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The impact theory applies a single process to the entire series,correlating size variation with form

variation in a rational way... In fine, it unites and organizes as a rational and coherent whole the

varied strange appearances whose assemblage on our neighbor’s face cannot have been fortuitous.

—G. K. Gilbert, 1893

She died early, but thus saved upon herself the marks of youth. She is not an aged, decrepit world,

since the dead do not age; she is an embalmed mummy, and by her outer appearance we can judge

the appearance of other worlds at the beginning of Creation.

—E. J. Öpik, 1916

The origin of the principal morphological features on the lunar surface—the circular or subcircular

craters ranging from centimeters to hundreds of kilometers in diameter—remains a controversial

subject. On the one hand the countless number of craters attests to an intense bombardment of the

moon by interplanetary debris over eons of time. But on the other hand there is ample evidence for

extensive volcanic activity that many workers argue has been active either directly or indirectly as a

major crater-forming process. Undoubtedly, both exogenic and endogenic processes have been in

action and the controversy now revolves around the relative significance of the two agents for crater

formation.

—D. E. Gault, 1970
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Abstract

This work seeks to understand past and present surface conditions on the Moon using two differ-

ent but complementary approaches: topographic analysis using high-resolution elevation data from

recent spacecraft missions and forward modeling of the dominant agent of lunar surface modifica-

tion, impact cratering. The first investigation focuses on global surface roughness of the Moon,

using a variety of statistical parameters to explore slopes at different scales and their relation to

competing geological processes. We find that highlands topography behaves as a nearly self-similar

fractal system on scales of order 100 meters, and there is a distinct change in this behavior above

and below approximately 1 km. Chapter 2 focuses this analysis on two localized regions: the lu-

nar south pole, including Shackleton crater, and the large mare-filled basins on the nearside of the

Moon. In particular, we find that differential slope, a statistical measure of roughness related to

the curvature of a topographic profile, is extremely useful in distinguishing between geologic units.

Chapter 3 introduces a numerical model that simulates a cratered terrain by emplacing features of

characteristic shape geometrically, allowing for tracking of both the topography and surviving rim

fragments over time. The power spectral density of cratered terrains is estimated numerically from

model results and benchmarked against a 1-dimensional analytic model. The power spectral slope,

β, is observed to vary predictably with the size-frequency distribution of craters, as well as the crater

shape. The final chapter employs the rim-tracking feature of the cratered terrain model to analyze

the evolving size-frequency distribution of craters under different criteria for identifying “visible”

craters from surviving rim fragments. A geometric bias exists that systematically over counts large

or small craters, depending on the rim fraction required to count a given feature as either visible or

erased.
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Chapter 1

Introduction

1.1 The Lunar Topography

The surface of the Moon has been the subject of telescopic investigations for hundreds of years, ever

since the earliest instruments were first turned to the night sky (Whitaker , 2003), and long before the

word “science” came into popular use (Lindberg , 1992). Our natural satellite is also the most visited

planetary body by spacecraft, aside from the Earth itself, and the only destination (so far) to have

been reached by human explorers. The Moon thus occupies a special place in the public imagination,

and the shape and properties of its surface in particular have played a significant role in several major

scientific debates of the last few decades, including the origin of the Earth-Moon system, the history

of life and mass extinctions on our own planet, and the evolution of planetary surfaces throughout the

solar system. In 1610, when Galileo first described the pattern of light and shadow he saw through

his telescope as the interaction of sunlight with a rugged, three-dimensional terrain (Galilei , 1989),

he began what has become a long tradition of seeking to decipher the “cuneiform writings” (Fauth,

1909) encoded in the lunar surface—that is, to interpret its physical features.

The topography of a planetary body contains the remnants of the geologic, geomorphologic, and

cosmic processes that have contributed to its formation and subsequent modification. On the Moon,

impact cratering is the dominant agent of surface modification (Melosh, 1989), although evidence

of other processes, including vast volcanic plains and tectonic features like extensional graben and

wrinkle ridges, is also abundant (Wilhelms et al., 1987). Compared to the Earth, with its plate
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tectonics, atmosphere, and hydrologic cycle, the Moon thus presents a somewhat simplified setting

in which to study the most ubiquitous process in the solar system, the collision of bolides with

planetary surfaces and the formation of impact craters. Moreover, the lunar surface contains a

record of times long past, the corresponding terrestrial record of which has been almost completely

erased. The second quote in the dedication of this thesis was written by Ernst J. Öpik in his 1916

paper exploring the possibility that the lunar craters were formed by impact, rather than volcanic,

processes. While he concludes that an impact origin is unlikely given the absence of similar features

on Earth, he makes an eloquent observation that, to a great extent, describes our current approach

toward lunar impact crater studies: the lunar surface is telling of conditions in the past, and that

information can be used to interpret cratered terrains throughout the solar system.

This thesis focuses on two parallel approaches to understanding the lunar topography: on the

one hand, we employ high-resolution elevation data from recent spacecraft missions to analyze the

statistical properties of surface roughness, while on the other, we develop a cratered-terrain model

to investigate the expected statistical signatures produced by the process of impact cratering. In

developing and comparing these two approaches, our goal is to determine the extent to which the

topographical markers of competing geomorphological processes can be disentangled for the Moon,

with the hope that improving our understanding of the cratering record on our own satellite will

provide a useful resource for other planetary surfaces.

1.1.1 Interpreting Cratered Terrains

Craters were among the first lunar features to be described by early observers, although the word

“crater” was only applied to them in the late-18th century, first by Johann Schröter, who borrowed

the term from volcanology. This conflation of terms was not accidental, as Schröter, along with

most of his contemporaries, believed the lunar craters to be of volcanic origin, based on analogy

with terrestrial features. Various versions of the impact theory for the origin of lunar craters were

also proposed, but they found little support until the early 20th century, when, fueled by new

wartime experiences with aerial reconnaissance and bomb craters, the explosive nature of the impact
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process began to be explored (Ives, 1919; Gifford , 1924; Wegener and Şengör , 1975). In the decades

leading up to the First World War, the debate over lunar craters was fought on two fronts, as

both the reliability of terrestrial analogy as a means of interpreting extraterrestrial features and the

utility of laboratory-scale impact experiments were contested. The explosion hypothesis provided

an explanation for the near-perfect circularity of lunar craters, a common stumbling block for the

impact hypothesis because oblique impact angles were known to be more likely than vertical ones

(Gilbert , 1893) and small-scale experiments commonly resulted in elliptical craters. At the same

time, the identification of terrestrial impact craters, especially Meteor Crater in Arizona, led to

a broader understanding of the Earth’s own impact history (Hoyt , 1987). Further developments

in the 1940s by Dietz (1946), who studied changes in physiographic form with increasing crater

diameter, and by Baldwin (1949), who connected the depth-diameter scaling for impact craters

and chemical explosion craters, established a quantitative relationship between impact energy and

crater morphometry (Doel , 1996). Detailed studies of nuclear test craters and Meteor Crater led

Eugene M. Shoemaker to spearhead the founding of the Astrogeology branch of the United States

Geological Survey (USGS) and to initiate the first geologic maps of the Moon (Shoemaker , 1963,

1977; Shoemaker and Hackman, 1962; Wilhelms, 1993).

The recognition that stratigraphic relationships between geologic units of different ages can be

determined by close examination of the lunar surface forms the basis of our present understanding of

the Moon’s surface history. Five major periods, primarily defined by the formation of major basins

and the emplacement of mare basalts, are distinguished, the boundaries of which are calibrated by

absolute ages from lunar samples: Copernican (∼ 1.1 Gya-present), Eratosthenian (∼ 3.2−1.1 Gya),

Imbrian (∼ 3.85 − 3.2 Gya), Nectarian (∼ 3.9 − 3.85 Gya), and Pre-Nectarian (∼ 4.5 − 3.9 Gya)

(Wilhelms et al., 1987; Stöffler and Ryder , 2001).

The comparison of crater densities on different surfaces provides a system of relative ages that can

be referenced to the absolute ages from radiometric dating of returned samples and lunar meteorites

(Hartmann, 1970; Neukum et al., 1975; Strom, 1977). Statistical treatments of the size-frequency

distribution of lunar craters were first derived from telescopic observations of the near side of the
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Moon (MacDonald , 1931; Young , 1940; Öpik , 1960; Baldwin, 1964), and more detailed studies

became feasible in the mid-1960s with the return of photographs from successful lunar probes in the

Ranger and Surveyor programs (Brinkmann, 1966; Jaffe, 1967). Since that time, the interpretation

of cratered terrains from a statistical standpoint has developed into a fruitful subfield with its

own terminology, conventions, and literature (Melosh, 1989), and it now encompasses the study of

planetary surfaces across the solar system (Passey and Shoemaker , 1982; Zahnle et al., 2003; Pike,

1988; Neukum and Ivanov , 1994). Detailed examinations of cratered surfaces establish a geologic

timescale correlated across planetary bodies (Shoemaker et al., 1961), to determine the populations

of impactors responsible for forming them (Ivanov et al., 2002), and to thus provide constraints on

dynamical models of solar system formation (Bottke Jr et al., 2005).

1.1.2 Surface Roughness

The term “surface roughness” has generally been used since the 19th century to convey the degree

to which an interface—whether it be the outer surface of a rock outcrop (Shaler and Davis, 1881),

a metal tool (Nasmyth and Carpenter , 1874), or bone (Adams, 1874)—departs from a perfectly

smooth surface. The development of aerial photography and radar in the early 20th century marked

the origins of remote sensing as it is practiced today (Campbell , 2002), and led to new ways of

quantifying the surface roughness of natural terrains and relating these measures to surface processes.

In the 1970s, range-Doppler and radar techniques for quantifying surface roughness on planetary

bodies came into their own, and techniques were developed to integrate ground-based and spacecraft

observations (Butrica, 1996; Ostro, 1993). By the time laser altimetry was developed for Apollo 15

to measure topographic profiles from orbit (Kaula et al., 1974), multiple kinds of elevation data were

available for the Moon.

Today, surface roughness is still defined in a variety of ways, depending on the dataset used,

the surface being investigated, and the purpose of the study (Shepard et al., 2001; Kreslavsky et al.,

2013). Nevertheless, the quantification of roughness properties has proven highly useful in discrim-

inating among geologic units and understanding the complex interaction between surface processes
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acting at different scales. On Mars, for example, Kreslavsky and Head (2000) found a systematic

variation in the Hurst exponent (a unit of measure that captures the scale dependence of slopes,

described in Chapter 2) with latitude that has been associated with the presence of subsurface ice.

Aharonson et al. (1998) and Aharonson et al. (2001) found the extreme smoothness of sedimented

basins on Mars, especially Amazonis Planitia, to be most analogous to heavily sedimented fluvial

basins on Earth, such as the ocean floor. Power spectra of topography were used by Nimmo et al.

(2011) to study the lithospheres of icy satellites, and Zuber et al. (2000) considered surface slopes

on asteroid 433 Eros to classify it as a rubble pile. On the Moon, Rosenburg et al. (2011) and

Kreslavsky et al. (2013) found significantly different behavior in roughness properties above and

below approximately kilometer scales, with important implications for competing surface processes

such as the the emplacement of craters, the generation of lunar regolith through impact gardening,

and seismic shaking in the vicinity of large impacts.

1.1.3 Planetary Surface Topography from Laser Altimetry

For planetary applications, laser altimetry relies on the accurate detection and timing of laser pulses

reflected from a planetary surface, as well as accurate tracking of spacecraft position from Earth.

Thus, orbit determination is the main source of error in the resulting measurements, which are based

on the travel time of the emitted and reflected pulses (Neumann, 2001). The vertical precision with

which each measurement within an orbit track can be made provides a separate, generally smaller,

source of error, and the frequency of laser pulses determines the along-track spacing of the elevation

measurements (Smith et al., 2010a).

Table 1.1 contains a summary of performance parameters for selected laser altimeters carried on

planetary missions. The first instruments were designed for Apollo 15, 16, and 17, and they measured

the height of the command and service module at intervals of 30 to 43 km (Kaula et al., 1974). From

February through May of 1994, the Clementine orbiter mapped the topography of the Moon (Smith

et al., 1997; Zuber et al., 1994), while the Shuttle Laser Altimeter 1 and 2 (SLA-01 and SLA-02)

measured the Earth’s topography on STS-72 and STS-85, respectively (Garvin et al., 1998). The
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Mission Name Launch Date Firing Rate
(Hz)

Horizontal
Accuracy

Vertical
Precision

Vertical
Accuracy

Apollo 15, 16, 17a 1971-1972 0.06 30 km 4 m 400 m
Clementinea 1994 0.6 3 km 40 m 90 m

SLA-01a 01/1996 10 40 m 0.75 m 2.78 m
SLA-02a 08/1997 10 40 m 0.75 m 6.74 m

NLRa 02/1996 1-2 20 m 0.31 m 10 m
MOLAa 11/1996 10 100 m 0.38 m 1 m
MLAb 08/2004 8 15-100 m 1 m 20 m

Kaguyac 09/2007 1 50 m 5 m 1 m
Chang’e 1d 10/2007 1 30 m 50-100 m 1 m

LOLAe 06/2009 28 50 m 10 cm 1 m

Table 1.1: Comparison of laser altimeters flown on planetary missions, from aNeumann (2001),
bZuber et al. (2012b); Smith et al. (2012), cAraki et al. (2009), dLi et al. (2010); Ping et al. (2009),
and eSmith et al. (2010a); Barker et al. (2014).

NEAR Laser Rangefinder (NLA) was carried on NEAR Shoemaker, a spacecraft that orbited asteroid

433 Eros several times before touching down on the surface (Zuber et al., 2000). The Mars Orbiter

Laser Altimeter (MOLA), launched in November of 1996, provided the first global topographic

dataset from laser altimetry for Mars (Smith et al., 2001). The Mercury Laser Altimeter (MLA) was

launched in 2004 on the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and

Ranging) spacecraft and, following two flybys in 2008, entered orbit around Mercury in March of

2011. Both the Japan Aerospace Exploration Agency (JAXA) and the Chinese Lunar Exploration

Program launched lunar missions in 2007, Kaguya and Chang’e 1, respectively, and each mission

carried a laser altimeter (Araki et al., 2009; Li et al., 2010; Ping et al., 2009).

The Lunar Reconnaissance Orbiter (LRO) was launched in June of 2009, carrying the Lunar

Orbiter Laser Altimeter (LOLA), the first multibeam laser altimeter designed to measure planetary

surface topography (Smith et al., 2010a). A diffractive optical element splits a single laser beam

into five output beams, each of which illuminates a 5-m-diameter spot on the surface, and the

backscattered pulses are detected and stored independently by the receiver (Smith et al., 2010b).

The 28-Hz pulse repetition rate results in a total sampling rate of 140 measurements per second,

and, to date, more than 6.3 billion elevation measurements have been recorded (Barker et al., 2014).

Successive laser shots are separated by approximately 57 m, and the smallest distance between spots
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is 25 m (see Figure 2.1). The 5-spot pattern allows for calculation of surface slopes both between

laser shots (along-track) and within individual spots in two orthogonal directions, for the first time

providing an estimate of the true gradient at one particular scale (Rosenburg et al., 2011). LOLA’s

high firing rate, multispot pattern, and high precision and accuracy have provided an unprecedented

topographic dataset for the Moon that is well suited for investigations of surface roughness and the

statistics of cratered terrains like those presented in the following chapters.

1.2 Chapter Overview

This thesis focuses on two interrelated aspects of the lunar topography: impact cratering and sur-

face roughness. The former is the dominant agent of lunar surface modification, both today and

throughout most of the Moon’s history (Wilhelms et al., 1987). The process of impact cratering

and the landscapes it creates have been extensively studied in terms of size-frequency distributions

of craters and their implications for relative surface ages (Shoemaker and Hackman, 1962; Neukum

et al., 1975; Hartmann, 1984). Impact cratering at many scales, from large basin-forming events

to micrometeorite bombardment, also produces characteristic surface roughness features, and the

relationship between the two is the subject of the investigations presented here.

The structure of the remaining chapters reflects the two parallel approaches we take to under-

standing lunar surface roughness and its relation to impact cratering: analysis of high-resolution

elevation data from LOLA and forward modeling of cratered terrains. Chapter 2 presents global

surface roughness maps using a variety of roughness parameters, including median absolute slope

at several scales, median bidirectional slope at the LOLA footprint scale, median differential slope,

and Hurst exponent. We explore major regional differences in roughness properties and find that

the scale-dependence of lunar surface roughness reveals a change in character at approximately the

1-kilometer scale in the lunar highlands. The next chapter focuses this analysis on several local

regions to assess the geologic applications of roughness maps at the lunar south pole, Shackleton

crater, and mare surfaces of varying age. Chapter 3 presents a cratered terrain model that we have

developed to track both the three-dimensional topography and surviving rim fragments of individual
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craters through time. The dependence of the power spectral density (PSD) on the size-frequency

distribution of emplaced craters and the spectral content (shape) of individual craters is explored

both analytically and numerically and compared to the PSD along LOLA transects. The final chap-

ter employs the crater rim-tracking capability of the numerical model to investigate the evolution

of the size-frequency distribution of “visible” craters as craters accumulate and overlap each other,

addressing the geometric bias that results from over- or undercounting large craters and suggest-

ing several potential solutions. Figure 1.1 contains a map of the lunar topography from LOLA

that includes major geographical features that are relevant to the work presented in the following

chapters.
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Chapter 2

Global Surface Slopes and
Roughness from the Lunar Orbiter
Laser Altimeter

Originally published in:

Rosenburg, M., O. Aharonson, J. Head, M. Kreslavsky, E. Mazarico, G. Neumann, D. Smith, M. Tor-
rence, and M. Zuber (2011), Global surface slopes and roughness of the moon from the lunar orbiter
laser altimeter, Journal of Geophysical Research: Planets (1991–2012), 116 (E2).

Abstract

The acquisition of new global elevation data from the Lunar Orbiter Laser Altimeter (LOLA), car-

ried on the Lunar Reconnaissance Orbiter (LRO), permits quantification of the surface roughness

properties of the Moon at unprecedented scales and resolution. We map lunar surface roughness us-

ing a range of parameters: median absolute slope—both directional (along-track) and bidirectional

(in two dimensions)—median differential slope, and Hurst exponent, over baselines ranging from

∼17 m to ∼2.7 km. We find that the lunar highlands and the mare plains show vastly different

roughness properties, with subtler variations within mare and highlands. Most of the surface ex-

hibits fractal-like behavior, with a single or two different Hurst exponents over the given baseline

range; when a transition exists, it typically occurs near the 1-km baseline, indicating a significant

characteristic spatial scale for competing surface processes. The Hurst exponent is high within the

lunar highlands, with a median value of 0.95, and lower in the maria, with a median value of 0.76.

The median differential slope is a powerful tool for discriminating between roughness units and is
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useful in characterizing, among other things, the ejecta surrounding large basins, particularly Ori-

entale, as well as the ray systems surrounding young, Copernican-age craters. In addition, it allows

a quantitative exploration on mare surfaces of the evolution of surface roughness with age.

