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Abstract 
 

This thesis describes the expansion and improvement of the iterative in situ click 

chemistry OBOC peptide library screening technology.  Previous work provided a proof-of-concept 

demonstration that this technique was advantageous for the production of protein-catalyzed 

capture (PCC) agents that could be used as drop-in replacements for antibodies in a variety of 

applications.  Chapter 2 describes the technology development that was undertaken to optimize 

this screening process and make it readily available for a wide variety of targets.  This optimization 

is what has allowed for the explosive growth of the PCC agent project over the past few years. 

These technology improvements were applied to the discovery of PCC agents specific for 

single amino acid point mutations in proteins, which have many applications in cancer detection 

and treatment.  Chapter 3 describes the use of a general all-chemical epitope-targeting strategy 

that can focus PCC agent development directly to a site of interest on a protein surface.  This 

technique utilizes a chemically-synthesized chunk of the protein, called an epitope, substituted 

with a click handle in combination with the OBOC in situ click chemistry libraries in order to focus 

ligand development at a site of interest.  Specifically, Chapter 3 discusses the use of this technique 

in developing a PCC agent specific for the E17K mutation of Akt1.  Chapter 4 details the expansion 

of this ligand into a mutation-specific inhibitor, with applications in therapeutics. 
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1.1 Protein-Catalyzed Click (PCC) Peptide Capture Agents for 

Biomarker Detection and Therapeutics 
Detecting cancer-associated biomarkers is a necessary step on the road to personalized medicine, 

as emerging therapeutics require the identification of specific patient populations that will respond to 

targeted therapies1.  Methods for protein biomarker detection are highly desirable for rapidly screening 

changes in protein mutation status, monitoring patient treatment2, and simple point-of-care diagnostics3.  

Techniques that rely on detecting or monitoring protein levels mainly use antibodies for the capture and 

measurement of these proteins4.  Antibodies, however, are biological reagents that are inherently 

unstable, vary from batch to batch, can exhibit high levels of cross-reactivity with other antibodies, and 

are expensive to produce5.  Diagnostic assays are frequently prohibitively limited in both cost and stability 

due to the restrictions of the gold-standard antibody detection agents. 

Peptides can be the missing link for both inexpensive biomarker detection and targeting 

traditionally undruggable proteins.  Peptide - protein interactions cover a large surface area, producing 

antibody-like affinities with unsurpassed specificities6.  To date, most peptide discovery techniques use 

genetically-encoded libraries, which allow for ease of library generation and rapid and simple sequencing.  

These techniques permit screening of enormous numbers of compounds against a target of interest 

without any complicated syntheses or detailed knowledge of the target7.  These libraries, however, are 

limited by the biological system from which they are derived, both in terms of screening elements and 

library size.  Most of these systems, such as phage display, bacterial display and yeast display, are confined 

to the natural amino acids because they use the cell machinery to make and express their libraries.  These 

systems limit the suitability of the resulting peptide capture agents due to the instability of biological 

peptides, which are comprised of naturally-occurring L -amino acid monomers that can be degraded in 

biological systems and fluids. 

The Heath group has sought to alleviate the issue of peptide capture agent instability by relying 

exclusively on the use of unnatural amino acids.  Because biological libraries are not conducive to this type 
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of work, we have instead adopted a peptide screening method utilizing One-Bead, One-Compound 

(OBOC)8 chemically synthesized libraries on 90μm polystyrene beads.  This technique trivializes the 

inclusion of any unnatural amino acid or structure that can be chemically synthesized, allowing for the use 

of biologically stable D - amino acids and azide-alkyne click chemistry handles in the library9.   

The Sharpless group showed that the typical azide - alkyne click catalyst, Cu(I)10, speeds up the 

reaction but is only barely necessary for it to occur, and demonstrated the ability to replace this catalyst 

with the surface of a protein.  They took advantage of this to assemble small molecule inhibitors for 

proteins by breaking up known inhibitors into two components and assembling two libraries – each one 

comprised of pieces similar to its original half of the inhibitor.  One of these libraries of molecules was 

appended with a click handle, the other library with the opposite click handle.  When two click reactants 

bound tightly to the protein surface and in close enough proximity to each other, the long dwell time of 

these reagents allowed for the click to occur without the use of Cu(I)11.  In this way, they were able to 

bring the two libraries, which consisted of variations on the original inhibitor, together and use the surface 

of the protein to assemble the best possible small molecule inhibitor.   

