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Abstract

The Hamilton Jacobi Bellman (HJB) equation is central to stochastic optimal control

(SOC) theory, yielding the optimal solution to general problems specified by known

dynamics and a specified cost functional. Given the assumption of quadratic cost

on the control input, it is well known that the HJB reduces to a particular partial

differential equation (PDE). While powerful, this reduction is not commonly used as

the PDE is of second order, is nonlinear, and examples exist where the problem may

not have a solution in a classical sense. Furthermore, each state of the system appears

as another dimension of the PDE, giving rise to the curse of dimensionality. Since

the number of degrees of freedom required to solve the optimal control problem grows

exponentially with dimension, the problem becomes intractable for systems with all

but modest dimension.

In the last decade researchers have found that under certain, fairly non-restrictive

structural assumptions, the HJB may be transformed into a linear PDE, with an

interesting analogue in the discretized domain of Markov Decision Processes (MDP).

The work presented in this thesis uses the linearity of this particular form of the HJB

PDE to push the computational boundaries of stochastic optimal control.

This is done by crafting together previously disjoint lines of research in computa-

tion. The first of these is the use of Sum of Squares (SOS) techniques for synthesis of

control policies. A candidate polynomial with variable coefficients is proposed as the

solution to the stochastic optimal control problem. An SOS relaxation is then taken

to the partial differential constraints, leading to a hierarchy of semidefinite relaxations

with improving sub-optimality gap. The resulting approximate solutions are shown

to be guaranteed over- and under-approximations for the optimal value function. It
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is shown that these results extend to arbitrary parabolic and elliptic PDEs, yielding

a novel method for Uncertainty Quantification (UQ) of systems governed by partial

differential constraints. Domain decomposition techniques are also made available,

allowing for such problems to be solved via parallelization and low-order polynomials.

The optimization-based SOS technique is then contrasted with the Separated Rep-

resentation (SR) approach from the applied mathematics community. The technique

allows for systems of equations to be solved through a low-rank decomposition that

results in algorithms that scale linearly with dimensionality. Its application in stochas-

tic optimal control allows for previously uncomputable problems to be solved quickly,

scaling to such complex systems as the Quadcopter and VTOL aircraft. This tech-

nique may be combined with the SOS approach, yielding not only a numerical tech-

nique, but also an analytical one that allows for entirely new classes of systems to be

studied and for stability properties to be guaranteed.

The analysis of the linear HJB is completed by the study of its implications in

application. It is shown that the HJB and a popular technique in robotics, the use

of navigation functions, sit on opposite ends of a spectrum of optimization problems,

upon which tradeoffs may be made in problem complexity. Analytical solutions to

the HJB in these settings are available in simplified domains, yielding guidance to-

wards optimality for approximation schemes. Finally, the use of HJB equations in

temporal multi-task planning problems is investigated. It is demonstrated that such

problems are reducible to a sequence of SOC problems linked via boundary condi-

tions. The linearity of the PDE allows us to pre-compute control policy primitives

and then compose them, at essentially zero cost, to satisfy a complex temporal logic

specification.
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Chapter 1

Optimal Control Theory

1.1 Introduction

Developments in robotics and artificial intelligence suggest a new wave of innovation is

breaking. Advancements in computational power and memory costs are paralleled by

improved theory of optimization algorithms. In nearly every component of artificial

intelligence, from control theory to computer vision, our understanding of increasingly

autonomous tasks has grown significantly. It appears increasingly likely that the

next two decades will finally see the diffusion of robotic and artificially intelligent

technology across all spheres of life first envisioned in the 20th century and earlier by

such luminaries as Ada Lovelace, Isaac Asimov, and many others.

Contrary to popular opinion, these advancements are only secondarily related to

the increase in computational power. An illustrative example lies in the field of linear

programming [1]. Since 1988, linear program solvers have had their computational

time fall by a factor of roughly 43 million. While Moore’s law may be credited for

roughly a factor of 1,000x, the remaining factor of 43,000x due to improved algorithms.

Similar patterns are present in nearly every component of artificial intelligence. The

algorithms of the past decade are impractical for solving problems routinely consid-

ered now, regardless of the computational resources available. The implications of

the algorithmic advancements in the last decade are therefore all the more acute.

A crucial component of autonomous systems is their ability to comprehend and

interact with signals from the physical world. This gives rise to the field of control
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theory, which seeks to drive systems towards achieving specified goals. The domain

of problems ranges from the development of feedback laws that control the system

directly from low-level signals, all the way to the development of abstract plans to

solve a high-level task, overlapping with areas of conventional Artificial Intelligence.

The model in such problems is the concept of a system state, capturing all mutable

and influential components of the system, represented at a particular point in time t

by a variable x(t). The evolution of the system’s state is in turn governed by a set

of constraints, called the system dynamics. When such a system can be said to be

influenced by some control signal u, the task in control theory is to design this control

signal to generate desirable behavior relative to a goal. The design of this signal is

labeled the control law or policy, depending on the context. Feedback, which allows

for the control signal to depend on the current state of the system, u , u(x(t)), is

the most powerful tool available in this endeavor. Control theory primarily answers

two questions: how to design the control law, and how to analyze its properties.

Efficiency and robustnesss are frequently significant factors in control law design.

These criteria are incorporated by assigning a cost to the system state and control

signal. Common is the desire to penalize excessive use of energy, as well as a weighting

on certain system states, allowing for time away from some desired goal state to

be minimized. The framework is general, allowing for most any concrete goal that

involves the state of the system to be specified.

At the core of solving these problems is a theoretical object named the value

function. This quantity, if known, represents the choice of action by the system that

will optimally solve the problem at hand. Not only is the construction of this object

possible, but a general equation is known that specifies the value function for the

majority of systems of interest. This formula, called the Hamilton Jacobi Bellman

equation, is quite general, and is the fundamental answer to many problems in control

theory and planning.

Unfortunately, although there exists an explicit equation, solving the Hamilton

Jacobi Bellman equation is difficult primarily for two reasons. The first is that it

may be intractable due to discontinuities in the solution. This has led to a relaxed
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notion of a solution, dubbed viscosity solutions, and is an active object of study to

this day. However, the second is far greater an obstacle, the curse of dimensionality.

This obstacle, discovered by the creator of the value function, Richard Bellman in

1957, refers to the fact that the number of degrees of freedom of the value function

increases exponentially with the dimensionality of the system if there is no assumption

on structure. The result is that solving for systems with even a moderate number

of degrees of freedom quickly becomes too computationally and memory intensive

for all but the roughest of approximations. This has stymied the study of Hamilton

Jacobi Bellman equations, leading researchers towards other approaches that either

approximate or neglect optimality, or to assume certain structure in the system.

Control theory is itself a mature field, with many critical questions not only an-

swered, but definitively solved provably optimal solutions. Linear systems, are an

example of systems whose control has largely been solved, with many tractable algo-

rithms for even large and sophisticated systems. A remaining area that is yet open is

the development of optimal solutions to nonlinear systems with tractable algorithms.

This thesis presents advancements in two key areas. The first is the development of

algorithms that grapple with nonlinearities directly, incorporating the natural dynam-

ics of the system rather than trying to remove them. The second is the development

of algorithms that scale economically with the complexity, measured by the number

of degrees of freedom, of the system. This advances the state of the art in the motion

planning of complex systems, allowing for new classes of problems to be solved in a

scalable manner. Indeed, such advancements are necessary, as traditional numerical

methods that don’t incorporate the underlying structure become impractical for solv-

ing problems with high dimensional systems no matter the computational resources

available.

Foremost in this thesis is the study of the Hamilton Jacobi Bellman equation. By

advancing the theory involved in solving this equation, this general optimal control

approach comes closer to wide applicability and practicality. In particular, it is the

generality, rather than the optimality, that is of key importance. Generality corre-

sponds directly to the ability to automate, allowing for difficult planning problems
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that would previously require the design experience of multiple skilled practitioners

to be exchanged for computation.

This thesis advances the theory of value functions in several ways, but two are

primary. First, an optimization technique called Sum of Squares is adapted to solve

the problem. These value functions have a number of advantages, including a pa-

rameterization of the solution that avoids fine discretization; theoretical guarantees;

and an ability to relax solution quality to obtain less computationally intensive pro-

cedures. The second is the use of a technique to solve high dimensional problems,

allowing for the curse of dimensionality to be mitigated for problems of interest. This

opens the door for a new class of problems to be solved using optimal control theory.

The method appears quite attractive, solving previously impossible problems quickly

in practice. These two techniques, the Sum of Squares and high dimensional frame-

works, are then fused. Various augmentations are then proposed, and a number of

more specific applications are studied.

1.1.1 Thesis Contribution and Outline

This thesis is concerned with calculating solutions to the linear Hamilton Jacobi

Bellman equation, and the applications thereof. The contributions of the following

chapters are based on a number of publications [2, 3, 4, 5, 6], indicated below.

In Chapter 1 Dynamic Programming is reviewed for stochastic optimal control,

leading to the derivation of the Hamilton Jacobi Bellman equation. A review is then

given of the significant and popular alternative techniques that avoid solving this

partial differential equation directly.

The contributions of this thesis begin in Chapter 2. First presented in [2], a

method to calculate improving sub- and super-solutions of the Hamilton Jacobi Bell-

man PDE via sum-of-squares relaxations is proposed. Polynomial candidate solutions

are optimized, and guarantees on the quality of the approximate solutions are pro-

vided. This technique is augmented via domain partitioning in Section 2.2, based on

the work of [3], allowing for a collection of low-order polynomials to capture local
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phenomena without excessive growth in the order of the candidate solutions. Finally,

in Section 2.3, the power of the method is applied to general Elliptic and Parabolic

PDEs, allowing for uncertainty quantification over solutions even when the coefficients

may be unknown.

In Chapter 3 an alternative method to solve the Hamilton Jacobi Bellman equation

is proposed. Based on [4], a method to obtain an approximate low rank decomposition

of the Hamilton Jacobi Bellman operator is developed, and used to calculate low rank

approximations to the optimal solution. These techniques demonstrate linear growth

with dimension, allowing for high dimensional problems to be solved.

The work proceeds by examining several application areas of optimal control the-

ory, connecting the linear Hamilton Jacobi Bellman equation to the broader litera-

ture. First, the Hamilton Jacobi Bellman equation is connected to the literature on

Navigation Functions for robotics in Chapter 4, arising from the work in [5]. It is

demonstrated that the Navigation Function may be seen as a particular form of the

Hamilton Jacobi Bellman equation, and existing PDE techniques in the literature

may be directly derived from optimal control.

This is followed by the study of temporal task planning problems in Chapter 5,

built upon the results of [6]. It is shown that temporal problems encoded in Linear

Temporal Logic consist of distinct optimal control problems connected via boundary

conditions. The linearity of the Hamilton Jacobi Bellman equation is leveraged to

rapidly compute solutions in these domains.

Finally, Chapter 6 rounds out the work presented in this thesis. A brief review of

the topics is given, along with a discussion of how the computability of the Hamilton

Jacobi Bellman equation affects those applications developed here, as well as those

not touched upon. The thesis ends with a discussion of potential developments in the

study of Hamilton Jacobi Bellman solutions.
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1.2 Dynamic Programming

The Hamilton Jacobi Bellman equation is fundamental object to the study of stochas-

tic optimal control theory, arising from Bellman’s Principle of Optimality [7]. During

the execution of a controlled system, at any point in time the system trajectory may

be split in two. The optimal future trajectory is independent of the past, as the

system’s state captures the full history of what occurred, and thus each trajectory

segment is itself optimal.

Let the discrete time system trajectory1 be denoted by x0, . . . , xN ∈ Rn, where xk

is the state at time tk, the control inputs are similarly denoted u0, . . . , uN−1 ∈ Rm,

as are perturbations to the system w0, . . . , wN−1. The evolution of the trajectory

can be captured in the state transition function fk : Rn × Rm × Rr → Rn, with

xk+1 = fk(xk, uk, wk). At each discrete time, the state is penalized with a cost `k :

Rn × Rm × Rr → R is assigned, which one seeks to minimize. The control input, uk,

may further be restricted to lie in some set uk ∈ Uk(xk). The basic stochastic optimal

control problem with horizon length N is therefore

minimize E

[
N−1∑
k=0

`k(xk, uk, wk) + `N(xN)

]
subject to xk+1 = fk(xk, uk, wk), k = 0, . . . , N − 1

uk ∈ Uk(xk), k = 0, . . . , N − 1,

(1.1)

where `N is a terminal cost, the decision variables are xk, uk, and the expectation is

over (random) disturbances w0, . . . , wN−1 ∈ Rr. For any feasible trajectory, the cost

is expressed as the function

J(x, u) , E

[
N−1∑
k=0

`k(xk, uk, wk) + `N(xN)

]
(1.2)

Supposing that the minimizing policy was in fact known, the optimal solution is
1Thanks to Ivan Papusha for a preliminary version of these notes
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defined as the value function, also known as the cost to go V (x),

V ∗(x) , min
u
J(x, u) = J(x, u∗(x, t)), (1.3)

where u∗(x, t) is the (as yet unknown) optimal control strategy. Clearly, the optimal

solution at future points in time does not depend on actions in the past. Therefore,

the optimal choice at any point in time is to choose the action that brings the system

into the accessible state with the lowest future cost to go. This result is known as

Bellman’s principle of optimality.

Theorem 1 (Bellman’s Principle of Optimality [7]). If u∗(x, τ) is optimal over the

interval [t, tN ] starting at state x(t) then u∗(x, τ) is necessarily optimal over the subin-

terval [t, t+ ∆t] for any ∆t such that T − t ≥ ∆t ≥ 0.

For every initial state x0, the optimal cost V ∗(x0) of the basic problem is given by

V0(x0) in the last step of the following algorithm [8, §1.3], which proceeds backward

from period N − 1 to period 0:

VN(xN) = `N(xN),

Vk(xk) = min
uk∈Uk(xk)

Ewk
[
`k(xk, uk, wk) + Vk+1

(
fk(xk, uk, wk)

)]
, k = 0, . . . , N − 1.

The optimal policy consists of choosing a minimizing control action u∗k,

u∗k ∈ argmin
uk∈Uk(xk)

Ewk
[
`k(xk, uk, wk) + Vk+1

(
fk(xk, uk, wk)

)]
, k = 0, . . . , N − 1.

Note the generality of the approach. The next section studies more specific variants

of the Hamilton Jacobi Bellman equation for deterministic and stochastic systems

with affine disturbances.
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1.2.1 Deterministic Hamilton-Jacobi-Bellman

The basic continuous-time control problem with horizon length T is

minimize
∫ T

0

`(x(t), u(t)) dt+ `T (x(T ))

subject to ẋ(t) = f(x(t), u(t)), 0 ≤ t ≤ T,

x(0) = x0

If V (t, x) a continuously differentiable (in t and x) solution to the Hamilton Jacobi

Bellman equation, [9],

− ∂

∂t
V (t, x) = min

u∈U

[
`(x, u) +∇xV (t, x)Tf(x, u)

]
, (1.4)

V (T, x) = `T (x), (1.5)

then it is the optimal cost-to-go function and a control policy obtained using the

minimization is optimal. The function V : [0, T ]× Rn → R is the value function for

this problem type. The derivation is given in the following section.

Derivation Using Dynamic Programming

The following derivation follows that of [8, §3.2]. Divide the time horizon [0, T ] into

N pieces using the discretization interval δ = T
N
, and define

xk , x(kδ), uk , u(kδ), k = 0, . . . , N.

The first order approximation to the continuous system and its cost function are

xk+1 = xk + f(xk, uk) · δ

J =
N−1∑
k=0

`(xk, uk) · δ + h(xN).

Let J∗(t, x) be the optimal cost to go at time t and state x for the continuous-time

problem, and J∗d (t, x) be the optimal cost-to-go for the discrete-time approximation.
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The DP equations are

J∗d (Nδ, x) = h(x),

J∗d (kδ, x) = min
u∈U

[
`(x, u) · δ + J∗d

(
(k + 1) · δ, x+ f(x, u) · δ

)]
, k = 0, . . . , N − 1.

Expanding J∗d as a Taylor series around (kδ, x) one obtains

J∗d
(
(k+1)·δ, x+f(x, u)·δ

)
= J∗d (kδ, x)+∇tJ

∗
d (kδ, x)·δ+∇xJ

∗
d (kδ, x)Tf(x, u)·δ+o(δ),

where limδ→0 o(δ)/δ = 0. After substituting back into the DP equations,

J∗d (kδ, x) = min
u∈U

[
`(x, u) · δ + J∗d (kδ, x) +∇tJ

∗
d (kδ, x) · δ +∇xJ

∗
d (kδ, x)Tf(x, u) · δ + o(δ)

]
.

Cancelling J∗d (kδ, x) from both sides, divide by δ, and take the limit as δ → 0.

Assuming the discrete-time cost-to-go function yields in the limit its continuous-time

counterpart, i.e.,

lim
k→∞, δ→0, kδ=t

J∗d (kδ, x) = J∗(t, x), for all t, x,

this derivation yields the Hamilton-Jacobi-Bellman equation for the optimal cost-to-

go J∗(t, x),

0 = min
u∈U

[
g(x, u) +∇tJ

∗(t, x) +∇xJ
∗(t, x)Tf(x, u)

]
, for all t, x,

h(x) = J∗(T, x), for all x.

Letting V (t, x) , J∗(t, x), and removing the terms that do not depend on u out of

the minimum reveals (1.4).
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1.2.2 Stochastic Hamilton-Jacobi-Bellman

The basic stochastic control problem with horizon length T is

minimize E
[∫ T

0

`(xt, ut) dt+ h(xT )

]
subject to dxt = f(xt, ut) dt+ σ(xt) dωt, 0 ≤ t ≤ T,

x|t=0 = x0.

The dynamics of the state xt are governed by an Itō drift-diffusion process in Rn,

where {ωt | t ≥ 0} is a standard Wiener process in Rq and σ : Rn → Rn×q is a noise

feedthrough function. The stochastic Hamilton Jacobi Bellman equation is

− ∂

∂t
V (t, x) = min

u∈U

[
`(x, u) +∇xV (t, x)Tf(x, u) +

1

2
Tr
(
∇2
xV (t, x) · σ(x)σ(x)T

)]
,

V (T, x) = h(x).

The extra Hessian term that differs from the deterministic case arises from Itō’s

formula. The definitive sources are [10] with a derivation given in the following

section.

Derivation Using Dynamic Programming

The first order approximation to the continuous system with stochastic perturbations

is similar, but according to the rules of Itō includes a stochastic forcing term

xk+1 = xk + f(xk, uk) · δ + σ(xk) · εk · δ1/2,
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where εk ∼ N (0, Iq) are iid standard normal variables on Rq inherited from the Wiener

process. The DP equations are

J∗d (Nδ, x) = h(x),

J∗d (kδ, x) = min
u∈U

E
[
`(x, u) · δ + J∗d

(
(k + 1) · δ, x+ f(x, u) · δ + σ(x) · ε · δ1/2

)]
= min

u∈U

[
`(x, u) · δ + EJ∗d

(
(k + 1) · δ, x+ f(x, u) · δ + σ(x) · ε · δ1/2

)]
for k = 0, . . . , N−1. Expand J∗d as a Taylor series around (kδ, x) to the second order:

J∗d
(
(k + 1) · δ, x+ f(x, u) · δ + σ(x) · ε · δ1/2

)
=

J∗d (kδ, x) +∇tJ
∗
d (kδ, x)δ +∇xJ

∗
d (kδ, x)T

(
f(x, u)δ + σ(x)εδ1/2

)
+

1

2
Tr
(
∇2
xJ
∗
d (kδ, x) · σ(x)εεTσ(x)T δ

)
+ o(δ3/2)

Using E [ε] = 0 and E
[
εεT
]

= Iq, take the expected value of both sides to obtain

E
[
J∗d
(
(k + 1) · δ, x+ f(x, u) · δ + σ(x) · ε · δ1/2

)]
= J∗d (kδ, x) +∇tJ

∗
d (kδ, x)δ

+∇xJ
∗
d (kδ, x)Tf(x, u)δ +

1

2
Tr
(
∇2
xJ
∗
d (kδ, x) · σ(x)σ(x)T δ

)
+ o(δ3/2).

Finally, substitute this expression back into the DP equations, subtract J∗d (kδ, x) from

both sides, divide by δ, and take the limit as δ → 0 to obtain the stochastic Hamilton

Jacobi Bellman equations, [10].

−∇tJ
∗(t, x) = min

u∈U

[
`(x, u) +∇xJ

∗(t, x)Tf(x, u) +
1

2
Tr
(
∇2
xJ
∗(t, x) · σ(x)σ(x)T

)]
,

h(x) = J∗(T, x).

1.2.3 Feedback Control Law

The Hamilton Jacobi Bellman solution has up to this point been developed as a

method to generate optimal trajectories. However, as a consequence of Eq. (1.23),

the method also provides an optimal feedback controller. The result is an architecture
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that is both robust and far-sighted, with the feedback controller and planner optimal

and integrated.

In the context of stabilization, the feedback design problem may be framed as

the problem of simply achieving a goal expressed as an equilibrium point. In tasks

with more complex and arbitrary goals, the feedback arises from the application of

the Hamilton Jacobi Bellman solution from any point in the state space, and further

from the inclusion of stochasticity within the planning process. In contrast to other

techniques, the control design based Hamilton Jacobi Bellman equation does not

involve an approximation, allowing for the effects of stochasticity to be used when

beneficial, and for various control design criteria to be incorporated.

The controllers resulting from this design principle have several appealing prop-

erties. In contrast to Model Predictive Control-based schemes (further explored in

1.3.2), no online computation is required. The policy produced is a mapping from

system state to control input, and once produced can often be implementedinvolves

nothing more than as a table lookup.

The use of the optimal policy in this context parallels another tool of control

theory, that of gain scheduling [11]. These approaches develop a feedback controller by

partitioning the state space of the nonlinear problem. A linear approximation to the

dynamics is then made over each individual partition, and the resulting controller is

used when the state of the system occupies that partition. Key to the gain scheduling

control design approach is that once the local controllers have been developed, their

properties may be investigated through Lyapunov theory. The resulting controller is

also fixed, and has no online computation. The controller may then be exhaustively

simulated, a necessity in aerospace applications.

1.2.4 Existing Hamilton Jacobi Bellman Algorithms

While a great deal of research has gone into techniques that approximate properties

of the Hamilton Jacobi Bellman solution, considerable effort has been devoted to

numerical methods of solving the Hamilton Jacobi Bellman equation.
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Level-Set Methods The work of [12] demonstrates the use of Hamilton Jacobi

Bellman solutions for solving reachability-type problems, as well as the difficulties in

the general use of this approach for control theory. In particular, reachability analysis

proves to be key in the development of control algorithms for hybrid systems. The

authors of [12] subsequently focused on the development of level-set techniques for

computing Hamilton Jacob solutions [13, 14]. In this framework, the reachable set is

described implicitly as the zero level set to a variable quantity. The level set boundary

layer is then evolved according to the Hamilton Jacobi Bellman equation. The work

has also been extended to dynamic games [15].

Albrecht Method (Local Taylor Expansion) In [16], a method to solve the

Hamilton Jacobi Bellman equations was proposed based on a Taylor series expansion

of the solution. It is shown that if a solution to the first order or higher terms is

obtained, this will stabilize the system to some origin. By increasing the number of

terms used, the performance may be further improved and the dynamics of the sys-

tem more fully captured [17]. However, the basis of attraction for such a suboptimal

controller is unknown a priori. In [18, 19] the method was augmented by incorpo-

rating many such local solutions, typically called “patches”, where the boundaries are

determined by studying the invariant manifolds of the closed loop dynamics. Recent

results using high order approximations are given in [20], and a discrete time variant

of this approach in [21].

Max-Plus McEaney [22, 23] has developed a novel framework with which to

analyze the Hamilton Jacobi Bellman equation. The insight of the method is that

while the Hamilton Jacobi Bellman equation is quadratic in the gradient, it is linear

in a max-plus algebra. This insight is used to solve a number of control and filtering

problems.

The method has also given rise to the only other curse-of-dimensionality free

method beyond that presented in this thesis that this author is aware of, specifically

the method of [24]. This technique has complexity that scales with the number of

basis solutions, each requiring the solution to a Riccati system. Of note is the fact

that this alternative also has cubic growth with respect to state space dimension.
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1.3 Approximate Approaches to the Optimal Con-

trol Problem

Historically, the difficulty of solving the Hamilton Jacobi Bellman equation directly

has prevented its use in practice. Indeed, for all but the recently developed Max-Plus

approach, none of the techniques detailed in the previous section can readily scale

beyond modest dimensions (namely, five or so continuous system states). This is due

to the curse of dimensionality, wherein the number of optimization variables scales ex-

ponentially with the number of system dimensions. This difficulty had led researchers

to consider alternative methods. While optimality may be lost for nonlinear systems,

these methods have come to define the modern control landscape.

