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Abstract

Nano-electro-mechanical systems (NEMS), used as sensors for small masses and forces, have tra-

ditionally been operated in the linear regime. While convenient for engineering applications, the

linear regime is getting harder to maintain as the devices grow smaller. The first part of this

thesis develops a theoretical framework for analysis of nonlinear nanomechanical devices and estab-

lishes that nonlinear effects become more significant in smaller resonators. As a result, nonlinear

nanomechanical resonators offer a convenient playground for studies of nonlinear dynamics as well

as open up new possibilities for enhancing performance of NEMS devices. To illustrate both of these

trends, the thesis presents experimental investigations of nonlinear dynamics using nanoresonators

and demonstrates several effects in nonlinear NEMS in an effort to build the foundation necessary

for engineering highly sensitive, versatile, and controllable NEMS devices.

As an example of exploring nonlinear dynamics with NEMS, we present the experimental map-

ping of basins of attraction of a nonlinear platinum nanowire resonator. We also measure the rate

of the observed noise-induced transitions between two stable states in the nonlinear regime as the

artificial noise is added to the system. An additional set of experiments demonstrates increased

versatility of NEMS devices made possible by their intrinsic nonlinearity. Devices with tunable

frequency, nonlinearity, and dynamic range are explored experimentally and theoretically. We show

how to induce the coupling of orthogonal modes in nanomechanical resonators. We also detect multi-

ple higher-order modes in doubly-clamped beams and observe increased dynamic range of operation

in these modes. Several ideas for further experiments with nonlinear nanomechanical resonators are

proposed.
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Chapter 1

Introduction

If you hit a tuning fork twice as hard it
will ring twice as loud but still at the same
frequency. That’s a linear response. If you
hit a person twice as hard they’re unlikely
just to shout twice as loud. That property
lets you learn more about the person than
the tuning fork.

When Things Start to Think
Neil Gershenfeld

1.1 Motivation

Why do we care about shrinking down resonating mechanical systems so that they reach nanoscale

dimensions and have to be fabricated painstakingly in a cleanroom over weeks or perhaps months?

One reason is the ability to detect very small physical quantities. A recent breakthrough in mass

sensing is a device with a mass resolution of 7 zeptograms (7 × 10−21), equivalent to ∼30 xenon

atoms [116]. Unprecedented force sensitivity was demonstrated by single electron spin detection

[95]. In the past few years, even more sensing, imaging, and processing applications emerged,

including magnetic resonance force microscopy [103] and improvements in RF communications [88].

Another reason is an irresistible temptation to see quantum mechanics of mechanical devices. By

decreasing the size of mechanical devices, increasing their resonant frequency, and cooling them

down to mK temperatures, we expect the mechanical motion of nanoscale resonators to approach

the quantum regime [4, 63, 72, 23]. All of these applications require both high responsivity and ultra-

high-frequency operation [55]. Engineering considerations also call for a large dynamic range, over
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which the device responds linearly to the stimulus, as well as operation at desired and, preferably,

adjustable frequencies.

Unfortunately, the real world with its inconvenient nonlinearities does not cooperate very well

with our designs. It turns out that the onset of nonlinear regime for operation of nanomechanical

resonators decreases with decreasing diameter, so that the useful linear dynamic range of the smallest

NEMS devices is severely limited. In fact, many applications we are hoping for in the near future

will involve operation in the nonlinear regime, where the response to the stimulus is suppressed and

frequency is pulled away from the original resonant frequency. This thesis is about embracing this

idiosyncrasy of nature and exploring ways in which intrinsic nonlinearity in NEMS devices can be

made to work for us to improve our devices and to further our knowledge of physics.

The easily reachable nonlinear regime in nanomechanical resonators is a great tool for fundamen-

tal studies of nonlinear dynamics. Nonlinear systems usually require thousands of cycles to study.

A lot of experiments aimed at exploring nonlinear dynamics in low-frequency macroscopic systems

turn out to be prohibitively long. However, in high-frequency nanoscale resonators, the steady state

is achieved in a fraction of a second and we are able to perform multiple measurements of the system

in a relatively short time and before the experimental parameters start to drift. Besides, the state

of art in nanofabrication allows us to design devices required for such studies in a relatively short

period of time compared with building of nonlinear macroscopic systems.

Nonlinearity introduces a number of new effects in NEMS devices. Ability to control them at

will is as important for applications as finding ways to use them to enhance the performance of

nanomechanical devices for precision measurement applications. I will present the studies of several

effects in nonlinear NEMS, but these are just the first steps in building the foundation necessary for

engineering highly sensitive, versatile, and controllable NEMS devices.

1.2 Overview

Chapter 2 presents the theoretical foundation for the analysis of nonlinear NEMS devices. It sum-

marizes the elastic beam theory and nonlinear dynamics theory necessary for the analysis of NEMS
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beams and cantilevers. We use the Galerkin discretization procedure to obtain simple analytical

expressions for frequency and nonlinear coefficients. Finally, the elastic beam and nonlinear dynam-

ics formalisms are applied to the analysis of NEMS beams. Sources of nonlinearity in beams and

cantilevers as well as dynamic range of NEMS beams are discussed.

Chapter 3 describes fabrication and characteristics of various devices that I have used in nonlinear

NEMS experiments and includes gold beams fabricated on silicon nitride, silicon carbide beams, and

metal nanowires. This chapter also outlines the transduction schemes that have been used with

these devices. These include electron beam detection inside the SEM, magnetomotive transduction,

and magnetomotive drive and thermoelastic drive coupled with piezoresistive detection. At the end

I discuss a fitting procedure for resonance signals on top of a background that allows us to extract

accurate resonant frequency and quality factor.

Chapter 4 describes the experimental studies of nonlinear dynamics performed with nonlinear

NEMS resonators. It presents the mapping of the basins of attraction of a nonlinear platinum

nanowire resonator in its bistable state. I also discuss our studies of the observed transitions between

the two stable states of the resonator induced by the environmental and artificially added noise. Since

nonlinear regime is readily accessible in nanoscale devices, the details of their dynamical behavior are

not only easy and exciting to study, but their understanding is important for proper engineering and

analysis of nanoscale systems. Ideas for potential applications of resonators operating in nonlinear

regime for enhancing the sensitivity of experimental measurements are presented at the end of the

chapter.

The understanding of dynamics of NEMS resonators opens up possibilities for better devices

for sensor applications. Chapter 5 describes various effects in NEMS that promise to enhance ver-

satility, performance, and sensitivity of NEMS sensors. They include resonant frequency tuning,

dynamic range enhancement, orthogonal mode coupling, and operation of NEMS in higher vibra-

tional modes. I present both experimental and theoretical investigations of these effects. Ideas for

future experiments based on the completed work conclude the chapter.
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Chapter 2

Theoretical Foundation

. . . theories don’t prove nothing, they only
give you a place to rest on, a spell, when
you are tuckered out butting around and
around and trying to find out something
there ain’t no way to find out... There’s
another trouble about theories: there’s
always a hole in them somewheres, sure, if
you look close enough.

Tom Sawyer Abroad
Mark Twain

This chapter presents the theoretical foundation for the analysis of nonlinear NEMS devices. It

summarizes the elastic beam theory and nonlinear dynamics theory necessary for the analysis of

NEMS beams and cantilevers. An original contribution in this chapter is the use of the Galerkin

discretization procedure to obtain simple analytical expressions for frequency and nonlinear coeffi-

cients. Finally, the elastic beam and nonlinear dynamics formalisms are applied to the analysis of

NEMS beams. The dynamic range of NEMS beams and cantilevers is discussed.

2.1 Elastic beam theory

This section develops the elastic beam theory using the Galerkin discretization procedure. Analyt-

ical formulas for resonant frequencies of beams under both stress and tension and a profile of an

electrostatically-driven beam are derived. The dynamics of an elastic beam driven by some force per

unit length f(x, t), where x is along the axis of the beam and z is the direction of its displacement,
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is described by the equation of motion,

EIzxxxx − Tzxx + ρSztt − f(x, t) = 0. (2.1.1)

Here, E is the Young’s modulus, I is the moment of inertia, S is the beam’s cross-sectional area, and

T is the total tension present in the beam. The two clamped ends impose the boundary conditions,

z(0, t) = z(L, t) = zx(0, t) = zx(L, t) = 0.

The steady-state solution to this equation, when zt = 0, gives a static displacement profile of a

doubly-clamped beam deflected by a displacement-independent force per unit length, f :

z(x) =
f

2T

[
(L− x)x + L

√
EI/T

(
− coth

(
L

2
√

EI/T

)
+ cosh

(
L− 2x

2
√

EI/T

)
csch

(
L

2
√

EI/T

))]

(2.1.2)

The exact analytical solutions of the full equation (2.1.1) exist and are well-known for two

limiting cases: beams under negligible tension and dominated by stress, or bending rigidity; and

beams dominated by tension, sometimes referred to as strings.

In the string limit, when tension dominates over stress, EI/T ¿ 1 and no drive is applied to the

system, the displacement profile is simply

z(x) = A sin

(√
ρS

T
ωnx

)
, with ωn =

nπ

L

√
T

ρS
. (2.1.3)

In the stress limit, where tension is negligible compared to bending rigidity, T/EI ¿ 1 and no

drive is applied to the system, a general doubly-clamped beam profile is

z(x) = A

[
cos(κx)− cosh(κx)− cos(κL)− cosh(κL)

sin(κL)− sinh(κL)
(sin(κx)− sinh(κx))

]
, (2.1.4)

where κ2 =
√

ρS
EI ω. The boundary conditions for a doubly-clamped beam impose the condition on

κ, cos(κL) cosh κL = 1. The roots of this equation, which can be found numerically or graphically,
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allow us to express ωn in terms of κn:

ωn = κ2
n

√
EI

ρS
, where κnL = 4.73, 7.8532, 10.9956, . . . (2.1.5)

and κnL tends to (n + 1/2)π for large n [81].

When both bending rigidity and tension in the beam have comparable effects on its dynamics, the

equation of motion (2.1.1) cannot be solved analytically because κL becomes dependent on tension.

Using separation of variables, z(x, t) = X(x)Θ(t), and letting Θ(t) = eiωt and X(x) = eκx, we can

express κ in terms of frequency, ω for the unforced case:

EIκ4 − Tκ2 − ω2ρS = 0 =⇒ κ2
1,2 =

T ±
√

T 2 + 4EIρSω2

2EI
. (2.1.6)

There are two real and two imaginary roots κ. Therefore, the beam profile has the shape

X(x) = A cos(κ2x) + B sin(κ2x) + C cosh(κ1x) + D sinh(κ1x). (2.1.7)

The boundary conditions for a doubly-clamped beam result in the following characteristic equation:

2− 2 cos(κ2L) cosh(κ1L) +
(

κ1

κ2
− κ2

κ1

)
sin(κ2L) sinh(κ1L) = 0. (2.1.8)

Here, κ1 and κ2 are different and tension-dependent. In the case of T = 0, κ1 = κ2 (see equa-

tion (2.1.6)) and the characteristic equation (2.1.8) reduces to cos(κL) cosh κL = 1, which is the

previously-discussed characteristic equation for the beam with no tension, whose roots κL are num-

bers. However, when κ1 and κ2 are not the same, the roots of the equation (2.1.8) are tension-

dependent and can only be found analytically for a given tension. Since we are interested in mode

shapes and frequencies as a function of tension, T , this approach is inconvenient. Instead, I will

show next how we can find an approximate solution to the equation of motion (2.1.1), which allows

us to capture analytical dependencies on all of the device parameters.
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We will write down the full equation of motion for the system,

L[z(x, t)] = EIzxxxx − Tzxx + ρSztt − f(x, t) = 0, (2.1.9)

and assume that the full solution can be expressed in terms of a linearly independent set of basis

functions φk(x),

z(x, t) =
N∑

k=1

zk(t)φk(x), (2.1.10)

where zk(t) is the time-dependent part of the response. This is known as the Galerkin discretization

procedure [85]. Each basis function is chosen so that it satisfies the boundary conditions, so that

exact mode shapes could be one such basis. The error associated with this approximation technique

is

e(x, t) = L
[

N∑

k=1

zk(t)φk(x)

]
− L[z(x, t)] . (2.1.11)

The Galerkin procedure requires this error to be orthogonal to each basis function, or in other words,

the error is a residual that cannot be expressed in terms of the given finite set of basis functions:

∫ L

0

e(x, t)φn(x)dx = 0 (2.1.12)

Multiplying the expanded error equation (2.1.11) by a mode φn(x) and integrating from 0 to L

leaves only the zn and φn terms because
∫ L

0
φk(x)φn(x) dx = 0 if k 6= n. Also using the fact that

L[z(x, t)] = 0 as given in the equation (2.1.9), we get

(∫ L

0

φ2
n(x) dx

)
z̈n(t) +

(
EI

ρS

∫ L

0

φ′′′′n (x)φn(x) dx− T

ρS

∫ L

0

φ′′n(x)φn(x) dx

)
zn(t) =

=
1

ρS

∫ L

0

f(x, t)φn(x) dx. (2.1.13)
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From here, we can write down an analytical formula for the mode frequencies,

ω2
n =

EI
ρS

∫ L

0
φ′′′′n (x)φn(x) dx− T

ρS

∫ L

0
φ′′n(x)φn(x) dx

∫ L

0
φn(x)2 dx

. (2.1.14)

Integrating by parts and using the boundary conditions, the expression for mode frequencies simpli-

fies to

ω2
n =

EI
ρS

∫ L

0
φ′′n(x)2 dx + T

ρS

∫ L

0
φ′n(x)2 dx

∫ L

0
φn(x)2 dx

. (2.1.15)

From this expression, we can clearly see that the presence of any tension, T , in the beam increases

the resonant frequency.

The question of calculating the frequency of a desired mode now boils down to picking the

appropriate basis to use in this equation.

2.2 Nonlinear dynamics

This section presents a theoretical framework for the analysis of nonlinear behavior. For simplicity,

this section will address directly driven systems and include only cubic nonlinearity in the equation

of motion. This is done under the assumption that the nonlinearity is small so that the higher

order nonlinearities in displacement (fifth, seventh order, and so on) are not significant, and that

the system is more or less symmetric.1 The framework and methods presented in this section are

general and can be applied to systems with higher order nonlinear terms and other driving types

[85, 80].

2.2.1 Method of multiple scales

A general way to approach the analysis of a dynamical system is to look for a time-dependent

function (a solution of a differential equation of motion) that describes the response of the system to

an initial disturbance. One obtains the response of a nonlinear system by perturbing the response of
1The deviations from symmetry will be reflected in the appearance of quadratic and other even-power terms.

Nonlinearities can also modify the damping forces in the system (i.e. velocity rather than displacement). For the
following calculations, we ignore these nonlinearities altogether, but they can be present in the system independently
and have to be included in the full calculation if they are on the order of displacement nonlinearities.
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the corresponding linear system (which is obtained by simply deleting all the nonlinear terms from

the equation). There are many ways that this perturbation can be modeled and calculated [85].

A naive approach is a straightforward expansion. We introduce a small, dimensionless parameter,

ε, which is the order of the amplitude of the motion and expand the solution as

u(t; ε) = εx1(t) + ε2x2(t) + ε3x3(t) + . . . . (2.2.1)

This form of the solution can be substituted into the nonlinear equation and, after a lot of algebra

which will be omitted here, one will find that x1(t) is periodic. However, starting with x3(t), the

corrections to the linear behavior will contain factors tm cos(ω0t + β) and tm sin(ω0t + β). Such

terms are called ”secular terms”.2

Because of secular terms, the entire expansion (2.2.1) is not periodic and, moreover, x3/x1,

x3/x2, and so on grow without bound as t increases. The underlying reason for such a nonsensical

solution is that one of the differences between a linear and a nonlinear system is the interconnection

between frequency and amplitude of the system, and there was no provision for this interaction in

the straightforward expansion (2.2.1).

The method of multiple scales offers an alternative way of applying a nonlinear perturbation that

takes the possible interaction between terms into account. The idea is to consider the expansion

that represents the response as a function of multiple independent variables, or scales, instead of a

single variable. The multiple time scales are defined as

Tn = εnt for n = 0, 1, 2, . . . . (2.2.2)

The time scale T1 is slower than T0; T2 is slower than T1. In general, Tn is slower than Tn−1. ”Slow”

means over a time scale much longer than the natural period of the system. The time scale are

assumed to be disparate enough so that the time scales, Ti, are treated as independent variables.
2The term secular is derived form the Latin saeculum, meaning century, and was first used in astronomical

applications, where ε is quite small and εt becomes significant only if t is on order of a century.
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The derivatives with respect to t can be expressed in terms of partial derivatives with respect to Tn:

d

dt
=

dT0

dt

∂

∂T0
+

dT1

dt

∂

∂T1
+ . . . = D0 + εD1 + . . . (2.2.3)

d2

dt2
= D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2) + . . . . (2.2.4)

We can then express the solution in terms of different time scales:

u(t; ε) = u0(T0, T1, T2, . . .) + εu1(T0, T1, T2, . . .) + ε2u2(T0, T1, T2, . . .) + . . . . (2.2.5)

2.2.2 Duffing equation analysis using the method of multiple scales

A directly driven system with a cubic nonlinearity is described by a Duffing equation:

ü + ω2
0u + 2εµu̇ + εαu3 = E(t), (2.2.6)

where the damping coefficient µ > 0 and nonlinear coefficient is either α > 0 (hard spring) or

α < 0 (soft spring). We will consider an ideal source that is not affected by the excited system:

E(t) = K cos Ωt. For driving forces that are not too strong, we will take K = εk. The most

important response is at the primary resonance of the system, Ω ≈ ω0. Let

Ω = ω0 + εσ, (2.2.7)

where σ is a frequency detuning parameter.

Using the method of multiple scales, we expand the solution in terms of two different time scales

T0 and T1:

u(t; ε) = u0(T0, T1) + εu1(T0, T1) + . . . , (2.2.8)

where the multiple time scales are defined as Tn = εnt. Here, T0 = t gives the natural period of

oscillations of the undamped harmonic version of the system. T1 = εt is a slower time scale on which
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damping and nonlinearity affect the system. The excitation can be similarly re-written as

E(t) = εk cos(ω0T0 + σT1). (2.2.9)

The derivatives of u(t; ε) are

u̇ = D0u0 + εD1u0 + εD0u1 +O(ε2)

ü = D2
0u0 + 2εD1D0u0 + εD2

0u1 +O(ε2),

where D0 = ∂/∂T0 and D1 = ∂/∂T1. When we substitute those into the equation of motion, we get

D2
0u0+2εD1D0u0+εD2

0u1+ω2
0u0+εω2

0u1+2εµD0u0+εα(u3
0+3εu0u1+O(ε2)) = εk cos(ω0T0+σT1).

(2.2.10)

Collecting powers of ε, we get partial differential equations:

D2
0u0 + ω2

0u0 = 0 for ε0 (2.2.11)

D2
0u1 + ω2

0u1 = −2D0D1u0 − 2µD0u0 − αu3
0 + k cos(ω0T0 + σT1) for ε1. (2.2.12)

The solution to the ε0 equation has the form

u0 = A(T1)eiω0T0 + Ā(T1)e−iω0T0 . (2.2.13)
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Let’s substitute this expression for u0 into the ε1 equation. We will need

D0u0 = iω0A(T1)eiω0T0 − iω0Ā(T1)e−iω0T0

D1D0u0 = iω0D1A(T1)eiω0T0 − iω0D1Ā(T1)e−iω0T0

u3
0 = A(T1)3e3iω0T0 + Ā(T1)3e−3iω0T0 + 3Ā(T1)A(T1)2eiω0T0 +

+ 3Ā(T1)2A(T1)e−iω0T0

Note also: cos(x) =
1
2
(eix + e−ix).

The actual substitution gives

D2
0u1 + ω2

0u1 = −[2iω0(D1A(T1) + µA(T1)) + 3αA(T1)2Ā(T1)]eiω0T0+

+ [2iω0(D1Ā(T1) + µĀ(T1))− 3αĀ(T1)2A(T1)]e−iω0T0−

− αA(T1)3e3iω0T0 − αĀ(T1)3e−3iω0T0 +
1
2
k[ei(ω0T0+σT1) + e−i(ω0T0+σT1)].

(2.2.14)

The terms proportional to e±iω0T0 on the right side of the above equation for u1 (called ”secular”

terms) behave like a force that drives a harmonic oscillator characterized by left side of the equation

on resonance. But we would like u0 to include all the resonance terms, so that the other contributions

to the resonance in the full solution u are small. This means that in equations for u1, u2, . . . we want

to eliminate all secular terms. They are eliminated if we choose A(T1) to be a solution of

2iω0(D1A(T1) + µA(T1)) + 3αA(T1)2Ā(T1)− 1
2
keiσT1 = 0. (2.2.15)

To solve this equation, let’s express the solution in the form A(T1) = 1
2a(T1)eiβ(T1), where a(T1)

and β(T1) are real (and, therefore, D1A(T1) = 1
2D1a(T1)eiβ(T1) + i

2a(T1)D1β(T1)eiβ(T1)). For con-

venience, we make the dependence of a and β on T1 implicit in all further calculations. Substituting
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this into the above equation gives

2iω0

[
1
2
(D1a(T1) + ia(T1)D1β(T1))eiβ +

1
2
µaeiβ

]
+ 3α

1
4
a2e2iβ 1

2
a′e−iβ − 1

2
keiσT1 = 0 =⇒

eiβ

(
iD1aω0 − aD1βω0 + iω0µa +

3
8
αa3

)
=

1
2
keiσT1 =⇒

(
3
8
αa3 − aD1βω0

)
+ i(ω0µa + D1aω0) =

k

2
(cos(σT1 − β) + i sin(σT1 − β)).

(2.2.16)

Collecting the real and imaginary parts separately, we can get two equations:

Real: aD1β =
3α

8ω0
a3 − k

2ω0
cos(σT1 − β) (2.2.17)

Imag: D1a = −µa +
k

2ω0
sin(σT1 − β). (2.2.18)

Re-writing our solution for u0,

u0 = A(T1)eiω0T0 +Ā(T1)e−iω0T0 =
1
2
aei(β+ω0T0)+

1
2
ae−i(β+ω0T0) = a cos(ω0T0+β) = a cos(ω0t+β).

(2.2.19)

For convenience, let γ = σT1 − β. Then the first-order response can be re-written as

u0 = a cos(ω0t + β) = a cos(ω0t + εσt− γ) = a cos(Ωt− γ), (2.2.20)

where Ω is the frequency of the drive and, in the beginning of the principal resonance discussion, we

have taken Ω = ω0 + εσ. It means that, in general, the phase of the response is shifted from that of

the excitation by −γ.

The equations for variation in phase and amplitude of the response are

D1a = −µa +
k

2ω0
sin γ (2.2.21)

aD1γ = aσ − 3α

8ω0
a3 +

k

2ω0
cos γ (2.2.22)
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For steady state motion, there is no change in amplitude, phase or frequency, D1a = D1γ = 0,

which means that the equations above reduce to

µa =
k

2ω0
sin γ (2.2.23)

aσ − 3α

8ω0
a3 = − k

2ω0
cos γ (2.2.24)

2.2.2.1 Amplitude analysis

Squaring and adding these equations gives us the frequency-response equation:

[
µ2 +

(
σ − 3α

8ω0
a2

)2
]

a2 =
k2

4ω2
0

(2.2.25)

Variation of a with σ. To draw the curve illustrating the frequency response of the system,

it’s easier to solve the above equation for σ(a):

σ(a) =
3α

8ω0
a2 ±

√
k2

4ω2
0a2

− µ2. (2.2.26)

Example curves of the response amplitude, a, versus the frequency detuning from resonance, σ, for

varying drive levels are shown in Figure 2.1(a). In an experiment with fixed drive amplitude, k, as

the drive frequency, Ω, (or effectively the detuning parameter, σ, since ω0 is constant for a given

system) is swept up and down, the response amplitude exhibits hysteresis because the middle branch

is unstable and, therefore, not observed experimentally.

Peak. At the peak,

dσ

da
=

3α

4ω0
a± 1

2

− k2

2ω2
0a3√

k2

4ω2
0a2 − µ2

→∞. (2.2.27)

This means that

k2

4ω2
0a2

− µ2 → 0 =⇒ a2 =
k2

4ω2
0µ2

. (2.2.28)
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(a) (b)a a

σ k

σ=0

Figure 2.1: (a) Example resonance curves for the fixed α and increasing driving force illustrating
the gradual change in shape. (b) Effect of the drive magnitude, k, on the response amplitude, a, for
the fixed nonlinear coefficient, α, and different frequency detuning parameters, σ.

So for the peak, we have

apeak =
k

2ω0µ
(2.2.29)

σpeak =
3α

8ω0
a2

peak =
3αk2

32ω3
0µ2

. (2.2.30)

The dependence of σpeak on apeak is often called a ”backbone curve”.

Variation of a with k. For a fixed frequency detuning, σ, we are also interested in variation

of response amplitude, a, with the magnitude of the drive, k. The response of the system, a, to

the drive, k,for different frequency detuning, σ, from the resonance is shown in Figure 2.1(b). In an

experiment with fixed drive frequency, Ω, as the drive amplitude is swept up and down, the response

amplitude exhibits hysteresis.

Inflection point. The point of inflection on the curve in Figure 2.1(a) is where the nonlinear

curve just starts to lean over. The derivative of amplitude with respect to frequency goes to infinity

at that point:

dσ

da
= 2a

dσ

da2
= 0 =⇒ dσ

da2
= 0. (2.2.31)
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From equation (2.2.25) we can write down the implicit differentiation:

d

da2

([
µ2 +

(
σ − 3α

8ω0
a2

)2
]

a2 =
k2

4ω2
0

)
=⇒ (2.2.32)

µ2 +
(

σ − 3α

8ω0
a2

)2

+ a2

[
2

(
σ − 3α

8ω0
a2

)(
dσ

da2
− 3α

8ω0

)]
= 0. (2.2.33)

For the inflection point, dσ
da2 = 0, so equation (2.2.33) becomes an equation for the inflection point

amplitude ai and frequency σi:

µ2 + σ2
i −

3αa2
i

4ω0
σi +

9α2a4
i

64ω2
0

− 3αa2
i

4ω0
σi +

2 · 9α2a4
i

64ω2
0

= 0 =⇒ (2.2.34)

µ2 + σ2
i −

3αa2
i

2ω0
σi +

27α2a4
i

64ω2
0

= 0 =⇒ (2.2.35)
(

σi − 9αa2
i

8ω0

)(
σi − 3αa2

i

8ω0

)
+ µ2 = 0. (2.2.36)

The two points (σi, ai) given by this equation are the two inflection points on the nonlinear curve

that are the endpoints of the middle unstable branch. We will show in the next section that this

branch is in fact unstable.

