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Abstract

Modern robots are increasingly expected to function in uncertain and dynamically challenging en-

vironments, often in proximity with humans. In addition, wide scale adoption of robots requires

on-the-fly adaptability of software for diverse application. These requirements strongly suggest the

need to adopt formal representations of high level goals and safety specifications, especially as tem-

poral logic formulas. This approach allows for the use of formal verification techniques for controller

synthesis that can give guarantees for safety and performance. Robots operating in unstructured

environments also face limited sensing capability. Correctly inferring a robot’s progress toward high

level goal can be challenging.

This thesis develops new algorithms for synthesizing discrete controllers in partially known en-

vironments under specifications represented as linear temporal logic (LTL) formulas. It is inspired

by recent developments in finite abstraction techniques for hybrid systems and motion planning

problems. The robot and its environment is assumed to have a finite abstraction as a Partially

Observable Markov Decision Process (POMDP), which is a powerful model class capable of repre-

senting a wide variety of problems. However, synthesizing controllers that satisfy LTL goals over

POMDPs is a challenging problem which has received only limited attention.

This thesis proposes tractable, approximate algorithms for the control synthesis problem using

Finite State Controllers (FSCs). The use of FSCs to control finite POMDPs allows for the closed

system to be analyzed as finite global Markov chain. The thesis explicitly shows how transient and

steady state behavior of the global Markov chains can be related to two different criteria with respect

to satisfaction of LTL formulas. First, the maximization of the probability of LTL satisfaction is

related to an optimization problem over a parametrization of the FSC. Analytic computation of

gradients are derived which allows the use of first order optimization techniques.

The second criterion encourages rapid and frequent visits to a restricted set of states over infinite

executions. It is formulated as a constrained optimization problem with a discounted long term

reward objective by the novel utilization of a fundamental equation for Markov chains - the Poisson

equation. A new constrained policy iteration technique is proposed to solve the resulting dynamic

program, which also provides a way to escape local maxima.

The algorithms proposed in the thesis are applied to the task planning and execution challenges
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faced during the DARPA Autonomous Robotic Manipulation - Software challenge.
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Chapter 1

Introduction

1.1 Motivation

Robots and autonomous control systems are regularly required to function in uncertain and dy-

namically changing environments. They are also increasingly required to satisfy complex sets of

rules that specify desired system behavior. These requirements are often specified in addition to

the traditional control theoretic goals, e.g., set point or trajectory tracking, stability margins, re-

sponse time, etc. Such complex goal satisfaction requirements arise in diverse areas like aerospace,

energy management systems, robotics, civic and transportation planning, resource and supply chain

management, autonomous vehicles and manufacturing. Many of these application areas also employ

numerous, possibly distributed, sensors and actuators.

Autonomous platforms such as self-driving cars and unmanned aerial vehicles (UAVs) are now

being deployed in the commercial, military, and public domains. The success of these platforms

are crucially dependent on their safe operability and ability to adapt to continuously evolving local

laws. This presents the challenge of verifying the control and sensing algorithms against safety and

abstract rules, and synthesizing new controllers if required.

This work is motivated by the challenges faced by autonomous robots deployed in unstructured

environments. A particular motivation is the need of such robots to manipulate objects in their

environment through the use of articulated limbs. Applications for such robots are numerous, some

examples being

• Personal Robotics: Robots that are capable of manipulating made-for-human objects to pro-

vide assistance at home and in the office. Of special interest are robots that can assist the

disabled or elderly.

• Disaster Response: These robots are envisioned as first responders for search and rescue in

disaster areas. Alternatively, they can be deployed to unsafe environments to diagnose and

restore safe operation. A recent example is the Fukushima nuclear power plant incident, in
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which damaged areas could not be accessed safely by humans due to nuclear radiation.

• Security and Defense: Applications in security and defense include searching for IEDs in

luggage, vehicles or on persons at checkpoints, which requires dextrous manipulation in un-

structured and unknown environments, or in reconnaissance.

In particular, this thesis tackles a few of the challenges that were faced by the Caltech/JPL

team during the DARPA Autonomous Robotic Manipulation - Software (ARM-S) challenge [3].

This challenge, which focused on autonomous robotic manipulation of real-world objects during

complex tasks in semi-structured environments, is described in detail in Chapter 7. For example,

one challenge task involved the use of a two-armed robot to replace a tire attached to an immobile

hub, as shown in Figure 1.1. A typical process to remove the wheel might include the following

sequence: the robot locates and acquires an impact driver, grasps the driver so that it can properly

depress the power trigger, positions the driver on the lug nuts, removes the nuts one by one, puts

down the impact driver so that both hands are free, and removes the wheel. The robot faces many

hurdles during this process. Since the tool and tire manipulation tasks are kinematically linked, the

robot may pick up the impact driver in a pose where the lug nuts can be removed, but the driver

trigger cannot be depressed. Second, sensor-based operations, such as localization of objects, are

noisy, which may result in failure at the task level. Worse still, it may be impossible to determine

if some subtasks were executed correctly, e.g. visual or force-torque sensors may be incapable of

determining precisely whether the lug nuts were successfully removed. It is currently difficult to

program such tasks at a high level of abstraction, and to guarantee some level of performance.

Two main problems arise in the context of complex manipulation tasks requiring a sequence of

actions. First, the free configuration space, Cfree, [91, 92] can have high dimension and a complex

representation due to the presence of multiple manipulator joints and numerous objects, commonly

referred to as configuration space obstacles, CO. The dimension and complexity are further exacer-

bated because these obstacles can be moved, and attached to/detached from other obstacles or the

end effector by grasping or placing objects. Furthermore, the attachment can be any of a variety

of rigid or non-rigid configurations. These characteristics imply a “hybrid” planning problem. The

movement of the end effector in Cfree when CO is unchanging is a path planning planning problem

in continuous space, whereas the process of grasping and attachment of objects introduces discrete

changes to the definition of CO and the topology of Cfree - a problem which and falls under the

purview of task planning.

Second, further challenges are faced due to imperfect control and the inability to accurately lo-

calize, using on-board sensors, the robot, its end effector and the obstacles in the workspace. In fact,

imperfect observation makes the decoupling of planning and execution difficult, if not impossible.

By execution, it is implied that a set of local controllers are sequenced in time to effect the robot
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Figure 1.1: The DARPA ARM-S Robot. It consists of two arms are Barrett Technology 7-DOF
WAM arms with a 6-DOF force sensor at each wrist. The head is mounted on a 4-DOF neck and
consists of a Point Grey Research Bumblebee2 color stereo camera, Primesense ASUS Xtion-Pro
depth camera, Prosilica Gig-E color camera and two microphones.
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manipulator in such a way that changes in CO only occur at the end of any local control task.

However, since the outcome of the local control execution cannot be guaranteed, nor can the change

in CO be observed accurately, the task level plan must incorporate the execution explicitly, i.e., it

must describe how to interpret sensor observations to determine the next local controller to deploy.

Instead of tackling the problem of autonomous manipulation planning and its control and exe-

cution in their full hybrid dynamical system domain, this thesis focuses exclusively on planning over

finite discrete choices. The imperfect control and sensing encountered at the continuous low level

controllers are assumed to be abstracted to obtain a finite discrete model by the introduction of

uncertainty in the discrete motion model and by incorporating partial observability of the discrete

states.

Additionally, this work focuses on synthesizing a control policy for goals or specifications that

can be expressed in a formal language. Specifically, these specifications will be expressed as formulas

belonging to the class of propositional logic called Linear Temporal Logic. Linear Temporal Logic

offers a rich set of temporal specifications or properties that the controlled system can be verified

against. The key benefit of these specifications is that they allow verification of properties over paths

taken by the controlled system rather than properties of the goal state alone. For example, for a

robot on an assembly line shared with humans, it may be required that the robot halts all motion

when a human is within a specified distance of its workspace, and then resumes its trajectory to a

goal state when the human recedes. Another example of a temporal and logical specification over

the robot’s trajectory is the requirement to reach multiple goal states in a specified order.

1.2 Related Work

Validation and verification form two aspects of testing a software or hardware system’s fitness for

its intended purpose. While validation is concerned with generating or designing specifications as

per need, verification is concerned with checking if the system design or implementation satisfies

those specifications. In computer science and control theory, formal methods from mathematics are

used extensively for specification, design, implementation and verification of software and hardware

systems. Formal verification is concerned with proving or disproving whether the algorithms will

behave properly with respect to the specifications. Software systems are usually modeled as discrete

state and discrete time, and typical specifications are concerned with avoiding deadlocks and live-

locks in concurrent systems, or ensuring safety, reachability and liveness conditions in more general

settings. The specifications are usually in the form of temporal logics such as Linear Temporal Logic

(LTL) or Computational Tree Logic (CTL).

There are two main techniques to formal verification. The first is model checking, which entails

systematic and exhaustive checking of the mathematical model, and this process is constrained to
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finite models. Pioneering work in model checking formalisms can be found in [36, 43, 125]. Model

checking suffers from the curse of dimensionality: even a small symbolic representation of either

the specifications or the underlying system, can result in very large intermediate state spaces which

the model checker must explore. However, this has been mitigated recently in two ways. Recently,

a large and expressive subset of temporal logic specifications were shown to have solutions with

only polynomial time complexity [114]. Additionally, several techniques in symbolic model checking

allow sets of states to be explored simultaneously, circumventing explicit state enumeration. These

methodologies include Binary Decision Diagrams [26], model abstraction and counterexample based

refinement [37] and partial order reduction [48,111,142]. The work presented in this thesis takes the

model checking approach to formal verification.

The second approach is deductive verification. In this approach, the system model and the

specifications are used to generate a set of proof obligations. The burden is then on automated or

interactive theorem provers to establish the truth of these proof obligations. Deductive verification

is based on the framework found in [45, 58]. The initial introduction of temporal logic for specifi-

cation and verification of concurrent systems also relied on theorem proving [116, 117]. While this

methodology allows for infinite state space models, often skilled interaction between the designer

and the proof system is required, an approach which is difficult to scale to large systems.

In typical control design problems, the physical systems are usually not exclusively discrete.

For systems governed by differential equations, Lyapunov based techniques and reachability analysis

provide methods to design controllers that satisfy safety, reachability and stability criteria. However,

many complex controlled autonomous systems are hybrid in nature, e.g. robots, aircraft, climate

control, energy management systems, etc. The hybrid nature arises due to the complex digital

software, abstraction of mixed signal circuits, switches, etc. A survey of formal verification techniques

for hybrid systems can be found in [2].

Recently, formal methods have become increasing popular in robotics [40, 76–78, 148], where

simultaneous motion and task planning is a challenging problem. In [40,140] the authors synthesize

controllers that give probabilistic guarantees of temporal logic specifications in discrete systems.

In [68] take a sampling based approach to carry out motion planning by incrementally building

discrete abstractions that satisfy local formal specifications. In [146], the authors demonstrate a

receding horizon approach by decomposing a high level specification into several components –

generation of a sequence of short term goals, trajectory planning and continuous controller design

– while provably satisfying the overall specification. In [151], the authors demonstrate how game

theoretic methods can be employed to carry out multi-robot motion planning.

In part, the adoption of formal methods in robotics and control applications has been spurred by

new techniques and tools for obtaining discrete abstractions for hybrid systems and motion planning

problems. For linear dynamical systems, automatic discrete abstraction and application of model
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checking methods for control synthesis can be found in [75]. In [14], the authors abstract polygonal

environments into a discrete model to synthesize controllers for temporal logic specifications. In [35],

a noisy continuous state system is approximated as a finite MDP to satisfy various classes of temporal

logics. The main idea is that the discrete abstraction is carried out by computing both the continuous

state reachability properties and the invariance of the discrete states or high level properties. This

ensures that a high level, discrete plan is guaranteed to be realizable by a series of continuous

controllers [147, 148]. For cases when the environment is only partially known a-priori, on-line

iterative and backtracking frameworks for formal control synthesis have also been proposed [87,95].

Moreover, in [88], the authors propose techniques for locally patching the control strategy if parts

of the original strategy are invalidated due to change in environment or incorrect assumptions.

Numerous practical applications of formal methods in robotics have been demonstrated. In [34]

the authors demonstrate the applicability of these methods in dextrous manipulation tasks focusing

on finger-gaiting. Similarly, model checking has been employed in autonomous vehicles [4, 121] and

to specify emergent behaviors in swarm robotics [143].

It is also important to note the contributions from research in the area of domain independent

planning, as robot task planning is a key application for the algorithms developed in that area.

Traditionally, domain independent planning concerned itself with planning exclusively in the discrete

and deterministic domain – e.g. problems representable in STRIPS-like representation scheme.

Classical planning problems could also be exclusively characterized as reachability problems – the

solution from the planning algorithm would provide a sequence of actions that can lead to a goal state

from the initial state. However, domain independent planning has grown to include almost all of

robot motion and task planning challenges in its purview – temporal goal satisfaction, timed actions,

preference based action selection, probabilistic and partially observable domains, continuous states,

etc. A bibliographic overview of task planning from a domain independent perspective is provided

in Chapter 7.

In robotics, Linear Temporal Logic (LTL) is a popular choice for robot goal and safety specifi-

cation as it is a powerful and expressive class of temporal logic with intuitive correlation to natural

language [59,104]. Notably, LTL formulas can represent goals over infinite executions. This is useful

for representing persistent surveillance and applications where robots are always online. In order

to capture environmental disturbance, it is often useful to model the dynamics as a probabilistic

system. Markov decision processes are a popular choice for the discrete abstraction of noisy sys-

tems. In the case of (fully observable) Markov decision process (MDP), synthesis of controllers with

probabilistic satisfaction guarantees of LTL specification is well understood [8]. In fact, for fully

observable MDPs under LTL specifications, robust [144] and receding horizon controllers [146] have

been formulated.

For POMDPs, design of LTL controllers is largely an open problem. For unbounded memory
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strategies EXPTIME-completeness of a broad set of objectives (parity objectives) is proven in [32].

In a recent publication [33], the existence and construction of finite memory strategy for (strictly)

positive probability of satisfaction is shown to be an EXPTIME-complete problem. The memory

requirements for a controller that guarantees satisfaction with probability 1 are established to be

exponential as well. In [145], the authors discretize the belief space, which is the set of all probability

distributions over the state space, a-priori. Then the resulting discrete model is a fully observable

MDP for which formal control synthesis is well established. However, for POMDPs a a-priori belief

space discretization can be suboptimal and prohibitive for large state spaces. In this thesis, a

goal centric approach is taken – the controller has discrete states and optimizes the input to the

controlled system and its own dynamics for each state according to the LTL specification. Such class

of controllers is known to implicitly partition the belief space of the controlled system into sets of

regions – each corresponding to a discrete controller state.

1.3 Thesis Overview and Contributions

The objective of this thesis is to provide tractable algorithms for synthesis of control systems which

satisfy Linear Temporal Logic specifications in a partially observable setting. Specifically, the thesis

will take a model based approach – the robot and environment will be modeled as a finite, discrete

time Partially Observable Markov Decision Process. The motivating application consists of combined

task planning and execution in autonomous systems with imperfect sensing and control.

Chapter 2 provides the formalization and background of the problem domain. It introduces Lin-

ear Temporal Logic (LTL) in the context of a general state transition system, and the methodology

of verifying LTL formulas by constructing an automaton. It also formalizes the model that is used to

abstract the controlled system of interest. The system is assumed to be modeled as a finite Partially

Observable Markov Decision Process (POMDP). The chapter also provides a brief overview of the

classical problems and solution approaches for this class of model.

Chapter 3 formalizes the problem of synthesizing LTL controllers for POMDPs. This is done in

the context of a specific class of controllers namely, the Finite State Controller (FSC). The choice

of this class is motivated by the reduction in complexity when both the model and the controller

are finite. The thesis leverages the well known fact that when a finite POMDP is controlled by an

FSC the resulting closed loop system is a finite Markov chain. Several qualitative and quantitative

questions relating to LTL formula satisfaction over POMDPs are posed in the context of FSCs.

Moreover, key facts about discrete time Markov chains are presented which will be used to formulate

the algorithms in the later chapters. Of importance is the probability space over paths of the Markov

chains, since the thesis is concerned with the problem of maximizing the probability of satisfying

LTL formulas.
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Chapter 4 begins by introducing the notion of the structure and quality of an FSC. It then shows

how to solve the problem of maximizing the probability of satisfying an LTL formula when the

structure of the FSC is fixed, and the controller transition and action choices are parametrized. The

problem is formulated as a nonlinear optimization problem and gradient computations are derived

analytically to allow the use of first order optimization methods. Gradient based methods have been

used for reward maximization problems over POMDPs. However, this thesis presents a new explicit

formulation for gradient based optimization of LTL satisfaction probability in which there is no a-

priori reward associated with states and actions of the controlled system. Case studies are presented

at the end of this chapter to demonstrate some key aspects and limitations of these algorithm. A

preliminary version of the work in this chapter of the thesis also appears in [131].

Chapter 5 deviates from the problem of maximizing LTL satisfaction probability explicitly. The

main focus is to derive a reward scheme that drives the solution of the LTL satisfaction problem to

rapid convergence to a steady state behavior in which certain states are visited often while others

are avoided with probability 1. The notion of rewarding frequent visits to “good” states of the state

space is introduced via discounting. Discounting not only ensures rapid convergence to steady state,

but also frequent visits to “good” states during steady state system execution, setting it apart from

the gradient based algorithm of Chapter 4. While having the practical importance of causing the

controlled system to visit goal states sooner and frequently, the decision to use discounting is also

motivated by the convergence properties and existence of efficient dynamic programming algorithms.

The proposed reward schemes are completely new to the best of my knowledge. However, the reward

scheme and the resulting optimization problems proposed in this thesis form sound, but not complete

algorithms for maximization of LTL satisfaction probability over POMDPs.

Chapter 6 proposes a Policy Iteration algorithm to solve the optimization problem introduced in

the preceding chapter. Some key aspects relating to this algorithm is that it offers a way to search

directly over both the structure and the quality of the FSC. This overcomes the limitation of the

gradient method of Chapter 4 which did not offer a way to choose the size or structure of the FSC.

Moreover, the FSC transitions and action choices are no longer parametrized, but directly computed

as a result of the optimization. The proposed algorithm is based on the bounded policy iteration

algorithm proposed in [118] and [54]. However, the use of the Poisson Equation for Markov chains

as a constraint to avoid certain states in steady state and its solution is entirely new to the best of

my knowledge.

Chapter 7 begins by presenting a brief overview of the evolution of task planning problems in

the AI and robotics communities. The focus is on domain independent planning. Next, a brief

architecture level overview of the Caltech/JPL’s entry to the DARPA ARM-S challenge is presented

and the unique challenges of manipulation tasks are described. Some preliminary work, published

in [64], that I carried out to tackle the challenges in task sequencing are used to motivate the need
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for integrating a task level planner during execution for the system. The example task of removing a

wheel from a fixed hub, introduced earlier in this chapter, is formalized using a recently introduced

planning domain description language and two case studies of LTL satisfaction for the ARM-S robot

are carried out.

The thesis concludes by discussing further insights about the advantages and limitations of the

proposed methodology. Some key challenges and future work, whose successful resolution can enable

solving LTL satisfaction in large scale models, are also discussed. These can be found in Chapter

8.
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Chapter 2

Background

This chapter provides background for the rest of the thesis. First, an overview of Linear Temporal

Logic, its representation using automata, and typical temporal properties in control are described.

Next, finite partially observable Markov decision processes (POMDPs) are formally reviewed. Fi-

nally, classical problems in this domain and typical solution methods are described.

2.1 Linear Temporal Logic

Temporal logic is a branch of logic that enables representation and reasoning about temporal aspects

of a system [8,42,65]. It deals with propositions qualified in terms of time, e.g., “The train is always

on time.” It was introduced first as tense logic in [119]. Since its first use as a specification language

by Pnueli in [96], temporal logic has been demonstrated to be especially suited to reason about

concurrent programs. Is has been utilized to formally specify and verify behavior in a variety of

applications [30, 38, 46, 60, 66, 86, 115, 148].

In this thesis, a subset of temporal logic, namely linear temporal logic (LTL) is considered. Before

formally defining LTL, a brief overview of the underlying building blocks for LTL is provided. The

notation in this section closely follows that of [148].

Definition 2.1.1 A system consists of a set V of variables. The domain of V , denoted by dompV q,

is the set of valuations of V . A state of the system is an element v P dompV q.

Definition 2.1.2 An atomic proposition is a statement p on system variables v P V that has a

unique truth value (True or False) for a given state v. Let v P dompV q be a state of the system and

p be an atomic proposition. Writing v , p signifies that p is True at the state v. Otherwise v . p.

Next, an infinite sequence of a system’s states is called an execution of the system. For discrete

time systems, which are the topic of this thesis, states are assumed to be evaluated only at time

steps t P t0, 1, . . . u. An execution can be written as σ “ v0v1v2 . . . where for each t ě 0, the state

at time t, vt P dompV q.
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LTL is a propositional logic built inductively from logical connectives and temporal modal oper-

ators. The logical connectives are the familiar operators: negation ␣, disjunction _, conjunction ^,

and implication ùñ . The temporal operators include always l, eventually ♦, next l, and until

U .

Syntax: An LTL formula is defined inductively as follows:

1. any atomic proposition p is an atomic formula; and

2. given LTL formulas ϕ and ψ, the expressions ␣ϕ, ϕ _ ψ, lϕ, ϕ U ψ are LTL formulas.

Other formulas can be defined in terms of the above as follows:

• ϕ^ ψ fi ␣p␣ϕ_ ψq,

• ϕ ùñ ψ fi ␣ϕ_ ψ,

• ♦ϕ fi True U ϕ, and

• lϕ fi ␣♦␣ϕ.

Semantics: An LTL formula is interpreted over an infinite sequence of states. Given an exe-

cution σ “ v0v1v2 . . . and an LTL formula ϕ, it is said that ϕ holds at position t ě 0 of σ, written

vt ( ϕ, if and only if (iff) ϕ holds for the remainder of the execution σ starting at position i.

Formally, the semantics of LTL is defined inductively as follows.

• For an atomic proposition p, vt ( p iff vt , p,

• vt ( ␣ϕ iff vt * ϕ,

• vt ( ϕ_ ψ iff vt ( ϕ or vt ( ψ,

• vt ( l ϕ iff vt`1 ( ϕ, and

• vt ( ϕ U ψ iff Dt1 ě t such that vt1 ( ψ and @t2 P rt, t1q, vt2 ( ϕ.

Thus the temporal operators are thus interpreted as follows: lϕ holds at position t of σ iff ϕ

holds at the next state t`1, lϕ holds at position t iff ϕ holds at every position of σ start at position

t, and ♦ϕ holds at position t iff ϕ holds at some position t1 ě t in σ.

Definition 2.1.3 An execution σ “ v0v1 . . . satisfies ϕ, denoted by σ ( ϕ, if v0 ( ϕ.
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2.1.1 Verification of LTL satisfaction using Automata

From the previous section, it is clear that an LTL formula ϕ defines a set of infinite executions. In

order to verify and synthesize controllers that enable the system to satisfy ϕ, the aim is to construct

an automaton which accepts only those infinite executions [8]. It is well known that for any LTL

formula ϕ over a set of atomic propositions AP , one can construct a deterministic Rabin automaton

(DRA), with the input alphabet 2AP , that accepts all and only those infinite words that satisfy the

LTL formula [49,73,141]. Algorithms for converting LTL formulas to DRAs can be found in [74,141],

and a common free software tool to carry out the conversion is at [72].

Definition 2.1.4 A deterministic Rabin automaton (DRA) is a five-tuple A “ pQ,Σ, δ, q0,Ωq,

where

• Q is the set of states;

• Σ is the input alphabet. In the context of atomic propositions over a system, Σ “ 2AP .

• δ : Q ˆ Σ Ñ Q is the deterministic transition function.

• q0 P Q is the initial state.

• Ω “ tpAvoidr , Repeatrq|r P t1, . . . , NΩu, Avoidr, Repeatr Ď Su is the Rabin acceptance

condition.

Definition 2.1.5 (Rabin Acceptance) A run π “ q0q1 . . . of a DRA A with acceptance condition

Ω “ tpAvoid1, Repeatiq, . . . pAvoidNΩ
, RepeatNΩ

qu is accepting if there exists an r P t1, . . . , NΩu

such that Infpπq X Avoidr “ H and Infpπq X Repeatr ‰ H. Here Infpπq are the set of states that

occur infinitely often in π.

Stated otherwise, the Rabin acceptance conditions mean that for some pair pAvoidr , Repeatrq P

Ω, no state in Avoidr is visited infinitely often, while some state in Repeatr is visited infinitely often.

The DRA is used for verification of an LTL formula ϕ as follows. It is assumed that the interesting

properties of the system are given by a set of atomic propositions AP over the variables V of the

system. An execution σ “ v0v1 . . . of the system therefore leads to a unique (infinite) trace over the

truth evaluations of AP , given by hpσq fi hpv0qhpv1q . . . . Here hpvtq P 2AP simply denotes the truth

value of all atomic propositions in AP at time step t using the state vt. At the start of the system

execution, the DRA corresponding to ϕ is initialized to its initial state q0. As the system execution

progresses, the evaluations hpvtq for t “ 0, 1, . . . dictate how the DRA evolves via the transition

function δ. The execution σ satisfies ϕ iff the DRA accepts hpσq. This idea is formalized concretely

in Section 3.2 for the specific transition system of a partially observable Markov decision process,

where a product of the system model with the DRA is formally constructed to embody this process

of the DRA being driven by the POMDP execution.
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2.1.2 Common LTL formulas in Control

There are a few LTL formulas that arise naturally for controlled systems, denoting the typical goals of

control system design. A list of these typical formulas, along with a graphical representation of their

corresponding deterministic Rabin automaton, is provided below. The translation to automaton

representation was carried out using the software tools described in [72] and [61].

2.1.2.1 Safety or Invariance

A safety or invariance formula, Fig. 2.1(a), is of the form lp, where p is an atomic proposition or

LTL formula. It asserts that the property p remains invariant throughout an execution. Invariance

is used to specify the requirement that something bad never happens. For example, for a wheeled

robot, “Never be close to a staircase” can ensure operation safety.

2.1.2.2 Guarantee or Reachability

A guarantee formula, Fig. 2.1(b), is of the form ♦p. It specifies that the proposition p will eventually

become true during the execution. It denotes that something good is guaranteed to occur, or some

goal state will be reached by the system.

2.1.2.3 Progress or Recurrence

A progress property, Fig. 2.1(c), is given by l♦p. It ensures that the property p holds infinitely

often during execution. It essentially ensures that some good property will always be achieved.

2.1.2.4 Stability or Persistence

A stability property, Fig. 2.1(d) given by ♦ l p, ensures that after a transient period, a property p

becomes true and then remains invariant for the rest of the execution. This is similar to the notion

of stability in classical control, in which the system is steered towards an operating point and the

control must ensure that it operates close to, or at, this operating point.

2.1.2.5 Obligation

The obligation property, Fig. 2.1(e), given by lp _ ♦q, is a disjunction of invariance and guarantee.

Thus, it ensures that either some reachability goal is met or some invariant property always holds.

2.1.2.6 Response

The response property, Fig. 2.1(f), given by lpp ùñ ♦qq, ensures that if p becomes true at any

point in the execution, then q is guaranteed to be true at some point in the future subsequently. It

can be used to describe desired system response to external disturbances.
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Figure 2.1: Graphical representation of the DRA translations of common LTL specifications.
The states of the DRA are given by the nodes (circles or boxes) and are numbered. The gray
nodes denote start state of the DRA. The deterministic transitions are marked by the truth
evaluations of AP . Square nodes belong to some numbered Rabin acceptance condition pair
pRepeat0, Avoid0q, . . . . Note that in the DRA for Obligation specification in (e), the node 1

simultaneously belongs to Repeat0 and Avoid1.
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2.2 Labeled Partially Observable Markov Decision Process

Definition 2.2.1 (Labeled-POMDP) Formally, a labeled-POMDP, PM consists of:

• |Smodel| states Smodel “ tsmodel
1 , . . . , smodel

|Smodel|
u of the world,

• |Act| actions or controls Act “ tα1, . . . ,α|Act|u available to the reactive agent,

• |O| observations O “ to1, . . . , o|O|u,

• |AP | atomic propositions AP “ tp1, p2, . . . p|AP |u.

• Possibly a reward, rpsmodel
i q P R, for each state smodel

i P Smodel.

This thesis assumes that the POMDPs are finite, in which Smodel, Act, O, and AP are finite

sets. Each action α P Act determines the probability of making a transition from some state

smodel
i P Smodel to state smodel

j P Smodel given by T psmodel
j |smodel

i ,αq. Additionally, for each state

smodel
i , an observation o P O is generated independently with probability Opo|smodel

i q. It is also

assumed that the probability that the start state of the world is smodel
i is given by the distribution

ιinitpsmodel
i q. The probabilistic components of a POMDP model must satisfy the following:

ÿ

smodelPSmodel

T psmodel|smodel
i ,αq “ 1 @smodel

i P Smodel,α P Act

ÿ

oPO

Opo|smodelq “ 1 @smodel P Smodel

ÿ

smodelPSmodel

ιinitps
modelq “ 1.

Finally, for each state smodel
i , a labeling function hpsmodel

i q P 2AP assigns the truth value to

all the atomic propositions in AP in each state. Note that, the truth valuation of propositions in

AP can in general be both a function of state and action, and can even be stochastic. For ease of

exposition, this work exclusively focuses on state dependent deterministic propositions.

While in general, rewards may be a function of both the state and the action taken by an agent, it

is assumed that rewards are a function of the state only, and are awarded once during state transition.

To state this formally, if the world state transitions from smodel
i to smodel

j , then reward rpsmodel
j q is

issued. The initial state, smodelpt “ 0q, of the world also gathers the reward rpsmodelpt “ 0qq.

While this restriction of the rewards to a function of state is not required, this reward scheme

will be sufficient for synthesizing controllers that satisfy LTL formulas over POMDPs.

The final restriction is that the world model is assumed to be time invariant, i.e., Smodel, Act,

O, AP , T , O, h and r do not change with time.



16

1 2 4 5 6

7 8 9 10

3

13

ba

R

11 12

0

M=7

N

R

R

0.1

0.1

0.8

c
0.80.1

0.1

1.0

0.050.050.05

0.05 0.05

0.050.050.05

0.6

start

Figure 2.2: Partially observable probabilistic grid world. It is described in example 2.2.2.

Example 2.2.2 (GridWorld-A) An example whose variants will be used repeatedly to demon-

strate various aspects of the problem requirements and solution methodology is the labeled-POMDP

represented in Fig. 2.2. It represents a grid world of size M ˆ N , with fixed M “ 7 and varying

N ě 1 in which a robot can move from cell to cell. Thus the state space is given by

S “ tpsi|i “ x ` My, x P t0, . . . ,M ´ 1u, y P t0, . . . , N ´ 1uu.

The action set available to the robot is

Act “ tRight, Left, Up, Down, Stopu.

The actions Right, Left, Up and Down, cause probabilistic motion of the robot from its current cell

to a neighboring cell. The probabilities for the state transitions for various types of cell (near a wall,

or interior) are shown for actionRight in the figure. Left, Up, andDown have symmetric definitions.

The action Stop is deterministic, in which the robot stays in its current cell. Partial observability

arises because the robot does not precisely know its cell location. It can take measurements to

ascertain it. The observation space is given by

O “ toi|i “ x ` My, x P t0, . . . ,M ´ 1u, y P t0, . . . , N ´ 1uu.

Given the actual cell position (dark blue) of the robot, the location measurement has a distribution

over the actual position and nearby cells (light blue). Cell 1 in yellow shows the initial state of the

robot. Thus,

ιinitps1q “ 1.

In this example, the initial state is known exactly, but it is not required in general. Finally, there
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are three atomic propositions of interest in this world, giving

AP “ ta, b, cu.

In cell 0, a is true, while b and c are true in cells 6 and 3 respectively.

Definition 2.2.3 (Path in a POMDP) An infinite path in a (labeled) POMDP, PM, with states

s P S is an infinite sequence π “ s0o0α1s1o1α2 ¨ ¨ ¨ P pS ˆ O ˆ Actqω, such that @t ě 0

T pst`1|st,αt`1q ą 0,

Opot|stq ą 0, and

ιinitps0q ą 0.

Any finite prefix of π that ends in either a state or an observation is a finite path fragment.

Pictorially, the process evolves as in Fig. 2.3. Even though the underlying states at each time

step are not fully observable, the model is assumed to start at some state s0. Associated with each

state st, an observation ot is emitted according to O and is available to the agent. Since the labels

hp.q are tied to the state, the labeling hpstq is also partially observed at any time step t. Subsequently

an action at`1 causes the state of the world to evolve from st to st`1. Note that since no method

for choosing actions has been introduced until now, the actions αi are non-deterministic.

s0 s1 s2

α1 α2

o0, hps0q o1, hps1q o2, hps2q

Figure 2.3: Evolution of a labeled POMDP.

The above formulation has minor differences from common formulations in literature, which

assume that the first observation is available after the first action is applied. This is different from

Figure 2.3, where the first action occurs after receiving an observation from the world, which can be

used to further refine the initial distribution ιinit. Thus, if there is an agent that chooses actions,

then it deliberately takes a measurement before taking the first action.
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2.2.1 Information State Process (ISP) induced by the POMDP

Let It denote all information available until time step t. Since at any step the action taken and

the observation received are the only two new quantities known to an agent, It`1 “ rIt,αt`1, ot`1s.

This leads to the following information state process (ISP) I “ tI0, I1, . . . u:

I0 “ rιinit, o0s

I1 “ rI0,α1, o1s

I2 “ rI1,α2, o2s
...

