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Abstract

The acquisition of new global elevation data from the Lunar Orbiter Laser Altimeter (LOLA), car-

ried on the Lunar Reconnaissance Orbiter (LRO), permits quantification of the surface roughness

properties of the Moon at unprecedented scales and resolution. We map lunar surface roughness us-

ing a range of parameters: median absolute slope—both directional (along-track) and bidirectional

(in two dimensions)—median differential slope, and Hurst exponent, over baselines ranging from

∼17 m to ∼2.7 km. We find that the lunar highlands and the mare plains show vastly different

roughness properties, with subtler variations within mare and highlands. Most of the surface ex-

hibits fractal-like behavior, with a single or two different Hurst exponents over the given baseline

range; when a transition exists, it typically occurs near the 1-km baseline, indicating a significant

characteristic spatial scale for competing surface processes. The Hurst exponent is high within the

lunar highlands, with a median value of 0.95, and lower in the maria, with a median value of 0.76.

The median differential slope is a powerful tool for discriminating between roughness units and is
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useful in characterizing, among other things, the ejecta surrounding large basins, particularly Ori-

entale, as well as the ray systems surrounding young, Copernican-age craters. In addition, it allows

a quantitative exploration on mare surfaces of the evolution of surface roughness with age.

2.1 Introduction

As signatures of surface evolution processes acting over geologic time, surface slopes and slope

distributions provide important clues to the morphologic history of a planetary surface in terms of

both formation and modification mechanisms. Moreover, the comparison of surface regions based

on quantitative measures of roughness and its scale dependence is a powerful tool for interpreting

the relationships between geologic and topographic units and their origins, and has been successfully

employed for various planetary bodies, including Earth (Morris et al., 2008; Neumann and Forsyth,

1995; Smith and Jordan, 1988), Mars (Aharonson et al., 2001; Orosei et al., 2003; Kreslavsky and

Head , 2000), and Venus (Sharpton and Head , 1985). Attempts to study surface roughness on the

Moon have spanned the decades between the Apollo era and the present (Daniels, 1963; Moore and

Tyler , 1973; Yokota et al., 2008), yet, to date, no comprehensive study of surface slopes and slope

distributions has been possible at high resolution and across many scales.

The Lunar Orbiter Laser Altimeter (LOLA) began collecting data in late June, 2009, after the

successful entry into orbit of the Lunar Reconnaissance Orbiter (LRO) (Smith et al., 2010a; Zuber

et al., 2010). With a ground track configuration consisting of five illuminated spots on the surface

arranged in a cross pattern (Figure 2.1), LOLA allows for determination of slopes at multiple base-

lines, both between pairs of spots within each laser shot and between sequential shots. The high

vertical precision (∼10 cm), accuracy (∼1 m), and high density (∼57-meter along-track spacing)

of LOLA measurements permit an unprecedented opportunity for quantitative morphologic charac-

terization of the lunar surface relevant to current and past surface processes, as well as to future

lunar landing site selection. For comparison, the Mars Orbital Laser Altimiter (MOLA) operated

with a vertical precision of ∼1.5 m, a spatial accuracy of ∼100 m (including pointing errors), and

an along-track spacing of ∼300 m (Smith et al., 2001).
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Figure 2.1: Plan view of two consecutive LOLA shots with spot numbers labeled. The shot-to-shot
distance is ∼57 meters, and the smallest point-to-point baseline available is ∼25 m. An example of a
triangle used to calculate bidirectional slopes is shaded in blue. Red circles indicate the illuminated
footprint of each laser spot, while green circles represent the field of view of each detector.
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2.2 Topography Data

LRO maintains a nearly circular, 50-km polar orbit that scans all longitudes of the Moon each

month. We use 3,180 tracks from the commissioning and mapping mission phases, acquired from

September 17, 2009, to March 9, 2010, to compute and analyze a variety of parameters describing

surface slopes and roughness. The data have been processed to remove anomalous points (due to

instrumental effects such as noise), and are spaced ∼57 meters apart along track and (on average)

∼3.8 km across track at the equator and closer at the poles. Additional data have narrowed the

cross-track spacing to ∼1.8 km at the equator (Smith et al., 2010b).

