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ABSTRACT 

The ritterazine and cephalostatin natural products have biological activities 

and structures that are interesting to synthetic organic chemists. These products have 

been found to exhibit significant cytotoxicity against P388 murine leukemia cells, and 

therefore have the potential to be used as anticancer drugs. The ritterazines and 

cephalostatins are steroidal dimers joined by a central pyrazine ring. Given that the 

steroid halves are unsymmetrical and highly oxygenated, there are several challenges 

in synthesizing these compounds in an organic laboratory. 

Ritterazine B is the most potent derivative in the ritterazine family. Its 

biological activity is comparable to drugs that are being used to treat cancer today. 

For this reason, and the fact that there are no reported syntheses of ritterazine B to 

date, our lab set out to synthesize this natural product. 

Herein, efforts toward the synthesis of the western fragment of ritterazine B 

are described. Two different routes are explored to access a common intermediate. An 

alkyne conjugate addition reaction was initially investigated due to the success of this 

key reaction in the synthesis of the eastern fragment. However, it has been found that 

a propargylation reaction has greater reactivity and yields, and has the potential to 

reduce the step count of the synthesis of the western fragment of ritterazine B.  
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Chapter 1 

Background Information on Ritterazines and Cephalostatins 
 

1.1 ISOLATION AND BIOLOGICAL DATA 

 Ritterazines A through Z are natural products that were isolated from the 

Japanese marine tunicate Ritterella tokioka by Fusetani et al, collected at depths of 3–

5 m off the Izu Peninsula, 100 km southwest of Tokyo.1 Tunicates such as Ritterella 

tokioka have found to be a significant source of cytotoxic compounds, including the 

didemnins, the ecteinascidins, and the patellazoles.1 Upon isolation via lipophilic 

extraction, the extracts were found to exhibit potent activity against P388 murine 

leukemia cells.1d Structurally, ritterazines are dimeric steroidal alkaloids strongly 

resembling the structures of the cephalostatins.1 However, the cephalostatins were 

isolated from the East African hemichordate Cephalodiscus gilchristi in the Indian 

Ocean, hundreds of miles away from the Izu Peninsula.1 Although these natural 

products come from different parts of the world, their structure and biological activity 

is very similar.1  

 Ritterazine B (Figure 1a) was isolated by Fusetani et al. in 1995, and its 

structure was found to strongly resemble the previously isolated ritterazine A (Figure 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 a) Fusetani #1 b) Fusetani #2 c) Fusetani #3 d) Fusetani #4 

!
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1b).1 The UV spectrum of ritterazine B contained a peak at λmax 288 nm, which was 

also found in the spectrum of ritterazine A, indicating that both of these structures 

include a pyrazine ring.1b This pyrazine ring joins the two steroidal moieties, 

facilitating deconstruction of the ritterazine structures into the western and eastern 

fragments. The western half of ritterazine B was determined to possess the same 

connectivity and stereochemistry as that of ritterazine A. This includes a C14’–C15’ 

unsaturation in the D’ ring, hydroxyl groups at C7’, C12’, and C17’, and a 5/6 

spiroketal system with the E’/F’ rings. The eastern half of ritterazine B is slightly less 

oxidized, containing a hydroxyl group at C12, and a 5/5 spiroketal.  

 

Figure 1. (a) Structure of western and eastern fragments of ritterazine B with 

atom labels. (b) Structure of ritterazine A with highlighted differences from 

ritterazine B. 
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Ritterazine B is the most potent of the ritterazine derivatives isolated to date. 

Comparison of the various ritterazine structures can provide insight into the structure-

activity relationships of ritterazine B that are important for biological activity. Table 

1 shows the cytotoxicity against P388 murine leukemia cells for all ritterazine 

derivatives. Ritterazines F and G (Figure 2) are the two most potent compounds after 

ritterazine B, and, unsurprisingly, their structures are very similar to ritterazine B. 

Ritterazine F has the same structure as ritterazine B, except it contains the opposite 

stereochemistry of the 5/5 spiroketal at C22. Ritterazine G has the same structure as 

ritterazine B, except that it contains D ring unsaturation.  

Ritterazines A, E, and Y (Figures 1c and 2, respectively) are also extremely 

potent compounds. The western fragments of ritterazines A and E are the same as 

ritterazines B, F, and G, so therefore, the structural components of the western half 

must be essential for potent biological activity. However, the structures of ritterazines 

A and E are distinguished by eastern fragments with rearranged steroid skeletons in 

which the C and D rings are joined as a 5/5 spirocycle. Lastly, ritterazine Y (Figure 

2) exhibits the same cytotoxicity as ritterazines A and E, however the structure of 

ritterazine Y lacks the rearranged steroid. The eastern half is the same as ritterazine F, 

which was shown not to decrease cytotoxicity substantially. However, the decrease in 

activity from ritterazine F to ritterazine Y comes from the loss of hydroxyl groups at 

C7’ and C17’, and therefore indicating that these functional groups increase 

cytotoxicity.  
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Table 1. Cytotoxic activity of 26 ritterazine derivatives against P388 murine 

leukemia cells (IC50, ng/mL). 

 

 

Figure 2. Structures of ritterazines F, G, E, and Y with highlighted differences 

from ritterazine B.  
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 The related natural product cephalostatin 1 (Figure 3) also contains the 

steroidal dimer joined by a pyrazine ring, however there are some significant 

structural differences. The eastern half of cephalostatin 1 resembles the eastern 

fragment of ritterazine B, except that cephalostatin 1 possesses an unsaturated D ring, 

and the opposite stereochemistry of the 5/5 spiroketal at C22. In addition, 

cephalostatin 1 is further functionalized with hydroxyl groups at C17, C23, and C27. 

The western half of cephalostatin 1 differs more significantly from the corresponding 

ritterazine B fragment. Most strikingly, D’ and E’ rings are fused at C17’ and C13’, 

and the E’ and F’ rings comprise a 6/5 spirocyclic system.  
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Figure 3. Structure of cephalostatin 1 with highlighted differences from 

ritterazine B. 
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and ritterazine B inhibit the biosynthesis of sphingomyelin.5 Although these 

experiments have produced interesting results, there are still more questions to be 

answered, and how these natural products bind to OSBP is unknown. 

 

1.2 PRIOR SYNTHETIC STUDIES 

 Shair et. al. reported syntheses of the eastern fragments of ritterazines B, F, 

and G.3 Beginning with the commercially available steroid, hecogenin acetate (1), 

Norrish type I photolytic cleavage of the C12–C13 bond provides aldehyde 2 

(Scheme 1), which, when treated with BF3•OEt2, undergoes an ene reaction to reclose 

the six-membered C ring and produce 3. 3 A three-step procedure involving oxidation 

to the ketone, diastereoselective reduction to the correctly configured alcohol at C12, 

and subsequent protection delivers steroid 4.  

 

Scheme 1. Initial steps in Shair’s syntheses of ritterazines B, F, and G eastern 

halves. 
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Shair then implements several steps to convert the 5/6 spiroketal of 4 to the 

desired 5/5 system found in ritterazine G. Reductive opening of the acetal provides 

primary alcohol 5, which is subjected to selenation/oxidation following the Grieco 

protocol to provide alkene 6. Oxymercuration/demercuration of 6 delivers tertiary 

alcohol 7, which is subjected to a Suárez iodine(III)-mediated oxidative ring closure 

to give the required 5/5 spiroketal. The Suárez reaction produces a 2.5:1 mixture of 

diastereomers, slightly favoring the desired stereochemistry. After isolating the major 

diastereomer, Shair uses a two-step procedure to complete the synthesis of the eastern 

fragment of ritterazine B (9). Compound 8 was subjected to hydrogenation with Pt/C 

in ethanol, and acetyl deprotection to yield the eastern half of ritterazine B (9) in 33% 

overall yield and 11 steps from hecogenin acetate.3 

 

Scheme 2. Completion of Shair’s syntheses of ritterazines G and B eastern 

fragments. 
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As mentioned previously, the eastern half of ritterazine F has the opposite 

stereochemistry to ritterazine B at the 5/5 spiroketal, as found in the minor product 

(10) of the Suárez oxidative cyclization. Shair’s efforts to reduce the double bond of 

10 revealed that the stereochemistry of the spiroketal equilibrates in ethanol, leading 

to a mixture of products favoring ritterazine G and B (Scheme 3).3 This result 

indicated that the stereochemistry of the 5/5 spiroketal in ritterazines G and B is the 

thermodynamic configuration.3 In order to form the contra-thermodynamic spiroketal 

of ritterazine F, Shair hydrogenates compound 8 in acetic acid. This reaction produces 

a mixture of ketal 12 (21% yield), as well as ring opened diastereomers 13 and 14 

(Scheme 4). Upon Suárez oxidation of 13, the desired ritterazine F eastern fragment 

is produced in 25% yield, due to some equilibration of the ketal to compound 9 under 

the reaction conditions.  

 

Scheme 3. Shair’s attempted hydrogenation to form ritterazine F eastern half. 
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Scheme 4. Shair’s endgame for the synthesis of ritterazine F eastern fragment. 
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employs an unusual allylic oxidation with 4-phenyl-1,2,4-triazoline-3,5-dione 

(PTAD), which proceeds through an ene reaction to selectively functionalize the C18 

methyl group, forming a 7-membered hemiaminal.2 Elaboration over five steps 

delivers aldehyde 17, which is treated with BF3•OEt2 to close the C ring and yield 

compound 18. This transformation successfully employs the C14–C15 olefin, which 

is the desired position for cephalostatin 1. 

 The final major transformation involves rearrangement of the spiroketal. This 

requires eight steps and involves oxidative scission of the C20–C22 bond to provide 

ketone 19. Intramolecular aldol reaction of 19 produces enal 20, which is 

homologated to form tertiary alcohol 21. The spiroketal in the western fragment of 

cephalostatin 1 was proposed to be in the thermodynamically stable configuration, 

and it was predicted that treatment of 21 in mild acid would produce the desired 

spiroketal.2 However, this was not the case, and Shair found that the undesired 

stereoisomer was formed. This was surprising given that the correct stereoisomer was 

produced by Fuchs et al. in a similar transformation, although Fuchs’ substrate lacked 

the D-ring unsaturation.2, In order to resolve this outcome, Shair employed a two-step 

bromoetherification/reductive debromination sequence. Following 

bromoetherification of 21 with PhSeBr, compound 22 was subjected to 

debromination, and then epimerization of the spiroketal with acid to yield the western 

half of cephalostatin 1. 
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Scheme 5. Shair’s synthesis of the western fragment of cephalostatin 1 from 

commercially available hecogenin acetate. 
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 Shair’s synthesis of the eastern fragment of cephalostatin 1 begins with 

commercially available trans-androsterone (24). In order to oxidize at C12, Shair 

employs methodology developed by Shönecker et al. that involves condensation of 24 

with 2-(aminomethyl)pyridine in catalytic acid, followed by oxidation with 

stoichiometric Cu(OTf)2 in the presence of molecular oxygen to arrive at diol 25.2,7 

This second step is rather low yielding (25% yield), and presents the opportunity to 

develop an improved method for C12 oxidation in the synthesis of ritterazine B. 