2.1 Introduction

As signatures of surface evolution processes acting over geologic time, surface slopes and slope

distributions provide important clues to the morphologic history of a planetary surface in terms of

both formation and modification mechanisms. Moreover, the comparison of surface regions based

on quantitative measures of roughness and its scale dependence is a powerful tool for interpreting

the relationships between geologic and topographic units and their origins, and has been successfully

employed for various planetary bodies, including Earth (Morris et al., 2008; Neumann and Forsyth,

1995; Smith and Jordan, 1988), Mars (Aharonson et al., 2001; Orosei et al., 2003; Kreslavsky and

Head , 2000), and Venus (Sharpton and Head , 1985). Attempts to study surface roughness on the

Moon have spanned the decades between the Apollo era and the present (Daniels, 1963; Moore and

Tyler , 1973; Yokota et al., 2008), yet, to date, no comprehensive study of surface slopes and slope

distributions has been possible at high resolution and across many scales.

The Lunar Orbiter Laser Altimeter (LOLA) began collecting data in late June, 2009, after the

successful entry into orbit of the Lunar Reconnaissance Orbiter (LRO) (Smith et al., 2010a; Zuber

et al., 2010). With a ground track configuration consisting of five illuminated spots on the surface

arranged in a cross pattern (Figure 2.1), LOLA allows for determination of slopes at multiple base-

lines, both between pairs of spots within each laser shot and between sequential shots. The high

vertical precision (∼10 cm), accuracy (∼1 m), and high density (∼57-meter along-track spacing)

of LOLA measurements permit an unprecedented opportunity for quantitative morphologic charac-

terization of the lunar surface relevant to current and past surface processes, as well as to future

lunar landing site selection. For comparison, the Mars Orbital Laser Altimiter (MOLA) operated

with a vertical precision of ∼1.5 m, a spatial accuracy of ∼100 m (including pointing errors), and

an along-track spacing of ∼300 m (Smith et al., 2001).
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Figure 2.1: Plan view of two consecutive LOLA shots with spot numbers labeled. The shot-to-shot
distance is ∼57 meters, and the smallest point-to-point baseline available is ∼25 m. An example of a
triangle used to calculate bidirectional slopes is shaded in blue. Red circles indicate the illuminated
footprint of each laser spot, while green circles represent the field of view of each detector.
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2.2 Topography Data

LRO maintains a nearly circular, 50-km polar orbit that scans all longitudes of the Moon each

month. We use 3,180 tracks from the commissioning and mapping mission phases, acquired from

September 17, 2009, to March 9, 2010, to compute and analyze a variety of parameters describing

surface slopes and roughness. The data have been processed to remove anomalous points (due to

instrumental effects such as noise), and are spaced ∼57 meters apart along track and (on average)

∼3.8 km across track at the equator and closer at the poles. Additional data have narrowed the

cross-track spacing to ∼1.8 km at the equator (Smith et al., 2010b).

2.3 Global Surface Roughness of the Moon

Quantitative measures of surface roughness have been defined in the literature in a number of ways.

Here, we investigate several measures of surface roughness, both in the interest of robustness in

characterizing roughness units, and in order to facilitate comparison with the literature. For one-

dimensional slopes, we examine the root mean square (RMS) slope, the median absolute slope, and

the median differential slope for a variety of horizontal scales, as well as the Hurst exponent, which

describes how slopes scale with baseline (the baseline is the horizontal length-scale over which the

slope is measured). In addition, LOLA’s 5-spot pattern allows for the calculation of two-dimensional

slopes by fitting a plane to a set of three points along the track, resulting in the magnitude and

direction of steepest descent.

2.3.1 RMS and median slopes

The RMS slope is routinely calculated for the statistical analysis of topography because radar re-

flection scatter is often parameterized with this metric. In one dimension, it is defined as the RMS

difference in height ∆z between each pair of points (also known as the deviation, ν) divided by the

distance between them, ∆x:
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s (∆x) =
ν (∆x)

∆x
=

1
∆x
〈[z (xi)− z (xi−1)]2〉 12 , (2.1)

where the angle brackets indicate the mean. However, because the RMS slope depends on the square

of the deviation, this parameter is quite sensitive to outliers; this poses a significant problem because

the slope-frequency distribution for natural surfaces is often non-Gaussian with strong tails. The

median absolute slope is a more robust measure of typical slopes, as it is less affected by long tails

in the distribution.

To find the RMS and median slope in the along-track direction, point-to-point slopes were cal-

culated for each track, stored at the midpoint, and averaged according to (1) within 0.5-degree

(∼15-km) sliding windows, each spaced 0.25 degrees (∼7.5 km) apart. The LOLA lasers have a

firing frequency of 28 Hz, corresponding to a shot density of approximately 540 shots per degree

downtrack, or roughly 270 shots per window at best. However, due to noise and instrument perfor-

mance issues, missing points are not uncommon. Since the RMS slope is sensitive to the number

of points, N , included in each window, uneven N across the surface can introduce variations in the

RMS slope map that are not due to real roughness features. To minimize this bias, windows were

only considered valid if more than 250 measurements contributed to the average in that location.

The median absolute (unsigned) slope is far less sensitive to the number of points in each bin. Given

LOLA’s ground spot pattern, the smallest baseline available for slope calculations is about 25 m,

the distance on the surface from the center spot to any of the four corners (Figure 2.1).

One-dimensional slopes calculated along profile underestimate the true gradient of the surface

wherever the direction of steepest descent diverges from the along-track direction. At the smallest

scales, this ambiguity can be resolved by computing the slopes in two dimensions from multiple

points within each laser shot. We use vector geometry to compute the plane passing through three

spots, recording the magnitude and azimuth of the slope. One such triangle appears as a shaded

region in Figure 2.1. The effective baseline of the slope is taken to be the square-root of the area

of the triangle. The slope values are then binned as before, and the median reported for 0.5-degree

overlapping windows spaced 0.25-degrees apart.
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Figure 2.3: Median bidirectional slope, as described in Figure 2.2, with a color stretch designed
to emphasize the subtle variations in slope within the lunar maria. Large-scale flow fronts and
tectonic features such as wrinkle ridges appear as long, continuous regions of slopes higher than the
surrounding plains, and are most evident within the Imbrium, Crisium, and Serenetatis basins.

A map of the median bidirectional slope at the ∼17-meter scale is shown in Figure 2.2. Note that

while the results are reported in units of degrees, the statistics are computed in gradient units (m/m).

The maria are easily distinguishable from the highlands as smooth regions with median slopes ≤ 3◦,

while the steepest median slopes (≥ 10◦) occur within crater walls and the blocky ejecta blankets

surrounding major impact basins and young rayed craters. The multi-ring structure of the Orientale

impact basin is clearly visible in surface slopes at this scale, along with the topographically expressed

secondary crater chains emerging radially from the continuous ejecta deposit.

The floor of South Pole-Aitken basin appears as a region of subdued slope; a sampling of the

basin floor (excluding mare deposits, which would contribute their own roughness signature) has

a median slope of 5.8◦, nearly two degrees lower than the median value for the highlands, 7.5◦,

although the distributions overlap (see Table 2.1). Within the nearside mare plains, large-scale flow
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fronts and wrinkle ridges are delineated by subtle variations in slope, particularly evident within the

Imbrium, Serenetatis, and Crisium basins (Figure 2.3). Slopes rapidly transition between the two

major highland and mare roughness units at their boundaries, where mare basalts are often tilted

and deformed (Solomon and Head , 1980) and have only partially embayed the surrounding rougher

terrain.

For isotropic topography, a relationship exists between point-to-point and bidirectional slope dis-

tributions: given a one-dimensional slope distribution, the equivalent distribution of two-dimensional

slopes can be found by applying a statistical correction. The probability distribution functions of

the 1D slopes F (p) and 2D slopes F (s) are related by Aharonson and Schorghofer (2006):

F (p) =
∫ ∞
|p|

F (s)√
s2 − p2

ds. (2.2)

In practice, this integral equation may be discretized and inverted. Figure 2.4 is a global com-

parison of our measured slopes in one and two dimensions and the adjusted point-to-point slope

histogram. We find moderately good agreement between measured bidirectional slopes and those

predicted from the 1D slope distribution, although the 2D measured slopes are slightly steeper than

predicted from the 1D distribution, typically by 25%. We can place constraints on two factors that

contribute to this discrepancy. Anisotropy in our slope measurements occurs when triangles with

high aspect ratios are used for plane fitting. LRO’s orbital configuration creates a preferred direction

for the long axis of these triangles, and because slopes are generally shallower at longer baselines, the

azimuthal distribution is skewed to favor the perpendicular to the downtrack direction. To minimize

this effect, we included only triangles with low aspect ratios, using spots 1, 3, and 4. While some

anisotropy remains, this consideration improves the agreement by nearly a factor of 2. Part of the

discrepancy is also due to the fact that comparing slopes at similar baselines is rendered difficult

by instrument constraints. The minimum baseline for point-to-point slopes (∼25 m) is larger than

the effective baseline of our preferred triangles (∼17 m). As a result, bidirectional slopes have a

tendency to be larger than their 1D counterparts, where a component of this difference is due solely

to the mismatch in baselines. A slightly better agreement can be obtained by using a local Hurst
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Figure 2.4: Global slope histograms for the Moon. The red line (dashed) shows the distribution of
measured point-to-point slopes at the 25-meter baseline. This distribution is recalculated to the green
line (solid) using the method of Aharonson and Schorghofer (2006) to predict bidirectional slopes
from the one-dimensional slope histogram. Measured bidirectional slopes at the ∼17-meter scale are
shown in blue (dot-dash). All distributions are normalized such that the integral of the probability
density function is equal to 1. Assuming that the topography is indeed isotropic, the remaining
discrepancy in the measured and derived distributions is due to the geometry of the triangles used
to measure 2D slopes, and to the mismatch in scales over which the slopes are measured in each
case. Both effects are constrained by LRO’s orbital configuration and instrument limitations.
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exponent (defined in section 3.3) to scale the slope distribution to a common horizontal baseline.

However, this demands additional assumptions and the improvement is not large.

2.3.2 Median differential slope

The median differential slope is a measure introduced by Kreslavsky and Head (2000) in order to

disentangle small- and large-scale contributions to surface roughness. For the baseline of interest,

L, it isolates roughness features on the order of L by subtracting the point-to-point slope at twice

the given baseline:

sd =
zL

2
− z−L

2

L
− zL − z−L

2L
. (2.3)

The resulting value, sd, is a measure of slopes at a certain scale with respect to longer-wavelength

features.

As with the RMS and median bidirectional slopes, median differential slopes were calculated

in 0.5-degree windows spaced 0.25 degrees apart, and only those windows with more than 250

measurements were retained. Following Kreslavsky and Head (2000), differential slopes at a given

baseline were calculated according to Equation (2.3) by subtracting slopes calculated at two different

baselines. Practically, this involves calculating the position of each slope midpoint along the track

length and interpolating the slope midpoints at the longer baseline to the points occupied by the

smaller-baseline slope profile to accomplish the subtraction at the correct location. This method

ensures that the two slope profiles are always aligned correctly, thereby avoiding errors in the value

of the differential slope calculated. This procedure is identical to the detrending process described

in section 2.3.3 and illustrated in Figure 2.6, except that the ratio of baselines is always 2.

Differential slopes were calculated in this manner for all baselines ranging from one shot spacing

apart (∼57 m) to 25 shot spacings apart (∼1.4 km). Only profiles involving a single laser spot were

considered for the calculation, in order that the slopes over multiple baselines be computed along the

same direction. Figure 2.5 shows a composite color map of the lunar surface which presents roughness

at three different scales, ∼560 m (10 shot spacings) in the red channel, ∼220 m (4 shot spacings) in
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green, and ∼57 m (1 shot spacing) in blue. Variations in the roughness properties across the surface

are apparent and substantial, showing intriguing characteristic signatures for several terrain types.

The lunar maria are roughest at the smallest scale and smoother at large scales, making them easily

distinguishable by their blue tones in the composite image. A comparison of mare ages (Hiesinger

et al., 2010) to Figure 2.5 shows that flows of different ages have different roughness signatures;

the youngest (e.g., those within Oceanus Procellarum and Mare Imbrium) are rough only at the

smallest scale, while successively older flows (e.g., Mare Tranquilitatis and Mare Marginis) increase

in roughness at larger scales. At the smallest scale, roughness remains approximately constant

with age, potentially indicating that saturation on small scales occurs on relatively swift timescales.

In the composite map, these age variations correspond to a transition in color from deep blue to

blue-green. The ejecta surrounding major basins—particularly around Orientale, but also older

basins—are roughest at the longest scale, causing these regions to appear orange or red. Young,

Copernican-age craters appear white because they are bright in all channels; the least modified

features on the Moon, they are rough at all scales. Moreover, the ray systems related to these

craters, so evident in albedo maps, but not obviously expressed as topographic relief, are roughest at

the intermediate scale, probably reflecting crater chains and clusters that often populate crater rays

(Oberbeck , 1975; Pieters et al., 1985). As a result, they are clearly expressed as star-shaped yellow

to orange haloes surrounding each feature (Figure 2.6). Other, subtler variations, not obviously

related to a single geologic feature, occur across much of the surface. The region spanning latitudes

30◦S to 60◦N and longitudes 160◦E to 240◦E, representing a large uninterrupted stretch of lunar

highlands, appears relatively bright and with a mottled appearance, consistent with an old surface

saturated with craters at many different scales. South Pole-Aitken basin is somewhat redder than

its surroundings, except for the patches of mare within superimposed craters.

As a diagnostic tool for distinguishing unique roughness units, the median differential slope is a

useful measure of surface roughness. However, because it involves measuring small-scale roughness

with respect to long-wavelength roughness features, it can be more difficult to interpret physically as

a slope characteristic. For this reason, the median absolute slope at a given scale is a more intuitive
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Figure 2.6: Lunar far-side crater Jackson and its ray system, centered at 19◦E and 22.4◦N, shown in
(a) the 750-nm Clementine albedo map (McEwen and Robinson, 1997), (b) the median differential
slope map, as in Figure 2.5, and (c) the topography (Smith et al., 2010b). Rays of young, Copernican-
age craters are clearly expressed as streaks of high albedo relative to the background. Though they
do not add obvious relief to the topography, the rays are distinctly rougher at the ∼220-meter
and ∼560-meter baselines compared to the highlands, making them appear yellow to orange in the
composite roughness map.

parameter.

2.3.3 Hurst exponent

Topography is often considered as a nonstationary random field with self-affine fractal-like properties

(Turcotte, 1997). Self-affinity implies a scaling behavior such that an increase of factor r in the

horizontal length scale corresponds to an increase in the vertical length scale of rH , where H is

known as the Hurst exponent and falls between 0 and 1 for real surfaces (Turcotte, 1997; Orosei

et al., 2003). The Hurst exponent is directly related to both the fractal dimension of the surface,

D = 1+d−H, and the slope of the power spectrum, β = 2H+d, where in each case d is the number

of spatial dimensions: 1 for a profile or 2 for a surface (Schroeder and Wiesenfeld , 1991).

The Hurst exponent describes the power law behavior of surface slopes when they are scaled to

different horizontal baselines:
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Figure 2.7: Method of detrending slope data. Slopes measured at the ∼30-km baseline (in blue) are
subtracted from ∼1.2-km slopes (red), leaving a detrended slope profile behind (green) and avoiding
large-scale tilts in the topography.

s (∆x) = s0

(
∆x
∆x0

)H−1

=
ν (∆x)

∆x
. (2.4)

Written as such, it is clear that the deviation ν(∆x) ∝ (∆x)H . H can thus be estimated as the

slope of a best-fit line to log ν(∆x) vs. log (∆x) (Orosei et al., 2003).

We calculate the RMS deviation for a range of baselines from ∼57 m to ∼2.7 km (1 to 50 shot

spacings) and analyze the deviogram, or structure function, ν(∆x). As in the previous calculations,

the deviation values were calculated along track in overlapping windows. However, Shepard et al.

(2001) have shown that errors can be introduced when the range over which the Hurst exponent

is fit exceeds 10% of the topographic profile length (the window size). Therefore, we use 1-degree

(30-km) windows for this calculation, spaced 0.5 (15 km) apart. We use only shot-to-shot profiles

of laser spot 3, selected for its consistency.

To remove roughness features on the order of our window size, we detrend each deviogram at

the 30-km scale. This process de-emphasizes large-scale roughness features in favor of small-scale

features of more interest to this study, and it avoids biases due to long-wavelength trends that are

undersampled within each window (Shepard et al., 2001). Figure 2.7 shows how the detrending is

accomplished. Slopes measured at the 30-km baseline are subtracted from small-scale slopes, leaving

a slope profile with a mean near zero within the window. Slopes at scales less than 3 km are only
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slightly affected by the detrending process except where long-wavelength slopes are high, as, for

example, those near mountain ranges.

In some cases, the deviograms are well characterized by a single log-log slope (exponent), but

many others transition to a different slope at a certain length scale. This behavior is well documented

in the literature for other planetary surfaces (Shepard et al., 2001; Morris et al., 2008), and is

often attributed to surface processes acting at small and large scales. For the Hurst exponent fit

within each window along the track, we use baselines ranging from one shot spacing (∼57 m) to

the breakover scale—the point where the deviogram diverges from a straight line, ∆x0—for that

location. Figure 2.8 is a map of the Hurst exponent calculated in this way. Although the baseline

range used in this map varies over the surface, this method avoids including fits to nonlinear sections

of each deviogram and thus presents a more accurate estimate of the Hurst exponent at the smallest

available scales.

The highest Hurst exponents on the Moon are found in the highlands within crater walls and

the rims and ejecta of large basins, and in these regions values above 0.95 are not uncommon. This

result is surprising, given that typical Hurst exponents for topographic surfaces on the Earth and

Mars are lower, between 0.7 and 0.9 (Kreslavsky and Head , 2000; Orosei et al., 2003; Morris et al.,

2008). A Hurst exponent of 1 implies self-similar topography, meaning the roughness at small scales

is exactly replicated at large scales. The high values observed for the lunar highlands may be related

to the density of impact craters in these regions and the absence of competing morphologic processes

to transport fine material downhill. Hurst exponents within the lunar maria are lower than those

within the highlands, with a median value of 0.76, indicating smoother topography at large scales

relative to small scales.

To classify deviogram shapes, we use a method similar to that of Main et al. (1999) which

establishes whether a given deviogram is best fit by one line or by two, or whether the deviogram is

poorly fit by any linear model. We compute the least squares fits in each case and compare the sums

of the residuals, adding a penalty when additional parameters are introduced into the fit (i.e., three

parameters are required for a line, five for two lines). This method classifies each deviogram by its
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shape (Figure 2.9) and yields the relevant slope(s) of the deviogram, an estimate of the breakover

baseline, ∆x0, and confidence intervals on all of the above.