When the quadratic equation (2.2.36) above has only one solution for ai(σi), the two inflection

points coincide and correspond to the critical condition for the onset of nonlinearity. This happens

when

D =
9α2σ2

c

4ω2
0

− 4(σ2
c + µ2)

27α2

64ω2
0

= 0. (2.2.37)

The critical frequency σc for the onset of nonlinearity is then given by

σ2
c =

27µ2α2

16ω2
0

/

(
9α2

4ω2
0

− 27α2

16ω2
0

)
= 3µ2 =⇒ σc =

√
3µ. (2.2.38)

We will call the amplitude of inflection point at the critical drive, critical amplitude ac. It can

be calculated by solving the quadratic equation (2.2.35) with D = 0:

a2
c =

3ασc

2ω0

2 27α2

64ω2
0

=
16
√

3ω0µ

9α
. (2.2.39)
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We can rewrite the equation (2.2.26) for σ(a) that describes the steady-state resonance curve in

terms of apeak (using equation (2.2.29)) and ac (using equation (2.2.39)):

σ(a) =
3α

8ω0
a2 ±

√
k2

4ω2
0a2

− µ2 = µ


 2√

3
a2

a2
c

±
√

a2
peak

a2
− 1


 . (2.2.40)

Ratio of apeak and ac at the critical point. Now, we are interested in the critical magnitude

of the drive, kc, that drives the system to this critical point. By substituting the expressions for ac

and σc from equations (2.2.39) and (2.2.38) into the frequency response equation (2.2.25), we get

k2
c = 4ω2

0

[
µ2 +

(
σc − 3α

8ω0
a2

c

)2
]

a2
c =

256µ3ω3
0

9
√

3α
(2.2.41)

=⇒ kc =
16µω0

3

√
µω0√

3α
. (2.2.42)

Let’s evaluate apeak, given by equation (2.2.29), at the critical point:

apeak =
kc

2ω0µ
=

8
3

√
µω0√

3α
. (2.2.43)

The ratio of apeak to ac at the critical point is

apeak

ac
=

(
8
3

√
µω0√

3α

)(
3
4

√
α√

3µω0

)
=

2√
3
. (2.2.44)

2.2.2.2 Phase analysis

The steady state equations (2.2.23) and (2.2.24) can be re-written to get a relation between drive-

response phase difference, γ, and frequency detuning, σ. From equation (2.2.23), we get

a =
k

2µω0
sin γ. (2.2.45)
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γ

σ

γ

k

(a) (b)

Figure 2.2: (a) Example resonance phase curves for the fixed α and increasing driving force illus-
trating the gradual change in shape. (b) Effect of magnitude of the drive, k, on the response phase,
γ, for the fixed nonlinear coefficient, α, and different frequency detuning parameters, σ.

Substituting this into equation (2.2.24), get

σ
k

2µω0
sin γ − 3αk3

64µ3ω4
0

sin3 γ = − k

2ω0
cos γ. (2.2.46)

This equation can be easily solved for σ in terms of γ:

σ =
3αk2

32µ2ω3
0

sin2 γ − µ cot γ. (2.2.47)

This relation is illustrated in Figure 2.2(a). In an experiment with fixed drive amplitude, k, as the

drive frequency, Ω, (or effectively the detuning parameter, σ, since ω0 is constant for a given system)

is swept up and down, the relative phase between the drive and the response exhibits hysteresis.

Inflection points. The inflection points on the curve shown in Figure 2.2(a) are the jump

points in the hysteresis loop during frequency sweeps. It is easy to see from the graph that these

points are given by

dσ

dγ
= − 3αk2

16µ2ω3
0

sin γ cos γ + µ csc2 γ = 0. (2.2.48)
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Re-writing this equation, we get the condition on the inflection points:

sin3 γ cos γ =
16µ3ω3

0

3αk2
. (2.2.49)

Variation of γ with k. For a fixed frequency detuning, σ, we are also interested in variation

of response phase, γ, with the magnitude of the drive, k. It is easiest to write down the expression

for k2 vs. γ from equation (2.2.46):

σ sin γ − 3αk2

32µ2ω3
0

sin3 γ + µ cos γ = 0 =⇒ (2.2.50)

k2 =
32µ2ω3

0

3α
(σ sin γ + µ cos γ). (2.2.51)

This relation for different values of σ is shown in Figure 2.2(b). In an experiment with fixed drive

frequency, Ω, as the drive amplitude is swept up and down, the response phase exhibits hysteresis

in the same way as the response amplitude does.

Effect of damping. When no damping is present, i.e. µ = 0, the peak amplitude is infinite.

In addition, in the absence of damping, the phase difference between the drive and the response γ

follows the relation

µa = 0 =
k

2ω0
sin γ =⇒ γ = nπ, where n is an integer. (2.2.52)

From equation (2.2.20), we can see that the response is either in phase or out of phase with the

drive because the phase transition at resonance is perfectly sharp.

When damping is present, µ 6= 0,

sin γ =
2µaω0

k
=⇒ γ = sin−1 2µaω0

k
. (2.2.53)

Damping changes the phase shift of the response with respect to the drive. In addition, as usual,

damping limits the amplitude of response.



20

2.2.2.3 Stability of steady-state motion

The stability of steady-state motion can be explored by determining the nature of the singular points

of the time-varying equations (2.2.21) and (2.2.22). To do so we will push the system slightly away

from its steady state and see how it behaves.

Let a = a0 + a1 and γ = γ0 + γ1, where a0 and γ0 are the steady-state solution and satisfy the

steady-state equations (2.2.23) and (2.2.24). a1 and γ1 are the small deviations from the steady

state. Substituting the expanded expression for a into the first time-varying equation (2.2.21), we

get

D1a1 = −µa0 − µa1 +
k

2ω0
sin(γ0 + γ1) =

= − k

2ω0
sin γ0 − µa1 +

k

2ω0
(sin γ0 cos γ1 + sin γ1 cos γ0) ≈

≈ −µa1 + γ1
k

2ω0
cos γ0 for small γ1.

(2.2.54)

Similarly, substituting the expanded expression for a into the second time-varying equation

(2.2.22), we obtain

D1γ1 = σ − 3α

8ω0
(a0 + a1)2 +

k

2ω0(a0 + a1)
cos(γ0 + γ1) where σ =

3α

8ω0
a2
0 −

k

2ω0a0
cos γ0

D1γ1 =
3α

8ω0
a2
0 −

k

2ω0a0
cos γ0 − 3α

8ω0
a2
0 −

3α

8ω0
a2
1 −

3α

4ω0
a0a1+

+
k

2ω0(a0 + a1)
(cos γ0 cos γ1 − sin γ0 sin γ1) ≈

≈ − ka1

2ω0(a0 + a1)
cos γ0 − 3αa0a1

4ω0
− k

2ω0(a0 + a1)
(sin γ0)γ1) ≈

≈
[
3αa0

4ω0
+

k

2ω0a2
0

cos γ0

]
a1 −

[
k

2ω0a0
sin γ0

]
γ1.

(2.2.55)

By considering only small deviations from the steady state (a1 ¿ 1 and γ1 ¿ 1) and neglecting

terms of order a2
1 and γ2

1 , we have effectively linearized the problem so that the above two equations
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can be written down as a linear system in matrix form:




da1
dT1

dγ1
dT1


 =




−µ k
2ω0

cos γ0

− 3αa0
4ω0

− k
2ω0a2

0
cos γ0 − k

2ω0a0
sin γ0







a1

γ1


 =

=




−µ −a0σ + 3α
8ω0

a3
0

1
a0

(σ − 9α
8ω0

a2
0) −µ







a1

γ1


 .

For such a linear system, in general, one can diagonalize the matrix and so obtain a matrix with

(complex) eigenvalues, λi, on the diagonal that determine the time-evolution of variables, ẋi = λixi.

The solution of this equation gives the time evolution of a variable: xi(t) = eλit. If a variable

diverges exponentially as it evolves in time according to this equation, we will call this behavior

unstable. It’s easy to see that the system is unstable in this sense when Re(λi) > 0 for even one λi.

The decay of a variable in time corresponds to Re(λi) < 0, which describes a stable behavior for the

system if true for all λi. The oscillatory behavior is also stable and occurs when Re(λi) = 0.

We apply this general principle to our system in order to analyze its stability. The characteristic

polynomial to find the eigenvalues of the time-evolution matrix is

det(A− Iλ) =

∣∣∣∣∣∣∣∣

−µ− λ −a0(σ − 3α
8ω0

a2
0)

1
a0

(σ − 9α
8ω0

a2
0) −µ− λ

∣∣∣∣∣∣∣∣
= (µ + λ)2 +

(
σ − 9α

8ω0
a2
0

)(
σ − 3α

8ω0
a2
0

)
= 0.

Let’s solve this equation for λ to find the eigenvalues. Let

Γ =
(

σ − 9α

8ω0
a2
0

)(
σ − 3α

8ω0
a2
0

)
+ µ2. (2.2.56)

Then the quadratic equation that we need to solve becomes

λ2 + 2µλ + Γ = 0

D
4

= µ2 − Γ =⇒ λ1,2 = −µ±
√

µ2 − Γ.

(2.2.57)
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It is easy to see that when Γ > 0,
√

µ2 − Γ < µ and this means that the first root λ1 = −µ +
√

µ2 − Γ < 0 as well as the second root λ2 = −µ−
√

µ2 − Γ < 0. This means that when Γ > 0, the

steady state motion of the system is stable.

However, when Γ < 0,
√

µ2 − Γ > µ. This means that the second root of the system is always

negative (λ2 = −µ −
√

µ2 − Γ < −2µ < 0), but the first root of the system is positive (λ1 =

−µ +
√

µ2 − Γ > 0). So the system diverges in time for Γ < 0 and is, therefore, unstable.

Let’s notice that the expression for Γ (2.2.56) is identical to the expression for the inflection

points given in equation (2.2.36). It’s easy to see that Γ is positive along the curve except for the

middle region between the two inflection points, where it changes sign to negative. Therefore, the

condition for instability Γ < 0 corresponds exactly to the portion of the curve between the two

inflection points.

The analysis of the Duffing resonator equation using the method proposed by Landau and Lifshitz

[73] is presented in Appendix A. The results obtained by the Landau and Lifshitz method are

equivalent to the results obtained by the method of multiple scales.

2.3 Nonlinear NEMS

This section discusses sources of nonlinearity in NEMS beams and cantilevers, and applies theories

of elasticity and nonlinearity developed in the previous two sections to the analysis of dynamical

properties of NEMS.

2.3.1 Sources of nonlinearity

When the oscillations are small, the response of beams and cantilevers can be accurately described

by linear equations. However, as the displacement amplitude increases, nonlinear effects become

significant. Nonlinearities in both MEMS and NEMS devices have been widely observed experimen-

tally [56, 21, 70, 1]. The sources of nonlinear behavior in vibrating elastic beams include material,

inertial, geometric, and damping nonlinearities.

Material nonlinearities exist in systems which exhibit nonlinear stress-strain relationships. Since
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the stress, σ, and the strain, ε, satisfy the inequality d2σ
dε2 ≤ 0 for the majority of known materials,

nonlinearity of this kind generally will be softening [12]. Nylons and rubber-like materials, including

latex, can exhibit stress-strain behavior in which linear and nonlinear effects are of equal importance.

In silicon devices, material effects are significant for bulk acoustic wave micromechanical resonators

where geometric nonlinearity is not dominant [60]. The material nonlinearities in strings under

tension were found to be small, but if they grow more significant, they can influence both the degree

of nonlinearity in the overall response as well as its softening or hardening nature [77].

Inertia nonlinearities arise as a result of concentrated or distributed masses in dynamical systems

[43, 85]. This type of nonlinearity is present in the equations describing the motion of an elastic

pendulum (a mass attached to a massive spring) and those describing the transverse motion of a

cantilever beam. During transverse vibrations, every section of a beam undergoes some longitudinal

displacement. The influence of the longitudinal force is included in the equations of motion in terms

of time derivatives of the displacements, e.g., x(xẍ + ẋ2) for beams [12]. Other examples of inertia

nonlinearities include centripetal and Coriolis acceleration terms. Longitudinal inertia nonlinearities

are softening [5].

Geometric nonlinearities arise from nonlinear strain-displacement relationships due to large de-

formations and are usually of the hardening type. This type of nonlinearity is present, for example,

in the equation governing the large-angle motion of a simple pendulum, in the nonlinear strain-

displacement relations due to mid-plane stretching in strings, and due to nonlinear curvature in

cantilever beams. The geometric nonlinearity in a beam becomes significant when the vibration am-

plitude grows so large that the tension in the beam becomes dependent on its displacement from the

equilibrium position. In order to account for the geometric nonlinearity, the displacement-dependent

tension should be included in the equation of motion (2.1.1) in addition to a constant residual tension,

T0, that might be present in the beam [74]. In doubly-clamped beams, the curvature of a vibrating

beam is small, so inertia nonlinearities due to longitudinal forces are generally much smaller than

geometric nonlinearity due to midplane stretching. This tension nonlinearity is responsible for the

hardening nonlinear behavior for all modes of a doubly-clamped beam.
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In singly-clamped cantilevers, where one end is free to move longitudinally and curvatures can

be quite large, the effective nonlinearity depends on the contributions of both inertia and geometric

nonlinearities, which are usually of the same order [29]. In contrast to doubly-clamped beams, the

geometric nonlinearity in cantilevers is dominated by large curvature rather than stretching [3]. The

contributions of two types of nonlinearity vary with the mode number. The fundamental mode is

dominated by the geometric nonlinearity, which is of the hardening type [89, 3]. For the second and

higher modes, the nonlinearity due to nonlinear longitudinal inertia, which is of the softening type,

becomes dominant [5, 89, 3].

Nonlinear damping is perhaps the most difficult to describe theoretically because there is a large

number of factors and complex processes that could reduce the effect of linear damping on the

system. Nonlinear damping usually adds a term of the form x2ẋ to the equation of motion [12, 80].

It has also been suggested that different nonlinear damping models need to be considered for different

modes [3].

Nonlinearities can also appear in the boundary conditions. A nonlinear boundary condition

exists, for instance, in the case of a cantilever attached to a flexible support that behaves more like

a torsional spring than a fixed clamping point [110]. If cantilevers from nanowires and nanotubes

are used in AFM-type tapping mode, nonlinearities in tip-surface interaction become important as

well [78].

To further complicate the matter, nonlinearities observed in the system response might be due

to nonlinear terms in the drive (e.g., a capacitive drive would produce a softening nonlinearity [122])

or detection scheme. In these cases, both intrinsic system nonlinearities and nonlinearities due to

external driving have to be taken into account [61].

2.3.2 Dynamic range of beams3

This section presents the detailed analysis of a beam with the tension nonlinearity. We show how

the onset of the nonlinear regime decreases with decreasing diameter, while the thermomechanical
3The work in this section has been done together with Henk Postma and Ali Husain and published in Applied

Physics Letters [92].
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Figure 2.3: Schematic representation of a doubly-clamped nanomechanical resonator of length L
and diameter d. An applied force leads to a bending profile z(x).

noise increases with aspect ratio. We conclude that the useful linear dynamic range of such devices

is severely limited, with the result that many applications will involve operation in the nonlinear

regime.

A typical layout for a doubly-clamped nanomechanical resonator is shown in Figure 2.3. The

resonator can be driven and detected in several ways, e.g., magnetomotively [26] or optically [21].

The driving force, f(t), leads to a time dependent bending profile, z(x, t). I will denote the spatial

derivative of z(x, t) as zx = ∂z(x,t)
∂x . When such a beam is stretched to a displacement z(x, t), its

total length increases from L to L + ∆L =
∫ L

0

√
1 + zx(x, t)2 dx. For a slight bending, the square

root expression can be expanded in a Taylor series around z = 0, so that the incremental change in

length is given by ∆L = 1
2

∫ L

0
zx(x, t)2 dx. The extra displacement-dependent tension T (z(x, t)) is

then

T (x, t) = ES
∆L

L
=

ES

2L

∫ L

0

zx(x, t)2 dx. (2.3.1)

The full differential equation of motion that includes the geometric nonlinearity in the beam’s vi-

bration is

L[z(x, t)] = EIzxxxx −
(

T0 +
ES

2L

∫ L

0

z2
x dx

)
zxx

+ ρSztt − f(x, t) = 0. (2.3.2)

with boundary conditions z(0, t) = z(L, t) = zx(0, t) = zx(L, t) = 0. Here, S is the cross-sectional
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area, E is Young’s modulus, ρ is the density, and I is the moment of inertia about the longitudinal

axis of the beam. The term in between brackets describes tension in the beam, and is a sum of

residual tension, T0, and a bending-induced tension, respectively.

Since equation (2.3.2) cannot be solved exactly, we use the Galerkin discretization procedure [85],

representing the solution to equation (2.3.2) in terms of a linearly independent set of basis functions,

φk(x), where each basis function satisfies the boundary conditions. The error e(x, t) associated with

this approximation technique,

e(x, t) = L
[

N∑

k=1

zk(t)φk(x)

]
− L[z(x, t)] (2.3.3)

is required to be orthogonal to each basis function:

∫ L

0

e(x, t)φn(x)dx = 0. (2.3.4)

Performing the integration and noticing that L[z(x, t)] = 0 as given in the equation (2.3.2), we

arrive at the Duffing-type equation describing the time-varying behavior of the system:

z̈1(t) + ω2
nz1(t) + αz3

1(t) = 0. (2.3.5)

for free vibrations of the elastic beam (f(z(x), t) ≡ 0). The resonant frequency, ωn, is given by

equation (2.1.15) and the nonlinear coefficient, αn, for vibration in the nth mode is

αn = − E

2ρL

(∫ L

0
φ′n(x)2 dx

) (∫ L

0
φ′′n(x)φn(x) dx

)

∫ L

0
φ2

n(x) dx
. (2.3.6)

Using the integration by parts and clamped boundary conditions, the expression for nonlinear coef-

ficients simplifies to

αn =
E

2ρL

(∫ L

0
φ′n(x)2 dx

)2

∫ L

0
φ2

n(x) dx
. (2.3.7)

Clearly, αn > 0 for all modes. This means that the geometric nonlinearity due to the appearance
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of displacement-dependent tension is hardening and results in nonlinear frequency pulling to higher

frequencies for larger drive powers.

We are interested in the response of the beam at resonance when the first mode is dominant,

so it suffices to consider the case n = 1.4 For a doubly-clamped beam, the simplest function that

approximates the first mode is φ1(x) =
√

2/3 [1− cos (2πx/L)] [38, 112]. The normalization
√

2/3

ensures that the time dependent amplitude z1(t) we find below is the root mean square displacement

averaged over the length of the beam (not time). For the fundamental mode,

ω0 = 4π2

L2

√
EI
3ρS

(
1 + L2T0

4π2EI

)

α = E
18ρ

(
2π
L

)4
.

(2.3.8)

The resonant frequency, ω0, obtained in this approximation is slightly higher than the exact value.

We add a phenomenological damping term, ż1ω0/Q, to equation (2.3.5), where Q is the mechanical

quality factor in the linear regime. Then the critical amplitude for the onset of nonlinearity is given

by equation (2.2.39) [85]

ac = ω0
L2

π2

√
ρ
√

3
EQ

. (2.3.9)

The critical amplitude describes at what displacement nonlinearity sets in, i.e., the displacement at

which the resonance curve just starts to lean over and the hysteresis still has zero width. A smaller

value of ac signifies an earlier onset of nonlinearity and generally a stronger nonlinear behavior. A

nanotube or a nanowire can be well described by a cylindrical rod with diameter d: S = πd2/4

and I = πd4/64. We parametrize a rectangular beam with width, d, in the direction of motion and

thickness, t, yielding S = dt and I = td3/12. This gives us

ac =
2
4
√

3

√
1
Q

(
d2

4
+

4T0

π3E

L2

d2

)
(cylindrical)

ac =
2
4
√

3

√
1
Q

(
d2

3
+

T0

π2E

L2

td

)
(rectangular).

(2.3.10)

A typical response of a Duffing oscillator described by equation (2.3.5) is shown in Figure 2.4.
4More accurate multi-mode Galerkin discretization models have been developed [41], but they do not offer the

ease and convenience of deriving analytical dependencies on system parameters.
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Figure 2.4: Solid lines indicate typical response of a Duffing oscillator as a function of frequency
with increasing driving strength. The solid lines are plots of equation Q(ω− ω0)/ω0 = 2

3

√
3a2/a2

c ±√
a2

peak/a2 − 1, where ac is chosen 1, for apeak = 0.745, 2/
√

3, 2 [85]. The dashed line is a plot for
apeak = 0.1, indicating an arbitrarily chosen RMS noise floor.

At low driving strength, the amplitude has the Lorentzian shape from the linear regime. Increasing

the driving strength causes the peak to be pulled over to high frequencies at high amplitudes. A

common definition of the onset of nonlinearity is the 1 dB compression point, i.e., the point at which

the signal is 1 dB lower than expected for the case of purely linear response. At resonance, this

happens when apeak = 0.745ac, which is the lowest solid curve in Figure 2.4. This sets the upper

limit of the useful linear range.

The lower limit of the dynamic range is set by the incoherent sum of all stochastic processes driv-

ing the resonator [27], such as thermomechanical fluctuations, quantum noise, noise from adsorption

and desorption of gaseous species [39], and extrinsic sources such as vibrational and instrumental

(readout) noise. For simplicity, and in the spirit of considering ultimate thermodynamic limits, we

solely consider thermal noise. The spectral density of displacement noise on resonance is

Sx =
4kBTQ

mω3
0

, (2.3.11)

where m is the total resonator mass, m = πρLd2/4.
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Table 2.1: Input parameters for Figure 2.5.

d (nm) ρ (kg/m3) E (TPa) Q
SWNT 1.4 1930 1 1000
MWNT 20 1930 1 1000
Pt nanowire [56] 43 21060 0.168 8500
SiC beam [54] 150(t = 100) 2880 0.430 8000

We now define the useful dynamic range DR as the ratio of the 1 dB compression point (0.745ac)

to the noise amplitude at resonance

DR [dB] ≡ 20 log
(

0.745ac√
2Sx∆f

)
, (2.3.12)

where ∆f is the measurement bandwidth (∆f = 1 in Figure 2.5), and the
√

2 comes from the

conversion of ac to RMS.

For the moment neglecting the residual tension T0,

DR = 20 log

(
2.41 d

(
d

L

)5/2
√

E3/2

Q2kBT∆f
√

ρ

)
(cylindrical)

DR = 20 log

(
3.9
√

dt

(
d

L

)5/2
√

E3/2

Q2kBT∆f
√

ρ

)
(rectangular).

(2.3.13)

It is apparent that the dynamic range depends strongly on the aspect ratio L/d and directly on

diameter. Figure 2.5 shows the dynamic range plotted for several device geometries of interest: a

single-wall carbon nanotube (SWNT), a multi-wall carbon nanotube (MWNT), a Pt nanowire [56],

and a SiC rectangular beam [54] with parameters as given in Table 2.1. We assume a mechanical

quality factor, Q, for MWNT and SWNT of about 1000, although first measurements [99] indicate

a lower value. The dynamic range is very limited, and in the case of SWNTs even drops below 0

dB above a length of 2 µm, which renders the device useless as a linear detector. It is worth noting

that a change in temperature or measurement bandwidth shifts these curves along the vertical axis,

but does not change the scaling behavior. Generally, the resonator with the smallest diameter will

have the smallest dynamic range.

We now discuss the effect of residual tension, T0. It may arise from differential thermal contrac-
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Figure 2.5: Dynamic range at 4K for several doubly-clamped resonators as indicated in the figure
and Table 2.1. The shaded region below 0dB indicates the absence of a linear region of operation.

tion [56], or, for instance, may be induced by a DC-voltage on a gate nearby [98]. Increasing tension

will increase the resonant frequency. We therefore account for the presence of tension by using ac

from equation (2.3.9),

DR = 20 log
(

3.08
(f0L)5/2dρ

Q
√

EkBT∆f

)
, (2.3.14)

where ω0 ≡ 2πf0. The dynamic range can therefore be increased or decreased through a change in

resonant frequency due to tension. An upper limit to the frequency tuning is set by how high tension

can be before deforming, breaking, or irreversibly pulling the resonator to the gate [32]. This places

an upper limit on the available dynamic range, but that limit is strongly dependent on the actual

sample geometry, tuning mechanism, and material properties, and is therefore not treated here.

It has been observed that the mechanical quality factor Q also depends on the dimensions of

the resonator, which would alter the scaling behavior presented in this paper. For instance, in an

empirical study, it was shown that Q scales roughly as the inverse of the surface to volume ratio [83].

In another study, it was shown that extra dissipation may also arise from eddy-current damping

[26] which scales as (Q−1 − Q−1
0 ) ∝ (L/d)3, where Q0 is the quality factor without eddy-current

damping. Many other dissipation mechanisms exist, and it is therefore difficult to derive a general
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scaling law of Q with sample parameters.

We have shown that for large aspect ratio resonators, one is forced to work close to the nonlinear

regime or even in it, a rather undesirable situation for using nanoresonators as linear sensors. This

new nonlinear regime that promises to dominate the nanoscale beyond the conventional dynamic

range, however, offers new opportunities for studies and applications of nanoresonators. Several of

these opportunities are explored in the later chapters of this thesis.
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Chapter 3

Experimental Techniques

This chapter discusses fabrication and characteristics of various devices that I have used in nonlinear

NEMS experiments and includes gold beams fabricated on silicon nitride, silicon carbide beams, and

metal nanowires. This chapter also outlines the transduction schemes that have been used with

these devices, including electron-beam detection inside the SEM, magnetomotive transduction, and

piezoresistive detection. At the end I discuss a fitting procedure for resonance signals on top of a

background that allows us to extract accurate resonant frequency and quality factor.

3.1 Devices

Inanimate objects can be classified
scientifically into three major categories;
those that don’t work, those that break
down and those that get lost.

Russell Baker

3.1.1 Gold beams on silicon nitride membranes

Gold beams, fabricated on a silicon wafer using silicon nitride membranes, were used during the

early stages of nonlinear studies described in this thesis, including the first measurements of mode

coupling. Measurements of a beam’s vibration were done in the chamber of a JEOL scanning electron

microscope (JSM 6400), by scattering the electron beam off an edge of a gold beam and recording

the signal reaching the secondary electron detector. This measurement technique will be discussed
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Si

Si3N4

Figure 3.1: Fabrication process for gold beams on top of a silicon nitride membrane. Removal of
a square window of silicon nitride on the back side of the wafer (a) allows KOH to etch the silicon
layer, leaving a silicon membrane on the top side of the wafer (b). Electron beam lithography is
then used to define the structure on top of the membrane (c). After thermal evaporation of gold
(d), the silicon membrane is etched away to leave the metal structure suspended (e).

in detail later in this chapter. For these measurements, the gold beams have an advantage of high

contrast in the SEM because of the relatively high secondary-electron yield of gold. The biggest

disadvantage is the low quality factor of these devices.

The devices are fabricated using bulk micromachining techniques. The process is illustrated in

Figure 3.1. We start out with a 500nm-thick silicon wafer covered with a 100nm-thick layer of silicon

nitride on both sides. Photolithography is used to define a square hole in the nitride on the back side

of the wafer. The mask SI MEMBRANES has a choice of four sizes for the square membranes, 0,

50µm, 100µm, and 150µm. For the process I used, the size of the membrane determines the length

of the resulting beam. The unexposed photoresist AZ5214 is used in the ECR etch as a mask to

clear out the desired square hole (Figure 3.1(a)). For the 2 : 1 mixture of corrosive NF3 gas and

argon, the double layer of photoresist proved the most effective.

The wafer is then subjected to potassium hydroxide (KOH) at 85o over several hours, which

selectively etches along the 111-plane of the silicon crystal and leaves a square silicon nitride mem-

brane on the front of the wafer (Figure 3.1(b)). The nitride is then covered with PMMA layer

so that the desired pattern can be defined by electron beam lithography using a scanning electron

microscope (Figure 3.1(c)). Gold with a small addition of palladium is then thermally evaporated

onto the wafer surface and, with the help of a chromium adhesion layer, sticks to the silicon nitride

membrane where the PMMA has been exposed. The extra metal outside the defined pattern is lifted

off when the unexposed PMMA is removed in acetone (Figure 3.1(d)). A small amount of palladium

reduces the grain size of the gold film and makes the liftoff easier. Electron cyclotron resonance
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Figure 3.2: Typical gold devices fabricated on silicon nitride membranes. Left: Two suspended
gold beams 500nm wide, 200nm thick, and 50µm long positioned 2µm away from gate electrodes.
Center: A gold beam 500nm wide, 220nm thick, and 150µm long positioned 4µm away from both
gates. Right: A set of two gold beams 500nm wide, 93nm thick, and 150µm long positioned 4µm
away from the gate and each other.

(ECR) plasma etching from the backside of the wafer gets rid of the silicon nitride membrane. This

leaves the gold structure suspended over the square hole (Figure 3.1(e)). Typical devices made for

the studies inside the SEM are shown in Figure 3.2.

