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Chapter 4

Power Spectral Density of
Cratered Terrains

Abstract

Impact cratering produces characteristic variations in the topographic power spectral density (PSD)

of heavily cratered terrains, which are controlled by the size-frequency distribution of craters on the

surface and the spectral content (shape) of individual features. These variations are investigated

in two parallel approaches. First, a cratered terrain model, based on Monte Carlo emplacement

of crater features and benchmarked by an analytical formulation of the one-dimensional PSD, is

employed to generate topographic surfaces at a range of size-frequency power law exponents and

shape dependencies. For self-similar craters, the slope of the PSD, β, varies inversely with that of

the production function, α, leveling off to 0 at very high α (surface topography dominated by the

smallest craters) and maintaining a roughly constant value (β ∼ 2) at very low α (surface topography

dominated by the largest craters). The effects of size-dependent shape parameters and various crater

emplacement algorithms are also considered. Second, we compare the model-derived predictions for

the behavior of the PSD with values of β calculated along transects from the Lunar Orbiter Laser

Altimeter (LOLA). At small scales (∼115 m to 1 km) the PSD slope agrees reasonably well with the

model predictions for the observed range of lunar size-frequency distributions. Differences between

global PSD slopes at sub-kilometer and kilometer scales reflect the scale separation in roughness

noted by Rosenburg et al. (2011) and Kreslavsky et al. (2013) using different but related surface
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roughness parameters. Understanding the statistical markers left by the impact cratering process

on the lunar surface is useful for distinguishing between competing geological processes on planetary

surfaces throughout the solar system.

4.1 Introduction

The high resolution of the topography dataset recently recorded by the Lunar Laser Orbiter Al-

timeter (LOLA), together with ongoing improvements in computing power, provides unprecedented

opportunities to correlate model results with observed lunar features. Nowhere is this more perti-

nent than in impact crater studies. The evolution of cratered terrains is not well understood, despite

decades of study (Melosh, 1989; Richardson et al., 2005; Richardson, 2009), but our understanding

of it is crucial to our knowledge of planetary bodies, especially those for which non-photographic

data are scarce, such as the outer planet satellites. Numerical cratering models have seen vast im-

provements in spatial resolution over the past two decades (Richardson, 2009; Howard , 2007), and

are now capable of tackling a range of crater scales broad enough to allow comparison with real

cratered terrains. At the same time, renewed efforts to map the Moon down to meter scales have

been stimulated by the abundance of high-resolution images returned by the Lunar Reconnaissance

Orbiter Camera (LROC), including recent citizen scientist projects to count craters and evaluate

counting statistics (Robbins et al., 2014).

A quantitative comparison of cratered terrain model results and lunar topography analysis thus

has never been more feasible, on hand, and relevant to further our understanding of lunar surface

processes. To this end, we have developed a cratered terrain model that generates surfaces saturated

with craters, and have used it to investigate the statistical properties of such landscapes and how they

depend on factors such as the size-frequency distribution of impactors, crater shape, and competing

surface processes. By keeping track of both topography and remaining rim fractions of emplaced

craters (via a rim-tracking algorithm) the model allows us to evaluate the power spectral density

(PSD) and size-frequency distribution of visible craters before and after the surface has attained

equilibrium. Finally, comparing our results to the lunar topography, in both highland and mare
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regions, can help to distinguish among markers of competing geomorphologic processes acting on

the lunar surface.

4.2 Models

Any impact cratering model necessarily simplifies a set of complex, local, and interdependent pro-

cesses, many of which remain active areas of research in their own right. Depending on the task at

hand, different researchers have chosen to model different aspects of the cratering process, from a

highly detailed slope-failure and regolith-tracking approach (Richardson, 2009) to a landscape gen-

erator used to study aeolian and fluvial systems on Mars (Howard , 2007). Whatever the goal, two

primary phases of crater emplacement must be observed: 1) some degree of erasure, or resetting, of

the initial topography, and 2) superposition of the crater shape. Here, we study the characteristic

statistical properties of cratered terrains in order to more easily identify and disentangle signatures

of competing geomorphologic processes on planetary surfaces. Modeling is divided into three phases.

First, we develop a 1-dimensional Monte Carlo simulation that emplaces craters on a flat domain

with periodic boundary conditions. Resetting is accomplished through a simple rule: once the lo-

cation for a new crater has been selected, the existing topography is surveyed and the area within

the crater rim is reset to its own mean. In the second modeling phase, we use an analytic formu-

lation to benchmark the 1D numerical model for terrains accumulating craters of a single size. We

then develop a procedure for combining craters of different sizes according to a given size-frequency

distribution. The resulting synthetic power spectral density can be directly compared to that gen-

erated using the 1D emplacement model. Using the numerical and analytic models together, we can

thus understand the evolution of 1D cratered terrains, starting from a flat plane and proceeding to

equilibrium. Finally, we move to a two-dimensional domain and compute the power spectral density

along 1D transects to allow for direct comparison to the LOLA topography dataset.
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Figure 4.1: Crater shape parameters used in the numerical and analytic models. The measurable
quantity (rim-to-floor) depth-to-diameter ratio (d) is given by d = d′ + hr, the depth below the
surrounding terrain and the rim height, respectively (both normalized by diameter). The exponential
shape of the ejecta blanket is controlled by the ejecta falloff exponent, γ.

4.2.1 1D Numerical Model

One-dimensional craters consisting of a cavity and an exponential ejecta blanket are accumulated

on a flat domain of size X with periodic boundary conditions. Crater shape is parameterized by

depth-to-diameter ratio, d (referring to the rim-to-floor depth), rim height-to-diameter ratio, hr,

cavity shape exponent, m, and exponential ejecta falloff exponent, γ. For all 1D models, m is taken

to be 2 (parabolic cavity shape), yielding the following crater shape equation:

h(x) =


(d′ + hr)D

(
2x
D

)2 − d′D |x| ≤ D
2

hrDe
γ(1− 2x

D ) |x| > D
2 ,

(4.1)

where d is the depth below the surrounding terrain (d′ = d − hr) normalized by the crater

diameter (see Fig. 4.1). For 1D volume-conserving craters, the three parameters d, hr, and γ are

not independent variables but are related by the expression:

γ =
3hr

2d′ − hr
. (4.2)

when m = 2 (Garvin and Frawley , 1998; Heiken et al., 1991).

