] explicitly model the role of the networks in the operation

of distributed storage resources. Storage resources at each node in the network are assumed

to be known a priori in these settings.

Sizing of storage devices has been studied in the literature too. The works in [193, 194]

use purely economic arguments, without explicitly considering the network constraints of

the physical system. Authors in [189,195] have looked at optimal sizing of storage devices in

single-bus power system, while Kanoria et al. [191] compute the effect of sizing of distributed

storage resources to optimize generation cost for specific networks.

6.1.3 Our Contribution

In this chapter, we study the investment decision problem of placement and sizing of storage

in power networks. The formulation, however, builds the investment problem on top of an

optimal control problem for storage. We present this formulation in Section 6.2 where the

objective is to minimize system-wide general cost subject to an available storage budget. The

works in [189,191] consider a similar control problem over an infinite horizon. Since aggregate

demands over large geographical locations often show periodicity [196], we effectively reduce

this problem to an optimization over one time period. The generators have finite capacities

with convex nondecreasing costs [8, 190, 191]. We model the network, once using a conic

relaxation of the AC power flow equations. Next, we use the linearized DC power flow

model to simplify the formulation.

The semidefinite relaxation in Section 6.3 attempts to find some properties of the optimal

placement of storage in the network. Our results here indicate that optimal storage placement

in the absence of line-flow limits is largely dependent on the network structure and fairly

robust to the position of renewable generation in the network. The locations (or buses)

where a significant amount of storage is allocated does not change much as the total storage

budget for the system is increased. However, the line-flow limits have a significant effect on

where the storage is placed. When conventional generation is changed to wind generation

with zero marginal cost, the distribution of storage roughly remains similar to the case of
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conventional generation. In this study, we assumed perfectly efficient storage systems.

The focus of the analysis with the DC power flow approximation in Section 6.4 is the

derivation of a structural result on the distribution of storage. Our main contribution in

this section is the result in Theorem 17: when minimizing a convex and nondecreasing

generation cost with any fixed available storage budget over a slow time-scale of operation,

there always exists an optimal storage allocation that assigns zero storage at nodes with only

generation that connect via single transmission lines to the rest of the network. This holds

for arbitrary demand profiles and other network parameters. The result provides (partial)

analytic justification of the observation made empirically in Section 6.3 that optimal storage

allocation seldom places storage capacities at generator-only buses.

We finally conclude in Section 6.5 with directions for future work.

6.2 Problem formulation

Consider a power network defined by an undirected connected graph on n nodes (or buses)

N = {1, 2, . . . , n}. For two nodes k and l in N , let k ∼ l denote that k is connected to l in

G by a transmission line with admittance ykl.

Time is discrete and is indexed by t. Akin to Chapter 3 Section 3.5 and Chapter 4, we

define the following notation.

• pDk (t) + iqDk (t) is the apparent power demand at bus k ∈ N and time t, which are

assumed to be known. Demand profiles often show diurnal variations [196], i.e., they

exhibit cyclic behavior with each day being the time period of the cycle. Let T time-

steps denote the cycle length of the variation. In particular, for all k ∈ N , t ≥ 0,

assume

pDk (t+ T ) + iqDk (t+ T ) = pDk (t) + iqDk (t).

• pGk (t)+iqGk (t) is the apparent power generation at bus k ∈ N and time t. These decision

variables are constrained by the real and reactive generation capacities at each node
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as

pG
k
≤ pGk (t) ≤ pGk , and qG

k
≤ qGk (t) ≤ qGk . (6.1)

• ck
(
pGk
)
denotes the cost of generating power pGk at bus k ∈ N . The cost of generation

is assumed to be independent of time t and depends only on the generation technology

at bus k. Also, suppose that the function ck : R+ → R+ is non-decreasing and

convex. These assumptions apply to commonly used cost functions in the literature

[8, 12,36,192], e.g., convex and nondecreasing piecewise linear or quadratic ones.

• Vk(t) be the complex voltage at bus k ∈ N and time t. Voltage magnitudes at nodes

are bounded as

V k ≤ |Vk(t)| ≤ V k. (6.2)

• For k ∼ l in G, pkl(t) + iqkl(t) be the apparent power flow from bus k to bus l at time

t which satisfies

pkl(t) + iqkl(t) = Vk(t) (Vk(t)− Vl(t))
H yHkl , (6.3)

pkl(t) is constrained by capacity limit fkl. Thus we have

|pkl(t)| ≤ fkl. (6.4)

Note that in this study, we chose to constrain the real power flow pkl as opposed to

the apparent power flow on the line joining buses k and l.

• γk(t) and δk(t) are the average charging and discharging powers of the storage unit at

bus k ∈ N at time t, respectively. The energy transacted over a time-step is converted

to power units by dividing it by the length of the time-step. This transformation

conveniently allows us to formulate the problem in units of power [137]. Let 0 <
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αγ, αδ ≤ 1 denote the charging and discharging efficiencies, respectively of the storage

technology used, i.e., the power flowing in and out of the storage device at node k ∈ N

at time t is αγγk(t) and
1
αδ
δk(t), respectively [189,197]. The roundtrip efficiency of this

storage technology is α = αγαδ ≤ 1. Note that we assume that the storage units only

transact in real power.

• sk(t) denotes the storage level at node k ∈ N at time t and s0k is the storage level at

node k at time t = 0. From the definitions above, we have that

sk(t) = s0k +
t∑

τ=1

(
αγγk(τ)−

1

αδ

δk(τ)

)
. (6.5)

For each k ∈ N , assume s0k = 0, so that the storage units are empty at installation

time.

• bk ≥ 0 is the storage capacity at bus k. Thus, sk(t) for all t satisfies the following:

0 ≤ sk(t) ≤ bk. (6.6)

• h is the available storage budget and denotes the total amount of storage capacity that

can be installed in the network. Our optimization algorithm decides the allocation of

storage capacity bk at each node k ∈ N and thus, we have

∑
k∈N

bk ≤ h. (6.7)

• Charging and discharging rates of each storage device are assumed to be upper-bounded

by ramp limits. These limits are proportional to the capacity of the corresponding

device, i.e., for all k ∈ N ,

0 ≤ γk(t) ≤ εγbk, (6.8a)

0 ≤ δk(t) ≤ εδbk, (6.8b)
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where εγ ∈ (0, 1
αγ
] and εδ ∈ (0, αδ] are fixed constants.

storage

device

⇠

···
�k(t)��⇥k(t)

�k(t)
1
��

�k(t)
pkl(t)

pDk (t)

pGk (t)

Figure 6.1: Real power balance at node k ∈ N .

Balancing real power that flows in and out of bus k ∈ N at time t, as shown in Figure

6.1, we have:

pGk (t)− pDk (t)− γk(t) + δk(t) =
∑
l∼k

pkl(t). (6.9)

Also, maintaining reactive power balance, we have

qGk (t)− qDk (t) =
∑
l∼k

qkl(t). (6.10)

Now, optimally placing storage over an infinite horizon is equivalent to solving this prob-

lem over a singe cycle, provided the state of the storage levels at the end of a cycle is the

same as its initial condition [137]. Thus, for each k ∈ N , we have

T∑
t=1

(
αγγk(t)−

1

αδ

δk(t)

)
= 0. (6.11)

For convenience, denote [T ] := {1, 2, . . . , T}. Using the above notation, we define the fol-

lowing optimization problem.
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Storage placement problem P :

minimize
∑
k∈N

T∑
t=1

ck
(
pGk (t)

)
over (pGk (t), q

G
k (t), γk(t), δk(t), V (t), pkl(t), bk),

k ∈ N , k ∼ l, t ∈ [T ],

subject to (6.1), (6.2), (6.3), (6.4), (6.5), (6.6), (6.7), (6.8), (6.9), (6.11),

where, (6.1) represents generation constraints, (6.2) represents voltage magnitude constraints,

(6.3) links the power flows to the voltages, (6.6), (6.7),(6.8),(6.11) represent the constraints

imposed on the charging/discharging policy of the energy storage devices, (6.9) represents

the power balance constraints at each bus of the network and (6.7) represents the constraint

on the sum of the capacities of all storage devices being no greater than the available storage

budget. With the demand profiles and network parameters as input, P defines the optimal

investment decision strategy for sizing storage units at different buses, the economic dispatch

of the various generators and the optimal control policy of the installed storage units. For

any variable z, define z∗ as its value at optimum.

6.2.1 Network models

As with the market power problem in Chapter 4, we investigate P with two network models.

First in Section 6.3, we solve P using the conic relaxation of the AC power flow model. Thus,

we represent (6.2) – (6.3) in terms of W (t) = V (t)[V (t)]H , which is a positive semidefinite

matrix of rank 1 for each t ∈ [T ]. Then the resultant nonconvex program is replaced by a

semidefinite program (SDP) by relaxing the rank constraint as discussed in Chapters 2 and

3. We call this problem PAC . Note that any of the conic relaxations based on chordal SDP

or SOCP can also be used for studying the optimal solution of PAC . However, in Section

6.3, we use the SDP approach to study PAC for some IEEE benchmark systems.