Acetylation of diol 25, followed by conversion to the corresponding vinyl triflate, 

provides 26. This is cross-coupled with a functionalized alkyne fragment using a Pd-

catalyzed Sonogashira coupling to produce 27 in 94% yield.  

Elaboration of 27 through a three-step sequence provides trans-diol 28, which 

undergoes a Au(I)-catalyzed 5-endo-dig cyclization to produce 29 in 88% yield. To 

prepare the precursor for the key spiroketalization, intermediate 29 undergoes 

Simmons–Smith cyclopropanation, and deprotection of the TMS alcohol to provide 

30. The spiroketal of the eastern half of cephalostatin 1 is the contra-thermodynamic 

configuration, which required kinetically controlled spiroketalization.2 This was 

achieved under neutral reaction conditions using NBS, which decrease equilibration 

of the spiroketal to yield 31 as the major diastereomer in a 5:1 separable mixture. 

Completion of the synthesis of cephalostatin 1 eastern fragment involved 

debromination, TMS protection of the hindered alcohol, selective deacetylation of the 

C3 alcohol, and oxidation to the ketone. 
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Scheme 6. Shair’s synthesis of the eastern fragment of cephalostatin 1 from 

commercially available trans-androsterone. 
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pyrazine formation.8,9 Fuchs’ initial studies toward the synthesis of cephalostatin 7 led 

to the desired unsymmetrical product, as well as homocoupling from each of the 

coupling partners.8 Heathcock et al. had presented a solution to this problem by 

coupling α-acetoxy ketones with α-amino methoximes (Scheme 7a), however the 

drawback of this methodology is the low yields (29–43% yield).10 Fuchs et al. 

subsequently improved upon this protocol by substituting the α-acetoxy ketone with 

an α-azido ketone (Scheme 7b), which greatly improved yields. In Fuchs’ synthesis 

of 14’α,15’-dihydrocephalostatin 1 analog, he established that the eastern fragment 

was optimal as the α-amino methoxime, and the western fragment as the α-azido 

ketone.8 Therefore, Shair followed this approach to complete the synthesis of 

cephalostatin 1.2,8 

 

Scheme 7. (a) Unsymmetrical pyrazine formation by Heathcock et al. (b) 

Unsymmetrical pyrazine formation by Fuchs et al. 
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the same bromination/azidation sequence, which was then followed by formation of 

the methoxime. Staudinger reduction of the azide moiety to primary amine 33 

enabled coupling of intermediates 33 and 34 in the presence of polyvinylpyridine and 

Bu2SnCl2 to produce compound 35. Completion of the synthesis of cephalostatin 1 

was achieved upon global deprotection of the siloxy groups.  

 

Scheme 8. Completion of Shair’s total synthesis of cephalostatin 1. 
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Chapter 2 

Efforts in Our Laboratory‡ 
 

2.1 RETROSYNTHETIC ANALYSIS 

Given that conditions for pyrazine formation have been established in prior 

synthetic reports by Shair and Fuchs,2,6,8,9 ritterazine B was retrosynthetically 

simplified to the western (36) and eastern (37) fragments (Scheme 9). From here, our 

proposed retrosynthesis involves two key reactions, which can be employed for both 

halves of the natural product. We envision forming the 5/6 spiroketal of the western 

half and the 5/5 spiroketal of the eastern fragment using a metal-catalyzed alkyne 

spiroketalization reaction with intermediates 38 and 39, respectively. These 

compounds can be produced from an alkyne conjugate addition between 40 and 41 

for the western fragment, and between 42 and 43 for the eastern half. It is anticipated 

that for the western fragment, cyclization of the less hindered primary alcohol will 

occur to produce the 5/6 spirocycle. Enones 40 and 42 can be formed from 

commercially available steroid trans-androsterone (24). Specific issues that need to 

be addressed include improving upon existing methods to oxidize the C12 position, 

which is relevant for both halves of ritterazine B. In addition, for the western 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
‡ Work conducted in collaboration with Anton Dubrovskiy and Arthur Han. 
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fragment, new strategies to oxidize carbons C7 and C17 and install the C14–C15 

olefin are required. 

 

Scheme 9. Retrosynthetic analysis of ritterazine B. 

 

ritterazine B

O
O

Me

OH

OH
MeHO

Me

O

OH
Me

H

H

H

Me

Me

O

O
O Me

Me
H
Me

H

H

HO

western fragment (36)

H

H+

pyrazine formation

eastern fragment (37)

O
O

Me

Me
OH

H

Me

H

H

H

O
O

Me

HO

OH
MeOH

Me

H

H

H
N

N

Me

Me

Me
HO

OHMe

Me
PGO

Me

PGO OPG

HO
Me

OPG

PGO

spiro-
ketalization

OMe

Me
PGO

Me

PGO OPG

PGO
Me

OPG
H

trans-androsterone

conjugate
addition

Me

Me

PGO

OH

Me
OH

MeMeH

H

H

Me

Me

PGO

O

Me

H

H

spiro-
ketalization

conjugate
addition

Me
Me

OPG

trans-androsterone

38 39

40

41

42

43

+ +



Chapter 2 – Efforts in Our Laboratory 19 

2.2 SYNTHESIS OF THE EASTERN FRAGMENT 

Initial studies in our laboratory were conducted by Anton Dubrovskiy and 

focused on the synthesis of the eastern fragment of ritterazine B beginning from 

commercially available trans-androsterone (24). The sequence begins with a 

Mitsunobu reaction between trans-androsterone (24) and 3-iodobenzoic acid to 

provide ester 44 with inversion of stereochemistry at C3 (Scheme 10). Directed C–H 

chlorination following the protocol developed by Davitishvili et al. furnished chloride 

44 in 61% yield over two steps.11 Subsequent elimination of the chloride to yield the 

C9–C11 olefin occurs with concomitant deprotection of the C3 alcohol, which upon 

Wittig olefination with EtPPh3Br produces olefin 45 in 68% yield over two steps. 

Protection of the alcohol as the pivalate ester followed by allylic oxidation with SeO2 

provided the C16–alcohol, which was oxidized with MnO2 to provide enone 46. After 

considerable experimentation, it was determined that addition of the alkynyl 

trifluoroborate salt to enone 46 in the presence of BF3•OEt2 furnished alkyne 47 in 

77% yield.12,13  
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Scheme 10. Initial steps of our synthesis of ritterazine B eastern fragment.  
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subsequent closure via a BF3•OEt2-mediated ene reaction provided intermediate 52.2 

Correction of the configuration of the C12 hydroxyl was achieved through 

oxidation/reduction. Following acetylation of the free hydroxyl group, hydrogenation 

produced the desired trans junction, completing the synthesis of the eastern fragment 

(54) in 15 steps from trans-androsterone. 

 

Scheme 11. Completion of our synthesis of the eastern fragment of ritterazine B. 
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2.3 SYNTHESIS OF THE WESTERN FRAGMENT 

2.3.1 Plan 1 – Alkyne Conjugate Addition 

 Given our success in preparing the eastern fragment of ritterazine B, my 

objective was to develop a synthesis of western fragment 38. The initial goal was to 

investigate the conjugate addition reaction of alkyne 41, as this is the first key step in 

our retrosynthesis (repeated in Scheme 12). Although alkyne 41 bears an additional 

hydroxyl group compared to the alkyne 43 (see Scheme 9), we anticipated using a 

similar sequence to that employed for the preparation of 47 (see Scheme 10).  

 

Scheme 12. Retrosynthetic analysis of first key reaction of the western fragment. 
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Scheme 13. Initial synthesis of alkyne fragment. 
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 With trifluoroborates 63a and 63b in hand, the key conjugate addition reaction 

was investigated. Woodward et al. have shown that conjugate additions of alkynyl 

trifluoroborates to enones proceed through a closed transition state (Scheme 14).13  In 

the presence of BF3, the trifluoroborate salt is in equilibrium with the more active 

alkynyl BF2 species, which forms a chair–like closed transition state that facilitates 

alkyne addition in a 1,4 fashion.13 Unfortunately, under the previously optimized 

conditions, treatment of enone 64 with either trifluoroborate salts 63a or 63b gave 

only 1,2–addition product 65a and 65b (Scheme 15). Interestingly, the tertiary 

alcohol in the product was deprotected under the reaction conditions in both cases. A 

possible mechanism to produce 65 involves activation of the ketone with BF3, 

followed by nucleophilic attack of the trifluoroborate salt at the carbonyl carbon.   

 

Scheme 14. Mechanism and transition state of alkyne conjugate addition using 

trifluoroborate salts. 
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Scheme 15. First attempt at conjugate addition. 
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Scheme 16. Improved synthesis of alkyne fragment. 
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 Concomittant to my own efforts, my co-workers were also preparing alkynyl 

trifluoroborates with varying protecting groups. This collective effort determined that 

alkynyl trifluoroborates 71a and 71b can be prepared, and that these compounds will 

undergo the desired conjugate addition reactions in 25% and 56% yield respectively. 

 

Table 4. Most current results with the conjugate addition reaction.  
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74 (Scheme 17). This type of reaction has been developed using a variety of allenyl 

metal species, including tin,17 magnesium,18 lithium,19 titanium,20 boron,21 and zinc,22 

as well as others. Most allenyl metal reagents are unstable, and are therefore 

generated in situ.17a A complicating factor is that these reagents are often in 

equilibrium with the propargylic species, however sufficient research has been done 

to favor the propargylic adduct.17a Although the diastereoselectivity of the 

transformation was initially uncertain, this route is attractive in that the C17 alcohol 

would be installed directly during the propargylation reaction.  

 

Scheme 17. Revised retrosynthesis of intermediate 38 using propargylation. 
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Scheme 18. Initial hit in propargylation studies with model ketone. 
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bearing different protecting groups with allenyl Grignard. Unfortunately, treatment of 

the substrates under standard conditions still resulted in allenylation to give the 

undesired propargylation product. 
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Table 5. Reaction of allenyl Grignard with directing protecting groups. 