We first consider self-similar crater shapes, and subsequently introduce more realistic, size-

dependent shape parameters. Crater diameters are chosen according to a specified size-frequency
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distribution characterized by the power law exponent α:

Nc ∝ cD−α, (4.3)

where Nc is the cumulative size-frequency distribution (in units of number of craters per unit area),

and c is a constant with units dependent on α.

Crater locations are selected at random, and the initially flat plane (or profile, in the 1D case)

accumulates enough craters to completely cover the surface several times. Equilibrium, defined

here as the point at which the PSD ceases to change with the addition of more craters, is achieved

first at the highest frequency and evolves to lower frequency as larger craters are emplaced. Once

equilibrium has been achieved for the scales corresponding to the frequency range of interest, the

PSD is computed and averaged over time to provide the best estimate of the equilibrium power

spectral density.

P (k) =
1
X

[∫ X/2

−X/2
e−ikxh(x)dx

]2

. (4.4)

We use two methods to compute the PSD. First, we use Fast-Fourier Transform, from which the

PSD can be directly computed from the square of the coefficients, as in Equation 4.4. Second, we

employ a multi-taper method to estimate the power spectral density with several filters (implemented

by MATLAB’s function pmtm). This is a useful tool for analyzing non-periodic signals like the lunar

topography data collected by LOLA. Both the direct (FFT) method and the multi-taper approach

provide robust estimates of the PSD for our model, but only the latter is used in our comparison of

the model results to the lunar data.

To a first approximation, craters of diameter D are topographic features with a characteristic

height, H(D). These features, placed at random, contribute to the overall topography in a manner

similar to a random walk, in that they can add coherently or incoherently, and the elevations they

build therefore increase roughly as the square root of the number emplaced. The exponential term

of the Fourier integral (Eqn. 4.4) is approximately constant over a scale D, and the number of these
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craters contributing to the power is fDX/D, where fD is the fraction of the domain covered by

craters of this size. Equation 4.4 can thus be rewritten as:

P (k) =
1
X

[∫ X

0

e−ikxh(x)dx

]2

∼ 1
X

[
H(D)D

√
fDX

D

]2

. (4.5)

For our model craters, the amplitude H can be thought of as the rim-to-floor depth, H = dD.

More rigorously, the equilibrium power spectral density of a surface saturated with craters of a

single size D can be calculated analytically by considering the two phases of crater emplacement

specified in the numerical model: 1) resetting of initial topography and 2) building of the crater

shape. The latter procedure is straightforward, as the superposition of the crater shape on the

newly reset topography translates to a linear addition of power in the frequency domain. The power

spectral density of our crater shape function (Eqn. 4.1) can be written by evaluating Equation 4.1

with Equation 4.4:

Pbuild =
2
X

[
D

2

(
4hr

k
sin

kD

2
+

16(d′ + hr)
k2D

cos
kD

2
− 32(d′ + hr)

k3D2
sin

kD

2

)
+

2hrD
2
(
2γ cos kD2 − kD sin kD

2

)
4γ2 + (kD)2

]2

.

(4.6)

The crater shape PSD depends strongly on the ratio of rim height to crater depth, which through

Equation 4.2 also controls the lateral extent of the ejecta blanket. Craters with no ejecta must have

unrealistically tall rims to remain volume conserving (hr = 2d′). These craters contribute most of

their power to wavelengths on the order of their diameter D. As the ratio hr/d
′ decreases, the peak

of the crater shape PSD broadens and moves to longer wavelengths, as the spatial footprint of the

crater increases (Fig. 4.2). For self-similar craters, the peak frequency of the crater shape PSD is

linear with D and the peak power scales as D4, regardless of the crater shape parameters chosen.

To find an analytical expression to represent the resetting of initial topography, we first consider

a harmonic surface with power in a single arbitrary frequency, k∗, over a domain X, within which

an area D is reset to its own mean:
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Figure 4.2: Examples of crater shape PSDs (Pbuild) for craters with diameter D = 2 km. For
volume-conserving craters, the ratio hr/d

′ determines the value of the ejecta falloff exponent, γ,
which in turn controls the shape of the crater shape PSD. Craters with no ejecta blanket (hr/d = 2,
γ =∞) have a narrow peak at frequency f = 1/D (k = 2π/D). For hr/d

′ < 2, the peak in the PSD
broadens and shifts to lower frequencies as the footprint of the crater increases.
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h(x) =


cos k∗x |x− xc| ≤ D

2

1
D

∫ xc+D/2

xc−D/2 cos k∗xdx |x− xc| > D
2 ,

(4.7)

where xc is the center of the new crater and the region to be reset. Considering that the reset region

can fall anywhere within the domain X, we must also average over all possible crater locations, and

we can write an equation for the Fourier Transform of this function as follows:

Freset =
∫ X/2

−X/2
cos k∗xe−ikxdx+

∫ xc+D/2

xc−D/2

(
2

k∗D
sin k∗D2 cos k∗xc − cosk∗x

)
e−ikxdx. (4.8)

In calculating the PSD from this function, we find that the first term yields a Kronecker Delta

function with height X2 at k = k∗, while the second term integrates to a function that increases as

k2 at small frequencies, peaks at k = 2πD (or f = 1/D), and falls off again as k−2 at high frequency

(Fig. 4.3a).

Having found the effect of resetting on a single frequency, integration over k∗ yields the total

effect on the PSD of resetting an area of size D. Given an initial power spectrum with a steep

slope at low frequencies, such as Pbuild, power is redistributed by resetting from the peak to lower

frequencies, introducing a k2 trend at the lowest frequencies (Fig. 4.3b).

