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ABSTRACT

The propagation of transient waves in an elastic hali-space
excited by a traveling normal point load is investigated. The load
is suddenly applied and then it moves rectilinearly at a constant
speed along the free surface. The displacements are computed for
all points of the half-space as well as for all load speeds.

The disturbance is analyzed by using multi-integral
transforms and an inversion scheme based on the well~-known
Cagniard technique. This reduces the displacements to single
integral and algebraic contributions, each of which is identified
as the disturbance behind a specific wave front. The same solu~
- tion is valid for all load speeds, even though the wave front
geometry varies greatly,depending on the speed of the load relative
to the body wéve speeds. Moreover, the surface displacements
are obtained from the interior ones, but only after the Rayleigh
waves are computed by a separate calculation. Then, by taking
advantage of the form of the exact solution, wave front expansions
and Rayleigh wave approximations are computed for all load speeds.

Several other analytical results are obtained for restricted
values of the load speed. In particular, when it exceeds both of the
body wave speeds the steady-state displacement field is separated
from the transient one and reduced to algebraic form. Also, for
the limit case of zero load speed a new representation of the
interior displacements for Lamb's point load problem is displayed

in terms of single integrals.
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Latin Symbols

(x,v,2)
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NOMENCLATURET

cartesian coordinates, see Flg 2

load speed

time parameter

displacement vector

cartesian components of the displacement vector
dilatational body wave speed

equivoluminal body wave speed

position vector

Liaplace transform variable

dilatational contributions to (U‘x’uy

equivoluminal contributions to (ux,uy,uz)

U )

cylindrical coordinate, see Fig. 2

integration variables
see equation (2.3-5)

Rayleigh function, see equation (2.3-6)

see equation (2.3-~7)

ratio of the body wave speeds

-

'This list of nomenclature includes only those symbols whose defi-
nition is assumed throughout the text. It is separated into sections
which include Latin symbols, Greek symbols, and subscripts and

superscripts.

Within each section the symbols are presented in the

order that they appear in the text.
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Rayleigh wave speed

g-transformation, see equation (2.4-4)

pseudo-arrival time, see equation (2.4-4a)

contour in the g-plane

see equation (2.4-6)

radial coordinate, see Fig. 2

special value of the integration variable w; in sub-

section 2.4.,1, see {2.4-6); in subsection 2.4.2, see

{2.4-39)

contributions to u
zd

see equation (2.4-10a)

see equation (2.4-4) for qd(+)

see equation (2.4-142a)

arrival time, see equation {2.4-14a)

Heaviside function, see equation (2.4-16)

w-transformation, see equation (2.4-19)

arrival time, see equation (2.4-19a)
contour in the w-plane
see equation (2.4-20a)

precedes an improper integral to imply a Cauchy
principal value ' ‘

q-transform, see equation {2.4-36)
pseudo-arrival time, see equation (2.4-36a)

special value of the integration variable w, sece
text above equation (2.4-37)

q-transformation, see equation {2.4-37)
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pseudo-arrival time, see equation (2.4-37a)

contribution to u
zZS

see equation {2.4~36) for qs('i")

see equation {2.4-433)

see equation (2.4-44a)

arrival time, see equation {(2.4-443a)

w-transformation, see equation (2.4-46)

arrival time, see equation {(2.4-46a)

see equation (2.4-47a) |
contribution to U

w-transformation, see equation {2.4-52)
arrival time, see equation (2.4-52a)
see equation (2.4-59a)

arrival time, see equation (2.4-5%a)
see equation {(2.4-59a)

see text below equation (2.4-62)

see text below equation {2.4-77)

contributions to u, for the interior of the haif-
space

see equation {(2.4-82a)

see equation (2.4-98)

contributions to {u_,u ) for theinterior of the
X ¥
half-space

see equation {2.5-8)
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contributions to u, for the surface of the half-
space

position vector in the surface plane of the half-
space

see equation (2.,6-3)
Rayleigh wave arrival time, see equation {2.6-5)
see equation (2.6-7)
Rayleigh wave arrival time, see equation (2.6-12)

contributions to (uxsuy) for the surface of the

‘half-space

cylindrical components of the displacement
vector

contributions to U for the interior of the half-

space

see equation (2.7-5)

contribution to U for the surface of the half~
space

see equation (3.1-16a)

Liamé constants
Dirac delta function

cylindrical coordinate, see Fig. 2

ratio of the dilatational body wave speed to the
load speed

ratio of the dilatational body wave speed to the
Rayleigh wave speed
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spherical coordinate, see Fig., 2
see equation {(2.4-19a)
coordinate, see Fig, 2
see equation (2.4-46a)
see text below equation (2.4-463a)

see equation (2.4-52a)

Subscripts and Superscripts

=

vector function
Liaplace transformed function
a function related to the dilatational contribution

a function related to the equivoluminal contri-
bution

a function which depends on the load speed

a function which is paxrt of another function
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Chapter 1

INTRODUCTION

The problem treated in this investigation is that of a
suddenly applied, normal point load which then travels rectilinearly
at a constant speed on the surface of a homogeneous, isotropic,
linearly elastic half-space. The objective is to find and analyze
the waves that are generated by such a disturbance.

Although this problem has been considered in recent years
by many authors, only two con’cributions towards a transient solu-
tion can be cited. First Payton {1]1 computed the transient surface
displacements by using an elastodynamic reciprocal theorem. Then
Lansing [ 2] rederived some of Payton's results by employing a
Duhamel superposition integral. In order to effect their techniques,
both of these authors drew on the simple form of Pekeris’ [ 3] sur-
face solution for Lamb's point load problem. This fact makes it
difficult to use either of these techniques to analyze the disturb-
ance in the interior of the half-space. Therefore it was appropri~
ate to pursue the interior phase of the problem here, The remaining
contributions to this problem include the steady-state results given
by Mandel and Avramesco [ 4], Papadopoulos [ 5], Grimes [ 6],
Eason| 7], and Lansing [ 2] . The most complete of these is
Lansing's work where integral expressions for the displacements

are obtained for all points of the half-space and for all load speeds.

1l\Im'nbers in brackets designate references in the bibliography.
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The continuing interest in the traveling point load problem
is due, in part, to its physical applicability. For example, a
vehicle like a truck exerts forces on the surface of the earth which
are concentrated and that move. The grkound motions excited by
such a vehicle can be represented, with some qualifications, by the
motions caused by a point load traveling on the surface of an
elastic half-space. Moreover, the shock waves produced by a
supersonic aircraft‘or a nuclear blast exért forces on the surface
of the earth which move and whose effects might be estimated by
superposing solutions of the traveling load problem considered
here., ‘ |

Of further interest is the fact that a point load moving on
the surface of a half-space generates a non—axisymmetric disturb-
vanceo Very few wave propagation problems of this type have been
solved and no general solution techniques are available. Other than
the mvoving load cases discussed above, only Chao's [ 8] work need
be mentioned to review all of the existing techniques. Chao com-~
puted the displacements due to a tangential surface point load by
first separating out the angular dependence and then using pro-
cedures designed for an axisymmeiric disturbance. However,
in generai such a separation of variables is not possible and his
method has limited use., On the other hand, the technique developed.
here to analyze the moving ’10ad problem is more general and it
should contribute guidelines for analyzing other non-axisymmetric

hali-space problems.
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In Chapter 2 a formal solution to the moving load problem
is obtained by using the Laplace and double Fourier transforms.
This brings an inverse transform statement of the displacements
to a triple integral form. By a sequence »of real transformations
and contour integrations this formula is replaced with one that allows
the Laplace transform to be inverted by inspection. In this way
each displacement is reduced to a sum of single integrals and
algebraic terms., The basic ideas in this scheme of inversion are
due to Cagniard [ 9] . However, the computations are greatly simpli-
fied by using a transformation introduced by DeHoop [10] for prob-
lems in acoustics and later used by Mitra [ 11] for an elastic half-
space problem.

This inversion scheme is complicated by the fact that each
aisplacement is a function of five parameters: three space coordi-
nates, time, and the load speed. Nevertheless, an exact solution
is computed which is valid for all interior points of the half-space.
The same expression is also valid for all load speeds, even though
the wave fron‘t geometry varies greatly depending on the speed of
the load relative to the body wave speeds. The surface solution is
obtained from the interior one, but only after the Rayleigh waves .
have been assessed by a separate calculation,

Each contribution to the displacements is identified as the
disturbance behind a specific wave front., In particular, the integrals
represent a system of waves which emanate from the initial position

of the load as if they were generated by a stationary point source.



The algebraic terms represent disturbances that trail behind the
load and whose wave geometry depends on the speed of the load,
This form of the solution is advantageous for evaluating the dis-
placements near the wave fronts., These wave front expansions

are given in Chapter 3 along with some other analytical results per-
taining to the Rayleigh waves and the steady-state displacement
field.

Additional results are given in Chapters 2 and 3 for the
limit case of zero load speed, for then the moving load problem
passes to %:hat one of a half-space excited by a surface point load
with step time dependence. This problem, which is frequently
referred to as Lamb's problem, has been treated thoroughly for
the free surface by Pekeris [ 3], but the analysis for the interior of
the half-space is not nearly as complete. It should be noted that
Eason [12] has worked on the interior displacements using trans-
forms. His results are in the form of single integrals, but they do
not readily display the system of wave fronts associated with a
concentrated surface load. In addition, Knopoff and Gilbert [ 13]
have developed a technique for computing the first motions behind
these wave fronts from a formal transform solution of the problem.
However, as pointed out by Aggarwal and Ablow [ 14], this technique
is not successful in detecting the logarithmic discontinuity at the
equivoluminal wave front, In this work a new representation of the
interior displacements for Lamb's problem is obtained in terms of

single integrals, each of which is identified as the disturbance
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behind a specific wave front. Then wave front expansions are com-
puted which include the logarithmic singularity. ¥urther contri-
butions to Lamb's problem have been made by Lamb [15], Lang

[16, 17] , and Craggs [ 18]; but these publications have no bearing

on the investigation given here,
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CHAPTER 2

STATEMENT OF THE PROBLEM AND SOLUTION

2,1, STATEMENT OF THE PROBLEM

The subject half-space problem is depicted in Fig. 1 based on
a cartesia,;n coordinate system (x,v,z). The plane surface of the half-
space is z = 0, with z > 0 forming the interior. A concentrated,
normal load of unit magnitude travels on the surface along the positive
x~axis at a constan‘t‘speed c. The load acquires its velocity instan-
taneously at the origin of the coordinates at time t = 0.

The half-space is a homogeneous, isotropic medium governed
by the equations of the linear theory of elasticity. The equations of

motion for the case of vanishing body forces are

82_1:_1
5 {(2.1-1)

WPu + (M) VV e = v P

where u represents the displacement vector (underlined characters
represent vectors) with the cartesian components {ux,uy,uz); A and
# are the L.amé& constants; v is the material density; and V is the

del-operator. It has been shown (see, for e}%ample, Sternberg [19])

that every solution of (2.1-1}) admits the representation

u=Veo + VXY, (2,1-2)

where ¢ and Y, known as the Lamé potentials, satisfy the wave

equations



2 1 0%4 2 p 9%
v¢:—; > s vE:T-—-Z— (2,1—3)
G ot C, ot

and the divergence condition

Vey=0, | (2.1-4)

Cq and c, are the dilatational and equivoluminal body wave speeds

respectively. They are defined by

1
€q = < v ’ s =

The appropriate stress ('Tij) relation for this medium is

o

%) . (2.1-5)

Tij = AV -‘—1515 +Mui,j + uj,i) s (2.1-6)

where Si" is the Kronecker delta.
J

The boundary conditions at z = 0 take the form

g,

%
'rzz(x,ys(),t) = = 6{y) &(x ~ ct) {

? , (2.1-7)
TXZ<X’Y’O¢> = TYZ (XSY:Ozt} =0 j

where &(~) is the Dirac delta function and to represent quiescence at

= 0 the initial conditions appear as

. 3 =
(b{Xsy,Z,o) - % (Eg‘fszzol =0 j
} (2.1-8)
aﬁE(XﬁysZsG) i
! P - enae e @
W(x,y,2,0) 5E 0 J

The potentials ¢ and U, and the space derivatives of the potentials,



are required to vanish at infinity (l_}_:! ~> 0, X 1is the position vector,

z= 0 for the half-space), i.e.,

lim [d)(x,y,z,t),l.}_x, etc.] =0 . (2.1-9)
X|T®

2.2, FORMAL SOLUTICN
In view of the initial and boundary conditions appropriate
transforms for the solution of (2.1-3) are given by the Laplace and

double Fourier transform pairs

oo
— r -
f(p) = | ilt)e Ptag £(t) = f"z%?{ S‘f(p)ept dp
“0 ‘ Br1
(2.2-1)
0 ) Cow
;(k,v) = % f{x,y)eul(kxméx dy, f{xy) Z'J*‘Z gjf (ksV)el(ka>dk dv

~ (2m)

-0 -0

{see Sneddon [20] for corresponding transform theorems), where p
is the Laplace transform parameter, Brl is the well-known
Bromwich contour in the right half of the p-plane, and k,v are

real Fourier transform parameters. By applying these transforms
in sequence to (‘Ze 1-3) in conjunction with the initial conditions (2,1-8)
and the boundedness conditions (2.1-9), the ordinary differential

equations

= ﬂfi¢ 2 —'"'J':nz \lJ 9 (j:X:Y9Z) (292—2‘)
822 8z? J

arise, whose solutions which are bounded for large z are



£ —ndz '\é
¢ = Ae for Re 4 >0 !
2 > (2.2-3)
U.=Be ° for R >0 |
vy = B or Re Mg J
(Re denoting the real part),where
1
- 22 =P }
Ny (k2+v2+kd) o ky <, 3
‘ . > {(2.2-4)
— L2 2 212 _ B 1
ns—‘k+V+ks) : ks—cs o

and A, B. are four constants to be determined. Satisfying the diver-
gence condition (2.1-4) and the three boundary conditions (2.1-7) pro-
duces the following four equations for A,Bj:

{l“——kz + 5 )A +ivn B - ikn B =*—-——:-—1———---‘ A
2pd d sTx sTy  2p{ick +p)

ZikndA - kaX + (k? +nZS)BV +iVT]SBZ =0
' > (2.2-5)

-2ivn A +{(v* + nZS}BX - kay tikn B =0

ikB,_+ivB,_ -1 B_ =0 .
b4 5% s z o

The solution of this system of equations and (2.2-3) yield

-
L -lEEt2E+vE)] -z -
P - e ¢ T =0
" u{icktp) T{kv,p) ! Z
...*qsz _nsz ? (ZaZ"())
o —Zivnde ~ Ziknde
b= e . U= - -
x ~ W(ickTp) T(kv.p) v T Wick ) T(kvip)_
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where T(k,v,p) is the Rayleigh function defined by

Tliovip) = [ + 202 +v2)]2 - 4n 0 (6 +2) (2.2-7)

Then substitution from {2.2-6) into a transformed statement of
(2.1-2) and use of the Fourier inversion formula (2,2-1) give the

Laplace transformed displacements

U (yap) =0 (eyzp) tu (oyap)  (Ewya) o (2.2-8)
where
L -1,z tilkxtvy)
(xiyzp) = \\ £ lsvip)e dicdv, (@=d,s) (2.2-9)
212 p JJ
=00
and
2 4201 h
-1 + 2(k2 42 )] 2iknm
:Xd(k,v,p) {lck’f‘p T{kv,p) ’ {k,v,p (ick+p) T{k,v,p)
-iv{I 2 (kP 2 )] 21V gng

{ = = . 2-10)
Fyallev®) = oy ¢ Ty VP T Gty 2210

[ +2 (k22 )] ~2m (K2 +v*)
— F, (vp) = ;
(ICk‘*P}T(k:V:P} T zs Y {le’*P)T(ksV:P)

4 AY —
FZ 4 kavppi =
e

u. in {(2.2-8), written this way, reflects the fact that it can be ex-
pressed as the sum of its dilatational and equivoluminal contributions.
The integrals in (2.2-9) converge because Re N4 >0 and Re Mg >0,
It still remains to invert the Laplace transform. It is sufficient for

the subsequent calculations to assume that the Laplace transform
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parameter is a real, positive number. For such values of p,
Lerch's theorem (see Carslaw and Jaeger|[ 21], p. 345) guarantees
us that if uj(x,y,z,t) exists it is unique.

When the displacements in (2.2-8) with (2.2-9) and (2.2~10)
are evaluated for ¢ =0 and z =0, and then expressed in terms of
the cylindrical geometry shown in Fig. 2, they compare exactly with

those computed by Pekeris [ 3] for the stationary point load.

2.3, TRANSFORMATION OF THE FORMAL SOLUTION

Although (2.2-8) with (2.2-9) and (2.2-10) is a formal solution
of this problem for the displacements, its form is practically use-
less. By a sequence of transformations and contour integrations the
integrals in {2.2-9) will be converted into a form that aliows the
Laplace transform te be inverted by inspection. In this way the
exact inversion of each Gj will be obtained as a sum of single
in‘iegrals and algebraic terms.

In this section two successive variable transformations are
made in (2.2-9) to simplify the dependence of -ajoz on x and p.

The first follows because F.

Ja(k,v,p) and =Ny % +i{kx +vy) are homo-

geneous functions of the Laplace transform variable p. Let

k=28 , v g, (2.3-1)

where dkdv = (p/cd)2 dBde. The second one is designed to simplify

the argument of the exponentials. Let

B=qgcos O-wsin® , o =gsin®+wcosb, (2.3-2)



-12 -

where B?+o%= ®+w?, Bx+ oy =qr, dBde =dgdw, and (r,0) are
the cylindrical coordinates shown in Fig. 2. Then the substitution
of (2.3-1) and (2.3-2) into {2.2~8) - (2.2-10) and the reflection of

-w into w yield

XaY:Z)s (26 3"3)

[

— LT £ ..
uj(r:esz9P) ujd(rae,Z,P) uj s (rs @:Zsp) s L

where
-2 -3
_ 1 oo(-oo Cd(m&z iqr)
u. {r,0,z,p) == } K. {q,w,8)e dgdw, (a¢=d,s) (2.3-4)
J« 2 0 J—OO J@
and
K (qw,8) = 2 [ig cos 0{igcos 0 *vy) +wisin®0][L 2+ 2{¢?+ w? )] \‘g
xd wcpl{ig cos © ty)? +w?sin?0] R{q,w)
>{2e3-5a)
2] iq cos Bliq cos 6 +v) +w?sin® @}mdm ,
B} s !
K (aw0) = j
wep[{iq cos @ +y)* +wPsin®0] R{q,w}
K (qw,0) = -sin 0[ig{igcos 8 +vy) - wfcos O][L 2 +2 (¢® +w? )] %\%
ya w2cp] {(ig cos © +v)? +wsin® 6 JR(q,w) %
>{2.3-5b)
2sin 0[iq{igcos 8 +v) - wcos 0] m ,m {
- S £
K (Cisw,@) = i
ys w?cpf (iqcos 0 +y)? +wPsin? 6] R(q,w) J
{igcos © +y;md[122 +2({g® +w?)] !
K d(q,w,@) = §
z wepl (igcos © +v)% +w sin®8] R{q,w) L
/ (2.3-5¢)
-2{iqcos ®+y}md(q2+w2) !
K A{gw8) = !
Tzgt AT J

wenl (igcos 0 +y)% +w?sin?0] R(q,w)
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R(%W) = ['QZ + 2(C12 +wP )]2 - 43mdms(q2 +w? )9 (26 3'6)
1 : 1
my = (w2, m = (P AW PR, (2.3-7)
C (o4
=4 ; y=—§ . (2.3-8)
CS (&4

As first noted by DeHoop [ 10] , the transformation (2.3-2)
brings a two-dimensional resemblance to the _ﬁ.ja By holding w
fixed in (2.3~-4} and .considering only the g integration variable, the
exponentials have exactly the same form as those found in the
stationary line load problem where exact inversions are obtained
easily (see DeHoop | 22]).

The Ej have the following symmetry property

Ej(rseszsp) = Ej(r:’eyzsp) 3 (J = X,Z)

)
}s (2.3-9)
EV(T:&Z:P) = - le(rs"eszsp) j

where © — -0 implies x> x, vy~ -y, z = z; a reflection over the
axis that the load moves along. This result is expected physically
and it is used in the subsequent calculations.

Finally, it remains to convert the integrals in (2.3-4) into a
form that contains the Laplace transform integral.This essentially in-
volves replacing —i—é(maz - igr) with the real variable t. This complex
variable change is effected by a contour integration in a complex
g-plane. In section 2.4 the contour integration for Ez is carried

through in detail for z > 0, resulting in the exact inversion of the
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vertical displacement for the interior of the half-space. In section
2.5 the exact inversion of Gx and le for z >0 is computed in
short order by using the results in section 2.4. Then in section 2.6
the surface (z = 0} displacements, less the Rayleigh waves, are
obtained as a limit case of the interior results., The Rayleigh waves
are computed by returning to the contour integration planes and
assessing the Rayleigh poles. Allowance is made in each of these
sections for the var;able'load speed. To complete Chapter 2, in
section 2.7 the displacements appropriate to a stationary point load

are obtained as a special case of the results in the preceding sections.

2.4, EXACT INVERSICON OF THE VERTICAL DISPLACEMENT FOR
THE INTERIOR OF THE HALF-SPACE

Anticipating the fact that the solution takes different forms
depending on the speed of the load relative ‘éo thbe body wave speeds
{cd,cs) , the contour integration for le is separated into three cases.
In particular the terms supersonic, transonic, and subsonic refer to
the cases when the load speed is greater than the dilatational wave
speed, between the dilatational and equivoluminal wave speeds, and
less than the equivoluminal wave speed respectively. As shown in
this section, one single expression represents the exact inversion. of |
Ez in the interior of the half-space for all load speeds.

The inversion of Gz is given in detail for the case of super-

sonic load motion. The dilatational contribution is treated in sub-

section 2.4.1 and the equivoluminal contribution in 2.4.2. Then in
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subsections 2,4.3 and 2.4.4 the cases of transonic and subsonic 1oad
motion are handled briefly, only indicating the differences with the
supersonic case., In view of the reflection property in (2.3-9), the
calculations in subsections 2.4.1 - 2.4.4 are only done for

&= 0., Finally, in subsection 2.4.5 the results are summarized for

2ll load speeds and extended to include 8 < 0.

2.4,1, Dilatational Contribution for Supersonic Load Motion.

From {2.3-4)

~-E—(mdz-—iqr}
€q
§ 5 K_aqlaw.fe dg dw, (2.4-1)

N! bt

déx,p

where sz and m, are given by (2.3-5c) and {(2.3-7). Since several
different sets of coordinates are employed in this section, szd is
only shown as a function of the position vector x. For the computa-
tions that follow involving the qg-integral it is convenient to restrict

w to the bounded interval 0 to M, where M 1is a large, positive

number., Then, after assessing the g-integral, one lets M tend

towards infinity. With this in mind (2.4-1) is written as

M © ——E:E—(mdz—iqr)
— 1 d
a,xp) = 5 lim f; 5 K d{q,w,@)e dq dw . (2.4-2)
M-*’oo o

In order to effect the desired contour integration, the integrand
of {2.4-2) must be extended to being an analytic function of a complex
variable gq. The singularities of the integrand are branch points

L L
located at q = zi{w? +1)2 and q = =i{w? +£%}2, and simple poles at
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tof

and q = TwsinOfiy The poles located at

e i (2 g2
q = =i{w +YR) cos O °

o)

q = =i{w? ty})

R{q,w), where Yg = Cd/CR and cp is the Rayleigh wave speed. All

correspond to the zeros of the Rayleigh function

of these singularities migrate in the g-plane as a function of w.
However, since w & [ 0,M) they always lie in the finite g-plane as
shown in Fig. 3. In addition, the manner in which the poles at
q= W migrate.as a function of w depends on € and c.
The dependence of these poles on 6 and ¢ is carefully described
in the subsequent material as the need arises to effect the contour
integration.

In order to convert equation (2.4-2) into a form that containg
the Laplace transform integral, one seeks a contour in the g-plane
such ‘xéha‘t

1
t = ~—{m

= z - igqr) , (2.4-3)
d

d

where t is a real variable (eventually t will be identified as the

time parameter}s The solution of (2.4-3) for g yields

C 1
— dr. 2 2 2
= — r*E - =
q . (%) " [itr £ z(t* -t i) ] for t =t

d°® (204-"'4)

where

1

1 1
= P2 2 = {2 b 2)2 -
twd cd(w +1)2, p = (ré+z%)2 . (2,4-4a)

t,q Fepresents a "pseudo-time" of arrival because it is a function

of the integration variable w and it is related to the time of arrival
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of a hemispherical, dilatational wave, p/cd {(for w=0, twd™ p/cd)o
o is a spherical radius as shown at the bottom of Fig., 2. qd(i)
represents the particular q satisfying (2.4-3) and (*) indicates the
two possible roots. The contour qd(:!:) is shown in Fig. 3 and it is
one branch of a hyperbola which is parametrically described by t

as t varies monotonically from tq towards infinity. The hyper-

d
bola is symmetric about the imaginary g-axis and its vertexT lies
iy L
on this axis at g = —l;;(wz +1)¢ for t= twd" Since §< 1 {recall

z > 0) the vertex never lies on the branch cuts. For z = 0, qd(:t}
wraps around the branch cuts and, in particular, the Rayleigh pole
at g = i{w?® 4."\‘/21{}%a The contribution of this pole is assessed in
section 2.6 where the z = 0 case is considered. That a condition
like t= tv\.zd should arise is not surprising in view of the hyperbolic
nature of the governing wave equations (2.1-3}.

