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Abstract

This thesis is divided into two parts: interacting dark matter and fluctuations in cosmology. There

is an incongruence between the properties that dark matter is expected to possess between the early

universe and the late universe. Weakly-interacting dark matter yields the observed dark matter relic

density and is consistent with large-scale structure formation; however, there is strong astrophysical

evidence in favor of the idea that dark matter has large self-interactions. The first part of this

thesis presents two models in which the nature of dark matter fundamentally changes as the universe

evolves. In the first model, the dark matter mass and couplings depend on the value of a chameleonic

scalar field that changes as the universe expands. In the second model, dark matter is charged under

a hidden SU(N) gauge group and eventually undergoes confinement. These models introduce very

different mechanisms to explain the separation between the physics relevant for freezeout and for

small-scale dynamics.

As the universe continues to evolve, it will asymptote to a de Sitter vacuum phase. Since there

is a finite temperature associated with de Sitter space, the universe is typically treated as a thermal

system, subject to rare thermal fluctuations, such as Boltzmann brains. The second part of this the-

sis begins by attempting to escape this unacceptable situation within the context of known physics:

vacuum instability induced by the Higgs field. The vacuum decay rate competes with the production

rate of Boltzmann brains, and the cosmological measures that have a sufficiently low occurrence of

Boltzmann brains are given more credence. Upon further investigation, however, there are certain

situations in which de Sitter space settles into a quiescent vacuum with no fluctuations. This reason-

ing not only provides an escape from the Boltzmann brain problem, but it also implies that vacuum

states do not uptunnel to higher-energy vacua and that perturbations do not decohere during slow-

roll inflation, suggesting that eternal inflation is much less common than often supposed. Instead,

decoherence occurs during reheating, so this analysis does not alter the conventional understanding

of the origin of density fluctuations from primordial inflation.
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Part I

Interacting Dark Matter
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The standard model of cosmology describes a universe that is dominated by the vacuum energy

Λ and collisionless cold dark matter (CDM). The success of the ΛCDM model is based on its well-

established record of describing the features of the large-scale structure observed in the universe.

On smaller scales, however, the picture is much less clear. N -body simulations of collisionless CDM

appear to disagree with observations on small scales (e.g., the core-cusp problem, the missing-

satellites problem, and the too-big-to-fail problem). These discrepancies motivate models of dark

matter with properties that differ significantly from the standard paradigm.

The particle physics properties of dark matter are important for three distinct aspects of its

behavior: they determine how the initial abundance of dark matter arose, they govern how the dark

matter distribution evolves and influences structure formation, and they delineate the possible ways

in which dark matter may be detected. Of course, these three roles are not typically independent,

since they all depend on the prescribed interactions between the dark matter particles themselves

and also between dark matter and the Standard Model (SM). These connections often provide a

powerful motivation for particular dark matter candidates—for example, the freezeout abundance

of weakly-interacting massive particles (WIMPs) points to new physics at the weak scale, which in

turn leads to an attractive connection between dark matter and proposed solutions to the hierarchy

problem, such as weak-scale supersymmetry. Although weak-scale annihilations of dark matter

yield the observed relic abundance, weak dark matter interactions are negligible during structure

formation, resulting still in the aforementioned discrepancies on small scales.

The particular solution to the small-scale structure problems we focus on here is to give the

dark matter substantial interactions beyond the weak scale. Dark matter with mass mX may have

large annihilation cross sections of 〈σv〉 ∼ 3 × 10−19(mX/GeV) cm3/s, which soften halo cusps [1]

(but do not address more recent astrophysical anomalies that can be explained with self-interacting

dark matter). The clear obstacle to simple implementations of this idea is that the annihilation

cross section is far too large to obtain the correct relic abundance, which requires a weak-scale cross

section of 〈σv〉 ∼ 3 × 10−27 cm3/s. In Chapter 1, we consider a mechanism that allows the dark

matter annihilation cross section to increase between freezeout and structure formation [2]. The

dark matter properties depend on a “chameleon” scalar field, whose value in turn depends on the

local matter density. As the universe expands, the matter density decreases and the scalar field

value changes. By choosing appropriate forms for the effective potential of the chameleon, the dark

matter annihilation and scattering cross sections may increase many orders of magnitude between

freezeout and today.

Alternatively, if dark matter is self-interacting (able to scatter elastically with itself) [3–7], sim-

ulations show that the core sizes and central densities of dwarf spheroidal galaxies, low-surface-

brightness spirals, and galaxy clusters can all be brought in line with observations [8–11]. Modifying

ΛCDM to incorporate self-interacting dark matter (SIDM), sometimes called the ΛSIDM model, is
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consistent with constraints from the Bullet Cluster, measurements of dark matter halo shapes, and

subhalo survival requirements. To make the simulations and observations consistent, the ratio of the

dark matter self-interaction cross section to its mass should be in the range σ/mX ∼ 0.1–10 cm2/g.

The requirement of such strong self-interactions eliminates from consideration all of the most studied

dark matter candidates, including WIMPs, axions, and sterile neutrinos. However, these scattering

cross sections are nuclear scale (1 cm2/g ' 1.78 barn/GeV), while annihilations need to be weak

scale for the correct relic abundance. In Chapter 2, we consider dark matter charged under a hidden

non-abelian SU(N) gauge symmetry [12]. In the early universe, the dark matter is an SU(N)-charged

particle that is able to satisfy the relic abundance constraint; in the late universe, the dark matter

is a confined, composite particle that is able to have large interaction cross sections to satisfy the

small-scale constraints.
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Chapter 1

Dark Matter with
Density-Dependent Interactions

1.1 Introduction

We explore the idea that the dark matter cross section might be much larger now than it was at

freezeout, due to the evolution of a background field. In a cosmological context, the evolution of

background fields can assert a significant influence on the properties of dark matter as a function of

spatial location or cosmic epoch [13–22]. A straightforward way to achieve such effects is to invoke a

light scalar field that interacts with dark matter and/or ordinary matter as well as through its own

potential, and whose expectation value feeds into the dark matter properties. A popular scenario

along these lines is the “chameleon mechanism,” which acts to screen light, cosmologically-relevant

degrees of freedom to protect them from precision local tests of gravity [23–27].

We consider dark matter that interacts through a gauge symmetry with a coupling constant

that depends on a chameleonlike scalar field (the effects of chameleon vector bosons on laboratory

experiments were considered in [28]). Just as the properties of a cosmologically-relevant scalar can

be drastically modified in the presence of local density inhomogeneities or after evolving over cosmic

time, so too may the interactions of dark matter be modified. We are able to find a model in

which the late-time interaction strength is considerably higher than that at freezeout—although

admittedly, this behavior does not seem generic.

We begin by reexamining the conventional story of dark matter freezeout according to the Boltz-

mann equation, but with the additional ingredient that the dark matter properties are evolving with

time. We then look at specific models featuring a Dirac dark matter particle and a U(1) gauge sym-

metry that is spontaneously broken, along with a chameleon scalar field. We study the cosmological

evolution of this coupled system and calculate the dark matter properties, including annihilation

and scattering cross sections. Finally, we exhibit numerical solutions to a specific model, showing

that the annihilation cross section can increase substantially during cosmic evolution.
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1.2 The General Picture: Evolving Dark Matter in the Early

Universe

Before discussing specific models, let us first consider how the usual story of dark matter freezeout

might be modified if the annihilation cross section depends on the dynamics of another field. In the

next section, we will explore Lagrangians that couple the dark matter to a scalar field that affects

its interaction cross sections. For simplicity, we work in a flat Friedmann-Robertson-Walker (FRW)

universe, described by the metric ds2 = −dt2 + a2(t)×
(
dx2 + dy2 + dz2

)
, with scale factor a(t).

The decoupling of dark matter takes place in the early universe in the radiation-dominated

regime, in which particles with masses m � T are the dominant component of the cosmic energy

budget. To a good approximation, we may therefore ignore contributions from nonrelativistic species

in thermal equilibrium, with the radiation and approximate the energy density as

ρR =
π2

30
g∗T

4 (1.1)

and the entropy density as

s =
2π2

45
g∗ST

3 , (1.2)

where, as usual,

g∗ =
∑

i=bosons

gi

(
Ti
T

)4

+
7

8

∑
i=fermions

gi

(
Ti
T

)4

(1.3)

g∗S =
∑

i=bosons

gi

(
Ti
T

)3

+
7

8

∑
i=fermions

gi

(
Ti
T

)3

(1.4)

and gi is the number of internal degrees of freedom for particle species i.

For T & 300 GeV, g∗S = g∗ = 106.75, which includes all particles in the SM. When 100 MeV &

T & 1 MeV, the electron and positron are relativistic, so g∗S = g∗ = 10.75. At the temperature of

the CMB today, T0 = 2.725 K, g∗S,0 = 3.91, and g∗,0 = 3.36.

Consider a dark sector that was in thermal equilibrium with the visible sector at some very high

temperature scale, below which they decouple effectively enough to consider each sector separately

to be in equilibrium. The visible sector is at temperature T with entropy density s(T ), while the

dark sector is at temperature Td with entropy density sd(Td). The expansion of the universe is

governed by both sectors with

gtot
∗ (T ) = g∗(T ) + gd∗(Td)

(
Td
T

)4

, (1.5)

but quantities in the dark sector (for example, the dark matter annihilation cross section and number
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density) are determined by Td [29].

Since the entropy in each sector is conserved independently, the assumption that the two sec-

tors were in equilibrium at some unification scale at time tu allows us to express the dark bath

temperature in terms of the visible bath temperature at some later time t via

gd∗S(t)

g∗S(t)

T 3
d (t)

T 3(t)
=
gd∗S(tu)

g∗S(tu)
. (1.6)

All SM particles contribute at tu to give g∗S(tu) = 106.75, and all dark particles contribute to

gd∗S(tu). In what follows, we will use the temperature of the visible sector and convert Td to T as

needed. For convenience we write

ξ(t) =
Td(t)

T (t)
=

(
g∗S(t)

gd∗S(t)

gd∗S(tu)

g∗S(tu)

)1/3

. (1.7)

The success of big bang nucleosynthesis (BBN) and the structure of the cosmic microwave back-

ground (CMB) power spectrum place tight bounds on any new relativistic degrees of freedom in the

dark sector. The limit on the effective number of light neutrino species is Nν = 3.24 ± 1.2 at the

95% confidence level (C.L.) [30], which gives

gd∗ξ
4(tBBN) =

7

8
× 2× (Nν − 3) ≤ 2.52 (95% C.L.) (1.8)

for 3 light SM neutrino species [31]. The 5-year WMAP data [32] also bounds the number of neutrino

species by Nν = 4.4 ± 1.5 at the 65% C.L., and the 7-year WMAP data [33] places a tighter lower

limit of Nν > 2.7 at the 95% C.L.

1.2.1 The Boltzmann Equation

Let us assume the dark matter ψ is a stable particle that annihilates with a thermalized annihilation

cross section 〈σv〉. The general Boltzmann equation governing the number density n of a particle of

mass m is

ṅ+ 3Hn+ 〈σv〉 (n2 − n2
EQ) = 0 , (1.9)

where H is the Hubble parameter

H =
ȧ

a
=

√
8

3
πGρR =

√
4π3Ggtot

∗
45

T 2 , (1.10)

nEQ is the equilibrium number density

nEQ ≈
g

(2π)3

∫
d3~p e−E/Td =

g

2π2
m2ξTK2

(
m

ξT

)
, (1.11)
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and K2 is the modified Bessel function of the second kind of order two. Generalizing the traditional

treatment, we allow for the possibility that the mass of the dark matter m̃ψ(φ) is a function of a

real scalar chameleon field φ, and denote φ-dependent masses and couplings with a tilde.

It is convenient to scale out the effects of the expansion of the universe by defining

Y ≡ nψ
s

(1.12)

(nψ(x) and Y (x) are taken to be independent of φ) and to use a new independent variable, related

to the cosmic time t through

x(t) ≡ mT

T (t)
, (1.13)

where mT is some constant mass scale. In the usual derivation, mT is chosen to coincide with the

dark matter mass; however, since our dark matter has varying mass, we use this constant parameter

instead. Defining

b =

√
45

4π3G

1

mT
(1.14)

allows us to write
dx

dt
=
mT

bx

√
gtot
∗ , (1.15)

which can be used to rewrite the Boltzmann equation for the dark matter as

Y ′(x) +
B

x2
(Y 2 − Y 2

EQ) = 0 . (1.16)

Here a prime denotes a derivative with respect to x, and

B = 〈σv〉 2π2

45

g∗S√
gtot
∗
bm2

T , (1.17)

which may depend implicitly on φ in our model via a φ dependence in the cross section. Note that,

in terms of these new variables, the equilibrium term is

YEQ =
45g

(2π2)2g∗S

(
x
m̃ψ(φ)

mT

)2

ξK2

(
x

ξ

m̃ψ(φ)

mT

)
, (1.18)

with g = 2 for Dirac dark matter.

At this level, it remains to specify Y (xi), the initial condition for Y . We consider ∆ ≡ Y − YEQ,

the departure from equilibrium, which obeys [34]

∆′ = −Y ′EQ −
B

x2
∆(2YEQ + ∆) . (1.19)

At early times (1 < x� xf ), Y tracks YEQ extremely closely such that ∆ and |∆′| are small. Note
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that in the non-relativistic approximation, T � m̃ψ(φ),

YEQ ∼ x3/2e−(x/ξ)(m̃ψ(φ)/mT ) , (1.20)

so Y ′EQ/YEQ ≈ −m̃ψ(φ)/ξmT and ∆′ ≈ 0. Thus, the required initial condition is

Y (xi) = YEQ(xi) +
x2
i m̃ψ(φi)

2BξmT
, (1.21)

where B(φi) and m̃ψ(φi) are evaluated at the initial value φi = φ(xi).

After the freezeout value xf , Y (x) will asymptotically approach a constant value Y∞. The energy

density of non-relativistic dark matter today is then

ρ0 = m̃ψ(φ0)nψ(x0) = m̃ψ(φ0)Y∞s0

= m̃ψ(φ0)Y∞
2π2

45
g∗S,0T

3
0 . (1.22)

Having generalized the usual treatment of dark matter as a fluid to the case in which there is a

chameleon field determining the dark matter properties, we now turn to specific examples of particle

physics models in which these phenomena might arise.

1.3 Gauged Dark Matter

Consider dark matter to consist of a Dirac fermion ψ, charged under a dark U(1) gauge group with

gauge boson Aµ, and a dark Higgs field Φ that spontaneously breaks the U(1). We also introduce

a chameleonlike field φ that is a real scalar field with properties that depend on the dark matter

energy density. The chameleon couples to the other particles in the dark sector by entering into the

dark matter mass m̃ψ(φ), the U(1) coupling f̃(φ), and other couplings described below. We consider

only an isolated dark sector so that we may investigate the properties of this simple model without

the complications of coupling to the visible sector.

1.3.1 A Toy Model for Varying Coupling

As a first step, let us consider the QED Lagrangian with a real scalar field φ, but in which we allow

the coupling constant e to vary as a function of spacetime [35]. Specifically, it can vary as a function

of φ. Let us write the new coupling as f̃(φ). The Lagrangian is

LQEDφ = −1

2
∂µφ∂

µφ− V (φ)− 1

4f̃2(φ)
FµνFµν + iψ̄ /∂ψ −mψψ̄ψ − ψ̄γµψAµ , (1.23)
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where Fµν = ∂µAν − ∂νAµ. Making the redefinition Aµ → f̃(φ)Aµ, we obtain

LQEDφ = −1

2
∂µφ∂

µφ−V (φ)+iψ̄ /∂ψ−mψψ̄ψ− f̃(φ)ψ̄γµψAµ−
1

4f̃2

[
∂µ(f̃Aν)− ∂ν(f̃Aµ)

]2
. (1.24)

Both Lagrangians are equivalent, but now the gauge transformation reads

f̃(φ)Aµ → f̃(φ)Aµ + ∂µω (1.25a)

ψ → e−iωψ (1.25b)

ψ̄ → e+iωψ̄ . (1.25c)

If we can neglect factors of (∂µf̃/f̃) compared to all other mass scales in the theory (except the

Planck mass), then the Lagrangian simplifies to the approximately gauge-invariant form

LQEDφ ≈ −
1

2
∂µφ∂

µφ− V (φ)− 1

4
FµνFµν + iψ̄ /∂ψ −mψψ̄ψ − f̃(φ)ψ̄ /Aψ (1.26)

with U(1) current

jµ(x) = f̃(φ)ψ̄γµψ . (1.27)

1.3.2 The Cosmological Equations of Motion

We now include gravity and a complex dark Higgs field Φ to break the U(1) symmetry and to give

the dark gauge field a mass. We allow for a varying dark matter mass by using the effective mass

parameter m̃ψ(φ), and in the spirit of effective field theory, we also allow all couplings [not just the

U(1) coupling f̃(φ)] to depend on φ.

Neglecting factors of (∂µf̃/f̃), the action is

S ≈
∫
d4x
√
−g
[
R

16πG
− 1

2
gµν∇µφ∇νφ− V (φ)− (DµΦ)†DµΦ− V0(Φ)

− 1

4
FµνFµν + iψ̄ /Dψ − m̃ψ(φ)ψ̄ψ

]
, (1.28)

where the gauge covariant derivative is Dµ = ∇µ + if̃(φ)Aµ. The equations of motion for the fields

are

(
i /D − m̃ψ(φ)

)
ψ = 0 (1.29)

2φ− V ′(φ)− m̃′ψ(φ)ψ̄ψ − f̃ ′(φ)ψ̄ /Aψ = 0 , (1.30)

where a prime denotes differentiation with respect to φ. Let us assume that the universe is dark-

charge symmetric, so the average charge current density is negligible compared to the dark matter
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number density [see (1.34) below]. Thus, the term proportional to f̃ ′/f̃ should be small compared to

the one containing m̃′/m̃, given that f̃ ′/f̃ ∼ m̃′/m̃ to within a few orders of magnitude—a condition

we will enforce later. We may write this last equation as

2φ− V ′(φ)− m̃′ψ(φ)ψ̄ψ ≈ 0 . (1.31)

We calculate the energy-momentum tensor for ψ by varying the action with respect to the metric.

Taking care to correctly handle the nontrivial metric dependence of the covariant derivative [36], we

have

T (ψ)
µν = − i

2

[
ψ̄γ(µ∇ν)ψ − (∇(µψ̄)γν)ψ

]
+ f̃(φ)ψ̄γ(µAν)ψ , (1.32)

where we have integrated by parts and used the field equation of motion. Taking the trace, we

obtain

gµνT (ψ)
µν = − i

2

[
ψ̄ /∇ψ − ψ̄

←−
/∇ψ
]

+ f̃(φ)ψ̄ /Aψ

= −1

2

[
ψ̄i( /∇+ if̃(φ) /A)ψ − ψ̄i(

←−
/∇ − if̃(φ) /A)ψ

]
= −m̃ψ(φ)ψ̄ψ , (1.33)

where again we have used the Dirac equation for ψ and ψ̄ to obtain the last line. If we model

the dark matter as nonrelativistic dust, its pressure is zero, and the trace of the stress tensor is

approximately given by −ρψ. Thus,

ρψ = m̃ψ(φ)ψ̄ψ . (1.34)

As a final step in this section, we use this result to rewrite the φ equation of motion (1.31) as

2φ− V ′eff(φ) = 0 , (1.35)

where the effective potential is

Veff = V (φ) + m̃ψ(φ)nψ

= V (φ) + m̃ψ(φ)Y (x)
2π2

45
g∗S

(mT

x

)3

. (1.36)

1.4 Chameleon Behavior

With a complete model in place, we now turn to a detailed investigation of the dynamics. We first

examine the chameleon field, which is central to the effect we seek. Assuming that φ is homogeneous
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and isotropic, the equation of motion becomes

φ̈+ 3Hφ̇+ V ′(φ) + m̃′ψ(φ)nψ = 0 . (1.37)

It is convenient for seeking numerical solutions to work with a dimensionless variable

P ≡ φ

mT
(1.38)

and to use x as our independent variable. The equation of motion is then

P ′′(x) +
2

x
P ′(x) +

b2x2

m3
T g

tot
∗

dV

dφ

∣∣∣∣
φ=PmT

+
2π2b2

45x

g∗S
gtot
∗

dm̃ψ

dφ

∣∣∣∣
φ=PmT

Y (x) = 0 . (1.39)

We choose the initial conditions for φ to begin at the minimum of its effective potential and to move

with the same initial velocity as the changing minimum. The minimum φmin solves the equation

V ′eff(φmin) = 0, so one of the initial conditions for this equation can be obtained by evaluating this

expression at xi, using the relevant value for Y (xi) from (1.21). Furthermore, since φmin is a function

of x, the initial velocity is found simply by taking a derivative and using the Boltzmann equation to

obtain the relevant value for Y ′(xi).

1.4.1 Exponential Potentials

Our goal here is to work out a single example model that exhibits the effects we are investigating,

while at the same time remaining compatible with experimental constraints. For simplicity, we will

choose exponential functions, which also have the nice feature that observables approach a fixed

asymptotic value at late times.

With these comments in mind, we therefore choose the form of the effective potential and U(1)

coupling to be

V (φ) = Λ4e−φ/m1 (1.40a)

m̃ψ(φ) = mψ

(
1−A2e

−φ/m2

)
(1.40b)

f̃(φ) = e
(

1 +A3e
−φ/m3

)−3

, (1.40c)

where Λ and mψ are constants with dimensions of mass, and e and A2, A3 > 0 are dimensionless.

The term with A2 is necessary to incorporate the properties of ψ into the equation of motion for φ.

The possibility for A3 = 0 (constant gauge coupling) is viable, but we are specifically interested in

increasing the cross section for ψ as the universe expands. We choose this form for f̃ so that both

the annihilation and scattering cross sections, which we calculate below, increase with time.
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The largest energies of the particles in our theory are of order mψ for nonrelativistic dark matter,

since all other particles should be lighter than the dark matter to allow for annihilation. We therefore

require m2, m3 � mψ to suppress higher-dimensional operators involving derivatives of m̃ψ and f̃

when we expand the action. Additionally, we need m1 & Λ to suppress higher-dimensional operators

in the self-couplings of φ.

The effective potential in (1.36) is now

Veff(φ) = Λ4e−φ/m1 +mψ(1−A2e
−φ/m2)Y (x)

2π2

45
g∗S

(mT

x

)3

, (1.41)

possessing a critical point at

φmin = − m1m2

m2 −m1
ln

(
A2

m1

m2

mψm
3
T

Λ4

Y

x3

)
, (1.42)

which is real and finite. In order to generate a mass for the excitations of φ, we require this critical

point to be a minimum, which holds for m2 > m1. The minimum moves with a speed

dφmin

dx
= − m1m2

m2 −m1

(
Y
dY

dx
− 3

x

)
, (1.43)

which is positive (φmin increases with x). Finally, we identify the initial conditions for φ:

φ(xi) = − m1m2

m2 −m1
ln

(
A2

m1

m2

mψm
3
T

Λ4

Y (xi)

x3
i

)
, (1.44)

dφ

dx
(xi) = − m1m2

m2 −m1

(
Y (xi)

dY

dx
(xi)−

3

xi

)
=

m1m2

m2 −m1

(
3

xi
+

m̃ψ

ξmT

YEQ(xi) + (x2
i m̃ψ)/(4BξmT )

YEQ(xi) + (x2
i m̃ψ)/(2BξmT )

)
. (1.45)

To ensure m̃ψ > 0, we require φ > m2 ln(A2) for all φ relevant for our calculation.

1.4.2 An Attractor Solution

A particularly interesting and simple possible evolution for the chameleon field is for it to begin at

the minimum of the effective potential, and then to adiabatically track this minimum as it evolves

cosmologically. This attractor solution [37] is achieved if the physical mass of the chameleon satisfies

mφ,ph =
√
V ′′eff(φmin)� H . (1.46)

If (1.46) holds during radiation dominance, when

HR =
mT

b

√
gtot
∗ x−2 , (1.47)
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we can then avoid solving the coupled differential equations (1.16) and (1.37) and simply use the

expression for φmin for the evolution of φ. Similarly, if (1.46) holds during matter domination, when

HM = H0

(x0

x

)3/2

, (1.48)

then we can easily determine φ0, the value of φ today, which is needed to calculate the values of the

φ-dependent parameters today.