 

 

Given the lack of success overturning the diastereoselectivity on the β-

disposed C16 hydroxyl, we turned our attention to investigating the propargylation of 

steroids bearing the inverted stereochemistry at position C16. We hypothesized that a 

large sterically bulky protecting group would block the α-face, directing 

propargylation to the β-face. Diol 80 was prepared using a two-step procedure 

developed by Numazawa and Osawa et al. by performing an α-bromination, followed 

by SN2 displacement (Scheme 19).24 After TBS protection to form 81, propargylation 

with allenyl Grignard resulted in a mixture of diastereomers 82/83 2.5:1 d.r. Although 

the major diastereomer 82 is the undesired stereochemistry, formation of the desired 

product 83 was a promising result. 
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Scheme 19. Propargylation with α-configuration at C16. 

 

 

 Reetz et al. have demonstrated that diastereoselectivity of propargylation 

reactions can be influenced by using TiCl4 as an additive.25 It is proposed that TiCl4 

can coordinate to the carbonyl oxygen, as well as oxygen atoms of an ether protecting 

group, and promote propargylation through an open transition state. Inspired by 

Reetz’s findings, compound 84 was prepared and subjected to allenyl Grignard and 

TiCl4 in dichloromethane at –78 °C (Scheme 20). Much to our pleasure, 

homopropargyl alcohol 85 was formed in 77% yield as a single diastereomer, with the 

correct stereochemistry at C17.  
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Scheme 20. Propargylation with TiCl4 to form the desired stereochemistry at 

C17. 

 

 

 Having achieved the desired stereoselectivity, we turned to investigating more 

complex allenyl Grignard reagents. Reaction of steroid 84 with methylated allenyl 

Grignard 86, prepared from 3-bromo-1-butyne, produced a mixture of two 

diastereomers 87 and 88  in 47% and 23% yields, respectively (Scheme 21). These 

two diastereomers arise from the fact that Grignard 86 is racemic; it was anticipated 

that the enantioenriched allene would deliver the desired product with high 

diastereoselectivity. 
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Scheme 21. Initial attempts at propargylation with methylated allenyl Grignard 

86. 

 

 

 To investigate the diastereoselectivity with a chiral allene, a protocol was 

adapted from Marshall et al.26 Beginning with (S)-(–)-butyn-2-ol (89), attempts to 

isolate chiral bromide 90 were unsuccessful due to volatility of the bromide (Scheme 

22). As an alternative intermediate, mesylate 91 was formed as a precursor for the 

chiral allenyl zinc reagent 92. Upon treatment of steroidal ketone 84 with zinc reagent 

92, homopropargyl alcohol 87 was formed as a single diastereomer, and the structure 

of 87 was confirmed via X-ray crystallography (Figure 4) to verify the 

stereochemistry at C20. 
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Scheme 22. Propargylation with chiral allenyl zinc reagent. 

 

 

Figure 4. X-ray structure of alcohol 87. 
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 The next step in investigating the synthetic utility of the propargylation 
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reaction developed by Trost et al. that forms chiral propargyl alcohols 95 from 

acetaldehyde (93) and terminal alkynes 94 (Scheme 23a).27 Using our previously 

established conditions to form the protected alkyne fragment 98, the desired chiral 

homopropargyl alcohol 99 can be synthesized in four steps (Scheme 23b).  

 

Scheme 23. (a) Formation of chiral propargyl alcohols by Trost et al. (b) Plan to 

form desired propargyl alcohol using Trost’s method. 

 

 

 

With alcohol 99 in hand, there are two possible conditions for the 

propargylation reaction with steroid 84 that could deliver the desired product. The 
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the corresponding mesylate 100 (Scheme 24a). Treatment of 84 with zinc mesylate 

101 will produce homopropargyl alcohol 102. However, since the yield of the 

propargylation reaction with allenyl zinc 92 (see Scheme 22) was low yielding, either 
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alkyne 98 delivers R-alcohol 103, which will undergo an SN2 reaction to form 

bromide 104 as a precursor to the chiral allenyl Grignard 105 (Scheme 24b). 

Treatment of steroid 84 with in situ-generated Grignard 105 should produce the 

desired homopropargyl alcohol 102. 

 

Scheme 24. Plans to produce homopropargyl alcohol 102 (a) using a chiral 

allenyl zinc mesylate or (b) using a chiral allenyl Grignard. 
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 In order to utilize the propargylation reaction in the synthesis of the western 

fragment of ritterazine B, the steroid substrate needs to be oxidized at C7 and C12 

prior to the propargylation reaction. trans-Dehydroandrosterone 103 will be oxidized 

at C12 using Shair’s two-step procedure to provide 104,2 followed by ketone 

protection, oxidation at C7, hydrogenation, and ketone deprotection to deliver 

compound 105 (Scheme 25). To access propargylation substrate 106, intermediate 

105 undergoes α-bromination and SN2 displacement, and treatment of 106 with a 

chiral allene 107 will produce homopropargyl alcohol 108. To install the double bond 

at C14–C15, the tertiary alcohol is protected, C16 MOM ether is deprotected, 

oxidized, and a Mukaiyama reaction will provide enone 109. Reduction at C16 to 

alcohol 110, followed by primary alcohol deprotection and alkyne spiroketalization 

should produce ritterazine B western fragment 111. This substrate can be coupled 

with the eastern half of ritterazine B via pyrazine formation to complete the total 

synthesis of ritterazine B. 
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Scheme 25. Plans to complete the synthesis of ritterazine B western fragment. 
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2.5 EXPERIMENTAL SECTION 

2.5.1 Materials and Methods 

Unless otherwise stated, reactions were performed under a nitrogen 

atmosphere using freshly dried solvents. Tetrahydrofuran (THF), methylene chloride 

(CH2Cl2), acetonitrile (MeCN), dimethylformamide (DMF), and toluene (PhMe) were 

dried by passing through activated alumina columns. Unless otherwise stated, 

chemicals and reagents were used as received. Triethylamine (Et3N) was distilled 

over calcium hydride prior to use. All reactions were monitored by thin-layer 

chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm) 

and were visualized by UV, p-anisaldehyde, or KMnO4 staining. Flash column 

chromatography was performed either as described by Still et al.28 using silica gel 

(particle size 0.032-0.063) purchased from Silicycle or using pre-packaged 

RediSep®Rf columns on a CombiFlash Rf system (Teledyne ISCO Inc.). Optical 

rotations were measured on a Jasco P-2000 polarimeter using a 100 mm path-length 

cell at 589 nm. 1H and 13C NMR spectra were recorded on a Varian 400 MR (at 400 

MHz and 101 MHz, respectively), a Varian Inova 500 (at 500 MHz and 126 MHz, 

respectively), or a Varian Inova 600 (at 600 MHz and 150 MHz, respectively), and 

are reported relative to internal CHCl3 (1H, δ = 7.26), MeCN (1H, δ = 1.94), or 

DMSO (1H, δ = 2.50), and CDCl3 (13C, δ = 77.0), MeCN (13C, δ = 118.26), or DMSO 

(13C, δ = 40.0). Data for 1H NMR spectra are reported as follows: chemical shift (δ 

ppm) (multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier 

abbreviations are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplet, br = broad, app = apparent. IR spectra were recorded on a Perkin Elmer 
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Paragon 1000 spectrometer and are reported in frequency of absorption (cm–1). 

HRMS were acquired using an Agilent 6200 Series TOF with an Agilent G1978A 

Multimode source in electrospray ionization (ESI), atmospheric pressure chemical 

ionization (APCI), or mixed (MM) ionization mode.  

 

2.5.2 Prepartive Procedures and Spectoscopic Data 

 

1-methoxy-4-((3-methylbut-3-en-1-yl)oxy)benzene (56) 

A flask was charged with 4-methoxyphenol (2.54 g, 20.5 mmol) and PPh3 

(2.33 g, 8.87 mmol), and then THF (23 mL) was added. The addition of alcohol 55 

(0.588 g, 6.82 mmol) was followed by the addition of diisopropyl azodicarboxylate 

(1.75 mL, 8.87 mmol), and the reaction was heated to a reflux for 3.5 h. The reaction 

was cooled to room temperature, and THF was removed under pressure. The resulting 

residue was loaded unto a column and purified by column chromatography (5% 

EtOAc/Hex) to produce 56 (1.26 g, 96% yield). 

 

 

(S)-4-(4-methoxyphenoxy)-2-methylbutane-1,2-diol (57) 

 K2CO3 (3.49 g, 25.2 mmol), K3Fe(CN)6 (8.31 g, 25.2 mmol), K2OsO4•2H2O 

(12.4 mg, 0.0336 mmol), and (DHQ)2PHAL (65.5 mg, 0.0841 mmol) were added all 

at once to a solution of olefin 56 (1.62 g, 8.41 mmol) in t-BuOH (45 mL) and H2O 
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(45 mL) at 0 °C. After 5 h at room temperature, Na2SO3 (12.7 g, 100 mmol) was 

added and the mixture was stirred for 5 min. Minimal water was added and the 

aqueous layer was extracted from EtOAc four times. The combined organics were 

washed with brine, and dried over MgSO4. The crude was purified by column 

chromatography (20%→50% EtOAc/Hex) to give 57 (1.68 g, 88% yield). 

 

 

(S)-1-((tert-butyldiphenylsilyl)oxy)-4-(4-methoxyphenoxy)-2-methylbutan-2-ol 

(58) 

 Imidazole (0.247 g, 3.63 mmol), followed by TBDPSCl (0.69 mL, 2.66 

mmol), was added to a solution of diol 57 (0.548 g, 2.42 mmol) in DMF (2.7 mL). 

After stirring overnight at room temperature, the reaction was quenched with sat. 

NH4Cl and extracted with ether three times. The combined organic layers were 

washed with water, then brine, and then dried over MgSO4. The crude product was 

purified via column chromatography (15%→40% EtOAc/Hex) to give 58 (1.09 g, 

97% yield). 

 

 

(S)-4-((tert-butyldiphenylsilyl)oxy)-3-methylbutane-1,3-diol (59) 

 A solution of CAN (2.61 g, 4.76 mmol) in water (11 mL) was added dropwise 

via an addition funnel to a solution of alcohol 58 (1.09 g, 2.36 mmol) in acetonitrile 

(9.5 mL) at 0 °C. After 15 min, EtOAc and water was added and the layers were 
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separated. Aqueous was extracted from EtOAc twice more, and then the combined 

organics were washed with water, then brine, and then dried over MgSO4. The crude 

was purified via column chromatography (eluting with CH2Cl2 to remove impurities, 

and then EtOAc to elute product) to give 59 (0.829 g, 98% yield). 