In Section 6.3, we make a few observations about storage placement in networks. How-

ever, the SDP formulation is not amenable to characterize any of these properties analytically.
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Hence, we simplify the formulation with the DC approximation [32, 33], first presented in

Chapter 4. Thus, the voltage limits in (6.2) are dropped (since voltage magnitudes are as-

sumed to be at nominal value in this approximation) and the relation in (6.3) is modified

to

pkl = (θk − θl)/xkl,

where for each node k ∈ N , θk represents the voltage angle at bus k and xkl is the purely

reactive impedance of line k ∼ l. In essence, the admittance ykl = (ixkl)
−1 is purely imag-

inary as losses are neglected under DC approximation. For the storage placement problem

(denote by PDC) with this simplified linearized version of the constraints, we prove a result

characterizing the optimal placement of the storage resources in Section 6.4. We further

prove some results on the placement for networks with specific topologies.

6.3 Simulations using conic relaxation

Here we present some simulation results of PAC on the IEEE 14 bus system [63], shown in

Figure 6.2. For the purpose of these simulations, we make a few modifications as follows:

• We assume that the cost of generation ck(·) for conventional generators is quadratic,

i.e.,

ck(p
G
k ) := c

(2)
k (pGk )

2 + c
(1)
k pGk .

We include this as a linear matrix inequality (LMI) as in [36, 192]. The objective

function of PAC is modified to ∑
k∈N

T∑
t=1

ξk(t),

where ξk(t) is an auxiliary variable that adds two extra constraints in the formulation:

c
(2)
k (pGk )

2 + c
(1)
k pGk ≤ ξk(t),c(1)k pGk (t)− γk(t)

√
c
(2)
k pGk (t)√

c
(2)
k pGk (t) −1

 � 0.
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For wind generators, cost of production is assumed to be zero.

• We assume perfectly efficient storage devices, i.e., α = 1. Thus, define the net charging

rate for the storage device as

rk(t) := γk(t)− δk(t).

• Also, assume fixed ramping rates for this section, i.e., we use the above equation and

replace the relations in (6.8) by the following.

Rk ≤ rk(t) ≤ Rk.

Figure 6.2: The IEEE 14-Bus benchmark system topology. Buses 1, 2, 3, 6, and 8 have
generation.

6.3.1 Case Studies

Now we are ready to study the simulation results of PAC on the IEEE 14 bus benchmark

system [63] with both conventional generation and a combination of conventional and wind
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Figure 6.3: (a) Peak-normalized real power demand profiles for each of the 14 buses based
on an average day in July 2010. The data are reported in half-hour intervals over a 24 hour
period. (b) A peak-normalized wind generation profile reported at half-hour intervals over

a 24 hour period.

generation. Similar tests have been performed on the IEEE 30 bus system but for brevity

only the results on the 14 bus case is presented here. This system, shown in Figure 6.2, has

five generators at buses 1, 2, 3, 6 and 8. We simulate the effects of changes in total storage

budget and line-flow limits on the placement of storage capacity. The SDP of PAC is solved

in MATLAB using YALMIP [198] with SeDuMi [77] as the solver.

While we adopt its network topology, admittance matrix and its voltage and generation

bounds, we augment the benchmark system with storage at each location. The ramp limits

for the storage Rk and Rk are assumed to be ±0.8 pu for all of the numerical studies. The

static demand data at each bus is also replaced with a time-varying demand profile. These

profiles follow the hourly power consumption data from 14 feeders in Southern California

averaged over the month of July in 20101. The data is interpolated to get half-hour time

intervals. They are then peak scaled to match the demands in the benchmark circuit. Any

linear trends in these profiles are also removed to ensure cyclic behavior over each 24 hour

period. The resulting peak-normalized demand profiles at each of the 14 buses is shown in

Figure 6.3(a).

1This dataset was obtained from personal communication with Southern California Edison.
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Figure 6.4: (a) Total system demand and generation as a function of total storage capacity.
(b) Storage placement as a function of total storage capacity. (c) A comparison of total
system demand, total generation, individual generator production versus storage level
when total storage capacity h = 1.5. The actual transmission over the line between
generators 1 and 2 (p12) as a function of time is also superimposed. As expected the

transmission increases as the generation at bus 1 increases. (d) Storage placement as line
limits f12 are decreased from the transmission levels shown in (c). For all panels the data is

reported in half-hour intervals over a 24 hour period.

The cost structures of the generators are defined in [63]. Generation at bus 1 has

the largest capacity (among the five generators) and is the cheapest, followed by the one

at bus 2. The cost function in PAC is is quadratic and strictly convex in the variables(
pGk (t), k ∈ N , t ∈ [T ]

)
. Figure 6.4(a) shows that as the storage budget increases, the total
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generation flattens out, which leads to a lower cost function value. In other words, more

storage installed in the system results in greater peak shaving. However, as we continue in-

creasing h beyond a certain level, the ramp limits bound the ability of the storage to flatten

the generation.

In Figure 6.4(b), we explore how storage placement changes as a function of the storage

budget h. Buses 3 and 14 get the highest capacities (i.e., the highest bk’s at optimality). Any

bus with high demand would be expected to get a larger storage capacity and that explains

why bus 3 gets a high share. On the other hand, we conjecture that it is the relative position

of bus 14 in the network that leads to a higher capacity. Validation of this conjecture is

subject to ongoing work.

To understand the role of line-flow limits, we study the effect of changing f12, i.e., the

line-flow limit on the line linking buses 1 and 2. Levels of power for various signals are

plotted in Figure 6.4(c) with a storage budget of 1 pu. With an unimpeded flow on the

edge (1, 2), we observed a maximum of p12 = 1.27 pu. The figure also shows how much each

generator is producing and the total storage level as a function of time. The flow-limit was

systematically brought down on the edge connecting buses 1 and 2 from 1.3 to 0.9 to study

its effect on the storage placement. As in Figure 6.4(d), we observe that more capacity is

installed at bus 2 when the limits are tighter. This trend is expected since the largest and

cheapest generator is at node 1 and the times of peak demand will also be the times when

the line flows are likely to be saturated. Therefore, energy is stored at the end of the limited

capacity line during the times of low demand so the cheapest cost energy from generator 1

is still accessible when the limits bind the amount of power that can flow from node 1 to 2.

Wind and conventional generation

For generator buses, we have performed simulations with conventional generators as well

as wind generation data. The wind generation profiles were obtained from the National

Renewable Energy Laboratory (NREL) Western Wind Integration Dataset from the study

in [199] and are based on five different Southern Californian locations. At each location we
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average over five wind farm sites and then average over 31 days from July 2006. The original

data is provided in 10 minute increments and we down-sample it to half-hourly intervals and

remove any drift in the data. The resulting peak-normalized wind generation profiles are

shown in Figure 6.3(b).

The cost of generation for wind is assumed to be zero. Further, we assume that the

available wind generation at time t is captured by varying the real power generation limit

with time, i.e., we have pGk (t) ≤ pGk (t) where pGk (t) is matched to the wind profile. The

reactive power limits satisfy −βkpGk (t) ≤ qGk (t) ≤ βkp
G
k (t), where βk is uniformly assumed to

be 0.6.

For all of the studies with wind generation, the wind profile is peak-scaled to the capacity

of the conventional generator at the corresponding bus. First, we study the effect of changing

the storage budget with wind at bus 1. The results are shown in Figure 6.5(a). The storage

is not placed directly at the wind generation site but it rather gets distributed to buses

3 and 14, potentially due to the same reasons as in the previously discussed case with

solely conventional generation. The results suggest that a bus’ load and position in the

network is more important than the location of the intermittent source of generation. To

gain additional insight into the relationship between storage placement and the location of

the wind generator, we moved the wind generation location to bus 2 and simulated the

system with the same wind profile (peak-scaled accordingly). In these results, shown in

Figure 6.5(b), we observe the same phenomenon.

Since the wind generators in our formulation have zero marginal cost, the algorithm

always uses wind power whenever possible. But surprisingly, it does not allocate storage

right at that bus to compensate for the intermittency of the source. To further confirm our

conjecture, we keep the storage budget fixed at h = 1 pu and simulate the system using the

same wind profile at each of the remaining generator buses (3, 6 and 8). The results with

the wind at all five generator buses are shown in Figure 6.5(c). This study is repeated with

h = 2 pu in Figure 6.5(d). In each of these cases, the observed trends remain the same.

Next, we present results when the line-flow limits are changed. Wind generation is only at

bus 1 with a fixed storage budget of h = 1.5 puWe change the limits on the line joining buses
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Figure 6.5: (a), (b) Changes in optimal storage placement in a system with a wind
generator. Differences arising from changes in total storage capacity h when the wind is,

respectively, placed at bus 1 and 2, which, respectively, represent 43% and 18% of the total
system generation capacity. Panels (c) and (d) depict changes in storage siting as the wind
generation is moved to each of the generation sites, with the total system storage capacity

is, respectively, fixed to h = 1 pu and h = 2 pu Panels (e) and (f) show the effect of
changing line limits f12 and f15 when the wind is placed a bus 1 and fixed h = 1.5.
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1 and 2 in Figure 6.5(e). The results are very similar to the conventional case. Note that the

conventional generator at bus 1 is the least cost generator. Even with wind generation at

bus 1, it remains the bus with the least cost of generation. Hence, the optimization tries to

use the generation there by either placing storage at bus 2 or trying to push the power into

the rest of the network through bus 5. We observe the same behaviour when the capacity of

the line joining buses 1 and 5 are limited in Figure 6.5(f). However, we draw the attention of

the reader to the case for which f15 = 0.4 pu This result seems to be very different from the

other data points. This discrepancy may be due to the fact that the SDP becomes highly

inaccurate at this point and the relaxation is thus no longer a good approximation of the

original problem, this observation is also noted in [1]. We explore this further in the next

section.