The domain of the ISP I can be defined inductively

dompI0q “ MS ˆ O

dompItq “ dompIt´1q ˆ Act ˆ O

so that the overall domain is

dompIq “
ď

t

dompItq

In the above, MS is the set of all distributions over S. In the context of transition systems,

distributions are sometimes thought of as beliefs over the states S, signifying the likelihood of

actually being in different states at a given time step.

The formal definition of a distribution and its derivation from probability measures is discussed

in appendix A.

2.2.2 Belief State Process (BSP) induced by the POMDP

Clearly, the representation of the ISP in computer memory requires an exponentially bounded

(p|Act||O|t) amount of space. Instead, a popular method of modeling the process to keep track

of a sufficient statistic with finite description, such as the belief or distribution over states at each

time step. Belief can be computed from the ISP using Bayes law as follows. @s P S
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b0psq “
ιinitpsqOpo0|sqř

oPO
ιinitpsqOpo|sq

(2.1)

btpsq “
1

c
Opot|s,αtq

ÿ

s1PS

T ps|s1,αtqbt´1ps1q, t ě 1 (2.2)

where c is a normalizing constant given by

c “
ÿ

sPS

Opot|s,αtq
ÿ

sPS

T ps|s1,αtqbt´1ps1q, t ě 1.

Equation 2.2 is called the belief update equation. In fact, the belief state process (BSP) B “

tb0, b1, . . . u forms a continuous state space (fully observable) Markov decision process, evolving in

the space of all distributions MS as defined in Section 2.2.1. At any time step t, the belief state bt

can be computed from the information state It inductively.

2.2.3 POMDP controllers

From the definition of a (labeled) POMDP, and the associated ISP or BSP, it is unclear how actions

at each time step are chosen. This is the task of the agent, used interchangeably with the controller

or scheduler. The controller chooses the actions αt using a policy which formalizes the rules used to

decide actions using some or all information available to the controller up to the current time step.

Typically, policies are categorized into deterministic and stochastic policies.

Definition 2.2.4 (Deterministic Policy) Let PM be a POMDP, and its ISP given by I. A

deterministic policy for PM, denoted µ is function

µ : dompIq Ñ Act (2.3)

Definition 2.2.5 (Stochastic Policy) Let PM be a POMDP, and its ISP given by I. A stochas-

tic policy for PM, denoted µ is a function

µ : dompIq Ñ MAct (2.4)

where MAct is the set of all probability distributions over the natural σ´algebra over Act.

For deterministic policies, actions are directly determined as αt “ µt fi µpIt´1q. For stochastic

policies µpIt´1q is a distribution that must be sampled independently to generate the action αt and

this should be written as αt „ µt “ µpIt´1q. However, the equality αt “ µt will be used to represent

both of these cases, and the methodology for obtaining αt will be inferred from context.



20

Most importantly, the outcome of this definition of a policy is that the ISP I “ tI0, I1, . . . u is

Markovian.

2.2.3.1 Markov Chain Induced by a Policy

Given a POMDP PM with state space S, a t´step execution is given by

σ0:t “ s0s1 . . . st P S ˆ . . .Sloooomoooon
t`1 times

“ St`1 (2.5)

Then the process Mµ
S` “ tσ0:0,σ0:1, . . . u evolves stochastically in the space

S` “
8ď

t“0

St`1. (2.6)

The initial probability distribution is given by

Pr rσ0:0s “ b0ps0q, (2.7)

and the state transition probabilities are given by

T pσ0:t`1|σo:tq “ T pst`1|st, µpItqq. (2.8)

Since It itself is Markovian, the process Mµ
S` forms a Markov chain. However, this Markov chain

has infinite state space, S`. In Section 3.1.1, it will be shown that a class of controllers leads to a

Markov chain over a finite state space that is equivalent to Mµ
S` .

2.2.4 Probability Space over Markov Chains

Let M be a Markov chain over a countable set of states S. Let the initial state distribution be given

by ιinitpsq, s P S and the state transition probability given by T psj|siq. In this work, the notion

of probability of events in a Markov chain is used extensively. It is therefore necessary to formally

define the probability space associated with M. A detailed description can be found in [8] from

where the following definitions are borrowed. A brief primer on probability measures is provided in

appendix A. Three quantities are of interest to fully specify a probability space pX,F , µq, where X

is the underlying set of outcomes, F Ď 2X is a σ´algebra over X and µ is a probability measure

over the sets in F . For infinite executions of Markov chains, i.e., t Ñ 8, each of these is defined

next.

The underlying set of outcomes X is given by the set of (infinite) paths, PathspMq, of the

Markov chain, M. The formal definition of paths is given below.
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Definition 2.2.6 (Paths of a Markov chain) Define as PathspMq the set of all infinite se-

quences π “ s0s1 ¨ ¨ ¨ P Sω, such that @t ě 0, T pst`1|stq ą 0 and ιinitps0q ą 0. In addition,

also define the set of all finite path fragments PathsfinpMq “ tprefixpπq|π P PathspMqu, i.e., by

collecting all finite prefixes from every infinite path π P PathspMq.

Next, in order to specify the σ´ algebra, F , of concern, define the cylinder sets of the Markov

chain as follows.

Definition 2.2.7 (Cylinder Set) The cylinder set of π̂ “ s0s1 . . . sn P PathsfinpMq is defined as

Cylpπ̂q “ tπ P PathspMq | π̂ P prefixpπqu. (2.9)

In other words, the cylinder set spanned by finite path fragment π̂ is the set of all infinite paths that

start with π̂. Next, denote the set of all possible cylinder sets as CY L. Formally

CY L “ tCylpπ̂q|π̂ P PathsfinpMqu. (2.10)

Clearly, CY L P 2X . As stated in Section A.5, there exists a (unique) smallest σ´algebra that

contains CY L, denoted σpCY Lq. This gives the F “ σpCY Lq, where the basis events are given by

Cylpπ̂q.

Finally, in order to specify the probability measure over all the sets or events in F “ σpCY Lq,

it is sufficient to provide the probability of each cylinder set in CY L. This is computed as

PrM rCylps0 . . . snqs “ ιinitps0q
ź

0ďtăn

T pst`1|stq. (2.11)

Once the probability measure is defined over the cylinder sets, the expectation operator EM is

also uniquely defined from its definition. In the sequel, if the underlying Markov chain is clear from

context, the subscript will be dropped and Pr and E will be used.

2.2.5 Typical Problems over POMDPs

In a typical POMDP control problem, states are assumed to issue rewards as the agent influences

the world to visit various states. For a finite execution σ0:T “ s0s1 . . . sT , the cumulative reward

received by the agent is given by
řT

t“0
rptq. Another quantity of interest is the average reward per

time step 1

T

řT
t“0

rptq especially when T Ñ 8. Many problems also assume that good events visited

early in the execution are better. In order to incentivize temporal greediness, the accumulated

reward is formulated as the discounted sum
řT

t“0
βtrptq, with 0 ă β ă 1.

Note that even if the policy used by the agent is deterministic, the controlled system is still a

Markov chain due to the probabilistic world state transitions and observations. Therefore, the above
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quantities of interest are maximized in expectation.

Two main maximization objectives are of interest in this work, and are studied widely in litera-

ture.

Definition 2.2.8 (Total Expected Discounted Reward) For a finite horizon or time steps T ,

this criterion is given by

ηβpT q “ EMµ

«
Tÿ

t“0

βtrptq

ˇ̌
ˇ̌
ˇ ιinit

ff

, for 0 ă β ă 1, (2.12)

where β is the discount factor. For infinite horizon, the criterion is given by the limit

ηβ “ lim
TÑ8

EMµ

«
Tÿ

t“0

βtrptq

ˇ̌
ˇ̌
ˇ ιinit

ff

, for 0 ă β ă 1. (2.13)

Definition 2.2.9 (Expected Average Reward) For a finite horizon or time steps T , this crite-

rion is given by

ηavpT q “ EMµ

«
1

T

Tÿ

t“0

rptq

ˇ̌
ˇ̌
ˇ ιinit

ff
. (2.14)

For infinite horizon, the criterion is given by the limit

ηav “ lim
TÑ8

EMµ

«
1

T

Tÿ

t“0

rptq

ˇ̌
ˇ̌
ˇ ιinit

ff
. (2.15)

Let η be one of the above criteria; then the optimization problem of interest in the classical

POMDP control setting is

maximize
µ

η. (2.16)

2.2.6 Optimal and ϵ´optimal Policy

Assume that an optimal value η˚ of a given objective from the various reward criteria exists. Then

any policy µ˚ that attains this optimum is called an optimal policy. Let ηµ be the value of the

objective under some known policy µ. For any ϵ ą 0, µ is called ϵ-optimal if

η˚ ě ηµ ě η˚ ´ ϵ, (2.17)

thus signifying that the value of the objective is at most ϵ below the optimal value under the policy

µ.
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2.2.7 Brief overview of solution methods

The solution methods for typical POMDP problems fall under two categories: exact and approxi-

mate. A detailed survey is found in the introductory chapters of [1], and in [24]. These are briefly

summarized here.

2.2.7.1 Exact Methods

Exact methods typically need to employ the full information state It to design the policy. However

this requires infinite memory as t Ñ 8 and is intractable. As has already been mentioned, the

belief state bt offers a sufficient statistic for It . Following [29, 137], the problem is solved using

Dynamic Programming [16] over a belief space MDP that can be constructed from a POMDP.

However, since the belief state space is uncountably infinite, these algorithms may require infinite

memory for representation. Also the complexity of these algorithms grows exponentially with the

size of the state space, and hence it is difficult to solve problems with more than a few tens of states,

observations and actions.

2.2.7.2 Approximate Methods

In recent years, there has been a lot of work in approximating the value function. For example, one

method is to assume that the underlying system is an MDP and learning the underlying Q-function

and employing heuristics such as the most likely state heuristic, the voting heuristic, QMDP -heuristic,

or exploiting the entropy of the belief state [67,106,135]. Another is to use grid based methods [22,55].

Other approximate methods search only over the reachable belief states and fall under point-based

POMDP planning [79,113]. The algorithms in this thesis also utilize an approximate method because

they search exclusively in the space of policies that require finite internal memory. This particular

controller, called a Finite State Controller is introduced in detail in the next chapter in Section 3.1.

2.3 Concluding Remarks

This chapter laid down the foundation for the rest of the thesis. Mathematical formalisms for

LTL, the goal specification language of concern, and the POMDP model class were provided. An

automata based formal verification technique was also introduced for general transition systems,

which will be used in the remainder of the thesis for control synthesis. Moreover, a brief overview

of the typical optimization problems over POMDP models and solution approaches were outlined.

The algorithms proposed in this thesis will utilize the methods used to solve these optimization

objectives to synthesize controllers for LTL specifications. In the next chapter, automata based LTL

verification of over POMDPs will be formally described with focus on a specific type of POMDP
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controller, namely the Finite State Controller. This will be used in the rest of the thesis to propose

methods for finding such controllers given a POMDP model and LTL specification.
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Chapter 3

LTL Satisfaction using Finite State
Controllers

In the previous chapter, the POMDP and its associated problems in the form of optimization ob-

jectives were introduced. Further, the various methods of designing controllers to maximize these

criteria were mentioned. In this chapter, one particular class of controllers, called the finite state

controller is studied in detail. The choice of this class of controllers is shown to lead to a finite

state space Markov chain for the closed loop controlled system. This allows easy analysis of infinite

executions of the system in the context of satisfying an LTL formula of interest. Next, the various

categories of problems relating to LTL formulas over POMDPs controlled by FSCs are formalized.

Finally, a brief overview of the solution methodology for these problems is provided.

It is a well known fact that POMDP, and for some criteria, MDP controllers require memory or

internal states [1,29,67]. Let the controller’s internal states be denoted by g P G “ tg1, g2, . . . , g|G|u.

Finite state controllers have finite |G|. As mentioned before, infinite horizon problems typically

require infinite |G|. The most popular method that employs infinite memory design controllers that

work in the belief space which is continuous, which effectively implies uncountably infinite G. For

this case the above definition does not hold.

Finite state controllers are formally defined next.

3.1 Finite State Controllers

Definition 3.1.1 (Deterministic Finite State Controller (det-FSC)) Let PM be a POMDP

with observation set O, action set Act and initial distribution ιinit as in Definition 2.2.1s. A deter-

ministic finite state controller (det-FSC) for PM is given by the tuple G “ pG,ω,κq where

• G “ tg1, g2, . . . , g|G|u is a finite set of internal states.

• ω : G ˆ O Ñ G ˆ Act is a function such that given a current internal FSC state gk, and

observation o, pgl,αq “ ωpgk, oq chooses the next internal state of the FSC and the action to
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apply to PM.

• κ : MS Ñ G chooses the start state g0 “ κpιinitq, of the FSC given initial distribution ιinit.

Definition 3.1.2 (Stochastic Finite State Controller (sto-FSC)) Let PM be a POMDP with

observation set O, action set Act and initial distribution ιinit. A stochastic finite state controller

(sto-FSC) for PM is given by the tuple G “ pG,ω,κq where

• G “ tg1, g2, . . . , g|G|u is a finite set of internal states.

• ω : G ˆ O Ñ MGˆAct is a function such that given a current internal state of FSC, gk and

observation o, ωpgk, oq is a probability distribution over G ˆ Act. The next internal state and

action pair pgl,αq are chosen by independent sampling of ωpgk, oq. By abuse of notation, we

will use ωpgl,α|gk, oq as the probability of transitioning to I-state gl and taking action α, when

the current I-state is gk and observation received is o.

• κ : MS Ñ MG chooses the starting internal state g0, by independent sampling of κpιinitq, given

initial distribution ιinit of PM. Again, by abuse of notation, we will use κpg|ιinitq to denote

the probability of starting the FSC in internal state g when the initial distribution is given by

ιinit.

Any deterministic FSC can be written as a special case of stochastic FSCs. This thesis will

exclusively consider the stochastic version and so the term FSC will denote a stochastic FSC unless

otherwise stated.

A schematic diagram of how an FSC controls the POMDP is shown in Figure 3.1. Under the

FSC, the POMDP evolves as follows.

1. Set t “ 0. POMDP initial state s0 is initialized by drawing independently from the distribution

ιinit. The deterministic or stochastic function κpιinitq is used to determine or sample the initial

FSC I-state g0.

2. At each time step t ě 0, the POMDP emits an observation ot according to the distribution

Op.|stq.

3. The FSC determines its new state gt`1 and action αt`1 according to the deterministic function

or stochastic distribution given by ωp.|gt, otq.

4. The action αt`1 is applied to the POMDP, which transitions to a new state st`1 according to

the distribution T p.|st,αq.

5. t “ t ` 1, Go to 2.
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POMDP

ω

α

gk gl

o

FSC

Figure 3.1: POMDP controlled by an FSC

3.1.1 Markov Chain induced by an FSC

Closing the loop around a POMDP with an FSC, as in Figure 3.1, yields the following transition

system.

Definition 3.1.3 (Global Markov Chain) Let S be the state space of the POMDP, PM, and G

be the set of I-states of the FSC, G, as in Definition 3.1.2. The global Markov chain MPM,G
SˆG with

execution σ “ trs0, g0s, rs1, g1s, . . . u, rst, gts P S ˆ G evolves as follows:

• The probability of the initial global state rs0, g0s is given by

ιPM,G
init rrs0, g0ss “ ιinitps0qκpg0|ιinitq (3.1)

• The state transition probability is given by

TPM,G rrst`1, gt`1s |rst, gts s “
ÿ

oPO

ÿ

αPAct

Opo|stqωpgt`1,α|gt, oqT pst`1|st,αq (3.2)

Note that for a finite state space POMDP, the global Markov chain has finite state space. Similar

to the fully observable case of Markov decision process in [8], the global Markov chain induced by

the finite state controller MPM,G
SˆG is probabilistically bisimilar to the infinite state space Markov

chain described in Section 2.2.3.1. Probabilistic bisimilarity is discussed in [8, 80].

We also remind the reader, that this Markov chain is also associated with a probability space as

described in Section 2.2.4.
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3.2 LTL satisfaction over POMDP executions

This section formalizes how infinite traces obtained from POMDP executions can be verified against

an LTL formula ϕ. This is carried out by constructing the product of the labeled POMDP, PM,

and the DRA obtained from translating ϕ.

Definition 3.2.1 (Product-POMDP) Let PM be a labeled POMDP (Definition 2.2.1) with state

space Smodel, actions Act, observations O, atomic propositions AP , transition probabilities T p.|s,αq :

S Ñ r0, 1s, @smodel P Smodel,α P Act, and labeling function h : Smodel Ñ 2AP .

Next, let the LTL formula ϕ be translated to the deterministic Rabin automaton (Definition

2.1.4), denoted Aϕ, with state space Q, initial state q0, input alphabet 2AP , transition function

δ : Q ˆ 2AP Ñ Q and with Ω “ pRepeati, Avoidiq s.t. Repeati Ď Q,Avoidi Ď Q, the Rabin

acceptance condition.

The product-POMDP denoted PMϕ is a POMDP with state space S “ Smodel ˆ Q, the same

action set Act and observations O.

• The transition probabilities of PMϕ are given by

Tϕ
`
s1 “ xsmodel

j , qly|s “ xsmodel
i , qky,α

˘
“

$
&

%
T psmodel

j |smodel
i ,αq if δpqk, hpsmodel

i qq “ ql

0 otherwise.

(3.3)

• The initial state probability distribution is given by

ιϕinit
`
s “ xsmodel, qy

˘
“

$
&

%
ιinitpsmodelq if δpq0, hpsmodelqq “ q

0 otherwise.
(3.4)

• The observation probabilities are

Oϕpo|s “ xsmodel, qyq “ Opo|smodelq. (3.5)

• If rewards rpsmodelq are defined over the original model PM, then we define new rewards over

the product states are defined as

rϕps “ xsmodel, qyq “ rpsmodelq. (3.6)

In addition, using the Rabin acceptance pairs Ω from Aϕ, we also define the accepting pairs

ΩPMϕ

“ tpRepeatPMϕ

i , AvoidPMϕ

i q, 0 ď i ď |Ω|u for the product-POMDP as follows. A product
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state s “ xsmodel, qy of PMϕ is in RepeatPMϕ

i iff q P Repeati and s “ xsmodel, qy is in AvoidPMϕ

i

iff q P Avoidi. Note that |ΩPMϕ

| “ |Ω|.

3.2.1 Inducing an FSC for PM from that of PMϕ

The product POMDP is the basis for a method to find a policy as defined by an FSC. However, the

resulting policy is meant to be applied to the Product-POMDP. However the goal is to control the

original POMDP, PM and it is necessary to formally define how to derive a policy for PM from a

policy computed for PMϕ.

Note that in the case of fully observable MDPs, the choice of action as a function of the current

state of the Product-POMDP is usually sufficient [8]. In this case a policy α “ µps “ xsmodel, qyq for

the product-MDP induces the policy for the original MDP by setting α “ µmodelpsmodelq “ µps “

xsmodel, qyq at each time step [40].

In the case of POMDPs, given the internal state of the controller, the only new information at

each time step is the most recent action and observation. These action and observation sets remain

unchanged between the original model PM and the product-POMDP PMϕ. However, the start

state of the FSC is determined by the initial distribution of the product-POMDP.

Definition 3.2.2 (Inducing an FSC) Let G “ pG,κ,ωq be the FSC that controls the product-

POMDP PMϕ. The FSC Gmodel “ pGmodel,κmodel,ωmodelq that controls the original POMDP

PM is induced as follows.

• The internal nodes of Gmodel are the same as that of G. That is, Gmodel “ G.

• Let κpιϕinitq be the distribution that determines the initial node of G. Then the initial node of

Gmodel is given by setting

κmodelpιinitq “ κpιϕinitq. (3.7)

• The probability of transitioning between I-states and issuing an action α is obtained by

ωmodelpgl,α|gk, oq “ ωpgl,α|gk, oq, @o P O,α P Act, and gk, gl P G “ Gmodel. (3.8)

3.2.2 Verification of LTL Satisfaction using Product-POMDP

Now let’s consider the criterion for an (infinite) execution of PM to satisfy ϕ. Let σϕ “ s0s1 . . . , st “

xsmodel
t , qty be an execution of the product-POMDP under some FSC G.



30

Definition 3.2.3 (Accepting execution) We say that σϕ is an accepting execution if, for some

pRepeatPMϕ

i , AvoidPMϕ

i q P ΩPMϕ

such that σϕ intersects with RepeatPMϕ

i infinitely often, while

it intersects with AvoidPMϕ

i only a finite number of times.

The notion of verifying LTL properties using product transition systems in well known in the

literature [8, 40] and the following lemma is stated without a formal proof.

Lemma 3.2.4 Let σϕ “ s0s1 . . . , with st “ xsmodel
t , qty be an execution of PMϕ and the corre-

sponding execution of PM be given by σ “ smodel
0 smodel

1 . . . . Then, σ satisfies ϕ, i.e., σ ( ϕ, if and

only if π “ q0q1 . . . is an accepting run on Aϕ.

Lemma 3.2.4 can be explained by understanding the construction of the product-POMDP. Note

that the run σϕ can be projected onto its POMDP and DRA components as runs σ and π. Next,

the trace generated by σ, given by hpσq “ hpsmodel
0 qhpsmodel

1 q . . . leads to the same unique path π

in the DRA Aϕ. Thus if π is an accepting run in the DRA, then σ ( ϕ.

3.2.3 Measuring the Probability of Satisfaction of LTL Formulas

The above section described how the accepting executions of the product-POMDP, PMϕ, under a

given controller, have a one-to-one correspondence to those executions of the original POMDP, PM,

that satisfy ϕ.

Recall from Section 3.1.1 that if an FSC is used to control a POMDP, executions correspond to

paths in the induced global Markov chain. For the product-POMDP, PMϕ, controlled by FSC, G,

let the induced Markov chain be denoted as MPMϕ,G
SˆG , evolving on the finite state space S ˆ G “

pSmodel ˆQq ˆG. Also recall from Section 2.2.4 that a probability measure can be defined over the

paths of the global Markov chain. The probability of satisfaction of ϕ over the controlled (closed

loop) system is defined below.

Definition 3.2.5 (Probability of satisfaction of ϕ) For the product-POMDP PMϕ controlled

by an FSC G, the probability of satisfaction of ϕ, defined over PathspMPMϕ,G
SˆG q, is given by

PrpPMϕ ( ϕ|Gq “ Pr
M

PMϕ,G
SˆG

”
σglobal P PathspMPMϕ,G

SˆG q
ˇ̌
KS pσglobalq is an accepting execution

ı
.

(3.9)

The various terms appearing in Equation 3.9 are as follows. MPMϕ,G
SˆG is the global Markov chain

induced by the Product-POMDP PMϕ with state space S “ Smodel ˆ Q controlled by the FSC G

with I-states G. Next,

σglobal “ rs0, g0s rs1, g1s . . .

“
“
xsmodel

0 , q0y, g0
‰ “

xsmodel
1 , q1y, g1

‰
. . .
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is a path of the induced Markov chain, MPMϕ,G
SˆG , and KS p.q is a projection operator defined as

follows.

KS pσglobalq “ xsmodel
0 , q0yxsmodel

1 , q1y . . .

that has the effect of extracting the Product-POMDP execution from the path in the global Markov

chain.

Since the definition of the global Markov chain is unique, hereafter the subscript on the probability

operator in the r.h.s. of Equation (3.9) will be dropped. Similarly, any use of the expectation operator

E will also be defined using the underlying probability measure over the global Markov chain.

Finally, define PrpPM ( ϕ|Gq fi PrpPMϕ ( ϕ|Gq as the probability of the original model

satisfying the LTL formula.

3.3 Background: Analysis of Probabilistic Satisfaction

Typical formal verification or model checking problems focus on two different aspects of the transition

system with respect to its environment: qualitative verification with respect to specification ϕ and

quantitative verification with respect to ϕ.

3.3.1 Qualitative Problems

There are two main problems studied under qualitative model checking:

1. Almost Sure Satisfaction: This analysis verifies if

PrpPM ( ϕq “ 1, almost surely (a. s.). (3.10)

The result sought is a binary “yes” or “no” answer, the former denoting that under the given

controller, the specification or LTL formula holds with probability 1.

2. Positive Satisfaction: This analysis verifies if

PrpPM ( ϕq ą 0, a. s.. (3.11)

Again, a “yes” or “no” answer signifies if there is a finite probability that the LTL specification

is satisfied. This analysis can be useful to determine if there is a positive probability of unsafe

behavior, or the existence of a control policy to satisfy the specification. It is analogous to feasibility

problems in control. However, in practice this analysis is carried out implicitly while minimizing or

maximizing PrpPM ( ϕq.
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Almost Sure Satisfaction Positive Satisfaction
Maximizing Satisfaction Prob

Inf. Mem Fin. Mem Inf. Mem Fin. Mem

Strategy Infinite Exponential Exponential Exponential
Computation Undecidable EXP-Complete EXP-Complete EXP-Complete

Table 3.1: Complexity of control strategy and computational burden for analysis of LTL specifica-
tions over POMDPs. Finite and infinite memory strategies are shown for various classes of problems.

3.3.2 Quantitative Problems

In this subset of problems, there are two main topics of concern.

1. Computing Satisfaction Probability: The goal is to compute the probability of satisfying

an LTL specification ϕ given a controller:

compute: PrpPM ( ϕ|Gq. (3.12)

2. Maximizing Satisfaction Probability: One can pose the Product-POMDP control synthesis

problem, as the following optimization problem:

maximize
G

PrpPM ( ϕ|Gq. (3.13)

In general, maximizing the satisfaction probability generates the optimal value which can provide

answers to the problems described above. One also seeks to find the FSC parameters that optimizes

the satisfaction probability so that an agent can implement the controller to interact with the

environment optimally with regard to the LTL specification. Out of the problems mention here, this

thesis focuses on developing algorithms for maximizing the satisfaction probability as captured by

Equation (3.13).

3.3.3 Complexity of Solution for Qualitative and Quantitative Problems

For POMDPs, the complexity results for finding controllers for general ω-regular specifications can

be found in [?, 32, 33]. There are two complexities of concern. First, the computational complexity

for solving the qualitative and quantitative problems described earlier are of concern. Second, is the

complexity of the control strategy or policy itself, since it must be represented in a computer system

for application. It is also useful to contrast the complexity of finite memory strategies, which FSCs

satisfy, and infinite memory strategies which utilize the belief space. These are summarized in Table

3.1.
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3.4 Excursus on Markov chains

Before proposing algorithms to solve the quantitative problems mentioned above, note that LTL

formulas are verified over infinite executions of the POMDP, with the concern that certain states are

visited infinitely often while others are avoided completely after a finite number of execution steps.

Since a finite state controller leads to a finite state space Markov chain when controlling a POMDP,

the long term (steady state) behavior of finite Markov chains is the key to synthesizing controllers

that satisfy LTL formulas. This observation also relates to the qualitative questions posed in Section

3.3.1. On the other hand, the short term (transient) behavior will be crucial to the analysis of the

quantitative problems in Section 3.3.2.

In this section, a few well known properties of Markov chains, especially those with finite state

space, are reviewed. A full mathematical background can be found in [56, 71, 101, 126, 127]. In the

following, I will consider a Markov chain M with state space S, transition probability defined as the

conditional distribution T p.|sq : S Ñ r0.1s such that

ÿ

s1PS

T ps1|sq “ 1, @s P S,

and the initial distribution ιinit such that

ÿ

sPS

ιinitpsq “ 1.

All probabilities and expectation operators assume the underlying probability space associated with

paths π “ s0s1 . . . , as described in Section 2.2.4, via cylinder sets.

Note that the transition probabilities T form a linear operator which can be represented as a

matrix. Henceforth T will denote both the individual conditional distributions and the overall matrix

representation. The conditional distribution form will be inferred when they appear to take explicit

arguments, usually denoted as T p.|., .q. The matrix form will be inferred when expressions involving

vectors and matrices are encountered.

T :“

»

——————–

T11 T12 . . . T1|S|

T21 T22 . . . T2|S|

...
. . .

...

T|S|1 T|S|2 . . . T|S||S|

fi

ffiffiffiffiffiffifl
: MS Ñ MS (3.14)

where

Tij “ T psj|siq.

Next, a distribution or belief b⃗t over states of the Markov chain at some time t can be written
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as a row vector

b⃗t “
´
btps1q btps2q . . . btps|S|q

¯
. (3.15)

Then the operator T maps bt to the state distribution or belief bt`1 at time t ` 1. Using matrix

representation this is b⃗t`1 “ b⃗tT .

Definition 3.4.1 (Occupation Time, First Return Time and Return Probability) Let π “

s0s1 . . . be a path in the Markov chain and A Ď S,

(a) The variable

fA :“
8ÿ

t“1

pst P Aq (3.16)

is called the occupation time of set A and

pφq “

$
&

%
1 the mathematical statement φ holds.

0 otherwise,
(3.17)

is the indicator function. Thus fA counts the number of times the set A is visited after time step 0.

(b) Next, the variable

τA :“ mintt ě 1|st P Au (3.18)

is called the first return time, denoting the first time after time 0 that set A is visited.

(c) Lastly, define

Lps, Aq :“ PrpτA ă 8|s0 “ sq (3.19)

as the return probability. It denotes the probability of set A being visited in finite time when the

start state is s.

By abuse of notation, when A is a singleton set, i.e, A “ ts1u for some s1 P S, then fs1 , τs1 and

Lps, s1q will respectively denote the occupation time, first return time and return probability.

Definition 3.4.2 (Communicating Classes) The state s P S is said to lead to state s1 P S,

denoted s Ñ s1, if Lps, s1q ą 0. By convention s Ñ s. Next, distinct states s, s1 are said to

communicate, denoted s Ø s1 when Lps, s1q ą 0 and Lps1, sq ą 0. Moreover, the relation “Ø” is an

equivalence relation, and equivalence classes Cpsq “ s1 : s Ø s1 cover S, with s P Cpsq [56].

Definition 3.4.3 (Irreducibility and Absorbing Sets) If Cpsq “ S for some s P S, then the

Markov chain, M, is called irreducible. This means that all states communicate. In addition, Cpsq
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is absorbing if
ÿ

s2PCpsq

T ps2|s1q “ 1 @s1 P Cpsq. (3.20)

Definition 3.4.4 (Restriction of M to an Absorbing Set) Let C Ď S be an absorbing set.

Then by Definition 3.4.3, if the initial state s0 lies in C, then for any path π “ s0s1 . . . , st lies

in C for all t ě 0. Hence, the Markov chain can be studied exclusively in the smaller state space C,

and is called the restriction of M to C. It is denoted by MS|C.

An absorbing set is alternatively called invariant or stochastically closed. It is possible that some

communicating class Cpsq is not absorbing. In such a case there exists s1 R Cpsq such that s Ñ s1.

An absorbing set is said to be minimal if it does not contain a proper subset that is absorbing. A

Markov chain M is indecomposable if S does not contain two disjoint absorbing sets.

Definition 3.4.5 (Recurrence and Transience) The state s P S is called recurrent if E rfs|s0 “ ss “

8 and transient if E rfs|s0 “ ss ă 8, with fs given by Equation (3.16).

Recurrence and transience are class properties. In fact, recurrent classes coincide with minimally

absorbing classes. Furthermore, let ms “ E rτss. Then state s P S is called positive recurrent if

ms ă 8, and null recurrent if ms “ 8. In a recurrent class either all states are positive recurrent

or all null recurrent. In addition, for a finite discrete-time Markov chain, all recurrent classes are

positive recurrent [56].

Definition 3.4.6 (Ergodic Markov Chain) A Markov chain M is said to be ergodic if the whole

state space S is a single unique recurrent class. Equivalently, it is ergodic if it is irreducible and

positive recurrent.

Definition 3.4.7 (Invariant and Ergodic Probability Measures) Let ν P MS be a probability

measure (p.m.) on S. Then, ν is an invariant p.m. if it remains unchanged when operated upon

by the transition operator T . In vector/matrix representation, this can be written as

ν⃗T “ ν⃗ (3.21)

An invariant p.m. ν is ergodic if νpAq “ 0 or νpAq “ 1 for every invariant set A subseteqS.

Here

νpAq “
ÿ

sPA

νpsq.

Proposition 3.4.8 [56] Let T be the transition probability function of Markov chain M. If T has

a unique invariant p.m. ν, then ν is ergodic.
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Definition 3.4.9 (Occupation Measures) Define the t-step expected occupation measure with

initial state s0 as

T ptqpA|s0q :“
ÿ

sPA

1

t

t´1ÿ

k“0

T kps|s0q, A Ď S, t “ 1, 2, . . . (3.22)

Note that in the r.h.s. of Equation (3.22), T k is the composition of T with itself k ´ 1 times, i.e,

T k “ T ˝ ¨ ¨ ¨ ˝ T ˝looooomooooon
k´1 times

T . It has the effect of transforming a belief or distribution time step t to the

distribution at time step t ` k. In matrix notation, this computation can be realized by taking the

kth power of the matrix T , to get T k.

Additionally, an emprical or pathwise occupation measure can be defined as follows

πptqpAq “
1

t

tÿ

k“1

psk P Aq, A Ď S, t “ 1, 2, . . . . (3.23)

Proposition 3.4.10 [56] The expected value of the path wise occupation measure is the t´step

expected occupation measure.

E

”
πptqpAq|s0

ı
“ T ptqpA|s0q, @t ě 1. (3.24)

Proposition 3.4.11 [56] (a) For every s, s1 P S the following limit exists:

lim
tÑ8

T ptqps1|sq “ lim
tÑ8

1

t

t´1ÿ

k“0

T kps1|sq “

$
’&

’%

ρs1|s if s1 is recurrent

0 if s1 is transient
.