In order to construct a closed contour C, including qd(i), the

arcs CI and CII are introduced as shown in Fig. 3 so that
C= CI + CII + qd(—} + qd(+) + Re g-axis, The arcs CI and CII lie

outside all the singularities in the g-plane and recede towards

infinity, By comparing the relative position of the poles at

+ i +1 . .
q = —-—W—é-s—rlsngaﬂ and the contour qd(:fc} in the g-plane, one finds

that these poles lie inside C if, and only '11‘,;t

"The vertex at g = —l—l:{w2+ 1}2 and the contour qd(::':} represent the
saddle point and thé path of steepest descent associated with the g-
integral for large p. However, an asymptotic expansion of the
g-integral is not particularly useful because of the remaining w-
integral.

“For simplicity consider only strict inequalities, then extend the

resultsg to include the cases of equality.
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)
™ (i
c.tr
vV d
(2) =553 - A (2.4-5)
p
S - 2z 2
(3) wtan 8 < 2 (2 £ 3 y
or equivalently (using coordinates shown in Fig. 2 and twd in
(2.4-4a) )
‘\\
(1) x>0
02
(2) t>t; where t; = = > i
2 2
3) w*> W
NN (-1 2 1
where w? :Kﬁ._Y._ - 1) _Z___Ci(_)_s_ﬁ._ , = (VZ"'ZZ}Ze
© 52 02 -~

n is a radial coordinate measuring distance from the xz-axis as

shown at the bottom of Fig. 2. For fixed time, t =t, is the equation

L

of a hemisphere (considering z > 0 only) with center {x = _sz" n=0)

and radius EZE . The center of this hemisphere is always mid-way
between the position of the load and the origin of the coordinates.
The significance of this hemis?here willv'be apparent in the inverted
displacement field.

In view of the conditions in (2.4-6) and the anticipation of

applying the Cauchy-Goursat theorem along C, it is convenient to

consider the following three cases:



-19-

©4
Case I: x>0, >—E—

oK

w sin © + iy
cos B

The poles at q = lie inside C for w & [0,M).

b4 €a
Case II: x>0, =< -—
—— o) c

- _ Twsin O tiy .. . . - \ _
The poles at q v lie inside C for w € (WO,M) H2.4-7)

1
2.,2 5
where w :<Q___\L_l>2_§_9_c_>§_§ and w_> 0,
[¢] Xz n o

Case 111! x <0

No poles lie inside C for w € [0,M).

Eachofthese cases, while including a different part of the half-space,

requires a different application of the Cauchy-Goursat theorem.
C
Furthermore, excluding x =0 and 2_5; = —cé » all positions in the
interior of the half-space are included in these cases. For x> 0,
c

x d . .. cee .
== defines a cone whose axis is the positive x-axis. As the

e

solution will show, this cone separates the half-space into regions in

which u, g has distinctly different wave front patterns. The inver-
sion of sz will be completed in each of these cases, with the

results summarized at the end of this subsection.

°q
Case I: X>0, > -—C—-

© K

In view of the conditions for case I in (2.4~7), the Cauchy-
Goursat theorem and residue theory applied to the integrand in

(2.4-2) and C in Fig. 3 yield

uop) = A 4xp) + B L (xp) (2.4-8)
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where
M ,
= o | c, 9997 -pt
A (xp) —I\/}Too ) Re[KZd(qd,w,e}—a?] e Pt aw (2.4-9)
0t
wd
and
-2 -
B M A CdL(rndz igr) .
0 _ wsin® t+iy
4= cos O
with
A sec@md[ﬁz+2(q2+wz)}
sz(qﬂw)g) = WCMR{q;W) ® (234"10&)

:Z;zd is the contribution from qd(i) and the convention has been

adopted that q, = q.(+). Also, B is the residue contribution
d d

zd
;. L A
i _ Ewsin 6 tivy . -
from the poles at g o5 O and sz is that part of k{zd

which is left after the residue evaluation. The integrals that arise
along CI and CH vanish in view of Jordan's lemma (see Copson
[ 23], p. 137) and remark (3) under Fig. 3.

The integrals in {2.4-9) clearly converge uniformly for all
x in the interior of the half-space (recall z > 0) as M tends
towards infinity. This follows‘because twd’ as given in (2.4-4a),
also tends to infinity and the exponential in the integrand predomi~
nates {(recall p is a real, positive number). In addition, the integral
in (2.4~10) converges uniformly for all x in the interior of the half-

space because Re {(mdz—iqr) l >0 for all w. There-

q:wsine“l'ixj

cos 6
fore {(2.4-9) and {2.4-10) become



0o oo d
A (xp) = ( ReEK ( e)-—qﬁ‘&“ Pt gr g (2.4-11
ad EP) = 2d\4gW¥) g7 _E © w . )
0 twd
and
oo -2 (m z-igr)
= A Cd d i
Bzd(z_i,p) = 5\ Re{ [sz(q,w,e)e E ’} dw . (2.4-12)
0 | o
i w sin © Tiy
4 cos ©

To complete the inversion of —Ezdg interchange the order of
integration in (2.4-11). This is legitimate (see Jeffreys and Jeffreys
[24} . PP. 180-181) because the double integral in (2.4-11) is abso-
lutely convergent.,, The absolute convergence follows because the only
singularity in the integrand is the integrable one introduced by

dg c

d d f 2 2
— e + -
P . [ir+zt(t*-t

o
| I—

- 41
2 (2.4-13)
at t= tv}dn Also, for large t and/or w the exponential in the inte-

grand predominates (recall that twd goes to infinity as w goes to

infinity). Then (2.4-11) becomes

o ~d
— : . dqd -pt
Azd(_;_(,p) =§ j Re {sz(qd,w,e) —d-;c-“] dw e dt (2.4-14)
tdO
where
1
2 )
T, = -i-:-— - 1\% 3 t, = £ ° (2,4:"14:3,)
d tz / d Cd
: d

The inversion of the Laplace transform in (2.4-14) yields
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¢ day
A lxnt) = Ht ~td)§ Re {szmd,w?e) '&%‘j dw (2.4-15)
0

where H{T) is the Heaviside function defined by

H(7) =

0 for 7<0
(2.4-16)

1 for 7> 0

and t is now identified as‘the physical time parameter, td repre-
sents the arrival timedr of a hemispherical, dilatational wave generated
at the origin of the coordinates as shown in Fig. 7. Therefore Azd
represents a hemispherical, dilatational wave.

By inspection of {2.4~12) one sees that gzd can also be con-
verted into the Laplace transform integral by the same scheme as
applied to the g-integral in {(2.4-2). In fact Ezd has exactly the
form found in two-dimensional problems where the Cagniard tech-
nique has well-known applicability (see, for example, DeHoop [22]
where the stationary line load problem is inverted to algebraic form).

Equation (2.4~12) is written as

o e .
_ - A - L 4z - iqr)
B 4(xp) = Re) é_sz@w,e)e d j dw . (2.4-17)
0 ' . .
- wsin 0 tiy
4 cos €

To effect the desired contour integration,the integrand of {(2.4-17) must

be extended to being an analytic function of a complex variable w. The

'Arrival times are designated by the time parameter subscripted with
lower case letters referring to the particular wave in question. In
comparison, the time parameter subscripted with a capital letter
designates a value of time which arises in constructing the solution,
but is not related to a particular wave.
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singularities of the integrand are branch points located at
L L

w = -iysinBxi(l-vy*)%cos8 and w= ~iysin©=i(f - y%)2cos 6, and

simple poles at w = ~iy sin@ii(yz - yz)%cos 8. These poles correspond
tozeros of the Rayleigh function R\% ,w> and, as previously
defined, { = ?:é s Y = i—-d » and Vg = Ei . The position of these singu-

larities in the w-plane is shown in Fig. 4.

As done above, one seeks the particular contour in the w-

plane such that

t=- (mz-iqr)] , (2.4-18)
Cq d ,
- wsinb +iy
4= cos ©

where t is a real variable. The solution of {2.4-18) for w yields.

wd(:i:) = -iy sine‘f"w(igy +* za .} for t= tdc , {2.4-19)
n? ¢
where ;
1 N 2 i
= = - +
tdc C [{CZ 1> n X}
d
£2 c? 2 : >
ad _g - i.;_;..l> ok } (2@4-193)
d
£ = . = Z 4,2 :5 .
g ct -~ x, n = {y“+z%) J
ty. vepresents the arrival time of a conical, dilatational wave trailing

behind the load as shown in Fig. 7. § is a coordinate measuring
distance from the position of the load along the x-axis as shown at
the bottom of Fig. 2 and n was introduced in (2.4-6), wd(i) repre-

sents the particular w satisfying (2.4-18) with (%) indicating the two
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possible roots. In view of the limits of integration in (2.4-17), only the
plus root of (2.4~19) is needed and the convention is adopted that
q°= wd(-'r). The contour W3 is shown in Fig. 4. It is part of one

branch of a hyperbola which is parametrically described by t as t

A%

varies monotonically from tcic to infinity and its vertex ' lies on the

i
imaginary w-axis at w = -iy sine+i§(1-y2)2cos & for t=t For

dc”
case I the vertex lies between the Re w-axis and the branch point
located at w = -iy sin 8 +i(l —yz)%cos 0 (see remark (2) under Fig. 4).
When =z goes to zero, Wy collapses s in the limit, on the imaginary
w-axis and, in particular, on the Rayleigh pole. The contribution of
this pole is assessed in section 2.6 where the z = 0 solution is com~
puted. Again, a condition like t = tac reflects the hyperbolic nature
of the governing equations.

In order to construct a closed contour C, including Wy , the
contours GI and ¢, are introduced as shown in Fig. 4 so that
¢= Cq + W4 T @1 + Re w-axis. Then the application of the Cauchy- |

Goursat theorem to the integrand in (2.4-17) and C produces

— e”w/‘ dwy -pt “
Bzd{z_{,p) = Re sz(wd,w) T © dt {2,4-20)
tdc
where
| {é (w,0) = (wsin® tiy w.0 . (2.4-20a)
zd w0 f zd& cos O : ’/ ¢ °
T ' The vertex at w = -iysin® +—X(1 v ) cos 8 and the contour Wy (%)

represent the saddle point and the path of steepest descent &ubOCl‘
ated with the w-integral in (2.4-17) for large p. By using the saddle
point technique and a Tauberian limit theorem, a wave front expan=-
sion of B can be computed. Such a technique has been used by
Knopoff and Gilbert [13], but it is not employed in this thesis.
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The integral that arises along GI vanishes in view of Jordan's lemma
and remark (3) under Fig. 4. The integral that arises along (3’1
vanishes because its real part is zero. The inversion of the Laplace

transform in (2.4-20) gives

A ;
B, (xt) = Re[r(zd(wd,e)-—w—.g H(t- t (2. 4-21)

where H(7) is given by (2.4-16). In view of H{t-t in {(2.4-21),

dc)

Bzd is identified as a conical, dilatational wave trailing behind the
load.

By combining expressions (2.4-8), (2.4-15), and (2.4-21), u, g

for case I becdmes
Td

r r dqd
u, (t) = H{t -t B Re i. sz(ngw,e) —a—t——-} dw

A dwd
+ Re[ L0 2 ]H(t “t, ) (2.4-22)
x Cd
where the notation is defined in the text, x> 0, and 5 > = - The

Roman numeral one in the diagrams at the bottom of Fig. 7 is located
c
in the domain (all x such that % > __é_@) of the half-space where

{2.4-22) is pertinent.

Case II: x> 0, <—C-g

ol

Returning to the contour integration in the g-plane and noting
the conditions for case II in (2.4-7) suggest that equation (2.4-2) be

written as

1
= e + +
uzd(x,p} lim (I, I + I 1

5 . 4) s {(2.4~23)
e~
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where ™
—c B -
~ W € oo Cd{mdz igr)
Il = ‘) sz(q, w,0)e dq dw
0 -0 > (2.4-24)
W w_te M
_ o, _ ~o — o
IZ :§ Y) dw 13 ::‘j ) dw , 14 =M11m {(7)dw.
— 0
W € W w_Tte o’

The integrand in each Ta , {¢=1,2,3,4), is the same. The Cauchy-
Goursat theorem can now be applied uniformly to each -fa and the

corresponding g-planes are shown in Fig. 5.

By calculations similar to those in case I, Il and 14 become

wo~€pm : dq
= d7 -pt .
Il =2 j Re[sz(qd,W,e) P ]e dt dw (2.2-25a)
0 twd
M g dqd __p-t
I =21im Re | K .{q,w8) e dt dw
M d*d dt
— 00 ,
+te t
wd
-y -i
PM ceA Cd\mdz igr) .
+ 2 lim Re’{{K (q,w,0)e j %j dw , (2.4-25Db)
M zd s
w_+e » . . )
e} lw sin 8 +iy
E cos @
A

where sz{q,w,@} is given in {2.4-10a).

To evaluate the g-integrals in I, and I, assume that

2 3 W= Wo5
This means that the poles at g = Miﬂ lie on {(£) at t =1t
is means tha o s g = pyyr dgq =ty .

and one must indent around them (see Cl and CZ in Fig. 5). Then

the application of the Cauchy-Goursat theorem yields
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S W
c O
= i dqd -pt
IZ = Zg P g Re[sz(qd,w,G) = ] e dt dw
- H
Yo € twd =W
o
W P .
p o A Cd(mdz igr)
+‘} Re{{sz(q,w,G)e } f} dw , (2.4-26a)
w -c M
wsin 0 +iy
cos ©
W= W
o
w_t¢ w_te
o co o
'1':“3 =2 Pg (%) dtdw  + g (¥} dw (2.4-26b)
H
Yo twd Yo

where t\sx/d equals twd evaluated at w = W e The integrands in -I_3
are exactly the same as for —I—ZG P precedes an improper integral
to imply that it is interpreted in the sense of a Cauchy principal value
(as defined in Copson [ 23], p. 133). Such integrals arise in (2.4-26)
because of the poles lying on the contour qd(i) at t=t;. The second
term in —I_Z and :i_3 is the contribution from C1 and CZ’ which is
essentially half of the residue evaluation of the poles. However,
since each w-integrand in (2.4-26) is a bounded, constant function of
w, it follows that —fZ and -f3 are linear functions of ¢ and vanish as
€ goes 10 zero,

Then by substituting (2.4-25) and (2.4-26) into (2.4-23) and’

noting that the limit as M goes to infinity proceeds exactly as in

Case I, one {finds
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w_-€
O [o0] CO
T (x )=1imE§ +§ R [K ( e)—dﬁé] Pt gt g
zd' 2P J) e Ped\9e WY g | © w
e+ ,
0 w te t
o) wd
o Pm e
‘ (o) N Cd(mdz igr)
+ lim | Re{[K_ (amo)e [1}aw. @oa-2n
e—0 oz I
w_te z
- wsin© +iy
a= cos 6

In the limit as € — 0 the t-integral in the first term is interpreted in

the sense of a Cauchy principal value because its integrand contains a

T

simple pole' at ¢t = tL for w= W The second term in (2.4-27) con-

verges to a regular integral as € — 0. Therefore (2.4-27) becomes

u, glxp) = A L(xp) + B, (xp) , (2.4-28)
where
0 0o
A (xp) =§ p( Re[K (q »w,0) d?d] ¢ Pt gt aw (2.4-29)
zd'= J zd'*d dt
0 twd
and ) .
B Jod A —-—C&(mdz-lqr) -
Bzd(}:’p) 25 RG{LKZd(q’W’e)e ' j% } dw . (2.4-30)
Yo | wsin tiy
1% 7556

The only difference in sz between cases I and II (compare equations ‘

(204-11) and (2.4-29) } is the simple pole in the integrand at (t = £

w = wo)o Ezd only differs in the lower limit (compare equations

(2.4-12) and (2.4-30) ).

. . . 1
For integrals along the real line, a simple pole refers to a e type
singularity which lies on the real line at t =1¢,. o
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Completing the inversion of -A_zd in {2.4-29) is similar to
case I, except when interchanging the order of integration one must
account f.o-r the additional singularity in the integrand. The reference
given in case I is still sufficient to guarantee the interchange since
the double integral in (2.4-29) is absolutely convergent. Therefore, by
interchanging the order of integration and inverting the Laplace
transform one finds

Ta

A (x,t) = H{t 2! Relx edqd}d 2.4-31
‘od _:’_‘:_st) = \ _td «j ne ;_, zd(qdaws ) ~d—.—%~ W, ( oz )
0

where T, and t; are given in {2.4-14a). This integral is interpreted
as a Cauchy principal value for t = tL. Asg in case I, Azd is identi~
fied as a hemispherical, dilatational wave.

To complete the inversion of _gzd one proceeds exactly as in
case I. The singularities that arise in the w-plane and the contour

w. remain the same except for their relative position with the real

d
w-axis as shown in Fig. 6. The contour W intersects the real w-axis
at w=w_, the lower limit of the w-integral in —ézd’ for t=1t; . The
application of the Cauchy-Goursat theorem to the integrand in (2.4-30)

with the Re-operator taken outside the integral and C in Fig. 6 gives,

upon inverting the Laplace transiorm,

MR ¥a 2.4-32
Bzdﬁgw::Reigm#wdﬁ)TE—]}ﬁb¢L), (2.4-32)
FAN
where K d(w,@} is given in (2.4-20a). Bzd has the same algebraic
Z

form as in case I (see (2.4-21) ), but it lacks the conical, dilatational

wave front.
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By combining (2.4-31) and (2.4-32) with (2.4-28), w4 for

case Il becomes

Td
- [ 947
uzd(g_{,t) = I—I{t-td)Pg Re [sz(qd,w, —a--—— J
0
FA de -
+Re | K, (w.0) —= J Hit-t,) , (2.4-33)
©q

where the notation is defined in the text, x > 0, and X 2 . That

the discontinuity in the second term of (2.4-33), which is caused by

H(t—tL), coincides with the Cauchy principal value in the {irst term is

. ) ey s O .
consistent with the way the poles at ¢ = —%—Vﬁ migrate through

qd(:t)o Therefore one should expect u 4 to be continuous over t = tL’

This is proven in section 3.3 for a special case (in fact all derivatives

of L should be continuous over t = tLg implying that t =1t, 1is not

L
a wave front, but this is not proven). The Roman numeral two in the
diagrams at the bottom of Fig. 7 is located in the domain (all x such
that x> 0 and %{ <%—d- ) of the half-space where {2.4-33) is pertinent.
Case III: x <0

As indicated in (2.4-7), no poles lie inside C. Therefore the
computations proceed exactly as in case I; less the residue term —Ezd’-
and u_, can be gotten from (2.4-22) by deleting the algebraic term.

This case is also depicted in Fig. 7.

Summary:

By comparing the conditions underlying each case in (2.4-7)
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and the results given for these cases, it follows that u 4 can be
represented by one expression for all three cases. In particular,
the dilatational contribution to the vertical displacement for super-

sonic load motion is

T
i - ¢ daq7
uzd(fst) = H(t"’td) Re {sz(qd,wse) -—d—?t_—:] dw
0
A dwd
+ Re[sz(wd,e) "&‘E’j H(t-t, )H(t-t, )H(x) (2.4-34)
©d
where the notation is given in the text, 6 = 0, Ix] >0, and j%— —é—] >0,

As shown in case II, the integral in the first term of (2.4-34) is inter-

preted as a Cauchy principal value for t = tL if x> 0. By inspection

., C
of equation (2.4-34) one sees that it is equally well valid for = = —Ec-}-
and x = 0. To assess w4 at t=t,, t= tdc’ and t = tLg {(2.4-34)

must first be expanded near these surfaces. Then the value of U4

at one of them is obtained as a limit of the corresponding expansion.
In this way (2.4-34) is valid for all points in the interior of the half-
space such that 6 = 0. DBy using the reflection property in (2.3-9},

equation (2.4-34) can also be extended to include © < 0.

The wave fronts at t = t& and t= tdc are shown in Fig. 7.
: c A
They intersect at t =ty for % = —Eé « The spatial variation in the
c

wave front pattern is clearly related to the cone 3—; = _Ec_l » which is
indicated in Fig. 7 by dashed lines, and to the three cases considered
in computing the solution. The Roman numerals in the diagrams at
the bottom of Fig. 7 correspond to these cases, The integral contri-

bution to U4 in (2.4-34) is a hemispherical, dilatational wave
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emanating from the origin of the coordinates, which is also the initial
position of the load. The algebraic term in (2. 4-34) is a conical,
dilatational wave which trails behind the load. Both the integral and

the algebraic term contain a singularity for t :tL,
As mentioned under (2.4-6), for fixed time, t=t
ct

tion of a hemisphere with the center (x= >, B= 0} and radius %E . As

is the equa-

shown in Fig. 7 and by (2. 4-34), only the part of this hemisphere which
is behind the wave front at t = ty is pertinent tou .. That this part

of t =t,. is not a wave front (i.e., u

1 and all derivatives of uoa

zd
are continuous throught = ’cL) seems obvious by the way it arose in
constructing the solution {see case II and the remarks in the text under
(2,4-33) ) and by the following heuristic argument. The hemispherical
wave front at t = t, is the characteristic surface associated with the

d

wave equation for ¢ in (2. 1-3). The conical wave front at t = tdc can
be thought of as the envelope of a sequence of hemispherical, dilata-
tional wave fronts generated by the load as it moves along the x-axis,
But the surface at t = tL can not be constructed by a superposition of
these hemispherical wave fronts, and therefore it is not expected to
be a wave front.

The integral contribution to vog in (2. 4-34) can easily be
approximated at the hemispherical, dilatational wave {ront because
its range of integration vanishes as t approaches t (i.e., g~ 0

ast—t The algebraic contribution can be assessed at the conical,

Q-

dilatational wave front as well as any other place in the half-space.
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These wave front expansions are given in section 3.1.

As one might expect, the wave front geometry associated with
U4 in {2.4-34) is peculiar to the case of supersonic load motion.
The corresponding results for transonic and subsonic load motion are
computed in subsections 2.4.3 and 2.4.4 respectively. In the next
subsection the equivoluminal contribution to sz is inverted for

supersonic load motion,.

2.4,2. Eguivoluminal Contribution for Supersonic Load Motion.

From {2.3-4)
——E—(m z-iqr)
— €4 s
U (xp) 5 g (q,w, dg dw , {(2.4-35)

where Kzs and m_ are given by (2.3-5¢) and {2.3-7). The inversion
of Ezs proceeds as for Ezdg but the required contour integrations

are more complicated due to the appearance of head waves. Since the
behavior of the integrals in (2.4-35) near w = oo is exactly the same
as those in (2.4-1), the computations involving the g-integral are done
immediately for w € [0,). As a function of complex g the singu-
larities in the integrand of les are the same as those for sz and

they are shown again in Fig. 8.

As previously, by seeking the particular contour in the g-plane

such that t = ! —{m z-iqr), one finds

€d
¢4 ! 1
- : . il 2 = -
qs(:i:)- . [itr = =z(t tws)} for t CH {(2.4-36)
p
where
L L
t = —CX?-—(WZ-?-,QZ)Z 5 p = (r?+2z%)2 | (2,4-362)
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tWS represents a pseudo-arrival timme which is related to the hemi-

spherical, equivoluminal wave and p is the spherical radius intro-

duced in (2.4-4). The other properties of qs{:h) are similar to qd(:!:),

, . 1
except that the vertex, which is now located at q = ——(w? +{%)2 where
1

p
t= tws , can lie on the branch cut between g = i{w? +l)§ and

L
q = i{w? t4%)%, As follows from Figs. 8 and 9, this occurs if,and only

e 1 i
if, g (w? +12)% > (w?+1}2. This inequality ils equivalent to the conditions
c C w202 N2
Z > -8 and w<w, , Where w.= < L - 1/? » When the vertex lies on
P cd 1 1 =z pz

the branchcut, the particular contour wraps around the branch cut and
it is given by {2.4-36) plus

ic

__ d 2 L 2 %1 > 4 > -3
Ag = e [ tr z(tws t*y21  for tog = EZt g (2.4-37)
where
1 i 1
toeg —é—[(ﬂz ~1)2z +{w?+1)2r] , (2.4-37a)

d

and an identation C1 around the branch point at q = i{w? +1)%° The
contours C1 and Q. are shown in Fig. 9 where a (%) notation has
been added to 94 to indicate whether the contour is on the right-or
left side of the branch cut. dog is parametrically described by t as
t varies monotonically from tv\;sdg the arrival time of a pseudo-head
wave, to ﬁws , the arrival time of the pseudo-hemispherical, equi-~
voluminal wave introduced above. In two-dirnensional problems (see,
for example, DeHoop [ 22]) contributions from contours like dgq ave
identified as headwaves, thatis an equivoluminal disturbancewhichprop-
agates in front of the two-sided, equivoluminal waves. But here. in

view of the additional integration variable w, dgq contributes pseudo-



-35-

head waves,

c
The g-plane for %<E~§ and w € [0,0) is shown in Fig. 8.
c d
When % > -E—S—, the q-plane is shown in Fig. 9 for wg_ [O’Wl) and in
d

Fig., 8 for w& (WI,OO)a The closed contour C is again constructed,
but it varies depending on where the vertex lies. It is shown in Figs.