6.3.2 Approximation versus relaxation

PAC has a nonconvexity similar to that of the optimal power flow (OPF) problem. As

discussed in Chapters 2 and 3, the rank relaxation guarantees optimality if and only if

rank W ∗(t) = 1 for t ∈ [T ]. In our simulations, we observe that the rank of the obtained

optimal matrices W ∗(t) is often greater than 1. Though OPF on IEEE benchmark systems

with its original parameter set defined in the database admits rank one solutions [35,36], exis-

tence of nonzero duality gaps have been reported before, e.g., see [1]. Akin to our simulation

results for TCNFAC in Chapter 4, we plot λ2(W
∗(t))/λ1(W

∗(t)) and λ3(W
∗(t))/λ1(W

∗(t))

for one run of PAC in Figure 6.6, where λ1(·) ≥ λ2(·) ≥ λ3(·) are the three largest eigenval-

ues of the corresponding matrix. Observe that λ2(W
∗(t)) is much smaller than λ1(W

∗(t)),

but not quite negligible. Note that our argument in Chapter 4 Section 4.5 applies to this

problem as well. Clearly the relaxation PAC does not solve the original nonconvex problem

P optimally. However, the eigenratios in Figure 6.6 are small enough to gain insights from.

Further, we explore a gradient descent method to reach a “nearby” feasible point V (t)

from W ∗(t). All simulations in this section are done with h = 1pu ignoring line-flow limits.

We summarize the cost of operation in Table 6.1. In most cases, the local search method

131



Wind Cost with Cost with % change
location W ∗(t) (K$/day) V (t) (K$/day)
None 138 139 0.6
Bus 1 16.0 17.0 6.3
Bus 2 61.6 64.1 4.1
Bus 3 77.5 78.1 0.7
Bus 6 79.0 81.4 3.0
Bus 8 78.1 102.3 30.9

Table 6.1: Comparison of costs from gradient descent for W ∗(t) to obtained V (t).

finds a feasible V (t) near the W ∗(t) with a slight cost increase, though it sometimes fails,

e.g., when there is wind generation at bus 8.

We end this section with a remark. Notice that the DC approximation ignores all losses in

the network and hence cannot quite capture the placement when line capacities are large since

any storage placement scheme is optimal. PAC , however, still gives a principled approach to

gain insights into the storage placement problem. We investigate the properties of PDC in

the next section that characterizes the interaction of storage with the line flow limits.
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Figure 6.6: Ratios of other eigenvalues to the first eigenvalue.
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6.4 Storage placement with DC power flow

In this section, we characterize the property of PDC , that is the storage placement problem

P with the DC approximation to model the power flow equations. As mentioned before,

there is no reactive power flow. Also, voltage constraints are redundant. We make a few

simplifying assumptions in this section to present our result as follows. Restrict attention

to network topologies where each bus either has generation or load but not both. Any

intermediate bus (one that has no generation or load) is modeled as a load bus with zero

demand at all times. Partition the set of buses N into two groups NG and ND where they

represent the generation-only and load-only buses respectively and assume NG and ND are

non-empty.

Next, we introduce some new notations for convenience. Since there is no reactive power

generation, we define gk(t) := pGk (t) as the real power generation at the k-th bus. Let pG
k
= 0

and define gk := pGk for each k ∈ NG. Similarly, let dk(t) := pDk (t) denote the real power

demand at bus k ∈ ND.

For any subset K of NG, define the restricted storage placement problem ΠK,DC as PDC

with an additional constraint bi = 0, i ∈ K, i.e., there is no installed storage capacity at

generation buses in the set of nodes in K. We study the relation between the problems PDC

and ΠK,DC in the rest of the chapter.

We say bus k ∈ N has a single connection if it has exactly one neighboring node l ∼ k.

Similarly, a bus k ∈ N has multiple connections if it has more than one neighboring node

in G. We illustrate the notation using the network in Figure 6.7. NG = {1, 2, 7} and

ND = {3, 4, 5, 6}. Buses 1 and 2 have single connections and all other buses in the network

have multiple connections.

6.4.1 Main Result

For a subset K ⊆ NG, let p∗ and π∗
K be the optimal values for problems PDC and ΠK,DC ,

respectively2. Now, we are ready to present the main result of this section.

2The notation p∗ should not be confused with real power.
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Figure 6.7: A sample network.

Theorem 17. Suppose K ⊆ NG and each node i ∈ K has a single connection. If PDC is

feasible, then ΠK is feasible and p∗ = πK
∗ .

Problem PDC , in general, may have multiple optimal solutions, but Theorem 17 proves

that there always exists an optimal allocation of storage capacities that places no storage

at any subset of generation buses with single connections, regardless of the demand profiles,

generation capacities, line-flow limits and characteristics of the storage technologies. We

further discuss the applicability and uses of this result in Section 6.4.1.

Notice that we have restricted our attention to generator buses in K that have single

connections only. The result is not true, in general, if K includes generator buses with

multiple connections; see Section 6.4.1 for an example.

The storage capacity allocation at each bus has been assumed to be infinitely divisible,

i.e., each bk, k ∈ N is feasible that satisfies the budget constraint
∑

k∈N bk ≤ h in (6.7). But

it might be impractical to implement an optimal allocation with arbitrarily small storage

capacities. This, however, is not a limitation for the result in Theorem 17 as it only specifies

zero storage capacities at some buses and does not characterize storage sizes at others.

Proof of the main result

We only prove for the case where the round-trip efficiency is α < 1, but the result holds for

α = 1 as well. Assume PDC is feasible throughout. Recall that for any variable z, let z∗ be

the value of the corresponding variable at the optimum. In our proof, we use the following

technical result.
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Lemma 18. Suppose φ : R → R is convex. Then, for any x1 < x2 and 0 ≤ η ≤ (x2 − x1):

φ(x1 + η) + φ(x2 − η) ≤ φ(x1) + φ(x2).

Proof. Applying Jensen’s inequality to the convex function φ(·), we have

(
1− η

x2 − x1

)
φ(x1) +

(
η

x2 − x1

)
φ(x2) ≥ φ(x1 + η),(

η

x2 − x1

)
φ(x1) +

(
1− η

x2 − x1

)
φ(x2) ≥ φ(x2 − η).

The result follows from adding the inequalities above.

Consider node i ∈ K and j ∼ i. Node j is uniquely defined as i has a single connection.

It can be shown that problem PDC , in general, has multiple optima. In the following result,

we characterize only a subset of these optima.

Lemma 19. There exists an optimal solution of PDC such that for all t ∈ [T ] and all

i ∈ K, j ∼ i,

(a) g∗i (t)γ
∗
i (t)δ

∗
i (t) = 0,

(b) g∗i (t) ≤ fij.

The first part of Lemma 19 essentially says that for some optimum solution of PDC , the

storage units should not charge and discharge at the same time step if there is positive gen-

eration at the same bus at that time step. This is expected since the round-trip efficiency of

the storage devices α = αγαδ is less than one and since the generation cost is a nondecreasing

function. The second part can be interpreted as follows. Power that flows from bus i to bus

j at each t ∈ [T ] is pij(t) = gi(t)− γi(t) + δi(t) and we have pij(t) ≤ fij. But Lemma 19(b)

states that there exists an optimum for which, g∗i (t), t ∈ [T ] itself defines a feasible flow over

this line.
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Proof. The feasible set of problem PDC is a bounded 3 polytope and the objective function is

a continuous convex function. Hence the set of the optima of PDC is a convex and compact

set [55]. Now, with every point in the set of optimal solutions of PDC , consider the function∑
i∈K,t∈[T ] (γi(t) + δi(t)). This is a linear and hence continuous function on the compact set

of optima of PDC and hence attains a minimum. Consider the optimum of PDC where this

minimum is attained. We show that for this optimum, g∗i (t)γ
∗
i (t)δ

∗
i (t) = 0 and g∗i (t) ≤ fij

for all t ∈ [T ] and i ∈ K, j ∼ i.

(a) Suppose, on the contrary, we have g∗i (t0) > 0, γ∗i (t0) > 0 and δ∗i (t0) > 0 for some t0 ∈ [T ].

Define

∆g′ := min

{
(1− α)γ∗i (t0) ,

1− α

α
δ∗i (t0) , g

∗
i (t0)

}
.

Note that ∆g′ > 0. Now, for bus i, construct modified generation, charging and dis-

charging profiles g̃i(t), δ̃i(t), γ̃i(t), t ∈ [T ] that differ from g∗i (t), δ
∗
i (t), γ

∗
i (t) only at t0 as

follows:

g̃i(t0) := g∗i (t0)−∆g′,

γ̃i(t0) := γ∗i (t0)−
1

1− α
∆g′,

δ̃i(t0) := δ∗i (t0)−
α

1− α
∆g′.