1.3.1 System Linearization

The overwhelming success of linear control theory has led the control community to

embrace linearization techniques. Given a system of the form

ẋ = f(x, u) (1.6)

y = h(x, u) (1.7)

The dynamics matrices may be obtained by taking the Taylor expansion about an

equilibrium points x = x0 and retaining the first order term

δẋ = ∇xf(x0, u0)δx+∇uf(x0, u0)δu (1.8)

δy = ∇xh(x0, u0)δx+∇uh(x0, u0)δu (1.9)

Replacing the linearization of the dynamics with matrices A , ∇xf(x0, u0), B ,

∇uf(x0, u0), and C = ∇xh(x0, u0) and D = ∇uh(x0, u0). The tools of linear control

theory, such as the Linear Quadratic Regulator [25], can then be applied to design a

controller, and stabilization will be retained on the true system for some neighborhood

of the origin. The basin of attraction created may be verified through a number of
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tools of nonlinear theory, chiefly the construction of a Lyapunov function [26].

The above process may be repeated over a partition of the state space of the

system, obtaining a collection of linearizations, each valid in the neighborhood of

some linearization point. The result gives rise to gain scheduling, already mentioned

in Section 1.2.3. While in the continuous limit such approximations approach the

underlying dynamics of the nonlinear system, note that the number of partitions

necessary to achieve a certain fidelity grows exponentially with state space size.

1.3.2 Model Predictive Control

The Hamilton Jacobi Bellman equation solves the control problem from every system

initial condition. However, many applications only require a solution beginning from

a particular initial condition. Indeed, in many problem instances, it is exceedingly

unlikely that the system will visit vast regions of the state space domain. This has

given rise to a group of techniques under the names of Model Predictive Control,

Receding Horizon Control, and is related to Differential Dynamic Programming.

The deterministic version of this problem is

min.u(·)

∫ T

0

(
q(x) + uTu

)
dt+ ϕ (x(T )) (1.10)

s.t. ẋ = f(x) + g(x)u (1.11)

x(0) = x0 (1.12)

A Lagrange multiplier is introduced to enforce the equality constraints, creating the

new optimization problem

min
u(·)

∫ T

0

H(x(t), u(t), λ(t))dt (1.13)

where the scalar Hamiltonian function H(x(t), u(t), λ(t)) is defined as

H(x(t), u(t), λ(t)) = q(x(t)) + uT (t)u(t) + λT (t) [f(x(t)) + g(x(t))u(t)] (1.14)
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Integration by parts of (1.13) yields

ϕ (x (T ))− λT (T )x(T ) + λT (0)x(0) +

∫ T

0

(
H (x (t) , u (t) , λ (t)) + λ̇ (t)x (t)

)
dt

resulting in an equation that is independent of constraints. The problem is then to

determine a stationary point of this cost equation, where the optimization variables

now include λ(t). Examining the differential with respect to the system variables x(t)

and u(t) it is apparent that a necessary condition for optimality is that the expression

[(
∂ϕ

∂x
− λT

)
δx

]
t=T

+
[
λT δx

]
t=0

+

∫ T

0

[(
∂H

∂x
+ λ̇T

)
δx+

∂H

∂u
δu

]
dt

must be equal to zero along the trajectory. The result is the set of equations

ẋ = f(x) + g(x)u

λ̇ = −
(
∂H

∂x

)T
∂H

∂u
= 0

which now correspond to a two point boundary value problem, with boundary values

x(0) given, and

λT (T ) =
∂ϕ

∂x

∣∣∣∣
t=T

The evolution of the variable λ(t) is called the co-state or adjoint equation, and

may be integrated backwards in time without knowledge of the control input. The

control input u(t) is then obtained by integration forwards in time.

The approach has shown notable success, as its solution is obtained via an or-

dinary, rather than partial, differential equation, and may therefore be calculated

quickly. However, the resulting control law is not typically state dependent, and is

instead executed open loop over some finite horizon. Furthermore, only necessary

conditions have been used in the derivation, giving rise to trajectories that are in fact

only locally optimal and depend on the choice of initial trajectory used.

The above considerations have given rise to a number of approaches. Primarily,
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state dependence has been re-introduced through receding horizon schemes. Therein,

some finite horizon is planned over, as before, but only some small segment of the

trajectory is executed. Periodically, the controller re-plans, based on its most recent

state, which has likely drifted from the planned trajectory due to unmodeled dynamics

or stochastic forcing. Such approaches are popular [27], but have few performance

guarantees on their own and may even be unstable [28]. As will be seen subsequently

in Section 6.1, these techniques may be augmented with particular terminal costs to

increase their robustness.

This analysis has served as a foundation for a number of powerful algorithms

[29, 30, 31]. There exist a number of approaches that vary in their parameterization

of time, either through discretization or some spline-basis. A degree of algorithmic

freedom also exists in the order of the dynamics that needs to is captured, trading

model accuracy for computational effort.

Perhaps the most significant advance of these approaches is the growing body of

literature that seeks to augment the trajectory optimization with other state variables.

This includes hybrid state variables [32], including those that model contact [33]. One

example in particular, the choice of appropriate relaxations for contact constraints

between surfaces, yields the ability for systems to form plans that incorporate grasping

[34], or bipedal motion [35]. The results from these works suggest that intelligent

planning of complex, multi-stage behavior comes ever close to reality.

Interestingly, if Gaussian noise is assumed to perturb the system, the typical mod-

eling assumption, the resulting trajectories of maximal likelihood of the optimization

are identically equal to those of the deterministic case. This is one additional motiva-

tion for a Hamilton Jacobi Bellman-based approach. One would expect, particularly

for robotic systems with impact dynamics, that if noise in the system were to increase,

more cautious trajectories would be desirable.
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1.3.3 Lyapunov Theory

In the study of nonlinear systems, the primary avenue for investigation has been that

of Lyapunov theory, wherein an energy like function is used to show some measure of

distance from a stability point decays over time. The beginning of the theory lies in

the study of autonomous systems,

ẋ = f(x(t)) (1.15)

where f is locally Lipschitz in a domain D ⊂ Rn. Lyapunov theory is concerned

with the study of such systems around an equilibrium point. Suppose x∗ is such an

equilibrium, typically taken to be the origin of the domain without loss of generality

by a simple coordinate transform. The system may have the following two properties:

Definition 2. The equilibrium x = 0 of (1.15) is:

• Stable, if for each ε > 0 there is a δ = δ(ε) > 0 such that

‖x(0)‖ < δ =⇒ |x(t)| < ε, ∀t ≥ 0 (1.16)

• Asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ =⇒ lim
t→∞

x(t) = 0. (1.17)

The study of the above two properties is facilitated by the development of an

“energy-like” function, called a Lyapunov function [26]. The use of these functions

becomes apparent as a consequence of the following theorem:

Theorem 3. ([26]) Consider the system (1.15), and let D ⊆ Rn be a neighborhood

of the origin. If there is a continuously differentiable function V : D → R such that

the following two conditions are satisfied:

1. V (x) > 0 for all x ∈ D\{0} and V (0) = 0, i.e., V (x) is positive definite in D.
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2. −V̇ (x) = −∂V
∂x
f(x) ≥ 0 for all x ∈ D, i.e., V̇ (x) is negative semidefinite in D.

then the origin is a stable equilibrium. If in condition (2) V̇ (x) is negative definite in

D then the origin is asymptotically stable. If D = Rn and V (x) is radially unbounded,

i.e., V (x)→∞ as ‖x‖ → ∞, then the result holds globally.

The construction of Lyapunov Functions that certify system stability has advanced

considerably due to the introduction of Sums of Squares Programming [36]. Previ-

ously, automatic algorithms were largely restricted to systems with linear dynamics,

i.e., where f(x) = Ax for a linear operator A. This has allowed for Lyapunov Func-

tions to be synthesized for polynomial systems, demonstrated in [36], or more general

vector fields, as in [37].

Unfortunately, the problem of control design for stabilization, rather than the

analysis of an existing closed loop system, has proved more difficult. It is possible

to generalize Lyapunov functions to incorporate control inputs, a generalization is

known as Control Lyapunov Function (CLF) [38, 39, 40, 41, 42]. The presence of a

CLF is sufficient for the construction of a stabilizing controller, as the control law is

now implicit in the Lyapunov function. However, the synthesis of a CLF for a general

system remains an open question.

Yet, for several large and important classes of systems, CLFs are in fact known

and may be used for stabilization, with a review of this theory available in [40].

The drawback is that these CLFs are hand-constructed and may be shown to be

arbitrarily suboptimal, using excess control effort and possibly actuating against the

natural dynamics of the system unnecessarily. A way to alleviate this issue is through

the incorporation of Receding Horizon Control (RHC), wherein the Euler-Lagrange

equations are used to construct a locally optimal trajectory [43]. There it has been

shown that by setting the terminal cost in the RHC problem in accordance with a

CLF, a stabilization guarantee is produced. By utilizing the RHC framework, a cost

function may be approximated over a finite horizon of the trajectory, improving the

closed loop system cost. The stability properties of Lyapunov theory are then married

with RHC through a trade-off with (local) optimality.
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1.3.4 Method of Moments

Methods to calculate the solution to the Hamilton Jacobi Bellman equation via

semidefinite programming have been proposed by Lasserre et al. [44, 45]. In their

work, the solution and the optimality conditions are integrated against monomial

test functions, producing an infinite set of moment constraints. By truncating to any

finite list of monomials, the optimal control problem is reduced to one of semidefinite

optimization. The method is quite general, applicable to any system with polynomial

nonlinearities.

These moment techniques are intimately related to sum of squares programming.

It can be shown that the two problems are in fact convex duals of one another [46].

The success and generality of these techniques have led to the development of a

number of software tools that allow for policy synthesis, and scalability has been

further improved by studying the sparsity structure of coefficient matrices [47]. The

overall moment and sum of squares based techniques is not limited to optimal control,

and in fact are being used to tackle difficult problems in combinatorics and other fields

[48]. These techniques provide an interesting contrast with those presented later in

this thesis, which require additional structure on the systems of interest.

1.3.5 Navigation Functions

Navigation functions can be viewed as a relaxed variant of the value function. These

functions were introduced by Koditschek and Rimon [49, 50, 51] to remedy the local

minima problem in the classical potential field method of robot motion planning

[52]. Their early work on navigation functions focused primarily on the existence

and discovery of potential functions whose gradient would lead a point mass model

of a robot from any point in the robot’s configuration space to a desired goal. Later

work extended the navigation function concept to incorporate multiple agents [53],

and sensory input [54]. Formally, the definition is as follows.

Definition 4. (From [50]) Let qd be a goal configuration in F , the free configuration

space of a system. A map ϕ : F → [0, 1] is a navigation function if it is
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1. smooth on F (at least a C(2) function);

2. polar at qd, i.e., has a unique minimum at qd on the path-connected component

of F containing qd;

3. admissable on F , i.e., uniformly maximal on the boundary of F ;

4. a Morse function, i.e., the Hessian at critical points is nonsingular.

Navigation functions have been successful in part due to their rapid computability

and transparent nature. The navigation function provides both a global plan, as

well as a feedback controller that follows the gradient of the navigation function.

This allows the total motion planning and execution problem to be abstracted into a

trajectory planner (the path followed by the gradient of the navigation function) and

a path following controller [51]. The price to pay for this convenience is optimality:

ignoring dynamics in the quest to follow the gradient will rarely result in a procedure

that minimizes control effort. This deficiency is in part due to the fact that the system

dynamics do not enter into the navigation functions calculation, and may result in

unexpected and unstable behavior in some contexts [55]. The work presented later

in this thesis shows the connection between navigation functions and more general

optimal control theory, allowing for system dynamics and stochasticity to be included

if this is desirable. It also becomes possible to include more sophisticated weighting

of various goals, such as the desire for minimum-time trajectories.

In the construction and intuition behind navigation functions, implicit is the idea

of robustness. Since navigation functions are defined over the entire free configuration

space, small deviations from the desired path place the robot in nearby locations

where the desirable behavior is similar. Indeed, smoothness of the solution is typically

enforced. This work furthers the understanding of robustness properties of navigation

functions which has largely heretofore been only analyzed ad hoc.

Finally, some approaches for finding navigation functions require difficult calcula-

tions and may not extend to complex obstacle geometries, while others have difficulty

scaling to large configuration space sizes. The methods introduced in this thesis help
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to minimize the computational difficulty in large state-spaces and alleviate some of

these issues.

1.3.6 Sampling based planners

An alternative set of methods has been developed based on methods to generate

feasible solutions to motion planning problems by sampling from the system state

space. Among the most popular of these techniques are Rapidly Exploring Random

Trees (RRT) [56], and Probabilistic Roadmaps (PRM) [57].

These techniques rely on decomposing the configuration space at two levels. At the

higher level is a graph, where each node represents a region of the system state space,

and each edge represents a plan from between the two regions. This decomposition

allows for plans to be generated in non-convex state spaces with difficult kinematics,

while keeping computational effort low as each edge is a local path planning problem.

The two methods diverge in that RRTs sample and explore nodes near a tree of

already connected states. In PRMs, the graph nodes are created a priori and then

connected by a local planner. In each case, optimality may be induced by weighting

the edges of these graphs, and then doing a search for the shortest path, typically

using Djisktra’s algorithm. Additionally, the sampling may be biased towards the

goal region, allowing for computational effort to be concentrated in a goal seeking

manner. The methods also have probabilistic guarantees, ensuring that feasibility

and optimality may be guaranteed in the sampling limit. However, sampling an

infinitely dense set of points may be burdensome.

By giving up optimality, these algorithms have achieved remarkably rapid execu-

tion times and are the de-facto choice of robotic researchers in many motion planning

problems. As their underlying mechanism is Monte Carlo sampling, these techniques

also scale favorably with dimensionality, even allowing their use on sophisticated ma-

nipulation systems [58]. However, the neglect of dynamics and stochasticity is to

some extent responsible for the limitations of these techniques, and also for the typi-

cal "jerky" motions that result. Typically, motion planning takes place in constrained
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environments, with motions limited to moderate speed.

It is only recently that optimal control techniques based on convex programming

and Model Predictive Control-type algorithms have come to have comparable per-

formance [59, 60]. These alternative approaches have a number of benefits beyond

optimality for the model system: they can also incorporate stochasticity and vari-

ous relevant task criteria. Indeed, many of the approaches reviewed here are now

coming to be seen to be the only approaches capable of capturing such necessary

nonlinearities as impact dynamics and friction [35].

1.4 The Linear Hamilton Jacobi Bellman Equation

The study of Linear Hamilton Jacobi Bellman equation largely began with Kappen

[61, 62], who discovered that particular assumptions on the structure of a dynamical

system allows the transformation of the optimal control equation to a linear form.

The work focused on calculating solutions via path integral techniques, popular in

the physics community. This underlying structure was also discovered by Todorov in

parallel [63], who began with analysis of particular Markov decision processes, and

who showed the connection between the two paradigms. This was built upon by

Theodorou et al. [64] into the Path Integral framework in use with Dynamic Motion

Primitives. Therein, sampling of system trajectories is augmented with the use of

suboptimal policies, producing better estimates of the dynamics when executing an

optimal policy. The resulting sample trajectories can then be used to in turn improve

the policy, and then the process is iterated. These results have been developed in a

number of compelling directions [65, 66, 67, 68, 69].

The linear solvabiity of the Hamilton Jacobi Bellman equation arises as follows.

Let xt ∈ Rn as the system state at time t, control input ut ∈ Rm , and let the system

dynamics evolve according to the equation

dxt = (f (xt) +G (xt)ut) dt+B (xt)L dωt (1.18)
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on a compact domain Ω. The expressions f(x), G(x), B(x) are assumed to be

smoothly differentiable, but possibly nonlinear, functions, and ωt is a Brownian

motion (i.e., a stochastic process such that ωt has independent increments with

ωt−ωs ∼ N (0, t− s), for N (µ, σ2) a normal distribution). The matrix L is constant.

Assume that the system incurs cost rt at time t according to

r (xt, ut) = q (xt) +
1

2
uTt Rut (1.19)

where q(x) is a smooth, state dependent cost. It is assumed that q(x) ≥ 0 for all x in

the problem domain. The goal is to minimize the expectation of the cost functional

J(x, u) = φT (xT ) +

∫ T

0

r (xt, ut) dt (1.20)

where φT represents a state-dependent terminal cost. The solution to this minimiza-

tion is known as the value function, where, beginning from an initial point xt at

time t

V (xt) = min
u[t,T ]

E [J (xt, ut)] (1.21)

where the shorthand u[τ,T ] is used to denote the trajectory of u(t) over the time

interval t ∈ [τ, T ].

The associated Hamilton-Jacobi-Bellman equation, derived previously in Section

1.2.2 and [10], is

− ∂tV = min
u[0,t]

(
r + (∇xV )T f +

1

2
Tr
(
(∇xxV )GΣεG

T
))

(1.22)

where Σε , LLT . As the control effort enters quadratically into the cost function it

is a simple matter to solve for it analytically by substituting (1.19) into (1.22) and

finding the minimum, yielding:

u∗ = −RGT (∇xV ) . (1.23)

The minimal control, u∗, may then be substituted into (1.22) to yield the following
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nonlinear, second order partial differential equation

−∂tV = q + (∇xV )T f − 1

2
(∇xV )T GR−1GT (∇xV )

+
1

2
Tr
(
(∇xxV )BΣεB

T
)
.

(1.24)

The difficulty of solving this PDE is what usually prevents the value function

from being directly solved for. However, it has recently been found [62, 63, 70] that

with the assumption that there exists a λ ∈ R and a control penalty cost R ∈ Rn×n

satisfying this equation

λG(x)R−1G(x)T = B(x)ΣεB(x)T , Σt (1.25)

and using the logarithmic transformation

V = −λ log Ψ (1.26)

it is possible, after substitution and simplification, to obtain the following linear PDE

from Equation (1.24)

− ∂tΨ = −1

λ
qΨ + fT (∇xΨ) +

1

2
Tr ((∇xxΨ) Σt) . (1.27)

This transformation of the value function, which is termed the desirability [63], pro-

vides an additional, computationally appealing, method by which to calculate the

value function.

The difference in computationally difficulty between nonlinear and linear PDEs

is analogous to the difference between linear and nonlinear systems in control. Typ-

ically, nonlinear PDEs must be solved via iterative linearization, with uniqueness or

existence of the solution not guaranteed. The reduction to linearity removes or allevi-

ates many of these considerations, and allows for the novel computational techniques

developed in this thesis.

Remark 5. The condition (1.25) can roughly be interpreted as a controllability-type
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Cost Functional Desirability PDE
Finite φT (xT ) +

∫ T
0
r(xt, ut)dt

1
λ
qΨ− ∂Ψ

∂t
= L(Ψ)

First-Exit φT∗(xT∗) +
∫ T∗

0
r(xt, ut)dt

1
λ
qΨ = L(Ψ)

Average limT→∞
1
T
E
[∫ T

0
r(xt, ut)dt

]
1
λ
qΨ− cΨ = L(Ψ)

Table 1.1: Linear Desirability PDE for Various Stochastic Optimal Control Settings,
from [63]. L(Ψ) := fT (∇xΨ) + 1

2
Tr ((∇xxΨ) Σt)

condition: the system controls must span (or counterbalance) the effects of input

noise on the system dynamics. A degree of designer input is also given up, as the

constraint restricts the design of the control penalty R, requiring that control effort be

highly penalized in subspaces with little noise, and lightly penalized in those with high

noise. Additional discussion may be found in [63].

The boundary conditions of (1.27) correspond to the exit conditions of the optimal

control problem. This may correspond to colliding with an obstacle or goal region, and

in the finite horizon problem there is the added boundary condition of the terminal

cost at t = T . These final costs must then be transformed according to (1.26),

producing added boundary conditions to (1.27).

Linearly solvable optimal control is not limited to the finite horizon setting. Sim-

ilar analysis can be performed to obtain linear Hamilton Jacobi Bellman PDEs for

infinite horizon average cost, and first-exit settings, with the corresponding cost func-

tionals and PDEs shown in Table 1.1.

1.4.1 Path Integral Control

Previously, the greatest research effort into harnessing the linear Hamilton Jacobi

Bellman equation was through a technique that has come to be called Path Integral

Control. The method arises from the recognition that the PDE (1.27) is in fact a

Chapman-Kolmogorov PDE [64]. Certain classes of linear PDEs may be connected to

corresponding Stochastic Differential Equations (SDE) by the Feynman-Kac formula
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[71, 72]. Applying the formula for this problem, (1.27) may be transformed to

Ψti = Eτi
[
ΨtN e

−
∫ tN
ti

1
λ
qtdt
]

= Eτi
[
exp

(
−1

λ
φtN −

1

λ

∫ tN

ti

qtdt

)]

where τi represents a sample, stochastic trajectory, and the expectation is taken over

the set of sample trajectories [73]. Discretizing this in time yields

Ψti = lim
dt→0

∫
p(τi | xi) exp

(
−1

λ

(
φtN +

N−1∑
j=1

qtjdt

))
dτi (1.28)

where τi = (xti , . . . , xtN ) is a sample path that evolves according to the natural

stochastic dynamics of the system, and p(τi | xi) is the probability of a trajectory

segment τi under the uncontrolled dynamics of the system.

This sampling-based approached may then combined with Reinforcement Learning

techniques, allowing for the problem to be solved when the dynamics are uncertain or

unknown. The policies are further parameterized by Dynamic Movement Primitives

(DMPs) [74], allowing for efficient representation and learning. The Path Integral ap-

proach has several appealing properties. Because it is Monte Carlo based, the method

scales benignly with dimension. The result is the ability to control high dimensional

systems, even including a four legged robot dog [75], with a dimensionality of twelve.

The method has also been extended to plan through multiple sub-goals, allowing for

trajectories that incorporate events such as contact to be constructed [66].

1.5 Markov Decision Processes

Currently, the most commonly used framework for solving stochastic optimal control

problems is via state space discretization, transforming the problem into a Markov

decision process (MDP). Assume the system may occupy one of a finite set of states

x ∈ X . At each state, an agent has a set of actions u ∈ U that may be chosen.

When such an action is chosen, the system transition moves from state x to x′ with
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probability T (x, u, x′) = P(x′ | x, u). The agent also receives an award at each point

in time dependent on its state and choice of action R(x, a).

Like the derivations in Section 1.2.1, a value function V (x) may be proposed,

representing the cost of any particular (potentially suboptimal) policy beginning from

an arbitrary state x. The central difference with the current derivation is that the

state and action set are finite, and the transition function is no longer governed by

smooth dynamics f(xk, uk). Adopting the system parameters of Section 1.2.1, define

a state dependent control law π such that u = π(x), then the value of that control

law, known as a policy in the MDP literature, is given as

V (x) = Ex[0,tTf

 Tf∑
t=0

`(xt, π(xt))


The optimal value function V ∗, corresponding to a yet unknown optimal policy π∗

arises when the accrued cost is minimized

V ∗(xτ ) = min
u
`(x, u) + Exτ+1∼p(·|xτ ,u)

 Tf∑
t=τ+1

`(xt, π
∗(xt))


Invoking Bellman’s principle of optimality results in the relation

V (xτ ) = min
u
`(x, u) + Exτ+1∼p(·|xτ ,u) [V (xτ+1)]

Expanding the expectation over the finite set of states and actions yields

V (s) = min
u

∑
x′

T (x, u, x′) (R(s, u) + V (s′))

This is the Bellman equation, and gives rise to the most fundamental algorithm to

solve the discrete-state stochastic optimal control problem.

Value Iteration is performed by assuming an under approximation for the value

function at each point in the state space. Typically, it is initialized as the cost at each

state `(x, u) for some control u. The approximation may then be improved iteratively,
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yielding a sequence of improving approximation V0, . . . , Vi. The process, known as

Value Iteration, is performed by sweeping through the state space, improving the

choice of action at each state.

Vi+1(s) = min
u

∑
x′

T (x, u, x′) (R(s, u) + Vi(s
′))

The operator that represents this sweep is deemed the Bellman operator and

may be shown to be contractive [8]. Value iteration may therefore be repeated until

convergence to obtain the optimal value function.

There exist a number of variants upon value iteration. One possibility is to selec-

tively improve the policy and value function independently. This gives rise to policy

iteration, which may be more rapid in practice. Unfortunately, the Bellman operator

is nonlinear, and convergence may require significant computational time.

Alternatives have been proposed that rely on Linear Programming [76]. The

computational benefit isn’t direct, but the Linear Programming variant allows for

a different tack of analysis. The curse of dimensionality may be mitigated in this

context by parameterizing the value function with a sparse set of basis, giving rise to

Approximate Dynamic Programming [9]. Allowing the basis to change online results

in Adaptive Dynamic Programming (ADP), also available in [9]. These techniques

result in linear programming problems that have constraint sets which grow exponen-

tially with dimensionality [77]. Nonetheless, these techniques are the most popular

methods to deal with the curse of dimensionality and have even been used to sur-

pass human capabilities on complex time dependent games via synthesis with modern

machine learning techniques [78].