The evolution of a 1D terrain that accumulates craters of size D can thus be completely captured

by iterating between resetting (Eqn. 4.8) and crater building (Eqn. 4.6), a procedure that can be

written in matrix form:

Pfinal = MPinitial + Pbuild. (4.9)

M is the resetting matrix (each row of which is calculated from Equation 4.8 for a different k∗)

that acts on the initial PSD of the topography before Pbuild is added. This matrix representation is

especially useful because the equation can be inverted to find the equilibrium power spectral density,

where Pfinal = Pinitial = Pequil:
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Pequil = (I −M)−1
Pbuild. (4.10)

The analytic formulation presented here provides a consistent benchmark for the numerical model

results under simplified conditions (1D, self-similar craters of a single size, simple resetting algo-

rithm), both for an evolving cratered terrain (Fig. 4.4a) and a landscape in equilibrium (Fig. 4.4b).

The first crater emplaced contributes the crater shape PSD. Subsequent craters increase the mag-

nitude of the PSD everywhere and introduce the k2 trend at low frequencies due to resetting the

terrain. After approximately one covering time (∼ X/D craters), the PSD reaches equilibrium at

its peak frequency, corresponding to wavelengths of scale D, as well as all higher frequencies, and

power in this frequency range ceases to evolve with time. As more craters are emplaced, equilibrium

extends to larger scales according to the square root of the number of craters (a proxy for time in

these simulations). It is important to note that while the area of a surface may be covered with

craters, its power spectrum will continue to evolve well past a single covering time until equilibrium

is achieved at all frequencies.

4.2.2 Synthetic PSDs

Because the equilibrium PSD for a given crater size D peaks at a unique frequency related to D, a

procedure for combining craters of different sizes according to a given size-frequency distribution may

be derived. The resulting PSD (referred to here as the “synthetic” PSD) can then be compared to

the PSD derived from the numerical model, in which craters of different sizes are emplaced together

on a domain.

The equilibrium PSD for single-size craters is characterized by a flat region at long wavelengths,

a peak whose magnitude scales as D3, and a k−2 tail at short wavelengths with peaks at integer mul-

tiples of D. Both the location and the magnitude of the primary peak vary with crater shape (hr/d
′),

displaying different behaviors above and below γ = 3 (corresponding to hr/d
′ = 1) (Fig. 4.5a). For

craters with little or no ejecta blanket, the peak in the PSD occurs at f = 1/D and moves linearly

to longer wavelengths as hr/d
′ decreases (Fig. 4.5a), according to:
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fmax =


1
D γ ≥ 3

γ
3D γ < 3.

(4.11)

The magnitude of the peak is approximately constant for high values of γ and scales as γ2 for

smaller values (Fig. 4.5b).

To first order, the power contributed by crater size D in equilibrium is dominated by the primary

peak, which scales as D3, as expected from Equation 4.5 for self-similar craters and fD = 1 (single-

size craters). To approximate the equilibrium PSD of a terrain covered with craters of many sizes,

we can add the individual single-size equilibrium PSDs in a prescribed proportion. This proportion

depends on the frequency of occurrence (specified by the size-frequency power law exponent α) and

the fraction of the surface, fD, characterized by craters of that size. When large craters dominate

the area (when α < L, the dimensionality of the model), fD is simply proportional to the area of the

crater, DL, because large craters erase everything smaller than themselves with a single covering.

When small craters dominate the area, they must have time to diffuse topography at larger scales to

erase them, and fD is proportional to DL+2. Using the latter relation, we expect the PSD to scale

as:

k−β ∼ Dβ ∼ D3D−αDL+2 = DL+5−α. (4.12)

Comparing the result to our functional form for the PSD, k−β , we find that in 1D the power law

exponent of the PSD, β, obeys a simple relation: β ∼ 6− α.

The slope of the power spectral density on a log-log plot against frequency, β, varies inversely

with the size-frequency distribution exponent, α. As α increases, the number of small craters for

every large crater also increases, producing more features on small scales and thus shallowing the

PSD. We expect this tradeoff to occur at intermediate values of α, while in the high- and low-α

limits, we expect β to become constant. For low α, the surface topography is dominated by craters

of the largest size, Dmax, and the equilibrium PSD resembles the single-size PSD for Dmax. The

peak therefore occurs at approximately f ∼ 1/Dmax, which is near (but greater than) the minimum
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frequency set by the domain size, 1/X. For all frequencies greater than 1/Dmax, the PSD resembles

the high-frequency tail of the single-size PSD for Dmax, which has a slope of ∼ k−2. Therefore,

β ∼ 2 in the low-α limit. For high α, the surface topography is dominated by the smallest craters,

Dmin, and the equilibrium PSD resembles the single-size PSD for Dmin. The peak in the PSD

occurs at approximately f ∼ 1/Dmin, which is near (but less than) the maximum frequency set by

the resolution of the model (the Nyquist frequency), and β = 0 for smaller frequencies. Thus, for a

1D domain and to first order, we predict β to behave as follows:

β =


2 High α

6− α Intermediate α

0 Low α.

(4.13)

This prediction is tested in two ways: first, by synthetically combining the single-size PSDs

according to the prescription derived above in Equation 4.12, and second, by using the numerical

model to emplace craters of different sizes together as a function of α. Figure 4.6 shows the results

of both model types for 1D, self-similar craters with no ejecta blanket (hr/d
′ = 2) and values of α

ranging from 0.25 to 8. For the numerical model, the PSD was averaged over many covering times.

The power law exponent of the synthetic PSDs behaves as expected from Equation 4.13: β remains

relatively constant at β ∼ 2 for low α and transitions to a constant at β = 0 for high α. Intermediate

values of α generate PSDs that fit our expectation of β ∼ 6− α.

The results of the numerical model show more structure than the first-order prediction summa-

rized in Equation 4.13, and this can be understood by considering in detail the processes of building

and erosion of topographical features at every scale and the crater sizes that are most efficient at

each of these processes. The range of size-frequency exponents, α, can thus be divided into several

distinct regimes, which are marked by horizontal arrows in Figure 4.6. First, one may consider

which crater size, for a given α, is most efficient at covering the area of the domain; the answer will

depend on the footprint of the crater and its frequency of occurrence, and except for the special

value of α = L, either the smallest or the largest craters included in the model will dominate the
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Figure 4.6: Power law exponent of the equilibrium PSD, β, comparing the numerical emplacement
model, in which craters of different sizes are emplaced together according to a given size-frequency
distribution, and the synthetic PSDs, which are a weighted sum of single-size equilibrium crater
PSDs. The PSD is calculated from topography generated by the numerical model and averaged over
many iterations once equilibrium conditions have been achieved (i.e., once the PSD ceases to evolve
with the addition of more craters). The shaded region indicates 2σ error bars from the averaging
and fitting the power law exponent.
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area. At α = L, all craters occupy an equal fraction of the total area of the domain. Which craters

dominate the area, however, plays little role in the resulting behavior of β; this is determined by the

interaction between building and erosion at every scale.