Note that, for all t ∈ [T ], the storage level si(t) and the power pij(t) flowing from bus i to

bus j remain unchanged throughout. It can be checked that the modified profiles define

a feasible point of PDC . Since ci(·) is non-decreasing, we have ci (g̃i(t0)) ≤ ci (g
∗
i (t0))

and hence the additivity of the objective in PDC over i and t implies that this feasible

point has an objective function value of at most p∗. It follows that this feasible point

defines an optimal point of PDC . However, we have γ̃i(t0) + δ̃i(t0) < γ∗i (t0) + δ∗i (t0) and

3Without loss of generality, let bus 1 be the slack bus and hence θ1(t) = 0 for all t ∈ [T ]. Boundedness
of the set of feasible solutions of PDC then follows from generation limits, power flow limits and storage
operations in Section 6.2.
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thus, this optimum of PDC has a strictly lower
∑

i∈K,t∈[T ] (γi(t) + δi(t)), contradicting

our hypothesis. This completes the proof of g∗i (t0)γ
∗
i (t0)δ

∗
i (t0) = 0.

(b) If g∗i (t) = 0 for all t ∈ [T ], then g∗i (t) ≤ fij clearly holds. Henceforth, assume

maxt∈[T ] g
∗
i (t) > 0, and consider any t0 ∈ [T ], such that g∗i (t0) = maxt∈[T ] g

∗(t).

If γ∗i (t0) = 0, then,

max
t∈[T ]

g∗i (t) = g∗i (t0)

= p∗ij(t0)︸ ︷︷ ︸
≤fij

+ γ∗i (t0)︸ ︷︷ ︸
=0

− δ∗i (t0)︸ ︷︷ ︸
≥0

≤ fij. (6.12)

and Lemma 19(b) holds.

Suppose now that γ∗i (t0) > 0 and hence δ∗i (t0) = 0 from Lemma 19(a). First, we show

that the storage device discharges at some point after t0.

s∗i (t0) = s∗i (t0 − 1)︸ ︷︷ ︸
≥0

+αγγ
∗
i (t0)︸ ︷︷ ︸
>0

> 0.

We also have s∗i (T ) = s0i = 0 by hypothesis. Thus the storage device at node i needs to

discharge in [t0 + 1, T ] and hence αγγ
∗
i (t) − 1

αδ
δ∗i (t) < 0 for some t ∈ [t0 + 1, T ]. Let t1

be the first time instant after t0 when the storage device at bus i is discharged, i.e.

t1 := min

{
t ∈ [t0 + 1, T ] | αγγ

∗
i (t)−

1

αδ

δ∗i (t) < 0

}
. (6.13)

Thus, δ∗i (t1) > 0. Define

∆g := min

{
γ∗i (t0) ,

1

α
δ∗i (t1) , g

∗
i (t0)

}
. (6.14)
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Then ∆g > 0. Now, consider the case where:

g∗i (t1) > 0, and g∗i (t0) ≤ g∗i (t1) + α∆g. (6.15)

Since g∗i (t1) > 0 and δ∗i (t1) > 0, then γ∗i (t1) = 0, by Lemma 19(a). In that case,

g∗i (t1)+δ
∗
i (t1) = p∗ij(t1) is the power that flows from bus i to bus j at time t1. Combining

(6.14) and (6.15), we have

max
t∈[T ]

g∗i (t) = g∗i (t0)

≤ g∗i (t1) + α∆g

≤ g∗i (t1) + δ∗i (t1)

= p∗ij(t1) ≤ fij.

Hence, Lemma 19(b) holds when (6.15) is satisfied. Next, we show that if (6.15) does not

hold, then we can construct an optimum of PDC with a lower
∑

i∈K,t∈[T ] (γi(t) + δi(t))

and this contradicts our hypothesis.

Suppose (6.15) does not hold. If g∗i (t1) = 0, then we have

g∗i (t0) ≥ ∆g > α∆g = g∗i (t1) + α∆g.

Thus, it suffices to only consider the following case:

g∗i (t0) > g∗i (t1) + α∆g. (6.16)

Construct the modified generation, charging and discharging profiles at node i, g̃i(t), δ̃i(t), γ̃i(t)
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using (6.14), that differ from g∗i (t), δ
∗
i (t), γ

∗
i (t) only at t0 and t1 as follows:

g̃i(t0) = g∗i (t0)−∆g, g̃i(t1) = g∗i (t1) + α∆g,

γ̃i(t0) = γ∗i (t0)−∆g, γ̃i(t1) = γ∗i (t1),

δ̃i(t0) = δ∗i (t0) = 0, δ̃i(t1) = δ∗i (t1)− α∆g.

Also, define the modified storage level s̃i(t) using γ̃i(t) and δ̃i(t). To provide intuition to

the above modification, we essentially generate and store less at time t0 by an amount

∆g. This means at a future time t1, we can discharge α∆g less from the storage device

and hence have to generate α∆g more to compensate. To check feasibility, it follows

from (6.14), that for t = t0, t1, we have

0 ≤ g̃i(t) ≤ gi,

0 ≤ γ̃i(t) ≤ εγb
∗
i ,

0 ≤ δ̃i(t) ≤ εδb
∗
i .

Also, the line flows pij(t) remain unchanged. For the storage levels, it can be checked

that the following holds:

0 ≤ s∗i (t0 − 1) ≤ s̃i(t) ≤ s∗i (t) ≤ b∗i , for t ∈ [t0, t1 − 1],

s̃i(t) = s∗i (t), otherwise.

This proves that the modified profiles define a feasible point for PDC . The cost satisfies

ci (g̃i(t0)) + ci (g̃i(t1))

≤ ci (g
∗
i (t0)− α∆g) + ci (g

∗
i (t1) + α∆g) (6.17a)

≤ ci (g
∗
i (t0)) + ci (g

∗
i (t1)) . (6.17b)

Equation (6.17a) follows from the non-decreasing nature of ci(·) and equation (6.17b)
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follows from using (6.16) and Lemma 18. Thus the modified profiles g̃i(t), δ̃i(t), γ̃i(t)

define a feasible point of PDC with a cost at most p∗ and, hence, are optimal for PDC .

However, we also have

γ̃i(t0) + γ̃i(t1) + δ̃i(t0) + δ̃i(t1)

= γ∗i (t0) + γ∗i (t1) + δ∗i (t0) + δ∗i (t1)− (1 + α)∆g︸ ︷︷ ︸
>0

.

Thus, the modified profiles define an optimum of PDC with a lower
∑

i∈K,t∈[T ] (γi(t) + δi(t)).

This is a contradiction and completes the proof of the Lemma.

To prove Theorem 17, consider the optimal solution of PDC that satisfies Lemma 19(b).

For all i ∈ K, g∗i (t) itself defines a feasible flow over the line joining buses i and j, where j is

the unique neighboring node of i. Now the proof idea is as follows. For i ∈ K, transfer all stor-

age capacities b∗i and the associated charging/ discharging profiles (γ∗i (t), δ
∗
i (t)), to the neigh-

boring node j. In particular, consider the point
(
g∗k(t), γ̂k(t), δ̂k(t), θ̂k(t), p̂kl(t), b̂k, k ∈ N , k ∼ l, t ∈ [T ]

)
defined as follows.

γ̂i(t) = 0, γ̂j(t) = γ∗i (t) + γ∗j (t), γ̂k(t) = γ∗k(t), k ∈ N \ {i, j},

δ̂i(t) = 0, δ̂j(t) = δ∗i (t) + δ∗j (t), δ̂k(t) = δ∗k(t), k ∈ N \ {i, j},

θ̂i(t) = θ∗i (t) +
1

yij
(γ∗i (t)− δ∗i (t)), θ̂k(t) = θ∗k(t), k ∈ N \ {i},

b̂i = 0, b̂j = b∗i + b∗j , b̂k = b∗k, k ∈ N \ {i, j},

p̂ij(t) = p∗ij(t) + γ∗i (t)− δ∗i (t), p̂kl(t) = p∗kl(t), k ∼ l, (k, l) 6= (i, j).

We do this successively for each i ∈ K to obtain a feasible point of ΠK,DC . Since the gener-

ation profiles remained invariant, the resulting point is optimal for ΠK,DC . This completes

the proof of Theorem 17.
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Discussion

Here, we explain our main result in more detail. First, we explore a few power networks,

where Theorem 17 applies, i.e., network topologies with generator buses that have single

connections. Consider the networks shown in Figure 6.8. The single generator single load case

in Figure 6.8(a) models topologies where generators and loads are geographically separated

and are connected by a transmission line, e.g., see [200]. This is common where the resources

for the generation technology (like coal or natural gas) are available far away from where the

loads are located in a network. Figure 6.8(b) is an example of a radial network, i.e., an acyclic

graph. Most distribution networks conform to this topology4 Also, isolated transmission

networks, e.g., the power network in Catalina island [185] are radial in nature.

(a) (b)

Figure 6.8: Examples of power networks (a) Single generator single load system (b) A
radial network.

Next, we discuss how Theorem 17 is helpful for a network planner. Our result suggests

that it remains optimal not to place any storage at buses in set K even if the demand

profiles, generation capacities, line flow capacities or admittances in the network change.