3.1.2 Silicon carbide beams and cantilevers

Silicon carbide beams with various metal electrode layouts were used for the majority of later ex-

periments, including dynamic range and frequency tuning, multiple mode interaction, and higher

flexural modes studies. The vibrations of silicon carbide beams were measured using the magne-

tomotive driving and detection technique [25] and, for later experiments, using the piezoresistive

downmixing scheme [9]. Silicon carbide beams are relatively easy to fabricate and yield devices with

sufficiently high quality factors for careful studies of dynamics as well as for application as sensors.

Silicon carbide devices are fabricated by electron beam lithography from single-crystal 3C-SiC

layers grown epitaxially upon Si substrate [117]. These wafers were kindly provided by Chris A.

Zorman and Mehran Mehregany from Case Western Reserve University. The resonator is defined

by electron beam lithography from the SiC layer. A 2-5nm chromium adhesion layer and 15-35nm

layer of 60%-40% gold-palladium alloy or gold with an addition of small amount of palladium are

thermally evaporated onto the resonator to serve as a conducting electrode layer. Adding palladium

to gold reduces the grain size and facilitates liftoff allowing for thinner continuous films. If the

metalized pattern is not meant to cover the entire device, a lithographically defined chromium or
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Figure 3.3: Typical silicon carbide devices. Left: A suspended fully metalized SiC beam 150nm wide,
100nm thick, and 15µm long positioned 400nm away from a gate electrode. Center: A metalized
beam 300nm wide and 8.5µm long with 750nm-long legs, positioned 350nm away from both gates.
Right: A bare SiC beam 300nm wide and 8.3µm long with metal electrode loops.

aluminum mask is used to cover the full structure. The SiC structure is suspended when the Si

substrate is partially dry-etched in the ECR. If used, a chromium mask is removed in the chrome

etch solution; an aluminum mask is removed in 0.67% KOH solution.

It is usual for built-in strain in an epitaxially grown film and multilayered structure to yield an

intrinsic tension within the beam, raising the expected resonant frequency. In theoretical calculations

and simulations, the Young’s modulus for the silicon carbide film structure is taken to be 430 GPa,

which is consistent with the recent measurements [57], and the density is the bulk value of 3200g/cm2.

Figure 3.3 shows typical devices fabricated out of silicon carbide for magnetomotive (left) and

piezoresistive (center and right) detection.

3.1.3 Metal nanowires

Platinum nanowires have been used to study basins of attraction of a nonlinear nanoresonator in

the bistable regime as well as noise-induced transitions between the two accessible states. The

vibrations of platinum nanowires were measured using the magnetomotive driving and detection

technique [25]. Platinum nanowires are the only bottom-up devices that I have worked with and,

besides being an exciting foray into the world of nanoscale self-assembly, they have quality factors

comparable with silicon carbide beams. A significant inconvenience, however, is having to locate

each nanowire individually after they have been grown so that an electrical contact can be made.

The electroplating setup for growing metal nanowires was originally designed and built by Mladen
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Barbic [6, 56] and is suitable for growing platinum, gold, and silver nanowires. Platinum nanowires

are synthesized by electrodeposition of platinum into a commercially available nanoporous membrane

[82]. SPI-Pore polycarbonate membrane filters, with a nominal pore diameter of 20nm and thickness

of 10µm, can be obtained from SPI Supplies (www.2spi.com). Gold is evaporated on one side of

the membrane to serve as one of the electrodes for electrodeposition. A platinum electroplating

solution (available from Technic, Inc.) fills the holes in the membrane, and the other side of the

polycarbonate membrane is covered with aluminum foil, which serves as the second electrode. For

gold nanowires, a gold electroplating solution (also from Technic, Inc.) was used. The wires are

electroplated by passing a 20µA current between the two electrodes for 3-6 hours, depending on the

desired length of the wires. Silver nanowires do not need to be electroplated and can be simply

deposited out of a silver enhancement solution (available from Ted Pella) [6]. When the wires are

grown, the membrane is dissolved in chloroform, suspending the wires in solution. This suspension is

then dried, one drop at a time, upon a silicon substrate that has been capped by 300nm-thick layer of

thermally grown silicon dioxide and pre-patterned with gold alignment marks. Using the alignment

marks, the location of the deposited wires can be mapped in an optical microscope [6]. Metallic leads

(50nm of gold on top of a 5nm Cr adhesion layer) to individual nanowires are patterned by electron

beam lithography, evaporation, and lift-off in acetone. Finally, the nanowires are suspended above

the substrate by etching SiO2 in hydrofluoric acid. In this step the electrode pattern also serves as

a self-aligned mask, forming the anchor points from which the nanowires are suspended. Critical

point drying, in order to avoid the destruction by meniscus forces, is the final step in fabrication.
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3.2 Transduction schemes

. . . nothing tends so much to the
advancement of knowledge as the
application of a new instrument. The
native intellectual powers of men in
different times are not so much the causes
of the different success of their labours, as
the peculiar nature of the means and
artificial resources in their possession.

Sir Humphry Davy

During my studies of nonlinear NEMS, I have tried three different transduction techniques to

measure the vibrations of mechanical beams: electron beam detection inside a scanning electron

microscope; magnetomotive transduction; and, most recently, piezoresistive detection. I include a

lengthy description of the electron beam transduction scheme that I developed and implemented

inside a JEOL SEM, based on a suggestion by Eyal Buks. Even though this scheme has been used

in the past [113, 119], virtually no literature exists that discusses its operation and limitations for

detection of NEMS. When the latter became clear to me, I turned to the magnetomotive transduction

technique, which was developed in our group [24] and for years has been the standard workhorse for

nanomechanical vibration measurements providing femtometer (10−15m) displacement resolution.

Recent interest in employing nanoscale resonators for biological and chemical applications stimulated

the development of various room-temperature transduction schemes. In our group, in particular,

piezoresistive detection technique was developed [9, 79] and we have recently been able to combine it

with thermoelastic actuation to obtain a convenient low-noise technique capable of detecting multiple

vibrational modes from several MHz to over 1GHz [7].

3.2.1 Electron beam detection1

Detection of mechanical vibrations using a scanning electron microscope is analogous to optical de-

tection. Instead of photons from a laser, electrons emitted from a heated filament in a scanning

electron microscope scatter off a vibrating mechanical beam. Instead of a photodetector, a sec-
1Some of the work in this section was done with the help from Eyal Buks, Ronen Almog, Nick Melosh, and Steve

Stryker.
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Figure 3.4: (a) Schematic of electron beam detection setup. Electrons scattered off a vibrating
NEMS beam are captured in the secondary electron detector (SED) and the signal is fed into a
spectrum analyzer. (b) Photograph of the probe station made to make electrical contact to beams
for driven resonance measurements inside the JEOL SEM. (c) Commercially available probe station
for FEI SEMs.

ondary electron detector inside the SEM captures the scattered electrons and translates them into

an electrical signal. Schematic of an electron beam detection setup is shown in Figure 3.4(a).

3.2.1.1 SEM Detector system

When the primary electrons – emitted from the filament, accelerated, and guided through the column

– enter the sample, they are scattered elastically (by Coulomb interactions with atomic nuclei)

and inelastically (by interaction with atomic electrons). During the inelastic collisions, energy lost

by primary electrons is gained by atomic electrons. This acquired energy may enable the atomic

electrons to escape from an atom and into the vacuum as ”secondary” electrons, which are generated

within 1-2nm below the surface of the substrate. The elastically scattered electrons are called

”backscattered” electrons and have higher energy than secondary electrons. By convention, the

limit between secondary and backscattered electrons is drawn at 50eV [93].

A detection system for secondary electrons used in most SEMs is the Everhart-Thornley detector,

developed in 1950s by two graduate students at the University of Cambridge [44]. This detector

is inefficient at the conversion of electron-hole pairs into light quanta, but it produces very low

noise [93]. The low-energy secondary electrons emitted from the sample are collected in front of a
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scintillator by a positively biased grid biased at 20kV. The electrons are further accelerated so that

they strike the scintillator surface with enough energy to excite light emission. The current that

falls on the scintillator is

ISE = IP δfSE , (3.2.1)

where IP is the electron probe current, δ is the secondary electron yield (δ ≈ 0.2 − 0.4 for gold,

and depends on the energy of primary electrons and the angle of incidence [104]), and fSE is the

collection efficiency of the detector for secondary electrons (fSE ≈ 20 − 50% [93]). In general,

backscattered electrons also comprise part of the detected signal and the simple formula (3.2.1) is

generally much more complicated [93], but since the measurement technique is sensitive primarily

to the change of the number of electrons hitting the scintillator, the exact composition of the signal

is not very important as long as it is constant in time.

Scintillator, a quartz disk with phosphorus powder coating, converts electrons to photons by

cathodoluminescence. When a high energy electron crashes into a semiconductor, electrons in the

valence band acquire enough energy to move into the conduction band, leaving behind a hole. When

an electron and a hole recombine, it is possible for a photon to be emitted. A large fraction of

electron-hole pairs, however, recombine without radiating, and only 1-3% of secondary electrons are

converted into light. The emitted light is guided into a photomultiplier tube which amplifies the

signal and converts it into an electric signal that is usually fed into the video amplifier of the SEM.

3.2.1.2 Experimental setup

The scanning electron microscope JEOL JSM-6400 was used for electron beam detection measure-

ments of gold beams. The measurement of a vibrating beam is done in the spot mode, so that a

circular spot shines on the edge of the metal beam and illuminates more and less of it as the beam

vibrates. In these measurements, the detector signal, which is usually sent to the video output of

the SEM, is sent to an oscilloscope, a network or spectrum analyzer, or a lock-in amplifier.

It is possible to excite thermal vibration of a suspended NEMS beam inside the SEM with an

electron beam. A typical thermal spectrum from a vibrating beam is shown in Figure 3.5(a). The
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Figure 3.5: (a) Fourier transform of the oscilloscope trace recorded from the secondary electron
detector of an FEI SEM. The electron beam, with a current of 150pA at the acceleration voltage of
30kV, was scattered by a gold beam tilted 45◦ to allow the measurement of the transverse mode.
(Inset) The fundamental transverse-mode frequency drifts up with time. (b) Frequencies of the first
seven harmonics fitted to a straight line. (c) Deviation of the data points from the fit. Randomness
of deviation supports the hypothesis that multiple peaks correspond to higher harmonics of the
signal rather than higher vibrational modes.

detected fundamental resonance of 82.5kHz is higher than the predicted frequency of 27.2kHz for the

transverse mode of the beam with no tension. A residual tension of about 0.46µN is present in the

gold beam due to thermal contraction after high-temperature metal evaporation. The fundamental

resonance signal is accompanied by harmonics at multiples of this frequency. These harmonics are

an artifact of the detector signal that is not perfectly sinusoidal. All harmonic frequencies can be

fitted to a straight line (Figure 3.5(b)). The difference plot between harmonic frequencies and the

straight line fit (Figure 3.5(c)) shows no consistent trend that could suggest that evenly-spaced

frequencies correspond to higher vibrational modes of a string rather than simply harmonics of the

fundamental mode. Moreover, the spectrum is collected while the spot is at a fixed position along

the beam (close to the middle), and the signal from higher vibrational modes would show smaller

amplitudes for even modes compared to odd modes, which is not observed experimentally.

One of the biggest difficulties with e-beam detection of mechanical resonances is the lack of

frequency stability. As shown in the inset to Figure 3.5(a), the fundamental frequency drifted about

1kHz in 30 minutes without reaching a steady state. This drift is most likely due to continuous

charging of the gold beam by electrons. The charged beam is pulled to the gate, on which the
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opposite charges are induced, increasing the tension and consequently the frequency for the vibration

out of the plane of the gate [66]. As electrons keep striking the beam while the measurement is made,

no steady state is reached. Simple heating of the beam does not account for the drift as it would

decrease the resonant frequency and reach a steady state temperature on the order of milliseconds.

Another difficulty is the formation of contamination carbon growth on the beam at the irradiation

spot. The growth rate of carbon is related to the presence of carbon-containing contaminants in the

chamber, such as residue pump oil, graphite lubricants, and other organic remnants. Reducing the

acceleration voltage to 6kV and the current to 50-100pA slows down the carbon growth.

It is also possible to drive and detect driven vibrations of beams in the SEM. In order to excite

the resonators inside the SEM chamber, I fitted the microscope with a modified flange that included

four SMA feedthroughs. With the help from Steve Stryker, I also built the probe station shown

in Figure 3.4(b) to make immediate electrical contact to a device inside the SEM. Hand-sharpened

probing needles can be moved with the help of xyz-micropositioners (Model P-10 from Miller Design

& Equipment, www.miller-design.com) to make an electrical contact with the device contact pads

and are connected, through the feedthroughs in the flange, to a function generator or a network

analyzer. The use of the probe station eliminates the need for wire bonding that is usually necessary

to connect the contact pads of the device to contacts on a sample stage. Such probe stations have

recently become available commercially with the micropositioners movable by picomotors inside the

SEM chamber for more precise positioning (Figure 3.4(c)). Beams inside the SEM were excited

capacitively with the ac voltage applied to a nearby gate or the beam itself. Reducing the gap

between a gate and a beam makes capacitive excitation more efficient, but lowers the voltage at

which the electrostatic pull-in of the beam can happen [90].

3.2.1.3 Nonlinearity of the detector response

Since the electron beam measurement technique aims at measuring the nonlinear response of a

vibrating beam, it is important to ensure that the response of the detector is completely linear, so

that nonlinearities in the detector response do not adulterate the experimental data.
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Figure 3.6: (a) Schematic for estimating the nonlinearity in detector response in the scanning
electron microscope measurement scheme. R is the radius of an electron beam spot; y0 is the
displacement of the center of a metal beam; r0 is the distance by which the mean of vibration
amplitude is displaced from the center of the circle. A0 is the area of the metal beam that reflects
electrons into the detector before the beam is displaced; AL is the area of the electron spot that
doesn’t reflect anything into the detector when the beam is deflected. (b) The response measured
with a round spot exhibits a 1dB compression from the linear response at y0 = κR, where R is the
spot radius and κ is a coefficient that depends on where in the spot the vibrating edge of a metal
beam was positioned. The inset shows the falling off of the coefficient κ with the scaled distance
from the origin, r0/R.

In the usual measurement, the magnification of the microscope is adjusted so that the displace-

ment of a vibrating beam is less than the diameter of the electron beam spot, but is large enough

compared to the spot size to result in a visible signal. During the measurement, the metal beam

covers less or more of the electron beam spot of radius R when it vibrates and so reflects less or more

electrons into the detector. I will assume that the voltage measured out of the secondary electron

detector is proportional to the number of reflected electrons, and so to the area on the metal beam

that reflected them.

The spot is usually positioned half-way along the beam where the deflection is expected to be

the largest, so that the measured displacement y0 ≤ max[y(x, t)]. I also try to position the edge of

the metal beam in the center of the spot, so that vibrations are symmetric with the respect to the

origin. However, this is not always possible to do accurately and some displacement off the center of

the spot, which I will call r0, is expected. This situation is illustrated in Figure 3.6(a). If the spot

were not a circle, but a rectangle, we would expect a perfectly linear response Vdetector ∝ 2Ry0. The

nonlinearity in the detector response is due to the circular shape of the spot that results in a smaller

signal for larger deflections from its central axis. In order to estimate where this nonlinearity sets



43

in, we need to calculate the areas of the metal beam illuminated by the circular spot at its minimum

(i.e., initial) and maximum (i.e., final) deflections.

Let’s call A0 the area of the metal beam that is illuminated initially. From simple geometric

considerations, the area of segment A0 is

A0 = R2 arccos
(

y0/2 + r0

R

)
−

(y0

2
+ r0

) √
R2 −

(y0

2
+ r0

)2

. (3.2.2)

When the beam is deflected, the illuminated area now is Acircle −AL (see Figure 3.6(a)), where AL

is

AL = R2 arccos
(

y0/2− r0

R

)
−

(y0

2
− r0

) √
R2 −

(y0

2
− r0

)2

. (3.2.3)

The total change in the area that reflects the electrons, A∆ = πR2 − AL − A0, is proportional to

the detected signal. This difference in the spot areas is plotted in Figure 3.6(b) as a function of

the metal beam displacement. The signal is linear until a certain point, after which the response

becomes compressed. A common definition of the onset of nonlinearity is the 1dB compression

point, i.e., the point at which the signal is 1dB lower than expected for the case of purely linear

response. Let’s say that this 1dB compression point occurs when y0 = κR, where κ is a coefficient

that depends on the how far from the central axis of the circle the edge is placed. The inset to

Figure 3.6(b) shows how this coefficient falls off with the distance of the original location from the

center of the spot. Typical spot sizes range from 50-70nm in older scanning electron microscopes

(e.g., JEOL JSM 6400) to 20nm and less in newer SEMs (e.g., FEI Quanta and Sirion).

The effect of the edge of the metal beam being off the central axis of the spot is dramatic. For

the perfect placement in the spot, nonlinearity sets in at the beam displacement y0 = 1.53R, an

easily avoided regime for most nanoscale and microscale devices (it’s about 30nm for a 20nm spot).

For an offset of 45% from the origin, nonlinear response appears already at y0 = 0.174R, about 3nm

for a 20nm spot, a length scale at which device nonlinearity sets in most doubly-clamped nanoscale

beams. For an offset of 45.4%, the response of the detector is always nonlinear. It is very important

to take extreme care not to deviate from the central position in the spot too much. Going to a
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bigger spot size is also a solution, but it comes at the expense of the signal magnitude because the

differential change in the number of reflected electrons is smaller for bigger spot sizes.

If the nonlinearity of the detector starts to become a problem for small spot sizes, a useful trick

is to adjust the stigmation of the SEM column lenses so that the spot is elliptical instead of circular,

with its major axis aligned perpendicular to the direction of metal beam vibration. This should

allow for a wider range of displacement in the linear regime without sacrificing resolution.

3.2.1.4 Detector bandwidth

Another potential limitation of this detection scheme for high-frequency vibrations of NEMS beams

is that the Everhart-Thornley secondary electron detectors in the current SEMs have a bandwidth

of about 10 MHz [93]. The bandwidth is limited by the response time of the attached pre-amp and

the scintillator material. It is possible to replace these components and improve the time resolution

of the detector by an order of magnitude, pushing the bandwidth to about 100 MHz [47].

Achieving detection of GHz signals with the SEM measurement technique might be possible if

we use the voltage contrast technique developed for non-contact testing of integrated circuits [51].

The voltage contrast technique for testing ICs operates on the basic principle that the emission of

secondary electrons by a sample bombarded with the primary electron beam of a SEM is restricted

or enhanced by the presence of local electric fields within the circuit. This is equivalent to the effect

of mechanical vibrations on the emitted secondary electrons. In this technique, the measurement of

signals with higher frequencies utilizes a sampling technique pulsing the electron beam. Each pulse

of the primary electron beam samples the signal in a specific phase relation. Continuously shifting

the phase between the signal and the sampling beam allows an entire waveform to be recorded. This

mode promises to provide a bandwidth of several GHz, depending on the e-beam pulse duration and

the overall stability [16]. In practice, the beam-blanking system of the SEM will have to be modified

to allow sufficiently fast and accurate control.
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3.2.2 Magnetomotive drive and detection

Magnetomotive drive and detection technique was developed in our group by Andrew Cleland about

10 years ago [24]. In magnetomotive technique, a conducting beam of length L is placed in vacuum

in a uniform magnetic field B, with its longitudinal axis perpendicular to the magnetic field. An

alternating current Id(t), driven along the length of the beam and transverse to the magnetic field,

generates a Lorentz force, Fd(t) = LBId(t), that excites vibrations of the beam transverse to its

length and the magnetic field direction. The scheme is illustrated in Figure 3.7. The motion of the

beam can be described by the equation:

z̈ +
ω0

Q
ż + ω2

0z =
LB

m
Id(t), (3.2.4)

where z(t) is the displacement of the beam, ω0 its resonant frequency, m its mass, and Q its quality

factor that describes the damping in the system. The motion of the beam with an alternating

current running along its length generates an electromotive force (EMF), VEMF (t) = ξLBdz(t)/dt,

that, by Faraday’s Law, opposes the flow of current and effectively increases the impedance of the

conducting beam on resonance. The geometric constant, ξ, depends on the mode shape; for the

fundamental mode of a doubly-clamped beam ξ = 0.83. In order to maximize the signal, magnetic

fields used for these measurements range from 1 to 8 Tesla, requiring the use of superconducting

solenoids operating at the liquid helium temperature of 4K.

The signal read-out from the magnetomotive measurement is the generated EMF (detected as

a drop in conductance of the beam on resonance) on top of the drive background. This means

that the magnetomotive technique directly measures the velocity rather than the displacement of

the vibrating beam, which makes it suitable for detection of very small displacements at very high

frequencies. A resonance of 1.03 GHz has been detected using this technique [55].

The beam displacement can be extracted from the measured EMF voltage signal VEMF as z(t) =

VEMF (t)/(ξLBω0). From the equation of motion (3.2.4), the beam’s displacement on resonance is
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Figure 3.7: Schematic of magnetomotive drive and detection technique. An alternating current
runs along the beam transverse to the magnetic field B and generates a Lorentz force exciting the
beam. A vibrating current-carrying beam in the magnetic field produces an EMF voltage read out
as a signal.

z(t) = LBQ/(mω0)Id(t). Then the measured signal in terms of the driving current is

VEMF (t) =
ξL2B2Q

mω0
Id(t) ≡ RemId(t). (3.2.5)

Here we have defined the electromechanical resistance of the beam Rem that describes its response

on resonance to the driving current. Magnetomotive drive and detection technique can also be

described using a circuit model [26], where the electromechanical resistance Rem is part of the

complex impedance in the model circuit that behaves like a mechanical resonator.

In general, the EMF generated in the device will also give rise to eddy currents that produce

another force opposite to the motion of the beam and has an effect of adding more damping to

the resonator [100]. If this damping is significant, the resonator’s quality factor measured in the

experiment Qmeas, is lower than its intrinsic quality factor Q0 :

1
Qmeas

=
1

Q0
+

1
Qeddy

=
1

Q0
+

ξL2B2

mω0Re
. (3.2.6)

The effect of eddy current damping is negligible if the second term is much smaller than the first

one, i.e., if Rem/Re ¿ 1. Unfortunately, this is usually not the case for nanoscale beams and

nanowires [53]. The intrinsic quality factor without eddy current damping can then be recovered by
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Figure 3.8: (a) Photograph of the room-temperature magnetomotive excitation setup using an
∼0.5T permanent magnet and piezoresistive downmixing detection. (b) Fundamental resonance
excited magnetomotively. Two peaks instead of one correspond to the frequency offset between the
drive and bias in the piezoresistive downmixing detection scheme.

Q0 = Qmeas/(1−Rem/Re).

A major drawback of the magnetomotive technique is the need for a high magnetic field that

usually requires operation at low temperatures (maintained by costly and time-consuming liquid

helium transfers 2-3 times a week) in a bulky superconducting solenoid (whose size defeats the

purpose of nanoscale device dimensions). Another disadvantage is the coupling between excitation

and detection producing a large parasitic background, which makes it very difficult to see small

resonance signals on top of it. This problem can be partially solved by the balanced bridge technique

[40]. Also, only odd-mode detection is possible with the magnetomotive technique due to cancellation

of EMF voltages in even modes; moreover, the signals from the third and higher modes are so small

that they have never been seen.

3.2.3 Magnetomotive drive and piezoresistive detection2

We have also developed and implemented magnetomotive excitation coupled with piezoresistive

detection at room temperature using a permanent 0.5T magnet. A photograph of the experimental

setup is shown in Figure 3.8(a). A permanent magnet taped to the back of the sample stage inside

a vacuum chamber and providing a magnetic field transverse to the longitudinal axis of the beam is

clearly visible in the photograph. Devices suitable for this technique are similar to the one shown
2This work has been done together with Igor Bargatin.
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in Figure 3.3(Center)): they are fully metalized and have two contact points at each end that form

metal piezoresistor loops. A typical signal from a magnetomotively excited beam is shown in Figure

3.8(b). The in-plane resonance of the beam was detected piezoresistively using the downmixing

scheme [9], in which a drive and bias voltages, offset by some frequency, mix inside a piezoresistor

to produce a low-frequency signal amplified on resonance. The two peaks in the detected signal are

offset by this downmixed frequency and correspond to both the drive and bias passing the beam’s

resonance frequency. This technique is very simple to implement and requires no superconducting

solenoids or helium transfers.

3.2.4 Thermoelastic drive and piezoresistive detection3

Thermoelastic excitation combined with piezoresistive detection is a convenient room-temperature

technique for measuring vibrations of nanomechanical beams. In addition to being fully integrated

onto a NEMS device, it has an advantage of decoupling detection from the drive and so ensuring a

low background. This technique has enabled us to observe resonances of multiple vibrational modes

of individual silicon carbide nanomechanical beam resonators, covering a broad frequency range from

several MHz to over a GHz.

Figure 3.9(b) shows a schematic of the thermoelastic drive and piezoresistive detection setup. The

devices are actuated thermoelastically at room temperature using localized heating in the thicker

metal loop. Because of different thermal expansion coefficients of metal and silicon carbide, local

heating of a metal loop results in nonuniform expansion and thermal stresses that tend to flex the

beam. Periodic temperature variations at drive frequency, ωd, are induced by applying a drive

voltage at half the frequency ωd/2 to the actuation loop. An AC bias voltage of frequency ωd −∆ω

is applied to the detection loop on the other end of the beam. The downmixed signal at frequency

∆ω that is generated in the piezoresistor [9] is amplified by a high-input-impedance preamplifier

and detected with a lock-in amplifier. Fractions of the drive and bias RF signals are split off with

directional couplers (DC) and fed to a broadband frequency doubler (FD) and mixer in order to

3This work has been done together with Igor Bargatin and accepted for publication in Applied Physics Letters
[7].
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piezoresistive detection measures strain at the clamping point, rather than displacement or velocity.

The strain in the piezoresistive loop gets suppressed when the inflection point in the mode shape

occurs in the middle of the piezoresistive loop, but this effect can be engineered by choosing the

detection loop size.

3.3 Resonant response analysis4

Errors using inadequate data are much
less than those using no data at all.

Charles Babbage

A small signal on top of a large and often frequency-varying background is a common theme

shared by all the transduction schemes described above. Experimental cleverness, filters, and phase

shifters can all help in lowering background, but even the best schemes can do no better than the

thermal Johnson noise level in the circuit resistors. It is especially difficult to compensate for the

background that varies in frequency. This section describes a procedure for accurate extraction of

resonance frequency, amplitude, quality factor, and background from the experimental data.

The resonant response of a harmonic resonator is a Lorentzian. The equation of motion of a

harmonic resonator is

ü + γu̇ + ω2
0u = Keiωt, (3.3.1)

where the damping coefficient is inversely proportional to the system’s quality factor, γ = ω0/Q.

Substituting a solution of the form u(t) = aeiωt into this equation of motion, gives us

(ω2
0 − ω2) + i

ωω0

Q
= K/a. (3.3.2)

We can solve this for the response amplitude as a function of driving frequency ω:

a(ω) =
K

(ω2
0 − ω2) + iωω0

Q

. (3.3.3)

4This work has been done together with Igor Bargatin.
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If A is the resonant peak amplitude, the response at resonance is −iA. Since the resonator is linear,

we can write the drive amplitude, K, in terms of the response peak amplitude, A: K = Aω2
0/Q.

The resonant response of a linear resonator with zero background is

a(ω) =
Aω2

0/Q

(ω2
0 − ω2) + iωω0

Q

. (3.3.4)

If this Lorentzian response is superimposed on a background with a frequency-varying component,

then the resonator response will have the following form:

R(ω) =
Aei(θ0−3π/2)ω2

0/Q

(ω2
0 − ω2) + iωω0

Q

+ C0 + C1(ω − ω0). (3.3.5)

Here, the complex values C0 and C1 are the constant component of the background and the slope

of the frequency variation, respectively. The phase factor ei(θ0−3π/2) accounts for the background

phase that rotates the circle in the xy-plane from its zero-background position, with a = −iA.

