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Abstract

This dissertation studies long-term behavior of random Riccati recursions and mathematical epi-

demic model. Riccati recursions are derived from Kalman filtering. The error covariance matrix

of Kalman filtering satisfies Riccati recursions. Convergence condition of time-invariant Riccati re-

cursions are well-studied by researchers. We focus on time-varying case, and assume that regressor

matrix is random and identical and independently distributed according to given distribution whose

probability distribution function is continuous, supported on whole space, and decaying faster than

any polynomial. We study the geometric convergence of the probability distribution. We also study

the global dynamics of the epidemic spread over complex networks for various models. For in-

stance, in the discrete-time Markov chain model, each node is either healthy or infected at any

given time. In this setting, the number of the state increases exponentially as the size of the net-

work increases. The Markov chain has a unique stationary distribution where all the nodes are

healthy with probability 1. Since the probability distribution of Markov chain defined on finite state

converges to the stationary distribution, this Markov chain model concludes that epidemic disease

dies out after long enough time. To analyze the Markov chain model, we study nonlinear epidemic

model whose state at any given time is the vector obtained from the marginal probability of infection

of each node in the network at that time. Convergence to the origin in the epidemic map implies

the extinction of epidemics. The nonlinear model is upper-bounded by linearizing the model at the

origin. As a result, the origin is the globally stable unique fixed point of the nonlinear model if the

linear upper bound is stable. The nonlinear model has a second fixed point when the linear upper

bound is unstable. We work on stability analysis of the second fixed point for both discrete-time

and continuous-time models. Returning back to the Markov chain model, we claim that the sta-

bility of linear upper bound for nonlinear model is strongly related with the extinction time of the

Markov chain. We show that stable linear upper bound is sufficient condition of fast extinction and

the probability of survival is bounded by nonlinear epidemic map.
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Chapter 1

Introduction

Mathematical models help us to understand and predict natural and social phenomena. Mathemat-

ical physics, modern economics, and meteorology are fields of science that frequently use such

models. Of course, in these fields, a researcher faces a problem of choosing variables to take into

account in her model. For instance, consider a spread of disease on a society. There are many factors

that may affect the contagion; for example, genetics of the population and regional characteristics.

Among many potential factors, a researcher could be interested in how a contagion depends on

social network structures such as friendships, acquaintances, sexual relationships. In this case, to

simplify her model, she may assume that all populations are homogeneous in other aspects. Another

way to simplify the model is considering randomness of other characteristics. For instance, in the

previous contagion model, the researcher may assume that each person’s characteristics are drawn

from a distribution. By this modeling, if the assumptions are appropriate, long-run behavior of the

model would not depend on the assumptions. In this dissertation, we will study long-run behav-

ior of models that are represented by nonlinear random matrix recursions, and epidemic spreads in

complex networks.

1.1 Random Riccati Recursions

Estimation theory helps engineering and natural sciences for data analysis subject to random dis-

turbances and decision makings under uncertain environments. Many estimation problems can be

formulated as a minimum norm problem. There are different ways to formulate a problem of sta-

tistical estimation. The least square and the maximum likelihood estimations are frequently used

techniques to find an optimal solution for given conditions.
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1.1.1 Adaptive Filter

An adaptive filter is a computational device that models relationships between two signals itera-

tively. It is a powerful tool to model communications and statistical signal processing. An adaptive

algorithm is useful when we analyze time-varying system with a little information. In those cases,

the algorithm predicts future based on estimates, which are parameters of a model using a given

data set and a statistical model. The algorithm performs better as more iterations are conducted.

An adaptive algorithm describes how the parameters are adjusted from a given time step to the

next time step, and usually it is assumed to be linear. One of the most widely used linear adaptive

filtering algorithm is the Least Mean Square (LMS) algorithm introduced by Widrow and Hoff [65].

LMS algorithm is operated by minimizing the cost function. To see more details, consider a zero-

mean random variable d whose realizations are {d(0),d(1), · · ·}. d is the random variable which

is to be estimated. Column vectors u0,u1, · · · are called regressors. Our goal is to find an optimal

column vector w that minimizes error cost function

CLMS(i) =
1
2
(d(i)−w(i−1)T u(i))2. (1.1)

We can minimize the error cost CLMS(i) with the gradient vector

∂

∂w(i−1)
CLMS(i) =−(d(i)−w(i−1)T u(i))u(i). (1.2)

We update w(i) by using a update rule

w(i) = w(i−1)+µ(d(i)−w(i−1)T u(i))u(i), (1.3)

where µ is the step size. The LMS algorithm applies steepest gradient method to minimize error

cost function at each time. It performs well when the step size µ is small enough, but a small µ may

cause slow convergence.

The Recursive Least Square filter (RLS) algorithm is one of the most important linear adaptive

filters. The RLS algorithm is similar to the LMS algorithm, but RLS uses a different cost function.

At every iteration, the LMS algorithm minimizes the squared error of current state (1.1), however

the RLS algorithm minimizes the sum of squared errors up to the current iteration. The error cost
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function of the RLS algorithm is defined as

CRLS(i) =
i

∑
j=1

(d( j)−w(i)T u( j))2. (1.4)

The RLS update algorithm is given by

w(i) = w(i−1)+(d(i)−w(i−1)T u(i))P(i)u(i) (1.5)

P(i) = P(i−1)− P(i−1)u(i)u(i)T P(i−1)
1+u(i)T P(i−1)u(i)

. (1.6)

The convergence rate of the RLS algorithms is much higher than the LMS algorithm, but it requires

more computational complexity than the LMS algorithm. That is, the computational complexity

of the LMS algorithm is proportional to the dimension of w; on the contrary, the computational

complexity is proportional to the squared order of the dimension of w.

1.1.2 Kalman Filter and Riccati Equation

Linear time invariant models have been studied in the past decades, and the performance of es-

timation methods of linear time invariant models is well known. The Kalman filter, named after

Rudolf E. Kálmán, was introduced in 1960, however it is still one of the most powerful algorithms

today [31]. The Kalman filter has been successful because its computational requirement is not too

cumbersome and the recursive properties are nice.

Consider the state space equation

 xi+1 = Fixi +Giui

yi = Hixi + vi.
(1.7)

xi is the true state at time i, which is not directly observable. yi is an observation of xi. ui,vi are i.i.d.

random column vectors such that ui ∼ N(0,Qi) and vi ∼ N(0,Ri). ui and vi represent process noise

and observation noise, respectively. x0 is a random column vector independent from {ui,vi} for all

i, and x0 ∼ N(0,Π0).

The Kalman filter suggests an optimal estimation algorithm based on the information at hand.

x̂i| j for j ≤ i is the best estimation based on {y0, · · · ,y j}. In other words,

E[(x̂i| j− xi)yT
k ] = 0 ∀k ∈ {0,1, · · · , j}, (1.8)
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Figure 1.1: Schematic diagram of Kalman filter

x̂i| j is the estimate that minimizes the mean-squared error covariance matrix

Pi| j = E[(xi− x̂i| j)(xi− x̂i| j)
T ], (1.9)

based on the observations up to time j. We call x̂i+1|i a priori estimate of xi+1 and x̂i+1|i+1 a posteriori

state estimate of xi+1.

E[uiyT
j ] = 0 for all j ≤ i because ui is independent to each vk and u j for all j < i. From this and

the first equation of (1.7), we obtain the following a priori estimate and a priori state errors:

x̂i+1|i = Fix̂i|i, (1.10)

and

Pi+1|i = E[(xi+1− x̂i+1|i)(xi+1− x̂i+1|i)
T ] (1.11)

= E[(Fixi +Giui−Fix̂i|i)(Fixi +Giui−Fix̂i|i)
T ] (1.12)

= FiE[(xi− x̂i|i)(xi− x̂i|i)
T ]FT

i +GiE[uiuT
i ]G

T
i (1.13)

= FiPi|iF
T

i +GiQiGT
i . (1.14)



5

Having a priori estimate x̂i+1|i, suppose now that we have another observation yi+1. To update a

posteriori estimate with this observation, we assume that the estimate is the sum of a priori estimate

and the new observation with linear weight:

x̂i+1|i+1 = x̂i+1|i +Ki+1(yi+1− ŷi+1|i). (1.15)

ŷi+1|i is the linear estimate of yi+1 based on the observations up to time i. yi+1− ŷi+1|i can be

interpreted as the difference between the realized observation and the predicted observation. The

linear weight of new observation, Ki+1, is called Kalman gain. From the second equation of (1.7)

and the independence of vi to all y j for j ≤ i,

ŷi+1|i = Hi+1x̂i+1|i. (1.16)

The updated error covariance with new information follows:

Pi+1|i+1 = E[(xi+1− x̂i+1|i+1)(xi+1− x̂i+1|i+1)
T ] (1.17)

= E[(xi+1− (x̂i+1|i +Ki+1(yi+1− ŷi+1|i)))(xi+1− (x̂i+1|i +Ki+1(yi+1− ŷi+1|i)))
T ] (1.18)

= E[(I−Ki+1Hi+1)(xi+1− x̂i+1|i)(xi+1− x̂i+1|i)
T (I−Ki+1Hi+1)

T ]

−E[Ki+1vi+1(xi+1− x̂i+1|i)
T (I−Ki+1Hi+1)

T ]

−E[(I−Ki+1Hi+1)(xi+1− x̂i+1|i)v
T
i+1KT

i+1]+E[Ki+1vi+1vT
i+1KT

i+1]. (1.19)

E[vi+1xT
i+1] = 0 because vi+1 is independent with u j for all j, which are the process noises that

make xi+1 random vector. E[vi+1x̂T
i+1|i] = 0 because vi+1 is independent with y j for j ≤ i. (1.19)

can be simplified by using E[vi+1(xi+1− x̂i+1|i)
T ] = 0, E[(xi+1− x̂i+1|i)(xi+1− x̂i+1|i)

T ] = Pi+1|i, and

E[vi+1vT
i+1] = Ri+1 as follows:

Pi+1|i+1 = (I−Ki+1Hi+1)Pi+1|i(I−Ki+1Hi+1)
T +Ki+1Ri+1KT

i+1 (1.20)

= Ki+1(Hi+1Pi+1|iH
T
i+1 +Ri+1)KT

i+1−Ki+1Hi+1Pi+1|i−Pi+1|iH
T
i+1KT

i+1 +Pi+1|i. (1.21)

Our goal is now to minimize (1.21) by choosing Ki+1, the optimal Kalman gain. Consider the

following equation for known positive definite matrices A,C, a known matrix B, and an unknown
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matrix X :

XAXT −XB−BT XT +C = (XA−BT )A−1(XA−BT )T −BT A−1B+C. (1.22)

(1.22) is minimized when the positive semi-definite (XA−BT )A−1(XA−BT )T is zero. By applying

this to (1.21), we get Ki+1 minimizing Pi+1|i+1:

Ki+1 = Pi+1|iH
T
i+1(Hi+1Pi+1|iH

T
i+1 +Ri+1)

−1. (1.23)

We focus on x̂i+1|i, a priori linear estimate and its error covariance matrix Pi+1|i. For simplicity,

we remove |i in the subscript, which represents the observation up to time i. The summarized update

algorithm is

x̂i+1 = Fix̂i +FiPiHT
i (HiPiHT

i +Ri)
−1(yi−Hix̂i) (1.24)

Pi+1 = FiPiFT
i −FiPiHT

i (HiPiHT
i +Ri)

−1HiPiFT
i +GiQiGT

i . (1.25)

Kalman showed that, when Fi = F , Gi = G, Hi = H, Ri = R and Qi = Q for all i, the Riccati

recursion (1.25) converges to a fixed point, which is a unique solution of Riccati equation:

P = FPFT −FPHT (HPHT +R)−1HPFT +GQGT , (1.26)

if both detectability and stabilizability conditions are guaranteed. In Kalman filtering, the Riccati

recursions represent evolution of the state error covariances. The result is powerful as it guarantees

that the estimation error of the steady state is bounded.

The Riccati equation has received great interests in various fields. In particular, its application

to control theory is prominent, from optimal control theory to robust and stochastic control theories.

Even though time-invariant case is well-studied, there has been is no significant tool to analyze time-

varying state space models. To study long-term properties, randomness and particular distribution

is assumed in time-varying case. However, nonlinear structure of Riccati equation makes it hard to

analyze.
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1.1.3 Questions of Interest

Interesting problems in random Riccati recursions includes some additional random noises. Chen et

al. studied linear stochastic systems with additive white Gaussian noise, where system matrices are

random and adapted to the observation process [11]. The authors showed that in order for the stan-

dard Kalman filter to generate the conditional mean and conditional covariance of the conditionally

Gaussian distributed state, it is sufficient for the random matrices to be finite with probability one

at each time. Wang et al. provided a sufficient condition for stability of random Riccati equations

[63]. The authors focused on Lr-stability of random Riccati equation, where Lr‖A‖= E[‖A‖r]
1
r for

random matrix A. Martins et al. studied the stabilizability of uncertain stochastic systems in the

presence of finite capacity feedback [41]. Minero et al. studied the channel with the additional

sources of non Gaussian randomness in control problems [44].

Researchers have been interested in models of a discrete-time system with random arrivals of

observations. Sinopoli et al. studied the system beginning from the discrete Kalman filtering for-

mulation. The authors modeled the arrival of the observation distributed according to Bernoulli

distribution [59]. They studied statistical convergence properties of the estimation error covariance.

Specifically, they proved existence of a critical value for the arrival rate of the observations. Kar

et al. modeled the system of intermittent observations as a random dynamic system [32]. They

studied asymptotic properties of the random Riccati equations. They showed that the sequence of

random prediction error covariance matrices converges weakly to a unique invariant distribution

whose support exhibits fractal behavior. Plarre et al. studied a critical probability of measurements

for bounded covariance [54]. They investigated the system under the condition in which the system

observation matrix restricted to the observable subspace is invertible.

Convergence and steady-state approximation of Riccati recursions with time-varying system

matrices are interesting. Vakili et al. applied Stieltjes tranform to approximate eigendistribution of

error covariance matrix of Riccati recursion when system matrices are time-varying and distributed

according to a Gaussian distribution [60], [61]. The eigendistribution studied in the paper is the

marginal distribution of one randomly selected eigenvalue of the matrix, i.e., FP(x) = 1
n ∑

n
i=1P[λi ≤

x]. In fact, the probability distribution function is the average of the probability distribution func-

tions for all i-th largest eigenvalue of given random matrix. Their model assumed that the steady-

state distribution of random Riccati recursions does exist and the steady-state eigendistribution also

converges to a particular probability distribution as the size of the error covariance matrix increases.
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Here is a short list of questions arising in Random Riccati recursions.

• How can we model the system if there is an additional noise?

• What is the dynamics of the system if the observation is arrived or not randomly?

• How can we prove the existence of steady-state of random Riccati recursions? Is there any

way to describe its steady-state?

1.1.4 Contribution

One of the main questions in this dissertation is that :

• Can we determine whether the distribution of the error covariance matrix of random Riccati

recursions converges in distribution? If so, does it converge geometrically fast?

We analyze time-varying Riccati recursions with random regressor matrix, H. We focus on

geometric convergence of the probability distributions of error-covariance matrix. This strengthens

results by Vakili et al. because Vakili et al. [60], [61] hastily assumed that the Riccati recursions

converge to steady-state. Moreover, its geometric convergence promises that we can obtain a good

estimated steady state distribution by a Monte Carlo simulation.

To see more details, we study the support of random Riccati recursion:

P(t+1) = FP(t)FT −FP(t)(H(t))T (R+H(t)P(t)(H(t))T )−1H(t),P(t)FT +Q (1.27)

where P(t) is the error covariance matrix at time t. H(t) is a time-varying regressor matrix which is

assumed to be randomly distributed according to a particular probability distribution. We investigate

the support of P(t) as a function of the initial error covariance matrix. The support of P(t) starting

from a greater matrix has a bigger support beyond a finite time. In other words, the support of P(t)

with P(0) = A is included the support of P(t) with P(0) = B after finite t if B−A is positive definite.

From a monotone property of Riccati equation, the maximal (minimal) element of support of P(t)

with P(0) = B is greater than the maximal (minimal) element of support of P(t) with P(0) = A. We

will see that the minimal element of the support is identical after a finite t, and that it leads to that

greater positive definite matrix has bigger support. The work on the support of Riccati recursions is

a key result to understand the Riccari recursions because, to the best of our knowledge, the support
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of the Riccati recursions with time-varying regressor matrix has never appeared in the previous

literature.

We compute the probability density function of the probability distribution of the error covari-

ance matrix at a given time depending on an initial error covariance matrix. The matrix calculation

is applied to do this. The regressor matrix, H, is the only factor that gives randomness to the Riccati

recursions. If P(0), the initial error covariance matrix is fixed, P(t), the error covariance matrix at

time t is determined by H(0),H(1), · · · ,H(t−1). We define a one-to-one map from the history of H,

H(0),H(1), · · · ,H(t−1), to (L,O), a pair of a lower triangular matrix and an orthogonal matrix which

simplifies the computation of the probability density function. Finding the map is a good application

of the matrix calculation.

We also study the extension of the space of the positive definite matrices. Error covariance

matrix of the Riccati equation is defined on the space of positive definite matrices. We extend the

space by allowing zero and infinity as the eigenvalues of an error covariance matrix. By giving an

extension on the space of positive definite matrices, we get a compact space.

To give a proof on geometric convergence of random Riccati recursions, we give a couple of

intermediate results. The intermediate results include the support of the random Riccati recursions,

computation of the probability density function, and extension on compact space. Each of them

is meaningful as an independent result itself. The method used in this work can be applied to any

random process to give a proof on the geometric convergence.

1.2 Epidemic Spread

Human beings are social creatures. We influence and are influenced by ourselves in the social

network as part of it. In the past, we were only involved in small social networks such as a small

village, or family-oriented relationships. By recent advances of related technologies, we are living

in a world where a person’s physical location does not matter to interact with others. For example,

a researcher can discuss her ideas with other researchers via Skype. Furthermore, many social and

economic decisions are influenced by existing social relationships. When a consumer is thinking of

joining an online communication service (e.g., Skype or Google Talk), he considers how many of

his friends and co-workers also have adopted the service.

One of the most critical phenomena that social networks matter is spread of diseases. A histor-

ical example is the Black Death. The Black Death was a devastating pandemic that results in the
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death of more than 100 million people in the middle of the 14th century. It is believed that the Black

Death originated from central Asia and came to Europe along the Silk Road. After that, the Black

Death peaked, as spreading throughout Europe. Of course, not all the infectious diseases spreads

over a significant proportion of the population. We know that a number of people experience flu in

the winter every year, but not the whole population.

Therefore, an interesting question is how does the social network structure affect disease trans-

missions. To understand and predict the dynamics of the spread of diseases is of obvious impor-

tance. The other half of this dissertation will pay attention to mathematical models of the spread of

diseases through social networks.

1.2.1 Classical SIR Model

Researches on mathematical epidemic models began with classical papers by Kermack et al. [35].

Their seminal paper have contributed a lot on development of mathematical models for the spread of

disease. In their paper, three epidemic states are assumed, which suggested a classical SIR model.

The first state is “S”, which means susceptible. The people in the state S are healthy, but can get

infected from others. The second state is “I”, which means infected. The people in the state I are

infectious as well as infected. Susceptible people can get infected from other infected ones. The

last state is “R”, which means recovered. The people in the state R are completely recovered and

independent from the disease; that is, people in state R do not get infected any more because they

have become immune to the disease. The model also assumed that each individual can reach at state

R through state I, but not directly from S to R. Epidemics die out if no one is in state I. In the model,

the population is constant. In other words, no birth or death from other reasons are admitted. This

assumption is realistic if the life time span of disease is relatively shorter than the life time span of

people.

We pay more attention to the works of classical SIR models because they have significantly

influenced literature. Denote S(t), I(t) and R(t) as the number of susceptible ones, infected ones

and recovered ones, respectively. Since the number of people is constant, we have an equation on

the sum of the number at each state:

S(t)+ I(t)+R(t) = N, (1.28)

where N is the number of people.
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Figure 1.2: Flow diagram of SIR model

We assume that per unit time, an individual contacts with other individuals with rate of β1,

which is independent across the individuals. On a contact with an infected one, a susceptible one

gets infected with probability β2. Based on the two assumptions, we get a differential equation for

S(t):
dS(t)

dt
=−βS(t)I(t) where β = β1β2. (1.29)

We also assume that the infected ones recover at rate γ per unit time. With this, the differential

equations on I(t) and R(t) are defined.

dI(t)
dt

= βS(t)I(t)− γI(t) (1.30)

dR(t)
dt

= γI(t) (1.31)

Equipping with the above equations, we are now ready to analyze the spread of disease on the

social network. The classical SIR model assumes that both the time and space which is the number

of people in each state are continuous. The continuity assumption enables us to model this as a

differential equation. This is a standard assumption in the literature.

The classical SIR model also assumes a well-mixed population, i.e., anyone can infect any other

one. In fact, the homogeneous infection is not realistic. Instead of the homogeneous infection,

many researchers assume heterogeneous interactions between individuals. The relationships be-

tween individuals are characterized by graphs consisting of a set of nodes representing individual

people and edges representing the relationships between two individuals. The graph corresponds

to a binary symmetric adjacency matrix. Each entry in the adjacency matrix is either 1 or 0 which

represents that two particular nodes have relationship or not. In most of the cases the graph assumes
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no direction where the graph is undirected and corresponding adjacency matrix is symmetric. More

complicated models are used to study epidemics on network. For example, weighted edge graph

assigns real number to each edge which represents how deep the relationship between two nodes is.

Directed graph assumes that the relationship between two nodes are not even.

There have been a lot of variations on the model. The SIR model with birth and death assumes

that new nodes are added to the network with particular rates. The number of new coming nodes

is proportional to the number of nodes in the network. Removal of nodes are also assumed, and

it represents the death of nodes. Dynamics of differential equation and the long-run behavior is

the main interests of the research [8], [34]. Besides the SIR model with birth and death process,

a number of mathematical models have studied. The SIR model can be simplified to a SI model

where recovery is not considered. In other words, once a node is infectious, then it can transmit

disease forever. The SIS model admits infected nodes to get back to susceptibles.

1.2.2 Contact Process

Liggett studied SIS epidemic model called contact processes on graphs with countable nodes [39].

A contact process is a continuous time Markov chain defined on {0,1}S where S is a countable set

having a graph structure. In the graph structure, x ∼ y for x,y ∈ S means that two nodes x and y

are connected by an edge. The degree of x is the number of y ∈ S such that y ∼ x. In the contact

process, degree of node is assumed to be finitely bounded. For η ∈ {0,1}S and u ∈ S, η(u) ∈ {0,1}

represents u-th coordinates of η . Denote ηx ∈ S as flipping x-th coordinate from η . In other words,

ηx(u) = η(u) if u 6= x and ηx(u) = 1−η(u) if u = x. (1.32)

For a given infection rate β > 0, the contact process is defined as

η → ηx at rate

 1 if η(x) = 1,

β |{y : y∼ x,η(y) = 1}| if η(x) = 0.
(1.33)

An interpretation is that an infected node x represented as η(x) = 1 recovers with rate 1, and a

healthy node x represented as η(x) = 0 get infected from its infected neighbors at a rate proportional

to the number of infected neighbors. It is clear that the distribution where all the nodes are healthy

with probability 1 is invariant distribution, because there is no transmission of disease if all the

nodes are healthy.
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Figure 1.3: The contact process on a 1-dimensional lattice. Solid circles represent current state.
Dotted circles represent possible change of the current state.

If S is finite, η eventually goes to all-zero state from the theory of finite state Markov chains.

Liggett studied contact processes on the d-dimensional integer lattices. His results showed that there

exists critical value βc such that

• if β ≤ βc, all-healthy distribution is the only invariant distribution, and the probability distri-

bution converges to it weakly for any initial distribution;

• if β > βc, there exists another invariant probability distribution ν , and the probability distri-

bution converges to ν weakly for any initial distribution.

One of the key differences of this contact process from classical model is that this process is

defined on a discrete space {0,1}S. Draief, Ganesh et al. and Mieghem et al. applied a continuous-

time Markov chain to model epidemic dynamics [16], [23], [42]. Ganesh et al. studied contact

processes on finite graphs, focusing on how extinction time is related to graph structures.

Furthermore, a contact process depends on the graph structure, which does not assume specific

homogeneous interactions. Each node is directly influenced by its neighbors. Since heterogeneous

interaction is considered, the graph structure of network plays a central role to construct epidemic

dynamic system.
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1.2.3 Random Networks

Diseases are transmitted from one individual to another by contact, and the pattern of contact forms

network whose structure gives a lot of effect for the dynamics of epidemics. In classical models,

each individual has an equal chance of contact with others. Probably it is an unnatural assumption,

but it provides a remarkable tractability: it allows one to represents a diffusion of disease by a

differential equation, which can be solved analytically or numerically. In fact, we can go beyond

this restriction by incorporating a full network structure into the model. The random graphs provide

a good basis for doing this.

In network analysis, Erdös-Rényi model is one of the most important random graph models [19].

In the G(n, p) model, a graph is constructed by connecting n nodes randomly. Each edge is included

in the graph with probability p, which is independent across the edges. An Erdös-Rényi random

graph has a number of interesting properties as a model of a social network. For instance, the model

shows a phase transition when p(n), the probability of connecting each nodes, as a function of n,

satisfies p(n) =
c
n

. A component is a subset of nodes in the social network that any two nodes are

connected by a path consists of edges in the original social network. If c is small, we can expect

that most nodes are disconnected from one another, and the size of each component is small, and

vice versa. In fact, an Erdös-Rényi random graph has no components of size larger than O(logn)

with high probability if c < 1. On the contrary, most nodes have higher chance to be connected to

each other if c is large. If c > 1, the Erdös-Rényi random graph has a giant component whose size

is Θ(n) with high probability. Another interesting phenomenon is connectivity of random graphs.

Sharp threshold of connectivity on the Erdös-Rényi random graph is p(n) = logn
n . The Erdös-Rényi

random graph has a pair of disconnected nodes with high probability if p(n) = c logn
n for c < 1.

Every pair of nodes is connected with high probability if p(n) = c logn
n for c > 1.

Random geometric graph model was devised to pay attention to the physical distance between

nodes. Random geometric graphs are created by forming a link wherever the distance between

any pair of nodes is less than a specified distance [52]. Specifically, a random geometric graph

G(n,r) is obtained by placing n nodes uniformly at random on a two-dimensional unit torus. Two

nodes are connected if the Euclidean distance of between the nodes is smaller than r. The random

geometric graph model is used successfully in applications where the physical distance between

two nodes is an important factor of connectivity. The critical parameter for connectivity of random

geometric graph model is similar to one of the Erdös-Rényi random graph model. Sharp threshold
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of connectivity on random geometric graph model satisfies πr(n)2 = c logn
n with c = 1. The random

geometric graph is connected with high probability when c > 1, and it is not connected with high

probability when c < 1. However, the random graph has bigger probability of existence of edge

if two nodes consisting the edge are connected to a same node. It is different from Erdös-Rényi

random graph where the probability of existence for an edge is independent to each other.