We illustrate how this implies a robust investment strategy. Consider the example in Figure

4Two assumptions in our model hold for transmission networks but not strictly for distribution networks:
(a) Resistances in distribution lines are not negligible and hence DC approximation does not generally apply
[33], (b) Three different types of loads, namely, constant power, constant current and constant impedance
loads show different behavior in distribution networks [8]; but in aggregate, demands can be modeled as
constant power loads in transmission networks, as in IEEE benchmark systems, e.g., see [12,63].
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6.8(a). Suppose the line flow capacity is larger than the peak value of the demand profile, i.e.,

f12 ≥ maxt∈[T ] d2(t). It can be checked that placing all the available storage at the generator

bus is an optimal solution. If at a later time during the operation of the network, the demand

increases such that the peak demand surpasses the line capacity, this placement of storage no

longer remains optimal and requires new infrastructure for storage to be built on the demand

side to avoid load shedding. If, however, we use the optimum as suggested by the problem

ΠK,DC and place all storage on the demand side from the beginning, then this placement

not only can accommodate the change in the demand, but, it also, remains optimal under

the available storage budget. To explore another such direction, suppose another generator

is built to supply the load in Figure 6.8(a). Our result suggests that we still do not need

storage allocation at bus 1 even with the extended network. This illustrates how Theorem 17

implies an investment strategy that is robust to changes in many parameters in the network.

We end this section with remarks on the storage placement problem with concave cost

functions and generator buses with multiple connections, respectively.

On concave cost functions

We briefly discuss the role of convexity in the cost function. Suppose instead that c(·)

is concave then PDC and ΠK,DC are not convex programs and, hence, cannot be solved

efficiently. Note that the results of Theorem 17 do not generally apply to such cases. For

example, consider a two bus system, consisting of: (i) a generator bus (say, bus 1) with a

concave cost function c(g) = 2g, if 0 ≤ g ≤ 5 and c(g) = 10 + (g − 5) otherwise, (ii) a

load bus (say, bus 2) with T = 2 and demand profile d2 = (5, 5) and (iii) a single line with

capacity f12 = 5 connecting them. Further let h = 1, α = 1, εγ = εδ = 1 and g1 = 8. All

quantities are in per units. It can be checked that the optimal generation profile of Π{1},DC

is (5, 5), thus, π
{1}
∗ = 20. On the other hand, the generation profile (6, 4) is feasible for PDC .

Hence, p∗ ≤ 19 < π
{1}
∗ .
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On generators with multiple connections

Generator buses with multiple connections may not always have zero storage capacity in

the optimal allocation. In this section, we illustrate this fact through a simple example.

Consider a 3-node network as shown in Figure 6.9. All quantities are in per units. Let the

cost of generation at node 1 be c1(g) = g2. Let T = 4 and the demand profiles at nodes 2

and 3 be

d2 = (9, 10, 0, 10) and d3 = (0, 10, 9, 10).

Also, suppose that the line and generation capacities are f12 = f13 = 9.5 and the available

storage budget is h = 5. Finally, assume no losses and ignore the ramp constraints in the

charging and discharging processes, i.e. α = 1 and εγ = εδ = 1. The optimal storage

allocation (b∗1, b
∗
2, b

∗
3) for the two problems PDC and Π{1},DC is (4, 0.5, 0.5) and (0, 2.5, 2.5),

respectively. Also, the optimal generation profile g∗1(t), t = 1, 2, 3, 4 for the two problems can

be computed to be (14, 15, 14, 15) and (12, 17, 12, 17), respectively. Thus, p∗ = 842 < π
{1}
∗ =

866.

We provide some intuition behind the design of the counterexample above. First, notice

that if demands at buses 2 and 3 are multiples of each other, i.e., d2(t) = ζd3(t) for some

constant ζ ≥ 0, the 3-node network can be roughly thought of as two single-generator-single-

load systems with nodes (1, 2) and (1, 3), respectively and Theorem 1 applies. Thus to expect

b∗1 6= 0 in PDC , we consider demand profiles that show opposite trends. Second, if h = ∞,

we prove in Section A.2 that for such networks, there exists an optimal point with b∗1 = 0.

Hence, we consider a small storage budget. Third, note that if line capacities are large, then

an optimal allocation with b∗1 = 0 trivially exists. Thus, we construct f12 = f13 = 9.5 for

which PDC and Π{1},DC are feasible but the network is congested. This illustrates some key

directions to look at for characterizing cases where b∗1 = 0 for generator buses with multiple

connections; this is a part of our ongoing research.
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Figure 6.9: A network with a generator that has multiple connections.

6.5 Conclusions and future work

In this chapter, we formulated the optimal storage placement problem for load shifting at

slow time scale for power network operations. Assuming a periodic demand profile, we study

the infinite horizon problem over one cycle. First, we use a semidefinite conic relaxation of

the power flow equations to observe salient features of the optimal placement. Then we use

analytical tools to prove a property of the optimal solution of the same problem with a DC

approximation.

There are quite a few natural directions to explore for this problem. We comment on a few

here. (a) Our result in Theorem 17 only partially explains the observation made with SDP

relaxations that optimal storage capacities seldom have large fractions on nodes with cheap

generation resources. The counterexample in Section 6.4.1 suggests that such a general result

does not hold beyond the settings in Theorem 17; however, it is unclear whether structural

results can be identified when demand profiles and/ or network topologies are restricted

to a certain class. (b) The analysis in Section 6.4 ignores losses in the network and only

captures the interaction of load-shifting with line capacities. The SDP formulation, however,

models the losses in the network and storage placements still show similar patterns. This

hints on possible extensions of theoretical analysis to DC approximation with losses. (c) The

current work only focusses on slow time scales of operation. Another important application of

storage is to mitigate intermittency of renewables at faster time-scales. The interaction of the

slower and faster time-scales would provide a unifying framework for studying investments

in storage technologies.
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Appendix A

Partial results on storage placement
for specific network topologies

In this appendix, we present and prove some partial results on the DC version of the storage

placement problem defined in Chapter 6. Please refer to Chapter 6 Section 6.2 for the

notation. These results are intended to provide directions for future work. We hope that such

results would spur further research into structural properties of optimal storage investment

for the load-shifting problem.

Recall that ΠK,DC is the DC version of the restricted storage placement problem which

places no storage capacity at the buses in set K. Notice that in both problems PDC and

ΠK,DC , we solve for the optimal placement and control of storage in a power-network, given

the demand profiles dk(t), t ∈ [T ], the storage budget h, the capacities of the generators

gk, k ∈ NG and other network parameters such as the line flow limits fkl, k ∼ l. Now we

explore the behavior of the optimal cost of production as a function of these parameters.

This provides valuable insights on various design issues, e.g., how much savings in terms

of generation cost do we achieve by investing in an extra unit of storage. We explore such

questions for specific network topologies.

We make a few simplifying assumptions in this section. Let ck(·), k ∈ NG be strictly

convex and let α = 1 and εγ = εδ = 1. The proofs are included in Section A.3.
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A.1 Single generator single load network

∼

1 2

r2(t)r1(t)

b1 b2

|p12(t)| ≤ f12

g1(t) ≤ g
1 d2(t)

Figure A.1: Single generator single load network. Available storage budget is h ≥ b1 + b2.

Consider the single generator single load network shown in Figure A.1. Generator at bus

1 is connected to a load (or demand) at bus 2 using a single line, i.e., K = NG = {1} and

ND = {2}. For this network, placing all the available storage resources at the load bus is

always optimal. This is an immediate consequence of Theorem 17. In this section, for any

fixed demand profile d2(t), t ∈ [T ] of the load bus, we analyze the behavior of the optimal cost

of production as a function of the generation capacity g1, the line flow capacity f12 and the

available storage budget h; in particular, let the parameterized storage placement problem

be PDC(g1, f12, h) and its optimal cost be p∗(g1, f12, h). Similarly define, Π{1},DC(g1, f12, h)

and π
{1}
∗ (g1, f12, h).

At the optimum of PDC(g1, f12, h), we have g∗1(t) ≤ f12, t ∈ [T ] from Lemma 19. Also, it

satisfies g∗1(t) ≤ g1, t ∈ [T ]. Thus, to characterize the optimal point of PDC(g1, f12, h), it is

equivalent to consider the constraint g1(t) ≤ min {g1, f12} , t ∈ [T ].

Proposition 20. For any h ≥ 0, problem PDC(g1, f12, h) is feasible iff min {g1, f12} ≥ fmin,

where

fmin = max

{
max
1≤t≤T

(∑t
τ=1 d2(τ)

t

)
, max

1≤t1<t2≤T

(∑t2
τ=t1+1 d2(τ)− h

t2 − t1

)}
. (A.1)

Moreover, if min {g1, f12} ≥ fmin, then p∗(g1, f12, h) = p∗(fmin, fmin, h).

We interpret this result as follows. If either the line flow limit f12 < fmin or the generation

capacity g1 < fmin, the load cannot be satisfied. Notice that fmin for h > 0 is no more
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than fmin for h = 0. Thus, storage can be used to reduce the cost of operation avoiding

transmission upgrades and generation capacity expansion [194]. Interestingly, for f12 ≥ fmin

and g1 ≥ fmin, the optimal cost of operation does not depend on the specific values of f12 and

g1. From transmission or distribution planning perspective, investment in line and generation

capacities over fmin do not reduce the cost of operation. We provide an illustrative example

at the end of this section.