For convenience, we can incorporate this background phase into the complex amplitude, A, of the

response.

In order to obtain the accurate values for the resonant frequency, ω0, response amplitude, A, and

quality factor, Q, we need to fit the raw experimental data to the full form of response in equation

(3.3.5). The real and imaginary components, x and y, have to be fitted separately. This makes for

eight parameters over which the fit has to be done: Ax, Ay, ω0, Q, (C0)x,(C0)y,(C1)x, and (C1)y.

Because of the number of free parameters, the fit converges in a reasonable time only if the initial

guesses are very close to the true values. We will describe below how to obtain good guesses for the

initial values of the eight fit parameters.

The initial step is to plot the x and y components of the raw data in the xy-plane. A linear

resonator with a Lorentzian response traces out a circle in the xy-plane with radius, R. The circle

has an experimentally inaccessible gap corresponding to the infinite frequencies in both direction.

When there is no background, this gap is centered at the origin and the circle is rotated so that the

resonant frequency point (directly opposite the middle of the gap) has coordinates (0,−iA), where
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Figure 3.10: Steps in the fitting procedure. (a) Fit (red line) of raw x and y-data (blue points) to
a circle. (b) Fit of experimental dθ/dω (blue points) to the theoretical expression (3.3.9) (red line).
(c) Background point (magenta cross) is opposite the resonant frequency point (magenta circle) on
the re-centered circle.

A = 2R is the peak amplitude. The effect of the background is to shift the circle to other locations

in the xy-plane and rotate it from its zero-background position. The frequency-varying background

can also smear out the end segments of the circle trace closest to the gap. When the resonance is

nonlinear, a part of the circle appears missing as the sharp drop from one stable state to the other

corresponds to a ”cut” through the circle.

Raw data is fitted to a circle with radius, R, and center point, (x0, y0), as parameters (see Matlab

function circfit.m in Appendix C and Figure 3.10(a)). The fit works less well for the extreme cases

of nonlinear resonance data (when part of the circle is absent) and of fast-varying background (when

a large part of the circle is smeared away). The peak amplitude is the diameter of the fitted circle.

The apparent value of Q is strongly dependent on the background and the guess for Q obtained

from full width at half-maximum of raw power signal is not accurate enough to be used for the

full 8-parameter fit. To obtain much more accurate ω0 and Q values, we fit the background-free

experimental values of dθ(ω)/dω to the theoretical function. Here, θ is the phase measured from

the center of the circle. The value of dθ(ω)/dω is background-free, since we do not need to know

the background amplitude when considering the phase and we do not need to know the background

phase offset when considering the derivative of the phase with respect to frequency. Experimentally,

∆θ/∆f can be derived by projecting experimental points onto a tangent to the circle and estimating



53

∆θ as the projected distance between them divided by the circle radius. This gives

∆θ

∆f
=

(xi − x0)(yi+1 − yi−1)− (yi − y0)(xi+1 − xi−1)
2∆f/R2

, (3.3.6)

where ∆f is the frequency difference between two adjacent data points.

Theoretically, dθ(ω)/dω can be derived from the Lorentzian with no background (3.3.4) as follows:

The phase angle φ(ω) = arctan(Im[a(ω)]/Re[a(ω)]) is measured from the background point (the

origin for no-background Lorentzian (3.3.4)) and the x-axis. We don’t know exactly where this

background point is for the experimental data, so we will look instead at the phase angle, θ, measured

from the center of the circle, (x0, y0). From simple geometrical considerations, θ = 2φ, so that

θ = 2arctan
(

Im[a(ω)]
Re[a(ω)]

)
= 2 arctan

(
− ωω0

Q(ω2
0 − ω2)

)
. (3.3.7)

The derivative with respect to frequency ω is

dθ

dω
= − 2Qω0(ω2

0 + ω2)
ω2ω2

0 + Q2(ω2 − ω2
0)2

. (3.3.8)

Substituting γ = ω0/Q as in equation (3.3.1) and using the fact that ω is the same order as ω0 to

make an approximation ω + ω0 ≈ 2ω and ω2 + ω2
0 ≈ 2ω2, we can simplify the expression (3.3.8) to

dθ

dω
= − 4γ

γ2 + 4(ω − ω0)2
. (3.3.9)

This expression, in the form of dθ(ω)/df , is used in fitdtheta.m to fit the experimental values

of ∆θ/∆f (Figure 3.10(b)) and extract the values for f0 and Q from these fits. The estimates for

constant background values, (C0)x and (C0)y, are obtained from the point opposite the resonance

frequency point on the circle (Figure 3.10(c)). The initial guess for the slope of the frequency-

varying background is usually zero. The extracted parameters are then used as initial guesses in the

eight-parameter fit to the Lorentzian function (3.3.5) to obtain the accurate values for amplitude,
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Figure 3.11: Example of the fits (white line) obtained with the fitting procedure applied to piezoresis-
tively detected tenth-mode resonance data (black points) of a doubly-clamped beam for x-quadrature
(a), y-quadrature (b), amplitude (c), and phase (d).

resonance frequency, quality factor, and background (fullresfit.m and Figure 3.11).

Appendix C lists the Matlab code that implements the fitting procedure described above. The

code was successfully tested on the resonant data obtained through different transduction schemes

and in different setups. Several options are included in the program to allow for various manual

tweaking of parameters when the experimental data is very noisy or incomplete.
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Chapter 4

Exploring Nonlinear Dynamics
with NEMS

In Nature’s infinite book of secrecy
A little I can read.

Anthony and Cleopatra
William Shakespeare

This chapter describes the experimental studies of nonlinear dynamics performed with nonlinear

NEMS resonators. It presents the mapping of the basins of attraction of a nonlinear resonator in its

bistable state. I also discuss our studies of the observed transitions between the two stable states

of the resonator induced by the environmental and artificially added noise. Since nonlinear regime

is readily accessible in nanoscale devices, the details of their dynamical behavior are not only easy

and exciting to study, but their understanding is important for proper engineering and analysis of

nanoscale systems. Ideas for potential applications of resonators operating in nonlinear regime for

enhancing the sensitivity of experimental measurements are presented at the end of the chapter.

4.1 Basins of attraction1

As discussed in Chapter 2, when a system is driven strongly, the Duffing nonlinearity causes the

resonance response curve to become asymmetric. The resonance is pulled either to the right for

positive, also known as hardening, nonlinearity (e.g., geometric nonlinearity [74], Figure 4.1(b)) or

1The work in this section has been done together with Henk Postma, Ali Husain, and Oleg Kogan and will be
submitted for publication [67].
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to the left for negative, or softening, nonlinearity (e.g., nonlinearities of material [12], capacitive,

or inertial [5] origins). When the resonance is pulled far enough to one side, hysteretic behavior is

observed as two stable states appear in the system [73]. The stable states, known as ”attractors” or

”fixed points”, correspond to the points in state space to which trajectories originating from initial

conditions tend with time. For each attractor, a set of initial states that dynamically evolves to that

attractor forms its basin of attraction, which is separated from the rest of the state space by the

separatrix curve.

There have been very few experimental studies of basins of attraction because following the

evolution of initial conditions in low-frequency macroscopic systems is very time consuming and

system parameters tend to drift over the course of many data-taking runs. The previous mappings

of basins of attraction [31, 114] used the method of stochastic interrogation, where the system is

stochastically perturbed and initial states are sampled at random without fully covering the basins.

This section describes a well-controlled experiment that systematically probes the basins of at-

traction of two fixed points of a nonlinear, Duffing-type nanomechanical resonator and maps them

out with high resolution. Our experiment benefits from the fact that the relevant time scale per data

point, ∼ Q/f0, is very short for high-frequency nanoscale devices, which allows us to take many data

points before the parameters of the system drift too much. We also observe the separatrix change

shape for varying drive strength, so that one of the basins becomes progressively smaller and even-

tually disappears. The mapped basins of attraction show a good agreement with theory. However,

the observed separatrix is blurred due to ambient fluctuations, including residual noise in the drive

system, which cause uncertainty in the preparation of an initial state close to the separatrix.

The device used for mapping the basins of attraction, a doubly-clamped platinum nanowire, is

shown in the scanning electron microscope (SEM) photograph in Figure 4.1(a). The nanowire, with

a length, L, of 2.25µm and a diameter of 35nm, is grown by electrodeposition of platinum into a

nanoporous membrane [82]. Gold contact pads on both ends and a gate are fabricated using electron

beam lithography, and about 150 nm of the substrate is subsequently etched away to suspend the

device [56]. We actuate and detect the vibration of the nanowire magnetomotively [26] in a magnetic
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Figure 4.1: (a) Experimental layout. The initial drive prepares an initial state of the platinum
nanowire resonator (shown in the SEM photo), a 5ns RF switch is then flipped to connect to the
final drive, and the state of the device is measured by a lock-in amplifier after mixing down to a low
(1kHz) frequency and filtering the residual RF signal. (b) Vibration amplitude versus frequency,
for various driving powers at the sample (-90, -85, -80, -75, -70dBm, or normalized to the critical
drive, Vc=28.4µV, V/Vc = 0.249, 0.443, 0.788, 1.401, 2.492) showing the onset of nonlinearity in the
platinum nanowire resonator. We plot the response normalized to the critical amplitude ac versus
normalized detuning frequency, σ ≡ 2Q(f/f0 − 1). The backbone curve (dashed line) connects the
maxima of the resonance curves and follows (ap/ac)2 =

√
3σ/2. (c) The state of the nanowire

resonator is first prepared in an initial state on the initial response curve (grey) by choosing an
appropriate drive strength for the fixed detuning frequency, σd = 4.26. After the RF switch is
flipped to connect the final drive, the response curve changes to the one shown in black and the
initial state evolves to either the high-amplitude state or low-amplitude state. The small bias voltage,
applied to the nanowire together with the final drive, is chosen so that the hysteresis loop of the
initial curve is at higher frequency than the operating frequency.
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field, B = 8T, in a cooled probe in vacuum. The magnetic field is applied perpendicular to the device

so that the vibration is in the plane of the gate electrode. At low driving powers the resonance curve

is linear, and we extract a resonant frequency of 45.35MHz and a mechanical quality factor of 6045.

The resonant frequency is higher than the expected 17.71MHz for this device geometry, most likely

due to differential thermal contraction between the silicon wafer and the gold contacts that results

in residual tension. The ratio of electromechanical impedance, Rem, to electrical impedance, Re, is

0.222, which indicates the presence of significant eddy current damping [100]. The quality factor

corrected for the eddy current damping is Q0 = Q/(1−Rem/Re) = 7770.

The resonance response of the nanowire to different drives is shown in Figure 4.1(b). With

increasing drive power, the resonance is pulled to higher frequencies at large amplitudes, ultimately

forming a hysteretic region. The nonlinearity of the device is fully characterized by the critical

amplitude ac, the point where the resonance curve develops infinite slope, da/df(a = ac) = −∞.

The theoretical curves (thin solid lines) in Figure 4.1(b) are generated using the critical amplitude,

ac, as the only fitting parameter. We determine ac by fitting the backbone curve that connects the

peaks of resonant curves for different drives to the theoretical expression (ap/ac)
2 =

√
3σ/2 [85],

where σ ≡ 2Q(f/f0 − 1) is the detuning frequency scaled by the width of the resonance and ap is

the peak amplitude. The measured value ac = 2.684nm is in reasonable agreement with the value

calculated for our nanowire geometry [92] when the round-trip loss in the experimental circuit is

taken into account.

The dominant source of nonlinearity in doubly-clamped NEMS resonators is the additional ten-

sion in the beam that appears when vibrations are sufficiently large. This extra tension gives rise to

a cubic nonlinearity in the spring constant term in the equation of motion [92], giving it a Duffing

oscillator form:

ẍ +
ω0

Q
ẋ + ω2

0(x + αx3) = F cos(Ωt). (4.1.1)

Here, x(t) is the displacement of the beam, ω0 = 2πf0 is the resonance frequency, α = 8
√

3/(9a2
cQ)

is the nonlinearity parameter [85], Ω = 2πf = (σ/(2Q) + 1)ω0 is the driving frequency, and F is

the force per unit mass acting on the resonator of mass m. The driving force in the magnetomotive
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transduction scheme is the Lorentz force that acts on the nanowire when a current Id(t) is passed

through it in a magnetic field, F = LBId(t)/m.

4.1.1 Theoretical analysis

In order to calculate the location of the fixed points and the separatrix in state space, we will

obtain the time-dependent solution x(t) that describes the response of the nonlinear system to a

disturbance. In our devices, we can separate the dynamics described by the equation of motion

(4.1.1) into two parts: the fast dynamics on time scale of 1/ω0, corresponding to the fast oscillations

of the undamped harmonic version of the system; and the slow dynamics on a much longer time

scale, Q/ω0, associated with a slight detuning, σ, of the driving frequency from resonance as well

as damping and nonlinearity (method of multiple scales [85]). Then the solution to the equation

of motion (4.1.1) can be written as x0(t, T ) = A(T )eiω0t + Ā(T )e−iω0t, where the slowly varying

amplitude A(T ) = (X(T ) + iY (T )) exp(iω0σ/2T ) obeys the envelope equations:

dX

dT
= −ω0X

2
+

σω0

2
Y − 3α′ω0

2
(X2 + Y 2)Y (4.1.2)

dY

dT
= −ω0Y

2
− σω0

2
X +

3α′ω0

2
(X2 + Y 2)X − F ′

4ω0
.

We have assumed here that 1/Q ¿ 1, and the slowly-varying amplitude approximation implies that

Ä(t) terms are negligible compared to Ȧ terms.

The slowly-varying amplitude equations describe the nonlinear dynamics of the system and allow

us to determine the location of two attracting fixed points and one metastable saddle point in state

space for different values of parameters F and σ, which can be extracted from the experimental data.

A set of points in state space that evolve into the saddle point defines the separatrix. To calculate

the separatrix, we evolve the initial conditions, lying close to this fixed point and along the negative-

eigenvalue eigenvector (which is obtained by linearizing the above equations around the saddle

fixed point), backwards in time according to full equations (4.1.2). The curves generated by this

procedure constitute the separatrix. To compare these theoretical calculations to the experimental
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data in Figure 4.2, we scale computed amplitudes by the calculated value of the critical amplitude,

ac.

4.1.2 Experimental technique and results

As illustrated in Figure 4.1(a), we prepare the system by exciting it with an initial drive power, Vi,

and then switching to a final drive power, Vf . Two RF sources (HP 8648B for initial and SR DS345

for final drive) are tuned to the same fixed frequency off resonance, σd = 4.26, and their internal

clocks are synchronized to a 10 MHz clock reference. The phase of the final drive lags behind the

initial drive phase by the phase difference, φ. By changing the phase difference, φ, while holding the

initial drive power, Vi, constant, we can prepare the resonator in the initial states corresponding to

a circle in state space. By also stepping the initial drive values, Vi, we can cover a disk of initial

states in state space. We switch from the initial to final drive using a 5ns (< 1/f0 ∼22ns) RF

switch (Mini-Circuits ZASWA-2-50DR). After the switch occurs, we measure the final amplitude of

the oscillator and mark it as a low or a high final amplitude. In order to access a continuum of

initial states, we apply a small DC bias voltage of Vdc ≈ 10mV to the wire in the final state. The

capacitive interaction with the gate lowers the resonant frequency of the final state [66] so that the

hysteretic frequency response of the final state occurs at the same frequency as the single-valued

resonant response of the initial state (Figure 4.1(c)). Without this technique, an annulus of states

in state space, corresponding to the unstable branch of the initial drive resonance curve, would not

be accessible.

To map the basins of attraction is this manner, the initial states were driven with −90 to −50dBm

in 60 concentric circles with 60 phase points per circle, corresponding to a displacement range of 0

to 2.477ac. Each of the initial states was marked according to the attractor that it evolved to after

the switch was flipped: blue for the high-amplitude state and yellow for the low-amplitude state.

This data was re-rastered, using the nearest neighbor search algorithm to create a continuous color

plot shown in Figure 4.2.

For very low final drives, there is only one state the resonator can be in (refer to Figure 4.1(b)).
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Figure 4.2: Basins of attraction of a nanowire resonator at a fixed frequency, σd = 4.26, for
increasing final drive values, Vf/Vc = (1)1.867, (2)2.049, (3)2.237, (4)2.434, (5)2.640, (6)2.741. Blue
and yellow colors indicate the final high- and low-amplitude states, respectively. The data consists
of 60 concentric circles with 60 points each, corresponding to a displacement range of 0 to 2.477ac.
This data is converted into a continuous plot using the nearest neighbor search algorithm to fill
out the space between data points. Theoretical fixed points, saddle point, and separatrix curve are
indicated by black points, black cross, and the dashed black curve respectively.
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As the final drive starts exciting a nonlinear response, a second basin of high-amplitude stable state

appears, but occupies a smaller fraction of the state space (Figure 4.2(1)). When the final drive power

is increased, the high-amplitude basins grows, and the low-amplitude basin gets progressively smaller

and eventually disappears (Figure 4.2(6)). We can see the disappearance of the low-amplitude state

in Figure 4.1(b): a large final drive results in a wider hysteresis region that moves to the right, where

the low amplitude branch starts at σ > σd, and so only the high-amplitude state is available to the

system operating at σd. The black points in Figure 4.2 are the theoretical fixed points, the black

cross is the saddle point, and the dashed black curve corresponds to the theoretical calculation of the

separatrix for the experimental parameters used: σd = 4.26, (a/ac)max = 2.477, and the first five

final drive values scaled by critical drive, Vf/Vc, listed in the caption. We observe good agreement

of experimental data and theoretical calculations for the basins of attraction.

The agreement with theory is best deep inside each basin, far away from the separatrix. Near

the separatrix, however, we observe a stochastic variation in the final state. We believe that this

blurring of the experimentally observed separatrix is due to ambient fluctuations, most of which are

due to voltage noise of about 5µV/
√

Hz in the drive circuit 2.

The experimental mapping of basins of attraction of a nanowire mechanical resonator presented

here fills a large gap in our understanding of nonlinear dynamics of nanoscale systems. It was

recently shown that precision of some experimental measurements on nanoscale can be improved by

deliberately operating the system in nonlinear regime. For example, a nonlinear resonator can be

employed to suppress amplifier noise in an oscillator circuit [120], noise-induced switching between

two stable states in a nonlinear beam resonator enables precision measurement of the resonant

frequency [2], and the sensitivity of a resonator for mass detection is greatly improved when the

resonator is driven into a region of nonlinear oscillations [18]. Finally, in a Josephson junction,

which is dynamically similar to a mechanical resonator in nonlinear regime, the bistable state of
2The blurring of the separatrix, δa/ac is about 0.1, which translates to fluctuations of δV≈2.8µV for the measured

critical drive, Vc=28.4µV. The relevant noise bandwidth for this resonator is πf0/Q=23.6kHz. The noise spectrum
that would account for the 10% fluctuation is then 18.2nV/

√
Hz. The residual voltage noise from the initial-drive

function generator and the rest of the drive circuit of about 5µV/
√

Hz is attenuated by 50.8dBm by the switch and
additional attenuators (not shown), and results in the voltage noise of 14.4nV/

√
Hz at the sample. The drive-circuit

noise accounts for most, but not all of the observed fluctuations near the separatrix.
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the nonlinear system can be used as a bifurcation amplifier to perform a non-dissipative, low-back-

action measurement of the phase across the junction [102]. When nanomechanical devices reach

the quantum-limited regime [72], a nanomechanical version of such an amplifier could be used for

a similar sensitive low-back-action measurement of the state of a quantum mechanical resonator.

The knowledge of basin dynamics should prove useful for such precision measurement applications,

especially for engineering a nanomechanical bifurcation amplifier.

4.2 Noise-induced transitions3

In addition to blurring of basins of attraction near the separatrix, we also observed the same noise-

induced switching between two stable states as did References [2] and [105], where ambient noise has

an effect of shrinking the size of the hysteresis loop and inducing transitions of a resonator from one

state to the other near bifurcation points. By adding noise to the resonator drive and recording the

statistics of the time it takes for the system to switch when it’s near a bifurcation point, we found

that the transition rate varies as exp(−Ea/ν), where ν = kBTeff is the noise power and Ea is the

height of the energy barrier that the system needs to overcome for the transition to happen. The

energy barrier depends on the distance to the bifurcation point, Vb: Ea ∼ (V − Vb)δ. We measured

the critical exponent, δ, to be 1.8± 0.3, which agrees well with the established value of 3/2 [71, 35].

This section describes the details of experimental techniques and data analysis.

Measurement of transitions induced by noise in the bistable regime of a nanoscale resonator

could give rise to a sensitive experimental technique to detect ambient noise. Adding noise during

a specially engineered frequency sweep and inducing appropriate switching could also be used to

prepare a resonator in an initial state located on the metastable branch of a nonlinear resonance

curve without using the gate [64].

3The work in this section has been done together with Henk Postma, Ali Husain, and Oleg Kogan.
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4.2.1 Theoretical results

Fluctuation-induced transitions between two stable states of a system have been thoroughly studied

theoretically. For a system in thermal equilibrium, the escape rate from a metastable state can

be determined from the height of free-energy barrier [69]. The barrier decreases as the control

parameter, η, approaches a bifurcation point,ηc, and the barrier height scales as (η − ηc)δ, where

the critical exponent, δ, has been shown to be 3/2 [71]. Non-equilibrium systems, such as driven

nanomechanical resonators, cannot be characterized by free energy, but transitions between stable

states can still be described by an effective energy barrier. Without an assumption of the energy

barrier, the analysis of the dynamics of a bistable system near the bifurcation point gives a critical

exponent δ = 3/2 for relatively large detuning from the resonant frequency and δ = 2 for the

operation close to the critical point [35].

Numerical simulations show that the critical exponent, δ = 3/2, characterizes also the transitions

further away from the bifurcation points, except for the case of very large detuning and hysteresis

(σ > 10), where the critical exponent further away from the bifurcation point is 1 and the behavior

is no longer exponential very far from it. This exception applies only to transitions from high- to

low-amplitude state [65]. The detuning of this magnitude have not yet been explored experimentally.

In addition to our experimental studies of noise-induced switching in a platinum nanowire me-

chanical resonator, this phenomenon has been explored in two-mode lasers [94], silicon nitride

nanomechanical resonators [2], micromechanical torsional resonators [105], and Josephson junctions

[101], as well as in parametrically driven systems (e.g., micromechanical torsional parametric res-

onators [22] and electron in a Penning trap [75]).

4.2.2 Waiting time measurements

There are two ways to gather the noise-induced transition statistics: we can either prepare the

system in one state and record the time we have to wait until the transition occurs, or we can

sweep drive frequency or amplitude through the bifurcation point and record where the transition

happened. A histogram of transitions occurring in a specified time contains the same information
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Figure 4.3: (a) Hysteretic response to sweeping drive amplitude corresponding to a theoretical curve
in Figure 2.1(b). (b) Histograms of transitions occurring during drive sweeps for both bifurcation
points. The drive at the histogram peak corresponds to the bifurcation drive, Vb. The histogram
heights are given as a percentage of the total number of performed sweeps. (c) A histogram of
times the system took to spontaneously switch from the prepared low-amplitude state to the high-
amplitude stable state, for the right bifurcation point. No additional noise is added to the system.
Switching probability is normalized to the total of 256 recorded events.

as a histogram of the number of transitions that occur at different drive points during the sweep if

the sweep rate is known.

I will first describe the waiting time measurements that we have performed on the platinum

nanowire when we first noticed the spontaneous switching of the system from one state to another

near bifurcation points. To explore the dynamics in the hysteretic regime, we excite the resonator

at a fixed frequency and change the drive amplitude. We chose to work with the hysteresis in

drive amplitude instead of drive frequency in order to avoid phase slips that could occur during

frequency stepping with the particular generators that we used. The response to changing drive at

various frequency detuning from resonance, σ, is illustrated schematically in Figure 2.1(b). Figure

4.3(a) shows an experimental hysteretic response to changing drive amplitude. Since magnetomotive

detection allows us to measure the decrease in impedance on resonance, the raw signal is a resonant

dip rather than a peak. Therefore, the experimentally measured lower amplitudes correspond to

theoretical high-amplitude branch and vice versa. The proper subtraction of background will make

the response look as expected, so we will label the states according to amplitudes in Figure 2.1(b).

The resonator is prepared in the low-amplitude state by driving it with such a low amplitude

that its response falls before the onset of hysteresis and is single-valued. Analogously, the resonator

is prepared in the high-amplitude state by driving it so strongly that its response is beyond the
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Figure 4.4: Experimental setup to measure the effect of added noise on the transition rate between
two stable states of the nanowire resonator.

hysteretic region and can only have high amplitude. The location of the bifurcation point is deter-

mined by sweeping the drive and collecting the histograms of where the transition occurred (Figure

4.3(b)) – the peak of the sweep histogram is assumed to correspond to the bifurcation point. After

the resonator is prepared in the low-amplitude state, the drive is increased to operate the system

slightly before the (right) bifurcation point, where transitions from low- to high-amplitude branch

happen. We then record the time that the system takes to switch to the high-amplitude state. The

high- to low-amplitude transitions are measured in a similar way, decreasing the drive after initial

state preparation. The histograms of switching times at different values of the drive are shown in

Figure 4.3(c) for the right bifurcation point (low-to-high amplitude transition). These were observed

without any additional noise added to the system and are most likely due to the residual noise in

the drive circuit, since the thermal noise in a liquid-helium cooled probe is much less (see Section

4.2.4).

To verify that it is indeed ambient noise that causes the system to switch from one stable state

to another, we add white noise (generated by the arbitrary waveform generator Agilent 33250A) to

the drive (generated by the function generator HP8648B). The schematic of the setup is shown in

Figure 4.4. The noise powers, ν, listed in the caption, were chosen to be much higher than thermal

noise and any residual drive noise. We can then consider the generated noise to be the prevalent

noise in the system setting the switching rates. The reference, generated by sending the signal

from the synchronized source SR DS34 at ωdrive/2 through the frequency doubler, is mixed with
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Figure 4.5: (a) Switching probability dependence on waiting times for different pow-
ers of added noise. The arrow indicates the direction of increasing noise powers:
0.115, 0.121, 0.127, 0.133, 0.140Vrms. (b) Transition rate from the high- to low-amplitude state (plot-
ted on the log scale) as a function of inverse added noise power, ν, for different drive detuning from
the bifurcation point. Slopes of linear fits give heights of the effective energy barriers. (c) The height
of the effective energy barrier, Ea, as a function of how far from the bifurcation point, Vb, the system
operates (i.e., parameter V −Vb). Both variables are plotted on the log scale, so that the slope of the
linear fit (red line) gives the critical exponent in the dependence of the energy barrier on proximity
to the bifurcation point: Ea ∼ (V − Vb)δ. The critical exponent was found to be 1.8± 0.3.

drive to DC, so that the output low- or high-amplitude signal is detected by the digital multimeter

Agilent 34401A. The operating frequency is fixed at 45.414MHz. The resonator is prepared in a

high-amplitude state, then the drive amplitude is decreased to −73.25dBm at the sample to be close

to the (left) bifurcation point, Vb, where the transitions from high- to low-amplitude state occur.

The maximum time that we wait for the switch to occur is limited to 10 seconds. The waiting times

are tabulated in a histogram similar to those shown in Figure 4.3(b).