With the comparison to real network model, a lot of random graph models describing real net-

work have been proposed. One of them is “small-world” network. In the real networks, many pairs

of people are actually connected by a short chain of acquaintance. In other words, even though

two particular people live far from each other, they can reach to the other with the small number

of intermediates in the real networks. Watts and Strogatz suggested small-world network where the

required number of intermediates in the chain from any two particular nodes is relatively smaller

than one of Erdös-Rényi model [64]. In the small-world network, diseases will spread through a

community much faster than Erdös-Rényi model. One of the real-world effect which Erdös-Rényi

model does not provide is peer-effect. If two nodes are related to a particular node, the probability

that two nodes are related is higher than arbitrary two nodes. Roughly speaking, if two people know

a particular person, it is more likely that the two people know each other. The small world network

also provides peer-effect.

One of the most important random graph models describing real world was suggested by Barabási

and Albert [4]. The random graph constructed by the model is scale-free network whose degree is

distributed according to a power law. In a scale-free network, P(k), the fraction of nodes connected

to k other nodes satisfies P(k) ∼ k−γ asymptotically for constant γ . This separates the Barabási-

Albert model from other random graph families where P(k) decreases exponentially as k increases.

The Barabási-Albert model is constructed following preferential attachment condition. The graphs

evolve over time in such a way that nodes with high degree are more likely to get additional edges

than nodes with low degree. In fact, the models have the probability of attaching a new node to a

particular previous node at a specific time point should be proportional to the degree of that node

at that time. The model gives effect where rich nodes get richer than others. The Barabási-Albert

model gets spotlight as it turns out that many kinds of computer networks, including the internet

and World Wide Web is scale-free network.
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1.2.4 Discrete Time Model

Continuous time model including classical SIR model and contact process assumes that the time

period can be divided into infinitely small intervals. It is acceptable in various real world problems,

however it is not in some situations. For example, consider a person living with family and working

at company. He has more chance to contact with his family at night, but works at company and has

more chance to contact with his colleagues during daytime. In this case, applying continuous time

homogeneous model is not appropriate. Discrete time model is useful when dividing time interval

into infinitely small pieces is not reasonable. Discrete time model is also useful when the interaction

among the nodes are periodic. We can define unit interval as the period of the interaction.

A classic discrete time model of infectious disease transmission includes Reed-Frost model. In

the classical Reed-Frost model, the disease is transferred directly from infected nodes to others. A

susceptible node gets infected and is infectious to others only within the following time interval after

contact with an infectious node. The contact probability between any two nodes are identical in the

group within time interval. After a unit time interval, infectious nodes recover from the disease and

become immune to the disease. Comparing to SIR model, a susceptible node in the class “S” gets

infected after contact to infectious nodes. An infected node is in the class “I” and infectious to the

susceptibles only within the unit time interval. After that, the infected node recovers and removed

from epidemic dynamics in the class “R”.

At each time t, the number of infected nodes is denoted as Ct , and the number of susceptibles

is denoted as St . The basic Reed-Frost model assumes homogeneity of risk of infection in the

network. Denote p as the probability of contact between any two nodes in the network, then 1− p

is the probability that the two nodes do not have contact. A susceptible node does not get infected if

the node does not have contact with any infected nodes during the unit interval of time. The model

also assumes that the contact to each node is independent. We may use independence assumption

to compute the probability of no contact to any of infected by multiplying the probabilities. We can

then find the probability distribution of the number of infected nodes in the next generation.

P[Ct+1 = k|Ct ,St ] =

(
St

k

)
(1− (1− p)Ct )k ((1− p)Ct

)St−k
(1.34)

St+1, the number of susceptibles in the next generation is decided by St+1 = St −Ct+1.

The Reed-Frost model is widely studied because the model is simple and provides valuable

insights. Abbey applied the Reed-Forest model to analyze various real-world data[1]. Ortega et
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al. applied fuzzy dynamical system to the Reed-Frost model for epidemic spreading taking into

account uncertainties in the diagnostic of the infection[48].

The discrete time models also have been developed by admitting graph structure. Most of

early works were conducted on the random graph model. Andersson studied stochastic process for

exposing one or several given components of a random graph and applied the process to epidemic

model[3]. Durrett studied how epidemic spread on networks commonly used in ecological models

[17]. Chakrabarti et al. and Wang et al. suggested nonlinear epidemic map defined on fixed graph

topology [10] [62]. Their research reveals that extinction and spread is deeply-related with the

largest eigenvalue of adjacency matrix. Ahn et al. showed that the marginal probability of each

node’s infection for given closed network converges and the limit point depends on the largest

eigenvalue of the network [2].

1.2.5 Applications and Questions of Interest

Epidemic models can be applied to the other field. For example, there is a basic similarity between

the spread of information and the transmission of infectious disease between the individuals. Both

are processes in which spread is based on the contact. Huang et al. and Jacquet et al. studied

the propagation speed of information on the network [28], [29]. Effective modification of graph

structure on given condition to improve propagation speed is one of the interesting problems. The

research on this topic can be applied to effective establishment of computer network.

Applying SIR model to rumors spreading, “S” represents the state where each individual has no

information about the rumors if the person is in the state S. “I” represents the state where each in-

dividual is exposed to the rumors and wants to transfer the rumors to acquaintances. “R” represents

the state where each individual is not excited with the rumor any more. Each individual in the state

R is tired from transferring the rumors and do not care any more. An interesting question on the

size of people who are exposed to the rumors rises here. The size of eventual information holder

distributes with particular probability distribution if probability model is admitted. The distribution

depends on the topology of network, rate of converting each individual at the state S to the state

I, and the rate from state I to R. Expected number of eventual information holder is well-defined

if the probability on transition is defined. Asymptotic behavior of the expectation is an interesting

question. Kenah et al. and Moore et al. applied percolation theory to study the infection of giant

component in the graph [33], [45].

Vaccinations are one of the most effective ways to prevent disease with low cost. A random
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vaccination strategy vaccinates a fraction of the population randomly, using no knowledge of the

network, however this is not an effective way. Cohen et al. and Madar et al. modified the random

vaccination by vaccinating a higher degree nodes of randomly selected nodes [13], [40]. Miller et

al. studied the effectiveness of targeted vaccination at preventing the spread of infectious disease

by comparing vaccination strategies based on no information to complete information on the net-

work [43]. Optimal vaccination strategy for given information is a topic many researchers are still

working on.

On the contrary to the epidemic spread where one of the most important topic is how to prevent

the disease to spread on the network, information diffusion focuses on how to spread the infor-

mation. The idea is applied to viral marketing because a lot of people get information on goods

from their friends or neighbors. The study to make the information on goods spread widely on the

network. Phelps et al. and Richardson et al. studied viral marketing using epidmic model [53], [55].

Here is a short list of questions arising in epidemic spread.

• How the network topology affects the speed of information propagation? What is the effective

way to modify network to improve the speed?

• What is the size of network exposed to the disease in the SIR model? Can we apply this to

other epidemic models?

• How can we measure the effect of vaccination? What are the cost-effective vaccination algo-

rithms?

• How can we apply epidemic model to the viral marketing? How can we measure the effect of

the marketing?

• What is the dynamics of SIS epidemic models?

1.2.6 Contribution

The works on epidemic spreads in this thesis are conducted to answer the following questions :

• Can we study the global dynamics of the nonlinear epidemic model? Can we say what hap-

pens when the linearized model is unstable?

• Can we relate this to the “true” epidemic model which is a Markov chain with 2n states?



19

In this dissertation, we analyze the various epidemic models. The main works are conducted

on the discrete-time model. In the Chapter 3, we analyze the dynamics of the nonlinear epidemic

map where domain represents each node’s marginal probability of being infected. The dynamics of

epidemic map is simple when the epidemics dies out. The origin which represents the extinction of

epidemics are globally stable. On the contrary to the previous work which focuses on the extinction

of epidemics or how to eradicate epidemics, we analyze the dynamics of epidemics when the epi-

demics do not die out. When the Jacobian matrix of the nonlinear map at the origin is not stable, the

origin is an unstable fixed point of the nonlinear epidemic map. In the epidemic map proposed by

Chakrabarti et al., there exists a unique nontrivial fixed point other than the origin. The nontrivial

fixed point is globally stable, i.e., every point other than the origin converges to the nontrivial fixed

point by time passes.

We also analyze the second model which admit immune effect. The immune-admitting model

also has the unique nontrivial fixed point. However, the nontrivial fixed point in the immune-

admitting model is not always stable. To analyze this, we give necessary and sufficient conditions

for the nontrivial fixed point being locally stable. We apply the stability condition to the random

graph families, and show that the nontrivial fixed point is locally stable with high probability if

P[(d(n)
min)

2 > a · d(n)
max] goes to 1 as n goes to infinity for any fixed a > 0, where d(n)

min and d(n)
max are

the minimum and the maximum degree of given random graph family with n vertices. The result

can be applied to any random graph families. Since the degree distribution of Erdös-Rényi model is

concentrated on the expected degree, the nontrivial fixed point is locally stable with high probability.

We propose a continuous time epidemic model. The continuous time model is based on the

nonlinear epidemic map which is analyzed in the previous section. The origin is also an equilibrium

point, and stability condition of the origin is same with one of the discrete time model. There

also exists a unique nontrivial equilibrium point if the origin is unstable. The nontrivial fixed point

is globally stable in the continuous time model even though the model is based on the immune-

admitting model where stability of nontrivial fixed point is not guaranteed. To prove the stability,

we suggest a Lyapunov function that is always decreasing except equilibrium points.

In the Chapter 4, we work on the Markov chain model on finite graph. In the Markov chain

model each node is either healthy or infected, which gives 2n possible states where n is the number of

nodes in the network. The mass probability on all-the-healthy state is unique stationary distribution

in the Markov chain model on finite graph because there is no more spread of disease. Since all the

initial distribution on the Markov chain converges to the stationary distribution after long enough
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time, we study the “long enough time” which does not give any practical information. We give an

upper bound of the probability that the epidemics does not die out until time t when the initial state

is given.

To give a rigorous proof, we define a partial order which is defined on the set of the probability

distributions on all the possible 2n states. The upper bound is provided using the nonlinear epidemic

map which is studied in the previous chapter. The nonlinear epidemic map is an approximation of

the Markov chain model, and the upper bound shows that two models are closely related. With

the upper bound, we provide a practical result that the mixing time is O(logn) if the origin is

globally stable in the nonlinear epidemic map. The O(logn) mixing time can be proved without

the partial order which is necessary to give an upper bound of the survival probability using the

nonlinear epidemic map. The alternative proof for O(logn) mixing time uses linear programming

method. We apply this result to show that the Markov chain model based on the immune-admitting

nonlinear epidemic map also has O(logn) mixing time if the origin is stable in the discrete time

model.

Finally, we study the special case of continuous time Markov chain model, where the underlying

graph is fully connected. We show that the expect extinction time of disease is exponentially long

if the origin is not stable in the nonlinear epidemic map. Since we cannot observe the epidemic

extinction if the extinction time is exponentially long, it means that the epidemics do not die out

practically.
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Chapter 2

Random Riccati Equation

2.1 Introduction

In this chapter, we discuss geometric convergence of random Riccati recursions. We use superscript

for time index in this chapter. Consider a linear time-varying state-space model of the form of

 x(t+1) = F(t)x(t)+G(t)u(t)

y(t+1) = H(t)x(t)+ v(t)
E

u(t)

v(t)

[(u(t))T (v(t))T
]
=

Q(t) 0

0 R(t)

 (2.1)

where x(t) ∈Rn is the unobserved state vector, y(t) ∈Rm is the m-dimensional observed measurement

vector. u(t) ∈ Rp and v(t) ∈ Rm are zero-mean white noises which represent process and measure-

ment noise respectively. F(t) ∈Rn×n, G(t) ∈Rn×p, and H(t) ∈Rm×n are system matrices. The initial

state of the system, x(0) is also considered to be zero-mean random vector which is independent

from any of u(t) and v(t).

It is well-known that optimal estimate of x(t) can be recursively expressed as

x̂(t+1) = F(t)x̂(t)+F(t)P(t)(H(t))T (R+H(t)P(t)(H(t))T )−1(y(t)−H(t)x̂(t)) (2.2)

In the time-invariant case, i.e.,

F(t) = F, G(t) = G, H(t) = H, Q(t) = Q, R(t) = R (2.3)

the problem is well-studied. The minimum mean square error recursive estimator of x(t) based on

the y(t) is a Kalman filter. The estimation error covariance matrix P(t) = E(x(t)− x̂(t))(x(t)− x̂(t))T
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provided Kalman filter satisfies the following Riccati recursions :

P(t+1) = FP(t)FT −FP(t)HT (R+HP(t)HT )−1HP(t)FT +GQGT (2.4)

It is well-known that P(t) in (2.4) converges if (F,G) is stabilizable and (F,H) is detectable. The

pair (F,G) is called stabilizable if and only if there is no left eigenvector of F , corresponding to an

unstable eigenvalue of F , that is orthogonal to G. The pair {F,H} is called detectable if and only if

{FT ,HT} is stabilizable. [30]

We study the Riccati recursions when the regressor matrix H(t) is time-varying. We assume that

H(t) is random matrix distributed according to a given distribution. Measuring average-eigenvalue

distribution of P(t) was studied by Vakili et al. [60]. We focus on convergence of probability distri-

bution of P(t). Specifically, we prove that the probability distribution of P(t) converges geometrically

fast.

In the next section, we describe the random Riccati recursions and the probability distribution of

H(t), the regressor matrix. We also describe the general property of geometric convergence defining

the distance between two probability measures. To get geometric convergence, we need to verify

that the maximum distance between measures at particular time is strictly less than 1, which is

the convergence rate. We show that the distance between any two probability distributions of P(t)

depending an initial point are strictly less than 1 after particular time depending on size of H(t).

To prove this, we show that the probability distribution with any initial point has a common area

of support which has strictly positive measure. We apply a well-known topological property that

a continuous function defined in a compact space has a maximum. To apply this, we consider the

probability distribution with an initial point as a map from an initial point to a measure space. We

show that this is a continuous map. To get a compact space we compactify Sn
++, the space of positive

definite matrices by admitting 0 and ∞ as eigenvalues of matrices. The main result is obtained by

combining all the intermediate results studied in this chapter.

2.2 Model Description

Let Sn denote family of n×n symmetric matrices, Sn
+ denote family of n by n positive-semidefinite

matrices, and Sn
++ denote family of n by n positive definite matrices. The Riccati recursions with
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time-varying H is defined as follows.

P(t+1) = FP(t)FT −FP(t)(H(t))T (R+H(t)P(t)(H(t))T )−1H(t)P(t)FT +Q (2.5)

P(0) ∈ Sn
++,Q ∈ Sn

++,R ∈ Sm
++, and F ∈ Rn×n in (2.5). m by n random matrix H(t) is the only

factor that generates randomness of the system. We assume that H(t) is independently and iden-

tically distributed according to a given probability density function. We further assume that the

probability distribution of H(t) satisfies several conditions.

Definition 1 pH is a probability density function of H i.e., P[H(t) ∈ E] =
∫

E pH(H)dH for any

measurable set E ⊂ Rm×n satisfying the following conditions.

(a) The support of pH is Rm×n. That is, P[H(t) ∈ E]> 0 if E has positive Lebesgue measure.

(b) pH : Rm×n→ R+ is continuous.

(c) It decays faster than any polynomial. For any d > 0, there exists Md such that pH(H) <

‖H‖−d
F for all ‖H‖F > Md where ‖ · ‖F is Frobenius norm defined by square-root of all elements’

square-sum.

Example 2.2.1 A standard normal distribution pH(H) = (2π)−
mn
2 exp(−1

2‖H‖
2
F) is a distribution

satisfying all the conditions in definition 1.

We do not assume that each element of H(t) is independent to each other.

Lemma 2.2.2 There are diagonal matrix R̃ and random matrices H̃(t) which gives the same proba-

bility distribution to the system with R and H(t).

Proof: For fixed Õ, define R̃ = ÕRÕT . We can rewrite (2.5) with H̃(t) = ÕH(t)

P(t+1) = FP(t)FT −FP(t)(H̃(t))T (R̃+ H̃(t)P(t)(H̃(t)))T )−1H̃(t)P(t)FT +Q (2.6)

We can interpret that the probability distribution function of H̃(t) is rotated from one of H(t) by

multiplying the orthogonal matrix Õ. It is easy to see that the probability density function of H̃(t)

also satisfies all the conditions in definition 1. Moreover, the system with R̃, H̃(t) and random Riccati

recursion with R, H(t) have the same probability distribution.

We can assume that R is a diagonal matrix without loss of generality by Lemma 2.2.2. The

assumption that R is diagonal simplifies the calculation of P(t+1) with P(t) and each column of H(t).

It is convenient to verify the support of P(t) with a given initial point P(0).
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Definition 2 µ
(t)
P is a probability measure such that µ

(t)
P (E) = P[P(t) ∈ E|P(0) = P].

µ
(t)
P is the probability distribution of P(t) where its initial point is given as P. It is necessary to

define a metric on the space of probability measures to show geometric convergence of the probabil-

ity measure. We show that the distance between any two initial probability distributions converges

geometrically fast using the metric. We use the total variation distance.

Definition 3 For two measures µ,ν , dTV (µ,ν) = supS |µ(S)−ν(S)|.

We define the support of µ
(t)
P depending on an initial point. The support of P(t) plays a central

role in this chapter.

Definition 4 Supp(t)P is the support of µ
(t)
P when P(0) = P. That is, x ∈ Supp(t)P if and only if every

open ball centered at x has positive measure under µ
(t)
P . In other words,

Supp(t)P = {x ∈ Sn
+ : ∀B(x,ε),µ(t)

P (B(x,ε))> 0} (2.7)

2.3 General Property for Geometric Convergence

In this section, we describe how total variation distance of two probability measures decays geo-

metrically fast. The material in this section is not only for random Riccati recursions, but for any

random process. We follow the notation from [15].

Definition 5 P(t)(ζ ,E) = P[P(t) ∈ E|P(0) = ζ ]. M(t)
E = sup

ζ

P(t)(ζ ,E), m(t)
E = inf

ζ

P(t)(ζ ,E).

The following inequality shows that the supremum of probability measure on particular mea-

surable set depending on an initial point decreases as time passes.

M(t+l)
E = sup

α

P(t+l)(α,E) (2.8)

= sup
α

∫
P(l)(ξ ,E)(P(t)(α,dξ )) (2.9)

≤ sup
α

∫
M(l)

E (P(t)(α,dξ )) = M(l)
E (2.10)

Similarly, we can argue that m(t+l)
E ≥ m(l)

E
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· · · ≤ m(t)
E ≤ m(t+l)

E ≤ ·· · ≤M(t+l)
E ≤M(l)

E ≤ ·· · (2.11)

If lim
t→∞

M(t)
E = lim

t→∞
m(t)

E for every measurable set E, the probability measure converges to a steady

state. The steady state is also a probability measure whose value on E is a limit of m(t)
E and M(t)

E .

M(t+l)
E −m(t+l)

E (2.12)

= sup
α,β

P(t+l)(α,E)−P(t+l)(β ,E) (2.13)

= sup
α,β

∫
P(l)(ξ ,E)(P(t)(α,dξ )−P(t)(β ,dξ )) (2.14)

≤ sup
α,β ,S

∫
S

M(l)
E (P(t)(α,dξ )−P(t)(β ,dξ ))+

∫
Sc

m(l)
E (P(t)(α,dξ )−P(t)(β ,dξ )) (2.15)

= sup
α,β ,S

∫
S
(M(l)

E −m(l)
E )(P(t)(α,dξ )−P(t)(β ,dξ )) (2.16)

=
(

M(l)
E −m(l)

E

)(
sup

α,β ,S
P(t)(α,S)−P(t)(β ,S)

)
(2.17)

Definition 6 π
(t) = sup

α,β

dTV (µ
(t)
α ,µ

(t)
β
) = sup

α,β ,S
P(t)(α,S)−P(t)(β ,S)

We can interpret π(t) as the maximum distance of probability distributions from any initial point

at time t. If π(t) < 1 for particular t, then geometric convergence follows. It is obvious that π(t) ≤ 1

for every t. However, in many mathematical problems proving that supremum of some set where

every element is less than or equal to 1 is strictly less than 1 is challenging.

2.4 Common Area of Support

π(t) = 1 if Supp(t)α and Supp(t)
β

are disjoint for some α,β . As a result, the system does not converge

geometrically fast if Supp(t)α and Supp(t)
β

are disjoint for some α,β . We investigate particular t

where Supp(t)α and Supp(t)
β

have common area of the supports having positive probability measure.

We study the support of P(t) for a given initial point. Specifically, we compare Supp(t)A to Supp(t)B

when the matrix B is greater than A, i.e., B−A ∈ Sn
+. It is well-known that Riccati equation is
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monotone.

(
FBFT −FBHT (R+HBHT )−1HBFT )− (FAFT −FAHT (R+HAHT )−1HAF

)
∈ Sn

+

if B−A ∈ Sn
+ (2.18)

Since Riccati equation is monotone, the maximal elements in Supp(t)B is greater than Supp(t)A if B is

greater than A i.e., B−A ∈ Sn
+. It is easy to see that the maximal element of Supp(1)A is FT AF +Q.

If F is nonsingular, monotonicity of the maximal element becomes strict. However, it is not trivial

to check that whether the minimal element in Supp(t)A is always strictly smaller than Supp(t)B . We

show that the minimal element of Supp(t)A is in Supp(t)B after finite t. As a result, Supp(t)B includes

Supp(t)A after that. To give a proof, we suggest an algorithm to choose regresor matrix H(t) to make

B(t) equal to A(t) for given A(t).

R = diag(r0, · · · ,rm−1) without loss of generality by Lemma 2.2.2. For each row vector (H(t)) j

such that H(t) = ((H(t))T
0 · · ·(H(t))T

m−1)
T ,

P(t)−P(t)(H(t))T (R+H(t)P(t)(H(t))T )−1H(t)P(t)

= ((P(t))−1 +H(t)R−1(H(t))T )−1 =

(
(P(t))−1 +

m−1

∑
j=0

1
r j
(H(t))T

j (H
(t)) j

)−1

(2.19)

Define Ak for k = am+b with b ∈ {0,1, · · · ,m−1}.

Ak =


A if k = 0,

Ak−1−
Ak−1hk−1hT

k−1Ak−1

rk−1+hT
k−1Ak−1hk−1

if m - k,

F
(

Ak−1−
Ak−1hk−1hT

k−1Ak−1

rk−1+hT
k−1Ak−1hk−1

)
FT +Q if m | k, k > 0.

(2.20)

Alm = P(l) by choosing P(0) = A, and rk = rb, hk = (H(a))T
b for all a ∈ {0, · · · , l − 1}, b ∈

{0, · · · ,m−1}. hk is a column vector while (H(a))b is a row vector. This describes Ak when random

H has a realization.

We apply the same idea to B. Define Bk for k = am+b with b ∈ {0,1, · · · ,m−1}. However, we
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suppose that realization of H for Bk is different from one for Ak.

Bk =


B if k = 0,

Bk−1−
Bk−1gk−1gT

k−1Bk−1

rk−1+gT
k−1Bk−1gk−1

if m - k,

F
(

Bk−1−
Bk−1gk−1gT

k−1Bk−1

rk−1+gT
k−1Bk−1gk−1

)
FT +Q if m | k, k > 0.

(2.21)

We now claim that we can choose g0,g1, · · · ,gn−1 to make Bn = An for a given An with B−A ∈

Sn
++.

We represent An as below for n = cm+d with d ∈ {0,1,2, · · · ,m−1}.

An = FcA(Fc)T −
n−1

∑
k=0

Fdc−
k
m e

AkhkhT
k Ak

rk +hT
k Akhk

(Fdc−
k
m e)T +

c−1

∑
a=0

FaQ(Fa)T (2.22)

We can represent Bn similarly.

We give a lemma which is useful to compute rank of a positive semidefinite matrix in the algo-

rithm which will be given later.

Lemma 2.4.1 For C ∈ Sn
+ and v ∈ Rn satisfying vTCv > 0, the following statements hold.

C−CvvTC
vTCv

∈ Sn
+ and rank

(
C−CvvTC

vTCv

)
= rank(C)−1 (2.23)

Proof: Define V0 as null space of C. It is obvious that v /∈V0 because vTCv > 0. We can choose

V1 such that v ∈ V1 and Rn = V0⊕V1 (V0 and V1 don’t have to be orthogonal.) Then, < v1,v2 >=

vT
1 Cv2 is well-defined inner product on V1.

(C−CvvTC
vTCv

)v =Cv−Cv = 0 (2.24)

The equation above guarantees that Null(C− CvvTC
vTCv ) ⊃ {v}. It is trivial to check that Null(C−

CvvTC
vTCv )⊃ Null(C). We get Null(C− CvvTC

vTCv )⊃ Null(C)⊕{v}.

For any u ∈ Rn, u = u0 +u1 such that u0 ∈V0,u1 ∈V1

uT (C−CvvTC
vTCv

)u = uT
1 (C−

CvvTC
vTCv

)u1 =
uT

1 Cu1vTCv−uT
1 CvvTCu1

vTCv
≥ 0 (2.25)

The equality holds only for u1 = αv with some scalar α by the equality condition of Cauchy-

Schwarz. That means u ∈ Null(C)⊕{v} if u ∈ Null(C− CvvTC
vTCv ). Null(C− CvvTC

vTCv )⊂ Null(C)⊕{v}.
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From the discussion above, Null(C− CvvTC
vTCv ) = Null(C)⊕{v}. It completes the proof.

We show that Supp(t)B includes Supp(t)A when B−A ∈ Sn
++ by the following lemma. The lemma

is based on the assumption that F is nonsingular.

Lemma 2.4.2 Suppose that F ∈ Rn×n is nonsingular. For given A,B ∈ Sn
++ satisfying B−A ∈ Sn

+

and h0,h1, · · · ,hn−1, it’s possible to find g0,g1, · · · ,gn−1 such that Bn = An.

Proof: Define a symmetric matrix Ck as below.