We have adapted this technology to assemble 5-mer peptide sequences displayed on OBOC 

libraries using the surface of the target protein itself to catalyze a click reaction between peptides that 

bind tightly to this surface.  Hence, we have termed these capture agents “protein catalyzed capture” 

(PCC) agents.  This strategy requires that the two compounds are high-affinity, selective binders for the 

target that is acting as a catalyst because the click reaction does not occur without a long dwell time 

between the two agents.  PCC agents have been developed against a number of protein targets, and have 

been shown to exhibit a selectivity and affinity similar to those of monoclonal antibodies.  They also can 

be readily integrated into all standard protein assay formats. 

Chapter 2 of this thesis describes the technology development process that was undertaken to 

optimize the screening stages for the production of high-affinity ligands to targets of interest.  Optimizing 
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the in-depth screening procedure has allowed for the rapid expansion of this project in the past few years.  

This detailed in situ azide-alkyne click screening technology is now regularly used to develop peptide 

affinity agents that mimic the performance of antibodies9-15.  These affinity agents that maintain the 

stability of small molecules can be made to replace biological reagents9,12,15, lowering the cost and 

increasing the robustness of detection assays13,14. 

 

 

1.2 Epitope Targeting Strategies 
The detection of single amino acid point mutations in proteins is critical in the identification of 

specific patient populations that will respond to targeted therapies in the new era of personalized 

medicine1.  The current techniques for mutation detection rely on either capture and measurement of 

these proteins through antibodies,4 or on DNA sequencing.  DNA sequencing is currently an expensive and 

time-consuming route to take for mutation screening, especially as most patients need to be screened for 

mutations before the proper course of their treatment is even decided16.  Antibodies can provide a faster 

route for mutation detection and treatment monitoring, as there are methods currently in place for their 

use as rapid point-of-care diagnostics3.  These diagnostic tests also provide information about the levels 

of protein expression in a body, something that cannot be tested through sequencing, which can be used 

to monitor the response level of a patient to a certain treatment, potentially detecting ineffective 

medications immediately after they are given.  In a diagnostic setting, such binders can be used to assay 

for the mutant protein within diseased tissues, and thus potentially provide clinical guidance for 

treatment decisions3.   

A more ambitious application is the development of drugs that can selectively inhibit mutant 

proteins, and thus avoid those toxic side-effects that stem from the inhibition of the wild-type (WT) 

variants17 that reside in non-diseased tissues.  Patients on therapies targeted very specifically to the 
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mutations characteristic of their disease could show significant improvements without the toxic side-

effects that stem from of the inhibition of the healthy, wild-type versions of these proteins17.  A relevant 

example is compound CO-1686, which is an a epidermal growth factor receptor (EGFR) inhibitor specific 

for the T790M point mutation associated with certain non-small cell lung carcinomas.  That drug, which 

is currently in clinical trials, is designed to minimize the toxicities (such as skin rash) that can appear when 

WT EGFR is targeted, since WT EGFR is expressed throughout the healthy tissues in the body18.   

A challenge of drug targeting a single point mutation is that the mutation may not be directly 

associated with a binding pocket.  The presence of a binding pocket is traditionally required for small 

molecule inhibitor development as is serves as a thermodynamic sink that can attract binders.  This 

requirement does not hold for antibodies and, in fact, several examples of monoclonal antibodies directed 

against epitopes containing single amino acid mutations do exist19,2,20.  However, antibodies do not readily 

enter the living cells that can harbor the mutated proteins21,22, and so, mutation-selective antibodies are 

typically only used as diagnostic reagents for staining fixed cells or tissues.   

Thus, there is a need for an approach that can identify small molecules that can be generally 

targeted against epitopes containing single amino acid point mutations to allow for the rapid detection 

and assessment of tumor status, and can also potentially be developed into cell-penetrant inhibitors5.  

Our approach is inspired by the technique for developing an epitope-targeted monoclonal antibody 

(mAb).  Such mAbs are made by injecting a small portion of the protein of interest containing the mutation 

(the epitope) into an animal and screening for an immune response that has the desired selectivity2,20,19.  

This approach can yield an antibody that exhibits focused binding to the specific designated area of the 

protein surface. 