‘ = i i
8 and 9. The conditions for the poles at ¢ = %}é&gjﬂ to be inside

C are more complicated than for the dilatational computation. Not

only can these poles migrate through qs(:ﬂ:) » they can also intersect

Ggqg-
c
<

If , these poles migrate through qs(i) and lie inside

© R
S

. . i +i
C if, and only if (compare the positions of q = W———Eso—lsgg——l-y and qs{i)

in the g-plane in Fig. 8},

T T
{1 - > <0< 5 i
v cdtr
2) 557 <3 ) (2.4-38)
p .
CdZ 1 % .
4+ 2 - 2
(3,,} wtan 8 > ———-pz {t tzws) J
or equivalently {using coordinates shown in Fig. 2 and tos in
{(2.4-36a) )
1) x>0 h
2
= -E—— ' ) -
(2) t>t;  where t; = o= , (2.4-39)
2 > 2
{3} w W >
2.,2 : 2 2 i
where WZO = (M— - £2) zZcos’® , n=(y*t+z®)¢ .
2 z

X jo¥
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n represents the radial coordinate introduced in (2.4-6) and t = tL ‘

is the same surface as found for the dilatational disturbance.
c ,
I => Eﬁ the poles can migrate through qs(i) or intersect
d . .
. . . :iwsm9+1x
Agqe By comparing the pos:m.‘ilons of the poles at g e ,l
the vertex at q = % (w?+ 1%)2, and the branch point at q = i(w? +1)2
c

as w goes to zero (see Fig. 10), one concludes: if —§> E—E and
x _ ©d i T d €s x _ ©d
= > — then the poles lie inside C for w€ [0,c0); if = > —, =<-—
T c P cg T ¢

and §> —-55—, then the poles lie inside C for w& (0,00} and intersect

- . S X S . . .
qgq for ws= 0; if % > = and 5 < et then the poles migrate
d

through qs(d:) and conditions (2,4-39) determine when they lie inside
C.

In view of the conditions regarding the position of the poles and
the vertex in the g-plane, and the anticipation of using the Cauchy-
Goursat theorem along C, it is convenient to consider the following
seven cases:

C C C

>3, = >4
C

Case It x>0, < s et
o

C

oK
oln
H K

[o N

The poles lie inside C for w € [0,m).

The vertex does not lie on the branch cut for w¢ [0,00).

c c
. % s
Casgse II: x> 0, —>——§-, >,
p c 4

C
>4
o4

olin
R

The poles lie inside C for w & [0,00).

The vertex lies on the branch cut for w¢. [O’Wl>°
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CS
-
c ?

[¢]

o}
<-4
C

R

Case III: x> 0,

peR i
olir
o
o |wn

The poles lie inside C for w€ (0,o) and intersect deg for w =0,

The vertex lies on the branch cut for w& [0,w1).

CS
& e
c

olo
wn

Case IV: x>0, <

oK
o iR
o

The poles lie inside C for wg (w_,0).

The vertex does not lie on the branch cut for wé& [0, o0).

s
<=
c

[#]

—~ s
Case V: x>0, >—C———

d

oK
o i

The poles lie inside C for w & {wegco}e

The vertex lies on the branch cut for w&_ [O,wl),

CS
Lagpe—

Case VI: %<0, —
p C

[s N

No poles lie inside C for wé& [0,00).

The vertex does not lie on the branch cut for w& [0, o).

C
S

Case VII: x <0, z

>

e
o)

No poles lie inside C for w€ [0, ).

-

The vertex lies on the branch cut for w€_ {Oj,wl)°

{Cases I - VII are referred to in the text by {2.4-40) }

=wsinb +i3£

o ; the vertex is

The poles referred to in (2,4-40) are g =
1
2

. 1 2.2 NE)
L 1 3 /l C
q=XE(WHi2)%; w :5\2,1_ _£2> g___g_g_@ﬁ where w_ > 0; and
P , O «2 n -0
242 N5
w, = % <*__E_. - 1/}‘3 where w}v> 0. Each of these cases, while including
A
o ]
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a different part of the half-space, requires a different application of

the Cauchy-Goursat theorem. Furthermore, excluding x = 0,

¥

P ‘ d
. . X s .
space are included in these cases. For x>0, -5 == defines a cone,

c :
-—5’— , all positions in the interior of the half-

c
X d

, — =—=, and
T c

whose axis is the positive x-axis, which plays a similar role in the
x €4 r s
solution as ° = = for the dilatational contribution. Also, =

c
d
defines a cone, but whose axis is the positive z-axis. Finally, for
c
x

x>0, == —(-:é defines two planes, one for y > 0 and one for y < 0.

c c

The restrictions 3—; z-éé and —;—E-éﬁ in (2.4-40) introduce compli-
d

cations that were not present in the dilatational contribution. As the

solution will show, these restrictions are related to the head waves,
The inversiqn of Ezs will be completed in each of these cases, with
ths results summarized at the end of this subsection.

C Cc

>S5 L S
c

“d
Case It x>0, s > —
c IS

e Y
o In
ER P

ol

By noting the conditions in (2.4-40) for case I and applying the

Cauchy-Goursat theorem to the iri‘tegrand in (2.4-35) with C in Fig. 8,

one finds

L-LZS(EﬁD’D = AZS{._}_{Zsp) + st(zﬁp) H (20 4“41)
where

nw"i}) d

A {ze,p) = | Re‘rK (g w@)-—-—is—_i e-pt dt dw (2.4-42)
2\ EPI = L 259 | .
0t
WS

and



co -—P——(m z=-iqr)
( rodl& q ®
B,s(mp) = | Rey|K_ (qw)e | ¢ dw (2.4-43)
0 L
. wsin 5+ iy
! cos 6
with
A -2 sec Gmd{qz“f'wz)
K, (qw08) = I CE) . (2.4-43a)
:&zs is the contribution from g {£) and the convention has been

adopted that qg = qSH}a Also, Ezs is the residue contribution from
wsinb +i h s e
the poles at g = W and Kzs is that part of Kzs which is

left after the residue evaluation. The integrals that arise along C.[ .
and CII vanish in view of Jordan's lemma and remark (3) under
Fig. 8.

The inversion of ‘Azs proceeds exactly as for Azd in case 1

of subsection 2.4.1 and Azs is given by

TS
C dag
= - s 2
A, 0 = Her)| Re[ X, (amo) 2] aw (2. 4-44)
0
where
- ,._ . . =P ;
= 1) £ty o (2. 4-44a)

tg is the arrival time of a hemispherical, equivoluminal wave

emanating from the origin of the coordinates as shown in Fig. 15.

Therefore Azs represents a hemispherical, equivoluminal wave.
The inversion of Ezs proceeds in a similar manner as for

Bzd in case I of subsection 2.4.1. Formula (2.4-43) is written as
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»—EE—(mSz-iqr)
B, Reg (gwo)e ¢ | dw . (2. 4-45)
0 _§_ wsin 0 +iy
- cose

As a function of complex w the singularities in the integrand of _gzs

are the same as those for —Ezd and they are shown again in Fig. 1l.
As previously, by seeking the particular contour in the w-plane

! . .
such that t = E—gi(msz - iqr) f _wsin@ +iy ’ one finds

cos ©

WS(:—") = =iy sin € +X—g%—s——€-)— (iEy = za's) for t= to o, (2.4-46)
n
where
1
3 =~
17 C2 \ @
s L +
tsc CE<CZ- 1> & X]
s
2 L
. s \ 2
:ggz— i-;*-z— - 1}1’123 (Zw 4:"4:63,)
s
i
E=ct-x , n={yt+z%)?
-
tsc represents the arrival time of a conical, equivoluminal wave

trailing behind the load as shown in Fig. 15. & is the coordinate
introduced in {(2.4-19). Again, only the plus root of ws(i) is needed
and the convention is adopted that W= WS(W"}o The contour W is

shown in Fig. 11. The other properties of w_ are similar to those of

Wy in subsection 2.4.1, except for the position of the vertex, which

[

is now located at w = iy sin® +—?§(£2 v2)écos 6 where t=t_ . By

sC

comparing the position of the vertex and the brangh points iin the w-

. p y fct 2,/ ¢c2 2
: I < = w1 e 1
plane one finds that if 2 < ¢_, where ¢_ {cz ;/g/ <c2 1), the



vertex lies on the imaginary w-axis between the real w-axis and the
1
branch point at w = -iysin € +i{l-y?)®cos 0. But, if %> <§>C it lies

[ 312

between the branch points at w = -iysin0 +i(l-y?)2 cos 8 and

L
w = -iy sin € Ti{L*- y*)2cos 0. As the solution will show, the angle ¢
c

is related to the head waves, However, the conditions X585 and
r _ Ss : ©
S ST that underlie this case, imply that ;Yl < d‘)c"

d

Then, for ;Yl< ¢, the w-plane is given in Fig. 11, The appli-

cation of the Cauchy-Goursat theorem to the integrand in (2.4-45) and

C shown in Fig. 11 gives

= OO/\ dws -pt
BZS(_E_{,p} = Re\g! L{ZS(WS,G) —ajt—“ e dt , (2.4-47)
t
sc
where
A A [wsinf+i \
K (w0) =K (X222 we) . (2.4-473)
zs zZS cos 8 /

The integral that arises along GI vanishes in view of Jordan's lemma
and remark (3) under Fig. 11, and the integral along Cl vanishes
because its real part is zero. The inversion of the Laplace transform

in (2.4-47) yields

A dw

BZS(;_{_,‘?:) = Re[ KZS(WS,G)

= :E Ht-t_ ) - (2.4-48)

In view of H(‘t-—tsc) in {2.4-48}, st represents a conical, equivolu-
minal wave trailing behind the load.
By combining (2.4-41), (2.4-44), and (2.4-48), u, for Case I

becomes
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T
5 dqs
uzs(z_;,t) = H<t-ts)§ Re [Kzs(qs,w,e) E—-} dw
' 0
A dws
PR K, (w 0) 2| Hle-t ), (2.4-29)
x_ % r_Ss !
where the notation is given in the text, x>0, =>—, =2 < —= |, Z> —
p c p ey’ T c
T

and }g < ¢_. The Roman numeral one in Fig. 17' is located in the
domain (all x satisfying the inequalities following (2.4-49) ) of the
half-space where (2.4-49) is pertinent.

. C c cq
Case II: x> 0, ——>—§-, > 2 . x5 .8

p ¢ pleg’ T ¢

By noting the conditions in {2.4-40) for case II and applying the

Cauchy-Goursat theorem to the integrand of (2.4-35) with C given in
Fig. 9 for w€ [0 »w;) andin Fig. 8for w¢ {Wl,oo), one finds

u, (xp) = A (xp) +B__(xp)+D

zs = zs\X (xp) , {(2.4-50)

L8 -

where Kzs and —Ezs are given by (2.4-42) and (2.4-45) respectively,

and
o tws
dg .
{ [ sd} -pt .
stéép) —j g ReLK (qsd,w,e) 5 |© dtH(wl- w} dw . (2,4-51)
Ot
wsd

The contribution from Cl in Fig. 9 vanishes because the integrand of
“ 1
{2.4-35) is regular at g = i{w® +1}* and the radius of Cl is assumed

to go to zeroc. As mentioned previously, Dzs’ being the contribution

Tin Figs. 16, 17, 18 and 20 the dilatational wave fronts are shown for
reference in addition to the equivoluminal ones, even though only the
latter are found in this subsection,



from deg» will contribute pseudo-head waves. The remaining details
in deducing (2.4-50) are the same as in case I and they are delete’d
here.

T}Ee inversion of Kzs proceeds exactly as in case I with Azs
given by (294—44}0 The inversion of Ezs also proceeds as in Case I,
except that both possibilities ;\[—lz ¢C arise. The inversion of _Ezs
for §< cbc remains exactly the same as in case I and st is given
by (2.4-48).

For the case %?> <}>C the w-plane is given in Fig. 12 and an
L

additional segment of contour must be included in C, namely W4

given by

W = iy sin® +-ji‘-‘!-—c—f£—s—9( éy—zozsd) for too =t = todc J{2.4-52)
Wh‘ere

1 i
tgo ® —i—[(i—;-g—}zz +<i—z~ - 1>2y+xj “\%
> X d >(2°4-52a)
a4 = £<§ - )n2~§2:iz, E=ct-x, n= (Y2+Zz)% . j
s

Wog is shown in Fig. 12 and it is monotonically described by ¢t as t
varies from t . to t . ¢ is given in (2.4-46a) and t is the
sdc sc sc sdc
arrival time of a head wave which has a plane wave front and trails
behind the load as shown in Fig. 18, The application of the Cauchy-

Goursat theorem to the integrand in (2.4-45) and C shown in Fig. 12

yvields



O

A dw
+Re§= K, _(w 6) =3Pt 4t (2.4-53)

A
where Kzs(wge) is given in {(2.4~47a). The integrals that arise along

GI and Gl vanish as in case I. Then the inversion of the Laplace

transform in (2.4-53).gives

A
— { S -
B__(xt) = ReEKZs(wS,G) | H et )

A dw A
+ Re%:KZS(wsdse) —3%551—} %:H(t-tsdc)—H(t—tsc}} . (2.4-54)

The first term in (2.4-54) is the same conical, equivoluminal wave
given in (2.4-48) and the second term is a plane head wave which prop-
agates in front of the conical, equivoluminal wave. Consequently,
unlike case I, the conical, equivoluminal wave front is a two-sidedk
wave front for £ > ¢  as indicated in Fig, 18.

By combining the Heaviside function H(L-¢ ) with (2.4-48)

and (2.4-54), B for both < > ¢ and L« ¢ can be written as
zs n c n c

A dws,
B, (mt) = Re| K (w_0) — jmz-tsa

Z8

To invert Ezs’ {2.4-51) is written as



o[H(t—twsd)-H(t—tws)] dt H(wl—w) dw . (2.4-56)
The function
dq ic 1
sd _ d . z a2 "Ej
el »——»«pz {r'rzt(tws t%) | {(2.4-57)

introduces an integrable singularity at t = tWS and a simple pole at

{t = ts » w = 0} into the integrand of "ﬁzso Also, the exponential in the
integrand dominates near t = o  and/or w = . Therefore the
double intlegrallin (2.4-56) is absolutely convergent and the order of
integration can legitimately be interchanged (see Jeffreys and Jeffreys
[ 24] , pp. 180 -181}). Then the inversion of the Laplace transform in
{2.4-56) gives /

o
dqsd

(i i

= —t - - - TH{w. -

Dzs(xyt) —j Reg:KZS(qu,W,@) I ELH('E t Sd) H(t-t S)J H(wl w) dw
0

(2.4-58)

where the integral in {2.4-58) is improper for t = ts because its inte~
grand contains a simple pole at w=0 for t= ts" By using the Heavi-
side function in the integrand of {(2.4-58) to restrict the range of inte-

gration, Dzs can be written as

Tsd

D (xt) = Hit-t_)H (" relx o) 4] 4
Lolt) = Hit-t )Hleg-0)) Re[ K, (q_qm0) 29| aw

T
s Tsd

+[ H(t—tsd)—H(’c—ts)}g Re EKz
0

S



where
poco{t-t_) 2 % 1 2702 %
G e eaben]. g -2t
sd r sd Cd ] B zcd
{2.4-59%a)

and TS and ts are given in (2,4-44a). tsd is the arrival time of a
head wave that has a conical wave front. This head wave emanates

from the origin of the coordinates as shown in Fig. 17. Both integrals

in (2.4-59) are improper for t = ts because their integrands contain

a simple pole at w =0 for t= tso As shown in section 3.1, an expan-
sion of these improper integrals generates a two-sided, logarithmic
singularity at the hemispherical, equivoluminal wave front.

The first term in (2.4-59) represents another hemispherical,

equivoluminal wave (in addition to AZS) , but it has a "back™ at t = ¢
‘ c .t 2 c? t?
. e d _d
or equivalently at r¢+ [z - -———-————11_] =
| 2(02-1)2 4(02-1)
cdt

contour is the equation of a sphere with center ir =0, z = —-—-—-—-—-—-;>
2(12-1)2
c .t

. The sphere is indicated in Fig. 17 and in sub-

BD

s For fixed time this

and radius

polt

2{22-1)

section 2.4.5 the first term in (2.4~59) is shown to be continuous over
it. The second term in (2.4-59) is a conical head wave which propa-
gates in front of the hemispherical, equivoluminal waves. Conse-
quently, unlike case I, the hemispherical equivoluminal wave front
that arises in case Il is a two-sided wave front as indicated in Fig. 17.
By combining (2.4-44), (2.4-50), (2.4-55), and (2.4-59), u

zZ3s

for case II becomes
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T
s

g
TR T —_2
uzs(_:,_cgt} = Hit ts)g‘ Re {ﬁzs(qsywse) ar ] dw

0
Tsd
+ H{t-t )H(t -‘)F’Re EK (q_ .»w,0) “dsq d
s B~ zs' g™ dt w
Ts
lsd
T 1¢ I 44 g
# [t g)-He-e ) | | Re (K, (q, w) - }dw
6]
r A dws'f
) i o =
+ ReE.K (ws,e) T _;H(t tsc)
A dwsd / o
T Y. . - -
+Re%_£< s(Wsd’e) dt EH\n (ch)%_H(L tsdc) Hit tscﬁ !
. {2.4-60)
x_ Ss €s
where the notation is given in the text, x>0, =>—, . , and
c P c P C4

5—;> —E@ . The Roman numeral two in Figs. 16 and 17 is located in the

domain (all x satisfying the inequalities following (2.4-60) ) of the
half-space where {2.4-60) is pertinent. The main difference between
this case and case I is the appearance of the head waves and the
additional hemispherical, equivoluminal wave.

C o}
S

s Cd
Case IlI: x>0, >"é‘3 > =, <~5_

H K

C

© |
© |R
o

As displayed in {2.4-40) for case III, the poles at

_ Ewsin@ Tiv
E cos ©

to write Ezs in {(2,4-35) as

intersect degq for w =0, Therefore it is convenient

T (xp) = 5 lm (T+T,) (2.4-61)
e~0



-48-

where

5 [oe} ' ~EE-{msz-iqr) B
= _ d
= gxzs(q,w,’c‘)e dq dw

——E—(m z=-iqr)

w o
3 Cd S

=§ g Kzs(q,w,e)e dgq dw y
€ -0

The Cauchy~-Goursat theorem can now be applied uniformly to Tl and

> (2.4-62)

TZ’ and the corresponding qg-planes are shown in Fig. 13.

To evaluate the q-integral in Tl one assumes that w = 0, This

Tw sin @ *tiv

coalesce on the branch cut at
cos @

means that the poles vat q =

Y . “ L |
9= 550 and qsd(i:} must be indented around this position (see C2

C3 in Fig. 13). These indentations occur along Qgq 3t t=tg. where
e = LT(S 2. 2V, 4o , lunting © = Lt poi
E= XL& F X -T2 +r (‘cE is found by evaluating t = Cd(msz igr)
Cs
V and w = 0)., The importance of the surface given by t=tn
will be obvious in the solution. Then the application of the Cauchy-

Goursat theorem to the integrand of ’fl and C shown in the upper

diagram of Fig, 13 yields

} dw , (2.4-63)
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A
where K is given in {(2.4-43a). Also, t' and t' are t
A WS wsd WS
and tsd evaluated at w = 0. The first and second terms in (2.4-63)

are the contributions from qs(i) and qsd(:i:) re‘spectivelyo The
Cauchy principal value arises in the second term in (2.4-63) because

of the poles on 9eq° The last term is the contribution from CZ and
C3, which is really just the residue evaluation of the pole at g = —C%%—e——.
However, since each w-integrand in (2.4-63) is a bounded, constant
func’tion of w, it follows that E is a linear function of € and vanishes
as € goes to zero.

The application of the Cauchy-Goursat theorem to the integrand

of —1_2 in {2.4-62) and the contour C in the lower diagrams of Fig. 13

gives
W oo
dg
= C < s -pt
12— SJ Reg&zs(q sW,0) P ] e dt dw
€ t
WS,
e dqsd -pt
+ T -
2 Re{ Zs(q d,Wﬁ} I ] dt H(W1 w) dw
€ t a
oW A -—E—(m z-igr)
1 c s =5
+ Zg Reﬁ_ﬁv{zs(q,w,@)e J } dw , {(2.4-64)
€

q = wsin@-f-ix

cos O

where the details in computing (2.4-64) are the same as those in case I
and they are deleted here.
Then the substitution of (2.4-63) and (2.4-64) into (2.4-61)

produces
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L 0 d
W (xp) = lim {Re { we}—?ﬁT e Plac da
zs =P =0 j !_ zs IV Tgg J w
€ t
WS
co tWS
e ¥ dq
. A sd | -pt _
+ ;-in(’)l B Re [Kzs(qsd,w,O) T ]e dt I—I(w1 w) dw
€ twsd
© A —fg—{msz—iqr)
+ lim Reﬁxzs(q,w,e)e d :I }dw . (2.4-65)
€0
< | wsin® +iy
- cos ©

The limit as € goes to zero follows immediately in the first and
third terms of (2,4-65) because their integrands are regular at w = 0,
However, the t-integral in the second term is interpreted as a Cauchy
‘principal value as ¢ — 0 because its integrand has a simple pole at

t=t. for w=0. Therefore, completing the limit in (2.4-65) gives

_ = A B +D -
u, (xp) = A _(ep) +B__(xp) +D__{xp), (2.4-66)
where Kés and Ezs’ being exactly the same as in cases I and II, are

given by (2.4-42) and (2.4-45) respectively, and

o+
9

o0 W3
) (ol Rel 6 547 -pt o d 2.4-67
5o\ ZP) =) Re[Kzs(qsd,wg )-—E—]e dt (wl-W) W o (2. - )
o t
wsd

The only difference in ﬁzs between this case and case II is inter-
preting the t-integral as a Cauchy principal value.
The inversion of Ezs proceeds exactly as in case I with Azs

given by (2.4-44). Azs still represents a hemispherical, equivolu-~



minal wave.

To complete the inversion of st one proceeds exactly as in

c c
cases [ and II. The conditions ? > -CE and 3—; < —éé, that underlie this

case, imply that % > q‘>co The singularities that arise in the w-plane
and the contours W and W4 remain the same except for their
relative position with the real w-axis as shown in Fig. 14. Then the
application of the Cauchy~-Goursat theorem to the integrand in (2.4-45)

with C given in Fig. 14 and the inversion of the resulting Laplace

transform yield

A
B {xt) =Re[K (w 6) _Eh
AR Zs

A
+R6[K {(w_.,B ]E.H(‘t’c
zs' sd

) - Hit- tsc)j . (2.4-68)
The first term in (2.4-68) is still the conical, equivoluminal wave as
found in cases I and IT. The second term has the algebraic form of
the plane head wave in case II {see equation (2.4-54) ), but it lacks
the plane wave front at t = tsdc“
To invert ﬁzs given in (2.4-67) one proceeds exactly as in

case 1I. In this case the 'mtegra?nd contains simple poles at {‘tz‘ts sw=0)
and (t = by W= O}g‘ For §> —C—;—S- » a condition underlying this case, "

these poles do not coincide, the double integral in (2.4-67) is abso-

lutely convergent, and st becomes
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T sd
dqsd
Dzs( t) = H{t- ‘t t j Re [K sd’W’e}:—ar] dw
+fH<t )-H(t-t_ 3 Re e)f-cfi‘i} d (2. 4-69)
L Qg@rWe¥) 3¢ W .
O

where both integrals are improper for t =t and the last one is also

improper for t= e As given in (2.4-69), Dzs is the same as in

case II (see (2.4-59) ), except for the additional singularity when

By combining (2.4-44), (2.4-66), (2.4-68), and (2.4-69), o
for case III becomes

T

o dqg 4
u, (t) = H(t—ts)j e [Kzs(qs,w,e)—ajt—_} dw
0
Tsd
et VEI(t - [k
+ H{t ts)i-I(tB )i Re i. (q d,wse) o d
TS T
sd
. { ] r [ o dqsd]
i H(t—tsd)-H(t—tS) j RGLKZS(qu,W, )-**a-%—— dw
0
+Re| K ( e>fiﬁ~§“§H<t—t )
° Pzs VeV T | sc
. dw sd”‘
-z‘-Rei_K S0 —22] [ et H{t—tsc)] , (2. 4-70)

0

c c
. . . . X 5 T 5 x d
where the notation is given in the text, x>0, E > = > = <-E—

plcy’ T

and %> c§>co The Roman numeral three in Fig., 16 is located in the

2

domain {2ll x satisfying the inequalities following (2.4-70) ) of the

half-space where (2.4-70) is pertinent.
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The primary difference in u between this case and case II

—~

is the disappearance of the plane head wave front. This cccurs
because the source of the plane head wave front , namely the surface
intersection of the conical, dilatational wave front, does not exist for

c ,
X . - 5
= < fg—l , as shown in Fig. 16. Therefore the plane head wave must end,

-
which is reflected by the fact that the third term in {(2.4-70) is an
improper integral for t= tE and that the last term is discontinuous at

this time. The solution is expected to be continuous over t = tE’ which

is proven in section 3.3 for a special case.