Figure 2.10 shows the distribution of deviogram shapes across the surface of the Moon and how

they partition among major topographic regions. Polygons defining the lunar maria were taken from

the USGS series of geologic maps of the Moon (Wilhelms et al., 1971, 1977; Scott and McCauley ,

1977; Lucchitta and Center , 1978; Stuart-Alexander and Center , 1978; Wilhelms et al., 1979) and

used to select data within the mare plains. The rim of South Pole-Aitken basin was defined using

the best-fit ellipse from (Garrick-Bethell and Zuber , 2009). The polar regions included latitudes

from 60◦ to the pole, excluding patches of mare basalts and the South Pole-Aitken basin region.

All areas falling outside these regions were designated highlands. By surface area, most deviograms

are best characterized by two lines (∼59%), with the remainder of the surface nearly evenly divided

between monofractal (∼17%) and complex (∼24%) deviogram shapes, in which the slope changes

continuously and rapidly with baseline, often alternating sign. Complex deviograms are mainly

found in the lunar maria, whereas the highlands exhibit primarily monofractal or bifractal behavior.

Other geographic regions, including the north and south poles and the South Pole-Aitken basin,

behave much like the lunar highlands. This partitioning indicates a profound difference in character

between the two major units; on the one hand, highland deviograms behave as nearly self-similar

fractals, while mare topography diverges from fractal behavior altogether at the breakover point.

Within areas that adhere to fractal behavior, the baseline at which the breakover occurs, ∆x0,

is a significant parameter constrained by the two-line fit to the deviogram because it has a physical

meaning related to the surface processes that contribute to the evolution of the Moon’s topography.

Formation and modification mechanisms act over a range of scales and may have distinct Hurst

exponents. The breakover point is thus an estimate of the scale at which surface processes acting

at longer scales are overtaken by those acting on smaller scales. In other words, it represents the

baseline at which competing surface processes are equal contributors to the topography.

Figure 2.11 is a stacked histogram showing the distribution of breakover points for all deviograms

and their locations within the major geographic regions. Within the maria, breakover points are
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Figure 2.10: Abundance of deviogram shapes by surface area, sorted by region. The most common
deviogram shape is bilinear (∼59%), with monofractal (∼17%) and complex (∼24%) making up the
remaining area. The highlands are almost entirely bilinear and monofractal, while the maria contain
primarily complex deviograms.
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Figure 2.11: Breakover point histogram, sorted by region. Whereas the maria exhibit a broad range
of breakover points, reflecting the complexity of deviograms in these regions, the other regions have
a strongly-peaked distribution of breakover points near 1 km. This characteristic baseline indicates
a transition between two surface processes, and may tell us about the Moon’s surface history.
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broadly distributed, reflecting the complex nature of the deviograms found there. All other regions,

however, have a strong peak at ∼1 km, suggesting a significant transition between surface processes

acting above and below this scale. Impact cratering and mare basalt emplacement are most likely

responsible for many of the key differences between the lunar highlands and the maria. Other

processes that may have contributed to the observed roughness properties remain to be identified

and quantified, but likely candidates for exploration include mass wasting, perhaps due to seismic

shaking, ejecta mantling, and micrometeorite gardening.

2.4 Conclusions

New altimetry data from LOLA allow a unique opportunity to quantify the surface roughness prop-

erties of the Moon. We find that topography within the highlands and the mare plains exhibit

substantially different behaviors, while other geographic regions show more subtle variations. Ta-

ble 2.1 presents a summary of the most important roughness characteristics for each major region.

For each parameter, the median is reported, as it best reflects a typical value for the region, along

with the 25% and 75% percentile points, which indicate the shoulders of each distribution and hence

provide an estimate of the width. We find that most of the surface is characterized by fractal-like

behavior with either one or two Hurst exponents over the baseline range covered, from ∼57 m to

∼2.7 km, with a strong tendency to break over near the 1 km scale. The Hurst exponent is generally

high in the lunar highlands, reflecting nearly self-similar topography in these regions. Within the

maria, however, deviograms transition from fractal at small scales to complex at a range of breakover

points, and the Hurst exponent is both lower and more diverse.
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Chapter 3

Geologic Applications of
Roughness Maps

Parts of the work presented here were originally prepared for and published in:

Zuber, M. T., J. W. Head, D. E. Smith, G. A. Neumann, E. Mazarico, M. H. Torrence, O. Aharonson,
A. R. Tye, C. I. Fassett, M. A. Rosenburg, et al. (2012a), Constraints on the volatile distribution
within shackleton crater at the lunar south pole, Nature, 486 (7403), 378–381

and

Kreslavsky, M. A., J. W. Head, G. A. Neumann, M. A. Rosenburg, O. Aharonson, D. E. Smith,
and M. T. Zuber (2013), Lunar topographic roughness maps from Lunar Orbiter Laser Altimeter
(LOLA) data: Scale dependence and correlation with geologic features and units, Icarus, 226 (1),
52–66

3.1 Introduction

Surface roughness maps are valuable tools for geologic mapping and interpretation because they

provide a means of analyzing large-scale variations in the typical character of textures at smaller

scales. Identification of these variations can aid in defining geologic units, determining their relative

ages, and characterizing the dominant surface processes acting at different scales to produce and

modify topography. Moreover, roughness calculations derived from spacecraft observations, like

those computed with topography data from the Lunar Orbiter Laser Altimeter (LOLA) carried on

the Lunar Reconnaissance Orbiter (LRO) (Smith et al., 2010a), rely on differences between successive

elevation measurements, thus exploiting the exceptional precision in ranging along each orbit, which

is much higher than the precision in overall orbit determination (Smith et al., 2010b; Kreslavsky

et al., 2013). By utilizing this high internal precision, roughness calculations therefore maximize the

differential topographic information returned.
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As discussed in the previous chapter, roughness can be defined in many different ways, and several

roughness parameters are typically employed for different purposes. This profusion of definitions led

Kreslavsky et al. (2013) to describe six key qualities that roughness parameters must be assessed

on for use in geological interpretation: 1) intuitive character; 2) independence with respect to

regional tilts; 3) ability to capture typical surface textures; 4) specificity of scale; 5) statistical

stability; and 6) tolerance of individual peculiarities within the dataset used (Kreslavsky et al.,

2013). These requirements are often in conflict, and no roughness parameter is ideal in all aspects.

For example, the RMS slope (defined in Eq. 2.1) is often reported because it can be related to

measurements of radar reflection scatter, and it is also an intuitive measure of surface roughness,

satisfying requirement (1). However, because the RMS slope is sensitive to even a small proportion

of steep slopes, and because topographic surfaces tend to have slope-frequency distributions with

heavy tails, this parameter fails criteria (3) and (5).

For purposes of discrimination among geologic units, the median differential slope described in

the previous chapter and Rosenburg et al. (2011) satisfies many of the key criteria and possesses

several useful characteristics. Defined in Equation 2.3, the differential slope isolates features on a

given scale of interest, L, by subtracting the slope at twice this scale, 2L. It is thus unaffected

by larger-scale, regional tilts (criterion 2) and describes a well-defined, specific scale (criterion 4),

allowing for detailed examination of scale dependence in surface roughness. Reporting the median

differential slope within each sliding window along a LOLA track guarantees that the roughness

values reported are typical of the region and not overly influenced by a few unusually high values

(criterion 3). While this parameter satisfies these criteria, there is a tradeoff with criterion (1).

Because the reported values are slopes at a given scale measured with respect to slopes at twice

that scale, differential slope is not as intuitive a measure of surface roughness as the RMS slope

or RMS height. Nevertheless, it is useful for emphasizing roughness variations and distinguishing

among geologic units.

Rosenburg et al. (2011) (see also Chapter 2) presented the first global roughness maps utilizing

topography data from LOLA, introducing a variety of roughness parameters, including median slope,
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bidirectional slope, differential slope, and Hurst exponent (Chapter 2). Kreslavsky et al. (2013)

extended this global analysis, using a related roughness parameter, the topographic curvature, at

hectometer and kilometer scales. These studies investigate the scale dependence of surface slopes

and provide a global context for regional roughness variations, to which more detailed surveys of

local roughness can be referenced. This chapter focuses on two such investigations, using the full

range of data collected during LRO’s nominal and science mission phases. First, the lunar south pole

is examined in detail, with particular attention to Shackleton crater and the progression of roughness

signatures among craters and basins of increasing size, from simple craters to ringed basins. Second,

the analysis of roughness on mare surfaces in Chapter 2 is extended to examine the relationship

between scale-dependent roughness and surface age.

3.2 Lunar South Pole

During the mapping and science phases of the mission, which extended from September, 2010,

through December, 2013, LRO traveled in a consistent 50-km polar orbit, a geometry that resulted

in a confluence of tracks over the north and south poles. The high density of measurements available

in these regions allows for a much greater resolution in gridded data (Zuber et al., 2012a), as well

as a higher density of along-track roughness calculations than is globally available. Figure 3.1

contains a color composite map of the median differential slope extending from 60◦S to the south

pole, showing roughness at three different scales, consistent with the global maps shown above in

Figure 2.5. The smallest scale for slope calculations accessible to LOLA is equivalent to the shot

spacing, approximately 57 m. Slopes at this scale and twice this scale (∼ 110 m) were computed

and binned in 1/64◦ (∼ 480 m) overlapping windows along each orbit track, and the windows were

spaced 1/128◦ (∼ 240 m) apart. After aligning the resulting slope profiles, the values were subtracted

and the median differential slope for each window was reported at the midpoint. This process was

repeated for slopes at many other scales, three of which were combined to produce the composite

image shown in Figure 3.1. Small-scale slopes (∼ 57 m) are shown in the blue channel, intermediate

scales (∼ 220 m) in green, and larger scales (∼ 560 m) in red. The pixel resolution is 1/64◦, or
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560 m / 1.2 km 220 m / 450 m 57 m / 110 m

Figure 3.1: Median differential slope map of the lunar south pole from 60◦S, showing differential
slopes at three scales in the three color channels as in Figure 2.5. The blue channel corresponds to
differential slopes at ∼ 57 m, green corresponds to ∼ 220 m, and red ∼ 560 m.
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approximately 0.48 km.

This map represents a significant improvement in resolution compared to Figure 2.5, made pos-

sible in part by the inclusion of more LOLA tracks, but also by the confluence of tracks over the

poles due to orbit geometry. Several observations made in the previous chapter on global roughness

are also apparent here. For example, the brightest features are young, Copernican-age craters which

appear white in the composite image because they are rough at every scale included. Prominent

features include the craters De Forest (77.3◦S, 162.1◦W), Zucchius (64.1◦S, 50.3◦W), and Rutherford

(60.9◦S, 12.1◦W), all of which have associated ray systems that appear as star-shaped enhancements

in intermediate scales (green shades) outside the crater rims. Several very long, bright, linear fea-

tures are also visible extending from lower latitudes and crossing near the pole. One pair of these

features is associated with the crater Tycho (43.3◦S, 11.4◦W), which is thought to be the youngest

feature of its size on the lunar surface (Kreslavsky et al., 2013). The rays are not always associated

with distinct topographical relief, but nevertheless contain a unique signature in the differential slope

map. They deviate very little from great circles and are brightest on the near side, closest to Tycho.

As noted by Kreslavsky et al. (2013), these rays are composed of regions of relatively smoother and

rougher segments, the latter corresponding to clusters of secondary craters.

3.2.1 Large Craters and Basins

Aside from the bright young craters and the long linear rays, the most noticeable features in Fig-

ure 3.1 are the large craters and basins that range in size from ∼ 50 to ∼ 300 km in the case of

Schrödinger (75◦S, 134.4◦E). At the scales included in this differential slope map, craters in this

range of diameters are characterized by a distinctive set of features which follow the progression

of crater morphology from large complex craters with central peaks to multi-ring basins. Lyman

(64.8◦S, 163.6◦E) is a D = 84 km crater that has undergone relatively little erosion by subsequent

impacts. Figure 3.2 shows a portion of the Lunar Reconnaissance Orbiter Camera (LROC) Wide

Angle Camera (WAC) Mosaic centered on the crater, with an inset showing the corresponding por-

tion of the differential slope map shown in Figure 3.1. The roughly circular rim crest is visible as
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50 km

Figure 3.2: Lyman crater (74.2◦S, 90.8◦E) shown in the LROC WAC mosaic in a south polar
stereographic projection. The inset shows the corresponding portion of the median differential slope
map shown in Figure 3.1.

a bright white ring that is largely uninterrupted around the crater perimeter, indicating that the

sharp relief at the rim crest is registered in slopes at the scales represented by all channels. Just

inside the rim, a dark blue ring defines the steep inner walls, which are quite smooth at all scales;

only the smallest scale (∼ 57 m) shows any signal at all, consistent with the effects of mass wasting

observed both within and without the crater rim. The slumped material forms a ring on the crater

floor that appears with a red hue in the differential slope map, reflecting its hummocky character

on kilometer scales. The prominent central peak formation appears with a similar hue, while the

remainder of the crater floor is roughest at intermediate scales, resulting in a somewhat yellower

appearance mottled with darker regions of relatively smooth terrain.

This bullseye pattern of concentric rings corresponding to the morphologic features is found in

many other complex craters shown in Figure 3.1 with some important variations. For example, Hale
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(74.2◦S, 90.8◦E) is a relatively young impact crater of nearly the same size as Lyman (D = 83 km),

containing few superposed craters, but its multiply terraced rim is expressed as a wide annulus of

enhanced roughness at the largest scale (∼ 560 m), rather than a continuous bright ring. The floor

of Hale is also somewhat smoother than that of Lyman, appearing as a dark blue ring surrounding

the central peak complex, which is offset from the center toward the south. The slightly larger

crater Demonax (D = 114 km, 78.2◦S, 59.0◦E) is much more heavily eroded, and its smoother walls

form a wide dark annulus around the bright crater floor, which is relatively level and contains both

hummocky, mass-wasted material (red, roughest at the 560-m scale) and flat terrain punctuated

by kilometer-scale craters (yellow, roughest at the 220-m scale). These variations in roughness

signature among complex craters of similar size thus provide useful markers for identifying crater

age and degree of degradation. This is an important feature, especially at the lunar poles, where

illumination conditions are highly variable and regions of permanent shadow persist in the floors

of many circumpolar craters. Gridded digital elevation models from LOLA can be used to count

craters in these regions, but roughness analysis like that presented here provides another means of

assessing relative ages.

Antoniadi (69.7◦S, 172.0◦W) is a large peak ring crater (D = 143 km)— one of only a few features

possessing both a central peak and a surrounding inner ring (Wilhelms et al., 1987), a transitional

morphology between complex craters and ringed basins that is not well understood. Located within

the South Pole-Aitken Basin, Antoniadi also happens to contain the lowest elevation on the Moon

(Smith et al., 2010b). Like its smaller counterparts, this crater has a sharp rim crest defined by

a bright white ring, although in this case the ring is not continuous. The steep inner walls form

a dark blue ring, part of which corresponds to the brightly illuminated north wall in the LROC

WAC Mosaic shown in Figure 3.3. The region between the walls and the inner ring is rough at the

∼ 220-m scale, while the chain of mountain segments making up the ring itself is distinguishable as

a somewhat redder annulus, reflecting the change in texture. Likewise, the central peak and other

isolated massifs visible inside the inner ring are rough only at the largest scale, ∼ 560m.

The interior of the inner ring is covered with a young mare deposit (Wilhelms et al., 1979),
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50 km

Figure 3.3: Antoniadi crater (69.7◦S, 172.0◦W) shown in the LROC WAC mosaic in a south polar
stereographic projection. The inset shows the corresponding portion of the median differential slope
map shown in Figure 3.1.
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Figure 3.4: Mare deposits on the floor of Antoniadi, shown in a portion of LROC NAC image
M1130635802R.

and its roughness signature is similar to those of comparably young mare-filled basins on the near

side of the moon shown in Figure 2.5. This unit is relatively smooth at all scales shown in the

composite image, with most signal present in the smallest LOLA scale, ∼ 57 m. Figure 3.4 shows

the floor of Antoniadi within the inner ring from a portion of the LROC Narrow Angle Camera

(NAC) image M1130635802R. The mare surface is covered with small craters down to sizes below

the image resolution (∼ 1 m/pix). Some craters appear relatively pristine, but many others, like the

largest feature shown (D ∼ 180 m), have been smoothed by the diffusive action of regolith gardening

(see Chapter 4). Craters like this one contribute to the differential slope at the ∼ 57-m scale, but

appear smooth at larger scales, as shown in Figure 3.3.

Aside from the South Pole-Aitken Basin, Schrödinger (75.0◦S, 132.4◦E) is the largest basin

poleward of 60◦S (Figure 3.1), with D = 312 km. The basin and the corresponding section of the

differential slope map are shown in Figure 3.5. As with Antoniadi and Lyman, distinct roughness

zones can be identified that correspond to morphologic features of the basin. Schrödinger’s rim is a
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broad, terraced annulus that is roughest at the largest scale included in the composite image, ∼ 560

m. The inner ring, which occurs at about half the crater diameter, has a similar hue, reflecting the

kilometer-scale roughness of the rugged chain of mountain segments. Between the walls and the inner

ring, the floor is relatively bright and roughest at intermediate scales (∼ 220 m), appearing yellow.

Within the inner ring, where the surface has been reworked by lava flows and impact gardening, the

shortest scale dominates and the area appears blue in the composite map, much brighter (rougher)

than Antoniadi’s mare-filled interior. Several distinctive tectonic features are easily seen in the

roughness map, including many of the radial and concentric fractures that traverse the crater floor,

sometimes crossing the peak ring (Mest , 2011).

Several smaller craters (D < 50 km) with characteristic roughness signatures are visible in

Figure 3.5 outside the rim of Schrödinger. The rough rim crest appears as a bright white ring, within

which the steep crater walls appear dark blue. The center of each crater is distinctively rough at

larger scales (∼ 220−560 m), appearing orange in the color composite image. This particular pattern

of concentric roughness zones characterizes many craters in this size range throughout Figure 3.1,

including Shackleton crater, a feature of great interest because of its location so near to the south

pole and, consequently, the unique illumination conditions.