Ck = Fc(B−A)(Fc)T +
n−1

∑
j=0

Fdc−
j

m e
A jh jhT

j A j

r j +hT
j A jh j

(Fdc−
j

m e)T −
k−1

∑
j=0

Fdc−
j

m e
B jg jgT

j B j

r j +gT
j B jg j

(Fdc−
j

m e)T

(2.26)

C0 is decided by given condition A, B and h0,h1, · · · ,hn−1. Ck for k > 0 is determined by choosing

g0,g1, · · · ,gk−1. From the definition of Ck, it’s easy to verify that

Ck = Fdc−
k
m e(Bk−Ak)(Fdc−

k
m e)T +

n−1

∑
j=k

Fdc−
j

m e
A jh jhT

j A j

r j +hT
j A jh j

(Fdc−
j

m e)T (2.27)

We suggest an algorithm choosing g0,g1, · · · ,gn−1.

Case 1. If n− k− rank(Ck)> 0, gk = hk.

Case 2. If n− k− rank(Ck) = 0, find gk satisfying the equation below for some v such that

vTCkv > 0.

Fdc−
k
m e

BkgkgT
k Bk

rk +gT
k Bkgk

(Fdc−
k
m e)T =

CkvvTCk

vTCkv
(2.28)

Before explaining how to find gk satisfying (2.28), we claim that Ck ∈ Sn
+ for every k by induction.

It is obvious that C0 ∈ Sn
+. Assume that Ck ∈ Sn

+. If n− j− rank(C j) > 0 for every j ≤ k,

then g j = h j for all j ≤ k and it makes Bk+1−Ak+1 ∈ Sn
+ by the monotonicity of Riccati equation.

Ck+1 ∈ Sn
+ by (2.27) and rank(Ck+1) = rank(Ck)−1 or rank(Ck) because Ck+1 is just Ck or a positive

semidefinite matrix whose rank is the same with Ck minus rank-one positive-semi-definite matrix

by definition of Ck. Specifically,

Ck+1 =Ck−Fdc−
k
m e

AkhkhT
k Ak

rk +hT
k Akhk

(Fdc−
k
m e)T

or Ck+1 = FCkFT −Fdc−
k
m e

AkhkhT
k Ak

rk +hT
k Akhk

(Fdc−
k
m e)T (2.29)

If we find out gk in Case 2, Ck+1 ∈ Sn
+ with rank(Ck+1) = n− k−1 by the Lemma 2.4.1. It means

that we also need to consider Case 2 for Ck+1. From both cases, Ck ∈ Sn
+ for every k is true.
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It is obvious that n− k− rank(Ck) ≤ 0 at k = n. n− k− rank(Ck) goes down by 1 or stays in

Case 1 as k increases by 1. Since n− k− rank(Ck) is non-positive at the end and it goes down by 1,

n− k− rank(Ck) should be zero at some particular k. It keeps staying at zero by Case 2 after that.

Eventually, n− k− rank(Ck) = 0 at k = n and it’s equivalent to rank(Cn) = 0. It means that Cn = 0.

We find out g0,g1, · · · ,gk−1 satisfying Bn = An.

It is enough to show that we can find out gk in Case 2. We define C+
k as pseudo-inverse of Ck.

(2.28) is satisfied if Ckv = Fdc−
k
m eBkgk and the following equation is true :

rk +gT
k Bkgk = vTCkv = vTCkC+

k Ckv = gT
k Bk(Fdc−

k
m e)TC+

k Fdc−
k
m eBkgk (2.30)

If we can find gk ∈ Rn such that

gT
k (Bk(Fdc−

k
m e)TC+

k Fdc−
k
m eBk−Bk)gk > 0 (2.31)

then we can make gk satisfying (2.30) by multiplying proper scalar to gk.

Define Zk and Dk as below.

Zk = B
1
2
k (F

dc− k
m e)T Dk = (Z−1

k )TCkZ−1
k ∈ S

n
+ (2.32)

C+
k = Z−1

k D+
k (Z

−1
k )T by property of pseudo-inverse matrix. (2.30) is equivalent to the following

equation.

rk = gT
k (Bk(Fdc−

k
m e)TC+

k Fdc−
k
m eBk−Bk)gk (2.33)

= ((F−dc−
k
m e)T gk)

T (ZT
k ZkC+

k ZT
k Zk−ZT

k Zk)((F−dc−
k
m e)T gk) (2.34)

= ((F−dc−
k
m e)T gk)

T (ZT
k (D

+
k − In)Zk)((F−dc−

k
m e)T gk) (2.35)

= (B
1
2
k gk)

T (D+
k − In)(B

1
2
k gk) (2.36)

The subscript of In indicates that In is the n-dimensional identity matrix.

Define Xk as the following.

Xk =
n−1

∑
j=k+1

Fdc−
j

m e−dc−
k
m e

A jh jhT
j A j

r j +hT
j A jh j

(Fdc−
j

m e−dc−
k
m e)T (2.37)



30

In−Dk is represented using Xk as the following.

In−Dk = (Z−1
k )T Fdc−

k
m e
(

Ak−
AkhkhT

k Ak

rk +hT
k Akhk

−Xk

)
(Fdc−

k
m e)T Z−1

k (2.38)

= B−
1
2

k

(
Ak−

AkhkhT
k Ak

rk +hT
k Akhk

−Xk

)
B−

1
2

k (2.39)

We know that Ak−
AkhkhT

k Ak

rk +hT
k Akhk

∈ Sn
++. Define αk as below.

αk =

∥∥∥∥A−1
k +

1
rk

hkhT
k

∥∥∥∥−1

then Ak−
AkhkhT

k Ak

rk +hT
k Akhk

−αkIn ∈ Sn
+ (2.40)

Define W as null space of B−
1
2

k XkB−
1
2

k . For all w ∈W ,

wT (In−Dk)w = wT B−
1
2

k

(
Ak−

AkhkhT
k Ak

rk +hT
k Akhk

)
B−

1
2

k w (2.41)

≥ αk‖B
− 1

2
k w‖2 (2.42)

≥ αk(‖B
1
2
k ‖
−1‖w‖)2 (2.43)

=
αk

‖Bk‖
‖w‖2 (2.44)

dim(W ) ≥ k+1 because Xk is summation of n− k−1 rank-one positive-semi-definite matrices by

(2.37).

Define V as span of eigenvectors of Dk corresponding to positive eigenvalues. Then, dim(V ) =

rank(Dk) = rank(Ck) = n− k by assumption of Case 2.

There is nonzero u ∈W ∩V .

(
D

1
2
k u
)T

(D+
k − In)

(
D

1
2
k u
)
= uT D

1
2
k (D

+
k − In)D

1
2
k u (2.45)

= uT u−uT Dku (2.46)

= uT (In−Dk)u (2.47)

≥ αk

‖Bk‖
‖u‖2 > 0 (2.48)

By choosing gk as B−
1
2

k D
1
2
k u with u of proper norm, (2.30) holds. It completes the proof.

We extend Lemma 2.4.2 to the singular F in the following theorem.



31

Theorem 2.4.3 If A,B ∈ Sn
++ satisfy B−A ∈ Sn

+, then Supp(t)A ⊂ Supp(t)B for t ≥ n
m

Proof: Since the support of pH is Rm×n, Btm with any g0, · · · ,gtm−1 is in the support, Supp(t)B .

It is enough to show that we can find out g0,g1, · · · ,gtm−1 such that Btm = Atm for any given Atm.

First, we claim that it’s possible to find out g0,g1, · · · ,gn−1 such that Bn = An for given A,B ∈

Sn
++ satisfying B−A∈Sn

+ and h0,h1, · · · ,hn−1. We already proved it for nonsingular F in Lemma 2.4.2.

For singular F , define Fε = F + εIn. There is δ > 0 such that Fε is nonsingular for all 0 <

ε < δ . For each {εl}∞
l=1 converging to 0, we can find (g0,g1, · · · ,gn−1) which makes Bn = An. If

(g0,g1, · · · ,gn−1) corresponding to εl converges to some point, the limit point makes Bn = An for F

and it’s exactly what we want.

If (g0,g1, · · · ,gn−1) corresponding to εl is bounded independent to εl , then they are in compact

space, and have convergent subsequence. The limit point of the subsequence is what we want.

We prove the claim by showing that (g0,g1, · · · ,gn−1) of Lemma 2.4.2 has ε-independent upper

bound. gk = B−
1
2

k D
1
2
k u, then uT (In−Dk)u = rk > 0 by (2.36) and (2.47). u is also bounded since

uT u≤ rk‖Bk‖
αk

by (2.48).

‖gk‖2 = gT
k gk = uT D

1
2
k B−1

k D
1
2
k u (2.49)

≤ ‖B−1
k ‖‖D

1
2
k u‖2 = ‖B−1

k ‖(u
T Dku) (2.50)

< ‖B−1
k ‖‖u‖

2 (2.51)

≤
rk‖Bk‖‖B−1

k ‖
αk

(2.52)

Since {εl}∞
l=1 is sequence which is in (0,δ ), ‖F + εlIn‖ has upper bound depending only on ‖F‖

and δ . With that, ‖Bk‖ has an upper bound as below.

‖Bk‖ ≤

∥∥∥∥∥∥F
b k

m c
ε B(F

b k
m c

ε )T +
b k

m c−1

∑
a=0

Fa
ε Q(Fa

ε )
T

∥∥∥∥∥∥ (2.53)

For k = am, ‖A−1
k ‖ ≤ ‖Q−1‖. For k = am+b with 0 < b < m,

‖A−1
k ‖=

∥∥∥∥∥A−1
am +

b−1

∑
j=0

1
r j

h jhT
j

∥∥∥∥∥≤ ‖Q−1‖+
b−1

∑
j=0

‖h j‖2

r j
(2.54)
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With that, 1
αk

is upper bounded as below.

1
αk

=

∥∥∥∥A−1
k +

1
rk

hkhT
k

∥∥∥∥≤ ‖A−1
k ‖+

‖hk‖2

rk
(2.55)

In Case 1 of Lemma 2.4.2, gk is bounded because gk = hk, and Bk is also bounded by similar

inequality above.

We finish the proof by induction. It is obvious that ‖B0‖,‖B−1
0 ‖,

1
α0

are bounded because they

are determined by the given condition. Then, g0 also has ε-independent upper bound by (2.52).

Assume that gl and B−1
l have ε-independent upper bound for all l < k. If k = am, ‖B−1

k ‖ ≤ ‖Q−1‖

and gk is also bounded by (2.52). For k = am+b with 0 < b < m,

‖B−1
k ‖=

∥∥∥∥∥B−1
am +

b−1

∑
j=0

1
r j

g jgT
j

∥∥∥∥∥≤ ‖Q−1‖+
b−1

∑
j=0

‖g j‖2

r j
(2.56)

gk is also bounded by (2.52). It completes the proof of the claim.

Choosing gk = hk for n ≤ k ≤ tm− 1 guarantee that Btm = Atm. It completes the proof of

Supp(t)A ⊂ Supp(t)B .

It is obvious that Supp(t)0 , the support of P(t) where an initial point is the zero-matrix, is same

with Supp(t−1)
Q . Since Supp(t)A ⊃ Supp(t)0 for any positive semidefinite matrix A, the following re-

mark holds.

Remark 1 Supp(t)A ⊃ Supp(t−1)
Q for any A ∈ Sn

+ and t > n
m +1

Supp(t−1)
Q is the common area of support at time t with any initial point. Furthermore, Supp(t−1)

Q

has nonzero probability measure for an initial point. The proof in this section requires the support

of H to be the whole mn-dimensional space to choose regressor vectors of B everywhere.

2.5 Computation of Probability Density Function

In this section, we compute probability density function using matrix calculus. From this section,

we suppose that F ∈ Rn×n in (2.5) is nonsingular. We first study basic matrix calculus. We follow

the notation of [46]
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Definition 7 f (t)(P, ·) is probability density function of measure µ
(t)
P (·) i.e.,

µ
(t)
P (E) =

∫
E

f (t)(P,C)dC (2.57)

If F is singular, f (t)(P, ·) is not defined. In this section, our goal is evaluating the actual value of

f (t) : Sn
++×Sn

++→R+. Roughly speaking, f (t)(P,C) is the probability density function of P(t) =C

given P(0) = P.

Definition 8 For an arbitrary n×m matrix X, dX denotes the exterior product of the mn elements

of dX

dX =
m∧

j=1

n∧
i=1

dxi j (2.58)

For a symmetric n by n matrix S, dS denotes the exterior product of the 1
2 n(n+1) distinct elements

of dS

dS =
∧

1≤i≤ j≤n

dsi j (2.59)

For a lower triangular n by n matrix L, dL denotes the exterior product of the 1
2 n(n+ 1) lower

triangular elements of dL

dL =
∧

1≤ j≤i≤n

dli j (2.60)

Lemma 2.5.1 If X = BY where X ,Y are n×m matrices and B is a fixed nonsingular n×n matrix

then

(dX) = (det(B))m(dY ) (2.61)

Proof: It is Theorem 2.1.4 of [46]

Lemma 2.5.2 If S is an n×n positive definite matrix and S = LLT where L is lower-triangular with

positive diagonal elements then,

(dS) = 2n
n

∏
i=1

ln+1−i
ii (dL) (2.62)

Proof: It is Theorem 2.1.9 of [46]

Lemma 2.5.3 Let Z be an a× b ( a ≤ b ) matrix of rank a and write Z = LO, where O is a× b

matrix with OOT = Ia and L is an a× a lower-triangular matrix with positive diagonal elements.

Then

(dZ) = 2n
a

∏
i=1

lb−i
ii (dL)(dO) (2.63)
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where dO is volume element of Stiefel manifold Va,b = {O ∈ Ra×b : OOT = Ia}

Proof: It is Theorem 2.1.13 of [46]

Remark 2

Vol(Va,b) =
∫

Va,b

dO =
2aπab/2

Γa(b/2)
where Γm(n) = π

m(m−1)
4

m

∏
i=1

Γ(n− 1
2
(i−1)) (2.64)

Definition 9 For fixed t satisfying mt > n, H̄ = [(H(0))T (H(1))T · · · (H(t−1))T ]∈Rn×mt . We rewrite

H̄ = [h̄0 h̄1 · · · h̄mt−1].

µ
(t)
P (E) =

∫
{H̄:P(0)=P,P(t)∈E}

p̄(H̄)dH̄ (2.65)

where p̄(H̄) is probability density function of H̄. p̄(H̄) = ∏
t−1
l=0 pH(H(l)) by definition of the first

section that H(l) is i.i.d.

Define Ak as in the previous section.

Ak =


A if k = 0,

Ak−1−
Ak−1h̄k−1h̄T

k−1Ak−1

rk−1+h̄T
k−1Ak−1h̄k−1

if m - k,

F
(

Ak−1−
Ak−1h̄k−1h̄T

k−1Ak−1

rk−1+h̄T
k−1Ak−1h̄k−1

)
FT +Q if m | k, k > 0.

(2.66)

It is obvious that P(t) = Atm if P(0) = A.

Atm = F tA(FT )t −
tm−1

∑
k=0

Fdt−
k
m e

Akh̄kh̄T
k Ak

rk + h̄T
k Akh̄k

(FT )dt−
k
m e+

t−1

∑
l=0

F lQ(FT )l (2.67)

Definition 10 Ψ1 : Rn×tm→ Rn×tm is defined by Ψ1(H̄) = Ḡ where

ḡk = (Ḡ)k =
1√

rk + h̄T
k Akh̄k

Fdt−
k
m eAkh̄k (2.68)

Lemma 2.5.4 Ψ1 is one-to-one.

Proof: Suppose that Ψ1(H̄) = Ḡ = Ḡ′ = Ψ1(H̄ ′) for two n×mt matrices H̄, H̄ ′.
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Assume that h̄l = h̄′l for every l ∈ {0, · · · ,k−1}, then Ak = A′k and

ḡk = ḡ′k ⇔ 1√
rk + h̄T

k Akh̄k

h̄k =
1√

rk + h̄′Tk Akh̄′k

h̄′k (2.69)

⇔ h̄′k = α h̄k such that
1√

rk + h̄T
k Akh̄k

=
α√

rk +α2h̄T
k Akh̄k

(2.70)

⇔ h̄′k = α h̄k and α = 1 (2.71)

The discussion above holds for k = 0. By induction, h̄k = h̄′k for every k if Ψ1(H̄) = Ψ1(H̄ ′)

We can rewrite (2.67) with Ḡ.

Atm = F tA(FT )t −
tm−1

∑
k=0

ḡkḡT
k +

t−1

∑
l=0

F lQ(FT )l = F tA(FT )t − ḠḠT +
t−1

∑
l=0

F lQ(FT )l (2.72)

Lemma 2.5.5 Ψ1(H̄) is full-rank with probability 1

Proof: H̄ is full-rank with probability 1 because probability density function of H̄ is continu-

ous, and set of non-full-rank matrices is measure-zero. Since Ψ1 is one-to-one by Lemma 2.5.4 and

continuous, the range of Ψ1({H̄ : H̄ is full-rank}) has measure 1.

Lemma 2.5.6 If Z is a×b real matrix of rank a ( a≤ b ) then Z can be uniquely written as Z = LO,

where O is a× b matrix with OOT = Ia and L is an a× a lower-triangular matrix with positive

diagonal elements.

Proof: It is well-known as QR-decomposition.

Definition 11 For full-rank Ḡ ∈ Rn×tm, Ψ2(Ḡ) = (L,O) where L is lower-triangular n× n matrix

with positive diagonal elements, O ∈Vn,tm and LO = Ḡ.

Ψ2(Ḡ) is well-defined with probability 1 and it’s one-to-one in that case. It is enough to consider

case of probability 1 on integration. We can rewrite (2.72) with (L,O).

Atm = F tA(FT )t −LOOT LT +
t−1

∑
l=0

F lQ(FT )l = F tA(FT )t −LLT +
t−1

∑
l=0

F lQ(FT )l (2.73)

Lemma 2.5.7

dḠ =

(
tm−1

∏
k=0

(rk + h̄T
k Akh̄k)

− n+2
2 det(Ak)rk

)
det(F)

mt(t+1)
2 dH̄ (2.74)
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Proof: For arbitrary X ∈ Rn×m, define d̃X as m× n matrix whose (i, j) element is dxi j. It is

different from dX =
m∧

j=1

n∧
i=1

dxi j

d̃ḡ0 = (r0 + h̄T
0 A0h̄0)

− 1
2 F tA0d̃h̄k−

1
2
(r0 + h̄T

0 A0h̄0)
− 3

2 (d̃h̄T
0 A0h̄0 + h̄T

0 A0d̃h̄0)F tA0h̄0 (2.75)

= (r0 + h̄T
0 A0h̄0)

− 1
2

(
F tA0−

1
r0 + h̄T

0 A0h̄0
F tA0h̄T

0 h̄0A0

)
d̃h̄0 (2.76)

Applying Lemma 2.5.1 to the equation above,

dḡ0 = det
(
(r0 + h̄T

0 A0h̄0)
− 1

2

(
F tA0−

1
r0 + h̄T

0 A0h̄0
F tA0h̄T

0 h̄0A0

))
dh̄0 (2.77)

= (r0 + h̄T
0 A0h̄0)

− n
2 det(F tA0)det

(
In−

1
r0 + h̄T

0 A0h̄0
h̄0h̄T

0 A0

)
dh̄0 (2.78)

= (r0 + h̄T
0 A0h̄0)

− n
2 det(F tA0)

(
1−

h̄T
0 A0h̄0

r0 + h̄T
0 A0h̄0

)
dh̄0 (2.79)

= (r0 + h̄T
0 A0h̄0)

− n+2
2 det(F)t det(A0)r0dh̄0 (2.80)

For general k,

d̃ḡk = (rk + h̄T
k Akh̄k)

− 1
2

(
Fdt−

k
m eAk−

1
rk + h̄T

k Akh̄k
Fdt−

k
m eAkh̄T

k h̄kAk

)
d̃h̄k + some terms (2.81)

There are “some terms” in the equation above because Ak is not constant, but function of h̄0, · · · , h̄k−1.

dḡk = (rk + h̄T
k Akh̄k)

− n+2
2 det(F)dt−

k
m e det(Ak)rkdh̄k + some terms (2.82)

“Some terms” in the equation above are terms which contain d(H̄il) for some l < k.

dḠ =
tm∧
j=1

n∧
i=1

d(Ḡi j) =
tm−1∧
k=0

dḡk (2.83)

=
tm−1∧
k=0

(rk + h̄T
k Akh̄k)

− n+2
2 det(F)dt−

k
m e det(Ak)rkdh̄k + some terms (2.84)

=
tm−1∧
k=0

(rk + h̄T
k Akh̄k)

− n+2
2 det(F)dt−

k
m e det(Ak)rkdh̄k (2.85)

=

(
tm−1

∏
k=0

(rk + h̄T
k Akh̄k)

− n+2
2 det(Ak)rk

)
det(F)

mt(t+1)
2 dH̄ (2.86)
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The equation above holds because wedge product of identical terms is canceled out.

Lemma 2.5.8

dḠ = 2−n(det(LLT ))
mt−n−1

2 d(LLT )dO (2.87)

Proof: It is Theorem 2.1.14 of [46]

From the two lemmas above, we get

dH̄ =

(
tm−1

∏
k=0

(rk + h̄T
k Akh̄k)

n+2
2

1
rk det(Ak)

)
det(F)−

mt(t+1)
2 2−n(det(LLT ))

mt−n−1
2 d(LLT )dO (2.88)

Write O = [O0 O1 · · · Otm−1], then ḡk = LOk. From the definition of Ḡ, we get

h̄k =

(
rk

1− ḡT
k (F

T )−dt−
k
m eA−1

k F−dt−
k
m eḡk

) 1
2

A−1
k F−dt−

k
m eḡk (2.89)

=

(
rk

1−OT
k LT (FT )−dt−

k
m eA−1

k F−dt−
k
m eLOk

) 1
2

A−1
k F−dt−

k
m eLOk (2.90)

rk + h̄T
k Akh̄k =

rk

1−OT
k LT (FT )−dt−

k
m eA−1

k F−dt−
k
m eLOk

(2.91)

Since the left hand side of the equation above is always positive, there is a condition for O to be

proper

OT
k LT (FT )−dt−

k
m eA−1

k F−dt−
k
m eLOk < 1 for ∀k ∈ {0,1, · · · , tm−1} (2.92)

It is also possible to redefine Ak with (L,O) instead of H̄

Ak =


A if k = 0,

Ak−1−F−dt−
k−1

m eLOk−1OT
k−1LT (FT )−dt−

k−1
m e if m - k,

F
(

Ak−1−F−dt−
k−1

m eLOk−1OT
k−1LT (FT )−dt−

k−1
m e
)
(FT )+Q if m|k.

(2.93)

Domain of an integral can be properly redefined as the following because (L,O)= (Ψ2◦Ψ1)(H̄),

and Ψ2 ◦Ψ1 is one-to-one with probability 1.

{H̄ : P(0) = P,P(t) ∈ E}= {(L,O) : F tA(FT )t −LLT +
t−1

∑
l=0

F lQ(FT )l ∈ E} (2.94)
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Actually, one more condition is necessary for the equation above and it is (2.92). We can make

p̄(H̄) well-defined for ∀O ∈Vn,tm by assigning zero for (L,O) that does not satisfy (2.92).

Finally, we are ready to compute f (t)(P,C). Define L as lower-triangular matrix with positive

diagonal elements such that

LLT = F tP(FT )t +
t−1

∑
l=0

F lQ(FT )l−C (2.95)

Then, it coincides with (2.73). We only need to think about the case where the right-hand side of

the equation above is positive definite because it’s out of support otherwise.

It is obvious that d(LLT ) = dC if we ignore sign. We can get f (t)(P,C) by (2.88)

f (t)(P,C) =
∫

Vn,mt

∣∣∣∣2−n det(F)−
mt(t+1)

2
(
det(LLT )

)mt−n−1
2 φ(P,C,O)

∣∣∣∣dO (2.96)

φ(P,C,O) = 0 if (2.92) does not hold, it is defined as below otherwise

φ(P,C,O) = p̄(H̄)

(
tm−1

∏
k=0

(rk + h̄T
k Akh̄k)

n+2
2

1
rk det(Ak)

)
(2.97)

For fixed initial condition including P, H̄ = (Ψ2 ◦Ψ1)
−1(L,O) and well-defined because Ψ2 ◦Ψ1 is

one-to-one. Ak with A0 = P are determined by P and (L,O) by (2.93). L is determined by P,C by

(2.95). Therefore, terms inside the integral of (2.96) is well-defined function of (P,C,O).

2.6 Continuity of Probability Density Function

Even though we evaluate f (t)(P,C) in the previous section, it is not a closed form. In this section,

we show that f (t) : Sn
++×Sn

++→ R+ is continuous by bounded convergence theorem.

We begin this section with simple recursive equation.

Definition 12 wk = A−
1
2

k F−dt−
k
m eLOk
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It is obvious that wT
k wk < 1 by (2.92). Recall (2.93) in case of m - k

det(Ak) = det
(

Ak−1−F−dt−
k−1

m eLOk−1OT
k−1LT (FT )−dt−

k−1
m e
)

(2.98)

= det(Ak−1)det(In−wk−1wT
k−1) (2.99)

= det(Ak−1)(1−wT
k−1wk−1) (2.100)

det(Ak) = det
(

Amb k
m c

) k−1

∏
j=mb k

m c
(1−wT

j w j) (2.101)

(a+1)m−1

∏
k=am

det(Ak) = det(Aam)
m
(a+1)m−1

∏
k=am

(1−wT
k wk)

(a+1)m−1−k (2.102)

≥ det(Aam)
m

(
(a+1)m−1

∏
k=am

(1−wT
k wk)

)m−1

(2.103)

We also give an upper bound to rk + h̄T
k Akh̄k. From (2.91),

rk + h̄T
k Akh̄k =

rk

1−wT
k wk

=
rkwT

k wk

1−wT
k wk

+ rk (2.104)

≤ rk‖Ak‖
wT

k A−1
k wk

1−wT
k wk

+ rk (2.105)

We know that Amb k
m c
−Ak ∈ Sn

+ from (2.93). It implies that ‖Amb k
m c
‖ ≥ ‖Ak‖

‖Alm‖=

∥∥∥∥∥F lA(FT )l−
lm−1

∑
k=0

LOkOT
k LT +

l−1

∑
j=0

F jQ(FT ) j

∥∥∥∥∥≤
∥∥∥∥∥F lA(FT )l +

l−1

∑
j=0

F jQ(FT ) j

∥∥∥∥∥ (2.106)

Definition 13 αt(A) = max
0≤l≤t−1

∥∥∥∥∥F lA(FT )l +
l−1

∑
j=0

F jQ(FT ) j

∥∥∥∥∥
αt(A) is independent from O. Using it,

rk + h̄T
k Akh̄k ≤ rkαt(A)

wT
k A−1

k wk

1−wT
k wk

+ rk (2.107)

≤ rk +αt(A)
(b k

m c+1)m−1

∑
j=b k

m cm
r j

wT
j A−1

j w j

1−wT
j w j

(2.108)

= rk +αt(A)
(b k

m c+1)m−1

∑
j=b k

m cm
h̄T

j h̄ j = rk +αt(A)‖H(b k
m c)‖2

F (2.109)
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φ(P,C,O) can be viewed as product of t continuous functions. Each of them is function of

H(0), · · · ,H(t) as below.