(b) For every positive recurrent state s P S with period ds

lim
tÑ8

T tps|sq “
ds
ms

.

where ms :“ Espτsq is the expected time of the first return to state s when starting in s.

(c) Let C “ tsc1 , sc2 , . . . , sc|C|
u Ď M be a recurrent class and sc, s

1
c P C. Then ρs1

c|sc “ νpscq

is independent of s1
c. In addition the collection νpsc1q, vpsc2q, . . . , vpsc|C|

q gives the unique invariant

p.m. of the restriction of M to the class C.

Definition 3.4.12 (Limiting Matrix) From Proposition 3.4.11, the matrix representation of T ptq

is given by the Cesaro sum [71],

T ptq “
1

t

t´1ÿ

k“0

T k, t “ 1, 2, . . . (3.25)

and the limiting matrix

Π :“ lim
tÑ8

T ptq (3.26)



37

exists for all finite Markov chains.

Proposition 3.4.13 Given the limiting matrix Π, the limit of the Cesaro sum of transition matrix

T , the quantity I ´ T ` Π is non-singular and its inverse

Z :“ pI ´ T ` Πq´1 (3.27)

is called the fundamental matrix [15,56,123].

3.5 Overview of Solution Methodology

Let us now return to the global Markov chain MPMϕ,G
SˆG induced by the FSC G controlling the

product-POMDP, PMϕ. This chain evolves over the global state space S ˆ G, where the Product-

POMDP state space is given by S “ pSmodel ˆ Qq. Since the state space is finite, every state is

either positive recurrent or transient. First, some notation is introduced.

Consider a product state s P S. If there exists g P G such that the global state rs, gs is recurrent

in the global Markov chain, then abusing notation, s is said to be recurrent under G.

Next, if rs, gs is a state of the global Markov chain, then KS prs, gsq “ s projects the state onto

the product-POMDP state space. In addition for a set A “ trsi, gis, . . . u P pS ˆ Gq the projection

KS is

KS pAq “ tsi, . . . u (taken uniquely).

Finally, let RG denote the set of all recurrent states of MPMϕ,G
SˆG .

3.5.1 Solutions for Qualitative Problems

The qualitative problem of positive satisfaction can be solved as follows.

Proposition 3.5.1 The probability of satisfaction ϕ is non-zero, i.e., PrpPM ( ϕq ą 0, if there

exists an FSC, G, such that for some Rabin acceptance pair pRepeatPMϕ

i , AvoidPMϕ

i q,

RepeatPMϕ

i X KS pRGq ‰ H,

Drs, gs with ιPMϕ,G
init prs, gsq ą 0 s.t. rs, gs Ñ pRepeatPMϕ

i ˆ Gq X RG ,

and rs, gs Û pAvoidPMϕ

i ˆ Gq X RG .

(3.28)

The first equation above says that under the FSC G there is some recurrent state in RepeatPMϕ

i . The

second equation requires that such a recurrent state is reachable for the given initial distribution.

The last equation states that even if some states in AvoidPMϕ

i could be visited when starting from

the initial distribution, these cannot be recurrent.

The qualitative problem of almost sure satisfaction can be solved as follows.
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Proposition 3.5.2 The formula ϕ is satisfied almost surely, i.e., PrpPM ( ϕq “ 1, if there exists

an FSC, G, such that for some Rabin acceptance pair pRepeatPMϕ

i , AvoidPMϕ

i q

RepeatPMϕ

i X KS pRGq ‰ H,

@rs, gs s.t. ιPMϕ,G
init prs, gsq ą 0, Pr rrs, gs Ñ pRepeatPMϕ

i ˆ Gq X RG , and

rs, gs Û pAvoidPMϕ

i ˆ Gq X RG
‰

“ 1.

(3.29)

The first equation is the same as for positive satisfaction. The last equation requires that for every

possible initial state, the execution is guaranteed to reach a recurrent state that has some state from

RepeatPMϕ

i while simultaneously avoiding those states from AvoidPMϕ

i that are recurrent under G.

3.5.2 Solutions for Quantitative Problems

It is easier to reason about the quantitative problems by looking at the decomposition of the global

Markov chain into its recurrent classes. Here, let the set of all recurrent states, R, be partitioned

into disjoint recurrent classes RecSetsG “ tR1, R2, . . . RNu such that

R1 Y R2 Y ¨ ¨ ¨ Y RN “ R

Ri X Rj “ H, i ‰ j.
(3.30)

In addition, the partitioning is required to be maximal. Formally, this means that for each Rk, Rl P

RecSetsG,

si Ø sj , @si, sj P Rk

si Ü sj , si P Rk, sj P Rl, k ‰ l.
(3.31)

The first equation states that within each recurrent class or set, Rk, all states are reachable from one

another. The second equation states that no two distinct recurrent classes can be combined to make

a larger recurrent class, thus making the partitions maximal. We remind the reader that recurrence

implies absorption, i.e., if the Markov chain path leads to a state in a recurrent set, then the path

is forever confined to that recurrent set. This implies the following when considering probability of

long term behavior of paths:

Prrπ Ñ pRk Y Rlqs “ Prrπ Ñ Rks ` Prrπ Ñ Rls, k ‰ l (3.32)

In addition, over infinite executions the path must end up in some recurrent set, i.e.,

ÿ

RkPRecSetsG

Prrπ Ñ Rks “ 1. (3.33)

Next, the concept of a feasible recurrent set is introduced.
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Definition 3.5.3 (ϕ-feasible Recurrent Set) Under a given FSC, G, a (maximal) recurrent set

or class Rk is a ϕ-feasible recurrent set if DpRepeatPMϕ

i , AvoidPMϕ

i q such that,

KS pRkq X RepeatPMϕ

i ‰ H, and

KS pRkq X AvoidPMϕ

i “ H.
(3.34)

Let ϕ-RecSetsG “
Ť

Rk, s.t. Rk is ϕ-feasible.

Definition (3.5.3) is closely related to Equation (3.28). Rk is ϕ-feasible by the above definition

if the last two criteria in Equation (3.28) hold.

Proposition 3.5.4 The problem of computing the satisfaction probability ϕ under a given FSC, G

can be solved by computing

PrrPM ( ϕs “
ÿ

RPϕ-RecSetsG

Prrπ Ñ Rs. (3.35)

The r.h.s. of the Equation (3.35) computes the probability of any path (given the initial dis-

tribution) reaching any of the ϕ-feasible recurrent sets introduced in Definition 3.5.3 wherein the

relationship to Equation (3.28) was also described.

The problem of maximizing the probability of satisfaction can be solved as follows.

Proposition 3.5.5 The satisfaction probability of an LTL formula can be maximized by optimizing

the following objective

max
G

ÿ

RPϕ-RecSetsG

Prrπ Ñ Rs (3.36)

To further understand the solution to Equation (3.36), note that there are two main components in

the choice of the FSC, G:

1. Structure: The structure of the FSC has two components:

(a) The number of internal nodes, G, available. This determines the size of the global Markov

chain state space.

(b) The set of parameters in ω and κ with non-zero values. The actual numerical values of

these parameters do not affect the structure, but the non-zero set determines the con-

nectivity of the underlying graph of the global state space. The nodes of the graph are

the states of the global Markov chain. A directed edge from a node rs, gs to rs1, g1s deter-

mines whether a one-step transition can be made from rs, gs to rs1, g1s. The underlying

graph completely and unambiguously determines the recurrent and transient classes of

the global Markov chain. This is explained using a small example in Figure 3.2.
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s1 s2

α1

α2

α1,α2

AvoidPMϕ

1

Start

RepeatPMϕ

1

(a)

s1 s2

α1

α2

α1,α2

AvoidPMϕ

1

Start

RepeatPMϕ

1

(b)

Figure 3.2: Effect of FSC structure on ϕ-feasibility. Consider a case in which the Product-POMDP
state space comprises of two states s1 P AvoidPMϕ

1 and s2 P RepeatPMϕ

1 . There are two actions
α1,α2 P Act, both causing deterministic state transitions as shown. For both figures consider a
trivial FSC with only one I-state, i.e., G “ tg1u. The resulting global state space is given by
S ˆ G “ trs1, g1s, rs2, g1su. (a) For all actions α P Act, let ωpg1,α, g1, oq ą 0q, @o P O. This
means that the underlying graph results in global states rs1, g1s and rs2, g1s being recurrent and

belonging to the recurrent class, which is given by R1 “ S ˆ G. Since AvoidPMϕ,G
1

X R1 ‰ H, R1

is not ϕ-feasible. Note that R1 and its ϕ-feasibility is unchanged for any value of omega ą 0 (b)
Consider the same FSC with a different structure in which ωg1,α2|g1, o “ 0, @o P O. This results
in a different recurrent class in the global state space and is given by R1 “ trs2, g1su. Since R1 and

AvoidPMϕ,G
1 are disjoint while R1 X RepeatPMϕ

1 ‰ H, R1 is ϕ-feasible.

Thus the structure affects both the partitioning RecSetsG and also the ϕ-feasibility of these

sets.

2. Quality: By quality I will mean the numerical values of non-zero parameters of ω and κ.

These determine the probability with which paths reach each some R P RecSets.

Therefore, to maximize the probability of ϕ-satisfaction, one must simultaneously search over all

structures and qualities of FSCs for the best probability. The optimization variable, G, encompasses

both.
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3.6 Concluding Remarks

This chapter concretely formalized the various problems related to LTL satisfaction over POMDPs.

It also motivated the use of Finite State Controllers and the resulting finite global Markov chain.

LTL satisfaction was then related to the global Markov chain and it was demonstrated how the

structure and quality of the FSC affect the long term behavior of the system with respect to the LTL

specification. In the next chapter, a gradient based algorithm will be introduced to find a locally

optimal FSC for maximizing the probability of an LTL formula being satisfied by the controlled

system.
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Chapter 4

Policy Gradient Method

This chapter focuses on the basic problem of maximizing the LTL satisfaction probability when

the structure of the FSC is predetermined. In order to carry this out, an FSC of a fixed structure

will be parametrized in such a way that the FSC retains its structure over the entire domain of

parametrization. Using this parametrization, the FSC control design problem will then be posed as

the optimization of a parametrized objective function whose gradient can be computed in polynomial

time. The approach presented in this chapter assumes that at least one recurrent set in the resulting

global Markov chain is ϕ-feasible for a starting set of parameters. Finally, a heuristic randomized

algorithm is presented that allows finding structures of FSCs of a given size that yield at least one

ϕ-feasible recurrent set.

4.1 Structure and Parametrization of an FSC

4.1.1 Structure

Formally, the structure of the FSC is determined by the collection I “ tG, Iω, Iκu, where the three

components are:

1. The Size of FSC. The set G “ tg1, g2, . . . , g|G|u indexes the states of the FSC. Any admissible

FSC must have non empty set of states

G ‰ H. (4.1)

2. Allowed State Transitions. The binary function Iω : pG ˆ Oq ˆ pG ˆ Actq Ñ t0, 1u describes

the allowed state transitions as follows. For @α P Act, @o P O, and @gk, gl P G,

Iglα|gko :“ Iωpgl,α|gk, oq “

$
’’’’’’&

’’’’’’%

1 if observation o P O in FSC I-state gk

can lead to an FSC transition to the I-state gl

while issuing action α P Act

0 otherwise.

(4.2)
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However, a given structure of the FSC is only admissible if

@pgk, oq P pG ˆ Oq, D pgl,αq P pG ˆ Actq s.t. Iωpgl,α|gk, oq “ 1. (4.3)

The above condition can be understood as follows. Let the FSC be in any given I-state gk P G.

Then for every observation o P O, there must be an I-state gl P G and an action α P Act, such that

the FSC can transition to gl and issue action α to the product-POMDP.

3. Allowed Initial I-States. The binary function Iκ : G Ñ t0, 1u which is assumed to be fixed

and known, describes the allowed FSC initial states. @g P G,

Ig :“ Iκpgq “

$
&

%
1 if the FSC can start in state g

0 otherwise.
(4.4)

As before, the FSC structure is admissible only if

D g P G, s.t. Iκpgq “ 1. (4.5)

4.1.2 Structure Preserving Parametrization of an FSC

Note that any parametrization of the FSC is admissible as long as it obeys the laws of probability.

This condition can be described as

ř
pgl,αqPpGˆActq

ωpgl,α|gk, oq “ 1 @pgk, oq P pG ˆ Oq

ř
gPG

κpg|ιPMϕ

init q “ 1 .
(4.6)

Let ω and κ be respectively parametrized by Φ “ tφ1, . . .φnφ
u and Θ “ tθ1, . . . , θnθ

u in the following

structure.

ωpgl,α|gk, oq :“ ωpgl,α|gk, o,Φq,

κpg|ιPMϕ

init q :“ κpg|ιPMϕ

init ,Θq.
(4.7)

In addition to the probability laws in Equation (4.6), it is required that the parametrization of the

FSC by ω and κ results in quantities

∇Φω,∇Θκ,

ˇ̌
ˇωpgl,α|gk,o,Φq

Bφi

ˇ̌
ˇ

ωpgl,α|gk, o,Φq
,

ˇ̌
ˇκpg|Θq

Bθj

ˇ̌
ˇ

κpg|Θq
,

which are all uniformly bounded from above so that (conjugate) gradient optimization methods can

be applied.

Softmax Parametrization: Of several possible parametrizations of ω and κ, this chapter illus-

trates a gradient optimization algorithm using the softmax parametrization. The softmax function

arises frequently in neural networks, where it is used as a neural activation function [25] and ma-
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Figure 4.1: The logistic function with the parameter x can be used to continuously parametrize the
Bernoulli trial by allowing the probability of success p of the trial.

chine learning models such as the generalized linear model [98]. It can be viewed as the multi-variate

generalization of the logistic function

logisticpxq “
1

1 ` expp´xq
, x P R. (4.8)

Equation (4.8) can be used to continuously parametrize a Bernoulli trial. Consider for example, a

coin toss experiment with a biased coin. Let the probability of turning up heads in a single trial be

given by p. Next, let p be parametrized using the logistic function in Equation (4.8), i.e.,

ppxq “ logisticpxq (4.9)

thereby making x a parameter in the original coin toss experiment. As x reaches ´8 or `8, p

approaches 0 or 1 in the limit, respectively. This results in a deterministic outcome for the Bernoulli

trials. However, for finite values of x, 0 ă p ă 1. For x “ 0, the coin is fair, i.e., p “ 0.5. The

logistic parametrization of p can be seen in Figure 4.1.

This can be extended to experiments whose trials have a single outcome from a multitude of

choices. Let the set of outcomes of a trial be given by t1, 2, . . . , Nu and the probability that a single

trial has outcome j P t1, . . . , Nu be given by pj . Clearly,

pj ě 0, and
řN

j“1
pj “ 1

(4.10)

to satisfy the laws of probability. Next, introduce parameters x1, x2, . . . , xN , and let the probability
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of a given outcome be given by

pjpx1, . . . , xN q “
exppxjq

řN
k“1

exppxkq
(4.11)

It can be seen easily that the set of probabilities pjpx1, . . . , xN q satisfy the probability laws in

Equation (4.10) for any real values of x1, . . . , xn. When x1 “ x1 “ ¨ ¨ ¨ “ xN , then all outcomes

have equal probability of 1

N . As x1, . . . , xn each vary in the interval p´8, 8), tp1, . . . , pNu each

vary continuously in the open interval p0, 1q w.r.t each xi. Additionally, if for some k, pxk ´ xlq Ñ

8, @ l ‰ k, then pk Ñ 1. Similarly if pxk ´ xlq Ñ ´8, @l ‰ k, then pk Ñ 0. In fact, the approach

to 0 or 1 is exponentially quick, and therefore in numerical implementations, if one parameter grows

quickly, the trials become deterministic.

The softmax parametrization of Equation (4.11) has been studied in detail for the classic POMDP

reward maximization problem [1]. This choice is well suited for numerical algorithms as the softmax

function is convex in its parameters and its derivative is easily computed. In addition, the fast

approach to deterministic outcomes as some parameters grow faster than others, is a desirable

property for engineering systems where predictable behavior is favored or even crucial. However,

the softmax parametrization also has some drawbacks related to the initialization of the FSC, which

are addressed in Section 4.6.

Let the I-state and action distribution be parametrized by

Φ “

»

———————————————–

φ⃗g1o1

φ⃗g1o2
...

φ⃗g1o|O|

φ⃗g2o1
...

φ⃗g|G|o|O|

fi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

|G||O|ˆ|G||Act|

(4.12)

where

φ⃗giok “
“
φg1α1|giok φg1α2|giok . . . φg1α|Act||giok

φg2α1|giok . . . φg|G|α|Act||giok

ı

1ˆ|G||Act|

(4.13)

is a row vector and φgjαn|giok is a real number that controls the relative probability of making the

internal state transition gi Ñ gj and taking action αn, having observed ok. This probability can be
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computed using the expression for soft-max function

ωpgj ,αn|Φ, gi, okq “
Igjαn|giok exppφgjαn|giokq

ř
gPG

ř
αPAct

Igα|giok exppφgα|giokq
. (4.14)

The derivative of ω with respect to the parameters is

Bωpgj,αn|Φ, gi, okq

Bφgα|g1o

“

$
’’’&

’’’%

ωpgj,αn|Φ, gi, okq
´ `

pg,αq “ pgj ,αnq
˘

´ ωpg,α|Φ, gi, okq
¯

if gi “ g1, ok “ o

0 otherwise.

(4.15)

Likewise, letting Θ “
”
θg1 θg2 . . . θg|G|

ı
denote the second set of parameters, the initial I-state

distribution can be described as

κpgk|ιPMϕ

init ,Θq “
Igk exppθgkqř
gPG

Ig exppθgq
, (4.16)

and its gradient takes the form

Bκpgk|ιPMϕ

init ,Θq

Bθg
“ κpgk|ιPMϕ

init ,Θq
´

pg “ gkq ´ κpg|ιPMϕ

init ,Θq
¯
. (4.17)

Proposition 4.1.1 Let a structure I, of an FSC, be admissible as given by Equations (4.1), (4.3)

and (4.5). Then, any softmax parametrization (Equations (4.14) and (4.16)) given by real and finite

values of parameters Φ and Θ preserves the structure. Let the set of all softmax parametrized FSCs

that have structure I, be denoted GpIq.

Proof : Consider a particular I-state gi of the FSC. Note that an admissible structure of the FSC

requires that for each observation ok P O, there at least one pair pgnext,αnextq P G ˆ Act such that

the FSC transitions to gnext and issues action αnext. This implies that expression for ω in Equation

(4.14) can be written as

ωpgj,αn|Φ, gi, okq “
Igjαn|gko exppφgj ,αn|giokq

˜
ř

pg,αq‰pgnext,αnextq

Igα|giok exppφgα|giokq

¸

` exppφgnextαnext|giokq

. (4.18)

This implies that for finite φgnextαnext|giok the denominator is non-zero. Next, note that in the

numerator the exponential is non-zero for all finite values of φgjαn|giok . Thus, ωpgj ,αn|Φ, gi, okq is

zero if and only if Igjαn|giok is zero. This is true for every gi P G. This proves that any real finite

parametrization of ω preserves Iω. The proof for Iκ follows entirely similarly.
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4.2 Maximizing Probability of LTL Satisfaction for an FSC

of Fixed Structure

4.2.1 Vector Notation for Finite Sets

Let S be a finite total-ordered set with the binary relation ĺ giving the order. Then define S⃗ĺ as

the column vector

S⃗ “

»

——————–

s1

s2
...

s|S|

fi

ffiffiffiffiffiffifl

such that si ĺ sj , @i ď j ď |S|. If A Ď S then A⃗ is a column vector in which the elements respect

the ordering as well. Let A P S. Then, let 1⃗S|A denote the column vector of size |S| ˆ 1 as follows

1⃗S|A “

»

——————–

ps1 P Aq

ps2 P Aq
...

ps|S| P Aq

fi

ffiffiffiffiffiffifl

|S|ˆ1

where, as before, si ĺ sj , i ď j ď |S|. The elements of this vector assume a unit value in those

places that correspond to states belonging to A, and zero if not.

4.2.2 Ordering Global States by Recurrent classes

Definition 4.2.1 (Total Order of a Set) Let ĺĎ X ˆX denote a binary relation. If the ordered

tuple px, yq Pĺ, then the short hand notation is to write x ĺ y. ĺ is called a total order over the

set X if it satisfies the following properties properties. @ x, y, z P X,

1. Antisymmetry: If x ĺ y and y ĺ x, then x “ y.

2. Transitivity: If x ĺ y and y ĺ z, then x ĺ z.

3. Totality: Either x ĺ y or y ĺ x.

In this and subsequent chapters, it will be frequently assumed that the global state space, S ˆ

G “ pSmodel ˆ Qq ˆ G, is ordered by recurrent classes. From Definition 3.4.5, it is clear that

under a fixed structure of the FSC, the (maximal) recurrent classes are unique and known. Let

RecSetsGpIq “ tR1, R2, . . . RNu be the recurrent sets. Let these sets have arbitrary, but fixed total
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ordering ĺ1. That is, for any two Ri,Rj , either Ri ĺ1 Rj or Rj ĺ1 Ri, and ĺ1 also satisfies the

transitivity and antisymmetry conditions of Definition 4.2.1. Let each Rk P RecSetsGpIq have total

order ĺkĎ Rk ˆ Rk over its member global states. Further, since some states in the global state

space S ˆ G are transient, collect all transient states in the set T and endow it with an arbitrary,

but fixed total ordering, ĺT Ď T ˆ T . Finally define the following relation ĺ on the global state

space S ˆ G as follows. For @rs, gs, rs1, g1s P S ˆ G,

rs, gs ĺ
“
s1, g1

‰
if and only if

$
’’’’’’&

’’’’’’%

rs, gs , rs1, g1s P Rk and rs, gs ĺk rs1, g1s , or,

rs, gs P Rk, rs1, g1s P Rl, k ‰ l, and Rk ĺ1 Rl, or,

rs, gs P Rk Ď RecSetsG and rs1, g1s P T, or,

rs, gs , rs1, g1s P T and rs, gs ĺT rs1, g1s .

(4.19)

Proposition 4.2.2 The relation ĺ in Equation (4.19) defines a total order over the set of states

S ˆ G.

Proof Sketch : See Appendix B.2.

When the transition probabilities of the controlled system are written in matrix form, then the

above ordering results in a canonical block diagonal form

TPMϕ,G “

»

—————————–

TR1
0 . . . 0 0

0 TR2
. . . 0 0

...
...

. . .
...

...

0 0 . . . TRN 0

TT ÑR1
TT ÑR2

. . . TT ÑRN TT ÑT

fi

ffiffiffiffiffiffiffiffiffifl

|S||G|ˆ|S||G|

(4.20)

where the matrices TRk
, corresponding to the recurrent sets, are stochastic (each row sums to 1),

and can be directly used to represent the restriction of the global Markov chain to Rk.

Similar to the canonical form in Equation (4.20), the same global state ordering in Equation

(4.19) results in a block form for the initial distribution of the controlled system as follows

ι⃗PMϕ,G
init “

»

—————————–

ι⃗PMϕ,G
init pR1q

ι⃗PMϕ,G
init pR2q

...

ι⃗PMϕ,G
init pRN q

ι⃗PMϕ,G
init pT q

fi

ffiffiffiffiffiffiffiffiffifl

|S||G|ˆ1

. (4.21)
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4.2.3 Probability of Absorption in ϕ-feasible Recurrent Sets

Recall that for a given FSC G P GpIq of fixed structure, the recurrent set ϕ-RecSetsG, which is a

subset of the global state space S ˆ G, denotes the union of all recurrent sets that are ϕ-feasible,

and is uniquely determined by the structure, I. This section aims to compute the probability of

absorption into this set, given the initial distribution of the product-POMDP, PMϕ. It will be

shown to be a function of parameters Φ and Θ and analytical expressions of the probability of

absorption in terms of these parameters will be derived.

The probability of absorption into a recurrent set Rk for finite Markov chains is well known [71].

Let 1⃗Mˆ1 denote a column vector of size M with all entries equal to 1. Then using the block

decomposition in Equations (4.20) and (4.21), the following holds.

ΛpRkq “ Pr
`
π Ñ Rk|ιPMϕ

init

˘

“
´
ι⃗PMϕ,G
init pRkq

¯T

1⃗|Rk|ˆ1loooooooooooooomoooooooooooooon
Term 1

`
´
ι⃗PMϕ,G
init pT q

¯T ´
I ` TT ÑT ` T 2

T ÑT ` . . .
¯
TT ÑRk

1⃗|Rk|ˆ1looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon
Term 2

.

(4.22)

In the above equation, Term 1 is simply the probability that under the initial distribution, ι⃗PMϕ,G
init ,

the initial global state ps0, g0q P S ˆ G is in the recurrent set Rk. If this is so, any resulting path of

the controlled system is guaranteed to remain in Rk forever. Next, Term 2 can be rewritten as

Term 2 “
8ÿ

t“0

´
ι⃗PMϕ,G
init pT q

¯T ´
TT ÑT

¯t

TT ÑRk
1⃗|Rk|ˆ1. (4.23)

For each t, the corresponding summand denotes the probability that the execution started and

stayed in some transient state in T , until exactly t-th time step before getting absorbed in Rk at

time step t ` 1. The following lemma shows that the infinite sum in Equation (4.23) converges.

Lemma 4.2.3 [71] : The limit

lim
tÑ8

tÿ

k“0

T k
T ÑT (4.24)

exists and is equal to pI ´ TT ÑT q´1.

Equation (4.22) with Lemma 4.2.3 allows the probability of absorption in any ϕ-feasible set to be

computed as
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Pr
`
π Ñ ϕ-RecSetsG|ιPMϕ

init

˘
“

ř
RkĎϕ-RecSetsG

ΛpRkq

“
ř

RkĎϕ-RecSetsG
Pr

`
π Ñ Rk|ιPMϕ

init

˘
,

(4.25)

which gives the LTL satisfaction probability as a function of the parameters of G.

4.2.3.1 Complexity and Efficient Approximation

Before going into the details of how Equation (4.22) is used to optimize the satisfaction probability

of ϕ, it is worthwhile to look at the complexity and efficiency of computing the r.h.s. of that

equation. One source of computational complexity arises from the need to compute the recurrent

sets of the global Markov chain. The growth of this complexity is analyzed in Section 4.5.1. Here, the

computational complexity arising due to the infinite sum in Term 2 of Equation (4.22) is presented.

Lemma 4.2.3 offers one method of computing the r.h.s using the infinite sum 1`TT ÑT `T 2
T ÑT ` . . . ,

by inverting p1 ´ TT ÑT q, which has complexity Op|T |3q. A less computationally intensive method

to compute Term 2 is by recognizing that this sum is finally multiplied by TT ÑRk
1⃗|Rk|ˆ1, which

computes to a column vector of size |Rk| ˆ1. As suggested in [1], this allows for an iterative method

with lower complexity as follows. Initialize variables v0 and x0

v0 “ TT ÑRk
1⃗|Rk|ˆ1,

x0 “ 0
(4.26)

Then iterate the equations

vn`1 “ TT ÑT vn,

xn`1 “ xn ` vn
(4.27)

until convergence, i.e., for some tolerance εx ą 0, D Nx s.t. ||xN ´ xN´1||8 ď εx @ N ě Nx. The

convergence of Equation (4.27) is guaranteed because it is well known that T n
T ÑT Ñ 0 as n Ñ 8 [71].

Then, use the approximation

{Term 2 “
´
ι⃗PMϕ,G
init

¯T

xNx . (4.28)

This approximation method has the complexity Op|Rk|2Nxq. In fact, if the underlying POMDP’s

transition distribution is sparse, then sparse matrix multiplication and addition can be used in the

approximation method, whose practical complexity reduces to Opc|Rk|Nxq with c ! |Rk|. The

sparsity assumption may appear in many engineering examples such as robotic systems in which

only a few other states are reachable from a particular state. The constant c is dependent on the

sparsity level.
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4.2.4 Gradient of Probability of Absorption

Equation (4.22) provides an expression for the probability of absorption: an analytical expression

for its gradient with respect to Φ and Θ can also be derived. In Terms 1 and 2 of Equation (4.22),

the expression ι⃗PMϕ,G
init is a function only of the parameters Θ via the initial FSC node distribution κ.

In Term 2, the expressions limtÑ8
řt

k“0
T k
T ÑT and TT ÑRk

are a function only of the Φ parameters.

It suffices to provide the derivative of Terms 1 and 2 w.r.t. Θ, and the derivative of Term 2 w.r.t.

Φ. The rest of this section computes these quantities.

From Equation (3.1) in the definition of a global Markov chain

ιPMϕ,G
init prs, gsq “ ιPMϕ

init psqκpg|ιPMϕ

init ,Θq ùñ
BιPMϕ,G

init prs, gsq

Bθi
“ ιPMϕ

init psq
Bκpg|ιPMϕ

init ,Θq

Bθi
,

(4.29)

where Bκpg|ιPMϕ

init ,Θq
Bθi

can be computed using Equation (4.17).

Next, it is shown how to compute the gradient of a general entry in the matrix TPMϕ,G . From

Equation (3.2)

TPMϕ,G prs1, g1s|rs, gs,Φq “
ř
oPO

ř
αPAct

Opo|sqωpg1,α|g, oqT ps1|s,αq

ùñ
BTPMϕ,Gprs1,g1s|rs,gs,Φq

Bφ¯̄g ¯̄α|ḡō
“

ř
oPO

ř
αPAct

Opo|sq Bωpg1 ,α|g,oq
Bφ¯̄g ¯̄α|ḡō

T ps1|s,αq,
(4.30)

where Bωpg1,α|g,oq
Bφ¯̄g ¯̄α|ḡō

is computed using Equation (4.15).

Finally, the following shows how to compute the gradient of the infinite sum in Term 2. From

Lemma 4.2.3,

lim
tÑ8

tÿ

k“0

T k
T ÑT “ pI ´ TT ÑT q´1. (4.31)

This implies that,

∇Φ

´
limtÑ8

řt
k“0

T k
T ÑT

¯
“ ∇Φ

`
pI ´ TT ÑT q´1

˘

“ ´pI ´ TT ÑT q´1∇ΦpI ´ TT ÑT qpI ´ TT ÑT q´1

“ `pI ´ TT ÑT q´1∇ΦTT ÑT pI ´ TT ÑT q´1

“
´
I ` TT ÑT ` T 2

T ÑT . . .
¯
∇ΦTT ÑT

´
I ` TT ÑT ` T 2

T ÑT . . .
¯
,

(4.32)

where line 1 implies line 2 using linear algebra identities [112] and can be derived easily by differen-

tiating both sides of the equation pI ´ TT ÑT qpI ´ TT ÑT q´1 “ I. Thus the computation has been

reduced to computing ∇ΦTT ÑT which is done using Equation (4.30).

In closing, the aggregate of these computations yield the gradient of the probability of satisfaction

of ϕ when the structure of the FSC is fixed. For ∇ P t∇Θ,∇Φu
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∇PrpPM ( ϕq “ ∇Pr
`
π Ñ ϕ-RecSetsG|ιPMϕ

init

˘

“
ř

RkĎϕ-RecSetsG
∇Pr

`
π Ñ Rk|ιPMϕ

init

˘
.

(4.33)

From Equation (4.22)

∇Θ Pr
`
π Ñ Rk|ιPMϕ

init

˘
“

´
∇Θι⃗

PMϕ,G
init pRkq

¯T

1⃗|Rk|ˆ1

`
´
∇Θι⃗

PMϕ,G
init pT q

¯T ´
I ` TT ÑT ` T 2

T ÑT ` . . .
¯
TT ÑRk

1⃗|Rk|ˆ1 ,

(4.34)

and

∇Φ Pr
`
π Ñ Rk|ιPMϕ

init

˘
“

´
ι⃗PMϕ,G
init pT q

¯T

∇Φ

´
I ` TT ÑT ` T 2

T ÑT ` . . .
¯
TT ÑRk

1⃗|Rk|ˆ1looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon
Grad Term 1

`
´
ι⃗PMϕ,G
init pT q

¯T ´
I ` TT ÑT ` T 2

T ÑT ` . . .
¯
∇ΦTT ÑRk

1⃗|Rk|ˆ1looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon
Grad Term 2

.

(4.35)

4.2.4.1 Complexity and Efficient Computation

For the gradients of Terms 1 and 2, one source of computational complexity are the infinite sums

∇Φ

´
I ` TT ÑT ` T 2

T ÑT ` . . .
¯
and

´
I ` TT ÑT ` T 2

T ÑT ` . . .
¯
respectively, where computing each

power term successively has Op|T |3q complexity. However, this computation can be reduced to

quadratic complexity by using a similar trick as in Section 4.2.3.1.

First, in gradient of Term 2, note that the infinite sum is pre-multiplied by a row vector´
ι⃗PMϕ,G
init

¯T

. To compute this product the following iteration can be setup. Initialize variables

v1
o and x1

0

v1
0 “

´
ι⃗PMϕ,G
init

¯T

, and

x1
0 “ 0.

(4.36)

Then, carry out the iteration

v1
n`1 “ v1

nTT ÑT , and

x1
n`1 “ x1

n ` v1
n

(4.37)

until ||x1
n`1 ´ x1

n||8 ď εx1 , where εx1 is a given tolerance. Next, for the gradient of Term 1, rewrite

the second term in Equation (4.35) using Equation (4.32)
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∇ΦTerm 1 “
´
ι⃗PMϕ,G
init

¯T ´
I ` TT ÑT ` T 2

T ÑT ` . . .
¯

loooooooooooooooooooooooooomoooooooooooooooooooooooooon
Term A

∇ΦTT ÑT

´
I ` TT ÑT ` T 2

T ÑT ` . . .
¯
TT ÑRk

1⃗|Rk|ˆ1looooooooooooooooooooooooooomooooooooooooooooooooooooooon
Term B

.