The examination of stochastic optimal control problems in a discrete state space

has been the more popular approach in the literature. A number of reasons for this

exist, including no need for partial differential equations, and the complexities and

continuity considerations these entail, as well as the natural ability to incorporate

switched behavior. There has also historically been little in the way of computational

gain from considering system behavior in its natural continuous state space. Success
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has been significant, in topics ranging from networked systems [79, 80], robotics [81],

among many others. The framework may also be extended to deal with uncertain

observations of the current state, giving rise to Partially Observable Markov Decision

Processes (POMDP) [82].

1.5.1 Linear MDPs

The development of the linear Hamilton Jacobi Bellman equation has a parallel in

the development of linear Markov decision processes (MDP) [63, 70]. Again, the

presence of structural assumptions on the noise allows for a significant reduction in

computational effort necessary to solve these problems. In [63] it is further shown

that linear MDPs and the linear Hamilton Jacobi Bellman equation may in fact be

derived from one another through discretization or continuous limit arguments.

This formulation has been extended by Todorov et. al. in a number of compelling

directions. Beyond being able to solve MDP control design problems in a more

computationally efficient manner, in the preliminary work a z-learning approach,

based on Q-learning, was proposed [70, 63]. The method demonstrated superior

convergence and was able to take advantage of the analytical results of the linear

MDPs.

Beyond learning, in [83] the linearity of these stochastic optimal control problems

was harnessed to compose solutions to new problems out of existing solutions to

different problems. This allowed for solutions to LQG problems to be composed

to solve non-LQG problems. The approach also allowed for a principled method

of compression to be performed via the Singular Value Decomposition, paving the

way for improved scalability of stochastic optimal control. The notion of composing

solutions at essentially zero cost was adopted and extended in [6] to rapidly generate

solutions to temporal problems efficiently, corresponding to Chapter 5 of this thesis.

Efficient computational techniques were also developed in [84, 85], where an adap-

tive set of basis were used for eigenfunction approximation in the average-cost setting

via collocation methods. A review of the many directions taken by Todorov et. al. is
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available at [67, 63].
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Chapter 2

Optimization Based Numerical
Methods

2.1 Semidefinite Programming for Optimal Control

This chapter presents a novel method to solve stochastic optimal control problems

using polynomial optimization and semidefinite programming. Sum of squares (SOS)

techniques [86] are used to construct sub- and super-solutions to the value functions

of linearly solvable Hamilton Jacobi Bellman equations. This approach allows for op-

timal control solutions to be computed quickly, with globally optimal guarantees. In

contrast to dynamic programming approaches, no discretization is required, postpon-

ing the curse of dimensionality and eliminating a potential source of approximation

error. Moreover, the formulation leads directly to gap theorems, or bounds, on the

approximation error.

Building on this technique, a domain decomposition augmentation is proposed

in Section 2.2, allowing for the state space to be split into disjoint problems that

are linked along shared boundaries. The power of the approach lies in the use of

lower order polynomials in disjoint areas of the state space, rather than one high

degree polynomial over the entire domain, improving the scalability of the method

and allowing for local phenomena to be accurately captured.

The underlying methodology proposed in this chapter is shown to be useful beyond

the solution to Hamilton Jacobi Bellman equations, and is applicable more broadly
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to the analysis of elliptic and parabolic PDEs. Via the Positivstellensatz, uncertainty

in the problem data is incorporated in to the optimization problem. The result is

an algorithm to produce upper and lower bounds over the solutions to PDEs. The

generality of the technique has implications in the field of Uncertainty Quantification

(UQ) of systems governed by partial differential constraints.

Although sharing the same set of tools and with a similar goal in mind, the method

developed in this chapter contrasts with those of Lasserre et al., detailed in Section

1.3, in that candidate approximate solutions of the value function itself are proposed,

and thus avoiding the need to include the control signal in the polynomial basis. This

property lessens the computational burden in the resulting optimization problem,

and takes advantage of the specific structure of this class of stochastic systems. The

method also allows for both upper and lower bounds to the value function to be

calculated, whereas only lower bounds were previously possible.

2.1.1 Sum of Squares Programming

To set the stage for the contributions of this chapter, Sum of Squares (SOS) program-

ming, originally proposed in the thesis of Parrilo [87] is reviewed. These tools will

be key in the development of approximate solutions to the Hamilton Jacobi Bellman

equation (1.27), which specifies a set of partial differential equality constraints that

the optimal solution must satisfy. Instead of satisfying these constraints exactly, as in

Galerkin or collocation techniques, the equality constraints are relaxed directly. The

optimization problem is then to find the best approximate solution that lies in the

set of polynomials that satisfy these inequality constraints. This is done by reducing

these inequalities to a semialgebraic set, allowing for the tools of algebraic geome-

try to be employed. Specifically, SOS programming provides a method to perform

optimization over such a set.

Definition 6. Let x = (x1, . . . , xn), x ∈ Rn and α = (α1, . . . , αn), α ∈ Nn. The

function zα = xα1
1 x

α2
2 . . . xαnn is a monomial in (x1, . . . , xn) of degree |α| =

∑n
i=1 αi.

A polynomial p in x with coefficients in R is a linear combination of a finite set of
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monomials

p(x) =
∑
α

cαx
α =

∑
α

cαx
α1
1 x

α2
2 . . . xαnn , cα ∈ R. (2.1)

For brevity of notation, define the ring of polynomials in (x1, . . . , xn) with real

coefficients as R[x] , R[x1, . . . , xn]. A semialgebraic set is a subset of Rn that is

specified by a finite number of polynomial equations and inequalities.

S = {x ∈ Rn | pi(x) ≥ 0, i = 1, . . . , n}

An example is

S =
{

(x1, x2) ∈ R2 | x2
1 + x2

2 ≤ 1, x3
1 − x2 ≤ 0

}
.

Such a set is not necessarily convex, and testing membership in the set is NP-Hard

in general [88, 87]. However, there exists a class of semialgebraic sets that are in

fact semidefinite-representable. Key to this development will be the ability to test for

non-negativity of a polynomial.

A multivariate polynomial p(x) is a sum of squares (SOS) if there exist polynomials

p1(x), . . . , pm(x) such that

p(x) =
m∑
i=1

p2
i (x).

A seemingly unremarkable observation is that a sum of squares is always positive.

Thus, a sufficient condition for non-negativity of a polynomial is that the polynomial

is SOS. Perhaps less obvious is that membership in the set of SOS polynomials may

be tested as a convex problem and therefore polynomial time-solvable. Denote the

function p(x) being SOS as p(x) ∈ Σ(x), where Σ(x) is the set of all SOS polynomials.

The key to this reduction in complexity is the following result.

Theorem 7. ([89]) A polynomial p(x) of degree 2d is a sum of squares if and only

if there exists a positive semidefinite matrix Q and a vector of monomials Z(x) con-
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taining monomials in x of degree less than or equal to d such that

p = Z(x)TQZ(x). (2.2)

The Q matrix in (2.2) is referred to as the Gram Matrix. The monomials of Z(x)

are not in general algebraicaly independent, meaning that if the equation is expanded

and coefficients are matched, there will be free parameters in Q. The result is that

optimizations may take place over Q with the constraint Q � 0, i.e. Q is positive

semidefinite, placing the problem of SOS non-negativity in the realm of semidefinite

programming.

Theorem 8. ([87]) Given a finite set of polynomials {pi}mi=0 ∈ Rn the existence of

ai ∈ R for i = 1, . . . ,m such that

p0 +
m∑
i=1

aipi ∈ Σ(x)

is a semidefinite programming feasibility problem.

Thus, while the problem of testing non-negativity of a polynomial is intractable

in general, by constraining the feasible set to a SOS, the problem becomes tractable.

The converse question, is a non-negative polynomial necessarily a sum of squares is,

unfortunately, false. This indicates that this test is conservative [87]. Nonetheless,

SOS feasibility will be sufficiently powerful for the purposes of this work. Details of

how SOS feasibility are reducible to semidefinite programs are given in [36], and have

become well known in the control community.

2.1.1.1 The Positivstellensatz

Using SOS theory, it is possible to determine whether a particular polynomial, possi-

bly parameterized, is a sum of squares. The next step is to determine how to combine

multiple polynomial inequalities, i.e. semialgebraic sets of the form

P = {x ∈ Rn | pi(x) ≥ 0 for all i = 1, . . . ,m}
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for polynomial functions pi(x) where x ∈ Rn. The answer is given by Stengle’s

Positivstellensatz.

Theorem 9. (Positivstellensatz [90]) The set

X = {x | pi(x) ≥ 0, hj(x) = 0 for all i = 1, . . .m, j = 1, . . . p} (2.3)

is empty if and only if there exists ti ∈ R[x], si, rij, . . . ∈ Σ(x) such that

− 1 = s0 +
∑
i

hiti +
∑
i

sipi +
∑
i 6=j

rijpipj + · · · (2.4)

Although this theorem is presented in terms of feasibility, it is easily adapted for

the purposes of optimization. Given the problem

min p0(x)

s.t. pi(x) ≤ 0 ∀i ∈ 1, . . . , k

a slack factor γ may be introduced to frame the equivalent infeasibility problem

max γ

s.t.
p0(x) ≤ γ

pi(x) ≤ 0 ∀i ∈ 1, . . . , k

 infeasible

which is in a form directly applicable to the Positivestellensatz.

By setting some of the Positivestellensatz multipliers, such as rij or rijk, to zero,

a sufficient condition for infeasibility may be created. Alternatively, it is possible to

limit the degree of the multipliers hi, si, rij. The search for infeasibility may therefore

begin with a limited polynomial degree, increasing the degree if additional precision is

required. This creates a hierarchy of semidefinite relaxations of increasing complexity

but also with a decrease in the suboptimality of the solution. This construction is

known more broadly as a Lasserre Hierarchy [46], or Theta Body relaxation [91].
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2.1.2 Sum-of-Squares Relaxation of the linear HJB PDE

Sum of squares programming has found many uses in combinatorial optimization

[48], control theory [36], as well as other applications [92]. Its use is now expanded to

include finding approximate solutions to the value function of the stochastic optimal

control problem.

Obtaining solutions to linear PDEs is far from trivial, with the multitude of numer-

ical methods a testament to the many issues that arise. Control theoretic techniques

typically avoid many of these issues by not considering the partial differential na-

ture of the problem directly. The synthesis of these two disciplines will require an

understanding of the issues unique to both.

A candidate polynomial is proposed as the solution to the linear desirability Hamil-

ton Jacobi Bellman PDE. While the value function may in fact be discontinuous, the

modeling assumption is made that it may be approximated to a sufficiently high

accuracy given a polynomial of sufficient degree. Furthermore, although the solu-

tion to the Hamilton Jacobi Bellman equation is discontinuous in some locations, in

many applications, such as many robotics and control problems of interest, it will

remain continuous over large portions of the domain. This assumption of underlying

smoothness may be seen as seeking viscosity solutions [10] to the problem (1.27), in

effect placing a smoothness requirement on the solution. Furthermore, the diffusivity

that enters the equation due to the presence of noise has the effect of enforcing this

assumption, as diffusitivity terms smooth the solutions directly.

The following discussion proceeds with the finite horizon problem (see Section

1.2.2), but similar steps apply to all the problems listed in Table 1.1. The assump-

tion is made that the control problem is defined over a compact domain S that is

representable as a semialgebraic set, as is its boundary ∂S.

The equality constraint of (1.27) may be relaxed, yielding the following constraints

that are necessary for an over-approximation of the desirability function

1

λ
qΨ ≤ ∂tΨ + fT (∇xΨ) +

1

2
Tr ((∇xxΨ) Σt) . (2.5)
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Hereafter, solutions to the above inequality will be denoted as Ψ, and exact solutions

to (1.27) denoted as Ψ∗, the optimal desirability function. For brevity, as in Table

1.1, define the differential operator

L(Ψ) := fT (∇xΨ) +
1

2
Tr ((∇xxΨ) Σt) . (2.6)

To obtain the best approximation Ψ for a given polynomial order, the pointwise

error of the approximation may be minimized in the optimization problem

min γ

s.t. γ −
(
−1

λ
qΨ + ∂tΨ + L(Ψ)

)
≥ 0

for x ∈ S. The boundary conditions of (1.27) correspond to the exit conditions of the

optimal control problem. In all problems these conditions may correspond to colliding

with an obstacle or goal region, and in the finite horizon problem there is the added

boundary condition of the terminal cost at t = T . These final costs are transformed

according to Eq. (1.26), producing the added constraint

Ψ |∂S= e−
φT (xT )

λ

where φT (xT ) is the terminal cost from Eq. (1.20). As shown below, this constraint

may be also be relaxed as an inequality. The complete optimization problem is then

min γ (2.7)

s.t.
1

λ
qΨ ≤ ∂tΨ + L(Ψ) x ∈ S

γ ≥ −1

λ
qΨ + ∂tΨ + L(Ψ) x ∈ S

Ψ ≤ e−
φT (x)

λ x ∈ ∂S.

As the inequalities are defined over polynomials, this optimization is defined over a

semialgebraic set. This formulation may be made tractable as follows.
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Proposition 10. The optimization problem (2.7), where inequality constraints are

relaxed to SOS membership, may be solved as a semidefinite optimization program.

Proof. Let us propose a candidate solution to the optimization of Ψ, a polynomial

of fixed degree n, denoted Ψn. Each of the inequality constraints are non-negativity

constraints over a polynomial and are therefore a semialgebraic set. The full set of

constraints is an intersection of semialgebraic sets and therefore also a semialgebraic

set. When the inequalities in this set are relaxed as SOS constraints, membership

in the constraint set may be tested as a semidefinite program by Theorem 8. The

optimization over this set is then enabled by Theorem 9.

Furthermore, one can in fact guarantee that the exact and polynomial approximate

desirability functions have a bounded relationship.

Theorem 11. Given a feasible solution pair {Ψ, γ} to (2.7), and if Ψ∗ is the exact,

optimal solution to (1.27), then Ψ(x) ≤ Ψ∗(x) for all x ∈ S.

Proof. Consider the first-exit case for simplicity, and define the error between approx-

imation Ψ and the optimal desirability, Ψ∗, as e = Ψ−Ψ∗. Then, as all operators are

linear,

1

λ
qe =

1

λ
q (Ψ−Ψ∗)

=
1

λ
qΨ− L(Ψ∗)

≤ L(Ψ)− L(Ψ∗)

≤ L(e)

since 1
λ
qΨ∗ = L(Ψ∗), since 1

λ
qΨ ≤ L(Ψ). Defining the augmented operator

P (e) := L(e)− 1

λ
qe

then P is an elliptic operator, since the Hamilton Jacobi Bellman equation is elliptic
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for the first-exit case, and by the weak maximum principle for elliptic operators [93]

sup
S
e ≤ sup

∂S
e+ (2.8)

where e+ = max(e, 0) and e is non-positive on the boundary. Thus, the error remains

less than zero everywhere, implying that Ψ ≤ Ψ∗, and that Ψ is indeed a lower bound.

The weak maximum principle for parabolic operators can similarly be used in the

case where the desirability PDE is parabolic, i.e., in the finite horizon case where the

Hamilton Jacobi Bellman equation is time-dependent. For the finite horizon case,

define

P (e) := L(e)− ∂t −
1

λ
qe.

Note that the PDE (1.27) yields L(e) +∂t− 1
λ
qe = 0, apparently yielding an operator

with the incorrect sign on the time-derivative. That is, the expression must be of

the form L(e) − ∂t − 1
λ
qe = 0 for the parabolic maximum principle to apply. The

correct operator is recovered when it is remembered that the boundary condition

along the time axis is assigned only at the terminal time t = T . Conventionally, the

time boundary is assigned at the beginning of time, so the direction of time must be

flipped for the Hamilton Jacobi Bellman equation. This aligns the Hamilton Jacobi

Bellman equation with the convention for parabolic PDEs, with both proceeding

forward in time, with the boundary conditions at t = 0.

By the same arguments as the elliptic case, the error e = Ψ−Ψ∗ is a subsolution

of (1.27), i.e., e ≤ 0. As P (e) is a parabolic operator the weak maximum principle for

parabolic operators dictates that the relation (2.8) is maintained [93], and once again

the residual does not change signs, indicating that Ψ is indeed a lower bound.

This construction of a sum of squares program for lower bounds may be repeated

for each of the objective functions found in Table 1.1. Furthermore, note that the

proof underlying Theorem 10 may in fact be repeated with the relaxation inequal-

ity reversed in optimization (2.7), resulting in a superharmonic error function. In
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particular, the optimization

min γ (2.9)

s.t.
1

λ
qΨ ≥ ∂tΨ + L(Ψ) x ∈ S

γ ≥ 1

λ
qΨ− (∂tΨ + L(Ψ)) x ∈ S

Ψ ≥ e−
φT (x)

λ x ∈ ∂S.

yields a reverse, upper bound theorem.

Theorem 12. Given a feasible solution pair {Ψ, γ} to (2.9), and if Ψ∗ is the exact,

optimal solution to (1.27), then Ψ(x) ≥ Ψ∗(x) for all x ∈ S.

As both upper bound {γu,Ψu} and lower bound {γl,Ψl} solution pairs may be ob-

tained from optimization (2.7), the pointwise distance of either of these approximate

solutions from the optimal Ψ∗ may trivially be bounded as

|Ψ(x)−Ψ∗(x)| ≤ γu + γl x ∈ S (2.10)

for Ψ = Ψu or Ψ = Ψl.

It is straightforward to demonstrate that these bounds on the desirability also

correspond to bounds on the value function.

Proposition 13. Given a pointwise upper (lower) bound Ψ = Ψu (or Ψ = Ψl) to a

solution Ψ∗ of (1.27), then V = −λ log Ψ is a lower (upper) bound of V ∗, the solution

to (1.24).

Proof. For Ψ ≥ Ψ∗

V = −λ log Ψ

≤ −λ log Ψ∗

= V ∗
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since λ is always positive and logarithms are monotonic. Similar reasoning applies to

the lower bound.

Remark 14. Due to the nature of the log transformation (1.26), Ψ is necessarily pos-

itive on the domain S. This requirement may be included as an additional constraint

Ψ ≥ 0 in (2.7). However, in this case the optimization for the lower bound of Ψ∗ may

not converge. It is possible to instead neglect this constraint. If the solution does at

any point fall below zero, it will not be possible to transform it to the value function,

and is therefore inappropriate as an approximate value function. The solution may

nonetheless be informative.

2.1.3 Analysis of SOS Relaxation

Some preliminary analysis of this approach demonstrates several appealing qualities.

The first of these is that the convergence of the algorithm to calculate the upper

bound is guaranteed.

Proposition 15. There exists a constant c such that the SOS optimization problem

to calculate the upper bound Ψu from (2.7) has a solution for all γ ≥ c

Proof. For the PDEs in Table 1.1 that are elliptic, all problem data are polynomial

and therefore infinitely differentiable. By the elliptic regularity theorem [94], the

solution Ψ∗ is infinitely differentiable and therefore continuous. As the differential

operator L(Ψ) is a linear operator on a compact set S, it is continuous if and only if it

is bounded. Therefore there exists some constant c ≥ Ψ∗ on the domain S. Similarly

for the parabolic case the solution Ψ∗(x, t) has an upper bound for each point in time

t, and integration of these finite quantities over a bounded time period also produces

bounded solutions.

A candidate solution Ψ(x, t) may be taken to be the plane with Ψ(x, t) := b for

b a constant greater than all boundary conditions, i.e. b ≥ e−
φT (x)

λ for all x ∈ ∂S.

Plugging in this solution into the optimization (2.7) it is seen to satisfy the constraint

set by construction. As this is a polynomial of degree zero, it is in the set of feasible
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Figure 2.1: Illustration of potential misalignment between the optimal and approx-
imate value function, V (x) and Ṽ (x), gradients despite their proximity. The x-axis
here denotes state space domain, while the y-axis denotes the cost-to-go at a partic-
ular state.

solutions to (2.7). Since this is a convex problem, the existence of a feasible solution

p(x, t) is sufficient for the algorithm to converge.

Intuitively, the previous result states that there must exist constant values that

upper and lower bound the solution to the desirability, which are of course polynomial

representable. Clearly such bounds may be quite poor in practice. However, plac-

ing this problem within a hierarchy of optimization problems, namely in a Lasserre

Hierarchy [46], with increasing polynomial degree yields the following result.

Proposition 16. Let Ψn be a polynomial approximation of the desirability function

with maximum polynomial degree n that is a solution to (2.7) (or (2.9)). The hi-

erarchy of SOS problems consisting of solutions to (2.7) (or (2.7)) with increasing

polynomial degree, or increasing degree of Positivstellensatz multipliers in (2.3), pro-

duce a sequence of solutions {Ψi, γi}i with γi ≥ γi+1.

Proof. Given a solution Ψn to (2.7), and an additional solution Ψn+1 of higher degree,

each with solutions γn, γn+1 respectively, γn+1 ≤ γn as Ψn+1 may achieve error γn by

setting its additional degrees of freedom to zero, so the solution sequence γn is non-

increasing. Clearly, γ ≥ 0, indicating the sequence has a limit.

Note that no guarantee are available as to the divergence of the cost when execut-

ing the approximate value function from the true value function. The only guarantee

provided is that the value function is an over-approximation at a particular state. A

consequence is illustrated in Figure 2.1. By following the gradient, the system may
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diverge significantly from the optimal path, further undermining the accuracy of the

approximate value function. This is an issue common to many approximate dynamic

programming schemes [95, 76, 96]. A commonly employed technique is to simply use

Monte Carlo simulation of the policy resulting from the approximate value solution,

providing an upper bound Jub on the realizable cost. If the resulting sampled upper

bound Jub is near this lower bound, then the policy may be said to be empirically

near-optimal.

2.1.4 Examples

A scalar and a two-dimensional pair of examples reveal the computational character-

istics of the method. In the following problems the optimization parser YALMIP [97]

was used in conjunction with the semidefinite optimization package SDPT3 [98].

2.1.4.1 Scalar System Example

A nonlinear, unstable system with the following dynamics is considered

dx =
(
x3 + 5x2 + x+ u

)
dt+ dω (2.11)

on the domain x ∈ S = [−1, 1]. The problem chosen is a first-exit problem, with

φ(−1) = 10, and φ(1) = 0. For this instance, L = 1, G = 1, B = 1, and the cost

parameters q = 1, R = 1 are assigned. Optimal solutions to (2.7) of the desirability for

varying polynomial degree deg(Ψ) are shown in Figure 2.2 along with its transformed

cost-to-go. The pointwise error in the desirability for increasing polynomial degree on

the solution and the Positivstellensat multipliers (of (2.3) is shown in Table 2.1.4.1.
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Figure 2.2: Plots of approximate and exact desirability and cost-to-go solutions for the
scalar system (2.11) versus state x in the interval x ∈ [−1, 1]. The dashed red, dashed
blue, and solid black lines represent the deg(Ψ) = 4, deg(Ψ) = 6, and deg(Ψ) = 8
approximations respectively. The Positivstellensatz polynomial multipliers in (2.3)
were set to have matching degree, i.e. deg(si) = deg(Ψ).

deg(Ψ) \ deg(si) 2 4 6 8 10
2 1.0 1.0 1.0 1.0 0.9994
4 1.0 1.0 1.0 0.9999 0.9947
6 1.0 1.0 0.7508 0.7498 0.7406
8 1.0 1.0 0.2834 0.0592 0.0592
10 1.0 1.0 0.2834 0.0590 0.0487

Table 2.1: Solution quality γ of the desirability lower bound for the scalar system
(2.11) with varying polynomial degree of solution Ψ and Positivestellensatz multipliers
si of (2.3).
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Figure 2.3: Approximate Desirability and Value solutions for the two dimensional
example (2.12). The problem is solved with deg(Ψ) = deg(si) = 14. The upper bound
had gap γup = 0.0979, and lower bound γlw = 0.1049. Ten simulated trajectories of
the closed loop system, randomly sampled from x, y ∈ [−.75, .75]2, are shown in black.

2.1.4.2 Two Dimensional Example

Next, a nonlinear 2-dimensional problem example adapted from [99] was solved as a

first-exit problem. The dynamics are set as dx

dy

 =

 −2x− x3 − 5y − y3

6x+ x3 − 3y − y3

+

 u1

u2

 dt+

 dω1

dω2

 (2.12)

The system was given the task of reaching a boundary of the domain S = [−1, 1]2,

and once there would fulfill its task with no additional cost. The control penalty

was set to R = I2×2, and state cost as q(x) = 0.1. The boundary conditions for the

sides x = −1, y = 1, y = −1 were set to have a penalty of φ(x, y) = 1, while for the

remaining boundary x = 1 the boundary has quadratic cost φ(x, y) = 1 − (y − 1)2.

The results are shown in Figure 2.8.

Discussion

Sum of squares and semidefinite programming have been used to construct a global

solution without recourse to value iteration or other forms of dynamic programming.

The method produces a-priori bounds on the solutions’ pointwise error from the op-
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timal Hamilton Jacobi Bellman solution. Unfortunately, a priori error bounds on the

cost of the trajectories resulting from policies which follow the approximate solution

cannot be directly obtained. Such bounds are the subject of further investigation.