φ(P,C,O) =
t−1

∏
l=0

(
pH(H(l))

(l+1)m−1

∏
k=lm

(rk + h̄T
k Akh̄k)

n+2
2

1
rk det(Ak)

)
(2.110)

Let rmax = max(r0, · · · ,rm−1) and rmin = min(r0, · · · ,rm−1).

pH(H(l))
(l+1)m−1

∏
k=lm

(rk + h̄T
k Akh̄k)

n+2
2

1
rk det(Ak)

(2.111)

≤ pH(H(l))

det(Alm)m

(l+1)m−1

∏
k=lm

1
rk(1−wT

k wk)m−1 (rk + h̄T
k Akh̄k)

n+2
2 (2.112)

=
pH(H(l))

det(Alm)m

(l+1)m−1

∏
k=lm

r−m
k (rk + h̄T

k Akh̄k)
m+ n

2 (2.113)

≤ pH(H(l))

rm2

min det(Alm)m
(rmax +αt(P)‖H(l)‖2

F)
m2+mn

2 (2.114)

Returning back to φ(P,C,O),

φ(P,C,O)≤
t−1

∏
l=0

pH(H(l))

rm2

min det(Alm)m
(rmax +αt(P)‖H(l)‖2

F)
m2+mn

2 (2.115)

≤ 1
rtm2

min det(P)m det(Q)m(t−1)

t−1

∏
l=0

pH(H(l))(rmax +αt(P)‖H(l)‖2
F)

m2+mn
2 (2.116)

By (c) of conditions for PH , we can choose Md > 0 where

pH(H)≤ ‖H‖−d
F ∀‖H‖F > Md (2.117)

For ‖H(l)‖F > Md >

(
rmax

αt(P)

) 1
2

,

pH(H(l))(rmax +αt(P)‖H(l)‖2
F)

m2+mn
2 ≤ ‖H(l)‖−d

F (rmax +αt(P)‖H(l)‖2
F)

m2+mn
2 (2.118)

≤ (2αt(P))m2+mn
2 ‖H(l)‖2m2+mn−d

F (2.119)

It is bounded above by choosing d > 2m2 +mn. If ‖H(l)‖F ≤ Md , it is also bounded because a

continuous function has a maximum inside a compact set. Condition (b) for pH is necessary to

guarantee that the right-hand side of (2.116) is continuous. The right-hand side of (2.116) depends

only on P and other initial conditions. We call the maximum value of (2.116) as βt(P)
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Theorem 2.6.1 f (t) : Sn
++×Sn

++→ R+ is continuous if mt > n

Proof: For fixed P∗ and C∗, define a sequence {(Pk,Ck)}∞
k=1 which converges to (P∗,C∗).

Define a function uk : Vn,mt → R+ as below.

uk(O) = det

(
F tPk(FT )t +

t−1

∑
l=0

F lQ(FT )l−Ck

)mt−n−1
2

φ(Pk,Ck,O) (2.120)

then f (t)(Pk,Ck) =
∫

Vn,mt

2−n det(F)−
mt(t+1)

2 uk(O)dO (2.121)

It is obvious that uk(O) goes to u∗(O) as k goes to ∞ for fixed O

uk(O)≤ det

(
F tPk(FT )t +

t−1

∑
l=0

F lQ(FT )l−Ck

)mt−n−1
2

βt(Pk) (2.122)

≤ (1+ ε)det

(
F tP∗(FT )t +

t−1

∑
l=0

F lQ(FT )l−C∗

)mt−n−1
2

βt(P∗) (2.123)

The second inequality holds for some ε > 0 because {(Pk,Ck)}∞
k=1 converges to (P∗,C∗) and right-

hand side of the inequality is continuous function. By bounded convergence theorem,

lim
k→∞

∫
Vn,mt

uk(O)dO =
∫

Vn,mt

u∗(O)dO (2.124)

It is straightforward that

lim
k→∞

f (t)(Pk,Ck) = f (t)(P∗,C∗) (2.125)

2.7 Continuity of Measure

We show that f (t) is continuous in the previous section. We want to extend the continuity from

function to measure. Specifically, we show that µ
(t)
P is continuous in topology defined by total

variation distance under the assumption that f (t) is continuous function in this section.

Definition 14 For two measures µ and ν with probability density functions pµ and pν , dH(µ,ν) is
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Hellinger distance between two measures, i.e.,

dH(µ,ν) =

(
1
2

∫ (√
pµ −

√
pν

)2
) 1

2

(2.126)

Theorem 2.7.1 For mt > n and a sequence {Pk}∞
k=1 converging to P∗, dTV (µ

(t)
Pk
,µ

(t)
P∗ ) goes to zero

as k goes to ∞

Proof: It is well known that the topology defined by total variation distance is identical to the

topology defined by Hellinger distance. It is enough to show that

dH(µ
(t)
Pk
,µ

(t)
P∗ )→ 0 as k→ ∞ (2.127)

Define a set Eδ = {C ∈ Sn
++ : f (t)(P∗,C)≥ δ} and a function ρδ : Sn

++×Eδ → R+ for this proof.

ρδ (P,C) = min

(√
f (t)(P,C)

f (t)(P∗,C)
,1

)
(2.128)

Then, ρδ is well-defined because the denominator is greater than δ in the domain.

For given ε > 0, there exists δ > 0 such that

∫
Eδ

f (t)(P∗,C)dC > 1− ε (2.129)

dH(µ
(t)
Pk
,µ

(t)
P∗ )

2 =
1
2

∫
Sn
++

(√
f (t)(Pk,C)−

√
f (t)(P∗,C)

)2

dC (2.130)

= 1−
∫
Sn
++

√
f (t)(Pk,C) f (t)(P∗,C)dC (2.131)

≤ 1−
∫

Eδ

√
f (t)(Pk,C) f (t)(P∗,C)dC (2.132)

≤ 1−
∫

Eδ

f (t)(P∗,C)ρδ (Pk,C)dC (2.133)

It is obvious that ρδ (P,C) = 1 at P = P∗. We claim that

inf
C∈Eδ

ρδ (P,C)→ 1 as P→ P∗ (2.134)

The proof follows.
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Assume that it’s not true, then there exists η > 0 and a sequence {(P̃i,C̃i)}∞
i=1 such that

ρδ (P̃i,C̃i)< 1−η ∀i ∈ N and lim
i→∞

P̃i = P∗ (2.135)

Eδ is closed because it is a preimage of continuous function f (t)(P∗, ·). It is also bounded because

Eδ ⊂ Supp(t)P∗ and Supp(t)P∗ is bounded. Eδ is compact because it is closed and bounded.

Since Eδ is compact in metric space, every sequence in Eδ has a convergent subsequence. Let

{C̃i j}∞
j=1 denote the convergent subsequence of {C̃i}∞

i=1 and C∗ denote the limit point of the conver-

gent subsequence. Then {(P̃i j ,C̃i j)}∞
j=1 converges to (P∗,C∗).

ρδ (P̃i j ,C̃i j)→ ρδ (P∗,C∗) = 1 because ρδ is continuous. However, it contradicts that ρδ (P̃i,C̃i) <

1−η ∀i. The previous assumption was wrong.

There exists K such that infC∈Eδ
ρδ (Pk,C)> 1− ε for all k > K. Returning back to (2.133)

dH(µ
(t)
Pk
,µ

(t)
P∗ )

2 ≤ 1−
∫

Eδ

f (t)(P∗,C)ρδ (Pk,C)dC (2.136)

< 1−
∫

Eδ

f (t)(P∗,C)(1− ε)dC (2.137)

< 1− (1− ε)2 < 2ε (2.138)

dH(µ
(t)
Pk
,µ

(t)
P∗ ) goes to zero because ε is arbitrary. It completes the proof.

2.8 Extension on Compact Space

µ
(t)
(·) can be interpreted as a map from the space of positive semidefinite matrices to the space of

probability measures. We showed the continuity of map in the previous section. In this section, we

extend the map to compact space including zero and infinity.

Lemma 2.8.1 For two symmetric matrices UDUT ,U ′D′(U ′)T ∈ Sn where U,U ′ are orthogonal

and D,D′ are ordered-diagonal matrix, (i.e., D = diag(d1, · · · ,dn) is ordered if d1 ≤ ·· · ≤ dn)

UDUT =U ′D(U ′)T if and only if two statements below hold.

(1) D = D′

(2) Suppose D=D′ has distinct eigenvalues {d1, · · · ,da}with m1, · · · ,ma multiplicities and ui,1, · · · ,ui,mi

are mi column vectors of U corresponding to di. u′i,1, · · · ,u′i,mi
can be defined similarly, then the
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equation below holds for every i.

mi

∑
j=1

ui, juT
i, j =

mi

∑
j=1

u′i, j(u
′
i, j)

T (2.139)

Proof: The first condition requires both of eigenvalues to be same, and the second condition

requires both of eigenspaces to be same. The remaining part is trivial to check.

With the lemma, we define extended space of Sn
++.

Definition 15 Xn = {(U,D) : U ∈Vn,n,D = diag(d1, · · · ,dn),0≤ d1 ≤ ·· · ≤ dn ≤ ∞} with equiva-

lence relation (U,D)∼ (U ′,D′) if

D = D′ and ∑
di=d

uiuT
i = ∑

di=d
u′i(u

′
i)

T (2.140)

for every distinct diagonal element d

Remark 3 Xn is homeomorphic to {(U,D) : U ∈Vn,n,D= diag(d1, · · · ,dn),0≤ d1≤ ·· · ≤ dn≤ 1}.

Therefore, there is a natural topology in Xn, and it is possible to define convergence from that. It is

also obvious that Xn is compact.

The goal of this section is to define µ
(t)
P for all P ∈ Xn. It is natural to define µ

(t)
P (E) =

limk→∞ µ
(t)
Pk
(E) for the sequence {Pk}∞

k=1 ⊂ Sn
++ which converges to P. However, there is no guar-

antee that limk→∞ µ
(t)
Pk
(E) exists.

Theorem 2.8.2 For P ∈ Sn
+ and {Pk}∞

k=1 ⊂ Sn
++ converging to P, lim

k→∞

µ
(t)
Pk
(E) exists if t > n

m +1

Proof: From the equation P−PHT (R+HPHT )−1HP = (P−1 +HT R−1H)−1,

µ
(t)
Pk
(E) =

∫
Rm×n

µ
(t−1)
F(P−1

k +(H(0))T R−1H(0))−1FT+Q
(E)p(H(0))dH(0) (2.141)

p(H(0)) is probability density function of Gaussian matrix H(0).

We can define µ
(t)
P (E) in similar way, then it is well-defined because F(P−1

k +(H(0))T R−1H(0))−1FT +

Q ∈ Sn
++ by positivity of Q.

It is obvious that µ
(t)
Pk
(E)≤ 1.

µ
(t−1)
F(P−1

k +(H(0))T R−1H(0))−1FT+Q
(E)→ µ

(t−1)
F(P−1+(H(0))T R−1H(0))−1FT+Q

(E) (2.142)
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from the fact that F(P−1
k +(H(0))T R−1H(0))−1FT +Q→ F(P−1 +(H(0))T R−1H(0))−1FT +Q and

continuity of µ
(t−1)
(·) which is shown in the previous section.

By bounded convergence theorem, lim
k→∞

µ
(t)
Pk
(E) = µ

(t)
P (E)

It is possible to extend µ
(t)
P to the matrix which has zero as eigenvalue. The next step is to extend

it to the matrix which has ∞ as eigenvalue.

We suggest a lemma used for the extension.

Lemma 2.8.3 ω : Y ×Z→ X is a continuous function defined on Y ×Z. X ,Z are Euclidean man-

ifold. z is random variable on Z and ν is probability measure of it satisfying ν(ω(y, ·)−1(V )) =

ν(ω(y, ·)−1(cl(V ))) for every y ∈Y and every open V ⊂ X. Then P[ω(yk,z) ∈ E]→ P[ω(y∗,z) ∈ E]

as yk→ y∗.

Proof: Let ωk(·) denote ω(yk, ·), then ωk is continuous and ωk(z)→ ω∗(z) for every z.

ν(E) = sup{ν(K) : K ⊂ E,K compact}= inf{ν(W ) : W ⊃ E,W open} (2.143)

because ν is probability measure defined on Euclidean manifold and it’s a Radon measure.

For any open set V ⊂ X , there is compact K ⊂ ω−1
∗ (V ) such that ν(K)> ν(ω−1

∗ (V ))− ε1, then

{y∗}×K is also compact in Y ×Z. Let B((y0,z0);δ ) = {(y,z) : dY (y,y0)< δ ,dZ(z,z0)< δ} denote

a ball in Y ×Z where dY (·, ·) and dZ(·, ·) are metric of Y and Z. Since {y∗}×K ⊂ ω−1(V ), there is

δz > 0 for every z ∈ K such that B((y∗,z);δz)⊂ω−1(V ). Since {y∗}×K is compact, there is a finite

subcover. We call δmin as the smallest δz of the finite subcover. For all yk such that dY (yk,y∗)< δmin,

{yk}×K ⊂ ω−1(V ) because it is contained in the subcover. That means K ⊂ ω
−1
k (V ) and

ν(ω−1
k (V ))≥ ν(K)> ν(ω−1

∗ (V ))− ε1 (2.144)

For open set int(X \V ), we can get a similar inequality for k large enough.

ν(ω−1
k (X \ cl(V ))) = ν(ω−1

k (int(X \V )))> ν(ω−1
∗ (int(X \V )))− ε2 = ν(ω−1

∗ (X \ cl(V )))− ε2

(2.145)

The equality above holds from the basic set theory algebra.

ν(ω−1
k (cl(V ))) = 1−ν(ω−1

k (X \ cl(V )))< 1−ν(ω−1
∗ (X \ cl(V )))+ ε2 = ν(ω−1

∗ (cl(V )))+ ε2

(2.146)
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From the assumption that ν(ω(y, ·)−1(V )) = ν(ω(y, ·)−1(cl(V ))),

ν(ω−1
k (V )) = ν(ω−1

k (cl(V )))< ν(ω−1
∗ (cl(V )))+ ε2 = ν(ω−1

∗ (V ))+ ε2 (2.147)

Since ε1,ε2 is arbitrary,

lim
k→∞

ν(ω−1
k (V )) = ν(ω−1

∗ (V )) (2.148)

For any compact set J ⊂ X , X \ J is open and the equality below holds.

lim
k→∞

ν(ω−1
k (J)) = 1− lim

k→∞

ν(ω−1
k (X \ J)) = 1−ν(ω−1

∗ (X \ J)) = ν(ω−1
∗ (J)) (2.149)

Let ν∗ denote measure on X such that ν∗(E) = ν(ω−1
∗ (E)), then it is also a probability measure.

For any measurable E ∈ X ,

ν∗(E) = sup{ν∗(J) : J ⊂ E,J compact}= inf{ν∗(V ) : V ⊃ E,V open} (2.150)

because ν∗ is also probability measure defined on Euclidean manifold and it’s a Radon measure.

Take compact J and open V such that J ⊂ E ⊂ V and ν∗(V )− ε < ν∗(E) < ν∗(J)+ ε . There

exists M > 0 such that

ν(ω−1
k (V ))< ν(ω−1

∗ (V ))+ ε and ν(ω−1
k (J))> ν(ω−1

∗ (J))− ε ∀k > M (2.151)

For every k > M,

ν(ω−1
∗ (E))−2ε < ν(ω−1

∗ (J))− ε < ν(ω−1
k (J))≤ ν(ω−1

k (E)) (2.152)

ν(ω−1
k (E))≤ ν(ω−1

k (V ))< ν(ω−1
∗ (V ))+ ε < ν(ω−1

∗ (E))+2ε (2.153)

Since ε is arbitrary,

lim
k→∞

P[ω(yk,z) ∈ E] = lim
k→∞

ν(ω−1
k (E)) = ν(ω−1

∗ (E)) = P[ω(y∗,z) ∈ E] (2.154)

Returning back to discussion on Xn

Definition 16 τ is a function defined on Xn. τ(A) = (FA−1FT +Q)−1.
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Lemma 2.8.4 For all A ∈ Xn, τ(A) is continuous and well-defined. Furthermore, its image is in

Sn
+.

Proof: τ(0) = 0 and Q−1 is upper bound of τ . Since τ is increasing function, it can be

exteneded to Xn.

Definition 17 τ̄(t) : Sn
+× (Rm×n)t → Sn

+ is defined by

τ̄
(t)(A,H0, · · · ,Ht−1) = τ(· · ·τ(τ(A+HT

0 R−1H0)+HT
1 R−1H1) · · · +HT

t−1R−1Ht−1) (2.155)

Lemma 2.8.5 For any A ∈ Sn
+ and t > n

m + 1, Lebesgue measure of τ̄(t)(A, ·)−1(E) ∈ (Rm×n)t is

zero if E ⊂ Sn
+ is measure-zero set.

Proof: Since τ(·)−1 is Riccati equation, it is possible to consider a Riccati equation rather than

τ . The remaining part is trivial to check.

Previous lemma guarantees that

∫
τ̄(t)(A,·)−1(V )

p̄(H̄)dH̄ =
∫

τ̄(t)(A,·)−1(cl(V ))
p̄(H̄)dH̄ (2.156)

because p̄ is continuous. We can apply Lemma 2.8.3 to the next theorem.

Theorem 2.8.6 For P ∈ Xn and {Pk}∞
k=1 ⊂ Sn

++ converging to P, lim
k→∞

µ
(t)
Pk
(E) exists if t > n

m +1

Proof: For given P(0) = P∈Xn and H(0), (P(1))−1 = τ(P−1+(H(0))T R−1H(0))∈ Sn
+. We will

deal with (P(l))−1 because its eigenvalues are finite.

µ
(t)
P (E) = P[τ̄(t−1)(τ(P−1 +(H(0))T R−1H(0)),H(1), · · · ,H(t−1)) ∈ E−1] (2.157)

is well-defined where E−1 = {1
x : x ∈ E} because it is computed on Sn

+.

We know that τ(P−1
k +(H(0))T R−1H(0))→ τ(P−1 +(H(0))T R−1H(0)) from Lemma 2.8.4 and

the equation below from Lemma 2.8.3

lim
k→∞

P[τ̄(t−1)(A,H(1), · · · ,H(t−1)) ∈ E−1|A = τ(P−1
k +(H(0))T R−1H(0))] (2.158)

= P[τ̄(t−1)(A,H(1), · · · ,H(t−1)) ∈ E−1|A = τ(P−1 +(H(0))T R−1H(0))] (2.159)
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µ
(t)
Pk
(E) =

∫
Rm×n

P[τ̄(t−1)(A,H(1), · · · ,H(t−1)) ∈ E−1|A = τ(P−1
k +(H(0))T R−1H(0))]p(H(0))dH(0)

(2.160)

It is also obvious that P[τ̄(t−1)(A,H(1), · · · ,H(t−1)) ∈ E−1|A = τ(P−1
k +(H(0))T R−1H(0))]≤ 1.

By bounded convergence theorem, lim
k→∞

µ
(t)
Pk
(E) = µ

(t)
P (E)

2.9 Main Result

We combine the results from previous sections to get main result here. The key point of the proof

is showing that π
(t) = sup

α,β ,S
P(t)(α,S)−P(t)(β ,S) < 1. π(t) = 1 if there are two initial points α,β

where Supp(t)α ∩Supp(t)
β

= /0 at time t. We showed that every probability measure µ
(t)
(·) at time t has

common area with nonzero measure if t is large enough. Even though the distance between µ
(t)
α

and µ
(t)
β

is strictly less than 1 for every α,β ∈ Sn
++, it is still questionable whether the supremum

of the total variation distance, π
(t) = sup

α,β

dTV (µ
(t)
α ,µ

(t)
β
) is strictly less than 1. We overcome this

by applying the topological property that every continuous map has the maximum in compact set.

The possible continuous map is dTV (µ
(t)
(·) ,µ

(t)
(·) ) : Sn

++×Sn
++→ R+. To show that dTV (µ

(t)
(·) ,µ

(t)
(·) ) is

actually continuous, we needed several intermediate results. We evaluated probability density func-

tion of µ
(t)
P applying matrix calculation technique. By evaluating the probability density function,

we showed that the probability density function is continuous. The continuity of the probability

density function was necessary to show that µ
(t)
(·) is a continuous map from the space of positive

semidefinite matrices to the space of probability measures. Finally, we extended Sn
++ to admit 0 and

∞ to eigenvalues. The following is the main result of this section.

Theorem 2.9.1 There exists a measure µ∗ and constants κ > 0,γ < 1 independent from P, the initial

point, satisfying

dTV (µ∗,µ
(t)
P )< κγ

t (2.161)

Proof: First, we show that π(t) < 1 for t > n
m +1.

d : Xn×Xn → R+ defined by d(P1,P2) = dTV (µ
(t)
P1
,µ

(t)
P2
) is well-defined from Theorem 2.8.2 and

Theorem 2.8.6. It is also continuous from Theorem 2.7.1.

Since d(·, ·) is continuous on compact space Xn ×Xn, it has maximum. Suppose that dmax =
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dTV (µ
(t)
P1
,µ

(t)
P2
) for some P1,P2 ∈ Xn.

dTV (µ
(t)
P1
,µ

(t)
P2
) = sup

S

∣∣∣µ(t)
P1
(S)−µ

(t)
P2
(S)
∣∣∣ (2.162)

= 1−
∫

Supp(t)P1
∩Supp(t)P2

min
(

f (t)(P1,C), f (t)(P2,C)
)

dC (2.163)

Supp(t)P1
∩Supp(t)P2

and has nonempty interior because Supp(t)P1
,Supp(t)P2

⊃ Supp(t)0 = Supp(t−1)
Q from

Theorem 2.4.3. f (t)(P1,C), f (t)(P2,C)> 0 on the support of each probability density function.

We can conclude that

π
(t) = dmax = 1−

∫
Supp(t)P1

∩Supp(t)P2

min
(

f (t)(P1,C), f (t)(P2,C)
)

dC < 1 (2.164)

Since π(t) < 1, we can define µ∗(E) as limit of M(t)
E and m(t)

E .

∣∣∣µ∗(E)−µ
(tl)
P (E)

∣∣∣≤M(tl)
E −m(tl)

E ≤ (π(t))l (2.165)

for all P guarantees the exsitence of κ > 0,γ < 1 which is independent from P.
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Chapter 3

Nonlinear Epidemic Model

3.1 Introduction

Modeling the spread of an infectious disease on a complex network is a topic of increasing interest.

The classical epidemic models include the susceptible-infected-susceptible (SIS) model. In the SIS

model, each node of the network exists in one of two different states. In the susceptible state,

the node is healthy, but it may be infected if it is exposed to disease. The node is exposed to

disease if any of its neighbors in the network are infected. The probability for being infected from

a susceptible state depends on the number of infected neighbors. From an infected state, the node

may become healthy with some probability, after which it returns to a susceptible state.

Early work in the SIS model has been conducted using random graph approach [49], [50]. In the

random graph model, the number of infected neighbors depend on both of the degree distribution

and rate of infected nodes. The work is focused on high-probability behavior of steady state and

convergence of various random graph models.

The other approach is fixed graph one. We can model this process as Markov chain with 2n

states where n is the number of nodes in the network when underlying graph is given [16], [23],

[42]. At each time, the state of the Markov chain represents the joint probability of the all the

nodes being in either susceptible or infected states. Since the joint probability distribution at any

given time only depends on the joint probability distribution at the previous time this is a Markov

chain. The transition matrix of the Markov chain is closely related to the adjacency matrix of the

underlying graph. When the underlying graph is connected, Perron-Frobenius theory implies that

the Markov chain has a unique absorbing state, which is the state where all the nodes in the network

are susceptible. The reason being that if all the nodes are susceptible, no node will be exposed to

disease, and therefore they will always stay healthy. It is therefore clear that, in the Markov chain



51

model, if one waits long enough, the epidemic will die out and all nodes will be healthy. However,

this result is not very informative since depending on the mixing time of the Markov chain, it may

take a very long time, in fact exponentially long in the number of nodes, for steady state to be

achieved. In this situation, the dying out of the epidemic may not be observed in practice.

As a result of this, we study approximate models which have a much smaller number of states.

Once such model has been introduced by Wang et al. and Chakrabarti et al. [62], [10] and some

more work has been conducted based on the model [20], [25]. In what follows we shall study

this and two other models (a discrete-time model similar to the Chakrabarti model, as well as a

continuous-time model). The main result is that, when the origin (corresponding to the all suscepti-

ble states) is not stable, the epidemic model has a unique second fixed point. For the continuous-time

model, and Chakrabarti model, we show that the second fixed point attracts all non-origin points.

For the other discrete-time model, we show that this is not necessarily the case, and give conditions

under which the second fixed point is stable.

This chapter organizes as follows. In the following section, we describe the nonlinear epidemic

map suggested by [10] which focuses on the marginal probability of each node being infected. In the

next section, we describe linear upper bound of the nonlinear map, which is actually Jacobian matrix

of the nonlinear map at the origin. We analyze the case where linear upper bound is not stable. The

main result of this section is that, when the origin (corresponding to the all-healthy states) is not

stable, the epidemic model has a unique second fixed point other than the origin and it is globally

stable. In the next section, we mention another model which admits immune-effect where a node

does not get infected from its neighbors after recovering from the disease at the same time. The

immune-admitting model has similar properties to the nonlinear model described at the previous

section, but different in stability of the second fixed point. We focus more on the stability analysis

and conclude that the second fixed point is stable with high probability in some random graph family

including Erdös-Rényi graphs. Finally, we suggest continuous-time model and analyze the stability

of the equilibrium point.

3.2 Model Description

In this section, we describe our model for epidemic spread. We do not assume homogeneous connec-

tivity. Each node has its own connectivity with other nodes in the given network. The connectivity

is represented as the graph. For a given connected undirected graph G with n nodes, let Ni be the
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neighborhood of node i.

Each node can be in a state of health, represented by “0”, or a state of infection, represented by

“1”. Two possible states for each node lead 2n states for the given network. We assume an identical

infection rate β for each edge connected to an infected node and a recovery rate δ for each infected

node. We can view β as a virus transfer rate and δ as a virus death rate if we consider the epidemics

as the propagation of virus on the network. We do not assume coming of new nodes which is a birth

of a baby in a real network or deletion of nodes which is a death of person.

The model works for time interval. During each time interval, infected node transfer disease to

its neighbors with probability β , the infection rate. At same time, an infected node tries to recover

from disease. The recovery happens with probability δ , the recovery rate. We assume that the

infection from each node is independent to each other. This process can be modeled as a Markov

chain with 2n states. All the states of the Markov chain corresponds to {0,1}n. The epidemic states

of each node at time t +1 only depends on ones at time t.