Under the approximation that m2 � m1,

m̃φ,ph ≈
(
A2

2π2

45

mψm
3
T

m1m2

)1/2

Y 1/2g
1/2
∗S x

−3/2 . (1.49)

It follows that HR decreases more rapidly than m̃φ,ph with time, whereas during matter domination,

HM and m̃φ,ph have the same x dependence. We will verify later that these attractor solutions exist

by numerically solving all the relevant equations of motion.

1.5 Particle Physics Interactions and Constraints

In the adiabatic regime described above, we now have all the ingredients necessary to understand

the cosmological evolutions of the fields. We next turn to the particle physics phenomenology of the

model. To do so, we rewrite the action (1.28) without gravity to give the Lagrangian

L ≈− 1

2
∂µφ∂

µφ− V (φ)− (DµΦ)†(DµΦ)− V0(Φ)

− 1

4
FµνFµν + iψ̄ /∂ψ − m̃ψ(φ)ψ̄ψ − f̃(φ)ψ̄ /Aψ , (1.50)

where Dµ = ∂µ + if̃(φ)Aµ.

1.5.1 Breaking the Dark U(1) Symmetry

The potential of the dark Higgs field Φ is chosen so that this field acquires a vacuum expectation

value (VEV)

〈0|Φ(x)|0〉 =
v√
2
. (1.51)

Decomposing Φ into two real scalar fields via

Φ(x) =
1√
2

(v + h(x))e−iχ(x)/v , (1.52)
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we can then use unitary gauge χ(x) = 0 to rewrite the kinetic term for Φ as

− (DµΦ)†DµΦ = −1

2
∂µh∂µh−

1

2
f̃2(φ)(v + h)2AµAµ . (1.53)

The Goldstone boson is eaten to give the dark U(1) gauge boson a mass, M̃A(φ) = f̃(φ)v. A typical

choice for the dark Higgs potential is

V0(Φ) =
1

4
λ̃h(φ)

[
Φ†Φ− 1

2
v2

]2

, (1.54)

which, when expanded about the VEV, yields

V0(h) =
1

4
λ̃h(φ)v2h2 +

1

4
λ̃h(φ)vh3 +

1

16
λ̃h(φ)h4 . (1.55)

The mass of the physical dark Higgs particle h is therefore

m̃h(φ) =

√
λ̃h(φ)

2
v , (1.56)

and we see that the masses of the A and h fields are then related by

M̃A(φ) = f̃(φ)

√
2

λ̃h(φ)
m̃h(φ) . (1.57)

Since the relative sizes of f̃(φ) and λ̃h(φ) are unrestricted, in principle the relative masses of A

and h are not fixed. However, in order to simplify the analysis, we will impose the hierarchy

m̃h(φ) > 2M̃A(φ) for all relevant φ so that h has a tree-level decay channel to A.

Our Lagrangian at this stage is

L =− 1

2
∂µφ∂

µφ− V (φ)− 1

2
∂µh∂

µh− 1

4
λ̃h(φ)v2h2 − 1

4
λ̃h(φ)vh3 − 1

16
λ̃h(φ)h4

− 1

4
FµνFµν −

1

2
M̃2
A(φ)AµAµ + iψ̄ /∂ψ − m̃ψ(φ)ψ̄ψ − f̃(φ)ψ̄γµAµψ

− 1

4

[
2f̃2(φ)

]
h2AµAµ −

1

2

[
2f̃(φ)M̃A(φ)

]
hAµAµ . (1.58)

What remains is to incorporate the fact that φ is adiabatically tracking the minimum of its effective

potential. We expand φ(x) = φc(t) + η(x) around its classical value and recall that m2 and m3 are
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iM1 =

p1 k′1

p2 k′2

ψ

ψ̄

+

iM2 =

Figure 1.1: Tree-level ψ annihilation diagrams. The massive vector boson A is a wavy line, and the
scalar h is a dashed line. Annihilations to A + A and h + h via η-exchange and annihilations to
final-state η particles are suppressed by large-mass factors.

sufficiently large to suppress irrelevant terms of O(η) or higher. The Lagrangian (1.58) becomes

L =− 1

2
∂µη∂

µη − 1

2
∂µh∂

µh− 1

4
FµνFµν + iψ̄ /∂ψ −

[
V (φc) +

1

2
V ′′(φc)η

2 +O(η3)

]
− 1

4

[
λ̃h(φc) +O(η)

]
v2h2 − 1

6

[
3

2
λ̃h(φc) +O(η)

]
vh3 − 1

24

[
3

2
λ̃h(φc) +O(η)

]
h4

− 1

2

[
M̃2
A(φc) +O(η)

]
AµAµ −

[
f̃(φc) +O(η)

]
ψ̄γµAµψ

−
[
m̃ψ(φc) + m̃′ψ(φc)η +O(η2)

]
ψ̄ψ

− 1

4

[
2f̃2(φc) +O(η)

]
h2AµAµ −

1

2

[
2f̃(φc)M̃A(φc) +O(η)

]
hAµAµ . (1.59)

1.5.2 The Dark Matter Annihilation Cross Section

Our central goal is to understand how the dependence of dark matter cross sections on the chameleon

field changes the standard dark matter creation, evolution, and detection story. To this end, we next

turn to the calculation of the dark matter annihilation cross section. The relevant Feynman rules

can be found in Appendix 1.A.

We assume that the dark matter is the heaviest particle in the dark sector, such that m̃ψ �

m̃h, M̃A. Then, the lowest order, tree-level processes for 2→ 2 dark matter annihilation are shown

in Fig. 1.1, and their amplitudes are

M1 = iεµ1′ε
ν
2′ v̄2

[
f̃2(φc) (γν∆ψ(p1 − k′1)γµ + γµ∆ψ(p1 − k′2)γν)

]
u1 (1.60a)

M2 = iε1′ν v̄2f̃
2(φc)M̃A(φc)γµ∆µν

A (p1 + p2)u1 . (1.60b)
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ψ

ψ̄

· · ·

ψ

ψ̄

ψ

ψ̄

· · ·

Figure 1.2: Ladder diagrams for dark matter annihilation (left) and scattering (right).

Working in the center-of-mass frame and in the nonrelativistic limit, we obtain

σ1v ≈
f̃4(φc)

16πm̃2
ψ(φc)

(1.61a)

σ2v ≈
f̃4(φc)

256πm̃2
ψ(φc)

, (1.61b)

where v is the relative velocity of the incoming particles. Since σ2v is an order of magnitude

smaller than σ1v, we neglect it and only consider interactions between the dark matter and gauge

bosons. We see that σ1 is an S-wave cross section, so it is a simple task to carry out the thermal

averaging required in the Boltzmann equation. Note, however, that if thermal averaging is needed

(following [38]), we must use the dark sector temperature Td in the expression

〈σv〉 =
1

(nEQ
ψ (Td))2

g2

2(2π)4

∫ ∞
4m̃2

ψ

ds
√
sTdK1

(√
s

Td

)
(s− 4m̃2

ψ)σ(s) . (1.62)

1.5.3 Corrections to the Cross Section

We are interested in nonrelativistic dark matter, for which the relative velocities are much less than

the speed of light. It is well known that for sufficiently low velocities, nonperturbative effects can

have a large impact on the annihilation and scattering cross sections; and ladder diagrams, such as

the ones shown in Fig. 1.2, must be included in the calculation.

1.5.3.1 The Annihilation Cross Section

In the case of annihilation, performing this summation is equivalent to solving the Schrödinger equa-

tion in quantum mechanical scattering theory [39], and we obtain the Sommerfeld enhancement [40]

for annihilations (for detailed reviews in the context of dark matter, see, for example, [41–43]). We

consider the annihilation cross section σ0 for a pointlike interaction near r = 0 in perturbative field
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theory. For small velocities, the attractive Yukawa potential

V (r) = − α̃
r
e−M̃Ar , (1.63)

where α̃ = f̃2(φc)/4π, distorts the wave function at the origin and cannot be ignored. Including the

potential will enhance the annihilation cross section to σ = σ0Sk by the Sommerfeld enhancement

factor Sk. Let us define the dimensionless parameters

εv =
v

α̃
and εA =

M̃A

α̃m̃ψ
, (1.64)

where v is the velocity of each annihilating particle in the center of mass frame. In the case of a

massless gauge boson with a Coulomb potential, it is possible to solve the Schrödinger equation

analytically to obtain the Sommerfeld enhancement.

For a massive gauge boson, the situation is more complicated, since the attractive potential has

a finite range that limits the enhancement from being arbitrarily large for very low velocities. In

the regime εA � ε2v, we recover the Coulomb case. At the crossover point εv ∼ εA (or equivalently

m̃ψv ∼ M̃A), the de Broglie wavelength of the dark matter becomes comparable to the range of

the interaction. At lower velocities with εA � ε2v, the Yukawa potential cannot be ignored. As

v → 0, the de Broglie wavelength increases to a value larger than the interaction range; thus, the

enhancement saturates at

Sk ∼
1

εA
∼ α̃M̃A

m̃ψ
. (1.65)

Furthermore, zero-energy bound states may form for certain values of εA, giving resonance regions

with larger enhancements ∼ εA/ε2v until they are cut off by finite-width effects. In the early universe,

freezeout typically occurs at velocities vf ∼ 0.3, so εv > 1 and the Sommerfeld enhancement can be

ignored. Note that there are no enhancements for εA > 1.

To find the thermally averaged cross section, taking into account the Sommerfeld enhancement,

we integrate Sk using a Maxwellian distribution

F (v) =
4

v̄3
√
π
v2e−v

2/v̄2 , (1.66)

where v̄ is the characteristic velocity of the astrophysical system of interest. Thus,

〈σv〉 = (σv)s-wave 〈Sk〉 (1.67)

〈Sk〉 =

∫ ∞
0

dv F (v)Sk . (1.68)

For the purposes of this paper, we choose to work in the εA > 1 regime, and doing so has two
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consequences. Practically, the calculation becomes much simpler, since we need not worry about

the Sommerfeld enhancement at all. In addition, by de-emphasizing the Sommerfeld enhancement,

we clarify the extent to which the novel effects developed in this paper can alone increase the cross

section over time in areas of parameter space that the Sommerfeld enhancement cannot reach.

1.5.3.2 The Scattering Cross Section

To find the scattering cross section, we can use nonrelativistic quantum mechanics and sum over

partial waves. The total cross section is

σ =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl , (1.69)

although a more useful quantity to compare to observational constraints is the transfer cross section,

σtr =

∫
dΩ (1− cos θ)

dσ

dΩ

=
4π

k2

∑
l

[(2l + 1) sin2 δl − 2(l + 1) sin δl sin δl+1 cos(δl+1 − δl)] , (1.70)

which controls the rate at which energy is transferred between colliding particles. Following [44],

analytic estimates for the cross section are

σ =
4π

µ2v2
rel

(1 + L)2 (1.71)

σtr =
4π

µ2v2
rel

(1 + L) , (1.72)

where L = µvrelbmax is the largest angular momentum needed to describe the interaction between

two particles of reduced mass µ = m̃ψ/2 that travel with a relative velocity vrel and maximum

relevant impact parameter bmax. Note that these estimates are only valid for L & 1. We estimate

the impact parameter by solving

1

2
µv2

rel =
f̃2/4π

bmax
e−M̃Abmax . (1.73)

If we work in the εA > 1 regime to avoid Sommerfeld enhancements, then we will also tend to

avoid enhancements to the scattering cross section and can expect to be working in the Born limit.

Simply taking the nonrelativistic limit of the perturbative cross section gives

σ =
f̃4(φc)m̃

2
ψ(φc)

8πM̃4
A(φc)

=
m̃2
ψ(φc)

8πv4
. (1.74)
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p

k′1

k′2

Figure 1.3: Tree-level h decay.

Assuming that dark matter self-interactions are not needed1 to explain the structure of dwarf galax-

ies [44], we use a conservative bound [45]

σ/m̃ψ < 0.1 cm2/g (1.75)

for characteristic velocities of 10 km/s. As we mention below, it would not be difficult to find

parameters that violate this bound.

In the usual treatment of dark matter, constraints such as this one, obtained from present-day

observations, can be directly applied to bounds on physics at freezeout or before. It is important to

remember here that, in our model, the evolution of the chameleon field means that such a connection

is far less direct, and such bounds typically do not apply in the early universe.

1.5.4 Dark Decays

The dark Higgs h and the dark gauge boson A are allowed to decay. As mentioned earlier, we assume

m̃h(φc) > 2M̃A(φc) so that h has a tree-level decay channel to A, as shown in Fig. 1.3. Its decay

width is

Γh =
f̃2(φc)

32π

m̃3
h(φc)

M̃2
A(φc)

√
1−

4M̃2
A(φc)

m̃2
h(φc)

[
1− 4M̃2

A(φc)

m̃2
h(φc)

+ 12
M̃4
A(φc)

m̃4
h(φc)

]
. (1.76)

Although the A particle is allowed to decay to η particles, which are substantially smaller in

mass, this occurs through a 1-fermion-loop process2, as shown in Fig. 1.4. The amplitude is also

suppressed by two factors of m2 from the O(η2) term in the expansion of m̃ψ(φ). The nonzero

amplitude in the limit of m̃η � M̃A, m̃ψ is

M = −
4iπ2f̃

(
m̃′ψ

)2

M̃2
A

k′2 · ε∗(p)
[
4m̃ψM̃AC0[p2, (p− k′2)2, k2

2, m̃ψ, m̃ψ, m̃ψ]

+(8m̃2
ψ + M̃2

A)B0[p2, m̃ψ, m̃ψ]− 8m̃2
ψB0[k′22 , m̃ψ, m̃ψ]

]
, (1.77)

1Recent N -body simulations [8, 9] support large self-interactions, which we discuss in Chapter 2.
2We use FeynCalc [46] to calculate the 1-loop A decays.



20

p

l + p

k′1

l + k′2

k′2

l

Figure 1.4: 1-loop A decay.

where B0 and C0 are scalar Passarino-Veltman functions [47–50], defined via

B0[p2,m2,m2] =
1

iπ2

∫
d4l

1

(l2 +m2)[(l + p)2 +m2]
(1.78)

C0[p2, (p− p1)2, p2
1,m,m,m] = − 1

iπ2

∫
d4l

1

(l2 +m2)[(l + p)2 +m2][(l + p1)2 +m2]
. (1.79)

The C0 integral is finite and, in the approximation m̃ψ � M̃A � m̃η, reduces to

C0[p2, (p− k′2)2, k′22 , m̃ψ, m̃ψ, m̃ψ] ≈ − 1

4m̃2
ψ

. (1.80)

The B0 integral diverges, so we cut off the loop-momentum integral at some large scale. Using m3

for this purpose, since we will often find it numerically to be the largest mass-suppression scale in

our theory, we have

B0[p2, m̃ψ, m̃ψ] ≈ B0[k′22 , m̃ψ, m̃ψ] ≈ 2 ln

(
m3

m̃ψ

)
. (1.81)

Putting everything together, the decay width of A is then given by

ΓA ≈
1

6M̃A

π2f̃2

(
mψA2

m2

)4

e−4φc/m2

[
ln

(
m3

m̃ψ

)]2

. (1.82)

The A bosons must decay efficiently enough not to contribute significantly to the energy density

budget today. Though the decaying exponential makes meeting this criterion more difficult, there is

still a small sample of parameter space for which the energy density of A does not pose a problem.

1.6 Numerical Solutions

While we have described a number of ways to understand the evolution of the fields analytically,

including, for example, the adiabatic approximation in which the chameleon tracks the minimum of

its effective potential; ultimately, we are able to numerically solve3 the relevant equations of motion

3We use Mathematica 8 to numerically solve the Boltzmann equation.
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completely. To do so, of course, we must make sensible choices for our parameters to satisfy the

various bounds and assumptions we have specified.

We need to implement the correct relationship between the dark sector temperature Td and that

in the photon sector T , which in turn requires us to correctly enumerate the massless degrees of

freedom at the relevant scales. At the unification scale, all of the dark particles (ψ, A, h, φ) are

relativistic, so gd∗S(tu) = 8.5. Around the epoch of dark matter freezeout, only ψ is nonrelativistic,

so gd∗S(tf ) = 5. Thus, at freezeout, ξf = 1.19 for g∗S(tf ) = 106.75 or ξf = 0.56 for g∗S(tf ) = 10.75.

With these numbers, the bound on the number of effective neutrino species in (1.8) is easily satisfied.

The model is insensitive to M̃A(φ) and m̃h(φ) at lowest order. We choose v such that ψ̄ψ → AA

is kinematically allowed today, while ensuring εA > 1 and α̃ < 1. We must then check that M̃A(φ0)

satisfies scattering cross section bounds. It is simplest to assume the attractor solution for φ and

then later verify that it is in fact adhered to. The A gauge bosons need to decay away before BBN

so that their energy density is negligible. Finally, we must ensure that the evolution ends with the

observed density of dark matter today. For this figure we use the bounds from the 7-year WMAP

data [33], assuming a ΛCDM cosmology:

ΩDMh
2 =

ρ0

ρc0
= 0.1109± 0.0056 . (1.83)

Given these constraints, we numerically solve the Boltzmann equation and show a sample of

parameter space in Fig. 1.5, resulting from a random, uniform scan over mψ ∈ [0.1, 500] GeV;

m1 ∈ [105, 107] GeV; m2 ∈ [5×105, 5×108] GeV; m3 ∈ [5×105, 5×108] GeV; Λ ∈ [10, 103] GeV; A2 ∈

[0.1, 9.9]; A3 ∈ [0.1, 10]; and e ∈ [0.01,
√

4π]. The upper-left panel shows the coupling parameter

e vs the dark matter mass parameter mψ. The upper-right panel shows the annihilation cross

section σv vs the scattering cross section σ/m̃ψ, both evaluated at x0 today. The bottom panels

show the boost in annihilation cross section from freezeout to today and the scattering cross section

today vs the mass parameter mψ. Again, there is flexibility when choosing v without affecting the

evolution of φ and Y at lowest order, so it is possible to obtain valid models for a scaled value of

σ/m̃ψ. Here, we show the largest possible scattering cross sections, while staying within the bound

εA > 1. As demonstrated in Fig. 1.6, only a small portion of the sampled parameter space fulfills the

requirement that the A gauge boson energy density is negligible by the time of BBN. While finding

a set of parameters that satisfies all constraints is certainly possible, the effect of having very large

increases in the annihilation cross section does not seem to be a general feature of the model.

As a concrete example, we show a specific model with the following parameter choices: mψ =

123 GeV; mT = mψ; m1 = 38 TeV; m2 = 500 TeV; m3 = 500 TeV; Λ = 18 GeV; A2 = 0.6;

A3 = 9.2; e = 0.96; and v = 10 GeV. These numbers comprise an optimistic set of parameter

choices that satisfies all of our bounds and provides a large change of order ∼ 106 in the annihilation
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Figure 1.5: Scan of parameter space. Blue points indicate sets of parameters that satisfy all con-
straints, except (for most points) for having a negligible A energy density. Red points do not satisfy
the scattering cross section bound σ/m̃ψ < 0.1 cm2/g. Green points do not satisfy the adiabatic
condition in (1.46) and should be solved with the coupled differential equations.

cross section over the history of the universe. Our choice for the value of v gives εA = 1.07 today,

so we can ignore the Sommerfeld enhancement. Larger values of v work equally well; increasing v

increases εA ∼ v and decreases σ/m̃ψ ∼ v−4. The dark matter relic density is Ωψh
2 = 0.1097, within

a standard deviation of the observed value. The scattering cross section today is 4.9× 10−4 cm2/g,

well below the conservative limit in (1.75). We must also check that these parameters satisfy the

assumptions we have made in writing down the model. For example, we neglected terms with ∂µf̃/f̃ ,

and here we note that
˙̃
f/f̃ ∼ 10−9–10−6 GeV, which is much smaller than other mass terms in the

perturbative expansion. The adiabatic approximation is satisfied with H/mφ,ph ∼ 10−11 throughout

the evolution of φ. Finally, we use the decay width of the A particles to determine that they have

decayed away in the time from freezeout to BBN, so they do not contribute to the energy budget

we observe from the CMB.

The results for the evolution of φ, Y , the dark matter mass m̃ψ, and the coupling f̃ as a function

of T = mT /x are shown in Fig. 1.7. We also show the annihilation and scattering cross sections in

Fig. 1.8. The scattering cross section quickly approaches its asymptotic value by the time of dark

matter freezeout, while the annihilation cross section still grows orders of magnitude from freezeout

to now. This difference is due to the scattering cross section, σ/m̃ψ ∝ m̃ψ/v
4, and the annihilation
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Figure 1.6: The number of A decays per particle between freezeout and BBN. Points above the
horizontal line at 1 indicate that all A particles should have decayed and thus do not contribute
significantly to the energy budget of the universe.

cross section, σv ∝ f̃4/m̃2
ψ, depending differently on φ via m̃ψ and f̃ . We choose the form of f̃ to

force the annihilation cross section to grow more slowly, whereas the scattering cross section has no

such term countering its growth. With these particular choice of parameters, the scattering cross

section is too small to have interesting astrophysically observable consequences.

As shown in Fig. 1.5, there are other choices of parameters that will still give a boost to the

annihilation cross section while yielding a larger scattering cross section to match new simulation

bounds [8, 9]; however, again, most of the plotted parameter space is restricted from the A energy

density requirement. One option for increasing the viable parameter space is to relax the requirement

that εA > 1 and to work in the regime of Sommerfeld enhancements; our model would still provide

significant increases in the cross sections, and Sommerfeld enhancements would serve to further

increase the boosts. Another clear option is to open an alternative decay channel for A.

1.7 Conclusions

In this paper we have investigated the possibility that the properties of dark matter depend crucially

on the dynamics of a chameleon field—a scalar field whose cosmological evolution depends not only

on its bare potential, but also on the local density of other matter (such as dark matter itself) in the

universe. We have shown that such a coupling allows the annihilation cross section (for example)

of the dark matter particles to change by several orders of magnitude between freezeout and today,

while remaining consistent with all observational constraints. We have presented a general formalism

to describe how this change might happen, and have provided a specific particle physics example

in which all relevant quantities can be calculated. While there are significant observational and
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theoretical constraints on models of this type, it is nevertheless possible for the cross section to

evolve in such a way that there may be interesting implications for the detection of dark matter and

for its dynamical effects on late-universe astrophysics.

There are, of course, other possible complications to this idea that are beyond the scope of the

current paper, but that provide interesting avenues for future study. One natural step is to couple

our model directly to the SM. One way to achieve this coupling is to directly add the dark U(1) to

the current SM gauge group [51]. Another possibility is to couple to the SM through U(1) kinetic

mixing [52, 53]. This extension of our model should be able to easily accommodate the relevant

particle physics constraints [54–57], while easily allowing for decays of the dark gauge boson to SM

particles well before BBN. The dark matter annihilations would still be dominated by the channel

ψ̄ψ → AA, since annihilation to SM particles would be suppressed by the small coupling parameter

for the U(1) mixing. However, it is a more delicate issue to decide what a natural route would be

to couple the visible and dark scalar sectors, particularly with regards to coupling the chameleon to

normal matter.

Finally, we did not attempt a careful analysis of the effect of late-universe inhomogeneities on

the chameleon field or the dark matter properties on which it depends. In the specific models we

considered, it seems as if such effects would be small, but a more careful examination is warranted.
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Appendix

1.A Feynman Rules

The Feynman rules are shown in Fig. 1.A.1. All of these diagrams have higher-order corrections

that involve η particles.

p
= ∆h(p) =

−i
p2 + m̃2

h

µ
= −if̃γµ

p
= ∆ψ(p) = −i

−/p+ m̃ψ

p2 + m̃2
ψ

= −im̃′ψ

p

µ ν
= ∆µν

A (p) = −ig
µν + pµpν/M̃2

A

p2 + M̃2
A

µ

ν

= −2if̃M̃Ag
µν

p
= ∆η(p) =

−i
p2 + m̃2

η

= −i3
2
λ̃hv

µ

ν

= −2if̃2gµν = −i3
2
λ̃h

Figure 1.A.1: Feynman rules for h (dashed), ψ (solid), Aµ (wavy), and η (dotted). We include the
Yukawa interaction with ψ and η, which is relevant for the 1-loop A-decay amplitude in (1.77), but
other η-interaction vertices are not shown. All parameters labeled by a tilde are evaluated at φc.
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Chapter 2

Self-Interacting Dark Matter from
a Non-Abelian Hidden Sector

2.1 Introduction

We consider self-interacting dark matter with cross sections of σ/m ∼ 0.1–10 cm2/g, which are on par

with nuclear-scale cross sections. The possibility that dark matter has color and interacts through the

strong interactions of the SM is highly constrained, for example, by searches for anomalous isotopes

in sea water [58–60]. However, dark matter may self-interact through non-Abelian forces (such as a

dark analogue of QCD) in a hidden sector. As we will show below, this setup is straightforwardly

realized in even the simplest such hidden sectors, with SU(N) gauge symmetry and no additional

matter content. For confinement scales Λ ∼ 100 MeV, the hidden gluons confine to form glueballs,

and the resulting glueball dark matter has the required self-interactions. For hidden sectors that are

roughly the same temperature as the visible sector, the glueball relic density is generically too large,

but the desired relic density may be obtained by adjusting the relative temperatures of the hidden

sector and visible sector, as we discuss below.