 

 

(S)-4-((tert-butyldiphenylsilyl)oxy)-3-hydroxy-3-methylbutanal (60) 

Dess-Martin periodinane (48.8 mg, 0.115 mmol) was added to a solution of 

diol 59 (27.5 mg, 0.0767 mmol) in dichloromethane (0.5 mL) and this was stirred 

overnight. The reaction was quenched with a 1:1 mixture of sat. NaHCO3/1.5 M 

Na2S2O3 and the aqueous layer was extracted from Et2O three times. The combined 

organic layers were washed with brine and dried over MgSO4, and crude aldehyde 60 

was used in the next step without purification. 1H NMR (500 MHz, CDCl3) δ 9.87 (t, 

J = 2.4 Hz, 1H), 7.68 – 7.61 (m, 4H), 7.48 – 7.37 (m, 6H), 3.53 (d, J = 1.3 Hz, 2H), 

2.88 (s, 1H), 2.73 (dd, J = 15.6, 2.3 Hz, 1H), 2.49 (dd, J = 15.7, 2.6 Hz, 1H), 1.26 (s, 

3H), 1.09 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 202.1, 135.6, 132.8, 123.0, 127.9, 

72.2, 70.9, 51.6, 26.9, 24.3, 19.3; IR (NaCl/thin film): 3453, 3071, 3047, 2959, 2931, 

2888, 2858, 2739, 1720, 1472, 1461, 1428, 1391, 1362, 1188, 1155, 1112, 824, 741 

cm–1; HRMS (Multimode-ESI/APCI) calc’d for C21H28O3Si [M–H] – 355.1735, found 

355.1736. 
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(S)-1-((tert-butyldiphenylsilyl)oxy)-2-methylpent-4-yn-2-ol (61) 

K2CO3 (16.6 mg, 0.120 mmol), followed by Ohira–Bestmann reagent (13.8 

mg, 0.0719 mmol), was added to a solution of crude aldehyde 60 (25.7 mg, 0.0599 

mmol) in MeOH (1 mL), and this was stirred at room temperature overnight. The 

reaction was quenched with sat. NaHCO3 and diluted with Et2O. The aqueous layer 

was extracted from Et2O three times, and then the combined organic layers were 

washed with brine and dried over MgSO4. The crude product was purified by column 

chromatography (5% EtOAc/Hex) to provide alkyne 61 (18.9 mg, 70% yield over two 

steps). 1H NMR (500 MHz, CDCl3) δ 7.76 – 7.66 (m, 4H), 7.48 – 7.36 (m, 6H), 3.67 

(d, J = 9.7 Hz, 1H), 3.54 (d, J = 9.8 Hz, 1H), 2.59 (s, 1H), 2.58 – 2.46 (m, 2H), 2.01 

(t, J = 2.7 Hz, 1H), 1.28 (s, 3H), 1.10 (s, 9H); 13C NMR (126 MHz, CDCl3) δ 135.6, 

129.8, 127.8, 80.8, 72.2, 70.6, 69.5, 29.1, 26.6, 23.0, 19.3; IR (NaCl/thin film): 3561, 

3452, 3071, 3050, 2998, 2959, 2931, 2892, 2858, 1590, 1487, 1472, 1464, 1428, 

1391, 1362, 1188, 1152, 1113, 1090, 998, 908, 824, 742 cm–1; HRMS (Multimode-

ESI/APCI) calc’d for C22H28O2Si [M•]+ 352.1853, found 352.1832. 
 

 

(S)-5,9,9-trimethyl-8,8-diphenyl-5-(prop-2-yn-1-yl)-2,4,7-trioxa-8-siladecane 

(62a) 

Bu4NI (3.1 mg, 0.00834 mmol), followed by N,N-diisopropylethylamine (0.02 

mL, 0.125 mmol) was added to a solution of alkyne 61 (14.7 mg, 0.0417 mmol) in 
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THF (0.5 mL). After dropwise addition of chloromethyl methyl ether (MOMCl, 0.01 

mL, 0.167 mmol), the reaction was heated to 80 °C and stirred for 2 h. Upon cooling 

to room temperature, the reaction was quenched with water and the aqueous layer was 

extracted from Et2O three times. The combined organic layers were washed with 

brine and dried over MgSO4. The crude product was purified by column 

chromatography (5% EtOAc/Hex) to provide 62a (15.1 mg, 91% yield). 1H NMR 

(500 MHz, CDCl3) δ 7.69 (ddt, J = 7.9, 6.2, 1.7 Hz, 4H), 7.46 – 7.35 (m, 6H), 4.81 – 

4.76 (m, 2H), 3.73 (d, J = 10.2 Hz, 1H), 3.60 (d, J = 10.2 Hz, 1H), 3.35 (s, 3H), 2.66 – 

2.55 (m, 2H), 1.98 (t, J = 2.7 Hz, 1H), 1.35 (s, 3H), 1.08 (s, 9H); 13C NMR (126 

MHz, CDCl3) δ 135.7, 135.5, 129.7, 127.6, 91.6, 81.1, 77.9, 70.2, 68.3, 55.4, 27.4, 

26.9, 20.8, 19.3; IR (NaCl/thin film): 3309, 3071, 3050, 2932, 2891, 2858, 1472, 

1428, 1390, 1362, 1189, 1144, 1112, 1040, 1007, 996, 918, 824, 739, 702 cm–1; 

HRMS (Multimode-ESI/APCI) calc’d for C24H32O3Si [M+H]+ 397.2193, found 

397.2182. 
 

 

(S)-8,8-diethyl-2,2,6-trimethyl-3,3-diphenyl-6-(prop-2-yn-1-yl)-4,7-dioxa-3,8-

disiladecane (62b) 

DMAP (7.6 mg, 0.0618 mmol) and imidazole (16.8 mg, 0.247 mmol) were 

added to a solution of alkyne 61 (21.8 mg, 0.0618 mmol) in DMF (0.3 mL). 

Chlorotriethylsilane (TESCl, 0.03 mL, 0.185 mmol) was added and the reaction was 

heated to 40 °C for 4 h. Upon cooling to room temperature, DMF was extracted from 

hexanes three times and the combined hexane layers were washed with water, then 
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brine, and dried over MgSO4. The crude product was purified by column 

chromatography (5% EtOAc/Hex) to provide alkyne 62b (18.2 mg, 63% yield, 85% 

yield b.r.s.m.). [α]  = +4 ° (c = 0.455, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.73 

– 7.67 (m, 4H), 7.45 – 7.35 (m, 6H), 3.58 (d, J = 9.6 Hz, 1H), 3.46 (d, J = 9.6 Hz, 

1H), 2.51 (ddd, J = 72.1, 16.4, 2.7 Hz, 2H), 1.95 (t, J = 2.7 Hz, 1H), 1.31 (s, 3H), 1.06 

(s, 9H), 0.90 (t, J = 7.9 Hz, 9H), 0.55 (qd, J = 7.9, 1.3 Hz, 6H); 13C NMR (126 MHz, 

CDCl3) δ135.7, 133.6, 129.6, 127.6, 81.9, 75.3, 70.3, 67.0, 30.0, 26.9, 24.6, 19.3, 

6.97, 6.74; IR (NaCl/thin film): 3311, 3071, 3050, 2955, 2932, 2875, 2858, 1472, 

1459, 1428, 1239, 1195, 1160, 1112, 1030, 1016, 1009, 821, 740 cm–1; HRMS 

(Multimode-ESI/APCI) calc’d for C28H42O2Si2 [M+H]+ 467.2796, found 467.2705. 
 

 

(S)-2,2,3,3,5,9,9-heptamethyl-8,8-diphenyl-5-(prop-2-yn-1-yl)-4,7-dioxa-3,8-

disiladecane (62c) 

TBSCl (11.5 mg, 0.0766 mmol), imidazole (5.2 mg, 0.0766 mmol) and 61 

(13.5 mg, 0.0383 mmol) were heated neat to 120 °C overnight. The reaction was 

quenched with water and diluted with dichloromethane, and the aqueous layer was 

extracted from dichloromethane three times. The combined organic layers were 

washed with brine and dried over MgSO4. The crude product was purified by flash 

chromatography (Hex→5% EtOAc/Hex) to give 62c (15.9 mg, 89% yield). [α]  = 

+2 ° (c = 0.795, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.81 – 7.71 (m, 4H), 7.45 – 

7.31 (m, 6H), 3.50 (d, J = 9.5 Hz, 1H), 3.34 (d, J = 9.5 Hz, 1H), 2.45 (dd, J = 16.4, 

€ 

D

25.0

TBDPSO
HO Me

61

TBDPSO
TBSO Me

62c

€ 

D

25.0



Chapter 2 – Efforts in Our Laboratory 46 

2.7 Hz, 1H), 2.31 (dd, J = 16.4, 2.7 Hz, 1H), 1.94 (t, J = 2.7 Hz, 1H), 1.11 (s, 3H), 

1.03 (s, 9H), 0.85 (s, 9H), -0.03 (s, 3H), -0.05 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 

136.2, 135.6, 129.4, 127.4, 82.0, 69.9, 69.2, 29.7, 27.1, 26.9, 25.9, 24.4, 19.5, 18.3, -

5.54, -5.61; IR (NaCl/thin film): 3312, 3071, 3050, 2956, 2930, 2894, 2857, 1472, 

1463, 1428, 1390, 1361, 1258, 1193, 1159, 1110, 1103, 1039, 1028, 1006, 851, 837, 

822, 777, 741, 703 cm–1; HRMS (ESI) calc’d for C28H42O2Si2 [M+H]+ 467.2713, 

found 467.2796. 
 

 

1-((triisopropylsilyl)oxy)propan-2-one (67) 

Acetol (2.27 g, 30.6 mmol) was added to a solution of imidazole (4.38 g, 64.3 

mmol) in DMF (40 mL), followed by the addition of TIPSCl (7.21 mL, 33.7 mmol). 

After stirring at room temperature for 1.5 h, the reaction was quenched with sat. 

NH4Cl, and the aqueous layer was extracted from diethyl ether four times. The 

combined organic layers were washed with water, then brine, and finally dried over 

MgSO4. The crude product was purified by column chromatography (5%→20% 

EtOAc/Hex) to give 67 (6.72 g, 95% yield). 1H NMR (400 MHz, CDCl3) δ 4.20 (d, J 

= 1.2 Hz, 2H), 2.22 (s, 3H), 1.18 – 0.99 (m, 21H); 13C NMR (101 MHz, CDCl3) δ 

210.1, 69.9, 26.1, 17.9, 17.7, 12.3, 11.8; IR (NaCl/thin film): 3503, 2944, 2893, 2867, 

1720, 1464, 1435, 1417, 1384, 1354, 1248,1231, 1123, 1069, 1014, 996, 919, 882, 

838, 799 cm–1; HRMS (Multimode-ESI/APCI) calc’d for C12H26O2Si [M+H3O]+ 

249.1880, found 249.1871. 