However, the number of states for the Markov chain model increases exponentially as the num-

ber of nodes increases. Huge number of the states make it hard to analyze the Markov chain. Instead

of analyzing Markov chain model, we study the approximated nonlinear dynamical model in this

chapter. The nonlinear dynamical model focuses on the marginal probability of each node being

infected. Denote P(t) = (P1(t), · · · ,Pn(t))T as the epidemic probability vector where Pi(t) is the

probability that the node i is infected at time t.

We clarify the infection and recovery rule before going on.

• If node i is healthy, i may get infected from its infected neighbors. The infection from each

neighbor is independent. i is infected at the next time step if i gets infected from any of its

neighbors. In other words, i stays healthy if i does not get infected from any of its neighbors.

• If node i is infected, i may recover from the disease. i can get infected from its infected

neighbors at same time step in which it recovers. i is healthy at the next time step if it is

recovered from disease, and it does not get infected from any of its neighbors at same time.

The recovery rule above assumes that there is no effect of immune. We analyze the immune-

admitting model which ban the recovery and the instant infection at same time. Denote Ξi as the

probability that i gets infected from its neighbors.

1−Pi(t +1) = (1−Ξi)(1−Pi(t))+δ (1−Ξi)Pi(t) (3.1)
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To represent Ξi only by P(t) = (P1(t), · · · ,Pn(t))T, we apply independent infection.

Ξi = 1−∏
j∈Ni

(1−βPj(t)) (3.2)

Ξi will be generalized and redefined in the next section. Applying (3.2) to (3.1), we get the nonlinear

epidemic map Φ which is suggested by Chakrabarti et al. [10].

Φi(x) = (1−δ )xi +(1− (1−δ )xi)

(
1−∏

j∈Ni

(1−βx j)

)
(3.3)

It is trivial to check that Pi(t +1) = Φi((P1(t), · · · ,Pn(t))T ) from (3.3)

3.3 Dynamics of Epidemic Map

We study epidemic map suggested by Chakrabarti in this section. Pi(t+1) =Φi((P1(t), · · · ,Pn(t))T )

where Φ : [0,1]n→ [0,1]n is defined as (3.3) is an epidemic map on n-dimensional probability space.

To understand the behavior of this model, we obtain the following upper bound of Φ:

Φi(x) = (1−δ )xi +(1− (1−δ )xi)

(
1−∏

j∈Ni

(1−βx j)

)
(3.4)

≤ (1−δ )xi +

(
1−∏

j∈Ni

(1−βx j)

)
(3.5)

≤ (1−δ )xi +β

(
∑
j∈Ni

x j

)
(3.6)

(3.6) can be regarded as a linear approximation of (3.3) for small β . It is nice approximation around

the origin because it is a Jacobian matrix of Φ at the origin. Note that this linearization gives an

upper bound on the nonlinear model.

For two real-valued column vectors u = (u1, · · · ,un)
T,v = (v1, · · · ,vn)

T ∈ Rn, we say u � v if

ui ≤ vi for all i ∈ {1, · · · ,n} and u≺ v if ui < vi for all i ∈ {1, · · · ,n}. For P(t) = (P1(t), · · · ,Pn(t))T

P(t +1) = Φ(P(t))� ((1−δ )In +βA)P(t) (3.7)

It is obvious that P(t) converges to the origin for both of (3.3) and (3.6) if λmax((1−δ )In+βA)<

1. In other words, the origin is a unique fixed point of (3.3) which is globally stable if the largest
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eigenvalue of (1−δ )In +βA is less than 1. The reason is that this happens for the linearized upper

bound which is actually Jacobian matrix of (3.3) at the origin. We will therefore focus on the

dynamics of the system when λmax((1−δ )In +βA)> 1.

Wang et al. [62] and Chakrabarti et al. [10] focus on staying healthy by defining the probability

that a node receives no infection from its neighborhood. We focus on infection rather than staying

healthy.

Let Ξ : [0,1]n→ [0,1]n with Ξ = (Ξ1, · · · ,Ξn)
T be a map associated with network G satisfying

the three properties below.

(a) Ξi(x) = 0 and
∂Ξi

∂x j
= βAi, j at the origin.

(b)
∂Ξi

∂x j
> 0 if i ∈ N j in G, and

∂Ξi

∂x j
= 0 if i /∈ N j in G.

(c) For any i, j,k ∈ {1, · · · ,n}, ∂ 2Ξi

∂x j∂xk
≤ 0.

Ξi represents the probability that i get infected from its infected neighbors in the next time step

when i is healthy. It is obvious that Ξi(x) =
(
1−∏ j∈Ni(1−βx j)

)
satisfies all the conditions above.

The sum of infection rate β ∑
j∈Ni

x j also satisfies all three conditions above. However, we do not

apply the sum of infection rates in the discrete time model because it is not well-defined if β is

small enough. In other words, Ξi can be greater than 1 if β is not small.

We define another map here. Let ω : [0,1]→ R+ be a function which also satisfies three prop-

erties below.

(d) ω(0) = 0, ω(1)≥ 1

(e) ω ′(0) = δ , ω ′(s)> 0 for all s ∈ (0,1)

(f)
ω(s1)

s1
<

ω(s2)

s2
if s1 < s2

It is also obvious that ω(s) =
δ s

1− (1−δ )s
satisfies all three conditions above. By defining Ξ(·)

and ω(·) here, the analysis can be applied directly to the immune-admitting model which will be

described later.

We can view (3.3) as

Pi(t +1) = Pi(t)+(1− (1−δ )Pi(t))(Ξi(P(t))−ω(Pi(t))) (3.8)

We close this section by giving a lemma which is useful in the next section.

Lemma 3.3.1 Let hi,u,v : s→Ξi(u+sv) be a function defined on subset of nonnegative real numbers

for given i ∈ {1, · · · ,n}, u,v ∈ [0,1]n. Then
hi,u,v(s)−hi,u,v(0)

s
is a decreasing function of s.
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Proof: hi,u,v(s) is concave by property (c).

d
ds

(
hi,u,v(s)−hi,u,v(0)

s

)
=

1
s

(
h′i,u,v(s)−

hi,u,v(s)−hi,u,v(0)
s

)
(3.9)

=
1
s

(
h′i,u,v(s)−h′i,u,v(s

∗)
)
≤ 0 (3.10)

hi,u,v(s)−hi,u,v(0)
s

= h′i,u,v(s
∗) for some s∗ ∈ (0,s) by the mean value theorem.

3.3.1 Existence and Uniqueness of Nontrivial Fixed Point

The origin, the trivial fixed point of the system equation is unstable if λmax((1− δ )In +βA) > 1.

However, it is unknown whether the system has another fixed point or not. In this section, we prove

that there actually exists a nontrivial fixed point of (3.8). We also prove that the nontrivial fixed

point is unique.

Lemma 3.3.2 λmax((1− δ )In +βA) > 1 if and only if there exists v � (0, · · · ,0)T = 0n such that

(βA−δ In)v� 0n

Proof: Suppose that λmax((1− δ )In +βA) > 1 and w as an eigenvector corresponding to the

maximum eigenvalue. (1−δ )In+βA is nonnegative and irreducible (a nonnegative matrix X is irre-

ducible if there exists m(i, j)∈N for each pair of indices i, j such that (Xm(i, j))i, j is nonzero because

A is the adjacency matrix of a connected graph G. Every entry of w is positive by Perron-Frobenius

theorem for irreducible matrices, and (βA−δ In)w� 0n because the eigenvalue corresponding to w

is greater than unity.

Suppose that there exists v� 0n such that (βA−δ In)v� 0n. Then, ((1−δ )In +βA)v� v

λmax((1−δ )In +βA) = sup
u∈Rn

‖((1−δ )In +βA)u‖2

‖u‖2
(3.11)

≥ ‖((1−δ )In +βA)v‖2

‖v‖2
> 1 (3.12)

The main theorem of this section which guarantees the existence and uniqueness of nontrivial

fixed point of (3.8) follows.
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Theorem 3.3.3 Define a map Ψ : [0,1]n→Rn with Ξ and ω satisfying the conditions (a)-(f) above.

Define

Ψi(x) = Ξi(x)−ω(xi) . (3.13)

Then Ψ = (Ψ1, · · · ,Ψn) has a unique nontrivial (other than the origin) zero if λmax((1− δ )In +

βA)> 1.

Proof: Ui and U are defined by Ψ as below.

Ui = {x ∈ [0,1]n : Ψi(x)≥ 0} U =
n⋂

i=1

Ui (3.14)

By the lemma above, there exists v� 0n such that (βA−δ In)v� 0n. There is a small ε > 0 such that

εv ∈U because the Jacobian of Ψ = (Ψ1, · · · ,Ψn)
T is equal to βA−δ In at the origin and Ψ(0) = 0

by property (a) of Ξ and (d) of ω .

Define max(x,y) = (max(x1,y1), · · · ,max(xn,yn)). We claim that max(x,y) ∈U if x,y ∈ S. The

proof follows.

max(xi,yi) = xi without loss of generality for x,y ∈U .

Ψi(max(x,y)) = Ξi(max(x,y))−ω(xi)≥ Ξi(x)−ω(xi)≥ 0 (3.15)

The first inequality holds by property (b), and the second inequality holds because x ∈U . Therefore

max(x,y) ∈Ui for every i and it completes the proof of the claim.

This leads to the existence of a unique maximal point x∗ ∈ U such that x∗ � x for all x ∈ U .

εv ∈U and the maximality of x∗ guarantees that x∗ has positive entries.

We claim that Ψi(x∗) = 0 for all i ∈ {1, · · · ,n}. Assume that Ψi(x∗) 6= 0 for some i. Then,

Ψi(x∗)> 0 since x∗ ∈U . There exists zi > x∗i such that

Ψi(x∗) = Ξi(x∗)−ω(x∗i )> Ξi(x∗)−ω(zi)≥ 0 (3.16)

Define z = (z1, · · · ,zn)
T with z j = x∗j for j 6= i. For every k ∈ {1, · · · ,n},

Ψk(z) = Ξk(z)−ω(zk)≥ Ξk(x∗)−ω(zk)≥ 0 (3.17)
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The first inequality of (3.17) holds by property (b). The second inequality of (3.17) holds by (3.16)

if k = i and the inequality holds by definition of z if k 6= i. (3.17) guarantees that z ∈U . zi > x∗i and

z j = x∗j for j 6= i contradict that x∗ is the maximal point of U . The assumption was therefore wrong,

Ψi(x∗) = 0 for all i ∈ {1, · · · ,n}, and there exists a nontrivial zero of Ψ.

The next step is showing that x∗ is the unique nontrivial zero of Ψ. Assume that y∗ is another

nontrivial zero. Then y∗ ∈U and Ψ(y∗) = 0n.

We claim that every entry of y∗ is positive. Define K0 and K+ where y∗i = 0 if i∈K0 and y∗i > 0 if

i ∈ K+. Then, K0∪K+ = {1, · · · ,n}. K0 and K+ are separation of vertex set of the system. Assume

that K0 is a non-empty set. There exists j ∈ K+ such that j is connected to a node in K0 because G

is connected. Denote k ∈ K0 as a node which is connected to j.

Ψk(y∗) = Ξk(y∗)−ω(y∗k) = Ξk(y∗)> 0 (3.18)

The inequality above is strict by property (b) since k ∈ N j and y∗j > 0. It contradicts that Ψ(y∗) = 0.

K0 is the empty set.

We get the following inequality by Lemma 3.3.1 for u = 0n,v = x∗ and s≤ 1.

Ξi(sx∗)
s

=
hi,u,v(s)−hi,u,v(0)

s
≥ hi,u,v(1)−hi,u,v(0) = Ξi(x∗) (3.19)

There exists α ∈ (0,1) such that y∗ � αx∗ and y∗j = αx∗j for some j ∈ {1, · · · ,n}.

Ψ j(y∗) = Ξ j(y∗)−ω(αx∗j) (3.20)

≥ Ξ j(αx∗)−ω(αx∗j) (3.21)

≥ αΞ j(x∗)−ω(αx∗j) (3.22)

> α
(
Ξ j(x∗)−ω(x∗j)

)
= 0 (3.23)

(3.21) and (3.22) are guaranteed by property (b) and (3.19). (3.23) also holds because
αω(x∗j)

αx∗j
>

ω(αx∗j)

αx∗j
by α ∈ (0,1), x∗j > 0 and property (f).

This contradicts that Ψi(y∗) = 0 for all i. Therefore, x∗ is the unique nontrivial zero of Ψ.

We remark that x∗ in the above proof is also the unique nontrivial fixed point of (3.8). This

theorem guarantees that we do not need to consider lots of complex dynamical system where a

number of fixed points exist and some points are stable and the others are not. Even though epidemic
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spreads, there is a unique fixed point other than the origin.

3.3.2 Global Stability of Nontrivial Fixed Point

The origin, the trivial fixed point of the system is globally stable if λmax((1−δ )In +βA)< 1. The

next issue is whether the nontrivial fixed point is also stable if λmax((1−δ )In +βA)> 1.

Theorem 3.3.4 Suppose that λmax((1− δ )In +βA) > 1, then P(t + 1) = Φ(P(t)) defined by (3.3)

converges to x∗ which is a nontrivial fixed point of (3.3) as t increases if P(0) is not the origin.

Proof: It is trivial to check that
∂Φi

∂x j
≥ 0 for any i, j ∈ {1, · · · ,n}.

Suppose that Φ(x) � x. Then, Φ(Φ(x)) � Φ(x) since Φ is increasing. Similarly, Φ(Φ(x)) �

Φ(x) if Φ(x)� x.

Define a sequence y(0) = 1n = (1,1, · · · ,1)T and y(k+1) = Φ(y(k)).

y(1) = (1−δ )1n +δΞ(1n)� 1n = y(0) (3.24)

The equation above implies that y(k+1) � y(k) for every k ∈ N. The sequence {y(k)}∞
k=0 ⊂ [0,1]n has

a limit point because it is decreasing, and bounded from below. Denote y∗ as a limit point of the

sequence, then Φ(y∗) = y∗. There are two candidates for y∗ because Φ has only two fixed points.

Since Φ is an increasing map, and y(0) � x for every x ∈ [0,1]n, y(k) �Φk(x). y(k) �Φk(x∗) = x∗

for every k implies that y∗ � x∗. It also implies that y∗ = x∗. For any P(0) ∈ [0,1]n, an upper bound

of P(t) is y(t) and it goes to x∗ as t goes to infinity.

Suppose that all the entries of P(0) are positive. This is reasonable since there exists m such

that all the entries of P(m) are positive if P(0) is not the origin. There exists α ∈ (0,1) such that

αx∗ � P(0). Define a sequence z(0) = αx∗ and z(k+1) = Φ(z(k)).

z(1)i = z(0)i +(1− (1−δ )z(0)i )

(
Ξi(αx∗)− δαx∗i

1− (1−δ )αx∗i

)
(3.25)

> z(0)i +α(1− (1−δ )z(0)i )

(
Ξi(x∗)−

δx∗i
1− (1−δ )x∗i

)
(3.26)

= z(0)i (3.27)

The inequality above holds by (3.21), (3.22) and (3.23). It implies that z(k+1) � z(k) for every k ∈N,

and z(k) gives a lower bound for P(k). Since z(0) = αx∗ � x∗, z(k) �Φk(x∗) = x∗. {z(k)}∞
k=0 ⊂ [0,1]n
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has a limit point because it is increasing, and bounded from above. x∗ is the only possible limit

point of {z(k)}∞
k=0. The lower bound of P(t) is z(t) and it goes to x∗ as t goes to infinity.

Both the upper and lower bounds of P(t) go to x∗ which implies that P(t) converges to x∗.

3.3.3 Generalized Epidemics

We consider a fully connected network where the infection rate and recovery rate are not identical

in this section. β is described as βi, j ∈ [0,1] which depends on the edge (i, j) in the network. We

can understand two nodes i and j are so close that they are more likely to transfer disease if βi, j are

large. We also assume that each node i has its own recovery rate δi. The infection and recovery rules

in this section are the same as the ones in the previous section. If node i is susceptible, it becomes

infected by each of its infected neighbors independently. The probability that i is infected from j

is βi, j if j is infected. The probability that i is infected from j is obviously 0 if j is not infected. If

node i is infected, it recovers with probability δi. It can be infected in the same time-step in which

it recovers. In other words, the probability that node i is susceptible at the next time interval is the

probability that it recovers and it is not infected from any of its infected neighbors. If recovery and

no-infection does not happen at same time, the node stays infected at the next time interval.

Considering Pi(t), the marginal probability of infection for node i at time t as in the previous

section, we can suggest the following equation.

1−Pi(t +1) =

(
∏
j 6=i

(1−βi, jPj(t))

)
(1−Pi(t))+δi

(
∏
j 6=i

(1−βi, jPj(t))

)
Pi(t) (3.28)

We approximate the probability that i get infected from j as βi, jPj(t) in the (3.28). By simple

algebra, we get

Pi(t +1) = (1−δi)Pi(t)+(1− (1−δi)Pi(t))

(
1−∏

j 6=i
(1−βi, jPj(t))

)
(3.29)

We define the epidemic map Φ : [0,1]n→ [0,1]n satisfying P(t +1) = Φ(P(t)). Φi is defined as

Φi(x) = (1−δi)xi +(1− (1−δi)xi)

(
∏
j 6=i

(1−βi, jx j)

)
(3.30)
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Define M = (mi, j) ∈ Rn×n, the system matrix of the generalized epidemics.

mi, j =

 βi, j if i 6= j,

1−δi if i = j.
(3.31)

We give similar results even though the recovery rate and the infection rate are not identical, i.e.,each

node has its own recovery rate and each edge has its own infection rate. We represent the epidemic

map Φ(M) in this section to focus that the epidemic map is associated with the system matrix M.

Theorem 3.3.5 Consider generalized epidemic map Φ(M) defined by (3.30) and its system matrix

M defined by (3.31). If λmax(M) < 1, the origin is the unique fixed point of Φ(M) and it is globally

stable. If λmax(M)> 1, there is the second fixed point which is different from the origin. The second

nontrivial fixed point is globally stable in the space excluding the origin.

Proof: We begin the proof by simplifying Φ(M).

Φ
(M)
i (x) = mi,ixi +(1−mi,ixi)

(
∏
j 6=i

(1−mi, jx j)

)
(3.32)

= 1−
n

∏
j=1

(1−mi, jx j) (3.33)

It is trivial to check that

Φ
(M)
i (x)≤

n

∑
j=1

mi, jx j = (Mx)i (3.34)

Applying (3.34) to each node, we get Φ(M)(x) � Mx. The origin is the unique fixed point which

is globally stable if the largest eigenvalue of M is smaller than 1 since (Φ(M))t(x) �Mtx for every

nonnegative integer t.

We analyze the case where the largest eigenvalue of M is greater than 1. Define Ui, the set Φ
(M)
i

is greater than xi and U , intersection of all Ui.

Ui = {x ∈ [0,1]n : Φ
(M)
i (x)≥ xi} U =

n⋂
i=1

Ui (3.35)

We first claim that U has a nonempty interior. Denote v as the eigenvector of M corresponding to

λmax(M), the largest eigenvalue of M. By Perron-Frobenius theorem, v has strictly positive entries

if M is irreducible. We assume that M is irreducible because M has more than one component if M

is not irreducible.
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Since M is the Jacobian matrix of Φ(M) at the origin, Φ(M) is close to M around the origin. For

small ε > 0,

Φ
(M)(εv)≈M(εv) = λmax(M)(εv) = (λmax(M)−1)(εv)+(εv) (3.36)

Since λmax(M) is strictly greater than 1, all the entries of Φ(M)(εv) is strictly greater than ones of

(εv) for small enough ε . v ∈U and it’s obvious that small open set containing v is also included in

U . We conclude that U has a nonempty interior.

We also claim that x,y ∈U implies that max(x,y) ∈U where max(x,y) entrywise maximum of

two n-dimensional vectors x and y, i.e., max(x,y)i = max(xi,yi). Consider i-th entry of max(x,y).

We can assume that max(x,y)i = xi without loss of generality. Since Φ
(M)
i is increasing function for

each x j,

Φ
(M)
i (max(x,y))≥Φ

(M)
i (x))≥ xi = max(x,y)i (3.37)

The equation above guarantees that max(x,y) ∈Ui. Since i is arbitrary max(x,y) ∈U .

Denote x∗ = sup{x : x ∈U}. Since U is closed set, the supremum of U is actually the maximum

of the set. The next step is showing that x∗ is a fixed point of Φ(M). The short proof goes by

contradiction. The basic idea is showing that it’s possible to find the element in U which is greater

than x∗ if x∗ is not a fixed point of Φ(M). Assume that x∗ is not a fixed point of Φ(M). Since x∗ ∈U ,

there exists an index i such that Φ
(M)
i (x∗)> x∗i . Consider x′ ∈ [0,1]n where x′j = x∗j for all j 6= i and

x′i = x∗i +ε for small ε > 0. We can choose ε > 0 small enough to satisfy that Φ
(M)
i (x′)> x′ because

the inequality holds for ε = 0 where x′ = x∗ at that time, and Φ
(M)
i is continuous function. x′ ∈Ui

for small enough ε . For j 6= i,

Φ
(M)
j (x′)≥Φ

(M)
j (x∗)≥ x∗j = x′j (3.38)

The equation above guarantees that x′ ∈U j for all j 6= i. x′ ∈U , however it contradicts that x∗ is the

maximal element of U . x∗ is a fixed point of Φ(M) and it is different from the origin because x∗ is

the maximum element of U , and U has nonempty interior. x∗ is greater than the origin.

The next step is showing that x∗ is a unique nontrivial fixed point of Φ(M). We call x∗ nontrivial

because the origin is the fixed point of Φ(M) even though the largest eigenvalue of M is big. We call

the origin the trivial fixed point and x∗ as the nontrivial fixed point if there is no other fixed point

different from the origin.

The short proof of uniqueness also goes by contradiction. Assume that y∗ is another fixed point
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of Φ(M) which is not the origin. y∗ ∈U by definition of U and y∗ � x∗. All the entries of y∗ are

strictly positive by the connectivity of the network. If y∗ has indices where the entries of y∗ for given

indices are zero, the set of indices for zero-entries and the set of indices for nonzero-entries are not

connected. Since each entry of y∗ is strictly positive, we can find α ∈ (0,1) such that y∗ � αx∗ and

y∗k = αx∗k for some index k ∈ {1,2, · · · ,n}.

Before going on we define function fi : R+→ R where fi(r) = Φ
(M)
i (rx∗)− rx∗i .

d2 fi

dr2 =
d2

dr2

(
Φ

(M)
i − rx∗i

)
(3.39)

=
d2

dr2

(
1−

n

∏
j=1

(1−mi, jrx∗j)− rx∗i

)
(3.40)

=
d
dr

(
n

∑
j=1

mi, jx∗j ∏
l 6= j

(1−mi,lrx∗l )− x∗i

)
(3.41)

=−
n

∑
j=1

∑
l 6= j

mi, jmi,lx∗jx
∗
l ∏

h6= j,h6=l
(1−mi,hrx∗h)≤ 0 (3.42)

Since fi(0) = fi(1) = 0, fi(r)> 0 for r ∈ (0,1).

Φ
(M)
i (rx∗)> rx∗i ∀r ∈ (0,1) (3.43)

Returning back to the discussion of y∗,

αx∗k = y∗k = Φ
(M)
k (y∗)≥Φ

(M)
k (αx∗)> αx∗k (3.44)

The last inequality holds (3.43). By the contradiction, we conclude that there is no other nontrivial

fixed point than x∗.

The last claim is that x∗ is globally stable in the space excluding the origin. In other words, any

initial point other than the origin converges to x∗ as time passes. We can easily check that
∂Φ

(M)
i

∂x j
≥ 0

for any i, j ∈ {1,2, · · · ,n}. The positiveness of partial derivative guarantees that Φ(M)(x)�Φ(M)(y)

if x � y. Since Φ(M)(1n) � 1n. The sequence {y(t)}∞
t=0 defined as y(t) = (Φ(M))t(1n) is decreasing

because all the entries of first term are smaller than ones of the zero-th term. Since {y(t)}∞
t=0 is

decreasing and the origin is its lower bound, it has a limit point. Actually the limit point is a

fixed point of Φ(M) and it means that the limit point is either the origin or x∗. x∗ � 1n implies that

(Φ(M))t(x∗)� (Φ(M))t(1n). Since the limit point of the recursive sequence whose initial point is x∗
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is still x∗, the limit point of {y(t)}∞
t=0 is greater than x∗. x∗ is the limit point of {y(t)}∞

t=0 because

the origin cannot be the limit point. Similarly, define the sequence {z(t)}∞
t=0 whose initial point εv

where v is the eigenvector of M corresponding to the largest eigenvalue of M with arbitrary small

ε > 0. {z(t)}∞
t=0 is increasing in this case because Φ(M)(εv)� εv which is commented before. Since

{z(t)}∞
t=0 has an upper bound 1n, it has limit point. The only possible candidate is x∗ with the same

reason for {y(t)}∞
t=0. All the initial points other than origin converges to the nontrivial fixed point x∗

by the epidemic map Φ(M).

3.4 Immune-admitting Model

In this section, we study the immune-admitting model. The model is the same as that of the previous

section except that in a single time interval a node cannot go from infected to healthy back to

infected. In other words, a node is not infected from its neighbors if it just has recovered from the

disease. We also study an epidemic map of immune-admitting model which is defined as

Φ̃i(x) = (1−δ )xi +(1− xi)

(
1−∏

j∈Ni

(1−βx j)

)
(3.45)

Φ̃ : [0,1]n→ [0,1]n of (3.45) has similar properties with Φ(·) of (3.3). Φ̃(·) and Φ(·) have same

Jacobian matrix at the origin which is linear upper bound of both nonlinear epidemic maps. Analysis

of Φ(·) is modified to analyze Φ̃(·) here. We represent Φ̃(·) using Ξ(·) and ω(·) as we did in (3.8).

We can view

Φ̃i(x) = xi +(1− xi)(Ξi(x)−ω(xi)) (3.46)

where Ξi(x) =

(
1−∏

j∈Ni

(1−βx j)

)
and ω(s) =

δ s
1− s

. It’s trivial to check that Φ̃(·) and ω(·) and

satisfy all the conditions (a) - (f). By doing this, we can apply Theorem 3.3.3 to show that Φ̃(·) has

unique nontrivial fixed point if the largest eigenvalue of the Jacobian matrix at the origin is greater

than 1.

The origin, the trivial fixed point of the system is globally stable if λmax((1− δ )In +βA) < 1.