3.2.2 Shackleton Crater

Shackleton crater, nearly centered at the lunar south pole (89.9◦S, 0◦E), is a relatively fresh 21-km

crater. The floor is almost entirely in permanent shadow, while the walls receive continuous sunlight,

due to the Moon’s low inclination, and, as a result, the floor of the crater is a perennial cold trap

(Watson et al., 1961; Arnold , 1979). However, whether lunar volatiles are present within the crater

or other permanently shadowed regions (PSRs) remains an open question, as previous orbital and

Earth-based radar mapping and imaging missions have returned conflicting results (Nozette et al.,

1996; Stacy et al., 1997; Campbell et al., 2006; Simpson and Tyler , 1999; Nozette et al., 2001). LOLA

illuminates the surface at a wavelength of 1064 nm, allowing for brightness measurements of PSRs at

that wavelength in the absence of sunlight. Zuber et al. (2012a) found that the walls of Shackleton



44

Figure 3.6: Color composite image showing differential slope at three scales: 560 m (10 LOLA
shot spacings) in the red channel, 220 m (4 shot spacings) in green, and 57 m (1 shot spacing)
in blue. The median differential slope at each scale is reported for overlapping windows of width
1/64◦ (∼ 480 m), spaced 1/128◦ (∼ 240 m) apart. Boxes represent regions sampled to create
Figure 3.7, and the location of the rim crest is shown as a dashed black line. Several distinct
roughness units are apparent within Shackleton Crater. The crater walls, which are smooth at large
scales, retain roughness only at the smallest scales, causing them to appear dark blue. The crater
floor, which contains a hummocky mound unit that is smooth at all scales but roughest at large
scales, thus appearing red in the image, and a flat region, which is roughest at intermediate and
large scales, thus appearing yellow. Outside the rim, secondary crater fields identified in Zuber et al.
(2012a) (Figure 1e) appear as yellow streaks due to their unique contribution to the topography at
intermediate and large scales.
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crater are anomalously bright, and the crater floor, while darker than the walls, is brighter than

the surrounding terrain. These observations are consistent with downslope movement of regolith,

exposing fresher material in the crater walls, and decreased space weathering on the crater floor due

to shadowing. The brightness of the floor at 1064 nm could also be explained by a 1-mm-thick layer

of regolith containing ∼ 20% water ice (Zuber et al., 2012a).

A detailed examination of surface roughness in the vicinity of Shackleton crater reveals several

distinct roughness units. Figure 3.6 is a color composite image showing the median differential slope

at three baselines, as in Figure 3.1: ∼ 57 meters in the blue channel, ∼ 220 meters in green, and

∼ 560 meters in red. The boxes mark sampled regions within each roughness unit, and differential

slopes are shown in Figure 3.7 for a variety of scales. The walls of the crater (Fig. 3.6, C) are

smooth at the large and intermediate scale, retaining roughness only at the shortest scale and thus

appearing blue in the image. The floor can be divided into two regions, a flat portion (Fig. 3.6,

A) and an elevated terrain possibly related to mass wasting at the crater walls (Fig. 3.6, B). The

roughness of this mound unit increases at the largest scales due to its hummocky character, but

it is smoother than the flat region at all scales < 850 m, due to its paucity of craters. In fact, at

the shortest scales the mound is the smoothest of the representative regions shown. The flat floor

has a higher crater age and appears yellow due to the addition of slopes on the intermediate scale,

while the rim itself, the crest of which is marked by a dashed black line in Figure 3.6, is rough at

all scales, appearing white. Areas of suspected secondaries (Fig. 3.6, X) are clearly defined in the

roughness map as yellow streaks, owing to high slopes at the largest and intermediate scales and little

roughness at the smallest scale. The distinct character of these roughness units and their correlation

with mapped geologic units using gridded topography data illustrates the usefulness of roughness

maps for clarifying relationships between superposed units. For example, secondary craters are

often difficult to distinguish from primary craters of similar diameters in visual imagery. However,

because they are often formed at lower velocities than primary craters, they tend to have different

morphologies and depth-to-diameter scaling relationships. As Figure 3.6 shows, they contribute a

unique signature to the topographic roughness that can aid in their identification and mapping.
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Figure 3.7: Differential slope for several baselines corresponding to 1, 2, 4, 8, 10, 12, and 15 LOLA
shot spacings, showing roughness variation with scale for several distinct roughness units related to
Shackleton crater. The region sampled for each roughness unit is marked by a box in Figure 3.6.
Labels correspond to the regions mapped for crater counting in Zuber et al. (2012a) (Figure 1e). The
crater wall (Fig. 3.6, C) is smooth at large scales and retains roughness only at the smallest scale,
while the hummocky terrain on the crater floor (Fig. 3.6, B) is smooth at small and intermediate
scales, becoming rougher at large scales. The flat part of the crater floor (Fig. 3.6, A) is roughest at
intermediate scales, similar to the clusters of suspected secondary craters (Fig. 3.6, X). Standard 2σ
error bars represent the spread of the distribution of median differential slopes within each sampled
region and for each baseline considered.
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3.3 Roughness of Mare Surfaces

As discussed above, the median differential slope is a powerful tool for discriminating between

roughness units. It can also help us to understand the evolution of roughness on surfaces of varying

age, particularly in the lunar maria. Farr (1992) explored the development of surface roughness

at centimeter- to meter-scales on progressively older terrestrial lava flows, showing that particular

features in the topographic power spectrum could be correlated with specific geologic processes

occurring on these surfaces, such as aeolian deposition and fluvial dissection. On the Moon, the major

roughening agent at every scale is the accumulation of impact craters. The power law exponent of the

observed cumulative size-frequency distributions in the maria is negative for sub-kilometer craters,

at approximately -4 (Melosh, 1989; Neukum et al., 2001), indicating that small craters are much

more numerous than large ones. Thus, resurfaced areas collect small craters first and accumulate

successively larger ones over time. Roughness on surfaces of varying age is expected to reflect this

sequence, the younger surfaces remaining smoother at larger scales. Older surfaces, which have had

time to collect craters over a greater range of diameters, are expected to have significant roughness

components at intermediate and larger scales.

In Figures 2.5 and 3.1, mare deposits generally appear dark blue because they are relatively

smooth, and what roughness does exist occurs at the smallest scale studied (∼ 57 m), which is

shown in the blue channel of the composite images. However, variations in hue are apparent between

different mare regions. Comparing the differential slope at many different scales ranging from ∼ 57 m

to ∼ 1.4 km, we find a trend that corresponds to the reported ages of various mare units, as estimated

by Hiesinger et al. (2010) from detailed crater counts. Figure 3.8 contains a context map in which

the outline of the mare deposits (Wilhelms et al., 1971, 1977; Scott and McCauley , 1977; Lucchitta

and Center , 1978; Stuart-Alexander and Center , 1978; Wilhelms et al., 1979) are overlain on the

elevation map, and sampled regions are marked by lettered boxes. Figure 3.9 shows the differential

slope at several baselines for the regions sampled, which range from the oldest dated flows in Mare

Marginis and Mare Tranquilitatis (> 3.6 Ga) to flows of intermediate age in Mare Humorum (∼ 3.3

Ga) and Mare Imbrium (∼ 2.7 Ga), to the youngest dated unit in Oceanus Procellarum (< 2.5 Ga)
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Figure 3.9: Comparison of differential slopes at many baselines within the sampled regions of the
lunar maria. Standard 2σ error bars represent the spread of the distribution of median differential
slopes within each sampled region and for each baseline considered.

(Hiesinger et al., 2010). Letters in the legend correspond to the boxes in the context map (Fig. 3.8).

The youngest mare units, within Oceanus Procellarum and Mare Imbrium, are rough only at

the smallest scales, while successively older flows (e.g., those within Mare Tranquilitatis and Mare

Marginis) contain significant roughness components at longer baselines. At the smallest scale, median

differential slope remains roughly constant among all sampled regions, suggesting that perhaps crater

saturation at small (D < 100 m) scales occurs relatively swiftly. This observation is consistent with

Kreslavsky et al. (2013) and Rosenburg et al. (2011), who note that at hectometer scales, roughness

is approximately constant on global scales, both on maria and highlands terrain. Differential slopes

at larger baselines vary systematically with the age of the surface considered, although, as Kreslavsky

et al. (2013) point out, the roughness of mare surfaces is not a function of age alone, and specific

regions of young terrain can be found that are rougher than older mare surfaces.



50

3.4 Summary

Roughness maps provide a means of analyzing large-scale variations in typical surface texture at

a range of finer scales. As such, they are useful tools for geologic mapping and interpretation,

with specific application to the identification of geologic units, assessment of relative ages, and

characterization of the effects of competing surface processes acting at different scales. Detailed

studies of local regions, like those discussed above for the lunar south pole, Shackleton crater, and

mare surfaces of varying age, extend and focus the analysis initiated in the global roughness maps

of Rosenburg et al. (2011) (Chapter 2) and Kreslavsky et al. (2013).

Focusing on the lunar south pole, where the confluence of LOLA tracks results in a high density

of elevation measurements conducive to detailed study using differential slopes, we find that many

features express unique roughness signatures, including rough, Copernican-age craters and their

associated ray systems. Aside from a slight enhancement at the ∼ 560-m scale, South Pole-Aitken

basin, the largest and oldest basin on the Moon, is poorly defined in the differential slope map

shown in Figure 3.1, despite its obvious expression in the topography (Garrick-Bethell and Zuber ,

2009). Complex craters and basins ranging from D ∼ 50 to ∼ 300 km exhibit a typical sequence of

approximately concentric roughness zones: a bright white (rough at every scale) ring corresponding

to the rim crest, a dark blue (smooth at all scales) annulus corresponding to the steep inner walls,

and discontinuous arcs that appear red (rough at the ∼ 560-m scale) in the composite color maps

(Fig. 3.1), which correspond to hummocky, slumped material from the crater walls, segments of

the peak-crater ring, and the central peak formations. Where the interiors of large basins have

been filled and reworked by volcanic flows, as in Antoniadi and Schrödinger, the topography is

smoother than the rest of the crater floor, rough only at the smallest scale considered, ∼ 57 m.

Small craters (D < 50 km) also exhibit many of these key features, notably the rough rim crest

and steep inner walls. The consistency of these roughness units across crater diameters reflects the

underlying consistency in the scale of crater modification processes such as mass wasting and impact

gardening.

Shackleton crater, of interest for its unique illumination conditions, possesses several distinct
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roughness units that correlate well with geologic units mapped using the elevation data. Brightness

measurements at the 1064-nm scale of the LOLA laser are consistent with the downslope movement of

material on the steep crater walls, exposing fresher, brighter material underneath, while the relatively

bright crater floor can be explained either by decreased space weathering in the shadowed crater

interior or a thin surface layer of material containing a significant fraction of water ice (Zuber et al.,

2012a). The dark blue appearance of the crater walls and the red hue of the mound unit (interpreted

as a potential slump deposit) in Figure 3.6 supports the mass wasting hypothesis suggested by the

brightness measurements. Regions of suspected secondary craters also are shown to have a distinct

roughness signature in the differential slope map at these baselines, demonstrating the utility of

roughness measures in distinguishing between primary and secondary craters.

Finally, the evolution of roughness on mare surfaces of varying age is examined using differential

slopes at several different baselines within several mare units whose ages have been determined via

crater counts by Hiesinger et al. (2010). We find that roughness at the shortest scale accessible

with LOLA, ∼ 57 m, is approximately constant across all sampled regions, suggesting that crater

saturation at small scales (D < 100 m) has occurred. At larger scales, older mare units are rougher

than their younger counterparts, having had more time to collect craters within a broader range of

diameters.
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Chapter 4

Power Spectral Density of
Cratered Terrains

Abstract

Impact cratering produces characteristic variations in the topographic power spectral density (PSD)

of heavily cratered terrains, which are controlled by the size-frequency distribution of craters on the

surface and the spectral content (shape) of individual features. These variations are investigated

in two parallel approaches. First, a cratered terrain model, based on Monte Carlo emplacement

of crater features and benchmarked by an analytical formulation of the one-dimensional PSD, is

employed to generate topographic surfaces at a range of size-frequency power law exponents and

shape dependencies. For self-similar craters, the slope of the PSD, β, varies inversely with that of

the production function, α, leveling off to 0 at very high α (surface topography dominated by the

smallest craters) and maintaining a roughly constant value (β ∼ 2) at very low α (surface topography

dominated by the largest craters). The effects of size-dependent shape parameters and various crater

emplacement algorithms are also considered. Second, we compare the model-derived predictions for

the behavior of the PSD with values of β calculated along transects from the Lunar Orbiter Laser

Altimeter (LOLA). At small scales (∼115 m to 1 km) the PSD slope agrees reasonably well with the

model predictions for the observed range of lunar size-frequency distributions. Differences between

global PSD slopes at sub-kilometer and kilometer scales reflect the scale separation in roughness

noted by Rosenburg et al. (2011) and Kreslavsky et al. (2013) using different but related surface
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roughness parameters. Understanding the statistical markers left by the impact cratering process

on the lunar surface is useful for distinguishing between competing geological processes on planetary

surfaces throughout the solar system.

4.1 Introduction

The high resolution of the topography dataset recently recorded by the Lunar Laser Orbiter Al-

timeter (LOLA), together with ongoing improvements in computing power, provides unprecedented

opportunities to correlate model results with observed lunar features. Nowhere is this more perti-

nent than in impact crater studies. The evolution of cratered terrains is not well understood, despite

decades of study (Melosh, 1989; Richardson et al., 2005; Richardson, 2009), but our understanding

of it is crucial to our knowledge of planetary bodies, especially those for which non-photographic

data are scarce, such as the outer planet satellites. Numerical cratering models have seen vast im-

provements in spatial resolution over the past two decades (Richardson, 2009; Howard , 2007), and

are now capable of tackling a range of crater scales broad enough to allow comparison with real

cratered terrains. At the same time, renewed efforts to map the Moon down to meter scales have

been stimulated by the abundance of high-resolution images returned by the Lunar Reconnaissance

Orbiter Camera (LROC), including recent citizen scientist projects to count craters and evaluate

counting statistics (Robbins et al., 2014).

A quantitative comparison of cratered terrain model results and lunar topography analysis thus

has never been more feasible, on hand, and relevant to further our understanding of lunar surface

processes. To this end, we have developed a cratered terrain model that generates surfaces saturated

with craters, and have used it to investigate the statistical properties of such landscapes and how they

depend on factors such as the size-frequency distribution of impactors, crater shape, and competing

surface processes. By keeping track of both topography and remaining rim fractions of emplaced

craters (via a rim-tracking algorithm) the model allows us to evaluate the power spectral density

(PSD) and size-frequency distribution of visible craters before and after the surface has attained

equilibrium. Finally, comparing our results to the lunar topography, in both highland and mare
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regions, can help to distinguish among markers of competing geomorphologic processes acting on

the lunar surface.

4.2 Models

Any impact cratering model necessarily simplifies a set of complex, local, and interdependent pro-

cesses, many of which remain active areas of research in their own right. Depending on the task at

hand, different researchers have chosen to model different aspects of the cratering process, from a

highly detailed slope-failure and regolith-tracking approach (Richardson, 2009) to a landscape gen-

erator used to study aeolian and fluvial systems on Mars (Howard , 2007). Whatever the goal, two

primary phases of crater emplacement must be observed: 1) some degree of erasure, or resetting, of

the initial topography, and 2) superposition of the crater shape. Here, we study the characteristic

statistical properties of cratered terrains in order to more easily identify and disentangle signatures

of competing geomorphologic processes on planetary surfaces. Modeling is divided into three phases.

First, we develop a 1-dimensional Monte Carlo simulation that emplaces craters on a flat domain

with periodic boundary conditions. Resetting is accomplished through a simple rule: once the lo-

cation for a new crater has been selected, the existing topography is surveyed and the area within

the crater rim is reset to its own mean. In the second modeling phase, we use an analytic formu-

lation to benchmark the 1D numerical model for terrains accumulating craters of a single size. We

then develop a procedure for combining craters of different sizes according to a given size-frequency

distribution. The resulting synthetic power spectral density can be directly compared to that gen-

erated using the 1D emplacement model. Using the numerical and analytic models together, we can

thus understand the evolution of 1D cratered terrains, starting from a flat plane and proceeding to

equilibrium. Finally, we move to a two-dimensional domain and compute the power spectral density

along 1D transects to allow for direct comparison to the LOLA topography dataset.
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Figure 4.1: Crater shape parameters used in the numerical and analytic models. The measurable
quantity (rim-to-floor) depth-to-diameter ratio (d) is given by d = d′ + hr, the depth below the
surrounding terrain and the rim height, respectively (both normalized by diameter). The exponential
shape of the ejecta blanket is controlled by the ejecta falloff exponent, γ.

4.2.1 1D Numerical Model

One-dimensional craters consisting of a cavity and an exponential ejecta blanket are accumulated

on a flat domain of size X with periodic boundary conditions. Crater shape is parameterized by

depth-to-diameter ratio, d (referring to the rim-to-floor depth), rim height-to-diameter ratio, hr,

cavity shape exponent, m, and exponential ejecta falloff exponent, γ. For all 1D models, m is taken

to be 2 (parabolic cavity shape), yielding the following crater shape equation:

h(x) =


(d′ + hr)D

(
2x
D

)2 − d′D |x| ≤ D
2

hrDe
γ(1− 2x

D ) |x| > D
2 ,

(4.1)

where d is the depth below the surrounding terrain (d′ = d − hr) normalized by the crater

diameter (see Fig. 4.1). For 1D volume-conserving craters, the three parameters d, hr, and γ are

not independent variables but are related by the expression:

γ =
3hr

2d′ − hr
. (4.2)

when m = 2 (Garvin and Frawley , 1998; Heiken et al., 1991).

We first consider self-similar crater shapes, and subsequently introduce more realistic, size-

dependent shape parameters. Crater diameters are chosen according to a specified size-frequency
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distribution characterized by the power law exponent α:

Nc ∝ cD−α, (4.3)

where Nc is the cumulative size-frequency distribution (in units of number of craters per unit area),

and c is a constant with units dependent on α.

Crater locations are selected at random, and the initially flat plane (or profile, in the 1D case)

accumulates enough craters to completely cover the surface several times. Equilibrium, defined

here as the point at which the PSD ceases to change with the addition of more craters, is achieved

first at the highest frequency and evolves to lower frequency as larger craters are emplaced. Once

equilibrium has been achieved for the scales corresponding to the frequency range of interest, the

PSD is computed and averaged over time to provide the best estimate of the equilibrium power

spectral density.

P (k) =
1
X

[∫ X/2

−X/2
e−ikxh(x)dx

]2

. (4.4)

We use two methods to compute the PSD. First, we use Fast-Fourier Transform, from which the

PSD can be directly computed from the square of the coefficients, as in Equation 4.4. Second, we

employ a multi-taper method to estimate the power spectral density with several filters (implemented

by MATLAB’s function pmtm). This is a useful tool for analyzing non-periodic signals like the lunar

topography data collected by LOLA. Both the direct (FFT) method and the multi-taper approach

provide robust estimates of the PSD for our model, but only the latter is used in our comparison of

the model results to the lunar data.

To a first approximation, craters of diameter D are topographic features with a characteristic

height, H(D). These features, placed at random, contribute to the overall topography in a manner

similar to a random walk, in that they can add coherently or incoherently, and the elevations they

build therefore increase roughly as the square root of the number emplaced. The exponential term

of the Fourier integral (Eqn. 4.4) is approximately constant over a scale D, and the number of these
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craters contributing to the power is fDX/D, where fD is the fraction of the domain covered by

craters of this size. Equation 4.4 can thus be rewritten as:

P (k) =
1
X

[∫ X

0

e−ikxh(x)dx

]2

∼ 1
X

[
H(D)D

√
fDX

D

]2

. (4.5)

For our model craters, the amplitude H can be thought of as the rim-to-floor depth, H = dD.

