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Abstract

There is a wonderful conjecture of Bloch and Kato ([BK90]) that generalizes both the analytic
Class Number Formula and the Birch and Swinnerton-Dyer conjecture. The conjecture itself was
generalized by [FKO06] to an equivariant formulation. In this thesis, I provide a new proof for the
Equivariant local Tamagawa number conjecture in the case of Tate motives for unramified fields,
using Iwasawa theory and (¢, T')-modules, and provide some work towards extending the proof to

tamely ramified fields.
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Chapter 1

Introduction

1.1 Preliminaries

1.1.1 Basic definitions

Let p be an odd prime, and let K be a finite extension of Q, with maximal unramified subextension
F. Weset [K : F]=eand [F: Q) = f, and throughout this document we assume p does not divide
ef and (e,p— 1) = 1. We assume K/Q, is Galois, and thus e[p/ — 1 and K = F(/p).

We have Galois groups G = Gal(K/Q,), A, = Gal(K/F),% = Gal(F/Q,), K has residue field
Ok/¢POKx = Op/pOF = k. Then A, = 7Z/eZ and ¥ = 7/ fZ are cyclic, and we can fix as generators
a Frobenius element o € ¥ and some d, € A.. Let Gx = Gal(K/K), let x¥°° : G — Z, be the
cyclotomic character, and set Hx = ker xcydo and 'y = G /Hk.

Set E to be the set of sequences (9, (1), ...) of elements of C, satisfying (z("*D)P = ("),
with addition given by (z + )™ = lim,, (z(®+™ 4+ y(+m))P" and (zy)™ = My, Then E is
a complete, algebraically closed field of characteristic p. We have obvious actions of the frobenius
element ¢ and of Gal(Q,/Q,) on E.

Fix a compatible system of roots of unity ((ym)men where ((ym+1)P = (pm, and write K, =
K(Cpn). Weset € = (1,(p, Gp2,...) € E, and denote by Eg, the subfield of E given by F,((e —1)).
We write E for its separable closure and note that E is the completion of the algebraic closure. We
write Ex = EHx for the subfield of E fixed by H.

We take A = W(E) the ring of Witt vectors over E, and B = A[1/p] = Frac(A). This is a
complete discrete valuation field with residue field E. We can write 2 € A as "5 p*[zs] where
zr € F and [] is the Teichmuller lift.

We write 7 = [¢] -1, and Ag, for the closure of Zy[r, 7~ '] in A; it is a complete discrete valuation
ring with residue field Eg,. We write Bg, = Frac(Aq,) = Ag,[1/p]. We have actions of ¢ and G on
B, given by ¢(m) = (1+m)? —1 and g(x) = (1 + m)x~ @ — 1.

We write B for the closure of the maximal unramified extension of Bg, in Band A=BnA
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such that A[1/p] = B. We have Bx = Bx and A = AHx. We observe that

By = {Zanw?( tan € F,ngrzlooan = 0}

neZ

where 7w is eth root of 7w and a uniformizer of Bg. We likewise have Ax = {Z anmy € Bg ta, € Op Vn} .

neZ
The actions of ¢ and G on B restrict to endomorphisms of By and Ag for each K, and we

further have the following operators, defined on B and on each By:
Definition 1.1.1. Let f € B. Then we define

L o(f) =p to ! Trg/ep(f).

2. N(f) = ¢~ 'Np/pn(f)-

We observe that if f € B, then (¢(f)) = f; thus ¢ is an additive left inverse of ¢.

1.1.2 de Rham and crystalline representations

In this section, we recall the definitions of the Fontaine rings of periods. We follow the presentation
in [CC99] IIT.1.

Recall E is the set of sequences ((?), (1) .. .) of elements of C,, satisfying (z("*1))? = 2("); take
E* to be its ring of integers. We write Aing = W(E*) for the ring of Witt vectors with coefficients
in Bt (see also our definition A = W(E) above), and if z € Et we write [z] for its Teichmiiller
representative in A;, .

Any element of A;,f can be written ano p"[x,] for some sequence of elements x,, € E*. The
map 6 : Aipy — Oc, given by > ~op"[2a] = 32,50 p"xSf’) is surjective, and its kernel is the ideal
generated by w = ¢—+(7r)

Define B;tlf = Ajnr[1/p], and we can extend @ to a map B; . — C,. We write B, =

inf

@B;{Lf/(ker )", and by abuse of notation we have a map ¢ : B, — C,. Then B}, is a dis-
crete valuation ring with residue field C,, and the Galois action of Gg, on B 7 gives rise to an
action of Gg, on Bi..

We see that log([e]) = ZnZI(fl)”*lwn/n converges in BJ.; we write log([e]) = ¢, sometimes
referred to as “the p-adic analogue of 2mi.” We write Byr = Bp[1/t]; this is a field, and comes
with a decreasing filtration given by Fil'(Bar) = t'Bj,. We can see that o(t) = x*¥°(c) - ¢ for any
o € G, and thus this filtration is stable under the action of G, .

Suppose V' is a representation of Gk over Q,, that is, a finite-dimensional Q,-vector space with a
continuous linear Gi-action. Then the K-vector space Dyr(V) = (Bag ® V)GK has dimension less

than dimg, V', and comes with a decreasing filtration induced by the filtration on Byg; in particular,

Fil' Dgr(V) = Dgr(V) if i < 0 and Fil° Dgg(V) = 0 if i > 0.
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Let Bt

cris

be the set of elements x € B, such that = Y . a,w™/n! for some elements
an € Bf,; with lim, a, = 0. Then Bf,  is a subring of Bj,, which is stable under the action of

Gq,; it clearly contains ¢, and we write Bepis = B} ..[1/t]. The action of ¢ on B;;f extends to an

action on B . . and we have ¢(t) = pt. (Note that ¢ does not in fact have a nice extension to B(J[R;

cris?
13-%

cris

is essentially the subring to which ¢ extends nicely).

As with Bgg, given a representation V' of Gk over Q,, we define a K-vector space D¢pis(V) =
(Beris ® V)GK. The action of ¢ on B..;s commutes with the action of Gk, so we have a semi-linear
action of ¢ on D.pis(V).

We have that dimg Depis(V) < dimg Dgr(V) < dimg, V. If dimg Dgr(V) = dimg, (V) we
say that V' is de Rham. If dimg De,ss(V) = dimg, (V) then we say V is crystalline. (Thus every
crystalline representation is also de Rham.)

Let k € Z. We define the Gk representation Q,(k), called the kth Tate twist of Q,, by the
action g - s = x¥°(g)¥ - 5. Then for any G g-representation V, we define the Tate twist of V to be
V(k) =V ®q, Qp(k); that is, Gx acts on V (k) with the given action on V' times the kth power of
the cyclotomic character. Then if V' is de Rham (resp. crystalline) we have that V' (k) is de Rham
(resp crystalline), and Dyr(V (k)) =t *Dar(V) (resp. Deris(V(k)) = t7*Depis(V)).

1.1.3 The Bloch-Kato exponential map

We now recall the definition of the Bloch-Kato exponential (see [BK90] and [Ber(3]). There is a

short exact sequence, called the fundamental exact sequence:

0 Q% B 2 Byr/Bl, — 0, (1.1)

cris

where « is the inclusion of @, < B®.! and § is given by the inclusion BY.! < Bag. (See [BK90)]
Proposition 1.17).

Let V be a Qp-representation of Gx. We may tensor equation with V' and then take
cohomology; we get a long exact sequence:

0— HYK,V)— H(K,B’>! @ V) = H°(K, Byg/Fil’ Bqr @ V) = H' (K, V) — ...

cris

Recall that by definition, Depis(V) = (Bepis ® V)65 2 HY(K, Beris ® V), and similarly Dggr(V) =
HO(K, B4r(V)). Since ¢ commutes with the action of G, we have

0= VX = Dipis(V)?=1 = Dar(V)/Fil® Dgr(V) 225 HY(K, V) — ... (1.2)

and we may write the following definition:
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Definition 1.1.2. Let V' be a Q,-representation of Gx. Then we define the exponential map
expy : Dar(V)/Fil’ Dyr(V) — HY(K, V)

to be the connecting homomorphism in ([L.2]).

In particular, [BK90] show that if we take V' = Q,(r) for r > 2, then expq_(,y is an isomorphism
from K to H'(K,Q,(r)).

1.2 The Tamagawa number conjecture for Tate motives

In this section we will describe the Tamagawa number conjecture of [BK90], and then a refinement
due to [FK06]. In subsection we will state the original conjecture, and the theorem proved in
IBK90] as evidence. In subsection we will develop some maps that will allow us to work in the
group ring @p [G], and in subsection we will study the structure of this group ring. Finally,
in subsection we will use these tools to state a refined “equivariant” version of the Tamagawa

number conjecture.

1.2.1 The conjecture of Bloch and Kato
For a motive M, Bloch and Kato ([BK90]) define abelian groups A(Q,) for all p such that if we take

L(M,s)= [ P(M,p—*)~"
p good

then 1,(A(Qp)) = Pp(M,1) for almost all p. They further postulate the existence of an abelian
group A(Q) that maps to every A(Q,), and define

Tam(M) = p H A(Qp)/AQ)

p<oo

Note that we have Tam(M) = L(M, 1)-]], ¢ for finitely many primes [. They define a group (M),

which they conjecture to be finite, and further conjecture:
Tam(M) = #H°(Gal(Q/Q), M"Y ® Q/Z(1)) - (#1L(M))~". (1.3)

In particular, in the case where M = h°(Spec L)(0) for a number field L, then L(M, s) = (1(s),
and equation reduces to the analytic class number formula. If M = h'(A)(1) for some abelian
variety A over a number field L, then L(M, s — 1) is the Hasse-Weil L-function of A. In particular,
if A is an elliptic curve over Q then reduces to the Birch and Swinnerton-Dyer conjecture.
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IBK90] provide further evidence of their conjecture by showing that it holds for the Tate motive
Q(r). This can be checked locally, by computing u(H*(Q,,Z,(r)) for each p, and thus they prove

the following theorem:

Theorem 1.2.1 (Bloch, Kato). Let K/Q, be a finite unramified extension and let r > 2. Let
HY(K,Z,(r)) have the Haar measure induced by the isomorphism eXPg, (r) ° KSHY K, Qu(r)) from
the Haar measure p on K with u(Og) = 1. Then

p(HY (K, Zp(r)) = 1= ¢~ - |(r = Dlxc - #HO (K, Qp/Zyp(1 — 7).