2.3 Global Surface Roughness of the Moon

Quantitative measures of surface roughness have been defined in the literature in a number of ways.

Here, we investigate several measures of surface roughness, both in the interest of robustness in

characterizing roughness units, and in order to facilitate comparison with the literature. For one-

dimensional slopes, we examine the root mean square (RMS) slope, the median absolute slope, and

the median differential slope for a variety of horizontal scales, as well as the Hurst exponent, which

describes how slopes scale with baseline (the baseline is the horizontal length-scale over which the

slope is measured). In addition, LOLA’s 5-spot pattern allows for the calculation of two-dimensional

slopes by fitting a plane to a set of three points along the track, resulting in the magnitude and

direction of steepest descent.

2.3.1 RMS and median slopes

The RMS slope is routinely calculated for the statistical analysis of topography because radar re-

flection scatter is often parameterized with this metric. In one dimension, it is defined as the RMS

difference in height ∆z between each pair of points (also known as the deviation, ν) divided by the

distance between them, ∆x:
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s (∆x) =
ν (∆x)

∆x
=

1
∆x
〈[z (xi)− z (xi−1)]2〉 12 , (2.1)

where the angle brackets indicate the mean. However, because the RMS slope depends on the square

of the deviation, this parameter is quite sensitive to outliers; this poses a significant problem because

the slope-frequency distribution for natural surfaces is often non-Gaussian with strong tails. The

median absolute slope is a more robust measure of typical slopes, as it is less affected by long tails

in the distribution.

To find the RMS and median slope in the along-track direction, point-to-point slopes were cal-

culated for each track, stored at the midpoint, and averaged according to (1) within 0.5-degree

(∼15-km) sliding windows, each spaced 0.25 degrees (∼7.5 km) apart. The LOLA lasers have a

firing frequency of 28 Hz, corresponding to a shot density of approximately 540 shots per degree

downtrack, or roughly 270 shots per window at best. However, due to noise and instrument perfor-

mance issues, missing points are not uncommon. Since the RMS slope is sensitive to the number

of points, N , included in each window, uneven N across the surface can introduce variations in the

RMS slope map that are not due to real roughness features. To minimize this bias, windows were

only considered valid if more than 250 measurements contributed to the average in that location.

The median absolute (unsigned) slope is far less sensitive to the number of points in each bin. Given

LOLA’s ground spot pattern, the smallest baseline available for slope calculations is about 25 m,

the distance on the surface from the center spot to any of the four corners (Figure 2.1).

One-dimensional slopes calculated along profile underestimate the true gradient of the surface

wherever the direction of steepest descent diverges from the along-track direction. At the smallest

scales, this ambiguity can be resolved by computing the slopes in two dimensions from multiple

points within each laser shot. We use vector geometry to compute the plane passing through three

spots, recording the magnitude and azimuth of the slope. One such triangle appears as a shaded

region in Figure 2.1. The effective baseline of the slope is taken to be the square-root of the area

of the triangle. The slope values are then binned as before, and the median reported for 0.5-degree

overlapping windows spaced 0.25-degrees apart.
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Figure 2.3: Median bidirectional slope, as described in Figure 2.2, with a color stretch designed
to emphasize the subtle variations in slope within the lunar maria. Large-scale flow fronts and
tectonic features such as wrinkle ridges appear as long, continuous regions of slopes higher than the
surrounding plains, and are most evident within the Imbrium, Crisium, and Serenetatis basins.

A map of the median bidirectional slope at the ∼17-meter scale is shown in Figure 2.2. Note that

while the results are reported in units of degrees, the statistics are computed in gradient units (m/m).

The maria are easily distinguishable from the highlands as smooth regions with median slopes ≤ 3◦,

while the steepest median slopes (≥ 10◦) occur within crater walls and the blocky ejecta blankets

surrounding major impact basins and young rayed craters. The multi-ring structure of the Orientale

impact basin is clearly visible in surface slopes at this scale, along with the topographically expressed

secondary crater chains emerging radially from the continuous ejecta deposit.