To understand this interaction, we examine each significant range of α for building and erosion

separately and then consider their joint effect. From Figure 4.4, it is clear that, for a given crater

diameter, equilibrium is reached first at frequencies greater than or equal to the peak frequency (f ∼

1/D), and the PSD in this range goes as ∼ k−2. At all lower frequencies, the PSD is characterized by

a k2 trend before equilibrium is reached. For different values of α, the power at any given scale will

be primarily contributed by either the smallest craters, the largest craters, or craters with diameters

near that scale. In the first case, the smallest craters contribute a spectrum that goes as k2 for all

frequencies lower than f ∼ 1/Dmin. Large craters, on the other hand, contribute a k−2 spectrum

at all frequencies higher than f ∼ 1/Dmax. In between, each crater of a given diameter D will

contribute the most power to its own peak frequency, at which frequency the power scales as D3+L,

and the total power from all craters of size D scales with their number: D3+LD−α. Comparing these

contributions to the total PSD, we find the boundaries marked in Figure 4.6 for building. For a

particular scale D, the largest craters and craters of size D will contribute equally to building when

α = L+ 1, while the smallest craters and craters of size D will contribute equally when α = 5 + L.

Just as with building, the erosion of features of a given scale will be dominated by either the

largest craters, the smallest craters, or craters with diameters on that scale. The smallest craters

diffuse their own scale (and smaller scales) in the time it takes them to cover the surface, but to

erode larger craters, they must cover the surface many times. The time it takes to diffuse a crater

of scale D′ with craters of size D (D ≤ D′) may be estimated as:

tdiff =
(
D′

D

)2 1
c
Dα−L =

1
c
Dα−L−2D′2. (4.14)

where c is the same constant as in Equation 4.3, whose units depend on α. The diffusion time

goes as D′2, which is also reflected in Figure 4.4, as equilibrium spreads to lower frequencies at a

rate proportional to the square root of the number of craters emplaced. Diffusion by the smallest
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craters thus contributes a k−2 spectrum to all larger scales. By contrast, large craters do not need

to diffuse the scales smaller than themselves to erode them; they need only cover them. Once the

surface has been covered with craters of the largest size, all smaller scales have also been eroded, and

this process contributes a scale-independent spectrum, k0. As with the building process, there is an

intermediate range in which craters of each size dominate the erosion of their own scale, and this can

be seen in Equation 4.14 when D = D′. For this case, the diffusion time goes as tdiff ∝ Dα−L, and

diffusion in this regime contributes a spectrum of kL−α. The boundaries of these erosion regimes

are determined by comparing the spectra contributed by each class of craters. For a particular scale

D, the largest craters and craters of size D will contribute equally to erosion when α = L, while the

smallest craters and craters of size D will contribute equally when α = L+ 2.

These building and erosion regimes, marked by arrows in Figure 4.6, can now be compared

to determine the total effect on the behavior of β. For the steepest size-frequency distributions

(α > L + 5), the PSD is expected to scale as k2 (from building) multiplied by k−2 (from erosion),

yielding a value of β = 0. For α between L+2 and L+5, kα−L−3 ·k−2 = kα−L−5 and β = α−L−5.

The range of α between L+ 1 and L+ 2 is special in that craters of a given size dominate both the

building and erosion of their own scale, and the resulting PSD power law exponent is independent

of α: kα−L−3 · kL−α = k−3. β is expected to be 3 in this range. For α between L and L + 1,

k−2 · kL−α yields β = α − L + 2, and for the smallest range of α < L, k−2 · k0 predicts a constant

value of β = 2, as Equation 4.13 originally suggested. The numerical emplacement model reproduces

this behavior in the power law exponent of the equilibrium PSD, with the exception that it fails

to produce values of β greater than ∼ 2.5, a circumstance that we believe would be improved (at

significant computational expense) by further increasing the dynamic range of the model.

4.2.3 Effect of Crater Shape

The behavior described in Figure 4.6 applies in any models using self-similar craters, regardless

of crater shape. This occurs because for a given shape parameter ratio hr/d
′, the peak frequency

is inversely proportional to D, preserving the scaling in Equation 4.12. Realistic craters are not
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Rim Height
(for D in km)

Rim-to-Floor Depth
(for D in km)

Simple Craters
(D < 15 km) hrD = 0.036D1.014 dD = 0.196D1.010

Complex Craters
(12 < D < 375 km) hrD = 0.230D0.399 dD = 1.044D0.301

Table 4.1: Morphometric relations for lunar craters, from Heiken et al. (1991), based on measure-
ments from Pike (1974) and Pike (1977).

self-similar, but have shape parameters that scale with diameter. In addition to smooth changes

in shape with increasing size, the transition diameter from simple to complex craters introduces

an abrupt change, both in crater shape and in rim-to-floor depth (amplitude of the feature). This

transition scales with surface gravity, and occurs around D = 15 km on the Moon. Morphometric

relations for fresh lunar impact craters are listed in Table 4.1 in Heiken et al. (1991), based on

Pike (1977) and Pike (1974), and these scaling relationships are summarized in Figure 4.7 and

Table 4.1. Simple craters have a nearly constant shape parameter ratio of hr/d
′ ∼ 0.23, while

complex craters span a range of values from hr/d
′ ∼ 0.43 to 0.67. Likewise, the rim-to-floor depths

of simple craters scale linearly with their diameters, with a depth-to-diameter ratio of d ∼ 0.2. This

observation is consistent with recent investigations based on LOLA topography data (Talpe, 2012).

Complex craters have lower amplitudes for their size, and this amplitude decreases with increasing

diameter. The abrupt change in these two quantities—crater shape/ejecta extent and amplitude—at

the transition diameter provides expectations for particular changes in the shape of the PSD. Simple

craters add more power relative to their diameters than complex craters, and they add this power

to lower frequencies according to Equation 4.11.