(4.38)

Note that Terms A and B are the same quantities that are computed in the iterative schemes of

Equations (4.36-4.37) and (4.26-4.27) respectively.

For the gradient of the absorption probability w.r.t. Φ, as shown in Equation (4.34), all that

remains now is to establish the overall complexity of computing ∇ΦT . This is can be quite an

expensive operation, since the gradient must be taken for each element of T with respect to each

φ P Φ. In the worst case, the complexity is given by Op|S|2|G|2|Φ||Act||O|q. However, for sys-

tems that are described by sparse transition and observation functions, the practical complexity is

Opc|S||G||Φ||Act|q with c ! |G||G||O|.

For the gradient w.r.t Θ, the complexity of evaluating ∇Θ ι⃗
PMϕ,G
init pRkq is given by Op|S|2|Θ|q.

4.2.4.2 Gradient Based Optimization

In the preceding sections, the analytical expression for the gradient of satisfaction probability was

derived. This gradient can be used in first order methods [150] to search or optimize the following

objective

max
Φ,Θ

PrpPM ( ϕq

ùñ max
Φ,Θ

Pr
`
π Ñ ϕ-RecSetsG|ιPMϕ

init

˘

ùñ max
Φ,Θ

ř
RkĎϕ-RecSetsG

Pr
`
π Ñ Rk|ιPMϕ

init

˘
(4.39)

over the parameters Φ and Θ.

4.3 Ensuring Non-Infinitesimal Frequency of Visiting RepeatPMϕ

States

Even though the soft-max parametrization ensures that the structure and hence the recurrent classes

of the global Markov chain remains unchanged with parameters, in numerical algorithms it can lead

to undesirable steady state behavior. To understand this, consider the global Markov chain in

Figure 4.2. It is possible that the optimization in Equation (4.39) causes the RepeatPMϕ

states to

be visited with infinitesimal frequency. While this characteristic will satisfy ϕ for very long runs, in

real applications it is reasonable to prefer that RepeatPMϕ

is visited often in steady state.



54

rs1, g1s

rs2, g2s

rs3, g3srs4, g4s

rs5, g5s

1.0

p

1 ´ p

R1

R2

Figure 4.2: RepeatPMϕ

can be visited with vanishing frequency.
The projection of global state rs5, g5s onto the product POMDP state is given by s. Assume that it is
the only product state that belongs to a RepeatPMϕ

set. It is possible that maximizing probability
of absorption into R2 causes p to grow arbitrarily close to 1, causing state rs5, g5s to be visited with
infinitesimally small frequency in steady state.

A high frequency of visiting the set RepeatPMϕ

can be accomplished by looking at each ϕ-feasible

recurrent set Rk and identifying the set that needs to be visited often, denoted Goodk Ď Rk. This

is done in Algorithm 4.1 below.

Algorithm 4.1 Generate Set To Visit Frequently

Input: ϕ-feasible recurrent set Rk, Rabin acceptance pairs of product-POMDP ΩPMϕ

1: Goodk “ H
2: for all pRepeatPMϕ

i , AvoidPMϕ

i q P ΩPMϕ

do
3: if pAvoidPMϕ

i ˆ Gq X Rk “ H then
4: Goodk “ Goodk Y

`
pRepeatPMϕ

i ˆ Gq X Rk

˘

5: end if
6: end for
7: return Goodk

The algorithm simply identifies those Rabin acceptance pairs that are consistent with the recurrent

set Rk, and then selects those states from Rk that project onto the RepeatPMϕ

part of the Rabin

pair. Next, the goal is to ensure that at least some state(s) in the set Goodk is(are) visited frequently

in steady state. Recall that steady state implies that the path is already absorbed in Rk. The quantity

of interest is given by the empirical or pathwise occupation measure from Equation (3.23) by setting

AÐ Goodk. Writing out the modified equation explicitly gives

πptqpGoodk|s0q “
1

t

tÿ

k“1

prsk, gks P Goodkq , t “ 1, 2, . . . (4.40)

Then the expectation of the pathwise occupation measure is taken with the assumption that
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paths are already absorbed in Rk, thus implying steady state behavior of the Markov chain. This

can be done by additionally taking the expectation due to an initial distribution ιssinit whose support

is in Rk. Additionally, the horizon is taken to be infinite to reflect long term steady state. Formally,

this done by modifying the Equation (3.24) in the following way to compute the expected pathwise

occupation measure as the horizon goes to 8.

lim
tÑ8

E
“
πptqpGoodkq|ιssinit

‰
“ lim

tÑ8
E

„
1

t

řt
k“1

prsk, gks P Goodkq |ιssinit

ȷ

“
ř

rs,gsPRk

ιssinit

´
rs, gs

¯ ´
lim
tÑ8

T ptqpGoodk|rs, gsq
¯
,

where
ř

rs,gsPRk

ιssinit

´
rs, gs

¯
“ 1

(4.41)

ensures that supportpιssinitq Ď Rk.

Equation (4.41) can be rewritten using the vector and matrix representation of the above quan-

tities as follows

lim
tÑ8

E
“
πptqpGoodkq|ιssinit

‰
“ p⃗ιssinitq

T
´
lim
tÑ8

T ptq
¯
1⃗SˆG
Goodk

“ p⃗ιssinitq
T Π1⃗SˆG

Goodk
,

(4.42)

where line 1 leads to line 2 using the limiting matrix, Π, as introduced in Definition 3.4.12.

4.3.1 Equivalence to Expected Long Term Average Reward

Proposition 4.3.1 : Consider the reward structure over the global state space

r prs, gsq “

$
&

%
1 if rs, gs P Goodk

0 otherwise.
(4.43)

Then the expected long term average reward is the same as the expected occupation measure of set

Goodk, i.e.,

ηavpRkq “ lim
tÑ8

«
1

t

tÿ

k“0

rk |ιssinit

ff

“ lim
tÑ8

E

”
πptqpGoodkq|ιssinit

ı
(4.44)

where rk is the reward obtained at time step k.

This is an important relationship, as the long term average reward and the computation of its

gradient is studied extensively in the literature, especially for the case of the Markov chain being

ergodic (or having a single recurrent class) [1, 10]. Our restriction on the support of the initial

distribution ensures that the Markov chain evolves exclusively in a single recurrent class Rk, and

therefore the methods described in these works can be directly utilized. The derivations of the

gradients ∇ΘηavpRkq and ∇ΦηavpRkq are skipped, and the reader is referred to [1] for a detailed
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description. The complexity of evaluating the gradient is summarized from [1] here to complete the

view of computational burden of the gradient ascent methodology.

4.3.1.1 Complexity of Computing Gradient of ηavpRkq

From [1], in the worst case, the complexity of computing∇ΦηavpRkq is given byOp|S|2|G|2|Φ||Act||O|q

similar to the gradient of absorption probability. The reduced practical complexity for sparse transi-

tion and observation functions applies as well and is given by Opc|S||G||Φ||Act|q with c ! |G||G||O|.

The gradient of ηavpRkq w.r.t. Θ is zero.

4.4 Trade Off between Absorption Probability and Visitation

Frequency

Having a high frequency of visiting Goodk is best viewed as a constraint on the optimization problem

in Equation (4.39). However, in order to formally construct the constrained problem, it is no longer

possible to look at the union of all ϕ-feasible recurrent sets at once. To understand this, consider

the following events over the global Markov chain.

1. pk :“ π Ñ Rk, Rk Ď ϕ-RecSetsG: Path is absorbed in ϕ-feasible recurrent set Rk.

2. p :“ π Ñ
Ť

RkĎϕ-RecSetsG Rk: Path is absorbed in some ϕ-feasible recurrent set Rk.

3. qk :“ ηpRkq ě ck ą 0: States Goodk Ď Rk are visited with positive frequency.

Ideally, any algorithms should attempt to maximize the following objective.

max
Φ,Θ

Pr

»

–p ^
ľ

RkĎϕ-RecSetsG

ppk ùñ qkq

fi

fl , (4.45)

in which qk is a constraint that is selectively applied depending on which recurrent set the path is

absorbed into. This is difficult to pose as a single optimization problem. Instead, one constrained

optimization problem for each ϕ-feasible recurrent set must be solved as follows

max
Φ,Θ

Prrpk ùñ qks. (4.46)

In terms of ΛpRkq, which denotes the absorption probability (Equation (4.22)), and ηavpRkq, which

is the expected long term average reward (Equation (4.44)), this optimization can be written as

max
Φ,Θ

ΛpRkq

subject to ηavpRkq ě ck.
(4.47)
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The above optimization problem is still difficult to solve because the constraint is non-linear and it

is unclear how to explore the feasible set for it. Instead, the constrained problem can be transformed

into a unconstrained problem using a barrier function, such as the log barrier, to give

max
Φ,Θ

ΛpRkq `
1

c1
k

log pηavpRkq ´ ckq
looooooooooooooooooomooooooooooooooooooon

ΓpRkq

. (4.48)

The preceding sections showed how to compute the gradient of ΛpRkq and ηavpRkq. Hence, first

order methods for unconstrained optimization can be applied. The case studies presented in Section

4.7 utilize adaptive step size gradient ascent. The parameters ck, c
1
k, need to be hand tuned, usu-

ally after studying the behavior of the system, the feasible set, and the need to have good steady

state visitation frequency. Moreover, the objective is non-linear, and first order methods can only

guarantee convergence to a local maximum.

The overall best FSC parametrization is obtained by taking the maximum over all ϕ-feasible

recurrent sets. Let Γ˚pRkq be the (local) optimum value obtained from Equation (4.48) and the

corresponding optimizing parameters are given by G˚pRkq “ tΦ˚pRkq,Θ˚pRkqu. Then the optimum

value is taken to be

max
RkĎϕ-RecSetsG

Γ˚pRkq. (4.49)

The optimum controller is given by G˚pR˚
k q “ tΦ˚pR˚

k q,Θ˚pR˚
k qu, where

R˚
k “ argmax

RkĎϕ-RecSetsG
Γ˚pRkq. (4.50)

4.5 Heuristic Search for FSC Structures with a ϕ-Feasible

Recurrent Set

In this section it shown how, given a fixed size |G|, candidate FSCs that yield at least one ϕ-feasible

recurrent set can be generated. This problem is hard [33] in itself – the hardness arising out of partial

observability in which possibly unbounded sequences of actions and observations may be required to

ensure that some states are never visited. However, the heuristic described in this section restricts

the search over outcomes that can be inferred by a single, most recent, observation and action. Thus,

the proposed method is incomplete, in which a solution may exist, but the algorithm is unable to

find it. The details of this heuristic search is given in Algorithm 4.2.

In order to understand the algorithm, the reader is pointed to the example in Figure 4.3. It

shows a part of a global Markov chain, such that the underlying product POMDP has only one

Rabin acceptance pair. The global state, rs4, g4s, denoted in green in Figure 4.3, is the only global
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rs1, g1s

rs2, g2s

rs3, g3s

rs4, g4s

rs5, g5s

rs6, g6s

rs7, g7s

Good

Bad

C1

C2

Figure 4.3: Generating Admissible Structures of FSC
There are two communicating classes C1 and C2. In steady state it must be ensured that the green
node is recurrent, while the red node is never visited, i.e., rs2, g2s must be disconnected from rs1, g1s.
Since C1 can lead to C2, which is absorbing, the communication between rs1, g1s and rs5, g5s needs
to be severed. Thus, in Algorithm 4.2, Good “ trs4, g4su, and Bad “ trs2, g2s, rs5, g5su.

state whose projection s4 P RepeatPMϕ

1 . The global state, rs2, g2s, denoted in red, is such that

s2 P AvoidPMϕ

1 . There are two communicating classes, C1, and C2, in the global Markov chain s.t.

C1 Ñ C2, and C2 is absorbing. Therefore the states in Bad “ trs2, g2s, rs5, g5su need to be made

unreachable in steady state, while ensuring that some state in Good “ trs4, g4su is recurrent. The

former is done in steps 14-15 of Algorithm 4.2 by disallowing actions which lead to bad states under

the latest observation. Recurrence of some state in Good is ensured in steps 19-20. This recurrence

may not always be guaranteed because disconnecting states in Bad by removing actions may change

the communication properties of other global states. The check for
ř

glPG,αPAct

Iωpglα|gk, oq ą 0 in

steps 9 and 17 makes sure that the modification in Iω does not yield an inadmissible structure as

defined in Equation (4.3).

Note, that no discussion about Iκ has been made in the context of feasibility. This is because

setting Iκpgq “ 1, @g P G, is sufficient and this choice does not affect the ϕ-feasibility.

4.5.1 Complexity

Algorithm 4.2, presents two main sources of computational complexity. First is the computation

of strongly connected components. For a graph , these components can be found with effort
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Algorithm 4.2 Generate Candidate FSCs

Input: Fixed FSC I-States G, structure Iω , product-POMDP transition probabilities Tϕ

1: Candidate FSC structures “ H
2: Construct the directed graph of the global Markov chain under Iω
3: Find communicating classes C “ tC1, . . . , CNu by computing the strongly connected components

C “ sccsp q.
4: for all C P C and pRepeatPMϕ

r , AvoidPMϕ

r q P ΩPMϕ

do
5: Badr “ ts1 P Cd ‰ C s. t. Ds P C and s Ñ s1u
6: Badr “ Badr Y

`
C X pAvoidPMϕ

r ˆ Gq
˘

7: Goodr “ C X pRepeatPMϕ

r ˆ Gq
8: Initialize Iωpglα|gkoq “ 1, φglα|gko “ 0, @α P Act, o P O, gk, gl P G
9: while

ř
glPG,αPAct

Iωpglα|gkoq ą 0, @o P O, gk P G and Bad ‰ H do

10: Pick s1 “ r⟨sj , qn⟩ , gls P Badk,r
11: for all s “ r⟨si, qm⟩ , gks P Rk do
12: for all α P Act do
13: ωpgl,α|Φ, gk, oq “ Iωpgl,α|gk,oq

Σ
g1
Σ
α1
Iωpgl,α1|gk,oq

14: if Opo|siqωpgl,α|φ, gk, oqTϕ pxsj, qny | xsi, qmy ,α q ą 0 then
15: @gk, gl P G, Iglα|gko Ð 0
16: end if
17: end for
18: end for
19: Badr Ð Badrzts1u
20: end while
21: if

ř
glPG,αPAct

Iωpgl,α|gk, oq ą 0,@o P O, gk P G then

22: Construct the directed graph 1 of the global Markov chain under modified Iω
23: if Ds P Goodr s.t. s is recurrent under then
24: Ð Y tIωu
25: end if
26: end if
27: end for
28: return
Output: The set of admissible structures “ tIω|Resulting FSC has ϕ-feasible recurrent setsu
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proportional to Op|V |` |E|q, where V are the set of nodes and E are the set of edges. For the global

Markov chain, the number of nodes equals |S||G|, while the worst case number of edges is given by

|S|2|G|2. Taking the higher of the two, this gives steps 2 and 18 a complexity of Op|S|2|G|2q. On the

other hand the nested loops in steps 4-16, have the worst case complexity of Op|S|2|G|2|Act||O|q.

Therefore, the overall complexity is the later expression Op|S|2|G|2|Act||O|q.

4.6 Initialization of Θ and Φ

The last algorithmic aspect that should be mentioned is that once a feasible structure has been

found for the optimization problem in Equation (4.48), Θ and Φ need to be initialized. Giving equal

probability to all I-state transitions and actions, reflected in identical initialization of parameters,

may seem like the best choice, since that assumes least amount of prior information. However, as

described in [1], this may lead to uniformly zero gradients. While the cited work talks exclusively

about the gradient of ηavpRkq w.r.t. Φ, it is equally applicable to the gradients w.r.t. Θ and also

to the gradient of ΛpRkq. This arises because the quantities whose gradients are being computed

are expectations over infinite paths. Uniform parametrization of the controller may not be able to

distinguish between probability measures of paths over long executions, thus giving zero gradient

with respect to the parameters. This can be addressed by randomly initializing the parameters Θ

and Φ.

In [1], the author also talks about the problem of soft-max saturation in which the gradient

vanishes because the softmax saturates when some parameters are large as compared to others. The

author recommends random initialization of parameters to small values, usually in r´1, 1s.

4.7 Case Studies

This section collects numerical examples that demonstrate the salient features of the policy gradient

methodology presented in this chapter.

4.7.1 Case Study I - Repeated Reachability with Safety

System Model: This case study uses the system model described in Example 2.2.2. For conve-

nience, the graphical representation is repeated in Figure 4.4(c) and it will be called POMDP-World.

Figure 4.4(a) shows the deterministic version of the world, called Det-World, in which each action

has a single deterministic outcome and full observability is assumed, that is, the robot knows its

cell location perfectly. Part (b) of the figure shows a fully observable probabilistic world, called

MDP-World. In this case the actions move right R, move left L, move up U and move down D, have

probabilistic outcomes as in the case of the POMDP-World. The stop action X deterministically
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causes the robot to remain in its current cell. These three models will allow comparison of some

issues that arise from the use of gradient ascent methodology to design a controller.

LTL Specification: The LTL specification of interest for this case study is given by the formula

ϕ1 “ l♦a ^ l♦b ^ l␣c. (4.51)

The intuitive notion is that the grid world in Figure 4.4 represents a segmentation or finite

abstraction of a corridor. The red cell represents a stairwell that a wheeled robot is unsafe in, while

it must regularly tend to both the green cells (perhaps to service instruments) indefinitely. Thus the

specification tells the robot to ensure that it must visit both cells labeled a and b infinitely often,

while ensuring that it never visits cell c. The former requirement is a liveness formula, while the

latter is a safety formula (Section 2.1.2). The DRA for this formula is shown in Figure 4.5.

Results:

Feasibility

First, consider the difference in feasibility of the specification over the three different types of system

model. It can be seen that the formula ϕ1 is feasible for Det-World when the corridor width N ě 2,

while for the case of MDP-World and POMDP-World the system becomes feasible for N ě 3. It is

easy to see why N “ 2 in the probabilistic models is infeasible: the robot can only move into cell 10

from the left by issuing a right signal R from cell 2 or 9, in which case it may end up in the red cell

3 due to probabilistic outcomes. The specification becomes feasible for N “ 3 for both MDP-World

and POMDP-World. For the MDP world, the robot needs to first ensure it has moved to cell 16

and then issue a move right signal R. Similarly, to move left from the right half of the grid world,

if the robot issues move action L from cell 18, it is guaranteed to stay away from red cell 3. For the

POMDP-World however, there is the additional burden for the robot to infer with full confidence

that it is in cell 16 before issuing a move right action, and similarly guarantee location in cell 18

before issuing a move left action. This issue is visited for a slightly different grid world model again

in Section 4.7.3.

Quality of Trajectory

The performance of the policy gradient ascent algorithm starting from an initial feasible controller

for different sizes of the FSC is presented. The experiment was conducted for N “ 4. Recall that

the objective function for the policy gradient ascent is given by Equation (4.48), repeated here

max
Φ,Θ

ΛpRkq `
1

c1
k

log pηavpRkq ´ ckq
looooooooooooooooooomooooooooooooooooooon

ΓpRkq

, (4.52)

where the quantity ΛpRkq denotes the probability of absorption into a ϕ1-feasible recurrent set and

ηavpRkq indicates the frequency of “good events”. For our example, a good event occurs every time



62

1 2 4 5 6

7 8 9 10

3

13

ba

R
11 12

0

M=7

N

R
R

1.0

c1.0

1.0

1.0

start

(a) Det-World
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(b) MDP-World
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(c) POMDP-World

Figure 4.4: System Models for Case Study I. (a) A planar grid world in which a robot moves
deterministically, i.e., each action has a single outcome. Outcomes for moving right (α “ R) shown
above. The actions for moving left L, up U , and down D respectively, are similarly defined. In
addition there is a fifth action Stop, denoted X , which causes the robot to remain in its current
cell. The robot additionally knows its location (cell number) without ambiguity. (b) A probabilistic
world, in which the robot actions R, L,, U and D have probabilistic outcomes, while X results in the
robot remaining in its current cell deterministically. The difference in behavior in different types of
cells (interior,edge, or corner cells) should be noted. Action L, U , and D are symmetrically defined.
The robot can still locate itself without ambiguity, thereby making the domain an MDP. (c) Partially
observable probabilistic grid world. The robot moves probabilistically when commanded, with same
values as the MDP. However, it can no longer measure its location (cell) accurately. When the robot
is in the dark blue cell, the probabilities of getting a measurement which suggests a location in a
neighboring cell are indicated by the neighboring light blue cells as shown.
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Figure 4.5: DRA for the LTL specification ϕ1 “ ˝♦a ^ ˝♦b ^␣c. There is one accepting condition
indexed by +/-0. State 3, labeled by -0 belongs to the Avoid1 set and therefore must be avoided
during steady state. However, the state numbered 3 is a sink and therefore to maximize the prob-
ability of absorption into a ϕ1-feasible set, visits to this state must be avoided during transience
as well. It so happens that state 5, which belongs to the Repeat1, is in fact not reachable when
the product is taken with the model. Therefore, it must be ensured that state 4 is visited infinitely
often.

both a and b cells are visited since the last good event. This means that a sequence a, a, a, a, b counts

as 1 good event and the process that indicates good events resets.

It was found that all feasible controllers trivially ensure ΛpRkq “ 1, so that the optimization

simply serves to improve the frequency of good events. The dependence of ηav on the number of

FSC I-states is shown in Figure 4.6. Note that, the gradient ascent algorithm does not indicate how

to automatically grow the number of I-states at a local maxima, so each trial was seeded by the

number of I-states shown in the figure. Note the large increase in the value of ηav every time an

I-state is added for small values of |G|. This fast increase can be interpreted as follows. The FSC’s

performance will increase if it can keep track of whether it is trying to go to cell b or to cell a. This

fact already points to the need for at least two I-states to realize good performance. In addition,

utilizing more I-states allows for optimization over longer observation/action histories, thus making

up for partial observability. Another perspective is that for small numbers of I-states, the controller

tries to achieve its goal of recurrence by leveraging stochasticity: by producing random sequence of

actions, some sub-sequences are bound to make the state visit a or b. As the controller gains more

internal states, the control becomes more deliberate, taking better account of the system dynamics

and observations.

4.7.2 Case Study II - Stability with Safety

This case study demonstrates that the probability of LTL satisfaction can be negatively effected by

partial observability. Control design and execution results for the POMDP-World will be compared

with that of fully observable MDP cases.
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Figure 4.6: Dependence of expected steady state average reward η on size of FSC, for POMDP-
World, N=4. Since Φ,Θ are initialized randomly, mean and standard deviation for 5 samples each
is shown. The hand tuned parameters in Equation (4.48), were taken to be c1

1 “ 1, c1 “ 0.

System Model

For this case study, consider a different grid world, as shown in Figure 4.7. The motion and obser-

vation models are the same as in Case Study I. Only the size and cell labelings are different.

LTL Specification

In this case study the LTL formula of concern is given by

ϕ2 “ p♦ l a _ ♦ l bq ^ l␣c. (4.53)

In other words, the specification dictates that the robot should navigate to either green cell 36 or

green cell 41, and stay there. But the robot must avoid all the red cells (cells 14 and 24). Recall

that the requirement in the parentheses is a stability requirement while the requirement l␣c is a

safety formula as defined in Section 2.1.2.

Results

First note that the full formula ϕ2 can be satisfied with probability 1 (almost sure satisfaction) for

both MDP and POMDP versions. For the MDP case, visiting either cell 36 or cell 41 is acceptable.

For POMDP-World the resulting FSC accomplishes almost sure satisfaction by choosing to make

proposition b true. Thus the robot navigates to green cell 41. This is because an attempt to navigate

to cell 36 can cause the robot to visit either cell 14 or 24 depending on the path it takes. Thus, for

both MDP and POMDP if the gradient ascent algorithm is used, at optimality the probability of

LTL satisfaction was found to be Λ “ 1. In addition, once the robot reaches cell 41, it must ensure

it stays there forever, thus requiring ηav “ 1, which is the maximum value that η can take. The



65

Figure 4.7: System Model for Case Study II

Λpϕ2paqq Λpϕ2pbqq

MDP 1.000 1.000
POMDP 0.974 1.000

Table 4.1: Results for GW-B under ϕ2

algorithm converged to the optimal values for both Λ and η. However, there is a difference between

the gradient ascent algorithm and the typical solution methodology for MDPs. To understand this,

first split ϕ2 into two formulas:

ϕ2paq “ ♦ l a ^ l␣c and

ϕ2pbq “ ♦ l b ^ l␣c with

ϕ2 “ ϕ2paq _ ϕ2pbq

(4.54)

That is, ϕ2 is a disjunction of two smaller formulas. When the gradient ascent algorithm was

run separately for these two formulas, the absorption probability obtained are given in Table 4.1.

For the POMDP case, the gradient ascent algorithm picks ϕ2 and visiting cell 41 precisely because

it has larger Λ of the two. When the gradient ascent algorithm is applied to the MDP case, in which

both formulas have the same probability of satisfaction, the algorithm does not pick a favorite. It

finds two controllers of equal satisfaction probabilities, and the tie needs to be broken by some rule.

This is because two candidate ϕ-RecSetsG are generated, and an FSC is optimized for each of them

separately. This is different from the typical MDP solution methodology [8, 40], where a shortest

path problem is solved in one shot to the union of all candidate ϕ-feasible recurrent sets. For the

initial start state as shown in Figure 4.7, the shortest path algorithm would always steer the robot

to cell 36, even when the formula ϕ2 is satisfied with probability 1 by navigating to either cell a or

cell b.
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Figure 4.8: Sample trajectories under optimal controller(s) for MDP (pink) and POMDP (blue).

Sample trajectories resulting from numerical simulations for both MDP and POMDP examples

are shown in Figure 4.8. As mentioned before, for MDP-World, two controllers with identical

performance that reach cells a and b respectively, were found. Pink dashed lines show a sample

trajectory for both such controllers. Running the gradient ascent algorithm on the POMDP-World

yielded two controllers corresponding to ϕ2paq and ϕ2pbq as well. However, the latter gave better

optimal value for the objective. A sample trajectory for the POMDP using the best controller is

also shown in the same figure via a blue dashed line.

4.7.3 Case Study III - Initial Feasible Controller

System Model and LTL Specification

In this case study, the models Det-World, Prob-World and POMDP-World from Case Study I are

studied again under the LTL formula ϕ1, which requires repeatedly reaching green cells 0 and 6

while avoiding red cell 3. However, there is a small difference in the motion model. The actions

move up (U) and move down (D), are now deterministic: the robot follows the motion model from

Det-World of Figure 4.4(a). The limitation of the heuristic in Algorithm 4.2 used to find the initial

feasible controller can be seen when applied to varying corridor widths in the grid world models.

Table 4.2 shows the cases for which the heuristic succeeds in finding an initial feasible controller.

Results

It was found that for N “ 3, even though there exist feasible FSCs for the POMDP-World, the

heuristic is unable to find them. This failure occurs because the heuristic prunes actions based only

on a single, most recent observation. Effectively, the controller considers only the previous step in

its execution. However, in order to localize itself to the top edge of the grid world for N “ 3, from

where it can move right or left safely, it needs access to its actions and observations from past time
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Corridor Width Det-World Prob-World POMDP-World
Feasible Found Feasible Found Feasible Found

N “ 1 No No No No No No
N “ 2 Yes Yes No No No No
N “ 3 Yes Yes Yes Yes Yes No
N ě 4 Yes Yes Yes Yes Yes Yes

Table 4.2: Finding the Initial Feasible Controller by Algorithm 4.2. For N “ 3, even though there
exist feasible FSCs for the POMDP-World, the heuristic is unable to find them.

steps as well.

4.8 Concluding Remarks

This chapter showed how the problem of maximizing the satisfaction of an LTL formula for a

POMDP can be solved for a fixed structure of the FSC. The idea was to identify recurrent sets

that are ϕ-feasible, and then maximize the probability of absorption into some ϕ-feasible set. The

ϕ-feasibility was framed as a constraint, and was finally incorporated into the objective using the

log barrier function, so that gradient optimization methods could be applied. The gradient itself

was shown to be computable and analytical expressions were derived for the same. A suboptimal

heuristic was then proposed to find the ϕ´feasible recurrent sets in the first place. Several case

studies that highlight the various aspects of the algorithm were shown.
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Chapter 5

Reward Design for LTL
Satisfaction

In the previous chapter it was shown how to maximize the LTL satisfaction probability for an FSC

G of a given structure, I. This was done by parametrizing the distributions ω which determine the

probability of making I-states transitions and issuing actions, and κ, which chooses the initial I-state

of the FSC given the product-POMDP initial distribution. The optimization was to the parameters

that determine ω and κ. However, the general problem of maximizing LTL formulas over a POMDP

encompasses searching over all possible FSC structures, which includes the FSC size |G|, the allowed

transitions and actions from each I-state of the FSC, Iω, and the allowed initial nodes of I-States

Iκ.

This chapter outlines how to simultaneously set up an any time optimization algorithm to search

both over the quality and structure of the FSC. However, the structure of the FSC I will not be

examined explicitly, except for the number of I-states utilized by the controller. Instead, the structure

can be inferred from the positive probability I-state transitions, actions, and initial I-states, in ω and

κ. In addition, the distributions ωpgl,α|gk, øq and κpgq are no longer dependent on other parameters

such as Φ and Θ as in the previous chapter, but are found directly from a constrained optimization

problem, which if feasible, ensures that they obey the laws of probability.

The reader is reminded of the goal of the optimization in Equation (4.48) from the previous

chapter: Maximize the probability of absorption into a ϕ-feasible recurrent set, while ensuring that

in steady state, the states in the corresponding RepeatPMϕ

i are visited with finite frequency once

absorbed. An example of robotic tasks that require repeated (but not necessarily periodic) behavior

is the case of service or surveillance robots that must repeatedly visit designated items or locations

that are not co-located. Another example is the use of robots on assembly lines, where a robot is

required to perform one of several possible tasks that are determined on the fly.
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5.1 Reward Design for LTL Satisfaction

In this chapter, a different optimization goal will be considered. Instead of maximizing the prob-

ability of absorption into a ϕ-feasible recurrent set directly, this chapter tackles a reward design

problem with the following goals:

• During the transient phase of the global Markov chain execution, the global state is absorbed

into a ϕ-feasible recurrent set quickly.

• During the steady state phase of the global Markov chain execution, the state visits the states

in RepeatPMϕ

r frequently.

These design goals are motivated by real world engineering examples, e.g. with physical robots,

energy management systems, etc., where the occurrence of “good” events in quick succession can

be crucial. Some concrete examples are: (a) Finishing a set of tasks before the robot battery runs

low, in which case some sensors or actuators may start to function below par; (b) A robot needs

to traverse a debris field quickly to reach an emergency site for response and recovery; (c) A sentry

robot that needs to surveil each of several locations indefinitely, should ideally navigate quickly to

the next location in a round robin scheme.

5.1.1 Incentivizing Frequent Visits to RepeatPMϕ

r

In classical POMDP planning problems, in which the agent collects rewards as it visits different

states, the desire to quickly accumulate useful goals is incentivized by weighing the rewards col-

lected at later time steps less. Formally, this incentivization process is encoded via a discounted

reward scheme introduced in Definition 2.2.8. There exist temporal logics that allow explicit ver-

ification/design for known finite time horizon [8, 21]. But, it may be hard to gauge what horizon

is feasible for a given POMDP and LTL formula a-priori. In such scenarios, a discounted reward

scheme, which does not effect feasibility, thus offers a viable solution.

In light of the above, a goal that incentivizes frequent occurrences of “good” events will be set up

as follows. Consider, a particular Rabin acceptance pair pRepeatPMϕ

r , AvoidPMϕ

r q in the product-

POMDP. The aim is to visit some states in RepeatPMϕ

r in the product-POMDP often. For this,

assign a reward scheme, called the “repeat” reward scheme, as follows.

rβr psq “

$
&

%
1 if s P RepeatPMϕ

r

0 otherwise.
(5.1)

The difference from the reward scheme in Section 4.3.1 is that we are no longer looking for a particular

recurrent set in the global state space. Equation (5.1) assigns rewards in the Product-POMDP state
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s1

s2 s3 s4

s5

rβ1 ps1q “ 0

rβ1 ps2q “ 0 rβ1 ps3q “ 0 rβ1 ps4q “ 0

rβ1 ps5q “ 1

Tϕps2|s1,αq “ 1

Tϕps5|s3,αq “ 1

ιϕinitps1q “ 1

RepeatPMϕ

1

AvoidPMϕ

1

Figure 5.1: Assigning rewards for visiting RepeatPMϕ

frequently. The above shows the state space of
product-POMDP. The edges are dependent on a particular action, α P Act, chosen arbitrarily here.
There is only one Rabin pair pRepeatPMϕ

1 , AvoidPMϕ

1 q. In order to incentivize visiting RepeatPMϕ

1 ,
the state s5 P S is assigned a reward of 1, while all other states get assigned a reward of 0.

space and are not concerned with the recurrent sets generated by a controller. This reward scheme

is represented in Figure 5.1.

Next, the discounted reward problem of interest is formally set up as:

ηβprq “ lim
TÑ8

«
Tÿ

t“0

βtrβr pstq |ιϕinit

ff

, 0 ă β ă 1, (5.2)

where β is again the discount factor. In Equation (5.2), while the objective incentivizes early visits

to states in RepeatPMϕ

r to accrue the maximum reward, it has two drawbacks:

1. The objective becomes exponentially less dependent on visitations to RepeatPMϕ

r at later time

steps. The rate of this decay is given by β. Thus, these visits are incentivized to be frequent

during the initial several time steps.