The floor of South Pole-Aitken basin appears as a region of subdued slope; a sampling of the

basin floor (excluding mare deposits, which would contribute their own roughness signature) has

a median slope of 5.8◦, nearly two degrees lower than the median value for the highlands, 7.5◦,

although the distributions overlap (see Table 2.1). Within the nearside mare plains, large-scale flow
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fronts and wrinkle ridges are delineated by subtle variations in slope, particularly evident within the

Imbrium, Serenetatis, and Crisium basins (Figure 2.3). Slopes rapidly transition between the two

major highland and mare roughness units at their boundaries, where mare basalts are often tilted

and deformed (Solomon and Head , 1980) and have only partially embayed the surrounding rougher

terrain.

For isotropic topography, a relationship exists between point-to-point and bidirectional slope dis-

tributions: given a one-dimensional slope distribution, the equivalent distribution of two-dimensional

slopes can be found by applying a statistical correction. The probability distribution functions of

the 1D slopes F (p) and 2D slopes F (s) are related by Aharonson and Schorghofer (2006):

F (p) =
∫ ∞
|p|

F (s)√
s2 − p2

ds. (2.2)

In practice, this integral equation may be discretized and inverted. Figure 2.4 is a global com-

parison of our measured slopes in one and two dimensions and the adjusted point-to-point slope

histogram. We find moderately good agreement between measured bidirectional slopes and those

predicted from the 1D slope distribution, although the 2D measured slopes are slightly steeper than

predicted from the 1D distribution, typically by 25%. We can place constraints on two factors that

contribute to this discrepancy. Anisotropy in our slope measurements occurs when triangles with

high aspect ratios are used for plane fitting. LRO’s orbital configuration creates a preferred direction

for the long axis of these triangles, and because slopes are generally shallower at longer baselines, the

azimuthal distribution is skewed to favor the perpendicular to the downtrack direction. To minimize

this effect, we included only triangles with low aspect ratios, using spots 1, 3, and 4. While some

anisotropy remains, this consideration improves the agreement by nearly a factor of 2. Part of the

discrepancy is also due to the fact that comparing slopes at similar baselines is rendered difficult

by instrument constraints. The minimum baseline for point-to-point slopes (∼25 m) is larger than

the effective baseline of our preferred triangles (∼17 m). As a result, bidirectional slopes have a

tendency to be larger than their 1D counterparts, where a component of this difference is due solely

to the mismatch in baselines. A slightly better agreement can be obtained by using a local Hurst
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Figure 2.4: Global slope histograms for the Moon. The red line (dashed) shows the distribution of
measured point-to-point slopes at the 25-meter baseline. This distribution is recalculated to the green
line (solid) using the method of Aharonson and Schorghofer (2006) to predict bidirectional slopes
from the one-dimensional slope histogram. Measured bidirectional slopes at the ∼17-meter scale are
shown in blue (dot-dash). All distributions are normalized such that the integral of the probability
density function is equal to 1. Assuming that the topography is indeed isotropic, the remaining
discrepancy in the measured and derived distributions is due to the geometry of the triangles used
to measure 2D slopes, and to the mismatch in scales over which the slopes are measured in each
case. Both effects are constrained by LRO’s orbital configuration and instrument limitations.



21

exponent (defined in section 3.3) to scale the slope distribution to a common horizontal baseline.

However, this demands additional assumptions and the improvement is not large.

2.3.2 Median differential slope

The median differential slope is a measure introduced by Kreslavsky and Head (2000) in order to

disentangle small- and large-scale contributions to surface roughness. For the baseline of interest,

L, it isolates roughness features on the order of L by subtracting the point-to-point slope at twice

the given baseline:

sd =
zL

2
− z−L

2

L
− zL − z−L

2L
. (2.3)

The resulting value, sd, is a measure of slopes at a certain scale with respect to longer-wavelength

features.