For every noise power, we can integrate the histogram data, h(t), to obtain switching probability

in an elapsed time period:

P (t) =
∫ t

0

h(t′)dt′. (4.2.1)

The switching probability is plotted in Figure 4.5(a) as a function of elapsed time for different noise

powers increasing in the direction of the arrow. The probability, P (t), of switching depends on the

transition rate, Γ, as [71, 48]

P (t) = 1− exp
(
−

∫ t

0

Γdt′
)

= 1− exp(−Γt). (4.2.2)

The solid curves in Figure 4.5(a) are the fits to this exponential function that allow us to extract
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the transition rate Γ for every noise power. We can also plot the probability of remaining in the

original state up to time t, 1 − P (t), versus waiting time, t, on the log scale and extract the rate

from the slopes of straight-line fits. Alternatively, we take the derivative of P (t) in both (4.2.1) and

(4.2.2) and then the transition rate, Γ, can be calculated directly from the histogram, h(t), as

Γ(t) =
h(t)

1− P (t)
=

h(t)

1− ∫ t

0
h(t′)dt′

. (4.2.3)

The procedure to determine transition rates for the five noise powers was repeated for seven dif-

ferent drive amplitudes: −73.00,−73.05,−73.10,−73.15,−73.20,−73.25,−73.30dBm, moving closer

to the bifurcation point, Vb = −73.95dBm. Theoretical analysis of the dynamics [35] gives the expo-

nential dependence of the transition rate, Γ, at a particular driving frequency on noise intensity, ν,

and the activation barrier height, Ea, that the system has to overcome for the switch to take place:

Γ = Γ0 exp
(
−Ea

ν

)
, (4.2.4)

where ∆V = V − Vb is the difference between the applied drive, V , and the drive value, Vb, at the

bifurcation point. The transition rate, Γ, is plotted on a logarithmic scale versus inverse of the added

noise power, 1/ν, in Hz/V2, for different drive values in Figure 4.5(b). We can conclude from the

straight line fits that ln(Γ) ∝ −1/ν as expected, and the slopes give the activation barrier heights,

Ea, for different distances to the bifurcation point.

The effective activation barrier, Ea, decreases the system approaches the bifurcation point, Vb.

The barrier height scales as (V −Vb)δ. By plotting Ea as a function of the distance to the bifurcation

point ∆V = V − Vb on a log-log scale, we can determine the critical exponent δ from the slope of

the linear fit to be 1.8± 0.3. This value agrees with the theoretical prediction of 3/2 [71, 35].

The main disadvantage of the waiting-time method is that waiting for a switch to occur can

take a lot of time and performing the experiment can take arbitrarily long. During such long waits,

the system parameters could drift and change the state of the system. To limit the time it takes

to perform these experiments, we usually set the maximum time we waited for the switch. This
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Figure 4.6: (a) Experimental setup to collect the statistics of noise-induced transitions by using
amplitude-modulated signal to sweep through both bifurcation points. (b) Oscilloscope signal with
both low- to high-amplitude transition, when the drive is swept up, and high- to low-amplitude
transition, when the drive is swept down. As above, the magnetomotive detection scheme results
in a dip on resonance, so that we measure a higher amplitude for the actual low-amplitude state,
but label the states as would be seen for a resonant peak (obtained after the proper background
subtraction). (c) (Inset) Sum of all the delta functions for the low- to high-amplitude state transition
forms a histogram, h(V ). The drive is swept up at 111Hz. (Main panel) Drive values at which
most transitions occur (histogram peaks) shift towards the bifurcation point, Vb, as the sweep rate
(frequency, fAM , of the modulation signal) is increased. Vb can be inferred from the saturation drive
value approached at large sweep rates.

technique throws away data at one end of the obtained histograms, somewhat distorts the shape

of the switching probability function, and might result in inaccurate values of critical exponent

extracted from the experimental data.

4.2.3 Sweep measurements

An alternative method is to collect the statistics of state switches by sweeping the drive amplitude

through the bifurcation point and recording the drive values at which the transitions happen. An

elegant way to do so very fast is to modulate the driving signal by a low-frequency sawtooth-shaped

signal. By choosing the amplitude of the modulation signal appropriately, we can sweep through
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both bifurcation points in one period of modulation making sure to cover the drives low and high

enough so that the we prepare the system in either low- or high-amplitude state before recording

a switch. This technique highly facilitates and speeds up the collection of noise-induced transition

histograms. Figure 4.6(a) illustrates the experimental setup that realizes the amplitude-modulation

technique. The low-frequency triangle-shaped modulation signal is produced by function generator

HP3325A and sent into amplitude modulation input of the drive generator HP8648B. The signal

from the device is amplified by a cryogenic amplifier and mixed down to DC. The SR650 filter is then

used to subtract the triangle-shaped modulation signal from the device signal in order to minimize

the background. The final signal is measured by oscilloscope Agilent 54625A triggering on the edge

of the modulation signal.

The device used in the sweep measurement experiment was fabricated by Philip Feng, and con-

sisted of two suspended metalized silicon carbide beams 1.70µm and 1.74µm long, 150nm wide, and

80nm thick. The response of the beams was measured magnetomotively in the bridge configuration

[40], using variable attenuators and a voltage-controlled phase shifter to minimize the background for

each resonance. The resonant frequencies of the beams were 395MHz and 410MHz with Q∼ 2400

at 20K. In these experiments, the temperature of the device was stabilized for each run using a

thermometer, homemade heater, and Lake Shore 340 Temperature Controller.

An example of an oscilloscope trace that we obtained in the measurement is shown in Figure

4.6(b), where jumps at both bifurcation points are clearly visible. The time axis in the graph can

be converted to the drive values during the sweep since we know the amplitude and frequency of the

modulation signal. Taking a derivative of the entire trace in real time with the oscilloscope gives us

positive delta functions for low- to high-amplitude state switches and negative delta functions for

high- to low-amplitude switches. The curve shown in the inset to Figure 4.6(c) is a sum of all the

delta functions for the intrinsic low- to high-amplitude state transition. This curve, h(V ), together

with our knowledge of the sweep rate, dV/dt, contains all the necessary information to deduce the

transition rate, Γ, assuming that it does not depend on the drive voltage, V . The probability of



71

x200

ωdrive

Mod

RF

LODrive

50
 ΩΩ ΩΩ

CH1

CH2

CH0

15V

-60dBm

+24dB x500

Noise

ωdrive

RF

LO

D
at

a 
ac

qu
is

iti
on

 s
ys

te
m

Figure 4.7: Experimental setup to collect the statistics of noise-induced transitions by using
amplitude-modulated signal to sweep through both bifurcation points. Using the data acquisi-
tion system NI-DAQ 6.9.2 (National Instruments DAQ 6036E) instead of the oscilloscope allows for
processing the signal in real time before recording it. The two amplifiers right before the DAQ are
isolation amplifiers powered by batteries instead of external voltage.

switching to the other state up to drive value, V , is

P (V ) =
∫ V

0

h(V ′)dV ′. (4.2.5)

To find the transition rate from this probability, we can still use the equation (4.2.2), but we need

to change the variable of integration from t to V [48]:

P (V ) = 1− exp
(
−

∫ t

0

Γ(V )dt′
)

= 1− exp

(
−

∫ V

0

Γ(V )
dV ′/dt

dV ′
)

= 1− exp
(
− Γ

fAM
V

)
. (4.2.6)

Here,dV ′/dt is the drive sweep rate given by the frequency of the modulation signal, fAM . If we

plot 1 − P (V ) versus drive, V , on the log scale, the slope of straight-line fits will be −Γ/fAM .

Alternatively, we can take the derivative of P (V ) in both (4.2.5) and (4.2.6) with respect to V and

calculate Γ directly from the histogram h(V ) as

Γ(V ) =
h(V )

1− P (V )
fAM =

h(V )

1− ∫ V

0
h(V ′)dV ′

dV

dt
. (4.2.7)

When the sweep rate is slow, the system is very likely to switch before reaching the bifurcation
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point and the histogram will be peaked at some drive, V < Vb. As the sweep rate is increased, we

expect the system to have the most switches closer and closer to the bifurcation point and approach

it for fast sweep rates. This saturation with increasing modulation frequency is shown in Figure

4.6(c), where the value of the drive where most transitions occur (peaks of histograms, h(V )) is

plotted against fAM . Increasing the sweep rate, therefore, allows us to accurately determine the

drive value, Vb, at the bifurcation point, something we could not easily do for the waiting time

experiments.

Differentiating and recording traces with the oscilloscope as shown in Figure 4.6(a) introduces

a small distortion to delta function peaks due to the slight curvature of the response curve (Figure

2.1(b)) right before both bifurcation points. The derivative of such a curve is not a perfect delta

function as desired, but has an extra lobe on the steeper side, noticeable, for example, in the

histogram shown in the inset to Figure 4.6(c). A much better method would be to record the

maxima of the derivative peaks for the histogram, but this function cannot be performed by the

oscilloscope.

The setup for a better scheme for recording the peaks of the derivatives of a sweep trace is

shown in Figure 4.7. Here, the data acquisition board is used instead of an oscilloscope, allowing for

real-time unlimited processing of data using the DAQ software.

4.2.4 Noise analysis

The effective noise temperature associated with the intrinsic switching rates, when no extra noise is

added to the system, is estimated to be thousands of Kelvin. Since the experiment was conducted

in the dipper cooled by liquid helium, the temperature of the sample was 5-15K most of the time

so thermal noise cannot be the dominant noise inducing switching between the states. When the

temperature is stabilized, thermal noise lies well below any drive circuit noise. Spectral density

of displacement noise on resonance for a doubly-clamped nanomechanical resonator with resonant
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frequency, ω0, and mass, m, at temperature, T , is given by

Sx =
4kBTQ

mω3
. (4.2.8)

In terms of force noise, x=QF/k,

SF =
4kBmω0T

Q
. (4.2.9)

The driving force in the magnetomotive transduction scheme is the Lorentz force that acts on the

nanowire when a current, Id, is passed through it in a magnetic field, F = LBId = LBV/R.

Thermomechanical noise of a nanomechanical resonator driven and detected magnetomotively can

then be expressed in terms of spectral density of voltage noise:

SV =
4kBmω0TR2

QB2L2
. (4.2.10)

For dimensions and parameters of the platinum nanowire given in the previous section, thermome-

chanical noise of the platinum nanowire resonator at 10 K is calculated to be
√

SV = 0.89nV/
√

Hz.

Even a 50Ω resistor at room temperature on the drive side will dominate the noise that could induce

the transitions between the states, since its thermomechanical noise floor is
√

4kBTR = 1nV/
√

Hz.

The measured noise from the function generator HP8648B supplying the drive for the platinum

nanowire resonator is about 1µV/
√

Hz at the source for the drive values used, which translates to

about 3 nV/
√

Hz at the sample after 50.8dBm attenuation in the drive line. This noise is dominant

in the magnetomotive scheme and is most likely responsible for the intrinsic switching between two

stable states in studied platinum nanowire and silicon carbide resonators.

Intrinsic transitions induced by thermomechanical noise have not yet been observed in nanome-

chanical resonators, but it should be straightforward to do using a room-temperature driving and

detection technique, such as thermoelastic driving coupled with piezoresistive detection.
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4.3 Ideas for future experiments

This section presents some ideas for applications that can be developed on the basis of the studies

presented above. Understanding nonlinear dynamics paves the road to using nanoresonators in the

bistable regime as bifurcation amplifiers, as well as offers a sensitive way to detect the transition

to quantum regime using noise properties of nonlinear NEMS resonators. Mapping of the basins of

attraction can be extended to coupled resonators in an effort to broaden our knowledge of nonlinear

dynamics of interacting systems.

4.3.1 Bifurcation amplifier

A bifurcation amplifier is based on the switching of a driven nonlinear resonator between two stable

states. If a nanomechanical Duffing resonator is driven at a fixed frequency, σd, in the nonlinear

regime, the probability of switching depends on the the amplitude of the drive (refer to Figure

4.1(b)). The drive magnitude determines the shape of the response curve: larger drive results in a

larger hysteresis and a larger distance between two states. While keeping the frequency of the drive

constant, we can change the drive amplitude in such a way that the system goes from the response

curve where only low-amplitude branch is available to it at the operating frequency, to the response

curve where only high-amplitude branch is available to it. As we change the drive amplitude, Vf/Vc,

the fixed point and the separatrix delineating the basins of attraction are modified as shown in

Figure 4.2. If a small incoming signal periodically modulates the drive amplitude moving the fixed

points back and forth, the nonlinear resonator will respond with a periodic signal whose peak-to-

peak amplitude is equal to the distance between low-amplitude and high-amplitude branches. This

scheme constitutes a bifurcation amplifier. Analogously, it can be implemented for a fixed drive

amplitude and an incoming signal modulating the operating frequency (refer to Figure 2.1(b)).

As mentioned earlier, a bifurcation amplifier has been implemented in a Josephson junction to

perform a non-dissipative, low-back-action measurement of the phase across the junction [102, 101].

In this case, the incoming phase signal was modulating the critical current across the nonlinear

Josephson junction, but the dynamics of the amplification process were identical to what I described
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above.

It is important to note that the gain of such an amplifier is binary and limited by the distance

between low- and high-response amplitudes of the nonlinear resonator in the bistable regime, which

is a few nanometers at best in nanomechanical resonators. It is probably impractical to use this

amplifier only for the gain. In the context of quantum-limited detection, however, we can hope

to benefit from the non-dissipative, low-back-action nature of the amplification exploited in the

Josephson junction amplifier and use it to perform a similar sensitive measurement of the state of a

quantum mechanical resonator.

Another complication is the intrinsic noise-induced transitions that occur in the bistable regime

close to bifurcation points. The small signal to be amplified has to be larger than the portion of the

hysteresis region susceptible to these noise transitions. For very small signals, amplification will not

be reliable.

4.3.2 Basins of attraction of coupled resonators

While dynamics of a single Duffing-type nonlinear resonator are fairly well understood, dynamics of

two or more coupled resonators can be much more complex and have not been explored in detail.

We can either study several coupled single-degree-of-freedom resonators fabricated together or two

(or more) degrees of freedom in a single resonator (e.g., its in-plane and out-of-plane modes or

multiple flexural modes as discussed in the next chapter). The advantage of fabricating two (or

more) resonators separately is the freedom to design the coupling between them.

An example response for a two-degrees-of-freedom Duffing resonator system found in literature

[115, 68] is shown in Figure 5.6, and the bifurcation diagrams were shown to get very convoluted as

the driving force increases. It would be interesting to map out the basins of attractions of coupled

NEMS and explore changes in the basin boundaries as the coupling between resonators is increased.

These studies would fill in the gap in the literature concerning basin of attraction dynamics in

interacting systems and once again show usefulness of nanomechanical resonators for fundamental

studies of nonlinear dynamics.
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4.3.3 Noise-induced transitions in a quantum nonlinear resonator

When a nanoresonator is cooled to mK temperature in an effort to see quantum effects [72], quantum

fluctuations become the dominant source of noise. The spectral density of the displacement noise is

no longer given by equation (2.3.11), but by [50]

Sx = 2~ω0 coth
(
~ω0

2kBT

)
Q

mω3
0

. (4.3.1)

In a comment on our dynamic range paper [92], Stampfer et al. pointed out that the floor for the

dynamic range of nanomechanical resonators under 100nm in length at 100mK is set by quantum

fluctuations, rather than thermal noise [106]. If such resonator is driven into nonlinear regime [62]

(which is possible, say, for a 1µm long nanotube, 10nm in diameter with a resonance frequency of

about 1GHz) and we find a way to isolate the device from the instrument noise, the dominant noise

that would induce transitions between two stable states is due to quantum fluctuations. Moreover,

the transitions in such system will happen via quantum tunneling, rather than thermal escape.

In order to demonstrate this effect experimentally, measurements of noise-induced transitions

in the bistable state of the resonator can be carried out as described in the previous section. The

critical exponent, δ, that describes the dependence of the effective barrier height on the proximity

to the bifurcation point, is the parameter of interest. For classical systems, where the mechanism of

escape for a metastable state is thermal, δ = 3/2 almost universally. For quantum systems, where

the mechanism of escape is quantum tunneling and quantum fluctuations set the noise floor, the

critical exponent, δ, has been calculated to be 5/4 for systems with no damping [19, 20] and 1

for systems with high damping [76]. Therefore, by extracting the critical exponent from the noise-

induced transition rates, it is possible to determine the classical or quantum nature of the transitions

in a nanomechanical resonator.
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Chapter 5

Making Versatile Devices using
Nonlinear NEMS

The real and legitimate goal of the
sciences is the endowment of human life
with new inventions and riches.

Francis Bacon

Understanding the dynamics of NEMS resonators opens up possibilities for better devices for

sensor applications. For example, by operating the resonator at the onset of nonlinearity close

to the infinite negative slope, da/dω, at ac in Figure 2.4, the charge sensitivity can be increased

drastically, as suggested by Krömmer et al. [70]. It is also possible to use a nonlinear resonator as the

frequency stabilizing element in a feedback loop: the long term phase stability of an oscillator can be

improved considerably with this technique [49]. This chapter describes several other effects in NEMS

that promise to enhance versatility, performance, and sensitivity of NEMS sensors. They include

resonant frequency tuning, dynamic range enhancement, orthogonal mode coupling, and operation

of NEMS in higher vibrational modes. I present both experimental and theoretical investigations of

these effects. Ideas for future experiments based on the completed work conclude the chapter.
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5.1 Tuning frequency, nonlinearity, and dynamic range1

Sensing, imaging, and detection applications of NEMS require a large dynamic range, over which the

device responds linearly to the stimulus, as well as operation at desired and, preferably, adjustable

frequencies. However, we have shown [92] that as nanomechanical beam resonators become smaller,

their dynamic range decreases, making them less useful as linear sensors. The ability to tune

nonlinearity, and consequently dynamic range, allows us to overcome this limitation, which can be

especially pronounced in NEMS based upon high aspect ratio structures such as nanotubes and

nanowires. In addition, a controllable method of tuning provides a way to adjust resonant frequency

both for control applications such as phase locking, as well as to null inevitable, fabrication-induced

device variations.

In this section we demonstrate an electrostatic mechanism for tuning the nonlinearity in nanome-

chanical resonators. As a direct consequence, it becomes possible to increase their dynamic range.

In addition, we demonstrate an ability to tune the resonant frequency of resonators both upward

and downward and evaluate the electromechanical dissipation associated with different regimes of

frequency tuning. The results are described by a model that qualitatively agrees with the experiment

and can serve as a simple guide for design of tunable nanomechanical devices.
1The work in this section has been done with the help of Henk Postma and Igor Bargatin, and published in

Applied Physics Letters [66].
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α 
Figure 5.2: Variation of dynamic range and critical amplitude with the gate voltage. The inset
shows the observed decrease in effective nonlinearity, α, with the gate voltage.

The inset to Figure 5.1 shows the device used for the tuning measurements: a suspended metalized

SiC beam [117] 150nm wide, 100nm thick, and 15µm long is positioned 400nm away from a gate

electrode, to which a DC bias can be applied. Built-in strain in the multilayered structure yields

an intrinsic tension within the beam, raising the resonant frequency from the calculated 4.7MHz to

the observed 8.78MHz. From the model below, we calculate this residual tension to be 5.3µN. The

mechanical resonant characteristics of the beam were measured using the magnetomotive driving

and detection technique [25] in a 7T magnetic field. The beam’s resonant frequency was measured

to be 8.78MHz for the in-plane mode and 7.60MHz for the out-of-plane mode.

Figure 5.1 shows a typical resonant response of the beam, where the vibration is in the plane of the

gate and the gate is grounded. As the drive amplitude is increased, the response becomes nonlinear.

In such doubly-clamped beams, the origin of nonlinearity is the additional tension that appears when

the beam vibrates with sufficiently large amplitude. The nonlinearity can be characterized by the

critical response amplitude, ac, the point where the resonance curve develops infinite slope (onset

of hysteresis) [85, 92]. We determine ac from the ”backbone” curve (shown as solid red line in Fig

(5.1)) connecting peaks of resonant curves for different drives when the frequency is swept upward.

The electrostatic tuning setup, shown in the inset of Figure 5.1, allows us to tune both nonlin-

earity and the resonant frequency of the beam. Figure 5.2 shows that critical amplitude increases

with DC gate bias. In other words, as the gate voltage is increased, the onset of nonlinearity occurs
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at higher drives. This translates into a less nonlinear behavior and, consequently, into the increase

in the dynamic range of the device. Figure 5.2 shows the dynamic range growth with the gate

voltage, calculated from the measured critical amplitude values and the experimental noise floor of

1nV/
√

Hz. In general, the ultimate noise floor limit is set by thermomechanical noise and quantum

fluctuations.

The physical reason for the observed nonlinearity tuning is the appearance of even-order nonlin-

ear terms in the equation of motion. The effective nonlinearity of the system is α = α3−(10/9ω0)α2
2,

where α3 and α2 are cubic and quadratic nonlinear coefficients, respectively [85]. The cubic non-

linearity is primarily due to the elastic properties of the beam. The quadratic nonlinearity arises

when the symmetry of the beam’s displacement from its central axis is broken by the capacitive

attraction to the gate. DC bias voltage on the gate increases quadratic nonlinearity in the beam,

which decreases the overall nonlinearity and results in larger values for the critical amplitude. The

observed decrease in the effective nonlinearity, α, with the DC gate voltage is shown in the inset to

Figure 5.2. The possibility of such a nonlinearity tuning mechanism has been suggested by Younis

and Nayfeh [118], but we are not aware of any experimental realization of nonlinearity tuning in

nanomechanical resonators.

Using the same setup, we can also tune the resonant frequency of the beam. Figure 5.3 illustrates

the results obtained by varying the DC bias applied to the gate electrode. When the out-of-plane

mode of vibration is excited, we observe an increase in the resonant frequency of the beam with gate

voltage (Figure 5.3(a,b)). As the applied gate voltage pulls the beam toward the gate, the resonant

frequency increases in a manner similar to the increase in pitch produced by stretching a guitar

string. Since the quality factor remains constant throughout the increase in the DC gate voltage

(inset of Figure 5.3(b)), this mechanism is well-suited for applications where a change in frequency

is the only desired effect.

For the in-plane mode, we observe the decrease in the resonant frequency (Figure 5.3(c,d)).

The beam is electrostatically attracted to the gate and this makes its spring constant smaller. This

tuning is accompanied by increased dissipation (inset of Figure 5.3(d)) as the modulated capacitance
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gate (a). Capacitive tuning of frequency downward (d) for vibration in plane of the gate (c). The
blue curve in (d) is the prediction of the theoretical model for the capacitive frequency tuning.
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between the beam and the gate gives rise to dissipative current flow.

Various reversible frequency-tuning mechanisms have been explored in the past. These include

STM-aided resonator length adjustment [121], stiffness variation with thermal stress [109], and

electrostatic tuning [100, 99]. The frequency has been observed to tune either up [99] or down [100],

and the theoretical models built to explain the data took into account a single tuning mechanism,

either elastic or capacitive, that seemed dominant in that particular experiment.

In our experiment, we observe both softening and hardening types of frequency tuning in the

same device. Here we present a model that reconciles the existence of these two types as it takes into

account elastic and capacitive frequency tuning, as well as the beam nonlinearity. The model reliably

predicts the decrease in nonlinearity and increase in dynamic range, as well as the two frequency

tuning mechanisms that we observe.

Our device is a thin beam that is displaced by DC bias voltage on the gate and driven by small AC

voltage. We can write the beam’s total displacement, u(x, t), as a sum of a static DC displacement,

zs(x), and a time-varying AC displacement, z(x, t): u(x, t) = zs(x) + z(x, t).

The combination of the electrostatic force, attracting the beam towards the gate, and the elastic

restoring force, trying to pull the beam back to its undeformed state, gives us the equation of motion

for the beam:

EIuxxxx − [T0 + T (ux)]uxx + ρSutt =
1
2
cz[u(x, t)]V 2, (5.1.1)

with the boundary condition at the two clamped ends. S is the beam’s cross-sectional area, E is the

Young’s modulus, ρ is the beam density, and I is the moment of inertia about the longitudinal axis of

the beam. The total tension term in brackets is a sum of residual tension, T0, and bending-induced

tension, T (ux) = (ES/2L)
∫ L

0
u2

x dx, where L is the beam length. The capacitance per unit length,

c[u(x, t)], is calculated using an approximation of an infinite wire near the semi-infinite plane of the

gate [10]:

c[u(x, t)] =
2πεε0

ln
[

R+r−u(x,t)+
√

(R+r−u(x,t))2−r2

r

] (5.1.2)

Because the capacitance per unit length, c[u(x, t)], is a nonlinear function of displacement, u(x, t),
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it will contribute additional nonlinearities to the resonator dynamics. In order to keep the second

and third-order nonlinearities from the capacitive coupling to the gate, we expand c[u(x, t)] to the

fourth order in u(x, t)/R. The capacitance expansion coefficients, Ki, are given by the geometry of

the system and the DC displacement of the beam.

To find the frequency and nonlinear coefficients in the equation for the time-varying displacement,

we approximate the beam shape as z(x, t) = z1(t)
√

2/3[1−cos(2πx/L)] [92, 38]. A similar expansion

of static deflection, zs(x, t) = ADC

√
2/3[1− cos(2πx/L)], is used in the static equilibrium equation

to solve for the static deflection amplitude, ADC . The Galerkin discretization procedure [85] gives

the time-variant part of the equation of motion:

z̈1(t) + ω2
0z1(t) + α2z

2
1(t) + α3z

3
1(t) = 0, (5.1.3)

where

ω2
0 =

[
EI
3ρS + EA2

DC

6ρ

] (
2π
L

)4 + T0
3ρS

(
2π
L

)2 − K2V 2

ρS

α3 = E
18ρ

(
2π
L

)4 − 35
9

K4V 2

ρS

α2 = EADC

6ρ

(
2π
L

)4 − 5
2

√
2
3

K3V 2

ρS .

(5.1.4)

The resulting equation of motion (5.1.3) is solved numerically (see Appendix B for the Mathemat-

ica script that implements the solution) and predicts the observed tuning behavior. The overall non-

linearity is reduced because the quadratic nonlinearity (5.1.4) grows with static DC deflection due to

the voltage applied to the gate, and partially cancels out the cubic nonlinearity: α = α3−10/(9ω0)α2
2

[85]. The decrease in α3 itself with the increased DC voltage is a higher-order effect and is negligible

compared to the increase in α2.

Compared to the experimental data, the model predicts a sharper increase in ac at higher DC

voltages (see the last graph in Appendix B). In the experiment, the increase in critical amplitude

is probably limited by higher-order and non-tension nonlinearities, e.g., material and inertial non-

linearities [29], that become significant when the induced quadratic nonlinearity cancels the cubic
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nonlinearity.

The different frequency tuning behaviors are also explained by equation (5.1.4). The frequency

increases in the out-of-plane vibration mode because increasing the gate voltage only stretches the

beam (increasing static displacement ADC), but does not interact with it electrostatically. For the

in-plane vibration mode, there is both stretching (increase in ADC) and electrostatic interaction

(described by the K2V
2 term). Electrostatic attraction to the gate has a softening effect on the

beam for low gate voltages before the hardening due to stretching overcomes it. If the mass loading

by a metal layer on the SiC beam is taken into account, the theoretical expression for resonant

frequency (5.1.4) can be fit to the data with excellent agreement as shown in Figure 5.3(d).

The ultimate limit to electrostatic tuning in these devices depends on the pull-in voltage when

the beam gets close enough to the gate to irreversibly snap in [17]. The pull-in voltages for the

geometry that we describe here were observed to range from 29V to 42V.

A device that has an additional gate electrode below or above the beam should allow tuning of

frequency both up and down for the same mode of the resonator if the two electrodes can be biased

independently. Such a device could also be used to keep the frequency of the beam constant while

tuning its dynamic range.

We have experimentally observed electrostatic tuning of the onset of nonlinearity and, conse-

quently, tuning of dynamic range of nanomechanical resonators. We also demonstrated the ability

to tune resonant frequencies of our devices upward and downward. These mechanisms and their

analysis provided here are helpful for any applications requiring adjustable frequency or dynamic

range. Among these are frequency adjustment to overcome fabrication inaccuracy and embedding a

tunable NEMS resonator in a feedback loop to allow for real-time frequency stabilization. Nonlin-

earity tuning will allow applications of small and sensitive devices (such as single-wall nanotubes)

as linear sensors. The proposed theoretical model can be used to experiment with different geome-

tries to optimize frequency or nonlinearity tuning, and to increase the pull-in threshold for specific

applications.
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Figure 5.4: Interaction of orthogonal modes in a silicon carbide beam resonator observed magne-
tomotively. (a) Frequency tuning of in-plane and out-of-plane modes with DC bias on the gate,
resulting in anti-crossing behavior when the interaction is induced at 33.5V. (b) Resonant responses
of both modes become visible at 33.5V. (c) The exchange of energy in the interaction induced at
33.5V is seen in the drop of Q for the out-of-plane mode (left branch) and in the growth of Q for
the in-plane mode (right branch).