This hidden glueball scenario for self-interacting dark matter is remarkably simple, but it is

decoupled from the visible sector, both in the technical sense and in the sense that it is not motivated

by any of the well-known problems of the SM. In addition, the correct relic density is arranged by

tuning a free parameter, the ratio of hidden to visible sector temperatures, and so the scenario

cannot be claimed to naturally produce the right thermal relic density, as in the case of WIMPs.

At first sight, it might appear difficult to enhance the model to accommodate all of these desirable

features, especially since the WIMP miracle requires weak-scale annihilation cross sections, whereas

the required self-interactions naturally suggest strong interactions.

In fact, however, we will show that all of these features are present in a supersymmetric version

of the hidden glueball scenario, in which the hidden sector is a supersymmetric pure gauge theory.

In this model, the dark matter is a ∼ 10 TeV hidden gluino, which freezes out in the early universe
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Figure 2.1: Example timeline of events in the supersymmetric pure SU(N) theory without connec-
tors, in terms of the hidden- and visible-sector temperatures Th and T . The hidden-sector coupling
αh is shown as a function of these temperatures. It is weak at gluino freezeout but grows as the
temperature drops, leading to confinement and the formation of glueballino and glueball dark matter
at a temperature ∼ Λ. The scenario is described in detail in §2.6, and the chosen parameters are
represented by the yellow dot in Fig. 2.5.

when the temperature is high. At freezeout, the theory is weakly coupled, but as the universe

cools and expands, the theory confines, forming hidden glueballinos and glueballs. The glueballinos

strongly interact via exchange of the hidden glueballs with the required self-interaction cross section.

This scenario is straightforwardly accommodated in anomaly-mediated supersymmetry breaking

(AMSB) scenarios [61, 62], which provide a connection to the problems of the SM, and also allow

the glueballinos to naturally inherit the correct relic density through the WIMPless miracle [29,63],

a possibility discussed previously in [64–66]. For related work on strongly-interacting hidden sectors

and dark matter, see [67–75].

Of course, the supersymmetric models also contain glueballs, which, as in the nonsupersymmetric

case, may be dark matter. As we will see, in different regions of the AMSB parameter space, the dark

matter may be dominantly glueballinos, dominantly glueballs, or a mixture of the two. For the case

where the dark matter is dominantly glueballinos, we detail two possibilities. In the first case, the

hidden sector is coupled to the visible sector only indirectly through the supersymmetry breaking

mechanism. Since this coupling is extremely weak, the sectors can have different temperatures,

and the glueball relic density may be very small for cold hidden sectors. An example cosmological

timeline of events in this case is given in Fig. 2.1.

In the second case, the hidden sector is coupled to the visible sector through connector fields.

The visible and hidden sectors, therefore, have the same temperature at early times, leading a priori

to too-large glueball relic densities. Decays of glueballs are in conflict with big bang nucleosynthesis

(BBN) and other astrophysical and particle constraints. Instead, we rely on a novel nonthermal pro-

cess in the early universe to deplete the gluon density, thereby suppressing the glueball density after

confinement. In this case, the gluons annihilate into singlet right-handed neutrinos with ∼ 1 GeV
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Figure 2.2: As in Fig. 2.1, but for supersymmetric pure SU(N) theory with connectors. Since the
hidden and visible sectors communicate efficiently in the early universe, they share a temperature
T . The gluon population is depleted through annihilations to and the subsequent decays of the νR
in the visible sector, and the resulting scenario has pure glueballino dark matter. The scenario is
described in detail in §2.7, and the chosen parameters are represented by the yellow dot in Fig. 2.8.

mass, and we reduce the hidden gluon density by forcing the right-handed neutrinos to decay into SM

particles more quickly than they can annihilate back into hidden gluons. A representative timeline

for this case is shown in Fig. 2.2.

This chapter is organized as follows. In §2.2, we review the astrophysical evidence for self-

interacting dark matter. In §2.3, we begin with the simplest possible case: nonsupersymmetric pure

gauge hidden sectors and glueball dark matter. We discuss glueball self-interactions and relic densi-

ties and determine the preferred parameters for this simple model. We then move to supersymmetric

models with pure gauge hidden sectors and glueballino dark matter. In §2.4, we review the calcu-

lation of the glueballino self-interaction cross section, and in §2.5, we discuss the glueballino relic

density and the realization of the WIMPless miracle in the AMSB framework. Finally, with this

groundwork, we present full AMSB models of glueballino/glueball dark matter without and with

connectors in §2.6 and §2.7, respectively. We conclude in §2.8.

Lastly, we make a quick note on naming conventions. In the rest of this chapter, we follow

the literature: glueballinos denote gluino-gluon bound states, while gluinoballs denote gluino-gluino

bound states. In addition, unless otherwise stated, “gluon,” “gluino,” “glueball,” and “glueballino”

refer to hidden sector particles and are denoted by g, g̃, gb, and gbino, respectively.

2.2 Astrophysical Evidence for Self-Interacting Dark Matter

The ΛCDM model is quite successful in describing large-scale structure. The predictions of the

standard six-parameter ΛCDM cosmology match remarkably well to the latest measurements of

the cosmic microwave background (CMB) by WMAP [76] and Planck [77] at large multipoles of

the power spectrum. Additionally, CDM fits the dark matter power spectrum very well [78], using
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observations of luminous red galaxy clustering in the Sloan Digital Sky Survey [79].

Despite these agreements on large scales, observations of small-scale structures indicate that

CDM is insufficient. Challenges to the ΛCDM paradigm arise largely from tensions between obser-

vation and cosmological simulations. Simulations of CDM create dark matter halos with density

profiles that have steep, inverse-power-law behaviors (cusps) towards the center of the halo [80–84].

Conversely, observations show that low-surface-brightness spiral galaxies (LSBs) [85–92], satellite

dwarf galaxies [91, 93], and galaxy clusters [94–99] exhibit constant-density cores. In addition to

the core-cusp discrepancy [100], the simulated central densities of halos are too high. By matching

the luminosity function of the Milky Way to the Aquarius simulations [101], the brightest subhalos

in the Milky Way are a factor of 5 less massive than predicted [102, 103]. If ΛCDM is correct, we

are left to explain this “too big to fail” problem in which the largest subhalos of the Milky Way do

not luminesce; otherwise, some additional physics is needed in simulations to decrease the central

densities of these overly-massive halos.

To address these concerns with ΛCDM, there are a few generic possibilities to consider [104]:

adding feedback from baryons in simulations [105–107], warm dark matter (WDM) [108–110], and

self-interacting dark matter [5, 7, 111]. Feedback exists and should be included in simulations, but

there may not be enough energy to eject a sufficient amount of mass from the halo center to solve

the too-big-to-fail problem [103]. WDM tends to be too efficient in wiping out structure, leaving too

few subhalos in the Milky Way [112]. Additionally, lower bounds on WDM masses from Lyman-α

forest measurements constrain the ability of WDM to solve the core-cusp problem over the full range

of astrophysical scales needed [113,114]. Even with its mass unconstrained, WDM still leaves dwarf

halos cuspy, though it does lower the central densities [115].

On the other hand, self-interacting dark matter can soften halo cores and lower central densities,

while preserving large-scale structure [5] and satisfying bounds of σ/m . 1 cm2/g from the Bullet

Cluster [116]. Indeed, simulations with constant dark matter cross section-to-mass ratios in the

range 0.1–1 cm2/g show that self-interactions can bring theory in line with observations of both

halo profiles and shapes [8,9]. Velocity-dependent self-interactions widen this range to 0.1–10 cm2/g

and can also soften cores and reduce the density of the brightest satellites to solve the too-big-to-fail

problem [10,11].

With these results from simulation, dark matter with self-interactions is a strong contender

within particle physics to be a solution to the small-scale formation woes in astrophysics. From a

particle physics perspective, we will see that self-scattering is a quite reasonable and perhaps even

generic property for dark matter to possess.
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2.3 Glueball Dark Matter

The simplest construction resulting in dark matter that is a composite of a strongly-interacting

hidden sector is a pure Yang-Mills gauge theory. At large energy scales, the theory consists of a

weakly coupled set of massless gluons whose couplings are described by the gauge coupling. The

theory is expected to confine at low energies at a scale Λ, where the gauge coupling becomes strong

enough that perturbation theory breaks down [117–123]. At this point, it develops a mass gap, and

the low energy physics is described by a set of glueball states whose masses are characterized by Λ

through dimensional transmutation.

At very low energies � Λ, the physics is described by an effective field theory composed of the

the low-lying glueball states. In the absence of any coupling to the SM, the lightest of these states

will be effectively stable.1 The detailed mass spectrum (and spins) of these states depends on the

underlying choice of theory and is further clouded by strong coupling, which leaves results based on

perturbation theory suspect. Generically, one expects the glueball spectrum to have a lowest-lying

element whose mass is O(Λ), which, following the guidance of QCD, we take to be a JCP = 0++

state [124, 125]. There will also be a collection of excited states with various spins and whose mass

splittings are roughly multiples of Λ.

2.3.1 Glueball Self-Interactions

The various glueball states will interact with one another as a residual of the strong dynamics that

bind them. Dimensional analysis dictates that the interactions among them will be proportional

to Λ to an appropriate power, with dimensionless coefficients characterized by näıve dimensional

analysis (NDA) [126,127]. For example, a description of a scalar glueball state φ0 would look like

Lgb =
1

2
∂µφ0∂

µφ0 −
1

2
m2φ2

0 +
A

3!
φ3

0 +
λ

4!
φ4

0 + . . . , (2.1)

where NDA would suggest that for the lowest-lying state m ' Λ, and A ' (4π)Λ, λ ' (4π)2, and

the +... indicates interaction terms in the form of higher-dimensional operators that are suppressed

by powers of Λ. Interactions involving the various glueball excited states can be formulated in a

similar way.

For energies � Λ, the physics should be well described by an effective field theory composed of

the lightest glueball. At kinetic energies of order Λ, more of the lowest-lying states become accessible

and need to be included in the effective theory. At energies � Λ, the physics is described by the

interactions of the gluons together with the structure functions that describe their distribution inside

of the glueballs.

1Note that gravitational interactions will mediate very suppressed decays to light SM particles, but these are
irrelevant for Λ�Mpl.
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Although it is clear that glueballs are strongly self-interacting, it is very difficult to make precise

predictions for the scattering rate, given our general ignorance concerning strongly-coupled theories.

The expected cross section will be characterized by the confinement scale and strong coupling,

σ (gb gb→ gb gb) ' 4π

Λ2
, (2.2)

which can also be understood from the geometric size of the glueballs, whose radius is ∼ 1/Λ.

2.3.2 Glueball Relic Density

If the glueballs are stable on the scale of the age of the universe, they will contribute to the total

observed dark matter relic density. At early times, when their temperature is Th � Λ, the hidden

sector is represented by a plasma of gluons whose comoving relativistic number density is given by

Y∞ =
ng
s

=
[ζ(3)/π2]geffT

h3

(2π2/45)g∗ST 3

∣∣∣∣∣
tf

=
45ζ(3)

2π4
ξ3
f

geff

g∗S(tf )
, (2.3)

where s is the entropy in the visible sector, ξf ≡ Th/T is the ratio of temperatures in the hidden

and visible sectors, ζ(3) ≈ 1.202 is the zeta function, and geff = 2(N2 − 1) for an SU(N) gauge

theory. We use an early time tf (which we will identify with the time of gluino freezeout in the

supersymmetric models discussed below) as a reference point. The quantity Y∞ remains constant

as the universe expands.

As the hidden sector temperature Th cools below the critical temperature T c ∼ Λ [128], there

is a transition to the confined phase, and the energy density of the gluon plasma is converted into

glueballs. The result is that after confinement, the universe is filled with nonrelativistic glueballs

whose comoving number density is the same as that of the gluons up to factors ofO(1). Consequently,

today the glueballs are nonrelativistic with a relic density

Ωgb ∼
Y∞s0Λ

ρc0
. (2.4)

This expression assumes that there are no number-changing processes, but the glueballs may interact

through a dimension-5 operator to give 3 → 2 scatterings [3]. We ignore this possibility here and

leave it for future work.

2.3.3 Viable Glueball Parameters

Glueball dark matter is thus primarily characterized by two quantities: the confinement scale Λ,

which simultaneously controls the dark matter mass and its self-interaction cross section, and ξΛ,

the ratio of temperatures of the hidden and visible sectors at the time of confinement. Also relevant
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Figure 2.3: Glueball dark matter in the case of a nonsupersymmetric pure gauge SU(N) hidden
sector. The self-interaction cross section and relic density are given in the (ξΛ,Λ) plane, where
Λ is the confinement scale in the hidden sector and ξΛ ≡ Th/T is the ratio of hidden to visible
sector temperatures at the time that Th = Λ. The self-interaction cross section is in the range
〈σT 〉/mX = 0.1–1 cm2/g in the shaded region. The glueball relic density is Ωgb = ΩDM ' 0.23 on
the diagonal contours for the number of colors N indicated.

is the number of gluon degrees of freedom; for an SU(N) gauge theory, geff = 2(N2− 1). In Fig. 2.3,

we show the parameter space in the (ξΛ,Λ) plane. The scattering cross section is independent of

ξΛ, which together with the choice of N controls the relic density of glueballs. The scattering cross

sections of interest suggest Λ ∼ 100 MeV, amusingly close to ΛQCD ≈ 300 MeV. Note that since

the cross section is constant, the acceptable upper limit from simulations is 1 cm2/g, in particular,

to stay within cluster constraints. This limit will increase to 10 cm2/g for velocity-dependent cross

sections, which we begin discussing in §2.4. The relic density requires the hidden-sector temperature

to be a few orders of magnitude below the visible temperature at the time of confinement.

2.4 Glueballino Self-Interactions

The simplest extension to the pure gauge hidden sector discussed in §2.3 is to add a massive (mass

mX � Λ) gauge adjoint Majorana fermion to the theory, resulting in a spectrum with two types

of composites: the bosonic glueballs with a mass ∼ Λ and the fermionic states with masses ∼

mX [129–132]. Each sector contains excited states whose mass splittings are again characterized

by Λ. In the absence of further ingredients, the massive fermionic states are stable because of

Lorentz invariance, and this construction allows one to realize a situation where the dark matter
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is (mostly) composed of the heavy composite fermions that self-interact via exchange of the much

lighter glueballs, naturally realizing two widely separated energy scales. This dark sector is identical

to a softly broken N = 1 supersymmetric gauge theory, and can be considered the supersymmetric

version of the model of §2.3. In that language, the composite fermions are glueballino states.

The self-interactions of glueballinos are dominated by the exchange of glueballs. At low energies,

when the kinetic energy available is . Λ, the scattering will be elastic. If there is sufficient kinetic

energy,
1

2
mXv

2 ≥ Λ , (2.5)

inelastic scattering into excited states and glueball emission becomes possible, leading to novel

effects, such as additional rapid halo cooling. The inelastic effects are not modeled in the ΛSIDM

simulations and so are not well understood. For the remainder of this work, we focus on the elastic

scattering regime and comment later in this section on systems where this approximation breaks

down.

NDA suggests that the coupling between glueballs and glueballinos is α ∼ 1. Even for elastic

scattering, there will be a large number of distinct glueball states, which are capable of mediating

self-interactions of the glueballinos, but the dominant contribution arises from the lightest glueball

states, which mediate the longest range interactions. Thus, we model the induced potential between

two glueballinos as an attractive Yukawa interaction with a range Λ and strength α ∼ 1:

V (r) = −α
r

exp(−Λr) . (2.6)

It is common to use the transfer cross section

σT =

∫
dΩ(1− cos θ)

dσ

dΩ
(2.7)

to compare predictions to observations and simulations. We have numerically solved the Schrödinger

equation to calculate σT , following the methods of [133]. See Appendix 2.A for details of the

calculation. For the astrophysical systems of interest, to achieve the desired cross sections of 0.1–

10 cm2/g with mX & TeV, the parameters must be in the classical scattering regime, mXv � Λ.

Scattering from Yukawa potentials has been studied in this regime in the context of classical, complex

plasmas [134–136], and simple analytic fits to numerical results for the transfer cross section have

been derived. These plasma physics results may be applied directly to the present dark matter

case [137] (in fact, they describe the dark matter model exactly, whereas the Yukawa potentials are

only an approximation to screened Coulomb interactions in the plasma physics context), and we

have checked that these agree well with our numerical results.

Within a galactic halo or cluster, the dark matter particles have a velocity distribution that we
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take to be Maxwell-Boltzmann:

f(vi) =
(
πv2

0

)−3/2
e−v

2
i /v

2
0 , (2.8)

where v0 is the mode and 〈v2
i 〉 = (3/2)v2

0 is the square of the three-dimensional velocity dispersion.

This distribution is expected for cross sections of σ/m = 1.0 cm2/g and above [138]; for the slightly

lower cross sections that are still of interest to us, the distribution may be modified, but we do

not expect this possibility to impact our results significantly. Simulations [8] show that 〈v2
i 〉 ≈

(1.2Vmax)2, where Vmax is the peak circular velocity of a given system, and thus v0 ≈ 0.98Vmax.

The astrophysical systems of interest have values of Vmax in the ranges 20–50 km/s for dwarfs, 50–

130 km/s for LSBs, and 700–1000 km/s for clusters. We make a simplistic estimate for the dark

matter escape velocity, v2
esc = 2v2

0 , so that the largest relative velocity between particles is 2
√

2v0.

For two scattering dark matter particles with velocities ~v1 and ~v2, the velocity-averaged transfer

cross section is

〈σT 〉 =

∫
d3v1 d

3v2

(πv2
0)3

e−v
2
1/v

2
0e−v

2
2/v

2
0σT (|~v1 − ~v2|)

=

∫ 2
√

2v0

0

d3v

(2πv2
0)3/2

e−v
2/2v20σT (v) . (2.9)

Note that although the escape velocity may be an underestimate here, increasing it by a factor of

10 changes 〈σT 〉 only at the 1% level.

The thermally-averaged transfer cross section, then, depends on four parameters: mX , Λ, α,

and Vmax. In Fig. 2.4, we plot the ratio 〈σT 〉/mX in the (mX ,Λ) plane for α = 1 and three

representative characteristic velocities: Vmax = 40 km/s for dwarfs, Vmax = 100 km/s for LSBs, and

Vmax = 1000 km/s for clusters. For masses mX ∼ 1 TeV and Λ ∼ 10 MeV, we achieve transfer cross

sections around the targeted range between 0.1 cm2/g and 1.0 cm2/g for all three systems under

consideration. The transfer cross section decreases as a function of v in the classical regime; thus,

systems with larger characteristic velocities have smaller cross sections, all else being equal. The

LSB line at 0.1 cm2/g, for instance, lies below that for dwarfs, because a larger interaction range

(smaller Λ) is needed to counter its larger velocity to give the same σT as the dwarfs. Toward the

lower values of mX , the scattering exhibits resonant behavior due to the formation of quasibound

states [133], analogous to Sommerfeld enhancements in annihilations.

The region below the straight magenta lines in Fig. 2.4 is where the dark matter typically

has (1/2)mXv
2 > Λ, and modifications from inelastic scattering processes can be important. We

urge the reader to keep in mind that while in this region, the classical elastic scattering cross

section (for our assumed Yukawa potential) falls below about 3π/Λ2, and we expect other energy-

exchange mechanisms to become important in dark matter halos. Note that for clusters (v ∼ 3 ×
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Figure 2.4: The ratio of the thermally-averaged transfer cross section to dark matter mass 〈σT 〉/mX

in the (mX ,Λ) plane for α = 1 and three different astrophysical systems: dwarf galaxies (Vmax =
40 km/s, solid), LSBs (Vmax = 100 km/s, dashed), and clusters (Vmax = 1000 km/s, dotted). For
each system, three values of the cross section are shown: 0.1 cm2/g (top), 1 cm2/g (middle), and
10 cm2/g (bottom). The region below the straight magenta lines shows where inelastic processes
may modify the picture based on elastic scattering for each type of system.

10−3), the inelastic region is a substantial portion of the interesting parameter space: (mX/TeV) &

(Λ/10 MeV). The elastic glueballino scattering curves plotted for clusters in Fig. 2.4 and other

figures are far from the whole story. We expect new astrophysical phenomenology, especially in

clusters of galaxies, that deserves separate consideration.

2.5 Glueballino Relic Density

One goal of supersymmetrizing the pure gauge hidden sectors considered in §2.3 is to revive the

possibility of dark matter with naturally the right relic density, as in the case of WIMPs, but now

for self-interacting dark matter. In this section, we first review the machinery required to calculate

a glueballino relic density from the freezeout of thermal relic gluinos. We then discuss the possibility

of realizing the correct thermal relic density through the WIMPless miracle in AMSB models [64].

2.5.1 Gluino Freezeout

In a supersymmetric pure gauge hidden sector, the gluinos are initially in equilibrium with a thermal

bath of gluons at a hidden-sector temperature Th. As the universe cools below the gluino mass mX ,

however, the gluinos freeze out. The gluino is the lightest supersymmetric particle in the hidden
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sector, and we will assume it is stable. In the absence of couplings to the visible sector, stability is

guaranteed by Lorentz symmetry, as the gluino is the only fermion in the hidden sector.

The gluino relic density is determined by the usual thermal freezeout analysis, but with the slight

extra complication that it occurs in a hidden sector with a temperature that may differ from the

visible sector. For S-wave annihilation, the relic density of a thermal relic in a hidden sector is [29]

ΩX ≈
s0

ρc0

3.79xf

(g∗S/
√
gtot
∗ )Mpl〈σv〉

, (2.10)

where s0 is the entropy of the visible sector today, xf ≡ mX/Tf , ρc0 is the critical density today,

and gtot
∗ = g∗ + ξ4

fg
h
∗ at freezeout.

We now discuss the various quantities entering (2.10). For the annihilation process g̃g̃ → gg, we

use an S-wave cross section

〈σv〉 = kN
πα2

X

m2
X

, (2.11)

where αX = g2
h(mX)/4π is the fine-structure constant with a corresponding hidden-gauge coupling

gh evaluated at the scale mX , and kN is an O(1) N -dependent coefficient, which we simply set to

1. Additionally, we set xf = 25ξf , which is a good approximation for a large set of parameters [29].

Given this, ΩX scales approximately linearly with ξf . The latest Planck results give a value of

ΩDMh
2 = 0.1196± 0.0031 from a six-parameter fit to the ΛCDM model [77].

To determine the number of relativistic degrees of freedom in the visible and hidden sectors, note

that, although the hidden and visible sectors need to interact gravitationally, they do not necessarily

have to communicate otherwise, even at high energies. Thus, the sector temperatures are generically

unrelated, and the ratio ξ = Th/T parameterizes this difference. The comoving entropies in the

visible and hidden sector are independently conserved, and the values of ξ at different times ti and

tf are related by
gh∗S(ti)

g∗S(ti)
ξ3
i =

gh∗S(tf )

g∗S(tf )
ξ3
f . (2.12)

The effective numbers of relativistic degrees of freedom associated with the entropy (energy) density

in the visible and hidden sectors are g∗S and gh∗S (g∗ and gh∗ ), respectively. As we will see, for most

of the parameter space of interest, the gluinos freeze out at visible-sector temperatures at or above

TSM ≈ 300 GeV, so that all SM particles are relativistic and g∗S = g∗ = 106.75. Although there

may be Minimal Supersymmetric Standard Model (MSSM) superpartners with low enough masses

to contribute to g∗ at freezeout, we assume the contribution is negligible, with most of the visible

supersymmetric-partner spectrum being above mX . For the gluons and gluinos,

gh∗ = gh∗S =

4(N2 − 1) Th & mX

2(N2 − 1) mX & Th > Λ .

(2.13)
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2.5.2 The WIMPless Miracle and AMSB

As noted above, the gluino thermal relic density has the parametric dependence

ΩX ∼
1

〈σv〉
∼ m2

X

α2
X

. (2.14)

For weak-scale masses and weak-interaction coupling strengths, ΩX is of the desired size; this co-

incidence is the essence of the WIMP miracle. For the hidden sector, we have great freedom in

choosing the parameters mX and αX , and may simply choose them to yield the correct relic density.