As it stands, there is no guarantee that a specific objective will be obtained, e.g., to

reach a goal region or provide stabilization. Indeed, the mis-alignment of true and

approximate value functions has surfaced in the controls community [43] as well as

in the broader literature on approximate dynamic programming [76].

The algorithms presented in this thesis differ from the simple process of apply-

ing approximate dynamic programming with polynomial basis functions. Key in this

work is the development in the continuous state space of the problem. Although

approximate dynamic programming can use a polynomial basis for the value function

similar to that in this work, it nonetheless begins from a discrete state space. The

result is that the number of constraints in the corresponding dynamic program de-

pends on the size of the discrete state space [76]. While in practice many of these

constraints may be inactive, it isn’t possible to determine a-priori the inactive ones.

Furthermore, as has been shown, the SOS framework gives strong guarantees on the

pointwise distance between the approximate and exact value functions. However, in

contrast with approximate dynamic programming, in the work presented in this the-

sis, the solution to an Semidefinite Programming problem is required, as compared

to that of an Linear Program.

As mentioned, this method is proposed as an alternative to sampling based meth-

ods that utilize the Feynman-Kac lemma. A distinct advantage of the Feynman-Kac

based approach is that the required sampling scales well with increasing dimension of

the state space. It is an interesting question as to how the method proposed here can

be extended to high dimensional state spaces. A method to do so follows in Section

6.2.
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2.2 Domain Partitioning

Building on the Sum of Squares-based algorithm of Section 2.1, this section proposes

an extension in which the domain is split into distinct partitions, each of which has

its own local approximating polynomial. The value function may vary significantly

over the domain, and thus may require an impractically high degree polynomial if

approximated over the domain’s entirety. By using a sufficiently local approximation,

the same quality of approximation may be achieved with a smaller degree polynomial.

An efficient choice of partitioning, presented subsequently, may lead to a decoupling

in the optimal control problems on each partition, allowing for an almost unlimited

degree of parallelization. The Alternating Direction Method of Multipliers (ADMM)

[100, 101] provides a principled method for parallelization of convex problems. It is

adopted here to provide general guarantees on the convergence of the design process.

Other decomposition schemes are possible, see [102, 103] for a survey, although these

alternatives are not investigated here.

Domain partitioning has long been used in traditional numerical methods for

PDEs, from the local analysis behind the Finite Element Method to multiscale de-

composition techniques [104]. In control, these techniques have also been used to

improve local approximation to Lyapunov functions [105], and are complimentary

to approaches that approximate nonlinear systems as piecewise-affine (PWA) [106].

This thesis extends these techniques not only to the study of stability, as is the case

for Lyapunov functions, but to control design as well. Furthermore, the ability to

generate solutions to Hamilton Jacobi Bellman equations has implications in regards

to Control Lyapunov Functions [42], allowing for stabilization to be shown alongside

near-optimality. The method has the distinct advantage over PWA approximations

in that the system itself is not approximated in the approach, and the full nonlinear

dynamics are incorporated into the solution.
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2.2.1 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) [100] will serve as the

basis for enforcing continuity and differentiability of the desirability function Ψ(x)

of Eq. (1.27) on the boundaries of the decomposed regions. ADMM is a “meta”-

optimization scheme, where each step is carried out by solving a convex optimization

problem. Consider the optimization

minimizex,z f(x) + g(z)

subject to Ax+Bz = c
(2.13)

over real vector variables x and z and convex functions f and g. Define an augmented

Lagrangian

Lρ = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖2

2 , (2.14)

where scalar ρ > 0 is an algorithm parameter, and y is the dual variable associ-

ated with the equality constraint. The constrained optimization is solved through

alternately minimizing the augmented Lagrangian over the primal variables x, z, and

updating the dual variable y,

xk+1 := argminxLρ(x, z
k, yk) (2.15)

zk+1 := argminzLρ(x
k+1, z, yk)

yk+1 := yk + ρ
(
Axk+1 +Bzk+1 − c

)
.

The sum of squares formalism allows a general polynomial optimization problem

to be converted to a sequence of SDPs, as detailed in Section 2.1, where the variables

are the polynomial coefficients. ADMM extends readily to SDPs. Consider

minimize f(x) + g(z)

subject to Ax+Bz = c

x ∈ C1, z ∈ C2,
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where x, z ∈ Rn are the variables and C1, C2 are Semidefinite-representable sets, i.e.,

feasible sets of Linear Matrix Inequalities. With the same form of Lρ as in (2.14), the

ADMM iterations are quadratically penalized SDPs,

xk+1 := argminx∈C1Lρ(x, z
k, yk) (2.16)

zk+1 := argminz∈C2Lρ(x
k+1, z, yk)

yk+1 := yk + ρ
(
Axk+1 +Bzk+1 − c

)
.

The only difference is the primal variables are now constrained to lie in the spectra-

hedra, i.e., the convex set of semidefinite constraints [107], C1 and C2.

The value in this decomposition lies in the convergence guarantees which can be

obtained with ADMM. In particular, if it can be demonstrated the proposed domain

decomposition technique obeys the following two assumptions:

Assumption 17. The (extended real valued) functions f : Rn → R ∪ +∞ and g :

Rm → R ∪+∞ are closed, proper, and convex.

Assumption 18. The unaugmented Lagrangian has a saddle point.

then the following theorem holds:

Theorem 19. (See [100]) Given Assumptions 17, 18 then the ADMM iterates (2.16)

satisfy the following:

• Residual convergence: rk → 0 as k →∞, i.e., the iterates approach feasibil-

ity.

• Objective convergence: f(xk) + g(zk) → p∗ as k → ∞, i.e., the objective

function of the iterates approaches the optimal value.

• Dual variable convergence: yk → y∗ as k →∞, where y∗ is a dual optimal

point.

where the residual is defined as rk := Axk + Bzk − c, and the optimal objective

value p∗ = inf {f(x) + g(z) | Ax+Bz = c}.
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2.2.2 Decomposition of Stochastic Optimal Control

As the optimal control problem is assumed to take place over a compact state space,

the domain of (1.27) may partitioned into finitely many non-overlapping regionsRj ⊆

Rn, j = 1, . . . , nR, where R1 ∪ . . . ∪RnR = S. For example, the regions Rj might be

adjacent squares or hypercubes. Assuming the pairwise boundary between the regions

may be described in terms of a semialgebraic set, a straightforward consequence of

the Positivstellensatz (see [99] for details) is the following result

Theorem 20. Given desirability function Ψi(x) valid on region Ri, Ψj(x) valid on

regionRj, and shared boundary ξ = {x | h(x) = 0} betweenRi andRj, Ψi(x) = Ψj(x)

on ξ if there exists c(x) such that

Ψi(x)−Ψj(x) + c(x)h(x) = 0 (2.17)

In the following analysis, this result is used to bind together optimization problems

over a decomposed domain. The combined policy will be required to be C1 continuous,

requiring equality constraints on the solution and its gradient over shared boundaries.

Of course, Theorem 20 can also be used to enforce Cn continuity for finite n by taking

successive derivatives of Ψi normal to each boundary h(x). A discussion of continuity

considerations is given subsequently in Section 2.2.4.

Fix a pair of bordering partitions Ψ1 and Ψ2, with shared boundary h(x)=0. The

polynomials approximating the desirability function are assumed to be of bounded

degrees, with Ψi(x) bounded by d and ci(x) by d− k, for all i, j. In this case,

Ψ1(x) = α0 + α1x+ · · ·+ αdx
d

Ψ2(x) = β0 + β1x+ · · ·+ βdx
d

c1(x) = θ0 + θ1x+ · · ·+ θd−kx
d−k

c2(x) = µ0 + µ1x+ · · ·+ µd−kx
d−k,

where h(x) = ρ0 + ρ1x + · · · + ρkx
k defines the shared boundary between partitions
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Ψ1 and Ψ2 for some set of coefficients ρi. The continuity constraint

Ψ1(x)−Ψ2(x) + c1(x)h(x) = 0

is equivalent to the coefficient matching constraints

0 = α0 − β0 + (θ0ρ0)

0 = α1 − β1 + (θ0ρ1 + θ1ρ0)

0 = α2 − β2 + (θ0ρ2 + θ1ρ1 + θ2ρ0)

...

0 = αd − βd + (θd−kρk).

Note that the coefficient matching constraints are affine in the decision variables αi,

βi, i = 1, . . . , d, and θj, µj, j = 1, . . . , d−k. The derivative constraint at the boundary

appends additional coefficient matching constraints,

0 = α1 − β1 + (µ0ρ0)

0 = 2α2 − 2β2 + (µ0ρ1 + µ1ρ0)

0 = 3α2 − 3β2 + (µ0ρ2 + µ1ρ1 + µ2ρ0)

...

0 = dαd − dβd + (µd−kρk).

The continuity and derivative coefficient matching constraints, together with the ap-

proximation error constraint (2.25), can be aggregated into matrix form,

A(1)z1 + A(2)z2 = 0,

where z1 = (α0, . . . , θd−k, γ1) are the coefficients associated with R1, and z2 =

(β0, . . . , µd−k, γ2) are the coefficients associated with R2. It is now straightforward

to incorporate the affine matrix constraint into a dual decomposition scheme. The
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decomposed variant of optimization (2.7) is

min. γ1 (2.18)

s.t.
1

λ
qΨ1 ≥ ∂tΨ1 + L(Ψ1), x ∈ R1 (2.19)

1

λ
qΨ2 ≥ ∂tΨ2 + L(Ψ2), x ∈ R2 (2.20)

γ1 −
(

1

λ
qΨ1 − L(Ψ1)− ∂tΨ1

)
≥ 0, x ∈ R1 (2.21)

γ2 −
(

1

λ
qΨ2 − L(Ψ2)− ∂tΨ2

)
≥ 0, x ∈ R2 (2.22)

Ψ1(x)−Ψ2(x) + c1(x)h(x) = 0 (2.23)
∂Ψ1

∂x
(x)− ∂Ψ2

∂x
(x) + c2(x)h(x) = 0 (2.24)

γ1 = γ2 (2.25)

where the Positivstellensatz is used to enforce the domain restrictions (see Section

2.1.2 and [2] for details). The coupling constraints (2.23) and (2.24) prevent de-

composition into two parallel optimizations. In addition, the objective is coupled

through the equality constraint (2.25), which ensures that the maximum pointwise

approximation error over any region is no more than γ = γ1 = γ2.

To wit, define the quadratically penalized Lagrangian

Lρ(γ1, z1, γ2, z2, λ) = γ1 + γ2 + IC1(z1) + IC2(z2)+

+ λT (A(1)z1 + A(2)z2) +
ρ

2

∥∥A(1)z1 + A(2)z2

∥∥2

2
,

where ICi(zi) is the indicator function of the optimization problem over each individual

partition

IC(x) =

0 x ∈ C

∞ x 6∈ C.
(2.26)

The convex sets Ci are obtained by reduction of (2.7) to semidefinite program form
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[36]. The alternating direction iteration may then be performed as

(γk+1
1 , zk+1

1 ) := arg min
γ1,z1

Lρ(γ1, z1, γ
k
2 , z

k
2 , λ

k) (2.27)

(γk+1
2 , zk+1

2 ) := arg min
γ2,z2

Lρ(γ
k+1
1 , zk+1

1 , γ2, z2, λ
k) (2.28)

λk+1 := λk + ρ(A(1)zk+1
1 + A(2)zk+1

2 ). (2.29)

Each minimization, a semidefinite program, is taken over only those constraints

associated with the specified region. This achieves a degree of decoupling, limiting

the size of the polynomial optimization problem, and thus the semidefinite program,

for each individual partition. Indeed, even the use of domain partitioning on its own

is insufficient to make these problems tractable. If alternating directions are not

taken, the optimization problem over all partitions, with all low order polynomials,

would necessarily be solved simultaneously. Although there exists an extreme degree

of sparsity, specialized solvers, such as [47], would be required and standard ones such

as SDPT3 [98] will fail.

2.2.3 Parallelization

A further decoupling may be achieved through a judicious choice of domain partitions.

This will allow for necessary computations to be parallelized. This idea is well known

in the partial differential equation community [104]. Suppose partition Ri and Rj

share no common border hi,j(x). As the variables from disjoint partitions are only

shared through the common boundary constraints (2.23), (2.24), it is straightforward

to see that zk+1
i and zk+1

j are independent of one another. This decomposition allows

for the optimization (2.27) over each region Ri to be performed in parallel with no

affect on the performance of the ADMM algorithm.

In particular, one valid partition, developed by way of example, is to decompose

the domain into a checkerboard pattern, separating the domain into white and black

tiles. As white tiles share no optimization variables with one another, they may be

optimized in parallel, and similar with the black. By alternating between white and
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Figure 2.4: Example of a particular grid domain decomposition, the checkerboard
pattern, with the partitions grouped into white and black sets. As the sets of the
same color require no consensus over their local variables, it is possible to perform the
optimization over each set in parallel while maintaining the convergence properties of
ADMM.

black, the alternate directions continue to be taken and, as will be shown in Section

2.2.5, guaranteeing convergence. See [108] for a detailed discussion of parallelization

ideas, and Fig. 2.4 for an illustration of the decomposition pattern that is examined

in particular, the checkerboard pattern.

The domain is therefore partitioned into hypercubes Rk. Divide the partitions

into two regions, white and black, as {Rk}k=1,...,nR = {Rw
i }i=1,...,W ∪ {Rb

j}b=1,...,B such

that Rw
i ∩ Rw

j = ∅ and Rb
i ∩ Rb

j = ∅, which is possible by the construction detailed

above.

The optimization problem that results is

xk+1
i := argminx∈C1Lρ(x, z

k
ī , y

k), i = 1, . . . ,W (2.30)

zk+1
j := argminz∈C2Lρ(x

k+1
j̄

, z, yk), j = 1, . . . ,B

yk+1 := yk + ρ
(
Axk+1 +Bzk+1 − c

)
.

where the regions that are white are labeled as xi while those that are black are zj,

and the set of neighbors to a region i are denoted as ī.

The following property is trivial by inspection of the constructed problem
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Proposition 21. The set of optimization variables xi, xj in (2.30), each representing

the optimization (2.7) over region Ri, Rj share no common optimization variables.

It is seen that the optimization of all xi and all zi may be done in parallel, as

they share no optimization variables. The result is that if the number of regions

in the partition set is M , then up to M
2

of these optimizations may be computed

simultaneously.

2.2.4 Decomposition Issues

When solving the Hamilton Jacobi Bellman equation, continuously differentiable de-

sirability functions Ψ(x) are required. This imposes not only a continuity constraint,

but also a derivative constraint on each boundary between two adjacent decomposed

regions. The solution behavior when these constraints are relaxed is now investigated.

Consider the setting of Fig. 2.5. A degree five polynomial (gray) in two variables

is approximated over the box [−1, 1]2, with regions given by the four quadrants

R1 = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

R2 = {(x, y) | −1 ≤ x ≤ 0, 0 ≤ y ≤ 1}

R3 = {(x, y) | −1 ≤ x ≤ 0, −1 ≤ y ≤ 0}

R4 = {(x, y) | 0 ≤ x ≤ 1, −1 ≤ y ≤ 0}.

Several points merit discussion. First, by giving up continuity along the region bound-

aries, it is possible to approximate the polynomial with a lower degree polynomial,

as evidenced by smaller approximation error γ in the left column.

Next, depending upon relative degree and problem dimension, simply enforcing

continuity along the boundaries may be enough to enforce differentiability, as evi-

denced by the smoothness of the solutions in the right column. This bodes well for

reducing the problem size by throwing away superfluous differentiability constraints,

a possibility that hints at future research.

Finally, an increase in approximation degree, when combined with continuity
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and/or differentiability along the region boundaries does not necessarily result in

a better approximation accuracy, as evidenced by a lack of improvement from d = 1

to d = 2 and from d = 3 to d = 4 in the right column.

All of these points are relevant in employing problem structure to decrease the

computational burden associated with the optimization in each region. Careful con-

sideration of the degree bounds may result in smaller SDPs with fewer variables.

2.2.5 Decomposition Analysis

The following results demonstrate that the domain decomposition presented in this

work is well motivated theoretically.

Theorem 22. The domain partitioned sum of squares ADMM program iterates for

two regions (2.27) satisfy the Residual convergence, Objective convergence, and

Dual variable convergence properties of Theorem 19.

Proof. The problem for two regions is the following

min f1(x) + f2(z)

s.t. Ax+Bz = c

x ∈ C1

z ∈ C2

where C1, C2 are the spectrahedra generated by the SOS constraints for each partition

of the decomposed domain. As these sets are semidefinite representable [36], they are

convex. These partitions are included in the objective as

min f1(x) + f2(z) + IC1(x) + IC2(z)

s.t. Ax+Bz = c.

New functions hi(x) = fi(x)+ICi(x) may be defined to obtain exactly the ADMM form

(2.13). It is clear that hi are closed, proper, and convex, satisfying Assumption 17.
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Figure 2.5: Approximations of a degree five polynomial f(x, y) = 2x5 + x3(3y2 −
5) + x(3 − 4y2 + y4) over four quadrants of the box [−1, 1]2 without (left column)
and with (right column) enforced continuity at the quadrant boundaries. Each row
imposes a different degree bound d on the approximating polynomial and gives the
approximation error. The degree of the Positivestellensatz multipliers are denoted as
sos, and the optimization gap as gamma.
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Further, because the optimization problem is convex to begin with, the augmented

Lagrangian has a saddle point, satisfying Assumption 18. By the general ADMM

convergence Theorem 19, the desired convergence properties are obtained.

Note that the above theorem holds true only when the domain decomposition has

taken place between a total of two regions. It has been shown that the naive extension

of ADMM to the minimization of more than two separated functions faces more severe

restrictions for convergence to be guaranteed [109, 110]. Instead of relying on these

more restrictive results, a decomposition of the domain into only two regions is used.

Corollary 23. The domain partitioned sum of squares ADMM program iterates for

the system (2.27) with domain partitioned according to the checkerboard pattern (see

Figure 2.4) satisfy the Residual convergence, Objective convergence, and Dual

variable convergence properties of Theorem 19.

Proof. This is a simple result of Theorem 22 since the checkerboard pattern simply

splits the domain into two regions. The lack of connectivity between these partitioned

regions play no role with respect to the theorem.

As pointed out in the parallelization discussion, each individual optimization for

each partition is completely disjoint from all others. Thus, even though each local

solution is calculated independently, they generate the same result as if they were

solved simultaneously as a common optimization problem. Thus, the solution is iden-

tical to the two-way partitioned ADMM problem of Corollary 23, with the associated

convergence results inherited.

In addition to the parallelization of computation, the desirable properties of the

sum of squares solutions developed in Section 2.1 are maintained. A benefit of the

sum of squares-relaxation approach is that the solutions produced are guaranteed to

be upper and lower bounds (depending on the direction of the relaxations (2.5)) when

performed over a single partition [2].

Theorem 24. Given a solution set {Ψi, γi}, i = 1, . . . , nR to the converged optimiza-

tion problem (2.27) with C2 continuity enforced along the partition boundaries, and if
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Ψ∗ is the solution to (1.27), then Ψ(x) ≥ Ψ∗(x) for all x ∈ Ri.

Proof. The derivation follows the proof of Theorem 11 in Section 2.1 with but one

modification. The only modification arises from the fact that the elliptic and parabolic

maximum principles rely on C2 continuity of the super-solution. As the solution is

polynomial on the interior of each boundary, and therefore infinite differentiable, this

requirement needs only be enforced explicitly along the partition boundaries.

Once again the inequalities of the optimization can be reversed to produce a lower

bound to the optimal solution as well. See [2] for details.

2.2.6 Scalar Example

In the following examples, the SDP optimization on each region was carried out

using YALMIP with its Sum of Squares module [111] and SDPT3 for the interior

point solver [98].

The optimization is constructed for a simple scalar example for illustrative pur-

poses. Consider the one dimensional system

dx = (x2 + u) dt+ dω (2.31)

on the domain x ∈ [−1, 1] with state cost q(x) = 1, control cost R = 1, and parameter

λ = 1. The domain is split into regions R1 = {x | x ∈ [−1, 0]}, R2 = {x | x ∈ [0, 1]},

creating h(x) = x. For each of these problems the optimization (2.7) is formed on

R1, R2 independently. To enforce equality of both the solution and its derivative at

the shared point x = 0, the coupling constraints are

Ψ1(x)−Ψ2(x) + c1(x)x = 0 (2.32)
∂Ψ1

∂x
(x)− ∂Ψ2

∂x
(x) + c2(x)x = 0, (2.33)

To enforce the continuity and derivative constraints (2.32), (2.33) for the point bound-

ary at the origin, it suffices to match the constant coefficients of Ψ1 and Ψ2, i.e., re-
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Figure 2.6: Evolution of the alternative value function over 10 alternating direction
steps for the scalar system (2.31). Arrows show direction of evolution with each step
of ADMM.

quire Ψ1(0) = Ψ2(0). These are affine constraints when the polynomial optimization

is passed to an SDP.

Numerical results for the one dimensional example are shown in Fig. 2.6 and

Fig. 2.7. For simplicity, the conditioning parameter was set to ρ = 1, and the polyno-

mial degree bound to deg(Ψi) = 6 for each region. Fig. 2.6 shows that within about

ten iterations of the ADMM procedures, continuous differentiability at the boundary

region x = 0 is achieved. Fig. 2.7 shows the evolution of the dual variables, as well

as the maximum approximation gap versus iteration number.
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Figure 2.7: Values of the dual variables (top) and maximum approximation gap
(bottom) with iteration number for the scalar system (2.31).

2.2.7 Two Dimensional System

To demonstrate the versatility of the method, a nonlinear, multidimensional problem,

the same as from Section 2.1.4.2 was solved with the following dynamics. dx

dy

 =

 −2x− x3 − 5y − y3

6x+ x3 − 3y − y3

+

 u1

u2

 dt+

 dω1

dω2

 . (2.34)

The problem is framed as a first exit problem, with the three sides of a square

domain S = [−1, 12] given a unit penalty φ(x, y) = 1, while on the remaining edge at

x = 1 a reward was given for achieving the center of the edge with φ(x, y) = 1−(y−1)2.

The results of applying ADMM are shown in Figure 2.8, where deg(Ψ) = 8 and

achieves a gap of γ = 0.6321. Note that an eighth order polynomial was entirely

insufficient to model the solution to this problem when only a single domain was

used. Similar results to those demonstrated in the single domain example of Section

2.1.4.2 only became possible with polynomials of deg(Ψ) ≥ 12.

2.2.8 Discussion

A method to perform domain decomposition on stochastic optimal control problems

has been developed, allowing for local polynomial approximations to the Hamilton

Jacobi Bellman equation to be generated in parallel. Of importance is the fact that the
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Figure 2.8: Results of multidimensional, nonlinear example system (2.34). On the
left is the optimization after two iterations of ADMM, while the one on the right
is the converged results, when using deg(Ψ) = deg(si) = 8, where si are the Posi-
tivstellensatz multiplers. At convergence the upper bound has distance γ = 0.6321.

Sum of Squares relaxation does not fundamentally rely on the particular structure of

the Hamilton Jacobi Bellman PDE. In fact, [2] demonstrates that the technique may

be readily applied to any linear parabolic or elliptic PDE to obtain guaranteed upper

and lower bounds over the domain. The domain splitting introduced in this chapter

can be extended, allowing for local upper and lower bounds to broader classes of linear

PDEs to be generated via optimization. While having different characteristics and

computational burden than existing numerical techniques such as the Finite Element

method, these techniques have guarantees that do not require an asymptotic limit in

the discretization mesh.

A more direct implication lies in the generation of stabilizing controllers for non-

linear systems. Until now, there has not existed a method to generate near-optimal

Control Lyapunov Functions for arbitrary nonlinear, stochastic systems [42]. These

domain decomposition techniques improve the ability for optimal control policies to

respond to system dynamics, enlarging the class of systems that can be handled.
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2.3 Uncertainty Quantification of Partial Differen-

tial Systems

In the study of control systems and the Hamilton Jacobi Bellman equation, a par-

tial differential equation-centric perspective has been adopted. The key result of the

previous two sections, Theorem 24, borrowed from the partial differential equation

literature, with the proof using the elliptic and parabolic maximum principle to guar-

antee upper and lower bounds to these solutions. This result is in fact not limited

to the Hamilton Jacobi Bellman equation, and applies to all elliptic and parabolic

equations. This suggests a novel method of solving for sub- and super-solutions to

these broad classes of partial differential equations.

The discipline of Uncertainty Quantification (UQ) [112] is concerned with a similar

issue, the generation of optimal bounds on system behavior given a certain set of

assumptions. With the techniques developed in this thesis, it is possible to bound

the solution to a system governed by differential equations. As will be seen, the

method can be further generalized to incorporate additional assumptions, including

uncertainty on parameter values. Of course, as the Hamilton Jacobi Bellman equation

is but one class of these systems, all the methods and generalizations developed here

apply to that domain as well. The method also has ready application in filtering

equations, such as the Fokker-Planck [113] and Zakai equations [114].