2. Due to partial observability, the transition from transience to recurrent (steady state) phase

of the global Markov chain cannot be reliably detected during a given execution. This poses

the difficulty of precluding visits to AvoidPMϕ

r when steady state is reached.

In order to tackle the first problem, if a stationary policy that is independent of the initial
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distribution of the product-POMDP can be found, then the expected visitation frequency can be

expected to remain the same for later time steps, including during steady state, when the global

Markov chain evolves in a recurrent set.

A suboptimal solution to tackle the second problem is discussed in the remainder of this chapter.

5.1.2 Computing the Probability of Visiting AvoidPMϕ

in Steady State

In this section a method for computing the likelihood or probability of visiting any state in AvoidPMϕ

is developed. If this quantity can be computed, then the discounted reward criterion can be opti-

mized under the constraint that this probability is zero, or extremely low. In order to compute the

probability of visiting AvoidPMϕ

regardless of the phase (transient or steady state) of execution of

the global Markov chain, first consider a modified Product-POMDP as follows. For @α P Act do

Tϕ
modpsk|sj ,αq “

$
’’’&

’’’%

0 if sj ‰ sk and sj P AvoidPMϕ

r

1 if sj “ sk, and sj P AvoidPMϕ

r

Tϕpsk|sj ,αq otherwise.

(5.3)

This choice of transition rule has the effect of making all states in AvoidPMϕ

r sinks.

Then, assign a different, “avoid” reward scheme

ravr psq “

$
&

%
1 if s P AvoidPMϕ

r

0 otherwise.
(5.4)

Figure 5.2 shows the modification in transition distribution and the new reward assignment for an

arbitrary α P Act.

Finally, under a given FSC, G, consider the expected long term average reward

ηavprq “ lim
TÑ8

1

T
mod

«
Tÿ

t“0

ravk pstq
ˇ̌
ˇιPMϕ

init

ff

(5.5)

where the expectation is using the global Markov chain arising from the modified transition distri-

bution Tϕ
mod as defined in Equation (5.3)

Lemma 5.1.1

Pr
”
π Ñ pAvoidPMϕ

r ˆ Gq
ˇ̌
ˇιϕ,G
init

ı
“ ηavprq (5.6)

where π P PathspMPMϕ,Gq is a path in the global Markov chain, which would arise from the

execution of the original unmodified Product-POMDP.

Proof See Appendix B.1.
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s1

s2 s3 s4

s5

ravr ps1q “ 0

ravr ps2q “ 0 ravr ps3q “ 1 ravr ps4q “ 0

ravr ps5q “ 0

Tϕps2|s1,αq “ 1

Tϕps3|s3,αq “ 1

ιϕinitps1q “ 1

RepeatPMϕ

1

AvoidPMϕ

1

Figure 5.2: Modifying Tϕ for steady state ϕ-feasibility. The diagram shows the state space of the
Product-POMDP, PMϕ. There is only one Rabin pair pRepeatPMϕ

1 , AvoidPMϕ

1 q in this depiction.
For each action α P Act, all states in AvoidPMϕ

1 are made sinks or recurrent classes by themselves.
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s1

s2 s3 s4

s5

ιϕinitps1q “ 1

RepeatPMϕ

1

AvoidPMϕ

1

α1 P Act

s1

s2 s3 s4

s5

ιϕinitps1q “ 1

RepeatPMϕ

1

AvoidPMϕ

1

α2 P Act

(a) (b)

Figure 5.3: Example where visiting AvoidPMϕ

is required to reach RepeatPMϕ

. In this example,
consider a 5 state product-POMDP which has only two actions, α1 and α2. The transitions for
each is shown above in (a) and (b) respectively. There is only one Rabin acceptance pair, shown
by the green state which must be visited infinitely often, and the red state which cannot be visited
in steady state. The initial distribution is concentrated in state s1. A deterministic controller
that issues the sequence of actions α1α1α2α2α2 . . . has positive probability of satisfying the LTL
specification. However, if the controller is constrained to have zero probability of visiting the red
node, no controller with positive satisfaction exists.

Lemma 5.1.1 provides a simple and tractable way of computing the probability of visiting Avoidr.

Note the conditional dependence on ιϕinit in Equation (5.5). Recall that to satisfy an LTL formula,

it is only required to guarantee that the probability of visiting and avoid state is zero in steady

state. Requiring this probability to be zero during the transient period may render many problems

infeasible where admissible controllers exist. One such example is explained in Figure 5.3.

Unfortunately, for partially observable processes, all of the formulation presented so far does not

provide a way to know if a particular path has entered steady state behavior. Recall that steady

state behavior in a Markov chain corresponds to the state entering a recurrent set. At most it is

possible to know the probability of being in steady state by taking the sum of all beliefs over recurrent

states.

Next, consider that the controller has access to an oracle that can declare the end of the transient

period during which visits to AvoidPMϕ

k may be allowed. Conversely, the oracle allows knowledge

of when the state enters a sub-Markov chain, in which the state is guaranteed to never visit Avoidr.

Of course, the controller doesn’t actually have access to this oracle, but perhaps a product-POMDP

and reward assignment can be designed such that the controller implicitly incorporates the function

of the oracle.
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First, a conservative way to approximate this oracle function is described, which will be shown

to preclude some controllers which could be valid otherwise.

5.1.3 Partitioned FSC and Steady State Detecting Global Markov Chain

Suppose that the FSC I-states, G, are differentiated a-priori into two sets Gtr and Gss such that

G “ Gtr Y Gss, and Gtr X Gss “ H, (5.7)

where, superscripts tr and ss stand for “transient” and “steady state” respectively. The idea is to

use this partitioning of the FSC I-states to indicate whether the execution of the global Markov

chain can ensure zero probability of any future visits to Avoidϕr . This is explained further as follows.

Let the global state at any time step t be given by rst, gts. The aim of this procedure is to create

a global Markov chain using the Product-POMDP that has the following property

Pr
”
rst1 , gt1 s P AvoidPMϕ

k ˆ G
ˇ̌
ˇDt ď t1, s.t. rst, gts P RepeatPMϕ

k ˆ Gss
ı

“ 0. (5.8)

In other words, let the product-POMDP visit a state in RepeatPMϕ

k , when the FSC is executing in

steady state, i.e., gt P Gss. Then, it must be ensured that the probability for the product-POMDP

to visit AvoidPMϕ

k at anytime in the future is zero. This requirement can be achieved in three steps.

First, the FSC is constrained so that it cannot transition from a state in Gss to any other state

in Gtr. Formally, @α P Act, o P O,

ωpg1,α|g, oq “ 0, g P Gss, g1 P Gtr. (5.9)

This constraint ensures that the controller is forced to transition to steady state only once during

an execution, mimicking the fact that for each infinite path in the Markov chain, the transition to

a recurrent set occurs only once.

Second, the method of evaluating the transition distribution of the global Markov chain is based

on the following definition.

Definition 5.1.2 (Steady State Detecting Global Markov Chain) The steady state detect-

ing global Markov chain (hereafter shortened ssd-global Markov chain) is given by its transition
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distribution function

TPMϕ,G
ssd

`
rs1, g1s |rs, gs

˘
“

$
’’’’’’&

’’’’’’%

ř
oPO

ř
αPAct Opo|sqωpg1,α|g, oqTϕps1|s,αq if g P Gtr, g1 P Gss,

ř
oPO

ř
αPAct Opo|sqωpg1,α|g, oqTϕ

modps1|s,αq if g, g1 P Gss

0 if g P Gss, g1 P Gtr,

due to Equation (5.9).

(5.10)

where the use of modified transition function in line two from Equation (5.3) should be noted. This

corresponds to the modification in which all states in AvoidPMϕ

r were made sinks.

The utility of the ssd-global Markov chain is visualized in Figures 5.4 and 5.5. The two figures

show how this construction allows for steady state behavior to preclude visits to AvoidPMϕ

r , while

still allowing the execution to visit these states in the transient phase.

Third, in addition to the two reward schemes in Equations (5.1) and (5.4), assign rewards to the

I-states as well. For all g P G,

rGr pgq “

$
&

%
1 if g P Gss

0 if g P Gtr
(5.11)

5.1.4 Posing the Problem as an Optimization Problem

Using the above various definitions of rewards from Equations (5.1), (5.4) and (5.11), for an FSC

of fixed size and partitioning G “ tGtr, Gsu, the following conservative optimization criterion is

derived.

Conservative Optimization Criterion

max
ω,κ

ηβprq

subject to ηssdav prq “ 0

ωpg1,α|g, oq “ 0 g1 P Gtr, g P Gss

ř
pg1,αqPGˆAct

ωpg1,α|g, oq “ 1 @g P G, o P O

ωpg1,α|g, oq “ 1 @g, g1 P G, o P O,α P Act
ř
gPG

κpgq “ 1.

(5.12)

In the Equation (5.12), frequent visits to RepeatPMϕ

r are incentivized by maximizing

ηβprq “ lim
TÑ8

«
Tÿ

t“0

βtrβr pstqr
G
r |ιϕinit

ff

, 0 ă β ă 1, (5.13)



76

s1

s1

s2

s2

s3

s3 s4

s4

s5

s5

rav1 “ 1

rβ1 “ 1

ιϕinitps1q “ 1

ιϕinitps1q “ 1

RepeatPMϕ

1

RepeatPMϕ

1

AvoidPMϕ

1

AvoidPMϕ

1

g1 P Gtr

g2 P Gss

ωpg1,α1|g1, oq “ p1 ´ pq

ωpg2,α1|g1, oq “ p

ωpg2,α1|g2, oq “ 1

κpg1q “ 1, rG1 pg1q “ 0

κpg2q “ 0, rG1 pg1q “ 1

Figure 5.4: Steady state detecting global Markov chain. Consider the example from Figure 5.3.
This figure shows how the ssd-global Markov chain might look if only one action α1 is allowed in
the FSC. The FSC is assumed to have two states g1 P Gtr and g2 P Gss indicated by the large
dotted squares. Since the global Markov chain’s state space is a cartesian product of the Product-
POMDP and the FSC states, each I-state is shown to contain all the Product-POMDP states. The
FSC transitions probabilities are shown in dotted lines. While the black arrows denote between the
Product-POMDP states show the actions that are allowed in the corresponding FSC state. The FSC
starts in g1. Clearly under this policy, the probability of reaching s5 is positive when 0 ă p ă 1,
since s3 P AvoidPMϕ

1 is allowed to be visited when controller state is g1 P Gtr. However, even after
the FSC has transitioned to the I-state g2 P Gss and the product state reaches s5 P RepeatPMϕ

1 ,
there is still a finite probability of visiting s3, thereby violating the constraint in Equation (5.8.)
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s1

s1

s2

s2

s3

s3 s4

s4

s5

s5

rav1 “ 1

rβ1 “ 1

ιϕinitps1q “ 1

ιϕinitps1q “ 1

RepeatPMϕ

1

RepeatPMϕ

1

AvoidPMϕ

1

AvoidPMϕ

1

g1 P Gtr

g2 P Gss

ωpg1,α1|g1, oq “ p1 ´ pq

ωpg2,α1|g1, oq “ p

ωpg2,α2|g2, oq “ 1

κpg1q “ 1, rG1 pg1q “ 0

κpg2q “ 0, rG1 pg1q “ 1

Figure 5.5: Steady state detecting global Markov chain. Consider the same example as in previous
figure. The FSC again has two I-states g1 P Gtr and g2 P Gss. However, under this possible, only
α1 is allowed in g1 and only alpha2 is allowed in g2. This FSC again allows visit to s3 P AvoidPMϕ

1

when in g1. There is a finite probability of reaching rs5, g2s, with s5 P RepeatPMϕ

1 if 0 ă p ă 1. Also
under this policy, if the FSC I-state is g2 and the product state reaches s5 P RepeatPMϕ

1 , then the
probability of visiting s3 at any time in the future is zero, thus satisfying the constraint in Equation
(5.8).
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and steady state visits to AvoidPMϕ

r are forbidden the first constraint

ηssdav prq “ lim
TÑ8

1

T
ssd

«
Tÿ

t“0

rpstqr
G
r |ιssinit

ff

“ 0 (5.14)

in Equation (5.12), where the new quantity, ιssinit, introduced in Equation (5.14), will be explained

shortly. The other constraints relate to the I-state partitioning that has already been introduced

and the enforcement of laws of probability for admissible FSCs. Note that the expectation needed

to compute ηssdav uses the ssd-global Markov chain transition distribution from Equation (5.10), but

that of ηβ uses the unmodified Markov chain transition distribution. The product terms rβr rGr and

rβr r
G
r ensure that only those visits to RepeatPMϕ

r are rewarded when the controller I-state lies in

Gss, implying that it can now guarantee no more visits to AvoidPMϕ

r . This can be seen in Figures

5.4 and 5.5 as well.

Next, define ιssinit as a distribution over the ssd-global Markov chain states as follows.

ιssinitprs, gsq “

$
&

%

1

|Gss||RepeatPMϕ
r

| if s P RepeatPMϕ

r , g P Gss

0 otherwise.
(5.15)

The effect of choosing this initial condition implies that in steady state,

@rs, gs P pRepeatPMϕ

r ˆ Gssq, rs, gs Û pAvoidPMϕ

r ˆ Gq. (5.16)

Compare this to the statement in Equation (5.8), which can be re-written as

Pr
”
π Ñ rs, gs P pRepeatPMϕ

r ˆ Gq
ı
ą 0 ùñ rs, gs Û pAvoidPMϕ

r ˆ Gq. (5.17)

This later statement requires this condition to hold for only those states in pRepeatPMϕ

r ˆGq under

the current ω and κ. If some repeat state is not visited by the controller during steady state, then

our proposed choice of ιssinit adds additional feasibility constraints, which may severely reduce the

obtainable reward, ηβr , and in the worst case, render the problem infeasible. This phenomenon can

be understood from the example in Figure 5.6. This is the reason that the optimization problem

stated in Equation (5.12) is called a Conservative Optimization Criterion. While being suboptimal,

this criterion has some signficant advantages. As will be outlined in the next chapter, the Conser-

vative Optimization Criterion can be framed as a policy iteration algorithm, in which each policy

improvement step can be solved efficiently. Moreover the policy improvement step also yields a

way to add I-states to the controller. This is useful to escape the local maxima encountered during

optimization of the total reward ηβr . The intuition behind the addition of FSC I-states is that they

allow the generation and differentiation of many new observation and action sequences. This implies
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s1

s2 s3

s4
α1

α1

α1

α1

α2

α2

α2

α2

g2 P Gss

g1 P Gtr

Figure 5.6: Reduced Feasibility arising from Conservative Optimization Criterion. Consider an
example of a product-POMDP in which each action results in deterministic state transition as
shown by the solid black arrows. RepeatPMϕ

1 “ ts2, s3u, and AvoidPMϕ

1 “ ts4u. There are two
I-states in the FSC, with g1 P Gtr, and g2 P Gss. Note that ωpg2,α1|g1, oq “ 1 disconnects s4 and s3
from a repeat state s2, which is additionally guaranteed to be visited infinitely often, thus making
a feasible controller. However, the condition over ηssdav requires that s4 be disconnected from the
repeat set s3 as well, even though s3 need not be visited at all. This prevents issuing action α1

completely, and no controller can be found.

that many new paths in the global Markov chain can be explored for improving the optimization

objective. The entirety of the next chapter is spent describing this methodology.

5.2 Concluding Remarks

This chapter proposed two global state space reward schemes that can be utilized to compute the two

conditions necessary for LTL satisfaction – visiting particular states quickly and frequently, especially

in steady state, and guaranteed transience of certain other states. A novel partitioning of the FSC

internal states was then introduced in order to express these two conditions as an optimization

objective and a constraint on the optimization problem respectively. In the next chapter, a novel

any-time policy iteration algorithm will be proposed to find FSCs with increasing values for the

objective of this optimization problem.
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Chapter 6

Policy Iteration for Reward
Maximization Problem

In the previous chapter, a reward maximization scheme was introduced that allowed the controller

to collect a positive reward whenever states in Repeatϕ,G
r sets were visited while being constrained

to not visit any state in Avoidϕ,G
r states during steady state execution. In this chapter, dynamic

programming techniques will be used to solve the associated optimization problem. The methodology

will allow for simultaneous search over both the structure and quality of the FSC. The chapter is

organized as follows. First a well studied and crucial equation for Markov chains, namely the Poisson

Equation, is studied. Next, a review of stochastic dynamic programming is provided in the context

of the expected long term discounted reward. A brief overview of two methods of solving dynamic

programming problems, namely value iteration and policy iteration, is also provided. The average

case dynamic program is shown to be related deeply to the Poisson Equation. Then, the Constrained

Optimization Criterion from the last chapter is optimized by adapting a recent advancement in

policy iteration that bounds the growth of the FSC size. The policy iteration must be started with

an initial ϕ-feasible FSC. The chapter concludes by setting up an optimization problem to search

for such feasible FSCs in order to seed the policy iteration.

6.1 The Multi-chain Poisson Equation for Markov Chains

Instead of describing the Poisson Equation and related results for Markov chains over general state

spaces [94, 100], the discussion in this section is restricted to time homogenous, discrete time, finite

state space Markov chains. The main focus is the ssd-global Markov chain of Definition 5.1.2, which

can differentiate whether states in Avoidϕ,G
r are allowed to be visited. Recall that the ssd-global

Markov chain was generated by partitioning the FSC I-states into transient and steady state sets,

Gtr, and Gss. The transition probabilities TPMϕ,G
ssd were then computed using Equation (5.10). In

addition, recall the average reward function
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rav prs, gsq “ ravr psqrGr pgq. (6.1)

In keeping with the vector notation, r⃗av will denote the vectorized representation of rav for some

ordering of the global state space S ˆ G.

Definition 6.1.1 (Poisson Equation [56]) The Poisson Equation (P.E.) for TPMϕ,G
ssd is

(a) g⃗ “ TPMϕ,G
ssd g⃗ and (b) g⃗ ` h⃗ ´ TPMϕ,G

ssd h⃗ “ r⃗av. (6.2)

where the matrix representation for TPMϕ,G
ssd , defined in Equation (5.10), has been used.

In a general treatment of the Poisson Equation for Markov chains, rav can be replaced with any

measurable function, f : S ˆ G Ñ , and is called a charge. If Equation (6.2) holds, then the pair

p⃗g, h⃗q is called a solution to the P.E. with charge rav .

The Poisson Equation arises in many discrete and continuous time Markov processes, especially

in stochastic optimal control problems. In order to gain some intuition about the Poisson Equation,

it is useful to first consider the case when a Markov chain has a single recurrent class and possibly

some transient states. In this case Poisson equation solves the long term average cost criterion for

given initial state s0, which is given by

ηav “ lim
TÑ8

E

«
1

T

Tÿ

t“0

ravptq

ˇ̌
ˇ̌
ˇ s0

ff

. (6.3)

for the reward ravptq. In fact, the value for the scalar ηav can be obtained by solving a slightly

different version of the Poisson Equation (6.2) given by

ηav ` h⃗ ´ TPMϕ,G
ssd h⃗ “ r⃗av. (6.4)

Note that Equation (6.4) is obtained from Equation (6.2b) by replacing the vector g⃗ by the scalar

ηav. For a finite Markov chain with a single recurrent class, this equation has a unique solution

for ηav. Next, consider that the Markov chain under consideration has multiple recurrent classes,

R1, R2, . . . RN and the set of transient states T . Recall the block represention of the transition

matrix as described in Proposition (4.2.2) is given by

TPMϕ,G
ssd “

»

—————————–

TR1
0 . . . 0 0

0 TR2
. . . 0 0

...
...

. . .
...

...

0 0 . . . TRN 0

TT ÑR1
TT ÑR2

. . . TT ÑRN TT ÑT

fi

ffiffiffiffiffiffiffiffiffifl

. (6.5)
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For each Ri, the scalar form of the Poisson Equation (6.4) can be solved separately for the restriction

of the Markov chain to Ri Y T to yield different unique long term avarage rewards ηRi
av for initial

probability distribution belonging to Ri YT . If T “ H, then these equations can be stacked to yield

the original Poisson Equation (6.2) by letting g⃗pRiq “ ηRi
av elementwise, and

g⃗ “

»

——————–

g⃗pR1q

g⃗pR2q
...

g⃗pRN q

fi

ffiffiffiffiffiffifl
. (6.6)

However, when T ‰ H and initial state of the Markov chain lies in T , then the average reward

criterion of Equation (6.3), may not have a unique solution because, the state may be absorbed in

one of several recurrent classes Ri. However, a probabilistic interpretation may be taken in which the

average reward accounts the probability of absorption into the different Ri in the computation of the

average cost given the intial distribution ιinitpsq. The multi-chain Poisson Equation as introduced

in Equation (6.2) is used when such a probabilistic interpretation is taken. Further discussion of the

Poisson Equation in the context of using Dynamic Programming for solving it is provided in Section

(6.3.2).

A good development on the Poisson Equation can be found in [56, 94]. Other texts that study

the conditions for existence and uniqueness of solutions to the Poisson Equation can be found

in [57, 101, 123, 126, 149].

In the context of this thesis, where the resulting closed loop global Markov chain has finite state

space, it is well known that a solution for the P.E. always exists. This is stated formally in the

following lemma.

Lemma 6.1.2 [56] (a) For a finite state space Markov chain given by its transition matrix TPMϕ,G
ssd ,

and charge rav, a solution pair p⃗g, h⃗q to the Poisson Equation always exists.

(b) Moreover, g⃗ is unique and is given by

g⃗ “ Πssdr⃗
av (6.7)

where Πssd is the limiting matrix introduced in Definition 3.4.12.

(c) The solution g⃗ in Equation (6.7), when paired with the following h⃗, solves the P.E:

h⃗ “ Hr⃗av (6.8)
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where H is called the deviation matrix and is given by

H “ pI ´ TPMϕ,G
ssd ` Πssdq´1

loooooooooooooomoooooooooooooon
fundamental matrix, Z

pI ´ Πssdq. (6.9)

(d) h⃗ is not unique. If p⃗g, h⃗q is a solution then @k ě 0, pg, h⃗ ` Πssdh⃗q is also a solution.

The Poisson equation is important because the quantity g can be used to compute the probability

of visiting the set AvoidPMϕ,G
r for the ssd-global Markov chain in the following theorem. This is

crucial because it can then be used to enforce the constraint ηssdav “ 0 in the optimization criterion

of Equation (5.12).

Theorem 6.1.3 The probability of ssd-global Markov chain of visiting pAvoidPMϕ

r ˆ Gssq for an

initial distribution, ι1init P MSˆG is given by

Pr
”
π Ñ pAvoidPMϕ

r ˆ Gssq
ˇ̌
ι1init

ı
“ ι⃗1

T

initg⃗. (6.10)

Proof Note that under TPMϕ,G
ssd , each state in pAvoidPMϕ

r ˆ Gssq is a sink by construction and

therefore recurrent. Applying Lemma 5.1.1 gives

Pr
“
π Ñ pAvoidPMϕ

r ˆ Gssq |ι1init
‰

“ lim
TÑ8

1

T

„
Tř

t“0

ravprst, gtsq |ι1init

ȷ

“ ι⃗1
T

init Πssd
⃗SˆG

pAvoidPMϕ
r

ˆGq

“ ι⃗1
T

init Πssd r⃗av

“ ι⃗1
T

init g⃗,

(6.11)

where line 1 implies line 2 due to Equation (4.44), and line 3 follows from the fact that r⃗av can be

re-written as an indicator vector r⃗av “ ⃗SˆG
pAvoidPMϕ

r
ˆGssq

.

Theorem 6.1.3 will be used later in this chapter to enforce the constraint, ηssdav prq “ 0, during the

optimization procedure for the conservative optimization criterion of Equation (5.12).

6.2 Dynamic Programming Basics

This section briefly reviews stochastic dynamic programming in discrete time domains. Dynamic

programming is a specific methodology which computes a policy for a sequential decision process

to optimize reward functions of certain types. The earliest formalization of the such problems is

credited to Bellman [11, 12]. Several texts provide a general development of the topic [15, 16], and

provide many key results for the stochastic domain.

Stochastic dynamic programming arises for dynamical systems operating in a stochastic environ-

ment whose evolution can be described by an equation of the form
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xt`1 “ fpxt,αt, wtq, (6.12)

where xt is the state of the system at time step t, αt are exogenous inputs that can be applied by an

agent and wt is a disturbance from some probability space. The discussion in this section is restricted

to the case of finite state and action spaces, and also to a finite probability space for the disturbance.

It is required that disturbance wt have a conditional distribution of the form ppwt|xt,αtq. Also of

concern is the reward obtained by the agent, given by a function rpxt,αt, wtq. Next, consider a policy

µ “ pµ0, µ1, . . . q where at step t, an action αt is chosen according to µt. For stochastic systems, the

policy µt may require the entire execution history to successfully pick the action, i.e.,

αt “ µtpx0,α0, . . . ,αt´1, xtq. (6.13)

Restricting the discussion to the discounted long term reward and a known initial state of the

system, the objective of the agent is to maximize the following expected long term discounted reward

ηβpx0q “ sup
µ

8ÿ

t“0

βtrpxt, µt, wtq 0 ď β ă 1, (6.14)

under the constraint that xt evolves using Equation (6.12). For this particular choice of objective it

is well known that a stationary Markov policy is sufficient. Formally, this means that αt “ µtpxtq “

µpxtq.

The dynamic programming algorithm for the preceding algorithm is given by the iteration

V β
0 pxq “ 0

V β
k`1

pxq “ supα w

”
rpx,α, wq ` βV β

k rfpx,α, wqs
ı
.

(6.15)

For a known initial starting state x0, the optimal value ηβ˚px0q is given by the limit

ηβ˚px0q “ lim
kÑ8

V β
k px0q. (6.16)

Since it is known that a stationary optimal policy exists in the case of infinite horizon discounted re-

ward over a finite system model, it follows that this policy satisfies the Bellman Optimality Equation

given by

V β˚pxq “ sup
α

w

“
rpx,α, wq ` βV β˚ rfpx,α, wqs

‰
@x,α, w. (6.17)

6.2.1 Dynamic Programming Variants

Equations (6.15) and (6.16) are leveraged to perform dynamic programming in several popular ways

in the literature. Restricting the scope of the discussion to a Markov decision process in which the
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system evolution is given by a conditional probability distribution xk`1 „ T pxk`1|xk,αq, and the

reward is given by rpx,αq, the expectation in Equation (6.15) can be explicitly computed as

V0pxq “ 0

Vk`1pxq “ supα
ř

x1 T px1|x,αq
”
rpx,αq ` βV β

k px1q
ı
.

(6.18)

This iterative method constitutes what is known as a value iteration methodology for dynamic

programming [12, 13]. At each iteration step k, V β
k pxq is called the value function of the state x.

It denotes the expected long term discounted reward the agent would collect if the initial state

xt“0 “ x. When the iteration has converged, the policy is computed using

µpxq “ argmax
α

ÿ

x1

T px1|x,αq
”
rpx,αq ` βV β

k px1q
ı
. (6.19)

It is also well known that for any given policy µ, the value function V β
µ pxq satisfies the following

system of equations

V β
µ pxq “

ÿ

x1

T px1|x,αq
”
rpx,αk, wkq ` βV β

k px1q
ı
, (6.20)

called the Bellman Equation. While it is possible to solve the above equation using exact methods,

in most cases the Bellman equation is solved by iteration: the r.h.s of Equation (6.20) is repeatedly

applied on successive values V β until convergence. The Bellman equation is utilized in another

variant of dynamic programming, namely policy iteration, or Howard’s method [62], outlined in

Algorithm 6.1.

Algorithm 6.1 Policy Iteration for Markov Decision Process

1: iterÐ 0
2: Choose an initial policy µiter .
3: V β

iterpxq Ð 0 @x
4: repeat
5: iterÐ iter ` 1
6: Policy Improvement: Improve the policy

µiterpxq “ argmax
α

ÿ

x1

T px1|x,αq
”
rpx,αq ` βV β

k px1q
ı

(6.21)

7: Policy Evaluation: Solve the Bellman Equation (6.20) to get V β
iterpxq @x.

8: until V β
iterpxq ´ V β

iter´1
pxq ď εβ @x

So far, the discussion of stochastic dynamic programming in this section has only focused on

the discounted reward criterion. However, the Bellman Optimality equation, the Bellman Equation,

and value and policy iteration techniques can be derived for the expected long term average reward

criterion (Definition 2.2.9) as well. However, in the general setting of an arbitrary reward function

and infinite state space, the existence of an optimal solution for the average case is not guaranteed
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[81, 108]. However, for the set of problems of interest in this thesis, the global Markov chain is

a discrete time system that evolves over finite state space, in which case the average reward does

have an optimum. Additionally, as will be seen in Section 6.5, the optimal solution for the average

case is not required for the algorithm proposed herein. Only the evaluation of the average reward

value function under a given FSC is required to guarantee LTL satisfaction. Therefore, the Bellman

Equation for the average reward case is sufficient for this work. In the succeeding section, the

relevant dynamic programming equations for both discounted and average rewards are summarized

for the specific case of POMDPs controlled by FSCs.

6.3 Summary of Dynamic Programming Facts

For the case of POMDPs controlled by FSCs, it is useful to think of the dynamic program in the

global state space S ˆ G. The value function is in fact defined over this global state space. In

addition, the policy iteration techniques also need to be carried out in the global state space.

6.3.1 Value Function of Discounted Reward Criterion

For a given FSC G, and the unmodified product-POMDP, the value function V β is the expected

discounted sum of rewards under G, and can be computed by solving a set of linear equations:

V β prsi, gksq “ rβ prsi, gisq ` β
ÿ

oPO,αPAct

gkPG,sjPS

Opo|siqωpgl,α|gk, oqTϕpsj |si,αqV β prsj , glsq . (6.22)

For the global Markov chain, the above can be written in vector notation as follows

V⃗ β “ r⃗β ` βTPMϕ

V⃗ β . (6.23)

The above system of equations is also called the Bellman Equation for the discounted reward

criterion. Sometimes it is useful to look at the value function of the POMDP states for a given

I-state g, of the FSC. Note the use of the vector notation

V⃗ β
g “

»

——————–

V β prs1, gsq

V β prs2, gsq
...

V β
`
rs|S|, gs

˘

fi

ffiffiffiffiffiffifl
. (6.24)

Given a distribution or belief, b⃗, over the the product states, a particular I-state’s value at the



87

V β
g1

V β
g2

V β
g2

Belief State

V
al
u
e

Value Function

0 1

Figure 6.1: Value Function for a two state POMDP. The value of each I-state is a linear function of
the belief state. The value function of the FSC is given by the upper surface (pointwise maximum)
of each I-state’s value.

belief is the expectation

V β
g pbq “ b⃗T V⃗ β

g . (6.25)

If ιϕinit is the initial distribution of the product-POMDP then, the best FSC I-state can be selected

as

κpg|ιϕinitq “

$
’&

’%

1 if g “ argmax
g1

V β
g1 p⃗ιϕinitq

0 otherwise.
(6.26)

In other words, the FSC is started in the I-state with maximum expected value for the belief.

Definition 6.3.1 (Value Function) The value function gives the value at any belief b using the

following

V βpbq “ max
gPG

V β
g pbq. (6.27)

Clearly, Equation (6.25) shows that the value of a particular I-state is a linear function of the belief

state. The value function itself is piece wise linear by taking the pointwise maximum of all the I-state

values at each belief state. For a POMDP with only two states, the belief state can be represented

by the belief in any one of the states and can be represented along a single axis. The value function

for such a system can be seen in Figure 6.1, which will be useful to consider under policy iteration

in forthcoming sections.
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Computational Complexity and Efficient Approximation

Solving a system of linear equations by direct methods is Opn3q where n is the number of equations.

Equation (6.23) represents |S||G| equations. However, a basic Richardson iteration can be applied.

One starts with an arbitrary value of V β, typically 0, and repeatedly applies the r.h.s of the above

equation to get better approximations. That is,

V⃗ β,p0q “ 0

V⃗ β,pt`1q “ r⃗β ` βTPMϕ

V⃗ β,ptq

until ||V⃗ β,pt`1q ´ V⃗ β,ptq||8 ă εβ

(6.28)

The Richardson iteration for this linear system of equations is known to converge. That is, for any

ε ą 0, Dp “ ppεq such that

||V β ´ V β,pp1q|| ď ε, @p1 ě p (6.29)

Several other iteration schemes also exist. A summary of these and criteria for choosing between

them can be found in [128].

During each iteration, the maximum number of operations required are Op|S|2|G|2q, however if

the ssd-global Markov chain can be represented as a sparse matrix, then the complexity is linear.

6.3.2 Value Function of Average Reward Criterion:

For a given FSC G, the value function V β is the expected discounted sum of rewards under G, and

can be computed by solving a set of linear equations:

V av prsi, gksq “ ´ρav prsi, gisq ` rav prsi, gisq `
ÿ

oPO,αPAct

gkPG,sjPS

Opo|siqωpgl,α|gk, oqT psj |si,αqV av prsj , glsq .

(6.30)

Writing the above equation in vector notation for the ssd-global Markov chain gives

V⃗ av “ p´ρ⃗av ` r⃗avq ` TPMϕ

ssd V⃗ av. (6.31)

The above system of equations constitutes the Bellman Equation for the average reward criterion.