The next issue is whether the unique nontrivial fixed point is also stable if λmax((1−δ )In+βA)> 1.
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This is not true in general for Φ̃(·). The following is an example of an unstable nontrivial fixed point.

A =


0 1 1

1 0 0

1 0 0

 δ = 0.9 β = 0.9 (3.47)

The nontrivial fixed point of the system above is x∗ = (0.286,0.222,0.222)T. The Jacobian

matrix of Φ̃ at x∗ is

J
Φ̃(x∗) =


−0.260 0.514 0.514

0.700 −0.157 0

0.700 0 −0.157

 (3.48)

The eigenvalue with largest absolute value in the above Jacobian matrix is −1.059 whose abso-

lute value is greater than 1. However, P(t) = Φ̃t(P(0)) converges to a cycle rather than a nontrivial

fixed point x∗.

The biggest difference of (3.45) and (3.3) is that
∂Φi

∂x j
≥ 0 for any i, j ∈ {1, · · · ,n} in (3.3) while

it does not hold for Φ̃(·) in (3.45). The proof of Theorem 3.3.4 can be applied to Φ̃(·) if
∂ Φ̃i

∂x j
≥ 0

for any i, j ∈ {1, · · · ,n} in (3.45).

3.4.1 Random Graphs

Even though the nontrivial fixed point of Φ̃(·) is not stable generally, we shall show that it is stable

with high probability for random Erdös-Rényi graphs. To study the stability of the nontrivial fixed

point with high probability, we will begin with the following lemma that demonstrates that the

Jacobian matrix at x∗ has no eigenvalue greater than or equal to unity for any values of β and δ and

for any connected graph.

Lemma 3.4.1 Suppose that x∗ is a unique nontrivial fixed point of Φ̃ : [0,1]n→ [0,1]n with Ξ satis-

fying the conditions (a),(b) and (c) when λmax((1−δ )In +βA)> 1. Then the Jacobian matrix of Φ̃

at x∗ has no eigenvalue which is greater than or equal to 1.

Proof: The i-th component of Φ̃ is written as Φ̃i(x) = (1−δ )xi +(1− xi)Ξi(x)

J
Φ̃
= (1−δ )In− diag(Ξ)+ diag(1n− x)JΞ (3.49)
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J
Φ̃
+ δ In is a nonnegative matrix by some properties of Ξ. By the Perron-Frobenius theorem of

irreducible aperiodic matrices, J
Φ̃
+δ In has an eigenvector v with eigenvalue µ whose components

are all positive, and any other eigenvalues of J
Φ̃
+δ In is strictly smaller than µ in absolute value.

For each eigenvalue λ of J
Φ̃

, there is λ ′ which is an eigenvalue of J
Φ̃
+ δ In and λ ′ = λ + δ .

Furthermore, the eigenvectors corresponding to λ and λ ′ are the same.

J
Φ̃

has the largest eigenvalue κ = µ−δ corresponding to eigenvector v. All the entries of v are

strictly positive.

Fix ω(s)=
δ s

1− s
in this section, and define a map Ω : [0,1]n→Rn

+ by Ω(x1, · · · ,xn)= (ω(x1), · · · ,ω(xn))
T.

δ +Ξi(x∗) = δ +
δx∗i

1− x∗i
=

δ

1− x∗i
= (1− x∗i )ω

′(x∗i ) (3.50)

By applying (3.50) to (3.49),

J
Φ̃(x∗) = In + diag(1n− x∗)

(
JΞ(x∗)− JΩ(x∗)

)
(3.51)

Assume that κ > 1.

κv = J
Φ̃(x∗)v = v+ diag(1n− x∗)

(
JΞ(x∗)− JΩ(x∗)

)
v (3.52)

For simplicity, apply Ψ(x) = Ξ(x)−Ω(x).

JΨ(x∗)v =
(
JΞ(x∗)− JΩ(x∗)

)
v = (κ−1)(diag(1n− x∗))−1 v� 0n (3.53)

Ψ(x∗+ v)≈Ψ(x∗)+ JΨ(x∗)v� 0n (3.54)

There is an ε > 0 which is small enough and Ψ(x∗+εv)� 0n. However, it contradicts that x∗ is the

maximal element in U = {x ∈ [0,1]n : Ψi(x) ≥ 0 for all i = 1,2, · · · ,n} which has a key role in the

proof of Theorem 3.3.3. Therefore the assumption was wrong.

Assume now that κ = 1.

JΨ(x∗)v =
(
JΞ(x∗)− JΩ(x∗)

)
v = (κ−1)(diag(1n− x∗))−1 v = 0n (3.55)
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By property (c) of Ξ and ω
′′(s) =

δ

(1− s)3 > 0, the Hessian matrix of Ψi is a non-positive matrix.

Furthermore, (HΨi(x∗))i,i =−ω
′′(x∗i ) =−

δ

(1− x∗i )3 < 0,

Ψi(x∗+ v)≈Ψi(x∗)+grad(Ψi(x∗))v+
1
2

vT HΨi(x∗)v < 0 (3.56)

Since the inequality above holds for every i ∈ {1, · · · ,n}, there exists ε > 0 which is small and such

that the entries of Ψ(x∗− εv) are all negative. There is α ∈ (0,1) such that x∗− εv � αx∗ and

(x∗−εv) j = αx∗j for some j ∈ {1, · · · ,n}. Just substitute x∗−εv for y∗ in (3.22). Then, Ψ j(x∗−εv)

is positive, however it contradicts that Ψ(x∗−εv) has all negative entries. Therefore the assumption

was wrong.

Even though J
Φ̃

has no eigenvalue which is greater than or equal to 1, the fixed point x∗ still has

a chance to be unstable if there is an eigenvalue which is greater than or equal to 1 in absolute value.

We now show that x∗ is stable with high probability when we consider a certain family of random

graphs and the number of vertices is large. We will later show that this family of random graphs

includes Erdös-Rényi graphs.

We fix Ξi(x) =
(
1−∏ j∈Ni(1−βx j)

)
from now on.

∂Ξi

∂x j
= β ∏

k∈Ni\{ j}
(1−βxk) = β

1−Ξi

1−βx j
if i ∈ N j in G (3.57)

JΞ = β diag(1n−Ξ)Adiag(1n−βx)−1 (3.58)

Lemma 3.4.2 Suppose that G(n) is a random graph with n vertices and let d(n)
min and d(n)

max denote the

minimum and maximum degree of G(n). If P[(d(n)
min)

2 > a ·d(n)
max] goes to 1 as n goes to infinity for any

fixed a > 0, then the system is unstable at the origin and locally stable at the nontrivial fixed point

x∗ with high probability as n grows, for any fixed β and δ .

Proof: First note that λmax ((1−δ )In +βA) ≥ (1− δ )+ βd(n)
min. Since P[(d(n)

min)
2 > a · d(n)

max]

goes to 1 as n goes to infinity, this means P[d(n)
min > a] goes to 1 as n goes to infinity, for any a, which

further means that λmax exceeds one with high probability. Thus, the origin is unstable.

J
Φ̃
= (1−δ )In− diag(Ξ)+ diag(1n− x)JΞ (3.59)

' (1−δ )In− diag(Ξ)+βD
1
2 AD

1
2 (3.60)
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where D is a diagonal matrix whose i−th diagonal element is
(1− xi)(1−Ξi)

1−βxi
and ' refers to

similarity.

All the eigenvalues of J
Φ̃

are real because it is similar to a symmetric matrix by (3.60). Since

Lemma 3.4.1 shows that all the eigenvalue of J
Φ̃(x∗) are strictly less than 1, we need to show that all

the eigenvalues of J
Φ̃(x∗)+ In are positive to show the system is locally stable at x∗.

By applying (3.50) to (3.60),

J
Φ̃(x∗)+ In ' 2In−δ diag(1n− x∗)−1 +βD

1
2 AD

1
2 (3.61)

Since the right hand side of (3.61) is symmetric, it is positive definite if all the eigenvalues of

J
Φ̃(x∗)+ In are strictly positive.

With simple algebra, we can show that the right hand side of (3.61) is positive definite if and

only if E+A is positive definite where E =
1
β

D−
1
2 (2In−δ diag(1n−x∗)−1)D−

1
2 is a diagonal matrix

whose i−th diagonal entry is defined as below.

Eii =
2
β
·

(
1− δ

2 − x∗i
)
(1−βx∗i )

(1− (1+δ )x∗i )(1− x∗i )
(3.62)

=
2(1−βx∗i )

β (1+δ )(1− x∗i )
·
(

1+
δ (1−δ )

2(1− (1+δ )x∗i )

)
(3.63)

We will give a lower bound on Eii because the smallest eigenvalue of E+A is what we are interested

in.
1− (1+δ )x∗i

1− x∗i
= 1− δx∗i

1− x∗i
= 1−Ξi(x∗) = ∏

j∈Ni

(1−βx∗j) (3.64)

Let x∗m = min{x∗1, · · · ,x∗n} and denote by dm the degree of the m-th node.

1− (1+δ )x∗m = (1− x∗m) ∏
j∈Nm

(1−βx∗j)≤ (1−βx∗m)
dm (3.65)
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If y > 0 satisfies 1− (1+δ )y = (1−βy)dm , then x∗m > y. For 1− (1+δ )y = η ,

η =

(
1− β

1+δ
(1−η)

)dm

(3.66)

⇔ 1−η
1

dm =
β

1+δ
(1−η) (3.67)

⇔ 1+δ

β
=

dm−1

∑
k=0

η
k

dm ≥ 1+(dm−1)η
1
2 (3.68)

⇒ η ≤
(

1−β +δ

β (dm−1)

)2

≤
(

1−β +δ

β (dmin−1)

)2

(3.69)

dm and dmin are generally different. dm is the degree of the m-th node and dmin is a minimum degree

of the network.

Eii ≥
2

β (1+δ )
·
(

1+
δ (1−δ )

2
· 1

1− (1+δ )x∗i

)
(3.70)

≥ 2
β (1+δ )

·
(

1+
δ (1−δ )

2
· 1

η

)
(3.71)

≥ 2
β (1+δ )

·

(
1+

δ (1−δ )

2
·
(

β (dmin−1)
1−β +δ

)2
)

(3.72)

Since λmin(A)≥−λmax(A)≥−dmax,

λmin(E +A)≥ 2
β (1+δ )

+
δ (1−δ )

β (1+δ )
·
(

β (dmin−1)
1−β +δ

)2

−dmax (3.73)

(3.73) guarantees that the smallest eigenvalue of E +A is positive and the system is locally stable

at the nontrivial fixed point with high probability if d2
min grows faster than dmax as the size of graph

grows.

We can think of several random graph models that satisfy the condition of Lemma 3.4.2. For

example, if the random graph has uniform degree then the minimum degree and maximum degree

are identical and as long as the degree grows with n, the ratio
d2

min
dmax

= d will grow with any n and

exceed a with high probability. Similarly, for random graphs where the degree distribution of each

node is identical and the degree distribution ”concentrates”, so that we can expect that the maximum

degree and the minimum degree are proportional to the expected degree, in which case
d2

min
dmax

grows

if the expected degree increases unbounded with n.



69

3.4.1.1 Erdös-Rényi Graphs

The Erdös-Rényi random graph, G(n) = G(n, p(n)) has identical degree distribution.

Theorem 3.4.3 Consider an Erdös-Rényi random graph G(n) = G(n, p(n)) with p(n) = c
logn

n
where c > 1 is a constant. Then Φ̃(·) is locally unstable at the origin and has a locally stable

nontrivial fixed point with high probability for any fixed β and δ .

Proof: The proof of instability of the origin is similar to the proof of Lemma 3.4.2. For the

remaining, it is enough to show that P[(d(n)
min)

2 > a ·d(n)
max] goes to 1 as n goes to infinity for any a > 0.

The degree of random Erdös-Rényi graphs is studied in [7]. In particular, there exists two constants

η∆ > 0 and ηδ ∈ (−1,0) such that

d(n)
max ∼ (1+η∆)c logn d(n)

min ∼ (1+ηδ )c logn (3.74)

It is straightforward to see that P[(d(n)
min)

2 > a ·d(n)
max] goes to 1 as n goes to infinity for any a > 0.

Since p = c
logn

n
for c = 1 is also the threshold for connectivity, we can say that connected

Erdös-Rényi graphs have a nontrivial stable fixed point with high probability.

We also consider the case for β which is not fixed. It’s reasonable to assume that δ is fixed

because the recovering from infected state does not depend on neighbors since δ is defined as the

probability that an infected node is recovered when there is no infected neighbors at a given time.

However, β is the probability that the disease is transmitted by a neighbor and it’s also reasonable

that β decreases when the expected number of neighbors increases because the chance to interact

with a particular neighbor decreases when the number of neighbors increases. We assume that

β = β (n).

Suppose that np(n)β (n)� 1. Asymptotic behavior of the largest eigenvalue of Erdös-Rényi

graphs is studied in [36]. G(n, p) satisfies almost surely λmax(A) = (1+o(1))max
(√

dmax,np
)
. By

connectivity of the underlying graph, p(n) = Ω(
logn

n
) and the asymptotic order of p(n) guarantees

dmax = Θ(np(n)).

β (n)λmax(A) = (1+o(1))np(n)β (n)� 1 (3.75)

Since δ ∈ (0,1) is fixed by assumption, (1− δ )+β (n)λmax(A) < 1 with high probability. In this

case, the system does not have nontrivial fixed point, and the origin is unique fixed point which is

globally stable.
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Suppose that np(n)β (n)� 1. Connectivity of the underlying graph also guarantees that p(n) =

Ω(
logn

n
). (1−δ )+β (n)λmax(A)> 1 with high probability by

β (n)λmax(A) = (1+o(1))np(n)β (n)� 1 (3.76)

p(n) = Ω(
logn

n
) guarantees both dmax = Θ(np(n)) and dmin = Θ(np(n)). It implies that

d(n)
max

d(n)
min

is

bounded by constant with probability 1 as n grows up when the underlying Erdös-Rényi graphs are

connected with high probability. Since np(n)β (n)� 1 , (β (d(n)
min− 1))2 is far greater than βd(n)

max.

(3.73) is positive with high probability as n increases, and it guarantees that the nontrivial fixed

point is locally stable with high probability.

The only remaining case is β (n) =
c

np(n)
for some constant c. It is reasonable to assume that

c > δ to satisfy βλmax(A)> δ which guarantees the existence of the nontrivial fixed point.

Theorem 3.4.4 Suppose that
np(n)
logn

→∞ and np(n)β (n)→ c> δ as n→∞. Φ̃(·) whose underlying

graph is Erdös-Rényi random graph G(n) = G(n, p(n)) with β (n), δ is locally unstable at the origin.

However, it has a locally stable nontrivial fixed point with high probability

Proof: It is obvious that βλmin(A) > δ with high probability. Define Laplacian matrix L =

D−A of graph G where A is adjacency matrix of G and D is a diagonal matrix whose i-th entry is

degree of i. In other words,

Li, j =

 ∑
n
k=1 Ai,k if i = j,

−Ai, j if i 6= j.
(3.77)

The largest eigenvalue of L is studied in [14].
λmax(L)
np(n)

→ 1 if p(n)� logn
n

.

0≥ λmin(A)≥ λmin(D)−λmax(L) = (1+o(1))np(n)− (1+o(1))np(n) = o(np(n)) (3.78)

Since λmin(A) = o(np(n)) with high probability, the following inequality also holds with high prob-

ability. We can give a lower bound Ei,i ≥
1
β

from (3.72).

λmin(E +A)≥ λmin(E)+λmin(A)≥
1
β
+λmin(A)≥ np(n)(

1
c
+o(1))> 0 (3.79)

The nontrivial fixed point is locally stable since E +A is positive definite.
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The Random geometric graph G(n) = G(n,r(n)) also has identical degree distribution if each

node is distributed uniformly. As studied in [52], such random graphs have maximum and minimum

degree which are proportional to the expected degree with high probability if r(n) is smaller than the

threshold of connectivity. Like Erdös-Rényi graphs, it has a high probability of having a nontrivial

stable fixed point if the degree grows with n.

On the other hand, the minimum degree of the Barabási-Albert model is fixed as the size of the

graph increases. In this case, we cannot generally argue that the nontrivial fixed point is stable.

3.4.2 Stability of the Nontrivial Fixed Point for Given Network Topology

From the (3.47), we found out the nontrivial fixed point is not always stable. However, random

graph approach shows that the nontrivial fixed point is stable with high probability. We question

whether there exists β and δ which makes the nontrivial fixed point unstable for given network

topology. Here are some results for that.

Theorem 3.4.5 For any connected graph G which is not a complete graph, there exist β and δ such

that the nontrivial fixed point is unstable. The nontrivial fixed point is always locally stable if G is

a complete graph.

Proof: Applying E defined as (3.63) to the stability of the nontrivial fixed point, the nontrivial

fixed point is locally stable if and only if E +A is positive definite as mentioned in the proof of

Lemma 3.4.2. It is enough to show that there exists w ∈ Rn such that wT (E +A)w < 0.

x∗ depends only on β and δ for fixed G. Suppose that β and δ are close to 1. It’s obvious that

the origin is unstable since λmax((1−δ )I+βA)≈ λmax(A)> 1. We can also observe what happens

to E when both β and δ are close to 1

lim
(β ,δ )→(1,1)

Eii = lim
(β ,δ )→(1,1)

2(1−βx∗i )
β (1+δ )(1− x∗i )

·
(

1+
δ (1−δ )

2(1− (1+δ )x∗i )

)
= 1 (3.80)

E is close to the n-dimensional identity matrix, In when β and δ are close to 1.

Since G is connected, but not fully connected, we can find three vertices j,k, l such that l ∼

j, l ∼ k and j � k. Define u ∈ Rn such that u j = uk = 1, ul =−1 and ui = 0 otherwise.

uT (I +A)u = u2
j +u2

k +u2
l +2u jul +2ukul =−1 < 0 (3.81)

Since E only depends on β and δ , uT (E +A)u < 0 when both β and δ are close to 1.
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If G is a complete graph,

Eii =
2(1−βx∗i )

β (1+δ )(1− x∗i )
·
(

1+
δ (1−δ )

2(1− (1+δ )x∗i )

)
≥ 2(1−βx∗i )

β (1+δ )(1− x∗i )
≥ 1 (3.82)

For complete graph G, its adjacency matrix is represented by A= 1n1T
n −In where 1n is n-dimensional

column vector all whose entries are 1. It can be easily checked that x∗i is identical for all nodes i if

G is a complete graph. E = cIn for some constant c which is greater than 1 by (3.82).

E +A = cIn +1n1T
n − In = (c−1)In +1n1T

n (3.83)

The equation above guarantees that the E +A is positive definite, and it also guarantees that the

nontrivial fixed point is locally stable for any β and δ .

It gives an interesting result. For any not-fully-connected graph, there exists β and δ which makes

the nontrivial fixed point unstable, however, for any fixed β and δ , the nontrivial fixed point is

locally stable with high probability.

3.5 Continuous Time Model

The discrete time model may give an unstable nontrivial fixed point as in (3.47). However, in

the continuous-time model the nontrivial fixed point is globally stable if Ξ and ω satisfy all the

properties from (a) to (f).

Consider a differential equation.

dxi

dt
=

1
∆t

((1− xi)Ξi(x1, · · · ,xn)−δxi) =
1− xi

∆t
(Ξi(x)−ω(xi)) (3.84)

Then, (3.46) is just the forward Euler method of (3.84) with ∆t as step size for time. The origin

is a trivial equilibrium point of (3.84). The origin is unstable if, and only if, −δ In + βA has an

eigenvalue in the RHP, i.e., one or more eigenvalues of −δ In +βA have positive real parts. Since A

is symmetric and by Perron-Frobenius theorem its largest eigenvalue in absolute value is positive,

unstableness of the origin is equivalent to λmax((1− δ )In +βA) > 1. By Theorem 3.3.3, we know

that (3.84) has a nontrivial fixed point x∗ under this condition.
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Theorem 3.5.1 Suppose that λmax((1−δ )In +βA)> 1, then x(t) defined by (3.84) converges to x∗

as t goes to infinity unless x(0) = 0n.

Proof: We will suggest a Lyapunov function that is strictly decreasing for all initial points

except x(0) = 0n:

V (x) = max
1≤i≤n

{
|xi− x∗i |

x∗i

}
(3.85)

It’s obvious that V (x∗) = 0 and V (x)> 0 for all x ∈ [0,1]n \{x∗}. Suppose that V (x) = r > 0. Then,

x j ∈ [(1− r)x∗j ,(1+ r)x∗j ] for all j ∈ {1, · · · ,n}. There is i such that xi = (1− r)x∗i or (1+ r)x∗i .

In the case of xi = (1+ r)x∗i , 0n � max(x,x∗)− x∗ � rx∗, we obtain the following equation by

Lemma 3.3.1 for u = x∗− max(x,x∗)− x∗

r
,v =

max(x,x∗)− x∗

r
.

Ξi(x)≤ Ξi(max(x,x∗)) = Ξi(u+(1+ r)v) (3.86)

= (1+ r)
(

hi,u,v(1+ r)−hi,u,v(0)
1+ r

)
+hi,u,v(0) (3.87)

≤ (1+ r)(hi,u,v(1)−hi,u,v(0))+hi,u,v(0) (3.88)

= (1+ r)Ξi(u+ v)− rΞi(u) (3.89)

≤ (1+ r)Ξi(u+ v) = (1+ r)Ξi(x∗) (3.90)

The equation above is necessary to prove following inequality:

dxi

dt
=

1− xi

∆t
(Ξi(x)−ω(xi)) (3.91)

=
1− (1+ r)x∗i

∆t
(Ξi(x)−ω((1+ r)x∗i )) (3.92)

≤ 1− (1+ r)x∗i
∆t

((1+ r)Ξi(x∗)−ω((1+ r)x∗i )) (3.93)

<
(1+ r)(1− (1+ r)x∗i )

∆t
(Ξi(x∗)−ω(x∗i )) = 0 (3.94)

Hence,
|xi(t)− x∗i |

x∗i
=

xi(t)− x∗i
x∗i

is strictly decreasing.
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Otherwise, xi = (1− r)x∗i . If r < 1,

dxi

dt
=

1− xi

∆t
(Ξi(x)−ω(xi)) (3.95)

=
1− (1− r)x∗i

∆t
(Ξi(x)−ω((1− r)x∗i )) (3.96)

≥ 1− (1− r)x∗i
∆t

(Ξi((1− r)x∗)−ω((1− r)x∗i )) (3.97)

≥ 1− (1− r)x∗i
∆t

((1− r)Ξi(x∗)−ω((1− r)x∗i )) (3.98)

>
(1− r)(1− (1− r)x∗i )

∆t
(Ξi(x∗)−ω(x∗i )) = 0 (3.99)

|xi(t)− x∗i |
x∗i

=
x∗i − xi(t)

x∗i
is strictly decreasing. If r = 1, all the entries of x(t) are positive after short

time unless x(t) is the origin.

Since
d
dt

(
|xi(t)− x∗i |

x∗i

)
< 0 for all i such that

|xi(t)− x∗i |
x∗i

= V (x),
d
dt

V (x(t)) < 0. V (x) is a

Lyapunov function of this system and it completes the proof.

We focused on Ξi(x) =
(
1−∏ j∈Ni(1−βx j)

)
for discrete-time epidemic maps because the sum

of infection rate multiplied by marginal probability of each node β ∑
j∈Ni

x j makes the epidemic map

not-well-defined if β is big. However, it does not happen in continuous-time model. Theorem 3.5.1

holds for all Ξ satisfying the conditions (a) - (c).

We finally remark that, even though the continuous-time and discrete-time models are related

through the forward Euler method and that the discrete-time model can be viewed as a discretization

of the continuous-time model, it does not mean that continuous-time model is approximation to the

true underlying epidemic spread. There are certain applications, such as the interaction of humans

over a social network, say, where the discrete-time model appears to be more appropriate. In either

case, whether to use a continuous-time model or a discrete-time model (and in the latter case whether

to use Immune-admitting or the Chakrabarti model) depends on the application at hand.
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Chapter 4

Markov Chain Model

4.1 Introduction

Epidemic spread threatened mankind for a long time. Ancient Greek historians described the Plague

of Athens which took lives of many people during the second year of the Peloponnesian War (430

BC). The Black Death was one of the most devastating epidemic spreads of all time, which killed

around 100 million people in 14th century Europe. Modeling epidemic spread plays a key role to

preventing the spread of the disease. Researchers have focused on various aspects of this problem

such as immunization and minimizing the social cost [5], [40].

We analyze the classical susceptible-infected-susceptible (SIS) model here. In the SIS model,

each node in the network is in one of two different states : susceptible (healthy) or infected. A

healthy node has a chance of getting infected if it has infected neighbors in the network. The

probability of getting infected increases as the number of infected neighbors increases. An infected

node also has a chance of recovering after which it still has a chance of getting infected by its

neighbors.

There are four SIS models depending on the continuity of time and space. For the discrete

space, two possible states are “0” and “1” which represent healthy and infected, respectively. Con-

tinuous space admits real numbers between 0 and 1, which can be understood as the probability

for being infected or the rate of infection. Continuous-time-continuous-space can be understood as

a differential equation defined on [0,1]n where n is the number of nodes [49], [50]. Continuous-

time-discrete-space is a random process, called a continuous-time Markov chain. Draief, Ganesh

et al. and Mieghem et al. have applied continuous-time Markov chains to model epidemic dy-

namics [16], [23], [42]. Discrete-time-continuous-space is studied as an iterative map where the

mapping represents the dynamics of the epidemic after a unit time step. Some work has been con-
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ducted on random graph models where the graph topology is distributed according to a particular

distribution. Barabási-Albert model [4] is one of the most preferred network models describing real

network. Chakrabarti et al. and Wang et al. suggested nonlinear epidemic map defined on fixed

graph topology [10], [62]. Ahn et al. studied the dynamics of epidemic spread for general networks

[2]. Discrete-time-discrete-space is the Markov chain model defined on 2n states.

The discrete-time Markov chain model is hard to analyze because the size of the transition

matrix, 2n grows exponentially as the number of nodes, n grows. In this paper, we shall study the

dynamics of nonlinear epidemic map suggested by [10] and how the epidemic map is related to the

discrete-time Markov chain model. The main contributions of this paper is existence and stability

analysis of continuous-space models and upper bound of extinction probability in discrete-space

model a.k.a the Markov chain model using the nonlinear epidemic model. The continuous-time

Markov chain model also gives fast extinction of epidemics when the largest eigenvalue of linearized

upper bound of nonlinear epidemic map at the origin is stable [23]. This paper contributes that same

result holds for discrete-time Markov model.