The study of partial differential equations with uncertainty, both with respect

to stochastic forcing and parametric uncertainty, has been studied under the guise

of Stochastic Partial Differential Equations (SPDE). Such problems are prevalent

in manufacturing, construction, finance, remote sensing, and geographic exploration

[115]. There are two forms of uncertainty in these problems. In the first, a stochastic

forcing term may be present. A simple example is the stochastic heat equation

∂tu = ∆u+ ξ

where ξ is space-time white noise and ∆ is the Laplacian. These problems are typically
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considered by discretizing the white noise and sampling from the problem space [115].

This class of problems is not considered here.

The second, popular class of SPDEs are those where the coefficients in the PDE

are random and may lie in some uncertainty set. Prior solutions to such problems

have used either Monte Carlo-based techniques [116], or those based on Polynomial

Chaos [117]. In the former, realizations may be sampled, solutions calculated, and

distributions over quantities of interest estimated in a natural way. In the latter,

an orthonormal polynomial basis is used to represent the distribution of the random

coefficient. The PDE system is then projected onto this basis, creating a linear system

of equations that may be solved. This method has recently been the focus of research

effort, but faces the obstacle that the number of polynomial basis functions grows

exponentially with dimensionality and the number of random coefficients, giving rise

to the curse of dimensionality once again.

The Uncertainty Quantification problem differs from traditional studies of partial

differential equations in that it is not the exact solution of any realization of the

problem that is sought, but instead the focus is on the characteristics of the solution

set. In this spirit, this section develops a novel method to bound the feasible solutions

to a PDE given known uncertainty sets for each unknown coefficient.

2.3.1 Sum of Squares-Based Solution Bounds

The technique builds upon the approach of Section 2.1. Given a partial differential

operator L, the task is to find pointwise upper and lower bounds to the solution u(x)

over a compact domain Ω such that u(x) satisfies the PDE

Lu(x) = f(x), x ∈ Ω (2.35)

L̃u(x) = g(x), x ∈ ∂Ω (2.36)

where (2.36) denotes the boundary conditions of the problem. The assumption is

made that all problem data L, L̃, g, f, ∂Ω are encoded as polynomial functions of the

domain x = (x1, . . . , xd) ∈ Ω ⊂ Rd.
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As explored in Section 2.1, since the set of polynomials of degree m are closed

under differentiation, a polynomial optimization problem may be formed by relaxing

(2.35) and (2.36) to the inequalitiies

Lu(x) ≥ f(x), x ∈ Ω (2.37)

L̃u(x) ≥ g(x), x ∈ ∂Ω. (2.38)

Once again, in all optimization problems that follow, the inequalities may be reversed

to produce complementary upper bounds. The relaxation leads to the optimization

min γ (2.39)

s.t. f(x) ≤ L(Ψ), x ∈ S

L(Ψ)− f(x) ≤ γ, x ∈ S

where the boundary conditions are similar and are suppressed. By Theorem 24, the

resulting solution is an upper or lower bound to the PDE, with the two bounds

approaching one another as the degrees of the polynomials are increased.

Suppose that the operator L has a set of free parameters a = (a1, . . . , ak), where

each of these parameters are known to have support limited to some set ai ∈ Ai where

Ai is compact. This yields the augmented optimization problem

min γ (2.40)

s.t. f(x, a) ≤ L(Ψ, a), x ∈ S

L(Ψ, a)− f(x, a) ≤ γ, x ∈ S

ai ∈ Ai

The addition of the variables ai increases the complexity of the optimization prob-

lem as these additions increase the size of the monomial basis. Each ai is treated as

an additional domain variable, in exactly the same manner as the state x. The lim-
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itation of the support for each ai is handled via the Positivstellensatz (see Section

2.1.1) in the same manner as the domain restriction on x.

Although only a minor conceptual addition to the framework, this line of reason-

ing opens up the possibility of rapidly generating guaranteed upper and lower bounds

to a wide class of uncertain problems. Although the Positivstellensatz has been used

previously in robust optimization [89], which is the name given to optimization prob-

lems with uncertainty over the problem data (as is the case here), its use in optimizing

candidate solutions to linear partial differential equations is novel. As the method

is valid for even low degree polynomials, loose bounds are readily computable, with

increasing accuracy obtained when additional computational resources are harnessed.

Of note, this approach lies in the broader set of tools presented in this thesis.

The techniques developed subsequently to increase the accuracy and tractability of

the Hamilton Jacobi Bellman equation are also applicable to these UQ problems.

For instance, methods to numerically solve problems of high dimensions developed

in Section 3.4 are readily applicable. This opens the possibility of bounding solution

sets to even high dimensional PDE problems.

2.3.2 Moment-Based Bounds

The problem of bounding the solutions to linear PDEs via optimization techniques

has been considered before by Bertsimas and Caramanis [118]. In their work, they

proposed to integrate the partial differential equation against a set of monomial test

functions, and by encoding the resulting constraints on the coefficients of these test

functions were able to generate semidefinite relaxations that solved the PDE as the

number of moments approached infinity. Fundamental to this work is the ability

to truncate the moment list, creating upper and lower bounds on functions of the

moments, which in turn were defined over the entire domain and not any finite dis-

cretization of the domain. This related work is reviewed before demonstrating its

connection to the sum of squares relaxation proposed above. Given partial differen-
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tial operators L and G the goal is to calculate

∫
Gu(x)dx

on some domain Ω. The solution u must satisfy the PDE given by

Lu(x) = f(x).

The constraints of the PDE are enforced by integrating against test functions chosen

as monomials ∫
Lu(x)xαdx =

∫
f(x)xαdx. (2.41)

In order to frame the problem only in terms of generalized moments of u(x), the

adjoint is taken ∫
u(x)L∗xαdx =

∫
f(x)xαdx (2.42)

through the use of integration by parts. The adjoint of L∗ may therefore be calculated

a-priori and applied to a given monomial xα. The result is a set of linear constraints

over variables which have the form

mα =

∫
Ω

xαu(x)dx =

∫
Ω

xi11 · · · x
id
d u(x)dx1 . . . dxd. (2.43)

These moment variables must be constrained such that the moment sequence M =

{mα} is in fact a valid moment sequence. This may be guaranteed as follows: given

a sequence of numbers {mi}, this set of constraints is the set of moments of some

nonnegative function u(x) if and only if the matrix

M2n =


m0 m1 · · · mn

m1 m2 mn+1

... . . . ...

mn · · · m2n

 (2.44)
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is positive semidefinite for every n. A relaxation may be obtained by simply truncating

this requirement to fixed size n. For a vector of moment variables z, i.e., zi =∫ +∞
−∞ u(x)dx, denote the corresponding moment matrix of (2.44) M(z).

The geometry of the domain Ω is accounted for through the use of the Positivstel-

lensatz. This creates an additional semidefinite constraint on the moment variables

for every semialgebraic segment of the domain boundary. The details are given in

[118] and are known as localizing constraints. These constraints are denoted byM i
`(z)

for the constraints generated by boundary segment i.

The result is a set of constraints on the moments of the solution to the PDE. An

objective may then be formed in terms of these moments, yielding for appropriate

polynomial G,

max/min
∫
Gu(x)dx (2.45)

s.t.
∫
u(x)L∗xαdx =

∫
f(x)xαdx

hi(M) � 0

where Ω = {x | hi(x) ≥ 0} describes the domain of the PDE. The result of this

optimization is either a lower or upper bound on the objective. By incorporating

higher order monomial test functions, these two bounds on the objective may be

shown to converge [118]. This allows for moment data of the solution to a PDE to

be collected without solving the PDE itself.

There are several connections between the work of this thesis and the prior work

of [118]. It is first demonstrated that the moment-based approach is related to the

current work by examining the dual to the optimization problem proposed in Section

2.1. In addition, two modest extensions of this framework are proposed, in which

non-polynomial test functions are used to improve the accuracy of the result locally,

and also examine the use of domain decomposition in this context. These methods are

designed with the requirements of Stochastic Optimal Control as a particular focus.

Namely, such systems typically only inhabit a limited fraction of the state space for
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any significant amount of time. Thus, only point- or region-specific solutions are

desired.

2.3.2.1 Duality between Moment and Sum of Squares

In the following analysis, it is shown that these two approaches to generating bounds

to linear PDEs, each of which began from distinct perspectives, are in fact related

via convex duality to one another. Each approach has its merits individually, but

as many convex solvers simultaneously solve the primal and dual problems, it is

therefore worthwhile that the connection be elucidated. In particular for the methods

presented here, it is shown that each method is not the dual of the other due to varying

objectives, but the methods do share equivalent constraint sets.

This result on the equivalence of the constraints between the two optimization

problems follows from existing work in [119] demonstrating the sum of squares and

moment duality for optimal control problems. Define the moments mα =
∫
xαdω,

and the vector of moment variables m = (m1, . . . ,mr) for maximal degree r of the

moments considered. The optimization problem in (2.45) then becomes

min GMm (2.46)

s.t. LMm+BM = fMm

M(m) � 0

M i
`(m) � 0

where M denotes the moment matrix mapping, and M` denotes the localization ma-

trix mapping, LM and fM are the linear coefficient matrices garnered from the partial

differential equations, BM is a vector arising due to boundary conditions during the

integration by parts needed to obtain the adjoint, and GM is the coefficient vector
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from the objective. The SDP dual of (2.46) is

max
c,S,Sj

(BM)T c (2.47)

s.t. (fM)T c− (LM)T c+M∗ (S) +
∑

M i
` (Sj) = GM

where S is the dual variable for the moment matrix constraint, Sj are those for the

localizing matrix constraints, and ∗ denotes the adjoint. If the mapping ϕ(x) =

c ·m(x) is defined, then by the derivation of the SOS dual derivation in [119], (2.47)

is equivalent to the problem,

max
ϕ,s,sj

B(ϕ) (2.48)

s.t. f − L(ϕ) +G(ϕ) = s+
∑
j=1

sjgj

where the dependence of each function on the domain variables x has been sup-

pressed. B(ϕ) can be seen to encode the boundary data of the approximate solution

represented by ϕ. The constraint of (2.48) is quickly seen to be exactly the Posi-

tivstellensatz enforcement of the compact domain restriction. However, unlike the

other optimization (2.39), the objective is no longer a maximization pointwise over

the domain. Therefore, the two problems are equivalent in their construction of the

partial differential constraints, i.e., what becomes the constraints of the optimization

problem, but differ only in their objectives. This gives a straightforward method to

derive duals of either problem, the moment data or pointwise error variant. The two

methods are therefore related, but as framed in [118] not quite the same.

2.3.2.2 Non-Polynomial Test Functions

In seeking data about an individual point in the solution of the Hamilton Jacobi

Bellman equation, note that

∫
δ(x, x0)u(x)dx = u(x0) (2.49)
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Figure 2.9: Illustration of convolution of the unknown solution with Gaussian mo-
ments.

By integrating this Dirac function against the solution, it would be possible to obtain

the exact solution at a point. Unfortunately, such an integral is unavailable, as the

Dirac function is of course not polynomial representable or differentiable. Instead,

the Dirac function is approximated through the use of an exponential. The results of

[118] are extended to integrals of exponentials to accommodate this approach.

The goal is to obtain the solution u(x), and its gradient du(x), satisfying (1.27)

at a particular point x0. One approach would be to approximate the Dirac function

δ with a polynomial h(x, x0).

∫
Gu(x) =

∫
h(x, x0)u(x) ≈ δ(x, x0)u(x) = u(x0). (2.50)

Unfortunately, it is quite hard to approximate a delta function well, as even high order

polynomials are poor approximations. An alternative is to use Gaussians kernels as

the Dirac approximation

u(x0) =

∫
u(x)

1

σ
√

2π
e−

(x−x0)
2

2σ2 dx, σ → 0 (2.51)

The Gaussian approximation has several properties that make it appropriate for this

application. First, it is uniformly positive, and thus can lead to its analogue of

moment matrices. Further, the space of polynomial-exponentials

∆ =
{
ef(x), xef(x), x2ef(x), . . .

}
(2.52)
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Algorithm 1 Initialization for Localized Method of Moments.
Given domain Ω, region of interest ω, and adjoint operator L∗:

1. Partition Ω into a set {Ri}i∈I such that ω is preserved, i.e., ω = Ri for some i

2. For each Ri 6= ω

(a) For each monomial test function φj, 1 ≤ j ≤ n

i. Generate the jth equality constraint. Label each unknown boundary
condition as bki ∫

u (L∗φi) =

∫
fφi

ii. Generate the semidefinite moment constraint M � 0

iii. For each boundary hl of partition Ri

A. Generate the boundary moment constraint hl(M) � 0

B. If there exists boundaries hl = hk, shared with region Rj, set
bki = blj

3. Set object as max/min bki for some i, k.

is closed under differentiation. This is a necessity as the adjoint operator (2.42) will

result in the differentiation of the test functions. This allows us to maintain the

framework, and substitute variables for the exponential moments.

The method’s outline is to construct a series of Gaussians with varying mean over

the domain of the PDE with minimal variance. In the limit of zero variance, the

exact solution would be obtained, but numerical issues arise quickly. By “sampling”

the solution at various locations, it is instead possible to obtain the solution to the

problem convolved with the Gaussian. It is then possible to perform a deconvolution

operation to obtain an estimate of the original solution. Additional sample points

may improve the deconvolved solution, creating a tradeoff between computational

time and quality of the bound.

2.3.2.3 Domain Decomposition for Explicit Interior Boundary Variables

The second approach is to partition the domain of the problem in order that the

solutions along boundaries of the partition become explicit as optimization variables.



74

(a) (b)

Figure 2.10: Example decomposition of planar problem domain with the resulting
solution regions appearing explicitly as optimization variables. (a) On the left, the
optimization problem (2.45) may be solved over the region ω with only the boundary
data on Ω given. (b) On the right, the point solution ω or the interior boundaries bij
appear explicitly as optimization variables and may also be bounded.

The result is that solutions along these boundary variables may be bounded. These

boundaries may be structured to be any lower dimensional surface in the domain, be it

a point or curve in two dimensions, or a plane in three dimensions, etc. Furthermore,

due to the general construction of [118], the method may also be applied to the

solutions gradient. This allows for the regional solution estimates to be obtained

without the need to solve the PDE globally. Finally, the inclusion of additional

boundary conditions and moments both improve the solution, but only a minimal

number of these conditions are required.

The method is first outlined on a simple two dimensional example. Given a square

domain Ω = [0, a]2, suppose the goal is to bound the PDE solution on an inner square

ω = [x1, x2]× [y1, y2]. The domain may be partitioned into nine regions, one of which

is ω. Over each partition, the construction of (2.45) is performed, but there is now

coupling between the shared boundaries of these domains. Unknown are the moment

data within each partition, as well as these shared boundary conditions. Bounds on

any of these variables, or any convex function thereof, may then be obtained. The

partition is illustrated in Figure 2.10a.

Additionally, it is possible to use integration by parts to not only obtain the bound-

aries of these domains, but also lower dimensional components of the boundaries. For

instance, a partition of the example in Figure 2.10a consists of line segments, and the



75

point boundaries of these segments may be made as explicit optimization variables.

Consider the two dimensional square and examine the partition boundary lying on

the y-axis. Along this boundary, the integral is

∫ b

a

u(x, y = 0)xidx = uyi+1 |ba −
∫
du

dx
yi+1

so the variable α = u(b)bi+1
y appears explicitly. This is illustrated in Figure 2.10b.

More generally, the approach is outlined in the steps of Algorithm 1.

2.4 Discussion

In this chapter, analytic and computational tools have been developed for solving the

linear Hamilton Jacobi Bellman equation. Key was the notion of a relaxed solution

to the PDE, and it was demonstrated that the relaxation of a PDE in this context

to a partial differential inequality in fact produced pointwise upper and lower bounds

to the true solution. The linearity has proved to be crucial to these techniques, as

it allows for candidate solutions to appear linearly in the relevant optimization prob-

lems. It was also shown how these techniques could be applied to broader classes of

elliptic and parabolic PDEs. A domain decomposition technique, with the capabil-

ity for parallelization, improves both the scalability and computational difficulty of

the method. Finally, a discussion of the convex dual to the polynomial optimization

problem was found to correspond to moment based methods in the literature, and

several variants of these techniques were proposed.
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Chapter 3

High Dimensional Optimal Control

The Hamilton Jacobi Bellman Equation provides the globally optimal solution to

large classes of control problems. Unfortunately, this generality comes at a price,

the calculation of such solutions is typically intractible for systems with more than

moderate state space size (five or six are typical in current practice) due to the curse of

dimensionality. This chapter combines recent results in the structure of the Hamilton

Jacobi Bellman equation, and its reduction to a linear partial Differential Equation,

introduced in Section 1.4, with methods based on low rank tensor representations,

known as a separated representations, to address the curse of dimensionality. The

result is an algorithm to solve optimal control problems which scales linearly with

the number of states in a system assuming the existence of a particular form of

internal structure for the solution, namely low separation rank. Key to this work is

the notion that problem data, and the resulting solution, may have an underlying

low-rank structure. The method is applicable to systems that are nonlinear with

stochastic forcing in finite-horizon, average cost, and first-exit settings. The method

is demonstrated on inverted pendulum, VTOL aircraft, and quadcopter models, with

system dimension two, six, and twelve respectively.

The method relies on recent work in Separated Representations (SR) [120], which

have recently emerged as a method to solve a number of problems in machine learn-

ing and the numerical solution of PDEs with complexity that scales linearly with

dimension, bypassing the curse of dimensionality. The central idea of this paper is to

approximate the solution, and its associated operators, by a low rank tensor. If the
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problem’s components can be adequately modeled in this regime, then the complexity

grows with the rank of the approximation, rather than the dimensionality. For many

problems of interest this proves to be a valid modeling assumption.

As discussed in Section 1.2.4, researchers have previously attacked the intractabil-

ity of the Hamilton Jacobi Bellman equation through discretization into a MDP. The

curse of dimensionality is mitigated in this context by parameterizing the value func-

tion with a sparse set of bases, giving rise to Approximate Dynamic Programming,

or Adaptive Dynamic Programming (ADP) when the basis may change online [9].

These techniques have constraint sets that formally grow exponentially with dimen-

sionality [76]. Furthermore, examples of the basis functions chosen, such as radial

basis functions, typically fall prey to the curse of dimensionality. Nonetheless, these

techniques are the most popular method to deal with the curse of dimensionality

and have even been used to surpass human capabilities on complex time dependent

games via synthesis with modern machine learning techniques [78]. These methods

are closest to ours in spirit, and the method developed in this chapter could be seen

as generating a sparse basis, as is desired in ADP, albeit ours is performed without

recourse to an MDP, with the attendant constraints.

3.1 High Dimensional Tensor Background

Tensor approximations have historically been developed with the goal of approxi-

mating high dimensional data, yielding rise to the framework used here and pre-

viously called CANDECOMP/PARAFAC (C/P) [121, 122]. However, Beylkin &

Mohlenkamp in [120] demonstrated that these approximation techniques were appli-

cable to the linear systems describing discretized PDEs as well. This C/P technique

has been applied in several domains, including computational chemistry and quan-

tum physics, among others [123]. In particular, [124] examines the use of C/P in

the context of stationary Fokker-Planck equations. There are interesting connections

between the fundamental goal of these techniques, approximating a tensor with one

of lower rank, and convex relaxation based methods [125, 126]. Unfortunately, low
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rank tensor approximation is NP-hard in general, and an optimal solution cannot be

expected [127]. Nonetheless, suboptimal solutions appear to be excellent in practice.

3.2 Separated Representations of Tensors

Traditional numerical techniques to solve PDEs rely on a complete discretization

of the problem domain [128]. However, in these schemes the degrees of freedom in

the problem grows exponentially with the number of dimensions, as the complexity

is proportional to the discretization process. While tractable when the number of

dimensions is small, in higher dimensions these problems become computationally

prohibitive. In [120], Beylkin and Mohlenkamp proposed to model the solutions to

such problems via so-called separated representations, which may be viewed as an

adaptation of the separation of variables technique. Problem data, and the solution,

are modeled as a sum of terms, each of which is dependent on individual dimen-

sional variables. Specifically, a function operating on a space Ω = (x1, . . . , xd) is

approximately modeled as

f (x1, . . . , xd) ≈
r∑
l=1

slφ
l
1(x1) · · ·φld(xd). (3.1)

The key is that such a representation separates the dependence of the solution

into each state-space component dimension. By then framing operations to act on

single dimensions, it is possible to create algorithms that need only operate along

each dimension independently and thus scale linearly with dimension d. However,

the complexity of the problem now grows with r, termed the separation rank. Thus,

maintaining a low separation rank becomes paramount for any practical algorithm.

Unfortunately, many operations needed to compute a solution inherently increase the

separation rank, including vector addition and matrix-vector multiplication.

This unbounded growth in separation rank can be mitigated by reducing the

separation rank at each step of an algorithm in an attempt to continually maintain

low rank approximations. Unfortunately, there are often no guarantees that a given
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function, or solution to a PDE, will have low separation rank and situations may arise

where it is impossible to lower the rank while maintaining a desired accuracy.

An introduction to the separated representation follows, with a complete treat-

ment given in [120]. Using the notation in [120] a vector F in dimension d is a

discrete representation of a function f on a rectangular domain, F = F (j1, . . . , jd)

where ji = 1, . . . ,Mi are the indices into the vector F and Mi is the size of the vector

in dimension i. A linear operator A in dimension d is a linear map A : S → S where

S is the space of functions in dimension d. A matrix A in dimension d is a discrete

representation of a linear operator in dimension d.

Definition 25. For a given ε > 0, represent a vector F = F (j1, j2, . . . , jd) in dimen-

sion d as

F ≈
rF∑
l=1

sl

d⊗
i=1

F l
i (3.2)

where
⊗

denotes the tensor product and F l
i are (traditional) vectors in RMi with

entries F l
i (ji) and unit norm. For this to be an ε-accurate representation it is required

that ∥∥∥∥∥F −
rF∑
l=1

sl

d⊗
i=1

F l
i

∥∥∥∥∥ ≤ ε. (3.3)

The integer r is known as the separation rank.

The matrix definition is analogous, with the matrices Al
i ∈ RMi×Mi in lieu of F l

i =

F l
i (ji). Matrix multiplication is then performed as

AF =

rA∑
m=1

rF∑
l=1

sAms
F
l

(
Am

1 F
l
1

)
⊗ · · · ⊗ Am

d F
l
d.

Since matrix operations in this formulation reduce to individual operations along

each dimension, as the dimensionality of the problem increases the complexity of

these operations scales linearly, e.g., if Mi = M for all i a matrix vector multiplica-

tion costs O(rArFdM
2). Assuming that a low separation rank may be maintained,

iterative methods may provide the best option for solving systems in this framework

or computing quantities of interest such as the largest eigenvector. A number of such



80

schemes are given in [120].

3.3 Alternating Least Squares

As discussed in the previous subsection, and as demonstrated by the computational

cost of the matrix vector multiplication, any scheme that uses these separated repre-

sentations will become computationally prohibitive if the separation ranks are allowed

to grow too much. For example, in the operation of matrix vector multiplication, the

separation rank of the output is rArF , so even performing the most basic of opera-

tions may have a large impact on the separation rank, and in an iterative method

where, say, each iteration requires a matrix vector multiplication, the growing sepa-

ration rank would quickly make the problem intractable. Therefore, an algorithm is

required that allows for a reduction in separation rank. If the assumption is that the

discrete versions of the functions being represented have low separation rank, then

any increase in the separation rank may be an artifact of the way that operations are

performed in these tensor representations and not indicative of a fundamental change

in the underlying separation rank. Therefore, it is expected that after performing an

operation that increases the separation rank, it is possible to produce an accurate

representation of the resultant tensor that has much lower separation rank.

A high level overview of the alternating least squares (ALS) algorithm, as used

to achieve a reduction in separation rank, is provided, with the reader directed to

[120] for details. A recently proposed variant relying on a randomized interpolative

decomposition has also been proposed in [129] and may be used as a precursor to

ALS.

As the separation rank grows after each operation, for tractability it is necessary

to periodically approximate intermediate tensors with low-rank approximations, i.e.,

given a separated representation F, find an approximate representation G with a

smaller separation rank than F such that ‖F−G‖ is minimized. If the separation

rank of G is fixed, then this is a nonlinear least-squares problem. ALS attempts

to solve such a problem, though there are often few theoretical guarantees on the
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resulting G when using this algorithm.

At an individual step in this iterative algorithm, all dimensions of the tensor

G are held constant save one dimension k, in which case the least-squares problem

becomes linear in Gl
k for l = 1, . . . , rG and may thus be solved. This is done by

forming the normal equations relative to those degree of freedom in the dimension

being optimized, with the construction of these normal equations available in [120].