C C

Case IV: x>0, <—C—S-, <

oK
o in
°|
o {w

As indicated in {(2.4-40

e

for case IV, the poles lie inside C for
W E(wé,oo) and the vertex does not lie on the branch cut. Therefore
the inversion of —L—lzs in this case proceeds exactly as for Ezd in

case Il of subsection 2.4.1, and u . can be written down by analogy
to 4 g {compare equations {2.4-22) and (2.4-33), and use (2.4-49) ).

That is

Ts
: s SEN
uzs{g,‘t) = H{t—ty?} Re { Kzsiqs,wsﬁ) -—a~£~:§ dw
0
A dws
; S et Y Ao
+ Re[KZS(wS,G) — } H{t-t ) (2.4-71)
x _ s r _ Ss
where the notation is the same as in case I, x> 0, fp- <“E;- s a,nd-lg < e
d

The integral in (2.4-71) is interpreted as a Cauchy principal value for

t= t}; because its integrand has a simple pole at w = W for t= tLa

The behavior of u over t = tL is the same as described for uzd

in case II of subsection 2.4.,1., The Roman numeral four in Fig. 17 is
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CS C
<—, and =< —=) of
c P cy

located in the domain {all x suchthat x>0,

o i

the half-space where (2.4-71) is pertinent.

CS r C
<. 2>
P Cd

As displayed in (2.4-40), the only difference between cases IV

Case V: x>0,

H

olx

and V is that the vertex lies on the branch cut in the g-plane for

wE [0 ,wl)o The contribution from the contours along the branch cut,
namely Dzs, arises as in case II. Therefore U, for this case is
obtained by adding DZS for case I to . U for case IV. That is, by

combining {2.4-59) and (2.4~71) one finds

coor da
— fo_
uzs(x,t) = H{z ts)Pj Rei,Kzs( lS,W,E)) T ] dw
. 5 .
sd
+ H{t-t JH{ -t){qa Re{K {a_ .,w,0) qud d
! B j zs tsd®’ dt
T
S Tsd
+1HlE-t ) - Hit-t )] e Re{ ( 0) 4 d} a
‘ L “"sd “Tts J zs'Isa™ dt
0]
ra avs 1
i T ) i - -
+ Rei &Zs(wsﬁ; R jH(t tL) s {(2.4-72)
c c
where x> 0, z < -—CE , and > —C—§- . The notation and a discussion of the
a .

singularities in the integrals are included with {2.4-59) and (2.4-71).

The Roman numeral five in Fig. 16 is located in the domain (all x
c c
such that x> 0, % < —-CE- and % > -C—E )} of the half-space where (2,4-72)
d
is pertinent.
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C
3

(o4

Case VI x<0, >

o ln
o,

As indicated in (2.4-40), no poles lie inside C and the vertex
does not lie on the branch cut in the g-plane. Therefore the compu=
tations proceed exactly as in case I, less the residue term Ezs’ and
u, o can be gotten from (2.4-49) by deleting the algebraic term. This

case is depicted in Fig. 17 by a Roman numeral six.

i c
Case VII: %<0, Is B
Pcy

As indicated in (2.4-40), no poles lie inside C, but the vertex
lies on the branch cut in the g-plane for w&_ [0,w1)0 Therefore the
computations proceed exactly as in case II, less the residue term

B . »and u _ can be gotten from (2.4-60) by deleting the algebraic
terms, This case is depicted in Figs. 16 and 17 by a Roman numeral

sevene.

Summary:

By comparing the conditions underlying each case in {2.4-40)
and the results given for these cases, it follows that u_ . can be
represented by one expression for all seven cases. In particular,
the equivoluminal contribution to the vertical displacement for super-

sonic load motion is



T
- S dqs
{x,t) = H(t-t )PS Re (g _,w,0) e dw
0 T
’ o (’Sd B dq
r sy sd
+ H{t-t )H(t )H{p =) ) ke [Kzs(qsd,w,e) =4 q
T
s T
sd
#[He-t_ ) He-t >]H’5-is-\3 Re |K__(q 4w0) qudjd
YU o7sd “Trs Kp cd/ %_ zs dsa’™ dt
0

A dws
+Re[K__(w 0)—2 | He-t, )Ht-t JH)

A . dw
sdl
]

sl (Y4 x_ Zdy
T ReE,Kzs(wsd’e) dt H\n- ci)c:/? {H(tutsdc)H<; B -c—‘)

+ H(t- EHK___E__) HK—"”% H(t- t, He\—-———-}} Hix) ,

(2.4-73)
x s |
where the notation is given in the text, 6= 0, |x| >0, ’ ey } >0,
t C b
and f—g —(—:—S— | > 0. The integral in the first term of (2.4-73) is inter~
, g |
preted as a Cauchy principal value for t=t. if x> 0. In addition,

L

the integrals in the second and third terms are improper for t = ‘i:s,

and the one in the third term is also improper for t = tE if x> 0. For
a more detailed discussion of these improper integrals the reader is
referred to cases II-IV above. By inspection of equation (2.4-73),

one sees that it is equally well valid for —g—: = fC—S— s = , and x =0,

'

To assess U, at ‘t=ts,‘c:tsd,t=u s t:tsdc’t:tB?‘t:tE’ and

t=t {2.4-73) must {irst be expanded near these surfaces. Then the

L3
value of U at one of them is obtained as the limit of the correspond-
ing expansion. In this way (2.4-73) is valid for all points in the

interior of the half-space where 8= 0. By using the reflection
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property in (2.3-9), equatioh (2.4-73) can also be extended to include
<0,

The first three terms in {2.4-73) represén‘t waves that emanate
from the origin of the coordinates, which is also the initial position
of the load. The last two represent waves which trail behind the load.
In particular, the first and fourth terms are analogous to the two terms
in (2.4-34). The first is a hemispherical, equivoluminal wave and the
fourth is a conical, equivoluminal wave., The corresponding wave
ironts are shown in Fig. 15 along with diagrams that display their

c
] . .
= = These waves coin-

spatial variation with respect to the cone
cide at the hemisphere t = ty in the same way as the dilatational
waves and, as for uzd, U is expected to be continuous through
t= tL° The second term in (2.4~-73) represents another hemispherical,
equivoluminal wave. However, this one has a back at t = tB,. u is

expected to be continuous through t =1t This wave is displayed in

BO

Fig. 17, but it has nothing to do with the moving nature of the load, as

is shown in section 2.7 where the stationary load solution is given.
The third term in (2.4-73) represents the conical head wave.

It is generated by the surface intersection of the hemispherical, dila-

tional wave front. The conical head wave front is a truncated cone
c

: , r S P . a
given by t= ta for == ot and it is tangent to the hemispherical,
° d r s
equivoluminal wave front at t = ts for ° == These tangency

d

points (which form a circle) are shown in the uppér diagram of Fig. 15,
and the conical head wave front is displayed in Fig. 17. It should be

noted that this conical front is not related to the moving nature of the
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load.
The last term in (2.4-73) is the plane head wave. It is gener-
ated by the surface intersection of the conical, dilatational wave front.

The plane head wave front is that part of the plane given by t = tsdc
c
for %2 (‘bc and % = —Eé s and it is tangent to the conical, equivoluminal

wave front at t = too for % = d>ca These tangency points {which form

7

straight lines) are shown in the upper diagram of Fig.15, and the plane
c
head wave front is displayed in Fig, 18. It only exists for 3—;2: —éé

because the conical, dilatational wave front only intersects the surface

c .
5—;2 , as shown in Fig. 16. In Fig. 19 both the conical and plane

for —
c

head wave fronts are shown, displaying their tangential intersection in

c
d
c

@

the plane defined by = =

c
. . . . X d
As mentioned in case III, in the region between the plane =T
x_ s
and the cdne 5: = the plane head wave coincides with the conical

head wave at the surface given by t = to in such a way that the solu-
tion is expected to be continuous there. This surface extends from the

end of the plane head wave front to the conical, equivoluminal wave
c

, . . . s .
front at the latters intersection with the cone = = - This means

that the surfaces t=t~, t=t,, t=t ,and t=t%t coincide at their
E L scC s

intersection with the cone

oK

S m . .
== The surface t = te always lies

ingside the hemisphere t = t, , and it coincides with the hemisphere

L
on the surface of the half-space,
The Roman numerals in Figs. 16 and 17 correspond to the

cases considered when inverting u e Although only the equivoluminal

waves were computed in this subsection, the dilatational waves are
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also shown for reference. In Fig. 16 the wave geometry in the surface
plane is displayed. In thié diagram the head waves are indistinguish-
able from the dilatational waves. Furthermore, ‘since u has only
been inverted for =z > 0 thus far, the Rayleigh waves are not shown

in this figure. Then, in Fig. 17 the wave geometry in the plane under
the path of the load is portrayed. The diagram in Fig. 18 shows the
geometry of the waves trailing behind the load at a cross section in
front of the hemispherical, dilatational wave front. Finally, in Fig. 20
a three=dimensional perspective of the waves is displayed. However,

the head wave fronts and the surfaces t =t

=t ., and t=t are

Bttty L

not shown in this last figure, leaving only the body wave fronts.

2.4.,3. Transonic Load Motion,

In this subsection le is inverted for the case of transonic
load motion; cg <c< cdc Since the computations for this case are
similar to those given in subsections 2.4.1 and 2.4.2, only the differ-

ences between the supersonic and transonic cases are emphasized here.,

Dilatational Contribution:

The inversion of the dilatational contribution to -ﬁz, namely G‘zd
in {(2.4-1), proceeds exactly as in subsection 2.4.1. The geometry of |
the g-plane remains as shown in Fig. 3. The first important differ-
ence between the supersonic and transonic cases appears in the cases
considered to apply the Cauchy-Goursat theorem in the g-plane. In

C

particular, for transonic load motion % is always less than ‘_Ec_l and,
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consequently, only cases Il and III of {(2.4-7) are applicable. Physi-
cally this is expected since the conical, dilatational wave front, which
was found in case I for supersonic load motion, should not exisf for
transonic load motion. The conditions underlying cases II and III
remain as given in (2.4-7).

The inversion of sz in case Il proceeds exactly as in sub-
section 2.4.1, except that the geometry of the w-plane that arises is
different. The w-plane in Fig. 6 must be replaced with the one in
Fig, 21 where two of the branch points have real parts. The contour

w . no longer has a vertex for real t (consistent with the fact that we

d

do not expect a wave front to be associated with Bzd when ¢ < cd) s

and only the part which lies above the real w-axis is shown. When
: 1
0 goes to zero the branch points at w = -iysin 6% (y?-1)2cos © migrate

~ 1
to w = i(yz—l)a on the real w-axis., But W, given in {2.4-7), is

1

greater than {yz - 1)55 and therefore the branch points do not coincide

with the w range of integration in BZ By comparing the structure

a°
of the w-planes given in Figs. 6 and 21, one sees that a contour inte-
gration in either plane would yield the same result. Therefore U g
for transonic load motion and case Il remains exactly the same as for
supersonic load motion, and it is given in (2.4-33).

The inversion of Ezd in case III is independent of the poles at

) : +' .
q-= %——ﬂ and proceeds exactly as for the supersonic case.
The results are the same as those in subsection 2.4.1.

Then the dilatational contribution to the vertical displacement

for transonic load motion becomes
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La

- — H/. - P\r‘ K e dqd 1
5, qbs0) = Hit-t )P) Re| K, la w0) 52| dw

0
e ¥ O - -
+ Ro~x{2d(wd,e) 5 :i H{t tL)H(x) ; (2.4-74)
where the notation is given in subsection 2.4.1 and © = 0.
The integral in the first term of (2,4-74) is interpreted as a Cauchy
principal value for t = 23 if x> 0., By comparing {2.4-34) and

(2.4-74) one sees that the only difference in u, between the tran-

d
sonic and supersonic cases is that the conical, dilatational wave front
no longer exists. Consequently, the result in (2.4-74) can be gotten
from (2.4-34) by replacing H(t—tdc) with one. For transonic load
motion the entire hemisphere t = tL lies behind the hemispherical,
dilatational wave front as shown in Fig. 22. Again, the solution is
expected to be continuous over t = tL and in this case the second
term in (2.4-74) should not be considered as a separate wave, The
wave geometry in the surface plane and the plane under the path of
the load is shown in the diagrams at the bottom of Fig. 22, The
Roman numerals in these diagrams indicate where cases IT and III

are pertinent.

Equivoluminal Contribution:
The inversion of the equivoluminal contribution to u, namely

_fzz in {2.4-35), proceeds as in subsection 2.4.2. However, when
s

iwsin@-f*iy

pppe , the branch

O = 0, the relative position of the poles at q =

points, and the contours in the g-plane must be reviewed. In partic-
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Zwsin b +iv

ular, for 0 =0 the poles at g = ——%

coalesce at g = ivy.

For ¢ _<c< cq and certain values of w, ¢ = iy lies on the branch

5

[\

ks
cut between the branch points at g = i{w? +1)2 and q = i{w? + 132,

In addition, for certain values of x, the poles at g = iy intersect

the contour STER As shown in Fig. 9 and described in the text above
c
equation {2.4-37), the contour d.q only arises if s E—S- and
d
w € {nglﬁo Then, by comparing the position of the poles at

i , 1
q= ——W—C-s-g—;—l—g—ﬂs the vertex at q = % (w? +4%)2, and the branch point

[

at q=i{w?+1)2 as 0 goes to zero (see Fig. 23), one sees that these
L 1
poles lie on q_, if, and only if, %(WZ +02)% >y and (w?+1)¢ <y or,
2.2
by expanding these inequalities, w? > <-9—2:\!— - 12} and w? < {(y®-1},
x .

These conditions correspond to the following two possibilities in the

half-space:
. i C R C ™
Q) if 0=0, Z>E, 252
P Cd o] C
1
the poles lie on q_. for w& [0,{y*-1)2);
V(2. 4-75)
C [
(2) if 8=0, => -2, 2«32
e} Cd e C

1
;22 N 1
the poles lie on 9eq for w€ {{E—{—;«l— —ﬂ2> ’ (yz-l)z’}ﬁ

The most convenient W&}lr to invertk Ezs in the transonic case
is to hold © > 0, but otherwise arbitrary. Then the structure of the
g-plane remains exactly the same as in subsection 2.4.2. After in-
verting azs for © > 0, the solution is extended to include 6 = 0,
which involves identifying the singularities that arise in the integrals

along ¢ as © goes to zero. The limit as © goés to zero is
sd
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expected to be proper (notto omita contribution tOuZS) because
physically the total solution is expected to vary continuously as ©
goes to zero and the limit should exist.

Of the cases considered in subsection 2.4.2 to apply the
Cauchy-Goursat theorem in the g-plane, only the last five of them
(III-VII in (2.4-40) ) are applicable for transonic load motion because
—}—; is always less than %91. . The inversion of Ezs in case III proceeds
exactly as in subsection 2.4.2, except that the geometry of the w-
plane that arises is different. In particular, the w-plane in Fig. 14
must be replaced with the one in Fig. 24 where two of the branch
points have a real part. By comparing the structure of the w-planes,
one sees that a contour integration in either plane would yield the
same result, Therefore U for transonic load motion and case Iﬁ
is given by the same expression as for supersonic load motion,
namely equation (2.4-70), only now we require 0 > 0,

The inversion of st in case IV also proceeds as in subsection
2.4.2., The analogy found in that subsection between TJ.ZS for case IV
and sz for case II remains valid in this subsection., Therefore u
for transonic load motion and case IV is given by the same expression
as for supersonic load motion, ﬁamely equation {2.4-71), but with
6> 0. Furthermore, the similarity between cases IV and V for super-
sonic load motion holds over here. Thereiore I for transonic
load motion and case V is given by equation (2.4-72), only with 6 > O,
Finally, the inversion of 'i—lzs in cases VI and VII is independent of

s s Fa R
twsin 8 +i .
the poles at g = —w—c—a;-—@———-y and it proceeds exactly as for super-
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sonic load motion. The results for these cases are the same as those
in subsection 2.4. 2.
Then, by combining the results for cases III-VII the equivolu-

minal contribution fto the vertical displacement for transcnic load

motion becomes

TS
, ol n. I g 5
w0 = He-t)P) Re| K, (qw0) 5> j dw
0
Tsd
, : verd T Cs d d
+ Hw%s)H(tB—t;H{E- -E—d->§ Re[ (g d,wie) e ] d
T
cS ?:Sd ' dgq
s T sd
+EH{t—tsd) H{t-t ]H x EE)J ReiKzs(qsd,w,m - ]dw
0
r A dws
L {4 - T -
i Rez_Kzs(ws,G) R ]Hit LsC)H(t tL)H(X)

A dw c .
+ Reg:K (wsd,e) dt ]{ Hiz- tE) - H(t—tsc)] H <§ - —cfi } Hix),

Zs
{2.4-76)

where the notation is given in subsection 2.4.2 and 6 > 0. The
‘integral in the first term of (2.4-76) is interpreted as a Cauchy
principal value for t = tL if x> 0., 'Furthermore, the integrals in
the second and third terms are improper for t= ts , and the one in the
third term is also improper for t = ta if x> 0. A detailed discus~
sion of these impropér integrals is given in subsection 2.4.2 and it is
not repeated here. In addition to being valid for & > 0, equation

(2.4-76) can be extended to include € <0 by using the reflection

property in {2.3-9).
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To facilitate the extension of {(2.4-76) to 0 =0, it is first
discussed for 0> 0, The main difference between u, o in the
transonic and supei*sonic cases is that the plane head wave front no
longer exists. Physically this is expected since its generator, the
conical, dilatational wave front, no longer exists. The last term in
(2.4-76), formerly identified as the plane head wave, is still an equi~
voluminal disturbance propagating ahead of the conical, equivo-
luminal wave front. However, in the transonic case it coincides with
the conical head wave, making it indistinguishable as a separate wave.

The remaining differences between v in the transonic and
supersonic cases are changes in the relative positions of the wave
fronts. Pictoriallythese can be seen by comparing Figs. 25-28 for
transonic load motion to Figs. 15-17 and 20 for supersonic load motion,
In Fig. 25 the conical and hemispherical, equivoluminal wave fronts
are displayed, showing their relative position with respect to the line
where the conical head wave front is tangent to the hemispherical, |
equivoluminal wave front. The dilatational and equivoluminal wave
fronts are displayed in Fig. 26 for the surface plane and in the upper
diagram of Fig. 27 for the plane unde;:' the path of the load (assume
6 > 0)., The Roman numerals in Figs. 26 and 27 correspond to the |
cases considered to invert EZS and they are located in the domain
of the half-space where each case is pertinent, Finally, in Fig. 28
a three~dimensional perspective of the waves is shown, However,
the conical head wave front and the surfaces t = tps 1=t and t=1t

are not indicated im this figure, leaving only the body wave fronts.
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To extend (2.4-76) to include 6 = 0 the conditions in (2.4-75)
must be incorporated into (2.4-76)., When & = 0 the integrands of the
second and third terms in {2.4-76), which are the contributions from
the contour deg in the gq~plane, éontain a simple pole which is the
zero of Aog = ive In particular, by using Ag in (2.4-37) with 6 = 0,
one finds that the simple pole is located at w = -Z\(Ozs where @ is
given in (2.4-46a). The conditions in (2.4-75) which determine when
dgg = iy has a zero are expressed in terms of the half-space param-

eters by using the mapping t = _E;L (msz-—iqr), and they are

[}

S

c
— > -—ES—, the integrand h

P
of the integrals along dsq has a simple

(1) if 6 =0, §>

o}

=X o .
pole at w e for tsc<t<‘tsdc,

(2.4-77}

9]

c
(2} if © =0, §>E§ . %<——E§,’che integrand

o}

of the integrals along deg has a simple

v o
= b <t < N
pole at w i for tL t tsdc y

The article t° 1 }—E/i“i\“zmx equivalently t
¢ article t_,.  equals = KZ cz} » Or equivalently t_..

c
in (2.4-52a) evaluated at 6 = O.,S In addition, t; and t o are given
in {(2.4-39) and (2.4-46a) respectively. In the lower diagram in Fig.
27 the © =0 plane {or the y = 0 plane for x> 0) is shown in which
the thatched area displays the bounds of the conditions in (2.4-77).
Then, by using (2.4-77), u, is formally extended to include 6 =0
by noting that the integral in the second term in (2.4-76) is interpreted

as' a Cauchy principal value for ty, <t< t:dc if © =0, In addition,

the integral in the third term is interpreted as a Cauchy principal



~-67 -

value for tsc <t< tch if 0 =0. In each of these cases the integrand
contains a simple pole at w = 2% % . In section 3.3 a technique is
given to show, particularly in the thatched region in Fig. 27, that u
varies continuously as € goes to zero., With these modifications,

u_ o as given in (2.4~76) represents the equivoluminal contribution

to the vertical displacement for transonic locad motion and the interior
of the half-space where © = 0. Finally, by comparing (2.4-73) and
{2.4-76) one sees that u, for transonic load motion can be obtained
from u o for supersonic load mqtion by replacing H \% - ci)C)Q with
one and identifying the Cauchy principal values of the improper inte~

grals that arise for 6 = 0,

2.4.4. Subsonic Load Motion,

In this subsection Gz is inverted for the case of subsonic load
motion, ¢ < Cge The geometry of the contour integration planes
depends on whether the load speed is greater or less than the Ra\jléigh
wave speed. However, as expected for =z > 0, the computations are
invariant to ’E.’r;is variation, unlike in section 2.6 where the surface

{z = 0} solution is obtained,

Dilatational Contribution:

The inversion of sz proceeds exactly as for the transonic
case, which is expected since U g for z > 0 should be the same for
all ¢ less than € e The w-plane that arises is slightly different

than in the transonic case, but the difference has no effect on the

computations. However, for reference in section 2,6, the w-plane
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for the subsonic case is given in Fig. 29. Finally, U, g for subsonic
load motion is given by equation (2.4-74) and the remarks following

that equation, along with Fig. 22, remain valid here.