Me
OH

O

Me
OTIPS

O

66 67



Chapter 2 – Efforts in Our Laboratory 47 

 

 

2-(propa-1,2-dien-1-yl)-1,3,2-dioxaborolane (68) 

A 2-neck flask was charged with Mg turnings (2.43 g, 100 mmol) and HgCl2 

(46.2 mg, 0.170 mmol) and then gently heated while flushing with N2 to remove 

excess moisture. Et2O (15 mL) was added and the reaction flask was fitted with a 

reflux condenser. Propargyl bromide (10.3 g, 86.8 mmol) in Et2O (50 mL) was added 

dropwise, and the reaction was cooled with a salt/ice bath. After stirring for 45 min at 

room temperature, the Grignard reagent was added dropwise via canula to a solution 

of trimethyl borate (9.02 g, 86.8 mmol) in Et2O (100 mL) at –78 °C over about 30 

min. The reaction was allowed to warm to room temperature, and then cooled to 0 °C 

before adding HCl (3M, 100 mL) dropwise using an addition funnel. The mixture was 

stirred at 0 °C for approximately 25 min and then allowed to warm to room 

temperature for 5 min. The aqueous layer was extracted from Et2O (50 mL x 3) and 

the combined organics were dried over MgSO4. The organic layer was filtered into a 

flame-dried 500 mL round-bottom flask, and then the solvent was reduced under 

pressure to leave ~200 mL. Ethylene glycol (8.08 g, 130 mmol) and MgSO4 (100 g) 

were added and the reaction was stirred using a mechanical stirrer at room 

temperature for 23 h. The mixture was filtered, washing with Et2O, and the solvent 

was reduced under pressure. The crude was dissolved in 150 mL pentane at 0 °C, and 

excess ethylene glycol as removed as the bottom layer if necessary. If a precipitate 
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remained, the crude was filtered through oven-dried Celite. The crude product was 

purified via distillation and stored under inert gas in the fridge. 

 

 

(S)-2-methyl-1-((triisopropylsilyl)oxy)pent-4-yn-2-ol (69) 

A mixture of (S)-3,3’-Cl-BINOL (35.7 mg, 0.101 mmol) and 2-(propa-1,2-

dien-1-yl)-1,3,2-dioxaborolane (0.166 g, 1.501 mmol) was stirred at room 

temperature for 5 min. To this was added ketone 67 (0.232 g, 1.01 mmol), and the 

reaction mixture was subjected to microwave irradiation at 10 W for 1.5 h. The next 

day, the residue was purified via column chromatography (5% EtOAc/Hex) to 

provide 69 (0.188 g, 69% yield). [α]  = +2 ° (c = 0.435, CHCl3); 1H NMR (500 

MHz, CDCl3) δ 3.72 (d, J = 9.3 Hz, 1H), 3.54 (d, J = 9.3 Hz, 1H), 2.62 (s, 1H), 2.50 – 

2.37 (m, 2H), 2.01 (t, J = 2.7 Hz, 1H), 1.27 (s, 3H), 1.08 (d, J = 1.0 Hz, 12H), 1.07 

(dd, J = 2.3, 1.3 Hz, 9H); 13C NMR (126 MHz, CDCl3) δ 193.0, 81.0, 72.1, 70.4, 

69.2, 29.0, 22.9, 18.0, 12.0; IR (NaCl/thin film): 3558, 3454, 3314, 2944, 2888, 2867, 

1463, 1422, 1383, 1157, 1100, 1069, 1014, 996, 911, 882, 809, 774 cm–1. 

 

 
TBSCl (0.120 g, 0.799 mmol), imidazole (0.0544 g, 0.799 mmol) and 69 

(0.108 g, 0.399 mmol) were heated neat to 120 °C overnight. The reaction was 

quenched with water and diluted with dichloromethane, and the aqueous layer was 
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extracted from dichloromethane four times. The combined organic layers were 

washed with brine and dried over MgSO4. The crude mixture was separated using 

column chromatography (hexanes) to afford 70a (27.6 g, 18% yield, 41% yield brsm) 

and 70b (13.3 mg, 9% yield, 20% yield brsm).  

(S)-8,8-diisopropyl-2,2,3,3,5,9-hexamethyl-5-(prop-2-yn-1-yl)-4,7-dioxa-3,8-

disiladecane (70a) 

 [α]  = +3 ° (c = 0.735, CHCl3); 1H NMR (500 MHz, CDCl3) δ 3.68 – 3.44 (m, 

2H), 2.49 – 2.34 (m, 2H), 1.94 (td, J = 2.7, 1.3 Hz, 1H), 1.29 (d, J = 1.5 Hz, 3H), 1.07 

(d, J = 1.2 Hz, 15H), 1.06 – 1.04 (m, 8H), 0.86 (d, J = 1.4 Hz, 9H), 0.12 (d, J = 1.4 

Hz, 3H), 0.09 (d, J = 1.5 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 82.1, 75.5, 70.2, 

69.9, 29.9, 25.8, 24.6, 18.2, 18.0, 12.1, -2.09; IR (NaCl/thin film): 3314, 2944, 2893, 

2866, 1472, 1458, 1387, 1254, 1197, 1164, 1108, 1066, 1035, 1016, 1004, 882, 835, 

806, 774 cm–1. 
(S)-8,8-diisopropyl-2,2,3,3,6,9-hexamethyl-6-(prop-2-yn-1-yl)-4,7-dioxa-3,8-

disiladecane (70b) 

[α]  = +3 ° (c = 0.460, CHCl3); 1H NMR (500 MHz, CDCl3) δ 3.51 (dd, J = 61.1, 

9.4 Hz, 2H), 2.53 – 2.33 (m, 2H), 1.93 (t, J = 2.7 Hz, 1H), 1.28 (s, 3H), 1.05 – 1.04 

(m, 21H), 0.90 (s, 9H), 0.06 (d, J = 1.0 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 82.1, 

75.1, 69.9, 69.6, 30.0, 25.9, 24.8, 18.3, 13.5, -5.46, -5.51; IR (NaCl/thin film): 3315, 

2929, 2866, 2360, 1653, 1559, 1506, 1472, 1464, 1388, 1257, 1197, 1168, 1144, 

1103, 1044, 1006, 882, 851, 837, 776 cm–1. 
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(S)-2,2,3,3,5,8,8,9,9-nonamethyl-5-(prop-2-yn-1-yl)-4,7-dioxa-3,8-disiladecane 

(70c) 

K2CO3 (78.7 mg, 0.569 mmol), followed by Ohira–Bestmann reagent (65.6 

mg, 0.342 mmol), was added to a solution of crude aldehyde (98.7 mg, 0.285 mmol) 

in MeOH (5 mL), and this was stirred at room temperature overnight. The reaction 

was quenched with sat. NaHCO3 and diluted with Et2O. The aqueous layer was 

extracted from Et2O three times, and then the combined organic layers were washed 

with brine and dried over MgSO4. The crude product was purified by column 

chromatography (hexanes) to provide alkyne 70c (70.7 mg, 72% yield over two 

steps). 1H NMR (500 MHz, CDCl3) δ 3.51 (d, J = 9.6 Hz, 1H), 3.41 (d, J = 9.5 Hz, 

1H), 2.42 (dd, J = 16.5, 2.7 Hz, 1H), 2.32 (dd, J = 16.5, 2.7 Hz, 1H), 1.94 (t, J = 2.7 

Hz, 1H), 1.25 (s, 3H), 0.90 (s, 9H), 0.86 (s, 9H), 0.11 (s, 3H), 0.09 (s, 3H), 0.06 (s, 

6H); 13C NMR (126 MHz, CDCl3) δ 82.0, 75.4, 69.8, 69.6, 29.8, 25.9, 25.8, 24.4, 

18.3, 18.2, –2.26, –5.50; IR (NaCl/thin film): 3315, 2956, 2930, 2887, 2858, 1472, 

1464, 1388, 1362, 1310, 1255, 1197, 1165, 1137, 1104, 1043, 1007, 939, 834, 814, 

798, 775 cm–1; HRMS (ESI) calc’d for C18H38O2Si2 [M+K]+ 381.2042, found 

381.2170. 
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(3S,5S,8R,9S,10S,13S,14S)-10,13-dimethyl-2,3,4,5,6,7,8,9,10,11,12,13,14,15-

tetradecahydro-1H-cyclopenta[a]phenanthrene-3,17-diyl diacetate (75) 

 One drop of conc. H2SO4 was added to a solution of trans-androsterone 24 

(0.643 g, 2.21 mmol) in isopropenyl acetate (16 mL) and this was heated to reflux for 

4 h. Upon cooling to room temperature, the reaction was quenched with 0.5 M 

Na2CO3 (65 mL). The aqueous layer was extracted from EtOAc (65 mL, then 35 mL) 

and the combined organics were washed with water (65 mL) and brine (65 mL), and 

then dried over MgSO4. The crude product was purified via column chromatography 

(neutral alumina powder, CH2Cl2) and then recrystallized from Et2O to give 75 (0.311 

g, 38% yield).  

 

 

(3S,5S,8R,9S,10S,13S,14S,16S)-10,13-dimethyl-17-oxohexadecahydro-1H-

cyclopenta[a]phenanthrene-3,16-diyl diacetate (76) 

 Acetic anhydride (0.32 mL, 3.35 mmol) was added to a solution off steroid 75 

(0.279 g, 0.745 mmol) and Pd(OAc)4 (0.364 g, 0.820 mmol) in acetic acid (13 mL). 

After stirring overnight at room temperature, the acetic acid was removed via rotary 

evaporation. The resulting residue was diluted in Et2O (20 mL) and water-saturated 
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Et2O (20 mL) to decompose the lead complex. The mixture was filtered, and the 

filtrant was washed with 0.5 M Na2CO3 (40 mL), water (40 mL), and brine (40 mL), 

Upon drying over MgSO4, the crude product was purified via column 

chromatography (5% EtOAC/95% CH2Cl2) to give 76 (0.151 g, 52% yield, 61% 

b.r.s.m.). 