Next, we characterize the behavior of PDC(g1, f12, h) and its optimal cost p∗(g1, f12, h)

as a function of h. For a given f12 and g1, the minimum required storage budget to serve

the load depends on the demand profile d2(t), t ∈ [T ]. This may or may not be zero,

depending on d2(t), t ∈ [T ], f12 and g1. We calculate this minimum required storage budget,

(say hmin) in Proposition 21. Also, it is easy to observe that as we allow larger storage

budget, the generation cost does not reduce beyond a point, i.e., there exists hsat such that

p∗(g1, f12, h) = p∗(g1, f12, hsat) for all h ≥ hsat. We also calculate hsat in Proposition 21.

First, we introduce some notation. Construct the sequence {τm}Mm=0 as follows. Let τ0 = 0.

Define τm iteratively:

τm = arg max
τm−1+1≤t≤T

(∑t
τ=τm−1+1 d2(τ)

t− τm−1

)
, (A.2)

for 1 ≤ m ≤M , where M is the smallest integer for which τM = T . Note that the sequence

depends only on the demand profile d2(t), t ∈ [T ]. For any x ∈ R, let [x]+ := max(x, 0).

Proposition 21. Problem PDC(g1, f12, h) satisfies:

(a) If min {g1, f12} < maxt∈[T ]

(∑t
τ=1 d2(τ)

t

)
, then PDC(g1, f12, h) is infeasible for all h ≥ 0.

(b) Suppose, min {g1, f12} ≥ maxt∈[T ]

(∑t
τ=1 d2(τ)

t

)
. Then, PDC(g1, f12, h) is feasible iff h ≥

hmin and p∗(g1, f12, h) is convex and non-increasing in h, where

hmin = max
0≤t1≤t2≤T

[
t2∑

τ=t1+1

(d2(τ)−min {g1, f12})

]+
. (A.3)
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Furthermore, p∗(g1, f12, h) is constant for all h ≥ hsat, where

hsat = max
1≤m≤M

[
max

τm−1+1≤t≤τm

{(
τm∑

τ=τm−1+1

d2(τ)

)
t− τm−1

τm − τm−1

−

(
t∑

τ=τm−1+1

d2(τ)

)}]
.

(A.4)

The condition min {g1, f12} ≥ maxt∈[T ]

(∑t
τ=1 d2(τ)

t

)
implies that there is some h > 0 for

which PDC(g1, f12, h) is feasible. If this condition is violated, the problem remains infeasible

no matter how large the storage budget h is. More the storage budget, lesser is the generation

cost and hence p∗(g1, f12, h) is decreasing in h. The convexity, however, implies that there

is diminishing marginal returns on the investment on storage, i.e., the benefit of the first

unit installed is more than that from the second unit. As a final note, observe that hsat

is a function of only the demand profile and is independent of the generation and line flow

capacities.

Illustrative example

Now we explain Propositions 20 and 21 with an example. All quantities are in per units.

Consider an hourly load profile d2(t), t ∈ [T ] as shown in Figure A.2(a). The optimal

generation profile g∗1(t), t ∈ [T ] for PDC(g1 = 1, f12 = 0.85, h = 1) has been plotted in the

same Figure. Notice that maxt∈[T ] g
∗
1(t) ≤ f12 as stated in Lemma 19.

Consider the plots in Figures A.2(b) and A.2(c). We plot p∗(g1 = 1, f = 0.85, h) for

h in [0, 3] in Figure A.2(b). Notice that f12 ≤ maxt∈[T ] d2(t), i.e., the problem is infeasible

in the absence of storage. We calculate hmin = 0.226 and hsat = 2.598 from Proposition

21. In Figure A.2(c), we plot p∗(g1 = 1, f12, h = 1) for f12 in [0, 2]. As in Proposition 20,

the problem is infeasible for f12 < fmin = 0.683 and the optimal cost remains constant for

f12 ≥ fmin.
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Figure A.2: Plots to illustrate Propositions 20 and 21. (a) Typical hourly load profile and
optimal generation portfolio for line flow capacity f12 = 0.85, generation capacity g1 = 1

and storage budget h = 1 (b) p∗(g1 = 1, f12 = 0.85, h). (c) p∗(g1 = 1, f12, h = 1).

A.2 Star network

Consider a star network on n ≥ 2 nodes, where NG = {1} and ND = {2, 3, . . . , n} that are

only linked with the generator node 1 through lines of capacities f1k, k ∈ ND. For fixed

demand profiles dk(t), t ∈ [T ], k ∈ ND, line flow capacities f1k, k ∈ ND and capacity of the

generator g1, let P
DC(h) and Π{1},DC(h) denote the DC versions of the storage placement

problem and the restricted storage placement problem as functions of the available storage

budget h. Also, let p∗(h) and π
{1}
∗ (h) be their optimal costs respectively.

In Section 6.4.1 we showed that placing zero storage at the generator bus of a star network

with 3 nodes is not optimal, i.e., in general, p∗(h) 6= π∗(h). In Figure A.3, we plot p∗(h)

and π∗(h) for the 3-node star network shown in Figure 6.9 over a range of values of the total

storage budget h. Observe that p∗(h) < π
{1}
∗ (h) for some values of h but they coincide at:
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• Minimum value of h for which PDC(h) and Π{1},DC(h) are feasible.

• Large enough values of h.
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Figure A.3: PDC(h) and Π{1}(h) for the simple 3-node star network in Figure 6.9.

We formally state this for a general n-node star network in the following.

Proposition 22. Assume g = ∞. Suppose f1k ≥ maxt∈[T ]

(∑t
τ=1 dk(τ)

t

)
for all k ∈ ND.

Then, PDC(h) and Π{1},DC(h) are feasible iff h ≥ hmin, where

hmin =
∑
k∈ND

max
0≤t1<t2≤T

[
t2∑

τ=t1+1

(dk(τ)− f1k)

]+
. (A.5)

Moreover:

(a) p∗(hmin) = π
{1}
∗ (hmin),

(b) There exists ho ≥ hmin such that p∗(h) = π
{1}
∗ (h) for all h ≥ ho.
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A.3 Proofs of results for specific network topologies

Here, we present the proofs of the results presented in Section A. For the single generator

single node and the star network, we drop the voltage angles θk(t), k ∈ N , t ∈ [T ]. For any

value of the power flow p1k(t) from bus 1 to bus k, voltage angles θk(t) can always be chosen

to satisfy the power flow constraints.

Furthermore, since α = 1, define rk(t) := γk(t) − δk(t) as the power that flows into the

storage device at node k ∈ N at time t ∈ [T ] as in Section 6.2. Notice that rk(t) can

be positive or negative depending on whether power flows in or out of the storage device.

Also, the storage level of the storage device at node k ∈ N , at time t can be written as

sk(t) =
∑t

τ=1 rk(τ).

A.3.1 Proofs for single generator single load network

We drop subscripts from the variables d2(t), g1(t), t ∈ [T ], f12, g1, c1(·) and the superscripts

from PDC(·), Π{1},DC(·), π{1}
∗ (·) for ease of notation for the single generator single load net-

works.

Proposition 20. For any h ≥ 0, problem PDC(g, f, h) is feasible iff min {g, f} ≥ fmin,

where

fmin = max

{
max
t∈[T ]

(∑t
τ=1 d(τ)

t

)
, max

1≤t1<t2≤T

(∑t2
τ=t1+1 d(τ)− h

t2 − t1

)}
. (A.6)

Moreover, if min {g, f} ≥ fmin, then p∗(g, f, h) = p∗(fmin, fmin, h).

Proof. From Theorem 17, it suffices to show the claim for Π(g, f, h) and π∗(g, f, h). First, we

show that if Π(g, f, h) is feasible, then min {g, f} ≥ fmin. Fix any h ≥ 0 and let g(t), t ∈ [T ]

be a feasible generation profile. Since
∑t

τ=1 r2(τ) = s2(t) ≥ 0, we have for any t ∈ [T ]

max
t′∈[T ]

g(t′) ≥
∑t

τ=1 g(τ)

t
=

∑t
τ=1 d(τ) +

∑t
τ=1 r2(τ)

t
≥
∑t

τ=1 d(τ)

t
. (A.7)

Furthermore, for any 1 ≤ t1 < t2 ≤ T , the power extracted from the storage device
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between time instants t1 and t2 cannot exceed the total storage budget h and hence we have

max
t′∈[T ]

g(t′) ≥
∑t2

τ=t1+1 g(τ)

t2 − t1
=

∑t2
τ=t1+1 d(τ) +

∑t2
τ=t1+1 r2(τ)

t2 − t1
≥
∑t2

τ=t1+1 d(τ)− h

t2 − t1
. (A.8)

Since g(t), t ∈ [T ] is feasible, g(t) ≤ min {g, f} for all t ∈ [T ]. Hence, combining (A.7) and

(A.8), we get

min {g, f} ≥ max
t′∈[T ]

g(t′) ≥ fmin.

Next, we show that min {g, f} ≥ fmin is sufficient for Π(g, f, h) to be feasible. Consider

the optimal generation profile g∗(t), t ∈ [T ] for the relaxed problem Π(+∞,+∞, h). Suppose

it satisfies

max
t∈[T ]

g∗(t) ≤ fmin. (A.9)

Then g∗(t), t ∈ [T ] is also feasible and optimal for problem Π(g, f, h) for min {g, f} ≥ fmin.

Also, π∗(g, f, h) = π∗(fmin, fmin, h) for min {g, f} ≥ fmin. It remains to show that (A.9)

indeed holds. Consider the following notation.

tmax := max{t ∈ [T ] | g∗(t) = max
τ∈[T ]

g∗(τ)},

tless := max {0 ≤ t < tmax | g∗(t) < g∗(tmax)} .