In [BK90)] it is assumed that K is unramified; we wish to relax this assumption and extend these
results to cases where K is tamely ramified. But first we will strengthen and make more precise the

statement of the conjecture.

1.2.2 The dual of exp

We begin by observing that that there’s a natural isomorphism D;r(Q,(1)) = t "' K= K. For any
G g-representation V', we can naturally identify Dgr(V*(1)) with the dual of Dgr(V): there is a

non-degenerate pairing given by

TrK/Qp

Dar(V) ® Dar(V*(1)) = Dar(V @ V(1)) = Dar(Qp(1)) = K Qp.
Similarly, we can identify H'(K,V*(1)) with the dual of H!(K, V) by Tate duality:

HY(K,V)x HY(K,V*(1)) = H*(K,Q,(1)) = Q,.

We define the dual map
expy. (1) : H'(K,V) = Dar(V)

to be the transpose of expy..(;) : Dar(V*(1)) = H'(K,V*(1)), via the diagram

HY(K,V) x H'\(K,V*(1)) —= H*(K,Q,(1)) —= Q,
cxpVT exp’{/*(l) \Lid
Dar(V) ® Dar(V*(1)) Dar(Qy(1)) —— Q,

In particular, since (Q,(r))* = Q,(—r), we have (Q,(r))*(1) = Qp(1 — r), and thus we have a
map expy, j_,y : HY (K, Q,(r)>K.
Using the dual exponential, we can actually make a finer statement than the conjecture of Bloch

and Kato. Observe that since H'(K,Q,(r)) = HY (K, Z,(r)) ®z Q, we have the following diagram,



with exact rows:

0 —— H'(K, Zp(r))tors— H' (K, Zy(r)) —= H' (K, Qp(r))

0 Ok K

where H'(K,Z,(r))tors is the rational torsion of H'(K,Z,(r)); we will write H'(K,Z,(r))y =
HY(K,Z,(r))/H" (K, Zy(r))tors- Then we can view Ok and exXpy (1-y) HY (K, Z,(r))ss as two integral
lattices in K, and there exists a 8 € H'(K,Z,(r)) such that H'(K,Z,(r))w = Z|G] - 5.

In fact, the situation becomes simpler if we pass to the group ring via the period isomorphism
L K ®g, @y (TndS Q
per: K ®q, Qp— (Indg,” Q) ®g, Q-

We have that Indgip Z,, is a free left-Z, [G]-module of rank one, and thus after choosing an embedding
K < Q, we get an isomorphism v : Gg,/Gx—G and an identification of Indgip Z, with Z,[G],
which gives us a left I'-action determined by vz = z(y~1).

Lemma 1.2.2. For a fized choice of ¥, the period isomorphism is given by

per(z@1) = Y _g(x) g~ ' € QG
geG
With the period isomorphism established, we turn our attention to studying the structure of the

group ring.

1.2.3 The group ring Q,[G]

In this subsection, we will develop some character theory for @[G], where G is any group. We
follow much of the presentation in [Lan02] XVIII.2-5.
Let G be the space of irreducible characters of G' over Q,. Then Q,[G] is semisimple, and

decomposes into simple modules as Q,[G] = [] R, where each R, is a simple ring and thus a

x€G
matrix algebra over Q,. If G is abelian we have R, = Q, for each y.

We write p, for the representation of G on Q,[G] induced by x. If @ € R,, and n # x, we have
py(a) = 0, and p, is in fact a representation G — R,. For any g € G we have that p,(g) is an
invertible matrix in R,, and thus det p, (g) € @X. If G is abelian then det p, (g) = py(9).

For each x, we set ey to be the unit of R,. We can thus write 1 = eré ey, and we observe

that eye, = 0 if x # 1. We can further calculate that

d
eX = #7)((;1 Z X(g_l)ga

geG
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where di is the dimension of the matrix algebra R, over @p. In particular, the trivial character

1: G — Q, is a simple character of G, and we have

6’1:#20.

Note that ge; = e; for any g € G, and more generally, we have

heex=> x(g~")hg

geG

=> x(g'h)g

geG

=x(h) Y x(g™ Mg

geaG

= x(h)ex,

and thus the e, are eigenvectors for the action of G.

1.2.4 The equivariant Tamagawa number conjecture

We are now ready to state the equivariant Tamagawa number conjecture for tamely ramified ex-
tensions K/Q,. The discussion in this subsection draws on [Flal4], developing ideas from [FKOG].
Recall that we have 8 € H'(K,Z,(r)) such that H'(K,Z,(r))it = Z,[G] - B. We can restate our

conjecture:

Conjecture 1.2.3 (Equivariant Tamagawa number conjecture). Let K be a tamely ramified ex-
tension of Qp, and let p { f and (e,p — 1) = 1. Let b be a Zy[G] basis of the inverse different

(¢/P0)~¢Ok, and set
chclo(,.y)rfl -1

Cﬂ =l-e+ chclo(,y)r -1

€1.

Then for each x € G, we set c(x) to be the conductor of x, and we have

b det px(per(expy ) (B) ® 1))
det p, (per(b® 1))

1—p'~tdetpy(o

) pr—De
(r=1tp 1 —p"detpy(o)?

~det py (Cp) -

€z, (1.4)

Note that since p |G|, we know that G coincides with the set of irreducible characters of G over
", and thus the element given in (1.4) is always a unit of Q,". Our aim is to prove that it is a
unit of Z;".

Let n: Ae — @; be a character, and set

Xy = {0 eX: 77(0560_1) = 77(66)}'
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Then we have a subgroup ¥ x A, <= X, X A, and for each ' : ¥,, — @; we have a homomorphism
Gy=3,x A, 25 Q,,

and we can define a character y = Indgn n'n of G. In fact every character y € G arises this way. Thus
it suffices to prove Conjecture m for x = Indgq7 n' - n. In this case we have c(x) = f, = #X/%,.
In the remainder of this thesis, we will prove Conjecture for unramified extensions of Q,,
and discuss some work towards proving the conjecture for tamely ramified extensions. Chapter
develops tools that we will need to study this problem, and Chapter [3| will apply them to the
A g-module Aﬁzl(l). In Chapter |4| we will prove Conjecture for unramified extensions, and in

Chapter [5| we will discuss our work on tamely ramified extensions.



Chapter 2

Iwasawa theory and
(¢, I'jr)-modules

In this chapter we will develop a number of tools that we can use to study the equivariant Tamagawa
number conjecture. In section we will define Iwasawa cohomology and the Iwasawa algebra, and
prove some results about the Iwasawa cohomology of the Tate motive. In section[2.2]we will introduce

the theory of (¢,I'kx)-modules and state an explicit reciprocity law for the map expap(l_r).

2.1 Iwasawa cohomology and the Iwasawa algebra

In this section we introduce some Iwasawa theory, define Iwasawa cohomology, and show that we can
realize the group H'(K,Z,(r)) of Theorem and Conjecture as a quotient of the Iwasawa
cohomology H}, (K,Z,(1)).

2.1.1 Iwasawa cohomology

We begin by defining some basic objects of Iwasawa theory. Recall we have a compatible system of
p™th roots of unity (,n, and for each n we set K,, = K({p»). Then we have an ascending tower of
p-adic extensions K = Ky C K1 C Ky C ... where [K; : Kol =p—1and [K;41 : K;] =p for i > 1.
We write Koo = U, en Kn-

Recall that Gx = Gal(K/K) and H is the kernel of the cyclotomic character V! : G — Z).
We note that K is precisely the fixed field of Hx and so 'k = G /Hig = Gal(K/K). If p > 2,
then I'k is topologically cyclic with generator v, and isomorphic to Z; as a multiplicative group.
We write I',, = Gal(K/K,) C I'k; for n # 0, we have I'x, = Z,, as an additive group, with
topological generator y,. We note that in particular I'y, = Z,,, and I'x )Tk, = Gal(K1/K) = pp_1.
We write A = Gal(K;/K), and observe that K and F} are linearly disjoint over F since (e,p—1) = 1.

We wish to study modules over the group I'x. We start by defining:



10

Definition 2.1.1. The Iwasawa algebra is the completed group ring A = A(T'x) = Z,[A][T], with
T =~ — 1. We can also write A = lim ZpTk /Tk,].
Recall that G = Gal(K/Q,). We define the Iwasawa algebra over K to be Ax = Z,[G]['k].

Remark 2.1.2. We see that Agx = Ok ®z, A. Indeed, by the normal basis theorem there is a £ € K
such that G - € is a basis of K over Q,, and since K/Q, is tamely ramified we can pick £ such that
G - ¢ is also a basis for Ox over Z,. Then the map induced by

%

g7 =gy

is an isomorphism.

Now we recall the definition of Iwasawa cohomology:
Definition 2.1.3. Let 7" be a finitely-generated Z,-module with a continuous linear G g-action.
Then we write Hf;, (K, T) for the projective limit @H ™(K,,T) relative to the corestriction maps.