The algorithm sweeps through the coordinate directions, effectively performing

block-gradient descent. For a fixed separation rank ofG this process may be repeated

until the algorithm has either achieved the desired accuracy, or has stagnated. If

the algorithm has stagnated, and the representation error is not small enough, e.g.,

‖G− F‖ ≥ ε, a random rank-one tensor is added to G, and the algorithm is allowed

to continue until it either achieves the desired accuracy or stagnates once again.

This algorithm continues until the desirable tolerance is reached or adding a ran-

dom vector would result in separation rank equal to the starting rank, in which case

it is assumed that the separation rank cannot be reduced. This algorithm may be

used on operators as well by simply vectorizing each component matrix.

The procedure described above may also be be applied to construct a low rank

solution to a linear system of equations by minimizing ‖AF−G‖. The resulting

normal equations for block-coordinate descent become increasingly coupled, see, e.g.,

[120, 124] for details, raising the complexity of the algorithm. While the core ALS

algorithm costs O (dM + dr3
F) per iteration, its use to solve a linear system costs

O (dM3 + r3
AM

3) per iteration, where d is the underlying dimensionality of the sys-

tem, M is the maximal number of mesh nodes along each dimension, and rA, (rF)

is the rank of the operator A (vector F). See [120] for a more comprehensive list of

algorithms that may be used with operators and vectors in separated representations.



82

3.4 Separated Solution to the HJB

The modeling assumption is made that the problem data of Equation (1.18) can be

accurately represented, or approximated, with a low rank separated representation.

fi(t, x) =

rfi∑
l=1

d⊗
k=1

(fi)
l
d (3.4)

where rfi is assumed to be small.

There is then the need to approximate the relevant operators present in (1.18),

specifically the gradient and Hessian, in a low rank representation. A number of

options exist, with varying levels of complexity in the analysis and accuracy, rang-

ing from simple finite difference schemes to spectral differentiation techniques [130].

Specifically, the gradient along dimension k can be simply represented as

∇k = I1 ⊗ · · · ⊗ ∇ ⊗ · · · ⊗ Id

while the Hessian has entries ∇k,j = ∇k ·∇j, and the estimates of the derivative along

an individual coordinate are simply a suitably high order finite difference scheme

in one dimension. For instance, the first and second order central finite difference

matrices are given by the tri-diagonal matrices

∇x =
1

2h


. . .

−1 0 1
. . .

 , ∇xx =
1

h2


. . .

1 −2 1
. . .


Thus, the directional gradient and second order terms may simply be constructed

out of rank one representations. For example, using of sums of these rank one terms

yields a representation for the Laplacian that has separation rank d. However, such

a representation may be not have minimal separation rank for a given accuracy.

Other constructions specifically targeting the separated representation exist [120], for

example a Laplacian approximation may be made with separation rank two, rather

than requiring a full rank-d sum of second order terms.
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3.4.1 Separation Rank of the HJB

Determining the separation rank of the Hamilton Jacobi Bellman operator is straight-

forward. Denote the separation rank of a vector or operator X as rX , i.e., rX are the

number of additive terms in X. Recalling (1.27) and neglecting the time dependent

component for the first-exit case, the operator consists of three additive terms.

1

λ
qΨ = fT (∇xΨ) +

1

2
Tr ((∇xxΨ) Σt) .

The state-cost term qΨ is a diagonal operator along each dimension, and thus con-

tributes rq. The second, advection term is an inner product between the dynamics

f and the gradient of the desirability, resulting in the multiplication of each element

fi by a rank one operator, and then their summation. The contribution from this

component results in separation rank
∑d

k=1 rfi where rfi is the separation rank of

fi. Finally, the second-order term requires the construction of Σt in (1.25). Here

the growth in the separation rank may be significant, due to the multiplicative con-

tribution of G. However, given diagonal cost matrix R or noise covariance Σε the

number of terms may collapse significantly. The separation rank of the Hamilton

Jacobi Bellman operator is simply the sum of these three terms’ rank.

The result is that the separation rank for individual problems may vary over a

wide range, depending on the problem data. However, in many problems of interest it

remains low. For even apparently complex systems, complexity typically manifests as

nonlinear multiplicative terms in the dynamics. This form of complexity, specifically

the presence of nonlinearities, effectively adds no cost in terms of separation rank,

and it is instead the number of additive terms that are of concern, which is typically

small. Furthermore, in many applications the control or noise matrix Σt typically

contain constant terms, corresponding to tensors of separation rank one. Finally, for

systems where a high separation rank accumulates, it remains possible to search for

low rank structure by performing ALS on the operator before attempting to solve the

linear system.
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Algorithm 2 Assignment of boundary conditions in an operator A with separated
representation for hypercube boundary R.
Inputs: Operator A, hypercube R =

{
x ∈ Rd | xi ∈ [ai, bi]

}
, boundary value tensor

T , grid points {xi,j} representing the domain of A.
Output: Modified operator Ā.

1. Define Ã := A

2. Let Ĩ be the identity operator tensor

3. For k = 1 . . . d

(a) Set Ãl
k(i, j) = 0 for all xi,j /∈ [ai, bi]

(b) Set Ĩlk(i, j) = 0 for all xi,j /∈ [ai, bi]

4. Set Ā = A− Ã + Ĩ

3.4.2 Representation of Interior Boundary Conditions

Optimal control applications impose irregular boundary conditions on many problems

of interest. For example, stabilization to the origin corresponds to a zero-cost point-

boundary at the origin. Obstacles or unsafe regions are boundary conditions as well,

and typically have value according to some penalty. In temporal problems, dynamic

programming can be used to show that the cost of achieving sub-goals in the future

relative to the current task manifest as boundary conditions along exit points of

the current task. The value along these boundaries equals to the cost-to-go [131],

computed from value functions in subsequent tasks, i.e., a set of Dirichlet boundary

conditions within the domain.

Essential boundary conditions are imposed by setting the value of grid points to

some desired value via linear equalities within the domain. Although in other settings

it is desirable to remove the degrees of freedom from within the boundaries to save

computational effort, in the context of this work maintaining the symmetry of the

discretization grid is a far greater concern. Specifically, Dirichlet boundary conditions

are imposed only on regions composed of hypercubes in the domain, allowing us to

modify the domain with only a modest increase in the separation rank of the opera-

tor. The operator’s initial effect on the hypercube is first extracted, then subtracted,
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(a) (b) (c)

Figure 3.1: Illustrations of an inverted pendulum, a VTOL aircraft, and a quadcopter.

leaving a “hole” which can then be filled with the identity and allowing for Dirichlet

conditions to be imposed. Specifically, Given an operator A, first extract the oper-

ator’s current effect upon grid points in the hypercube R =
{
x ∈ Rd | xi ∈ [ai, bi]

}
,

giving the operator within the domain Ã, with separation rank rÃ ≤ rA. As Dirichlet

boundary conditions are assigned, the values on the discretization grid within R are

set to the identity, yielding the operator Ĩ, which has rĨ ≤ d. The desired operator

is then formed by subtracting the effects of the original operator within the region

and then adding the identity, yielding an operator with bounded separation rank

rĀ ≤ d+ 2rA

Ā = A− Ã + Ĩ. (3.5)

3.5 Implementation Details and Examples

In the following examples, first and second order derivatives are approximated using

eighth order finite differences, with the number of mesh points along each dimension

varying between Mi = 100 and Mi = 201. The result are tensors that would typically

not fit in the memory of even the largest modern super computers if expressed naively

without the use of the separated representation, e.g., the quadcopter has a twelve

dimensional space space, which would require 1024 float values if each dimension were

discretized into Mi = 100 points. In each case the problem is modeled as first-exit

(see Table 1.1). In all cases the noise was assumed to enter the dynamics in the same

manner as the control, with G(x) , B(x) in (1.18).

The operator is constructed as described in Section 3.4. The operator and bound-
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ary conditions are compressed independently using Alternating Least Squares with

the linear system A set to identity. With this low-rank representation, the problem is

then solved using Alternating Least Squares for the Hamilton Jacobi Bellman system.

The Matlab Tensor Toolbox [132, 133] was employed for storage and manipulation of

tensor objects.

The problems were solved on a quad-core 2.3GHz Intel i7 cpu with 16GB of

memory. Denote ū, x̄ as the vector of system control inputs and states for each

example. Figure 3.1 illustrates the three systems considered.

Remark 26. In several examples the sparse basis that ALS is able to construct are

presented. Note that the separated components are normalized, and thus units on the

axes are omitted in these plots. The weights of the separated components in the final

solution are indicated in distinct figures, where relevant.

3.5.1 Inverted Pendulum

In [134] the inverted pendulum on a cart was investigated in detail, yielding an inter-

esting analysis on the geometry of optimal control. In particular, Osinga & Hauser

produce the value function for the inverted pendulum when actuated directly at the

base

ẋ1 = x2 (3.6)

ẋ2 =
g
l

sin(x1)− 1
2
mrx

2
2 sin(2x1)− mr

ml
cos(x1)u

4
3
−mr cos2(x1)

where x1 is the angular position and x2 the angular velocity. The cost function is

q(x) = 0.1x2
1 + 0.05x2

2 + 0.01u2. This problem has periodic boundary conditions

along the x1 dimension, and a Dirichlet boundary condition of φ(x1,±11) = 10 were

imposed, i.e., a high penalty for exceeding the maximal angular velocity of θ̇ > 11

rad/s. An exit interior boundary was placed at the origin, with Dirichlet boundary

conditions corresponding to unity desirability. Mi = 201 discretization points were

used in each dimension.
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Figure 3.2: Desirability function for the inverted pendulum.

The solution Ψ is shown in Figure 3.2 while the value function obtained by invert-

ing the transformation (1.26) is shown in Figure 3.3. The process took approximately

ten minutes, achieving residual error e = 5.22 · 10−5 with a basis of rΨ = 20 rank one

tensors. The five principal separated components along each dimension are shown in

Figure 3.4.

3.5.2 VTOL Aircraft

Next, consider a Vertical Takeoff and Landing aircraft (also known as the Harrier Jet).

A planar cross subsection of the translational state is examined, i.e., the jet’s (x, y)

location where y is in the vertical direction. The system is characterized by second

order dynamics with gravitational drift and trigonometric inputs, giving rise to a six

dimensional nonlinear system. Specifically, the equations governing the system are

given in [135] as

ẍ = −u sin(θ) + ε τ cos(θ)

ÿ = u cos(θ) + ε τ sin(θ)− g

θ̈ = τ,



88

Figure 3.3: Cost to go for the inverted pendulum. The effects of the noise may be
seen in the smoothing of the value function in comparison to the deterministic case
seen in [134].

x1

x2

Figure 3.4: Five principal separated components for the inverted pendulum desirabil-
ity solution along the x1, x2 dimensions.



89

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2
Spatial Position

 

 

x

y

0 0.5 1 1.5 2
−0.05

0

0.05

0.1

0.15
Angular States

 

 

θ

d θ

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0
Spatial Velocity

 

 
dx

dy

0 0.5 1 1.5 2
−5

0

5

10

15
Control Effort

 

 
u

1

u
2

Figure 3.5: Sample trajectory when executing desirability for the VTOL aircraft.

where ε = 0.01 for this example. The cost function chosen was r = u2, and

q(x, y, θ, . . .) = 1.0 on the domain x ∈ [−4, 4], y ∈ [0, 2], ẋ ∈ [−8, 8], ẏ ∈ [−1, 1],

θ̇ ∈ [−5, 5], with θ periodic on [−π, π]. Boundary conditions were set as Ψ |∂Ω= 0

(indicative of an infinite penalty for exiting the domain), save y = 0, which had con-

dition Ψ | ∂Ω = 1 − s2 for each coordinate direction s, placing a target of landing

with zero velocities. Discretization Mi = 100 were used along each dimension. The

solver was limited to twenty iterations, which required approximately five minutes.

A sample trajectory when executing the policy in closed loop is shown in Figure 3.5.

The error and basis function weighting are shown in Figure 3.6.

3.5.3 Quadcopter

The next example is in the stabilization of a quadcopter. The derivation of the

dynamics may be found in [136], and results in a system of order twelve with highly



90

0 5 10 15 20 25
0.0186

0.0188

0.019

0.0192

0.0194

0.0196

0.0198

0.02

0.0202

0.0204

iteration

e
rr

o
r

Convergence

0 2 4 6 8 10 12 14
10

1

10
2

10
3

10
4

10
5

10
6

Basis Number

W
e
ig

h
t

Composition of Desirability

Figure 3.6: Convergence and weighting for the VTOL solution. The red markers
indicate at which iterations the ALS algorithm enriched the solution by adding a
basis element. The weights correspond to the variables sl in (3.1)

dimension = 1 dimension = 2 dimension = 3 dimension = 4

dimension = 5 dimension = 6 dimension = 7 dimension = 8

dimension = 9 dimension = 10 dimension = 11 dimension = 12

Figure 3.7: Complete basis function set for Quadcopter policy.
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nonlinear dynamics.

mẍ = u (sinφ sinψ + cosφ cosψ sin θ)

mÿ = u (cosφ sin θ sinψ − cosψ sinφ)

mz̈ = u cos θ cosφ−mg

ψ̈ = τ̃ψ

θ̈ = τ̃θ

φ̈ = τ̃φ

where η = (x, y, z) are in the horizontal and vertical plane, respectively, while

τ̃ = (τ̃ψ, τ̃θ, τ̃φ) are the yaw, pitch, and roll moments. For simplicity, assume di-

rect actuation control over τ̃ is provided. The problem is solved with r = ‖ū‖ and

q(x̄) = 2. Similar to the VTOL example, all boundaries are penalized, save x = 1,

where a quadratic along the boundary in each dimension induces the system to exit

with small velocity in all dimensions. This corresponds to encoding the goal that

the quadcopter translate by one unit in the x-direction, and reach that location with

minimal velocity. Discretization Mi = 100 was again used along each dimension.

In this instance the dynamics f(x) ≡ 0 for all but the z−acceleration due to grav-

ity, whocse constant values implies a separation rank of one, and G(x) has separation

rank two for only the first three coordinate dimensions. The formation of the partial

differential operator requires rA = 56, but the ALS algorithm is able to compress this

to rÃ = 24 with a relative error of 10−4 in approximately two minutes, indicating

there exist a great deal of underlying structure that the optimizer is able to exploit.

Only five basis functions were computed, with the results shown in Figure 3.7

demonstrating the expressive power of even particularly low rank solutions. The time

for each ALS iteration is shown in Figure 3.8, along with the weighting upon each

basis function. The total computation time was approximately ten minutes. Finally,

Figure 3.9 shows a trajectory of the closed loop system.
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3.6 Discussion

There are a number of immediate implications of the work in this chapter. The

first is in the control of nonlinear distributed systems. In these problems, multiple

interacting systems manifest as additional dimensions for the PDE. Formally, the

complexity therefore grows linearly with the number of subsystems. As well, if the

coupling between such subsystems is sparse, it is expected that this interconnection

could be simply described, leading to low separation rank necessary to describe the

coupled dynamics.

The techniques that have been developed which rely on Sums of Squares program-

ming [2] have been limited in degree and dimensionality due to the factorial growth

in monomial basis. However, returning to the development of the separated repre-

sentation, each rank-1 term corresponds to a single monomial of (3.1). By limiting

the basis to those with high representative power, such problems may be scaled to

arbitrarily high degree and dimensionality.

A key limitation of this work is that it requires the structural assumptions of

(1.25) to obtain a linear set of equations for which ALS may be applied. The general

nonlinear value function may not be directly solved. However, it has been shown

that iterative linearization of the nonlinear equations may be constructed in such a

manner as to solve the more general Hamilton Jacobi Bellman problem without the

structural assumptions of (1.25) [137].

As detailed in Section 1.5.1 to in the introduction, these linear PDEs have a

discrete counterpart in linearly solvable MDPs [63, 70]. In general, MDPs must be

solved through an iterative maximization process known as value or policy iteration.

However, by assuming a similar restriction on the noise of the system, specifically that

it enters into the system along the same transitions actuated by the control input,

Todorov has demonstrated in these works that average cost, first exit, and finite

horizon optimal control problems may be solved through a set of linear equations,

which may also be approached in the separated representation setting.
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Chapter 4

Navigation Functions as Optimal
Controllers

As discussed in Section 1.3, Navigation Functions are one of several methodologies

that researchers have used for robotic path planning, with a review given in Section

1.3.5. The focus on Navigation Function design has historically not been on optimality

of robot motion, but instead on the ability to rapidly compute motion plans from any

location in the state space. This chapter demonstrates how to incorporate optimality

criteria into Navigation Function construction that can be modeled as the sum of a

(possibly) nonlinear state dependent cost and a quadratic control cost. This contrasts

with the prior work on navigation, which implicitly defines a decomposition of the

problem into a trajectory generation method (the solution of the navigation function)

and a local feedback-based trajectory following control method. This classical two-

step decomposition may lead to suboptimality in the path planning or control law, or

even instability [55]. By formulating the problem starting from the Hamilton Jacobi

Bellman problem, this chapter introduces a method which allows the impact of the

dynamic model to be directly incorporated into the navigation function, if desired.

This chapter relates the Navigation Function approach to an optimal control prob-

lem which optionally includes the presence or absence of both dynamics and a state

dependent cost function. It is found that when dynamics and control cost are ne-

glected, the resulting solution is similar to those previously used to generate naviga-

tion functions in the literature [138, 139]. The result is that a spectrum of problems,
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ranging from the full Hamilton Jacobi Bellman equation to the classical potential-

based navigation function, are made explicit and the tradeoffs in modeling complexity

becomes visible. The analysis presented in this chapter makes it apparent how dy-

namics may then be incorporated to a navigation function if desired. To the author’s

knowledge, this chapter also represents the first attempt to formally include stochas-

tic uncertainty into the construction of the navigation function. The central result

is that techniques that have been used to create navigation functions historically can

be interpreted as solving a particular optimal control problem subject to a specific

form of stochastic forcing.

Let CS denote the robot’s configuration space (or c-space)– the possible configu-

rations that a robot can occupy. As is standard, let the subset of CS where the robot

collides with an obstacle define the set of configuration-space obstacles, CO, while the

free configuration space, F ⊂ CS, is the complement of CO in CS. Under the assump-

tion of perfect sensory information, the motion planing task is to move the robot

from its starting configuration, qinit ∈ F to a desired goal position qd ∈ F . One

approach to solve this problem is to construct a navigation function (also introduced

in Section 1.3.5):

Definition 27. (From [50]) Let qd be a goal configuration in F , the free c-space. A

map ϕ : F → [0, 1] is a navigation function if it is

1. smooth on F (at least a C(2) function);

2. polar at qd, i.e., has a unique minimum at qd on the path-connected component

of F containing qd;

3. admissable on F , i.e., uniformly maximal on the boundary of F ;

4. a Morse function, i.e., the Hessian at critical points is nonsingular.

Given a navigation function, ϕ(q), the robot’s path to the goal from any staring

configuration in F can be realized by following the gradient ∇ϕ(q) at each q. The

definition assures that the robot will achieve the goal while remaining in F , and not

become trapped in a local minima of ϕ(q).
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Navigation functions may be constructed in several forms. In the classical ap-

proach of Koditschek & Rimon [51], a navigation function may be calculated ana-

lytically when the when the bounded problem domain, the obstacle shapes, and the

goal region are all diffeomorphic to spheres. Similarly, if the boundary, obstacles, and

goal region are star-shaped sets (which are homeomorphic to spheres), then one can

compute the navigation function by transforming the problem to a sphereworld, find

the sphereworld navigation function, and transform the function back to the original

problem domain.

4.1 Navigation Functions Constructed from Optimal

Control

The Stochastic Optimal Control problem introduced in Section 1.4 is first reduced

to the standard setting of navigation functions by sequentially incorporating the as-

sumptions which hold in the classical navigation function setting. These successive

eliminations of terms will then illuminate some connections between the approach

presented in this chapter and classical navigation function approaches. Finally, the

approach will allow the formulation of approximate minimum time solutions.

For the remainder of the chapter, it is assumed that the system has full state

controllability, an assumption common in the Navigation Function literature. It is

also assumed that the system obeys the assumption (1.25), allowing for the linear

Hamilton Jacobi Bellman equation to be formed. Recall the Hamilton Jacobi Bellman

equation of (1.27)

−∂tΨ = −1

λ
qΨ + fT (∇xΨ) +

1

2
Tr ((∇xxΨ) Σt)

Dynamics. Since the classical navigation function approach implicitly decouples

the trajectory generation problem from the trajectory following control design, the

dynamics of the specific mechanical system to be guided are ignored. The Navigation

Hamilton Jacobi Bellman equation, is defined as the HJB PDE with the dynamic
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dropped, i.e., f := 0. This simplification results in the Navigation PDE :

0 = −1

λ
qΨ +

1

2
Tr ((∇xxΨ) Σε) .

Similarly, the classical navigation function setting does not consider spatially de-

pendent costs. Thus, the state-dependent term in the cost function, q(x), may be

simplified to a free scalar parameter q := α, producing the PDE

0 = −α
λ

Ψ +
1

2
Tr ((∇xxΨ) Σε) (4.1)

This PDE is termed the Augmented Navigation PDE, as it incorporates additional

cost information as compared to traditional navigation functions, but does not in-

clude the effects of system dynamics. If one wishes to include the robot mechanism’s

dynamics, their presence in the function f(x) will require the addition of these states

as dimensions in the Hamilton Jacobi Bellman PDE.

Interestingly, the PDE (4.1) is well known as the homogeneous Screened Poisson

Equation and has previously found applications in image processing [140]. Most

importantly, this is a second order PDE with isotropic diffusion and mass terms, a

situation which has been well studied [128].

Boundary Costs. The boundary conditions for the PDE (4.1) correspond to

the penalty accrued as the robot exits the configuration domain and collides with an

obstacle or reaches the goal state. In Equation (1.20) this effect is represented as the

terminal cost φ. Recall that according to Equation (1.26), this terminal cost must

be transformed, along with the value function, to the desirability domain. Thus, the

boundary condition can be stated as

Ψ |∂Ω= e−
φ
λ (4.2)

where ∂Ω is the boundary of the operating domain, Ω. Classically, the cost assigned

to a collision has been modeled as uniform over all obstacles, and thus the boundary

condition is φ(xT ) = c for an arbitrary constant c, in accordance with Property 3 of
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Definition 27. Other choices are certainly possible, allowing for varying weights to be

placed on different boundary types.

The free variables q(x) and R define a notion of cost, and therefore a notion of

optimality. The inclusion of these variables allows us to compare navigation functions

according to their perceived cost, and furthermore to declare navigation functions

optimal with respect to a choice of criteria. Such criteria has traditionally been

eschewed in favor of simplicity in construction of the navigation function, and hence

this framework may be said to be a slight generalization, bringing notions of optimality

into consideration.

Control-dependent costs. Recall that the initial definition of cost (1.19) in-

cludes a control dependent term. Navigation functions have traditionally been un-

concerned with the control effort. Recall that the assumption on control effort and

noise (1.25) needed to realize a linearly solvable Hamilton Jacobi Bellman PDE is:

λG(x)R−1G(x)T = Σt (4.3)

where Σt is fixed as a function of the known control vector field matrix, G(x), and

noise characteristics, B(x) and Σε. The control effort penalty R cannot be brought

to zero naively without violating this assumption. It is possible to compensate for

this limitation by using the free parameter λ to maintain the underlying relation in

this assumption. That is, set λ = β and define R = βR̃, yielding expressions

λG(x)
(
βR̃
)−1

G(x)T = Σt (4.4)

G(x)R̃−1G(x)T = Σt

which is independent of β, allowing the control penalty cost to be reduced to zero.

The difficulty is that as λ→ 0, (4.1) becomes nonsensical in the limit. Fortunately, no

cost has ben assumed over the states, and thus it is possible to set α = 0 to produce

the Navigation PDE

0 = Tr ((∇xxΨ) Σt) (4.5)
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which is recognized to be Laplace’s equation scaled according to the system noise

characteristics. The practical cost incurred by this reduction of the complete SOC

HJB, Equation (1.27), to Equation (4.5) is that consideration of control effort and

state dependent penalties have been neglected, which is often natural in the robotics

setting. Interestingly, Laplace’s equation has been used previously in the generation of

navigation functions [141, 138, 139]. In this prior work, the authors suggested the use

of Laplace’s equation, with the motivation that solutions to Laplace’s equations can

be shown to have no local minima over their domain. The following theorem justifies

this from an optimality perspective, albeit through the transformation (1.26).

Theorem 28. The optimal robust desirability function absent costs over state is given

by V = −λ log Ψ where λ is defined according to (4.3), and Ψ is the solution to the

following Laplace equation over the domain Ω:

0 = Tr ((∇xxΨ) Σt) (4.6)

Ψ |∂Ω = e−
φ
λ (4.7)

There is an interesting trade-off resulting from Eq. (4.3). Define Σ̃t , γΣt in

order that the system noise may be scaled by γ. Define λ = β, as in Equation (4.4)

in order to scale the control penalty. Then λ = aβγ for some fixed constant a. The

result is that a scaling of the control effort has the same effect on the solution as a

scaling of the noise, and this scaling manifests only through the transformation (1.26)

and the boundary conditions, and surprisingly not through the differential constraints

on Ψ, as γ is simply cancelled in Equation (4.5). What does have an effect, however,

is the directional influence of Σt, i.e., the solution will incorporate paths that have

beneficial drift.