Note that this is the same as the second part of the Poisson Equation (6.2(b)), by substituting

g⃗ “ ρ⃗av.
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Computational complexity

Since the value function of the average reward criterion is identical to the Poisson Equation, the

following considers the complexity of solving the Poisson Equation. Again, the exact methods of

solving the linear system of equations is cubic is number of equations, which is 2|S||G| in Equation

(6.2) with as many number of variables, which comprise of both V⃗ av and g⃗. Unfortunately, arbitrary

initialization may not guarantee proper convergence of the variables when using typical Richardson

iteration schemes. However, g⃗ “ Πssdr⃗
av is unique for the Poisson equation, and can be pre-

computed independently of V av. The pre-computation of g⃗ allows for solving a linear system of

equations in the unknown variables V av using Equation (6.2b) exclusively. The term g⃗ “ Πssdr⃗
av can

be computed in multiple ways. First is the iterative method that leverages the fact that Πssd, whose

computation involves the Cesaro sum as defined in Equation 3.25, is post multiplied by the vector r⃗av.

Therefore the trick employed in Section 4.2.4.1 can be applied until g⃗ converges to within a tolerance

εΠssd
ą 0. However, limiting matrix computation for finite state space Markov chains can also be

carried out by first partitioning the global state space into recurrent classes and transient states

and computing the stationary distribution for each class separately [71] using numerical methods or

eigen analysis. However, as will be shown later in this chapter, direct computation of the full g⃗ and

V⃗ av vectors will not be required frequently in the algorithm proposed in this chapter. The Poisson

equation will be directly input into the optimization software as constraints in order to compute the

values for the unknown vectors g⃗ and V⃗ av.

6.3.3 Bellman Optimality Equation / DP Backup Equation - Discounted

Case

When the discounted case does not have constraints other than probability constraints on ω and

κ, then at optimality the discounted value function satisfies the Bellman Optimality Equation,

which is also known as the DP Backup Equation:

V βpbq “ max
αPAct

rβpbq ` β
ÿ

oPO

Prpo|bqV βpbαo q (6.32)

where

Prpo|bq “
ÿ

sPS

Opo|sqbpsq, (6.33)

bαo ps1q “
ÿ

s

T ps1|s,αq
Opo|sqbpsqř

o1PO Opo1|sqbpsq
(6.34)

and V βpbαo q is computed using Equations (6.27) and (6.25). The r.h.s. of the DP Backup can be

applied to any value function. The effect is an improvement (if possible) at every belief state. This

can be seen in Figure 6.2. However, DP backup is difficult to use directly as it must be computed
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Figure 6.2: Effect of DP Backup Equation. The solid line shows a (piece-wise linear) value function
V . The effect of applying the DP Backup Equation results in pointwise improvement of the value
function (dashed line). However not all belief state may admit improvement as they could already
be optimal. b is such a point and is called a tangent belief state.

at each belief state in the belief space, which is uncountably infinite. The stochastic bounded policy

iteration algorithm, described in the remainder of this chapter, circumvents this by using a two

pronged approach: (a) setup an efficient optimization problem to find the best ω for an FSC of

a given size |G|; and (b) add a small, bounded number of I-states to the FSC to escape the local

maxima as they are encountered.

6.4 Policy Iteration for FSCs

Policy iteration incrementally improves a controller by alternating between two steps: Policy Eval-

uation and Policy Improvement, until convergence to an optimal policy. For the discounted reward

criterion, policy evaluation amounts to solving Equation (6.23). During policy improvement, a dy-

namic programming update using the DP Backup Equation is used. This results in the addition,

merging, and pruning of I-states of the FSC.

In [53], the authors proposed a policy iteration algorithm to find deterministic controllers in which

the I-state transition and choice of actions are unique. In each improvement step some I-states that

are dominated by other I-states are pruned away, while other I-states can be added. While their

work is guaranteed to converge to an ϵ-optimal controller, up to |Act||G||O| I-states can be added

in each improvement step under the proposed algorithm. These additions can quickly increase the

controller to an intractable size. In [118] a methodology called the Bounded Policy Iteration is

proposed, in which the FSC is allowed to be stochastic. The next section outlines this methodology
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before showing how it can be adapted for solving the Conservative Optimization Criterion given by

Equation (5.12).

6.4.1 Bounded Stochastic Policy Iteration

Of concern is the problem of maximizing the expected long term discounted reward criterion over a

general POMDP. The state transition probabilities are given by T ps1|s,αq, and observation proba-

bilities by Opo|sq. Most of this section follows from [118] and [54]. These authors showed that:

1. Allowing stochastic I-state transitions and action selection (i.e., FSC I-state transitions and

actions sampled from distributions) enables improvement of the policy without having to add

more I-states.

2. If the policy cannot be improved, then the algorithm has reached a local maximum. Specifically,

there are some belief states at which no choice of ω for the current size of the FSC allows the

value function to be improved. In such a case, a small number of I-states can be added that

improve the policy at precisely those belief states, thus escaping the local maximum.

Both of these steps together constitute the Policy Improvement step of the policy iteration

Algorithm 6.1.

Definition 6.4.1 (Tangent Belief State) A belief state b is called a tangent belief state, if V βpbq

touches the DP Backup of V βpbq from below. Since V βpbq must equal V β
g for some g, we also say

that the I-state g is tangent to the backed up value function V β at b. Tangency can be seen in Figure

6.2.

Equipped with this definition, the two steps involved in policy improvement can be carried out as

follows.

Improving I-States by Solving a Linear Program

And I-state g is said to be improved if the tunable parameters associated to that state can be

adjusted so that V⃗ β
g is increased. This step tries to improve each I-state in a round robin fashion by

keeping the other I-states the same. The improvement is posed as a linear program (LP) as follows:

I-state Improvement LP: For the I-state g, the following LP is constructed over the unknowns
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ϵ, ωpg1,α|g, oq, @g1,α, o.

max
ϵ,ωpg1,α|g,oq

ϵ

subject to

Improvement constraints:

V βprs, gsq ` ϵ ď rβpsq ` β
ř

s1,g1,α,o

Opo|sqωpg1,α|g, oqT ps1|s,αqV βprs1, g1sq @s

Probability constraints:
ř
g1,α

ωpg1,α|g, oq “ 1 @o

ωpg1,α|g, oq ě 0 @g1,α, o

(6.35)

The linear program searches for ω values that improve the I-state value vector V⃗ β
g by maximizing

the parameters ϵ. If an improvement is found, i.e., ϵ ą 0, the parameters of the I-state are updated

by the corresponding maximizing ω. The value vector V⃗ β
g may also be updated before proceeding

to the next I-state in a round robin fashion.

In [118], the authors show the following interpretation of this optimization: it implicitly considers

the value vectors V β
g of the backed up value. A positive ϵ implies that the LP found a convex

combination of the value vectors of the backed up function that dominates the current value of the

I-state at every belief state. This is explained further in Figure 6.3, which is adapted from [54]. A

key point is that the new value vector of the improved I-state is parallel to its current value, and

the improved value becomes tangent to the backed up value function.

Escaping Local Maxima by Adding I-States

Eventually no I-state can be improved with further iterations, i.e., @g P G, the corresponding LP

yields an optimal value of ϵ “ 0. This is shown in Figure 6.4.

Theorem 6.4.2 [118] Policy Iteration has reached a local maximum if and only if Vg is tangent to

the backed up value function for all g P G.

In order to escape local maxima, the controller can add more I-states to its structure. Here the

tangency criterion becomes useful. First note that the dual variables corresponding to the Improve-

ment Constraints in the LP provides the tangent belief state(s) when ϵ “ 0. In some cases, a value

vector may be tangent to the backed up value function not just at a single point, but along a line

segment. Regardless, at a local maximum, each of the |G| linear programs yield some tangent belief

states. Most implementations of LP solvers solve the dual variables simultaneously and so these

tangent beliefs are readily available as a by-product of the optimization process introduced above.

Algorithm 6.2 shows how to use the tangent beliefs to escape the local maximum.
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Figure 6.3: Graphical depiction of the effect of the I-state Improvement LP. This figure shows how
the I-state improvement LP works. Let the LP be solved for the I-state whose value vector is V β

1 .
The solid purple line shows the backed up value function. Current value function is not shown

here. The backed up value vectors V β,1

1 and V β,1

2 are such that their convex combination (black

dashed line) dominates the value vector V β
1 by ϵ ą 0. The parameters of the I-state g1 are therefore

replaced by corresponding maximizing parameters so that its value moves upwards by ϵ. Note that
the improved value vector given by V β

1 ` ϵ is tangent to the backed up value function.
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V
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u
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Figure 6.4: Policy Iteration Local Maximum. All current value vectors (solid lines) are tangent to
the backed up value function (solid magenta). No improvement of any I-state is possible.
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Algorithm 6.2 Bounded PI: Adding I-States to Escape Local Maxima

Input: Set B of tangent beliefs from policy improvement LPs for each I-state, Nnew the maximum
number of I-states to add.

1: Nadded Ð 0.
2: repeat
3: Pick b P B, B “ Bztbu.
4: Fwd “ H
5: for all pα, oq P pAct ˆ Oq do
6: if Prpo|bq “

ř
sPS bpsqOpo|sq ą 0 then

7: Look ahead one step to compute forwarded beliefs

bo,αps1q “
ÿ

s

T ps1|s,αq
Opo|sqbpsqř

o1PO Opo1|sqbpsq
. (6.36)

8: FwdÐ Fwd Y tbo,αu
9: end if

10: end for
11: for all bfwd P Fwd do
12: Apply the r.h.s. of DP Backup Equation to bfwd

V β,backeduppbfwdq “ max
αPAct

#

rβpbfwdq ` β
ÿ

oPO

Prpo|bfwdq

ˆ
max
gPG

bo,αfwdpsqV β
g psq

˙+

(6.37)

where, bo,αfwd is computed for reach product state s1 P S as follows

bo,αfwdps1q “
ÿ

s

T ps1|s,αq
Opo|sqbfwdpsqř

o1PO Opo1|sqbfwdpsq
. (6.38)

13: Note the maximizing action α˚ and I-state g˚.
14: if V β,backeduppbfwdq ą V βpbfwdq then
15: Add new deterministic I-state gnew such that ωpgnew|g˚,α˚, oq “ 1 @o P O.
16: Nadded Ð Nadded ` 1
17: end if
18: if Nadded ě Nnew then
19: return
20: end if
21: end for
22: until B “ H.
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The algorithm can be understood as follows. The tangent beliefs are those at which the DP

backup results in no improvement of the value function beyond the current value. However, instead

of improving the value at the tangent belief, the algorithm tries to improve the value of some belief

that can be reached from the tangent belief in one step. These forwarded beliefs are computed in

Steps 4-10 of Algorithm 6.2. Next, an attempt is made to improve these forwarded beliefs by DP

backup (Step 12). If some action α˚ and successor I-state g˚ can in fact improve the value, then a

new I-state is added which deterministically leads to this action and successor I-state (Steps 13-14).

Note that at the end of the algorithm, the newly added I-states, gnew have no incoming edges,

i.e., no pre-existing I-states transition to gnew. However, when the other I-states are improved in

subsequent policy improvement steps, they generate transitions to any gnew added. This new I-state

is then improves the value of the original tangent belief.

6.5 Applying Bounded Policy Iteration to LTL Reward Max-

imization

This section, shows how the bounded policy iteration methodology proposed in the previous section

can be extended to the case of the Conservative Optimization Criterion, which is repeated here for

convenience:

max
ω,κ

ηβprq

subject to ηssdav prq “ 0

ωpg1,α|g, oq “ 0 g1 P Gtr, g P Gss

ř
pg1,αqPGˆAct

ωpg1,α|g, oq “ 1 @g P G, o P O

ωpg1,α|g, oq “ 1 @g, g1 P G, o P O,α P Act
ř
gPG

κpgq “ 1.

(6.39)

Algorithm 6.3 outlines the main steps in the bounded policy iteration for the Conservative

Optimization Criterion. Again, there are two distinct parts of the policy iteration. First, policy

evaluation in which V β is computed whenever some parameters of the controller changes (Steps 2,

10 and 20). The actual optimization algorithm to accomplish this step is found in Section 6.5.1.

Second, after evaluating the current value function, an improvement is carried out either by changing

the parameters of existing nodes, or if no new parameters can improve any node, then a fixed number

of nodes are added to escape the local maxima (Steps 14-17). This is described in Section 6.5.3.

The two parts of policy improvement, namely the optimization to improve a given node, and

addition of new nodes to escape local maxima are explained in detail in the succeeding sections.
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Algorithm 6.3 Bounded Policy Iteration For Conservative Optimization Criterion

Input: (a) An initial feasible FSC, G with I-states G “ tGtr, Gssu, such that ηssdav prq “ 0. (b)
Maximum size of FSC Nmax. (c) Nnew ď Nmax number of I-states

1: improvedÐ True
2: Compute the value vectors, V⃗ β of the discounted reward criterion ηβ as in Equation (6.23), or

efficient approximation in Section 6.3.1.
3: while |G| ď Nmax and improved “ True do
4: improvedÐ False
5: for all I-states g P G do
6: Set up the Constrained Improvement LP as in Section 6.5.1.
7: if Improvement LP results in optimal ϵ ą 0 then
8: Replace the parameters for I-state g
9: improvedÐ True

10: Compute the value vectors, V⃗ β
g of the discounted reward criterion ηβ as in Equation

(6.23), or efficient approximation in Section 6.3.1.
11: end if
12: end for
13: if improved “ False and |G| ă Nmax then
14: nadded Ð 0
15: N 1

new Ð minpNnew, Nmax ´ |G|q
16: Try to add N 1

new I-state(s) to G according to constrained DP backup in Section 6.5.3.
17: nadded Ð actual number of I-states added in previous step.
18: if nadded ą 0 then
19: improvedÐ True
20: Compute the value vectors, V⃗ β

g of the discounted reward criterion ηβ as in Equation
(6.23), or efficient approximation in Section 6.3.1.

21: end if
22: end if
23: end while
Output: G
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6.5.1 Node Improvement

The first observation is that the search over κ can be dropped. This simplification occurs because

the initial node is chosen by computing the best valued node for the initial belief, i.e.,

κpginitq “ 1, where,

ginit “ argmax
g

p⃗ιϕinitq
T
V⃗ β
g .

(6.40)

Once this initial node has been selected, the above objective only differs from the typical dis-

counted reward maximization problem in the previous sections because of the presence of the new

constraint

ηssdav prq “ 0, (6.41)

which must be incorporated into the optimization algorithm. Using Theorem 6.1.3, the above

constraint can be rewritten as

ηssdav prq “ 0 ðñ
`
ι⃗ssdinit

˘T
g⃗ “ 0, (6.42)

where g⃗ uniquely solves the Poisson Equation (6.2). This allows the node improvement to be written

as a bilinear program. Again, one node g is improved at a time while holding all other nodes constant

as follows.
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I-state Improvement Bilinear Program:

max
ϵ,ωpg1,α|g,oq,⃗g,V⃗av

ϵ

subject to

Improvement Constraints:

V βprs, gsq ` ϵ ď rβpsq ` β
ř

s1,g1,α,o

Opo|sqωpg1,α|g, oqTPMϕ

ps1|s,αqV βprs1, g1sq @s

Poisson Equation (if g P Gss):

V⃗ av ` g⃗ “ r⃗av ` TPMϕ

mod V⃗ av

g⃗ “ TPMϕ

mod g⃗

Feasibility Constraints (if g P Gss):
`
ι⃗ssinit,g

˘T
g⃗ “ 0

FSC Structure Constraints (if g P Gss):

ωpg1,α|g, oq “ 0 if g1 P Gtr

Probability Constraints:
ř
g1,α

ωpg1,α|g, oq “ 1 @o

ωpg1,α|g, oq ě 0 @g1,α, o

(6.43)

Note that a node in Gtr does not have to guarantee that Product-POMDP states are not allowed

to visit AvoidPMϕ

r and hence the extra Poisson Equation and Feasibility Constraints that appear

above need only be applied to I-state g P Gss. Further, the FSC structure constraints ensure that

once the execution has transitioned to steady state, the I-states in Gtr can no longer be visited.

They are in fact a reduction in the number of unknown variables. Next, the Poisson Equation

constraints introduce bilinearity in the optimization. This is because the term TPMϕ

mod , which is

linear in ωpg1,α|g, oq, is multiplied by the unknowns V⃗ av and g⃗ in the two sets of constraints that

form the Poisson Equation.

6.5.2 Convex Relaxation of Bilinear Terms

Bilinear problems are in general hard to solve [27], unless they are equivalent to positive semidef-

inite or second order cone programs, which make the problem convex. Neither of these convexity

assumptions hold for the bilinear constraints in Equation (6.43). However, several convex relaxation

schemes exist for bilinear problems. Two of the most popular methods of relaxing the problem are to

use the Reformulation-Linearization Technique (RLT) [132, 134] or the more recent SDP relaxation

techniques used in [133, 136]. A good overview of these two methods can be found in [124]. This

thesis utilizes a linear relaxation resulting from the RLT, which is summarized below, to obtain a

possibly sub-optimal solution at each improvement step.
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While RLT can be applied to a wide range of problems including discrete combinatorial problems,

it is introduced here for the case of Quadratically Constrained Quadratic Problems (QCQPs) over

unknowns x P Rn, y P Rm. The notation follows closely from [124]. A QCQP can be written as

max xTQox ` aTo x ` bTo y

s.t.

xTQkx ` aTk x ` bTk y ď ck for k “ 1, 2, . . . , p

lxi ď xi ď uxi fori “ 1, 2, . . . , n

lyj ď yj ď uyj forj “ 1, 2, . . . ,m

. (6.44)

RLT is carried out as follows, for each xi, xj such that the product term xixj is non zero in either the

objective or the constraints, a new variable Xij is introduced, which replaces the product xixj in the

problem. In addition, the bounds lxi , lxj , uxi , uxj are utilized to produce four new linear constraints

Xij ´ lxixj ´ lxjxi ě ´lxilxj

Xij ´ uxixj ´ uxjxi ě ´uxiuxj

Xij ´ lxixj ´ uxjxi ď ´lxiuxj

Xij ´ uxixj ´ lxjxi ď ´uxilxj .

(6.45)

The above constraints are the McCormick convex envelopes [97]. For bilinear programming with

bounded variables, the McCormick convex envelopes are successively used in algorithms such as

branch and bound [83] to successively obtain tighter relaxations to obtain globally optimal solutions.

An efficient solver that incorporates this methodology is [89].

The following shows how to relax the bilinear constraints appearing in the Poisson Equation

in the I-state Improvement Bilinear Program in Equation 6.43. Note first that while the Poisson

Equation spans all global states, i.e., there are S ˆ|G| for each of the two sets of Poisson constraints,

only the equations pertaining to the current I-state under consideration has bilinear terms. To see

this, rewrite the Poisson constraints in block form,
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»

—————————–

V⃗ av
g1

...

V⃗ av
g

...

V⃗ av
g|G|

fi

ffiffiffiffiffiffiffiffiffifl

`

»

—————————–

g⃗g1
...

g⃗g
...

g⃗g|G|

fi

ffiffiffiffiffiffiffiffiffifl

“

»

—————————–

r⃗avg1
...

r⃗avg
...

r⃗avg|G|

fi

ffiffiffiffiffiffiffiffiffifl

`

»

——————————–

TPMϕ

mod,g1
...

TPMϕ

mod,g

...

TPMϕ

mod,g|G|

fi

ffiffiffiffiffiffiffiffiffiffifl

»

—————————–

V⃗ av
g1

...

V⃗ av
g

...

V⃗ av
g|G|

fi

ffiffiffiffiffiffiffiffiffifl

and

»

—————————–

g⃗g1
...

g⃗g
...

g⃗g|G|

fi

ffiffiffiffiffiffiffiffiffifl

“

»

——————————–

TPMϕ

mod,g1
...

TPMϕ

mod,g

...

TPMϕ

mod,g|G|

fi

ffiffiffiffiffiffiffiffiffiffifl

»

—————————–

g⃗g1
...

g⃗g
...

g⃗g|G|

fi

ffiffiffiffiffiffiffiffiffifl

,

(6.46)

it can be seen that the bilinearity arises because the rows (in red) of TPMϕ

mod which are linear terms of

the unknowns ωp., .|g, .q are multiplied by V⃗ av and g⃗ respectively. The other rows of TPMϕ

mod are not

functions of the unknowns and their values are used from the values in the previous policy evaluation

step. The total number of bilinear terms in both sets of equations is given by 2 ˆ |S||O||G||Act|.

Moreover, applying the convex relaxation requires that all terms appearing in bilinear products must

have finite bounds. For the unknowns ωp., .|g, .q, g⃗ and V⃗ av these bounds are given by

0⃗ ď ωp., .|g, .q ď 1⃗

0⃗ ď g⃗ ď 1⃗

´M⃗1 ď V⃗ av ď M⃗2,

(6.47)

where M1, M2 are large positive constants that are manually selected. This is because the feasibility

set for V⃗ av is dependent on the eigen values of I ´ TPMϕ

mod,g|G| [94], which is difficult to represent in

terms of the optimization variables. During numerical implementation, this issue was not found

to adversely effect the solution quality. This may be due to the fact that V⃗ av does not appear in

either the objective or in the feasibility constraints of Equation (6.43). In fact, for the choice of ω

only constrains the value g⃗, whereas given ω and g⃗ a feasible value of V⃗ av can always be found. A

rigorous analysis of the effect of the choice for the bounds of V⃗ av remains to be carried out.

6.5.3 Addition of I-States to Escape Local Maxima

When no I-state Improvement LP yields ϵ ą 0, a local maxima for the Bounded Policy Iteration (BPI)

has been reached. The dual variables corresponding to the Improvement constraints in Equation

(6.43) again give those belief states that are tangent to the backed up value function. The process

for adding I-states will again involve forwarding the tangent beliefs one step and then checking if

the value of those forwarded beliefs can be improved. However an additional check for recurrence
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constraints will have to made if the involved I-state belongs to the Gss states of the FSC controller.

In addition, if an I-state is added to the FSC, it must also be assigned to either Gtr or Gss, because

the next policy evaluation iteration depends on the I-state partitioning in the computation of TPMϕ

mod .

The procedure for adding I-states is provided in Algorithm 6.4.

Algorithm 6.4 can be understood as follows. Assume that a tangent belief b for some I-state g.

Similar to Algorithm 6.2, instead of directly improving the value of the tangent belief, the algorithm

tries to improve the value of forwarded beliefs reachable in one step from the tangent beliefs. This

is given in Step 4 of Algorithm 6.4. Recall from Section 6.4.1 that when a new I-state is added, its

successor states are chosen from the existing I-states. A similar approach is used in Algorithm 6.4.

However, a new node may be added to either Gtr or Gss depending on the I-state that generated the

original tangent belief. Recall that I-states in Gss have two additional constraints. First, no state in

Gss can transition to any state in Gtr. This is enforced by limiting the successor state candidates in

Steps 6-9. Secondly, for improving a node in Gss, the allowed actions and transitions must satisfy

the Poisson Equation constraints of Equation (6.43). This further reduces or prunes the possible

successor candidates in Step 10, which is elaborated as a separate procedure in Algorithm 6.5. The

rest of the procedure is identical to Algorithm 6.2, except for Step 20, in which any newly added

I-state is placed in the correct partition of Gtr or Gss.

Algorithm 6.5 prevents any new I-states to choose a pair of action and successor I-state that may

violate the Feasibility Constraints of Equation (6.43). In order to carry out this procedure, a phantom

I-state, gphantom P Gss is temporarily added to the current FSC for a pair pg,αq P candidates. Next,

the modified transition distribution TPMϕ

mod,phantom is computed using Equation (5.3), and the Poisson

Equation is solved to obtain a new g⃗ which can be used to verify the Feasibility Constraint. If this

constraint is violated. i.e., then pg,αq is removed from the set candidates. Note that the algorithm

works on a copy of the original FSC, and the solution of the Poisson Equation computed at the last

Policy Evaluation step. The addition of gphantom, and recomputation of the Poisson Equation is

only used within Algorithm 6.5.

6.6 Finding an Initial Feasible Controller

So far, it has not been shown how an initial feasible controller may be found to begin the policy

iteration. A feasible FSC is one which produces at least one ϕ-feasible recurrent set (Definition

3.5.3). This problem can be posed as a bilinear program. Assume a size |G| and partitioning

G “ tGtr, Gssu of the FSC has been chosen such that |Gtr | ą 0 and |Gss| ą 0. Next, consider the

Poisson Equation for the ssd-global Markov chain, in which the states in AvoidPMϕ

r ˆGss are sinks.

However, instead of the charge of the Poisson Equation being rav, consider the charge rβ in which

the states in RepeatPMϕ

r ˆ Gss are rewarded. This equation is given by
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Algorithm 6.4 Adding I-states to Escape Local Maxima of Constrained Optimization Criterion

Input: (a) Set B of tangent beliefs for each I-state. (b) A function node : B Ñ G identifying the
I-state which yields each tangent belief. (c) Nnew the maximum number of I-states to add.

1: Nadded Ð 0.
2: repeat
3: Pick b P B, B Ð Bztbu, gÐ nodepbq.
4: Compute the set of forwarded beliefs, Fwd, as in Steps 4-10 of Algorithm 6.2.
5: for all bfwd P Fwd do
6: if g P Gtr then
7: candidatesÐ G ˆ Act.
8: else
9: candidatesÐ Gss ˆ Act.

10: candidatesÐ PruneCandidates(candidates, bfwd, V⃗ av, g⃗) using Algorithm 6.5.
11: end if
12: if candidatesÐ H then
13: Go to step 5.
14: end if
15: Apply the r.h.s. of DP Backup Equation to bfwd

V β,backeduppbfwdq “ max
pg,αqPcandidates

#

rβpbfwdq ` β
ÿ

oPO

Prpo|bfwdq
´
bo,αfwdpsqV β

g psq
¯+

(6.48)

where, bo,αfwd is computed for each product state s1 P S as follows

bo,αfwdps1q “
ÿ

s

T ps1|s,αq
Opo|sqbfwdpsqř

o1PO Opo1|sqbfwdpsq
. (6.49)

16: Note the maximizing action α˚ and I-state g˚.
17: end for
18: if V β,backeduppbfwdq ą V βpbfwdq then
19: Add new deterministic I-state gnew such that ωpgnew|g˚,α˚, oq “ 1 @o P O.
20: Assign gnew to correct FSC partition as follows:

gnew P

"
Gtr if g P Gtr

Gss otherwise.
(6.50)

21: Nadded Ð Nadded ` 1.
22: end if
23: if Nadded ě Nnew then
24: return
25: end if
26: until B “ H.
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Algorithm 6.5 Pruning candidate successor I-states and actions to satisfy recurrence constraints.

Input: Set of candidate successor states and actions candidates Ď Gss ˆ Act.
1: for all pg,αq P candidates do
2: Add new state gphantom to Gss to create a larger FSC where,

ωpg, a|gphantom, oq “ 1 @o P O. (6.51)

3: Compute TPMϕ

mod and ι⃗ssinit for the new larger global ssd Markov chain.

4: Solve Poisson Equation for the new larger global Markov chain to obtain solutions g⃗, V⃗ av.
5: if Any Feasibility Constraints in Equation (6.43) are violated under the larger FSC then
6: candidateÐ candidatesztpg,αqu.
7: end if
8: end for
9: return candidates

g⃗feas “ TPMϕ

mod g⃗feas, and

V⃗ av
feas ` g⃗feas “ r⃗β ` TPMϕ

mod V⃗ av
feas

(6.52)

Then, it can be shown that some state in RepeatPMϕ

r ˆGss is recurrent and can be reached from

the initial distribution with positive probability if and only if Dg P Gss such that

´
ι⃗PMϕ

init

¯T

g⃗feas,g ą 0. (6.53)

However, the constraint of never visiting the avoid states still applies. These procedures and con-

straints can be collected together in the following bilinear maximization problem.
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max
ω,V⃗ av ,V⃗ av

feas ,⃗g,⃗gfeas

`
ι⃗PMϕ

init

˘T
g⃗feas,g

subject to

Poisson Equation 1:

V⃗ av ` g⃗ “ r⃗av ` TPMϕ

mod V⃗ av

g⃗ “ TPMϕ

mod g⃗

Poisson Equation 2:

V⃗ av
feas ` g⃗beta “ r⃗β ` TPMϕ

mod V⃗ av
feas

g⃗feas “ TPMϕ

mod g⃗feas

Feasibility constraints ( @g P Gss)
`
ι⃗ssinit,g

˘T
g⃗ “ 0

FSC Structure Constratins:

ωpg1,α|g, oq “ 0 if g P Gtr and g P Gss

Probability constraints:
ř
g1,α

ωpg1,α|g, oq “ 1 @o

ωpg1,α|g, oq ě 0 @g1,α, o

(6.54)

Any positive value of the objective
`
ι⃗PMϕ

init

˘T
g⃗feas,g gives a feasible controller, and therefore the

optimization need not be carried out to optimality. If the problem is infeasible, then states in Gss

can be successively added to search for a positive objective.

6.7 Case Studies

In this section, case studies for the bounded policy iteration algorithm described in Section 6.5 are

shown. The first example demonstrates the effectiveness of the algorithm to optimize the transient

phase of the controlled system, while the second example illustrates the effectiveness in improving

the steady state behavior of the controlled system. The case studies use the grid world system

models used in the case studies of Chapter 4, whose graphical representation are repeated in Figure

6.5 for convenience.

6.7.1 Case Study I - Stability with Safety

LTL Specification: The LTL specification is given by

ϕ2 “ ♦ l b ^ l␣c. (6.55)
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Figure 6.5: System models for Policy Iteration case studies. (a) Det-World (b) MDP-World (c)
POMDP-World. A description of these systems can be found in Figure 4.4.
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Figure 6.6: Transient behavior optimization using Bounded Policy Iteration. The x-axis denotes the
number of policy improvement steps carried out. (a) The growth of the FSC size. (b) The value
of the initial belief increases monotonically with each iteration. This value denotes the expected
long term discounted reward for the given initial belief. (c) Since the goal is to reach cell 6, this
sub-figure shows the increase in probability of reaching the goal state within 20 time steps as the
FSC is optimized.

where b and c, shown in Figure 6.5 are requirements for the robot to navigate to cell 6, and stay

there, while avoiding cell 3, respectively.

Results: The difficulty in this specification is that the robot must localize itself to the top edge of

the corridor before moving rightward to cell 6. Note that a random walk performed by the robot is

feasible: there is a finite probability that actions chosen randomly will lead the robot to cell 6 without

visiting cell 3. The FSC used to seed the BPI algorithm was chosen to have uniform distribution

for I-state transitions and actions. This is another advantage as compared to the gradient ascent

algorithm, in which initial parametrization for the FSC would lead to zero gradient as mentioned in

Section 4.6. Figure 6.6 shows the result of the BPI in detail. It can be seen that the value of the

initial belief increases monotically with successive policy improvement steps, which includes both

the optimization of Equation (6.43) and the addition of I-states to escape local maxima, as discussed

in Section 6.5.3.
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Figure 6.7: Effect of Bounded Policy Iteration on steady state behavior. Bounded Policy Iteration
applied to the specification ϕ1. The above graph shows the improvement in steady state behavior as
the size of the FSC increases. Only states in Gss were allowed to be added. The y-axis denotes the
expected frequency with which states in RepeatPMϕ

0 were visited for the product-POMDP resulting
for the POMDP-World from Figure 6.5(c) and the DRA of ϕ1 given by Equation (6.56).

6.7.2 Case Study II - Repeated Reachability with Safety

This case study illustrates how the Bounded Policy Iteration, especially the addition of I-states to

the FSC, improves the steady state behavior of the controlled system.

System Model and LTL specification: The model used for this example is the POMDP-World

of Figure 6.5(c) for N “ 3, and the LTL specification is ϕ1 of Equation (4.51), repeated here.

ϕ1 “ l♦a ^ l♦b ^ l␣c. (6.56)

Results: For this example, the controller was seeded with a feasible FSC of size |G| = 3, with

|Gss| “ 2, using Algorithm 4.2. After the first few policy improvement steps, the initial I-state was

found to be in Gss. Since by construction, once the FSC transitions to an I-state in Gss it can

no longer visit states in Gtr , when local maxima was encountered, subsequently all new I-states

were assigned to Gss. The improvement in steady state behavior with the addition of each I-state

is shown in Figure 6.7, where it can be seen that the expected frequency of visiting RepeatPMϕ

0

steadily increases with the addition of I-states.
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6.7.3 Concluding Remarks

In this chapter, it was shown how the Poisson Equation, which is closely related to the Bellman

Equation arising in dynamic programming, can be leveraged to solve the Conservative Optimization

Problem. The problem was shown to be bilinear and one convex relaxation method involving Mc-

Cormick envelopes was introduced as a solution. The stochastic bounded policy iteration algorithm,

which is normally applied to constrained discounted reward problem, was adapted to the case in

which certain states were required to be never visited. This allowed that a path in the global Markov

chain of the controlled POMDP eventually is absorbed in a recurrent set that does not include states

from AvoidPMϕ

r , while simultaneously incentivizing frequent visits to some state(s) in RepeatPMϕ

r .

The key benefit of using this variant of dynamic programming is that it allows a controlled growth

in the size of the FSC, and can be treated as an anytime algorithm in which the performance of

the controller improves with successive iterations, but can be stopped by the user based on time or

memory considerations. Case studies highlighting key attributes of the algorithm can be found in

Section 6.7, and its application to robotic manipulation tasks can be found in Section 7.5.
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Chapter 7

Robot Task Planning for
Manipulation

This chapter gives a detailed introduction to task planning in robotics. Task planning has tradi-

tionally been studied under the area of domain independent planning and therefore, some historical

overview of this field of study is also provided. This chapter differentiates three different types of

planning/control problem in manipulation tasks – the path or motion planning, simple sequencing

to achieve short horizon tasks, and high level task planning for manipulation robots. This is because

manipulation tasks present some unique and specific challenges relating to kinematic constraints of

manipulators, some of which can be addressed using specialized re-manipulation or re-grasping tech-

niques. This re-grasping can therefore be separated with relative ease from the path planner as well

as the high level task planner. Finally, the chapter shows the details of applying the policy iteration

algorithm of Chapter 6 to a few concrete task planning problems inspired by the real challenge tasks

presented to the teams participating in the DARPA ARM-S challenge.