Let V be a finite-dimensional Q,-vector space with a continuous linear G'x-action and a G k-

stable lattice T'. Then we write

H7(K,V) = H{(K,T). ®z, Q,p

Tw Tw

Remark 2.1.4. The group H}, (K, T) is equipped with a A action. Each H'(K,,T) has aleft I'x /T,
action, and thus is a Zy[I'x /T'k,,]-module. Then the projective limit is a im Zp[I'x /T'k,,|]-module,

and HZ])[FK/FKH} = ZP[[FK]] = A

2.1.2 Iwasawa cohomology of Q,(1)

For the rest of this section, we will study the Iwasawa cohomology group Hj, (K,Q,(1)). Recall

that we have

Hp, (K, Qp(1)) = lim H' (T, Zy(1)) ®z, Q-
By Shapiro’s lemma we know that H'(T, IndFKn Z,(1)) 2 H (T, ,Z,(1)). We see that
Indll:zn (Z:D(l)) = ZP[FK] ®ZP[FK7L] ZP(1> = ZP[FK/FKn] ®Zp Zp(1)>

and so we have

Hp, (K, Zy(1)) = im H' (K, Z,[Tx [Tk, ] @z, Zy(1)).
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But %iLnHl(K7 G,) & Hl(K,yLnGn) (see [NSWOQ] corollary 2.3.5), and we have defined the ring
A =lim Zpl'k /Tk,]. Set T = A ®z, Z,(1), and we have

Hi (K,Z,(1)) = HY(K,T). (2.1)

(See also [CC99] I1.1.2). We also observe that since the inverse limit does not depend on the first
terms, for each m > 0 we have H}, (K, Q,(1)) & H}, (K, Q,(1)), and thus H (K, T) = HY(K,,,,T),
as groups.

Further, we note that T has a left action of A as described in Remark and a right action of
Gk given by g->Y a;v' @n = a; v ™™ @ x¥°(y)™(n), where g = y™ - h for x¥°1°(h) = 0. It is
this latter action by which it is a G g-module, and by which H*(K,T) is defined; thus H!(K,T) is
itself a left A-module. In order to properly analyze this module, we will need a brief digression into
some results from the Iwasawa theory of p-adic local fields.

First, recall that we say a group H is pro-p if it is the inverse limit of an inverse system of discrete
finite p-groups. If H is an abelian group, we can define the pro-p completion of H, written H , to be
the inverse limit Tglm H/H?" . In particular, we note that Z,, is the pro-p completion of Z.

Now recall that Gal(K/K) = Z, and in particular we have I'y, = Gal(K« /K1) = Z, and

P

A = Gal(K,/K) = pp—1. Following [NSW00] XI.2, we set

A(K o) = lim K, = 1im K¢ /(K)"".

n,m

This is a finitely-generated A-module. We set
U =1im Ok, = Lm0} /(0% "

the pro-p completion of the group U due to Coleman (see also [BK90] section 2). Then if N, :

—— —_—
Ky — K, is the norm map, we have a commutative diagram for each n > 1:

—

VKn

00— O;((n K;; Zp 0
\LNn an ‘/id
— T VKn_1
0——s (9;2-”71 K) Ly, 0

which induces a map v : A(Kw) — Z,. As the kernel of vg, is precisely Of , we have that

U = kerv. Thus we have a short exact sequence

~

0—U— A(Ky) = Zp — 0.
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We now have the following proposition:

Proposition 2.1.5. We have the following isomorphisms of Ak -modules:
1. A(Kwo) 2 A ®Zy(1).
2. U= Ak &7Zy(1).

Proof. 1. Observe that Gal(K«/Q,) = 'k, x Gal(K:1/Q,) = Z, x Gal(K; x Qp) and Ax =
Zp[Gal(K/Qp)], and see [NSW00] Theorem 11.2.4.

2. We observe that since U is the kernel of the valuation map onto Z,, it is the augmentation ideal
of A(K ). We can write U = I & J where I C Ag and J C Z,(1); then I is the augmentation
ideal of Ak, and by [NSWO00] Lemma 11.2.2. we have I = Ag.

To show that J = Z,(1), note that any additive homomorphism Z,(1) — Z, is either an
embedding or the zero map. But v —1 is the zero map on Z, and (y—1)(1) = x¥°(y) -1 # 0
in Z,(1); thus ker v is non-trivial, and we must have kerv = Z,(1).

O
We can now describe the A-module structure of Hj, (K, Z,(1)).

Lemma 2.1.6. The Iwasawa cohomology group H}, (K,7Z,(1)) is isomorphic to A(Kw) as a A-

module.

Proof. Recall that by Kummer theory, we have H'(K,,, ju,m) = K /(K )?". Then we have

Hi, (K, Zp(1)) 2 im H' (K, Z,(1))
n
= lim H* (K, lim 1)
> lim H' (K, )
>~ lim K /(K)P"
k)

O

Corollary 2.1.7. The cohomology group HY(K,T) = H} (K,Zy(1)) is a rank-1 A -module, and
is isomorphic to A ® A /(0 — 1,0, — 1,7 — XV () Ax =2 Ak @ Zy(1).

Proof. A simple calculation shows that Ag /(0 —1,6. — 1,7 —x(7))Ax = Z,(1), and the rest follows
from Lemma 2.1.6 O
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2.1.3 Certain quotients of Hj (K, Z,(r))

We now wish to realize the cohomology group H'(K,Z,(r)) as a quotient of H'(K,T). We start

with a lemma:

Lemma 2.1.8. Let T = A®z, Zy(1) and let v be a topological generator for I'. Then we have exact

sequences:

_eyelog y1—r
0 72X T Zy(r) —=0

cyclo 1—7r
Y=X (v

0*>T®ZQ—’Y>T®ZQ*>QP(T)*>O
Proof. We prove exactness of the first sequence; the proof for the second sequence is similar. We
will define a map 7' — Z,(r) of Gg-modules, whose kernel is (y — x¥1°(y)1~")T, and show that it
is Gg-equivariant.

Define 0 : T — Z,(r) by 03 aiy’ @ n) = n - a'x¥° (7)) for any Y a;iy' @n € T.
This is clearly a group homomorphism; since the map is induced by v +— x<°°(7)!=" it has the
desired kernel. We wish to show that it is G g-equivariant, so let ¢ € Gx. Then g = ™ - h where
XY (h) = 1. We have

0 ((Z ami ® n) -g) =0 (Z ai’yi_m & XCyClO(W)mn)
— o (4 Z 1 Y10 () =) (17
evelo Z 4 Y (7))
XY (y)mrg (Z ' ® n)
=g-0 (Zai'yi®n>

as desired. O

Fix m > 0. Then the short exact sequence of this lemma induces a long exact sequence of

cohomology groups:

0 O, T) e B, T) = HO(E 2y 1)
Y=XT(y) T

H' (K, T) ——————= H'(K,,, T) —%
F—x Ve (4)?

Hl(Km»Zp(r))

H?(K,,T) —— H*(Kp,,T) — H*(Ky,, Zy(r)) — H3(K,,, T) 20

Y—X v)
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We are interested in the map pr,, , above, and in particular its image when m = 0.

Lemma 2.1.9. Ifr > 2, then the map pro, is surjective onto H' (K, Z,(r)), which is isomorphic
to Zp[G)(1 — 1) @ Z/(#H° (K, Qp/Zy(r)))-

Proof. First, we claim that the map pro, is a surjection. Note that H*(K,T) = H? (K, Z,(1)) =
@H2(Kn7Zp(1)). But we have that H?(K,,Z,(1)) & Z,, and the transition map is constant,
so H*(K,T) = Z, (see [NSW00] 7.3.10). The map H?*(K,T) — H?*(K,T) is induced by v —
XY (y)mr =1 — chdol_r(*y) since the action of v on Z, is trivial. Since v ¢ ker(x<¥°°) this gives
us that 1 — x*°°(5)1~7" is non-zero, and it has empty kernel on Z,. This is sufficient to establish
that pro,. is surjective onto H'(K,Z,(r)).

From Corollarywe know that H'(K,T) = Ak ®Z,(1). Thus we have a right exact sequence

A ®@Zy(1) = Ag @ Zy(1) — H' (K, Zy(r)) — 0.
In particular, we have

HY (K, Zy(r)) = (A & Zy(1))) /(7 = x¥"° (1)) (Ak & Zp(1))
= Aw /(v = XTI @ Zy(1) /(v = xTO()T)
= Z,[G)(1 = 1) © Zp/(1 = XV (7))
= Zp[G](1 =) @ Z/|1 = XV ()", ' Z.

Thus all that’s left is the claim that #H%(K,Q,/Z,(r)) = |1 — chdo(v)*ﬂ;l, which is the content
of lemma 2.T.70] below.
O

Lemma 2.1.10. Let 7 € Z. Then #H(K,Q,/Z,(r)) = [x¥°(y)" — 1t = |xevele ()= — 15t

Proof. We see that

H°(K,Qy/Zy(r)) = {2 € Qp/Zy : g = 2¥g € Gal(Q,/K}
= {2 € Qp/Zy : XV (1) x = x}
={z € Qy/Zy: (X¥"°(7)" — Dz € Zp}
= {t/p' € Qp/Zy : t € ), (X ()" = 1) /1" € Zp}

=1
_ {ao +aip+ pl + aj—1p sa; € Z/pZ,l _ UP(XCYCIO(’Y)T _ 1)}

o Z/pvp(xc-"““(v)”l)z

which has order p”P(chCIO(V)Tfl) = |chdo(7)r - 1|;71~
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The second equality follows because G acts on Q,/Z,(r) via ¥ and G/ ker(xy<¥°) =T is
topologically generated by . The third equality follows since |x*° ()|, = 1. O

2.2 (¢,I'x)-modules and the reciprocity law of Cherbonnier
and Colmez

In this section, we develop some ideas from [CC99]. In particular, we define the Cherbonnier-Colmez

dual exponential, and recall a reciprocity law for it in the case of the Tate twist.

2.2.1 (¢,I'x)-modules and the Cherbonnier-Colmez dual exponential map

We begin with a definition.

Definition 2.2.1. If K is a finite extension of Q,, then we define a (¢, I'x)-module over A (resp.
Bg) to be a finite-rank Ay -module (resp. a finite-dimensional Bg-vector space) with an action of

I'x and an action of ¢ which commute.

If V is a Z,-module or a Q,-vector space with a continuous action of Gk, we set D(V) =
(A ®z, V)Hx, Then since the action of ¢ on Ax commutes with the action of Gk, we see that
D(V) has an action of ¢, and an action of Gx/Hg = 'k which commutes with ¢. Thus D(V) is a
(¢, I'ir)-module over Ak or By.