As with the RMS and median bidirectional slopes, median differential slopes were calculated

in 0.5-degree windows spaced 0.25 degrees apart, and only those windows with more than 250

measurements were retained. Following Kreslavsky and Head (2000), differential slopes at a given

baseline were calculated according to Equation (2.3) by subtracting slopes calculated at two different

baselines. Practically, this involves calculating the position of each slope midpoint along the track

length and interpolating the slope midpoints at the longer baseline to the points occupied by the

smaller-baseline slope profile to accomplish the subtraction at the correct location. This method

ensures that the two slope profiles are always aligned correctly, thereby avoiding errors in the value

of the differential slope calculated. This procedure is identical to the detrending process described

in section 2.3.3 and illustrated in Figure 2.6, except that the ratio of baselines is always 2.

Differential slopes were calculated in this manner for all baselines ranging from one shot spacing

apart (∼57 m) to 25 shot spacings apart (∼1.4 km). Only profiles involving a single laser spot were

considered for the calculation, in order that the slopes over multiple baselines be computed along the

same direction. Figure 2.5 shows a composite color map of the lunar surface which presents roughness

at three different scales, ∼560 m (10 shot spacings) in the red channel, ∼220 m (4 shot spacings) in
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green, and ∼57 m (1 shot spacing) in blue. Variations in the roughness properties across the surface

are apparent and substantial, showing intriguing characteristic signatures for several terrain types.

The lunar maria are roughest at the smallest scale and smoother at large scales, making them easily

distinguishable by their blue tones in the composite image. A comparison of mare ages (Hiesinger

et al., 2010) to Figure 2.5 shows that flows of different ages have different roughness signatures;

the youngest (e.g., those within Oceanus Procellarum and Mare Imbrium) are rough only at the

smallest scale, while successively older flows (e.g., Mare Tranquilitatis and Mare Marginis) increase

in roughness at larger scales. At the smallest scale, roughness remains approximately constant

with age, potentially indicating that saturation on small scales occurs on relatively swift timescales.

In the composite map, these age variations correspond to a transition in color from deep blue to

blue-green. The ejecta surrounding major basins—particularly around Orientale, but also older

basins—are roughest at the longest scale, causing these regions to appear orange or red. Young,

Copernican-age craters appear white because they are bright in all channels; the least modified

features on the Moon, they are rough at all scales. Moreover, the ray systems related to these

craters, so evident in albedo maps, but not obviously expressed as topographic relief, are roughest at

the intermediate scale, probably reflecting crater chains and clusters that often populate crater rays

(Oberbeck , 1975; Pieters et al., 1985). As a result, they are clearly expressed as star-shaped yellow

to orange haloes surrounding each feature (Figure 2.6). Other, subtler variations, not obviously

related to a single geologic feature, occur across much of the surface. The region spanning latitudes

30◦S to 60◦N and longitudes 160◦E to 240◦E, representing a large uninterrupted stretch of lunar

highlands, appears relatively bright and with a mottled appearance, consistent with an old surface

saturated with craters at many different scales. South Pole-Aitken basin is somewhat redder than

its surroundings, except for the patches of mare within superimposed craters.

As a diagnostic tool for distinguishing unique roughness units, the median differential slope is a

useful measure of surface roughness. However, because it involves measuring small-scale roughness

with respect to long-wavelength roughness features, it can be more difficult to interpret physically as

a slope characteristic. For this reason, the median absolute slope at a given scale is a more intuitive
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Figure 2.6: Lunar far-side crater Jackson and its ray system, centered at 19◦E and 22.4◦N, shown in
(a) the 750-nm Clementine albedo map (McEwen and Robinson, 1997), (b) the median differential
slope map, as in Figure 2.5, and (c) the topography (Smith et al., 2010b). Rays of young, Copernican-
age craters are clearly expressed as streaks of high albedo relative to the background. Though they
do not add obvious relief to the topography, the rays are distinctly rougher at the ∼220-meter
and ∼560-meter baselines compared to the highlands, making them appear yellow to orange in the
composite roughness map.

parameter.

2.3.3 Hurst exponent

Topography is often considered as a nonstationary random field with self-affine fractal-like properties

(Turcotte, 1997). Self-affinity implies a scaling behavior such that an increase of factor r in the

horizontal length scale corresponds to an increase in the vertical length scale of rH , where H is

known as the Hurst exponent and falls between 0 and 1 for real surfaces (Turcotte, 1997; Orosei

et al., 2003). The Hurst exponent is directly related to both the fractal dimension of the surface,

D = 1+d−H, and the slope of the power spectrum, β = 2H+d, where in each case d is the number

of spatial dimensions: 1 for a profile or 2 for a surface (Schroeder and Wiesenfeld , 1991).