 

 

(3S,5S,8R,9S,10S,13S,14S,16S)-3,16-bis(methoxymethoxy)-10,13-

dimethyltetradecahydro-1H-cyclopenta[a]phenanthren-17(2H)-one (76b) 

Bu4NI (35.0 mg, 0.0949 mmol), followed by N,N-diisopropylethylamine (0.33 

mL, 1.90 mmol) was added to a solution of steroid 76a (0.145 g, 0.474 mmol) in THF 

(4 mL). After dropwise addition of chloromethyl methyl ether (MOMCl, 0.18 mL, 

2.37 mmol), the reaction was heated to 50 °C and stirred overnight. Upon cooling to 

room temperature, the reaction was quenched with water and the aqueous layer was 

extracted from Et2O three times. The combined organic layers were washed with 

brine and dried over MgSO4. The crude product was purified by column 

chromatography (10%→15% EtOAc/Hex) to provide 76b (0.187 g, 80% yield). [α]

 = –72 ° (c = 0.540, CHCl3); 1H NMR (500 MHz, CDCl3) δ 4.86 (d, J = 6.7 Hz, 

1H), 4.73 (d, J = 6.7 Hz, 1H), 4.70 – 4.66 (m, 2H), 3.76 (s, 1H), 3.50 (tt, J = 11.2, 4.8 

Hz, 1H), 3.41 (s, 3H), 3.37 (s, 3H), 2.23 (ddd, J = 18.7, 7.7, 1.1 Hz, 1H), 1.96 – 1.90 

(m, 1H), 1.91 – 1.69 (m, 3H), 1.64 (ddt, J = 16.2, 8.8, 3.4 Hz, 3H), 1.59 – 1.23 (m, 
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9H), 1.18 – 1.08 (m, 1H), 1.03 – 0.88 (m, 2H), 0.84 (s, 3H), 0.81 (s, 3H); 13C NMR 

(126 MHz, CDCl3) δ 215.1, 96.4, 94.6, 89.3, 76.2, 55.5, 55.1, 54.4, 45.3, 44.9, 42.1, 

36.9, 36.8, 36.4, 35.9, 35.2, 34.5, 31.8, 28.6, 28.5, 20.5, 12.3, 12.2; IR (NaCl/thin 

film): 2931, 2849, 1753, 1464, 1449, 1382, 1218, 1146, 1104, 1040, 1009, 916 cm–1; 

HRMS (Multimode-ESI/APCI) calc’d for C23H38O5 [M+Na]+ 417.2611, found 

417.2596. 
 

 

(3S,5S,8R,9S,10S,13S,14S,16S)-3,16-bis((2-methoxyethoxy)methoxy)-10,13-

dimethyltetradecahydro-1H-cyclopenta[a]phenanthren-17(2H)-one (76c) 

Bu4NI (8.6 mg, 0.0232 mmol), followed by N,N-diisopropylethylamine (0.08 

mL, 0.463 mmol) was added to a solution of steroid 76a (35.5 mg, 0.116 mmol) in 

THF (1 mL). After dropwise addition of 2-methoxyethoxymethyl chloride (MEMCl, 

0.07 mL, 0.579 mmol), the reaction was heated to 50 °C and stirred overnight. Upon 

cooling to room temperature, the reaction was quenched with water and the aqueous 

layer was extracted from Et2O three times. The combined organic layers were washed 

with brine and dried over MgSO4. The crude product was purified by column 

chromatography (20%→35% EtOAc/Hex) to provide 76c (22.7 mg, 41% yield). IR 

(NaCl/thin film): 3365, 3166, 2930, 2863, 1731, 1451, 1417, 1384, 1298, 1226, 1169, 

1132, 1110, 1093, 1046, 930 cm–1; HRMS (Multimode-ESI/APCI) calc’d for 

C27H46O7 [M+Na]+ 505.3136, found 505.3108. 
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propa-1,2-dien-1-ylmagnesium bromide (77) 

A 2-neck flask was charged with Mg turnings (0.194 g, 7.98 mmol) and HgCl2 

(2.2 mg, 0.00798 mmol) and then gently heated while flushing with N2 to remove 

excess moisture. Et2O (2 mL) was added and the reaction flask was fitted with a 

reflux condenser. Propargyl bromide (0.949 g, 7.98 mmol) was added dropwise while 

simultaneously adding Et2O (3 mL) dropwise to maintain reflux. After stirring for 1 

h, the reagent was ready to use as is. 

 

 

(3S,5S,8R,9S,10S,13S,14S,16S,17R)-17-hydroxy-10,13-dimethyl-17-(prop-2-yn-1-

yl)hexadecahydro-1H-cyclopenta[a]phenanthrene-3,16-diyl diacetate (78) 

Allenylmagnesium bromide 77 (0.0259 mmol, 0.02 mL of 1.68 M soln. in 

Et2O) was added to a solution of steroid 76 (10.1 mg, 0.0259 mmol) in THF (2 mL) at 

–78 °C. After 1.5 h, another 0.02 mL (0.0259 mmol, 1 equiv) of allenylmagnesium 

bromide was added, and this was repeated every 30 min until a total of 4 equiv of 

allenylmagnesium bromide had been added. After a total of 3.5 h, the reaction was 

quenched with water, and the aqueous layer was extracted from Et2O three times. The 

combined organic layers were washed with brine and dried over MgSO4, which 
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provided pure 78 (8.7 mg, 78% yield) without further purification. 1H NMR (500 

MHz, CDCl3) δ 5.01 (dd, J = 8.3, 5.8 Hz, 1H), 4.68 (tt, J = 11.4, 4.9 Hz, 1H), 2.61 – 

2.49 (m, 2H), 2.41 – 2.26 (m, 2H), 2.10 (s, 3H), 2.02 (s, 3H), 1.86 – 1.78 (m, 1H), 

1.73 (dt, J = 13.2, 3.6 Hz, 1H), 1.68 – 1.43 (m, 6H), 1.41 – 1.11 (m, 8H), 1.11 – 0.93 

(m, 2H), 0.91 (s, 3H), 0.87 (dd, J = 12.2, 4.5 Hz, 1H), 0.84 (s, 3H), 0.65 (td, J = 11.5, 

3.9 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 170.6, 169.9, 110.0, 80.7, 80.6, 73.5, 

71.2, 54.3, 47.2, 46.0, 44.7, 36.8, 35.8, 35.7, 34.0, 33.2, 32.3, 31.8, 28.4, 27.5, 27.2, 

21.4, 21.1, 20.7, 13.8, 12.2; IR (NaCl/thin film): 3305, 3270, 2930, 2853, 1730, 1449, 

1377, 1362, 1244, 1155, 1041, 1025 cm–1; HRMS (Multimode-ESI/APCI) calc’d for 

C26H38O5 [M–OH]+ 413.2692, found 413.2692. 
 

 

(3S,5S,8R,9S,10S,13S,14S,16S,17R)-3,16-bis(methoxymethoxy)-10,13-dimethyl-17-

(prop-2-yn-1-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-17-ol (78b) 

Allenylmagnesium bromide 77 (0.0467 mmol, 0.03 mL of 1.63 M soln. in 

Et2O) was added to a solution of steroid 76b (9.2 mg, 0.0233 mmol) in toluene (0.5 

mL) at –78 °C. After 30 min, another 0.03 mL of allenylmagnesium bromide was 

added. After a total of 1 h, the reaction was quenched with water, and the aqueous 

layer was extracted from Et2O three times. The combined organic layers were washed 

with brine and dried over MgSO4, which provided pure 78b (7.3 mg, 72% yield) 
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without further purification. [α]  = –20 ° (c = 0.405, CHCl3); 1H NMR (500 MHz, 

CDCl3) δ 4.76 – 4.72 (m, 2H), 4.69 – 4.65 (m, 2H), 3.48 (tt, J = 11.1, 4.8 Hz, 1H), 

3.42 (s, 3H), 3.36 (s, 3H), 3.28 (s, 1H), 3.19 – 3.16 (m, 1H), 2.46 – 2.34 (m, 2H), 2.02 

– 1.95 (m, 2H), 1.83 (tdd, J = 12.4, 6.3, 3.4 Hz, 2H), 1.74 – 1.50 (m, 5H), 1.49 – 1.38 

(m, 2H), 1.37 – 1.15 (m, 5H), 1.08 (ddt, J = 12.2, 8.7, 3.2 Hz, 1H), 1.03 – 0.90 (m, 

2H), 0.89 (s, 3H), 0.88 – 0.82 (m, 1H), 0.81 (s, 3H), 0.65 (ddd, J = 12.3, 10.5, 4.2 Hz, 

1H); 13C NMR (126 MHz, CDCl3) δ 97.7, 94.6, 90.3, 81.4, 76.4, 76.3, 69.5, 56.0, 

55.1, 54.6, 48.0, 45.0, 43.8, 39.4, 37.8, 37.0, 35.8, 35.32, 34.8, 32.6, 31.7, 28.7, 28.6, 

20.5, 12.4, 12.3; IR (NaCl/thin film): 3528, 3305, 3275, 2931, 2849, 1469, 1449, 

1379, 1300, 1215, 1177, 1151, 1103, 1043, 1035, 1009, 927, 917 cm–1; HRMS 

(Multimode-ESI/APCI) calc’d for C26H42O5 [M+H]+ 435.3105, found 435.3078. 
 

 

(3S,5S,8R,9S,10S,13S,14S,16S,17R)-3,16-bis((2-methoxyethoxy)methoxy)-10,13-

dimethyl-17-(prop-2-yn-1-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-17-ol 

(78c) 

Allenylmagnesium bromide 77 (0.0783 mmol, 0.05 mL of 1.62 M soln. in 

Et2O) was added to a solution of steroid 76c (12.6 mg, 0.0261 mmol) in THF (0.5 

mL) at –78 °C. After 30 min, another 0.03 mL (0.0522 mmol) of allenylmagnesium 

bromide was added. After a total of 45 min, the reaction was quenched with water, 
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and the aqueous layer was extracted from Et2O three times. The combined organic 

layers were washed with brine and dried over MgSO4, which provided pure 78c (8.6 

mg, 63% yield) without further purification. [α]  = –18 ° (c = 0.500, CHCl3); 1H 

NMR (500 MHz, CDCl3) δ 4.87 – 4.80 (m, 2H), 4.78 – 4.74 (m, 2H), 3.77 – 3.74 (m, 

2H), 3.72 – 3.68 (m, 2H), 3.58 – 3.54 (m, 4H), 3.54 – 3.48 (m, 1H), 3.39 (s, 6H), 3.29 

(s, 1H), 3.25 (s, 1H), 2.42 (qd, J = 16.4, 2.6 Hz, 2H), 2.00 (dd, J = 13.0, 6.7 Hz, 1H), 

1.95 (t, J = 2.6 Hz, 1H), 1.87 – 1.76 (m, 2H), 1.73 – 1.48 (m, 5H), 1.47 – 1.36 (m, 

2H), 1.36 – 1.13 (m, 6H), 1.12 – 1.03 (m, 1H), 1.02 – 0.90 (m, 2H), 0.87 (s, 3H), 0.80 

(s, 3H), 0.65 (ddd, J = 12.3, 10.5, 4.2 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 96.8, 

93.6, 90.8, 81.5, 76.4, 76.3, 71.9, 71.7, 69.5, 67.9, 66.7, 59.0, 59.0, 54.6, 47.9, 44.9, 

43.9, 39.4, 37.8, 37.0, 35.8, 35.2, 34.8, 32.5, 31.7, 28.7, 28.6, 20.5, 12.4, 12.3; IR 

(NaCl/thin film): 3480, 3305, 3262, 2929, 2849, 1466, 1450, 1378, 1367, 1200, 1170, 

1130, 1111, 1090, 1047, 984, 930, 849 cm–1; HRMS (Multimode-ESI/APCI) calc’d 

for C30H50O7 [M+Na]+ 545.3449, found 545.3474. 