In fact, this induces an equivalence of categories between étale (¢, 'k )-modules and continuous
G g-representations. For if T is a (¢, 'k )-module, then (A ®4, T)?=! is a representation of G
over Qp, and further, (A ®4, D(V))?~! is canonically isomorphic to V as a representation of Gk.

We may now define the Cherbonnier-Colmez dual exponential. Let V' be a Z,-representation
of Gg. From [CC99] Theorem II.1.3, we know that for each n we have a map ¢y, : D(V)¥=! —
HY(K,,V). In fact, these maps are compatible with the corestriction maps, and thus we have
a map Logy.() : D(V)¥=! — H} (K,V) given by y — (...,tyny,...). This map is an iso-
morphism, and we denote its inverse, the Cherbonnier-Colmez dual exponential, by Exp’{/*(l) :
H! (K, V)3D(V)¥=1,

In particular, if we take V = Q,(1), then we have Expg, : H}, (K, Q,(1))= Bk (1)¥=", and if we
take V' = Zy(1), we have Expy : HJ, (K, Zy(1)) = Ag (1)Y=

2.2.2 The reciprocity law

We define a family of operators T, : Bgé‘ — K, ((t)). First, we note that if + € K, then
x € K, for some n, and p~" Trg, /k,, doesn’t depend on n as long as z € K, and n > m. Thus

we have a well-defined function, which we write T, : Koo — K,,. We extend T, linearly to a
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function Ko ((t)) — Km((t)). But since Koo ((t)) is dense in B then T,, extends continuously to
a function Ty, : BJ — K, ((t)), as desired.

Recall that every element 2 € B can be written > ks oo PFlzi] for some zy, € E. Then each
term of this sum is also an element of BCJ{R, and the sum converges if and only if 7, pkx,(co)
converges in C,, if and only if limg_,1 o k + vg(xr) = +0o. Thus ¢~ "(z) converges if and only if
limg— 100 k + p "vE(xg) = +00.

If V is a Qp-vector space with a continuous G i action, then there exists some n € N such that
¢~"(z) converges for every € D(V)¥=!, and thus ¢~ gives us a map ¢~": D(V)¥=! — B} .. In
fact, o~ "(x) € K,[t] (see [CC99] II1.3.2 and II1.2.1). We can easily calculate this map after seeing
that ¢~"(7) = (pnel/P" — 1.

Now we are ready to state the reciprocity law.

Theorem 2.2.2 (Cherbonnier-Colmez IV.2.1). Let V' be a de Rham representation of Gk, let
we€ Hi (K,V), and let m € N. If n is large enough, then we have

" (EXPT/*(I)(U)) € Bar ®k V,

given by ¢~"(m) = (pne® " — 1, and the element

T (o7 " (Expy (1) (1)) € Kin((t)) @k Dar(V)

is independent of n. Further, we have the equality

T (¢~ " (Expye(1) (1) = D XDy (1 gy (PP, k1) @ F. (2:2)
keZ
Recall that the p-adic realization of the Tate motive Q,(r) is given a Gk action by ¢g - s =
XY°(g)" - s, and that for any G-representation V we have V(r) = V ®g, Q,(r). In this paper, we
wish to study the representations Q,(1) and Q,(r) for r > 2.
We compute that D(Q,(1)) = (A ®z, Qp(1))"* = Ag @z, Qp(1) = Bk(1). Further, recall that
(Qp(r))* = Qp(—r). So taking V' = Q,(1), we have, after reindexing the right-hand sum:

T, (6" (Exply, (1)) = S exply, 1y (prons (1) @ 7. (2.3)
reZ
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Chapter 3

The Ajp-module A%Zl (1)

In this chapter, we will study the submodule of Ax on which the operator ¢ = %d)’l Trp,e(p) is
trivial. In section[3.1] we define a useful derivative operator on B that restricts nicely to Ax, and use
it to study the map ;t:—__llT m © ¢~ " discussed in section In section we develop relationships

between Aﬁzl(l) and several other rank-1 A g-modules.

3.1 The map j;r—ille o™ "

The goal of this section is to understand the map (Z;—:Tm 0¢™" on A}/’(:l(l). It is convenient to

begin by defining a derivative operator on Ak, and then consider T,, o ¢~™ separately.

3.1.1 The operator V

We wish to define a derivative operator on elements of B, and hence on Ax. We write V = (1+4) % :
B — B to be the derivation given by setting Vr = 14 m. If we define log by the usual power series,

then we have that Vloga = % for every « in B for which log converges. We further compute:

Lemma 3.1.1. 1. Vlognm = HT"

2. Vi = Atmme

em

3. Vlegmg = ==X,
Proof. 1.
Viogn = v
™
147
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2.
V(rk) = V(x/¢)
1
= gﬂl/e_l(l + )
(I +m)rg
o erm '
3.
Vieg(ng) = Vg
TK
147
T oem

O

Recall that if f € B}Z}:l, then there exists some n such that ¢~ f € Bgr. Then we can prove:

Lemma 3.1.2. Suppose ¢~ " f converges in Byr. Then

V) =067 ().

Proof. Tt’s enough to check that ¢~ o V and p”% o ¢~ ™ both agree on 1 + m, since they are both

derivations. We see that

¢ V(L +7) =0 "(1+7m) = (pel/P”

n

—-n n d n i
D a(zﬁ 1+7m)=p annet/p = (/P

Finally, we prove that V is compatible with other operators that we wish to use.

Lemma 3.1.3. Let f € Bg. Then we have
(a) Vvf =X () AV .

(b) Vof =p-¢Vf.

(c) VTrg,ep f=Trp/yp V.

(d) Vi f =p~t-oVf.
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Proof. (a)
Vy Z anm =V Z V(Gn)('}’ﬂ)n/e
nez neZ
= VY Aan) (14 T e
nez
= 3 Plan) (@O Sy e @) (1 )
n€Z\0 €
__ cyclo n nj/e—1
=Xy Y S anT (14 m)
n€ezZ\0
cyclo ,Yv Z anﬂ'K
nez
(b)
VoD anmh =V 3 dlan)((1+ 7~ 1)"°
nez neZ
n _
= > Colan)(( P — 1M (L)
n€Z\0
_ ﬁ n/e—1
po Z S anT (I+m)
n€eZ\0
=p oV Y anmk.
neL

(c) We compute that {({(147)—1)1/¢: ¢ € p,} is the set of Galois conjugates of 7 in B over ¢(B).
Thus Trg/ep) f(7) = > ce,, f((L+)C— 1)1/¢), and we have

VTIB/¢(B)f 7TK VZf ].+7r )l/e)
CEHp

= 3 P DY) (1w~ DY (1)

CEpp
1 _
= T‘I‘B/¢(B) (f/(’f('[()e'ﬂ'l/e 1(1 + 77))

= TrB/¢(B) Vf(ﬁK)
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(d) From (c) and Lemma we have

Vi =p 'V ' Trp sp
=p 2¢ ' Trpsp V

=p V.

r—1

3.1.2 The map T,,¢6" on AV~

Recall that we wish to understand the map %Tm o ¢~ ". From Lemmas and we see
that
drfl

FTm(bin _ pfn(rfl)de)fnvrfl

and thus we can study the action of 7,0~ on V’”*lA}Z’(Zl. But since ¢¥Vz = pViyx, we see that
—1 g%=1 _ pg¢=p" "
VAT = AT

r—1

, and so we wish to study T,,¢~" on A}Z’(:p

Lemma 3.1.4. Let P € Aﬁ:pr_l. Then if 1 <m <n and (¢~™P)(0) converges, we have
T (67" P)(0) = pr= D= (7" P)(0).
Further, if $~°(P) converges in Bygr, then we have
To(¢™"P)(0) = p" =" (1 = p~"a™")(6"P)(0).

Proof. Since P € Alﬁ:pr—17 we know that ¢(P) = p"~' P and thus that p~" Trg /4 5(P) = ¢(P). But
{((A+7)¢ = 1)/ ¢ € p,} is the set of conjugates of m over ¢(B) in B, so this gives us

Y P+ M= DY) = PP(((1+ 1 = ).

CEpp

Since P is just a power series, for any [ € N we can set m = (,+1 — 1, and apply o+ to each

coeflicient; this corresponds to the operator ¢_(l+1)P|t:0 whenever ¢~ (+1) is defined. We get

P30 P ¢ G = )Y = P (G = 1)), (3.1)

CEpp

If I > 1, the left hand side of equation (3.1]) is just

_(l+1)((Cpl+l _ 1)1/6) _ plf’l’crlpo——(l-%—l)

pir TrKL+1/Kz Pe ((Cp“rl - 1)1/e)a
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and thus we have
—(41)

PP (G — 1Y) = PT (G — DY),

By a simple induction, we see that for any 1 < m < n, we have

—m

PO P (G = 1Y) = P (G — 1)), (3.2)

Note that P7 " (({pn — 1)1/¢) = =" P(0), so the first statement is proven.
If I = 0 then equation (3.1]) becomes

P Y PTG - DY) = P(0).

CEnp

The left hand side is now equal to
—r ot ot 1/e —rpo ! 1—r ot 1/e
P~ (P7(O0) + Trieig i P (G = 1)) =p 7 P7(0) +p TP (G~ 1)M),

Thus we have Ty(¢~°P)((¢, — 1)/¢) = (p" ! — p~to~1)P(0). Combining this with (3.2)) gives us

—(n+1)

(0 = p o )PO) = Ty (p TP (G — 1))
= Top' = =D P ((Gr — 1)M)

— p(l—r)(n—l)TO<¢—nP) (0)

and we have (b). O

Corollary 3.1.5. If P € A}”{:l, then if 1 < m < n we have

(a)
Tn(¢~"P)(0) = (¢~ P)(0),

(b)
To(¢™"P)(0) = (1 =p~"a~")P(0).