However, it is preferable if the correct mass-to-coupling ratio is fixed in a noncontrived way. This

fixing is a property of models that realize the WIMPless miracle [29, 63], where the dark matter

mass and coupling are not set individually, but the ratio m2
X/α

2
X is set to the desired value by the

model framework.

Supersymmetric models with AMSB [61,62] provide a particularly nice realization of the WIMP-

less miracle [64–66]. In AMSB, the MSSM is sequestered from the supersymmetry-breaking sector,

so the gaugino masses in the visible sector do not receive any tree-level contributions and are instead

generated by the Weyl anomaly, leading to

mv ∼
αv
4π
m3/2 , (2.15)

where m3/2 is the gravitino mass, αv is a SM fine-structure constant, and mv is of the order of the

weak scale, if these models are to address the gauge hierarchy problem. In any additional sequestered

hidden sector of the theory, the hidden-sector superpartner masses will be given by a similar relation,

mX ∼
αX
4π

m3/2 , (2.16)

where αX is the hidden sector’s fine-structure constant. Since there is only one gravitino mass,

mX/αX ∼ mv/αv, and any hidden sector thermal relic in AMSB can be expected to have the

desired relic density, even if mX and αX differ, perhaps greatly, from the SM values.

The visible sector of AMSB models contains a stable thermal relic, the lightest neutralino. How-

ever, the standard AMSB relations imply that this particle is the wino. Winos annihilate very

efficiently, and must have masses around 2.7–3.0 TeV to be all of dark matter [139, 140]. The ther-

mal relic density scales as ∼ m−2

W̃
, and so for lighter and more natural values closer to the LEP2

experimental limit mW̃ & 100 GeV [141,142], the wino thermal relic density is completely negligible.

We will therefore neglect it below, and take it as additional motivation to develop AMSB models

with viable hidden-sector dark matter candidates.

The particle spectrum in AMSB models is completely specified by quantum numbers, dimension-

less couplings, and the gravitino mass. In the visible sector, the wino mass limit mW̃ & 100 GeV
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implies

m3/2 & 37 TeV . (2.17)

In the hidden sector, at scales above mX , the one-loop β-function coefficient is bH = −3N and the

theory is asymptotically free. The gluino mass is

mX = −bH
αX
4π

m3/2 = 3N
αX
4π

m3/2 . (2.18)

Below mX , we have a nonsupersymmetric SU(N) gauge theory with a β-function coefficient bL =

−(11/3)N . The theory is expected to confine at the scale

Λ ∼ mX exp

(
−6π

11NαX

)
= mX exp

(−9m3/2

22mX

)
. (2.19)

With this relationship, the relic density in (2.10) becomes

ΩX ≈
s0

ρc0

[
g∗ + 2(N2 − 1)ξ4

f

]1/2
g∗S

3.79 · 25ξf
Mpl

9N2

16π3
m2

3/2 . (2.20)

2.6 Glueballino/Glueball Dark Matter without Connectors

Given the results above, we can now present simple AMSB models of self-interacting dark matter.

We begin by considering the simple case without connector fields, in which the visible and hidden

sectors are decoupled. The visible sector is the MSSM; the tachyonic slepton problem is assumed to

be solved in a way that does not impact the masses of the MSSM gauginos, and the wino is assumed

to be the visible lightest supersymmetric particle (LSP), with negligible thermal relic density. The

hidden sector is a pure SU(N) gauge theory, consisting of gluinos and gluons, which confine to form

glueballino and glueball dark matter.

There are only four independent parameters in the theory, which may be taken to be

mX , Λ, N, ξf . (2.21)

These determine αX and m3/2 through (2.19). In contrast to the model-independent discussion

of §2.4, in AMSB models, renormalization group equations relate the high-scale parameters mX

and αX to the low-scale parameter Λ. In terms of these parameters, the glueball self-interaction

cross section and relic density are determined as described in §2.3.1 and §2.3.2, and the glueballino

self-interaction cross section and relic density are determined as described in §2.4 and §2.5.

We first present results for models with mostly glueballino dark matter in Fig. 2.5. We scan

over the (mX ,Λ) plane. At every point in this plane, we require that glueballinos make up 90%
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(top panel) or 99.99% (bottom panel) of the dark matter, and glueballs make up the remaining 10%

or 0.01%. The constraints on Ωgbino and Ωgb determine N and ξf ; contours of constant N and ξf

are shown. The lower bound of (2.17) excludes parameter space with low mX . In the remaining

parameter space, mX/Λ & 103, which is more than sufficient to ensure Thf > Λ, so gluino freezeout

occurs in the weakly-interacting theory, and the thermal freezeout calculation is valid.

These relic density results for a particular glueballino density may be understood as follows. On

a given curve of constant N , larger dark matter masses imply larger thermal relic densities and so

require smaller values of ξf to keep Ωgbino fixed. Once ξf decreases, a larger Λ is required to keep

Ωgb constant. Note also that for Λ ∼ MeV and ξf ∼ 1, glueballs overclose the universe. To avoid

overclosure, ξf must be lowered; and to have mostly glueballino dark matter, mX must be a bit

larger than the weak scale. In short, the presence of glueballs forces the model away from the a

priori most natural parameter space with low mX and ξf ∼ 1. In the context of AMSB, however,

it is rather natural to assume that the hidden and visible sectors are separated at high scales and

ξf � 1. The WIMPless miracle is nicely realized in regions of parameter space with ξf ∼ 0.01 and

N ∼ O(1) for Ωgbino = 0.9 ΩDM.

There are also differences between the 90% and 99.99% glueballino cases. The curves of constant

N and constant ξf shift as the relative amounts of glueball and glueballino dark matter change. By

focusing on a particular point in the (mX ,Λ) plane and comparing (2.4) and (2.20), we find

ξf ∼
Ω

1/2
gb

Ω
1/2
gbino

and N ∼
Ω

3/4
gbino

Ω
1/4
gb

(2.22)

for N2 � 1. When the glueball density is reduced by 3 orders of magnitude, we expect N to increase

by a factor of 103/4 ∼ 6 and ξf to decrease by a factor of 103/2 ∼ 30, as shown in Fig. 2.5.

Of course, the goal is not simply to obtain a multicomponent model of dark matter with the

correct relic densities, but to obtain self-interacting dark matter. The regions with the preferred

self-interaction cross sections are also shown in Fig. 2.5. For values of mX ∼ 10 TeV, Λ ∼ 1 MeV,

2 ≤ N . 10, and 10−3 . ξf . 10−2, we find models that satisfy the relic density constraints and

also satisfy the scattering constraints for dwarfs and LSBs. Viable models also exist for lower values

of mX down to the LEP2 limit for larger N and lower ξf . A representative model is one with

mX ' 14 TeV, Λ ' 0.35 MeV, N = 2, and ξf ' 0.02; it is shown as a yellow dot in Fig. 2.5. For

these parameters, Fig. 2.1 shows how the dark matter coupling behaves from the scale mX down to

confinement.

Measurements of nuclei abundances and of the CMB place restrictions on the number of light

degrees of freedom Neff around the time of BBN that contribute to the expansion of the universe.

Results from Planck give Neff = 3.30 ± 0.27 [77]. An interesting question, then, is whether these

models also imply nonstandard values of Neff. Once the hidden-sector temperature drops below the
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confinement scale, glueballinos and glueballs form. Confinement occurs when the visible sector’s

temperature is

TΛ =
ThΛ
ξΛ
∼ Λ

ξΛ
=

Λ

ξf

(
g∗S(tf )

g∗S(tΛ)

)1/3

, (2.23)

using (2.12) with gh∗S(tΛ) = gh∗S(tf ). For the representative example parameters given above, the

confinement scale is TΛ ∼ 90 MeV; confinement occurs well before BBN and structure formation, as

expected. There is therefore no relativistic, massless species to act as the hidden-sector bath during

BBN. At the time of BBN, the hidden-sector temperature is not well defined, and its contribution

to Neff is essentially zero.

We next consider the case of mostly glueball dark matter. To be concrete, we present the case

of Ωgb = 0.9 ΩDM and Ωgbino = 0.1 ΩDM in Fig. 2.6. Once again, we show contours of constant N

and ξf , but now we include the glueball scattering constraints from Fig. 2.3, since glueballs are the

dominant component of dark matter. The values of mX that satisfy relic and scattering constraints

for a given N are fairly similar to those in the case of mostly glueballino dark matter; however, the

corresponding values of Λ are a few orders of magnitude larger than the mostly glueballino case.

In Fig. 2.5 and Fig. 2.6, the fraction of glueballino to glueball dark matter is fixed. Of course,

different values are possible. In Fig. 2.7, we fix N = 2 and vary mX and Λ; ξf is set by the

requirement that Ωgbino + Ωgb = ΩDM. The results are presented in the (〈σT 〉gbino/mX , 〈σT 〉gb/Λ)

plane, where Vmax = 40 km/s, and contours of constant Ωgbino/Ωgb are shown. Regions excluded by

LEP2 and by cluster bounds are shaded.

Fig. 2.7 shows that the fraction of dark matter that is glueballinos may take almost any value

in the parameter space. Of course, regions of parameter space that are overwhelmingly glueballino

dominated and have too-large glueballino self-interactions are excluded, as are regions that are over-

whelmingly glueball dominated with too-large glueball self-interactions. The parts of parameter

space that are certainly excluded by these considerations are indicated, but the position of this

boundary is somewhat uncertain and requires detailed N -body simulations (modeling both com-

ponents of dark matter) to determine. The cluster constraints [9, 116] are relevant here because

glueballs have a velocity-independent scattering cross section and these constraints dictate that

glueballs must be the subdominant component of dark matter in all of the parameter space shown

in Fig. 2.7.

Especially interesting, however, are the regions of parameter space with a subdominant com-

ponent of dark matter that self-interacts very strongly. For example, the dark matter may be

99% glueballinos and 1% glueballs, but the glueballs may have 〈σT 〉gb/Λ ∼ 105–1011 cm2/g. Such

possibilities are not ruled out by the constraints discussed so far but may have very interesting

astrophysical implications.

It has been pointed out that, at early times before the halo has had time to form a core through
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self-interactions, seed black holes can grow by accreting self-interacting dark matter [143]. In the

mixed self-interacting dark matter scenario where one of the components has 〈σT 〉/m � 1cm2/g,

this accretion can be highly enhanced. The possibility that supermassive black hole growth is seeded

by the self-interactions of either the glueballs or glueballinos is an exciting prospect. There is not

yet a clear picture of how 109 M� quasars are assembled already by z & 6 within the standard

ΛCDM cosmology. Models starting with the expected 100 M� seeds require special assumptions

about the mass accretion histories of these quasars [144], which become more strained as higher

redshift quasars are found [145]. Self-interactions within the dark matter sector may have a big role

to play in this story, as they generically enhance the early black hole accretion rate.

There is a tight correlation between the mass of supermassive black holes in the centers of

galaxies and the velocity dispersion or luminosity of the bulge [146]. By requiring that the predicted

masses of supermassive black holes are not overly large, it should also be possible to constrain

the ratio Ωgb/Ωgbino in mixed self-interacting dark matter models where 〈σT 〉gb/Λ is large. To

correctly implement this constraint, many new features of our simple model and their astrophysical

consequences will have to be worked out. We highlight a few of these below.

The details of capture of glueballs by a seed black hole will differ significantly from the treatment

in [143]. The black hole capture depends sensitively on the density profile of glueballs, which is

tightly correlated with the potential well of the galaxy, which in turn is dominated by glueballinos. In

particular, although an isolated strongly self-interacting dark matter halo will undergo core collapse,

it is not true when the strongly self-interacting component (glueballs) is a small fraction of the dark

matter.

A complicating factor is that the glueballs and glueballinos will scatter off of each other. Each

collision will change the velocity of glueballs by O(1), but the velocity of glueballinos will only

change by Λ/mX � 1. The glueballino-glueball scattering cross section should be of the order the

geometric cross section (∼ 1/Λ2), and thus this effect could be important if the number density

of glueballinos is much larger than that of glueballs (either because of a small Ωgb/Ωgbino or as

glueballs are depleted due to accretion by the black hole). Conversely, this scattering could also

have an impact on the glueballino density profile if the number density of glueballs is large enough

to overcome the small momentum transfer.

Another important effect, relevant for halo properties as well as black hole growth, is cooling.

We have focused on elastic collisions in this chapter, but as mentioned previously, there are also

inelastic processes leading to cooling through the emission of glueballs. Cooling will funnel more

glueballs into the inner regions (modulo angular momentum constraints) and increase the black hole

accretion rate. Note that, unlike the baryons, competing effects from star formation and subsequent

heating by UV photons are not relevant for glueballs.

As an extreme example, one could assume that all of the glueballs are bound up in the central
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supermassive black hole. In this case, we can use measured ratios of the black hole masses to halo

masses to put an upper limit on Ωgb/Ωgbino. For the Milky Way, this ratio is ∼ 10−5, while for

Andromeda the ratio is more like 10−4 (it should be kept in mind that the black hole will also accrete

baryons and grow, so this estimate is a lenient upper bound). Rather than focus on the Local Group,

one could look more generally at the black hole mass–virial mass relation for all galaxies, but as

expected there is a lot of scatter in this relation [147].

To illustrate the effect of these constraints on the model parameter space, we have shown two

possibilities in Fig. 2.5: one with Ωgb/Ωgbino = 0.1 (which may not be viable given the arguments

above) and a second with Ωgb/Ωgbino = 10−4. There is no impediment in making this ratio even

smaller, although there is no natural reason to do so. In addition, as Ωgb/Ωgbino is reduced, the

regions with small N move into the regime where inelastic process will be important for all relevant

velocities (dwarfs to clusters).

2.7 Glueballino/Glueball Dark Matter with Connectors

Although a pure SU(N) hidden sector with no connectors can accommodate both early universe and

structure formation constraints, it is interesting to consider the possibility of connector fields that

allow communication between the hidden and visible sectors. Such scenarios may have, of course,

a larger number of testable implications. In addition, as we will see, if the connectors mediate

annihilation or decays to the visible sector, the viable parameter space may be significantly altered.

If the hidden and visible sectors communicate, we expect the temperatures of the two sectors to

coincide nearly until kinetic decoupling at confinement. If glueballs are stable, they will generically

overclose the universe, and so there must be a mechanism to reduce the glueball density. Let us

assume that this mechanism exists and reduces the glueball relic density to a negligible level. We

can then immediately determine the consequences for the parameter space. For a given point in the

(mX ,Λ) plane with ξf = 1, there are contours of constant N on which Ωgbino = ΩDM. These are

shown in Fig. 2.8, along with the self-interaction constraints. We see that the LEP2 bound excludes

all but the N ≤ 4 possibilities, but now, for small N , the allowed values of mX are much reduced

and more natural relative to the case without connectors.

A straightforward way to eliminate glueballs is through decays, but other constraints render this

scenario unacceptable. The glueballs have a mass around 1 to 10 MeV, so possible decay products

will be photons, electrons, and neutrinos. Decays to photons will typically take too long and happen

well after BBN. If too much energy and entropy is injected into the visible sector at T . 1 MeV,

there is an unacceptably large contribution to Neff. Decays to electrons after 1 MeV face a similar

problem, and, in addition, they can break up deuterium and ruin its BBN abundance (if the glueball

is heavy enough). Decays to light neutrinos are problematic because glueballs can be produced in
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supernovae, escape the neutrino sphere, and cool the supernovae too efficiently. If we attempt to

adjust parameters to get around the difficulties with either electrons or neutrinos, then we encounter

problems with e+e− collider constraints. We are led to consider alternative processes to eliminate

the glueball density.

Since decays after confinement are highly constrained, we investigate reducing the glueballino

density by depleting the gluon density before confinement. The gluons may annihilate to SM particles

via loop diagrams, but the reverse process needs to be suppressed. Let us introduce a right-handed

neutrino νR. The νR is a SM gauge singlet with a mass mR ∼ GeV and could be one of the sterile

states in a seesaw mechanism to produce neutrino masses. Our goal is for the gluons to annihilate

into right-handed neutrinos, which then decay quickly into SM particles before they can annihilate

back into gluons.

To implement this scenario, we postulate that there is a connector field C with a mass mC

that allows communication between the hidden and visible sector. The connector has a Yukawa

interaction λRCν̄RνR in the visible sector, and a gauge interaction with the gluons with strength gh

in the hidden sector. Integrating out the connector produces the effective interaction

L ∼ 1

16π2

λ2
Rg

2
h

m3
C

GhµνG
hµν ν̄RνR . (2.24)

This interaction leads to an annihilation cross section,

〈σv〉gg→ν̄RνR ∼
λ4
Rg

4
h

8π(16π2)

T 4

m6
C

≡ σ0z
−4 , (2.25)

where z = mR/T . Note that the annihilation of gluons into right-handed neutrinos is subdominant

to the annihilation rate of gluons into gluinos and can be ignored in the gluino freezeout calculations.

The right-handed neutrino decays with a rate

ΓR ∼
g2
ν

4π

m2
R

T
≡ Γ0z (2.26)

into SM particles at tree level with a coupling strength gν . As long as the neutrino decay rate is much

faster than the gluon annihilation into neutrinos (and both are faster than the Hubble expansion),

the gluons cannot maintain their equilibrium density and their energy is transferred to SM particles.

The depletion terminates no later than ∼ mR, when any surviving right-handed neutrinos freeze

out, and the gluon density decreases subsequently only due to Hubble expansion.

To give a concrete example, consider the following parameters: N = 2, mX = 2.5 TeV, Λ '

1.4 MeV, mC = 0.5 TeV, mR = 1 GeV, gh = 1.1, λR = 1.6, and gν = 0.1. The output glueball relic

density is ∼ 5% of the total dark matter abundance. We find this result by numerically solving the
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coupled Boltzmann equations for the gluons and right-handed neutrinos:

Y ′g(z) = −z−6σ0
s(mR)

H(mR)

(
Y 2
g − Y 2

R

)
(2.27)

Y ′R(z) = −z−6σ0
s(mR)

H(mR)

(
Y 2
R − Y 2

g

)
− z2 Γ0

H(mR)
YR , (2.28)

where s(mR) and H(mR) are the entropy and Hubble rate at T = mR. The initial conditions

YR(zf ) and Yg(zf ) are given by (2.3) at dark matter freezeout, zf = 25mR/mX . These differential

equations tend to be fairly stiff, so in certain regions of parameter space, it is beneficial to decouple

the equations. We may do so if the neutrino decay term dominates, allowing us to approximate

YR as exponentially decaying. Solving the decoupled differential equation yields results that are

numerically similar (typically within 10%) to solving the full set of coupled equations when the

decay term dominates.

There are few constraints on this mechanism. Prior to confinement, a large amount of entropy

is transferred from the gluons to light SM particles. Since the right-handed neutrinos are still

relativistic, there is no entropy nonthermally deposited into the visible sector. All the right-handed

neutrino decay products fall into equilibrium with the bath well before BBN. With a nonzero glueball

density, a concern might be that the glueballs will be able to decay to SM particles via off-shell

right-handed neutrinos and nonthermally deposit entropy into the visible sector. If the right-handed

neutrino decays into a left-handed neutrino and the Higgs, then we expect the glueball decay rate

into ν̄LνLe
+e−e+e− to be

Γgb ∼ y4
eg

4
ν

Λ19

m6
Cm

8
hm

4
R

, (2.29)

where ye is the electron Yukawa coupling and mh is the mass of the Higgs. This decay rate is slow

enough that the glueballs are essentially stable. Furthermore, they will not contribute significantly

to Neff, since they are nonrelativistic below 1 MeV; and they will not have a large impact on the

expansion rate of the universe during BBN, given their small energy density. Our glueball depletion

process is robust, and it is consistent with terrestrial and cosmic constraints [148].

2.8 Conclusions

We have explored the possibility that dark matter may be a composite particle, made up of bound

states of a dark analogue of QCD in the hidden sector. Such constructions lead to rich and varied

phenomena that are distinct from the WIMP scenario more typically considered. It also naturally

leads to large self-interactions of the dark matter, which can explain several observational puzzles

in the small-scale structure of the universe.

The simplest scenarios contain only dark gluons, which confine into glueballs with cosmologically
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interesting scattering cross sections for confinement scales around 100 MeV. Arranging the correct

relic density requires one to disconnect the temperatures in the hidden and visible sectors such that

their ratio at confinement is ∼ 10−3.

A richer theory arises when one considers supersymmetric versions, for which the dark gluino mass

provides a separate mass scale and (in AMSB) can provide the correct relic density of glueballinos via

the WIMPless miracle. The phenomenology depends crucially on how connected the hidden sector

is to the visible matter. If there are no light connecting particles, one can dial the balance of dark

matter from glueballs to glueballinos by adjusting the relative temperatures of the hidden and visible

sectors. These mixed scenarios are strongly-interacting analogues of atomic dark matter [149–153],

and inspire further simulation of the galactic dynamics in cases where there are two components

of dark matter with naturally very different mass scales and different self-interaction rates. Such

simulations would be very helpful to better understand the observational limits on these theories.

For clusters, another important issue is the fact that the dark matter may have enough energy to

scatter inelastically, bringing the details of the dark composite sector to the forefront of the physics;

further work is needed to better understand the implications. We have also pointed out that our

models have rich implications for the early growth of supermassive black holes. The mechanism by

which ∼ 109 M� quasars are assembled as early as redshifts of 6–7 is a mystery, and self-interacting

dark matter could have a major role to play in this story.

If the hidden and visible sectors are closely connected such that the temperatures remain compa-

rable even at late times, the hidden glueballs will generically overclose the universe. We considered

a depletion mechanism into right-handed neutrinos and found that it can efficiently remove hidden

gluons before confinement. Self-interaction strengths required to explain the astrophysical puzzles

on small scales are obtained for glueballino masses & 1 TeV and confinement scales ∼ MeV.

The possibility of strong self-interactions in the dark sector is well motivated by observations of

lower-than-expected dark matter densities in the centers of galaxies. A strongly-interacting hidden

sector naturally realizes this possibility. Even in the simple models explored in this chapter, we have

discovered new features that must be incorporated into numerical simulations to correctly predict

the spatial distribution of dark matter in the central parts of structures from dwarf galaxies to

clusters of galaxies.
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Figure 2.5: Mostly glueballino dark matter in AMSB models with pure SU(N) hidden sectors without
connectors. Glueballinos make up 90% (top) or 99.99% (bottom) of the dark matter, and glueballs
make up the remaining portion. For a point in the (mX ,Λ) plane, these constraints on the relic
densities determine N and ξf ; contours of constant N and ξf are shown. The gray shaded bands
are from Fig. 2.4, and give the regions where the glueballino self-interaction cross section is in the
preferred range. The red shaded region is excluded by null searches for visible-sector winos at LEP2.
The yellow dot in the top panel defines a representative model with mX ' 14 TeV, Λ ' 0.35 MeV,
N = 2, and ξf ' 0.02.
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Figure 2.6: Mostly glueball dark matter in AMSB models with pure SU(N) hidden sectors and no
connectors. Glueballs make up 90% (top) or 99% (bottom) of the dark matter, and glueballinos
make up the remaining portion. For a point in the (mX ,Λ) plane, these constraints on the relic
densities determine N and ξf ; contours of constant N and ξf are shown. The gray shaded band is
from Fig. 2.3, and gives the region where the glueball self-interaction cross section is in the preferred
range. The red shaded region is excluded by null searches for visible-sector winos at LEP2.
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Figure 2.7: Mixed dark matter without connectors to the SM. We show curves of constant Ωgbino/Ωgb

in the (〈σT 〉gbino/mX , 〈σT 〉gb/Λ) plane, for N = 2 and considering dwarf systems with Vmax =
40 km/s. The black curves have Ωgbino/Ωgb = 0.1, 1, 10, 100, as indicated. The bound from LEP2
is shown in the red shaded region. A stronger bound from clusters is shown in the lower hatched
magenta region; since the glueball scattering cross section is the same on all scales, its value is limited
for the dwarf systems to avoid violating bounds from cluster scales. We caution the reader that the
bound may be stronger, and it is certainly not as sharp as indicated by the hatched region. The
hatched magenta wedge near the upper right-hand portion of the graph represents an upper limit
of 10 cm2/g for the case of mostly glueballino dark matter, which will have important implications
for cores in dwarfs galaxies and may be excluded by a comparison to the observed core sizes and
densities (e.g., [8, 11]).
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Figure 2.8: Glueballino dark matter in AMSB models with pure SU(N) hidden sectors and connectors
to the SM. Glueballinos are assumed to make up all of the dark matter. The relic density constraints
are given in the (mX ,Λ) plane with ξf = 1; contours of constant N are shown. The gray shaded
bands are from Fig. 2.4 and give the regions where the glueballino self-interaction cross sections are
in the preferred range. The red shaded region is excluded by null searches for visible-sector winos
at LEP2. The yellow dot defines a representative model with mX ' 2.5 TeV, Λ ' 1.4 MeV, and
N = 2.
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Appendix

2.A Solving the Schrödinger Equation for an Attractive

Yukawa Potential

We are interested in the elastic scattering of fermionic glueballinos with mass mX via the exchange

of scalar glueballs with mass Λ. The interaction strength is α = g2/4π ≈ 1. This scenario is modeled

as scattering from an attractive Yukawa potential

V (r) = −α
r

exp(−Λr) . (2.30)

Note that if the exchange particle were a vector, we would have a combination of attractive (X̄X)

and repulsive (XX or X̄X̄) interactions. With a scalar mediator, only attractive interactions are

possible. For convenience, we use the parameterization variables

R =
mXv

Λ
and β =

2αΛ

mXv2
, (2.31)

where v is the relative velocity of the scattering particles in the center-of-mass frame. The quantity

R compares the range of the interaction to the de Broglie wavelength of the scattering particle, and

β compares the potential and kinetic energy of the particle.