In one test, using self-similar craters with an abrupt transition at Dtr = 15 km from hr/d
′ = 0.2

to 0.5 (corresponding to γ = 1/3 and γ = 1, respectively), synthetic PSDs for various values of

α clearly reflect the change in crater shape (Fig. 4.8). For comparison, the sample runs including

only self-similar simple craters and only self-similar complex craters are included in Figure 4.8

as dashed dark and light gray lines, respectively. At low α, the equilibrium PSD resembles the
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(a) (b)

Figure 4.7: (a) Shape parameter ratios for lunar craters, based on morphometric relations listed
in Table 4.1 of Heiken et al. (1991). Simple craters have lower rims relative to their diameters
than complex craters, which means to be volume-conserving they must have more extensive ejecta
blankets. Thus the peak frequency for crater shape PSDs occurs at lower frequencies for simple
craters relative to their diameters, and the peak power is also greater, according to Eqn. 4.11 and
Fig. 4.5b. Simple craters are nearly self-similar, while complex craters vary in shape a great deal.
As diameter increases, crater rims become higher and ejecta more confined, resulting in crater
shape PSDs with peaks nearer to f = 1/D. (b) Rim-to-floor depth (crater amplitude), based on
morphometric relations listed in Table 4.1 of Heiken et al. (1991). Simple craters have a higher
amplitude for their size than complex craters, meaning that they contribute proportionally more
power at their peak frequencies. Simple craters are also nearly self-similar, while complex craters
decrease in amplitude (relative to their diameters) with increasing size.
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corresponding complex-craters-only case, as the largest craters dominate. When α = 3, the smallest

craters start to contribute to the overall PSD, beginning at the peak frequency of the largest simple

crater (Dtr = 15, fpeak ∼ γ/3D ∼ 1/135 = 0.0074) and extending to all higher frequencies. For

intermediate α, between 4 and 6, the equilibrium PSD follows the complex crater curve at low

frequencies and transitions to follow the simple crater curve at high frequencies. Above α ∼ 6, the

PSD is equivalent to the simple-craters-only case. If, instead of the abrupt transition at Dtr = 15

km, the transition from simple to complex craters is smoothed out over a range of diameters near

Dtr (e.g., from D =12-18 km), the resulting PSDs are qualitatively similar to the abrupt-transition

case. Slight differences in the intermediate range of α’s occur because the effect of the smallest

craters is softened by the smoothed transition, and the larger craters dominate the total PSD shape

to slightly higher frequencies.

Finally, we include the smooth power-law scaling of crater shapes summarized in Table 4.1.

Simple craters are nearly self-similar, and their behavior is well understood within the analysis

described so far. Complex craters, however, are not self-similar; their rim-to-floor depth- and rim

height-to-diameter ratios scale as D0.301 and D0.399, respectively (Table 4.1). This dependence on

diameter leads to a modified expectation for the peak power scaling for individual crater sizes.

According to Equation 4.5, the power at the peak frequency goes as P (fpeak) ∼ H2DfD (where

the amplitude H is the rim-to-floor depth, dD). When the depth-to-diameter ratio d scales linearly

with diameter and fpeak ∼ 1/D, this peak power scales as D3, as we have seen in our self-similar

cratering models. In this case, however, H ∼ D0.301, and fpeak ∼ D−0.8 (according to Eqn 4.11).

Thus, the power at fpeak scales as P (fpeak) ∼ D0.602DfD ∝ D1.602, from which we can calculate

how the peak power scales with diameter:

Ppeak(D) ∼
(

1
D0.8

)1.602

∼ D1.3. (4.15)

This scaling agrees with the results of the analytic model, and using Equation 4.12 and Equa-

tion 4.13, we can predict how the portion of the equilibrium PSD dominated by large craters behaves

with varying size-frequency distribution. For intermediate values of α, β ∼ 1.3+2+L−α = 4.3−α.
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Figure 4.8: One-dimensional equilibrium PSDs for varying size-frequency distribution exponents, α,
and a transition diameter, Dtr = 15 km. Craters above Dtr are self-similar with shape parameters
hr/d

′ = 0.5, γ = 1 (complex craters); craters below Dtr are self-similar with shape parameters
hr/d

′ = 0.2, γ = 1/3 (simple craters). Dashed lines indicate model runs using only complex (light)
or only simple (dark) crater shape parameters. For low α (< 3), equilibrium PSDs remain unaffected
by the transition from simple to complex craters. For intermediate values of α (∼ 4− 6), however,
PSDs transition from matching the complex crater PSDs at low frequencies to matching the simple
crater PSDs at high frequencies. This transition occurs first at α = 3, where the extra power
contributed by simple craters due to their shape (low hr/d

′, extended ejecta) and high amplitude
create a shoulder beginning at the peak frequency for the largest simple crater, D = Dtr = 15 km.
As α increases, the PSD increases in magnitude at the high frequencies first, quickly coming to
resemble the simple crater PSDs. At low frequencies, the PSD resembles the complex crater PSDs
until the small craters overwhelm the large craters and the entire range resembles the simple crater
PSD.
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At frequencies dominated by small craters, the D3 scaling for peak power still holds, and the original

Equations 4.12 and 4.13 are applicable. Thus, for 1-dimensional versions of lunar-like craters, the

equilibrium PSD has two slopes that evolve separately, but predictably.

4.2.4 2-Dimensional Emplacement Models

The equations developed thus far to describe the behavior of 1D cratered terrains provide valuable

predictions for the 2D case as well. Here, rather than calculating the two-dimensional Fourier

Transform to estimate the PSD, we calculate the 1D PSD of each row and column of a 2D model

surface and compute the average to facilitate comparison with the LOLA along-track measurements.