Remark 3.1.6. If we take r = 1, then we have found that 7,,,¢~" P is invariant for large enough n—in
particular for n > 1—if P € Aﬁzl. The exact same proof works for B}[}:l = D(Q,)¥=!, and thus
we have recaptured a special case of the statement in that Ty, (¢~ (Expy«(1y (1)) is invariant

for large enough n.
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3.2 AY7'(1) and A(K.)

In this section, we will prove that A}Z’fl is a rank-1 Ax module and relate it to several other rank-1

A g-modules.

3.2.1 A}/’{Zl as an Iwasawa module

The purpose of this subsection is to establish the following commutative diagram:

Hp, (K, Zp(1))

Exp%p(l)
. m = vy =~ Nl =1
A(Koo) =lim K /(K Eff o AN iz A ()

)

U=lim OF /(0F )"

o

1+ 7k[n]

Recall that the groups A(K) and U were studied in section and are both isomorphic to
A @ Zy(1) by Proposition m Recall that for any abelian group H, we write H for the pro-p
completion, again defined in [2.1.2}

Since logN(z) = pylog(x), we know that VlegN(z) = ¥Vlog(x), and thus N(z) = =z if
and only if 1(Vlog(z)) = Vlogz. Thus Vlog defines a map from AX=! considered multiplica-
tively to Aﬁzl(l) considered additively (the twist makes this map I'-equivariant). We claim that
AN=1ZAY=1(1), and the rest of this subsection will work towards a proof of this fact.

Recall that F = ImC,p, Eg, = F,((e — 1)), and E is the separable closure of Eg, in E, with
Ex = Bx = k((rk)) = Ak /pAk. We can now state the following lemma:

Lemma 3.2.1. The map AN=1 — EX given by reduction modulo p is an isomorphism. Further,

for any finite extension K/Q, the map AX= — EJ is an isomorphism.

Proof. We will prove this result for AN=1S E* and A%=11>EIX(; the result will naturally extend to
the pro-p completions.

We produce an inverse map. Let z € E*. From [CC99] Lemma V.1.1, we see that if f € A,
then the sequence N™ f converges to some f*° and the images modulo p of f and f°° are the same.
Thus, in particular, there is a unique & € A with & mod p = z and N(&) = 2. Further, since this
element is unique, if z,y € E* then 7y = 7.

Thus the map z +— & is a homomorphism of multiplicative groups EX — AN=!. Then 2
mod p = z; and if f € AN=! and z is its image modulo p in E*, then f is a lift of z, and N(f) = f;

and thus f = z. So the map = + 2 is an inverse for the map f — f mod p.
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In particular, we claim that if x € Ej, then & € A%Zl. For there is clearly a lift * € Ag
of x, and the sequence N™ (%) will converge to & € AN=!. But if # € Ak, then N(Z) € Ak, so

&€ Ag NAN=L = AR=L as desired. O

Lemma 3.2.2. There is an isomorphism 1 + ﬂKk[[wK]]:ﬂ/j, which extends to an isomorphism

EXSA(KL).

Proof. There is an isomorphism tx : Op, — lim O, defined in [CCY99] Proposition 1.1.1. Thus we
also have an isomorphism O/E\K:)@(n = U. But Og, = k[rx], and thus O/}f;( = kmx =
1+ nxk[rk], and we have the first isomorphism.

Our isomorphism Og,, — @1 Ok, lifts to an isomorphism Ex— ]:&HK}H simply by taking fields

of fractions on each side. Thus we have an isomorphism E @1 Ej, and taking pro-p completions

on both sides completes the proof. O

Finally, we note that A(K,) & H}w([Q Z,(1)) by Lemma and H}w(K, Z,(1)) = A;b(:l(l)

by the Cherbonnier-Colmez dual exponential Expf@p(l), so we have
AT = B = A(Koo) = HY, (K, Zy(1)) = AR (1),

Now it only remains to show that our isomorphism A}}f:lQA}b{:l(l) is given by V log. But this

is a consequence of [CC99] Proposition V.3.2 (iii).

3.2.2 U as a Ag-submodule of A(K.)

Recall that U and A(K ) are both isomorphic to A KPBLy(1) (Proposition, and thus isomorphic
to each other, but are not identical. In this subsection, we will describe U as a submodule of A(Koo).

If L is a Ax-module, we write Lo for the Ag-torsion of L, and Lif = L/ Loy for the torsion-
free part of L. Then we have A(K)tr = ﬁtf >~ Ak, and thus we can view A(Ky )i and ﬁtf as
rings. In this subsection, we will show that ﬁtf is a principal ideal inside A(K ). Recall that
G = Gal(K/Qp) = ¥ x A, where ¢ is cyclic and generated by o, and A, is cyclic and generated by
Je.

Lemma 3.2.3. The restriction of the valuation map v : A(Koo)it — Zyp is isomorphic to the map
given by taking the quotient A(Koo)y/(o — 1,6, — 1,7 — 1)A(Kuo)sr. Thus in particular, Uy =
(0 —1,6. — 1,y — D) A(Koo)ss-

Proof. The image Z,, of the valuation map has trivial action from both I'x and X, so it must factor

through the quotient A(Ko)tt/(0 — 1,6, — 1,7 — 1)A(K s )tt. But by lemma we know that

A(KOO)tf 2 Ag & ZP[G} [[FK]L
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SO

A(Koo)ie /(0 — 1,60 — 1,7 — 1) A(Koo) 1t = Zp.

Thus the valuation map induces an isomorphism
A(Koo)ut/(0 = 1,0c = 1,7 = DA(Koo )t~y

and must have kernel (o — 1,0, — 1,7 — 1) A(K o )s-
O

This lemma suggests that the ideal (o — 1,6, — 1,y — 1) is a principal ideal of Ak, since we know
that ﬁtf =~ Ak and thus is generated over Ax by a single element. In the following proposition, we

compute a generator for this ideal.

Proposition 3.2.4. The ideal (0 — 1,6, — 1, x<¥"°(y)y — 1) of Ax is principal, and generated by
the element (1 —e1) + (X (y)y — 1)ey.

Proof. We first wish to prove that (1 —e1) + (xV°(y)y —1)e; € (6 — 1,8, — 1, XV (y)y — 1). Tt is
clear that (x°(y)y — 1)e; € (x¥!°(y)y — 1), so it is enough to show that 1 —e; € (o — 1,8, — 1).
Let x1,...,Xes be the Q,-rational characters of @[G]. Then let x1,...,xe be the characters

which are trivial on . We have

€

e ef ef
(6e — 1) Zei +(c—-1) Zei = Z(Xi(&:) -1+ Z(Xi(a) — De;.
i=1 e+l i=2 etl
But x;i(co) is a fth root of unity, and thus in Z, and x;(d.) is an eth root of unity, and thus in
Z, (since p does not divide e or f). Then, if 2 < i < e, we have (x;(d) — 1) € Z), since the only i
for which x;(dc) = xi(0) = 1is i = 1. Similarly, if e +1 < i <ef then (x;(c) — 1) € Z). So we set

e ef
A= Z(Xi(d) —1)7tei + Z (xi(0) = 1) te;
i=2 i=e+1
and we have that

e ef ef
- <(§e—1)Zei+(U—1)Zei> =Zei

e+1

21—61

and thus 1 — e is in the ideal generated by (o — 1,0, — 1).
Now we wish to show that (o — 1), (6c — 1), (X (y)y—1) € ((1 —e1) + (x¥'°(y)y —1)e1). But
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we know that e? = e1, (1 —e1)2 =1 —eq, and e1(1 — e1) = 0, so we can write
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Chapter 4

The Tamagawa number conjecture
for Tate motives over unramified
extensions F/Q,

In this chapter, we will prove Conjecture for unramified extensions F/Q,. Recall that we are
studying the image of the map exp("@p (1-r) HY(F,Z,(r)) — F. Using Theorem we can answer
this question by composing the Cherbonnier-Colmez dual exponential Expg (. : H} (F,Z,(1)) =
AY=1(1) with the map Ty o ¢~™. In section u we will study the structure of A%=" and find an
element that generates A?Zl(l)tf. In section we will study the map Tj o ¢~™ and prove the

conjecture for unramified extensions of Q,.

4.1 A basis for A;@:l(l)

In this section, we investigate the structure of A}ﬁ:l(l) as a Ap-module. In subsection we
describe a useful Ap-module (Piﬁjfgil, and in subsection we show that it can be viewed as a
submodule of A%="(1). In subsection we develop another Ap-module Op[7]¥=° which has an

easily-describable basis, and relate the modules T%}Tg’gl and Op[x]¥=0.

4.1.1 The module Py

We begin by recalling some results of [PR90]. There is an obvious short exact sequence of additive
groups

0——pOFp[r]|——=0F[r] ——k[r]—0

and a corresponding short exact sequence of multiplicative groups

1——=1+4 pOp[r]——=0OFp[r]* k[x]* 1.
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Consider the formal multiplicative group G(k[r]) = 1 + mk[r] C k((x)). We write
Or[rliog = {f € Op[n]* : f mod pOp[r] € 1+ wk[n]},

for the preimage in Op[n]* of 1 4+ wk[r]. We have a commutative diagram with exact rows:

X id X

1——=1+4+ pOp[r] ——=0Fp[r]* ——k* x (1 + wk[n])——1

id

1——1+ pOp[r]—=0p[r]iog 1+ 7k[r]——1.

Recall that the logarithm map is given by log(1 + z) = ano %, and thus converges as long as
z € pOy[n]+mOp[r]; thus, log converges everywhere on O 1 [7]iog, since we can write z € Op[7]i0g as
x = 1+pa+npfor a, 8 € Op[r]. Further, we see that log : 1+ pOr[r]=pOr[r] is an isomorphism,
with inverse given by the usual power series for exp. We wish to extend this isomorphism to give an
isomorphism from Op[7]ieg to a subgroup of F[r], which motivates the following discussion.

We define:
Definition 4.1.1. The space
Pr = Zanw” € F[r] : na, € Op
n>0

is the space of power series in F' whose derivative with respect to 7 lies in Op[7].