More rigorously, the equilibrium power spectral density of a surface saturated with craters of a

single size D can be calculated analytically by considering the two phases of crater emplacement

specified in the numerical model: 1) resetting of initial topography and 2) building of the crater

shape. The latter procedure is straightforward, as the superposition of the crater shape on the

newly reset topography translates to a linear addition of power in the frequency domain. The power

spectral density of our crater shape function (Eqn. 4.1) can be written by evaluating Equation 4.1

with Equation 4.4:

Pbuild =
2
X

[
D

2

(
4hr

k
sin

kD

2
+

16(d′ + hr)
k2D

cos
kD

2
− 32(d′ + hr)

k3D2
sin

kD

2

)
+

2hrD
2
(
2γ cos kD2 − kD sin kD

2

)
4γ2 + (kD)2

]2

.

(4.6)

The crater shape PSD depends strongly on the ratio of rim height to crater depth, which through

Equation 4.2 also controls the lateral extent of the ejecta blanket. Craters with no ejecta must have

unrealistically tall rims to remain volume conserving (hr = 2d′). These craters contribute most of

their power to wavelengths on the order of their diameter D. As the ratio hr/d
′ decreases, the peak

of the crater shape PSD broadens and moves to longer wavelengths, as the spatial footprint of the

crater increases (Fig. 4.2). For self-similar craters, the peak frequency of the crater shape PSD is

linear with D and the peak power scales as D4, regardless of the crater shape parameters chosen.

To find an analytical expression to represent the resetting of initial topography, we first consider

a harmonic surface with power in a single arbitrary frequency, k∗, over a domain X, within which

an area D is reset to its own mean:
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Figure 4.2: Examples of crater shape PSDs (Pbuild) for craters with diameter D = 2 km. For
volume-conserving craters, the ratio hr/d

′ determines the value of the ejecta falloff exponent, γ,
which in turn controls the shape of the crater shape PSD. Craters with no ejecta blanket (hr/d = 2,
γ =∞) have a narrow peak at frequency f = 1/D (k = 2π/D). For hr/d

′ < 2, the peak in the PSD
broadens and shifts to lower frequencies as the footprint of the crater increases.
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h(x) =


cos k∗x |x− xc| ≤ D

2

1
D

∫ xc+D/2

xc−D/2 cos k∗xdx |x− xc| > D
2 ,

(4.7)

where xc is the center of the new crater and the region to be reset. Considering that the reset region

can fall anywhere within the domain X, we must also average over all possible crater locations, and

we can write an equation for the Fourier Transform of this function as follows:

Freset =
∫ X/2

−X/2
cos k∗xe−ikxdx+

∫ xc+D/2

xc−D/2

(
2

k∗D
sin k∗D2 cos k∗xc − cosk∗x

)
e−ikxdx. (4.8)

In calculating the PSD from this function, we find that the first term yields a Kronecker Delta

function with height X2 at k = k∗, while the second term integrates to a function that increases as

k2 at small frequencies, peaks at k = 2πD (or f = 1/D), and falls off again as k−2 at high frequency

(Fig. 4.3a).

Having found the effect of resetting on a single frequency, integration over k∗ yields the total

effect on the PSD of resetting an area of size D. Given an initial power spectrum with a steep

slope at low frequencies, such as Pbuild, power is redistributed by resetting from the peak to lower

frequencies, introducing a k2 trend at the lowest frequencies (Fig. 4.3b).

The evolution of a 1D terrain that accumulates craters of size D can thus be completely captured

by iterating between resetting (Eqn. 4.8) and crater building (Eqn. 4.6), a procedure that can be

written in matrix form:

Pfinal = MPinitial + Pbuild. (4.9)

M is the resetting matrix (each row of which is calculated from Equation 4.8 for a different k∗)

that acts on the initial PSD of the topography before Pbuild is added. This matrix representation is

especially useful because the equation can be inverted to find the equilibrium power spectral density,

where Pfinal = Pinitial = Pequil:
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Pequil = (I −M)−1
Pbuild. (4.10)

The analytic formulation presented here provides a consistent benchmark for the numerical model

results under simplified conditions (1D, self-similar craters of a single size, simple resetting algo-

rithm), both for an evolving cratered terrain (Fig. 4.4a) and a landscape in equilibrium (Fig. 4.4b).

The first crater emplaced contributes the crater shape PSD. Subsequent craters increase the mag-

nitude of the PSD everywhere and introduce the k2 trend at low frequencies due to resetting the

terrain. After approximately one covering time (∼ X/D craters), the PSD reaches equilibrium at

its peak frequency, corresponding to wavelengths of scale D, as well as all higher frequencies, and

power in this frequency range ceases to evolve with time. As more craters are emplaced, equilibrium

extends to larger scales according to the square root of the number of craters (a proxy for time in

these simulations). It is important to note that while the area of a surface may be covered with

craters, its power spectrum will continue to evolve well past a single covering time until equilibrium

is achieved at all frequencies.

4.2.2 Synthetic PSDs

Because the equilibrium PSD for a given crater size D peaks at a unique frequency related to D, a

procedure for combining craters of different sizes according to a given size-frequency distribution may

be derived. The resulting PSD (referred to here as the “synthetic” PSD) can then be compared to

the PSD derived from the numerical model, in which craters of different sizes are emplaced together

on a domain.

The equilibrium PSD for single-size craters is characterized by a flat region at long wavelengths,

a peak whose magnitude scales as D3, and a k−2 tail at short wavelengths with peaks at integer mul-

tiples of D. Both the location and the magnitude of the primary peak vary with crater shape (hr/d
′),

displaying different behaviors above and below γ = 3 (corresponding to hr/d
′ = 1) (Fig. 4.5a). For

craters with little or no ejecta blanket, the peak in the PSD occurs at f = 1/D and moves linearly

to longer wavelengths as hr/d
′ decreases (Fig. 4.5a), according to:
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fmax =


1
D γ ≥ 3

γ
3D γ < 3.

(4.11)

The magnitude of the peak is approximately constant for high values of γ and scales as γ2 for

smaller values (Fig. 4.5b).

To first order, the power contributed by crater size D in equilibrium is dominated by the primary

peak, which scales as D3, as expected from Equation 4.5 for self-similar craters and fD = 1 (single-

size craters). To approximate the equilibrium PSD of a terrain covered with craters of many sizes,

we can add the individual single-size equilibrium PSDs in a prescribed proportion. This proportion

depends on the frequency of occurrence (specified by the size-frequency power law exponent α) and

the fraction of the surface, fD, characterized by craters of that size. When large craters dominate

the area (when α < L, the dimensionality of the model), fD is simply proportional to the area of the

crater, DL, because large craters erase everything smaller than themselves with a single covering.

When small craters dominate the area, they must have time to diffuse topography at larger scales to

erase them, and fD is proportional to DL+2. Using the latter relation, we expect the PSD to scale

as:

k−β ∼ Dβ ∼ D3D−αDL+2 = DL+5−α. (4.12)

Comparing the result to our functional form for the PSD, k−β , we find that in 1D the power law

exponent of the PSD, β, obeys a simple relation: β ∼ 6− α.

The slope of the power spectral density on a log-log plot against frequency, β, varies inversely

with the size-frequency distribution exponent, α. As α increases, the number of small craters for

every large crater also increases, producing more features on small scales and thus shallowing the

PSD. We expect this tradeoff to occur at intermediate values of α, while in the high- and low-α

limits, we expect β to become constant. For low α, the surface topography is dominated by craters

of the largest size, Dmax, and the equilibrium PSD resembles the single-size PSD for Dmax. The

peak therefore occurs at approximately f ∼ 1/Dmax, which is near (but greater than) the minimum
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frequency set by the domain size, 1/X. For all frequencies greater than 1/Dmax, the PSD resembles

the high-frequency tail of the single-size PSD for Dmax, which has a slope of ∼ k−2. Therefore,

β ∼ 2 in the low-α limit. For high α, the surface topography is dominated by the smallest craters,

Dmin, and the equilibrium PSD resembles the single-size PSD for Dmin. The peak in the PSD

occurs at approximately f ∼ 1/Dmin, which is near (but less than) the maximum frequency set by

the resolution of the model (the Nyquist frequency), and β = 0 for smaller frequencies. Thus, for a

1D domain and to first order, we predict β to behave as follows:

β =


2 High α

6− α Intermediate α

0 Low α.

(4.13)

This prediction is tested in two ways: first, by synthetically combining the single-size PSDs

according to the prescription derived above in Equation 4.12, and second, by using the numerical

model to emplace craters of different sizes together as a function of α. Figure 4.6 shows the results

of both model types for 1D, self-similar craters with no ejecta blanket (hr/d
′ = 2) and values of α

ranging from 0.25 to 8. For the numerical model, the PSD was averaged over many covering times.

The power law exponent of the synthetic PSDs behaves as expected from Equation 4.13: β remains

relatively constant at β ∼ 2 for low α and transitions to a constant at β = 0 for high α. Intermediate

values of α generate PSDs that fit our expectation of β ∼ 6− α.

The results of the numerical model show more structure than the first-order prediction summa-

rized in Equation 4.13, and this can be understood by considering in detail the processes of building

and erosion of topographical features at every scale and the crater sizes that are most efficient at

each of these processes. The range of size-frequency exponents, α, can thus be divided into several

distinct regimes, which are marked by horizontal arrows in Figure 4.6. First, one may consider

which crater size, for a given α, is most efficient at covering the area of the domain; the answer will

depend on the footprint of the crater and its frequency of occurrence, and except for the special

value of α = L, either the smallest or the largest craters included in the model will dominate the
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Figure 4.6: Power law exponent of the equilibrium PSD, β, comparing the numerical emplacement
model, in which craters of different sizes are emplaced together according to a given size-frequency
distribution, and the synthetic PSDs, which are a weighted sum of single-size equilibrium crater
PSDs. The PSD is calculated from topography generated by the numerical model and averaged over
many iterations once equilibrium conditions have been achieved (i.e., once the PSD ceases to evolve
with the addition of more craters). The shaded region indicates 2σ error bars from the averaging
and fitting the power law exponent.
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area. At α = L, all craters occupy an equal fraction of the total area of the domain. Which craters

dominate the area, however, plays little role in the resulting behavior of β; this is determined by the

interaction between building and erosion at every scale.

To understand this interaction, we examine each significant range of α for building and erosion

separately and then consider their joint effect. From Figure 4.4, it is clear that, for a given crater

diameter, equilibrium is reached first at frequencies greater than or equal to the peak frequency (f ∼

1/D), and the PSD in this range goes as ∼ k−2. At all lower frequencies, the PSD is characterized by

a k2 trend before equilibrium is reached. For different values of α, the power at any given scale will

be primarily contributed by either the smallest craters, the largest craters, or craters with diameters

near that scale. In the first case, the smallest craters contribute a spectrum that goes as k2 for all

frequencies lower than f ∼ 1/Dmin. Large craters, on the other hand, contribute a k−2 spectrum

at all frequencies higher than f ∼ 1/Dmax. In between, each crater of a given diameter D will

contribute the most power to its own peak frequency, at which frequency the power scales as D3+L,

and the total power from all craters of size D scales with their number: D3+LD−α. Comparing these

contributions to the total PSD, we find the boundaries marked in Figure 4.6 for building. For a

particular scale D, the largest craters and craters of size D will contribute equally to building when

α = L+ 1, while the smallest craters and craters of size D will contribute equally when α = 5 + L.

Just as with building, the erosion of features of a given scale will be dominated by either the

largest craters, the smallest craters, or craters with diameters on that scale. The smallest craters

diffuse their own scale (and smaller scales) in the time it takes them to cover the surface, but to

erode larger craters, they must cover the surface many times. The time it takes to diffuse a crater

of scale D′ with craters of size D (D ≤ D′) may be estimated as:

tdiff =
(
D′

D

)2 1
c
Dα−L =

1
c
Dα−L−2D′2. (4.14)

where c is the same constant as in Equation 4.3, whose units depend on α. The diffusion time

goes as D′2, which is also reflected in Figure 4.4, as equilibrium spreads to lower frequencies at a

rate proportional to the square root of the number of craters emplaced. Diffusion by the smallest
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craters thus contributes a k−2 spectrum to all larger scales. By contrast, large craters do not need

to diffuse the scales smaller than themselves to erode them; they need only cover them. Once the

surface has been covered with craters of the largest size, all smaller scales have also been eroded, and

this process contributes a scale-independent spectrum, k0. As with the building process, there is an

intermediate range in which craters of each size dominate the erosion of their own scale, and this can

be seen in Equation 4.14 when D = D′. For this case, the diffusion time goes as tdiff ∝ Dα−L, and

diffusion in this regime contributes a spectrum of kL−α. The boundaries of these erosion regimes

are determined by comparing the spectra contributed by each class of craters. For a particular scale

D, the largest craters and craters of size D will contribute equally to erosion when α = L, while the

smallest craters and craters of size D will contribute equally when α = L+ 2.

These building and erosion regimes, marked by arrows in Figure 4.6, can now be compared

to determine the total effect on the behavior of β. For the steepest size-frequency distributions

(α > L + 5), the PSD is expected to scale as k2 (from building) multiplied by k−2 (from erosion),

yielding a value of β = 0. For α between L+2 and L+5, kα−L−3 ·k−2 = kα−L−5 and β = α−L−5.

The range of α between L+ 1 and L+ 2 is special in that craters of a given size dominate both the

building and erosion of their own scale, and the resulting PSD power law exponent is independent

of α: kα−L−3 · kL−α = k−3. β is expected to be 3 in this range. For α between L and L + 1,

k−2 · kL−α yields β = α − L + 2, and for the smallest range of α < L, k−2 · k0 predicts a constant

value of β = 2, as Equation 4.13 originally suggested. The numerical emplacement model reproduces

this behavior in the power law exponent of the equilibrium PSD, with the exception that it fails

to produce values of β greater than ∼ 2.5, a circumstance that we believe would be improved (at

significant computational expense) by further increasing the dynamic range of the model.

4.2.3 Effect of Crater Shape

The behavior described in Figure 4.6 applies in any models using self-similar craters, regardless

of crater shape. This occurs because for a given shape parameter ratio hr/d
′, the peak frequency

is inversely proportional to D, preserving the scaling in Equation 4.12. Realistic craters are not
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Rim Height
(for D in km)

Rim-to-Floor Depth
(for D in km)

Simple Craters
(D < 15 km) hrD = 0.036D1.014 dD = 0.196D1.010

Complex Craters
(12 < D < 375 km) hrD = 0.230D0.399 dD = 1.044D0.301

Table 4.1: Morphometric relations for lunar craters, from Heiken et al. (1991), based on measure-
ments from Pike (1974) and Pike (1977).

self-similar, but have shape parameters that scale with diameter. In addition to smooth changes

in shape with increasing size, the transition diameter from simple to complex craters introduces

an abrupt change, both in crater shape and in rim-to-floor depth (amplitude of the feature). This

transition scales with surface gravity, and occurs around D = 15 km on the Moon. Morphometric

relations for fresh lunar impact craters are listed in Table 4.1 in Heiken et al. (1991), based on

Pike (1977) and Pike (1974), and these scaling relationships are summarized in Figure 4.7 and

Table 4.1. Simple craters have a nearly constant shape parameter ratio of hr/d
′ ∼ 0.23, while

complex craters span a range of values from hr/d
′ ∼ 0.43 to 0.67. Likewise, the rim-to-floor depths

of simple craters scale linearly with their diameters, with a depth-to-diameter ratio of d ∼ 0.2. This

observation is consistent with recent investigations based on LOLA topography data (Talpe, 2012).

Complex craters have lower amplitudes for their size, and this amplitude decreases with increasing

diameter. The abrupt change in these two quantities—crater shape/ejecta extent and amplitude—at

the transition diameter provides expectations for particular changes in the shape of the PSD. Simple

craters add more power relative to their diameters than complex craters, and they add this power

to lower frequencies according to Equation 4.11.

In one test, using self-similar craters with an abrupt transition at Dtr = 15 km from hr/d
′ = 0.2

to 0.5 (corresponding to γ = 1/3 and γ = 1, respectively), synthetic PSDs for various values of

α clearly reflect the change in crater shape (Fig. 4.8). For comparison, the sample runs including

only self-similar simple craters and only self-similar complex craters are included in Figure 4.8

as dashed dark and light gray lines, respectively. At low α, the equilibrium PSD resembles the
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(a) (b)

Figure 4.7: (a) Shape parameter ratios for lunar craters, based on morphometric relations listed
in Table 4.1 of Heiken et al. (1991). Simple craters have lower rims relative to their diameters
than complex craters, which means to be volume-conserving they must have more extensive ejecta
blankets. Thus the peak frequency for crater shape PSDs occurs at lower frequencies for simple
craters relative to their diameters, and the peak power is also greater, according to Eqn. 4.11 and
Fig. 4.5b. Simple craters are nearly self-similar, while complex craters vary in shape a great deal.
As diameter increases, crater rims become higher and ejecta more confined, resulting in crater
shape PSDs with peaks nearer to f = 1/D. (b) Rim-to-floor depth (crater amplitude), based on
morphometric relations listed in Table 4.1 of Heiken et al. (1991). Simple craters have a higher
amplitude for their size than complex craters, meaning that they contribute proportionally more
power at their peak frequencies. Simple craters are also nearly self-similar, while complex craters
decrease in amplitude (relative to their diameters) with increasing size.
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corresponding complex-craters-only case, as the largest craters dominate. When α = 3, the smallest

craters start to contribute to the overall PSD, beginning at the peak frequency of the largest simple

crater (Dtr = 15, fpeak ∼ γ/3D ∼ 1/135 = 0.0074) and extending to all higher frequencies. For

intermediate α, between 4 and 6, the equilibrium PSD follows the complex crater curve at low

frequencies and transitions to follow the simple crater curve at high frequencies. Above α ∼ 6, the

PSD is equivalent to the simple-craters-only case. If, instead of the abrupt transition at Dtr = 15

km, the transition from simple to complex craters is smoothed out over a range of diameters near

Dtr (e.g., from D =12-18 km), the resulting PSDs are qualitatively similar to the abrupt-transition

case. Slight differences in the intermediate range of α’s occur because the effect of the smallest

craters is softened by the smoothed transition, and the larger craters dominate the total PSD shape

to slightly higher frequencies.

Finally, we include the smooth power-law scaling of crater shapes summarized in Table 4.1.

Simple craters are nearly self-similar, and their behavior is well understood within the analysis

described so far. Complex craters, however, are not self-similar; their rim-to-floor depth- and rim

height-to-diameter ratios scale as D0.301 and D0.399, respectively (Table 4.1). This dependence on

diameter leads to a modified expectation for the peak power scaling for individual crater sizes.

According to Equation 4.5, the power at the peak frequency goes as P (fpeak) ∼ H2DfD (where

the amplitude H is the rim-to-floor depth, dD). When the depth-to-diameter ratio d scales linearly

with diameter and fpeak ∼ 1/D, this peak power scales as D3, as we have seen in our self-similar

cratering models. In this case, however, H ∼ D0.301, and fpeak ∼ D−0.8 (according to Eqn 4.11).