In the following section, we describe both the Markov chain model and the epidemic map which

focuses on the marginal probability of each node being infected. In the next section, we prove that

the epidemic map gives an upper bound on the probability that the system is not in the absorbing

state. To give a rigorous proof, we define a partial order which makes the transition matrix an order-

preserving map. With that, we show that the epidemic map offers an upper bound on the mixing time

and gives a practical result that the mixing time of the Markov chain is O(logn) when the origin is

globally stable in the epidemic map. We also give the same result under the condition that the linear

map is stable by applying linear programming. In fact, stability of the origin in the epidemic map

has the pivotal role to achieve this result. We describe generalized contact model in the following

section. Generalized contact model admits each node’s own recovery rate and infection rate. We

mention another model which admits immune-effect where a node does not get infected from its

neighbors after recovering from the disease at the same time. We describe continuous-time Markov

chain model and shows that the expected extinction time is exponentially big when the origin is not

a stable fixed point of the epidemic map. Finally, we give simulation results which shows that the

marginal probability for each node’s infection is close to the nontrivial fixed point of the epidemic

map.
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4.2 Model Description

We will consider a discrete-time Markov chain model for epidemic spread, referred to as the SIS

(susceptible-infected-susceptible) model. For a given connected network G with n nodes, let Ni

be the neighborhood of node i. Let A be the adjacency matrix of G. Each node can be in a state

of health, represented by “0”, or a state of infection, represented by “1”. Consequently, ξ (t) =

(ξ1(t), · · · ,ξn(t)) ∈ {0,1}n is a binary n-tuple and each of its entries represents the state of each

node at time t, i.e., i is infected if ξi(t) = 1 and it’s healthy if ξi(t) = 0.

We assume that probability of infection of each node given the current state ξ (t) is independent.

In other words, for any two state vectors X ,Y ∈ {0,1}n,

P[ξ (t +1) = Y |ξ (t) = X ] =
n

∏
i=1
P[ξi(t +1) = Yi|ξ (t) = X ] (4.1)

A healthy node remains healthy if all its neighbors are healthy. A healthy node can become

infected by any of its infected neighbors independently with probability β . An infected node be-

comes healthy if it is recovered from disease with probability δ and is not infected from any of its

neighbors. To summarize this,

P[ξi(t +1) = Yi|ξ (t) = X ] =



(1−β )mi if (Xi,Yi) = (0,0), |Ni∩S(X)|= mi,

1− (1−β )mi if (Xi,Yi) = (0,1), |Ni∩S(X)|= mi,

δ (1−β )mi if (Xi,Yi) = (1,0), |Ni∩S(X)|= mi,

1−δ (1−β )mi if (Xi,Yi) = (1,1), |Ni∩S(X)|= mi.

(4.2)

where S(X) is the support of X ∈ {0,1}n, i.e., S(X) = {i : Xi = 1}.

Let S be the transition matrix of this Markov Chain, SX ,Y = P[ξ (t + 1) = Y |ξ (t) = X ]. We

assume that the Markov chain is time-homogeneous and write SX ,Y = P[Y |X ] for simplicity.

The Markov chain has a unique stationary distribution, which is the state where all the nodes

in the network are healthy with probability 1. If all the nodes are healthy, no node will be exposed

to disease, and therefore they will always stay healthy since the occurrence of new disease is not

considered in this model. Therefore the probability distribution on the states, {0,1}n goes to the

all-healthy-state as time progresses. In other words, the disease will die out if we wait long enough.

However, this result is not practical since it may take a very long time especially if the mixing time

of the Markov chain is exponentially big. It is difficult to analyze the dynamics of the Markov chain
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as the number of nodes increases.

Comparing the discrete-time Markov chain model to the continuous-time Markov chain model

described in [23], continuous-time Markov chain model allows only one flip of each node’s epidemic

state at each moment. However, the discrete-time model allows change of epidemic states for more

than one node at the same time. The reason being that change of epidemic state for two or more

nodes can occur at the same time interval even though they do not happen at the same moment.

The transition matrix of the embedded Markov chain of continuous-time model has nonzero entry

only for the Hamming distance of row coordinate and column coordinate is 1. In other words, the

statement that the number of different digits for X ,Y ∈ {0,1}n is 1 is necessary for the entry of the

X-th row and the Y -th column is nonzero. However, the transition matrix of discrete-time Markov

chain model can have nonzero entries everywhere except the row of absorbing state.

Denote I(t) as the set of infected nodes at time t. Define pi(t) as the probability that node i is

infected at time t, i.e., pi(t) = P[i ∈ I(t)].

pi(t +1) = P[i ∈ I(t +1)|i ∈ I(t)]× pi(t)

+P[i ∈ I(t +1)|i /∈ I(t)]× (1− pi(t)) (4.3)

= (1−δ (1−β )mi)pi(t)+(1− (1−β )mi)(1− pi(t))

where mi = |Ni∩ I(t)| (4.4)

=

(
1−δ

(
∏
j∈Ni

1−β1I(t)( j)

))
pi(t)+

(
1−∏

j∈Ni

1−β1I(t)( j)

)
(1− pi(t)) (4.5)

We approximate ∏ j∈Ni 1− β1I(t)( j) by using expectation E[1− β1I(t)( j)] = 1− β p j(t) and the

assumption that each event is independent of each other.

Pi(t +1) =

(
1−δ

(
∏
j∈Ni

1−βPj(t)

))
Pi(t)+

(
1−∏

j∈Ni

1−βPj(t)

)
(1−Pi(t)) (4.6)

We use Pi(t) instead of pi(t) because we want to distinguish Pi(t), the approximated probability

from pi(t), the exact probability of the Markov chain model.

Approximated model is studied on [0,1]n, the n-dimensional probability space which is less

computation-demanding than 2n-dimensional discrete space. One of them was studied by Chakrabarti

and Wang [10], [62]. Ahn viewed the n-dimensional probability distribution at time t +1 as image

of the probability distribution at time t mapped by Φ : [0,1]n→ [0,1]n [2]. The i-th component of
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the epidemic map, Φ is defined as follows:

Φi(x) = (1−δ )xi +(1− (1−δ )xi)

(
1−∏

j∈Ni

(1−βx j)

)
(4.7)

It is trivial to check that Pi(t +1) = Φi((P1(t), · · · ,Pn(t))T ) in (4.6).

4.3 Partial Order

Returning back to the Markov chain model, we study the mixing time of Markov chain and how it

is related with the epidemic map Φ(·) described in previous section. The mixing time of a Markov

chain is defined as follows [38]:

tmix(ε) = min{t : sup
µ

‖µSt −π‖TV ≤ ε} (4.8)

µ is any initial probability distribution defined on the state space and π is the stationary distri-

bution in (4.8). ‖ · ‖TV is total variation distance which measures the distance of two probability

distributions. Total variation distance of two probability measure µ and µ ′ are defined by

‖µ−µ
′‖TV =

1
2 ∑

x
|µ(x)−µ

′(x)| (4.9)

where x is any possible state in the probability space. tmix(ε) is the smallest time where distance be-

tween the stationary distribution and probability distribution at time t from any initial distribution is

smaller than or equal to ε . Roughly speaking, the mixing time measures how fast initial distribution

converges to the limit distribution. In this section, we give a partial order on the set of probability

vectors of {0,1}n. By giving a partial order, we can find a particular µ which gives the supremum

of ‖µSt −π‖TV in (4.8).

For two vectors X ,Z, X � Z means that Xi ≤ Zi for all i. We define ≤st on the set of probability

vectors of {0,1}n as follows.

µ ≤st µ
′ iff ∑

X�Z
µX ≥ ∑

X�Z
µ
′
X ∀Z ∈ {0,1}n (4.10)

The reader may note that ∑X�Z µX represents the probability that each node of S(Z)c is healthy

under probability distribution µ . µ ≤st µ ′ means that the probability of some nodes being healthy is
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higher under µ than under µ ′, for any set of nodes. Roughly speaking, infection probability under

µ ′ stochastically dominates one under µ . It is trivial to check that ≤st is a well-defined partial

order. The X-th unit vector, denoted by eX ∈R2n
, is the probability vector all of whose components

are zero, except the X-th component. Denote 0̄, 1̄ ∈ {0,1}n as the state where everyone is healthy

or infected, respectively. It’s obvious that e1̄ is the greatest element and e0̄ is the least element

under ≤st . Since G, the underlying graph is connected, the Markov chain is irreducible and it is not

hard to see that the stationary distribution is e0̄, which corresponds to all nodes being healthy with

probability 1. If all the nodes in the network are healthy, there is no infection and they always stay

healthy in this model.

≤st is nice because it makes S an order-preserving map, i.e., µ ≤st µ ′ implies µS ≤st µ ′S. To

prove this claim, we need an intermediate result.

Lemma 4.3.1 R−1SR is a 2n by 2n matrix all of whose entries are non-negative where R∈R{0,1}n×{0,1}n

is defined as

RX ,Y =

 1 if X � Y,

0 otherwise
(4.11)

Proof: We want to compute the inverse matrix of R first. Define a matrix R′.

R′X ,Y =

 (−1)|S(Y−X)| if X � Y,

0 otherwise
(4.12)

|S(Y −X)| represents the number of nodes which are infected in Y , but not in X . We claim that

R′ = R−1. If X � Y , then X � Z or Z � Y holds for every Z ∈ {0,1}n. By the definition of R and

R′, RX ,Z = 0 or R′Z,Y = 0 if X � Y . It is straightforward that (RR′)X ,Y = 0 if X � Y . It’s enough to

consider the case X � Y .

(RR′)X ,Y = ∑
Z

RX ,ZR′Z,Y = ∑
X�Z�Y

1|S(Z−X)|(−1)|S(Y−Z)|

= (1−1)|S(Y−X)| (4.13)

(RR′)X ,Y = 1 if |S(Y −X)|= 0 and (RR′)X ,Y = 0 otherwise. It leads that RR′ is an identity matrix of



81

size 2n and R′ = R−1.

(R−1SR)X ,Z (4.14)

= ∑
Y�Z

(R−1S)X ,Y = ∑
Y�Z

∑
W

R−1
X ,W SW,Y (4.15)

= ∑
Y�Z

∑
W�X

(−1)|S(W−X)|SW,Y (4.16)

= ∑
W�X

(−1)|S(W−X)|
∏

i∈S(Z)c

P[ξi(t +1) = 0|ξ (t) =W ] (4.17)

= ∑
W�X

(−1)|S(W−X)|
δ
|S(W )∩S(Z)c|(1−β )∑i∈S(Z)c |Ni∩S(W )| (4.18)

= ∑
W�X

(−1)|S(W−X)|
δ
|S(W )∩S(Z)c|(1−β )∑i∈S(W ) |Ni∩S(Z)c| (4.19)

By some algebra,

δ
−|S(X)∩S(Z)c|(1−β )−∑i∈S(X) |Ni∩S(Z)c|(R−1SR)X ,Z (4.20)

= ∑
W�X

(−1)|S(W−X)|
δ
|S(W−X)∩S(Z)c|(1−β )∑i∈S(W−X) |Ni∩S(Z)c| (4.21)

= ∏
i∈S(X)c

(
1− (1−β )|Ni∩S(Z)c|

δ
1{i∈S(Z)c}

)
(4.22)

Define ¬X = 1̄−X . ¬X is an opposite state of X where each node is healthy in ¬X if it is

infected in X and vice versa. From (4.19) and (4.22), we simplify (R−1SR)X ,Z using ¬X and ¬Z.

(R−1SR)X ,Z = P[ξ (t +1) = ¬X |ξ (t) = ¬Z]≥ 0 (4.23)

Now to the claim.

Lemma 4.3.2 If µ ≤st µ ′, then µS≤st µ ′S.

Proof: We defined 2n-dimensional square matrix R from Lemma 4.3.1 because we can repre-

sent µ ≤st µ ′ using R. By definition of µ ≤st µ ′,

((µ−µ
′)R)Y = ∑

X
(µ−µ

′)X RX ,Y = ∑
X�Y

(µ−µ
′)X ≥ 0 (4.24)

µ ≤st µ ′ if and only if all of (µ − µ ′)R’s entries are nonnegative. ((µ − µ ′)R)Y = 0 if Y = 1̄ =
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(1,1, , · · · ,1) because both of µ and µ ′ are probability vectors whose 1-norm is 1.

Define a row vector ν ∈ R{0,1}n
whose Y -th element is defined by νY = ((µ − µ ′)R)Y . νY ≥ 0

for all Y ∈ {0,1}n by (4.24). ν is a non-negative row vector, and ν1̄ = 0. µ − µ ′ = νR−1. We can

understand µ−µ ′ as a conical combination of all row vectors of R−1, but the 1̄-th row vector.

µS ≤st µ ′S if and only if (µ−µ ′)SR is a non-negative vector. µ−µ ′ = νR−1 for non-negative

ν since µ ≤st µ ′. (µ − µ ′)SR = νR−1SR is non-negative since ν is non-negative and R−1SR is a

matrix all of whose entries are non-negative by Lemma 4.3.1.

By Lemma 4.3.2, ∑X�0̄(µSt)X = (µSt)0̄ ≥ (e1̄St)0̄ = ∑X�0̄(e1̄St)X for any probability vector µ

since µ ≤st e1̄. Returning to the mixing time (4.8),

‖µSt −π‖TV = ‖µSt − e0̄‖TV = 1− (µSt)0̄ (4.25)

≤ 1− (e1̄St)0̄ = 1− e1̄SteT
0̄ (4.26)

Using the inequality above, we can now write

tmix(ε) = min{t : sup
µ

‖µSt −π‖TV ≤ ε} (4.27)

= min{t : 1− e1̄SteT
0̄ ≤ ε} (4.28)

= min{t : e1̄SteT
0̄ ≥ 1− ε} (4.29)

By defining the partial order, we only need to consider e1̄, the all-infected-state for initial distri-

bution to compute the mixing time of the Markov chain model.

4.4 Upper Bound on the Mixing Time

In this section, we prove that epidemic map Φ(·) defined as (4.7) gives an upper bound on the

mixing time of the Markov chain model and apply it to get a practical result.

We want a lower bound e1̄SteT
0̄ to get an upper bound of tmix(ε). Define a 2n-dimensional column

vector u(r) for a given n-dimensional r = (r1, · · · ,rn)
T by u(r)X = ∏

i∈S(X)

(1− ri). We want to find

an r′ ∈ Rn satisfying Su(r)� u(r′).

Lemma 4.4.1 Su(r)� u(Φ(r)) for all r ∈ [0,1]n.
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Proof: We begin the proof of this lemma by evaluating each entry of Su(r).

(Su(r))X (4.30)

= ∑
Y∈{0,1}n

SX ,Y u(r)Y (4.31)

= ∑
Y∈{0,1}n

(
∏

i∈S(Y )
(1− ri)P[Yi = 1|X ]

)(
∏

i/∈S(Y )
P[Yi = 0|X ]

)
(4.32)

=
n

∏
i=1

(1− ri)P[Yi = 1|X ]+P[Yi = 0|X ] (4.33)

Assume S(X)∩S(Z) = /0 for two states X ,Z ∈ {0,1}n, i.e., there is no common infected node

in the two states X and Z. It’s trivial to check that the following is true:

P[Yk = 0|X +Z] = P[Yk = 0|X ]P[Yk = 0|Z] (4.34)

For simplicity, we call qk,X = P[Yk = 0|X ].

(Su(r))X+Z (4.35)

=
n

∏
i=1

(1− ri)P[Yi = 1|X +Z]+P[Yi = 0|X +Z] (4.36)

=
n

∏
i=1

(1− ri)(1−qi,X+Z)+qi,X+Z (4.37)

=
n

∏
i=1

(1− ri)(1−qi,X qi,Z)+qi,X qi,Z (4.38)

≥
n

∏
i=1

((1− ri)(1−qi,X)+qi,X)((1− ri)(1−qi,Z)+qi,Z) (4.39)

= (Su(r))X(Su(r))Z (4.40)

(4.39) holds by the following one for r,b,c ∈ [0,1]:

((1− r)(1−ab)+ab)− ((1− r)(1−a)+a)((1− r)(1−b)+b)

= r(1− r)(1−a)(1−b)≥ 0 (4.41)

Define î ∈ {0,1}n as the state where everyone is healthy, but i. The following inequality holds
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by (4.40).

(Su(r))X ≥ ∏
i∈S(X)

(Su(r))î (4.42)

= ∏
i∈S(X)

n

∏
j=1

(1− r j)P[Yj = 1|î]+P[Yj = 0|î] (4.43)

= ∏
i∈S(X)

((1− ri)(1−δ )+δ )∏
j∼i

((1− r j)β +1−β ) (4.44)

= ∏
i∈S(X)

(1− (1−δ )ri)∏
j∼i

(1−β r j) (4.45)

= ∏
i∈S(X)

1−Φi(r) (4.46)

= u(Φ(r))X (4.47)

It’s obvious that eT
0̄ = u((1,1, · · · ,1)T ) = u(1n). We distinguish 1n = (1,1, · · · ,1)T ∈ [0,1]n from

1̄ ∈ {0,1}n which is a state of infection. Since Su(r)� u(Φ(r)) by Lemma 4.4.1, and S is a matrix

all of whose entries are non-negative,

SteT
0̄ = Stu(1n)� u(Φt(1n)) (4.48)

Denote M = (1−δ )In +βA as the system matrix of linear model, which is the Jacobian matrix

of Φ(·) at the origin.

Φi(x) = (1−δ )xi +(1− (1−δ )xi)

(
1−∏

j∼i
(1−βx j)

)
(4.49)

≤ (1−δ )xi +

(
1−∏

j∼i
(1−βx j)

)
(4.50)

≤ (1−δ )xi +β

(
∑
j∈Ni

x j

)
= (Mx)i (4.51)

We get an upper bound of Φ with M. Φ(x) � Mx. We can now give a practical result about

mixing time.

Theorem 4.4.2 tmix(ε) = O(logn) if ‖M‖< 1
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Proof: Suppose that t ≤ tmix(ε).

1− ε ≥ e1̄SteT
0̄ (4.52)

≥ e1̄u(Φt(1n)) =
n

∏
j=1

(1−Φ
t
j(1n)) (4.53)

≥ 1−
n

∑
j=1

Φ
t
j(1n) (4.54)

≥ 1−n

√
1
n

n

∑
j=1

(Φt
j(1n))2 = 1−

√
n‖Φt(1n)‖ (4.55)

≥ 1−
√

n‖Mt1n‖ (4.56)

≥ 1−
√

n‖M‖t‖1n‖= 1−n‖M‖t (4.57)

t ≤
log n

ε

− log‖M‖
for every t ≤ tmix(ε) leads that tmix(ε)≤

log n
ε

− log‖M‖
. The mixing time is O(logn).

If ‖M‖ > 1, Φt(1n) converges to x∗, the unique nontrivial fixed point of Φ which is strictly

greater than the origin as stated in [2]. The reason why this happens, even though the original

Markov chain model always converges to the “all-healthy” state, is that the i-th component of Φt(1n)

provides an upper bound on the probability that the current state is not the steady state when i is

the only infected node with probability 1 in the initial probability distribution. More specifically,

eîS
teT

0̄ ≥ eîu(Φ
t(1n)) = 1−Φt

i(1n) by (4.48),

Φ
t
i(1n)≥ 1− eîS

teT
0̄ = 1−P[ξ (t) = 0̄|ξ (0) = î] (4.58)

= P[ξ (t) 6= 0̄|ξ (0) = î] (4.59)

Similarly, the probability that the epidemic state at time t is not “all-healthy” state given the

initial epidemic state is X is bounded above by the entries of Φt(1n).

P[ξ (t) 6= 0̄|ξ (0) = X ] = 1−P[ξ (t) = 0̄|ξ (0) = X ] = 1− eX SteT
0̄ (4.60)

≤ 1−u(Φt(1n))X (4.61)

= 1− ∏
i∈S(X)

(
1−Φ

t
i(1n)

)
(4.62)

In other words, if the origin is globally stable in the epidemic map Φ, we can infer that the

Markov chain model mixes fast. However, if the origin in the epidemic map is unstable, we cannot
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infer anything about mixing time.

Figure 4.1 and Figure 4.2 give the simulation results of epidemic spread on Erdös-Rényi graphs

with 2000 nodes. The horizontal and vertical axes represent time (number of iterations) and the

number of infected nodes, respectively. At t = 0, half of the whole nodes, 1000, are infected.
β‖A‖

δ
< 1 is equivalent to (1−δ )+β‖A‖ < 1 and it guarantees the fast extinction of epidemics by

Theorem 4.4.2. Figure 4.1 shows that the number of infected nodes decays fast as β‖A‖
δ

= .999 < 1.

The epidemics die out in 100 iterations.
β‖A‖

δ
> 1 is necessary condition for epidemic spread. Figure 4.2 shows that the number of

infected nodes does not decay fast, i.e., epidemic spreads as β‖A‖
δ

= 1.01 > 1. We cannot observe

extinction of epidemics until given time, 10000, in this case. Although we have not been able to

prove this, the simulations suggest that a phase transition occurs at β‖A‖
δ

. When this value is less

than unity we have fast mixing by Theorem 4.4.2 and the epidemic dies out at an exponential rate.

However, when it is larger than unity the epidemic persists and does not die out in any reasonable

time. The horizontal thick red line between 200 and 300 represents the number of infected nodes

at the nontrivial fixed point obtained by Φ(·) of (4.7). In the approximated nonlinear map, Φ(·),

the marginal probability of each node’s infection converges to the unique nontrivial fixed point if
β‖A‖

δ
> 1. Figure 4.2 shows that the number of infected nodes oscillates around the sum of entries

of x∗ which is a nontrivial fixed point of Φ(·).

4.5 Alternative Proof Using LP

Our earlier result showed that the epidemic map Φ(·) provides an upper bound on the probability

that the i-th node in the Markov chain model is infected. However, to prove that the mixing time

is O(logn), we only needed to show the weaker result that the system matrix is an upper bound. It

turns out that one can give a simpler proof using linear programming for it, which we write below.

µ(t) ∈ R2n
is a probability row vector of {0,1}n at time t. pi(t) is the probability that node i

is infected at time t as defined in the previous section. This is simply the marginal probability of

µ(t), i.e., pi(t) = ∑Xi=1 µX(t). Write p0(t) = 1 which represents sum of probability distribution,

i.e., p0(t) = 1 = ∑ µX(t). Define now the column vector p(t) = (p0(t), p1(t), · · · , pn(t))T . We can

understand p(t) as observable data and µ(t) as hidden complete data at time t. We give an upper

bound of p(t +1), observable data at the next time step, using only current observable information.
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Let fi ∈ Rn+1 be the i-th unit column vector. S is transition matrix of the Markov chain defined

before. B ∈ R2n×(n+1) is a matrix representing complete information to observable information,

which consists all-1 column vector and truth table. Formal definition of B follows.

BX ,k =

 1 if k = 0,

Xk if k ∈ {1,2, · · · ,n}.
(4.63)

We would like to maximize pi(t+1) for particular node i with given p1(t), · · · , pn(t). This leads

to the following result.

Lemma 4.5.1 pi(t +1)≤ (1−δ )pi(t)+β ∑
j∈Ni

p j(t)

Proof: We drop time index t for simplicity and mark time index only for t + 1 in this proof

from now on.

max
µB=pT ,µ�0

pi(t +1) = max
µB=pT ,µ�0

µSB fi (4.64)

= max
µ�0

min
λ

µSB fi− (µB− pT )λ (4.65)

= min
λ

max
µ�0

µ(SB fi−Bλ )+ pT
λ (4.66)

maxµ�0 µ(SB fi−Bλ )=+∞ if any entry of (SB fi−Bλ ) is strictly positive. It leads that SB fi−Bλ �

0. Evaluation of SB fi and Bλ follows.

(SB fi)X = (SB)X ,i = ∑
Y∈{0,1}n

SX ,Y BY,i = ∑
Y∈{0,1}n

SX ,YYi (4.67)

= P[Yi = 1|X ] =

 1− (1−β )m if Xi = 0,

1−δ (1−β )m if Xi = 1.
(4.68)

P[Yi = 1|X ] follows (4.2) and m is the number of infected neighbors of i as stated before.

(Bλ )X = λ0 +
n

∑
k=1

BX ,kλk = λ0 +
n

∑
k=1

λkXk (4.69)
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We try several X for (4.68), (4.69) and SB fi−Bλ � 0 to get feasible λ .



X = 0̄ ,λ0 ≥ 0

X = î ,λ0 +λi ≥ 1−δ

X = ĵ, j ∈ Ni ,λ0 +λ j ≥ β

X = ĵ, j /∈ Ni ,λ0 +λ j ≥ 0

(4.70)

We claim that λ ∗ = (λ ∗0 ,λ
∗
1 , · · · ,λ ∗n )T defined by λ ∗0 = 0, λ ∗i = 1− δ , λ ∗j = β for j ∈ Ni and

λ ∗j = 0 for j /∈ Ni is in feasible set.

For Xi = 0, |Ni∩S(X)|= m

P[Yi = 1|X ] = 1− (1−β )m ≤ mβ = λ
∗
0 +

n

∑
k=1

λ
∗
k Xk (4.71)

For Xi = 1, |Ni∩S(X)|= m

P[Yi = 1|X ] = 1−δ (1−β )m ≤ 1−δ +mβ = λ
∗
0 +

n

∑
k=1

λ
∗
k Xk (4.72)

Therefore λ ∗ is in feasible set.

max
µB=pT ,µ�0

pi(t +1) = min
λ

max
µ�0

µ(SB fi−Bλ )+ pT
λ (4.73)

≤ pT
λ
∗ = (1−δ )pi +β ∑

j∈Ni

p j (4.74)

By applying Lemma 4.5.1 to each node,

p(t +1)� ((1−δ )In +βA)p(t) = Mp(t) (4.75)

We also get the practical result that the mixing time is O(logn) by modifying Theorem 4.4.2.

4.6 Generalized Infection Model

In this section, we suggest generalized infection model. In the previous model, everyone has the

same recovery rate δ and infection rate β . One of the main result is that the epidemic dies out if the
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largest eigenvalue of M = (1−δ )In +βA is smaller than 1. M is defined by β , the infection rate, δ ,

the recovery rate, and A, the adjacency matrix.

We begin the discussion by defining M, the generalized infection matrix first. Define M = (mi, j)

as an infection matrix where mi, j ∈ [0,1] represent the infection probability that i is infected at time

t + 1 when j is the only infected node at time t. In this setting, each diagonal entry mi,i represents

self-infection rate. In other words, 1−mi,i is recovery rate of node i and mi,i is the probability that i

stays infected when there is no other infected nodes in the network. We also assume that probability

of infection of each node given the current state ξ (t) is independent. More precisely, for any two

state vectors X ,Y ∈ {0,1}n,

P[ξ (t +1) = Y |ξ (t) = X ] =
n

∏
i=1
P[ξi(t +1) = Yi|ξ (t) = X ] (4.76)

Probability transition from given state is defined by M.