Since the map dlog is given by an integral power series, we know that log Op[7n]iog € Pr. We

write P = Pr/pOp[n]. We define an automorphism V' of Pr by

Vv (Z a,m") = Zpail(anp)ﬂ'”,

and observe that pyp =V mod pOr[r] (see [PRI0] 1.3, noting that our definition of ¢ differs by a

factor of p). Then we set

iF,log:{fETF:(p_¢)(f):0’V(f):f}
Prlog ={f €Pr:(p—¢)(f) € pOp[r]}.

We have the following lemmas:

Lemma 4.1.2. Let f € 1+ wk[[n] and let f be any lift of f to Or[nliog. Then log(f) mod pOp[n]



28

as an element of Pp g does not depend on the choice of f, and the map f — log(f) mod pOp[n]

is an isomorphism 1 + wk[n] =P F 1og-
Proof. See [PR90] Lemma 2.1. O

Lemma 4.1.3. Let f € Pp. Then the sequence p™ ™ (f) converges to a limit f> € Priog, and we

have:
1. f° = f mod pOp[r]
2. u(f>)=p7if
8. (1—p o) f>* e Op[r], ie. f* € Priog
4. [ =0if f € Op[r]
5. f* =g if f=g mod pOp[n].
Proof. See [PR90] Lemma 2.2. O
Proposition 4.1.4. With the defintions above, we have:
1. There is a well-defined map p : §F,log — ‘P;ﬁjfgﬂ C PFog-
2. Ppiog = P’
3. Priog/POr[n] = Prog-
4. The map log : Op[m]iog = Priog is an isomorphism.

Proof. 1. Let f =3, an,m™ € Prlog, where the a, € k. Then each a,, has a lift a,, € Op, and if
we set f = S an,m™ € P, then f mod pOp[r] = f. Let § be another lift of f to Pp. Then
foo, 9> € Priog, and by Lemma we have that §>° = foo. Thus the function defined by

o(f) = f°° is a well-defined homomorphism, and since 7721(]?00) = f°°/p, its image is in ‘Pqﬁ,ifgil.

2. It’s clear that iFJOg - ??:p. Let f € ??:p, and let fbe a lift to Pp, so that foo € Priog, with
f"o mod pOp[r] € ?F,log. But foo mod pOr[n] :f mod pOp[r] = f, so 1/)(f°°) = foo/p
and thus V(f) = f/p.

3. It’s trivial that Ppoe/pOr[n] C ?q}:p = Priog. Let f € Prlog. Then f°° € Prog, and its

quotient mod pOp[r] is f.
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4. We have a commutative diagram:

1+ pOp[r] = pOr[r]

log
OF [[W]]log I :PF,log

log,, —
L k] —=> Priog

By the five lemma, the middle arrow is an isomorphism.

O

We recall the definition of the normalized norm map N = ¢~ 'Np /¢B- We can compute that
logN(z) = pylog(z), so we have an isomorphism log : Opﬂw]]fg;l;ﬂ’?ffgil.

i S
Proposition 4.1.5. The function p : Pplog — T?’ng is an isomorphism.

Proof. Tt’s clear that p is injective. Let f € T}@ngil, and let f be its image mod pOp[r] in Pr 4.
We know that p(f) € T%jopg_l and that the image of p(f) mod pOr[r] is f, so p is surjective and

thus an isomorphism. O

Corollary 4.1.6. We have a chain of isomorphisms of Ap-modules:

— . —1 __
1+ wkn] 2 Ppiog = Por? = Op[nlizt.

Proof. 1t is clear from the preceeding discussion that these are isomorphic as groups. Recall that
Ap = Z,[%][I' r]; we have obvious actions of Z, and ¥ and I'p. It is easy to see that our isomorphisms
respect these actions.

Since log is given by a power series, it respects ring homomorphism and thus commutes with ¢

and FF O

4.1.2 Tlﬁffg_l as a submodule of A}~

In this subsection, we wish to embed f]’}@igl as a sub-Ap-module of Aﬁ:l(l). We begin by estab-

lishing a commutative diagram:
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A(Fs) =lim,  FX/(FP < B < AR s A3 (1)

J | ]

~ m o~ o~ _ — 1
U=lm  OF /(05 )" <——1+7k[] mp(‘)p[[w]]fggl e

o7
The top row of this diagram was established in section[£.1.2] as was the leftmost arrow on the bottom
row. The other two isomorphisms on the bottom row are given in corollary of the previous
section.

Of the vertical maps in the diagram, the left three are the obvious injections. The rightmost
vertical arrow is clear, since A}fizl(l) is the image of Vlog and fP}@ﬁngil is the image of log. Thus
the vertical maps exist as we wish. Further, V : ?ﬁjﬁgl — A}@,:l(l) is T-equivariant because
VA f = x¥°(y)yVf, and thus we have a commutative diagram of Ap-modules.

Now recall that we showed in Lemma that fjtf = (0 -1,y —1)A(Fw)tt (since 6, =1 when
K = F), and thus that

v(Phn ) = -1y -1 (e
We can then prove the following lemma:
Lemma 4.1.7. There are elements o € A%='(1), 5 € Tﬁffg_l such that
1AV = Ap-a®Zy,(1) - 1,
2. PUr = Ap-B®Z,-log(l+),
5. As ideals, (VB) = (1 - e1) + (x¥™ (1) — 1))a).

Proof. All we need to check for (1) and (2) is that Z,(1)-1 = Z,(1) and that Z,(1) = Z, - log(1+).

The first is clear; the second follows from the fact that
Ylog(1 + ) = log(1(1 + 7)) = log((1 + ") = xI°(3) log(1 + ).

For (3), we confirm that V(log(14)) = 1, and then since V (T}@ngil) .= (U—l,y—l)A}@:l(l)tf,

: t
we must have (V3) = (0 — 1,x%"°(y)y — 1)a. But in Proposition we showed that (o —
1, x¥°(y)y — 1) is principal and equal to ((1 —e;) + (x¥°(y)y — 1))a. (Note the extra factor of

XCyclo(»y)7 which appears because A}{i:l is twisted by 1.)
O

4.1.3 The module Op[r]¥=°

_ . —1
Recall that we wish to find a generator of (Tﬁﬁ’g ) - We will show that there is an easily com-
: t

1
putable generator of Or[r]¥=", and then relate this to (??Té’g ) K Much of this subsection is
' t
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drawn from [PR90] sections 1 and 2.

Proposition 4.1.8. Let £ € OF such that X¢ is a basis for Op over Z,. Then Op[r]¥=° is a free
Ap-module of rank 1 generated by (1 + 7).

Proof. This is Lemma 1.5 in [PR90)]. O

Now that we have this basis, we wish to find a useful map (P;ﬁigl — Op[r]. We first need a

lemma:

Lemma 4.1.9. 1. Let f(n) € 72Or[r]. Then

g(m) =Y _p "o"f

n>0
converges in Pr, and we have (1 — ¢/p)g = f. Further, ¥(g) = g/p if and only if ¥(h) = 0.

2. Let f(m) € mOp[n]. Then
g(m)=> ¢"f

n>0

converges in Op[r], and we have (1 — ¢)g = f. Further, 1(g) = g if and only if y»(h) = 0.
Proof. The first part is Lemma 2.4 in [PR90]. The second part is similar. O

Proposition 4.1.10. There is a short exact sequence
0 — Z, log(1 pv=p I8P o L [P0 -5 7,(1) = 0
v Og( + ﬂ—) — Flog — F[ﬂ—ﬂ — P( ) — U.

Remark 4.1.11. This is Theorem 2.3’ in [PR90], and is a generalization of an earlier result in [Col79).
Note also (as shown in the proof of Lemma [4.1.7)) that Z,log(1 + 7) = Z,(1) as Ap-modules.
In fact, Zplog(l +7) = (?;ﬁffgil) , and thus we have a short exact sequence
’ tors

0 (Tﬁj;’g‘l)tf 2208 9 p[1] Y0 = Z,(1) — 0.

Proof. Recall that Priog = {f € Pr: (p — ¢)f € pOp[r]}. So it’s clear that (1 — ¢/p)(Priog) C
Oplr]. Then (1 — ¢/p)f = vf — f/p =0 if and only if ¢ = f/p, and thus (1 — ¢/p)(Phrly ) C
Op[r]¥=°.

It’s clear that Z, - log(1 + m) is in the kernel of (1 — ¢/p), since ¢(log(1l + 7)) = plog(1l + 7).
Let f € Tﬁjfgil, and suppose (1 — ¢/p)(f) = 0, i.e. that ¢f = pf. Suppose further that f(r) =
> sk @nm" With k > 2 and ag # 0. Then since ¢f = pf, we have that

pf(m) =" olan)((1+m)P —1)"

n>k
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and thus in particular pay = p*o(ay), which is false for any aj, € F.

Now suppose f =3 -,an,m" is any element of ker(1 — ¢/p). We see that ag = 0 since ¢ (ag) =
o~ 1(ag) # ag/p, and so we must have a; # 0. Further, the same argument shows that a; = o(a1),
and thus a; € Z,. Finally, f — a7 log(1 + ) € ker(1 — ¢/p) N 7T29’11@7ng71, and we’ve already shown
that this intersection is zero, so f = a1 log(1 4 7) for some a1 € Z,,.

Finally, we compute the cokernel of 1 — ¢/p. Let h(w) = hgo + him + hao(n) where ho(m) €
720 p[r]¥=". Suppose there is a g € T}@jfg_l such that (1 —¢/p)g = h, and set g = go + g17 + g2(7)

. —1
for go € 71'29’11@7({; . Then we must have

g0 —p ‘o (go) = ho, (4.1)

g1 — (1) = h1. (4.2)

Note that if these conditions are satisfied, then (1 — ¢/p)(go + mg1) € 72O [r]¥=C and thus has

a preimage in fP}fiT;:;1 (by lemma ; thus lb and 1D are both necessary and sufficient for A

to lie in the image of (1 — ¢/p).