5.2 Interaction of orthogonal modes2

An interesting application of frequency tuning is the ability to controllably couple the in-plane and

out-of-plane modes as the frequencies of the two modes are tuned closer to each other. The mode

coupling was observed on two different types of devices and with two different detection techniques.

As described in the previous section, a gate can be used to tune the frequencies of in-plane

and out-of-plane modes in different directions (Figure 5.3). In this experiment, temperature of the

sample stage was stabilized at 25K, so that the temperature-induced frequency shifts were negligible

compared to the effect of DC bias. For a silicon carbide beam 160nm wide and 80nm thick, the

resonant frequency of in-plane vibration (8.8MHz) at zero bias is higher than the frequency of out-

of-plane vibration (7.6MHz). As we increase the DC bias voltage on the gate positioned 300nm

away from the beam, the vibration in the plane of the gate becomes capacitively coupled to the

gate and its frequency decreases, whereas the frequency of vibration out of the plane of the gate

increases. Finally, the frequencies of the two modes are tuned close enough to each other for the

interaction to arise. For the geometry described above, we observed the avoided mode-crossing when

the neighboring gate voltage was increased to 33.5V with the frequency gap of 100kHz. The observed

coupling is shown in Figure 5.4(a). At this DC bias, both in- and out-of-plane modes are visible at

2The SEM detection of coupled modes was performed on devices fabricated by Ronen Almog. The linear coupling
mechanism through the supports was suggested by Igor Bargatin.



86

Figure 5.5: Interaction of orthogonal modes in nominally identical gold beam resonators observed
in the SEM. (a) A device is driven with 15dBm of power. Mode coupling occurs at 36V with a
frequency gap of 860Hz. (b) A different device is driven with 10dBm of power. Mode coupling
occurs at 56V with a frequency gap of ∼600Hz.

7.964MHz and 8.105MHz respectively (Figure 5.4(b)). The induced interaction is associated with

the energy exchange between the two modes: the quality factor of the out-of-plane mode decreases as

the quality factor of the in-plane mode starts to grow (Figure 5.4(c)). When the device is tilted 45◦

in the magnetic field, both modes are visible for all bias voltages and their tuning can be monitored

simultaneously.

A similar coupling of in-plane and out-of-plane modes of gold beam resonators has also been

observed with the SEM detection technique. Gold beams were fabricated on top of silicon nitride

membranes as described in section 3.1.1. Figure 5.5 illustrates mode coupling induced by increased

DC voltage on the gate for two nominally identical devices: gold beams 800nm wide, 200nm thick,

and 100µm long positioned 5µm away from the gate. The device, whose response is shown in Figure

5.5(a), is driven with 15dBm of power and the mode coupling occurs at about 36V. The gap between

two frequencies at this voltage is 860Hz. Figure 5.5(b) shows the response of the other device driven

with 10dBm of power with the mode coupling occurring at about 56V. The smallest frequency gap

for the avoided crossing is about 600Hz. Judging by the starting resonant frequencies of the in-

plane modes, the two devices are under different initial tension calculated to be (a) T0 ≈ 13.5µN

and (b) T0 ≈ 7µN . With the SEM detection, we cannot measure the starting frequency of the

fundamental out-of-plane modes, but using these values of initial tension, we can estimate them

to be (a) 390kHz and (b) 290kHz. This situation is the same as for the silicon carbide beams:
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Figure 5.6: Frequency-response curve, b(σ), of a two-degree-of-freedom Duffing system with internal
resonance (from Ref.[115]).

out-of-plane mode frequencies are below the in-plane mode frequencies and are tuned upwards when

DC voltage is applied to the gate. The difference in the onset of mode coupling in these two

nominally identical devices can be attributed to the variation in geometry and residual tension due

to fabrication inaccuracy.

In engineering literature, interaction of modes at commensurate frequencies or multiples of fre-

quency is referred to as ”internal resonance” [84]. Figure 5.6, taken from Ref.[115], illustrates a

typical response of a two-degree-of-freedom Duffing system with cubic coupled terms when internal

resonance is present in the system. If one of the degrees of freedom has a lower onset of nonlinearity

than the other one, the dynamics of the system can get complicated (Figure 5.6(b)). For both silicon

carbide and gold beams, we observe the coupling of in-plane and out-of-plane fundamental modes,

which in this language would be called ”one-to-one internal resonance”.

We do not understand exactly what physical mechanism is responsible for the coupling of orthogo-

nal modes, and more experiments are needed to clarify the dominant contribution. The anti-crossing

behavior points to a dominant linear coupling mechanism. It is likely that the orthogonal modes

are coupled linearly through the clamping structures. FEMLAB simulations performed on a slightly

asymmetric beam show that the orthogonal modes move away from the out-of-plane and in-plane

orientation and become non-planar when the resonant frequencies are very close to each other (about
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Figure 5.7: Shapes of coupled orthogonal modes when their frequencies are very close (FEMLAB
simulation).

1kHz in Figure 5.7). The distortion by the gate and the clamping supports play a significant role

in determining the coupling of these modes through their influence on resonant frequency and the

overall symmetry of the structure. The anti-crossing gap for such a mechanism would be the measure

of asymmetry present in the vibrating beam, and we would expect a perfect frequency match and a

crossing behavior for beams that are perfectly symmetric and whose modes would be tilted 45◦ at

the interaction.

Another possible linear coupling mechanism is electrostatic. This mechanism has been studied

extensively by Truitt et. al [111], but the authors point out that electrostatic simulations suggest a

coupling which would result in a splitting frequency 10 times smaller than what is observed. A clean

experimental way to test the presence of electrostatic coupling is to measure the frequency splitting

for several devices with varying beam-to-gate gap sizes.

Nonlinear coupling between two modes is also present in the system, but is not likely to be

dominant. Two-mode vibration of a doubly-clamped beam is described by the coupled equations of

motion for the out-of-plane motion, z(x, t), and in-plane motion, y(x, t):

EIzzxxxx − Tzxx + ρSztt − f(x, t) = 0 (5.2.1)

EIyyxxxx − Tyxx + ρSytt − f(y, t) = 0. (5.2.2)
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The nonlinear coupling between the two modes can come in through the additional displacement-

dependent tension, T (z, t), induced when the beam is vibrating in both y- and z-directions and is

stretched from its original length, L, by the length, ∆L [74]:

T (x, t) = ES
∆L

L
=

ES

2L

∫ L

0

(zx(x, t)2 + yx(x, t)2) dx. (5.2.3)

This is simply a two-dimensional version of equation (2.3.1). If we include both residual tension,

T0, and the extra induced tension, T = T0 +
∫ L

0
(zx(x, t)2 + yx(x, t)2) dx, and apply the Galerkin

discretization procedure as discussed in Chapter 2, we find that equations (5.2.1) and (5.2.2) have

coupling terms of the form z(x, t)y(x, t)2 and y(x, t)z(x, t)2 respectively. Using Galerkin mode

shapes, φ1(x) =
√

2/3 [1− cos (2πx/L)] [38, 112], for both in-plane and out-of-plane modes, we

arrive at analytical formulas for the frequencies of two nonlinearly-coupled modes:

ω2
z =

[
EIz

3ρS
+

Ey1(t)2

18ρ

](
2π

L

)4

+
T0

3ρS

(
2π

L

)2

(5.2.4)

ω2
y =

[
EIy

3ρS
+

Ez1(t)2

18ρ

](
2π

L

)4

+
T0

3ρS

(
2π

L

)2

. (5.2.5)

Dependence of the resonant frequency of one mode on the amplitude of the other mode is the

signature of nonlinear coupling. The frequency splitting would in this case depend on the magnitude

of the driving force.

If the nature of interaction between in-plane and out-of-plane modes is indeed nonlinear, a

nonlinear detection scheme for quantum nanomechanical resonators could be implemented using the

energy exchange between two orthogonal modes similar to the theoretical proposal of Santamore et

al. [96, 97].
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5.3 Higher flexural modes of beams3

Thermoelastic excitation combined with piezoresistive detection, described in detail in Section 3.2.4,

has enabled us to observe resonances of multiple vibrational modes of individual silicon carbide

nanomechanical beam resonators, covering a broad frequency range from several MHz to over a

GHz. I will show in this section that the dynamic range of higher flexural modes in doubly-clamped

piezoresistive beams increases with the mode number.

The schematic of the thermoelastic drive and piezoresistive detection setup is shown in Figure

3.9(b). The devices used for this experiment are bare silicon carbide doubly-clamped beams with

metal loops on both ends (Figure 3.9(a)) to implement actuation and detection. The devices varied

in length from 4 to 24µm, and had a width of 400nm and a thickness of 80nm. Two different

thin metal film loops were patterned near the two ends of the beam. The 80nm-thick, 100nm-

wide loop was patterned from thermally evaporated gold and formed a part of the thermoelastic

bilayer actuator (right inset to Figure 3.9(a)). The thinner piezoresistor loop was patterned from

a 30nm-thick metal layer created by evaporating a 60%-40% gold-palladium alloy. It consisted of

250nm-long, 50nm-wide legs connected by a larger pad (left inset to Figure 3.9(a)). A 2nm-thick

chromium adhesion layer was used in both cases. Typical resistances of metal loops were 30Ω for

the actuation loop, and 300Ω for the detection loop.

Figure 5.8 shows the magnitude of the raw signal from a 16µm-long beam detected as both the

drive and bias voltages are swept over a very wide range of frequencies while keeping the downmixed

frequency constant at 95kHz. The large peaks correspond to the first eight out-of-plane flexural

modes of the beam. The small peak near the second large peak corresponds to the first in-plane

mode. On resonance, both quadratures of the lock-in signal fit the Lorentzian curve shape very well

(inset to Figure 5.8) using the procedure described in Section 3.3. The noise floor of ≈ 3nV/Hz1/2

is largely due to the Johnson noise of the piezoresistor. The small background signal originates from

the parasitic coupling between bias, drive, and detection channels and the slight nonlinearity of the
3This work has been done together with Igor Bargatin. The first part of this section has been accepted for

publication in Applied Physics Letters [7].
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Figure 5.8: Raw signal, referred to the preamplifier input, from a 16µm-long beam. The root-mean-
square amplitudes of the drive and bias voltages are 22mV and 118mV, respectively. Inset shows
both quadratures of the resonant response of the tenth out-of-plane mode (not shown in main panel)
and the almost indistinguishable Lorentzian fit to the data.

piezoresistor and preamplifier response.

Table 5.1 lists the frequencies of the first seventeen vibrational modes of the 16µm-long device

predicted from FEMLAB finite element simulations, and also shows their measured frequencies

and quality factors determined from Lorentzian fits. Discrepancies between predicted and observed

frequencies do not exceed a few percent for all modes if the intrinsic strain, which presumably arises

during fabrication of multilayer structures, is taken into account. The agreement is excellent for

the lower modes and deteriorates slightly only for the highest modes. We attribute this to the

difficulty of realistically modeling the imperfect clamping of our beams at their ends. We observe

many more resonance peaks above the resonance frequency of the twelfth out-of-plane mode, up to

a resonance at 1.094GHz; however, these resonance peaks become progressively smaller and some of

them overlap, which makes it difficult to identify the nature of the corresponding modes and fit the

resonance peaks to Lorentzian curves.

The ability to detect multiple modes of mechanical vibration simultaneously in doubly-clamped

beams is important for applications such as mass sensing, where obtaining data from multiple modes

can improve the accuracy and speed of measurements [33]. Operation at a higher flexural mode offers

the benefits of higher resonance frequency and increased quality factors in air and liquid [8]. The

dependence of dynamic range on the mode number has not been investigated so far. I present below
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Table 5.1: Predicted, fpred, and experimental, fexp, resonance frequencies, as well as quality factors
in vacuum, Qexp, for the lowest twelve out-of-plane (out) modes and lowest five in-plane (in) modes
of a 16µm-long beam. In simulations, we assume the following material properties for the SiC layer:
Young’s modulus 430GPa, Poisson ratio 0.3, mass density 3.2g/cm3 [58], and intrinsic tensile strain
2.8×10−4. The strain value was varied to obtain the best fit to the experimental frequencies.

mode 1out 2out 1in 3out 4out 2in 5out 6out 3in 7out 8out 9out 4in 10out 11out 5in 12out
fpred, MHz 9.48 20.0 20.7 32.3 46.9 54.3 64.1 83.8 103 106 131 158 166 187 219 244 252
fexp, MHz 9.52 20.0 20.8 32.3 46.8 54.0 63.9 83.5 103 107 132 160 167 190 223 243 258

Qexp 12000 7750 3110 5570 4410 2630 3620 3220 2210 2950 2700 2510 1740 2190 1970 1760 1660

the experimental data on dynamic range of higher flexural modes and a simple theoretical model

that attempts to explain the observed effects.

The nonlinearity data was collected from the 16µm device described above using thermoelas-

tic actuation and piezoresistive detection. As mentioned in Section 3.2.4, the amplitude of the

downmixed piezoresistive signal is V ≈ Vbg 〈εxx〉 /2, where g is the gauge factor. For each mode,

we record a family of resonance curves for increasing drive values and a constant bias voltage, Vb.

Since thermoelastic actuation tends to heat the device, frequency shifts down as the drive level is

increased: f0 ∝ −V 2. Using several linear response curves for lower drives, we can calculate the

proportionality factor and correct all of the data for the frequency shift. The higher drive response

curves are then used to define the backbone curve as described in Section 5.1. The critical voltage,

Vc, corresponding to the onset of nonlinearity is extracted from the shape of the backbone curve. Vc

values for the first ten out-of-plane modes are plotted in Figure 5.9 as black points. These values

are proportional to critical strain in the beam multiplied by the gauge factor, g. The bias voltage,

Vb, was kept the same for all modes, barring some variation in attenuation by the filter at different

frequencies. Assuming that the gauge factor is constant for all modes in a single device, the critical

strain is observed to increase with the mode number until the eighth flexural mode. In other words,

compared to the fundamental mode, the nonlinearity sets in later for higher modes in strain devices

and, if we account for the degradation of Q in higher modes, dynamic range of a device can be

increased up to 4dB simply by operating in a higher flexural mode.

We will try to use a simple theoretical model using an adapted Galerkin discretization method

described in Chapter 2 to analyze the response of higher flexural modes of the beam. Instead of
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Figure 5.9: Critical strain dependence on the resonator’s vibrational mode number. Experimental
data (black points) qualitatively agrees with the predictions of theoretical model (red triangles).

approximate Galerkin modes, we will use mode shapes for a doubly-clamped beam under stress and

negligible tension as given in equation (2.1.4), where the values of κL for the first ten modes are

κL =(1) 4.73, (2) 7.8532, (3) 10.9956, (4) 14.1372, (5) 17.2788,

(6) 20.4204, (7) 23.5619, (8) 26.7035, (9) 29.8451, (10) 32.9867.

Resonant frequencies, ωn, are given by equation (2.1.15) and the cubic nonlinearity, αn, by equation

(2.3.7). Using the experimental values of Q for the first ten modes (see Table 5.1), we can calculate

the critical amplitude, (ac)n, as [85]

(ac)2n =
8
√

3
9αnQexp

n
. (5.3.1)

The measured strain in a beam of thickness, t, can be converted into displacement using equation

(3.2.7) for small displacements, εxx ≈ z′′(x)t/2. If all strain is concentrated at the clamping point,

critical strain can be obtained from

(εc)n =
t

2
(ac)n

z′′n(0)
zn(L/2n)

. (5.3.2)
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However, we use loops of finite length (250nm in this experiment) for piezoresistive detection and we

detect an average strain distribution over the entire length, l, of the loop: εexp
n ≈ (

∫ l

0
z′′n(x)dx)t/(2L).

For the higher out-of-plane modes, the strain may change sign within the length of the detection loop,

resulting in partial cancellation of the detected strain average. The critical strain determination has

to take this into consideration:

(εc)n =
t

2
(ac)n

∫ l

0
z′′n(x)dx

zn(L/2n)L
. (5.3.3)

Moreover, the beam is not clamped rigidly at one point, but is attached to a ledge that forms

during dry etching and is about 350nm in the device we used. The ledge is modeled by effectively

lengthening the beam by this amount. Calculated critical strain for the first ten modes of the

resonator is plotted in Figure 5.9 as red triangles. The theoretical values have been scaled by the

maximum experimentally observed critical signal voltage (that of the 6th flexural mode).

While there is good qualitative agreement with the experimental data, theory predicts a much

steeper initial increase in the critical strain than is observed experimentally. This discrepancy is

most likely due to our choice of mode shapes for the beam. The beam mode shapes given by

(2.1.4) do not take into account any residual tension, T0, in the beam, which from the fundamental

resonance response is determined to be T0 = 3.58µN. Presence of residual tension lowers the overall

nonlinearity (refer to equation (2.3.14)) and would account for a slower initial growth of critical

strain with the mode number that is observed experimentally. This is especially pronounced in the

lower modes, where the residual tension has a larger effect. The actual mode shapes are also affected

by the exact geometry of clamping structure, which can be taken into account in a finite-element

simulation, but not in an analytical model.

In the 16µm long device with 250nm long detection loop, the increase in critical strain levels off

at about 7th or 8th out-of-plane mode. This is due to partial cancellation of the detected strain

average as the strain changes sign within the length of the detection loop for these higher modes. The

cancellation can be engineered to set in for even higher modes by patterning a shorter detection loop

and/or increasing the beam length. It is also helpful to minimize the clamping ledge by shortening

the dry etch time. The simple theoretical model presented in this section is sufficient for such design.
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The increase in dynamic range applies only to the piezoresistive strain signal: the critical ampli-

tude tends to go down as the mode number is increased, whereas the critical strain, which depends

on the second derivative of displacement, goes up with mode number. For engineering applications

requiring higher dynamic range, piezoresistive strain detection has a clear advantage over magne-

tomotive or capacitive displacement amplitude detection for NEMS resonators operated in higher

flexural modes.

5.4 Ideas for future experiments

This section presents some ideas for future experiments that can be done on the basis of the studies

presented above. Here I discuss ideas for a self-tuning resonator, cooling of a resonator mode using

nonlinear interaction with another mode, and synchronization in coupled oscillators.

5.4.1 Self-tuning resonators

A beautiful extension of the demonstrated frequency tuning of the resonator after fabrication would

be a demonstration of a self-tuning resonator that is able to adjust its resonant frequency to the

drive in a broad frequency range without sacrificing its quality factor.

Self-tuning of the nonlinear systems has been observed before in vibrating soap films, where the

liquid film can adapt its mass distribution to the forcing frequency [13], and in vibrating smectic

liquid crystal films, where a small metal ball free to move in the plane of the film adjusts its position

as a function of excitation frequency [15]. Even more relevant to NEMS has been the experiment

with a piano string loaded with a bead which was free to slide [14]. When driven magnetomotively

with external frequency in a large frequency band, the bead was observed to move so that the system

would be made resonant. The mass and number of beads were found to affect the range of resonant

frequencies accessible to the system. These experiments have a common theme: given additional

degrees of freedom, a driven nonlinear system will adapt them in such a way that it will become

resonant with the drive in a large range of driving frequencies, effectively acquiring a continuous

frequency spectrum instead of a discrete one.
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In light of these results, a nonlinear nanomechanical resonator could also be made self-tuning by

adding some large inert molecules that are free to move on the surface as the device is vibrating.

Recently, micro- and nanobeads have been observed to move on cantilevers in microfluidic environ-

ment and arrange in clusters according to the shape of the excited mode [34]. It is not clear how the

quality factor of such a resonator would vary with frequency, since mode shapes would also depend

on a mass distribution that would vary with frequency. Self-tuning resonators would be very useful

in large arrays of sensors as the frequency variation due to fabrication will no longer be an issue,

and no ad hoc tuning of each element (e.g., by a gate electrode) need to be implemented.

5.4.2 Cooling of a resonator mode by interaction with another mode4

Energy exchange between two nonlinearly coupled modes at resonant frequencies ω1 and ω2, with

high and low Q, can be used to cool or to heat up the mode at ω1 if the device is driven at the

difference or sum of two frequencies respectively. To implement this experiment, we need the setup

to observe a thermal spectrum of two modes with different quality factors. For example, two different

out-of-plane modes of a piezoresistively measured silicon carbide beam could be used: we can usually

find a mode at ω1 with a higher Q and at ω2 with a lower Q, and the modes are nonlinearly coupled

through the structure of the beam. While observing the thermal spectrum, the device should then

be driven at the frequency ω2−ω1. According to Mark Dykman [36], thermal peak at ω1 will acquire

the distribution of ω2-peak, i.e., effectively cool down since its amplitude will decrease and its quality

factor will increase. Alternatively, if the device is driven at frequency ω1 + ω2, the ω1 will become

larger and narrower, i.e., will be effectively amplified. The ability to control the amplitude and Q

of a mode of interest using the nonlinear coupling to another mode might prove useful for cooling

and quantum measurement applications. Unfortunately, the piezoresistive downmixing detection

is currently thermally limited for only the fundamental mode. Careful engineering of devices and

optimization of background reduction are needed to be able to detect thermomechanical noise of

two different modes in order to perform the suggested experiment.
4The idea for this experiment was proposed by Mark Dykman.
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5.4.3 Synchronization of coupled oscillators

Recent progress in building a self-sustaining nanomechanical oscillator, a resonator with the en-

ergy supplied to it using a feedback loop with a DC-powered amplifier [46], has set the stage for

synchronization experiments in nonlinear nanoscale systems [30]. Self-sustaining oscillators exhibit

limit-cycle dynamics in phase space as opposed to simple fixed-point dynamics described in Chapter

4. Depending on the strength of coupling among oscillators, either full frequency and phase, or just

phase synchronization can be observed [91]. Arrays of coupled nanomechanical oscillators would not

only be useful for studying synchronization phenomena ubiquitous in the natural world [108, 42],

but could also offer some ways to improve the device properties for engineering applications, such as

better power handling and added immunity from the ambient noise. We can even dream of building

up an artificial neural computer using synchronized NEMS elements [52].

Synchronization in the presence of noise is especially interesting to study. On one hand, theo-

retical models suggest that driving oscillators with the same noise can be enough to induce their

synchronization [107, 87]. On the other hand, if noise is intrinsic to each oscillator, the intensity of

phase noise (characterized by the square of standard deviation) of an array of N oscillators can be

reduced by a factor of N over the phase noise of a single resonator by simple averaging. If noise is

extrinsic to individual oscillators, i.e., affects them through their interaction with each other or the

environment, the reduction can be even better: a factor of N3 in certain parameter regimes [86].

The best place to start is two NEMS oscillators with tunable (e.g., electrostatic) coupling. For

fixed resonator frequencies, we can change the coupling between them and monitor the phases and

frequencies of both oscillators for the onset of synchronization. Alternatively, we can leave the

coupling fixed and tune the frequency of one of the resonators to look for evidence of locking.

Currently the feedback circuit required to make a NEMS self-sustaining oscillator consists of bulky

macroscopic instruments. For building functional arrays of NEMS oscillators, we will need to develop

nanofabrication techniques for feedback loops and detection multiplexors on chips containing NEMS

devices.
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Chapter 6

Concluding Remarks

Science is what you know, philosophy is
what you don’t know.

Bertrand Russell

While nonlinear systems in physics are usually associated with a lot of pain and massive con-

sumption of computational resources, in biology they are everywhere. In biological systems, non-

linearity does not seem to be an inconvenient quirk of nature that we hope is small, as it forces us

to deviate from familiar and manageable linear equations. In biological systems, nonlinearity looks

more like an adaptation, a necessary ingredient of making living creatures work as well as they do

[28, 37, 45, 59]. All the curious phenomena associated with nonlinear behavior, such as synchro-

nization, self-organization, pattern formation, all seem to contribute to the robust and adapting

natural world. Out there, in the real world, nonlinearity is a rule and even a necessity rather than

an exception.

I like to think that studying nonlinear physical systems brings us a little closer to understanding

the most profound designs of nature, including those of biological systems. Maybe a profound

understanding of nonlinear effects and how they modify system behaviors is the only link that

is needed to be able to explain biology. The challenges in establishing this link are significant:

nonlinearities in most organic systems are not small and only few of them currently allow clear

classification by type of bifurcation or nonlinearity. Moreover, real-life organisms are never found in

isolation and their nonlinear interactions with the environment greatly complicate their behavior.
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We as physicists are trying to explain this complex world by adding small nonlinear perturba-

tions on top of linear mathematical descriptions that have been developed over the last few centuries.

But maybe here our approach and our mathematics are not quite right for describing highly non-

linear interacting systems. Maybe we need to change our frame of thinking and come up with

essentially nonlinear mathematics, which would have the usual linear equations as a limiting case.

Maybe essentially linear variables, such as displacement or velocity, have to be replaced by variables

characterizing complex phenomena, such as entropy or deviation from robustness. . .

I am convinced that the convergence of physics, chemistry, and biology, which has become more

pronounced in recent years, will bring deeper understanding of the role that nonlinearity plays in

nature. And I sincerely hope that the development of nanotechnology will result in new tools to

probe and analyze nonlinear effects in both physical and biological systems and will shed some light

on the most fascinating mysteries of nature.
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Appendix A

Duffing equation analysis using
Landau and Lifshitz method

The discussion in this section follows the Landau and Lifshitz approach to the analysis of the

anharmonic oscillations [73] filling in some details of the calculations. We will start by considering

an anharmonic oscillator in one dimension, expanding its Lagrangian up to the third-order nonlinear

term to describe its motion:

L =
1
2
mẋ2 − 1

2
mω2

0x2 − 1
3
mαx3 − 1

4
mβx4. (A.0.1)

The equation of motion corresponding to this Lagrangian is

ẍ + ω2
0x = −αx2 − βx3. (A.0.2)

We will look for the solution as a series of approximations:

x = x(1) + x(2) + x(3), where

x(1) = a cos(ωt), with ω = ω0 + ω(1) + ω(2) + ω(3).

To find the differential equation satisfied by x(2), substitute x = x(1) + x(2) and ω = ω0 + ω(1) into

the equation of motion:

ω2
0

ω2
ẍ + ω2

0x = −αx2 − βx3 − (1− ω2
0

ω2
)ẍ. (A.0.3)
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We get

−aω0 cos(ωt) +
ω2

0

ω2
ẍ(2) + aω0 cos(ωt) + ω2

0x(2) =

−αa2 cos2(ωt) − 2aαx(2) cos(ωt)− α(x(2))2 − βa3 cos3(ωt)− 3βa2x(2) cos2(ωt)−

−3βa(x(2))2 cos(ωt) − β(x(2))3 + (1− ω2
0

ω2
)aω2 cos(ωt)− (1− ω2

0

ω2
)ẍ(2).

Neglecting the small third and higher order terms, we are left with

ẍ(2) + ω2
0x(2) = −αa2 cos2(ωt) + (1− ω2

0

ω2
)ẍ(2) or, expanding to the second order,

ẍ(2) + ω2
0x(2) = −1

2
αa2 − 1

2
αa2 cos(2ωt) + 2ω0ω

(1)a cos(ωt).