Thus, the power at fpeak scales as P (fpeak) ∼ D0.602DfD ∝ D1.602, from which we can calculate

how the peak power scales with diameter:

Ppeak(D) ∼
(

1
D0.8

)1.602

∼ D1.3. (4.15)

This scaling agrees with the results of the analytic model, and using Equation 4.12 and Equa-

tion 4.13, we can predict how the portion of the equilibrium PSD dominated by large craters behaves

with varying size-frequency distribution. For intermediate values of α, β ∼ 1.3+2+L−α = 4.3−α.
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Figure 4.8: One-dimensional equilibrium PSDs for varying size-frequency distribution exponents, α,
and a transition diameter, Dtr = 15 km. Craters above Dtr are self-similar with shape parameters
hr/d

′ = 0.5, γ = 1 (complex craters); craters below Dtr are self-similar with shape parameters
hr/d

′ = 0.2, γ = 1/3 (simple craters). Dashed lines indicate model runs using only complex (light)
or only simple (dark) crater shape parameters. For low α (< 3), equilibrium PSDs remain unaffected
by the transition from simple to complex craters. For intermediate values of α (∼ 4− 6), however,
PSDs transition from matching the complex crater PSDs at low frequencies to matching the simple
crater PSDs at high frequencies. This transition occurs first at α = 3, where the extra power
contributed by simple craters due to their shape (low hr/d

′, extended ejecta) and high amplitude
create a shoulder beginning at the peak frequency for the largest simple crater, D = Dtr = 15 km.
As α increases, the PSD increases in magnitude at the high frequencies first, quickly coming to
resemble the simple crater PSDs. At low frequencies, the PSD resembles the complex crater PSDs
until the small craters overwhelm the large craters and the entire range resembles the simple crater
PSD.
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At frequencies dominated by small craters, the D3 scaling for peak power still holds, and the original

Equations 4.12 and 4.13 are applicable. Thus, for 1-dimensional versions of lunar-like craters, the

equilibrium PSD has two slopes that evolve separately, but predictably.

4.2.4 2-Dimensional Emplacement Models

The equations developed thus far to describe the behavior of 1D cratered terrains provide valuable

predictions for the 2D case as well. Here, rather than calculating the two-dimensional Fourier

Transform to estimate the PSD, we calculate the 1D PSD of each row and column of a 2D model

surface and compute the average to facilitate comparison with the LOLA along-track measurements.

The 2D model craters have an axisymmetric, parabolic cavity with a radial profile identical to that of

their 1D counterparts. The ejecta blanket function differs somewhat, however, because the condition

for volume conservation becomes:

γ =
2hr (d′/hr)

1
2

d′ − hr
. (4.16)

Because the ejecta spreads out radially with distance from the crater, the maximum rim height

(no ejecta) case occurs where hr/d
′ = 1 and any given profile through the crater center is not itself

volume conserving. This condition results in a somewhat different shape for the single crater PSD,

which has a modest peak at f ∼ 1/D (for the no ejecta case) and a flat region at low frequency,

whereas the 1D crater PSDs scaled as k4 at low frequency. The peak power for an individual 2D

crater scales as D5, the extra power of D arising from a second integral over the spatial parameter in

Equation 4.5. As before, it is possible to calculate synthetic PSDs of cratered terrains by adding the

equilibrium PSDs of individual crater sizes in proportion to a given size-frequency distribution. The

peak power of the equilibrium PSD scales as D3 just as in the 1D case, and the power is constant

from the peak to lower frequencies. Equation 4.12 is used with a value of L = 2 to predict the slope

of the PSD, β, as a function of the size-frequency distribution exponent, α:

β ∼ L+ 5− α = 7− α. (4.17)
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This behavior is consistent with the PSDs derived from the numerical emplacement model, and

is summarized in Figure 4.6. The power law exponent of the PSD for 1D and 2D domains is identical

except for an offset of 1 in α.

4.2.5 Effect of Inheritance

Thus far, the resetting phase of crater emplacement has been modeled as simply as possible: the

pre-existing topography is surveyed and reset to its mean within half a diameter of the center of

the new crater to be emplaced. This algorithm is convenient, as we have seen, in that it permits an

analytical representation of the power spectral density evolving with multiple impacts, and it also

takes into account the erasure of the initial terrain while providing a reasonable reference elevation

upon which to superimpose the new crater topography. However, the physical processes taking

place in an impact event, which our resetting phase only approximates, are poorly understood, and

other cratered terrain models have employed various algorithms to address this gap in our present

understanding of the impact process. Howard (2007) introduces the inheritance parameter, I, which

controls the degree to which pre-existing topography is preserved during crater emplacement. Within

the rim, the terrain is reset to a linear combination of a reference mean elevation, href , and the initial

topography, hi, favoring the latter near the rim and the former in the center of the cavity. Between

the center and the rim, the degree of resetting varies as a parabola scaled by I:

hreset = (href − hi)

[
1− I

(
2r
D

)2
]
. (4.18)

This approach has the advantage that the edge produced at the rim by the resetting step is

softened when I is greater than 0. This edge—equivalent to a step function in our simple resetting

procedure—is responsible for the k−2 slope at high frequency in the equilibrium PSD for a single

crater size, because the Fourier Transform of a Heaviside function produces a slope of -1 in the

frequency domain and the PSD is calculated from the square of the magnitude of the FFT. Hence,

for terrains accumulating craters of many sizes, this choice of resetting algorithm has important

consequences for the power spectral slope, which tends to level off at β ∼ 2 when the size-frequency
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Figure 4.9: PSDs of cratered terrains with different values of Howard (2007)’s inheritance parameter,
I. At high frequency, the slope is relatively unchanged, but at low frequency it steepens for smoother
terrains generated using higher values of I.

distribution is shallow (low α), as shown in Equations 4.13 and 4.16. This occurs because the

largest craters dominate the power, and the entire PSD comes to resemble the high-frequency tail

of the single-size PSD for Dmax.

To investigate how the choice of resetting algorithm affects the behavior of the PSD slope, we

employed several variations of both our simple resetting procedure and the inheritance formula

of Howard (2007) described above. We observed that algorithms producing a smoother terrain

during the resetting phase (i.e., continuous at the rim, but not necessarily having a continuous

first derivative) resulted in PSD slopes exceeding the value of β ∼ 2 at low frequency. Figure 4.9

contains an example in which model runs use a variant of Howard’s inheritance algorithm that is
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identical inside the crater rim, but modified to be smoother outside to avoid unnecessary breaks

in slope in the reset topography. The inheritance parameter, I, ranges here from 0 to 0.75, and

the equilibrium PSDs for a size-frequency distribution with α = 1.5 are plotted together, showing a

clear steepening of the PSD at low frequency from β ∼ 2 for I = 0 and β ∼ 3 for I = 0.75. At high

frequency, the slope is unchanged, indicating that the choice of resetting algorithm primarily affects

long-wavelength topographic structures and is less important for small scales.

4.3 Size-Frequency Distributions

Much work has been done to determine the size-frequency distribution of craters in different areas of

the Moon’s surface (Chapman and McKinnon, 1986; Hartmann and Gaskell , 1997; Neukum et al.,

2001; Ivanov et al., 2002), and to relate these observed crater size-frequency distributions to the

population and flux of impactors that created them (Hartmann and Gaskell , 1997; Richardson,

2009). These studies show that lunar craters do not follow a single power law over the entire

range of crater sizes. Rather, the size-frequency distribution is better approximated by a piecewise

segmented power law or by a polynomial. The Hartmann production function (HPF) described

in Neukum et al. (2001), formulated as the number of craters on typical mare surfaces, has three

segments:

logNinc = −2.616− 3.82 logDL DL ≤ 1.41 km

logNinc = −2.920− 1.80 logDL 1.41 km < DL ≤ 64 km

logNinc = −2.198− 2.20 logDL DL > 64 km,

(4.19)

where Ninc gives the number of craters in each
√

2D diameter bin and DL is the left boundary of

each diameter bin. Small craters thus have a steeper size distribution than larger craters (α = 3.82

vs. α = 1.8). This difference is significant because cratered terrains evolve quite differently for

α above and below 2 (for a 2D terrain), especially as they approach equilibrium, defined as the

case where an incoming crater of size D will, on average, erase another crater of size D and the

size-frequency distribution of craters ceases to evolve with time. The analysis developed thus far
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for the dependence of the PSD power law exponent on α is therefore useful in understanding the

behavior of observed lunar size-frequency distributions as well. As described in Figure 4.6, α = L

(the dimensionality of the model or data domain) is a special size-frequency distribution in which

craters of all sizes occupy equal areas of the domain. For values of α less than L, large craters

cover more of the area than small craters, and they erase smaller craters than themselves simply

by covering them. In this case, the equilibrium size-frequency distribution is not constant in time.

Over time, small craters initially build up a size-frequency distribution that follows the original α,

but they are erased by larger craters that reset much of the domain. On average, the initial power

law slope α is preserved, but the instantaneous size-frequency slope oscillates around this value.

For values of α > L, the area is dominated by small craters. If craters are assumed to be erased

by covering only (as in the previous case), then the smallest craters, of size Dmin, will erase all other

crater sizes before they will have had time to come into equilibrium with themselves. Thus, the

observed size-frequency distribution will have the same slope as the production function, α. However,

as shown in Figure 4.6 and Equation 4.14, diffusion is the dominant process of erosion for α > L, and

for L < α ≤ L+ 2, each crater size is responsible for the erosion of features on its own scale. In this

case, crater rims are not destroyed in one covering, and all crater sizes have the opportunity to reach

equilibrium with respect to their own size class. As Soderblom (1970) demonstrated analytically, the

equilibrium size-frequency distribution of craters in this case is independent of α, following a power

law slope of L. Starting from a flat plane, therefore, the size-frequency distribution will initially

retain the production function power law slope α as craters accumulate. The smallest craters will

reach equilibrium first, and a kink appears in the size-frequency distribution, which has a slope

of L at small crater sizes and α at large crater sizes. With time, this kink migrates to larger

diameters until the entire size range is in equilibrium. The crater diameter at which the kink occurs

is therefore an indication of the age of the cratered surface (Melosh (1989), Fig. 10.5). This case

can be compared to the behavior of the PSD in the range of α between L+ 1 an L+ 2, where both

the building and erosion processes at a given scale are dominated by craters of that scale, and the

resulting PSD power law exponent is constant at β = 3.
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For higher values of α (> L+2), the smallest craters dominate the diffusion of all other scales, and

they erase all larger craters faster than they can come into equilibrium with themselves. The diffusion

time, tdiff scales as D2 (Eqn. 4.14), such that larger craters take longer to erase in proportion to their

area. The equilibrium size-frequency distribution of observed craters in this range of α is therefore

proportional to D2−α. Thus, the production function can be recovered even after equilibrium has

been achieved at all scales. This result is significant in that it is traditionally assumed that the

equilibrium size-frequency distribution follows D−L for all values of α > L, as in the previous case

Melosh (1989); Richardson (2009). However, Soderblom (1970) notes that his analytical model

breaks down at α = 4 (for L = 2) once the smallest craters begin to dominate diffusion, consistent

with the results presented here.

The small-crater branch of the HPF has a power law exponent of −3.82, falling in the range

L < α ≤ L + 2. At any given time, a particular size of crater, Dcov, has had just enough time to

cover the domain once, and Dcov first coincides with the smallest craters (of size Dmin in the cratered

terrain model, but effectively infinitesimal in the case of the Moon) and subsequently moves to larger

diameters with time. Given the coefficient in Equation 4.19, Dcov can be calculated by comparing

the segmented lunar size-frequency distribution to D−L, which represents the maximum observable

number of craters of that size. The number of craters per unit area on the Moon is given as

10−2.616D−3.82 (Eqn. 4.19). Multiplying by the area of each crater (π4D
2) and setting the result to

1 yields an estimate of the maximum crater size that has completely covered the surface:

10−2.616D−3.82
cov

π

4
D2

cov = 1. (4.20)

For small craters, Dcov = 32 m. All craters smaller than this have also covered the entire surface

at least once, but larger craters have not. This simple calculation is roughly consistent with crater

counts down to smaller diameters than those included in the HPF, which indicate a cumulative

size-frequency distribution slope of -2 for craters less than 100 m in diameter (Shoemaker et al.,

1970; Soderblom, 1970; Hartmann, 1985; Namiki and Honda, 2003).
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4.4 Model Comparisons with LOLA Data

The Lunar Orbiter Laser Altimeter (LOLA) is a multibeam laser altimeter carried on the Lunar

Reconnaissance Orbiter (LRO) that has collected over 6.3 billion measurements of lunar surface

height since 2009 (Barker et al., 2014). Along-track measurements with a vertical precision of ∼10

cm and accuracy of ∼1 m are spaced approximately 57 m apart (Smith et al., 2010a), and this high

density provides an ideal opportunity to determine the power spectral density of lunar topography

and compare the result to the PSDs generated using our cratered terrain model.

The data were processed to remove anomalous data points (due to instrumental effects), binned

along track in overlapping windows, and interpolated to a constant spacing. Windows with many

consecutive missing points were excluded from the analysis to avoid introducing artifacts in the PSD.

After demeaning and detrending the profiles, the PSD was estimated within each window using the

same multi-taper algorithm as previously in section 4.2.1, using 4 standard filters to accommodate

the non-periodic nature of the profiles. The choice of window size is important in measuring the

power spectral slope, and after considering a wide range window sizes, we found the rule described

by Shepard et al. (2001) pertaining to Hurst exponent estimations to be applicable here as well.

Measuring the PSD slope over a given range of spatial scales (inverse frequency) requires that the

topographic profile length (window size) be no less than 10 times the maximum scale considered.

We use a least-squares linear fit to measure the log-log slope of the PSD in two frequency ranges:

the first samples topographic scales ranging from the smallest scale accessible with the LOLA data

(twice the shot spacing, or roughly 115 m) to 1 km, and the second captures scales ranging from 1

to 6 km. Figures 4.10 and 4.11 contain maps of the PSD slope in each of these frequency ranges.

The small-scale PSD slope (Fig. 4.10) was calculated in 1-degree (∼30-km) windows, while the few-

kilometer-scale PSD slope (Fig. 4.11) used 3-degree (∼90-km) windows. In both cases the windows

were spaced 0.1 degrees (∼3 km) apart.
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4.5 Discussion

At small scales (∼ 115 m to 1 km, Fig. 4.10), β ∼ 3 in the heavily cratered highlands, in reasonable

agreement with the model for a value of α ∼ 3.82 (Eqn. 4.19) and when taking into account the

effects of inheritance on resetting the terrain. The boundary between the maria and the highlands

is indistinct, indicating that at these scales (∼115 m to 1 km) the regions are comparably rough,

a result that agrees with those of other recent studies of lunar surface roughness (Rosenburg et al.,

2011; Kreslavsky et al., 2013). Kreslavsky et al. (2013) attribute this observation to the globally

isotropic processes of regolith accumulation and modification, which produce and support roughness

features on hectometer scales. Regions with significantly steeper PSD slopes (β > 3) occur in the

floors of some large craters, where the topography is dominated by central peaks, rim terraces,

and slump deposits on kilometer scales, a lengthscale that corresponds to the minimum frequency

in the range sampled here. The most obvious example can be found in the floor of the crater

Humboldt (27.2◦S, 80.9◦E), which is dominated by a complex rille network and range of central

peaks (Fig. 4.12). Similarly, the ring structure of Orientale Basin has a generally steeper PSD slope

than the surrounding ejecta blanket, most likely due to prominent kilometer-scale topographical

features.

Crater ray systems are also easily discernible as regions of higher β (appearing blue in Fig. 4.10),

suggesting that while they are not prominent in the raw elevation data, they do contain a unique

topographical signature. In this case, it is likely that the rays have removed roughness at small scales

relative to large ones (in this case, 115 m vs. 1 km), producing a power spectral density profile that

is depressed at the high frequency end, and thus steeper than in the surrounding terrain. This

steepening of the PSD may also be due in part to kilometer-scale chains of secondary craters which

add power to the larger scales considered. Rosenburg et al. (2011) found a similar result in their

differential slope analysis, showing that crater ray systems are more smooth at the shortest scales

accessible with LOLA (∼57 m) relative to kilometer scales than the rest of the highlands, while

Kreslavsky et al. (2013) observed a similar effect using a related roughness measure, the curvature of

topographic profiles. Prominent ray systems belong to Tycho (43.31◦S, 11.36◦W), Jackson (22.4◦N,



83

100 km

Figure 4.12: Lunar crater Humboldt, shown in the LROC Wide Angle Camera (WAC) mosaic
(resolution of 100 m/pix), in an orthographic projection centered at 27◦S, 81◦E.
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163.1◦W), and Ohm(18.4◦S, 113.5◦W), the youngest craters of their size (Kreslavsky et al., 2013;

Hiesinger et al., 2012; van der Bogert et al., 2010), as well as Aristillus (33.9◦N, 1.2◦E), Vavilov

(0.8◦S, 137.9◦W), and Aristarchus (33.9◦N, 1.2◦E). No clear progression in the value of β is evident

with age as Kreslavsky et al. (2013) suggest, although the slope of the PSD is not directly comparable

to their surface roughness measure, which (for these features) looks at the 115-m scale only, the lower

limit of the PSD range shown here.

Several localized areas of relatively shallow PSD slope (β ∼ 2− 2.5) occur in the interiors of the

large mare-filled basins and as halos around prominent impact craters in the lunar highlands. A

smaller value of β indicates a relatively greater contribution to the PSD from smaller scales compared

to larger ones. In these cases, several factors may be at play. In the maria, crater saturation has

likely not taken place for craters larger than approximately D ∼ 100 m (Richardson, 2009), and there

may be places that have not been completely covered by craters since the emplacement of the mare

basalts. The absence of crater overlap in this case, together with the limited time available since the

surface was reset for larger craters to accumulate, may have resulted in a dearth of topographical

features contributing to the low-frequency end of our frequency range and a consequent shallowing

of the PSD slope. The regions of relatively low β surrounding prominent craters may be due not

to an absence of power at large scales, but rather an addition of small scale features, especially rim

terraces and blocky ejecta deposits. Haloes of this nature were also noted by Kreslavsky et al. (2013)

at the 1-km scale, where ejecta transitions from proximally smooth to distally rough. Similar cases,

where small-scale roughness is low near the crater rim (with values of β ∼ 4) and becomes relatively

high further away (β ∼ 2), include the farside craters Fermi (19.3◦S, 122.6◦E) and Kovalevskaya

(30.8◦N, 129.6◦W).

Figure 4.11 contains shows the PSD slope measured at somewhat larger scales, spanning the

range from 1 to 6 km. Whereas the maria and highlands were not easily distinguishable in the small

scale PSD shown in Figure 4.10, here they are quite distinct, with the maria displaying much lower

PSD slopes (β ∼ 1) than the highlands (β ∼ 3.5− 4). This difference reflects the absence of features

at the few-kilometer scale in the maria, aside from prominent wrinkle ridges and decameter-scale
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craters, which appear as isolated spots of higher β.