Equivoluminal Contribution:

The- inversion of les proceeds as for 'supersonic load motion
with the same type of modifications as for transonic load motion. The
variation in the g-plane for © = 0 mentioned in subsection 2.4.3 also
arises in this subsection. However, for subsonic load motion only
condition (2) of {2.4~75) is possible because ? is always less than
—(-:5- o The technique used in the preceding subsection of holding © >0,
inverting “&zs’ and then extending the solution to include © =0 is
employed here,

Of the cases considered in subsection 2.4, 2 to apply the
Cauchy-Goursat theorem in the g-plane, only the last four of them
(IV=-VIL in (2.4-40)) are applicable for subsonic load motion because

c c
X , 8 d . .
and — are always less than = and = respectively. The inver-

oK

sion of Ezs in case IV proceeds as in subsections 2.4.2 and 2.4, 3.
In particular, the analogy made previously between st for case IV
and led for case Il remains valid here. Therefore U, o for sub-
sonic load motion and case IV is given by the same expression as for
supersonic load motion, namely equation (2.4-71), only now we re-
quire © > 0. Furthermore, the similarity between cases IV and V
in the supersonic and transonic cases holds here also, Therefore

u.{ﬁs for subsonic load motion and case V is given by (2.4-72), only

now © > 0, Finally, the inversion of u in cases VI and VII is
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independent of the poles at ¢ = —ji—%%lg—iﬂ and it proceeds exactly as
in subsection 2.4.2. The results are the same as those given in that
subsection.,

Then, by combining the results for cases IV - VII the equivo-

luminal contribution to the vertical displacement for subsonic load

motion becomes
T

7 'D.‘S 3’ | qu
uzsggg,t) = H(t"ts)-i-‘g Re iKZS(qs,w,G)-a—t—] dw
3.
c ESd dq
N oy (o sy [ sd]
+ H{e-t ) H{tp -t H (7 Cd}J Re| K, _(q,,w,0) —go= | dw
T
cS TSd dg
-3 [ 5 s, 0 52
+Hle-t, ) - Hitt ) - Cd) Re |K__(q_pw0) —== | dw
0
A dwS
+ Re{KZS(WS,G) — EH(ﬁ-tL)H(x), (2.4-78)

where the notation is given in subsection 2.4.2 and © > 0. The inte-
gral in the first term is interpreted as a Cauchy principal value for
t= "CL if x> 0, In addition, the integrals in the second and third
terms are improper for t= tge Equation (2.4-78) can also be ex-
tended to include 8 <0 by using the reflection property in (2.3-9).
By comparing u for supersonic and transonic load motion
in {2.4-73) and {(2.4-76) to the result in (2.4-78) for subsonic load
motion, one sees that the plane head wave and the conical, equivolu-
minal wave front no longer exist. FPhysically this is expected for
c < Cye For subsonic load motion the entire hemisphere t = t. lies

L

behind the hemispherical, equivoluminal wave {ront as shown in
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Fig. 30. As previously, the solution is expected to‘be continuous
over t = tL and the last term in (2.4-78) should not be considered
as a separate wave., The wave geometry is shown in Fig. 31 for the
surface plane and in the upper diagram of Fig. 32 for the plane under
the path of the load (assume 6 > 0), The Roman numerals in Figs. 31
and 32 correspond to the cases considered to invert -l_lzs and they are
located in the domain of the half-space where each case is pertinent.
Finally, in Fig. 33 a three-dimensional perspective of thé waves is
shown. However, the conical head wave front and the surfaces t = tB
and t = t, are not displayed in this figure, leaving only the body waves.
To extend (2.4-78) to include © = 0 one proceeds exactly as in
the transonic case. For subsonic load motion only condition (2) of
(2.4-77) is applicable and its domain of influence is shown as the
thatched garea in the lower diagram of Fig. 32. Therefore U, in
{2.4-78) is extended to include 8 = 0 by noting that the integral in
the second term of (2.4-78) is interpreted as a Cauchy principal
value for ty <t< tzdc if 6 =0. For these values of the physical
parameters the integrand in the second term of U has a simple
pole at w = :\é o . In section 3.3 a technique is given to show that
U varies continuously as 6~ 0. With this modification, u_ . as
given in (2.4-78) represents the equivoluminal contribution to the
vertical displacement for subsonic load motion and the interior of the

half-space where 6 = 0. Finally, by comparing {(2.4-73) and (2.4-78)

one sees that u S for subsonic load motion can be obtained from u
Z

i

or supersonic load motion by replacing H{t-tsc} with one and
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identifying the Cauchy principal value of the improper integral that

arises for 6 = 0,

2.4,5, Summary of the Results for all Load Speeds R
As noted in subsections 2.4.3 and 2.4.4, u, g and u, for
transonic and subsonic load motion can be obtained from the corre-
sponding results for supersonic load motion in subsections 2.4.1 and
2.4.2, Then, by using this fact and substituting U g and U, for
supersonic load moii.on (use (2.4-34) and (2.4~-73) ) into

u, (xt) =u ,Got) +u (%) (2.4-79)

one finds a single expression for u, which is valid for all points in

the interior of the half-space and for all load speeds. In particular,

7
uzézyt) = z uzj(z;t) (2, 4-80)
j=1

for 0=r<w,0=0=7w {or ~®<x<w, 0=y<w), 0<z<oco,
and 0 = c<ow. The ui represent waves emanating from the initial
position of the load {which is also the origin of the coordinates) and

disturbances ' trailing behind the load.

The waves emanating from the initial position of the load are

Ty o o : : , . :
I'he terminclogy disturbances'is used here in place of waves to

emphasize the rfact that these contributions to u_ are only inter-
preted as separate waves for certain ranges of values of the load
speed,
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ld .
Do) = He-t )P | Re| o) 4] |
u (xt) = a j Re Zd(ngw, )—~—t-~_§ dw (2.4-81a)
0 .
T
2 P§ i dqs ]
uz(ﬁ,t) = H("_ts) Re[KZS(qsgw,G) -a—-t-—j dw , (2.4-81b)
0
T
3(xt)' = H{t-t JH(t -t‘z—z{—lf-f— P ;d[ (a 8) ddgq dw
B At = ‘s B Y p Cd} © lg@¥™Wo¥ =g 9w -
‘s (2.4-81c)
dq
4 _T sd
uz<—_st) hd E.H(t—tgd H(t <"‘“ ——~—>P§Re (qsd’w’e) :g dW 2
(2.4-81d)
where sz and Kzs are given in (2.3-5c). The integrands in
(2.4-81) have singularities of the simple pole type at
\ ~ 5 = : ™
(1 W= W for ‘t—-‘tL if x>0
(2} W= W for t=tL if x>0
{3a) w=0 for tzts
3 =X © i = -
(3b;w—zas for ’cL<t<tSdC if 8=0 and C<Cd 7(2.4-82)
{4a} w=0 for t=ts
4h) = £ = i y
(4b} w =0 for tE if x>0 and c>cS
(4c) w=~Lo for t <t<t° if =0 and ¢ <c<c,,
Z S sc sdc s d
o

where the numbers in parenthe'ses on the left correspond to the inte-
grand of the particular ué ,» (=1, «ov , 4), in which the pole appears.

The factors w_., w_ _, and & _ used in {(2.4-82) are
od o8 s
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L 1 =
{22 2 C 2,2 2
_ (o™ _\*zcos® poy" _,2\° zcos O
Wod < 2 1) n © Yos (\ % £ ) n
(2.4-823a)
_ez_ (8 V2]
o =[2- (1)
s w’
(w and w represent w_ as defined in subsections 2.4,1 and
od cs o

2.4,2 respectively). Therefore the integrals in (2.4-8l) are improper
for those values of x, t, and ¢ in (2.4-82). For the cases when the
simple pole is not located at one of the limits of integration, the
improper integral is interpreted as a Cauchy principal value (indica’ced
by a P preceding the integral in question). The g-transformations

and the limits of integration appearing in (2.4.81) are

‘g 2 .2 3 R
= e ity tz(tf -t 2] , =d,s
1 = ] (-2, 0) (=dis
S (2, 4-83)
C . 1 i
AT 2 a2nE |
Qeq =1 pz Lt; z{t -t ) ] j
where
2 1 ,
- B o2 E = L2 232 -
tog = < (w2+1)2 ot Cd(w? + 442 (2.4-83a)
and
2 1 2 : A
T A :<_'c__ _ 1)
“d {\‘i: 1} ? “s 2 1> £
s
R ° (2443—84:)
i
c (t-t .} 2 - 2
i d sd _
Tsd g:\ T +1> 1_}




Th
The arrival times in (2.4-81) - (2.4-84) are

_ - ~
t@~;%, (p=d,s) &

{(2.4-85)
__;_ [ -1)2
= c !. z +r] J
and the remaining subscripted time parameters take the form
2 2002 15 2
_1\2
ty = B¢ By Gt ., t :—}—[<E——x‘2—rz>z+r2 W
L cx B zcy Eoex{\.2
s
) (2.4-86)
o _ 1T/t vz
tsdc~z[g\?_?> ZTXJ ) J
S d
The disturbances trailing behind the load that contribute to
u_ are
Z
~ A dwd
u_(xt) = Reg-K (wd, )_—(—‘E—_} H(L-tdC)H(‘t“tL)H{X) . (2.4-87a)
6/, f-/\ ¢ dWS.E 87
uz(ﬁ,t; = ReiK {w )TEH<t‘Esc)H(L’tL)H(X> R (2.4-87b)
dW = . [od
T - y’ sd 11/ V _ ;( - (x__d
U’z(z’t} - Re{ zs sd’ dt _gH\n gbc) EH{t tsde )H\r )
'x s e Can X
Hit- IH{ S - 2L H{ =] - - D= b
+H{t tE){Hip c) Hﬁr ) Ht tSC)H< j}H(x 1-87¢)
where the hat functions are
A Secefmd[£2+2{q2+wzﬁ} 1 7 8
K,q(w0) = == | G jf ,  (2.4-88a)
S wsin6 +iy
4= cos 8
A m (g?+w?) 5
_-2sec® [ d j ) ‘
KZS(W,S) = Tren RG] s (2.4-88b)

wsin € +iv
cos 6
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and the Heaviside function is restricted by

H<t_t5c) =1 if ¢< Cﬁ , (B=4d,s)

)

. 3 (2.4-89)
AY ooy - ] |
H{Z ¢C)_1 if c<cg . J
The w-transformations appearing in (2.4-87) are
.. y cos 6 0
w, = -iysin® +i=="— (ify tza,) , (B=d,s) |
B n B !
, > , (2.4-90)
_ . ivcos 6 . . {
W_g = iysin® +-A~;Z~— {cy zasd) ‘J
where
> 1 2 1
ez (c® _ N 2)® _E{,C___" z_*zjz -
aﬁ "'[g \CZ 1>n} 9 asd"" CZ 1>n "5 @ (2.4 90&)
B s
In addition, the arrival times in {(2.4-87) - (2.4-89) are
2 H “}
o Lfet e -
wor HE ] s Geen )
P 1 1 ) (2.4-91)
1l/ct 2y /c? \2 ’ E
t iy -~ z T~ -1 yv+x
sde "¢ |\ 2 z ) \z j
and tL and ty are given in (2.4-86). Finally,
]
2 \ 2
{ C ‘
£
\C; >
G = 1 . (2.4-92)
C / 2 N 2
(£ —1}
\ 2
s

The remaining notation used in formulas (2.4~80) ~ {2.4-92)

is given in the preceding subsections. Thus far the terms contributing



to u_  are only valid for ©= 0. However, by the reflection property
in {2.3-9) one sees that u, is valid for all 6 and vy such that
-T=0<w and -co<y<oco if 6 and y are replaced with |6] and
|v| in the formulas above. The waves emanating from the initial

position of the load are invariant to interchanging & and ]G

. There~
fore they are valid as given in (2.4-81) - (2.4-86) for -w=6<.,

The time dependence in the limits Qf the integrals composing
the waves emanating from the initial position of the load can be re-

moved by the transformations

V‘\
1) w= Td sin «
(2) w= TS sin o
L
{3) w= [TZS +(T?‘sd - Tzs)sin2 o]? ) {2.4-93)
C"
= [ T2+ (t —‘t)zhzsinzoz]% h = _d
S B ’ pr
{4} W=Tsds’1noz9 J

where the numbers in parentheses on the left correspond to the partic-

ular ué s =1, 04 4), where the transformation is applicable.

Then the substitution of {2.4-93) into (2.4-81) vields

=
&
R
il
&
ot
¢
ot

Ay
u, da (2.4-94a)

]
W
KA
i
L
o
i
o
g

da (2. 4-94b)
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3r__*_<rcs' A3 :
uz{é,t) = H{t tS)H(tB t)H ;——;—)Pg u_ da , (2.4~94c)
d 0
)
2
4 =1 H{1 ‘v C‘S A4
ul(x,t) -[ (et ) —H(t—ts)]H »p—--é-é)P ulde (2.4-944)
0
where
Mo Sg ir =gt
al =?Re[sz(qd,w,6)} (Frgeosar—)] (2. 4-952)
w = Tdsma
A c e zc .t
2 d ir
g — Peta + -
u, 5 ReE‘K {q ,w,e}zkp Tscosoz > )] , (2.4-95b)
w =T sina
S
L2 , :
A3 cdh T Cos 6 [t‘f'\‘cB-t)sulO!]
u_ = {tB—t) ——— R [Kzs(qsd,w,e) 1} 5 1,
P [Ts+(tB—t)2h2sin2a]z
1
L 222 o] 2
= [Ts+(tB t)? h?sin? o]
zc, (2.4-95c)
with h =
pr
Ay cdcosoz - ) _%«
. - 2
u = isd ———-—————-—p Re [Kzs(qsd’w’ )g ﬁ (T dsmoz T ) ‘g o
ws=T dsinaz | (2.4-954q)
he position of the simple poles in the integrands in (2.4-94) can be

found as a function of « by using the conditions in (2.4-82) along with

VAN
the transformations in (2.4-93). By inspection of uz and uz ocne

2
d . .

sees that u~ goes to zero as t approaches tB’ which shows that
Z

ui, and therefore u . are continuocus through t = "i:Ba
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To display the disturbances trailing behind the load in a more
useful form the cylindrical coordinates in (2.4-87) are replaced with
their counterparts in terms of x, v, z, £, and n as shown in Fig. 2.

At the same time, to obtain the solution for -~co <y <o, y is re-

placed with |y|. Then (2.4-87) becomes

. A s
u_(ot) = u Hit-t, )H(t-t, JH(x) , (2. 4-96a)
6 < = AéH( - .H(ﬁ-t YH{x) (2.4-96Db)
uz(ﬁ,t) =u, t tSC) $JH . .

Yo < Mg drl ) x_Say
u, lt) = uZH& n o %c) {H(t—tsd Mz

+ Hit-t) gﬂi‘fﬁ) H?-‘:-C-C-@)E -H(t-tscm(ig - f—s-)}mx) ,

g C r c
(2.4-96c)
where the hat functions are
/ P/ %
i 2 1 (& oV 4 z]
AL \ de:/\cz Z/n Zad {
- S
uz = TmRe 2 N 3 " T s
d Ific 4 2 2.(C ¢ 412 /.2 4y |
si—(‘:—z“2>fk '}"Zad} ";debd'{‘ C2 T)n] (a n )
it Cs s ©g (2.4-972)
@ bl a
/ ‘ : 1
i L2 2 =
IR FRE Y
A ¢ _
A, -2 i s s S Cz Cd
uZ:c‘T*’HReéf‘, z 2 2 .2y 1% } ’
i1 \ 2
° gfg%-z}ﬁ%aj -4b €b2—<%-—c——2—}n4§ (a? - n*)
tzl’ia_ c s s c c j S ?
! 5 , s d ‘

(2.4-97D)



1
2 2 F 2 2
2 4oy (S0 Ty a2 Mye® _ i .2 |
o b a4 n){\ci qu)n bsdj i.Kczs 2>n 2a% 4|
u =~ s )
z A g 2 .2
sd £ _oVpto0.2 | 2 T{el SN 4_12 1 (az 412
[<c Z>n Zasdj ’HébSdEKcz Cg}n bsdjr(a5d+n)
s
? (2.4-97c)
. with <
a, = (it |y|+za,) h a . ={]y|-2za_ )
B8 B sd d
b= (Eztilyleg) - H(B=dis) b ;= (Eztlyle ) (2. 4-98)
1 1
2 5 N .
:ﬁz_,f_:___\.zf?‘ .‘[__(}____\2_24
“s [9 <C2@ A R ¥sa ~ <C; L g} Y

The restrictions in {2.4~89) on the Heaviside function become

H{t-t, }=1 if c<c,, =d,s)
(t-tg,) e (B=die) O
Z (2543"99)
é'/ - k\’ P ;f i
H\mn <§>C) =1 if c<crc1 _}
and the arrival times in {2.4-91) take the form
1
1 Ty c? ‘5 B
fowed e an o ; - + ] - .
Be C§~ \Z n Xj » (B=d,s)
B
\ . 3 (2,4~100)
1T/ AN T e ‘
' S - N + .
Ysde T e l\@ T2 ) kcz 1> b X]
s d d y

The parameters t, , _‘, and ¢_remain as given in {2.4-86) and

L ‘c
{2.4-92}, Since the u“' in (2.4-96), less the Heaviside function, are
only functions of the coordinates (£,n,y,z), they are constant at a

fixed position in a coordinate system moving with the load. Therefore
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the disturbances trailing behind the load represent steady-state con~
tributions to u . In fact, in section 3.4 they are shown to constitute
the-enﬁife steady-state displacement field for c¢ > Cqe Furthermore,
the wave front geometry associated with these terms depends on the
load speed. That is, each of them is identified as a separate wave if,
and only if, the load speed is sufficiently large that its wave front
exists.

As the results in this section show, the vertical displacement
for the interior of the half-space and for all load speeds can be repre-
sented as a sum of single integrals and algebraic terms, FEach contri-
bution is identified with a specific wave. In particular, the integrals
represent a system of waves that emanate from the initial position of
the load as if they were generated by a stationary point source. Three
wave fronts distinguish this system: hemispherical fronts propagating
with the dilatational and equivoluminal wave speeds, and a head wave
front. The latter, which actually is the surface of a truncated cone,
also propagates with the equivoluminal wave speed. On the other
hand, the algebraic terms represent that part of the disturbance which
trails behind the lcad., For supersonic load motion these terms dis~-
play three wave fronts: conical fronts propagating with the dilatational
and equivoluminal wave speeds, and another head wave front., The
latter, which is part of a plane surface, alsoc propagates with the equi-
voluminal wave speed. However, for transonic load motion the
conical, dilatational wave front and the plane head wave front do not

exist, Furthermore, for subsonic load motion the conical, equivo-
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luminal wave front also disappears, leaving the disturbances trailing
behind the load with no wave {ronts.

For additional details concerning this reioresentation of the
vertical displacement, including diagrams of the wave fronts and
their variation with different load speeds, the reader is referred to
subsections' 2.4.1-2.4.,4. In the next section the horizontal displace-

ments are represented in a similar way.,

2,5, EXACT INVERSION OF THE HORIZONTAL DISPLACEMENTS
FOR THE INTERIOR OF THE HALF-SPACHE

Since K K., K

wd? Bus vd’ and Kys as given in (2.3-5a) and

(2.3-5b) have the same algebraic properties (square roots and poles)

as K and K in {2.3-5c¢), the inversion of U and u proceeds
zd Z$ X v

exactly as for Tzz in the preceding section. Then, without further
deliberation, the results for U and uy are stated. In particular,

7

u_{xt) = Z ui_ (xt) » {o=x,v) (2.5-1)
j=1

for 0=r<co, -w=6<w (or ~oo<x,y<co), 0<z <o, and 0=c<oo,

where the u represent waves emanating from the initial position of
) o ‘

e load and disturbances trailing behind the load.
The waves emanating from the initial position of the lcad are

Tq

- dq
Los) = faie- _d a2
uo_(z_;,‘t} = Hit td)Pg Re[KO_d(quw,ek P } dw . {2.5-23)
0
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TS :
(1) = H(t-t )P\ Re [K_ (g ,w,0) —d—%j dw (2.5-2b
U-O_ 2y L) = s L Tos LS,W’ ar 5 e )
5 v
Tsd
u3(xt) = H{t-t )H(t ~t)H{5-—C——S—‘>P R f-K { e)iijlig dw,{2.5-2c)
o= TR g B \p cq 1 Poes' Y™ dt ] Wl ¢
T
s
Tsd
4{xr) (H(‘c—t y-H{t-t ‘? -—1-: —E P Re w,0) C’LOJLSd.%d
2 sq) TRt H pcd gg™ dtjw’
0

(2.5-2d)
where the g-transformations, the limits of integration, the arrival

times, and ty are given in {(2.4-83) - (2.4-86). In addition, the

integral in each w s improper in the same way as the corresponding

u?z, as displayed by (2.4-82), with the following qualification. For
cénditions (3b) and {4c) in (2.4-82) the integrands of u3 and u4 do

not have a simple pole, but rather an indeterminant form (%)o In
section 3.3, ui and u;i are investigated further. The application

of the transformations in (2.4-93) to the integrals in (2.5-2) brings

these waves to the forrr%v

1 ﬂ/\l
=TI+ = -
_(t) =H{t td);;\ u_der , (2.5-3a)
0
oy
2
2 h2
uZxt) = Hit-t )P | u® de , (2.5-3b)
[0 ean S T
0

&
qf\
by
]
[N
o
1
B
L
o

W
o
[N
s
i
i
g
© Lol
o o>
g w
o
R
~
U
]
(9}
&



-83 -

o
C 2/\
4, ) e ‘v s\
u (1) —{H(t t_g) - Hie ts)-j H(Z =)y ug e (2.5-3d)
0
where
A C - . zc .t
1 _ S (i a
w = Re {Kgd(qd,w,e)g Q 5 T,cosa+ = )] , (2.5-4a)
|
w = Tdsinoz
822285 [k (qwoy] (7T +ZCt‘] 2.5-4b)
o= 5 Re | K  (qow, ga\p SCos -2 ) , {2.5-4D)
W= _Lssincz
g cdhzr cosa [t+(tB—t)sina]
= (tg-t) m?wReEKO_S(qu,W,O) iij =,
p [ T2 +{t_ ~t)?hZsin? a2
s B
1
w = [Té'%'(tB—t)Zh?‘sinz al2(2.5-4c)
zc
with h :-——-(—i-
or
A c.,cosa - zc .t -t
4 _ d sl xry_d 2 20 2y 2
U.O_ = sd RG[KU {q d;Wse)% 1E§. 5 T 5 (T dSLn o =T > } ®
w = Tstln el (2.5-4d)

The position of the simple poles of the integrands in (2.5-3) can be
found as a function of @ by using the conditions in {2.4-82) and the
transformations in {2.4-93}.

The disturbances trailiﬁg behind the load that contribute to

uo_ are
5 Ag .
U.O_(X,t) = u H(‘c—‘tdc)H(t—tL)H(x} . {2.5-5a)
Olaet) = 008(e-t VH(-t, VHE) (2. 5-5b)
g - [v3 sC dos
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A A : c

u {x,t) = uZH!\J—%’—l—q:C){H(t-t dc)H E’E__Cﬁi_’
+ H{t-t )FH’ﬁ-f—‘ci -H{E—i@ H(t-t  JH{Z -1y
FHG-tg) (T -) ) H(, ) HE

{2.5-5¢)
where the Heaviside function is restricted by the conditions in (2.4-99)
and the arrival times are given in {(2.4-100). In addition, the param-
eters t;, tp, and ci)c are given in (2.4-86) and (2.4-92). The hat

functions in {(2.5-5) are, for o =x

! c” . 4
. i ? &L\ 2/§n + 2a% ]
uls nW“ReZ’ - (2.5-6a)
a™t et oy e zz_ 2 (0 _C2y aVE2 4y |
& 2>n+Zad:} 4bd[bd+i2 Z>n} (a2 -n%) |
@\ Cs (o] C
{ 2 2 2
H : 2
: | b? g’bZ*K-EZ— - E—}nﬂ
Ag _2n? L 51 s o2
}x__ e} Reg S d T (2. 5= 6b
X o TH i re? r o2 E
s jlect 4 21 _ A S
(G -2)nt +2a ! 4b_[b? é\ Cz)a %
! S d
- 2 ) L
2 e LN _ 4 w2 apjct 4_5.2
A 2 Psd [\ CZ)“ S| [\Cz 2)ut-2a d}
7 - 21’1 =] d = g =
“x @ T"‘Cé Vto2a2 14 6p2 [/ CZ> 2 Ya? 42 (2.5-6c)
sd™ [{S _2)nt-2a ] 11602 (S0 nt 12 (a2 4
L CZS / sd sd | e e sd_z d
and for ¢ = vy
i NP - \
* iagby (S -2)nt+ 22| |
v d d| j
/\5 -sen { }R ] L C - }
u__ = ; e i1
v a/dTTH | CZ \ r e o2 13
; 4 2 2.0 _C Vo4 2 4]
%[{?-Z}n +2a1-§ -4bd§,bd+\cz C2>nJ {a% -n )}5
° s d (2.5-7a)
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?
6 2senly) o ) 5 ° T
- 2senly) p ) s —d 2. 5-7D)
Yy Egmh i1yt 4in.2 1% L2 ic® cPh o, 5 1
gi;-Z}n +2a -E -4b [Ds-z\-—i--——?/;n:} (aZ -n%)
] S CS Cd ﬁ
fe?2 2 2 %icz Z} 4oz T
a - e in*- 5 -2in%*-2a
A a 3 — A d] [ 2
o = 2sgnly) LN Cd} s < .
v ™M 2 4 -2 2
sd %P;fc _ 4_5.2 } 2 E'_L_C_\ 4_12 } 2 4
A 2>n 2a d ﬂébde(cz ?}n b d (asd-%_n )
s 8 d
(2.5-7c¢)

where the a's, b's, and a's are given in (2.4-98) and

1 for yv>0

sgnly) = { (2.5-8)
"]. fOI‘ y < O a

The remaining details concerning the structure {(wave patterns,
singularities, etc.) of U and uy are the same as for uz and they

are discussed in the previous section.

2.6, EXACT INVERSION OF THE DISPLACEMENTS FOR THE
SURFACE OF THE HALF-SPACE

The inversion scheme as developed in the preceding sections
for z >0 goes through for z =0 also. In fact, the required contour
integrations éfe much simpler, as is the structure of the solution. -
However, since the interior displacements have already been inverted,
the surface displacements are obtained, in part, by assessing the
interior ones for z = 0. In addition, an evaluation of the Rayleigh
poles in the contour integration planes is included in the surface dis-

placements. The latter contribution arises because as z goes to



-86~

zero, for certain values of x and c¢, the contours in the g and w-
planes wrap around the Rayleigh poles. By inspection of the ¢-planes
used in section 2.4 {(see Figs. 3, 5, 8, 9, and 13), cne sees that as
z- 0 the contours qd(:‘:) and qs(i) wrap around the Rayleigh poles for
all x and c. On the other hand, by inspecting the w-planes used in

section 2.4 (see Figs, 4, 6, 11, 12, 14, 21, 24, and 29) one sees that

as z == 0 the contours W4 and W only wrap around the
L
: {Y?R,,.\{Z)a x_ °R,
Ravyleigh poles if tan 6 < ————— (or =>-~=) and ¢c> c.
yieign p v " P R

An evaluation of a Rayleigh pole in either a g or w-plane
produces (in the limit of the contour collapsing on the pole) a residue
contribution from an arc around the pole plus an improper integral
from the ends of the contours that shrink onto the pole. The improper
integral is interpreted as a Cauchy principal value. For the residue
contribution the Laplace transform is inverted to obtain the Rayleigh
waves as a function of the space and time parameters. However,
the improper integral appears in the interior solution when it is
evaluated for z = 0.