The 2D model craters have an axisymmetric, parabolic cavity with a radial profile identical to that of

their 1D counterparts. The ejecta blanket function differs somewhat, however, because the condition

for volume conservation becomes:

γ =
2hr (d′/hr)

1
2

d′ − hr
. (4.16)

Because the ejecta spreads out radially with distance from the crater, the maximum rim height

(no ejecta) case occurs where hr/d
′ = 1 and any given profile through the crater center is not itself

volume conserving. This condition results in a somewhat different shape for the single crater PSD,

which has a modest peak at f ∼ 1/D (for the no ejecta case) and a flat region at low frequency,

whereas the 1D crater PSDs scaled as k4 at low frequency. The peak power for an individual 2D

crater scales as D5, the extra power of D arising from a second integral over the spatial parameter in

Equation 4.5. As before, it is possible to calculate synthetic PSDs of cratered terrains by adding the

equilibrium PSDs of individual crater sizes in proportion to a given size-frequency distribution. The

peak power of the equilibrium PSD scales as D3 just as in the 1D case, and the power is constant

from the peak to lower frequencies. Equation 4.12 is used with a value of L = 2 to predict the slope

of the PSD, β, as a function of the size-frequency distribution exponent, α:

β ∼ L+ 5− α = 7− α. (4.17)
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This behavior is consistent with the PSDs derived from the numerical emplacement model, and

is summarized in Figure 4.6. The power law exponent of the PSD for 1D and 2D domains is identical

except for an offset of 1 in α.

4.2.5 Effect of Inheritance

Thus far, the resetting phase of crater emplacement has been modeled as simply as possible: the

pre-existing topography is surveyed and reset to its mean within half a diameter of the center of

the new crater to be emplaced. This algorithm is convenient, as we have seen, in that it permits an

analytical representation of the power spectral density evolving with multiple impacts, and it also

takes into account the erasure of the initial terrain while providing a reasonable reference elevation

upon which to superimpose the new crater topography. However, the physical processes taking

place in an impact event, which our resetting phase only approximates, are poorly understood, and

other cratered terrain models have employed various algorithms to address this gap in our present

understanding of the impact process. Howard (2007) introduces the inheritance parameter, I, which

controls the degree to which pre-existing topography is preserved during crater emplacement. Within

the rim, the terrain is reset to a linear combination of a reference mean elevation, href , and the initial

topography, hi, favoring the latter near the rim and the former in the center of the cavity. Between

the center and the rim, the degree of resetting varies as a parabola scaled by I:

hreset = (href − hi)

[
1− I

(
2r
D

)2
]
. (4.18)

This approach has the advantage that the edge produced at the rim by the resetting step is

softened when I is greater than 0. This edge—equivalent to a step function in our simple resetting

procedure—is responsible for the k−2 slope at high frequency in the equilibrium PSD for a single

crater size, because the Fourier Transform of a Heaviside function produces a slope of -1 in the

frequency domain and the PSD is calculated from the square of the magnitude of the FFT. Hence,

for terrains accumulating craters of many sizes, this choice of resetting algorithm has important

consequences for the power spectral slope, which tends to level off at β ∼ 2 when the size-frequency
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Figure 4.9: PSDs of cratered terrains with different values of Howard (2007)’s inheritance parameter,
I. At high frequency, the slope is relatively unchanged, but at low frequency it steepens for smoother
terrains generated using higher values of I.

distribution is shallow (low α), as shown in Equations 4.13 and 4.16. This occurs because the

largest craters dominate the power, and the entire PSD comes to resemble the high-frequency tail

of the single-size PSD for Dmax.

To investigate how the choice of resetting algorithm affects the behavior of the PSD slope, we

employed several variations of both our simple resetting procedure and the inheritance formula

of Howard (2007) described above. We observed that algorithms producing a smoother terrain

during the resetting phase (i.e., continuous at the rim, but not necessarily having a continuous

first derivative) resulted in PSD slopes exceeding the value of β ∼ 2 at low frequency. Figure 4.9

contains an example in which model runs use a variant of Howard’s inheritance algorithm that is
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identical inside the crater rim, but modified to be smoother outside to avoid unnecessary breaks

in slope in the reset topography. The inheritance parameter, I, ranges here from 0 to 0.75, and

the equilibrium PSDs for a size-frequency distribution with α = 1.5 are plotted together, showing a

clear steepening of the PSD at low frequency from β ∼ 2 for I = 0 and β ∼ 3 for I = 0.75. At high

frequency, the slope is unchanged, indicating that the choice of resetting algorithm primarily affects

long-wavelength topographic structures and is less important for small scales.

4.3 Size-Frequency Distributions

Much work has been done to determine the size-frequency distribution of craters in different areas of

the Moon’s surface (Chapman and McKinnon, 1986; Hartmann and Gaskell , 1997; Neukum et al.,

2001; Ivanov et al., 2002), and to relate these observed crater size-frequency distributions to the

population and flux of impactors that created them (Hartmann and Gaskell , 1997; Richardson,

2009). These studies show that lunar craters do not follow a single power law over the entire

range of crater sizes. Rather, the size-frequency distribution is better approximated by a piecewise

segmented power law or by a polynomial. The Hartmann production function (HPF) described

in Neukum et al. (2001), formulated as the number of craters on typical mare surfaces, has three

segments:

logNinc = −2.616− 3.82 logDL DL ≤ 1.41 km

logNinc = −2.920− 1.80 logDL 1.41 km < DL ≤ 64 km

logNinc = −2.198− 2.20 logDL DL > 64 km,

(4.19)

where Ninc gives the number of craters in each
√

2D diameter bin and DL is the left boundary of

each diameter bin. Small craters thus have a steeper size distribution than larger craters (α = 3.82

vs. α = 1.8). This difference is significant because cratered terrains evolve quite differently for

α above and below 2 (for a 2D terrain), especially as they approach equilibrium, defined as the

case where an incoming crater of size D will, on average, erase another crater of size D and the

size-frequency distribution of craters ceases to evolve with time. The analysis developed thus far
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for the dependence of the PSD power law exponent on α is therefore useful in understanding the

behavior of observed lunar size-frequency distributions as well. As described in Figure 4.6, α = L

(the dimensionality of the model or data domain) is a special size-frequency distribution in which

craters of all sizes occupy equal areas of the domain. For values of α less than L, large craters

cover more of the area than small craters, and they erase smaller craters than themselves simply

by covering them. In this case, the equilibrium size-frequency distribution is not constant in time.