To make the connection between observation and simulation, it is common to use the transfer

cross section (2.7). For a weak potential, it is straightforward to calculate the transfer cross section

in the Born limit (αmX � Λ):

σT,Born =
2π

Λ2
β2

[
ln(1 +R2)− R2

1 +R2

]
. (2.32)

However, since α ≈ 1 and mX > Λ, the Born limit is not applicable in our model. Instead, it is the

nonperturbative regime that is relevant for this work, and the cross section receives large corrections

for small v [44, 133, 137, 154]. Within the nonperturbative regime, there are two important limits:

the classical limit (R� 1) and the quantum limit (R . 1).

For the classical case, numerical studies for the Yukawa potential have been done in the context
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of complex plasmas, and the following phenomenological forms of the transfer cross section agree

well with the numerical results [134–136]:

σT,clas '


4π
Λ2 β

2 ln(1 + β−1) β . 0.1

8π
Λ2 β

2
(
1 + 1.5β1.65

)−1
0.1 . β . 1000

π
Λ2

(
lnβ + 1− 1

2 ln−1 β
)2

β & 1000 .

(2.33)

Notice that for β & 1, the transfer cross section changes slowly as a function of v. When β . 1, the

transfer cross section approaches that for Rutherford scattering.

In the quantum limit, there are resonances due to zero energy bound state formation. It happens

that the Yukawa potential may be approximated on very short or very long distance scales as the

Hulthén potential

VH(r) = −αδ e−δr

1− e−δr
. (2.34)

The parameter δ can be set by matching to the wave function of the Yukawa potential. For δ = κΛ,

matching to the Yukawa at r → 0 gives κ = π2/6 [155], whereas matching to the Yukawa at r →∞

gives κ =
√

2ζ(3) [133]. The advantage of the Hulthén potential is that it makes the Schrödinger

equation analytically solvable for l = 0. Low partial waves dominate in the quantum limit, so the

approximate analytic formula for the transfer cross section is [133]

σT,Hul =
16π

m2
Xv

2
sin2 δ0 , (2.35)

where

δ0 = arg

[
iΓ(iR/κ)

Γ(λ+)Γ(λ−)

]
, (2.36)

λ± ≡ 1 +
iR

2κ

(
1±

√
1− 2βκ

)
. (2.37)

In general, it is necessary to numerically solve the radial Schrödinger equation. Decomposing

the scattering amplitude into partial waves, the transfer cross section may be written as

σT =
4π

k2

∞∑
l=0

(l + 1) sin2(δl+1 − δl) , (2.38)

where δl is the phase shift, determined by the asymptotic form of the wave function at r →∞, and

k = mXv/2 is the momentum of the reduced mass system. We refer the reader to [133] for details

on numerically solving the differential equation, and we implement their algorithm for our work

here, using the LSODA software from LLNL [156, 157] (all other calculations in this chapter were

performed with Mathematica 8.0). Fig. 2.A.1 shows the numerical solutions of σT k
2/4π, scanning
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Figure 2.A.1: Parameter scan to find numerically the transfer cross section. Values of σT k
2/4π are

color coded using the scale on the right. Parameter points with R > 5 have been excluded, since the
computation becomes intensive in the classical regime, where many partial waves contribute. The
peaking structure is the resonant behavior in the quantum limit. The Born regime occurs at lower
mX/Λ and is not shown here.

the parameters v and mX/Λ.

To perform the integration for velocity averaging in (2.9), we match to the analytic expressions

for the classical and quantum regimes, given in (2.33) and (2.35). For the sake of computation time,

no set of parameters with R > 5 were used to numerically solve for σT , and we rely on the classical

formulae. Given the ambiguity of κ in the Hulthén potential, we scale κ to match the numerical

solution at low v for a given mass ratio; however, uncertainties introduced in scaling have little effect,

since velocities smaller than the ones shown in Fig. 2.A.1 will contribute very little to the integrals

for v0 ≥ 10 km/s.
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Part II

Fluctuations in Cosmology
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Since the discovery of the acceleration of the universe [1, 2], the standard cosmological model—

with cosmological constant Λ, cold dark matter, and approximately scale-free primordial perturba-

tions (ΛCDM)—has provided an excellent fit to a wide variety of data. However, a problem lurks

in the future. As the universe empties out, it approaches a de Sitter phase. The Hubble parame-

ter in de Sitter is constant and related to the cosmological constant by H =
√

Λ/3. A stationary

observer is surrounded by a cosmological horizon at a distance R = H−1. Quantum field theory

(QFT) in curved spacetime describes a unique state that is both de Sitter invariant and Hadamard

(well-behaved at short distances), called the Euclidean (or Bunch-Davies [3, 4]) vacuum for a free,

massive scalar field or the Hartle-Hawking vacuum [5] for an interacting scalar field. A particle

detector sensitive to a field in the Hartle-Hawking vacuum will detect thermal Gibbons-Hawking

radiation with a temperature T = H/2π [6]. Each horizon-sized patch (which we will henceforth

simply call a patch) of de Sitter can be associated with an entropy equal to the area of the horizon

in Planck units, S = 3π/GΛ (S ∼ 10122 for the measured value of Λ). In horizon complementarity,

the quantum state of each patch can be described by a density operator defined on a Hilbert space

of dimension dimH = eS [7, 8].

Conventional wisdom holds that the Hartle-Hawking vacuum experiences fluctuations, which

may be thought of as being either quantum or thermal, since a patch is a quantum system at a

fixed temperature. These fluctuations play several important roles in modern cosmological mod-

els. During inflation, when the metric is approximately de Sitter, fluctuations seed the density

perturbations responsible for the cosmic microwave background (CMB) anisotropies and large-scale

structure [9–11]. Eternal inflation (either stochastic [12–14] or in a landscape of vacua [15–19])

makes use of fluctuations upward in energy density, often described as uptunneling [20,21]. Finally,

the phenomena of Poincaré recurrences [22] and Boltzmann fluctuations can be problematic features

of long-lived de Sitter phases. In particular, there is a nonzero rate to fluctuate into any particular

local macroscopic configuration of matter allowed by conservation laws, including conscious crea-

tures without any supporting environment (known as Boltzmann brains [23–26]) or for that matter

to observers in precisely the macrocondition we find ourselves in at the present moment. Such a

scenario implies that our memories and impressions of the past are unlikely to correlate with actual

events, but rather to arise from random fluctuations. An empirically viable theory should predict

that observable data correlates to the external environment in reliable ways, so we seek theories that

avoid Boltzmann brain domination.

In Chapter 3, we attempt to alleviate the Boltzmann brain problem through the instability of

the Standard Model electroweak vacuum [27]. The Higgs potential drops below the electroweak

vacuum at large field values, so it is possible that Boltzmann brain production is inhibited if the

decay rate of the electroweak vacuum is large enough. Otherwise, we must choose a measure on

which to calculate the rate Boltzmann brains, and any measure that admits a large number of them
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is unacceptable.

Upon further investigation into the nature of fluctuations in de Sitter space, we unveil a deeper

problem with the conventional understanding and argue that fluctuations do not occur at all under

certain circumstances. The Hartle-Hawking vacuum is stationary, and there is no sense in which

fluctuations exist. The observational outcomes of measurements on a quantum mechanical system

exhibit quantum fluctuations, but these fluctuations are not inherently the same as classical stochas-

tic fluctuations. In Chapter 4, we present our case against fluctuations in the de Sitter vacuum and

comment on the impact it has on widely-accepted theories that take the existence of fluctuations for

granted [28].
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Chapter 3

Can the Higgs Boson Save Us from
the Menace of the Boltzmann
Brains?

3.1 Introduction

The troublesome Boltzmann brain (BB) problem has nothing to do with speculative ideas about

eternal inflation or the cosmological multiverse; it is a difficulty of known physics, or at least the

simplest interpretation thereof (a constant vacuum energy, QFT in curved spacetime). It is therefore

worth asking whether there can be any escape from the BB challenge within known physics.

The simplest solution is if our current vacuum state is unstable and can decay into a different

vacuum before BBs form [25]. Within the Standard Model (SM), sufficiently rapid decay is possible if

the Higgs field has another vacuum with a lower energy density. Interestingly, renormalization-group

calculations using current measurements of SM parameters indicate that the Higgs is susceptible to

decay to a larger expectation value [29–42]. We point out that the decay rate might be fast enough

to avoid the BB problem, but only if the mass of the top quark is near 178 GeV, a bit larger than

conventionally believed. In the absence of a large top mass or new physics, BBs can only be avoided

by choosing a particular cosmological measure (see e.g. [43–48]). In particular, we argue that local

measures (referring to individual causal patches, rather than the entire multiverse) can solve the

problem. This result provides empirical support for horizon complementarity [8, 49], the idea that

only the part of the universe accessible to a single observer is physically relevant.

3.2 Higgs Potential and Decay Rates

Let us begin by reviewing the stability of the Higgs potential, which depends on the behavior of the

potential at large field values φ = |Φ|, where Φ is the electroweak (EW) Higgs doublet. We assume
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Figure 3.1: Schematic of the Higgs potential. Our current electroweak vacuum is at φEW, and the
far vacuum at φfar is portrayed for different scenarios: stable, metastable, or runaway. Note that the
explicit form of the potential is not gauge invariant [50], but the tunneling rate and vacuum energy
at minima are physical quantities [51,52].

the standard ΛCDM cosmology and no new physics below the Planck scale. The only two vacua are

our present one (the electroweak vacuum φEW) and a possible “far vacuum” at φfar, as portrayed

in Fig. 3.1. How the universe evolves depends on the value Λfar of the cosmological constant in the

far vacuum, where Λi = 8πGV (φi) and V (φEW) ≈ (2.3× 10−3 eV)4. If Λfar < ΛEW, it is possible to

tunnel from φEW to φfar with a vacuum decay rate Γdecay.

There are several values to which we would like to compare Γdecay. There is the rate Γfast that

is so rapid our vacuum should have already decayed; the rate Γperc ∼ H4, below which the phase

transition does not percolate; the rate ΓBB at which BBs are created; and Γdecay → 0 for which

our vacuum becomes stable. Given the precision of the measured parameters, however, we cannot

distinguish between Γfast and Γperc, nor between ΓBB and 0. Similarly, the parameter space for

which the far vacuum is de Sitter but lower energy than our current vacuum is negligibly small.

We are therefore interested in two simple questions: is the bubble nucleation rate greater than zero

(metastability), and is it fast enough to percolate?

To be more quantitative, we consider the full structure of the effective potential

Veff(φ) = −1

2
m2φ2 +

1

4
λφ4 + ∆V (φ) , (3.1)

where ∆V includes radiative corrections from summing 1PI diagrams with vanishing external mo-

menta [53]. There is also a φ-independent energy density that should be included, but its effects

are negligible at the scales we are interested in for stability [33]. The effective potential is known

to two loops in the MS renormalization scheme [54,55]. The loop approximation is nearly invariant

with respect to the renormalization scale µ if µ is chosen to minimize the size of radiative correc-
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tions [31, 56]. Logarithmic terms in ∆V have the form ln(φ2/µ2), so the choice µ = φ avoids large

logarithms at large φ. To work consistently at next-to-next-to-leading order (NNLO), the effective

potential needs to be improved using the three-loop renormalization group equations with two-loop

matching at the electroweak scale. This procedure correctly resums logarithm contributions [57–59].

Recent NNLO calculations of the electroweak threshold corrections can be found in [40–42]. The

most relevant SM parameters for vacuum decay are αs(MZ) (the strong coupling evaluated at the

Z pole mass), the top pole mass Mt, and the Higgs pole mass Mh.

For φ � φEW, we may neglect the m2φ2 term and write the effective potential as Veff =

1
4λeff(φ)φ4 [31, 33], so that the stability bound is set by requiring λeff = 0 at its minimum. The

dividing line between stability and metastability is [42]

Mt(GeV) = 171.4 + 0.5(Mh − 125.7) + 357.1(αs(MZ)− 0.1184)± 0.2 , (3.2)

where the uncertainty comes from higher order perturbative corrections (and does not include un-

certainties in Mh and αs). If the top pole mass is above this value, the electroweak vacuum decays

via bubble nucleation.

Nucleation proceeds via instantons with tree-level Euclidean action S0 and radiative correction

∆S. The action is determined from the bounce solution [60] with a characteristic size R. Gravita-

tional corrections also become relevant for R−1 & 1017 GeV [61]. Using the bare potential 1
4λ(φ)φ4

for large φ, we obtain S0 = 8π2/3|λ(µ)|. The decay rate per unit volume is then

Γdecay =
1

R4
exp

[
− 8π2

3|λ(µ)|
−∆S(µR)

]
, (3.3)

where the correction ∆S has been computed to one loop [34]. The size of the bounce R will be that

which maximizes the decay rate, and µ ≈ R−1 is set to minimize the size of the radiative corrections.

The dividing line between percolation and non-percolation is [36]

Mt(GeV) = 178.2 + 0.3(Mh − 125.7) + 397.7(αs(MZ)− 0.1184)± 1.2 , (3.4)

where the last term is a theoretical error.

The bounds from (3.2) and (3.4) are shown in Fig. 3.2, with αs(MZ) = 0.1184 ± 0.0007 set

to its world average value [64]. The dotted lines near the bounds represent the 1σ deviation in

αs. Elliptical contours represent measurements on the Higgs mass and top mass. The Higgs mass

Mh = 125.66± 0.34 GeV is obtained from a simple average [65] of measurements from CMS [66,67]

and ATLAS [68,69], fitting peaks in the h→ γγ and h→ ZZ → 4l channels. We use the top mass

average of Mt = 173.20 ± 0.87 GeV from the Tevatron Electroweak Working Group [62], which is

consistent with measurements from CMS [70] and ATLAS [71]. These measurements indicate that
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Figure 3.2: Stability regions for the electroweak vacuum. The lower blue line is the stability bound
in (3.2), and the upper red line is the percolation bound in (3.4). The smaller contours show the
1σ, 2σ, and 3σ regions, using top mass measurements from the Tevatron [62]. The larger contours
show the 1σ and 2σ regions, using an alternative determination of the top pole mass from CMS [63].
The only region that is empirically viable (free of Boltzmann Brains, not already decayed) in a
measure-independent way is the upper line, suggesting a top pole mass of ∼ 178 GeV.

the electroweak vacuum is metastable, entering into the stability region above the 2σ level.

There are concerns regarding the methods used to extract the mass of the top [39]. The top

mass parameter that is used in the reconstruction of collider events is not necessarily the pole mass

that is needed in the stability calculations. Furthermore, the top is a confined object that does not

exist as an asymptotic state, and non-perturbative effects introduce ambiguities in defining the pole

mass. A way to combat these issues is to extract the MS top mass from the total cross section and

use the relation between the MS mass and the pole mass [39, 72]. CMS performed this analysis to

find a top pole mass of Mt = 176.7 +3.8
−3.4 GeV [63]. While the errors are much larger than the other

recent top mass measurements, the quoted value is higher, pushing the electroweak vacuum towards

larger decay rates, as shown in Fig. 3.2.

3.3 Cosmological Measures

We wish to compare the predicted number of BBs to the number of ordinary observers (OOs) in

our universe. We assume that BBs fluctuate into existence in a future de Sitter phase with some

fixed rate per four-volume, ΓBB. This rate depends on the details of what kinds of fluctuations

are considered, but typical numbers are of the form ΓBB ∼ exp(−10x), where x is between 10 and

100. For reasonable physical parameters, the precise value of ΓBB will be irrelevant. Our universe is
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plausibly infinite both in space and in time (toward the future), so we need a way of regularizing the

numbers of OOs and BBs: a cosmological measure. Studies of the cosmological measure problem

are usually carried out in the context of eternal inflation. We assume there was no early inflationary

phase, so we consider slight modifications of previous proposals. A “typical” implementation of

high-energy eternal inflation would not alter our conclusions, although specific models that would

are certainly possible; for our purposes, such a solution counts as “new physics.”

If the far vacuum from Fig. 3.1 has Λfar > 0, it will be locally de Sitter. In that case, there will

be thermal fluctuations between the two vacua for all eternity, including uptunneling [20, 21]. Over

sufficiently large timescales, we expect to see equilibrium statistics, and BBs will dominate. The

interesting cases are, therefore, when Λfar = 0 or when Λfar < 0. The first case, which could be

enforced by supersymmetry, represents a terminal Minkowski vacuum, in which no further fluctu-

ations occur. The other case is Λfar < 0, by which we include the possibility of a runaway, where

there is no vacuum below the Planck scale. In either case, we expect a crunch to a singularity in

finite time, so such vacua are also thought of as terminal. We will speak as if spacetime ends at the

bubble wall, although it is actually a bit later than that (it is possible that a better description of

such cases includes a quantum “bounce” back to a spacetime description [73, 74], but we will not

consider that possibility here).

One approach to constructing a measure is to start with some spacelike three-volume Σ0 defined

at early times, as shown in Fig. 3.3. We then define a family of hypersurfaces Σλ by extending

initially orthogonal geodesics with proper time τ into the future from Σ0. Each Σλ is the set of

all points at some constant parameter λ, perhaps with some appropriate algorithm to smooth the

surfaces, where λ is a function of τ . We calculate the number of OOs and BBs in the four-volume

between Σ0 and Σλ and take the limit λ→∞.

Taking λ = τ gives the proper-time measure, which näıvely counts the spacetime volume [75–

77]. If the decay rate Γdecay to the far vacuum is sufficiently fast that the phase transition percolates,

we spend relatively little time in the electroweak vacuum, and BBs are not produced. If the transition

does not percolate, an infinite amount of volume in the electroweak vacuum is produced; in that

case, BBs necessarily dominate OOs. To achieve percolation, the expected lifetime of the electroweak

vacuum is of order the actual age of our universe, Γdecay & H4 [25]. In the context of eternal inflation,

the proper-time measure has phenomenological problems, such as the youngness paradox [77,78], so

other measures are generally considered.

An alternative is the scale-factor-cutoff measure, which sets λ equal to the scale-factor time

along a geodesic congruence, λ =
∫
H(τ) dτ = ln a [26, 79–81]. In this case, the total four-volume

living in the electroweak vacuum in the region between the initial hypersurface Σ0 and a later

hypersurface Σλ is

UEW(λ) =
1

H(3− κ)
e(3−κ)λV0 , (3.5)
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Figure 3.3: Conformal spacetime diagram for our universe. The shaded region is our electroweak
vacuum. Diamonds at the top of the diagram are terminal Minkowski vacua; if Λfar < 0, the
bottom boundaries of those diamonds represent singularities, and the diamonds themselves are
absent. Dashed lines depict an initial region Σ0 evolving into a later one Σλ. Dotted lines represent
the causal patch of the geodesic γ, depending on whether γ ends at the bubble wall or extends into
Minkowski space.

where V0 is the three-volume of Σ0 and κ = (4π/3)H−4Γdecay is the decay probability in a Hubble

four-volume. We see that spacetime volume increases without bound unless κ > 3, which is just the

condition for percolation. The number of BBs, NBB(λ) = UEW(λ)ΓBB, therefore also grows without

bound and will ultimately dominate over OOs. The scale-factor-cutoff measure recovers the same

answer as the proper-time measure for our problem: BBs dominate unless Γdecay & H4. This kind

of problem is likely to be generic for “global” measures that integrate over a comoving volume of

spacetime.

We therefore turn to “local” measures, which restrict attention to a single observer. A standard

example is the causal patch measure [77,82]. The causal patch of a timelike geodesic γ extending

from Σ0 into the future is the intersection of the future of Σ0 with the interior of the past light

cone of the futuremost point of γ. For our problem we can start with any geodesic orthogonal to

Σ0 and compare the number of OOs to BBs inside the causal patch. If Λfar < 0, the interior of

the bubble rapidly crunches to a singularity, ending the geodesic γ. In that case we simply want to

know whether the geodesic is likely to hit a bubble wall before it observes the formation of a BB.

Therefore, the BB problem is avoided as long as Γdecay > ΓBB. If on the other hand Λfar = 0, the

geodesic enters an asymptotically Minkowski region, and the spacetime volume (in either vacuum)

inside the causal patch becomes infinite [83]. In that case, BBs will dominate.

To sum up: if the bubble nucleation rate is fast enough that the transition percolates, there is no

BB problem. Otherwise, BBs do dominate according to the global measures we considered and also
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for the causal patch measure with a Minkowski far vacuum. If Λfar < 0, the causal patch measure

offers a solution to the BB problem if Γdecay > ΓBB, which is easy to satisfy.

3.4 Conclusions

ΛCDM is only viable if BBs are avoided. There are three possibilities. The simplest possibility

is if the decay rate of the electroweak vacuum is comparable to the current age of the universe.

We have seen that this scenario can be accomplished without new physics if the top pole mass

is Mt ∼ 178 GeV, given the measured Higgs mass. This mass is 5.6σ larger than the consensus

Tevatron/LHC value, although a different determination method might change this result. It is

interesting that the precise value of the top mass plays such an important role in cosmology.

Another possibility is new physics. Heavy scalar singlets tend to promote stability [84,85], while

fermions with large Yukawa couplings promote instability. For example, a fourth generation with

a heavy quark [30] or right-handed neutrinos with a see-saw mechanism [38, 86] can destabilize the

Higgs potential. The effects of new particles are model dependent, and a complete analysis is needed

to definitively comment on a particular model. Alternatively, cosmic acceleration could be due to

an ephemeral effect such as quintessence or modified gravity.

The final alternative is to invoke an appropriate cosmological measure. We have argued that

global measures generally do not help, but BBs can be avoided in the causal patch measure with

a Λfar < 0 terminal vacuum if Γdecay > ΓBB. This criterion amounts to the demand that the

potential is in the metastable region, consistent with current measured parameters. The causal-

patch measure is justified in part by complementarity, which instructs us to treat physics outside

the horizon as encoded in information on the horizon itself. If neither new physics nor a heavy top

quark leads to rapid decay of the universe, the success of ΛCDM may be taken as empirical support

for complementarity, adding another clue to our understanding of quantum gravity.
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Chapter 4

De Sitter Space without Quantum
Fluctuations

4.1 Introduction

Despite the general acceptance of viewing the de Sitter vacuum as a thermal system subject to

fluctuations, we will argue that some of this conventional wisdom is wrong. Although a patch in the

Hartle-Hawking vacuum is in a thermal state, it does not experience fluctuations in any meaningful

sense. The density operator in the patch takes the form ρ̂ ∼ e−βĤ , where β = 1/T and Ĥ is the

static Hamiltonian. The state is stationary; there is no time dependence of any sort. While it is

true that an out-of-equilibrium particle detector inside the patch would detect thermal radiation,

there are no such particle detectors floating around in the Hartle-Hawking vacuum. In fact, any

particle detector placed in the vacuum would equilibrate, reaching a stationary state with thermal

occupation numbers [87].

Quantum fluctuations are not dynamical processes inherent to a system, but instead reflect the

statistical nature of measurement outcomes. Making a definite measurement requires an out-of-

equilibrium, low-entropy detection apparatus that interacts with an environment to induce deco-

herence. Quantum variables are not equivalent to classical stochastic variables. They may behave

similarly when measured repeatedly over time, in which case it is sensible to identify the nonzero

variance of a quantum-mechanical observable with the physical fluctuations of a classical variable.