In the above definition g∗(0) := 0 for convenience. If g∗(tmax) = 0, then (A.9) clearly holds.

Henceforth, assume g∗(tmax) > 0. Then, g∗(t), t ∈ [T ] satisfies:

max
t∈[T ]

g∗(t) =

∑tmax

τ=tless+1 g
∗(τ)

tmax − tless

=

∑tmax

τ=tless+1 [d(τ) + r∗2(τ)]

tmax − tless

=
1

tmax − tless

[(
tmax∑

τ=tless+1

d(τ)

)
+ s∗2(tmax)− s∗2(tless)

]
(A.10)
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Now, suppose the following holds:

s∗2(tmax) = 0 and s∗2(tless) =

0, if tless = 0,

h, otherwise.

(A.11)

If (A.11) holds, it follows from (A.10):

max
t∈[T ]

g∗(t) =


∑tmax

τ=1 d(τ)

tmax

, if tless = 0,∑tmax

τ=tless+1 d(τ)− h

tmax − tless
, otherwise,

≤ fmin.

and hence (A.9) is satisfied. Next, we show that (A.11) indeed holds to complete the proof.

First we prove that s∗2(tmax) = 0, i.e., the storage device at node 2 fully discharges at time

tmax. Suppose s∗2(tmax) > 0. As in Lemma 19, we construct a modified generation profile

and storage control policy that is feasible and has an objective function value no greater

than π∗(+∞,+∞, h). But, the optimal generation profile g∗(t), t ∈ [T ] is unique since the

cost function c(·) is assumed to be strictly convex. Hence we derive a contradiction. By

hypothesis, s∗2(tmax) > 0 and hence storage device at bus 2 discharges for some t > tmax. Let

t1 be the first such time instant. Define

∆1 := min {s∗2(tmax) , g
∗(tmax) , g

∗(tmax)− g∗(t1)} .

Notice that ∆1 > 0. Consider the modified generation profile g̃(t) and control policy r̃2(t),

that differ from g∗(t) and r∗2(t) only at tmax and t1 as follows:

g̃(tmax) = g∗(tmax)−∆1, g̃(t1) = g∗(t1) + ∆1,

r̃2(tmax) = r∗2(tmax)−∆1, r̃2(t1) = r∗2(t1) + ∆1.
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Using Lemma 18, we have

c(g̃(tmax)) + c(g̃(t1)) ≤ c(g∗(tmax)) + c(g∗(t1)).

It can be checked that the modified profiles are feasible for Π(+∞,+∞, h). The details are

omitted for brevity. This is a contradiction and hence s∗2(tmax) = 0.

Next, we characterize s∗2(tless). If tless = 0, then s∗2(tless) = s02 = 0. If tless > 0, we prove

that s∗2(tless) = h, i.e., the storage device at node 2 is fully charged at time tless. Suppose

s∗2(tless) < h. As above, we construct a modified generation profile g̃(t) and storage control

policy r̃2(t) that achieves an objective value no greater than π∗(+∞,+∞, h) to derive a

contradiction. In particular, define

∆2 := min {h− s∗2(tless) , g
∗(tless + 1) , g∗(tless + 1)− g∗(tless)} > 0.

Consider g̃(t) and r̃2(t), that differ from g∗(t) and r∗2(t) only at tless and tless + 1 as follows:

g̃(tless) = g∗(tless) + ∆2, g̃(tless + 1) = g∗(tless + 1)−∆2,

r̃2(tless) = r∗2(tless) + ∆2, r̃2(tless + 1) = r∗2(tless + 1)−∆2.

As above, this defines a feasible point for Π(+∞,+∞, h) and achieves an objective value

strictly less than π∗(+∞,+∞, h). This is a contradiction and hence s∗2(tless) = h for tless >

0.

Proposition 21. Problem P (g, f, h) satisfies:

(a) If min {g, f} < maxt∈[T ]

(∑t
τ=1 d(τ)

t

)
, then P (g, f, h) is infeasible for all h ≥ 0.

(b) Suppose, min {g, f} ≥ maxt∈[T ]

(∑t
τ=1 d(τ)

t

)
. Then, P (g, f, h) is feasible iff h ≥ hmin and

p∗(g, f, h) is convex and non-increasing in h, where

hmin = max
0≤t1≤t2≤T

[
t2∑

τ=t1+1

(d(τ)−min {g, f})

]+
. (A.12)
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Furthermore, p∗(g, f, h) is constant for all h ≥ hsat, where

hsat = max
1≤m≤M

[
max

τm−1+1≤t≤τm

{(
τm∑

τ=τm−1+1

d(τ)

)
t− τm−1

τm − τm−1

−

(
t∑

τ=τm−1+1

d(τ)

)}]
.

(A.13)

Proof. From Theorem 17, it suffices to prove the claim for Π(g, f, h) and π∗(g, f, h).

(a) To the contrary of the statement of the Proposition suppose that min {g, f} < maxt∈[T ]

(∑t
τ=1 d(τ)

t

)
and Π(g, f, h) is feasible for some h ≥ 0. Then, it follows directly from Proposition 20

that min {g, f} ≥ fmin ≥ maxt∈[T ]

(∑t
τ=1 d(τ)

t

)
, contradicting our hypothesis.

(b) First we show that if Π(g, f, h) is feasible then h ≥ hmin. Suppose Π(g, f, h) is feasi-

ble. Then, for all 0 ≤ t1 < t2 ≤ T Proposition 20 implies that min {g, f} ≥ fmin ≥(∑t2
τ=t1+1 d(τ)− h

)
/(t2− t1). Rearranging this we get h ≥

∑t2
τ=t1+1 (d(τ)−min {g, f}) .

Also, h ≥ 0 and hence:

h ≥ max
0≤t1<t2≤T

[
t2∑

τ=t1+1

(d(τ)−min {g, f})

]+
= hmin.

Now we show that h ≥ hmin is sufficient for Π(g, f, h) to be feasible. The relation

h ≥ hmin can be equivalently written as follows:

min {g, f} ≥
∑t2

τ=t1+1 d(τ)− h

t2 − t1
, for all 0 ≤ t1 < t2 ≤ T. (A.14)

Also, by hypothesis, we have

min {g, f} ≥ max
t∈[T ]

(∑t
τ=1 d(τ)

t

)
. (A.15)

Combining (A.14) and (A.15), we get min {g, f} ≥ fmin. Then, Proposition 20 implies

that Π(g, f, h) is feasible. Convexity and non-decreasing nature of p∗(g, f, h) as a function

of h follows from linear parametric optimization theory [55].
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Finally, we prove that p∗(g, f, h) is constant for all h ≥ hsat, where hsat is as defined in

(A.13). The proof idea here is as follows. We construct the optimal generation profile

g∗(t), t ∈ [T ] for the problem Π(+∞,+∞,+∞) and show that it is feasible and hence

optimal for the problem Π(g, f,+∞) provided min {g, f} ≥ maxt∈[T ]

(∑t
τ=1 d(τ)

t

)
holds.

Problem Π(+∞,+∞,+∞) can be re-written as follows.

minimize
g(t),t∈[T ]

T∑
t=1

c1 (g(t))

subject to g(t) ≥ 0,
t∑

τ=1

(g(τ)− d(τ)) ≥ 0, t ∈ [T ], (A.16a)

T∑
τ=1

g(τ) =
T∑

τ=1

d(τ). (A.16b)

Let the Lagrange multipliers in equations (A.16a)–(A.16b) be λ(t), `(t), t ∈ [T ] and ν,

respectively.

It can be checked that the following primal-dual pair satisfies the Karush-Kuhn-Tucker

conditions and hence is optimal for the convex program Π(+∞,+∞,+∞) and its La-

grangian dual [55]. We omit the details for brevity.

g∗(t) =

∑τm
τ=τm−1+1 d(τ)

τm − τm−1

, t = τm−1 + 1, . . . , τm and m = 1, 2, . . . ,M,

`∗(t) =

c
′(g∗(τm))− c′(g∗(τm + 1)), if t = τm, m = 1, 2, . . . ,M − 1

0, otherwise

, t ∈ [T ],

λ∗(t) = 0, t ∈ [T ], and ν∗ = −c′(g∗(T )).

The above profile g∗(t), t ∈ [T ] of Π(+∞,+∞,+∞) satisfies:

max
t∈[T ]

g∗(t) = max
t∈[T ]

∑t
τ=1 d(τ)

t
≤ min {g, f} ,

and hence is feasible and optimal for Π(g, f,+∞). Note that
∑τm

τ=τm−1+1 (g
∗(τ)− d(τ)) =
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0 for all 1 ≤ m ≤M . Thus, for τm−1 < t ≤ τm, we have

s∗2(t) =
t∑

τ=τm−1

(g∗(τ)− d(τ))

=

∑τm
τ=τm−1+1 d(τ)

τm − τm−1

(t− τm−1)−
t∑

τ=τm−1+1

d(τ).

Maximizing the above relation over all t ∈ [T ] we get maxt∈[T ] s
∗
2(t) = hsat. Therefore,

g∗(t), t ∈ [T ] is feasible and optimal for Π(g, f, h) provided that h ≥ hsat.