 

 
(3S,5S,8R,9S,10S,13S,14S,16S)-16-bromo-3-hydroxy-10,13-

dimethyltetradecahydro-1H-cyclopenta[a]phenanthren-17(2H)-one (79) 

 CuBr2 (1.16 g, 5.21 mmol) was added to a solution of trans-androsterone 24 

(0.505 g, 1.74 mmol) in distilled methanol (20 mL) and this was heated to reflux and 

stirred overnight. The next day, the reaction was quenched with water, and the 
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aqueous layer was extracted from chloroform three times. The combined organic 

layers were washed with brine and dried over MgSO4. The crude bromide 79 was 

used in the following step without any further purification.  

 

 

(3S,5S,8R,9S,10S,13S,14S,16R)-3,16-dihydroxy-10,13-dimethyltetradecahydro-1H-

cyclopenta[a]phenanthren-17(2H)-one (80) 

 Bromide 79 (0.642 g, 1.74 mmol) was dissolved in 75% aq. DMF (30 mL), 

and then NaOH (0.0834 g, 2.08 mmol) was added. After 30 min, the reaction was 

poured into 1% HCl solution and the aqueous was extracted from EtOAc. The organic 

layer was washed with 5% NaHCO3, then water, and then dried over MgSO4. The 

crude diol 80 (0.400 g, 75% yield two steps) was clean enough that purification was 

unnecessary. 

 

 

(3S,5S,8R,9S,10S,13S,14S,16R)-3,16-bis((tert-butyldimethylsilyl)oxy)-10,13-

dimethyltetradecahydro-1H-cyclopenta[a]phenanthren-17(2H)-one (81) 

Imidazole (0.206 g, 3.03 mmol), followed by TBSCl (0.400 g, 2.65 mmol), 

was added to a solution of 80 (0.387 g, 1.26 mmol) in dichloromethane (10 mL). The 

Me

Me

HO

O

OH

H

H H

H

80

Me

Me

HO

O

Br

H

H H

H

79

Me

Me

HO

O

OH Me

Me

TBSO

O

OTBS

H

H H

H

H H

H H

80 81



Chapter 2 – Efforts in Our Laboratory 59 

reaction was heated to 50 °C overnight and then quenched water and diluted with 

dichloromethane. The aqueous layer was extracted from dichloromethane three times, 

and then the combined organics were washed with brine and dried over MgSO4. The 

crude product was purified by column chromatography (hexanes) to give 81 (0.539 g, 

80% yield). [α]  = +9 ° (c = 0.740, CHCl3); 1H NMR (500 MHz, CDCl3) δ 4.31 (d, 

J = 8.1 Hz, 1H), 3.54 (dd, J = 11.3, 6.5 Hz, 1H), 1.95 – 1.02 (m, 20H), 0.94 (d, J = 

8.1 Hz, 2H), 0.92 (s, 1H), 0.89 (d, J = 4.9 Hz, 15H), 0.81 (s, 1H), 0.77 (d, J = 2.1 Hz, 

1H), 0.28 – 0.19 (m, 1H), 0.11 (s, 3H), 0.10 (s, 3H), 0.05 (s, 9H); 13C NMR (126 

MHz, CDCl3) δ 179.6, 72.3, 72.0, 54.5, 48.4, 47.4, 45.1, 38.7, 37.1, 35.7, 35.6, 35.0, 

32.8, 31.9, 30.7, 28.5, 25.9, 25.8, 25.7, 25.6, 25.6, 20.2, 14.6, 12.3, -4.53; IR 

(NaCl/thin film): 2929, 2856, 1754, 1723, 1711, 1693, 1470, 1461, 1454, 1446, 1385, 

1360, 1253, 1179, 1150, 1095, 1071, 1004, 870,835, 776 cm–1. 
 

 

(3S,5S,8R,9S,10S,13S,14S,16R)-3,16-bis(methoxymethoxy)-10,13-

dimethyltetradecahydro-1H-cyclopenta[a]phenanthren-17(2H)-one (84) 

Bu4NI (14.6 mg, 0.0396 mmol), followed by N,N-diisopropylethylamine (0.14 

mL, 0.792 mmol) was added to a solution of steroid 80 (60.7 mg, 0.198 mmol) in 

THF (1.6 mL). After dropwise addition of chloromethyl methyl ether (MOMCl, 0.08 

mL, 0.990 mmol), the reaction was heated to 50 °C and stirred overnight. Upon 

cooling to room temperature, the reaction was quenched with water and the aqueous 
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layer was extracted from Et2O three times. The combined organic layers were washed 

with brine and dried over MgSO4. The crude product was purified by column 

chromatography (20% EtOAc/Hex) to provide 84 (76.4 mg, 98% yield). [α]  = +86 

° (c = 0.255, CHCl3); 1H NMR (500 MHz, CDCl3) δ 4.87 (d, J = 6.7 Hz, 1H), 4.70 – 

4.65 (m, 3H), 4.32 (dd, J = 7.1, 2.5 Hz, 1H), 3.49 (tt, J = 11.2, 4.8 Hz, 1H), 3.40 (s, 

3H), 3.36 (s, 3H), 1.92 – 1.68 (m, 5H), 1.68 – 1.60 (m, 2H), 1.59 – 1.38 (m, 4H), 1.38 

– 1.23 (m, 5H), 1.11 (ddt, J = 15.7, 12.5, 3.4 Hz, 1H), 1.04 – 0.92 (m, 2H), 0.90 (s, 

3H), 0.83 (s, 3H), 0.70 (ddd, J = 13.7, 7.5, 4.1 Hz, 1H); 13C NMR (126 MHz, CDCl3) 

δ 217.3, 96.1, 94.6, 76.2, 74.4, 55.6, 55.1, 54.4, 48.8, 47.7, 44.9, 36.9, 35.8, 35.3, 

35.0, 31.6, 30.7, 29.7, 28.7, 28.4, 20.2, 14.4, 12.2; IR (NaCl/thin film): 2930, 2856, 

1751, 1464, 1449, 1375, 1215, 1146, 1102, 1066, 1043, 1012, 917 cm–1; HRMS 

(Multimode-ESI/APCI) calc’d for C23H38O5 [M+H]+ 395.2792, found 395.2767. 
 

 

(3S,5S,8R,9S,10S,13S,14S,16R,17S)-3,16-bis(methoxymethoxy)-10,13-dimethyl-17-

(prop-2-yn-1-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-17-ol (85) 

TiCl4 (0.01 mL, 0.0471 mmol) was added to a solution of steroid 84 (9.3 mg, 

0.0236 mmol) in THF (0.5 mL) at –78 °C, followed by the addition of 

allenylmagnesium bromide 77 (0.0707 mmol, 0.04 mL of 1.63 M soln. in Et2O). 

After 30 min, the reaction was quenched with water and diluted with Et2O, and the 
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aqueous layer was extracted from Et2O three times. The combined organic layers 

were washed with brine and dried over MgSO4 to give pure 85 (7.9 mg, 77% yield) 

without further purification. [α]  = –30 ° (c = 0.455, CHCl3); 1H NMR (500 MHz, 

CDCl3) δ 4.72 (q, J = 6.8 Hz, 2H), 4.67 (d, J = 1.2 Hz, 2H), 4.03 (dd, J = 8.0, 3.1 Hz, 

1H), 3.48 (tt, J = 11.2, 4.7 Hz, 1H), 3.40 (s, 3H), 3.36 (s, 3H), 3.21 (s, 1H), 2.49 – 

2.39 (m, 2H), 1.87 – 1.80 (m, 1H), 1.97 (t, J = 2.7 Hz, 1H), 1.92 (td, J = 11.4, 9.0 Hz, 

2H), 1.78 – 1.68 (m, 2H), 1.65 – 1.53 (m, 8H), 1.48 – 1.38 (m, 2H), 1.36 – 1.19 (m, 

7H), 1.13 – 1.05 (m, 2H), 1.00 – 0.82 (m, 3H), 0.80 (s, 3H), 0.72 (s, 3H); 13C NMR 

(126 MHz, CDCl3) δ 96.5, 94.6, 81.6, 81.5, 80.2, 76.3, 70.2, 56.0, 55.1, 54.1, 48.4, 

47.2, 45.0, 37.0, 35.7, 35.4, 35.3, 32.4, 32.1, 30.5, 28.8, 28.7, 25.8, 20.2, 15.5, 12.3; 

IR (NaCl/thin film): 3478, 3311, 3264, 2941, 2923, 2898, 2848, 1468, 1450, 1384, 

1353, 1219, 1150, 1104, 1076, 1040, 1026, 1013, 989, 960, 916 cm–1; HRMS 

(Multimode-ESI/APCI) calc’d for C26H42O5 [M+Na]+ 457.2924, found 457.2914. 

 

 
buta-1,2-dien-1-ylmagnesium bromide (86) 

86 was prepared from 3-bromobut-1-yne using the same procedure as 

allenylmagnesium bromide 77. 
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TiCl4 (0.01 mL, 0.0542 mmol) was added to a solution of steroid 84 (10.7 mg, 

0.0271 mmol) in THF (0.5 mL) at –78 °C, followed by the addition of buta-1,2-

dienyl-magnesium bromide 86 (0.0814 mmol, 0.05 mL of 1.50 M soln. in Et2O). 

After 30 min, the reaction was quenched with water and diluted with Et2O, and the 

aqueous layer was extracted from Et2O three times. The combined organic layers 

were washed with brine and dried over MgSO4 to give a mixture of 87 and 88. The 

two products were separated by column chromatography (15% EtOAc/Hex) to afford 

87 (5.7 mg, 47% yield) and 88 (2.8 mg, 23% yield).  