In a truly stationary state, however, there are no fluctuations that decohere. We conclude that

systems in such a state—including, in particular, the Hartle-Hawking vacuum—never fluctuate into

lower-entropy states, including false vacua or configurations with Boltzmann brains.

Although our universe, today or during inflation, is of course not in the vacuum, the cosmic

no-hair theorem [88–90] implies that any patch in an expanding universe with a positive cosmo-

logical constant will asymptote to the vacuum. Within QFT in curved spacetime, the Boltzmann

brain problem is thus eliminated: a patch in eternal de Sitter can form only a finite (and small)
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number of brains on its way to the vacuum. At the same time, the standard story of inflationary

perturbations remains intact: decoherence is accompanied by copious production of entropy dur-

ing reheating. Our analysis of quantum fluctuations only calls into question the idea of dynamical

transitions from stationary states to states with lower entropy. We point out that the stochastic

approximation in slow-roll eternal inflation [12–14] makes use of such transitions to describe putative

upward fluctuations of the inflation field. Our picture rules out such fluctuations and may therefore

change the conventional understanding of the conditions required for eternal inflation to occur. In

particular, eternal inflation is no longer an inevitable consequence of monomial inflation potentials

like V = m2ϕ2.

The cosmic no-hair theorem is given in the context of QFT in curved spacetime. Once quantum

gravity is included, we need to be more careful. If we accept the notion of horizon complementarity [8,

49,91,92], we should not use local QFT to simultaneously describe locations separated by a horizon.

Rather, we should treat each patch of eternal de Sitter space, together with its horizon, as a closed,

finite-dimensional quantum system. The system is not stationary, so it must undergo Poincaré

recurrences as well as fluctuations, including into configurations we would describe as Boltzmann

brains. We suggest the terminology “Boltzmann fluctuations” to describe these true dynamical

processes, which can occur because the system never truly settles into the vacuum. Alternatively,

there might be a higher-entropy vacuum to which the system can decay, in which case the false

de Sitter vacuum patch can be thought of as an open subsystem embedded in a larger theory. If the

higher-entropy vacuum is de Sitter, then the full system still has a finite-dimensional Hilbert space,

subject to Poincaré recurrences and fluctuations. If there is a Minkowski vacuum with potentially

infinite entropy, the larger theory has an infinite-dimensional Hilbert space. Here, we argue that the

QFT analysis applies, and the patch rapidly approaches the vacuum and becomes quiescent, with

only a finite number of fluctuations along the way.

This chapter is organized as follows:

• In §4.2 we define what is meant by “quantum fluctuations” and argue that they are absent in

stationary quantum states. Quantum fluctuations in the traditional sense only appear when

an out-of-equilibrium measuring apparatus interacts with a quantum system, which results in

time-dependent branching of the wave function. In contrast, “Boltzmann fluctuations” are

true statistical fluctuations.

• In §4.3 we examine eternal de Sitter space in or near the unique Hartle-Hawking vacuum.

We first describe the system using QFT in a fixed background. Because the Hartle-Hawking

vacuum is stationary, we argue that there are no fluctuations, despite the fact that an out-of-

equilibrium detector (of which there are none present) would measure a nonzero temperature.

The cosmic no-hair theorem ensures that all states evolve toward the vacuum, so the system
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must settle down to a state that is free of fluctuations. In the context of horizon complementar-

ity, however, each horizon volume can be treated as a system described by a finite-dimensional

Hilbert space, and the cosmic no-hair theorem does not apply. If de Sitter space in horizon

complementarity is eternal, there will be recurrences and Boltzmann fluctuations, and the

conventional picture is recovered.

• In §4.4, we turn to models that contain false de Sitter vacua. In semiclassical quantum grav-

ity, or in complementarity in a landscape that includes a Minkowski vacuum, the dynamics

occur in an infinite-dimensional Hilbert space. The situation is then similar to QFT in global

de Sitter, where each patch can relax to a stationary quantum state, free of fluctuations. In

complementarity without a Minkowski vacuum, when all vacua are de Sitter, there will still

be quantum and Boltzmann fluctuations, since the total Hilbert space is finite-dimensional.

• In §4.5, we discuss the ramifications of this analysis. First, the conventional Boltzmann brain

problem is greatly ameliorated. Even with horizon complementarity, there are no fluctuations

in the vacuum to lower-entropy states as long as the larger Hilbert space is infinite dimensional.

Similarly, we do not expect uptunneling to higher-energy vacua, which dramatically alters

the picture of eternal inflation on a landscape. The standard picture of density fluctuations

from inflation remains unchanged, but the understanding of stochastic eternal inflation is

significantly different. Finally, we note that these results depend crucially on one’s preferred

version of quantum mechanics.

4.2 Quantum Fluctuations vs. Boltzmann Fluctuations

One way of thinking about the nature of quantum fluctuations is to consider an observable repre-

sented by a self-adjoint operator Ô. If a state |Ψ〉 is not an eigenstate of Ô, then the variance

(∆Ô)2
Ψ = 〈Ô2〉Ψ − 〈Ô〉2Ψ (4.1)

will be strictly positive. Hence, Ô does not have a definite value. However, a nonzero variance is not

a statement about the dynamics of the state, which may well be stationary; it is merely a statement

about the distribution of measurement outcomes. In this section we review some basic concepts to

clarify the meaning of “quantum fluctuations” and the role of measuring devices.

4.2.1 Decoherence and Everettian Worlds

Let us rehearse the standard understanding of quantum measurement and decoherence in the Everett

formulation [93, 94]. Consider a Hilbert space that factors into an apparatus A that may observe a
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system S:

H = HS ⊗HA . (4.2)

The Schmidt decomposition theorem allows us to write an arbitrary state as

|Ψ〉 =
∑
n

cn |sn〉 |an〉 , (4.3)

where the |sn〉 form an orthonormal basis for the system and |an〉 are orthogonal states of the ap-

paratus. We assume that dimHS < dimHA, and the sum over n runs up to dimHS . The bipartite

form of (4.3) is unique up to degeneracies in the coefficients |cn| (for simplicity, we assume there are

no degeneracies throughout the remainder of this chapter). Although the Schmidt decomposition

identifies a unique basis, there is no mechanism in place to ensure that the system and apparatus

states are ones that appropriately describe actual measurements. Interactions between the sys-

tem/apparatus and the environment are crucial for using decoherence to solve the measurement

problem.

Incorporating the environment E, the Hilbert space is

H = HS ⊗HA ⊗HE . (4.4)

It may be possible to write a state in the full Hilbert space using a generalized Schmidt decomposition

|Ψ〉 =
∑
n

cn |sn〉 |an〉 |en〉 , (4.5)

where |sn〉 are system basis states; |an〉 are linearly independent, normalized apparatus states;

and |en〉 are mutually noncollinear, normalized environment states. The triorthogonal uniqueness

theorem [95] guarantees that the form of this tripartite decomposition, if it exists, is unique. Obser-

vations are restricted to the system and apparatus, so predictions of the outcomes of measurements

are encoded in the reduced density matrix for the system and apparatus, found by tracing out the

unobserved degrees of freedom of the environment from the full density matrix ρ = |Ψ 〉〈Ψ|:

ρSA = TrE |Ψ 〉〈Ψ|

=
∑
m,n

cmc
∗
n 〈en| em〉 |sm〉 |am〉 〈sn| 〈an| . (4.6)

In order for this formalism to describe a quantum state that splits into independent Everettian

branches or “worlds,” several requirements must be satisfied. First, decoherence must occur—there

must be no quantum interference between the different worlds, so observers on one branch evolve

independently of the existence of other branches. The absence of interference between states in
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HS ⊗ HA requires that the reduced density matrix (4.6) be diagonal, i.e., that the environment

states associated with different branches be orthogonal.

Any density matrix is diagonal in some basis, but that basis might not be a physically viable

one, nor one that is in the tripartite form of (4.5), where measurement outcomes are accurately

reflected in the state of the apparatus. The second requirement is therefore that there must exist

a basis of apparatus “pointer states” in which decoherence naturally occurs through the dynamical

diagonalization of ρSA in this preferred basis [93, 96–99]. A precise characterization of the pointer

states is subtle and context-dependent, but roughly corresponds to states of the apparatus that are

macroscopically robust (stable). Any interactions between the apparatus and environment should

have a minimal effect on the system-apparatus correlations. In principle, we can deduce the pointer

states by writing the Hamiltonian as a sum of system/apparatus, environment, and interaction

terms:

Ĥ = ĤSA ⊗ 1E + 1SA ⊗ ĤE +HI . (4.7)

The pointer states |an〉 are those whose projectors P̂n = |an 〉〈 an| commute with the interaction

Hamiltonian,

[ĤI , P̂n] = 0 . (4.8)

In practice, the fact that interactions are local in space implies that pointer states for macroscopic

objects are those with definite spatial configurations. For instance, if a large object (a billiard ball,

a planet, a cat) is in a quantum superposition of two different position eigenstates, interactions with

the environment (the air in a room, the cosmic background radiation) will rapidly cause those two

possibilities to decohere, creating separate branches of the wave function.

The final feature that is important to describe branching is an arrow of time. We conventionally

imagine that worlds split via decoherence as time passes but almost never merge together, because we

implicitly assume that the universe is very far from equilibrium and has evolved from a lower-entropy

state in the past. In the present context, “low entropy” means that subsystems begin in a particular

state of little or no entanglement, as in (4.9). As we demonstrate in the next subsection, dynamical

interactions between apparatus and environment naturally increase the amount of entanglement,

leading to branching and generating entropy.1 The standard picture of decoherence and branching

is specific to the far-from-equilibrium situation. Near equilibrium, decoherence can arise through

rare fluctuations, but is not tied to quantum measurements, as we discuss in §4.2.3.

1For the purposes of this chapter, we are concerned with only the von Neumann entropy from entanglements. There
is also the thermodynamic entropy associated with a mixed thermal density matrix, which sets an upper bound on the
von Neumann entropy. As the quantum system thermalizes, the von Neumann entropy approaches the thermodynamic
entropy [100].
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4.2.2 Quantum Fluctuations

We can use the decoherence program from the previous section to understand the nature of quantum

fluctuations. For clarity in the following example, let us identify states in S, A, and E explicitly

with subscripts. In the case of real-world quantum measurement, we posit that there is initially no

entanglement between any of the factors:

|Ψ(t0)〉 = |σ∗〉S |aR〉A |e∗〉E . (4.9)

The initial state (denoted by an asterisk) of the system can be arbitrary; but the measuring apparatus

must be in a specific “ready” state (denoted by the subscript R). For definiteness, imagine that the

system is a single qubit with basis states {|+〉S , |−〉S}. The apparatus should begin in a ready state

and record the results of repeated measurements of the system. We take the apparatus state to be

a tensor product of a number of registers (at least one for each measurement we want to perform),

where each register is a qutrit with three basis states {|+〉A , |−〉A , |0〉A}. The ready state of the

apparatus is |aR〉A = |000 · · · 〉A, and a measurement correlates one of the registers with the state of

the system. That is, under unitary evolution we record a measurement in the first register via

|+〉S |000 · · · 〉A → |+〉S |+00 · · · 〉A , (4.10)

|−〉S |000 · · · 〉A → |−〉S |−00 · · · 〉A . (4.11)

If the apparatus does not start in the ready state, we cannot be confident that it will end up correctly

correlated with the state of the system. Since unitary evolution must be reversible, there can be no

valid evolution that takes |+〉S |ψ〉A to |+〉S |+〉A for every possible |ψ〉A, for example.

Imagine that the system starts in a superposition, so the state takes the form

|Ψ(t0)〉 = (α |+〉S + β |−〉S) |000 · · · 〉A |e∗〉E . (4.12)

The first step in the evolution is premeasurement, which correlates the apparatus with the system:

|Ψ(t1)〉 = (α |+〉S |+00 · · · 〉A + β |−〉S |−00 · · · 〉A) |e∗〉E . (4.13)

The second step is decoherence, in which the apparatus becomes entangled with the environment:

|Ψ(t2)〉 = α |+〉S |+00 · · · 〉A |e+〉E + β |−〉S |−00 · · · 〉A |e−〉E . (4.14)

Next, we reset in order to perform the measurement again, which means returning the system to

its original state. Generally, the environment states will also evolve during this operation. We leave
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the apparatus unchanged in order to keep a record of the prior measurement outcomes:

|Ψ(t3)〉 = α |σ∗〉S |+00 · · · 〉A |ẽ+〉E + β |σ∗〉S |−00 · · · 〉A |ẽ−〉E . (4.15)

Finally, we repeat the entire procedure, this time recording the measurement outcome in the second

register of the apparatus. After one more iteration of premeasurement and decoherence, we end up

with

|Ψ(t4)〉 = α2 |+〉S |+ + 0 · · · 〉A |e++〉E

+ αβ |+〉S |−+ 0 · · · 〉A |e−+〉E

+ αβ |−〉S |+− 0 · · · 〉A |e+−〉E

+ β2 |−〉S |− − 0 · · · 〉A |e−−〉E . (4.16)

At this point the wave function consists of four different decoherent branches, provided that all of

the environment states are approximately orthogonal, 〈eµ| eν〉E ≈ 0.

The statement “we observe quantum fluctuations” is equivalent to the observation that the

history of each individual decoherent branch is one in which the state of the apparatus experiences a

time series of observational outcomes, bouncing between |+〉 and |−〉. On a randomly chosen branch,

the history will exhibit fluctuations between the two outcomes, and all macroscopic objects are robust

and physically well-defined (pointer states) by construction. Schrödinger cat superpositions are not

allowed, and different worlds or branches must evolve separately.

We see that obtaining the standard measurement outcomes requires both the apparatus to be

initially in its ready state and the three Hilbert space factors (system/apparatus/environment) to

be initially unentangled. These conditions highlight the crucial role of entropy production in the

branching of the wave function and thus in the existence of quantum fluctuations. The reduced

density matrix ρSA has a von Neumann entropy

SSA = Tr ρSA log ρSA . (4.17)

Since the state as a whole is pure in our example, all of the entropy comes from the entanglement

between SA and E. In the initial state (4.12), there is no entanglement, and SSA = 0. The

entropy increases as the state evolves into two branches (4.14) and again as it evolves into four

branches (4.16). Since the entropy of the pure state vanishes, the entropy of the environment equals

that of the system/apparatus factor and increases as well. Without entropy production, there are

no quantum fluctuations.

Now consider what happens if the entire wave function describing the system, apparatus, and
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environment (i.e., the whole universe) begins in an energy eigenstate. We assume there are inter-

action terms in the Hamiltonian that connect the different factors of the Hilbert space. An energy

eigenstate obeys

Ĥ |Ψn〉 = En |Ψn〉 , (4.18)

where Ĥ is the full Hamiltonian. Because the wave function is in an energy eigenstate, its time

evolution just takes the form of multiplication by an overall time-dependent phase:

|Ψn(t)〉 = e−iEn(t−t0) |En〉 . (4.19)

The overall phase factor does not affect any of the observable properties of the state; therefore, it is

sensible to refer to such a state as “stationary,” and its associated density operator

ρΨ = |Ψn(t)〉 〈Ψn(t)| = |En 〉〈En| (4.20)

is manifestly time independent. Another example of stationary density operator is that of a thermal

state with temperature β−1:

ρ ∼ exp(−βĤ) =
∑
n

e−βEn |En 〉〈En| . (4.21)

Indeed, any density matrix diagonal in the energy eigenbasis will be stationary.

In a stationary state, none of the behavior we characterized as “quantum fluctuations”—branching

of the wave function into a set of histories with stochastic measurement outcomes over time—is

present. In fact, there is no time dependence at all.2 Certainly, the variance of an observable Ô

can be positive in a stationary state, but that variance only leads to fluctuations if the observable

is actually measured. Doing so requires an apparatus that is not itself stationary. Indeed, the ap-

paratus must start in a specific ready state, a condition that we may describe as low entropy. If a

quantum state describes the whole universe (as it does in cosmology), and this state is stationary,

then it cannot undergo quantum fluctuations, because nothing can actually change as time passes.

For a thermal state in particular, it will be the case that a particle detector beginning in its ready

state would detect thermally fluctuating particles; but if all we have to use as a detector is a part of

the stationary system itself, it will simply remain stationary, just as the rest of the quantum state

does.

2Even in stationary states, one can define an effective evolution with respect to correlations with a clock sub-
system [101]. The effective time parameter τ has nothing to do with the ordinary coordinate time t; all such time
evolutions are present at every moment of (ordinary) time. From this perspective, a large number of Boltzmann brains
and similar fluctuations actually exist at every moment in an apparently stationary spacetime. Such a conclusion
would apply to Minkowski spacetime as well as to de Sitter, in conflict with the conventional understanding that the
appearance of quantum fluctuations in de Sitter depends on the Gibbons-Hawking temperature (but see [102]). This
kind of effective evolution is fundamentally different from the ordinary evolution studied in this chapter.
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4.2.3 Boltzmann Fluctuations

There is an important difference between a quantum-mechanical thermal state and one in classical

statistical mechanics. Classically, a state in thermal equilibrium has a uniform temperature in space

that is also constant in time. However, this description is macroscopic and obtained by coarse

graining. Any realization of such a system with nonzero temperature has a microstate that is time-

dependent. For instance, the atoms and molecules in a box of gas are individually moving, even

if the temperature and density are constant. The system will therefore undergo rare fluctuations

to nonequilibrium states. The probability of observing such a fluctuation to a state with entropy

∆S lower than equilibrium scales as ∼ e−∆S . To avoid confusion, we will refer to such events in

which the evolution of the microstate causes a reduction in entropy as “Boltzmann fluctuations,”

to distinguish them from “quantum fluctuations” where the wave function branches, which increase

von Neumann entropy.

In quantum mechanics, individual energy eigenstates are stationary, in contrast with classical

states of nonzero energy. Stationary quantum states will not experience Boltzmann fluctuations.

A closed system in a mixed thermal state has a density operator ρ ∼ e−βĤ , which is stationary;

therefore, we expect no Boltzmann fluctuations there as well. In Appendix 4.A we verify this

conclusion using the decoherent histories formalism. We show that Boltzmann fluctuations will

occur in finite-dimensional Hilbert spaces if the initial density matrix is nonstationary, but are

absent when the density matrix is stationary.

However, we most commonly encounter thermal density matrices after tracing over environmental

degrees of freedom. In that case the remaining system is not closed, and we need to be a bit

more careful. Consider a decomposition of a closed quantum system into a set of macroscopically

observable system variables and an environment:

H = HS ⊗HE (4.22)

(we have absorbed the apparatus that appears in (4.4) into our definition of the macroscopic system).

The environment includes local but microscopic variables (such as the positions and momenta of in-

dividual gas molecules, as opposed to macroscopic fluid variables such as temperature and pressure),

as well as causally disconnected degrees of freedom (such as modes outside a cosmological horizon).

Expectation values of macroscopic observables in a pure state |Ψ〉 ∈ H are encoded in the reduced

density matrix ρS = TrE |Ψ〉〈Ψ|, with entropy given by SS = Tr ρS log ρS . While the evolution of

the pure state |Ψ〉 is unitary, that of ρS is generally not. It is described by a Lindblad equation [103],

which allows for transfer of information between the macroscopic system and the environment:

ρ̇S = i[Ĥ∗, ρS ] +
∑
n

(
L̂nρSL̂

†
n −

1

2
L̂†nL̂nρS −

1

2
ρSL̂

†
nL̂n

)
. (4.23)
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Figure 4.1: Schematic evolution of a reduced density matrix in the pointer basis. The density
matrix on the left represents a low-entropy situation, where only a few states are represented in
the wave function. There are no off-diagonal terms, since the pointer states rapidly decohere. The
second matrix represents the situation after the wave function has branched a few times. In the
third matrix, the system has reached equilibrium; the density matrix would be diagonal in an
energy eigenbasis, but in the pointer basis, decoherence has disappeared and the off-diagonal terms
are nonzero. The last matrix represents a Boltzmann fluctuation in which one pointer state has
fluctuated into existence by decohering with respect to the other states.

The Lindblad operators L̂n characterize the non-unitary part of the evolution of the system as

induced by interactions with the environment, and will depend on the specific setup being studied.

The Hermitian operator Ĥ∗ is not necessarily equal to the self-interaction Hamiltonian of the system

alone; it captures the part of the entire Hamiltonian that induces unitary evolution on the reduced

density matrix, including possible renormalization effects due to interaction with the environment.

A system far from equilibrium will generally exhibit dissipation and entropy increase (see e.g. [104]),

and we may define a dissipation timescale on which the system will approach a stationary state.

On much longer timescales, however, even systems with approximately-stationary reduced den-

sity matrices can experience decoherence and transitions to lower-entropy states, in precise analogy

with Boltzmann fluctuations in classical statistical mechanics. In §4.1 we provide a schematic repre-

sentation of the evolution of the reduced density matrix, written in the pointer basis. The first two

entries show the splitting of branches of the wave function starting from a low-entropy configuration,

as described for example by the transition from (4.12) to (4.14) and to (4.16). The state branches

and decoheres, remaining diagonal in the pointer basis. Eventually, it approaches equilibrium and

becomes diagonal in the energy eigenbasis; by that point, the off-diagonal elements in the pointer

basis are comparable to the diagonal ones, and the pointer states are no longer decoherent. From

equilibrium, there can be rare fluctuations (if the total Hilbert space is finite-dimensional) to lower-

entropy configurations where one branch has once again decohered from the rest, as shown in the

last entry.

Crucially, the existence of such fluctuations depends on the dimensionality dE of the Hilbert space

HE of the environment (assumed to be larger than the dimensionality of the system’s Hilbert space

HS). For finite dE , Hilbert space is bounded, and one can derive a quantum version of the Poincaré

recurrence theorem [22]; for infinite dE , the recurrence time goes to infinity, and excitations in the
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system can dissipate into the environment and never come back. Zurek [105] has shown that, under

reasonable assumptions concerning the initial wave function and the distribution of eigenvalues, the

correlation amplitudes governing off-diagonal elements in the reduced density matrix will have an

average of zero and experience fluctuations with a magnitude that scales as

∆ ∼ d−1/2
E . (4.24)

In a finite-dimensional Hilbert space, Boltzmann fluctuations are inevitable; however, in an infinite-

dimensional space, the system can settle into equilibrium and stay there forever. The reduced density

matrix corresponding to the latter asymptotes to a stationary form, free of Boltzmann fluctuations.

This discussion presumes that the branching structure of the wave function can be discerned from

the form of the reduced density matrix for the macroscopic variables HS . In general, we cannot tell

what states of a quantum system are actually realized on different branches simply by looking at its

reduced density matrix.3 For example, we might have a single qubit that takes on different states on

three different branches of the wave function, specified by three mutually orthogonal environment

states:

|Ψ〉 =
1√
2
|+z〉S |e↑〉E +

1

2
|+x〉S |e→〉E −

1

2
|−x〉S |e←〉E . (4.25)

The reduced density matrix for the qubit is

ρS =
1

2
|+z〉S 〈+z|+

1

4
|+x〉S 〈+x|+

1

4
|−x〉S 〈−x| (4.26)

=
3

4
|+z〉S 〈+z|+

1

4
|−z〉S 〈−z| . (4.27)

In the last line, the existence of three branches is completely obscured; the reduced density matrix

does not reveal which states of the system exist as part of distinct worlds.

Thus, the reduced density matrix alone is not enough information to reveal what is truly hap-

pening inside a system. Indeed, it is possible to construct a stationary reduced density matrix from

an appropriate mixture of nonstationary states by tracing out the environment. Therefore, the fact

that a reduced density matrix is stationary does not suffice to conclude that there are no dynamical

processes occurring on distinct branches within the system that it describes; for that, it is necessary

to consider the full quantum state. When we discuss the thermal nature of a patch of de Sitter

space in §4.3.1, we have the benefit of knowing the full state of the de Sitter vacuum, allowing us to

circumvent this issue and draw conclusions about the (lack of) dynamics in a patch.

3We thank Alan Guth, Charles Bennett, and Jess Reidel for discussions on this point.
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4.3 Single de Sitter Vacua

We now apply these ideas to de Sitter cosmology—specifically, to the case of a unique vacuum with

Λ > 0. In the Hartle-Hawking vacuum, the quantum state of any one causal patch is described

by a thermal reduced density matrix. As emphasized in §4.2.3 above, we cannot claim that the

patch is stationary on the sole basis of its reduced density matrix; however, given that we know the

full vacuum state, we argue that the patch is indeed stationary. Were we to observe the patch, we

would see fluctuations, but in the absence of an external observing device, nothing fluctuates. In

particular, there are no decohered branches of the wave function containing time-series records of

fluctuating observables. This picture does not apply if horizon complementarity is valid; in this case

the entire Hilbert space is finite-dimensional, and unless it starts there, the state cannot asymptote

to the vacuum as t → ∞. In complementarity, we expect Boltzmann fluctuations and Poincaré

recurrences.