Over time, small craters initially build up a size-frequency distribution that follows the original α,

but they are erased by larger craters that reset much of the domain. On average, the initial power

law slope α is preserved, but the instantaneous size-frequency slope oscillates around this value.

For values of α > L, the area is dominated by small craters. If craters are assumed to be erased

by covering only (as in the previous case), then the smallest craters, of size Dmin, will erase all other

crater sizes before they will have had time to come into equilibrium with themselves. Thus, the

observed size-frequency distribution will have the same slope as the production function, α. However,

as shown in Figure 4.6 and Equation 4.14, diffusion is the dominant process of erosion for α > L, and

for L < α ≤ L+ 2, each crater size is responsible for the erosion of features on its own scale. In this

case, crater rims are not destroyed in one covering, and all crater sizes have the opportunity to reach

equilibrium with respect to their own size class. As Soderblom (1970) demonstrated analytically, the

equilibrium size-frequency distribution of craters in this case is independent of α, following a power

law slope of L. Starting from a flat plane, therefore, the size-frequency distribution will initially

retain the production function power law slope α as craters accumulate. The smallest craters will

reach equilibrium first, and a kink appears in the size-frequency distribution, which has a slope

of L at small crater sizes and α at large crater sizes. With time, this kink migrates to larger

diameters until the entire size range is in equilibrium. The crater diameter at which the kink occurs

is therefore an indication of the age of the cratered surface (Melosh (1989), Fig. 10.5). This case

can be compared to the behavior of the PSD in the range of α between L+ 1 an L+ 2, where both

the building and erosion processes at a given scale are dominated by craters of that scale, and the

resulting PSD power law exponent is constant at β = 3.
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For higher values of α (> L+2), the smallest craters dominate the diffusion of all other scales, and

they erase all larger craters faster than they can come into equilibrium with themselves. The diffusion

time, tdiff scales as D2 (Eqn. 4.14), such that larger craters take longer to erase in proportion to their

area. The equilibrium size-frequency distribution of observed craters in this range of α is therefore

proportional to D2−α. Thus, the production function can be recovered even after equilibrium has

been achieved at all scales. This result is significant in that it is traditionally assumed that the

equilibrium size-frequency distribution follows D−L for all values of α > L, as in the previous case

Melosh (1989); Richardson (2009). However, Soderblom (1970) notes that his analytical model

breaks down at α = 4 (for L = 2) once the smallest craters begin to dominate diffusion, consistent

with the results presented here.

The small-crater branch of the HPF has a power law exponent of −3.82, falling in the range

L < α ≤ L + 2. At any given time, a particular size of crater, Dcov, has had just enough time to

cover the domain once, and Dcov first coincides with the smallest craters (of size Dmin in the cratered

terrain model, but effectively infinitesimal in the case of the Moon) and subsequently moves to larger

diameters with time. Given the coefficient in Equation 4.19, Dcov can be calculated by comparing

the segmented lunar size-frequency distribution to D−L, which represents the maximum observable

number of craters of that size. The number of craters per unit area on the Moon is given as

10−2.616D−3.82 (Eqn. 4.19). Multiplying by the area of each crater (π4D
2) and setting the result to

1 yields an estimate of the maximum crater size that has completely covered the surface:

10−2.616D−3.82
cov

π

4
D2

cov = 1. (4.20)

For small craters, Dcov = 32 m. All craters smaller than this have also covered the entire surface

at least once, but larger craters have not. This simple calculation is roughly consistent with crater

counts down to smaller diameters than those included in the HPF, which indicate a cumulative

size-frequency distribution slope of -2 for craters less than 100 m in diameter (Shoemaker et al.,

1970; Soderblom, 1970; Hartmann, 1985; Namiki and Honda, 2003).
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4.4 Model Comparisons with LOLA Data

The Lunar Orbiter Laser Altimeter (LOLA) is a multibeam laser altimeter carried on the Lunar

Reconnaissance Orbiter (LRO) that has collected over 6.3 billion measurements of lunar surface

height since 2009 (Barker et al., 2014). Along-track measurements with a vertical precision of ∼10

cm and accuracy of ∼1 m are spaced approximately 57 m apart (Smith et al., 2010a), and this high

density provides an ideal opportunity to determine the power spectral density of lunar topography

and compare the result to the PSDs generated using our cratered terrain model.

The data were processed to remove anomalous data points (due to instrumental effects), binned

along track in overlapping windows, and interpolated to a constant spacing. Windows with many

consecutive missing points were excluded from the analysis to avoid introducing artifacts in the PSD.

After demeaning and detrending the profiles, the PSD was estimated within each window using the

same multi-taper algorithm as previously in section 4.2.1, using 4 standard filters to accommodate

the non-periodic nature of the profiles. The choice of window size is important in measuring the

power spectral slope, and after considering a wide range window sizes, we found the rule described

by Shepard et al. (2001) pertaining to Hurst exponent estimations to be applicable here as well.

Measuring the PSD slope over a given range of spatial scales (inverse frequency) requires that the

topographic profile length (window size) be no less than 10 times the maximum scale considered.

We use a least-squares linear fit to measure the log-log slope of the PSD in two frequency ranges:

the first samples topographic scales ranging from the smallest scale accessible with the LOLA data

(twice the shot spacing, or roughly 115 m) to 1 km, and the second captures scales ranging from 1

to 6 km. Figures 4.10 and 4.11 contain maps of the PSD slope in each of these frequency ranges.

The small-scale PSD slope (Fig. 4.10) was calculated in 1-degree (∼30-km) windows, while the few-

kilometer-scale PSD slope (Fig. 4.11) used 3-degree (∼90-km) windows. In both cases the windows

were spaced 0.1 degrees (∼3 km) apart.
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4.5 Discussion

At small scales (∼ 115 m to 1 km, Fig. 4.10), β ∼ 3 in the heavily cratered highlands, in reasonable

agreement with the model for a value of α ∼ 3.82 (Eqn. 4.19) and when taking into account the

effects of inheritance on resetting the terrain. The boundary between the maria and the highlands

is indistinct, indicating that at these scales (∼115 m to 1 km) the regions are comparably rough,

a result that agrees with those of other recent studies of lunar surface roughness (Rosenburg et al.,

2011; Kreslavsky et al., 2013). Kreslavsky et al. (2013) attribute this observation to the globally

isotropic processes of regolith accumulation and modification, which produce and support roughness

features on hectometer scales. Regions with significantly steeper PSD slopes (β > 3) occur in the

floors of some large craters, where the topography is dominated by central peaks, rim terraces,

and slump deposits on kilometer scales, a lengthscale that corresponds to the minimum frequency

in the range sampled here. The most obvious example can be found in the floor of the crater

Humboldt (27.2◦S, 80.9◦E), which is dominated by a complex rille network and range of central

peaks (Fig. 4.12). Similarly, the ring structure of Orientale Basin has a generally steeper PSD slope

than the surrounding ejecta blanket, most likely due to prominent kilometer-scale topographical

features.