7.1 Introduction

Modern manipulation robots [3,6,9] are no longer confined to large industrial settings with controlled

environments, or work on highly specialized assembly or machining tasks. Instead, they are expected

to function in the same environment as humans and adapt to a variety of goals. These new desired

behaviors from robots also come with additional burdens arising out of large, possibly unknown,

environmental disturbances. Moreover they must rely heavily on sensors and perception algorithms

that may be unreliable in unconstrained environments. These two issues are addressed in planning

problems by incorporating probabilistic or even non deterministic changes in the robot’s system

model and by introducing partial observability.
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7.1.1 Robotic Paradigms

All robots work on some paradigm incorporating the three main components that they need to

function: Sense, Plan and Act [28, 103, 109]. The classical way to model robotic behavior was

to look at its operation in a top down fashion with a heavy focus on planning. The robot first

senses the world, plans the next action, and finally acts. Then the process repeats itself. This

is sometimes called the Hierarchical or Deliberative Paradigm and is shown in Figure 7.1(a). It

assumes a-priori knowledge of the world model. Another paradigm is the Reactive Paradigm, in

which several instances of very tight Sense-Act couplings run concurrently and sensor data is used

to compute which action to take, independent of what the other instances are doing, with some

mechanism to arbitrate. There is no explicit abstract model of the world. The Sense-Act couplings

are termed “behaviors” and are typically implemented using finite state machines and connected

directly to the sensors and actuators. See Figure 7.1(b). These concurrent independent behaviors

lead to overall behavior that is emergent. While the reactive paradigm has had success with speed

and resilience against dynamic environments, they have had limited success with planning for long

range goals and optimizing the robot behavior. For long range goals, it is necessary to have a

deliberative planner capable of planning executions that realize the goals. Optimizing against some

constraints on time or efficiency is also crucial. This suggests the use of a hybrid structure with a

hierarchy of capabilities. The low levels can still be highly reactive, while the higher levels provide

increasingly intensive deliberation for long range goal satisfaction. Figure 7.1(c) gives a figurative

configuration of the various classical components in a hybrid architecture.

7.1.2 Planning in Robotics

A robot can be expected to carry out several types of planning: e.g., robots may need to plan for

information gathering tasks or better perception of objects; mobile robots and autonomous vehicles

must plan for navigation, which subsumes path and trajectory planning; networked robots with

communication constraints need to plan for this information exchange; manipulation robots need

to work with physical objects and must deal with kinematic constraints. These constraints arise

out of object and manipulator geometry, dynamic issues during lifting and manipulation due to

gravitational and frictional effects, etc.

There are domain specific planners that are crucial for performance of single tasks, e.g., path

planning techniques for mobility or manipulator planning in the configuration space; scheduling

algorithms for resource planning problems, SLAM [85] for the optimal actions for map building in

unknown environments, etc. These types of planners are efficient for their domain, as they leverage

the assumptions on the underlying structure of the problem and its eventual application. However,

the planners of interest in this work are those that work by abstracting the domain and are therefore
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Sense Plan Act

(a)

Sense Act

(b)

Sense

Plan

Act

(c)

Figure 7.1: Various Robotic Paradigms. (a) The Deliberative/Hierarchical Robotic Paradigm in
which the robot senses the state of itself and environment, plans its next action and then acts, in
sequence. (b) The Reactive Robotic Paradigm in which multiple concurrent Sense-Act couplings
react directly to the environment without an abstract world model or high level deliberation.(c) The
Hybrid Robotic Paradigm in which there are low level sense-act loops, with higher level planner-
s/sequencers that may work with explicit worlds models for increasingly involved computations.
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applicable to many problems using the same mathematical tools. These rely on the model of all the

actions available to the robot or controller, which includes preconditions on the state of the world for

applicability and each action’s effect on the world. These planners start with the initial or measured

state of the world, and a goal, and output a rule for choosing the actions needed to reach the goal,

while satisfying constraints. This is called the plan synthesis problem [47].

For articulated robots performing manipulation tasks, a general high level software architecture

is shown in Figure 7.2. This architecture closely approximates the architecture for the JPL/Caltech

entry to the DARPA Autonomous Robotic Manipulation challenge (see Section 7.2).

The planner can obtain the initial world state from the robot’s own inference engine, or from

human input using a model of how its actions effect the world (dashed purple). A plan is generated

to achieve high level goals. The plan is either a sequence of actions or a rule to generate these actions

and is handed to the sequencer for execution.

The sequencer, sometimes also called the executive, is a lower level module that monitors the

execution of the plan, and is possibly equipped with local planners to achieve the high level actions.

For mobile robots, the path and/or trajectory planner may be incorporated at this level. For a robot

which must manipulate objects, a configuration space path and/or trajectory planner such as an

RRT-planner [82] provides the sequencer with specific parameters to complete the current action,

bypassing the high level task planner. The sequencer then passes these specific parameters to the

controller.

Typically, the controller implements a fast control loop between the actuators and sensors in order

to achieve the goals provided by the sequencer. For example, it may implement a linear quadratic

Gaussian regulator [5] for navigational path following. For articulated robots it may utilize feedback

and feed-forward adaptive methods to control a combination of end effector position and exerted

force/torque. The capabalities of the manipulator system are encoded as a set of behaviors. A

behavior may consist of a hybrid automaton, each discrete state describing the motion using the

dynamics of the system and also encoding end conditions. For example, a “contact-grasp” behaviour

may comprises of multiple discrete states. First, a free-space motion is carried out to a defined offset

from the object, which may require visual servoing. This may be followed by a task frame velocity

input towards the object grasp point until contact is made. Further motions upon contact include

finger closure, finger strain control etc.

Both the controller and the inference engine provide feedback to the sequencer to update it

regarding the status of individual actions. If the plan received by the sequencer already accounts for

every outcome of individual actions, the sequencer has enough information to either proceed with

the next action or recover from an unsuccessful action. However, if something unseen happens, or

the original plan was partial, the sequencer may optionally request a new plan (black dashed line).

This type of planner is an online planner which refines the high level plan as execution proceeds.
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The inference engine fuses information from all the different sensors – cameras, laser range

finder, tactile, force/torque sensors – to infer the state of the world. It utilizes numerous special-

ized algorithms such as computer vision, Kalman filtering, etc., to perform map building and self

localization [85], pose estimation [93], object segmentation and identification [139]. It can access the

state of the controller, e.g., force closure criterion can indicate the grasped status of objects [105]. In

order to estimate the status of the world, it may additionally utilize a predictive engine on the model

of the world, and use Bayesian algorithms to find good estimates and an idea of its own estimation

error [84].

While the world itself can be quite complex, the planner works from a model of the world. The

model is comprised of a state transition system with a function γ that determines how the state

evolves.

It is worth reiterating the difference between the sequencer and the high level planner in Figure

7.2. Planning is significantly harder when it is a hybrid problem, i.e., when the planner must

simultaneously search over sequences of discrete actions and also search for continuous paths within

actions, especially since the continuous controllers effect the outcome at the discrete level as well.

Although there is now a large body of work on controlling hybrid systems, and a recent push towards

integrating the discrete planning problem with continuous controllers [78], these systems are usually

confined to low state space dimensions. For manipulation robots, the configuration space [39] can

unfortunately be very high dimensional [70], as the number of movable objects increase.

This thesis focuses exclusively on planning over finite discrete choices. The problems arising out

of continuous low level controllers are assumed to be captured by the introduction of uncertainty in

the model. This is in addition to the uncertainty due to actual noise that actuators introduce and also

due to unexpected world behavior. Moreover the partially observability at the highest task or action

planning level captures the fact that the inference engine is usually imperfect. During dexterous

tasks, manipulated objects may be miss-classified, and it may be difficult to detect completion of

some tasks, such as successful disassembling of small parts from a fixture. POMDPs offer a powerful

way to model robotic tasks. POMDPs are a general and expressive model class and are now being

studied extensively in the field of domain independent planning [120]. Therefore, a brief historical

review of domain independent planning is provided in the next section.

7.1.3 Background on Domain Independent Planning

The classical planning problem representation, e.g. STRIPS [44], ADL [110] starts with a first order

language over a (finite) set of atomic propositions and constant literals which may represent the ob-

jects in the world. For example, hammer1 and hammer2 may refer to specific hammers. There may

be variables that abstract these objects. For example tool is a variable that can take be instantiated

to hammer1 or hammer2. The atomic propositions are typically truth valued statements describing
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Figure 7.2: A Hybrid Robot Architecture.
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properties of the object, e.g., grasped left hand(tool) says that some object represented by tool is

grasped in the left hand. When the object represented by all variables appearing in atomic proposi-

tions are instantiated by an object or constant literal, then the proposition is called grounded. The

opposite of grounding is called lifting. For example, the proposition grasped left hand(tool) describes

the state of an abstract entity tool. Similarly, the operator GRASP(left hand, tool) may similarly

define the effect of grasping action on the abstract entity. Lifting allows compact representation

of the world and its dynamics. It is independent of the instantiation of abstract entities by actual

objects, which may differ situationally.

Let the set of grounded atomic propositions be given by L. Then, the state space of the world

model is given by all possible truth assignments, 2L. Next, there are a finite set of operators that

have two main components:

1. Preconditions: These are list of atomic propositions, that must be true or false for the

operator to be applied.

2. Effects: A list of atomic propositions that become true or false as a result of applying the

operator. There has historically been ambiguity as to what happens to propositions that are not

listed in the effects, and most implementations assume that the remaining propositions remain

unchanged. In newer representations such as PDDL [99] these effects may be conditional.

An example of an operator can be

placeptool, tableq :

preconditions: graspedptoolq

effects: ␣graspedptoolq “ False, onptable, toolq “ True.

Exact format, syntax and semantics vary across several representations [44, 47, 110]. This is

another operator that is lifted, i.e., it can be used for any instantiation of tool. When all propositions

appearing in operators are grounded, the operator is termed grounded and is called an action.

In classical domain independent planning, the goals are reachability goals. The planner simply

needs to find a path (a sequence of actions and hence a sequence of intermediate points in the state

space) that takes the initial state of the world to a given final state. The goal is also specified as a

list of atomic propositions that must be true or false. Any state that agrees with the goal is a valid

end state. Classical problems do not deal with finding “optimal” paths.

Since the first formalization of planning problems, several new problem domains have been added.

For example, probabilistic effects as in Markov decision processes and partial observability, which

is the topic of thesis, are now an important subject in the AI planning and robotics communities

[107, 120]. Another addition is that of durative actions, in which time is explicitly represented.

Planning under concurrency is another important area. The goals of planning problems have also
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become more complex: optimality criteria based on rewards / cost, constraint satisfaction problems

and temporal goals are all now studied under the umbrella of planning.

In order to incorporate these new classes of problems, as defined by the mathematical models

and goal criteria, the representation of planning problems has also evolved. Over the past decade,

the AI planning community has been standardizing the representation of increasingly new classes

of planning problems in a consistent fashion using the Propositional Domain Description Language

(PDDL) [99] and, recently, Relational Dynamical Influence Diagrams (RDDL) [129] to incorporate

lifted representations of probabilistic concurrent systems.

This thesis is concerned with probabilistic domains: specifically Partially Observable Markov

Decision Processes (POMDP), which are powerful models that allow uncertain disturbances to be

incorporated into the model. They are widely popular, and despite their computational complexity,

the optimal POMDP policy problems for these domains have been shown to work over increasingly

large state spaces in seconds [79]. In fact, infinite state space models have also been introduced [41].

In large engineering applications, such as a concurrent city wide traffic management system, several

thousand actions can be taken simultaneously. It quickly becomes intractable to even represent all

possible concurrent actions if they are explicitly enumerated. Similarly, many action effects only

depend on a subset of state variables, as do the rewards or cost. For these domains a compact

representation is crucial if they are to be applied in reality. This has led to a crucial area in

(PO)MDP planning where the domain is factored [20,52]. In factored representations, the transition

probabilities are conditioned over the evaluations of a subset of the state variables. In order to

capture these new developments in stochastic planning, recently there has been a push to standardize

the representation of problems of this nature using RDDL [129]. RDDL uses Dynamic Bayesian

Networks (DBN), Algebraic Decision Diagrams (ADD) and the lifted representations which allow

for compact descriptions of large domains. DBNs represent how variables at one time step affect

each other at the next time step [102]. ADDs are a generalization of Binary Decision Diagrams

(BDD) to allow efficient representations of functions and implementation of algorithms such as

matrix multiplication, Gaussian elimination, etc. [7].

7.2 The DARPA Autonomous Robotic Manipulation Soft-

ware Challenge

The DARPA Autonomous Robotic Manipulation Software (ARM-S) program is a dexterous manipu-

lation challenge in which participating teams are asked to complete complicated object manipulation

tasks with minimal high level supervision. These tasks need to be carried out in partially unknown,

changing environments. The goal has been to push the technology for robots to become useful in

adaptive manufacturing, in-home care, and deployment in emergencies under hazardous conditions.
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Figure 7.3: The DARPA ARM-S Robot.

The first phase of the challenge included six teams, while the second and final phase was comprised

of three teams. This thesis work has been motivated by the task planning challenges faced by the

JPL/Caltech team during the second phase, in which long sequences of dual armed tasks needed

to be carried out in the correct sequence in order to complete the challenge tasks. The end-to-end

system description of the technologies used in this competition and the system integration details

can be found in [63, 64].

The ARM robot [3], see Figure 7.3, consists of two arms that are Barrett Technology 7-DOF

WAM arms with a 6-DOF force sensor at each wrist. The Barrett BH8-280 hands have a strain

gauge in each of the three fingers and tactile sensing pads on the palm and distal finger surfaces.

The sensor head consists of a Point Grey Research Bumblebee2 color stereo camera, PrimeSense

ASUS Xtion-Pro depth camera, Prosilica Gig-E color camera, and two microphones, mounted on a

4-DOF neck.

7.2.1 An Example DARPA Challenge Task for ARM-S

One of the tasks that the ARM-S teams were required to carry out was a wheel change scenario. The

process of changing a wheel includes the following main tasks: finding a battery operated impact

drive on the table (work-space), removing lug nuts from the wheel using the impact driver, removing

the wheel from the axle and placing it on the table. This sequence of desired behavior is seen in
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(a) (b)

(c) (d)

Figure 7.4: Wheel Removal Task for the ARM-S Robot. (a) Pick impact driver. (b) Remove the
four lug nuts that attach the wheel to the hub. (c) Remove the wheel from the hub. (d) Place wheel
on table.

Figure 7.4.

7.3 Overview of Planning Challenges in ARM-S

The JPL/Caltech entry to the software challenge closely follows the architecture shown in Figure

7.2 and the details of each component can be found in [64]. This section focuses on the planning

challenges faced in carrying out the challenge tasks in the competition.

7.3.1 Motion Planning

For single primitive tasks, such as grasping an object with a free hand, the JPL/Caltech ARM-S

software calls upon the motion planner. There are three main components in the motion planner:

Manipulation Sets, Manipulation Planner and the Arm Planner. The manipulation sets are sets of

relative poses which are needed for controller behaviors, a primary object (e.g., a tool to be used),
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and an optional secondary object (e.g., the object on which the tool operates). For example, the

manipulation set for the behavior power grasp and the primary object impact driver is a set of poses

which describe the location of the hand relative to the impact driver as well as a corresponding set of

finger parameters. If the robot hand can be brought into this relative pose w.r.t. the impact driver,

then the control behavior has high chance of succeeding with local feedback / feed forward controller.

These sets were generated offline because the CAD models of the objects were available. The

Manipulation Planner, in combination with the Arm Planner, chooses amongst reachable relative

poses for a given primitive task. The primary goal of the Arm Planner is to work in the 7-DOF

arm joint space to find collision free paths to the poses suggested by the Manipulation Planner. The

Arm Planner uses RRT to plan for both arms in master slave configuration [64].

7.3.2 Limited Task Planner / Sequencer for ARM-S

The ARM-S challenge did not require the full capabilities of synthesizing long task sequences au-

tonomously. The high level sequence of actions to accomplish each task was permitted to be encoded

explicitly by the participating teams. However, the need for a basic task sequencer / executive was

necessary. Since this problem is the main motivation for this work, the next few sections expand on

this topic.

The dexterous manipulation tasks in DARPA ARM-S program require tasks to be executed in

a particular order for successful completion. The task level planner maintains communication with

other components of the system such as the estimator, planner, and control. The material presented

in this section was carried out by the author as part of the work for the JPL/Caltech entry into

DARPA ARM-S challenge and follows closely the work published in [64].

The overall JPL/Caltech software architecture relies on a model of the world, described by world

state Wmodel at any time. This includes the state of all objects tOu in the work-space, and the

state of the robot, R. The state of the objects includes a linkage list L that describes the possible

links or attachment between objects. Furthermore, the state of the robot includes a grasp state Gr

that describes which object each manipulator is grasping. However, since the world state is inferred

using sensors and possibly inference based algorithms, the task level planner maintains the estimated

state of the physical world W est, which is updated using the estimator.

The task planner additionally maintains a library of atomic tasks T atom “ tT atom
1 , T atom

2 , . . . u

which correspond to single behaviors that some component (including itself) of the system can carry

out. Each component when asked to execute an atomic task (behavior), may in turn carry out a

sequence of actions, which the task level planner does not track. The task level planner concerns

itself with the overall success or failure of such tasks. Some examples of tasks are ESTIMATE

WORLD STATE (estimation), GENERATE MANIPULATION SET (planner), PLAN ARM TO

POSE (planner) and MOVE USING PLAN (control). These atomic tasks can take arguments αatom
i
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Task Sequence 7.1 A common compound task

EXECUTE BEH SEQ(grasp type, Oprimary, Osecondary)
1: (Estimator) w = ESTIMATE WORLD STATE
2: (Planner) M = GENERATE MANIPULATION SET(w,

grasp type, Oprimary, Osecondary)
3: (Task Planner) if M “ H, return Failure, exit
4: repeat
5: (Task Planner) pick new mi P M
6: (Planner) p = PLAN ARM TO POSE(w, mi)
7: (Task Planner) if p is not valid, goto step 11
8: (Control) MOVE ARM USING PLAN(p)
9: (Control) MOVE FOR BEHAVIOR(grasp type)

10: return Success, exit
11: until M is exhaustively sampled.
12: return Failure, exit

such as the object on which the action must be performed, or the current world state. An atomic

task with an instantiated argument can be thought of as a map

T atom
i p.|αatom

i q : W Ñ W .

In the above equation, W P tWmodel,W estu, implying that the application of these atomic tasks can

be on W est or Wmodel. In the former case, the tasks are carried out by the actuators and sensors,

in the presence of noise and imperfections. However, in the latter case, application of a task implies

simulating the expected change in the world state assuming perfect observation and control.

Atomic tasks that involve kinematic changes correspond to executing control behaviors, which

are tight sense-act loops that carry out a (small number of) single atomic task(s), such as moving

the robot hand to an object until contact and securely grasping the object. When such tasks are

simulated, Wmodel is propagated using the same expected motion that the controller uses to complete

the corresponding behavior. In fact, the inverse of this expected motion is used by the manipulation

planner to generate the starting pose in the first place. This approach makes the simulation consistent

with idealized execution by the controller. The resulting state, Wmodel, kinematically satisfies the

end-conditions for the control behavior. Changes in grasp state Gr and linkage list L are also

updated by appropriately translating the end-conditions of the control behavior. Thus, simulated

grasping of an object correctly updates Gr with the object grasped, while a parts assembly behavior

correctly updates L in Wmodel.

The library also contains some basic sequences (seq.) of atomic tasks, called compound tasks,

T comp “ tT comp
1 , T comp

2 , . . . u, where T comp
k are finite sequences of elements of T atom. The pa-

rameters for each atomic task are stacked or sequentially generated to make the argument for the

sequence. A common compound task is given by Task Sequence 7.1.
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Figure 7.5: Abstracted digraph for removing nuts with impact driver, Example 2. Two alternate
routes exist with lower preference for re-manipulation.

In the ARM-S program, manipulation tasks are specified as an ordered list of T comp
j . This list

is internally translated to a directional graph where each node represents an atomic task. Note

that there is no need to restrict ourselves to two levels of encoding task hierarchy. One can make

compound tasks from other completely defined compound tasks as well.

7.3.2.1 Re-manipulation or Re-grasping

On many occasions, due to kinematic constraints on the robot’s motion, there may be no feasible

plans to accomplish a behavior. For example, for instruction EXECUTE BEH SEQ(“tool use grasp”,

IMPACT, Ø) the grasp planner may find no feasible solutions in the current pose of the impact on

the table. To handle this situation, the task sequencer can optionally execute a sub-sequence for

re-manipulating or re-grasping the impact driver on the table so that subsequently a tool use grasp

is feasible.

Adding alternative optional sub-sequences involves allowing the nodes of the task sequence di-

graph to have multiple children and parent nodes, and this approach can be represented as in Figure

7.5. Whenever a node has multiple children, the child nodes are ordered by preference.

7.3.2.2 Kinematically Dependent Tasks

In many situations, some (compound) tasks in the sequence are kinematically dependent on each

other. For the tool use example, this can arise in multiple ways.

Example 1: Assume that the robot can pick up the impact driver with a hand pose that is

amenable to tool use (press trigger). However, after the impact driver is lifted off the table with a

certain pose, the RRT planner may fail to find a path to orient the impact driver over the nut that

must be removed from the fixture. This situation happens usually when the initial plan for picking

up the impact is near the physical joint limit of the wrist, even though other wrist solutions may
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exist.

Example 2: This example considers the case when re-manipulation of the impact driver is needed

in order that the next task (tool use grasp) is feasible.

Kinematically dependent tasks are usually linked by manipulation sets. They are therefore solved

by linking them together inside nested iterative tasks and exhaustively searching until a feasible

solution is found for all tasks in the linked subset. The task sequence for solving Example 1 is shown

in Task Sequence 7.2.

Task Sequence 7.2 Task sequence for Example 1

EXECUTE LINKED SEQ(“tool use grasp”, IMPACT, Ø)
1: (Estimator) w1 = ESTIMATE WORLD STATE
2: (Planner) M1 = GENERATE MANIPULATION SET(w1, “tool use grasp”, IMPACT, Ø)
3: (Task Planner) if M1 “ H, return Failure, exit
4: repeat
5: (Task Planner) pick new m1,i P M1

6: (Planner) p1 = PLAN ARM TO POSE(w1, m1,i)
7: (Task Planner) if p1 is not valid, goto step 21
8: (Control) MOVE ARM USING PLAN(p1)
9: (Control) MOVE FOR BEHAVIOR(tool use grasp)

10: (Estimator) w2 = ESTIMATE WORLD STATE
11: (Planner) M2 = GENERATE MANIPULATION SET(w2, “remove nut”, IMPACT, NUT)
12: (Task Planner) if M2 “ H, goto step 21
13: repeat
14: (Task Planner) pick new m2,j P M2

15: (Planner) p2 = PLAN ARM TO POSE(w2, m2,j)
16: (Task Planner) if p2 is not valid, goto step 20
17: (Control) MOVE ARM USING PLAN(p2)
18: (Control) MOVE FOR BEHAVIOR(“remove nut”)
19: return Success, exit
20: until M2 is exhaustively sampled.
21: until M1 is exhaustively sampled.
22: return Failure, exit

Similarly, the sequence for Example 2, which require a re-manipulation event before execut-

ing the sequence from Example 1 consists of searching over four manipulation sets, corresponding

respectively to:

1. EXECUTE BEH SEQ(“power grasp”, IMPACT, Ø)

2. EXECUTE BEH SEQ(“place”, IMPACT, TABLE)

3. EXECUTE BEH SEQ(“tool use grasp”, IMPACT, Ø)

4. EXECUTE BEH SEQ(“remove nut”, IMPACT, NUT)

Figure 7.5 showed an abstracted digraph of the task level plan for this example. Images of the robot

resorting to re-manipulation are shown in Figure 7.6. All four compound tasks are kinematically

linked.
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7.3.2.3 Kinematic Verification Based Execution

Once the task sequence directed graph is populated from the task specification, a kinematics-only

verification of the entire sequence is carried out. First a sensor based estimate of the world is

made and is used to initialize Wmodel. A depth-first traversal of the sequence is carried out which

preferentially chooses highly ranked child nodes first. As each node, n, is encountered its effect is

simulated on the output of the parent node corresponding to its initial condition, Wmodelpparentpnqq.

Planning tasks can produce additional quantities such as the manipulation set M or a plan p, which

can be considered to augment the world state. Each node can flag success in which case a new

world state, Wmodelpnq is generated and search proceeds or failure in which case we backtrack until

a parent with unexplored child or an unfinished iteration task is encountered.The verification ends

either in success (a node with no children is reached with no failure) or fails if exhaustive search

produces no successful path.

Once the task sequence execution starts, it is natural to observe discrepancy between W est and

Wmodel from the kinematic verification at any node. If this discrepancy is large and tasks are

kinematically linked, the manipulation sets may need to be recomputed along with the associated

RRT plans, since they are sensitive to the actual world state.

7.4 Task Planning for ARM-S

The preceding sections outlined the limited functionality of the ARM-S sequencer. In order to apply

the full power and algorithms of domain free task planning for manipulation robotics, it is necessary

to represent the capabilities of the robot in a language that admits a compact lifted representation.

Another key realization during the ARM-S challenge was that partial observability was not only an

issue at the local / continuous control level, but also filtered upto the task level. That is, partial

observability makes it difficult to determine if one segment of a sequence has been successfully

completed.

7.4.1 Probabilistic Outcomes and Partial Observability at the Task Level

Consider the task of wheel removal by the robot. Once the robot has grasped the impact driver,

it must now remove the four lug nuts as shown in Figure 7.7. Panel (a) shows the perception

algorithm in the top left box. It segments the image from the visual sensors to locate the nuts. The

controller and the perception algorithm must have high accuracy to ensure that the tool tip is placed

properly over the lug-nuts for removal. The local continuous errors arise out of a combination of

noise and inaccuracy in sensors, and disturbance and inaccuracies in the robot actuators. At the

local control level, visual servoing tries to make the action robust to these sources of uncertainty.
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However, successful completion at the task level cannot be guaranteed. A typical recourse is to model

the possible outcomes probabilistically. Panel (b) shows the events once lug nuts removal actions

have been completed. The visual sensors and the force torque sensors in the wrist may not have

enough accuracy to measure whether the lug nuts were successfully removed with perfect confidence.

However, if the robot proceeds forward and tries to remove the wheel from its attachment to the

hub, inferring success and failure for this later task has much more accuracy. Moreover, success and

failure can provide information about the success or failure at the lug nut removal case. This could

be modeled as conditional distributions as follows.

Partial Observability

O rObsAttachedNutToWheelpnutiq | AttachedNutToWheelpnutiqs “ p

O r␣ObsAttachedNutToWheelpnutiq | AttachedNutToWheelpnutiqs “ 1 ´ p

O rObsAttachedNutToWheelpnutiq | ␣AttachedNutToWheelpnutiqs “ 1 ´ q

O r␣ObsAttachedNutToWheelpnutiq | ␣AttachedNutToWheelpnutiqs “ q

(7.1)

Probabilistic Outcomes

T r␣AttachedNutToWheelpnutiq | AttachedNutToWheelpnutiq, ActRemoveNutpnutiqs “ r

T rAttachedNutToWheelpnutiq | AttachedNutToWheelpnutiq, ActRemoveNutpnutiqs “ 1 ´ r
(7.2)

7.4.2 LTL Goals for ARM-S Task Planner - Case Studies

7.4.2.1 Simple Reachability Goal

The first case study will look at a simple reachability task for the ARM-S robot in which it must

remove the wheel and place all tools and objects on the table. Formally, this can be written as an

LTL formula over the state space

ARM-S Task 1

ϕARM-S
1 “ ♦ p␣AttachedWheelT oHub^␣GraspedWheelq . (7.3)

Note that this problem is no different from the classical planning problem, except for the non-

classical domain of Partially Observable Markov Decision Process. In fact it can be solved by already

known methods of reward maximization, by simply assigning a reward of +1 to the states in which

the formula ␣AttachedWheelT oHub ^ ␣GraspedWheel holds. The DRA for this specification is

given in Figure 7.8.
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7.4.2.2 Temporally Extended Goal

In order to demonstrate the power and flexibility of using LTL for goal specifications, next consider a

particular ARM-S robot deployed on an assembly line. The robot should perform the wheel removal

task as the assembly fixtures appear in front of it. The fixtures are assumed to be sent by a scheduler

which routes them to available robots. The wheel removal task may take an unknown amount of

time due to the probabilistic nature of the task. However once the task is finished, it would be useful

if robot itself could signal that it can receive a new task. We can formulate this requirement as an

LTL formula as follows:

ARM-S Task 2

ϕARM-S
2 “ l♦ p␣AttachedWheelT oHub^␣GraspedWheelq ^

l pp␣AttachedWheelT oHub^␣GraspedWheelq ùñ lAvailableSignalq .
(7.4)

7.4.3 Description of the System in RDDL

I choose to compactly represent the ARM-S system for the two case studies using RDDL [129]. As

mentioned before, RDDL is based on the idea of a Dynamic Bayes Net (DBN), and supports factored

representations of planning domains. The RDDL description for ARM-S Task 2 described earlier is

shown in Listing 7.1. The graphical representation of the DBN is shown in Figure 7.9. Note that

the full power of RDDL is not needed for this problem. For example, to satisfy the above goals, an

explicit reward function is not required, since the reward assignment will be designed as part of the

algorithm presented in this thesis. Moreover RDDL allows for continuous conditional distributions,

even though algorithms for these types of POMDP problems are still in their nascency. However,

the above tasks can be formulated by restricting the conditional distributions to the Bernoulli (coin

toss) likelihoods or deterministic outcomes which are denoted using the Kronecker delta function.

Listing 7.1: Description of the ARM-S Task Planning Domain

domain arms {

requi rements = { pa r t i a l l y ´observed } ;

types { nut : ob j e c t ; } ;

pva r i ab l e s {

// Noń f l u e n t s

// These are model parameter va lues that don ’ t change dur ing execution ,

// but are i n i t i a l i z e d be f o r e computing the po l i cy .

p : {non´f l uent , r ea l , d e f au l t = 1} ;

q : {non´f l uent , r ea l , d e f au l t = 1} ;

r : {non´f l uent , r ea l , d e f au l t = 1} ;
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// State v a r i a b l e s

GraspedImpact : { s tate ´f l uent , bool , d e f au l t = f a l s e } ;

GraspedWheel : { s tate ´f l uent , bool , d e f au l t = f a l s e } ;

AttachedWheelToHub : { s tate ´f l uent , bool , d e f au l t = true } ;

AttachedNutToWheel ( nut ) : { s tate ´f l uent , bool , d e f au l t = true } ;

Ava i l ab l eS i gna l : { s tate ´f l uent , bool , d e f au l t = f a l s e } ;

// Actions

ActGraspImpact : { act ion´f l uent , bool , d e f au l t = f a l s e } ;

ActGraspWheel : { act ion´f l uent , bool , d e f au l t = f a l s e } ;

ActRemoveNut ( nut ) : { act ion´f l uent , bool , d e f au l t = f a l s e } ;

ActRemoveWheel : { act ion´f l uent , bool , d e f au l t = f a l s e } ;

ActPlaceImpact : { act ion´f l uent , bool , d e f au l t = f a l s e } ;

ActPlaceWheel : { act ion´f l uent , bool , d e f au l t = f a l s e } ;

ActSignal : { act ion´f l uent , bool , d e f au l t = f a l s e } ;

Act Id l e : { act ion´f l uent , bool , d e f au l t = f a l s e } ;

//Observat ions

ObsGraspedImpact : {observ´f l uent , bool } ;

ObsGraspedWheel : {observ´f l uent , bool } ;

ObsAttachedWheelToHub : {observ´f l uent , bool } ;

ObsAttachedNutToWheel ( nut ) : {observ´f l uent , bool } ;

ObsAva i l ab l eS igna l : {observ´f l uent , bool } ;

} ;

cp f s {

GraspedImpact ’ = i f (˜ GraspedImpact ˆ ˜GraspedWheel ˆ ActGraspImpact )

then Bernou l l i (1 )

e l s e i f ( GraspedImpact ˆ ActPlaceImpact )

then Bernou l l i (0 )

e l s e KronDelta ( GraspedImpact ) ;

GraspedWheel ’ = i f (˜ GraspedImpact ˆ ˜GraspedWheel ˆ ActGraspWheel )

then Bernou l l i (1 )

e l s e i f (GraspedWheel ˆ ActPlaceWheel )

then Bernou l l i (0 )

e l s e KronDelta (GraspedWheel ) ;

AttachedWheelToHub ’ = i f (˜AttachedWheelToHub ˆ ˜GraspedWheel ˆ Ava i l ab l eS i gna l )

then Bernou l l i (1 )

e l s e i f (AttachedWheelToHub ˆ GraspedWheel ˆ ActRemoveWheel ˆ

( f o r a l l {?n : nut} ˜AttachedNutToWheel (?n ) ) )

then Bernou l l i (0 )
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e l s e KronDelta (AttachedWheelToHub ) ;

Ava i l ab l eS i gna l ’ = i f (AttachedWheelToHub ) then Bernou l l i (0 )

e l s e i f ( ActSignal ) then Bernou l l i (1 )

e l s e KronDelta ( Ava i l ab l eS i gna l ) ;

AttachedNutToWheel ’ ( ? n) = i f (AttachedNutToWheel (?n) ˆ GraspedImpact ˆ

ActRemoveNut (?n ) ) then Bernou l l i ( r )

e l s e i f (˜AttachedWheelToHub ˆ ˜GraspedWheel ˆ

Ava i l ab l eS i gna l ) then Bernou l l i (1 )

e l s e KronDelta (AttachedNutToWheel (? n ) ) ;

ObsGraspedImpact = KronDelta (GraspedImpact ’ ) ;

ObsGraspedWheel = KronDelta (GraspedWheel ’ ) ;

ObsAttachedWheelToHub = KronDelta (AttachedWheelToHub ’ ) ;

ObsAva i l ab l eS igna l = KronDelta ( Ava i l ab l eS i gna l ’ ) ;

ObsAttachedNutToWheel (? n) = i f (AttachedNutToWheel ’ ( ? n ) )

then Bernou l l i (p )

e l s e Be rnou l l i (1´q ) ;

} ; }

i n s t ance wheelchange {

domain = arms ;

non´f l u e n t s { p = 0 . 5 ; q = 0 . 5 ; r = 0 . 8 ; } ;

ob j e c t s { nut : {nut1 , nut2 , nut3 , nut4 } ; } ;

i n i t ´s t a t e { GraspedImpact = f a l s e ; } ;

max́ nondef´ac t i on s = 1 ; //Allow only 1 act i on at each time s tep

d i s count = 0 . 9 ;

}

7.5 Application of Bounded Policy Iteration to ARM-S Tasks

This section presents the results and insights from applying the bounded policy iteration algorithm

to the ARM-S Tasks 1 and 2.