The Hurst exponent describes the power law behavior of surface slopes when they are scaled to

different horizontal baselines:
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Figure 2.7: Method of detrending slope data. Slopes measured at the ∼30-km baseline (in blue) are
subtracted from ∼1.2-km slopes (red), leaving a detrended slope profile behind (green) and avoiding
large-scale tilts in the topography.

s (∆x) = s0

(
∆x
∆x0

)H−1

=
ν (∆x)

∆x
. (2.4)

Written as such, it is clear that the deviation ν(∆x) ∝ (∆x)H . H can thus be estimated as the

slope of a best-fit line to log ν(∆x) vs. log (∆x) (Orosei et al., 2003).

We calculate the RMS deviation for a range of baselines from ∼57 m to ∼2.7 km (1 to 50 shot

spacings) and analyze the deviogram, or structure function, ν(∆x). As in the previous calculations,

the deviation values were calculated along track in overlapping windows. However, Shepard et al.

(2001) have shown that errors can be introduced when the range over which the Hurst exponent

is fit exceeds 10% of the topographic profile length (the window size). Therefore, we use 1-degree

(30-km) windows for this calculation, spaced 0.5 (15 km) apart. We use only shot-to-shot profiles

of laser spot 3, selected for its consistency.

To remove roughness features on the order of our window size, we detrend each deviogram at

the 30-km scale. This process de-emphasizes large-scale roughness features in favor of small-scale

features of more interest to this study, and it avoids biases due to long-wavelength trends that are

undersampled within each window (Shepard et al., 2001). Figure 2.7 shows how the detrending is

accomplished. Slopes measured at the 30-km baseline are subtracted from small-scale slopes, leaving

a slope profile with a mean near zero within the window. Slopes at scales less than 3 km are only
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slightly affected by the detrending process except where long-wavelength slopes are high, as, for

example, those near mountain ranges.

In some cases, the deviograms are well characterized by a single log-log slope (exponent), but

many others transition to a different slope at a certain length scale. This behavior is well documented

in the literature for other planetary surfaces (Shepard et al., 2001; Morris et al., 2008), and is

often attributed to surface processes acting at small and large scales. For the Hurst exponent fit

within each window along the track, we use baselines ranging from one shot spacing (∼57 m) to

the breakover scale—the point where the deviogram diverges from a straight line, ∆x0—for that

location. Figure 2.8 is a map of the Hurst exponent calculated in this way. Although the baseline

range used in this map varies over the surface, this method avoids including fits to nonlinear sections

of each deviogram and thus presents a more accurate estimate of the Hurst exponent at the smallest

available scales.

The highest Hurst exponents on the Moon are found in the highlands within crater walls and

the rims and ejecta of large basins, and in these regions values above 0.95 are not uncommon. This

result is surprising, given that typical Hurst exponents for topographic surfaces on the Earth and

Mars are lower, between 0.7 and 0.9 (Kreslavsky and Head , 2000; Orosei et al., 2003; Morris et al.,

2008). A Hurst exponent of 1 implies self-similar topography, meaning the roughness at small scales

is exactly replicated at large scales. The high values observed for the lunar highlands may be related

to the density of impact craters in these regions and the absence of competing morphologic processes

to transport fine material downhill. Hurst exponents within the lunar maria are lower than those

within the highlands, with a median value of 0.76, indicating smoother topography at large scales

relative to small scales.

To classify deviogram shapes, we use a method similar to that of Main et al. (1999) which

establishes whether a given deviogram is best fit by one line or by two, or whether the deviogram is

poorly fit by any linear model. We compute the least squares fits in each case and compare the sums

of the residuals, adding a penalty when additional parameters are introduced into the fit (i.e., three

parameters are required for a line, five for two lines). This method classifies each deviogram by its
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shape (Figure 2.9) and yields the relevant slope(s) of the deviogram, an estimate of the breakover

baseline, ∆x0, and confidence intervals on all of the above.