A.3.2 Proofs for star network

Proposition 22. Suppose f1k ≥ maxt∈[T ]

(∑t
τ=1 dk(τ)

t

)
for all k ∈ ND. Then, P (h) and

Π{1}(h) are feasible iff h ≥ hmin, where

hmin =
∑
k∈ND

max
0≤t1<t2≤T

[
t2∑

τ=t1+1

(dk(τ)− f1k)

]+
. (A.18)

Moreover:

(a) p∗(hmin) = π
{1}
∗ (hmin),

(b) There exists ho ≥ hmin such that p∗(h) = π
{1}
∗ (h) for all h ≥ ho.

Proof. First we show that h ≥ hmin is necessary for P (h) to be feasible. Consider any feasible

solution of P (h). For any k ∈ ND and 0 ≤ t1 < t2 ≤ T , we have
∑t2

τ=t1+1 rk(τ) ≥ −bk,

since the power extracted from the storage device at node k cannot exceed the corresponding

storage capacity bk. Also, for any k ∈ ND the power flow on the line joining buses 1 and

k satisfies p1k(t) = dk(t) + rk(t) ≤ f1k for all t ∈ [T ]. Combining the above relations and
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rearranging, we get bk ≥
∑t2

τ=t1+1 (dk(τ)− f1k). Also for k ∈ ND, bk ≥ 0 and hence

bk ≥ max
0≤t1<t2≤T

[
t2∑

τ=t1+1

(dk(τ)− f1k)

]+
. (A.19)

Thus we get h ≥
∑

k∈ND
bk ≥ hmin. If Π{1}(h) is feasible, then P (h) is also feasible and

hence h ≥ hmin is necessary for both problems to be feasible. Now we prove that it is also

sufficient. In particular, we show that for h = hmin, Π
{1}(h) is feasible. For convenience,

define

h̃k := max
0≤t1<t2≤T

[
t2∑

τ=t1+1

(dk(τ)− f1k)

]+
, k ∈ ND. (A.20)

Then hmin =
∑

k∈ND
h̃k. Rearranging (A.20), we get

f1k ≥ max
0≤t1<t2≤T

(∑t2
τ=t1+1 dk(τ)− h̃k

t2 − t1

)
. (A.21)

Also, by hypothesis, we have

f1k ≥ max
t∈[T ]

(∑t
τ=1 dk(τ)

t

)
. (A.22)

Combining equations (A.21) and (A.22), we have

f1k ≥ max

{
max

0≤t1<t2≤T

(∑t2
τ=t1+1 dk(τ)− h̃k

t2 − t1

)
,max
t∈[T ]

(∑t
τ=1 dk(τ)

t

)}
. (A.23)

For each k ∈ ND, consider a single generator single load system as follows. Let the demand

profile be dk(t), the capacity of the transmission line be f1k and the total available storage

budget be h̃k. For this system, the right hand side in (A.23) coincides with the definition

of fmin in (A.1). From Proposition 20, it follows that there is a feasible generation profile

(say g(k)(t)) and a storage control policy rk(t) that define a feasible flow over this single

generator single load system and meet the demand. Now, for the star network, construct
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the generation profile g1(t)

g1(t) =
∑
k∈ND

g(k)(t),

and operate the storage units at each node k ∈ ND with the control policy rk(t) defined

above. Also, r1(t) = 0 for all t ∈ [T ]. It can be checked that this defines a feasible point for

Π{1}(hmin).

Next, we prove that p∗(hmin) = π
{1}
∗ (hmin). Let b∗k, k ∈ N be optimal storage capacities

for problem P (hmin). Then the optimal storage capacities satisfy the following relations:

∑
k∈ND

b∗k ≥ hmin, and b∗1 +
∑
k∈ND

b∗k ≤ hmin.

where the first one follows from (A.19) and the second one follows from the constraint on

the total available storage capacities. Rearranging the above equations, we get b∗1 = 0 and

hence p∗(hmin) = π
{1}
∗ (hmin). This completes the proof of part (a).

To prove part (b) of Proposition 22, we start by showing that

p∗(∞) = π{1}
∗ (∞). (A.24)

Assume P (∞) is feasible. For h = ∞, we drop the variables bk, k ∈ N , and consider the

problems P (∞) and Π{1}(∞) over the variables g1(t), rk(t), k ∈ N . The variables p1k(t) and

sk(t) are defined accordingly for all k ∈ N . We argue that the optimal points of P (∞) lie

in a bounded set. Note that |p1k(t)| = |dk(t) + rk(t)| ≤ f1k and thus the control policies

rk(t) are bounded for all k ∈ ND. Also, the cost function c1(·) is convex and hence its

sub-level sets [55] are bounded. From the above arguments and the power-balance at bus

1, the optimal policy r1(t) is also bounded. Thus, the set of optimal solutions of P (∞)

is a bounded set. Furthermore, this set is also closed since the objective function and the

constraints are continuous functions. As in the proof of Lemma 19, associate the function∑
t∈[T ] |r1(t)| with every point in the set of optimal solutions of P (∞). This is a continuous

function on a compact set and hence attains a minimum. Consider the optimum of P (∞)
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where this minimum is attained. We prove (A.24) by showing that r∗1(t) = 0 for all t ∈ [T ]

at this optimum.

Assume to the contrary, that r∗1(t) is non-zero for some t ∈ [T ]. Define

t0 := {t ∈ [T ] | r1(t0) > 0} and t1 := min {t ∈ [t0 + 1, T ] | r∗1(t) < 0} .

Also, define ∆ := min {r∗1(t0),−r∗1(t1)} and notice that ∆ > 0.

Case 1 : g∗1(t0) > g∗1(t1)+∆: Construct the modified generation and charging/ discharg-

ing profiles g̃1(t), r̃1(t) that differ from g∗1(t), r
∗
1(t) only at t0 and t1 as follows:

g̃1(t0) = g∗1(t0)−∆g, g̃1(t1) = g∗1(t1) + ∆g,

r̃1(t0) = r∗1(t0)−∆g, r̃1(t1) = r∗1(t1) + ∆g,

where ∆g := min {∆, g∗1(t0)} > 0. As in the proof of Lemma 19, this is feasible for P (∞).

Also, by Lemma 18:

c1 (g̃1(t0)) + c1 (g̃1(t1)) ≤ c1 (g
∗
1(t0)) + c1 (g

∗
1(t1)) .

The details are omitted for brevity. This feasible point satisfies

|r̃1(t0)|+ |r̃1(t1)| = r∗1(t0)−∆− r∗1(t1)−∆ < |r∗1(t0)|+ |r∗1(t1)|, (A.25)

and hence defines an optimal point of P (∞) with a strictly lower value of the function∑
t∈[T ] |r1(t)|. This is a contradiction.

Case 2 : g∗1(t0) ≤ g∗1(t1) + ∆: As above we construct modified storage control policies

r̃k(t) for all k ∈ N , keeping the generation profile constant to define an optimal point of

P (∞) with a lower value of
∑

t∈[T ] |r1(t)| to derive a contradiction.

Let the modified control policy at bus 1 be as follows:

r̃1(t0) = r∗1(t0)−∆, r̃1(t1) = r∗1(t1) + ∆.
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Instead, we distribute this to storage devices at k ∈ ND, as follows:

r̃k(t0) = r∗k(t0) + ψk, r̃k(t1) = r∗k(t1)− ψk, k ∈ ND,

for some ψk ≥ 0, k ∈ ND and
∑

k∈ND
ψk = ∆. To ensure feasibility of the modified profiles

it suffices to check that the line flow constraints are satisfied at t0 and t1. In other words,

we show that there exists ψk, k ∈ ND such that for all k ∈ ND,

ψk ≥ 0, p∗1k(t0) + ψk ≤ f1k, p∗1k(t1)− ψk ≥ −f1k,
∑
k∈ND

ψk = ∆.

Equivalently, we prove that

∑
k∈ND

min {f1k − p∗1k(t0), f1k + p∗1k(t1)} ≥ ∆.

Recall that p∗1k(t0) and p
∗
1k(t1) are feasible for P (∞). Thus p∗1k(t0) ≤ f1k and p∗1k(t1) ≥ −f1k.

Also, g∗1(t)− r∗1(t) =
∑

k∈ND
p∗1k(t) at t = t0 and t = t1. Thus, we have

∑
k∈ND

min {f1k − p∗1k(t0), f1k + p∗1k(t1)} ≥
∑
k∈ND

(p∗1k(t1)− p∗1k(t0))

= g∗1(t1)− g∗1(t0)︸ ︷︷ ︸
≥−∆

− r∗1(t1)︸ ︷︷ ︸
≤−∆

+ r∗1(t0)︸ ︷︷ ︸
≥∆

≥ ∆,

where the last inequality follows from the hypothesis g∗1(t0) ≤ g∗1(t1) + ∆. The modified

profiles satisfy |r̃1(t0)| + |r̃1(t1)| < |r∗1(t0)| + |r∗1(t1)| as in (A.25). As argued above this is a

contradiction and hence (A.24) holds.

For P (∞), s∗k(t), k ∈ N , t ∈ [T ] is finite. Define ho :=
∑

k∈ND
maxt∈[T ] s

∗
k(t). Then, note

that (g∗1(t), r
∗
k(t), t ∈ [T ] k ∈ N ) are also feasible for Π{1}(h) and P (h) for all h ≥ ho. This

completes the proof of Proposition 22.
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