We would like to account for all the resonance (i.e., cos(ωt)) terms in x(1), so that the higher-order

contributions to x are small. Therefore, in the second order term, x(2), we want the resonance term

to be absent, and the condition for this is to set ω(1) = 0. To find x(2), then, we just need to solve

the differential equation:

ẍ(2) + ω2
0x(2) = −1

2
αa2 − 1

2
αa2 cos(2ωt). (A.0.4)

The solution to the homogeneous equation, ẍ(2) +ω2
0x(2) = 0, is x

(2)
h = A cos(ωt)+B sin(ωt). Trying

the particular solution, x
(2)
p = C + D cos(2ωt), and plugging it into the original equation, we find

that C = −αa2

2ω2
0

and D = αa2

2(4ω2−ω2
0)

= αa2

6ω2
0

because w(1) = 0 as agreed above. Therefore, we get that

x(2) = −αa2

2ω2
0

+
αa2

6ω2
0

cos(2ωt). (A.0.5)

To get an approximation to a higher order, put x = x(1) + x(2) + x(3) and ω = ω0 + ω(2) in the

original equation of motion. After neglecting the higher order terms, we end up with

ẍ(3) + ω2
0x(3) = a3

(
1
4
− α2

6ω2
0

)
cos(3ωt) + a

(
2ω0ω

(2) +
5a2α2

6ω2
0

− 3
4
a2β

)
cos(ωt). (A.0.6)
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Again assuming we can absorb the resonance term into x(1), the equation for x(3) becomes

ẍ(3) + ω2
0x(3) = a3

(
1
4
− α2

6ω2
0

)
cos(3ωt). (A.0.7)

The coefficient of cos(ωt) here is set to 0 – this allows us to solve for ω(2):

a

(
2ω0ω

(2) +
5a2α2

6ω2
0

− 3
4
a2β

)
= 0 =⇒

ω(2) =
1

2ω0

(
3
4
a2β − 5a2α2

6ω2
0

)
=

3a2β

8ω0
− 5a2α2

6ω3
0

.

Trying a particular solution, x(3) = A cos(3ωt),

−9ω2A cos(3ωt) + Aω2
0 cos(3ωt) = a3

(
1
4
− α2

6ω2
0

)
cos(3ωt) =⇒

A =
a3

ω2
0 − 9ω2

(
1
4
− α2

6ω2
0

)
≈ a3ω4

0(2α2 − 3ω2
0β)

3ω4
0(32ω4

0 + 27a2ω2
0β)

=
a3α2

48ω4
0

− a3β

32ω2
0

.

Then the third order correction is

x(3) =
(

a3α2

48ω4
0

− a3β

32ω2
0

)
cos(3ωt). (A.0.8)

Now, we will consider the case of the driven oscillator corresponding to the equation of motion

ẍ + 2λẋ + w2
0x + βx3 = D cos(γt). (A.0.9)

For the driving frequency, γ, to be near resonance, we write γ = ω0 + ε, where ε is small. We have

already shown that if the nonlinear term is absent, the amplitude is

b =
D

2ω0

√
ε2 + λ2

. (A.0.10)

The addition of anharmonicity to oscillations results in the dependence of ω on b2 as we have just

seen from the calculation of the second-order correction to ω. Thus, our new ω for the nonlinear



116

case can be written as

ω = ω0 + ω(2) = ω0 +
(

3β
8ω0

− 5α2

6ω3
0

)
b2 = ω0 + κb2, (A.0.11)

where κ = 3β
8ω0

− 5α2

6ω3
0
. Since γ = ω0 +ε stays the same as for the linear case, the equivalent procedure

is to re-define ε to be ε − κb2. This is the ε we now need to substitute into our earlier relation for

the amplitude in order to account for the nonlinear term. The new equation connecting b and ε is

b =
D

2ω0

√
ε2 + λ2

. (A.0.12)

This gives an equation that is third order in the amplitude, b2:

κ2b6 − 2εκb4 + (ε2 + λ2)b2 =
D2

4ω2
0

, (A.0.13)

that can be solved with the help of Mathematica in order to obtain the plot of b vs. ε. The example

plots determined by the solution are shown in Figure A.1. It has been shown above and in literature

[11] that the second root, which is clearly visible between the other two in the bottom left graph in

Figure A.1, corresponds to the unstable oscillations of the system.

The analytical expression describing the resonance curve allows us to determine the driving force

for which the nonlinear effects become significant, i.e., the resonance curve leans over to the right.

Let Dc be the critical value of driving force, D, that corresponds to the transition at which the

tangent to the peak point is vertical. That is, at the critical point db
dε → ∞. Differentiating the

above equation with respect to ε, we get

db

dε
=

κb3 − εb

ε2 − 4εκb2 + 3κ2b4 + λ2
→∞. (A.0.14)

This means that

ε2 − 4εκb2 + 3κ2b4 + λ2 = 0. (A.0.15)
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Figure A.1: Example resonance curves for the fixed β and increasing driving force illustrating the
gradual change in shape.

This is a quadratic equation with the discriminant

D = 4κ2b4ε2 − 3κ2b4ε2 − 3κ2b4λ2. (A.0.16)

Setting it equal to 0 to get the inflection point, we obtain the condition on ε and the corresponding

condition on b: ε2 = 3λ2 and κb2 = 2
3ε. Substituting these values back into the original equation

and solving for D allows us to obtain the critical value for the driving force:

D2
c =

32
√

3
9κ

ω2
0λ3. (A.0.17)

The results obtained by the Landau and Lifshitz method are equivalent to the results obtained

by the method of multiple scales.
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Appendix B

Mathematica script for solving the
nonlinear equation with
electrostatics

This is the listing of the Mathematica script to solve the frequency and nonlinearity tuning model

described in Chapter 5.

Loading experimental data

Clear[bb10]Clear[bb10]Clear[bb10]

$TextStyle = {FontWeight->"Bold",Font->"Arial", FontSize → 12};$TextStyle = {FontWeight->"Bold",Font->"Arial", FontSize → 12};$TextStyle = {FontWeight->"Bold", Font->"Arial",FontSize → 12};

bb10 = Transpose[Import["H:/Data/011605/A13 2 bb9 fullbg4.dat"]];bb10 = Transpose[Import["H:/Data/011605/A13 2 bb9 fullbg4.dat"]];bb10 = Transpose[Import["H:/Data/011605/A13 2 bb9 fullbg4.dat"]];

Fexp = bb10[[2]]
/
106 ;Fexp = bb10[[2]]

/
106 ;Fexp = bb10[[2]]

/
106 ;

f0vsVgate = Transpose
[
Union

[{bb10[[1]]}, {bb10[[2]]
/
106

}]]
;f0vsVgate = Transpose

[
Union

[{bb10[[1]]}, {bb10[[2]]
/
106

}]]
;f0vsVgate = Transpose

[
Union

[{bb10[[1]]}, {bb10[[2]]
/
106

}]]
;

f0graph = ListPlot[f0vsVgate, PlotStyle → {RGBColor[0, .2, .9],PointSize[0.015]},Frame → True,f0graph = ListPlot[f0vsVgate,PlotStyle → {RGBColor[0, .2, .9], PointSize[0.015]},Frame → True,f0graph = ListPlot[f0vsVgate,PlotStyle → {RGBColor[0, .2, .9], PointSize[0.015]},Frame → True,

Axes → None, FrameLabel → {"Gate DC voltage(V)", "Freq (MHz)"}, ImageSize → Automatic]Axes → None, FrameLabel → {"Gate DC voltage(V)", "Freq (MHz)"}, ImageSize → Automatic]Axes → None, FrameLabel → {"Gate DC voltage(V)", "Freq (MHz)"}, ImageSize → Automatic]
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Qexp = bb10[[3]];Qexp = bb10[[3]];Qexp = bb10[[3]];

Q = First[Qexp]Q = First[Qexp]Q = First[Qexp]

3829.89

QvsVgate = Transpose[Union[{bb10[[1]]}, {bb10[[3]]}]];QvsVgate = Transpose[Union[{bb10[[1]]}, {bb10[[3]]}]];QvsVgate = Transpose[Union[{bb10[[1]]}, {bb10[[3]]}]];

Qgraph = ListPlot[QvsVgate, PlotStyle → {RGBColor[0, 0.2, 0.8], PointSize[0.015]}, Frame → True,Qgraph = ListPlot[QvsVgate, PlotStyle → {RGBColor[0, 0.2, 0.8],PointSize[0.015]}, Frame → True,Qgraph = ListPlot[QvsVgate, PlotStyle → {RGBColor[0, 0.2, 0.8],PointSize[0.015]}, Frame → True,

Axes → None, FrameLabel → {"Gate DC voltage(V)", "Q"},Axes → None, FrameLabel → {"Gate DC voltage(V)", "Q"},Axes → None, FrameLabel → {"Gate DC voltage(V)", "Q"},

FrameTicks → {{0, 10, 20},Automatic, {}, {}}, ImageSize → Automatic]FrameTicks → {{0, 10, 20}, Automatic, {}, {}}, ImageSize → Automatic]FrameTicks → {{0, 10, 20}, Automatic, {}, {}}, ImageSize → Automatic]
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QinvvsVgate = Transpose[Union[{bb10[[1]]}, {1/(bb10[[3]])}]];QinvvsVgate = Transpose[Union[{bb10[[1]]}, {1/(bb10[[3]])}]];QinvvsVgate = Transpose[Union[{bb10[[1]]}, {1/(bb10[[3]])}]];

Qinvgraph = ListPlot[QinvvsVgate, PlotStyle → {RGBColor[0, 0.2, 0.8], PointSize[0.015]},Qinvgraph = ListPlot[QinvvsVgate, PlotStyle → {RGBColor[0, 0.2, 0.8],PointSize[0.015]},Qinvgraph = ListPlot[QinvvsVgate, PlotStyle → {RGBColor[0, 0.2, 0.8],PointSize[0.015]},

Frame → True, Axes → None, FrameLabel → {"DC gate voltage(V)", "1/Q"}, ImageSize → Automatic]Frame → True, Axes → None,FrameLabel → {"DC gate voltage(V)", "1/Q"}, ImageSize → Automatic]Frame → True,Axes → None,FrameLabel → {"DC gate voltage(V)", "1/Q"}, ImageSize → Automatic]
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Npts = First[Dimensions[Qexp]];Npts = First[Dimensions[Qexp]];Npts = First[Dimensions[Qexp]];

acvsVgate = Transpose[Union[{bb10[[1]]}, {bb10[[4]]}]];acvsVgate = Transpose[Union[{bb10[[1]]}, {bb10[[4]]}]];acvsVgate = Transpose[Union[{bb10[[1]]}, {bb10[[4]]}]];

acgraph = ListPlot[acvsVgate, PlotStyle → {RGBColor[0, 0.75, .3], PointSize[0.015]},acgraph = ListPlot[acvsVgate, PlotStyle → {RGBColor[0, 0.75, .3],PointSize[0.015]},acgraph = ListPlot[acvsVgate, PlotStyle → {RGBColor[0, 0.75, .3],PointSize[0.015]},

Frame → True, Axes → None, FrameLabel → {"DC gate voltage(V)", "ac(m)"}, ImageSize → Automatic]Frame → True, Axes → None,FrameLabel → {"DC gate voltage(V)", "ac(m)"}, ImageSize → Automatic]Frame → True,Axes → None,FrameLabel → {"DC gate voltage(V)", "ac(m)"}, ImageSize → Automatic]
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alphavsVgate = Transpose[Union[{bb10[[1]]}, {bb10[[6]]}]];alphavsVgate = Transpose[Union[{bb10[[1]]}, {bb10[[6]]}]];alphavsVgate = Transpose[Union[{bb10[[1]]}, {bb10[[6]]}]];

alphagraph = ListPlot[alphavsVgate,PlotStyle → {RGBColor[0, 1, 1],PointSize[0.015]},alphagraph = ListPlot[alphavsVgate, PlotStyle → {RGBColor[0, 1, 1], PointSize[0.015]},alphagraph = ListPlot[alphavsVgate, PlotStyle → {RGBColor[0, 1, 1], PointSize[0.015]},

Frame → True, FrameLabel → {"DC gate voltage(V)", "Alpha"}, ImageSize → Automatic]Frame → True, FrameLabel → {"DC gate voltage(V)", "Alpha"}, ImageSize → Automatic]Frame → True,FrameLabel → {"DC gate voltage(V)", "Alpha"}, ImageSize → Automatic]
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alpha2vsVgate = Transpose[Union[{bb10[[1]]}, {bb10[[7]]}]];alpha2vsVgate = Transpose[Union[{bb10[[1]]}, {bb10[[7]]}]];alpha2vsVgate = Transpose[Union[{bb10[[1]]}, {bb10[[7]]}]];
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alpha2graph = ListPlot[alpha2vsVgate, PlotStyle → {RGBColor[0, 0.2, .9],PointSize[0.015]},alpha2graph = ListPlot[alpha2vsVgate,PlotStyle → {RGBColor[0, 0.2, .9], PointSize[0.015]},alpha2graph = ListPlot[alpha2vsVgate,PlotStyle → {RGBColor[0, 0.2, .9], PointSize[0.015]},

Frame → True, Axes → None, FrameLabel → {"DC gate voltage(V)", "Alpha2"}, ImageSize → Automatic]Frame → True, Axes → None,FrameLabel → {"DC gate voltage(V)", "Alpha2"}, ImageSize → Automatic]Frame → True,Axes → None,FrameLabel → {"DC gate voltage(V)", "Alpha2"}, ImageSize → Automatic]
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DR0 = First[bb10[[10]]];DR0 = First[bb10[[10]]];DR0 = First[bb10[[10]]];

DRvsVgate = Transpose[Union[{bb10[[1]]}, {bb10[[10]]−DR0}]];DRvsVgate = Transpose[Union[{bb10[[1]]}, {bb10[[10]]−DR0}]];DRvsVgate = Transpose[Union[{bb10[[1]]}, {bb10[[10]]−DR0}]];

DRgraph = ListPlot[DRvsVgate,PlotStyle → {RGBColor[.9, .1, .1],PointSize[0.015]},DRgraph = ListPlot[DRvsVgate, PlotStyle → {RGBColor[.9, .1, .1], PointSize[0.015]},DRgraph = ListPlot[DRvsVgate, PlotStyle → {RGBColor[.9, .1, .1], PointSize[0.015]},

Frame → True, Axes → None, FrameLabel → {"DC gate voltage(V)", "∆DR(dB)"}, ImageSize → Automatic]Frame → True, Axes → None,FrameLabel → {"DC gate voltage(V)", "∆DR(dB)"}, ImageSize → Automatic]Frame → True,Axes → None,FrameLabel → {"DC gate voltage(V)", "∆DR(dB)"}, ImageSize → Automatic]
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Tuning calculations using Galerkin discretization method

Capacitance

Clear[x, y, r, R, z, a,A, As, F1,F2,K2, K3, K1,K4,K5, c, ρ, Y, Ym, T0, L, r, R, S, Sm, ε, ε0,Clear[x, y, r, R, z, a, A,As, F1, F2,K2, K3, K1,K4, K5, c, ρ, Y, Ym, T0, L, r, R, S, Sm, ε, ε0,Clear[x, y, r, R, z, a, A,As, F1, F2, K2, K3, K1,K4, K5, c, ρ, Y, Ym,T0, L, r,R, S, Sm, ε, ε0,

IM, IMm, V, gap, a,Eq, Freq, d, s, Veq,Vstab, dEq, Api];IM, IMm, V, gap, a, Eq, Freq, d, s, Veq, Vstab, dEq, Api];IM, IMm, V, gap, a, Eq, Freq, d, s, Veq, Vstab, dEq,Api];

K0 = Normal
[
Simplify

[
Series

[
2πεε0

Log
[
1/y∗

(
1−a−x+y+

√
(1−a−x+y)∧2−y∧2

)] , {x, 0, 0}
]]]

;K0 = Normal
[
Simplify

[
Series

[
2πεε0

Log
[
1/y∗

(
1−a−x+y+

√
(1−a−x+y)∧2−y∧2

)] , {x, 0, 0}
]]]

;K0 = Normal
[
Simplify

[
Series

[
2πεε0

Log
[
1/y∗

(
1−a−x+y+

√
(1−a−x+y)∧2−y∧2

)] , {x, 0, 0}
]]]

;

K1 =
(

Normal
[
Simplify

[
Series

[
2πεε0

Log
[
1/y∗

(
1−a−x+y+

√
(1−a−x+y)∧2−y∧2

)] , {x, 0, 1}
]]]

K1 =
(

Normal
[
Simplify

[
Series

[
2πεε0

Log
[
1/y∗

(
1−a−x+y+

√
(1−a−x+y)∧2−y∧2

)] , {x, 0, 1}
]]]

K1 =
(

Normal
[
Simplify

[
Series

[
2πεε0

Log
[
1/y∗

(
1−a−x+y+

√
(1−a−x+y)∧2−y∧2

)] , {x, 0, 1}
]]]

−K0)/x/R;−K0)/x/R;−K0)/x/R;
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K2 =
(

Normal
[
Simplify

[
Series

[
2πεε0

Log
[
1/y∗

(
1−a−x+y+

√
(1−a−x+y)∧2−y∧2

)] , {x, 0, 2}
]]]

K2 =
(

Normal
[
Simplify

[
Series

[
2πεε0

Log
[
1/y∗

(
1−a−x+y+

√
(1−a−x+y)∧2−y∧2

)] , {x, 0, 2}
]]]

K2 =
(

Normal
[
Simplify

[
Series

[
2πεε0

Log
[
1/y∗

(
1−a−x+y+

√
(1−a−x+y)∧2−y∧2

)] , {x, 0, 2}
]]]

−(K1 ∗R) ∗ x−K0)/x∧2/R∧2;−(K1 ∗R) ∗ x−K0)/x∧2/R∧2;−(K1 ∗R) ∗ x−K0)/x∧2/R∧2;

K3 = Simplify
[(

Normal
[
Simplify

[
Series

[
2πεε0

Log
[
1/y∗

(
1−x−a+y+

√
(1−a−x+y)∧2−y∧2

)] , {x, 0, 3}
]]]

K3 = Simplify
[(

Normal
[
Simplify

[
Series

[
2πεε0

Log
[
1/y∗

(
1−x−a+y+

√
(1−a−x+y)∧2−y∧2

)] , {x, 0, 3}
]]]

K3 = Simplify
[(

Normal
[
Simplify

[
Series

[
2πεε0

Log
[
1/y∗

(
1−x−a+y+

√
(1−a−x+y)∧2−y∧2

)] , {x, 0, 3}
]]]

−K2 ∗ (R ∗ x)∧2−K1 ∗ (R ∗ x)−K0)/(x ∗R)∧3];−K2 ∗ (R ∗ x)∧2−K1 ∗ (R ∗ x)−K0)/(x ∗R)∧3];−K2 ∗ (R ∗ x)∧2−K1 ∗ (R ∗ x)−K0)/(x ∗R)∧3];

K4 = Simplify
[(

Normal
[
Simplify

[
Series

[
2πεε0

Log
[
1/y∗

(
1−a−x+y+

√
(1−a−x+y)∧2−y∧2

)] , {x, 0, 4}
]]]

K4 = Simplify
[(

Normal
[
Simplify

[
Series

[
2πεε0

Log
[
1/y∗

(
1−a−x+y+

√
(1−a−x+y)∧2−y∧2

)] , {x, 0, 4}
]]]

K4 = Simplify
[(

Normal
[
Simplify

[
Series

[
2πεε0

Log
[
1/y∗

(
1−a−x+y+

√
(1−a−x+y)∧2−y∧2

)] , {x, 0, 4}
]]]

−K3 ∗ (R ∗ x)∧3−K2 ∗ (R ∗ x)∧2−K1 ∗ (R ∗ x)−K0)/(x ∗R)∧4];−K3 ∗ (R ∗ x)∧3−K2 ∗ (R ∗ x)∧2−K1 ∗ (R ∗ x)−K0)/(x ∗R)∧4];−K3 ∗ (R ∗ x)∧3−K2 ∗ (R ∗ x)∧2−K1 ∗ (R ∗ x)−K0)/(x ∗R)∧4];

x = z/R;x = z/R;x = z/R;

y = r/R;y = r/R;y = r/R;

F0 = K1/2 ∗ V ∧2;F0 = K1/2 ∗ V ∧2;F0 = K1/2 ∗ V ∧2;

F1 = K2 ∗ V ∧2;F1 = K2 ∗ V ∧2;F1 = K2 ∗ V ∧2;

F2 = 3/2 ∗K3 ∗ V ∧2;F2 = 3/2 ∗K3 ∗ V ∧2;F2 = 3/2 ∗K3 ∗ V ∧2;

F3 = 2 ∗K4 ∗ V ∧2;F3 = 2 ∗K4 ∗ V ∧2;F3 = 2 ∗K4 ∗ V ∧2;

Eq = −(a ∗R) ∗
(

Y ∗IM+Ym∗IMm
3∗(ρ∗S+ρmSm) ∗

(
2π
L

) ∧4 + T0
3∗(ρ∗S+ρmSm)

(
2π
L

) ∧2
)

Eq = −(a ∗R) ∗
(

Y ∗IM+Ym∗IMm
3∗(ρ∗S+ρmSm) ∗

(
2π
L

) ∧4 + T0
3∗(ρ∗S+ρmSm)

(
2π
L

) ∧2
)

Eq = −(a ∗R) ∗
(

Y ∗IM+Ym∗IMm
3∗(ρ∗S+ρmSm) ∗

(
2π
L

) ∧4 + T0
3∗(ρ∗S+ρmSm)

(
2π
L

) ∧2
)

0009− (a ∗R)∧3 ∗
(

Y S+YmSm
18(ρS+ρmSm) ∗

(
2π
L

) ∧4− 35F3
18(ρ∗S+ρmSm)

)
+

√
2F0√

3(ρ∗S+ρmSm)
;0009− (a ∗R)∧3 ∗

(
Y S+YmSm

18(ρS+ρmSm) ∗
(

2π
L

) ∧4− 35F3
18(ρ∗S+ρmSm)

)
+

√
2F0√

3(ρ∗S+ρmSm)
;0009− (a ∗R)∧3 ∗

(
Y S+YmSm

18(ρS+ρmSm) ∗
(

2π
L

) ∧4− 35F3
18(ρ∗S+ρmSm)

)
+

√
2F0√

3(ρ∗S+ρmSm)
;

a = A/R;a = A/R;a = A/R;

dEq = D[Eq, A];dEq = D[Eq, A];dEq = D[Eq, A];

Veq[A ] = V /.First[Solve[Eq == 0, V ]];Veq[A ] = V /.First[Solve[Eq == 0, V ]];Veq[A ] = V /.First[Solve[Eq == 0, V ]];

Vstab[A ] = V /.First[Solve[dEq == 0, V ]];Vstab[A ] = V /.First[Solve[dEq == 0, V ]];Vstab[A ] = V /.First[Solve[dEq == 0, V ]];

SiC beam with Au layer

Y = 430 ∗ 10∧9;Y = 430 ∗ 10∧9;Y = 430 ∗ 10∧9;

Ym = 78 ∗ 10∧9;Ym = 78 ∗ 10∧9;Ym = 78 ∗ 10∧9;

ρ = 2880;ρ = 2880;ρ = 2880;

L = 15 ∗ 10∧(−6);L = 15 ∗ 10∧(−6);L = 15 ∗ 10∧(−6);

w = 150 ∗ 10∧ − 9;w = 150 ∗ 10∧ − 9;w = 150 ∗ 10∧ − 9;

t = 100 ∗ 10−9;t = 100 ∗ 10−9;t = 100 ∗ 10−9;

ρm = 19300;ρm = 19300;ρm = 19300;
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tm = 35 ∗ 10−9;tm = 35 ∗ 10−9;tm = 35 ∗ 10−9;

tm = 40 ∗ 10−9;tm = 40 ∗ 10−9;tm = 40 ∗ 10−9;

IM = w∧3 ∗ t/12;IM = w∧3 ∗ t/12;IM = w∧3 ∗ t/12;

IMm = w∧3 ∗ tm/ 12;IMm = w∧3 ∗ tm/ 12;IMm = w∧3 ∗ tm/ 12;

S = w ∗ t;S = w ∗ t;S = w ∗ t;

Sm = w ∗ tm;Sm = w ∗ tm;Sm = w ∗ tm;

T0 = 5.27 ∗ 10−6;T0 = 5.27 ∗ 10−6;T0 = 5.27 ∗ 10−6;

T0 = 6 ∗ 10−6;T0 = 6 ∗ 10−6;T0 = 6 ∗ 10−6;

r = 70 ∗ 10∧(−9);r = 70 ∗ 10∧(−9);r = 70 ∗ 10∧(−9);r = 70 ∗ 10∧(−9);r = 70 ∗ 10∧(−9);r = 70 ∗ 10∧(−9);r = 70 ∗ 10∧(−9);r = 70 ∗ 10∧(−9);r = 70 ∗ 10∧(−9);

R = 300 ∗ 10∧(−9);R = 300 ∗ 10∧(−9);R = 300 ∗ 10∧(−9);R = 300 ∗ 10∧(−9);R = 300 ∗ 10∧(−9);R = 300 ∗ 10∧(−9);R = 300 ∗ 10∧(−9);R = 300 ∗ 10∧(−9);R = 300 ∗ 10∧(−9);

ε0 = 8.8542 ∗ 10∧(−12);ε0 = 8.8542 ∗ 10∧(−12);ε0 = 8.8542 ∗ 10∧(−12);ε0 = 8.8542 ∗ 10∧(−12);ε0 = 8.8542 ∗ 10∧(−12);ε0 = 8.8542 ∗ 10∧(−12);ε0 = 8.8542 ∗ 10∧(−12);ε0 = 8.8542 ∗ 10∧(−12);ε0 = 8.8542 ∗ 10∧(−12);

ε = 1;ε = 1;ε = 1;ε = 1;ε = 1;ε = 1;ε = 1;ε = 1;ε = 1;

Solve for freq, ac, DR and compare to experimental data

First, calculate pull-in amplitude and voltage:

Api = Re[A/.FindRoot[Veq[A]−Vstab[A] == 0, {A, 10∧ − 11}]]Api = Re[A/.FindRoot[Veq[A]−Vstab[A] == 0, {A, 10∧ − 11}]]Api = Re[A/.FindRoot[Veq[A]−Vstab[A] == 0, {A, 10∧ − 11}]]

7.60308× 10−8

Abs[Veq[Api]]Abs[Veq[Api]]Abs[Veq[Api]]

43.9911

Stepper = (Npts− 1)/Abs[Veq[Api]]Stepper = (Npts− 1)/Abs[Veq[Api]]Stepper = (Npts− 1)/Abs[Veq[Api]]

2.72782

V = V1/Stepper;V = V1/Stepper;V = V1/Stepper;

Vmax = Abs[Veq[Api]] ∗ Stepper;Vmax = Abs[Veq[Api]] ∗ Stepper;Vmax = Abs[Veq[Api]] ∗ Stepper;

DC displacement amplitude:

AsN = Table[A/.First[FindRoot[Eq == 0, {A, 10∧(−9)}]], {V1, 0,Vmax}];AsN = Table[A/.First[FindRoot[Eq == 0, {A, 10∧(−9)}]], {V1, 0, Vmax}];AsN = Table[A/.First[FindRoot[Eq == 0, {A, 10∧(−9)}]], {V1, 0, Vmax}];

VN = Table[V, {V1, 0, Vmax}];VN = Table[V, {V1, 0, Vmax}];VN = Table[V, {V1, 0, Vmax}];

V2N = Table[V ∧2, {V1, 0, Vmax}];V2N = Table[V ∧2, {V1, 0,Vmax}];V2N = Table[V ∧2, {V1, 0,Vmax}];
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A vs. V

APlot = N [Transpose[Union[{VN}, {AsN}]]];APlot = N [Transpose[Union[{VN}, {AsN}]]];APlot = N [Transpose[Union[{VN}, {AsN}]]];

A vs. V∧2

A2Plot = N [Transpose[Union[{V2N}, {AsN}]]];A2Plot = N [Transpose[Union[{V2N}, {AsN}]]];A2Plot = N [Transpose[Union[{V2N}, {AsN}]]];

A = AsN;A = AsN;A = AsN;

Driving force terms in terms of capacitance coefficients:

F1N = K2 ∗V2N;F1N = K2 ∗V2N;F1N = K2 ∗V2N;

F2N = 3/2 ∗K3 ∗V2N;F2N = 3/2 ∗K3 ∗V2N;F2N = 3/2 ∗K3 ∗V2N;

F3N = 2 ∗K4 ∗V2N;F3N = 2 ∗K4 ∗V2N;F3N = 2 ∗K4 ∗V2N;

Resonant frequency:

FreqN = 1
2π

√(
Y ∗IM+Ym∗IMm
3∗(ρ∗S+ρmSm) ∗

(
2π
L

) ∧4 + T0
3∗(ρ∗S+ρmSm)

(
2π
L

) ∧2+FreqN = 1
2π

√(
Y ∗IM+Ym∗IMm
3∗(ρ∗S+ρmSm) ∗

(
2π
L

) ∧4 + T0
3∗(ρ∗S+ρmSm)

(
2π
L

) ∧2+FreqN = 1
2π

√(
Y ∗IM+Ym∗IMm
3∗(ρ∗S+ρmSm) ∗

(
2π
L

) ∧4 + T0
3∗(ρ∗S+ρmSm)

(
2π
L

) ∧2+

00090009 + Y S+YmSm
(ρS+ρmSm) ∗ AsN∧2

6 ∗ (
2π
L

) ∧4− F1N
(ρ∗S+ρmSm)

)
;00090009 + Y S+YmSm

(ρS+ρmSm) ∗ AsN∧2
6 ∗ (

2π
L

) ∧4− F1N
(ρ∗S+ρmSm)

)
;00090009 + Y S+YmSm

(ρS+ρmSm) ∗ AsN∧2
6 ∗ (

2π
L

) ∧4− F1N
(ρ∗S+ρmSm)

)
;

Quadratic nonlinear coefficient:

Alpha2 = Y S+YmSm
6(ρS+ρmSm) ∗AsN ∗ (

2π
L

)4 − 5
3

√
2
3

F2N
(ρS+ρmSm) ;Alpha2 = Y S+YmSm

6(ρS+ρmSm) ∗AsN ∗ (
2π
L

)4 − 5
3

√
2
3

F2N
(ρS+ρmSm) ;Alpha2 = Y S+YmSm

6(ρS+ρmSm) ∗AsN ∗ (
2π
L

)4 − 5
3

√
2
3

F2N
(ρS+ρmSm) ;

Cubic nonlinear coefficient:

Alpha3 = Y S+YmSm
18(ρS+ρmSm) ∗

(
2π
L

)4 − 35F3N
18(ρS+ρmSm) ;Alpha3 = Y S+YmSm

18(ρS+ρmSm) ∗
(

2π
L

)4 − 35F3N
18(ρS+ρmSm) ;Alpha3 = Y S+YmSm

18(ρS+ρmSm) ∗
(

2π
L

)4 − 35F3N
18(ρS+ρmSm) ;

First[Alpha3]//NFirst[Alpha3]//NFirst[Alpha3]//N

7.44158× 1028

Effective nonlinearity:

Alpha = Alpha3− 10Alpha2∧2
9FreqN∧2 ;Alpha = Alpha3− 10Alpha2∧2
9FreqN∧2 ;Alpha = Alpha3− 10Alpha2∧2
9FreqN∧2 ;

Critical amplitude:

acrit =
√

8
√

3(FreqN∗2π)∧2
9AlphaQ ;acrit =

√
8
√

3(FreqN∗2π)∧2
9AlphaQ ;acrit =

√
8
√

3(FreqN∗2π)∧2
9AlphaQ ;

kB = 1.38 ∗ 10∧(−23);kB = 1.38 ∗ 10∧(−23);kB = 1.38 ∗ 10∧(−23);

T = 20;T = 20;T = 20;

df = 1;df = 1;df = 1;

Change in dynamic range using the experimental values for Q:

∆DR = 20 ∗ Log
[√

FreqN2∗First[Alpha]∗First[Qexp]
Qexp∗First[FreqN]2∗Alpha

]
;∆DR = 20 ∗ Log

[√
FreqN2∗First[Alpha]∗First[Qexp]

Qexp∗First[FreqN]2∗Alpha

]
;∆DR = 20 ∗ Log

[√
FreqN2∗First[Alpha]∗First[Qexp]

Qexp∗First[FreqN]2∗Alpha

]
;
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Resonant frequency vs. V:

FreqPlot = N
[
Transpose

[
Union

[{VN}, {FreqN
/
106

}]]]
;FreqPlot = N

[
Transpose

[
Union

[{VN}, {FreqN
/
106

}]]]
;FreqPlot = N

[
Transpose

[
Union

[{VN},{FreqN
/
106

}]]]
;

Effective nonlinearity alpha vs. V:

AlphaPlot = N [Transpose[Union[{VN}, {Alpha}]]];AlphaPlot = N [Transpose[Union[{VN}, {Alpha}]]];AlphaPlot = N [Transpose[Union[{VN}, {Alpha}]]];

Quadratic nonlinearity alpha2 vs. V:

Alpha2Plot = N [Transpose[Union[{VN}, {Alpha2}]]];Alpha2Plot = N [Transpose[Union[{VN}, {Alpha2}]]];Alpha2Plot = N [Transpose[Union[{VN}, {Alpha2}]]];

Critical amplitude vs. V:

acritPlot = N [Transpose[Union[{VN}, {acrit}]]];acritPlot = N [Transpose[Union[{VN}, {acrit}]]];acritPlot = N [Transpose[Union[{VN}, {acrit}]]];

Change in dynamic range vs. V:

∆DRPlot = N [Transpose[Union[{VN}, {∆DR}]]];∆DRPlot = N [Transpose[Union[{VN}, {∆DR}]]];∆DRPlot = N [Transpose[Union[{VN}, {∆DR}]]];

First[FreqN]/10∧6First[FreqN]/10∧6First[FreqN]/10∧6

8.78128

A DC vs. V:

a2 = ListPlot[APlot, PlotRange → All, ImageSize → Automatic]a2 = ListPlot[APlot, PlotRange → All, ImageSize → Automatic]a2 = ListPlot[APlot,PlotRange → All, ImageSize → Automatic]

10 20 30 40

1 ´ 10-8
2 ´ 10-8
3 ´ 10-8
4 ´ 10-8
5 ´ 10-8
6 ´ 10-8
7 ´ 10-8

A DC vs. V∧2:

ListPlot[A2Plot, PlotJoined → True, PlotRange → All, ImageSize → Automatic]ListPlot[A2Plot,PlotJoined → True, PlotRange → All, ImageSize → Automatic]ListPlot[A2Plot,PlotJoined → True,PlotRange → All, ImageSize → Automatic]
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500 1000 1500

1 ´ 10-8
2 ´ 10-8
3 ´ 10-8
4 ´ 10-8
5 ´ 10-8
6 ´ 10-8
7 ´ 10-8

Resonant frequency vs. V:

f2 = ListPlot[FreqPlot, PlotStyle → {RGBColor[0, 0, 0], AbsoluteThickness[2]},f2 = ListPlot[FreqPlot, PlotStyle → {RGBColor[0, 0, 0], AbsoluteThickness[2]},f2 = ListPlot[FreqPlot,PlotStyle → {RGBColor[0, 0, 0],AbsoluteThickness[2]},

PlotJoined → True, PlotRange → All, Frame → True,Axes → None,PlotJoined → True, PlotRange → All, Frame → True,Axes → None,PlotJoined → True, PlotRange → All,Frame → True, Axes → None,

FrameLabel → {"DC gate voltage(V)", "Freq (MHz)"}, ImageSize → Automatic]FrameLabel → {"DC gate voltage(V)", "Freq (MHz)"}, ImageSize → Automatic]FrameLabel → {"DC gate voltage(V)", "Freq (MHz)"}, ImageSize → Automatic]
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Compare theory(black) with data (blue):

Show[f2, f0graph, ImageSize → Automatic]Show[f2, f0graph, ImageSize → Automatic]Show[f2, f0graph, ImageSize → Automatic]
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Show[f2, f0graph,PlotRange → {{0, 30}, {8.25, 8.9}}, ImageSize → Automatic]Show[f2, f0graph, PlotRange → {{0, 30}, {8.25, 8.9}}, ImageSize → Automatic]Show[f2, f0graph, PlotRange → {{0, 30}, {8.25, 8.9}}, ImageSize → Automatic]
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Critical amplitude vs. V:

acth = ListPlot[acritPlot, PlotStyle → {RGBColor[0, 0, 0], AbsoluteThickness[2]},acth = ListPlot[acritPlot,PlotStyle → {RGBColor[0, 0, 0],AbsoluteThickness[2]},acth = ListPlot[acritPlot,PlotStyle → {RGBColor[0, 0, 0],AbsoluteThickness[2]},

PlotJoined → True, PlotRange → All, Frame → True,Axes → None,PlotJoined → True, PlotRange → All, Frame → True,Axes → None,PlotJoined → True, PlotRange → All,Frame → True, Axes → None,

FrameLabel → {"DC gate voltage(V)", "Critical amp(m)"}, ImageSize → Automatic]FrameLabel → {"DC gate voltage(V)", "Critical amp(m)"}, ImageSize → Automatic]FrameLabel → {"DC gate voltage(V)", "Critical amp(m)"}, ImageSize → Automatic]
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Compare theory(black) with data (green):

Show[acth, acgraph, ImageSize → Automatic]Show[acth, acgraph, ImageSize → Automatic]Show[acth, acgraph, ImageSize → Automatic]
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Dynamic range vs. V:

DRth = ListPlot[∆DRPlot, PlotJoined → True, PlotRange → {All,All},DRth = ListPlot[∆DRPlot, PlotJoined → True, PlotRange → {All,All},DRth = ListPlot[∆DRPlot,PlotJoined → True,PlotRange → {All,All},
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PlotStyle → {RGBColor[.1, .35, .5], AbsoluteThickness[2], , PointSize[0.015]},PlotStyle → {RGBColor[.1, .35, .5], AbsoluteThickness[2], , PointSize[0.015]},PlotStyle → {RGBColor[.1, .35, .5], AbsoluteThickness[2], , PointSize[0.015]},

Frame → True, Axes → None, FrameLabel → {"DC gate voltage(V)", "Dynamic Range(dB)"},Frame → True, Axes → None,FrameLabel → {"DC gate voltage(V)", "Dynamic Range(dB)"},Frame → True,Axes → None,FrameLabel → {"DC gate voltage(V)", "Dynamic Range(dB)"},

ImageSize → Automatic]ImageSize → Automatic]ImageSize → Automatic]
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Compare theory(blue) with data (red):

Show[DRth,DRgraph, PlotRange → {{0, 25}, {−1, 10}}, ImageSize → Automatic];Show[DRth,DRgraph, PlotRange → {{0, 25}, {−1, 10}}, ImageSize → Automatic];Show[DRth, DRgraph, PlotRange → {{0, 25}, {−1, 10}}, ImageSize → Automatic];
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Appendix C

Matlab routine for fitting
resonance with a background

This is the listing of the Matlab code that fits experimental resonance data to a Lorentzian using the

procedure described in Chapter 3. The main program fitdata.m calls on circfit.m, fitdtheta.m,

and fullresfit.m subroutines.

function result=fitdata(files, resultfile, FreqStart, FreqStop, flag );

% Inna Kozinsky
% 8 March 2006
% inna@caltech . edu
% x2914
%
% Arguments :
% files − full name of the data file , e. g. ' C: \Data \run1 . dat ' )
% resultfile − full name of the file where the fit result is recorded
% format recorded : f0 Q Amp
% Fstart − starting frequency for the fit , in MHz
% Fend − end frequency for the fit , in MHz
% flag − indicates initial f0 and Q guess options
% 0 for initial guess from dtheta fit − good for most cases
% 1 subtract line from the data before the dtheta fit − for low Qs
% 2 and 3 − manual f0 and Q guesses − when auto guesses are not good enough
% 2 use manual f0 and Q guess for dtheta fit , then use result for the
% final fit
% 3 use manual f0 and Q guesses for the final fit , do not worry about
% the dtheta fit
% Output :
% result = [ Ax Ay Q f0 C0x C0y C1x C1y]

close all

comment=4; %number of comment lines at the beginning of data file
NoToSmooth=10; %how many points to smooth for dtheta fit
Fstart=FreqStart * 1e−3; % convert to GHz
Fend=FreqStop * 1e−3;

% read in the data from a file
temp= dlmread (files, ' \t ' ,comment,0);

ifstarts= find (temp(:,1) >Fstart);
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ifstart=ifstarts(1);
ifends= find (temp(:,1) <Fend);
ifend=ifends( end);

freq=temp(ifstart:ifend,1) * 1e3;
xcomp=temp(ifstart:ifend,3);
ycomp=temp(ifstart:ifend,4);

% plot the loaded data
figure
title ( ' Raw amplitude data ' )
hold on
plot (freq, sqrt (xcomp.ˆ2+ycomp.ˆ2));
xlabel freq, ylabel amp

if flag ==1,
% fit a line to the background
xbgline est(2)=(xcomp( end)−xcomp(1))/(freq( end)−freq(1));
xbgline est(1)=xcomp(1) −xbgline est(2) * freq(1);
ybgline est(2)=(ycomp( end)−ycomp(1))/(freq( end)−freq(1));
ybgline est(1)=ycomp(1) −ybgline est(2) * freq(1);
hx=inline( ' xb (1)+ xb (2) * freq ' , ' xb ' , ' freq ' );
hy=inline( ' yb (1)+ yb (2) * freq ' , ' yb ' , ' freq ' );
xbgline=lsqcurvefit(hx, xbgline est,freq,xcomp);
ybgline=lsqcurvefit(hy, ybgline est,freq,ycomp);
xcomp bg=xbgline(1)+xbgline(2). * freq;
ycomp bg=ybgline(1)+ybgline(2). * freq;

% subtract background from x and y
xcomp sig=xcomp −xcomp bg;
ycomp sig=ycomp −ycomp bg;

figure
subplot (2,2,1)
plot (freq,xcomp, ' . ' ,freq,xcomp bg, ' m' )
subplot (2,2,2)
plot (freq,ycomp, ' . ' ,freq,ycomp bg, ' m' )
subplot (2,2,3)
plot (freq,xcomp sig, ' . ' )
subplot (2,2,4)
plot (freq,ycomp sig, ' . ' )

else
xcomp sig=xcomp;
ycomp sig=ycomp;

end

%%%%fit the data to a circle
cut=4/12; % fraction of data to cut from both ends of the data
[xc,yc,R,a]=circfit(xcomp sig( round ( end* cut): round ( end* (1−cut))),

ycomp sig( round ( end* cut): round ( end* (1−cut))));
th = 0: pi / length (freq):2 * pi ;
xfit1=R * cos (th)+xc;
yfit1=R * sin (th)+yc;

% fitting to a circle plot
figure
title ( ' Data fitted to a circle ' )
hold on
plot (xcomp sig( round ( end* cut): round ( end* (1−cut))),

ycomp sig( round ( end* cut): round ( end* (1−cut))), ' co ' ,
xcomp sig,ycomp sig, ' . ' ,xfit1,yfit1, ' r ' ),

xlabel x, ylabel y
axis equal

%%%%find dtheta
% translate the center of the circle to (0,0)
xtrans=xcomp sig −xc;
ytrans=ycomp sig −yc;
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domega=freq(2) −freq(1);

% figure out y( i +1) −y( i −1)
dy=[ytrans(1); diff (ytrans)];
dyminus1=dy;
dyminus1(1)=[];
dyminus1( end+1)= −ytrans( end);
dyy=dy+dyminus1;

% figure out x( i +1) −x( i −1)
dx=[xtrans(1); diff (xtrans)];
dxminus1=dx;
dxminus1(1)=[];
dxminus1( end+1)= −xtrans( end);
dxx=dx+dxminus1;

dtheta=(xtrans. * dyy−ytrans. * dxx)./(domega * 2* Rˆ2);

% plot of dtheta
figure
title ( ' d\theta vs . freq ' )
hold on
plot (freq,dtheta, ' . ' );
xlabel freq, ylabel d\theta

%%%%Fit dtheta to get Q and f0
fitout=fitdtheta(freq, smooth(dtheta,NoToSmooth), flag );
Q=fitout(1);
f0=fitout(2);

%%%%Find the resonance and background
%%%%points on the circle
ipeak= find (freq==f0);
if (ipeak),

x0=xtrans(ipeak);
y0=ytrans(ipeak);

else
ilower= find (freq <f0);
ilow=ilower( end );
ihigher= find (freq >f0);
ihigh=ihigher(1);
xlow=xtrans(ilow);
xhigh=xtrans(ihigh);
ylow=ytrans(ilow);
yhigh=ytrans(ihigh);

% Assume the f0 is in the same place between flow and fhigh
% as ( x0 , y0 ) is between ( xlow , ylow ) and ( xhigh , yhigh )
x0=(f0 −freq(ilow))/(freq(ihigh) −freq(ilow)) * (xhigh −xlow)+xlow;
y0=(f0 −freq(ilow))/(freq(ihigh) −freq(ilow)) * (yhigh −ylow)+ylow;

end

theta0= angle (x0+j * y0);
xbg=−x0;
ybg=−y0;

figure
hold on
plot (xtrans,ytrans, ' . ' ,x0,y0, ' go' ,xbg,ybg, ' gx ' )
axis equal

%%%%Full 8−parameter fit of the experimental data to the Lorentzian
%%%%with background

% x(1) = Ax = Re( amp* exp ( theta0 −3pi /2))
% x(2) = Ay = Im( amp* exp ( theta0 −3pi /2))
Amp=2* R; % amp estimate , max of sqrt (( xtrans −xbg ).ˆ2+( ytrans −ybg ).ˆ2)



132

A=Amp* exp (j * (theta0 −3* pi /2));
estimate(1)= real (A);
estimate(2)= imag (A);

% x(3) = Q
% x(4) = center frequency , f0
if flag ==3,

estimate(3) = input ( ' Enter your guess for Q: ' );
estimate(4) = input ( ' Enter your guess for f0 ( MHz): ' );

else ,
estimate(3)=Q;
estimate(4)=f0;

end

if flag ==1,
% x(5) = C0x
% x(6) = C0y
estimate(5)=xbgline(1)+xbgline(2) * f0;
estimate(6)=ybgline(1)+ybgline(2) * f0;
% x(7) = C1x
% x(8) = C1y
estimate(7)=xbgline(2);
estimate(8)=ybgline(2);

else
% x(5) = C0x
% x(6) = C0y
estimate(5)=xbg+xc;
estimate(6)=ybg+yc;
% x(7) = C1x
% x(8) = C1y
estimate(7)=0;
estimate(8)=0;

end

% Ax Ay Q f0 C0x C0y C1x C1y
result=fullresfit(freq,xcomp,ycomp,estimate);

fittedA= abs (result(1)+j * result(2));
fittedQ=result(3);
fittedf0=result(4);

% Format in the recorded file :
% f0 Q Amp
answer = input ( ' Do you want to record the results ? ( y/ n): ' , ' s ' );
if answer== ' y ' ,

dlmwrite (resultfile,[fittedf0 fittedQ fittedA], ' delimiter ' , ' \t ' , ' −append ' )
end

function [xc,yc,R,a] = circfit(x,y)

% This function fits the raw experimental x and y data to a circle .
% [ xc yx R] = circfit ( x, y)
% x, y are column vector where ( x( i ), y( i )) is a measured point
% result is center point ( yc , xc ) and radius R
% an optional output is the vector of coefficients a describing the circle ' s equation
% xˆ2+ yˆ2+ a(1) * x+a(2) * y+a(3)=0
%
% This routine written by Izhak Bucher , 25 Oct 1991.
% Courtesy of Matlab Central file exchange .

x=x(:); y=y(:);
a=[x y ones( size (x))] \[ −(x.ˆ2+y.ˆ2)];
xc = −.5 * a(1);
yc = −.5 * a(2);
R = sqrt ((a(1)ˆ2+a(2)ˆ2)/4 −a(3));
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function output=fitdtheta(xdata, ydata, flag );

% This function fits the experimental dtheta / domega values to the
% theoretical function dtheta / domega=−4* gamma/( gammâ2+4( omega−omega0)ˆ2

% dtheta / domega
h=inline( ' −4* x(1)./( x(1)ˆ2+4 * ( xdata −x(2)).ˆ2) ' , ' x ' , ' xdata ' );

% x(1) = gamma = omega0/ Q
% x(2) = omega0 ( resonance frequency )

if flag ==2,
guessQ = input ( ' Enter your guess for Q: ' );
estimate(2) = input ( ' Enter your guess for f0 ( MHz): ' ) * 1e6;
estimate(1) = estimate(2)/guessQ;

else
% estimate resonant frequency
indexmax= find ( abs (ydata)== max( abs (ydata)));
estimate(2)=xdata(indexmax(1));

% estimate Q as full width at half max
halfpeak ind= find ( abs (ydata) ≥(( max( abs (ydata)))/2));
df=xdata(halfpeak ind( end)) −xdata(halfpeak ind(1));
if max( abs (ydata))== max(ydata),

estimate(1)= −df;
else

estimate(1)=df;
end

end

% actual fitting goes on here
clear LB;
clear UB;
LB=[−Inf , xdata(1)];
UB=[ Inf , xdata( end )];

OPTIONS=optimset( ' lsqcurvefit ' );
OPTIONS=optimset(OPTIONS, ' TolX ' , 1e −20);
OPTIONS=optimset(OPTIONS, ' TolFun ' , 1e −20);
OPTIONS=optimset(OPTIONS, ' MaxFunEvals ' , 1000);
OPTIONS=optimset(OPTIONS, ' MaxIter ' , 1000);

xfit=lsqcurvefit(h, estimate, xdata, ydata, LB, UB, OPTIONS);

outcome=h(xfit, xdata);
initial=h(estimate, xdata);

% display results
disp (strcat( ' Q = ' , num2str (xfit(2)/xfit(1))));
disp (strcat( ' f0 = ' , num2str (xfit(2))));

% plot of dtheta fit
figure
hold on
plot (xdata, outcome, ' r ' , xdata, initial, ' g' ,xdata, ydata, ' . ' );
hold off

out(1)=xfit(2)/xfit(1); % Q
out(2)=xfit(2); % f0

% Q f0
output=out;
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function output=fullresfit(f, xexp, yexp, estimate);

% This is a full 8−parameter fit of the Lorentzian with background
% For constant background or background varying linearly with frequency
% i . e. C0 + C1* freq
%
% Data and the values for estimate are real values .
% The response has the form for A=Ax+jAy ; C0=C0x+jC0y ; C1=C1x+jC1y :
% R( f )= A* f0 ˆ2/ Q/( f0 ˆ2−f ˆ2+ j * f * f0 / Q)+ C0+C1( f−f0 ) * 2* pi == data
%
% x(1) = Ax = Re( amp* exp ( j * ( theta0 −3pi /2)))
% x(2) = Ay = Im( amp* exp ( j * ( theta0 −3pi /2)))
% x(3) = Q
% x(4) = f0
% x(5) = C0x
% x(6) = C0y
% x(7) = C1x
% x(8) = C1y

clear LB;
clear UB;
LB=[−Inf , −Inf , −f(1)/(f(2) −f(1)), f(1), −1, −1, −1, −1];
UB=[ Inf , Inf , f(1)/(f(2) −f(1)), f( end ), 1, 1, 1, 1];

OPTIONS=optimset( ' lsqnonlin ' );
OPTIONS=optimset(OPTIONS, ' TolX ' , 1e −20);
OPTIONS=optimset(OPTIONS, ' TolFun ' , 1e −20);
OPTIONS=optimset(OPTIONS, ' MaxFunEvals ' , 3000);
OPTIONS=optimset(OPTIONS, ' MaxIter ' , 1000);

xfit=lsqnonlin(@(x) [ real ((x(1)+j * x(2)) * x(4)ˆ2/x(3)./(x(4)ˆ2 −f.ˆ2+j * f. * x(4)/x(3)))+
+x(5)+x(7) * (f −x(4)). * 2* pi −xexp; imag ((x(1)+j * x(2)) * x(4)ˆ2/x(3)./(x(4)ˆ2 −f.ˆ2+
+j * f. * x(4)/x(3)))+x(6)+x(8) * (f −x(4)). * 2* pi −yexp], estimate, LB,UB,OPTIONS);

fittedx= real ((xfit(1)+j * xfit(2)) * xfit(4)ˆ2/xfit(3)./(xfit(4)ˆ2 −f.ˆ2+
+j * f. * xfit(4)/xfit(3)))+xfit(5)+xfit(7) * (f −xfit(4)). * 2* pi ;

fittedy= imag ((xfit(1)+j * xfit(2)) * xfit(4)ˆ2/xfit(3)./(xfit(4)ˆ2 −f.ˆ2+
+j * f. * xfit(4)/xfit(3)))+xfit(6)+xfit(8) * (f −xfit(4)). * 2* pi ;

guessx= real ((estimate(1)+j * estimate(2)) * estimate(4)ˆ2/estimate(3)./(estimate(4)ˆ2 −f.ˆ2+
+j * f. * estimate(4)/estimate(3)))+estimate(5)+estimate(7) * (f −estimate(4)). * 2* pi ;

guessy= imag ((estimate(1)+j * estimate(2)) * estimate(4)ˆ2/estimate(3)./(estimate(4)ˆ2 −f.ˆ2+
+j * f. * estimate(4)/estimate(3)))+estimate(6)+estimate(8) * (f −estimate(4)). * 2* pi ;

% Display results
disp (strcat( ' Q from fit = ' , num2str (xfit(3))));
disp (strcat( ' f0 from fit = ' , num2str (xfit(4)), ' MHz' ));
disp (strcat( ' Amp from fit = ' , num2str ( abs (xfit(1)+j * xfit(2))), ' V' ));

figure
subplot (2,2,1)
hold on
title ( ' x ' )
xlabel ( ' freq ' )
ylabel ( ' x ' )
plot (f, xexp, ' . ' , f, guessx, ' g' ,f, fittedx, ' r ' );
subplot (2,2,2)
hold on
title ( ' y ' )
xlabel ( ' freq ' )
ylabel ( ' y ' )
plot (f, yexp, ' . ' ,f, guessy, ' g' ,f, fittedy, ' r ' );
subplot (2,2,3)
hold on
title ( ' amp' )
xlabel ( ' freq ' )
ylabel ( ' amp' )
plot (f, abs (xexp+j * yexp), ' . ' ,f, abs (fittedx+j * fittedy), ' r ' );
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subplot (2,2,4)
hold on
title ( ' phase ' )
xlabel ( ' freq ' )
ylabel ( ' phase ' )
plot (f, angle (xexp+j * yexp), ' . ' ,f, angle (fittedx+j * fittedy), ' r ' );

% This is the resonance with the background subtracted
nobgx= real ((xfit(1)+j * xfit(2)) * xfit(4)ˆ2/xfit(3)./(xfit(4)ˆ2 −f.ˆ2+j * f. * xfit(4)/xfit(3)));
nobgy= imag ((xfit(1)+j * xfit(2)) * xfit(4)ˆ2/xfit(3)./(xfit(4)ˆ2 −f.ˆ2+j * f. * xfit(4)/xfit(3)));

figure
subplot (2,2,1)
hold on
title ( ' x ' )
xlabel ( ' freq ' )
ylabel ( ' x ' )
plot (f, nobgx);
subplot (2,2,2)
hold on
title ( ' y ' )
xlabel ( ' freq ' )
ylabel ( ' y ' )
plot (f, nobgy);
subplot (2,2,3)
hold on
title ( ' amp' )
xlabel ( ' freq ' )
ylabel ( ' amp' )
plot (f, abs (nobgx+j * nobgy));
subplot (2,2,4)
hold on
title ( ' phase ' )
xlabel ( ' freq ' )
ylabel ( ' phase ' )
plot (f, unwrap ( angle (nobgx+j * nobgy)));

% Ax Ay Q f0 C0x C0y C1x C1y
output=xfit;