Equation is satisfied if we set go = >, 5, p"0 " (ho), so h € Im(1—¢/p) if and only if there is
some g; such that g1—o(g1) = hi. Thus the cokernel of (1—¢/p) is precisely (Op/(c—1)Op)m = Z,,-.
Finally, we see that

S S = ({140 - 1y

cyclo
:chdo(’}’)alﬂ"i‘ (al (X ( )

) ) +a2xcyclo(,y)2> 77_2 +...,

S0 7 acts on the cokernel by 7 - (a17) = x¥1°(y)a;7. Thus our cokernel is isomorphic to Z,(1) as a

I'-module. ]

In particular, the cokernel of (1—¢/p) is (Ar/(o — 1,7 —x¥()))-&(1+7), so the image must
be the ideal (o — 1,7 — x<¥°(%)) - £(1 + 7). As in proposition we can show that this ideal is

principal:

Proposition 4.1.12. The ideal (60 —1,7—x“"°(y)) of A is principal, and generated by the element
(1 —e1) + (v = x¥(y))er.

Proof. See proof of [3.2.4] O
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4.2 The map A}@Zl — F

In this section, we will compute exp&p(r)(H Y(F,Z,(r))) explicitly, and use this explicit computation
to prove Conjecture for F.
Recall the reciprocity law of Cherbonnier and Colmez for Q,(1) (equation (2.3)): for large enough

n, we have that

Tog™ " Expgy, (1) = > exply 1y Pros(p) - 7 1,

r>1
and thus in particular that
dr—l
WTOQS_" Expg, (1)]i=0 = (r — Dexpgy, () (pro,-(1)) € F. (4.3)

In particular, conjecture asks about expf (,_,, B for some 3 € HY(F,Z,(r)) such that
Z,[%]-8 = HY(F, Zy(r))ss. Since the element o € A%="(1) given in Lemma generates A%~ (1),

then it’s enough to compute the image of a under %Totb*".
Lemma 4.2.1. Let o be a generator of A%Zl(l)tf, as in Lemma . Then

drfl
FToﬂrna =1 7p7r071)(vr71a)(0>.

Proof. Recall from subsection that

a1
WTod)inOZ = p(fn)(rfl)TO(b*nvrfla.

Further, since o € A%"'(1)y, we have that V' la = p~ 'V lpa = p"~ V"1, and thus
Vilae Aﬁ:p " Thus from Corollary we have

dr_l —n —n)(r— rT— n -7 — T—
T T00 7" =g = pTMOTY T = p T (VI ) (0)

=1 —p o ) (V' a)(0).

. =1
4.2.1 Computing V on Aﬁ

We've now reduced our problem to computing(¢~™V"~1a)(0). For convenience, we set

pr = ((1—e1) + (X7 (y)"y — 1)ex),

7= (1= e1) + (X ()™ = X (7))er).
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From Lemma we can see that Vp, = p,4+1V and V7. = 7,41 V. Then we may compute:

Lemma 4.2.2. We have

(V') 0) = (1 p L) 1 D=L
pr"yzl

Proof. Recall that

V(PET) = Ar - (A= e) + ()7 — Dera

=Ap-p1-acC ALTI(1)
and

(L=o/p) (PE7) = Ar- (L= e)+ (1 =X ()en)E(L +7)

=Ap-70-&(1+7) C Op[r]¥=".
By Lemma we know that (1 — ¢)V = V(1 — ¢/p) on ﬂ)?:pil, and thus
Ap -16(1+7) =Ap - (1 — ¢)pra.
We can then pick our generator « so that
V(€1 +m) = (1 = ¢)pre (4.4)

First we look at the left-hand side of (4.4). Applying V"~! and evaluating at 7 = 0 gives us:

(V" (10€(1 + 7)) lx=0
= (7 - €(1 4 7)) lx=0

:Tr|v:1 -£.

Applying the same calculation to the right-hand side of (4.4]) gives us

(V7H1 = ¢)pra) lx=o
=((1=p"'9)pr V" 1) |r=0
=prly=1 (V') (0) — p"~(6Va)(0))
= prly=1(1 = p"1o) (V" 1a)(0).
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Since (x¥°°(y)" — 1) € F*, it’s easy to see that p,|,—1 € F[S]*, and thus we have

Trly=1 € = prly=1(1 — pr_la)(vr_lo‘)(o)

(V' la)(0) = ThTla _prig) g

Pr"v=1

O
Lemma and corollary then combine to give us the explicit computation we wanted:

Proposition 4.2.3. We have

dr—1 e et § |
(dtr T T )(0)= Lop o peheie (4.5)

Proof. This follows from Lemmas [£.2.1] and [£.2.2) O

4.2.2 Proof of the conjecture for unramified extensions

We are now ready to prove Conjecture [I.2.3] in the case where K = F is ramified and G = X. We
recall that the reciprocity law of equation (2.3) gives us the following commutative diagram:

i D, czpror
Hiy(F Zy(1))er ——= Hp, (F,Qy(1)) = D,z H'(F,Qp(r))
uiExp%p ulExpép ulzrez CXP&p(l—r) ®t" L
= = Top™™
A (g ——— By (1) : F((1))

Since we are studying H'(F,Q,(r)), by Theorem we can take only the rth projection on the
top line; this corresponds to taking the coefficient of t"~! on the bottom line, or in other words

applying the map ﬁ%h:& Thus we have a commutative diagram:

pro,r

))er ——= H}, (F,Qy(1)) H'(F,Qy(r))

* *
\LEXPZP o~ i Eprp = | eXPq,, (1-7)
qr—1 TOd)*"

=T -7 =0
F

D —— Bp~ (1)

Therefore, we see that

exiy 1 (2D = ( G o ) (AE7 ().

But A?Zl(l)tf is generated by the element a, so there is some 3 € H(F, Z,(r))i such that Z,[%]-8 =
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HY(F,Z,(r))s, and by proposition we see that

dr—l TO¢_n
lt=0

eXPép(lfﬂﬁ - (dtrl( —1)! =

o 1—p ot plym

=D =pr o) Tl

So let x € 3. Since X is unramified, we have ¢(x) = 0; and since e = 1, we have that the inverse
different (/po)' ¢OpF = Op, and thus we can take b = & to be a basis for the inverse different.
Recall ¥ is abelian, and thus det p, = p,. Then equation (1.4} reduces to:

er(exp* —p o (o
(=1 LBER D (0 L ez (4.6

We have that per(§ ® 1) = > .5, 7(€)77", and thus py per(§ ® 1) =3 5 7(E)py(771) = ey - &
Similarly,

1—p g1 | v=
py per(exp”(8) @ 1) = p, per ((r - 1)!?91 —Up’”—lcf) e (il;i) ¢ 1)

(5 it o (22 o)
(

_ 1—p Px( 1) ) rly=1 (€ - pufr) 1
Z (r—1)! P 1py(0)) Px (&) - px(7)

B <<r = —’Z‘ff’lpfw P (if |§‘i>
B (0“ ~it Tpgr(alpjwn ' (ij )) xé

Since Cg = prl%, equation 1j reduces to the statement that 1 € Zy™>, which is of course true.

Tr|y=

Thus Conjecture [1.2.3]is proven in the case where K = F' is unramified.
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Chapter 5

The Tamagawa number conjecture
for Tate motives over tamely
ramified extensions K/Q,

In this chapter, we will study Conjecture for tamely ramified extensions K/Q,. Though we do
not generate a complete answer, we show some work towards the conjecture and compute formulas

for various actions of G and I'k.

. . =1
5.1 Finding a generator for A% (1)

The goal of this section is to find a generator for the free part of A}/’(:l(l). We begin with a

commutative diagram:

AT AT )
= mod p mod p
A(Ko) =lim K (K~ Eff—— sV

J

U=1lm 0% /(0% )" <z 1+mhlrg] — 2T

Vv

Except for the spaces V and V', this is the diagram of subsection We define V = Vlog(1+
rik[rk]) and V = Vlog(gg)7 and thus the diagram commutes. We note that for z € EE, we
have that Vlog(x) = 0 if and only if 2 = y? for some y € Eﬁ Thus we have V & EI;{/ (EI;{)Z) and
V=1 +rxklrk])/(1 4+ nxk[ri])P.

By Nakayama’s Lemma, we can lift a basis of V to a basis of Aﬁzl(l) mod p. Recall that
Ut = (0—1,00—1, X9 (y)y— 1) A(K o )it by Lemma and thus equal to ((1—ey)+(x¥°(y)y—
1e1)A(Koo )t by Proposition Thus Vis = ((1—e1)+ (x¥°(7)y—1)e1) Vi, so it will be enough
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to find a generator of Vi¢.

5.1.1 The vector space V/(y; — 1)V

In this section, we will study the quotient V/(y1 — 1)V as a vector space, and compute a basis.
Since EE ~ (1+mgklrk]) 2 Ak ®Z,(1), we have V = (Ax ©Z,(1))/(p) = F,[G][T' k] ®F,. Thus
V/(m —1) 2F,[G]A] & F, is a ef(p — 1) + 1-dimension F,, vector space. We wish to find a basis,
which first requires studying the action of v, — 1.

Lemma 5.1.1. 1. We can choose v1 such that y1(m) = (7 + 7P + 7P1) mod p.

2. Suppose pt L. Then

T ,6 T e _ T e _
(71 — 1)W§{f — g”i (te(p=1)) | " (E+e(p 1))+1f(771<)

for some f € k[T].

Proof. 1. 71 is just an element such that y°1°(v;) is a multiplicative generator of 1+ pZ,, so we

can choose that x¥°'°(y;) = 1 + p. Then

() = (1+m)X"00 —q
= (1 —+ 7r)1+17 —1
=(14m)(14+7")—1 modp

=714+ 7° + 7P mod p.

2. We calculate that

r

(mh ) = (xP )N
=(r+7P+ 7rp+1)pw/e

(n?" 7P g @ R

= Wﬁ’;é(l 4P (0=1) 4 WP"“)U@
K

= 7% (1 + La?" 07D 4 g 0mDFL £ )
for some f € k[T]. Thus

(m — 1)(7Tf<r'£) = gwfgewl’r(?—l) + ngﬂpr(p—l)ﬂf(ﬁ)

g (e=1) | (e (rm 1)
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Now we are prepared to produce a basis for V.