Due to the exponential dependence of Eq. (1.26), one cannot realize the limit

β → 0, as the transformation simply becomes nonsensical in the limit. Instead, β is

chosen based on the magnitude of the noise, or the level of control penalty, depending

on the perspective.

Remark 29. Laplace’s equation has been justified in the presence of noise here,
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whereas it was previously justified due to its lack of local minima.

Two PDEs (4.1), (4.5) have been produced in this initial analysis. The first of

these allows one to naturally incorporate several optimality criteria into the concept

of a navigation function, while the second is especially simple and creates a connection

to previously inspired navigation function formulae.

4.2 Approximate Time-Optimal Navigation Functions

The design freedom afforded by the existence of parameters in the cost function allows

for the solution to be biased towards time-optimal navigation functions by penalizing

time spent away from the goal. This is accomplished by setting q(x) = c for some

constant c. Control effort may also be adjusted through the free parameter λ, and

its cost can be decreased relative to the state cost. The robustness of the navigation

function to noise may also be controlled through the noise characteristics defined by

Σε, and again reduced. As the value of the constant c is increased while parameters λ

and Σε are increased, cost is accrued only when the system remains outside the goal

region. The optimal action during this time is to take the quickest path to the goal,

ignoring the amount of control effort used.

4.2.1 Analogy with electro-statics

It is interesting that early researchers on potential field navigation methods were

naturally drawn towards analogies with electro-statics. Khatib’s seminal work [52]

conceptually frames the collision avoidance problem as a process of adding poten-

tial fields that would repulse or attract the point robot mass in much the same way

as electrostatic fields might. This intuitive notion of attractive and repulsive forces

therefore can also be grounded in notions of optimality. Indeed, for the Navigation

PDE of Eq. (4.5), the analogy is exact in desirability-space, with the representa-

tion of obstacles and goals manifesting identically to static charges on their surfaces.

However, a logarithmic transform improves the solution from an intuitive one to one
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which is optimal.

4.2.2 Convergence of the solution trajectories

Due to the presence of the control cost in the solution to the Hamilton Jacobi Bellman

equation, it isn’t possible to directly determine the probability that the controlled

system successfully reaches a goal region. As mentioned in Remark 4.1, entirely

removing the affect of this cost component isn’t possible as the necessary formulae

break down in the limit. However, it is possible to choose a small value for the control

cost R. The cost-to-go is then predominantly governed by the cost of colliding with

an inadmissible boundary. By setting the boundary conditions for obstacles to φ = 1,

the cost-to-go then becomes a conservative approximation of probability of success

in reaching the goal, i.e., the cost-to-go will overstate the probability of failure by

also including the cost of future trajectories’ control effort in its value. For even

moderately small values of R, this approximation may not be overly conservative.

4.3 Navigation Examples

The approach introduced in this chapter is now illustrated by numerical examples.

Each of these examples is solved with a discretization mesh with grid size h = 0.1.

The derivatives of the PDEs are solved via the second order central Finite Difference

Method [130].

4.3.1 Problems with Analytical Solutions

In simple domains it is possible to find an analytical or simply computed solution

to (4.1), (4.5). For instance, suppose a point robot is commanded to move to a

goal location located at the origin of a two-dimensional configuration space with no

obstacles, while it is perturbed with noise whose characteristics are uniform across the

configuration space. The solution to the associated Navigation PDE (4.5) corresponds

to the solution of Laplace’s equation for a point potential, i.e., the fundamental
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solution, which is

Ψ = − log (r)

2π

where r is the distance from the robot’s current configuration to the origin [94]. The

solution to the Augmented Navigation PDE (4.1) for this problem may be found as

follows. Taking the Fourier Transform (4.1) yields

(
k2 +

α

λ

)
Ψ̃ = 1.

The fundamental solution is then found by solving for Ψ̃ and then finding the inverse

Fourier Transform, which yields

Ψ =
1

2π
K0

(√
α

r
λ

)

with K0 the modified Bessel function of the second kind. These kinds of analyti-

cal solutions suggest that optimal or near optimal solutions may be used to create

navigation functions quickly through composition, a topic for further study.

4.3.2 Effect of Noise on Corridor Navigation

Next, the method is demonstrated on a two dimensional robot whose task is to reach

the top right corner of a square configuration space. The domain has two obstacles,

creating a pair of corridors that the robot must traverse if it begins in lower portion

of the configuration space. For this example Σt = 2I2×2, λ = 1, and the width

of the thinner corridor is set to two different values of 1.5 and 2 distance units for

comparison. The resulting solutions are shown in Fig. 4.1. This example shows why

it can be important to include noise in the construction of a navigation function.

Consider the situation when the robot starts near the bottom of the figure. In both

environments, robot can travel through two different corridors to reach the goal. In

both environments, the navigation functions lack local minima, as expected. In the

left-hand environment, the robot can potentially choose between a wide corridor, and

a medium width corridor. The choice of the corridor will depend upon the robot’s
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Figure 4.1: Navigation function for a two dimensional point-mass robot calculated
according to Eq. (4.5) with varying corridor widths. The goal location is the black
square in the top right corner.

specific starting configuration, as it is safe to traverse both corridors. In the right hand

figure, the robot can potentially choose between the same large corridor, or a very

narrow corridor (whose width is 3
4
the magnitude of the noise variance). For almost all

starting positions, the navigation function guides the robot away from the potentially

dangerous narrow corridor, unless the robot happens to start positioned well into

the narrow corridor. This intuitively logical result occurs because the potential for

collision in the narrow corridor, given the uncertainty on the stochastic forcing on the

robot places too high a cost on that potential path.

Remark 30. The solution to Eqs. (4.1), (4.5) take place in exponentiated coordinates,

and for many examples tend to be close to zero for large regions of the state space.

It is therefore usually more useful to consult the value function directly rather than

examining the desirability.

4.3.3 Maze

The second example shows that complicated environments can be well handled by

this method, and also highlights the effects of including additional cost criteria into

the navigation function. The same robot dynamics and same noise distribution of the

previous example are used, however the obstacles are placed in a more complicated
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maze-like pattern. The Augmented Navigation PDE of Eq. (4.1) is used in order to

incorporate the additional optimality criteria. The resulting navigation functions are

shown in Figure 4.2 with several noise and cost configurations..

The results shown in the figures compare the use of (4.5) with additional cost

criteria. It is seen that the solutions of (4.5) and (4.1) are qualitatively similar. As

λ is decreased in the general case, this has the interpretation of either increasing the

control cost weighting, R, or increasing the noise covariance. The solutions do not

change qualitatively, only the magnitude of the cost-to-go. In contrast, the approxi-

mated minimal-time solution is characterized by shortest-path level sets. These level

sets are characterized by straight lines near corners, in contrast to the circular level

sets of other examples, as would be expected for a shortest path solution amongst

piecewise-linear obstacles.

Remark 31. For some choices of costs q, R the navigation function (4.1) may bring

the robot directly into an obstacle. This is no contradiction, as framing the problem

through the lens of optimal control allows for freedom on the placement of boundary

conditions. The penalty for hitting an obstacle, if chosen improperly, may be less

than the cost to traverse the domain and enter the goal region, and thus the most

economical choice is for the robot to simply collide with the boundary. This isn’t a

problem when using (4.5).

4.3.4 Grasping

A final example is of a simple planar grasping task wherein a gripper must be po-

sitioned in the plane so that it may close and grasp a small nut, an illustration of

which is shown in Figure 4.3. The goal of the problem is to move the end effector to a

desirable location surrounding the object in such a way that the gripper’s orientation

places the jaws around the nut, whereupon a simple closing action will reliably grasp

the nut. The problem is transformed into the system’s configuration space, and then

solved in the Optimal Navigation framework, with the results shown in Figure 4.3a.

As the method treats the goal states as a set of boundary conditions, the relatively
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Figure 4.2: Navigation function for a two dimensional point-mass robot in a maze-like
environment with equi-dimensional noise. On the top-left is the standard navigation
function calculated according to (4.5). On the top-right, the minimum time-criteria
is approximated by taking α = 100, λ = .04 in (4.1). The bottom-left and -right have
Σt = 4I2, 4.6I2, and λ = .4, .46 respectively. The obstacles and boundary are chosen
to have penalty of 20 units, while the goal region has a penalty of 0 units. The goal
is located at the center of the domain at (x, y) = (5, 5) and is illustrated as a black
rectangle.
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(a) (b)

Figure 4.3: An illustration of a nut grasping task. In (b) the square nut is shown
in green while the gripper is shown in red. The blue region denotes a range of
acceptable goal nut locations relative to the gripper. On the left in (a), cross sections
of navigation function for the nut grasping task illustrated in Figure 4.3. Parameters
used are α = 0.02, R = .02I3×3,Σt = 5I3×3 and the boundary costs are set to φ = 1.
Spatial discretization in the x− and y−coordinates are hx = hy = 0.25, and in the
angular direction hθ = 20◦. The goal region isosurface is displayed in dark blue.

large goal region is handled easily.

The example illustrates the approach for a non-point mass robot, and illustrates

the smoothness of the navigation function over the domain in a typical manipulation

task. It is easy to see the optimal path of the gripper, wherein it smoothly rotates,

following the basin of low cost in blue, until the nut is captured.

4.4 Discussion

This chapter introduced a generalization of the classical navigation function frame-

work used in robotics to include system noise, dynamics, and cost criteria. Philosoph-

ically, this chapter links the classical robotics subject of navigation functions with

recent advances in Stochastic Optimal Control. Previous results that were developed

on a somewhat ad-hoc basis have been shown to be related to optimality consider-

ations, and the intuition which led to their development well placed. Remarkably,

many existing results using harmonic potentials can be shown to be optimal for a par-
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ticular configuration of noise and cost models when the solution is simply adjusted

by a logarithmic transformation.

The use of navigation functions to approximately incorporate minimum time task

requirements was also demonstrated. From a practical point of view, the methods

developed here to construct the navigation functions can be applied to environments,

obstacles, and robots with arbitrary smooth geometries. Furthermore, it allows for

the results of existing methods (i.e. [142]) to be compared against the underlying

optimal solution to the problem, if the system’s noise characteristics are captured by

the model. The ability to solve for the navigation function in terms of a linear PDE

also expands the space of algorithms for calculating solutions.

Numerical experiments show that solutions in configurations space having dimen-

sion up to 5 can be computed on a desktop PC computer using Finite Difference. The

methods developed in Chapter 3 are applicable and allow for Navigation functions

to be developed for systems of far higher dimensionality. Additionally, it may be

possible to use the results presented here to inform the choice of artificial potential

fields, yielding navigation functions that may be assembled quickly, but that better

approximate the optimal navigation function for the problem.
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Chapter 5

Temporal Task Planning

Up to this point, this thesis has largely been concerned with solving problems with

individual goal-guided tasks, encoded as the minimization of a general cost function.

However, many problems in the design of autonomous control systems require the

ability to reason over multiple sub-tasks that must be executed according to some

temporal and logical rules. In this chapter, as a result of collaboration with Eric Wolff

and Richard Murray [6], a method for synthesizing control policies for continuous-

time stochastic nonlinear systems with temporal logic task specifications is presented.

These problems are motivated by safety-critical robotics applications involving au-

tonomous ground and air vehicles executing complex tasks. In such applications, it

is desirable to automatically synthesize a control policy that provably implements

specified system behavior, despite nonlinearities and disturbances.

Linear temporal logic (LTL) is a task specification language that has been widely

used for specifying properties of hybrid systems, robots, and software. Syntactically

co-safe LTL, an expressive finite-time fragment of LTL, is used to specify a wide

range of properties relevant to autonomous systems. These properties include safety,

response to the environment, and goal visitation. Such properties generalize classical

motion planning [143].

Common approaches for control policy synthesis for stochastic systems with LTL

specifications first abstract the dynamical system as a finite Markov decision process

(MDP) [144, 145]. Each state in this MDP corresponds to a subset of the system

state space, and transition probabilities between states in the MDP encode possible
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system behaviors. Given such an MDP and an LTL specification, control policies

can be automatically constructed using an automata-based approach [146, 145]. This

approach extends work in the formal verification community [147, 148] to hybrid

systems via the use of finite abstractions. The main drawback of this approach is

that it is computationally expensive to create a finite abstraction [144, 145].

This chapter introduces a method wherein the expensive computation of an MDP

abstraction is avoided, and instead the solution is directly computed on the state

space of the system using techniques from stochastic optimal control. An automaton

representing the temporal logic specification guides the computation of a control pol-

icy that maximizes the probability that the system satisfies the specification. This

automaton is treated as an MDP, where states encode progress towards task comple-

tion and each action corresponds to a control policy for the continuous system. Value

iteration is used to maximize the probability that the system satisfies the specification

from its initial state. A feedback control policy is returned which selects the current

action based on the system’s continuous state and its mode.

The approach avoids computing a discrete abstraction of the system, and lets one

take advantage of recent advances in computing constrained reachability relations for

nonlinear stochastic systems. In particular, the Hamilton Jacobi Bellman equation

takes the form of a linear PDE. The solutions to linear PDEs obey the principle

of superposition, a characteristic first exploited in [83]. This chapter expands upon

that idea, leveraging superposition to quickly solve problems defined with temporal

specifications. Indeed, the computation of solutions by superposition is appealing in

situations where many control problems must be solved over a common domain, as in

many temporal logic planning problems. For such problems, the specification creates

a large number of reach-avoid subproblems, where the property of superposition is

leveraged to efficiently compose the subproblems.

The main contribution of this work is a framework for control policy synthesis for

stochastic nonlinear systems for syntactically co-safe LTL. The framework is general

in that it can utilize any technique that computes solutions to a stochastic constrained

reachability problem. The case where the Hamilton Jacobi Bellman equation is linear
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is leveraged to increase the efficiency of the approach. This is done by exploiting the

fact that solutions constructed for individual specifications may be superimposed to

satisfy richer specifications.

The work is closely related to recent automata-guided approaches for control policy

synthesis for discrete-time deterministic [149] and stochastic [150] systems subject to

temporal logic specifications. The work is also related to [151], which also encodes

the relationship between sequential tasks via the boundary conditions to Hamilton

Jacobi Bellman equations. These approaches directly compute over the state space

of the system. The work in this chapter differs in that continuous-time dynamics

are considered, and a compositional approach based on superposition of solutions

to linear PDEs is used. The compositional approach allows solutions to be quickly

computed, at the expense of additional conservatism (see Section 5.3).

The system model and specification language is introduced in Section 5.1, and

the main problem is stated in Section 5.1.3. It is shown how to compose solutions in

Section 5.3, and demonstrate how this composition provides a critical benefit in the

context of temporal logic planning problems. Numerical experiments are presented

in Section 5.4.

5.1 Preliminaries

Notation: An atomic proposition is a statement that is either True or False. The

expectation of a random variable is denoted by E[·], and the probability of an event

is denoted by P[·].

5.1.1 System Model

Consider continuous-time stochastic nonlinear systems that evolve with dynamics

dxt = (f(xt) +G(xt)ut) dt+B(xt)Ldωt, (5.1)
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with state xt ∈ X ⊂ Rn, control input ut ∈ Rm, Brownian motion ωt ∈ Rm, and

disturbance matrix L ∈ Rn×m. The functions f(xt), G(xt), andB(xt) are continuously

differentiable, and the set X is compact.

Let AP be a finite set of atomic propositions. The labeling function L : X → 2AP

maps the state to the set of atomic propositions that are True. The set of states

where atomic proposition p ∈ AP holds is denoted by [[p]].

Definition 32. A memoryless control policy for a system of the form (5.1) is a map

µ : X → Rm. A finite-memory control policy is a map µ : X ×M → Rm ×M where

the finite set M is called the memory.

The trajectory x(x0, µ,ω) = x : R≥0 → X represents a solution of (5.1) in-

duced by an initial state x0 ∈ X, a given control policy µ, and an instance of

Brownian motion ω. A word of a trajectory x is an infinite sequence of labels

L(x) = L(xt0)L(xτ0)L(xt1)L(xτ1)L(xt2) . . ., such that t0 = 0 and for all i ≥ 0,

ti+1 ≥ ti, τi ∈ [ti, ti+1], and L(xt) = L(xτi) for all t ∈ (ti, ti+1). A word of tra-

jectory x defines the behavior of x in terms of the label sequence. The assumption is

made that during any finite time interval, the label changes a finite number of times.

The set of words of system (5.1) with initial state x0 ∈ X induced by a control

policy µ is denoted by x(x0, µ). The Brownian motion induces a probability measure

over the trajectories of the system x(x0, µ), and thus the words.

5.1.2 Specification Language

Syntactically co-safe linear temporal logic (sc-LTL) [152] is used to concisely and

unambiguously specify desired system behavior over a finite horizon. In this work,

system behavior is examined only over a finite horizon due to the unbounded distur-

bances in Equation (5.1). A brief introduction to the syntax and semantics of sc-LTL

follows, and the reader is referred to [152] for details.

An sc-LTL formula is formed from: the Boolean operators ¬ (negation), ∨ (dis-

junction), ∧ (conjunction), and the temporal operators: U (until), and 3 (eventually).

An sc-LTL formula is written in positive normal form (i.e., negations are only allowed
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in front of atomic propositions). The # (next) temporal operator is not considered,

which is ill-defined in continuous-time.

Definition 33. A syntactically co-safe LTL (sc-LTL) formula over a set of atomic

propositions is inductively defined as follows:

ϕ ::= p | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1Uϕ2 | 3ϕ,

where p ∈ AP is an atomic proposition.

The semantics of an sc-LTL formula is defined over infinite words w = w0w1w2 . . .

where wi ∈ 2AP . Informally, ϕ1Uϕ2 means that ϕ1 is True until ϕ2 is True and

3ϕ means that ϕ eventually is True. More complex specifications can be defined by

combining Boolean and temporal operators. The satisfaction of an sc-LTL formula is

guaranteed in finite time [152].

There exists a close connection between sc-LTL formulae and deterministic finite

automata.

Definition 34. A deterministic finite automaton (DFA) is a tuple A = (Q,Σ, δ, q0, F )

with a finite set of states Q, a finite alphabet Σ, a transition function δ : Q×Σ→ Q,

an initial state q0 ∈ Q, and a set of accepting states F ⊆ 2Q.

An accepting run σ of an automaton A on a finite word w = w0 . . . wk over Σ =

2AP is a sequence of states σ = q0 . . . qk+1 such that q0 is the initial state, qk+1 ∈ F ,

and δ(qi, wi) = qi+1 for all i = 0, . . . , k.

For any sc-LTL formula ϕ, there exists a deterministic finite automaton Aϕ that

accepts exactly the prefixes of all satisfying words. Software exists for constructing

such a deterministic finite automata from an sc-LTL formula [153].

5.1.3 Problem Statement

The problem is now stated formally. First, the probability of satisfaction of a speci-

fication by a stochastic system of the form (5.1) is defined.
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The stochastic system (5.1) may have an infinite set of words x(x0, µ) for a given

initial state x0 and control policy µ. There is a well-defined probability measure

over this infinite set of words [154], which gives rise to the notion of the expected

satisfaction probability of a specification.

Definition 35. Let x(x0, µ) be a set of words of system (5.1) from initial state x0

under control policy µ with an associated probability measure. Let ϕ be an sc-LTL

formula over AP . Then, P(x(x0, µ) |= ϕ) is the expected satisfaction probability of

ϕ by system (5.1) under control policy µ.

Problem 36. Given a system of the form (5.1) and a syntactically co-safe LTL

formula ϕ over AP , compute a control policy µ∗ that maximizes the probability that

ϕ is satisfied, i.e., µ∗ ∈ arg maxµ P(x(x0, µ) |= ϕ).

A conservative solution to Problem 36 is developed in the remainder of this chap-

ter. At a high level, Problem 36 is reduced to a series of reach-avoid problems, where

the system attempts to reach a goal region while avoiding other regions, e.g., obsta-

cles. Each of these individual reach-avoid problems, referred to formally as stochastic

constrained reachability problems defined below, may be solved through the tools

of optimal control. These solutions may be chained together, via a dynamic pro-

gramming argument, to solve temporal tasks specified in the sc-LTL language. As

the specification becomes more complex, many such reach-avoid problems must be

solved, creating a growth in complexity that typically stymies existing techniques. By

leveraging the principle of superposition on the underlying repetitive task of solving

optimal control problems over a common domain, the methods presented below scale

to complex tasks.

5.2 Solution

In this subsection a general method for (conservatively) solving Problem 36 is pre-

sented. This method uses an oracle for solving stochastic constrained reachability
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problems. A computationally efficient methods for solving stochastic constrained

reachability problems is given in subsection 5.2.2.

The fact that every syntactically co-safe LTL formula can be represented by a

deterministic finite automaton is exploited. A word, i.e., a labeled system trajectory,

satisfies an sc-LTL formula if and only if the acceptance condition of the automaton

holds. This reduces Problem 36 to computing a control policy that maximizes the

probability that the system reaches an accepting state in the automaton. The de-

terministic finite automaton is modified by including stochastic transitions between

modes, which will account for uncertainty due to the stochastic system dynamics.

5.2.1 Dynamic programming

A deterministic finite automaton (DFA) corresponding to the sc-LTL specification

is used to guide the computation of a control policy that (conservatively) solves

Problem 36. Informally, the modes (i.e., states) in the DFA represent progress towards

the completion of the task, and the goal is to compute a control policy that maximizes

the probability that the system will reach an accepting mode of the automation

from its initial state. However, transitions between modes in the automaton are not

deterministic due to the system’s stochastic noise. Thus, an MDP corresponding to

the DFA is constructed, where the actions correspond to memoryless control policies

that are executed by the continuous system. A control policy selects the appropriate

action (i.e., memoryless control policy) at each mode in the automaton.

The product MDP M restricts behaviors to those that satisfy both the system

dynamics (5.1) and the deterministic finite automaton Aϕ representing the sc-LTL

formula ϕ.

Definition 37. For a system of the form (5.1) with state space X, and a deter-

ministic finite automaton Aϕ = (Q, 2AP , δ, q0, F ), the product MDP is given by

M = (S,A, P, s0,F) with

• an infinite set of states S = X ×Q,

• an infinite set of actions A, and
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• initial state s0 = (x0, q) such that q = δ(q0, L(x0)).

The compact action set A corresponds to all possible memoryless control policies for

the original system. Each control policy a ∈ A induces a transition probability between

states inM as

P ((x, q), a, (x′, q′)) =

P (x, a, x′) if q′ = δ(q, L(x′))

0 otherwise,

where P (x, a, x′) is the probability density function of system (5.1) transitioning from

state x ∈ X to state x′ ∈ X under the memoryless control policy a ∈ A.

The accepting product states F are lifted directly from F , i.e., state (x, q) ∈ F if

and only if q ∈ F .

It is shown in [150] that Problem 36 (in discrete time) can be solved by performing

dynamic programming onM. Here, the value function V : S → R maps each product

MDP state to a scalar. All accepting states s ∈ F are initialized to V (s) = 1. All

states s ∈ F0, where F0 is the set of all states that cannot reach F , are initialized to

V (s) = 0. The value function for the remaining states x ∈ S\(F ∪ F0) can then be

computed by dynamic programming [150].

Remark 38. Although an MDP is used to model the automaton, an expensive ab-

straction of the system itself as an MDP is not performed.

5.2.2 Stochastic constrained reachability

The stochastic constrained reachability problem is now defined, which corresponds to

an action in the MDP in Section 5.2.1. A solution to this problem is a control policy

that maximizes the probability that the system reaches the boundary of set X2 before

reaching the boundary of set X1. This stochastic reachability problem always has an

optimal memoryless policy [155].
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Problem 39 (Stochastic constrained reachability). Given a system of the form (5.1)

and sets X1, X2 ⊆ X, compute a control policy µ∗ that maximizes the probability that

the system reaches the boundary of set X2 before reaching the boundary of set X1.

Solving a stochastic constrained reachability problem is generally undecidable [156].

However, there exist numerous sound algorithms that compute solutions to con-

strained reachability problems using PDE-based methods [2, 157, 14, 158].

The standing assumption is made that there exists an oracle for computing a

solution to a stochastic constrained reachability problem that under-approximates the

probability of reaching the goal set. This method is denoted by CstReach(X1, X2),

with constraint set X1 and reach set X2. For a given query, CstReach returns a

memoryless control policy µ∗. A method to solve the CstReach problem is now given

with an under-approximation for the case when the stochastic reachability problem

has a particularly simple form.

5.3 Composition of Solutions

The superposition principle can be used to construct solutions to arbitrary specifica-

tions from the solutions of individual specifications over labeled regions. The method

consists of two parts, the calculation of individual solutions for individual propositions

in Algorithm 3, and the generation of solutions to a complete reachability problem in

Algorithm 4.