Crater ray systems are also easily discernible as regions of higher β (appearing blue in Fig. 4.10),

suggesting that while they are not prominent in the raw elevation data, they do contain a unique

topographical signature. In this case, it is likely that the rays have removed roughness at small scales

relative to large ones (in this case, 115 m vs. 1 km), producing a power spectral density profile that

is depressed at the high frequency end, and thus steeper than in the surrounding terrain. This

steepening of the PSD may also be due in part to kilometer-scale chains of secondary craters which

add power to the larger scales considered. Rosenburg et al. (2011) found a similar result in their

differential slope analysis, showing that crater ray systems are more smooth at the shortest scales

accessible with LOLA (∼57 m) relative to kilometer scales than the rest of the highlands, while

Kreslavsky et al. (2013) observed a similar effect using a related roughness measure, the curvature of

topographic profiles. Prominent ray systems belong to Tycho (43.31◦S, 11.36◦W), Jackson (22.4◦N,
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100 km

Figure 4.12: Lunar crater Humboldt, shown in the LROC Wide Angle Camera (WAC) mosaic
(resolution of 100 m/pix), in an orthographic projection centered at 27◦S, 81◦E.
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163.1◦W), and Ohm(18.4◦S, 113.5◦W), the youngest craters of their size (Kreslavsky et al., 2013;

Hiesinger et al., 2012; van der Bogert et al., 2010), as well as Aristillus (33.9◦N, 1.2◦E), Vavilov

(0.8◦S, 137.9◦W), and Aristarchus (33.9◦N, 1.2◦E). No clear progression in the value of β is evident

with age as Kreslavsky et al. (2013) suggest, although the slope of the PSD is not directly comparable

to their surface roughness measure, which (for these features) looks at the 115-m scale only, the lower

limit of the PSD range shown here.

Several localized areas of relatively shallow PSD slope (β ∼ 2− 2.5) occur in the interiors of the

large mare-filled basins and as halos around prominent impact craters in the lunar highlands. A

smaller value of β indicates a relatively greater contribution to the PSD from smaller scales compared

to larger ones. In these cases, several factors may be at play. In the maria, crater saturation has

likely not taken place for craters larger than approximately D ∼ 100 m (Richardson, 2009), and there

may be places that have not been completely covered by craters since the emplacement of the mare

basalts. The absence of crater overlap in this case, together with the limited time available since the

surface was reset for larger craters to accumulate, may have resulted in a dearth of topographical

features contributing to the low-frequency end of our frequency range and a consequent shallowing

of the PSD slope. The regions of relatively low β surrounding prominent craters may be due not

to an absence of power at large scales, but rather an addition of small scale features, especially rim

terraces and blocky ejecta deposits. Haloes of this nature were also noted by Kreslavsky et al. (2013)

at the 1-km scale, where ejecta transitions from proximally smooth to distally rough. Similar cases,

where small-scale roughness is low near the crater rim (with values of β ∼ 4) and becomes relatively

high further away (β ∼ 2), include the farside craters Fermi (19.3◦S, 122.6◦E) and Kovalevskaya

(30.8◦N, 129.6◦W).

Figure 4.11 contains shows the PSD slope measured at somewhat larger scales, spanning the

range from 1 to 6 km. Whereas the maria and highlands were not easily distinguishable in the small

scale PSD shown in Figure 4.10, here they are quite distinct, with the maria displaying much lower

PSD slopes (β ∼ 1) than the highlands (β ∼ 3.5− 4). This difference reflects the absence of features

at the few-kilometer scale in the maria, aside from prominent wrinkle ridges and decameter-scale
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craters, which appear as isolated spots of higher β.

This stark contrast between the maria and the highlands is characteristic of lunar roughness

above and below approximately kilometer scales. Rosenburg et al. (2011) noted that the Hurst

exponent—a measure ranging from 0 to 1 that describes the scaling of surface slopes with horizontal

baseline—transitions in the highlands from approximately 1 (indicating nearly self-similar behav-

ior) at small scales to a smaller value of approximately 0.8, with the transition occurring near 1

km. Similarly, Kreslavsky et al. (2013) found a clear difference in the character of lunar surface

roughness at hectometer and kilometer scales. This behavior is consistent with a transition between

roughness regimes controlled by competing surface processes acting at different scales, including the

accumulation of regolith through impact gardening processes, the global erasure of roughness fea-

tures by seismic shaking during large basin-forming impacts, and early tectonic and volcanic events

that formed the prominent mare plains and wrinkle ridges (Rosenburg et al., 2011; Kreslavsky et al.,

2013; Richardson, 2009).

4.6 Conclusions

We have developed a model capable of tracking the evolution of a cratered terrain from an initially

flat plane through saturation equilibrium. Having benchmarked the model against an analytical

solution in 1D, we conclude that the power spectral density of a surface created only by impacts

can be predicted from the size-frequency distribution of craters emplaced. In comparing the results

of the model to calculations of the PSD along LOLA transects, we find good agreement at small

scales down to 115 m. Exceptions to the model occur in places where competing geomorphological

processes, such as tectonics, dominate, or when crater saturation has not yet been achieved. The

model predicts behaviors for the PSD slope β at a range of size-frequency distribution exponents

(α), not all of which can be tested with the lunar topography. Impact cratering is a dominant agent

of surface modification in our solar system, and it is hoped that the conclusions drawn here can be

applied to many planetary surfaces, including those of Mercury, Mars and the outer planet satellites.