4.3.1 Eternal de Sitter

Let us recall some basic properties of quantum fields in de Sitter space [87, 106]. De Sitter space is

the unique maximally symmetric spacetime with positive curvature. In 4D, it has a scalar curvature

12H2 and satisfies the Einstein equations with a cosmological constant Λ = 3H2, where H−1 is

the radius of de Sitter space. Consider a massive4, noninteracting scalar field ϕ, which satisfies the

Klein-Gordon equation

(2−m2)ϕ = 0 (4.28)

in the de Sitter metric. In order to quantize fields in de Sitter space, we must first choose a coordinate

system. There are numerous possibilities, but we narrow the scope to flat coordinates and static

coordinates, as they are used most often in the literature.

In flat coordinates, the metric reads

ds2 =
1

H2τ2

(
−dτ2 + dxidx

i
)
, (4.29)

which has the form of a flat, expanding Friedmann-Robertson-Walker metric with a constant Hubble

parameter H and conformal time τ . In these coordinates, there is no timelike Killing vector to

provide a sensible prescription for defining modes of ϕ. Since there is translational and rotational

invariance among the spatial directions, we are still able to separate the mode solutions with wave

number ~k as

f(τ)ei
~k·~x (4.30)

4We do not consider the massless case, since there is no (vacuum) state that is invariant under the full de Sitter
group [107], which is problematic for the cosmic no-hair theorem in §4.3.2.
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for some function f . Thus, we may attempt to define modes in the asymptotic regions of de Sitter,

I±, by analogy with Minkowski space. Because of this analogy, the vacuum defined by these modes

will have the same symmetries as the free field Minkowski vacuum. Unfortunately, the asymptotic

regions are not static in an expanding universe, so we are left to define modes in the adiabatic

approximation for a universe that has an infinitely slow expansion. The Euclidean vacuum, formed

from the adiabatic modes, is invariant under the de Sitter group, and thus does not change with

time. Although de Sitter invariance alone does not define a unique state, the Euclidean vacuum is the

unique de Sitter-invariant Hadamard5 state for a massive, noninteracting scalar field [107,109–113].

In static coordinates the metric becomes

ds2 = −
(
1−H2r2

)
dt2 +

(
1−H2r2

)−1
dr2 + r2 dΩ2 . (4.31)

These coordinates give a timelike Killing vector −∂t that points toward the future (past) in the

northern (southern) causal diamond, and we may use this Killing vector to define modes. Follow-

ing [114], the mode expansions for the southern and northern diamonds of de Sitter space are

ϕS =

∫ ∞
0

dω

∞∑
j=−∞

[
aSωjϕ

S
ωj +

(
aSωj
)† (

ϕSωj
)∗]

(4.32)

ϕN =

∫ ∞
0

dω

∞∑
j=−∞

[
aNωjϕ

N
ωj +

(
aNωj
)† (

ϕNωj
)∗]

, (4.33)

where ω is the mode frequency. The operators aNωj and
(
aSωj
)†

are annihilation operators in the

northern and southern diamonds. The Euclidean vacuum is

|Ω〉 =

∞∏
ω=0

∞∏
j=−∞

(
1− e−2πω

)1/2
exp

[
e−πω

(
aNωj
)†
aSωj

]
|S〉 ⊗ |N〉 , (4.34)

where |S〉 and |N〉 are the southern and northern no-particle vacua. Ignoring gravitational back-

reaction, the static Hamiltonian associated with the northern modes is

ĤN =

∫ ∞
0

dω

∞∑
j=−∞

(
aNωj
)†
aNωj ω , (4.35)

and the reduced density matrix in the northern diamond is

ρN = TrS |Ω 〉〈Ω| =

[∏
ω

(1− e−2πω)

]
e−βĤN , (4.36)

which is a thermal density matrix with temperature T = 1/β.

5Without the Hadamard condition [108], there are a continuum of de Sitter-invariant states, known as the α vacua,
which are related to one another via Bogoliubov transformations [107].
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If the universe is in the Euclidean vacuum, the reduced density matrix describing the area inside

a causal horizon is thermal. In §4.2.3, we argued that a subsystem with a thermal density matrix

may still evolve into one with a Boltzmann fluctuation. In the case of the Euclidean vacuum,

however, we have both the reduced density matrix ρN and the full quantum state |Ω〉. From an

examination of (4.34), we see that the modes of a given frequency ω in the northern diamond are in

a one-to-one correspondence with the modes in the southern diamond. By tracing out the southern

diamond to construct ρN , we know precisely which correlations we are discarding, mode by mode.

Furthermore, there is no interaction Hamiltonian between the northern and southern diamonds,

since the diamonds are not in causal contact. The entanglement structure is not disrupted by the

separate evolution in each diamond, so dynamical processes akin to the one shown in the last panel

of Fig. 4.1 are forbidden. Then the reduced density matrix of each diamond is truly stationary, and

no Boltzmann fluctuations are possible in either diamond.

We have argued that there are no Boltzmann fluctuations in the de Sitter vacuum. It remains

to determine whether the universe may actually be described by the de Sitter vacuum. Accordingly,

the rest of our analysis consists of understanding the conditions under which the quantum state

takes on this stationary vacuum form in different models.

4.3.2 Cosmic No-Hair

We turn now to situations, like that of our universe today, in which the universe is not in the vacuum

but rather evolving in time. We will see that, though there may be fluctuations initially if the state

is very far from the vacuum, the state will quickly approach the vacuum on time scales proportional

to the inverse of the Hubble parameter, after which no fluctuations will arise.

We begin with the classical form of the cosmic no-hair theorem, which states that, given a positive

vacuum energy density (i.e., a positive cosmological constant Λ), the metric evolves toward that of

de Sitter space [88]. Physically, excitations of de Sitter (including matter and radiation fields with

substantial energy densities) redshift away across the horizon, so every causal patch relaxes to the

vacuum.

The physical intuition behind the cosmic no-hair theorem extends to quantum fields in curved

spacetime. For generic states, the expectation value of a massive scalar field ϕ decays exponentially

in time:

〈ϕ(x)〉ψ = O(e−M |τ |) , (4.37)

for a decay constant M > 0 and proper time τ between the point x and some reference point at

τ →∞ [89]. Higher n-point correlation functions at large separations decay as well. The vacuum is

stable against perturbations and is an attractor state for local operators, whose expectation values

in a generic state will approach the expectation values in the vacuum in the asymptotic region.
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A quantum-gravitational version of the no-hair theorem would presumably yield analogous results

for the graviton field hµν , but a scalar field can stand in as a proxy in order to make calculations

manageable. Although we have focused on a free scalar field theory to write an explicit form of

the Euclidean vacuum and the reduced density matrix, the graviton has self interactions, so the

analysis needs to be extended to an interacting scalar theory with a Hartle-Hawking vacuum. For

renormalizable interactions, the cosmic no-hair theorem still holds at an arbitrary number of loops,

for arbitrary n-point functions, and for D ≥ 2. Furthermore, M does not receive any radiative

corrections. The results of [89,90] show that the decay constant for massive6 scalar fields is

M =


3
2H for m > 3

2H

3
2H −

√
9
4H

2 −m2 for 0 < m ≤ 3
2H .

(4.38)

If the universe is in an arbitrary state that is perturbed around the Hartle-Hawking vacuum,

the state will approach the vacuum at large spacetime distances exponentially fast, with a decay

constant 3H/2 for large m. Once the field correlations have sufficiently decayed, the arguments of

§4.2.3 tell us that no fluctuations occur.

4.3.3 Complementarity in Eternal de Sitter

Horizon complementarity posits that the spacetime interpretation of a quantum state depends on

the viewpoint of a specified observer [8, 49, 91, 92]. In particular, a description in terms of local

quantum field theory will not extend smoothly beyond a horizon. Applied to de Sitter space, this

philosophy implies that spacetime locality only applies within a cosmological horizon volume, and

the corresponding quantum system has a finite-dimensional Hilbert space. The Hilbert space of the

patch can be decomposed as a product of bulk and boundary factors [116,117]:

H = Hbulk ⊗Hboundary (4.39)

(we ignore a possible factor corresponding to singular spacetime geometries, which will not be

important for our analysis).

From the Bekenstein-Hawking relation [118, 119], the entropy associated with the patch is one

quarter of the area of the horizon: SdS = A/4. This entropy is related to the density matrix

ρ ∼ e−βĤ for the patch via SdS = Trboundary ρ ln ρ, so the patch is thermal even if the system as

a whole is in a pure quantum state. The energy spectrum is discrete, with only a finite number of

6As previously mentioned, the massless case is problematic, since there is no de Sitter-invariant vacuum in the
noninteracting limit [107]. Hollands [115] is able to show rigorously only that correlation functions grow no faster
than a polynomial function of proper time. The expectation, however, is that these functions should in fact decay,
and Hollands presents evidence that the 2-point function does indeed decay, though not exponentially as it does in
the massive case.
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Figure 4.2: Conformal diagrams for de Sitter space in the global (QFT) picture (left) and with
horizon complementarity (right). We consider an observer at the north pole, represented by the line
on the left boundary and their causal diamond (solid triangle). The wavy line represents excitations
of the vacuum approaching the horizon. In QFT in curved spacetime, the excitation exits and the
state inside the diamond approaches the Hartle-Hawking vacuum, in accordance with the cosmic no-
hair theorems. In contrast, horizon complementarity implies that excitations are effectively absorbed
at the stretched horizon (dashed curve just inside the true horizon) and eventually return to the
bulk.

eigenvalues with energies less than any given cutoff value [120].

If we interpret the entropy as being the logarithm of the number of quantum states, the horizon

patch is analogous to a closed thermal system at a temperature T [7, 8]. Although the relationship

dimH = eS holds only at infinite temperature [120], there are compelling reasons (e.g., from black

holes) to think that the static Hamiltonian is bounded from above [121].7 In our discussion of

complementarity, we assume that this bound exists and that the dimension of the Hilbert space

dimH = e2SdS = exp(6πΛ−1) (4.40)

is finite (the factor of 2 comes from the fact that the bulk and boundary components have equal

dimensionality).

The complementarity picture of eternal de Sitter with a unique vacuum state is therefore very

different from the situation of QFT in a de Sitter background discussed in §4.3.1. In the latter, the

ability of excitations to leave the horizon and never return depended crucially on the fact that Hilbert

space was infinite-dimensional. In complementarity, eternal de Sitter space is a truly closed finite-

dimensional system, subject to Poincaré recurrences [22]. Of course, there is a true vacuum state,

the lowest-energy eigenstate, that is strictly stationary, but a generic state is nonstationary. We may

think of excitations as being absorbed by a stretched horizon with a finite area and eventually being

7For subtleties involving the use of the static Hamiltonian in quantum gravity, see [122].
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emitted back into the bulk, as shown in Fig. 4.2. Boltzmann fluctuations into lower-entropy states

(described in §4.2.3) are allowed, in agreement with the conventional picture of a thermal de Sitter

patch. As we argue below, this story changes in important ways in theories with more than one

metastable vacuum.

4.4 Multiple Vacua

In this section we consider theories with more than one metastable potential minimum, at least one

of which has Λ > 0, as portrayed schematically in Fig. 4.3. We consider the existence of fluctuations

in both the lowest-energy “true” vacuum and in any higher-energy false vacua. For convenience, we

limit our attention to vacua with non-negative energy, Λ ≥ 0. Transitions from vacua with Λ ≥ 0

to those with Λ < 0 generally result in singular crunches; evolution might continue via quantum

gravity effects, but we will not address that possibility here.

4.4.1 Semiclassical Quantum Gravity

We first consider semiclassical quantum gravity, by which we mean QFT coupled to a classical (but

dynamical) spacetime background. Coleman studied false vacua in this context and calculated the

rate at which a higher-energy vacuum would decay to a lower-energy state via bubble nucleation [60,

123]. It is useful to consider an analogous problem in one-dimensional quantum mechanics, in which

a single particle moves in a potential V (x) of the same schematic form as shown in Fig. 4.3, with

a global (true) minimum at xT and a local (false) minimum at xF . Then, one can calculate the

transition amplitude using the path integral defined with respect to Euclidean time T :

〈
xT
∣∣ e−HT ∣∣xF 〉 = N

∫
[dx]e−SE [x(T )] , (4.41)

where H is the Hamiltonian and SE is the Euclidean action, while the states |xT 〉 and |xF 〉 are

position eigenstates. This quantity can be calculated using instanton methods and represents the

amplitude for finding the particle at position xT , given that it started at position xF—something

that might be of relevance to an observer measuring the position of the particle. An analogous field

theory calculation can be used to calculate the rate of from one field configuration |ϕ1(x)〉 to another

|ϕ2(x)〉, including the tunneling rate from one vacuum to another.

Our interest, however, is not in what an out-of-equilibrium observer with a field-value detection

device would measure, but in how quantum states evolve in isolated patches of de Sitter space.

Eigenstates of the field operator ϕ̂(x) are not energy eigenstates; therefore, we need to be careful

when we use terms such as “false vacuum” and “true vacuum” to refer to quantum states rather

than field values. For some purposes it is useful to study eigenstates of a perturbative Hamiltonian
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Figure 4.3: A scalar field potential with multiple local minima. The global minimum corresponds to
the true-vacuum value ϕT (which may have Λ = 0 or Λ > 0), and for simplicity we have portrayed
a single false-vacuum value ϕF . The dashed line represents the perturbative Hamiltonian for the
false vacuum, in which the potential is given by a local approximation to the true potential in the
vicinity of ϕF .

constructed by approximating the potential in the vicinity of one local minimum, as shown for ϕF in

Fig. 4.3. In that case the results from §4.3.1, where we studied QFT in a fixed de Sitter background,

are relevant.

Consider first the true vacuum quantum state |0〉 of the full theory. A generic homogeneous field

value ϕ∗ will have some nonzero overlap with this state, 〈ϕ∗| 0〉 6= 0, but the field will be mostly

localized near the global minimum value ϕT . While it is difficult to rigorously prove a version of the

cosmic no-hair theorem for this interacting theory, we intuitively expect the physics in this case to

mirror that of QFT with a unique de Sitter vacuum. Namely, excitations above the lowest-energy

state will dissipate outside the horizon, and each local patch will approach the vacuum state |0〉.

This state is stationary, and we expect no quantum or Boltzmann fluctuations. Since we are dealing

with QFT, the Hilbert space is infinite-dimensional, and there are no recurrences.

We also do not expect uptunneling to a higher-energy vacuum from the true vacuum state for

the same reason (energy eigenstates are stationary and do not fluctuate). This assertion might seem

to be in tension with the existence of instantons that contribute a nonzero amplitude to processes

analogous to (4.41), but such a counterargument confuses field values with quantum states. Although

there are instanton solutions, their role is to shift the value of the vacuum energy in the true vacuum

from what one would compute in a local approximation to the effective potential near ϕT . The

situation is analogous to that of the QCD vacuum, where instantons connecting vacua of different

winding numbers provide a shift in energy that depends on the value of θQCD. Instantons are

important for calculating energy eigenvalues, but once the quantum system is in a stationary state

such as the vacuum |0〉, they do not describe true dynamical transitions. The local perturbative



95

vacuum will be unstable to uptunneling via instantons, but that is not the true nonperturbative

vacuum into which the system settles.

Next, we turn to false vacua. A semiclassical state with 〈ϕ〉 = ϕF is not strictly a vacuum

state, or indeed any form of energy eigenstate, as it will decay via tunneling. We may nevertheless

consider the energy eigenstates of the perturbative Hamiltonian, obtained by locally approximating

the potential in the vicinity of ϕF , as shown in Fig. 4.3. These are not energy eigenstates of the

full Hamiltonian, but their dynamics are well-described by a combination of processes near the

false-vacuum value plus decays via bubble nucleation. We may think of the “false de Sitter vacuum

state” as the Hartle-Hawking vacuum state of this perturbative Hamiltonian. Once again, we expect

excitations of such a state to rapidly dissipate by leaving the horizon, and the configuration will

become quiescent with respect to perturbative fluctuations. We refer to such states as “quiescent”

rather than “stationary,” since they are not true eigenstates but nevertheless do not exhibit thermal

fluctuations.

We are left with two kinds of possible non-perturbative processes to consider: downtunneling to

lower-energy vacua and uptunneling to higher-energy vacua. First, we examine downtunneling. In

the conventional picture of false-vacuum decay, a small bubble of true vacuum nucleates and grows

at nearly the speed of light. This picture is clearly a semiclassical description of a single branch of

the wave function, rather than a full treatment of the quantum state. We can decompose the Hilbert

space into the product of the state of a smooth background field ϕλ(x) and small-scale fluctuations:

H = Hϕλ ⊗Hδϕ . (4.42)

Here, λ is a length scale used to smooth the field. The factor Hϕλ includes configurations with

bubbles of different sizes and locations, as well as completely homogeneous configurations. When

a bubble nucleates, some of the energy density that was in the potential for ϕ gets converted into

fluctuation modes. Therefore, a reduced density matrix for the background field obtained by tracing

over Hδϕ will exhibit decoherence, as the fluctuations produced by bubbles in different locations will

generically be orthogonal to each other. In that sense, the semiclassical configurations described

by bubble nucleation correspond to truly distinct branches of the wave function. With that single

caveat, we agree with the standard picture of downtunneling to lower-energy vacua.

Different cases of interest for bubble nucleation are shown in Fig. 4.4. An observer at the north

pole in the de Sitter diagram could witness the nucleation of a bubble to a lower-energy de Sitter

vacuum, or to a Minkowski vacuum (the triangular “hat”), or avoid seeing bubbles at all. The

probability of seeing a bubble along any specified geodesic asymptotes to 1, but for a sufficiently

small nucleation rate, the physical volume of space remaining in the false vacuum grows with time.



96

-1HT

-1HF

∞

-1HF

∞

-1HF

Figure 4.4: Conformal diagrams for de Sitter space with a false vacuum. The first two diagrams show
the effect of a bubble (dashed line) nucleating within the northern-hemisphere causal patch, leading
to lower-energy de Sitter (left) and Minkowski (middle), while the third shows a false-vacuum region
that does not experience any bubbles (right). H−1

F and H−1
T are the Hubble radii of the false and

true vacua, with the latter being infinite in the Minkowski case. In both cases the true horizon is
larger than the Hubble radius in the false vacuum; in the left-hand diagram, it becomes equal to
the horizon in the true vacuum, while on the right it becomes infinitely large. In either of these
cases, excitations can leave the apparent horizon in the false vacuum while remaining inside the true
horizon. On the right, the observer at the North pole remains in the false vacuum state forever,
although there are bubbles outside their horizon.

Next we turn to uptunneling from one false-vacuum state to another of even higher energy.8 In

the true vacuum, we could straightforwardly argue that the spirit of the cosmic no-hair theorem is

obeyed: excitations leave the horizon and the system approaches its lowest-energy eigenstate. In the

false vacuum, the argument is not so clean, since there are no true energy eigenstates to approach.

Nevertheless, the physical situation is quite similar. The Hilbert space is still infinite-dimensional, so

we do not expect recurrences, and excitations within a patch can readily leave the horizon, leaving

us in the perturbative vacuum. In that state, however, there will still be a nonzero amplitude for the

nonperturbative process describing uptunneling. Uptunneling represents a decrease rather than an

increase of entropy, so it must necessarily be a Boltzmann fluctuation rather than a simple branching

of the wave function.

By itself, this result might seem puzzling. We have claimed that a system near the lowest-

energy minimum in the potential settles into a true stationary vacuum state with no possibility of

uptunneling, while there can be uptunneling from a false vacuum. These claims can be reconciled

by considering a limit in which the barrier between false and true vacuum becomes infinitely large.

In that case, transitions from the false to true vacua are suppressed, and the behavior of the false

vacuum should increasingly resemble our picture of the true vacuum. In particular, rather than

8We thank Stefan Leichenauer and Paul Steinhardt for discussions of these issues.



97

staying in the perturbative vacuum (from which there can be uptunneling), we expect the system

to evolve to what we might call a “semi-perturbative vacuum”—a quiescent state in which the field

is concentrated near the false vacuum, but also has some support on field values corresponding to

potential minima of higher energies. The timescale over which the perturbative vacuum relaxes to

a semi-perturbative vacuum (presumably with slightly smaller effective cosmological constant) will

be governed by the barrier-penetration factor connecting the false vacuum to higher-energy minima.

That factor also governs the rate for uptunneling to such minima. Therefore, we expect a relatively

short window in which uptunneling can happen before the state relaxes, after which the rate of

uptunneling falls to zero.

While these results are not rigorous, they provide a strong indication that false-vacuum states

in semiclassical quantum gravity either decay or asymptote to quiescent states that are free of

fluctuations.

4.4.2 Complementarity in a Landscape

We now consider theories with multiple vacua, each labeled by a field expectation value ϕi, in

the context of horizon complementarity. In this case the Hilbert space appropriate to a single

vacuum (4.39) is promoted to a direct sum, with one term for each semiclassical patch geometry:

H =
⊕
i

H(i)
bulk ⊗H

(i)
boundary . (4.43)

The structure is similar to that of Fock space [116, 117]. The dimensionality of the entire Hilbert

space is the sum of the dimensions of each term, dimH(i) = e2S
(i)
dS = exp(6πΛ−1

i ). There are two cases

of interest: the finite-dimensional case where every vacuum has Λ > 0, and the infinite-dimensional

case where there is at least one vacuum with Λ = 0 (as mentioned previously, we do not consider

vacua with Λ < 0, as transitions into them lead to singularities).

If all vacua have Λ > 0, the situation is very similar to the single-vacuum case discussed in

§4.3.3. Exact energy eigenstates, including the lowest-energy vacuum state, will be stationary, and

no fluctuations will occur. The vacuum will feature a de Sitter semiclassical geometry with the

field value concentrated near the true minimum, although it will not be a field eigenstate. Generic

states, however, will not be stationary, and in a finite-dimensional Hilbert space there is no room

for excitations to dissipate outside the horizon, so recurrences are expected.

Now consider theories with at least one vacuum having Λ = 0, as might be expected in supersym-

metric or string theories. The future development of the spacetime includes census-taker observers

living in a Minkowski “hat” [124, 125], as shown in the middle and right diagrams of Fig. 4.4. The

Hilbert space of the full theory is then infinite dimensional, and such observers have access, in

principle, to an infinite amount of information.
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From (4.24), the rate of Boltzmann fluctuations goes to zero (and the timescale for recurrences

goes to infinity) for infinite-dimensional Hilbert spaces, where ΛT = 0. Of course, there are no

fluctuations in the true Minkowski vacuum. But we can make a stronger statement: the rate of fluc-

tuations will asymptote to zero even in the false vacua. The intuition is that states with excitations

around false-vacuum geometries are more likely to decay than the vacuum states themselves. So

time evolution will skew the population of false vacua towards states that are stationary except for

the possibility of decay by bubble nucleation, i.e. quiescent in the sense of the previous subsection.

After a high-energy vacuum decays to a lower-energy one, transient excitations will allow for the

existence of Boltzmann fluctuations, but the excited states will again preferentially decay. The sur-

viving configurations will become effectively stationary, and the fluctuation rate will asymptote to

zero, rather than to a nonzero constant. We therefore expect only a finite (and presumably small)

number of fluctuations in a landscape of vacua that includes a Minkowski vacuum.

This intuition can be bolstered by an analogy to one-dimensional quantum mechanics in the

presence of a barrier. Consider once again a particle of mass m and energy E moving in a potential

V (x) schematically similar to the false-vacuum potential shown in Fig. 4.3. The particle can escape

the well by tunneling through the barrier. A wave packet initially in the potential well will leak out,

and the WKB approximation relates the wave functions on either side of the potential:

ψ(xe)

ψ(x0)
= exp

(
−1

~

∫ xe(E)

x0(E)

√
2m(V (x)− E)dx

)
≡ e−γ/2 , (4.44)

where x0(E) and xe(E) are the starting and ending points for the region where the particle “has

negative energy,” so V (x0(E)) = V (xe(E)) = E. The escape probability is simply e−γ , and the

tunneling rate is given by the product of this probability with some characteristic frequency:

R = f(E)e−γ . (4.45)

The classic barrier penetration problem considers a square-well potential, in which the bound par-

ticle has a position-independent momentum, p(E) =
√

2m(E − V ), and a characteristic “collision

frequency”, f(E) = p(E)/(2mx0). Here, we assume a more general potential, so the momentum is

a function of both E and x, and the frequency will be given by some integral over positions inside

the well. The exact expression is not important for us—we assume only that the frequency is an

increasing function of E, f ′(E) > 0. Then, the energy dependence of the tunneling rate is

dR

dE
= f ′(E)e−γ − 2

~
f(E)e−γ

∫ xe(E)

x0(E)

[
− 2√

2m(V (x)− E)

]
, (4.46)

which is manifestly positive (we have used the fact that V (x0) − E = V (xe) − E = 0 to eliminate
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the terms which arise from varying the limits of integration).