The development of Algorithm 3 begins with the observation that the transformed

Hamilton-Jacobi-Bellman PDE (1.27) is linear. The importance of linearity in devel-

oping solutions to PDEs is well known, and in particular the following theorem will

prove useful.

Theorem 40. (Superposition Principle [94]) Given a pair of partial differential bound-

ary value problems L (Ψi) = 0, i = 1, 2 on Ω, where L is an arbitrary linear differential

operator, with boundary conditions Ψ1 = f , Ψ2 = g on ∂Ω, then Ψ∗ = Ψ1 + Ψ2 is the

solution to the boundary value problem with Ψ∗ = f + g on ∂Ω.
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Algorithm 3 Pre-processing of constituent solutions
Given compact domain Ω, and labeled regions R = {Ri}:

1. Set ∂Φ = {∂Ω, {∂Ri}}

2. Set ψ0 |∂Ω= C, null elsewhere

3. For each Ri ∈ R

(a) Set ψ0 |∂Ri= 0

4. Solve for Ψd with PDE constraints (1.27) and boundary conditions Ψd |∂Φ=
e−ψ0

5. For each Ri ∈ R

(a) Solve for Ψi
p according to (1.27) with boundary conditions Ψi

p = 1 on ∂Ri,
Ψi
p = 0 on ∂Φ\∂Ri

6. Return
{

Ψd,
{

Ψi
p

}}

Algorithm 4 Generation of Value function
Given solution to Algorithm 3

{
Ψd,

{
Ψi
p

}}
, and a set of penalties Ci for each labeled

region in R:

1. Initialize Value function Ψ∗ := Ψd

2. For each region Ri ∈ R

(a) Set Ψ∗ := Ψ∗ + Ci ·Ψi
g

3. Return Ψ∗
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The proposed method is to solve the problem separately for each labeled region.

The activation of these regions as either goal regions or obstacles as part of a specifi-

cation is then accomplished through superposition of the solutions of each individual

activated region.

To begin, suppose all labeled partitions as well as the domain are given. First,

construct the default solution Ψd as that for which the boundary of the region is taken

into account. The result is the simple boundary value problem

0 = −1

λ
qΨd + fT (∇xΨd) +

1

2
Tr ((∇xxΨd) Σ) ,

Ψd |∂Ω = 1, (5.2)

Ψd |∂Φ\∂Ω = 0.

The next step is the calculation of a solution primitive Ψ for an individual labeled

region R. Recall that such solutions will be added, and it is therefore necessary

that the solution not alter the boundary values at other labeled regions. Thus, the

boundary conditions for this problem are set to

Ψ |∂Φ\∂R= 0.

Note that these conditions are also set for the domain boundary ∂Ω ⊂ ∂Φ. When solu-

tions constructed in this manner are superimposed, the resultant boundary conditions

then have the correct values. The approach is illustrated graphically in Figure 5.1.

Remark 41. Note that composing solution in this manner is not a form of averaging

the solution primitives. The principle of superposition dictates that the solution will

match exactly the composite problem. Although the composite solution is constructed

by simple addition, the transform (1.26) induces sophisticated behavior.
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Figure 5.1: Illustration of the construction of a solution primitive. On the left the
solution is created for the boundary-only problem with the boundaries of the labeled
regions set to zero, indicated by dashed lines. In the middle, the PDE is solved for
one region activated while all other regions and boundary set to zero. In the last, a
complete solution is shown with the solutions added.

5.3.1 Automata-Guided Task

At each node of the automaton, the specification is reduced to a set of reach-avoid

tasks over the set of regions, with their reach or avoid nature indicated by the relevant

propositions. Given the output O of Algorithm 3, Algorithm 4 generates the Value

function for the current task specified by the node. The reach-avoid regions are

selected, and appropriately scaled by some constant Ci. For each region these scalings

may be collected into a vector of coefficients E = {Ci}i=1,...,|R|. The solutions Ψ =

{Ψi} to these individual solutions are then added and scaled appropriately to produce

the desired solution

Ψ∗ = ET ·Ψ

Once the goal region is reached, the current node on the graph is transitioned accord-

ing to which goal was achieved, and the process repeats.

5.3.2 Dynamic Programming

As the completion of the specification of Problem 36 involves multiple individual

steps, each corresponding to Problem 39, future goals must be weighted according to

their future reward when planning in the current time step. By Bellman’s Principle

of Optimality, this suggests that at stage i the goals should be weighted according to

their cost-to-go when beginning stage i+ 1. By proceeding from the accepting state,
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it is therefore possible to perform dynamic programming for this problem by setting

the boundary conditions, i.e., the vector E , for precedent problems according to their

subsequent cost-to-go.

Dynamic programming in this setting therefore proceeds as follows. The Deter-

ministic Finite Automaton representing the temporal specification is constructed, and

the final accepting states are selected. Each final-stage stochastic reachability prob-

lem is then solved using Algorithm 4, with only the final goal regions active. The

cost-to-go at the other labeled regions are then used as boundary conditions at the

previous stage. The process is then repeated until the initial conditions are reached.

5.3.3 Temporal Boundary Conservatism

Several simplifying assumptions are necessary in the creation of the superposition

framework that introduce a degree of conservatism. The first of these is that the

boundary conditions remain consistent for all reachability problems, requiring that

boundary conditions for all regions be prescribed. Unfortunately, this prevents the

elimination of some regions, for example if an obstacle is not necessarily to be avoided

at some stages of the task. A straightforward method to fix this issue is to penalize

the boundary conditions until their desirability achieves a lower value than that of

the surrounding domain, i.e., such that ∂Ψ
∂n
|Oi≥ 0 for n a normal vector on the surface

of Oi. The effect is that the desirability of reaching this deactivated region is lower

than it would otherwise be. Although this will result in an approximation error,

the approach only overstates the expected cost of reaching the goal, resulting in a

unnecessarily conservative but sound policy.

A second caveat is that the efficient construction of value functions also requires

that the boundary of each region be weighted according to a constant value. To

facilitate this approach, weight each region R according to its worst-case cost-to-go,

that is, the lowest desirability value along the region boundary. This again results

in a conservative but sound policy, with the solution treating some boundary values

with a higher cost than is truly the case.
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A last difficulty arises in that it is impossible to calculate a priori the exact cost-

to-go from the boundary of the previous stage region. This is prevented by Steps 2

and 3 of Algorithm 4, which prescribe boundary conditions along all labeled regions,

preventing us from calculating what the cost-to-go would be if that region was not

present. It is possible to raise the boundary condition from the region whose cost-

to-go is to be approximated until it is greater than all neighboring states, i.e., such

that the gradient away from the region is negative. This implies that the cost to go

from the boundary of the region is greater than it would have been otherwise, and

provides, again, an under approximation of the satisfaction probability.

5.3.4 Introduction of New Propositions

Once Algorithm 3 has been completed, it is still possible to add a newly created region

to the problem. The need could arise from varying requirements over the course of

execution, due to perhaps the introduction of a previously unseen obstacle, or if it

desirable to completely eliminate a region from further consideration.

Given an existing specification ϕ with solution Ψ, there may be a need to add a

proposition a to an unlabeled region A in the domain (A may have no intersection

with existing labeled reigons). The value of the solution must be adjusted to match

φ(x) |∂A= C. The existing desirability is captured from the boundary ∂A, and the

boundary value problem is solved with boundary conditions

φ |∂A = Φ(x),

φ |∂Φ\∂A = 0,

with solution denoted Ψe. This captures the effects of the existing solution along

∂A upon the rest of the solution. The process is repeated with the new boundary

conditions

φ |∂A = 1,

φ |∂Φ\∂A = 0,
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Algorithm 5 Patching of value function with the introduction of a new region.
Given primitive set

{
Ψd,

{
Ψi
p

}}
on domain Φ with boundaries ∂Φ, task β, and new

region Rn:

1. Compose solution Ψo to task β without region Ra using Algorithm 4

2. Set ψs := Ψo |∂Ra

3. Solve (1.27) for solution Ψe with boundary conditions Ψe |∂Ra= ψs, Ψe |∂Φ\Ra= 0

4. Solve (1.27) for solution Ψn with boundary conditions Ψn |∂Ra= 1, Ψn |∂Φ\Ra= 0

5. Construct new solution Ψ∗ = Ψ + (γΨn −Ψe) where γ = C

6. Return Ψ∗

Figure 5.2: Visualization of Algorithm 5. On the left, the solution for a given task
is extracted along the boundary of the new region. In the middle, the solution is
generated for the desired boundary conditions along the new region while all others
are set to zero. In the last, the boundary is set to its desired value while all other
boundaries are set to zero.

producing solution Ψn. The new solution with the added boundary conditions may

then be constructed. Note however that this new solution is particular to the bound-

ary conditions prescribed on ∂Φ, and cannot be scaled and used as part of the super-

position framework.

5.3.5 Complexity

The primary cost in this framework is the calculation of the solution to the PDE (1.27),

which must be computed once for each element of R, and once more for the bound-

aries of all elements R set to zero. The Finite Difference Method has complexity

O
((

1
h

)d) for discretization length h and state space dimension d. Methods based on
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Monte Carlo sampling, such as Feynman-Kac, are known to have accuracy that scale

independently of state space dimension at O(n
1
2 ) where n are the number of samples

used in the estimation process. More recently, methods to directly solve linear PDEs

that scale linearly with dimension have also appeared [120].

The computation of the deterministic finite automaton for the specification is

worst-case doubly exponential in the size of the specification [159]. The convergence

of the value iteration for the specification MDP is guaranteed as the continuum of

actions exists in a compact set, and the costs of the actions are non-negative [155].

Investigation of the specific convergence rate in this context is the subject of future

research.

The main advantage of the framework presented lies in the composition of solu-

tions. At each step in the automaton it is necessary to calculate the solution to a

reach-avoid problem. This is done through simple vector addition of the primitives

in Algorithm 4. As all primitives are used, this is an O (|R|) operation, but with a

quite small leading constant as vector addition is computationally negligible. Denot-

ing the method of calculating an individual PDE solution as having complexity O(p),

Algorithm 3 requires O (|R| p) time.

5.4 Temporal Examples

The approach is illustrated on two examples. The first example illustrates the method,

and the second example shows how the compositional approach scales with task com-

plexity. For simplicity, the finite difference method for solving the HJB PDE is used.

The standard approach to such problems relies on a discrete abstraction with transi-

tion probabilities gained from Monte Carlo simulation [145]. These simulations create

a high computational burden, taking as much as several hours, as well as approxima-

tion error in the model. These issues are avoided in the approach, with computation

time in the tens of seconds. In both of these examples a nonlinear two dimensional

example is used, as it facilitates visualization, but also demonstrates the generality

of the method.
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Figure 5.3: Results for last stage cost-to-go of Example 1. The domain is
x, y ∈ [0, 1]2\C for C = {x ∈ [0.2, 0.6], y ∈ [0.25, 0.4]}. The goals are A =
{x ∈ [0.7, 0.85] , y ∈ [0.7, 0.8]}, B = {x ∈ [0.7, 0.8] , y ∈ [0.15, 0.25]}. A trajectory of
the closed loop system begins at the grey square.

Figure 5.4: Individual desirability primitives for regions A, B on the left and right
respectively.
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Figure 5.5: Results of using composition method on the two region visit task of
Example 1.

Figure 5.6: Exact and approximate cost-to-go before either region is visited on the
left and right respectively. A trajectory, beginning from the grey square, is shown
in black when following the induced policies. After visiting A the trajectories are
continued in Fig. 5.3, 5.5.
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5.4.1 Two Goal Temporal Example

In the first example, a mobile agent is tasked to visit two goal regions A and B while

remaining in an obstacle-free bounded domain S. The formal specification is

ϕ = 3A ∧3B ∧�S

and the system dynamics, taken from [160] are given by

 dx

dy

 =

 −2x− x3 − 5y − y3

6x+ x3 − 3y − y3

+

 u1

u2

 dt

+

 dω1

dω2


The state cost is set to q = 0.4 with control penalty is R = 0.05I2×2. In Figure 5.3 the

geometry is shown along with the cost-to-go in the last stage of the automaton after

having visited one of the goals. The value function for the first stage is calculated

and shown in Figure 5.6a.

The problem is then repeated using the compositional approach. The primitives

are shown in Figure 5.4. These are superimposed to produce the solution from the

last stage, shown in Figure 5.5, where the worst-case cost-to-go is applied to the last

visited region. These worst-case values are then used as the boundary conditions for

the first-stage value function, shown in Figure 5.6b.

5.4.2 n−Goal Temporal Example

The previous example is expanded upon, now scaling the number of goal regions n

up to ten in a larger domain Ω = [0, 130]2 with discretization size h = 1.0. The goals

correspond to labeled regions Ri with width 4, and are equally spaced in the domain

Ω. Specifically, the specification is

ϕ = 3A1 ∧3A2 ∧ . . . ∧3An ∧�S.
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Figure 5.7: Calculation times using exact and superposition method for visitation
problem with n regions to visit.

The problem can be solved exactly using the method of superposition as before.

As the exact approach requires the solution of a PDE for each edge of the automa-

ton, the computation also scales with the size of the automaton. In contrast, using

superposition the policy at each automaton node requires only vector additions and

a maximization operation over a vector that describes the region boundaries. Calcu-

lation times for the two are shown in Figure 5.7.

5.5 Conclusions

A method for efficiently synthesizing control policies for stochastic nonlinear systems

with syntactically co-safe LTL specifications was introduced. The method was de-

veloped for generic systems, but when a certain structural assumption was made on

the noise entering the system an algorithm with significant computational gains was

introduced. The method relies on pre-computed primitives that relate the solution

to a stochastic optimal control problem to the reachability of an individual region.

Solutions to individual reach-avoid tasks are cheaply constructed by simple vector

addition of these pre-computed solutions, allowing for the individual stages of a task

specified by an automaton to be solved quickly. The method relies on the state space
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of the original system and requires no a-priori discretization or cellular decomposition.

The drawbacks of this method are that all boundary conditions for the associated

PDE must be specified, making it difficult to treat a labeled region as neither a goal

or an obstacle. A region may be removed exactly, but this requires the solution of

an additional PDE boundary value problem, and is not applicable when any of the

other boundary conditions are changed. Instead, it is possible to construct a sound

but conservative solution with mild penalty on the inactive regions. While inexact,

the method has many benefits, among which is the ability to rapidly adapt to new

specifications over the existing labeled regions in real time.
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Chapter 6

Implications and Future Work

The methods and results presented in this thesis can be potentially applied to prob-

lems beyond those directly addressed in the previous chapters. Indeed, the ability to

compute solutions to high dimensional problems has far-reaching implications. Chief

among these is the ability to solve general path planning controllers, along with cor-

responding optimal feedback controllers, for complex, realistic problems. However,

other future directions of possible interest are addressed here before concluding.

A common task in control theory isn’t the generation of trajectories, but instead

the stabilization of a system around an equilibrium point. In these problems it is

desirable to not only design these controllers, but also to prove their stabilization

properties. This is the emphasis of Lyapunov theory, and extensions to this framework

are discussed that can make such analysis possible. Other variants of these problems

are discussed, including Markov decision processes as well as the Hamilton Jacobi

Bellman equation when the structural assumptions for linearity do not hold.

6.1 Control Lyapunov Functions

Recall the review of Control Lyapunov Functions from Section 1.3.3, wherein the

definition of a Lyapunov function (1.15) is augmented to allow for energy dissipation

with the assistance of a control signal. For a system defined as in Section 1.4

dxt = (f (xt) +G (xt)ut) dt+B (xt)Ldωt (6.1)
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the requirement for a function V (x) to be a Control Lyapunov Function (CLF) is

inf
u

[∇xV · f(x) +∇xV ·G(x)u] < 0. (6.2)

If it is assumed that the Lyapunov function candidate is a solution to the Hamilton

Jacobi Bellman equation, then

∇xV [f +Gu∗] = (∇xV )T f + (∇xV )T GR−1GT (∇xV ) (6.3)

= −q − 1

2
(∇xV )T GR−1GT (∇xV ) (6.4)

−1

2
Tr
(
(∇xxV )BΣεB

T
)
.

It is immediately apparent that the Hamilton Jacobi Bellman solution is in fact

a CLF. In particular, if stabilization is the goal, then the control problem domain,

either compact or unbounded, has an internal boundary condition at the equilibrium

point, typically taken to be the origin by change of coordinates.

If the exact solution is unavailable, then it may be seen that a sufficient condition

for an approximate value function be a CLF is for the Hessian term to have the

constraint

∇xxV � 0. (6.5)

In turn, returning to the logarithmic transformation of Equation (1.26), Eq. (6.5)

takes the form:

∇xxV =
λ

Ψ2
(∇xΨ) (∇xΨ)T − λ

Ψ
∇xxΨ.

Implying that this sufficient condition may be enforced by requiring

∇xxΨ � 0. (6.6)

Thus, if a near-exact solution is available, from the high dimensional numerical

technique presented here or elsewhere, then a CLF has also been calculated. As well,

if an approximate solution is sufficient, then the polynomial optimization techniques
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are appropriate. In practice, it was found that internal boundary conditions became

difficult to incorporate for high dimensions for the high dimensional technique. These

situations are likely ameliorated with the use of different discretization techniques be-

yond the high order finite difference techniques used in this work. In particular, the

use of methods that directly deal with this problem, such as the Finite Increment

Calculus [161], Essentially Non-Oscillatory (ENO) [162], or Discontinuous Galerkin

schemes promise to allow for the well-conditioned inclusion of interior boundaries,

including that of an exit point located at an equilibrium point, a necessity for stabi-

lization tasks and Control Lyapunov examples.

6.2 Sum of Squares Programming in High Dimen-

sions

The two central approaches presented in this work each have distinct advantages.

The sum of squares-based approach developed in Chapter 2 generates a degree of

guarantee, certifying the pointwise distance from optimal for any suboptimal solution

generated. In turn, the high dimensional numerical technique of Chapter 3 has com-

putational advantages, but for any given discretization level, little is known about its

suboptimality. The synthesis of these two techniques is therefore an exciting research

direction.

Key to the development of the separated representation approach is the division

of computation into operations involving single dimensions. Once complete, the so-

lution is a high dimensional tensor composed of a summation of rank-1 tensors, each

individually composed of vectors in single dimensions, i.e., from (3.1)

f (x1, . . . , xd) ≈
r∑
l=1

slφ
l
1(x1) · · ·φld(xd). (6.7)

An observation is that in the continuous domain, each rank-1 term is simply a mono-

mial, and the separated representation has simply given a method to calculate a poly-
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nomial solution with few additive terms. Indeed, if the solution is smooth, it may

be possible to return to the continuous domain by simply projecting the discretized

solution onto a monomial basis. For solution

F ≈
rF∑
l=1

sl

d⊗
i=1

F l
i (6.8)

each term may be approximated as the one that solves

min
φli(x)
‖φli(x)− F̃

l

i‖`∞ (6.9)

where F̃ is the step-wise approximation to F . Such a problem may be solved easily

using sum of squares programming [163].

The resulting sparse solution basis may then be used in the sum of squares frame-

work of Section 2.1, where now the parameterization of the candidate solution Ψ no

longer requires a full monomial basis, which grows factorially with dimension. In-

stead, if a low separation rank is available, the monomial basis will also have low size,

and the problem made tractable as sums of squares problems have complexity that

grow with the number of monomial basis [36].

This approach to generating a sparse monomial basis for polynomial optimization

problems differs from the central approach in the literature. Previously, existing

methods have focused on simplifying the monomial basis a priori from problem data.

These approaches have included a focus on sparsity in the problem data [164], a focus

on Newton polytopes of the data, allowing for monomial basis guaranteed to be unused

to be discarded [111, 163], or more generally through a technique that generated a

simplified representation of a face of the SOS cone via linear programming [111].

Instead, the approach is data-driven, and uses a numerical technique to generate

a sparse basis a-posteriori of solving a version of the problem. It is therefore a

computationally intensive technique, but serves as the only current method to perform

polynomial optimization in high dimensions.
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6.3 Linear Markov Decision Processes in High Di-

mensions

The Hamilton Jacobi Bellman equation has an analogue in discrete state spaces, that

of linear MDPs, detailed in Section 1.5.1. In the past these techniques have been

favored for computation of the global solution due to their better numerical behavior

in practice. In the MDP setting, linearity corresponds to linear sets of equations

being sufficient to solve for the value function, without recourse to value or policy

iteration. This linear MDP framework gives additional design degrees of freedom,

allowing for continuity not to be required in the transition system, and for better

behavior around internal boundary conditions. It is therefore appealing to extend

the separated representation framework to the linear MDP setting.

6.4 General Hamilton Jacobi Bellman Equations

The focus of this work has been on the development of techniques that take advantage

of the linearity. This is a key limitation of this work in that it requires the struc-

tural assumptions of (1.25) to obtain a linear set of equations for which ALS may be

applied or for polynomial candidate solutions to be applied. The general nonlinear

value function may not be directly solved. However, it has been shown that iterative

linearization of the nonlinear equations may be constructed in such a manner as to

solve the more general Hamilton Jacobi Bellman problem without these structural

assumptions [137]. Thus, although the computational effort of the algorithms pre-

sented in this thesis would necessarily grow, this work may offer an avenue through

which to tackle the general problem.

6.5 Software

The work presented in this thesis contained a number of computational algorithms.

This substantial code base is currently under development and will be released soon
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under an academic license, in addition to a publication detailing its use. It is hoped

that the ability to solve the Hamilton Jacobi Bellman equation in high dimensions will

prove a valuable asset to researchers in the future. A software package which includes

the algorithms developed in this thesis will be available at the authors webpage http:

//www.matanyahorowitz.com/hd_soc.html.

6.6 Conclusion

The spirit of this work has been the development of tractable, theoretically grounded

computational techniques for the synthesis of solutions to the Hamilton Jacobi Bell-

man Equations. As the work draws to a close, the contributions of this thesis are

summarized below.

Semidefinite Programming for Stochastic Optimal Control

In Chapter 2 the linear Hamilton Jacobi Bellman equation was relaxed to a set of

linear differential inequalities. This relaxation led to a semidefinite programming

problem to approximately solve optimal control problems for stochastic, nonlinear

systems. Theoretical arguments supported the relaxation used, demonstrating that

the relaxed solutions were in fact pointwise upper and lower bounds, and that a series

of solutions with decreasing gap could be produced through a hierarchy of relaxations.

Section 2.2 built upon these results, improving the accuracy of the method via

domain partitioning. Partitioning was shown to have significant computational ben-

efits, allowing for the optimization problem to be significantly parallelized. These

methods were also shown to be well motivated theoretically, producing improving

upper and lower bounds. The method was shown to be widely applicable to elliptic

and parabolic problems in Section 2.3, allowing for uncertainties in the problem data

to be incorporated, crucial for Uncertainty Quantification Problems.

http://www.matanyahorowitz.com/hd_soc.html
http://www.matanyahorowitz.com/hd_soc.html
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High Dimensional Optimal Control

Chapter 3 introduced the Separated Representation for the solution to the linear

Hamilton Jacobi Bellman equation, and it was shown that this technique is partic-

ularly well suited for optimal control problems. Numerical methods were developed

and applied to several problems that had been, until this point, impractically large to

be solved exactly. A twelve dimensional quadcopter stabilization problem was solved

on the order of minutes with the framework.

Navigation Functions

Chapter 4 applied the linear Hamilton Jacobi Bellman equation to the study of partic-

ular classes of problems in the robotics literature. The first of these were Navigation

Functions. In light of the Hamilton Jacobi Bellman equation, it was shown how tech-

niques developed previously could be related to the optimal control theory presented

in this thesis. It was demonstrated that these techniques based on the Laplace Equa-

tion could in fact be shown to be optimal for a certain criteria if they were simply

altered via a logarithmic transform.

Temporal Problems

Chapter 5 analyzed the problem of Linear Temporal Logic-based planning. There, a

dynamic programming argument demonstrated that the optimal path through mul-

tiple temporal sub-tasks could be linked via boundary conditions in the Hamilton

Jacobi Bellman equations of distinct optimal control problems. The linearity of the

particular Hamilton Jacobi Bellman equation under study was then leveraged to pre-

calculate solution primitives which could be combined at runtime at essentially zero

cost. This led to a divorce between the size of the automaton generated by LTL

specifications and computational effort.
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Implications

Chapter 6 considered the possible significance of the results in this thesis beyond those

presented. A number of related problems are significantly effected by the development

presented. In particular, the promise of developing solutions to the general Hamil-

ton Jacobi Bellman equation, detailed in Section 6.4, would eliminate the structural

assumptions made throughout this work. Section 6.1 also detailed the impact of the

methods throughout this work on the development of Control Lyapunov Functions in

practice.

6.6.1 Final Thoughts

As emphasized in the introduction of the work, the key to solving the difficult prob-

lems in the realm of control theory will be the development of techniques that dras-

tically alter the computational considerations of these problems. Techniques such

as those presented here hint at the feasibility of rapidly computable planning for

robotics, automated systems, and artificial intelligence.
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