Lemma 5.1.2. The set
B':{1+T(§)w§(:762,pf€2 1}

is a topological basis for 1 + mxk[nk] as a multiplicative Z,-module.

Proof. Let f =143 amm € 1 +nxk[rk]. For any n > 0, we will find a finite combination

g= [ Q+7©rk)"

rex,1<i<n

such that g, = f mod 7%, which is enough to prove that f is in the closure of the span of B’.
We proceed by induction. For n = 0, it is clear that go =1+ éng = f mod 7.
Now let n > 0. By induction, we have some g,_; such that g,—1 = f mod 7}. So suppose

f = 9gn_1 = b, mod 75t where b, € k. Then we can write b, = >.__s b, ,7(£) for b, , € F,,

TEY

since X - £ spans k over F,,. If we take

In = Ggn—1" H (1 + an,‘rT(f)ﬂ'?()
TED

=0gn-1- H (14 7(&mp)*mm
TEY

=gu_1(1+b,7%) mod 7t

)

we have
gnfl(]' + bnﬂ—?() mod 7'('?(+1 = gn-1 + bnﬂ'?( + 7.[.7174(“1’1 -h
for some h € k[rk] and thus g, = f mod W}L(H’ as desived. -

Thus the image of B’ under Vlog is a topological F,-basis for V. We can easily compute this

image:

T 4 s —e
Lemma 5.1.3. Vliog(1 + 7(§)7%) = (E) Hi(ﬁﬂﬁ( .



40

Proof.

¢
Vlog(l + 7(&)7h) = m

_ O, e
= 1—|—T(§)7T§(€7TK Vﬂ'K

(-1
=75

Tk (14 m)mk
1+ 7(&)ms, em
T 14+7 ,_,
e 17(&)mh K

Corollary 5.1.4. The space V has a Fp-basis

T 147 e
B—{ - 1+T(£)ﬂ_§(ﬂ'K .TEZ,pTﬁZO}.

We can now find a basis for the finite-dimensional vector space V/(y, — 1)V:

Lemma 5.1.5. V/(y1 — 1)V 2 F,[G][A] & F, is an ef(p — 1) + 1-dimensional F),-vector space, and
there exists some [, € k[T] such that C'UD'U {W}jp(e_Q)f}((wK} is a basis for V/(y1 — 1)V, where

C’:{T(g)g 1+7rewf(e:1<€<e(p—1),p+£,762}

e 1+7()my
and
p =T Felp=1) . +Z7~TF e PP 1<t <e(p—1),p| LT e
e L+ 7 "

Proof. We wish to show that the elements of C/ U D’ are linearly independent. We first will show
that all the elements are non-zero—that is, not in the image of y; —1. But we know that (y; —1)V C
(w}j‘f“"”)v by Lemma so no element of C” is in the image of (y; — 1). Similarly, for each

?e(pﬁ), and £+ e(p—1) is not divisible by

g(mk) € D' we have that the lowest degree term of ¢ is 7
p since p divides £. Thus if (y; — 1)h(7mk) = g(7K ), we must have that the lowest degree of h(7k)
is 7% ¢; but there is no such element of V, since Vlog(1 + 7% ) = 0 if p divides ¢; in fact, C’ spans
the set of all elements of V' with minimal degree < e(p — 2), and C’ is linearly dependent. Thus

Dn(m—-1)V=2.
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Now suppose there are power series g, € F,[T] such that

T 147 e
0= Z 97'7(—6('71 —1)- (6) 1+ T(f)ﬂ'l ﬂ-ﬁ{
TEXL,1<l<e(p—1),ptl K
Tl +e(p—1)) 1+ tte(p—2
+ Z 9rb+e(p—2) (71 -1) o lte(p—1) FI;F =2
TEX,1<l<e(p—1),p|l 1+ 7(5)7‘-[(

Then since the set ¢ is linearly independent, we can induct on £ and check the coefficient of Wf{e
to determine that g, ¢—.(0) =0 for 7 € £,1 < ¢ < e(p —1),p 1 L. Now checking the coeflicient for
ﬂ?e(pﬂ) tells us that g, rye(p—2)(0) =0for 7€ 8,1 <l <e(p—1),p| L.

Thus we can factor a ; — 1 out of all the g, ;, and we have a collection of A, ; such that

()¢ 1+m .
0=(mn— 1) Z o hr,e—e(’Yl - 1)Wﬂ'£{
T€X,1<t<e(p—1),ptl K
T +elp—1)) 1+ te(p—2
+ Z hT,£+6(p72) (71— 1) e lte(p—1) 'K =2
T€X,1<l<e(p—1),p|l 1+ T(f)ﬂ-K

and thus our sum is in the ideal generated by (1 — 1) as desired.

Thus there is some basis of V' containing C’ U D’; take some f}. € V such that C' U {f}} to a
basis for V/(y1 — 1)V. Since linear combinations of the elements of C’ can produce elements with
arbitrary coefficients of mx in degrees £ —e for 1 < ¢ < e(p—1),p1 ¢, and since no element of V' may
have minimal degree { —e for ¢ < e(p—1),p | ¢, we may assume that f}- has no non-zero coefficients

in degrees less than e(p — 2) + 1.
O

5.1.2 V/(m —1)V as a F)[G][A]-module

The previous section gives us a basis of V/(y; — 1)V as a vector space, but we want to find a basis as
a Fp[G][A]-module. If we have such a basis, we can use Nakayama’s lemma to lift it to a basis of V" as
a Fp[G][A][y1 — 1] = F,[G][I'k ]-module. But establishing this basis will require some computation.

Recalling our discussion of character theory from subsection we let w; : A — @X be the

simple characters of A. Then we set

to be the orthogonal idempotents of Q,[A]. In fact, we can fix a generator § of A, and w;(d) is a

p — 1st root of 1 for each ¢, and thus w;(0) € Q,. Fix some primitive p — 1st root of unity w(d), and
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we have
p—2
1

gi=—— Y w(d)"9.

p-1=

Lemma 5.1.6. Fiz some integer £ with 1 < { < e. Then we have

(p—Deilri) =Y (

r>0

£ ()5t ) i

m=0

where do 5 ; = (w(6)? — 1)*/2% and

i w(é)j—l dmfks
Qg = — S (ks —m+ ) L)
5 57 —1) k; somE ( k1 >k+2

Proof. We compute:

(p— Dei(rx) w(6) 96 ()

Jj=0
- ”ﬂgw(é)ﬂ/e—” (1 + ; <w(5); - 1) Tirl) e
g (1) (5 () )

Set

Then we have
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where do 5 ; = b5 . = (w(6)7 — 1)*/2° and

»J

- m w(é)j—l dmfk,s
dm’“* 5) —1) kZ:1 m+k< k+1 >k+2'

Thus we have

no

p—

<p*l>a<w>:waj Ow«s)ﬂ/e*”‘ g(”@) %3( )

p—2 )
:Wézz Zw Jf/e Zj(ée) s amts

Lemma 5.1.7. For every m > 1 and for every j, we have that dpy o ; = 0.

Proof. We prove this by induction. If m = 1, then the sum is over one term and ks — m + k =
0—-1+1=0, and thus dyo,; = 0.

Now suppose dp,,0,; = 0 for 1 <m < n. Then

2 &, . w(8)! =1\ dn—k0
dno0j = n(w(d)s —1) ;(k )< k+1 ) k+2

s (S () )

since n — k < n. O

Lemma 5.1.8. If p|¢, then for each i € Z/(p — 1)Z, we have
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Proof. First, note that if p | ¢, then (eée) =0 mod pif s >0 and (lée) = 1. Then we have

- t/e \ 3 it/ e—ij r
=D =3 35 (05, ) om0 | e
7=0

m=0

|
;

Il
(]

Zdnww(&)ﬂ/e_“ mtr” mod p

r>0 \j=0
p— p—2
= w(8)7H e ) 1l Z Z 0-w()?e=4 | 7bx™ mod p
j=0 r>1 \ j=0
p—2
=74 w(6)Y71  mod p.
§=0

O

Thus we see that the action of the €;, while computable, is complicated and not terribly tractable.
In principle, however, we should be able to find a basis for V/(y1 — 1)V as an F,[G][A]-module, or

at least as an F,[G]-module.

5.2 Ty¢p™" on A}b(:l

Recall that Conjecture asks us to study exXPg (1) (B) where S is a generator for H'(K, Z,(r)),
and that Theorem tells us that exp@p(l_T)(B) is the coefficient of "' in T},¢ "« where « is a
Ak generator of A%:I(].)tf. In the previous section, we discussed identifying such an «, and in this
section, we will develop methods to compute exp&p (177,)(6) once we have done so.

We begin by computing the behavior of ¢~™ on 7% .

Lemma 5.2.1. If ¢~ (7% ) converges in Bag, then we have

o7 (i) = D (G — 1) (1 + (") m> v

r>0
where o s.m =P~ " Com ((pm — 1)7° and
i

pm(Cpm - 1)

. (ks —i 4+ k)apci—k,s-
Cpmi k=1

Ci,s,m —
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Proof.
6" (i) = (&7 (m))¢
m le
= ( pmet/p - ].)
l/e
_ 1 "
= | ¢m — 14 Z e
r>1
l/e
tT
= ({m — 1) [ 1+
(G ) ; prmrl(Cpm — 1)
NG yr—
:(Cpm_l) N1+ <6) Tm
s>1 s r>1 p ’I"'(C " 1)
— Cpm
So set Ar—1,m = me—l)' Then
S
0 .
Z ar,mtr+1 =t° Z Ci,s,mtl
>0 i=0
where
Co,s,m = G,S’m
()
pm(cpm, - 1)
=p " (Gpm — 1) 77
and

K3

p (Cpm - 1)

C ; (kS — 17+ k)akci_k@m.
pTrl

k=1

Ci,s,m =



Thus

[

p—1

> (G -1

i=1

46
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