(3S,5S,8R,9S,10S,13S,14S,16R,17S)-17-((S)-but-3-yn-2-yl)-3,16-

bis(methoxymethoxy)-10,13-dimethylhexadecahydro-1H-

cyclopenta[a]phenanthren-17-ol (87) 

[α]  = +5 ° (c = 0.240, CHCl3); 1H NMR (500 MHz, CDCl3) δ 4.83 (d, J = 6.7 Hz, 

1H), 4.71 – 4.65 (m, 3H), 3.96 (dd, J = 7.6, 2.5 Hz, 1H), 3.49 (tt, J = 11.2, 4.8 Hz, 

1H), 3.41 (s, 3H), 3.36 (s, 3H), 3.21 (s, 1H), 2.73 (qd, J = 6.9, 2.5 Hz, 1H), 2.01 (d, J 

= 2.4 Hz, 1H), 1.91 – 1.76 (m, 3H), 1.70 (dt, J = 13.3, 3.6 Hz, 1H), 1.59 (tddd, J = 

20.4, 12.4, 9.0, 5.5 Hz, 7H), 1.48 – 1.37 (m, 1H), 1.36 – 1.29 (m, 2H), 1.28 (d, J = 6.9 
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Hz, 3H), 1.25 (t, J = 1.3 Hz, 2H), 1.12 – 1.04 (m, 1H), 0.95 (tdd, J = 13.0, 8.3, 4.6 

Hz, 2H), 0.79 (s, 3H), 0.75 (s, 3H), 0.69 (ddd, J = 12.5, 10.4, 3.7 Hz, 1H); 13C NMR 

(126 MHz, CDCl3) δ 97.9, 94.6, 87.6, 83.2, 82.1, 76.3, 69.5, 56.3, 55.1, 53.8, 49.0, 

47.4, 44.9, 37.0, 35.6, 35.3, 35.3, 33.7, 33.3, 32.1, 32.0, 28.7, 28.7, 20.5, 16.7, 15.0, 

12.2; IR (NaCl/thin film): 3520, 3306, 3270, 2928, 2849, 1461, 1450, 1383, 1352, 

1340, 1296, 1218, 1151, 1104, 1070, 1044, 989, 917 cm–1. 
 (3S,5S,8R,9S,10S,13S,14S,16R,17S)-17-((R)-but-3-yn-2-yl)-3,16-

bis(methoxymethoxy)-10,13-dimethylhexadecahydro-1H-

cyclopenta[a]phenanthren-17-ol (88) 

[α]  = –24 ° (c = 0.125, CHCl3); 1H NMR (500 MHz, CDCl3) δ 4.75 (d, J = 6.8 Hz, 

1H), 4.70 – 4.64 (m, 3H), 4.01 (dd, J = 8.1, 2.0 Hz, 1H), 3.49 (tt, J = 11.2, 4.7 Hz, 

1H), 3.40 (s, 3H), 3.36 (s, 3H), 3.13 (s, 1H), 2.68 (qd, J = 7.0, 2.5 Hz, 1H), 2.11 (d, J 

= 2.5 Hz, 1H), 2.06 – 2.00 (m, 1H), 1.91 – 1.68 (m, 5H), 1.68 – 1.02 (m, 12H), 1.01 – 

0.85 (m, 3H), 0.84 (s, 3H), 0.81 (d, J = 0.6 Hz, 3H), 0.74 – 0.65 (m, 1H); 13C NMR 

(126 MHz, CDCl3) δ 96.1, 94.6, 87.0, 82.3, 80.8, 76.4, 70.7, 56.6, 55.1, 53.9, 49.0, 

45.0, 37.0, 35.7, 35.3, 35.3, 32.5, 32.1, 31.9, 31.7, 29.7, 28.8, 28.8, 20.4, 16.3, 15.1, 

12.2; IR (NaCl/thin film): 3538, 3231, 2930, 2848, 2819, 1459, 1449, 1377, 1355, 

1261, 1219, 1150, 1135, 1103, 1041, 987, 917, 908, 796 cm–1. 
 

 

(S)-but-3-yn-2-yl methanesulfonate (91) 
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 Et3N (0.09 mL, 0.673 mmol) was added to a solution of alcohol 89 (23.6 mg, 

0.337 mmol) in dichloromethane (1.7 mL) at –78 °C, followed by the addition of 

mesyl chloride (0.04 mL, 0.505 mmol). After 1.25 h at –78 °C, the reaction was 

quenched with sat. NaHCO3 and allowed to warm to room temperature. The organic 

layer was separated, washed with brine, and concentrated. The resulting reside was 

diluted with ether, which was washed twice with water, and then once with brine. The 

combined aqueous layers were washed with ether twice. The combined organic layers 

were then dried over MgSO4. The crude mesylate 91 (34.3 mg, 69% yield) was used 

without further purification. 

 

 

(3S,5S,8R,9S,10S,13S,14S,16R,17S)-17-((S)-but-3-yn-2-yl)-3,16-

bis(methoxymethoxy)-10,13-dimethylhexadecahydro-1H-

cyclopenta[a]phenanthren-17-ol (87) 

 Triphenyl phosphine (3.5 mg, 0.0134 mmol), followed by mesylate 91 (0.119 

g, 0.804 mmol), was added to a solution of Pd(OAc)2 (9.0 mg, 0.0134 mmol) in THF 

(0.9 mL) at –78 °C. In a separate flask with stir bar, TiCl4 (0.07 mL, 0.536 mmol) 

was added to a solution of steroid 84 (0.106 g, 0.268 mmol) in THF (0.9 mL) at –78 
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°C. After stirring for 5 min, the steroid solution was added dropwise to the mesylate 

solution at –78 °C. Following the dropwise addition of Et2Zn (1.6 mL, 1.0 M in 

hexanes, 1.61 mmol), the reaction was warmed to –20 °C and stirred overnight. The 

reaction was quenched at –20 °C with 10% HCl (caution: evolution of gaseous 

ethane), and then diluted with ether and warmed to room temperature. Aqueous was 

extracted from ether twice, and the combined organics were washed with brine and 

dried over MgSO4. The crude product was purified via flash chromatography (15% 

EtOAc/Hex) to afford alcohol 87 (18.1 mg, 15% yield, 22% b.r.s.m.). See above for 

characterization data. 
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Figure 4. X-ray structure of alcohol 87. 

!
!
  Table 1.  Crystal data and structure refinement for a14213. 

Identification code  a14213 

Empirical formula  C27H44O5 

Formula weight  448.62 

Temperature  100 K 

Wavelength  0.71073 Å 

Crystal system  Tetragonal 

Space group  P 41 21 2 

Unit cell dimensions a = 12.1458(4) Å a= 90° 

 b = 12.1458(4) Å b= 90° 

 c = 34.4196(16) Å g = 90° 

Volume 5077.6(4) Å3 

Z 8 

Density (calculated) 1.174 Mg/m3 

Absorption coefficient 0.079 mm-1 
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F(000) 1968 

Crystal size 0.53 x 0.40 x 0.19 mm3 

Theta range for data collection 1.778 to 37.056°. 

Index ranges -20<=h<=20, -20<=k<=19, -58<=l<=57 

Reflections collected 233885 

Independent reflections 12739 [R(int) = 0.0650] 

Completeness to theta = 25.000° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.0000 and 0.9201 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 12739 / 0 / 409 

Goodness-of-fit on F2 1.059 

Final R indices [I>2sigma(I)] R1 = 0.0384, wR2 = 0.1003 

R indices (all data) R1 = 0.0461, wR2 = 0.1047 

Absolute structure parameter -0.12(14) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.375 and -0.224 e.Å-3 
 
 
 Table 2.  Atomic coordinates  ( x 105) and equivalent  isotropic displacement parameters (Å2x 104) 

for a14213.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
O(1) 129946(8) 149003(7) 56096(2) 195(2) 

O(2) 135140(9) 157278(8) 50225(3) 265(2) 

O(3) 90398(7) 75451(7) 53158(2) 162(1) 

O(4) 68988(6) 79928(7) 53810(2) 163(1) 

O(5) 51853(8) 86741(11) 55854(3) 329(2) 

C(1) 95261(8) 107761(8) 57862(3) 131(2) 

C(2) 89567(9) 117708(9) 56012(3) 173(2) 

C(3) 95505(9) 128430(8) 56965(3) 169(2) 

C(4) 107604(9) 127728(8) 55763(3) 138(2) 

C(5) 113396(9) 138808(8) 56244(3) 164(2) 

C(6) 125280(9) 138611(8) 54868(3) 156(2) 

C(7) 131681(9) 128993(9) 56614(3) 159(2) 
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C(8) 125595(8) 117994(8) 56125(3) 143(2) 

C(9) 113794(8) 118157(8) 57802(3) 121(1) 

C(10) 107635(8) 107272(8) 56784(3) 122(1) 

C(11) 113061(8) 96825(8) 58470(3) 143(2) 

C(12) 106897(8) 86081(8) 57478(3) 142(2) 

C(13) 94677(8) 86716(8) 58659(3) 125(1) 

C(14) 86905(8) 77591(8) 57015(3) 134(2) 

C(15) 75328(8) 83374(9) 57110(3) 145(2) 

C(16) 77380(8) 95900(9) 57160(3) 168(2) 

C(17) 89837(8) 96998(8) 56619(3) 134(2) 

C(18) 138626(10) 152948(10) 53821(3) 197(2) 

C(19) 127984(18) 166497(16) 50724(7) 479(5) 

C(20) 114429(9) 119834(9) 62240(3) 158(2) 

C(21) 93401(9) 87327(9) 63099(3) 161(2) 

C(22) 86402(9) 66577(9) 59331(3) 166(2) 

C(23) 97569(11) 60829(10) 59779(4) 242(2) 

C(24) 78585(11) 59023(9) 57405(3) 206(2) 

C(25) 72478(12) 52766(11) 55777(4) 257(2) 

C(26) 57925(10) 77554(12) 54678(3) 239(2) 

C(27) 49571(14) 94156(19) 52751(6) 400(4) 
!



 112 

ACKNOWLEDGEMENTS 

 

 I would like to thank my research advisor Professor Sarah Reisman. Sarah has 

been extremely supportive throughout my time at Caltech, which has helped me 

immensely. I deeply appreciate the fact that Sarah has always wanted what is best for 

me and has allowed me the time and energy to figure out what that is. She is a 

brilliant scientist and I feel honored to have been given the opportunity to conduct 

research in her laboratory.  

 I would like to thank my undergraduate research advisor Professor Timo 

Ovaska at Connecticut College. After taking his sophomore organic chemistry class 

for a year, I decided to conduct organic chemistry research in his laboratory the 

following summer. This is where I developed my passion for organic chemistry, and I 

continued working with Timo for two more years. I’m so grateful to Timo for giving 

me such a strong foundation in organic chemistry that will stay with me for the rest of 

my career.  

 There are lots of other people at Caltech who contributed to the successful 

completion of my Master’s degree that I would like to thank. I would like to thank 

Professor Brian Stoltz for his suggestions in helping me solve chemistry problems. I 

would like to thank Dr. Scott Virgil for taking great care of the catalysis center and 

for always being available and approachable to help students, and especially for 

helping me grow crystals. I would like to thank Larry Henling for X-ray 

crystallography. I would like to thank Dr. David VanderVelde for maintaining a great 



 113 

NMR facility. I would like to thank Felicia Hunt for her generous support and 

encouragement. 

 Lastly, I would like to thank my family, Tracy, Richard, and Marley Campbell 

for their eternal love and support. I could not have got to where I am today without 

them. 