In particular, for the vertical displacement the residue contri-
bution of the Rayleigh poles in both the g and w-planes is zero.
Then the substitution of z = 0 into formulas (2.4-80)-(2.4-86) and
{(2.4-96) - {2.4-100) yields

4

6,0 = ) W (2. 6-1)

Z

j=1

where X is the position vector in the surface plane of the half-space,
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In this section the surface coordinates {x,y) are used with r = (Xz+y2)
and & = ct-x, as shown in Fig. 2. Eqguation (2.6-1) is valid for

-0 <x,y<co and 0 =c <. The UZ;'i ¥ repreéent circular waves
(surface intersection of the hemispherical waves) emanating from the
initial position of the load and disturbances trailing behind the load.

The circular waves are

. Joz . (T2 -wA)? (292 - 2T - 12)2 dw
UZ{"}E;E) I e H(t"tdy{‘\‘%‘" "'1) 5 7t -\7 Wz 7 (2; 6"28.)
T L /Y [yz (&-1) —’r——é-y—-]G(tZ,wZ)
L T
TS 1
2 2 : (T? -w? ¥ (T% -w? J{T% +1-w?) dw
U§(§t> _:L‘LH{t—tS)!g— —1>P§ = a— Zdwz > d (2.6-2b)
T L 5 [YZ{\—;’:—-—l} +————-¥-]G(t2,w2)
LL -
where

Git?, w?) = (2w?-2T2 -L% )* -16(T% -w?) (T4 -w*) (T4 H-w?)? . (2. 6-3)

The factors T, and TS are given in {2.4-84) and the arrival times

of the circular waves and ‘tL take the form

o}

p

I‘Z

. re o {
tL“cx ° ‘,,5

.= _ =
tﬁ = 5 {{3 =d,s) %‘
(2.6-4)

e

L . . ¥ .
The integrals in (2.6-2) are improper” for t:tL because their

A capital letter is used to designate the components of u, (X,t} to
emphasize that there is not a one-to-one relationship between the
components of u, for z>0 and z = 0.,

oo . . .
For the surface displacements, whenever a reference is made to

ty, in connection with an improper integral, it is assumed that
x> 0,
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integrands have a non-integrable singularity at w=0 for t = tL" In

. 2 . .
corder to assess Ulz and Uz at t= tL, the integrals in (2. 6-2) must
L; then the limitas t**tL is com-

. 2 . . .
puted in U’; and Uz" In addition, these integrals are interpreted as

first be evaluated for t near t

Cauchy principal values for t= 'tR because their integrands have a
1
/42
simple pole at = \fé-— -1/} YR for t= tR’ where

= X ‘ -
tR = = (2. 6’ 5)

and tr is the arrival time of the circular Rayleigh wave,

The time dependence of the in‘cegrals in (2. 6-2) is simplified

by the transformation w = <.._- k2> and it reduces (2.6-2) to
*/‘t 1
2.2 2 B2 -
Ui(g-;t)‘ ﬁz\/ H{t-t (tt 1>P§ Ll (f& 2 )zl;dk .3 )
TR L )+—‘L—(-—-—~k2)]\7- 12 )2 G
tq
(2.6-6a)
‘c/td 1
12,2 , 5 ”é' 2 s
Ui(l{;c} =‘§fz—-i—z{{t~ts>*/—§——1>P§ ( (k- <1,21>k dk . 3
e L A E"'l} L (- >j< -1 )2 G2
L r t
d .
(2, 6-6Db)
where G becomes
G(k?) = (L2 -21&)* - 16{(K® - 1){K2- 22 )k* | (2. 6-7)

The integrals in {2.6-6) are still improper for t= t; and t= tye

In particular, the Rayleigh pole in each integrand is located at k = YR

for t =1t

ERe
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The disturbances trailing behind the load that contribute to

Fict .12
@ N?-z/;yz-zg } H(t-t; )
= s Ht-t, )H(x), (2.6-8a)

w72 L) 2]* 2 2 (£2 2
s Q\CZ -zij-Zz;J nléadas(g +vy?)
S
2 KIZ ' )
A A2 Q%@ (‘: +YZ)H(t—"L}
UHXE) = Lcty” d s H(t-t )H(x), (2.6-8b)
Z, - 2 2 sC

- { 4
et {v\% -2) y"‘—z&ﬂ ~160% a2 (E2y*)?
S .

where the Heaviside function is restricted by

H{t-t, ) =1 if c<c£3, {(p=4d,s) . {2,.6-9)

Be

The arrival times of the triangular waves (surface intersection of the

conical waves) are

1
2 2 ,
to = = {{3-2— ) |yl +x]. (B =d,s) (2. 6-10)
ﬁ\, c C5
and X
SURDUCEN
o, =62 (5 -1);#} . (B=d,s) . (2. 6-11)
B c '
e
c
Both U3 and UF4 are singular for t=1 when ¢ > c_ and x5 R
z z - Re R r c
where
1
1 w], CZ “ 2
t = - -5 + @ ° - 2-
b CL\CZ i} [v | Xj {2.6-12)
R

tre is the arrival time of the triangular Rayleigh wave trailing be-

hind the load,
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In sectioﬁ 3.2 the behavior of U, near the arrival of the
circular and triangular Rayleigh waves is determined. In addition,
in section 3.3, u, is evaluated near t= ts s showing that the total
displacement is continuous through t = tLo For fixed time, t = tL
is the equa’cion of a circle with center <x = -%t s Y= O} and radius E; s
which is the surface intersection of the hemisphere t =-‘Z~2§ found in
u, for z > 0. In Fig. 34 the wave geometry in the surface plane is
displayed for all load speeds.

For, U the Rayleigh poles in both the ¢ and w-planes con-
tribute residue terms which, when their l.aplace transforms are
inverted, give the Rayleigh waves. Then, by adding the Rayleigh
waves to formulas (2,5-1), {2.5-2), (2.5-5), and (2.5-6) assessed for

c=x and z = 0, one finds
{X,t) 2.6-13
u (Xt ) { )

for ~co<x,y< o and 0= c<oo. The Ui represent circular waves
emanating from the initial position of the load and disturbances trail-
ing behind the load.

The circular waves are

m
~d
Ui{(}gt) = éH(t -t ) = Ht-t j§vx dw (2. 6-14a)
0
Td
7 2 X, —_ {‘ ! -
Ux(i{’t) = H(’c-ts)u VX dw . {2.6-14D)
T

]



. ’ =1
@ 2 {t-
B ) cp® Ltger \tL AN / H{t tR)
U (K8 = oo - -, (2.6-14c)
Rt VLY (32—— —'1>2
[‘“z“ exuly B z"'z"j} £
c L r R
where
L 1
-Z»sz ;t\/X (Z)?__ >_§_W22 j <T2 _WZ\Z !\WZ'TZ}Z(ZWZ'ZTZ __QZ)
, P LogT b 2 a ™/
X A 2 2 - ’
2 L 4V VY 2 2
[\g &, 1 2 JG“ s W) (2. 6-15a)
1 1
c? ct 2 ct 2
{ R / R R
(7 -2) 20-=) -3)
[od C
5 = S d s
[ Do\ BRI R DU S O B NP | DU
2<C2 2}T2<1 Cé><1 CZS/; (1 C2s> (1 Cg Q é)K ci}
S
(2. 6-15b)

with G(t?,w?) given in {2.6-3) and Ty and T, in (2.4-84), The.
arrival times and tL are given in (2.6-4) and (2.6-5). tis
not proper to takeb the limit as t— ts through the integral in
{2.6-14a) because its integrand has an indeterminant form { = ) for
t= tL and w = 0. Instead, the integral should first be evaluated for
t near tfif and then the limit as t — ¢ taken. The circular

L
Rayleigh wave in {2.6-14c) has ‘ﬁhe cne-sided, (‘t-‘cR}“;3 singularity |

fis

which is typical of horizontal displacements in three-dimensional

problems. Pekeris [ 3], for example, obtained this type of result

for the stationary point load.

B

s ,
By the transformation w = (%——-15) s U; and Ui become
t
d
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t/td
Ut (x40 = [H(t-t ) - H{t-t >j§ ¥ dx (2. 6-16a)
3=’ d s x ! :
1
i
5 A
U_(Xt) = H(t-ts}§ v, dk ; (2. 6-16Db)
where
_ 1 L
207y E“t'vxzi - 1}+Y_Z_ (i—«kzﬂ (K2 -1)% (£2-K2 ) %(12-212)
M [d r? t
Vi © W — (2.6-17)
7 -"-’,f A+ (S m)] (B ) aue
Hr [‘! A <t21 >] \tfi ) at)

and G(k%) is given in (2.6-7). Tt stil

11 is not proper to take the limit
as t - tL through the integral in U

The disturbances trailing behind the load are

_,,_Z-CZZ[ e :} N -
UX(E,») = . W I H —tdc)-H(t tsc) Hit tL)H(X} . {2, 6~18a)
wek
5 °R
Up (K8 = g (———-1} -t V(2 -2 Hex) , (2. 6-18b)
where
e
c [0k Nz o2
C{dadeCz ijz 252-1 o
W=[ > : (2, 6~19)
fef 5N 2 a2l 2 02 [£2 4232
N ZjYZ Zéj l16aat (% +y¥)
“s
with

1
[\-z-; - 1)y?- g{jz (2. 6-20)
S
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and Qs Ay, and @ given in (2.6-11) and {2, 6-15b). &(~) is the Dirac
delta function and the Heaviside function in (2.6-18a) is restricted by

{2.6-9). The arrival times of the triangular waves andt._ are displayed

L
in (2,6-10), . (2.6-12), and (2.6-4). Thetime dependence of the triangu-
lar Rayleighwave in (2.6-18b) is typical of that found for horizontal dis-
placements in two-dimensional pi'oblemsg DeHoop [ 22], for example,
obtained this type of result for the line load problem. The magnitude
of the triangular Rayleigh wave becomes unbounded as ¢ approaches
Cre But, as ¢ approaches cp the domain of the half-space surface
where Ui is pertinent shrinks to the position of the load and the
circular Rayleigh wave (when ¢ = cn the load travels on the circular
Rayleigh wave), Therefore u}éz, t) remains bounded for ¢ = Cqo
except in the neighborhood of the load and the circular Rayleigh wave
where the solution is unbounded for all c.

The expansion of uy for z = 0 proceeds exactly as for U s

including the Rayleigh waves, and one finds

u_(Xt) => U (Xt) (2. 6-21)

for -oco<x,y <o and 0 =c <'cw. The circular waves are

) I P, | )
U () = {Hu t) - Hlemt )] | V. aw 9 (2.6-22a)
0
Td
UYX,0) = Ht-t >§ V. dw ) (2. 6-22b)
vy S v
T



[*tCR (o) +2 (o) mge-t,)
3 cRiy tpe \tL / rg\t2 /] R
U = - R _ (2. 6-22¢)
4mrcpr cs, \2 2 2
&2 (& &y
< L " R 'R
where
2 -ty [t ) L WEX 2 ez 2 s 2_>m2 _g2
24 w{ \t }+——-—r }(Td w2 (wh- T2)2 (2w?-2T2 -42)
VY = - @
i r? [\(2 ’/;f—--l/y + ——Y—z:} G(t?,w*) .
I (2,6-23)
1
2 E 1 2
By using the transformation w = &\m—-kz} s U‘y and UY become
t/t
1 /\
T - BT+ & PO -24
U, (X4 [ﬁ@ t,) - Hit ts):ig v,k (2. 6-24a)
1
Y
02x) = H-t )| ¥ dx (2. 6-24D)
ELy A v 3 a O™
Yy SJ ¥
1
where
ey oty /it N ex( . 2_712' 2. ";J»z_ 2
I o CaBR R k)] (k2-1)% (£ 2~ 12)2 (£2- 213k
V = = d 4 s
v ro./+ 2 42 1 /42 N2
22 (L W e (L _aen (E 2
™ prt |y \tL *} %é ti{ k/J Kté k) GlK?)
(2.6-25)

The disturbances trailing behind the load are
)
UT{Xt) = ?_:_‘ZYE W sgn{y) {H(t_tdc) - H(t—‘tsc)} H{‘t-tL)H{x) , (2.6-26a)

(%) =2 Son () 6{t-t }I—l’&’/§ - 53} H(x) (2, 6-26b)
y= dcp S8RV Rc’7'\r ¢ - : °
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The arrival times, G, W, &, T , and t. appearing in (2.6-22) -

d’ Ts L
(2.6-26) are the same as those in u above. The Heaviside function
in {2.6-26a) is subject to the conditions in (2,6-9), Unlike for u s
the magnitude of the triangular Rayleigh wave for U’y is bounded as
¢ approaches CRe The remaining details concerning the structure
of uy are analogous to u and they are given above,

The disturbances trailing beEind the load that arise in this
section, as in the previous sections, represent steady-state contri-
butions to the displacements. Furthermore, each of them is identi-
fied as a separate wave if, and only if, the load speed is sufficiently
large that its wave front exists.

The results given above for the surface displacements are not
new as Payton [ 1] and Lansing [ 2] have given them in closed form
{algebraic terms and elliptic integrals) for A = p, The integrals in
the circular waves above can be reduced when A= u to closed form
by partial fraction decomposition. However, since the behavior of
the circxgﬂar waves near their wave fronts and the Rayleigh arrival
time can be computed easily from these integrals for all A and u,

as shown in Chapter 3, this last integration is not undertaken

here,

2.7. EXACT INVERSION OF THE DISPLACEMENTS FOR A
STATIONARY POINT LOAD '

A special case of the thesis problem is that of a half-space

whose surface is excited by a stationary, but impulsive, point load.
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As ménticned in Chapter I, many authors have contributed to this
problem, but much work can still be done for the interior of the half-
space. In this section a new representation of the interior displace~
ments is obtained which is a sum of integrals. Each integral is identi-
fied as the disturbance behind a particular wave front., Furthermore,
as shown in section 3.1, these integrals lend themselves to wave front
expansions that display, amongst other discontinuities, the logarithmic
discontinuity mentioned previously. Also, the surface displacements
for the stationary point load problem are given in this section.

Before displaying the displacements, it should be noted that a
point load with step time dependence and unit magnitude is obtained
frorﬁ the moving load problem formulated in section 2.1 for ¢ = 0.
Therefore all of the results given in this section correspond to such
a ﬁsurface load.

Now the interior displacements for the stationary point load
problem are obtained from the results in subsection 2.4.5 and section
2.5, In particular, by expanding equations (2.4-80) - (2,4-92),

{(2.5-1), {(2.5-2), and (2.5-5} - (2.5-7) for ¢ =0, and using the cylin-
drical geometry in Fig. 2, one finds U_s Ugs and u, for ¢ =0 to be

) (it , (2. 7-1)

, (2.7-2)

where 0=r< o, -7=0<7m, 0<z< o, and



Y4
1 dg
4 _ 14 O _a -
uo_{ﬁ,‘c) = H{t td}j Re [Kc_d(ngw) I jdw s {2.7-3a)
0
Ts
2. H & o, dqs _
o () = Hiswt ) Re [Kgs\qs,w} 7&—%—} dw . (2.7-3b)
-0
Tsd
S lxt) = H{t-t ) Ht, yu(Z-28) (Re [k ¢ )qud dw . (2.7-3c)
o= T \p Cdj o5 3sa™ Tt ] W °
Ts
. Ts<:1
Fixt) = h(t ) - H(t-t )“Hé’ﬁ—ff-> C Re [KC )fﬁﬁi"—‘ d
Bl sd ‘ sj \p cq [ os s’V dt] W
0 (2.7-34)
- . . o) G
The functions K and K are
ad os
o)
Krﬁ(q,w Lcos 8K ﬁ(q,w, ) Tsin GK (q,w, ] i
C =
(2,7~4)
O " — —
Iizﬁ(q}w) - Kzﬁ<qﬁwse) (B - dBS}
c =0 o

and by using KX,B’ Ky@’ and Kzﬁ as given in (2,3~5), they become

. =~
KO (qw) = ~igf 22 +2(c?+ w2 ] - %O (@w) = Zlqmdm
re e g HR(g, w) . P uR(gw)
' Y (2» 7-5)
m [ L2+ 2(? 4 wh] o -2m {q® +w?)
K law) = —= . K (aw) =
ﬂzcdHR(qu) "TZ Cd HR(CbW) y

where R{g,w), m,, and m_ are given in (2.3-6) and (2.3-7), The g-

transformations, the limits of integration, the arrival times, and ‘tB

appearing in (2,7-3) are given in (2.4-83)-(2.4-86). The integrals in
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{(2.7-3¢c) and (2.7-3d) are improper for t = ts because their integrands
have a simple pole at w =0 for t= tsw As shown in section 3.1,
these improper integrals generate the logarithmic singularity men-
tioned in Chapter 1. The time parameters can be removed from the
limits of the integrals in {2.7-3) by the variable transformations in
{2:4-93), but the resulting integrals are not displayed.

The functions u‘i_, (i=1l,0¢0.,4) and (o = 1,2), represent a
system of waves emanating from the load at the origin of the coordi~-
nates. In particular, ui_ and uf_ are hemispherical, dilatational and
equivcoluminal waves respectively. In addition, ui_ represents a
hemispherical, equivoluminal wave. But, unlike ui, it has a back at

t= tae As shown for the moving load solution in subsection 2.4.5 (the

. . . . 3
computation given there is actually valid for 0 = ¢ < o), u_ and G

vary continuocusly through t=t The function uﬁc_ represents the

B*
conical head wave generated by the surface intersection of the hemi-
spherical, dilatational wave front. The wave fronts corresponding to
these waves are displayed in the upper diagram of Fig. 35.

The surface displacements for the stationary point load prob-
lem are obtained from the results in section 2.6, In particular, by
expanding equations (2.6-1, 6, 8, 13, 14c, 16, 18, 21, 22c, 24, and 26)
for ¢ =0, and using the cylindrical geometry in Fig. 2, one finds
U Ugs and u, for ¢ =0 and z =0 to be

| 3

a_(r0,04) = Z W (r000) (2. 7-6)
j=1

ueir,e,O,t) =0
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2
u,(£0,04) = ) UL(£008) (2.7-8)
j=1
for 0= r<w and -7=6< 7. The circular waves take the form
- t/t
d
1, . A\
U (2,0,04) :[H(“t~td) - H(L-tsﬂ V_oak (2.7-92)
1
1
2 A
U7 (r,0,0,t) = H{t-t )\ V_ dk , (2.7-9b)
r S I
1
- H{t-t..)
3, .t R
Ur\rse:O:’t) = 4:TTHI‘tR B % s (2¢ 7"9C)
- -1
& )
R
t/td K2 3 2 2\2
-1 . & _1y2 _ .~
UL (£,0,0,8) = ~2— H(t-t ;P§ U -1)7(47-2k) e dke (2.7-102)
. [ 12 \ 2
™ pr 1 a5 -2
ta
2 t/td 2 5 2 3
- 1.2 .. 2 Y
U%r,0,04) = 22 pipe-¢ )P§ (222 (-1 dke (2. 7-10D)
Z ﬂz v S ,’tZ N 2
b L G-
d
A 2 2 3 2 1.2 3 2 2
; 202427 20 g2 122 g2 -
v, = 2l (LK) {f7 -2k )k (2,7-11)

2 \ 2
. 2 gt' 12
ﬂzurtd(}(k }\mté k )

and G{k*) and & are given in (2.6-7) and {2.6-15b) respectively.

The arrival times are displayed in (2.6-4) and (2.6-5).

in {2.7-10) are interpreted as Cauchy principal values for t=t

The integrals

R
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because their integrands have a simple pole at k = YR for t= tre
The surface wave geometry associated with these displacements is
shown in the lower diagram of Fig. 35. If these surface displace-
ments are assessed for A = p they become those computed by
Pekeris [ 3] (see equations {33) -~ (36) and (57) - (59) of this reference),
In addition, Pekeris reduced these displacements to closed form for

h = . However, a comparable computation is not made in this

investigation,
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CHAPTER 3

EVALUATION OF THE RESPONSE

3.1. WAVE FRONT EXPANSIONS

In this section each wave, as identified in Chapter 2, that
contributes to the displacements is evaluated near its wave front.
Fach wave front expansion is an asymptotic expansion as time
approaches the particular arrival time and physically it represents
the change in the displacements as the wave front passes a fixed
point in the half-space. The wave front expansions are computed for
z > 0 in subsection 3.1.1 and for z =0 in subsection 3.1.2. The
computations in these subsections are given for 0 = ¢ < oo with the
expansions corresponding to ¢ = 0 displayed at the end of each sub-

section.

3.1.1. Interior of the Half-Space.
The wave front expansions for u, are computed and discussed
in detail in this subsection while only the results are given for U

and u_ .
Y

Vertical Displacement, u,:

ot

1) Hemdispherical, Dilatational Wave, u .

N

|

. 1 . .
A wave Iront expansion of u_ as t ‘i:d is obtained from

equations (2.4-94a) and (2.4-95a) by computing an asymptotic expan-
it

sion of u, as T td and then integrating this expansion with respect

to ¢ from 0 io :'Z-T . To apply this technique properly the expansion of
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A
ui must be uniformly valid in @ for «¢ [O,—;—T] and its regions of

uniform validity with respect to x and ¢ must be determined. In
A

particular, one must take into consideration the simple pole in ulz

for t= t; when x> 0. When ¢ > cqs t=1tg, coincides with t = ¢

Cy
along the rays defined by 25 = —-Cg at the intersection of the conical

d

and hemispherical, dilatational wave fronts. These rays form the
cone mentioned in subsection 2.4.1 and shown in Fig. 7 as the dashed
lines, The expansion given here is not valid along these rays. For
c < Cq- t = tL and t.: ’td do not coincide, as shown in Fig. 22, and
this pole does not interfere with the wave front expansion.

. A
By expanding u1Z in (2.4~95a) as t— tys one finds

A =1

1. 2 (1..5% o) -

u = lez u Cdp> + Oft-t ) (3.1-1)

Ca x T
st 4 = c il
as t—t, for z> 0, S p‘>O5 0=c<w, and af [0,2],
where
2.2 _ 9.2
Nl - (z /2wpp) (£%p% - 21%) o (3.1-2)

ES
(ﬁZ pZ - 21.2)2 +4rzz<£2pz - rZ)Z

The conditions following (3.1-1)} arise naturally in the computations
and define the regions of uniform validity of the expansion. The
symbol O{7) is used to imply that £ = O{T) as 77— 0 if H_— ’ <M
as T 0, where M 1is a real, positive constant which is bounded.
Then the substitution of (3.1-1) into (2.4-94a) yields

) 1
1 l j . CX ‘ A { -
uZ:N zh\l —-——-—Cdp) + Ot td) {(3.1-3)
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‘a_=x

as t—t, for t>td,z>0,

d >0, and 0=c¢ < ow. A definite

inequality like z > 0, but z otherwise arbitrary, means that a limit
as t— t, can not be interchanged with z — 0. Therefore a wave

front expansion of u:; for z > 0 can not be extended to obtain the cor-

xcd

responding expansion for z = 0. Likewise, the condition ‘—- s >0,

which is only non~-trivial if ¢ > C4, means that this expansion is not
valid along the rays % = —, However, for 0 = ¢ < oo a limit as

t - td can be interchanged with ¢ — 0 to obtain the corresponding
wave front expansion for a stationary point load. From (3.1-3) one

. . . 1
sees that there is a step discontinuity in U and therefore U

across the hemispherical, dilatational wave front,

2) Hemispherical, Equivoeluminal Wave, uz,
A wave front expansion of ui as t— ts can be computed
from (2.4-94b) and (2.4-95b) by the same technique as used for ué

with the result

{ szrziz-i%> + Oft-t ) for =<2
> 1 . Csp S [ Cd
u = (3.1-4)
/ v -1 , i c
| 2z Cx e e 12 r_ s
- + - Pl S
{ l\lgr {1 p p) OK{t ‘CS) ) for 5 > S
s d
Cs x
as ‘t—bts for t>t , 2 >0, —-CE——p—{>O,and 0 =c¢<oo, where
1
2 (z /mpp} (L 72p% - v4) 2 _
Ny L7} 1 s - {3.1-5a)
{QZ - 21,2;2 + 41.22{12 —ZPZ . I.Z)a
L NG (Erte frup) (- 470 . (3.1-5b)

€ (p% - 21%f + 16122 (£ 752 - 1?)
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As mentioned in subsection 2.4.2 and shown in Figs. 15 and 25 by the
c ‘

, s . ‘
dashed lines, for ¢ > Cs 5 = S defines a cone that denotes where

oK

the conical and hemispherical, equivoluminal wave fronts intersect.