This stark contrast between the maria and the highlands is characteristic of lunar roughness

above and below approximately kilometer scales. Rosenburg et al. (2011) noted that the Hurst

exponent—a measure ranging from 0 to 1 that describes the scaling of surface slopes with horizontal

baseline—transitions in the highlands from approximately 1 (indicating nearly self-similar behav-

ior) at small scales to a smaller value of approximately 0.8, with the transition occurring near 1

km. Similarly, Kreslavsky et al. (2013) found a clear difference in the character of lunar surface

roughness at hectometer and kilometer scales. This behavior is consistent with a transition between

roughness regimes controlled by competing surface processes acting at different scales, including the

accumulation of regolith through impact gardening processes, the global erasure of roughness fea-

tures by seismic shaking during large basin-forming impacts, and early tectonic and volcanic events

that formed the prominent mare plains and wrinkle ridges (Rosenburg et al., 2011; Kreslavsky et al.,

2013; Richardson, 2009).

4.6 Conclusions

We have developed a model capable of tracking the evolution of a cratered terrain from an initially

flat plane through saturation equilibrium. Having benchmarked the model against an analytical

solution in 1D, we conclude that the power spectral density of a surface created only by impacts

can be predicted from the size-frequency distribution of craters emplaced. In comparing the results

of the model to calculations of the PSD along LOLA transects, we find good agreement at small

scales down to 115 m. Exceptions to the model occur in places where competing geomorphological

processes, such as tectonics, dominate, or when crater saturation has not yet been achieved. The

model predicts behaviors for the PSD slope β at a range of size-frequency distribution exponents

(α), not all of which can be tested with the lunar topography. Impact cratering is a dominant agent

of surface modification in our solar system, and it is hoped that the conclusions drawn here can be

applied to many planetary surfaces, including those of Mercury, Mars and the outer planet satellites.
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Chapter 5

Understanding Geometric Bias in
Crater Counts

5.1 Introduction

The size-frequency distribution of craters on a planetary surface is a key measurement in quantifying

certain properties of that surface, including its relative age as well as the size distribution of impactors

responsible for creating it. In particular, the Moon has remained an important object of study in this

respect both because its relative proximity allows for detailed examination of the surface by ground

observers and spacecraft and because its heavily cratered surface provides a natural laboratory for

examining a range of impact processes and radiometric dating of returned Apollo samples provide

an absolute calibration for the timescale. Furthermore, understanding the crater distribution on

the Moon provides crucial information as to the impactor flux on other planetary bodies, allowing

for correlation of geological epochs across the solar system. As such, the distribution of craters

on the lunar surface has been the topic of considerable attention by researchers throughout the

twentieth century, especially in the decades following the return of the first images obtained by

orbiting spacecraft, the preparation of geological maps of the Moon, and subsequent lunar missions

returning image and topography data at ever higher resolution and precision (Hartmann, 1985;

Chapman and McKinnon, 1986; Melosh, 1989; Ivanov et al., 2002; Neukum et al., 2001; Richardson,

2009).

Many measurements of the size-frequency of lunar craters have been made throughout the last
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few decades (Neukum et al., 2001; Ivanov et al., 2002), almost always by human researchers iden-

tifying crateriform structures by eye, and crater counting remains an important tool for planetary

scientists. However, translating between the distribution of currently visible craters and the under-

lying distribution of craters that were actually emplaced may not be entirely straightforward. For

example, Robbins et al. (2014) describes recent work to integrate results from the citizen science

project CosmoQuest Moon Mappers (http://www.cosmoquest.org), which allows members of the

public to contribute to crater counts on the lunar surface using high-resolution images from the Lu-

nar Reconnaissance Orbiter Camera (LROC). Comparison of expert and non-expert crater counts

shows that while the derived crater distributions overlap, variability among the features identified is

large, even among experts using a variety of software tools and methods. No two people will identify

the same set of circular features in an image, especially in dense regions where crater overlap is

common (Robbins et al., 2014). At the same time, automated crater identification is numerically

challenging, particularly on real surfaces containing traces of multiple geologic processes, and cannot

yet compete with human observations in terms of accuracy. Understanding the statistical variations

among crater counters, as well as the systematic biases affecting them, is therefore essential in order

to further quantify lunar size-frequency distributions useful for relative age dating of surfaces and

constraints on the impactor population responsible for producing them.

One such systematic bias was first noted by Mullins (1976) in his analysis of the stochastic crater

model proposed and subsequently elaborated by Marcus (1964), Marcus (1966c), Marcus (1966b),

Marcus (1966a), Marcus (1966d), and Marcus (1967), in which an assumption of non-saturation

conditions had to be made in order to successfully analyze the statistics of the crater distribution

(Mullins, 1976). In particular, Marcus (1964) derives an estimate of crater density as a function of

time for pristine craters, those whose rims are completely intact, while Marcus (1966c) attempted

to treat craters for which any portion of the rim is visible, but effectively had to limit his analysis

to regions of little to no overlap to solve the equations. As Mullins (1976) points out, the choice of

criterion determining which features are “visible” in regions of significant overlap has a large effect

on the resulting size-frequency distribution of craters because large craters tend to be overcounted
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compared to small ones. This geometric bias was explored further by Woronow (1978), who used a

numerical model to track rim points through time, although his model was criticized by Chapman

and McKinnon (1986) because it used only 8 rim points to define each crater and could accommodate

a dynamic range in crater sizes of only 16. Subsequent work (Woronow , 1985a,b) addressed these

concerns and confirmed the existence of the geometric bias.

The cratered terrain model developed in the previous chapter has a rim-tracking feature that

allows it to account for the surviving rim fragments of each emplaced crater through time for a large

number of rim points and range of crater sizes (Fig. 5.1). This chapter first explores this numerical

approach, then compares the results to those of Mullins (1976), Marcus (1964), Marcus (1966c),

and Woronow (1985b), and finally assesses the implications for current crater counting efforts on

the Moon and other planetary bodies. Our approach improves upon the previous works described

in several respects, most notably in that it tracks the 3-dimensional evolution of the topography

simultaneously with the surviving rim segments of each crater emplaced, and applies considerably

greater computing power to maximize both the dynamic range of craters used and the resolution of

each crater’s rim.

5.2 Criteria for “Visible” Craters

The human eye is adept at identifying craters, even when they overlap or are otherwise partially

obscured. Nevertheless, there are some limits beyond which a degraded crater cannot be recognized

as such by a human researcher. These limits are likely a combination of many factors, including

the remaining rim fraction and the connectedness of rim arcs, and may differ depending on dataset

properties such as illumination angle, resolution, and the availability of topographic information.

There is no consensus opinion among researchers on the ideal criterion for defining the “visibility” of

craters on a model-generated terrain. Mullins (1976) and Woronow (1985b) choose the remaining

rim fraction as a proxy for crater survival, whereas Richardson (2009) tracks the area of each

emplaced crater through time, factoring in destructive processes such as infilling by slope failure and

regolith gardening in addition to crater overlap. Because the rim itself is essential both to identifying
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Figure 5.1: Sample topography (color scale) generated by the cratered terrain model described in
the previous chapter with surviving rim fragments overlain (black).
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craters—due to the sharp relief it provides in images and to the unique circular character it displays—

and to measuring their diameters, we follow the former approach. This choice is supported by Robbins

et al. (2014), in which several crater experts discussed using the sharp, circular transition from light

to dark to identify craters. The fraction fvis, ranging from 0 to 1, is defined as the minimum fraction

of rim remaining such that a crater can be classified as “visible.” Fresh craters are pristine, with

fvis = 1, and over time this value decreases as subsequently-emplaced overlapping craters remove

all or part of the rim. Craters with rim fractions less than fvis are deemed “invisible” and are thus

discounted in the resulting size-frequency distribution.

5.3 Cratered Terrain Model

5.3.1 Rim Tracking

The cratered terrain model introduced in the previous chapter emplaces craters on a flat plane with

diameters selected according to a cumulative size-frequency distribution:

Ncum ∝ D−α, (5.1)

‘where Ncum is the number of craters greater than or equal to diameter DA, and α is the size-

frequency distribution exponent. While observed size-frequency distributions of lunar craters are

more complicated than a single power law (Neukum et al., 2001; Ivanov et al., 2002), they can

often be treated as piecewise power law segments in specific diameter ranges. Understanding the

fundamental effects of overlap in this simplified case can therefore provide useful insights into more

complex distribution functions as well.

Each incoming crater is assigned a diameter, a random location, and a set of rim points that

are tracked throughout the remainder of the simulation. The number of rim points can be specified

in two ways, either by fixing the spacing between rim points or fixing the number of points defined

for each crater directly. The former method allots more rim points for larger craters than smaller

ones, and the spacing is therefore determined by the circumference of the smallest crater included in
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the model, of diameter Dmin. Directly fixing the number of rim points per crater allows for greater

precision in rim fraction for the smallest craters, but adds a very large number of points to the total

simulation, requiring additional computation time. The fixed rim point spacing method is therefore

preferred, with the provision that the minimum number of points per crater be sufficient to resolve

the surviving rim fragments of the smallest craters. No fewer than 30 rim points were used for any

craters in these simulations.

As subsequent craters overlap and obliterate an existing crater, an algorithm determines which

previously-existing rim points fall within the polygon defined by the rim of the new crater, and

these are removed from the simulation. For each crater, the fraction of rim remaining unscathed is

easily tracked as a function of time, where “time” is parameterized as the number of craters that

have been emplaced. Figure 5.1 shows an example of topography generated by the cratered terrain

model with the surviving rim fragments of the emplaced craters overlain as black ring segments. The

stratigraphic relationships between craters emplaced at earlier and later times are clearly visible in

the interrupted arcs and complete circles, respectively.

Once a value for the criterion fvis is selected, a size-frequency distribution of “visible” craters

can be computed at any given time during the model run. A low value of fvis equates to a loose

criterion for visibility—only a small portion of the rim need be present to identify the crater and

include its diameter in the size-frequency distribution. A high value, on the other hand, denotes a

strict criterion; most of the crater rim must be extant in order to identify it.

5.3.2 Erasure by Ejecta Emplacement

One criticism of Woronow (1978) concerned the lack of ejecta effects in his model (Chapman and

McKinnon, 1986). Crater rims may be erased by superimposed ejecta as well as direct obliteration

by overlap. To address this issue, Woronow (1985a) employed two ejecta schemes, one of which

increased the effective diameter of each incoming crater when considering rim erasure, and the other

of which calculated the thickness of an exponentially-decaying ejecta blanket in order to identify

obscured rim points. He found that the two models produced results in good agreement when the
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Figure 5.2: Portion of a model terrain showing overlapping rim fragments with rfac = 1.2. Each
incoming crater erases a circular area with a diameter 20% larger than the crater diameter.
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diameter of an incoming crater of size D was increased by a factor of 1.1D for the purposes of

rim erasure. The cratered terrain model presented here also allows for adjustments in this manner,

using the multiplicative parameter rfac to control the extent of erasure beyond the emplaced crater

rim. A value of rfac = 1 reverts to the “cookie-cutting” case described thus far, while higher values

indicate the extent of the ejecta blanket’s capacity to obscure rim points of pre-existing craters. For

example, a crater of size D = 10 km with rfac = 1.2 will remove rim points within 6 km of the crater

center while adding its own rim points in a ring 10 km in diameter. Figure 5.2 shows a portion

of a simulation using rfac = 1.2. An annulus with diameter 20% larger than the crater diameter

extends around each new feature, clearly illustrating the difference between the area erased and the

rim points added.

5.4 Model Results and Observations

5.4.1 Craters of One Size

Simulations were first performed with identical craters of diameter DA to illustrate the effect of

choosing different values of fvis, before turning to the more complicated case including many crater

sizes. This case is described theoretically by Melosh (1989), based in part upon sandbox experiments

performed by Gault (1970) with a variety of projectiles and explosives. In the latter study, Gault

(1970) defines the concept of geometric saturation, equivalent to the density of craters achieved in

a hexagonal closest-packing arrangement with no overlap. This configuration results in a number

density of

Ns = 1.15D−2. (5.2)

Equivalently, 90.5% of the surface area is covered by craters in the closest-packing arrangement.

As the surface accumulates randomly-placed craters, they will overlap each other, and the fraction

of area ever covered by at least one crater will increase, surpassing 90.5% at a somewhat higher

crater density than Ns due to overlap:
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N90.5% ∼ 2.6Ns. (5.3)

At this point, which Gault (1970) terms the “saturation time,” the number density of observable

craters departs from the production function and the surface approaches equilibrium: any incoming

crater of size DA will, on average, erase an existing crater of that size. The number density of

craters thus increases approximately linearly from zero until an equilibrium value is reached, and

then remains constant with small fluctuations depending on the arrangement of overlapping craters

at any given time.

Crater densities for different choices of fvis are presented in Figure 5.3 for a model using only

craters with diameter D = 20 km on a domain of size X = 128 km. The density at geometric

saturation for this diameter is Ns = 0.0029, and this value is marked in the figure. In general, crater

density behaves as expected, increasing linearly at the beginning of the simulation and leveling to

a constant approximately when 90.5% of the the domain is first completely covered by craters. For

this simulation, the saturation time (in terms of number of craters emplaced) can be calculated as:

N90.5%X
2 ∼ 2.6 · 1.15D−2X2 ∼ 123 craters. (5.4)

After one saturation time, the number density of craters fluctuates around an equilibrium value,

dropping abruptly when large craters clear a broad area and climbing again as smaller craters

accumulate.

As is clear from Figure 5.3, the choice of fvis has a significant influence on the equilibrium crater

density. Using the lowest value shown, fvis = 0.1, results in a final density nearly 2.5 times that at

geometric saturation. With such a loose criterion for “visibility,” many more overlapping craters can

be included than in a closest-packing configuration. On the other hand, using the strictest criterion,

fvis = 1 (pristine craters), reduces the crater density by an order of magnitude. The equilibrium

crater density remains below geometric saturation only for values of fvis > 0.4. These differences in

crater density are easily seen in Figure 5.4, which highlights “visible” craters (shown in blue) on the
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Figure 5.4: Surviving rim points for the single-size crater simulation (gray) highlighting “visible”
craters for different values of fvis (blue).
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same domain for several different values of fvis against a background of all surviving rim fragments

(shown in gray).

The simulations shown in Figures 5.3 and 5.4 were run in “cookie-cutting” mode, with rfac = 1.

As expected, increasing rfac reduces the crater density for all values of fvis, as every new crater is

able to erase a larger area than the footprint bounded by the rim. For rfac = 1.2, crater density

remains below geometric saturation for values of fvis > 0.2, and the pristine-crater case (fvis = 1)

yields an equilibrium crater density of approximately 20% that at geometric saturation. That the

lowest equilibrium densities modeled here are still much greater than the observed crater densities

on planetary surfaces indicates that other erasure processes are also important in modifying crater

distributions. For this reason, the term equilibrium is often used specifically to take into account the

interaction of all geologic processes, while saturation is used to refer to the impact cratering process

alone.

5.4.2 Multiple Crater Sizes: Geometric Bias

For a given production function of craters (characterized by size-frequency distribution exponent α

according to Equation 5.1), varying the value of fvis between 0 (the most relaxed criterion) and 1

(the strictest) results in significant variation in the slope of the measured size-frequency distribution,

α′. Smaller values of fvis result in a shallower size-frequency distribution (smaller α′), while large

fvis result in large α′. An example of this behavior for a production function with α = 1.5 is shown

in Figure 5.5. The black dashed line indicates the power law exponent of the production function

(α), which only coincides with the observed size-frequency distribution slope (α′) for values of fvis

between ∼ 0.4 and 0.5.

This behavior can be understood by considering the range of rim fractions that survive at any

given moment within one crater size bin. Given an existing crater A of size DA, incoming craters

with randomly chosen centers will either overlap with A or miss it entirely. Assuming that new crater

B of size DB overlaps with A by some amount, there are two possible outcomes: either the new

crater obliterates a section of the old crater’s rim, or it covers the old crater entirely (if DB > DA).
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Figure 5.5: Observed size-frequency distribution as a function of fvis for a simulation using α = 1.5,
Dmin = 500 m, Dmax = 64 km, and X = 128 km. The black dashed line indicates the slope of the
production function (α = 1.5), which coincides with the observed slope (α′) only for 0.4 < fvis < 0.5.
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Figure 5.6: Assuming that new crater B overlaps by some amount with existing crater A, it will
either cover it completely or erase only part of the rim, depending on where crater B falls in relation
to A. This diagram shows the areas Acover and Ahit within which the center of B must fall to entirely
erase or partially cover A, respectively, for the two cases where the diameter of B (DB) is larger or
smaller than that of A (DA).

The outcome is determined by where crater B falls in relation to crater A. There is a certain area,

Acover, within which crater B will always cover crater A. Another area exists, Ahit, within which

crater B will cover part, but not all, of the rim of crater A. These areas are illustrated in Figure 5.6

and can be written as follows:

Acover =


π
(
DB

2 −
DA

2

)2
DB > DA

0 DB ≤ DA

(5.5)

Ahit = πDADB . (5.6)

Thus, assuming that crater B overlaps crater A by some amount, the probability that it will

cover the pre-existing crater completely is related to the ratio of these areas and the probability that

crater B is of a given size DB . For most crater sizes, Acover is larger than Ahit; only craters with

diameters near or less than DA are more likely to partially cover crater A than erase it (Fig. 5.7).

According to Eqn. 5.1, however, small craters are much more likely to occur than large craters, since
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Figure 5.7: The areas Acover and Ahit as a function of DB , the size of the incoming crater B.
Assuming that some overlap occurs, if DB is smaller than ∼ 6DA, it is slightly more likely that a
randomly-placed crater B will partially cover A than completely cover it (for DB < DA complete
covering is impossible). For larger DB , it becomes increasingly more likely that B will entirely cover
A.
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α is always positive. Together, these constraints create variation in the distributions of surviving

rim fractions across different crater sizes. Large craters are unlikely to be hit by craters larger than

themselves because they are rare, and very likely to be hit by abundant small craters. Therefore,

one would expect that at any given time, few large craters survive with a large fraction of their rims

intact.

Small craters, on the other hand, are more likely to be hit by craters larger than themselves,

and therefore much more likely to be covered completely than large craters. Thus, we would expect

to find that most surviving small craters have large rim fractions remaining, because those that are

hit at all are usually completely erased. Intermediate crater sizes should transition between the two

end cases. Examination of the distribution of rim fractions within crater diameter bins bears out

these expectations. Small craters that have not been completely erased are more likely to have large

surviving rim fractions, while the opposite is true for large craters. Exceptions to this rule occur

at the very largest rim fractions, where recently-emplaced craters of all sizes have not had much

opportunity to be hit by subsequent craters, and at the very smallest rim fractions, where small rim

fragments have avoided final erasure because they occupy a small fraction of the domain and are

thus unlikely to be hit.