An all-chemical strategy for targeting PCC agent development against epitopes near 

phosphorylates sites was developed recently15.  For that approach, an approximately 30-amino fragment 

representing the phosphorylated epitope of interest was synthesized, and a metalloorganic Zn-chelator 
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was utilized to bind to the phosphate group and present an azide near that site.  That epitope was then 

screened against a large (1 million element) one-bead-one-compound (OBOC) library of 5-mer alkyne-

presenting peptides.  Hits were defined as those compounds that bound to the synthesized epitope, and 

that were coupled to that epitope through a triazole linkage.  PCC Agents with high selectivity for the 

epitope and the full protein, and with affinities as low as 19nM, were developed.   

The bulk of my thesis work focuses on the generalization of the epitope targeting strategy by 

directly substituting an alkyne click handle into the chemically synthesized peptide epitope (around the 

E17K residue of Akt1) of interest.  Chapter 3 describes how this technique was used to develop a 5-mer 

PCC agent selective for the E17K mutant Akt1 protein.  This PCC agent was able to be used as a drop in 

antibody replacement for the detection of this single amino acid mutation in various assays.  It was also 

possible to render this agent cell-membrane permeable, and this allowed it to be used as a focused 

imaging agent in live cell experiments.  Chapter 4 describes the expansion of this PCC agent into a biligand 

and then a triligand through the use of iterative in situ click chemistry in order to make a bulkier PCC 

agent.  The final triligand PCC agent is capable of blocking the binding of the mutant protein to its substrate 

at the cell membrane, rendering it inactive and demonstrating the ability of these PCC agents to serve as 

targeted therapeutics. 

 

1.3 In Situ Click Screening Using Azide-Containing Phage Display 

Libraries 
Peptide screening technology has expanded incredibly in the past ten years since the inception of 

the PCC agent project.  Using the protein-catalyzed click screens described above, PCC agents have been 

developed against only small chunks, or “epitopes” of proteins15,  and various PCC agents that have shown 

to be unique inhibitors and activators of Akt kinase23,15, molecular imaging agents24, detection agents for 

anthrax14, suitable as third world detection agents for HIV13, as well as the single amino acid point 

mutation specific E17K agents. 
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The OBOC libraries have their drawbacks, however.   The physical size of the library limits the 

number of total sequences that can be screened.  A full library usually contains up to 106 members – only 

a portion of which are screened.  The library screening and hit picking methods are exceptionally time-

consuming and labor-intensive, hindering rapid peptide discovery.  The sequencing of OBOC libraries is 

also done by either Edman degradation or MALDI TOF/TOF, rendering the sequencing process expensive, 

time-consuming, and reliant on expert knowledge.  Many of these drawbacks are also a huge barrier to 

entry in this field, limiting the labs that would be able to assist in the advancement of the science.  PCC 

agents could be produced significantly faster and cheaper with library display technology that would 

combine the advantages of the OBOC product screening techniques and library design with the rapid 

screening and sequencing of genetically displayed libraries.   

Recent advances in biology have made it possible to incorporate unnatural amino acids into the 

genetic code25.  Schultz has shown that through the use of amber suppression, azide-containing amino 

acids can be incorporated in specific locations into the pIII coat protein on an M13 phage26.  The 

Methanococcus jannaschii amber suppressor tRNATyr (MjtRNA) and the mutant M.jannaschii tyrosyl-

tRNA synthetase (MjTyrRS) DNA can be contained in one plasmid that can be used to express these amber 

suppression tools in E.coli.  In this system, the mutant synthetase is used to attach the unnatural amino 

acid azidophenylalanine to the tRNA in vivo, allowing for its incorporation into proteins.  This tRNA 

recognizes the amber stop codon and should insert the amino acid in only that location, creating a new 

amino acid/tRNA combination that can be encoded into proteins. 

Chapter 5 discusses the ongoing development of a screening technology that combines the in situ 

click screen advantages of the OBOC process with the rapid screening of large libraries characteristic of 

biological display systems.  For this project, a phage display library containing azidophenylalanine for use 

in in situ click chemistry screening has been made and is being used to develop a PCC agent.  These phage 
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libraries can be screened in place of the OBOC peptide libraries described in previous chapters for the 

more rapid development of PCC agents. 
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