Alsc, as mentioned in subsection 2.4.2 and shown in Figs. 17, 27,

c
32, and 35 by dashed lines, g = -2 defines a cone that denotes where

C
d
the conical head wave front is tangent to the hemispherical, equivo-

luminal wave front. The expansion in {(3.1-4) is not valid along the
c

_ S

c
rays given by 5;“: —;- and -S o As in the case of the hemispheri-

ol

cal, dilatational wave front, there is a step discontinuity in ui and
c

u_ across the hemispherical, equivoluminal wave front for -g— <E~S— .
- i d
However, for > -E—S— s ui also contributes behind this wave front
d
4
and u; ahead.. These waves are expanded next.
3} Hemispherical, Equivoluminal Wave, u3,
As displayed by (2.4-94c) with (2.4-82), (2.4-93), and
A

{2.4-G65¢}, the integral in ui is irmnproper for t= ts because uz
has a simple pole at « = 0. To obtain a wave front expansion of uz
as t— ts this improper integral must be assessed. For this pur-

2
. o ~ . .
pose the integral in u, is written as

€
dafzg

0

ol

P&
u

N W
N oW

X

@ 2 v

AN 3 /\3 .

u” de +§ u, de (3.1-6)
€

o

where € is an arbitrarily small, positive number. The integral

is O{1) and the one from 0 to € must be approxi-

A
mated for t nmear t_. By substituting t=t_(1+4) into uis expand-

from € to

ol

ing it for small @ and A, and combining the results with (3.1-6),
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one finds
2 e
CA3 3 cx
w da = -2N” =z 24{1- ) [1+0(a ]3 ——-——--1 + O(1) (3.1-7)
J &
3 (of+a2)2
- CS cCS
as A=> 0 for z>0, =>— }—~—~§l>0, and 0 = ¢ < oo, where
P C4 c p
ot
N o de/mup e L2 oY) P (p? - 227 (3.1-8a)
(pz _Zr2}4; +16r422(r2 -] —ZPZ)
e i
a= Lr(20)2[ (12-1)2p - 22] 7Y, (3.1-8D)
By substituting the auxilliary result
S
—8% - loga+o0Q) , | (3.1-9)
5 (QZ +a2)2

where the integral is tabulated in reference [ 25] (p. 255, formula

(20} ), into (3.1-7), one finds

;11
2
23w =02 - XN o a4 o(1) (3.1-10)
u; r i\ A p> og .
0 S
r Cs Ics X .
as A~ 0 for z>0, =>-—, -———————j>0,and 0 =c< o, Then
P €4 lc p
the substitution of {(3.1-10) into (2.4-94c) with A :f““ 1 gives
S
3 _ 325’_CX"1 {_L_ B
w = NTr?(l mcsp} log & 1) +0(1) (3,1-11)
C C %
as t—~t for t>t ,z>0, =>-—=, -2.2150, and 0=< ¢ < oo,
5 S P <4 c p

The conditions following this expansion are the same as those follow-

2 . .
ing the expansion of u;, and they are discussed in the text beneath
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(3.1-5b). To find the total singularity across the hemispherical,

c
. . 4
equivoluminal wave front for —Z: > 2, u_ must be expanded for

c
t < ts, which is undertaken nexto ¢
4) Conical Head Wave, ui .

The function uj can be evaluated ahead of the hemisphericﬁal,
equivoluminal wave front and behind the conical head wave front. As
displayed by (2.4-94d) with (2.4-82), {(2.4-93), and (2.4-95d), the
integral in uj is improper for t = ts because Q;} has a simple pole

at @ = 0, The corresponding wave front expansion can be computed

in the same way as for uz with the result

ot = NP 2’1-—-';)_110 1--£Y + o (3.1-12)
o/ 08 J :
S
I ¢ x
as t—=t_ for ’c<t,z>0,——>———s—, L >0, and 0 = ¢ < oo,
s s pocy c P

where N3 is given in (3.1-8a). This wave front expansion along with
the one for ui in {(3,1-11) displays a logarithmic singularity in u,
across the two-sided, hemispherical, equivoluminal wave front. This
singularity is symmetric about t = tyo

’The wave front expansion of uj as t— tsd can be computed
from {2.4-944d) and {2.4-95d) by the same technique used for ui with

the result

_4~-4{—CX T et 32 )
w = -N-r(l Cdr) (t tsd)+o((t tsd)> (3.1-13)
Z i Cd <! .
as t~—t for t>t ., =<{£%-1)2, |—=-={>0, and 0 = ¢ < o,

sd sd’ r c T

where
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2
4 cd(ﬂ‘2 - 1)%
N™ = ™7 g T e (3»1"14)
wart (02 - 2020 (12 - )Fr - 2%
= EN r CS
The condition i;: = (L% -1)% implies that ST which is discussed in
’ d
the text under {3.1-5b}. As mentioned in subsection 2.4.2 and shown

. . d . . .

in Fig. 19, =T defines a plane which denotes where the plane

head wave front is tangent to the conical head wave front. As (3.1-13)
4 . .

shows, u_s and hence u, are continuous through the conical head

wave front.

5) Conical, Dilatational Wave, ui.,
The function ui is only identified as a separate wave when

c > cd and then its conical, dilatational wave front is located at tztdc“

The corresponding wave front expansion, which is an algebraic com-

putation from (2.4-96a), is

&2 aNPML (t-t. )E 4 o{(m \2) (3.1-15)
z dc dc dc /9 °
X Cd
: ~ + Prdngii
as t—@LdC for L>tdc,n>0,z>0, 5 =< and c>c.d3where

1 i
(z /mp){2cn) Zi\/igc[ nZ(MZSC»l) - ZszéC]

N°= . - (3.1-16)
A2ZINAZ LYo 2 12 2742 2a/2 2 (2N A2 : .
[o?(M2 _-1)-2y2M7 12 +4zMy (2*MY oM | )2 (y* MY _+n)
and

;3 h

Mg = (5 . (B=d.s) K
& X > (3.1-16a)

N AR !

M, o= (== |

sde = \_.2 2 } ° ;

cs Cd o
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‘The restrictions following (3.1-15) arise naturally when expanding ui
and they determine where the expansion is uniformly valid. In partic-
ular, t= tdc and n =0 imply that £ = O; or ct = x, Therefore

n > 0 implies that (3.1-15) is not valid at the position of the load, as
one might expect due to the singular nature of the load. The restric-
tion ¢ > 4 arises because, as ¢ approaches Cq the conical,
dilatational wave front collapses to the position of the load, where

the expansion has already been excluded. 4s for the hemispherical

waves, z > 0 means that this wave front expansion can not be ex-
o

tended to include z = 0. Finally, —%—-;Z ——S means that a limit as
c
t —> tdc can be interchanged with % - _g' . so that (3.1-15) is valid
x  “d % _ ©d
along the ray 5 =-— as well as for 5 > . As {3.1~15) shows,

1
ui and hence u, have a one-sided (t - tc‘;c) ¢ singularity at the

conical, dilatational wave front,

. . . 6
6) Conical, Equivoluminal Wave, u, -
. 6
The function u, has a wave front at t = tsc for ¢ > C o The
corresponding wave front expansion, which is an algebraic computa-

tion from {2.4-96b), is

o .
(3O ol V72 (“ 3 z _ sdc
§ Ng(y Msc+n ,ﬁ‘t tscl +O ( tSC) > fOl‘ n > MSC s C > c
6 .
Y g 1 o (3.1-17)
(NOGPM2 Fn?)(e-t_ )TEHOQ)  for Z< —2de
sC sC n se

c

x s
as t-—t for t>t , n>0,2z>0, ===, and ¢ > ¢, where
sc sc p c s
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1 1 1
1)/ ToNAZ 12302 22 2
6 (2z/wu){2cn) M2 (2PME _-nPME )
foed T LI
g 20072 21V 2 12 ZNAZ 2 WA 2 [ 2NAR 2
[ n (M2 _-1) ZyZMSC} +4_zMsc(z M2 _-oPME L ) Ay MZ _+n?)
(3.1-18a)
i 3
2 TZNS (22 2V (2 W2 o2 h2
N6 . (8z% /mu){2cn) Mzsc(y Msc+n 1 (o Msdc Z Msc)
L7 2mg2 o 2 4 N2 (2 W2 22 202 o2v2
[n (M2 _-1) Zyzl\/lsc] +16z Msc(n M, -z MSC)(y M2 _+n?)
(3.1-180b)
When ¢ < Cqs -j—l is always less than Nfdc and only the lower term
: sc
in {(3.1-17) is pertinent to the expansion of u, . Also, for ¢ > Cq the
M
condition —Zﬁ:——mﬁg— is equivalent to lriﬂ—: ch, where c{>C is given in

) sc
(2.4-92). This angle is shown in Fig. 18 by dashed lines that denote

where the plane head wave front is tangent to the conical, equivolumi-
nal wave front. As (3.1-15) and {3.1-17) show, u, has the same time
dépendence at the conical, equivcoluminal wave front as at the conical,

dilatational wave front.

7) Plane Head Wave, uz.

The function uZ can be expanded both ahead of the conical,
equiveoluminal wave front and behind the plane head wave front. The
former front exists if ¢ > g While the latter only exists if ¢ > Cqe
The evaluation of uz at either front is just an algebraic asymptotic | “

expansion from equation (2.4-96c) and the results are

[ SIS

uz - —NZ(sziC+n2)(tsc-»t) + o) (3.1-19)
g Cs Z Msdc
as tWtSC for t<tsc,n>0,z>0, EZ*-&—;E< ™M and C>CS°
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where

‘ R i
(2z/ww)(2cn) 2M?* (n2M2 | -22 M2 )2[ n2(M2 -1)-2y2MZ ]2
N? - scC sdc scC scC scC (3.1-20)

2IM2 L1y e o2 n A2 T4 2042 2042 242 2 n2y2
[n (MSC 1j-2y MSCJ +16z Msc(n M? .z Msc)(yzmscm)
and
o = NGt )7 4 o((t-t, 4 %) (3.1-21)
z £ “sdc sde’ :
z M d €4
as t—>t for £t >t s, >0, — < SC,EZ‘-—-—,and c>cC,,
sdc “sdc v My, ’r c d
where
L 2 3 1
2{2c y2({L=% - 1)y*Mm?
N/ = d de - . (3.1-22)
2._7\2 - Zz
m(£-2) Uy‘Msdc ZMdc)
M
P z _ “Tsdec . . ] Xl _ . .
The condition —J-ﬂ—- i C implies that - = ¢C, which was discussed

with the expansion of u above., The wave front expansion in {3.1~19)
and the lower one in (3.1-17) give a ={ I’c-tscl)_% singularity (+ for

t > tsc and - for t<tsc) in U, across the two-sided, conical,
equivoluminal wave front. This two-sided singularity, which is not
antisymmetric, exists in u, for both transonic and supersonic load
motion., As {3,1-21) shows, uZa and hence u_, are continuous through
the plane head wave front.

It should be noted that the disturbance near the wave fronts
trailing behind the load is a half-order stronger than near the cor-
responding wave fronts emanating from the initial position of the
load {(compare wave fronts involving the same type of disturbance).

This can be seen, for example, by comparing the wave front expan-~

. - 1 5
sions of u as t-=—t, and uw’ as t—1t., .
Z d Z dc
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Horizontal Displacements, u and u_y_:

The algebraic properties of the waves composing the horizontal
displacements as given in {2.5-3) and (2.5-5) are exactly the same as
those for the vertical displacement. Therefore the wave front expan-
sions of U, and uy for z > 0 can be obtained by comparison to u .
Without further computations, the results are stated., [In the following
formulas the wave front expansions for u‘j{ and u:zr are presented in

one expression with the upper character in { } corresponding to ‘;

and the lower one to ujy.]

1} Hemispherical, Dilatational Waves, ui and u;.

1
ur ' e 7'\_1
[ U= = Nlix”é (1-—-‘3-’-‘—; + Oft-t ) (3.1-23)
{L 1 Yj Cdp/ d ;
) ‘
YV
Cd X
as t—~t, for t>t,, z>0, |—~-=1>0, and 0 = ¢ < o, where
d d c p

Nl is given by {3.1-2).

2) Hemispherical, Equivoluminal Waves, ui and u;.

-/ -yl C
5 §—N§zj}‘}<1— C“) +O(t-t,) for =<—=
J T = g (3.1-24)
12 1 c
Lu j l2 x}g cx \7' O< 2\ r s
- e t-t for = > —
4 | NPy SN e (t-t5)7) for 5> 5
c
as t—*ts for t>t_, z>0, f»(z—s-—%f>0,and 0 = ¢ < o0, where
”\Tﬁz and Né are given by (3.1-5),
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@

3) Hemispherical, Equivoluminal Waves, ui and u3

) + O) (3.1-25)

f'u3 Y
hid .
10 = e
u J v
v
C

as t~—t_ for t>t ,z>0,£>-«-§,
s s P <4

c
i>0,and 0=c<oo,

{

s—
c

oM

where 1\T is given by {3.1-8a).

4} Conical Head Waves, ui and u4

[ X"E - o
iué .- ~\y3z{ - p} “log {1-?2—) + O() (3.1-26)

C C

as t—t for t<t ,z>0,— S .
S S C

H

i>0,and 0= ¢ < oo,

© X

S
3 ' Cd
where N~ 1is given by {(3.1-8a).

IS

u
; .

v

}r 4{% (£2-1)2 (1- t-tsd) + o{(t-tSdV) (3.1-27)

W

u

~<

1
as t=—t for t>t 2 < 42-1)2,

sd sd’
where N© is given by (3.1-14).

5} Conical, Dilatational Waves, ui and o

ot 50 n 1 L ‘ L
5 j’“ N {deCf (t-tge) *F O<(t"tdc)2> (3.1-28)
%

as t-—>*“cfor t>tdc,,n>0,z>0, 5

oK

Zﬂé,and c>c,where N
c d

is given by (3.1-16).
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6) Conical, Equivoluminal Waves, ui and u;)_.

6 / "ZNéM !l\/xll }(t"‘t C)”%‘*O{(t-t )%> for = > I\;I/fdc s e >cy
{ux\‘g ; g scyM__ S sc n sc
1“”&:‘; ANV }’(t—t )'%+o(1) for :?‘-<I\/£SdC R

¥ \ L sclyM sc n M

sc sc
- c 6
as t -t for t>t ,n>0,z>0,%=-2, and c>c¢c , where N
. sc sc p c s g
and N, are given by (3.1-18).
7} Plane Head Waves, uz; and u7
FuN
X Y 1
) T { n yTE -
Lﬁ}m ZN M YMSC)&(tSC t) 2+ O(1) (3.1-30)
Yy
s M‘sdc
as t—t_ _ for t<t_ ,n>0,z>0, T=-=2,2¢ ,and ¢>c_,
sc scC ! c n Msc

where Ng is given by (3.1-20).

7
| uX\% ? 1 e 1 5 1 _;
o 192 _13y2, Ll §+ < -t 2 -
'?j Nf\!M L ég_sgn (yIM }(t tsdc) Ot sdc) ) (3.1-31)
u : dc
Z Msdc pre Cd
2 £ o . s o e
as t tode for t>tsdc’n>O’Tﬂ< Mdc s TE S ., and C>cd,

where NZ is given by {3.1-22}..

The behavior of u_ and uy near the wave fronts is analogous to

u, For a discussion of the details associated with the expansions in

(3.1-23) - (3.1-31), the reader is referred to the corresponding

expansions for u .
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Stationary Point Load (¢ = 0):

The wave front expansions for the interior displacements due
to a stationary point load with time dependence H(t) can be obtained
as a special case of the results given thus far in this subsection., As
expected, for ¢ =0 the wave fronts trailing behind the load and the
corresponding wave front expansions do not exist, Furthermore, the
expansions for fhe wave fronts emanating from the origin of the co-
ordinates, which now is also the position of the load, are most ef-
ficiently written in their cylindrical components. In particular, by
setting ¢ = 0 in the expansions for ui, u:;_, and u‘i, (J=1l,00.,4),
above and expressing the results in terms of the cylindrical geometry
in Fig. 2 {which each wave contributing to a displacement satisfies

as well as the total displacement), one finds that 113e = 0 at all wave

fronts and

1) Hemispherical, Dilatational Waves, u}:;_ and ui,

1

B '
EY At AL 150
Z

as t =t

d for t> ty and z > 0, where Nl is given by (3.1-2);

2} Hemispherical, Equivoluminal Waves, ui and ui

&

2 (-21 r _ s
JL rl \ d
= {3.1-33)
ZJ , 1. c
u 2 (-=z TR ry s
Tz Ng‘ g{ r}+ O\(t ts} )o for e

jo Rt
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as t—t_ for t>t, and z>0, where Nﬁz and Ng are given by

(3.1-5});

3) Hemispherical, Equivoluminal Waves, ui and ui,

u3\
{ r | 3. -2z [t N
<L 3’?- N r{r }1og (- 1) + o (3.1-34)
u s
z .
r_© 3
as t—~t_ for t>t_ ,z>0, and = >—>, where N is given by
S s Pocy
{(3.1-8a};

4
4} Conical Head Waves, ui and u;,

4
f"u_r 1
- 3 r"'Z H t\ I&] R
‘{\ 4_}- N r«’kr}log Kl—{“—f + O(1) (3.1-35)
u s
Z
r_ s 3
as t—t  for t< t,,2>0, and -5>-g; where N~ is given by
(3.1-8a);
i
4 {//QZ“::LZ { 2
{‘ 4 %’z N r{s -1 ) } {t-—‘tsd) + OH\(t-—tS&) ) (3.1-36)
u, J
z
. £ ..z_ Z. % 4 . 1 -
as t—t_ , for t>t_. and - < (£4-1}¢, where N~ is given by (3.1-14).
The expansions behind the dilatational wave front, the
c

iy S

4
a]-"'

equivoluminal wave front for < » and the head wave front as

p
given in (3.1-32), (3.1-33), and (3.1-36) respectively compare exactly
with the corresponding results published by Knopoff and Gilbert [13].

However, the logarithmic singularity at the two-sided, equivoluminal

wave front, as displayed by (391-34) and (3.1-35), was not detected by
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these authors. This discrepancy was first pointed out by Aggarwal

and Ablow [ 14], but by a differenttechniquethan the one employed

The wave front expansions in (3.1-32) - (3.1-36) can also be
=0 and z>0 in

here,

computed from the exact displacements for ¢
section 2.7.

3,1.2. Surface of the Half-Space,

The wave front expansions for z = 0, not being a special case

of the z >0 results in subsection 3.1.1, are computed in this sub-

section from the surface displacements in section 2.6,

Vertical Displacement, u:
1} Circular, Dilational Wave, U’lz

A *
The application of the transformation k*=1 + {-%2—- - 1>sin20!
d

to Ulz in {2.6-6a) gives

i
Z
2.2 N2
ot o= A et (- 1) 5 -yp) vl de, (3.1-37)
Z ﬂz d tL t J Z
br d 0
where
A (2 242 4
U’; = “ﬁz 2k7) - sina (3.1-38)
e~ + A < /.t ’
fag2f 2 1) + (L _ Y gue |
IRESR A \Z #)]ee ||
2 j_ ( 2
ke=1 {-%—- 1/38111 o

Now a wave iront expansion of Ui can be computed by the technique
A
used on u in the preceding subsection. That is, by expanding Uz

as t-~— td and integrating this expansion, one finds
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1 g ex |
U, = ALl- (t-t ) + Of(t-t )? (3.1-39)
Z ZTT}LTZ(QZ‘Z)'Z\ Cdr ) d \ d >
‘a4 x
as t***td for t>td, . >0, and 0 = c <oo. The condition
< . A
4. -}; >0 arises because UlZ contains a singularity when t = tL

c
and x > 0, which with t = td implies that 2;— = __621_9 As shown in

Figs. 7 and 22, this restriction is only applicable for ¢ > Cqe
2) Circular, Equivoluminal Wave, Ui.

With the transformation k%= 12+ <—t—§¥~ - £2> sin® @, the wave front
t

expansion of Ui ‘as given in (2.6-6b) is analogous to Ulz and the

result is

2(le | .

U, = ——= (1- -—--> (t-t ) +O((t-t_)?) (3.1-40)
Z 202 (SR s S
TRreld s
s
as t»ts for t>ts, -—w—i; >0, and 0 =c <™. As shown in
C

Figs. 15, 25, and 30, the restriction _E_S_ —v-}l—f >0 is only applicable

for ¢>c .
S

3) Triangular, Dilatational Wave, Uz,

The wave front expans ion of Ui as given in (2.6~8a) is just an

algebraic expansion as t - tdc with the result
1 i
5 -{2c)2p? VZMEC :ﬁ; . of;( %\ s toa
U, = 2 (t-tye) -ty } (3.1-41)

c
as t—=t. for t>t, , |y|>0, —%Eﬁé, and c>c The restric-
dc dc r c

da
tions associated with this expansion have the same physical interpre-

tation as the corresponding ones with u; in (3.1-15}.
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- - . A
4) Triangular, Equivoluminal Wave, U; .

By expanding Uj in (2.6-8b) as t — tsc’ one finds

3 1
~4(2c) %R (L2 -1) M2 1 .
UA‘ = 5SS (t-t yé + O{(t tsc %) {3.1-42)

Tty |2 e’

c
as t—t for t>t_ , |y| >0, 2=_5, and ¢c>c .
sc sc r c ’ s

Horizontal Displacements, u and uyz

Unlike the vertical displacement, on the surface of the half-
space the horizontal displacements do not separate into terms which
can be identified as dilatational and equivoluminal waves (even though
the dilatational and equivoluminal wave fronts are still distinguishable).
This is typical of two-and three-dimensional half-space problems in
dynamic elasticity where the disturbance is caused by normal surface
loading (see, for example, DeHoop [ 22] and Pekeris [ 3]). In addi-
tion, from {(2.6-16), (2.6-18), (2.6-24), and (2, 6-26) one sees that the
forms of U and uy do not lend themselves to asymptotic expansions
near the circular, equivoluminal wave front. However, they can be
expanded behind the dilatational wave fronts and ahead of the tri-
angular, equivoluminal wave front. These expansions can be com=
puted by the same techniques used for w, and the results are just

stated here,

1} Circular, Dilatational Wave Front,

1
{ } £2(4% -1 zcd<l—§xr\1{ }.(tt +O<(tt ) (3.1-43)

e’ (£% -2)3 d

u<;r—u xw
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as t—1t, for t>t,,

<3
d 4 >0, and 0 = ¢ < o0,

ola?
)]
=X

2} Triangular, Dilatational Wave Front.

4 L 11
{Ux \’@ 2(2¢)2 42y 3(1%-1)2 2
4 =
U
;)

dc 1 . a3 I 1
m{ﬂz-z)ﬂyj% {Sgn(y) Mdc}<t fac™* oi(t fac! )

(3.1-44)
X Cd.
as t—ty  for t>t,, ly| > o0, == ,and c>cy.
3) Triangular, Equivoluminal Wave Front,
Ut L 11
f x —Z(Zc}2y3{ﬂz—1)2M;C 1 1 3
a (7 3 {sgntym_ J gm0+ 0, -07)
1UY wult|yl|? VI Mse
{(3.1-45)

X
as t—t for t oo ly] >0, -

=52 , and ¢ >cC .
c s
A's expected for normal surface loading, the displacements
are continuous through all the wave fronts on the surface of the half-

space,

Stationary Point Load {c = 0}):

The wave front expansions for the surface displacements due
to a stationary point load with ti.me dependence H{t) are a special
case of the results given thus far in this subsection. As expected
for ¢ =0, the triangular wave front expansions do not exist and the
circular ones are most efficiently written in their cylindrical com-
ponents. By assessing (3.1-39) - (3.1-45) for ¢ = 0 and using the
cylindrical geometry in Fig. 2, one finds that Ufje = 0 at all of the

wave fronts and
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1) Circular, Dilatational Wave, Ui .

1 ey ‘
Ul st et ) + o((t-td)Z) - (3.1-46)

Z o 2mur?(4?-2)?
as t"*‘td for t>‘td;

2) Circular, Equivoluminal Wave, Ui s

-2{1%-1)c .

A g \

UZ = —=——;~;—-—~(t-ts) + O<(t-ts)2} {3.1-47)
' el

as t=t_ dor >t
s s

3) Circular, Dilatational Wave Front,

22 (12-1)%c
1 d /
U = ————— {t-t,) + O{{t-t,)? 3.1-48
'ITHTZ(»QZ”ZP d \ d ) ( )

as t‘*’td for t> tda

The wave front expansions in (3.1-46) - (3.1-48) could also have been
computed from the exact displacements for ¢ =0 and z =0 in

section 2.7.

3.2. RAYLEIGH WAVES

In section 2.6 the surface displacements were computed for
0 = ¢ < oo, displaying singularities at the arrival time of the triangular
and circular Rayleigh waves. For the horizontal displacements these
waves were separate contributions to the exact solution and they do

not require further investigation. However, for the vertical displace-
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ment the Rayleigh singularities are embedded in the circular waves

as Cauchy principal values and in the triangular waves as algebraic

singularities. In this section the behavior of uz(_)_g,t) near these

singularities is determined.