7.5.1 Preprocessing

Before the numerical results for the ARM-S task planning problems are shown, some discussion

about the size of the problem is presented. Given the planning domain in Listing 7.1, the size

of a naive implementation, in which all states, actions and observations are incorporated into the

optimization is given in Table 7.1.

The problem size can be reduced by a few simple preprocessing steps. The first approach is to
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Formula ϕARM-S
1 ϕARM-S

2

Model state space size |Smodel| 256 256
Number of observations |O| 256 256
Number of actions |Act| 11 11
Size of the DRA state space |Q| 2 5
Product state space size |S| “ |Smodel||Q| 512 1280
Total number of unknowns for ω |O||Act||G|2 2816ˆ|G|2 2816ˆ|G|2

Total number of unknowns for
V⃗ av, g⃗, V⃗ β (each) |S||G| 512ˆ|G| 1280ˆ|G|

Table 7.1: Problem size of policy iteration for naive implementation.

restrict the model state space to the reachable states from the initial condition. Note that the initial

condition is given by

␣GraspedImpact ^␣GraspedWheel ^␣AvailableSignal ^ AttachedWheelT oHub

^
´Ź4

i“1
AttachedNutToWheelpnutiq

¯
.

(7.5)

Similarly, when taking the product with the DRA, further reduction in the number of states can be

made by keeping only the reachable states in consideration. In order to carry out the actual state

space reduction, graph algorithms such as connected component computation were used. When

applied to the partially observable ARM-S planning domain, it was found that the first reduction

resulted in a model state space size of |Smodel| “ 88. The number of observations could be reduced to

|O| “ 128. Next, the product POMDP was constructed using Definition 3.2.1 and only those product

states that were reachable from the initial state were kept. For the product POMDP resulting from

ϕARM-S
1 , the size of the product state space was found to be |S| “ 144. For ϕARM-S

2 , the product

state space size was only |S| “ 160.

Usually in task planning domains, each action can be applied successfully only in certain states.

In completely observable cases, this fact reduces the planning problem size considerably since the

agent can focus exclusively on those actions that are capable of changing the state. In partially

observable domains, this reduction process can still be carried out, but to a smaller extent. In

order to understand this issue completely, consider a particular observation ok P O. Then, let

Smodel
ok

Ď Smodel be defined as follows. @ s P Smodel,

s P Smodel
ok

if and only if Opok|sq ą 0. (7.6)

Equation (7.6) implies that Smodel
ok

is the set of states which can generate observation ok with non-

zero probability.

Next, for any action α P ActztActIdleu, if T ps|s,αq “ 1, @ s P Sok , then the parameter

ωpg, ok|g1,αq can be set to zero for all g, g1 P G, and be removed from the optimization over the
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ϕARM-S
1 ϕARM-S

2

Model state space size 88 88
Number of observations 128 128
Number of actions 11 11
Size of the DRA state space 2 5
Product state space size 144 160
Total number of unknowns for ω 288ˆ|G|2 288ˆ|G|2

Total number of unknowns for

V⃗ av, g⃗, V⃗ β (each) 144ˆ|G| 160ˆ|G|

Table 7.2: Reduced problem size for policy iteration after basic preprocessing.

FSCs. In other words, if making a single observation ok localizes the state of the product-POMDP to

a few states, then only those actions need to be considered for ok, which move these states forward.

The exception in case of robotics is an action that explicitly says that the robot should do nothing,

which is never removed from consideration. This is useful in two ways:

• When tasks are mainly about reaching a goal state, the idling of a robot after task completion

is likely to be the most energy and cost conserving option.

• If the best policy is, in fact, to do nothing, the robot uses the action that is specifically meant

for this, and does not rely on the fact that taking an inadmissible action will leave the state

unchanged. The resulting policy is easily understood by humans, and all actions have intuitive

meaning. Additionally, it allows the initial model to be safely written with the assumption

that the state remains unchanged when inadmissible actions are taken. This simplifies the

encoding or description of the problem. However, this aspect may have to be evaluated on the

basis of the actual application.

When the above procedure is carried out for the arm task, it was found that the total number of

unknown ω’s reduced to 288 for both ARM-S tasks. The final size of the problem using all the above

preprocessing steps can by found in Table 7.2.

7.5.2 ARM-S Task 1

This task was tested under varying ARM-S parameters, p, q and r. The parameters p and q change

the partial observability of the RDDL model as they appear in computing the observation distribu-

tion (See (Equation 7.4.1)). The parameter r controls the probability of successively removing a lug

nut from the wheel fixture when the action RemoveNutpnutiq is issued. Four cases are studied:

1. Deterministic Model: In this case, all parameters p “ q “ r “ 1, denoting that the lug

nut removal task is always successful, and that the states AttachedNutToWheelpnutiq are

perfectly observable.
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2. MDP: In this case, p “ q “ 1, denoting that the lug-nut states are fully observable, but the

actions RemoveNutpnutiq are only successful with probability r “ 0.8 (see Equation (7.4.1)).

3. POMDP (p “ q “ 0.7): In this case, the sensing algorithm for lug-nut states are imperfect.

The observation probabilities are given by

PrpObsAttachedNutToWheelpnutiq|AttachedNutToWheelpnutiqq “ p “ 0.7

Prp␣ObsAttachedNutToWheelpnutiq|AttachedNutToWheelpnutiqq “ 1 ´ p “ 0.3

Prp␣ObsAttachedNutToWheelpnutiq|␣AttachedNutToWheelpnutiqq “ q “ 0.7

PrpObsAttachedNutToWheelpnutiq|␣AttachedNutToWheelpnutiqq “ 1 ´ q “ 0.3.

(7.7)

4. POMDP (p “ q “ 0.5): In this case, the sensing algorithm for lug-nut states provide no

information. The observation probabilities are given by

PrpObsAttachedNutToWheelpnutiq|AttachedNutToWheelpnutiqq “ p “ 0.5

Prp␣ObsAttachedNutToWheelpnutiq|AttachedNutToWheelpnutiqq “ 1 ´ p “ 0.5

Prp␣ObsAttachedNutToWheelpnutiq|␣AttachedNutToWheelpnutiqq “ q “ 0.5

PrpObsAttachedNutToWheelpnutiq|␣AttachedNutToWheelpnutiqq “ 1 ´ q “ 0.5.

(7.8)

The results for the BPI algorithm are shown Figure 7.10. For the deterministic and MDP

case, the optimization indeed yielded a deterministic FSC, which coincides with a plan from a

typical deterministic MDP planner. The POMDP cases yielded probabilistic actions and I-state

transitions, but were found to be very sparse. In fact, the fraction of non-zero ω’s with respect to

the total unknown ω’s in Table 7.1 was found to be 0.0095 when |G| “ 6.

7.5.3 ARM-S Task 2

The main goal of this task is to demonstrate that robot behavior can be optimized for repeated

behaviors such as performing tasks on an assembly line while maintaining safety conditions. The

results are are shown in Figure 7.11. Again, it can be seen that for the deterministic and MDP cases,

the controllers could be optimized with a single I-state in Gss. For both these cases, the resulting

controller was completely deterministic. The bars in the figure show the expected frequency of

finishing one sequence of removing the wheel and turning on the AvailableSignal. For the POMDP

cases, the frequency was much lower. In addition, the smallest controllers for the two POMDP cases

were found to have size 6 for p “ q “ 0.7, and 8 for p “ q “ 0.5. As before, ω was found to be
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sparse, the number of non-zero parameters were only 0.0091 times the total number of unknown ω’s

as shown in Table 7.1 when |G| “ 8.

It was observed during numerical simulation that the POMDP case with p “ q “ 0.5 was prone

to be stuck in a local maxima when started from an initial controller that was constructed using

Algorithm 4.2. The BPI algorithm had to be started from a controller of size 6 obtained from the

POMDP case study with p “ q “ 0.5, from which the policy could be subsequently improved.

7.5.4 Resulting Control Policy

Since the controller has internal states, and observation dependent transitions, it is difficult to

completely describe the FSC resulting from the application of the Bounded Policy Iteration here.

However, the qualitative behavior of the FSC is shown in Figure 7.12. It can be seen that the FSC

results in predominantly deterministic behavior in regions of full observability. However, the sub-

sequence of removing the nuts and making the decision to proceed forward by placing the impact,

are probabilistic.

7.6 Concluding Remarks

This chapter gave a detailed outlook of the crucial position and difficulties of task planning in a

hybrid robotic paradigm. It also touched upon domain independent planning which offers a powerful

method to represent the abstraction of a robot’s functionality. Domain independent representation

is naturally amenable to the hierarchical architecture of most modern autonomous platforms and

are crucial to deploy robots into unstructured environments. Next, specific challenges of dexterous

manipulation tasks were highlighted using the Caltech/JPL entry into the DARPA ARM-S challenge

and its use of a limited domain specific sequencer. The need for a high level planner that ensures

the realizability of long term, complex goals is crucial. Finally, the novel policy iteration algorithm

developed in this thesis was applied to a few case studies that were inspired by the real task challenges

presented to the participants during the DARPA challenge. These examples highlighted how a small

lifted model of the robot and its environment, and simple high level goals can lead to a problem of

significant size. The ability to carry out state space reduction was found to be important in finding

a control policy using a computer. However, the policy iteration algorithm was shown to be effective

in finding simple intuitive discrete control policies for these real scenarios.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.6: Execution for Example 2, Figure 7.5. (a) Initial world state. (b) Initial scan used to
populate Wmodel. Kinematic verification reveals that the robot cannot grasp the impact for tool use
in this configuration (the Pref. 1 path). (c) Robot picks up impact driver using power grasp (Pref. 2
path). (d) Impact is placed in a location which will allow feasible behavior for next step. (e) Robot
is able to pick up impact with a tool use grasp. (f) Robot is able to plan to correct position for nut
removal.
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(a)

(b)

Figure 7.7: Probabilistic Outcomes and Partial Observability in ARM-S. (a) When the robot tries
to remove the lug nut from the wheel-hub fixture, the action may not complete successfully, due to
imperfect sense-act loop for nut removal. (b) Moreover, the on board sensors are unable to detect
the successful removal of the lug-nuts. However if the robot attempts to remove the wheel off the
hub, the success of wheel removal may be used to infer the state of the lug-nuts. This leads to partial
observability at the task level.
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Figure 7.8: (a) DRA for ARM-S Task 1. The proposition a denotes AttachedWheelT oHub, and b
denotes GraspedWheel. The DRA has no Avoid states. As soon as the wheel has been removed
from the hub and is no longer grasped, the specification is met, because DRA state 1 (which belongs
to Repeat0) is reached and the DRA state remains here for all future time steps. (b) DRA for ARM-S
Task 2. The propositions a and b are the same as for Task 1. Proposition c denotes AvailableSignal.
The start state is given by the grey state 0. One part of the LTL formula is explained using the
DRA here. Consider that at the task beginning, the wheel is attached, but it is not grasped. The
DRA state remains in 4 until both the wheel is no longer detached and is no longer grasped by
the robot, at which point it transitions to state 3. Now, the specification requires that when this
happens, in the very next step the AvailableSignal must be true. If this fails to happen, then the
DRA transitions to state 2, which is an Avoid state and is trapped there forever, thus indicating
that the specification has been violated. In fact, the system cannot recover from this violation. If
the robot does manage to turn the AvailableSignal on in the very next step, then the transition to
a Repeat state numbered 0 occurs. This explains the part of ϕARM´S

2 given in line 2 of Equation
7.4. Other parts of the formula can be understood by following the DRA graph similarly.
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AttachedNutToWheel’(nut3) ObsAttachedNutToWheel(nut3)

AttachedWheelToHub’ ObsAttachedWheelToHub

AttachedNutToWheel’(nut2) ObsAttachedNutToWheel(nut2)

AvailableSignal’ ObsAvailableSignal

GraspedImpact’ ObsGraspedImpact

GraspedWheel’ ObsGraspedWheel

AttachedNutToWheel’(nut4) ObsAttachedNutToWheel(nut4)

AttachedNutToWheel’(nut1) ObsAttachedNutToWheel(nut1)

Next  Sta te

AvailableSignal

AttachedNutToWheel(nut2)

ActRemoveNut(nut1)

ActPlaceImpact

ActRemoveNut(nut4)

ActRemoveWheel

ActGraspImpact

AttachedWheelToHub

AttachedNutToWheel(nut3)

Current  Sta te  and Act ions

ActRemoveNut(nut2)

ActPlaceWheel

ActSignal

ActGraspWheel

AttachedNutToWheel(nut1)

AttachedNutToWheel(nut4)

ActRemoveNut(nut3)

GraspedImpact

GraspedWheel

Observat ions

Figure 7.9: DBN of the ARM-S task planning domain and instance of Listing 7.1. The left most row
of entities comprise of all the state variables and actions. The middle and right most row of entities
show the state variables and observations at the next time step. The arrows indicate which entitites
(current state variables / action) influence the variables at the next state (next state variables /
observations). Note that DBN’s only indicate the influence relationship between time steps and not
the actual transition rules based on evaluations of the variables.
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Figure 7.10: Bounded Policy Iteration for ARM Task 1. The results are shown for the case when the
ARM-S planning domain is deterministic, probabilistic but fully observable (MDP), and partially
observable (POMDP). As would be reasonable to expect, the deterministic case yields the best value
for the initial belief, indicating that the reachability goal can be achieved quickly. The value of the
initial belief denotes the expected long term discounted reward for the given initial belief. the MDP
case is slightly worse, because of probabilistic effects. The adverse affect in performance for the
POMDP case can also be seen, with the lowest values found for the case where the lug nut state
measurement provides no information, i.e., p “ q “ 0.5.
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Figure 7.11: Bounded Policy Iteration for ARM Task 2. The expected frequency of completing
wheel removal and turning on the AvailableSignal is shown.
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Figure 7.12: ARM-S Task 2 Policy. Qualitative behavior of the policy was inspected when the
algorithm was stopped at |G| “ 8, with |Gss| “ 4., in order to determine the sequence of actions
resulting from consolidating the FSC I-state transitions and system observations. The sequence of
actions that remove the four lug-nuts (dashed box) are probabilistically determined and included
repeated trials to remove the same lug-nut. The choice to proceed forward by placing the im-
pact driver was also probabilisitic. Moreover, it was found that a True value of the observation
ObsAttachedWheelT oHub deterministically causes the FSC to restart the nut removal sequences
as would be expected, whereas a False value of the same observation allows the task sequence to
proceed forward. Moreover, the model is such that whenever the action ActSignal is carried out,
the state variable AvailableSignal first changes to True. At this step the FSC issues ActIdle. In
the next step, the model is then guaranteed to produce a new hub-wheel attachment at which point
the action sequence repeats.
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Chapter 8

Conclusion and Future Directions

8.1 Summary

The primary contribution of this thesis is the development of approximate algorithms for optimizing

system performance with respect to linear temporal logic specifications in partially observed settings.

As was demonstrated in the case study of the DARPA ARM-S challenge, partial observability is a

grave challenge faced by autonomous robotic systems. Partial observability also comes into play in

complex and high security systems such as aircraft, in which silent sensor failure or tampering can

compromise safe operation.

The thesis relies on the assumption that the environment and the controlled system can be ab-

stracted into a finite Partially Observable Markov Decision Process. This model class has is known

to be very general. In addition, most of the software written for autonomous systems typically

results in a two layer abstraction naturally. First, a set of low level control modules that carry out

a single objective, such as motion in free configuration space. Each of these low level modules have

either clear pre- and post-conditions that involve higher discrete concepts involving the environment,

the autonomous system, or is based on time-intervals. Second, the software encodes complex logic

to invoke one or more of these controllers to accomplish its goals. Typically, partial observation is

incorporated well into the set of low level controller modules via environmental disturbance and sen-

sor noise models. Using the DARPA ARM-S challenge, the thesis emphasized the need to explicitly

encode and incorporate partial observability at a higher discrete level as well, taking a model based

approach.

The thesis presented approximate methods to address quantitative aspects of LTL satisfaction

over POMDPs. It restricts the search for POMDP controllers to Finite State Controllers, which

allows the analysis to be carried out over a finite state space Markov chain. This circumvented

the difficulty arising from infinite state space when belief state methods are used to find POMDP

controllers.

Two different algorithms to search for FSCs were shown. The first algorithm, in Chapter 4,



140

utilized a structure preserving parametrization for the FSC. Therein, it was shown how gradient

based optimization could be utilized for maximizing the probability of LTL satisfaction. While the

size and structure of the FSC itself did not lend itself to systematic exploration, and the nonlinear

optimization suffered from local maxima, the algorithm demonstrates a novel gradient based method

for LTL satisfaction over POMDPs.

The second algorithm was covered in Chapters 5 and 6. Designing a reward scheme which can be

used to compute the probability of LTL satisfaction is still an open problem. However, in Chapter

5, it was shown how two different global state space reward schemes could be utilized to compute

the two conditions necessary for LTL satisfaction – visiting particular states quickly and frequently,

especially in steady state, and guaranteed transience of certain other states. A novel partitioning of

the FSC internal states was then introduced, which allowed these two conditions to be expressed as

an optimization objective and a constraint on the optimization problem respectively.

In Chapter 6, the multi-chain Poisson Equation was used in a novel way to allow for explicit

expression of the constrained optimization of the preceding chapter. While the Poisson Equation

has been used in dynamic programming for optimizing the average reward criterion, this thesis uses

this fundamental equation in a novel way to ensure LTL satisfaction. In addition, this chapter

also showed how a recent cutting edge algorithm for POMDP reward maximization, namely the

Stochastic Bounded Policy Iteration, can be adapted in a novel way to search over stochastic FSCs

to optimize long term discounted reward under additional constraints. While still suffering from

local maxima, this algorithm allows for escaping them by providing a method to add more internal

states to the FSC in a controlled, tunable manner.

Two main challenges were faced when these algorithms were applied to the practical case studies

from the DARPA ARM-S challenge. The first is that both algorithms require an initial feasible

controller. In the gradient based algorithm, this can be especially difficult for large systems and

those that require long sequences of actions and observations to distinguish the unsafe states from

the rest of the state space. In Chapter 6 the problem was partly mitigated by formulating an

optimization problem that can be solved using dynamic programming.

The second challenge was the presence of bilinear constraints in the policy iteration methodology

of Chapter 6. This required a relaxation based optimization algorithm that make the improvement

step sub-optimal. There are two popular ways to solve general bilinear problems in the literature.

First, is using an SDP relaxation which admits global nonlinear optimization methods such as branch

and bound. However during practical implementation the off the shelf MATLAB tool in [89] was

found to run out of memory for the ARM-S case studies. This motivated the use of McCormick

envelopes directly to solve a linear program relaxation of the optimization problem.

The two algorithms presented in this work can be viewed as ’anytime’ algorithms – computation

time and memory constraints can be used to halt the optimization procedure for the best controller
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at any iteration. This can be useful in practical applications in which time and memory constraints

are the bottle neck, rather than the need for the optimal solution.

8.2 Open Issues and Future Work

While preceding chapters have provided novel contributions to verification based control synthesis

in partially known environments, there are several open issues and opportunities for future work.

One algorithmic challenge is to circumvent the extra computational complexity due to the bi-

linear constraints. We note that the objective is a linear function of FSC model parameters and

is independent of solution p⃗g, V⃗ avq of the Poisson equation. It may be worthwhile to compare the

sub-optimality using different algorithms for the convex relaxation such as barrier and interior point

methods. Moreover, since bilinearity implies that the feasible set is convex in each variable when

other variables are held constant, it may be possible to devise an alternating optimization scheme

for the Poisson Equation similar to the policy iteration technique itself [17–19].

First, there are several challenges that must be addressed to enable the algorithm to be applied

to large state space systems. It is worth noting that for the algorithms proposed in this thesis, a

large state space can result from the Deterministic Rabin Automata (DRA) generated from the LTL

formula, or from the underlying POMDP model of the controlled system. For the first source of

complexity, it is well known that, in the worst case, the number of states of the DRA generated from

an LTL formula ϕ can be doubly exponential in the number of variables that appear in ϕ. However

empirical studies [74] have shown that many practical applications admit exponential complexity. In

addition, polynomial complexity has been shown for an expressive fragment of LTL synthesis [114].

However, the key area that is open to further improvement is relaxing the assumptions on the

model in Section 2.2, which can allow wider application of the algorithm. There has been a recent

surge in efficient algorithms for factored (PO)MDPs [20,52]. In factored models, the state transition

probabilities and rewards are defined using a Dynamic Bayesian Network that was used to encode the

ARM-S case studies in Chapter 7. Factored models exploit the fact that the transition of a particular

state variable only depends on a few other variables. In addition, the rewards may also depend on

a subset of variables. The algorithms for these factored representation compute the control policy

via Value or Policy Iteration techniques directly in the factored space instead of enumerating the

entire state space for the computation of the value function. This is carried out by approximation

techniques - the value function is approximated as a linear combination of possibly nonlinear basis

functions [51]. These methods have also been applied to models with mixed observability in which

only a subset of the state variable are partially observed, while the rest are known accurately [50].

Another key advancement can be in the context of Reinforcement Learning in which the agent

or robot can only gather information regarding the system by exploring it. This situation can be
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encountered due to imperfect abstraction. It is possible that while the discrete state space dynamical

model is known, the proposition labeling of the state space is unknown until the agent reaches a

particular state and can query the environment itself, or a black box model of the environment. This

can be seen as a multi-valued extension of the bandit problem popular in Reinforcement Learning

literature [69].

Both in the context of Reinforcement Learning, and for large state space models, sampling and

point based approaches are a crucial methods for (PO)MDP policy optimization. These algorithms

are especially challenging for formal verification of LTL specification, because properties such as

safety and repeated reachability must be guaranteed over a given path with probability 1. It is

noteworthy that the latest point based techniques in POMDP policy search algorithms for reward

maximization can be applied to hundreds of thousands of states [138]. Point based methods ac-

complish this by restricting the search to only those belief states that are reachable from the initial

distribution of states. However sampling based approaches need to be extended to ensure pointwise

satisfaction of the Poisson equation in the Conservative Optimization Criterion and not just at the

sampled beliefs.

A crucial aspect of abstraction of physical or cyber-physical systems is modeling error. Some work

has been done in the control community to overcome the challenges of imperfect model abstraction

by using robust verification based control synthesis in fully observable scenarios [122, 144]. These

aspects are also crucial in partially observable models. Sensors may lose calibration during operation,

thus requiring robustness in the observation model as well.

Two more areas of research that can also yield fruitful results are partially observable concur-

rent systems and distributed systems. Concurrent systems were the key motivation behind the

development of temporal logic based verification methods. Distributed systems with concurrency

appear ubiquitously in wide array of applications such as performance and safety guarantees in

sensor networks, fault detection and repair in a distributed system and swarm robotics [23,31,90].
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Appendix A

Basic Measure Theory

In order to reason about probability of events, a brief overview of measurable spaces and probability

measure is provided below. Special focus is on countable sets as they form the basis for this thesis.

A.1 σ-Algebra

Let X be an arbitrary non-empty set, and 2X represent its power set. Next, let F “ tA1, A2 . . . u be

a family of subsets of X , i.e., F Ď 2X . F is called a σ´algebra if it satisfies the following properties

• H Ď F .

• If a set A is in F , then its complement, denoted Ã is in F . That is,

A P F ùñ Ã P F . (A.1)

• F is closed under countable unions. That is, for A1,A2,. . . P F , then

A1 Y A2 Y ¨ ¨ ¨ P F . (A.2)

As a corollary of the above definition, the underlying set X is in F .

A.2 Measurable Space and Measure

Elements A1, A2, . . . of a σ´algebra F are called measurable sets. The ordered pair pX,Fq with F

is σ´algebra over X is called a measurable space.

Let µ : F Ñ r0,8q be a non negative bounded function with the following properties

• µpHq “ 0.

• µpAi Y Ajq ` µpAi X Ajq “ µpAiq ` µpAjq, for all Ai, Aj P F .
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• µp
Ť

n“1
NAnq “

ř
n“1

NµpAnq for pairwise disjoint sets An P F .

Such a function is called a non-negative additive set function. If the last property is extended to

infinite disjoint unions, i.e.,

µp
ď

n“1

8Anq “
ÿ

n“1

8µpAnq for pairwise disjoint sets An P F (A.3)

then, µ is called a non-negative completely additive set function and is called a measure. The ordered

tuple pX,F , µq is called a measure space.

A.3 Probability Space and Measure

Let pX,F , µq be a measure space as defined in the previous section. If the total measure of the

underlying set given by µpXq equals 1, then µ is called a probability measure. and pX,F , µq is a

probability space.

A.4 Natural σ-Algebra and Distributions over Countable Sets

For a countable set X , if F “ 2X , then we say that F is the natural σ-algebra. Next, let Pr : X Ñ

r0, 1s be a function such that
ÿ

xPX

Prpxq “ 1 (A.4)

Then Pr induces a unique probability measure µPr over the natural σ´algebra. Let E P 2X . Recall

that E Ď X . Define the measure on E as follows

µPrpEq “
ÿ

xPE

Prpxq (A.5)

It is easy to see that µPr satisfies all properties of a (probability) measure. In addition by PrpHq “

0. Any function Pr : X Ñ r0, 1s over countable sets X that satisfy equation A.4 will be called

distributions over X . The set of all distributions over the set X are denoted MX throughout this

thesis.

In the above context, the set X is often called a set of outcomes of an experiment. The sets in

F “ 2X are called events. This is made concrete in the following coin toss example.

Consider the experiment of the side facing up after tossing a coin. The underlying set of outcomes

is given by the set X “ heads, tails. The natural σ´algebra is the collection

A1 “ H, A2 “ theadsu, A3 “ ttailsu, A4 “ theads, tailsu. (A.6)
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A1 represents that no side of the coin faces up. A2 denotes heads faces up, A3 denotes tails faces

up, while A4 denotes heads or tails face up. For a fair coin the distribution or probability measure

is given by

PrpA1q “ 0,PrpA2q “
1

2
,PrpA3q “

1

2
,PrpA4q “ 1. (A.7)

A.5 Smallest σ´algebra and Basis Events

Let the underlying set be denoted X . Let F1,F2 Ď 2X denote two σ´algebras overX . The following

is a well known fact [130].

Lemma A.5.1 F1 X F2 is also a σ´algebra.

This property holds for countably infinite intersections as well.

Let T Ă 2X not necessarily a σ´algebra. Then there exists a smallest σ´algebra that contains

T . It is given by

σpT q “
č

tF P 2X : F is a σ ´ algebra over X and T Ď Fu, (A.8)

where the intersection ranges over all (possibly infinite number of) σ´ algebras over the countable

set X . Additionally, σpT q is said to be generated by T . Conversely, T is called the basis for σpT q.
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Appendix B

Proofs

B.1 Proof of Lemma 5.1.1

Consider a finite path fragment π “ s0s1 . . . in each of the two Markov chains given by Tϕ and Tϕ
mod

respectively. Consider the event of visiting a state in Avoidϕr for the first time at the k-th time step.

A path that satisfies this can be written as

πk “ s0s1 . . . sk . . . s.t. s0 . . . sk´1 R Avoidϕr and sk P Avoidϕr (B.1)

Then, from the definition of the probability measure of cylinder sets in Equation (2.11), the proba-

bility measures of the cylinder sets under the two Markov chains are identical:

PrM
”
CylMpπkq

ˇ̌
ˇιϕ,G
init

ı
“ ιssinitps0qΠk

t“1T
ϕpst|st´1q

“ ιssinitps0qΠk
t“1T

ϕ
modpst|st´1q

“ PrMmod

”
CylMmod

pπkq
ˇ̌
ˇιϕ,G
init

ı
(B.2)

where CylM P PathspMq and CylMmod
P PathspMmodq. The equality of lines 1 and 2 follows from

the fact that Tϕ
modpsj |siq “ Tϕpsj |siq, @si R Avoidϕr from Equation (5.3).

Next, note that the probability of paths visiting Avoidϕr in the l.h.s. of the lemma is given by

Pr
”
π Ñ pAvoidPMϕ

r ˆ Gq
ˇ̌
ˇιϕ,G
init

ı
“

8ř
k“0

PrM
”
CylMpπkq

ˇ̌
ˇιϕ,G
init

ı

“
8ř

k“0

PrMmod

”
CylMmod

pπkq
ˇ̌
ˇιϕ,G
init

ı (B.3)

In addition, since each state in Avoidϕr is absorbing under Tϕ
mod and has a reward 1 under the scheme

of Equation (5.4), for a given infinite path π of Mmod, the long term average sum of rewards can

be seen to be

Rewpπq “ lim
tÑ8

1

T

«
Tÿ

t“0

ravk pstq
ˇ̌
ˇιPMϕ

init

ff

“

$
&

%
1 if π Ñ Avoidϕr

0 otherwise .
(B.4)
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This happens because if a path visits any state Avoidϕr it forever remains in that state accumulating

a reward of 1 at each time step. In the limit as time steps grow to infinity, the average reward per

step converges to 1.

Finally, taking the expectation of the function Rewpπq gives

ηavprq “ mod rRewppiqs

“ 1.PrMmod

”
π Ñ Avoidϕr

ˇ̌
ˇιϕ,G
init

ı
` 0.PrMmod

”
π ­Ñ Avoidϕr

ˇ̌
ˇιϕ,G
init

ı

“
8ř

k“0

PrMmod

”
CylMmod

pπkq
ˇ̌
ˇιϕ,G
init

ı
,

(B.5)

which proves the lemma.

B.2 Proof Sketch of Proposition 4.2.2

The reader is reminded of the definition of the relation given by ĺ.

rs, gs ĺ
“
s1, g1

‰
if

$
’’’’’’&

’’’’’’%

rs, gs , rs1, g1s P Rk and rs, gs ĺk rs1, g1s , or,

rs, gs P Rk, rs1, g1s P Rl, k ‰ l, and Rk ĺ1 Rl, or,

rs, gs P Rk Ď RecSetsG and rs1, g1s P T, or,

rs, gs , rs1, g1s P T and rs, gs ĺT rs1, g1s .

, (B.6)

where, ĺk is a total order over the set of global states in Rk, ĺ1 is a total order over the recurrent

subsets R1, R2, ¨ ¨ ¨ Ď S ˆ G, and ĺT is a total order over the set of global states in transient set

T Ď S ˆ G.

In order for the relation ĺ to be a total order, it must be shown that ĺ satisfies the properties

of

1. Anti-symmetry: This means that if rs, gs ĺ rs1, g1s and rs1, g1s ĺ rs, gs then rs, gs “ rs1, g1s.

2. Transitivity: This means that if rs, gs ĺ rs1, g1s and rs1, g1s ĺ rs2, g2s, then rs, gs ĺ rs2, g2s.

3. Totatility: This means that either rs, gs ĺ rs1, g1s or rs1, g1s ĺ rs, gs.

First, if both rs, gs, rs1, g1s P Rk for some k, or both rs, gs, rs1, g1s P T , then the relation ĺ is

identical to ĺk or ĺT respectively. Since ĺk and ĺT are total orders, ĺ defines a total order within

each R1, R2, . . . and T .

Next, note that R1, R2, . . . and T are all disjoint and their union gives the entire state space

S ˆ G. Thus R1, R2, . . . and T together partition the state space, and each will be called a disjoint

component in this section. From the assumptions of the proposition, ĺ1 defines a total order over

the subsets R1, R2, . . . . Line 3 in Equation (B.6) makes sure that T comes after or is greater than

all recurrent sets Rk, thus giving a total order over the disjoint components. For the case when
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rs, gs and rs1, g1s belong to different disjoint components, anti-symmetry is inapplicable, and totality

follows from the total order over the disjoint components. For transitivity, it can be seen that only

three cases are possible:

(a) rs, gs, rs1, g1s, rs2, g2s all belong to the same disjoint component Rk for some k, or T , in which

case ĺk or ĺT guarantee transitivity.

(b) rs, gs and rs1, g1s belong to the same disjoint component, whereas rs2, g2s belongs to a different

disjoint component, in which case the disjoint component total order described earlier and totality

property together guarantee transitivity.

(c) rs, gs belongs to one disjoint component, rs1, g1s and rs2, g2s belong to a different disjoint com-

ponent, in which case the transitivity arises to due the total order over the disjoint components and

the totality property.
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