P[ξi(t +1) = Yi|ξ (t) = X ] =


∏

j∈S(X)

(1−mi, j) if Yi = 0,

1− ∏
j∈S(X)

(1−mi, j) if Yi = 1,
(4.77)

We define the transition matrix, S(M) ∈ R{0,1}n×{0,1}n
by S(M)

X ,Y = P[ξi(t + 1) = Yi|ξ (t) = X ] in the

equation above. It is also trivial to check that all the nodes are healthy with probability 1 at the

stationary distribution because there is no disease transition if all the nodes in the network are

healthy.

We also define partial order in the same manner. Two probability distributions µ and µ ′ which

are defined in {0,1}n, µ is stochastically dominated by µ ′ and written as µ ≤st µ ′ if any subset of

nodes are more likely to be healthy under µ rather than under µ ′. More precisely,

µ ≤st µ
′ iff ∑

X�Z
µX ≥ ∑

X�Z
µ
′
X ∀Z ∈ {0,1}n (4.78)

We prove that S(M) is an order-preserving map.

Lemma 4.6.1 If µ ≤st µ ′, then µS(M) ≤st µ ′S(M).

Proof: We first show that R−1S(M)R is the matrix whose entries are all nonnegative. R is
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defined by

RX ,Y =

 1 if X � Y,

0 otherwise
(4.79)

It is not hard to check that R−1 is verified as

R−1
X ,Y =

 (−1)|S(Y−X)| if X � Y,

0 otherwise
(4.80)

|S(Y−X)| represents the number of nodes which are infected in Y , but not in X . The 2n-dimensional

matrix R is important to the partial order ≤st because µ ≤st µ ′ is equivalent to the statement that

all the entries of (µ − µ ′)R are nonnegative. After verifying that all the entries of R−1S(M)R is

nonnegative, we show that S(M) preserves the partial order ≤st .

(R−1S(M)R)X ,Z (4.81)

= ∑
Y�Z

(R−1S(M))X ,Y = ∑
Y�Z

∑
W

R−1
X ,W S(M)

W,Y (4.82)

= ∑
Y�Z

∑
W�X

(−1)|S(W−X)|S(M)
W,Y (4.83)

= ∑
W�X

(−1)|S(W−X)|
∏

i∈S(Z)c

P[ξi(t +1) = 0|ξ (t) =W ] (4.84)

= ∑
W�X

(−1)|S(W−X)|
∏

i∈S(Z)c
∏

j∈S(W )

(1−mi, j) (4.85)

=

(
∏

i∈S(Z)c
∏

j∈S(X)

(1−mi, j)

)(
∑

W�X
(−1)|S(W−X)|

∏
j∈S(W−X)

∏
i∈S(Z)c

(1−mi, j)

)
(4.86)

=

(
∏

i∈S(Z)c
∏

j∈S(X)

(1−mi, j)

)(
∏

j∈S(X)c

(
1− ∏

i∈S(Z)c

(1−mi, j)

))
≥ 0 (4.87)

The inequality of (4.87) is true because mi, j ∈ [0,1] for all i, j.

µ ≤st µ ′ is equivalent to that (µ − µ ′)R has nonnegative entries. (µ − µ ′)S(M)R also has non-

negative entries because (µ − µ ′)S(M)R = (µ − µ ′)R×R−1S(M)R and all the entries of (µ − µ ′)R

and R−1S(M)R are nonnegative. Nonnegativity of (µ−µ ′)S(M)R also means that µS(M) ≤st µ ′S(M).

It completes the proof.

By Lemma 4.6.1, (µ(S(M))t)0̄ = ∑X�0̄(µ(S
(M))t)X ≥ ∑X�0̄(e1̄(S

(M))t)X = (e1̄(S
(M))t)0̄ for any
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probability vector µ since µ ≤st e1̄. Returning to the mixing time,

‖µ(S(M))t −π‖TV = ‖µ(S(M))t − e0̄‖TV = 1− (µ(S(M))t)0̄ (4.88)

≤ 1− (e1̄(S
(M))t)0̄ = 1− e1̄(S

(M))teT
0̄ (4.89)

Using the inequality above, we can now write

tmix(ε) = min{t : sup
µ

‖µ(S(M))t −π‖TV ≤ ε} (4.90)

= min{t : 1− e1̄(S
(M))teT

0̄ ≤ ε} (4.91)

= min{t : e1̄(S
(M))teT

0̄ ≥ 1− ε} (4.92)

The next step is giving an lower bound of (S(M))teT
0̄ using the epidemic map associated with M.

The epidemic map associated with M is defined by Φ
(M) : [0,1]n→ [0,1]n is defined by Φ

(M)
i (x) =

1−
n

∏
j=1

(1−mi, jx j) where Φ
(M) = (Φ

(M)
1 ,Φ

(M)
2 , · · · ,Φ(M)

n ). M is Jacobian matrix of Φ
(M)(·) at the

origin which gives an upper bound, i.e., Φ(M)(x) �Mx. The origin is unique fixed point which is

globally stable if the largest eigenvalue of M is smaller than 1. We give an upper bound of extinction

probability of epidemics at time t. We give an upper bound using 2n-dimensional column vector

u(r) which is defined for a given n-dimensional r = (r1, · · · ,rn)
T . The X-th entry of u(r) is defined

as u(r)X = ∏
i∈S(X)

(1− ri). The following lemma shows that S(M)u(r)� u(Φ(M))(r).

Lemma 4.6.2 S(M)u(r)� u(Φ(M))(r) for all r ∈ [0,1]n.

Proof: We begin the proof of this lemma by evaluating each entry of S(M)u(r).

(S(M)u(r))X (4.93)

= ∑
Y∈{0,1}n

S(M)
X ,Y u(r)Y (4.94)

= ∑
Y∈{0,1}n

(
∏

i∈S(Y )
(1− ri)P[Yi = 1|X ]

)(
∏

i/∈S(Y )
P[Yi = 0|X ]

)
(4.95)

=
n

∏
i=1

(1− ri)P[Yi = 1|X ]+P[Yi = 0|X ] (4.96)

Assume S(X)∩S(Z) = /0 for two states X ,Z ∈ {0,1}n, i.e., there is no common infected node
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in the two states X and Z. It’s trivial to check that the following is true:

P[Yk = 0|X +Z] = P[Yk = 0|X ]P[Yk = 0|Z] (4.97)

For simplicity, we call qk,X = P[Yk = 0|X ].

(S(M)u(r))X+Z (4.98)

=
n

∏
i=1

(1− ri)P[Yi = 1|X +Z]+P[Yi = 0|X +Z] (4.99)

=
n

∏
i=1

(1− ri)(1−qi,X+Z)+qi,X+Z (4.100)

=
n

∏
i=1

(1− ri)(1−qi,X qi,Z)+qi,X qi,Z (4.101)

≥
n

∏
i=1

((1− ri)(1−qi,X)+qi,X)((1− ri)(1−qi,Z)+qi,Z) (4.102)

= (S(M)u(r))X(S(M)u(r))Z (4.103)

(4.102) holds by the following one for r,b,c ∈ [0,1]:

((1− r)(1−ab)+ab)− ((1− r)(1−a)+a)((1− r)(1−b)+b)

= r(1− r)(1−a)(1−b)≥ 0 (4.104)

Define î ∈ {0,1}n as the state where everyone is healthy, but i. The following inequality holds

by (4.103).

(S(M)u(r))X ≥ ∏
i∈S(X)

(S(M)u(r))î (4.105)

= ∏
i∈S(X)

n

∏
j=1

(1− r j)P[Yj = 1|î]+P[Yj = 0|î] (4.106)

= ∏
i∈S(X)

n

∏
j=1

(1− r j)mi, j +1−mi, j (4.107)

= ∏
i∈S(X)

n

∏
j=1

1−mi, jr j (4.108)

= ∏
i∈S(X)

1−Φ
(M)
i (r) (4.109)

= u(Φ(M)(r))X (4.110)
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It’s obvious that eT
0̄ = u((1,1, · · · ,1)T ) = u(1n). Since S(M)u(r)� u(Φ(M)(r)) by Lemma 4.6.2,

and S(M) is a matrix all of whose entries are non-negative,

(S(M))teT
0̄ = (S(M))tu(1n)� u((Φ(M))t(1n)) (4.111)

We can show that the mixing time of the generalized epidemic Markov chain model is O(logn)

by applying Theorem 4.4.2 in the previous section. Similarly, the probability that the epidemics is

not extinct at time t for given initial epidemic state X is bounded above by the entries of (Φ(M))t(1n).

P[ξ (t) 6= 0̄|ξ (0) = X ] = 1−P[ξ (t) = 0̄|ξ (0) = X ] = 1− eX(S(M))teT
0̄ (4.112)

≤ 1−u(Φt(1n))X (4.113)

= 1− ∏
i∈S(X)

(
1− (Φ(M))t

i(1n)
)

(4.114)

By adopting infection rate and recovery rate which are not identical, we can model the epidemic

spread in the network which is closer to the real world.

4.7 Immune-admitting Model

In this section, we study the immune-admitting model. The model is the same as that of the previous

section except that in a single time interval a node cannot go from infected to healthy back to

infected. In other words, a node is not infected from its neighbors if it has just recovered from the

disease. To summarize this,

P[ξi(t +1) = Yi|ξ (t) = X ] =



(1−β )mi if (Xi,Yi) = (0,0), |Ni∩S(X)|= mi,

1− (1−β )mi if (Xi,Yi) = (0,1), |Ni∩S(X)|= mi,

δ if (Xi,Yi) = (1,0),

1−δ if (Xi,Yi) = (1,1).

(4.115)

Transition matrix is defined in a similar way. By assuming independence of infection to the each

node,

S̃X ,Y = P[ξ (t +1) = Y |ξ (t) = X ] =
n

∏
i=1
P[ξi(t +1) = Yi|ξ (t) = X ] (4.116)
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S̃ is a transition matrix of the immune-admitting-model. In this model which is described as (4.115),

the probability that a node becomes healthy from infected is δ which is larger than δ (1−β )mi , the

probability for immune-not-admitting model which is described as (4.2). Roughly speaking, the

immune-admitting model is more likely to go to steady state than the immune-not-admitting model

and it leads smaller mixing time. The mixing time of this model is also O(logn). We apply linear

programming to give a result.

Theorem 4.7.1 The mixing time of Markov chain whose transition matrix S̃ is defined by (4.115)

and (4.116) has steady state where all nodes are healthy with probability 1. The mixing time of this

Markov chain is O(logn) if 1−δ +βλmax(A)< 1.

Proof: We show that pi(t + 1) ≤ (1− δ )pi(t)+ β ∑
j∈Ni

p j(t) first. We drop time index t for

simplicity and mark time index only for t +1 in this proof from now on.

max
µB=pT ,µ�0

pi(t +1) = max
µB=pT ,µ�0

µSB fi (4.117)

= max
µ�0

min
λ

µSB fi− (µB− pT )λ (4.118)

= min
λ

max
µ�0

µ(SB fi−Bλ )+ pT
λ (4.119)

maxµ�0 µ(SB fi−Bλ )=+∞ if any entry of (SB fi−Bλ ) is strictly positive. It leads that SB fi−Bλ �

0. Evaluation of SB fi and Bλ follows.

(SB fi)X = (SB)X ,i = ∑
Y∈{0,1}n

SX ,Y BY,i = ∑
Y∈{0,1}n

SX ,YYi (4.120)

= P[Yi = 1|X ] =

 1− (1−β )mi if Xi = 0,

1−δ if Xi = 1.
(4.121)

P[Yi = 1|X ] follows (4.115) and m is the number of infected neighbors of i as stated before.

(Bλ )X = λ0 +
n

∑
k=1

BX ,kλk = λ0 +
n

∑
k=1

λkXk (4.122)
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We try several X for (4.121), (4.122) and SB fi−Bλ � 0 to get feasible λ .



X = 0̄ ,λ0 ≥ 0

X = î ,λ0 +λi ≥ 1−δ

X = ĵ, j ∈ Ni ,λ0 +λ j ≥ β

X = ĵ, j /∈ Ni ,λ0 +λ j ≥ 0

(4.123)

We claim that λ ∗ = (λ ∗0 ,λ
∗
1 , · · · ,λ ∗n )T defined by λ ∗0 = 0, λ ∗i = 1− δ , λ ∗j = β for j ∈ Ni and

λ ∗j = 0 for j /∈ Ni is in feasible set.

For Xi = 0, |Ni∩S(X)|= m

P[Yi = 1|X ] = 1− (1−β )m ≤ mβ = λ
∗
0 +

n

∑
k=1

λ
∗
k Xk (4.124)

For Xi = 1, |Ni∩S(X)|= m

P[Yi = 1|X ] = 1−δ (1−β )m ≤ 1−δ +mβ = λ
∗
0 +

n

∑
k=1

λ
∗
k Xk (4.125)

Therefore λ ∗ is in feasible set.

max
µB=pT ,µ�0

pi(t +1) = min
λ

max
µ�0

µ(SB fi−Bλ )+ pT
λ (4.126)

≤ pT
λ
∗ = (1−δ )pi +β ∑

j∈Ni

p j (4.127)

By applying (4.127) to each node, we get

p(t +1)� ((1−δ )In +βA)p(t) = Mp(t) (4.128)
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Suppose that t ≤ tmix(ε).

ε ≤ 1−P[ all the nodes are healthy at time t] (4.129)

= P[ there exists an infected node at time t] (4.130)

≤
n

∑
i=1

pi(t) = 1T
n p(t) (4.131)

≤ 1T
n Mt p(0) (4.132)

≤ 1T
n Mt1n (4.133)

≤ ‖1n‖2‖M‖t (4.134)

= n‖M‖t (4.135)

t ≤
log n

ε

− log‖M‖
for every t ≤ tmix(ε) leads that tmix(ε)≤

log n
ε

− log‖M‖
. The mixing time is O(logn).

4.8 Continuous Time Markov Chain on Complete Graph

We showed that epidemics dies out fast if 1−δ +βλmax(A)< 1. However, it is the sufficient condi-

tion for the discrete-time Markov chain model even though it is epidemic threshold for continuous

space model such as epidemic map or epidemic differential equation. We have two questions here.

The first one is that how long is the mixing time if the mixing time is not O(logn). It can be linear

with n, n2 or any polynomial of n with fixed degree. There is also possibility that the mixing time is

exponentially long if it’s not so short. The second one is whether the sufficient condition is a tight

condition for epidemic.

To give an answer to the two questions above, we introduce a continuous-time Markov chain

model and analyze a special case for complete graph in this section. First, we define the continuous

time Markov chain in general networks and consider special case.

G = (V,E) is connected undirected graph with n nodes. V = {1,2, · · · ,n} and E ∈⊆ V 2. i ∼ j

means that node i is connected to node j. Define X(t) = (X1(t), · · · ,Xn(t)) as epidemic state at time

t. Node i is infected at time t if Xi(t) = 1. Node i is healthy at time t if Xi(t) = 0. Assume the

infected nodes transfer diseases to their neighbors at rate β and they recover at rate δ . This defines
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a Markov process with transition rates:

Xi : 0→ 1 at rate β ∑
j∼i

X j Xi : 1→ 0 at rate δ (4.136)

We suppose that underlying graph is complete. Define now a Markov process Z which represents

the number of infected nodes, i.e., Z(t) = ∑Xi(t) on {0,1, · · · ,n}, with transition rates:

m→ m+1 at rate βm(n−m) m→ m−1 at rate δm (4.137)

Consider the embedded discrete time Markov chain associated with Z, which tracks the succes-

sive states visited by Z. We denote it by Yk where k ∈ N. The transition matrix P is tridiagonal

matrix whose terms are:

Pm,m+1 =
β (n−m)

β (n−m)+δ
Pm,m−1 =

δ

β (n−m)+δ
P0,0 = 1

It is easy to check that 0 is the absorbing state. Define Tm as the expected steps to 0 when Y0 =m.

Tm =
β (n−m)

β (n−m)+δ
Tm+1 +

δ

β (n−m)+δ
Tm−1 +1 (4.138)

⇒ Tm−Tm−1−
β (n−m)

δ
(Tm+1−Tm) =

β (n−m)

δ
+1 (4.139)

⇒ Tm−Tm−1 = 2

(
n−m

∑
k=1

(
β

δ

)k (n−m)!
(n−m− k)!

)
+1 (4.140)

⇒ Tn = 2

(
n−1

∑
k=1

(
β

δ

)k

k!
(

n
k+1

))
+n (4.141)

⇒ Tn ≥ 2 max
1≤k≤n−1

{(
β

δ

)k

k!
(

n
k+1

)}
+n (4.142)

Assume that
δ

β
=

1+ ε

n−1
for ε > 0. By simple algebra, we can check that k∗ =

ε

1+ ε
(n− 1)

maximizes (4.142).
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Tn ≥ 2
(

β

δ

)k∗ n
k∗+1

(n−1)(n−2) · · ·(n− k∗) (4.143)

=
2n

k∗+1
(1+ ε)k∗

(
1− 1

n−1

)(
1− 2

n−1

)
· · ·
(

1− k∗−1
n−1

)
(4.144)

=
2n

k∗+1
(1+ ε)k∗ exp

(
k∗−1

∑
j=0

log
(

1− j
k∗

ε

1+ ε

))
(4.145)

≥ 2n
k∗+1

(1+ ε)k∗ exp

(
k∗(1+ ε)

ε

∫ 1

1
1+ε

logxdx

)
(4.146)

=
2n

k∗+1
(1+ ε)k∗ exp

(
(n−1)

(
log(1+ ε)

1+ ε
− ε

1+ ε

))
(4.147)

=
2n

k∗+1
exp
(
(n−1)

(
log(1+ ε)− ε

1+ ε

))
(4.148)

log(1+ ε)− ε

1+ ε
≥ 1

2

(
ε

1+ ε

)2

guarantees that Tn is exponentially large when ε > 0.

Returning back to continuous-time Markov process, denote T as the expected time to absorbing

state.

E[T ]≥ Tn

minm{δm+βm(n−m)}
≥ Tn

δn+βn2 (4.149)

Expected time to absorbing state is exponentially long if 1− δ + βλmax(A) > 1 on the fully-

connected network in continuous time model. However, it is a special case where the exact expected

time to the absorbing state can be computed. We can say that the sufficient condition for fast ex-

tinction of epidemics is tight in a special case, and the mixing time is exponentially long in that

case.

Ganesh et al. studied this continuous-time Markov chain model in the finite graph [23]. The

research showed that the sufficient condition for fast extinction of epidemics in continuous-time

Markov chain is 1− δ + βλmax(A) < 1, which is also the sufficient condition for fast extinction

in discrete-time Markov chain. Ganesh et al. also proved that the expected time to the absorbing

state is exponentially long, Ω(enα

) for some α < 1 in various cases. The complete graph is a case

which has the exponentially long expected absorbing time. The contribution of this section is that

the expected absorbing time on the complete graph can be computed almost exactly since

Tn = 2

(
n−1

∑
k=1

(
β

δ

)k

k!
(

n
k+1

))
+n≤ 2n max

1≤k≤n−1

{(
β

δ

)k

k!
(

n
k+1

)}
+n (4.150)
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(4.142) gives lower bound, and the upper bound from the equation above is same with lower bound

multiplied by n. However, the multiplication does not give big difference because the lower bound

is exponentially big. This section also contributes that the expected absorbing time is exponential

to n, not nα for some α < 1.
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Chapter 5

Future Work

We have investigated random propagation in complex systems, especially nonlinear random ma-

trix recursions and epidemic spreads in complex networks. In this chapter, we discuss the future

directions.

5.1 Random Riccati Recursions

Researches on random Riccati recursions have been conducted under a couple of assumptions. We

now consider the cases where those assumptions are changed.

We have viewed the µ
(t)
P , the probability measure of error covariance matrix on Riccari recursion

at time t, i.e., µ
(t)
P (E) = P[P(t) ∈ E|P(0) = P], as a map from Sn

++, the space of positive definite

matrices, to the space of the probability measures on Sn
++. One of important steps of the chapter is

showing that the map P→ µ
(t)
P is continuous at any given time t. We have considered continuity

of the map µ
(t)
(·) according to the usual topology on the space of matrices and the metric topology

defined by total variation distance on the measure space. It requires a lot of analytic and topological

skills to prove continuity of the map. One of them is evaluating the probability density function

from the initial error covariance matrix to the error covariance matrix at a given time according to

Riccati recursion.

We have assumed that the state transition matrix F of following Riccari recursion is nonsingular:

P(t+1) = FP(t)FT −FP(t)(H(t))T (R+H(t)P(t)(H(t))T )−1H(t)P(t)FT +Q. (5.1)

Assumption about nonsingularity of F is essential to evaluating the probability density function f (t)
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on Sn
++×Sn

++ satisfying

P[P(t) ∈ E|P(0) = P] = µ
(t)
P (E) =

∫
E

f (t)(P,C)dC. (5.2)

Note that the following part of the Riccati recursion is a lower-dimensional manifold of Sn
++:

F
(

P(t−1)−P(t−1)(H(t−1))T (R+H(t−1)P(t−1)(H(t−1))T )−1H(t−1)P(t−1)
)

FT . (5.3)

Thus, the support of P(t) is a measure-zero set of Sn
++ if F is singular.

If F is singular, then f (t) is not well-defined on Sn
++×Sn

++. For this reason, continuity of µ
(t)
(·)

relies on the continuity assumption of f (t) in our approach. In addition, we need to consider a

measure without a probability density function f (t) to study singular cases. Measure theory may

enable us to overcome this problem, but this is out of scope this paper.

We assumed three conditions on the probability distribution of H, the random regressor matrix.

Gaussian distributions of a multi-dimensional matrix are important distributions satisfying all the

required conditions of pH . The first condition is “whole-space-support condition”, which assumes

that H(t) is distributed on the whole space, i.e., P[H(t) ∈ E]> 0 if E ⊂Rm×n has a positive Lebesgue

measure. This condition guarantees that independent of the initial matrix, the common area of

supports is not measure zero. The second condition of pH , “continuous probability distribution

function condition”, is necessary to prove that f (t) : Sn
++×Sn

++→ R+, the probability distribution

function for the error covariance matrix at time t, is continuous. The third condition of pH , “fast

decaying condition”, is essential to show that f (t) : Sn
++×Sn

++→ R+ is continuous. This condition

can be changed by a less strict condition if we can find a way to prove the continuity of µ
(t)
(·) without

considering the probability density function of the measure.

Even though we prove the geometric convergence of random Riccati recursions defined on arbi-

trary dimension, we do not know how big the convergence rate is. If the convergence rate is close to

1, the probability distribution converges to the steady state slowly. The analysis on the convergence

rate, as a function of n and the distribution of H(t), is an interesting topic to study.

Considering both continuous and discrete distributions of H(t) is also worth studying. We can

view constant H(t) as a random regressor whose probability distribution is atomic. The convergence

condition is well-studied by previous researchers for time-constant H(t). One may extend our study

to analyze the convergence condition of the system for various probability distributions mixed by
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both continuous and discrete measures.

Finally, the proof of geometric convergence does depend on a specific metric and shows the

distance defined by the metric goes to zero at a geometric rate. We have used the total variation

distance as the metric on the probability measure space. Another metric defined on the probability

measure space may require a weaker assumption of the distributions of H(t); however it may require

a totally different approach from the current work.

5.2 Epidemic Spread

There are a number of issues on the study of epidemic spreads. We have studied SIS model, the

model considers only healthy and infected state. Of course, modeling the epidemics with other

states could be interesting. The epidemic model concerning incubation period would be appropriate

to study spreads of certain diseases such as AIDS.

Returning back to the SIS model, a nontrivial fixed point of the nonlinear epidemic map exists

if and only if the ratio of β and δ , the infection rate and the recovery rate, is greater than the largest

eigenvalue of the adjacency matrix of a given network. The nontrivial fixed point is globally stable in

the Chakrabarti’s immune-free model; however it is may not stable in the immune-admitting model.

From a random graph approach, the nontrivial fixed point is locally stable with high probability

in the family of Erdös-Rényi random graphs. A natural question to ask at this point is whether

the nontrivial fixed point is globally stable if it is local stable. In general, local stability does not

necessarily imply global stability. The immune-admitting epidemic map has only two fixed points.

The origin, the first trivial fixed point, is not stable. Even though an initial point is very close to the

origin, it goes away from the origin as time passes. x∗, the second nontrivial fixed point, is locally

stable if and only if the Jacobian matrix of the nonlinear epidemic map at the nontrivial fixed point

is stable. Since there is no more fixed point, stable manifolds are concerned as attractor if x∗ is not

globally stable. Actually, oscillation between two points is observed when x∗ is not locally stable.

Another possible scenario is whether a chaotic movement arises. However, globally stability of x∗ is

observed in many simulations when local stability is assumed. A rigorous proof on global stability

based on local stability could be interesting in the literature.

For epidemic Markov chain models, finding a sufficient condition for a slow mixing time is an

open question. This thesis shows that the Markov chain mixes fast if the origin, the state where

everyone is healthy, is the stable fixed point of the nonlinear epidemic map. This result is salient
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because the nonlinear epidemic map and the Markov chain model have the same sufficient condition

for epidemic extinction. The difference is that the sufficient condition is also the necessary condition

of the nonlinear epidemic model, but it is not necessarily true in the Markov chain model. Figure 4.1

and Figure 4.2 suggest that the phase transition phenomenon arises in the Markov chain when the

phase transition phenomenon is observed in the nonlinear epidemic map. Analysis on the role of

the nontrivial fixed point in the nonlinear epidemic map is interesting.

Figure 4.2 suggests that the number of infected nodes can oscillate around the sum of entries

of the nontrivial fixed point. Moreover, another simulation results show that each node’s marginal

probability for being infected derived from the Markov chain’s eigenvector corresponding to the

second largest eigenvalue is close to the nontrivial fixed point. The second largest eigenvalue of

the Markov chain is responsible for the convergence rate of the Markov chain. A rigorous analysis

requires more mathematical tools to describe how close the couple of marginal probabilities are. A

metric that defines a distance between two marginal probabilities is one of the tools. The study on

the nontrivial fixed point in the nonlinear epidemic model and the marginal probability of each node

from the eigenvector corresponding to the second largest eigenvalue would be the starting point to

investigate the how well the nonlinear model approximates the true Markov chain model.

It might be more realistic to introduce a time-varying network in the literature on epidemics on

complex networks. We have studied the epidemic dynamics on a fixed network topology; however,

admitting a time-varying network could be more appropriate. For example, consider a businessman

who works with office-mates during weekdays but spends with families and friends on weekends.

This means that the network during weekdays and the one on weekends are different; that is, the

network periodically changes. The periodic change of the network between two given networks is

a simple variation of the existing model that captures the idea of time-varying networks.
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