The most convenient form of the circular waves for assessing

the circular Rayleigh wave is obtained from U‘lZ and Ui in (2.6-6)

by expressing their sum as

The functions Ii, 123 and 1’2 take the form

t/td
= [H(e-t,) - Hit-t ) | (-f?ni (1 a
Tz T d "s} tL }J Z ?
1
:
2 (t NCA
I = H(t-“i:s)t’\—;tz~ 1)3 I dk,
1
-'c/;d/\
3 e £ A3
I = H{L—ts){-;c—- 1>PJ I dk,
L
]
where
{[\ _ ﬂz\/z{kz-l}i(ﬂz'Zl{z}zk
z 2 2 /2 \ 2 1 ’
#mﬁle~Q+igifqéﬂ i”kﬂze&%
EL r td
A 2.,201,.2 %
3. 122 (12 1) 2k
Z

(3.2-1)

(3@ 2—'23,)

(3.2-2b)

(3.2-2¢)

(3.2-3a)

(3.2-3b)
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with G(k®) given in (2.6-7) and

R(KY) = (£%-2K?)* -4(k2-1}%(k2-ﬁ2)%k2 . (3.2-4)

In this form the Rayleigh singularity only appears in I
A

Ez containsg a simple pole at k = YR for t= tRa However, all three

io In particular,

integrands in {3,2-2) contain a non-integrable singularity at k = t/"zd

for t:tL i£X>Oo

3 . . .
To assess IZ- near t = tR’ the arrival time of the circular

Rayleigh wave, equation (3.2-2c) is written with t =t + Atd: td(yR"PA)'

R
as
YR+A
| | h A
- (ff"r + %.93;; - >Pi_ 0| dk . (3.2-5)
R d 7
t = tR+A‘td

If one assumes that [Af << 1, where A is either positive or negative,
then the Rayleigh pole, which is the zero of R(k?) at k = Vg always
lies near the upper limit of the integral in (3.2-5), When assessing
the contribution of this pole one must also consider the singularity

at k= 't/‘td. for t= tL if x> 0. In particular, for ¢ > ¢ the

R
c

contours t=t, and t=t, coincide along the rays 2. .R at the
L R - r c
intersection of the triangular and circular Rayleigh waves., These
rays are shown in Fig. 34 as dashed lines and they are excluded in
the following computation. However, for c¢ < Cros t= tL and t =t

R

do not coincide, as shown in Fig. 34, and the singularity at k = ‘t/td

for t= tL does not enter into the Rayleigh wave expansion,

Then, by "piecing off’the upper limit of the integral in (3.2~5),
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one finds

YR
! - A
13=<C>* +é—ci<-1) §+P§ Ii I dk , (3.2-6)
L B

= +
t tR Atd

where '\;RJrA - B is an arbitrarily small, positive number. The
first integral in (3.2-6) is O(l) as |A|—~ 0. By expanding the inte~-

grand of the second integral about k = YR and using the Taylor series

expansion
2V — 902 W12 a2 2_.,2 -
R{k?) = ZVR‘J{k yR)[1+O{k yR)], {3.2-7)
where \ ) .
/SRy SRY = Ry Ry R
- R 5% .f
v=2(z -2+ ) (1'“) - (*"‘") "“2<1‘““ (1""2*} ‘
Cs €s €4 €q
(30 2"8)
one finds ,
1 yR'rA
3 PWRLE dk
L= (1- < r) [1+O{A)]P§ 4 O(1)
2utury ¥ R 5 E-vR)l lyp )2 BCE

(3.2-9)

as |A]| = 0. The transformation k =(\1R+A)af reduces the integral

pl da —— da + + Of1)
v [(YR"?'A)ZOZZ—YR] (1-02 )2 % [(YRTA}ZQJZ-'\/ J-a%)2 o
Blygra)™ (3.2-10)

as |A|— 0., The definite integral in (3.2~10) is a special case of

;Ln , 0 for A% <1
= de = ) . (3.2-11)
g (A%-?)(1-02)2 | —T | for AZ>1

2{A%-1)2
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which is jcabulated in reference [ 26] (table 12, formula (1) ). Then,

by combining (3.2-10) and (3.,2-11) with A%=~ +A)"% and sub-

VRiVR
stituting the result into {(3.2-9) with A = (‘t—tR)/td, one finds

é C{) for t> tR
1
~LEyE -1 -1 -1 (3.2-12)
g R (1- “‘1} _(1 -;E‘——) +OQ)  for t<tp
g wpry%\v R
) R x 3 .
as t - tR for {——-—a = ‘ >0 and 0=c< o, I” dominates the
| ¢ 1| Z

LT

behavior of u (Xf) as t-—ty and it displays the one-sided, (tp-t)”

singularity which is typical of the surface displacements in three-

dimensional problems (see, for example, Pekeris [ 3] where the sur-

face displacements produced by a stationary point load are computed).
To assess the triangular Rayleigh wave it is convenient to

write Ui and Uﬁ in (2.6-8) as

U+ U =14+1, (3.2-13)
Z A Z Z
where
4 -{c VZ/TTC E‘L d Yz 2%2}2
o (-t ) - ittt ) Bttt )HG) |
HMZSC-lw-’—-Zéﬂ4—16agag<§2+y2)2 |
(3.2-142)
5 _!C YZ/TC zuiad
10 = Ht-t_ )H(t-t; JHx) , {3, 2-14b)

(M2 _-1)y2-262 |2-ge o (E2+)

and M__ is given in (3.1-16a). In this form only I is singular at

the arrival time of the triangular Rayleigh wave., The expansion of
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Ei as t - tRc is an algebraic computation which depends primarily

on the auxiliary result

[OME _-1)y% - 282]% - da o (62 +y7)

1
- [ c* \2 3 c” ‘
= -4 5 1) lv] Lol tpoJl1 + Oft-tp )] (3.2-15)
R R
as tip for [y]}O and c>cp, and it is
2 3 1
£{ye, -1} 5 "3 .
DB (& 1) (-t )7+ OQ) (3.2-16)
Z 4 2 2 j Re
we pyR\l'f R :
3 °R
as t»tRC for = Z-fé:-\- , vl >0, and c¢> CRo The constant ¥ is

given in {3.2-8). The restrictions following this expansion are simi-
lar to those following the wave front expansion of ui in subsection
3.1.1 and they are discussed there. IZ dominates the behavior of
u;{}g;c} as t -~ tRc and it has the two-sided, {t~tRC)"'1 singularity
which is typical‘of the vertical displacement in two-dimensional prob-
lems (see, for example, DeHoop [ 22] where the surface displace-
ments produced by a line load are computed). Furthermdre, the
strength of the singularity in 1'2 increases as ¢ approaches Cre
However, as ¢ = cq the domain of the surface of the half-space
whezre 12 is pertinent shrinks to the position of Ithe load and the
circular Rayleigh wave. Therefore uz(_?_{,‘t) remains bounded for
C=Cps except in the neighborhood of the locad and the ciréular

Ravyleigh wave where the solution is unbounded for all c., This type

of behavior was also observed for uX{;}g;t) in section 2.6,
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The Rayleigh wave evaluation appropriate to the vertical dis-
placement for é stationary point load with time dependence H(t)
can be obtained as a special case of the results given above. That
is, by evaluating {(3.2-12} and (3, 2-16) for ¢ = 0, one finds that only

the circular Rayleigh wave remains and it becomes

B for t> tR
£ - (3.2-17)
+ Oy for t< tR
as ttpo. For A = p the result in (3,2-17) compares exactly with

the corresponding one given by Pekeris [ 3] (see equation (47) of this
reference). Also, the Rayleigh wave expansion in (3.2-17) can be
computed from the exact vertical displacement for ¢ =0 and z =0

in section 2. 7.

3,3, CONTINUITY OF THE DISPLACEMENTS

In constructing the solution in Chapter 2, t = tL and t= ‘tE
arcose as surfaces,; for fixed time and x > .0, on which different
contributions of the displacements have singularities. In particulaf,
the waves emanating from the initial position of the load contain im-
proper integrals and the disturbances trailing behind the load have

algebraic discontinuities on these surfaces. Although each displace-

ment is expected to be continuous over them, a general verification
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of this continuity property is a very tedious computation and it is not
undertaken in this investigation. However, this computation is much
simpler for the surface of the half-space and it is outlined in sub-
section 3.3.1, It should be noted that the technique used there is
applicable to the more general case,

In addition, in the plane under the path of the load a region
arises for transonic and subsonic load motion where the continuity of
the solution must also be investigated, The region in question is
portrayed in Figs, 27 and 32 as the thatched area and a detailed
analysis of the displacements for this region is given in subsection
3.3 2,

3.3.1. On the Surface of the Half-Space.

To verify that uz{z;t) as given in section 2.6 is continuous
over t= tL, it is necessary to show that the discontinuities generated
by the improper integrals in U:; and Ug for t = tL properly coin-
cide with the algebraic discontinuities in Uz and Uj for the same
time. In particular, considering first the dilatational contributions

to u {Xit), U will be evaluated for £t~ t. and the result com-

L

assessed for t — tLg showing that U‘i + Ui is con-

tinuous over t = ‘ch Then, in a similar way, the equivoluminal

contributions to uz(zg,t) will be shown to be continuous over t = tL“
By inspection of (2.6-2a) one sees that for t near tL the

major contribution of the integral in Ui comes from the lower limit

and it can be assessed by the technique used in subsection 3.1.1 for
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the improper integral in uz and in section 3.2 for the one in I‘Z. That
is, by piecing off the lower limit of the integral in (2.6-2a) and

expanding the integrand for small w and t near tL , one finds

€
1 2. 0 adw
UZ« TTNd\) m +O(t-tL) {3.3-1)
0
“a _ x x °R
as t—tp for et e >0,x>0, |y|>0, and 0<c <o,

where az% (—E—-l\ and
b ﬁ\tL /;

1
N o v 2mply]) (yPrP-xt) B (08P 292 0R)2 (3.3-2)
2

)
(JQZXZ—Z‘YZI‘Z}‘}”‘ 16\/41'4( 2.2 2)(\[21'2-»@2}(2)

The integral in {3.3-1) takes the form

€

P ,n :

. adw a dw _m i
v (209 00 - Topm o, (3,33

0 0

where the definite integral is tabulated in reference [ 25] (p. 281,
formula 404) and sgn (~) is defined in {2,5-8}. Then the substitution

of (3.3-3) into (3.3-1) with a _Tlﬁ-—— -1> gives

L_ - - -
UZ = Ndsgn {t tL) + Ot tL) (3.3-4)
“a_x Ix R
as t—t for—-—- =, |=- >0,x>0, |y| >0, and 0 <c < o0
L r’ l r
The restrictions following (3. 3—4) arise naturally in the computation.

c
The condition e > = is vacuous if ¢< 4 and, if c> Cg it implies

that (3.3-4) is not valid across the intersection of the triangular and

circular, dilatational wave fronts. Similarly, the condition

x ‘R

r ¢ |

> 0, which is vacuous if ¢ < CR> implies that this expansion
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is not valid through the intersection of the triangular and circular
c c
Rayleigh waves. The rays defined by -}—;= —E-d and 3::: 5 are shown

in Fig. 34. Furthermore, the condition |y| > 0, which is only

applicable if ¢ < c_, implies that this expansion is not valid at the

d

position of-the load which lies on t=t. for ¢ <c_,. Finally, this

L d

expansion is valid for all values of the load speed which are greater
than zero, even though the relative position of the contour t = t,
varies with different intervals of ¢ as shown in Fig. 34.

The expansion of Uz as t-» tL is an algebraic computation

from equation (2.6-8a) and it is

3_ . . -
Uz— ZNd+O(t tL) (3.3-5)
C C
: . _dox |x__R
as t—t; for t>t ,—=>=, |=-—=1>0, x>0, |[y| >0, and

0 < ¢ < w, where Nd

U. and U as given in (3.3-4) and (3.3-5) yields

is given in (3.3-2)., Then the summation of

1 3 . _ _
UZ +UZ = Nd + Ot tL) (3.3-6)
c c
. dox x R
as t tL for ’t>tL and t<tL’ c>r’ i >0, x>0,‘

l[y] >0, and 0 <c < oo, Asthis equation shows, U“:lz + Uz approaches

the same limit as t -~ tL for t> 'tL and t< ‘i:Lo Therefore the

sum of the dilatational contributions to u (_I>_(,t) is continuous over

By an analogous computation from (2. 6-2b) and {(2,6-8b), one

can show that



~130-

2 4
UZ+UZ— NS+O(t-tL) (3.3-7)
Cs X X CR
as e,'—*’tL for C>tL andt<tL; = >—£, = >O’,x>0,
|yl >0, and 0 < ¢ < oo, where
1
D § 2n 332 1a)202_ g2 2V2 0 2.2
N = (24 V35 Y ] v ) (yPr? - 12x2) 2 (vE P -%2) (3.3-8)

(JQZXZ_ 2Y2r2)4 - 16,{41.4(\121.2_}{2)(\(21,2_ﬂzxz) °

Equation {3.3-7) shows that the sum of the equivoluminal contributions
to uz(g_{;t) is continuous over t = tL“ Consequently, since both the
dilatational and equivoluminal contributions to uz(;x{,t) are continuous
over t = tL’ S50 is uz(_z_(, t} itself,

In a similar way, uxé_;}_gst) and uy(g,t) can be shown to be

continuous over t =1 but no supporting computations will be given.,

L’
3.3. 2. Through the Plane Under the Path of the Load.

As was shown in subsectionélzelh.?; and 2.4.4 for ‘transonic‘and
subsonic load motion, singularities arise in different contributions to
the displacements as |8| = 0 which are peculiar to the plane under
the path of the load. Although physically the solution is expected to
vary continuously as |6]| — 0, it remains to verify this property. As
an example, uy for subsonic 1<Sad motion is assessed in this sub-
section for |6| — 0, showing that U.Y —+ 0 and therefore that U’y
varies continuously through the 6 = 0 plane.

The waves emanating from the initial position of the load that
contribute to uy are given in (2.5-2) for ¢ =y. When expanding

these waves as |0| — 0, one must investigate the integrands in
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{2.5-2) noting, in particular, the singularities that arise for @ = 0

(see {2,4-82) and the text following (2.5-2) for details concerning

these singularities}. Then it follows easily that u;, u;, and uj,

are O(6) as |0| — 0, However, the integrand in u_j_ has an

indeterminant form (% ) for €=0 if tL <t< tch and w = % X o
3

To evaluate u3 as |6] =0 for t. <t< t% , the integral in u
v sdc v

L
must first be assessed for small 8, but with |6| > 0. Then the limit
as iei — 0 is taken. The critical region of the 0 = 0 plane where
u; requires this special consideration is shown in Fig. 32 as the
thatched area. Outside the thatched area, u;_ is O(6) as |o] — 0.
, 3 — o
‘Then, to actually assess U.y as IO] 0 for t, <t< togee

equation (2. 5-2c) is written as

:‘i - Y
a € zas+ sd
3 g +Q Re |[K ( we)fgfﬁ aw (3.3-9)
uy J yvs Qg™ dt ] : ¢
Ts Yo -¢ Xaf +€
zZ S

where € is an arbitrarily small positive number., The first and
third integrals in (3.3-9) are O(0) as |8] - 0, When the integrand

of the second term is expanded about w = :z{ @ by using the trans-

8

formation w = 4;/& @  + [, one finds

€
3.1y (24 )
U’y—”frloa) @“S{*‘O(e) (3.3. 10}
-&

as |6 — 0 for tL<t<‘tch and z > 0, where azycz'zx(tntL)sine

and
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(262 /mu) (2 M2 _-£2 2[ (M M__-1)z? +202]2
No = S . (3.3-11)
o7 108 e F ) e B

Then the substitution of the auxiliary result

€ €
B e )
§ ; -fiz =2 5 *—“é; (.iaz = wsgn (a) +O(a) , (3.3-12)
ke
-€ 0 ‘ '

which follows from (3.3-3), into (3,3-10) with a = 'ycz"zx(t-tL) sin 8

yields
3
U'y = No sgn {6) + O(6) (3.3-13)

o] =0 for t, <t<t%., and z>0,

L sdc
The disturbances trailing behind the load that contribute to
uy are given in (2.5-5) for ¢ =y with (2.5-7). When they are

expanded for small y one finds

N
= Oly) @
E> (3.3-14)

u; = -N_ sgun {y) EH(*; -t H(t—t:dc)] + Oly) j

as |y| =0 for x>0 and z >0, where No is given in (3.3-11).
The contribution u? is identically zero for ¢ < . regardless of

the value of y. As (3.3-14) shows, ufr does not vanish as |y| 0
for x>0 and t, <t< ‘“Od » which is the thatched region in Fig. 32.
By comparing (3.3-13) and (3.3-14) one sees that the non-

vanishing terms in u; and ué’_ are of opposite sign and they exist
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in the same region of the 6 = 0 plane. Therefore, by using (2.5-1)
for ¢ =y. and the results given above for u;, in particular (3.3-13)
and (3.3-14), one concludes that u_y_ = O(8) as {6] - Q0 for =z > 0,
Consequently, uy varies continuously through the 6 = 0 plane and
vanishes in the plane.

In a'similar way, uy for transonic load motion and U and
u, for transonic and subsonic load motion can be shown to vary

continuously through the 0 = 0 plane. However, no supporting com-

putations will be given.

3,4, STEADY-STATE DISPLACEMENTS FOR SUPERSONIC LOAD
) MOTION

As noted in Chapter 2 for the interior and surface solutions,
the disturbances trailing behind the load represent steady-state
contributions to the displacements. For ¢ > c, the load "runs away"
from the waves emanating from the initial position of the load. That
is, for long time these waves do not contribute to the displacements
at points which are a finite distance from the position of the load.
Therefore the disturbances trailing behind the load represent the
entire st,eady—(state solution for. ¢ > cqe By the same type of
reasoning one concludes that for c < 4 these disturbances do notA
represent the entire steady-state solution (assuming that the magni-
tude ofthe waves emanating from the initial position of the load does
not go to zero for long time).

Mathematically, to go from a transient expression which is

a function of (x,y,z,t) to the corresponding steady-state term, one
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substitutes x = ct-§ (where & is the distance from the position of
the load along the x-axis as shown in Fig. 2) into the transient expres-
sion and then lets t tend to infinity. In the limit as t—> co one
assumes that E% : —gf,c— , and EZ~€ go to zero, This leaves the resulting
expression as a function of coordinate points (§,y,2) which are a
finite distance from the position of the load.

By applying either this mathematical technique or the intuitive
argument above to the displacements as given in subsection 2.4.5 and

section 2.5, one finds the steady-state displacements for z > 0 and

C>Cd to be

A /\6

U-m(g{)fsz) = uan(g-nMdcj + umH(ﬁ—nMsc)

AN ;
* U‘ZnH@%L - ¢c> ;!:H(g-.ZMsdc_ in Msc)uH(g—nMsc)}’ (3.4-1)

where M.,

dc? Msc’ and Msdc are given in (3.1-16a)., In this equation

{m = x,y,2) and the hat functions, which have an algebraic form, are
given for m =x in {2.5-6}), m=v in (2.5-7), and m = z in {(2.4-97).
The first term in (3.4-1) represents the conicalsl dilatational wave; the
second the conical, equivoluminal wave; and the last the plane head
wave, These waves are shown in Fig. 36. The steady-state dis-
placements for z >0 and c > cq were also computed by Lansing |

[ 2] by a technique which assumed steady-stateness at the outset, but
he only reduced them to single integrals, As a special case, in the
plane under the path of the load (the y = 0 plane) and for A= p
Lansing integrated his results, leaving the displacements in an

algebraic form which agrees in detail with (3.4-1) assessed for y = 0
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and A = ju (see equations (59) and (60) of reference [ 2]). It should

be noted that the remaining references mentioned in Chapter 1 with
regard to steady-state solutions of the moving load problem do not
contain exact results for the case of supersonic load motion. Instead,
they include special cases which are not considered here,

To obtain the steady-state, surface displacements for ¢ > Cd s
cne applies either the mathematical technique or the intuitive argu-
ment given above to the surface results in section 2.6. Again, only
the disturbances trailing behind the load, which for z = 0 are the

triangular waves, remain and the displacements become

{ux(ng90} (Zczyz/'rrc M{(MZ “1)y2-2£2]a ]

“sd
u (€ 0)J [(M DY -2£2] - 16012a2 (E2+ 2)2 {gsgn(y)
‘ y.\ e :

- [HE- [y Mg )-HiE- [y M Bk 4cp{sgn<y>}5<§“|Y|MRc)

(3.4-22a)
~{c?y? [ ci p}oa
uz(ngfO} =
. [{MZ yz 2&2}4 16a2da28(§2+y2 }2
(einm Va2 2E2] 20706 _ 2.2 - ‘
[ -1y - 287 HE - |y [ M ) e ga (E2+yH)HE- [y [ M, )4,
(3.4-2b)
where MRC = <——5- - 1/5 and the remaining notation is defined in
c
R

section 2.6 and {3.1-16a)., Both terms in {3.4-2b) are singular at

€ = [yIMRcﬁ which corresponds to the arrival time of the triangular
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Rayleigh wave. The behavior of uz(é,y,O) near § = ly]MRC follows
from (3.2-16) and it is

1
Le{yd -1)°

(£7,0) = R (- |y M, )™ + o) (3.4-3)
= 4wp.cs-y:fRE§fMRc i Re

as & — ]ylMRC for |y| > 0.
When the horizontal displacements in (3.4-22a) are expressed

in the polar geometry shown at the bottom of Fig. 36, they simplify to

u (7,$,0) =0 (3.4-4a)
T 1 1
P nZain2 2 z 2 \E [ 2 \
sLesin'e <-—C sin’d - 1> <1 —————CZ gin? ﬁf)) <9-; sind - 2)
| : ﬂ'czslu? c? c cy

2 V4 z ‘ 2 :
(—C? sinzcb-Z) —lé(l-%sinzcb)(l-% sinzci))
CS Cd C

s
* sgn ($)H{-cos ¢) E:H(fé-@ - |sin ¢I> - H(%- lsin¢1>]

A

c ,
sgn{$)H(~cos @6(——% - }sinqb ) . (3.4-4b)

&
doepbMp.

In this form u_ = 0, which implies that all the "in surface plane’
particle motion is normal to thg triangular wave fronts. For A=
the displacements in {3.4-2b) {expressed in terms of the polar co-"
ordinates in Fig., 36) and those in (3.4-4) compare exactly with the
ones given by Lansing [ 2] (see equations (57) and (58) of this
reference}, except that he omitted the Rayleigh wave contribution

to uq})a

The wave front expansions appropriate to the steady~-state
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displacements given in this section can be obtained from the results
in section 3.1 by using the techniques mentioned at the outset of

this section. However, these expansions will not be displayed here.
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coordinate points (x,y,z)
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0=z<w

FIGURE 1

Traveling Point Looad Problem
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FIGURE 16

Wave Pattern in the Surface Plane

for Supersonic Load Motion
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Supersonic Load Motion
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Head Wave Fronts for Supersonic Load Motion
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 FIGURE 20

Body Waves for Supersonic Load Motion
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can be different than shown, but the differences have no
effect on the contour integration. The contour w
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sects the Re w-axis at w = wof for t= tLo

(3) same as Fig. 4

FIGURE 21

Contour Integration in the w-Plane for the Dilatational

Contribution, Transonic Load Motion, Case II
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FIGURE 22

Dilatational Wave Pattern for Transonic

and Subsonic Lioad Motidn
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(This figure is a special case of Fig. 9, namely 0 = 0)

FIGURE 23
Relative Position of the Singularities in the’.q—'Plane for
the Equivoluminal Contribution, Transonic and Subsonic

Load Motion, and the Plane Under the Path of the Load
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Remarks
1) 6>0,z>0

The conditions in remark (1) and {2.4-40) - Case III
determine the relative position of the singularities, the
vertex, and the Re w-axis as shown.

(3) same as in Fig. 11

FIGURE 24

Contour Integration in the w-Plane for the Equivoluminal

Contribution, Transonic Load Motion, Case III
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FIGURE 25

Equivoluminal Wave Pattern for

Transonic Load Motion {(Head Wave Not Shown)
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FIGURE 26

Wave Pattern in the Surface Plane for

Transonic Load Motion
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FIGURE 27

Wave Pattern in the Plane Under the Path

of the Load for Transonic Load Motion



-167-

FIGURE 28

Body Waves for Transonic Load Motion
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Remarks

1)
(2)

(3)

by dashed circles,

6=0,z>0

same as Fig. 4

The Rayleigh poles are shown assuming thgt C>Cpoe
If ¢ <cp these poles are located at w=§
Remark (2) of Fig. 21 holds here,

FIGURE 29

Contour Integration in the w-Plane for the Dilatational

Contribution, Subsonic Load Motion, Case 11
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FIGURE 30

Equivoluminal Wave Pattern for Subsonic

Load Motion (Head Wave Not Shown)
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FIGURE 31

Wave Pattern in the Surface Plane

for Subsonic Lioad Motion
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FIGURE 32

Wave Pattern in the Plane Under the Path
of the Load for Subsonic Load Motion
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FIGURE 33

Body Waves for Subsonic Load Motion
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FIGURE 34

Wave Pattern in the Surface Plane

Including Rayleigh Waves
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FIGURE 35

- Wave Pattern for the Stationary Point Load
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FIGURE 36

Steady-State Wave Pattern for Supersonic

Lioad Motion