Figure 2.10 shows the distribution of deviogram shapes across the surface of the Moon and how

they partition among major topographic regions. Polygons defining the lunar maria were taken from

the USGS series of geologic maps of the Moon (Wilhelms et al., 1971, 1977; Scott and McCauley ,

1977; Lucchitta and Center , 1978; Stuart-Alexander and Center , 1978; Wilhelms et al., 1979) and

used to select data within the mare plains. The rim of South Pole-Aitken basin was defined using

the best-fit ellipse from (Garrick-Bethell and Zuber , 2009). The polar regions included latitudes

from 60◦ to the pole, excluding patches of mare basalts and the South Pole-Aitken basin region.

All areas falling outside these regions were designated highlands. By surface area, most deviograms

are best characterized by two lines (∼59%), with the remainder of the surface nearly evenly divided

between monofractal (∼17%) and complex (∼24%) deviogram shapes, in which the slope changes

continuously and rapidly with baseline, often alternating sign. Complex deviograms are mainly

found in the lunar maria, whereas the highlands exhibit primarily monofractal or bifractal behavior.

Other geographic regions, including the north and south poles and the South Pole-Aitken basin,

behave much like the lunar highlands. This partitioning indicates a profound difference in character

between the two major units; on the one hand, highland deviograms behave as nearly self-similar

fractals, while mare topography diverges from fractal behavior altogether at the breakover point.

Within areas that adhere to fractal behavior, the baseline at which the breakover occurs, ∆x0,

is a significant parameter constrained by the two-line fit to the deviogram because it has a physical

meaning related to the surface processes that contribute to the evolution of the Moon’s topography.

Formation and modification mechanisms act over a range of scales and may have distinct Hurst

exponents. The breakover point is thus an estimate of the scale at which surface processes acting

at longer scales are overtaken by those acting on smaller scales. In other words, it represents the

baseline at which competing surface processes are equal contributors to the topography.

Figure 2.11 is a stacked histogram showing the distribution of breakover points for all deviograms

and their locations within the major geographic regions. Within the maria, breakover points are
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Figure 2.10: Abundance of deviogram shapes by surface area, sorted by region. The most common
deviogram shape is bilinear (∼59%), with monofractal (∼17%) and complex (∼24%) making up the
remaining area. The highlands are almost entirely bilinear and monofractal, while the maria contain
primarily complex deviograms.
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Figure 2.11: Breakover point histogram, sorted by region. Whereas the maria exhibit a broad range
of breakover points, reflecting the complexity of deviograms in these regions, the other regions have
a strongly-peaked distribution of breakover points near 1 km. This characteristic baseline indicates
a transition between two surface processes, and may tell us about the Moon’s surface history.
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broadly distributed, reflecting the complex nature of the deviograms found there. All other regions,

however, have a strong peak at ∼1 km, suggesting a significant transition between surface processes

acting above and below this scale. Impact cratering and mare basalt emplacement are most likely

responsible for many of the key differences between the lunar highlands and the maria. Other

processes that may have contributed to the observed roughness properties remain to be identified

and quantified, but likely candidates for exploration include mass wasting, perhaps due to seismic

shaking, ejecta mantling, and micrometeorite gardening.

2.4 Conclusions

New altimetry data from LOLA allow a unique opportunity to quantify the surface roughness prop-

erties of the Moon. We find that topography within the highlands and the mare plains exhibit

substantially different behaviors, while other geographic regions show more subtle variations. Ta-

ble 2.1 presents a summary of the most important roughness characteristics for each major region.

For each parameter, the median is reported, as it best reflects a typical value for the region, along

with the 25% and 75% percentile points, which indicate the shoulders of each distribution and hence

provide an estimate of the width. We find that most of the surface is characterized by fractal-like

behavior with either one or two Hurst exponents over the baseline range covered, from ∼57 m to

∼2.7 km, with a strong tendency to break over near the 1 km scale. The Hurst exponent is generally

high in the lunar highlands, reflecting nearly self-similar topography in these regions. Within the

maria, however, deviograms transition from fractal at small scales to complex at a range of breakover

points, and the Hurst exponent is both lower and more diverse.
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