Using incremental values of fvis and taking into account uncertainties in the linear fits, the

relationship between α′ and fvis can be further examined for varying α, and the results of this

analysis are shown in Figure 5.8. If the observed size-frequency distribution were to maintain the

slope of the production function, then the curves would be flat for any value of fvis. For most of the

range of fvis, however, α′ increases linearly from approximately α′ ∼ α−0.25 to α′ ∼ α+ 0.25. This

linear trend breaks down near fvis = 0, where the extremely loose visibility criterion favors large

craters, and near fvis = 1, where the pristine-crater criterion favors small craters. This amplification

of the geometric effects at the extremes of fvis is readily apparent in Figure 5.5. As α increases, the

slope of the linear trend decreases, and the effects near fvis = 0 and 1 become increasingly confined

to the edges. Changing the value of rfac has little effect on the α′ curves, especially for values of

α < 2.
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Figure 5.8: Slope of the observed size-frequency distribution (α′) for different values of fvis, the
criterion for visibility, plotted for several production function slopes (α).
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These results are consistent with those of Woronow (1985b), but we extend the range of fvis

considered and improve considerably the precision of the calculation applied to the problem. The

geometric bias first noted by Mullins (1976) is clearly present, with large craters being overcounted

at small fvis and undercounted at large fvis.

5.4.3 Potential Corrections

5.4.3.1 Pristine-Crater Criterion

One strategy often used by crater counters to estimate the production function is to classify features

by their state of degradation and examine only the size-frequency distribution of the most pristine

craters (Chapman, 1968; Chapman et al., 1970; Strom, 1977). Because these craters represent the

most recent features to be emplaced, it is inferred that they most closely reflect the production func-

tion. However, as Figure 5.8 shows, the pristine-crater criterion does not produce the best estimate

of the underlying size-frequency distribution of emplaced craters because it tends to undercount

large craters that are likely to have been partially (but not completely) covered by smaller ones.

Using a value of fvis = 1 thus results in an overestimate of α by as much as 0.5 to 1, a significant

amount considering the detailed crater histories inferred from slight changes in the slope of the

size-frequency distribution.

5.4.3.2 Weighting by Rim Fraction

A somewhat better method to correct for the geometric bias in crater counts was suggested by

Mullins (1976) and Mullins (1978) and supported by Woronow (1985b). Rather than choosing

the most pristine craters, which is equivalent to using fvis = 1, Mullins (1976) uses a weighted

histogram of “visible” craters, where the weights are given by the fraction of rim surviving for each

crater. Weighting by rim fraction compensates for the overcounting of large craters at small fvis.

Figure 5.9 shows this correction applied to the α′ curve for α = 1.5.

While this method does adjust α′ to match α at fvis = 0, it does not correct the α′ curve for

higher values of fvis, and for strict visibility criteria it actually exacerbates the bias toward smaller
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Figure 5.9: Example of the correction proposed by Mullins (1976), with α = 1.5. Histograms of
“visible” crater diameters are weighted by the fraction of rim remaining for each crater, compensating
for the overcounting of large craters at the smallest values of fvis.
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craters. This correction also introduces logistical issues for human crater counters, for whom it is not

trivial to measure the rim fraction of every crater counted, and who cannot be expected to identify

craters down to such small remaining rim fractions.

5.4.3.3 Personal Visibility Criteria

Each of the curves in Figure 5.8 crosses its respective production function value of α at some interme-

diate value of fvis between ∼ 0.3 and 0.6, implying that these visibility criteria may more accurately

reflect the underlying distribution of emplaced craters than others, without further correction. Hu-

man crater counters naturally recognize features according to individual and largely subconscious

criteria, including (but not limited to) the rim fraction remaining for each crater. Further studies

of crater identification methods and outcomes among crater counters, either on model-generated

surfaces like those presented here or on actual lunar images like those used by Robbins et al. (2014)

and CosmoQuest, may provide valuable insights into the fundamental variability of crater counts

that can improve future efforts to quantify the Moon’s impact history.

5.5 Discussion

The results presented here suggest that interpreting the distribution of craters counted on a planetary

surface is not as straightforward as is often presented. Not only is there significant variability

between crater counters in the identification of particular features (Robbins et al., 2014), but a

geometric bias exists that either under- or overcounts large craters, depending on the criterion used

to define “visible” craters. This bias is not mitigated by choosing only the most pristine craters to

include in size-frequency distributions. Rather, enforcing this strict criterion for visibility amounts

to accepting a value of fvis = 1, which actually exacerbates the problem. Using the rim-fraction

weighting technique proposed by Mullins (1976) compensates for the overcounting of large craters

at very low values of fvis, but it assumes that crater counters can recognize features when almost all

of their rims have disappeared and introduces the requirement that counters record remaining rim

fractions for all features they log, further complicating a logistically-intensive and time-consuming



106

process. A simple solution may be to develop a rule of thumb, where crater counters intentionally

reject features with less than ∼ 0.3 to 0.6 of their rims remaining, roughly corresponding to the

range of values of fvis where the α′ curves cross their production function values, α, although this

approach does not quantitatively resolve concerns about the comparability of crater counts made by

different investigators.

Another possibility would be to investigate the nature of crater recognition itself among human

crater counters. Cratered terrain models like the one presented here provide new opportunities to

study synthetic terrains for which the exact crater distribution is known, thus allowing for direct

quantification of the criteria used to identify features. Our preliminary investigations suggest that the

comparison of craters identified on an artificially-illuminated model plane with the known underlying

distribution of emplaced craters can provide an estimate of the range of fvis implicitly assumed by

each crater researcher. However, a comprehensive study is required to address details such as image

resolution, minimum and maximum crater sizes, illumination angles, and correlation of emplaced

craters with recognized features. The cratered terrain model’s ability to track the 3-dimensional

topography as well as surviving rim fragments also allows for the quantitative investigation of ejecta

effects that can improve our understanding of how rim segments are erased over time.

There is another effect not yet taken into account by the rim-tracking model, which is related to

the analysis presented in the previous chapter. The value of α determines the crater size most efficient

at eroding features of any given scale (see Fig. 4.6). When α is less than 2 (for our 2-dimensional

model), large craters dominate the erosion, and they erase all smaller craters simply by covering

them. This is also the assumption of the rim-tracking feature: rim points are erased when they fall

within rfac
D
2 of the center of a newly-emplaced crater. When α > 2, however, diffusion (rather than

covering) becomes the dominant form of erosion. Using Equation 4.14, the time it takes to diffuse

a crater of size D, tdiff , can be estimated. For α > 4, the smallest craters dominate diffusion of all

other scales, and the diffusion time scales as D2. Larger craters thus take longer to be erased, and

are therefore detectable in the topography even after they have been covered once by smaller craters.

Therefore, the 3-dimensional topography contains more information than the rim-tracking algorithm



107

alone, and, because diffusion times are longer for larger craters, these features may be detectable

and their diameters measured even without (or with few) pristine rim segments. As described in

the previous chapter (Section 4.3), the equilibrium size-frequency distribution will follow D2−α. For

α between 2 and 4, each crater size dominates its own diffusion, and the equilibrium size-frequency

distribution is independent of α in this range, with a power law exponent of −2.

Erosion by diffusion rather than covering requires a redefinition of what it means for a rim point

to be erased, and whether a geometric bias continues to exist in this case becomes a complicated

question. All craters will be eroded by craters smaller than themselves (in most cases), and the

asymmetry in degradation state between small and large craters observed in Section 5.4.2 is there-

fore is expected to be diminished. However, the extent to which crater counters can identify features

without sharp rim crests as impact craters is a highly relevant question that remains largely unex-

amined. The two main processes of erosion—covering and diffusion—produce different expectations

for the slope of the equilibrium size-frequency distribution for α > 2. If rims only need to be covered

to be erased, the observed size-frequency distribution will have the same power law slope as the

production function (depending on the value chosen for fvis and taking into account the geometric

bias examined here). If rims need to be diffused to be erased, then the slope of the size-frequency

distribution will be -2 regardless of the production function exponent (for 2 < α ≤ 4). Lunar crater

counts record a kink in the size-frequency distribution near D = 100 m, above which the power law

exponent is −2 and below which it is steeper, suggesting that craters smaller than this size have

reached equilibrium and those larger have not (Soderblom, 1970; Richardson, 2009). If this is the

case, then the diffusive nature of erosion in this range of α is being detected by crater counters,

and they must be identifying features with partially diffused rims. Studies of human crater counters

using model-generated terrains may shed light on the complexity of criteria required to recognize

degraded craters and measure their diameters.

The large dataset collected by the CosmoQuest Moon Mappers team and summarized by Robbins

et al. (2014) provides another resource for the quantification of crater identification by many different

crater counters. While this dataset lacks the model’s ability to access the real underlying distribution
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of craters, it has the advantage of comparing crater counts on the same images among a large number

of individuals, providing the opportunity to measure statistical variability among crater distributions.

Some observations from Robbins et al. (2014) are already of interest to the geometric bias discussed

above. For example, crater densities identified by investigators in a Narrow Angle Camera (NAC)

image (M146959973L) on a portion of the maria clearly show the effects of crater degradation state

on the ability to recognize features. Generally, there are more large degraded craters and more

small pristine craters, in complete agreement with the analysis presented here. However, craters

counted on highlands terrain in the Wide Angle Camera (WAC) image (M119455712M) show a

quite different dependence on degradation state. Large craters that could be identified were more

likely to be pristine than small craters, suggesting that large, degraded craters may be difficult

to identify on rugged, reworked terrain. The study also mentions that investigators may be more

attuned to features near the minimum and maximum crater sizes included in the image (which

depend on the image resolution and domain size, respectively), causing them to identify relatively

more features at the extremes than at intermediate sizes. This dataset thus represents a valuable

means of examining the methods, assumptions, and biases inherent in the process of counting craters

on the real lunar surface, and it provides a highly complimentary approach to counting craters on

synthetic terrains where the underlying distribution is known.

5.6 Conclusions

What does fvis represent in practice? For researchers counting craters on a planetary surface, there

are inevitable limitations to what the eye can recognize as a crater in a field of overlapping craters,

let alone on a surface with multiple geologic processes represented. The fraction of the rim remaining

likely plays a role in these limitations, but there are many other factors to consider as well, from

how spread out or connected the rim fragments are, to whether there is a size dependence involved.

Perhaps counting craters on a topographic map results in a different fvis than counting on an image,

and certainly factors such as illumination angle and image resolution affect the visibility of partially

obscured features. Some of these factors are already taken into account in crater counting—notably
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the falloff in small crater populations due to insufficient resolving power. However, the main result of

this work—the extent to which we recognize craters may influence our measurements of crater size-

frequency distributions—has so far remained largely unexplored. The computing power available to

current cratered terrain models, together with the data collected by recent citizen science efforts to

map the Moon, provides a new and unprecedented opportunity to address the effect of geometric

bias on observed size-frequency distributions on the Moon and throughout the solar system.



110

Bibliography

Adams, A. L. (1874), I. on the dentition and osteology of the maltese fossil elephants, being a

description of remains discovered by the author in malta, between the years 1860 and 1866., The

Transactions of the Zoological Society of London, 9 (1), 1–124.

Aharonson, O., and N. Schorghofer (2006), Subsurface ice on Mars with rough topography, J. Geo-

phys. Res., 111 (E10), 11,007, doi:10.1029/2005JE002636.

Aharonson, O., M. T. Zuber, G. A. Neumann, and J. W. Head (1998), Mars: Northern hemisphere

slopes and slope distributions, Geophys. Res. Lett., 25 (24), 4413–4416.

Aharonson, O., M. T. Zuber, and D. H. Rothman (2001), Statistics of Mars’ topography from the

Mars Orbiter Laser Altimeter: Slopes, correlations, and physical models, J. Geophys. Res., 106,

23,723–23,736, doi:10.1029/2000JE001403.

Araki, H., S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake,

J. Oberst, et al. (2009), Lunar global shape and polar topography derived from Kaguya-LALT

laser altimetry, Science, 323 (5916), 897–900.

Arnold, J. R. (1979), Ice in the lunar polar regions, Journal of Geophysical Research: Solid Earth

(1978–2012), 84 (B10), 5659–5668.

Baldwin, R. B. (1949), The Face of the Moon, University of Chicago Press, Chicago.

Baldwin, R. B. (1964), Lunar crater counts, The Astronomical Journal, 69, 377.

Barker, M., E. Mazarico, G. Neumann, D. Smith, M. Zuber, et al. (2014), Merging digital elevation



111

models from the lunar orbiter laser altimeter and kaguya terrain camera, in Lunar and Planetary

Institute Science Conference Abstracts, vol. 45, p. 1635.

Bottke Jr, W. F., D. D. Durda, D. Nesvornỳ, R. Jedicke, A. Morbidelli, D. Vokrouhlickỳ, and H. F.

Levison (2005), Linking the collisional history of the main asteroid belt to its dynamical excitation

and depletion, Icarus, 179 (1), 63–94.

Brinkmann, R. T. (1966), Lunar crater distribution from the ranger 7 photographs, Journal of

Geophysical Research, 71 (1), 340–342.

Butrica, A. J. (1996), To See the Unseen: A History of Planetary Radar Astronomy, National

Aeronautics and Space Administration.

Campbell, D. B., B. A. Campbell, L. M. Carter, J.-L. Margot, and N. J. Stacy (2006), No evidence

for thick deposits of ice at the lunar south pole, Nature, 443 (7113), 835–837.

Campbell, J. B. (2002), Introduction to remote sensing, CRC Press.

Chapman, C. R. (1968), Interpretation of the diameter-frequency relation for lunar craters pho-

tographed by rangers vii, viii, and ix, Icarus, 8 (1), 1–22.

Chapman, C. R., and W. B. McKinnon (1986), Cratering of planetary satellites, in IAU Colloq. 77:

Some Background about Satellites, vol. 1, pp. 492–580.

Chapman, C. R., J. A. Mosher, and G. Simmons (1970), Lunar cratering and erosion from orbiter

5 photographs, Journal of Geophysical Research, 75 (8), 1445–1466.

Daniels, F. B. (1963), Radar Determination of the Root Mean Square Slope of the Lunar Surface,

J. Geophys. Res., 68, 449–453, doi:10.1029/JZ068i002p00449.

Dietz, R. S. (1946), The meteoritic impact origin of the moon’s surface features, The Journal of

Geology, pp. 359–375.

Doel, R. E. (1996), Solar System Astronomy in America, Communities, Patronage, and Interdisci-

plinary Science, 1920-1960, Cambridge University Press.



112

Farr, T. G. (1992), Microtopographic evolution of lava flows at Cima volcanic field, Mojave Desert,

California, J. Geophys. Res., 97 (B11), 15,171–15,179.

Fauth, P. (1909), The Moon in Modern Astronomy: Summary of Twenty Years Selenographic Work,

and a Study of Recent Problems, D. van Nostrand Company.

Galilei, G. (1989), Sidereus Nuncius, or The Sidereal Messenger, University of Chicago Press.

Garrick-Bethell, I., and M. T. Zuber (2009), Elliptical structure of the lunar South Pole-Aitken

basin, Icarus, 204, 399–408, doi:10.1016/j.icarus.2009.05.032.

Garvin, J., J. Bufton, J. Blair, D. Harding, S. Luthcke, J. Frawley, and D. Rowlands (1998), Obser-

vations of the earth’s topography from the shuttle laser altimeter (sla): laser-pulse echo-recovery

measurements of terrestrial surfaces, Physics and Chemistry of the Earth, 23 (9), 1053–1068.

Garvin, J. B., and J. J. Frawley (1998), Geometric properties of martian impact craters: Preliminary

results from the mars orbiter laser altimeter, Geophysical Research Letters, 25 (24), 4405–4408.

Gault, D. E. (1970), Saturation and equilibrium conditions for impact cratering on the lunar surface:

Criteria and implications, Radio Science, 5 (2), 273–291.

Gifford, A. C. (1924), The mountains of the Moon, Hector Observatory.

Gilbert, G. K. (1893), The Moon’s face: A study of the origin of its features, Philosophical Society

of Washington.

Hartmann, W. K. (1970), Lunar cratering chronology, Icarus, 13 (2), 299–301.

Hartmann, W. K. (1984), Does crater saturation equilibrium occur in the solar system?, Icarus,

60 (1), 56–74.

Hartmann, W. K. (1985), Impact experiments: 1. ejecta velocity distributions and related results

from regolith targets, Icarus, 63 (1), 69–98.

Hartmann, W. K., and R. W. Gaskell (1997), Planetary cratering 2: Studies of saturation equilib-

rium, Meteoritics & Planetary Science, 32 (1), 109–121.



113

Heiken, G., D. Vaniman, and B. M. French (1991), Lunar sourcebook: A user’s guide to the Moon,

CUP Archive.

Hiesinger, H., J. W. Head, U. Wolf, R. Jaumann, and G. Neukum (2010), Ages and stratig-

raphy of lunar mare basalts in Mare Frigoris and other nearside maria based on crater size-

frequency distribution measurements, Journal of Geophysical Research (Planets), 115 (E14), 3003,

doi:10.1029/2009JE003380.

Hiesinger, H., R. Jaumann, G. Neukum, and J. W. Head (2012), Ages of mare basalts on the lunar

nearside, Journal of Geophysical Research: Planets (1991–2012), 105 (E12), 29,239–29,275.

Howard, A. D. (2007), Simulating the development of martian highland landscapes through the

interaction of impact cratering, fluvial erosion, and variable hydrologic forcing, Geomorphology,

91 (3), 332–363.

Hoyt, W. G. (1987), Coon Mountain controversies: Meteor Crater and the development of impact

theory, University of Arizona Press.

Ivanov, B., G. Neukum, W. Bottke, and W. Hartmann (2002), The comparison of size-frequency

distributions of impact craters and asteroids and the planetary cratering rate, Asteroids III, 1,

89–101.

Ives, H. E. (1919), Some large-scale experiments imitating the craters of the moon, The Astrophysical

Journal, 50, 245.

Jaffe, L. D. (1967), Lunar Surface Exploration by Surveyor Spacecraft: Introduction, J. Geo-

phys. Res., 72, 773, doi:10.1029/JZ072i002p00773.

Kaula, W., G. Schubert, R. Lingenfelter, W. Sjogren, and W. Wollenhaupt (1974), Apollo laser

altimetry and inferences as to lunar structure, in Lunar and Planetary Science Conference Pro-

ceedings, vol. 5, pp. 3049–3058.

Kreslavsky, M. A., and J. W. Head (2000), Kilometer-scale roughness of Mars: Results from MOLA

data analysis, J. Geophys. Res., 105, 26,695–26,712, doi:10.1029/2000JE001259.



114

Kreslavsky, M. A., J. W. Head, G. A. Neumann, M. A. Rosenburg, O. Aharonson, D. E. Smith,

and M. T. Zuber (2013), Lunar topographic roughness maps from Lunar Orbiter Laser Altimeter

(LOLA) data: Scale dependence and correlation with geologic features and units, Icarus, 226 (1),

52–66.

Li, C., X. Ren, J. Liu, X. Zou, L. Mu, J. Wang, R. Shu, Y. Zou, H. Zhang, C. Lü, et al. (2010),
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