This simple exercise demonstrates an intuitively sensible result: among states trapped behind

a barrier, those with higher energy tunnel out more quickly. In the case of the cosmological false

vacuum, the analogous statement is that excited states of the perturbative Hamiltonian undergo

false-vacuum decay more rapidly.

In complementarity, we see that only in the case of a Minkowski true vacuum can recurrences and

fluctuations be avoided entirely. A version of this phenomenon—the crucial difference in the long-

term quantum evolution of landscapes with and without Λ = 0 vacua—has been previously noted

in a slightly different context [117,126]. There, it was pointed out that quantum measurements in a

false-vacuum state will decohere by becoming entangled with environment degrees of freedom, but

they must eventually recohere if the total Hilbert space is finite-dimensional. In infinite-dimensional

Hilbert spaces, in contrast, decoherence can persist forever. This argument is analogous to our own,

in that such models are largely free of Boltzmann fluctuations.

4.5 Consequences

4.5.1 Boltzmann Brains

In the conventional picture, because de Sitter space has a temperature, it experiences thermal

fluctuations that lower the entropy by ∆S with a finite rate proportional to e−∆S . If the Hartle-

Hawking vacuum is eternal, then all fluctuations that fit within a horizon volume are produced

an infinite number of times inside each such volume. Such fluctuations could contain conscious

observers like ourselves [22–24]. Due to the exponential suppression of lower-entropy states, the

fluctuations containing observers—even the ones that contain exact copies of our own brains—that

occurred most frequently would look entirely unlike the world we observe. In particular, fluctuations

containing the room that the reader is currently in would be vastly more likely than fluctuations

containing all of Earth, let alone the entire observable universe, and the momentary coalescence of

the reader’s brain thinking the precise thoughts they are having right now out of thermal equilibrium

would be likelier still. If this conclusion were correct, we would not be able to trust our memories

or our (supposed) observations, a solution inconducive to the practice of science.

We have argued, however, that this situation is less generic in de Sitter cosmologies than is often

supposed.9 The appearance of Boltzmann brains is avoided in the context of QFT in eternal de Sitter

space or in a landscape with a terminal Minkowski vacuum (with or without complementarity). In

these cases, the dimension of the Hilbert space is infinite, so the recurrence time also goes to infinity,

and the (possibly false) de Sitter vacuum becomes quiescent. If the horizon volume is initially in

9For related work that questions the validity of Boltzmann brains for decoherence-based reasons, see [102,127,128].
For the need for Hilbert space to be infinite-dimensional, see [129].
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an excited state (as it is if the dark energy is a positive cosmological constant), then the cosmic

no-hair theorem dictates that correlations fall off exponentially with time as the excitations leave the

horizon. The total number of Boltzmann brains will thus be finite and presumably small, given the

vast exponential suppression of macroscopic fluctuations. Thus, if enough observers are produced

before de Sitter space approaches the vacuum (e.g., in a period of structure formation) the vast

majority of observers can, in fact, trust their memories and observations. This conclusion opens the

door for many multiverse models that might have been discounted because of a Boltzmann brain

problem, and could help resolve potential tensions with low-energy physics [27].

4.5.2 Landscape Eternal Inflation

Another kind of fluctuation into a lower-entropy state that is often invoked in de Sitter cosmology is

uptunneling from one de Sitter vacuum state to another one of higher energy [20,21]. Processes such

as this can be crucial for populating an entire landscape of vacua, starting from a state concentrated

on any particular field value.

Uptunneling is conceptually very similar to the standard picture of a fluctuation into a Boltzmann

brain: a vacuum in a thermal state undergoes a transition to a lower-entropy configuration with

probability e−∆S . The situation is the time-reverse of the well-known process of vacuum decay,

which results in the production of particles and an increase in entropy. The analysis presented in

this chapter leads to an analogous conclusion to that of the last subsection: if the total Hilbert space

is infinite-dimensional, excitations around any particular false vacuum will dissipate. As discussed

in §4.4, the system will relax to a (perturbative, semi-perturbative, or true) vacuum state, not a

state of definite field value. The state becomes quiescent, and the rate of Boltzmann fluctuations

asymptotes to zero.

Note that eternal inflation is still conceivable: uptunneling is suppressed, but downtunneling

proceeds as usual, and different branches of the wave function will correspond to different distri-

butions of bubbles in a semiclassical spacetime background. If the field starts out in a metastable

vacuum, then the portion of it that remains there (on any one branch) is rewarded with greater

volume production. Almost every world line will intersect a bubble of lower-energy vacuum, but if

the tunneling rate is low enough to avoid percolation, the physical volume remaining in the high-

energy vacuum grows without bound, as depicted in the rightmost diagram in Fig. 4.4. In this sense

inflation continues forever.

On the other hand, it is clear that the details of eternal inflation in a landscape of vacua will

change. In particular, the conclusions of the previous section suggest a reinterpretation of the rate

equations for eternal inflation that relate the probabilities of transitions between different vacua [26,

116, 130]. Consider the simple landscape of Fig. 4.3, with minima located at field values ϕF and

ϕT , respectively. In the standard presentation, e.g. [130], the rate equations for a two-minimum
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landscape read
dpf
dτ

= −κfpf + κtpt ,
dpt
dτ

= −κtpt + κfpf , (4.47)

where κf and κt are transition probabilities per unit proper time. The usual interpretation is that

κf (κt) represents the probability to transition from the false (true) vacuum to the true (false) one.

But we have argued that, in the long-time limit, the probability to transition from the true to a

false vacuum falls to zero. However, both the true and the false vacuum states have nonzero overlap

with the states of any definite field value, so heuristically we may think of the true vacuum, for

example, as containing an exponentially small piece with field value near ϕF . The rate equations

should essentially be interpreted as probabilities to transition between states of definite field value in

an (unrealistic) idealization where an observer is measuring the value of the field at regular intervals.

In the real universe, where there is no external observer and the wave function evolves unitarily, the

state simply evolves toward the true vacuum as time passes. Quantum fluctuations in de Sitter space

do not provide a dynamical mechanism for populating an entire landscape with actual semiclassical

geometries centered on different vacua and living on different branches of the wave function.

With horizon complementarity, this picture changes somewhat. If the true vacuum is de Sitter,

Hilbert space is finite-dimensional, and Boltzmann fluctuations will lead to true transitions between

states concentrated at different minima of the potential. If the true vacuum is Minkowski, on the

other hand, Hilbert space is infinite-dimensional, and the above discussion is once again valid.

4.5.3 Inflationary Perturbations

The absence of quantum fluctuations in de Sitter space might seem to call into question the standard

picture of the origin of density perturbations in inflation. In this case, however, the conventional

wisdom gets the right answer; our approach leaves the standard predictions for density and tensor

fluctuations from inflation essentially unaltered. The basic point is that the quantum state of light

fields can remain coherent during inflation itself, but then experience decoherence and branching of

the wave function when entropy is generated at reheating.

We can describe the Hilbert space during inflation as a product of the quantum states of the large-

scale homogeneous background ϕ(t) (macroscopic) perturbations and the small-scale (microscopic)

perturbations:

H = Hϕ(t) ⊗Hmacro ⊗Hmicro . (4.48)

The small-scale perturbations, including the specific microstates of individual photons and other

particles, are unobservable, in the same way that individual atoms and molecules are unobservable

in an ordinary box of gas. They serve as an environment we can trace over to understand the state

of the observable large-scale perturbations. During inflation, the overall quantum state approaches
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a factorizable form, as excitations dissipate and perturbations approach their lowest-energy states:

|Ψinflation〉 = |ϕ(t)〉 ⊗ |0〉macro ⊗ |0〉micro . (4.49)

The state |0〉macro has a nonzero variance for the field operator ϕ, as calculated in standard treat-

ments, but its quantum coherence is maintained.10

At reheating, however, entropy is generated. Energy in the inflaton is converted into a dense,

hot plasma with many degrees of freedom. The specific form of the microscopic perturbations will

depend on the state of the macroscopic perturbations; these factors become entangled, producing a

state of the form

|Ψreheating〉 = |ϕ(t)〉 ⊗

[∑
i

|δϕi〉macro ⊗

(∑
µ

|δϕi,µ〉micro

)]
. (4.50)

Tracing over the microscopic fluctuations leaves a mixed-state density matrix for the macroscopic

fluctuations, inducing decoherence [131–135]. By this process, the unique quantum state of the

inflaton field evolves into a large number of decohered branches, each with a specific pattern of

perturbations such as we observe in the CMB, with statistics given by the Born rule. In effect, re-

heating acts as an explicit measurement process. We therefore expect that the standard calculations

of scalar and tensor fluctuations in any given inflationary model are unaffected by the considerations

in this chapter.

4.5.4 Stochastic Eternal Inflation

We next turn to the possibility of eternal inflation in a slow-roll potential, as distinguished from

a landscape of false vacua. The traditional approach to this scenario makes use of the stochastic

approximation, which treats the inflaton field value in the slow-roll regime as a stochastic variable,

undergoing a random walk [12–14]; for recent treatments see [136–138]. Consider the case of a

power-law potential,

V (ϕ) =
λϕ2n

2nM2n−4
pl

. (4.51)

In a single Hubble time, the expectation value of the field decreases by

∆ϕ =
nM2

pl

4πϕ
, (4.52)

10One might imagine that decoherence occurs because modes become super-Hubble-sized, and we should trace over
degrees of freedom outside the horizon. This reasoning is not quite right, as such modes could (and often do) later
re-enter the observable universe; they become larger than the Hubble radius during inflation but never leave the true
horizon.
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but the dispersion of perturbations around this value is

∆2 =
〈
δϕ2

〉
=
H3

4π2
t . (4.53)

In a Hubble time H−1, we have ∆ = H/2π.

Now comes the critical step. In the stochastic approximation, one asserts that ∆ represents an

RMS fluctuation amplitude

|δϕ| = H

2π
, (4.54)

and that the effective value of the inflaton in a given Hubble patch should be treated as a random

variable drawn from a distribution with this amplitude. Above a critical field value,

ϕ∗ = λ−1/(2n+2)Mpl , (4.55)

the fluctuations dominate, |δϕ| � ∆ϕ. In this picture, to an excellent approximation, ϕ undergoes

a random walk with time step H−1 and step size |δϕ|. Causality dictates that each horizon area

undergoes these fluctuations independently. For every Hubble time, when a horizon volume grows

by a factor e3 ∼ 20, the field value in approximately 10 of the new horizon volumes is larger than its

parent. In fact, this statement is a much stronger condition than what is required for eternal inflation.

It suffices for only one of these volumes to move upward on the potential: |δϕ| ≈ O (∆ϕ/20).

The stochastic-approximation approach to eternal inflation differs sharply from the analysis pre-

sented in this chapter. As we have argued in §4.2, quantum fluctuations in closed systems near

equilibrium cannot be treated as classical random variables. Fluctuations δϕ only become real when

they evolve into different decoherent branches of the wave function and generate entropy. For the

perturbations we observe in the CMB, this entropy source is provided by reheating. But precisely in

the slow-roll regime, where the stochastic inflation story is invoked, there is no entropy production,

no measurement or decoherence, and no branching of the wave function. All that happens during

a Hubble time is a decrease in the classical field expectation value, ∆ϕ. There is no quantum-

dominated regime; the field simply rolls down its potential.

A more honest approach to eternal inflation would be to take the quantum nature of the dynamics

seriously, and investigate the evolution of the wave function describing the coupled background and

perturbations; we hope to study this more carefully in future work. Nevertheless, it is possible

to draw some qualitative conclusions by considering the evolution of a wave packet in field space

representing the homogeneous mode. If the initial state of the field has support near a local maximum

of the potential, inflation is plausibly eternal: part of the wave packet will roll down the potential,

eventually couple to perturbation modes, and experience decoherence, while part will remain near

the maximum and continue to inflate. In contrast, if the field is slowly rolling down a monotonic
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Figure 4.5: Potential supporting different kinds of inflation. Dashed lines are schematic representa-
tions of two different initial quantum states for the field. If the field begins at the right edge near
the Planck cutoff, we expect it to evolve smoothly to the non-inflationary regime at the bottom of
the potential. In contrast, if it begins at the top of a hill, it is plausible to imagine that part of
the wave function remains in an inflationary state for arbitrarily long periods of time (although the
amplitude for that branch of the wave function will be monotonically decreasing).

portion of the potential—as expected for a polynomial potential with a Planck-scale energy density

cutoff—it will reach the bottom of the potential, and the inflationary phase will end in a finite time

and after a finite number of e-folds. These two possibilities are portrayed in Fig. 4.5. We note that

the simplest inflaton potentials, monomial power-laws V (ϕ) ∼ ϕn, do not have saddle points and

should thus avoid eternal inflation given a Planck-scale cutoff (the recent BICEP2 detection [139] of

large-scale B-mode polarization in the CMB, if interpreted as a tensor/scalar ratio r ∼ 0.2, is well

fit by an m2ϕ2 potential).

For a field on the monotonic portion of the potential, one might object that, even once the

field has rolled down, some portion of the wave function will always remain arbitrarily close to

the maximum allowed value of the potential, e.g. the Planck-scale cutoff, just as a wave packet is

supported throughout all of space despite being concentrated around a single point. This reasoning

is correct, but it does not imply that there are some portions of the wave function where the end of

inflation is postponed. The problem with this interpretation was already noted in §4.4.1 and §4.5.2:

states of definite field value are not the same as states of definite energy density. In the slow-roll

approximation, the cosmic no-hair theorem acts to bring the inflaton field to the appropriate vacuum

state—a state of energy density corresponding perturbatively to de Sitter space with the appropriate

cosmological constant. Each such state has nonzero overlap with the states of definite field value,

but the cosmic no-hair theorem guarantees (to the extent that the slow-roll approximation is valid,

so that no entropy is produced) that the field is driven into the appropriate false vacuum state, and

then rolls smoothly to states with lower and lower energy density until the point that inflation ends.

Again, there is negligible entropy production, no quantum fluctuations, and no branching during
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this period—the inflaton remains in a single coherent state until reheating occurs.

To gain intuition for the points we make above, it is useful to consider applying the stochastic

approximation to a free massive scalar field in eternal de Sitter space itself. At the minimum of the

potential V = m2ϕ2/2, it is clear that the classical change ∆ϕ vanishes while the quantum variance

δϕ does not, so the system is automatically in the quantum-dominated regime. If the stochastic

approximation is applied, we expect occasional fluctuations of the field to very large values, leading

to rapid inflation in those regions but not in others. In other words, if the stochastic picture is

valid, one is led to the conclusion that de Sitter space with a massive scalar field has a runaway

instability, in contrast with the usual view that there is a lowest-energy eigenstate with a stable

semiclassical geometry (cf. [140]). In light of the above, we interpret this purported instability

differently: it indicates a problem with the stochastic approximation, not with de Sitter space itself.

The vacuum state of the scalar field is not a state of definite field value, although it is centered

around the minimum of the potential. Rather, the state has overlap with all field values, at least up

to a potential Planck-scale energy density cutoff. But we do not interpret the de Sitter vacuum as

an unstable superposition of different field values expanding at different rates. Instead, we say that

the field is in a single state, the vacuum, with a definite energy density given by the cosmological

constant Λ.

4.5.5 Other Formulations of Quantum Mechanics

Throughout this chapter we have worked in the context of the Everett/Many-Worlds formulation

of quantum mechanics, in which a single wave function evolves unitarily in Hilbert space according

to the Schrödinger equation. Interestingly, our conclusions could be dramatically altered in other

formulations. We will not explore these possibilities in detail here, but we briefly mention two

alternatives.

One is a hidden-variable theory, such as the de Broglie-Bohm model, which augments the wave

function by a hidden configuration space [141,142]. Quantum fluctuations represent a real difference

in knowledge of the system between merely knowing the wave function and also knowing the point in

configuration space. What we think of as a stationary thermal state in the Everett approach would

be more closely analogous to a thermal distribution function in classical statistical mechanics; while

the density operator is stationary, the underlying state could still be evolving in time. We would

therefore observe quantum fluctuations even in equilibrium. Although hidden-variable approaches

to QFT are still under development [143, 144], it seems reasonable to imagine that such a theory

would feature true, dynamical fluctuations in de Sitter space.

Another alternative is a stochastic dynamical-collapse theory, such as the Ghirardi-Rimini-Weber

(GRW) model [145, 146]. Set in the context of nonrelativistic, many-particle quantum mechanics,

the state of each particle has a fixed probability per unit time of spontaneously collapsing to a
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localized position. Entanglement between particles induces an effective, ongoing “measurement” of

macroscopic systems. Again, there is not a well-developed GRW model for QFT in de Sitter space,

but the philosophy of the approach leads us to expect that a thermal state would experience true

fluctuations. It seems we are dealing with one of the rare cases in which one’s favorite formulation

of quantum mechanics can drastically affect one’s expectation for how observable quantities evolve.

4.6 Conclusions

Quantum variables are not equivalent to classical stochastic variables. They are related by the ap-

pearance of quantum fluctuations, which require entropy generation, decoherence, and branching of

the wave function. In stationary states, entropy is not generated, and the wave function remains

fixed; therefore, there are no quantum fluctuations, and treating a quantum field as a classical

stochastic field is inappropriate. We have argued that this shift in thinking has important conse-

quences for the cosmology of de Sitter space, since de Sitter regions tend to approach a stationary

thermal state. In particular, if the true Hilbert space is infinite-dimensional (as is the case in QFT in

curved spacetime or in horizon complementarity in the presence of a Minkowski vacuum), de Sitter

vacua settle down and do not fluctuate. There are no Boltzmann brains in such states, relieving a

major problem for many multiverse cosmological models. On the other hand, we also predict there

is neither uptunneling to higher-energy vacua nor stochastic fluctuations up a slow-roll potential,

implying that eternal inflation is much less generic than often supposed. A better understanding of

complementarity and the correct formulation of quantum mechanics will help establish what happens

in the real universe.
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Appendix

4.A Boltzmann Fluctuations via Decoherent Histories

The appearance of decoherent Boltzmann fluctuations in time-dependent states (and their absence

in stationary states) can be made explicit by using the formalism of decoherent (or consistent)

histories [147–152]. It allows us to ask when two possible histories of a quantum system actually

decohere from each other and can be assigned probabilities, which corresponds, in our case, to the

existence of a physical fluctuation. Consider an operator PF that projects a state onto a subspace

corresponding to a particular kind of fluctuation—it may be a Boltzmann brain or an uptunneling

to a false vacuum (nothing that we will say relies on the details of what kind of fluctuation we are

considering; in particular, we do not need to worry about what counts as a “brain”). If an external

observer has a fluctuation-detection apparatus, the probability of observing such a fluctuation in a

state |Ψ〉 is p(F ) = ||PF |Ψ〉 ||2. But we are interested in dynamical fluctuations in closed systems

without any external observers, so this quantity is beside the point. What matters to us is whether a

history in which the system fluctuates into F decoheres with one in which there is no such fluctuation,

corresponding to the projection operator PN = 1− PF .

Start with a closed system described by a density operator ρ(t0) at an initial time t0. We want

to consider possible coarse-grained histories of the system, described by sequences of projection

operators {Pα}. These operators partition the state of the system at some time into mutually

exclusive alternatives and obey

∑
α

Pα = 1 , PαPβ = δαβPα . (4.56)

A history is described by a sequence of such alternatives, given by a sequence of projectors at specified

times, {P (1)
~α1

(t1), . . . P
(n)
~αn

(tn)}. At each time ti, we have a distinct set of projectors P
(i)
α , and the

particular history is described by a vector of specific projectors labeled by ~α. The decoherence

functional of two histories ~α and ~α′ is

D(~α, ~α′) = Tr[P
(n)
~αn

(tn) · · ·P (1)
~α1

(t1)ρ(t0)P
(1)
~α′
1

(t1) · · ·P (n)
~α′
n

(tn)] , (4.57)
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where the trace is taken over the complete Hilbert space. If the decoherence functional vanishes

for two histories, we say that those histories are consistent or decoherent, and they can be treated

according to the rules of classical probability theory.

The case of interest to us is relatively simple. Starting with an initial condition at t0, we

investigate histories that either do or do not look like the specified fluctuations at t1, so that {P (1)
α } =

{P (1)
F , P

(1)
N }, and then evolve back to their starting point at a later time t2. The Heisenberg-picture

projectors Pα(t) are related to time-independent ones by

Pα(t0 + ∆t) = eiĤ∆tPαe
−iĤ∆t . (4.58)

Defining ∆t1 = t1 − t0 and ∆t2 = t2 − t1, we have

D(~α, ~α′) = Tr[P~α2
e−iĤ∆t2P~α1

e−iĤ∆t1ρ(t0)eiĤ∆t1P~α′
1
eiĤ∆t2P~α′

2
] . (4.59)

Note from (4.57), (4.56), and the cyclic property of the trace, the histories of interest always end

in the same place, P
(n)
~αn

= P
(n)
~α′
n

, since D(~α, ~α′) vanishes trivially otherwise. We therefore write the

last projector as P~α′
2

= δ~α2,~α′
2
. We can express the density matrix and the projectors in the energy

eigenbasis:

P (1)
α1

=
∑
nm

pnmα1
|En 〉〈Em| , (4.60)

P (2)
α2

=
∑
nm

qnmα2
|En 〉〈Em| , (4.61)

ρ(t0) =
∑
n,m

ρnm |En 〉〈Em| . (4.62)

Acting the Hamiltonian on the energy eigenstates and summing over Kronecker delta functions, we

obtain

D(~α, ~α′) =
∑

n1,m1,n′
1,m

′
1

q
m′

1n1

~α2
pn1m1

~α1
p
n′
1m

′
1

~α′
1

ρm1n
′
1e
−i[(En1

−Em′
1
)∆t2+(Em1

−En′
1
)∆t1]

δ~α2,~α′
2
. (4.63)

For generic values of the energy eigenvalues (i.e., neglecting conspiracies that would make the energy

differences all rational multiples of each other), the real and imaginary parts of this expression are

almost periodic functions. Following similar logic used to derive the quantum recurrence theorem

in Appendix 7.1 of [22], in a finite-dimensional Hilbert space, there will always be times ∆t1, ∆t2

such that |D(~α, ~α′)| < ε for any positive ε. Moreover, there will always be a ∆t2 for which the

decoherence functional approximately vanishes for any fixed ∆t1, and vice versa. This result con-

firms our intuition that time-dependent states will generally exhibit fluctuations into any allowed
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configuration, given sufficient time.

Now consider the case where the initial density matrix is stationary, meaning it is diagonal in

the energy eigenbasis:

ρmn = rmδ
mn . (4.64)

Plugging into (4.63) and changing dummy indices, we get

D(~α, ~α′) =
∑
n,m,`

qmn~α2
pn`~α1

p`m~α′
1
r`e
−i(En−Em)∆t2δ~α2,~α′

2
. (4.65)

We want the final projector to be onto the same kind of state we originally started with, since we

are asking about the reality of fluctuations in such states. Thus, we have

P (2)
α2

=
∑
m

rm |Em 〉〈Em| , qmnα2
= rmδ

mn (4.66)

and obtain

D(~α, ~α′) =
∑
n,`

pn`~α1
p`n~α′

1
rnr`δ~α2,~α′

2
. (4.67)

Unlike the generic case, where the initial density matrix and final projector are both stationary,

the decoherence functional describing histories with and without fluctuations is some fixed constant,

which never evolves to zero. Therefore, even when a projection operator describing some sought-

after fluctuation has a nonzero norm when acting on a state, it does not imply that the state actually

exhibits such a fluctuation, in the sense that a history in which the configuration appears decoheres

from those in which it does not. This example helps illustrate the fundamental difference between

quantum fluctuations (which require external observers) and Boltzmann fluctuations (which are

dynamical events in time-dependent states).
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