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Abstract

We examine a scenario involving the capture origin of Triton, and infer the
dynamical history of the Neptune satellite system. Triton’s post-capture or-
bit forced chaotic perturbations on the original inner satellites of Neptune,
leading to their mutual collisions and self-destruction. Neptune’s current
inner satellite system re-formed equatorially after Triton’s orbital circular-
ization. The 4.7° inclination of 1989N6 is probably due to a temporary
inclination resonance. The 2:1 secondary resonance of the 1989N6-1989N3
12:10 resonance would eject 1989N6 at 4.7°, matching the observations. We
have established limits for Neptune’s @: 12,000 < @n < 330, 000.

We examine a steady-state scheme for data assimilation in the context
of a single, sun-synchronous, polar-orbiting satellite. The optimal (Wiener)
gains are steady in time, and equivalent to those of a Kalman filter. The
gains are computed by iteration using prior estimates to assimilate simulated
observations of one model run (‘Truth’) into another run. The resulting
prediction errors then form the next estimate of the gains. In model tests,
the scheme works well even if only the mass field is observed. Although the

scheme was developed for Mars Observer, it should be applicable to data



retrieved from Earth atmosphere satellites, e.g., UARS.

Spring and fall Viking IRTM T15 observations are used to estimate the
Martian weather correlation length scale in the range 0.5-1 mbar. The re-
sults are important in providing a benchmark for validating Martian GCMs,
determining the optimal placement of a network of landers, and guiding data
assimilation efforts. Atmospheric temperature observations are used to com-
pute an atmospheric mean state, which is subtracted from the observations
to yield weather temperature residuals. These residuals are correlated with
each other to determine the weather temperature correlation length scale
(~ 1500km) and the weather temperature variance (~ 4 —11K?). This work

suggests that ~ 110 landers are needed to globally observe Mars’ weather.
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Summary

This thesis consists of three papers. The first has already appeared as BAN-
FIELD, D. AND N. MURRAY, 1992: “A dynamical history of the inner Nep-
tunian satellites,” Icarus, 99, 390-401. It was the culmination of the work
I did during my first 3 years at Caltech.. I did a proposition with Peter
Goldreich on the formation of Triton, which progressed into a paper titled
“Neptune’s Story.” This paper outlined what is taken to be the most plau-
sible explanation for the origin of Triton and the strange satellite system of
Neptune. However, this was all done before the Voyager Neptune encounter.
In that encounter, Voyager discovered 6 new satellites of Neptune, but they
weren’t quite oriented as predicted from the “Neptune’s Story” paper. Thus,
I examined what could be learned from the Voyager information about the
satellites in light of the Triton formation story that we had published earlier.
Among the conclusions were an explanation for the inclination of the small-
est, innermost Neptunian satellite, and bounds on the Q value of Neptune.
As celestial mechanics was not the right field in which for me to excel
professionally, I switched abruptly to Martian weather. In preparation for

Mars Observer, Andy Ingersoll was attempting to put together a scheme for



assimilating Mars Observer PMIRR data into a global model of the Martian
atmosphere. Andy and I learned much about data assimilation, and eventu-
ally came up with a technique that is nearly as optimal in its use of data as
the mathematically optimal Kalman filter, yet numerically feasible to imple-
ment with today’s computers. This steady-state Wiener filter is the subject
of the second paper in this body of work. This chapter has been accepted by
the Journal of Atmospheric Sciences. My co-authors are Andrew P. Inger-
soll, and Christian L. Keppenne. Although the work was done when Mars
Observer was a perfectly healthy spacecraft, and thus directed at using the
imminent data from the spacecraft, it can be applied to almost any regularly
orbiting spacecraft probing an atmosphere.

The third chapter is directed at investigating properties of Martian
weather that we can already see in existing data sets. Specifically, it is a
study of the weather correlation length scales on Mars, using Viking IRTM
observations. My co-authors are Andrew P. Ingersoll, Anthony D. Toigo,
and David A. Paige. These investigations are needed to specify the first-cut
gain functions for a data assimilation system such as the one discussed in
the second chapter. They also can be used to suggest optimal placement
densities of meteorological landers, such as the MESUR network proposed to
be sent to Mars in the next decade.

As planetary science is a risky business, we go through great highs and
serious lows. In the first part of my Caltech career, I worked on the imaging
team of the Voyager Neptune encounter, a unique and extremely exciting
experience. Then I started preparing for another mission, Mars Observer.

After a few years of work, I (probably less than many others) was extremely



disappointed to see the mission fail. Nevertheless, we look ahead to what we
can do in the future, and re-direct our work towards the questions that we

still can and want to answer.



Chapter 1

A Dynamical History of the

Inner Neptunian Satellites

1.1 Abstract

We examine a scenario involving the capture origin of Triton, and infer the
probable dynamical history of the Neptune satellite system. Triton’s highly
elongated post-capture orbit forced chaotic perturbations of the eccentricities
of the original inner satellites of Neptune. The resulting large eccentricities
quickly led to mutual collisions and self-destruction of the inner satellites,
leaving a disk of debris. Thus, Neptune’s inner satellite system re-formed
on equatorial orbits after Triton’s orbital circularization. It is unlikely that
these re-formed satellites survived the flux of cometary impactors. Hence,
today’s satellites are probably the remnants of parent satellites destroyed

even more recently than Triton’s capture.



The remaining puzzle is the inclination of 1989N6, at 4.7°. This is prob-
ably due to a temporary inclination resonance capture. 1989N6 has passed
through < 35 inclination resonances in its history. The probability of avoid-
ing all of these is ~24%; we suggest that 1989N6 was temporarily caught in
one. The 1989N6-1989N3 12:10 resonance has a 2:1 secondary resonance that
would eject 1989N6 from the primary resonance at an inclination of roughly
4.7°, matching the observations. We have established the following limits
for the @) value of Neptune: 12,000 < @n < 330,000. The upper limit is
found by requiring the resonant configuration to have occurred during the
satellite’s lifetimes, and the lower limit is found from the requirement that

1989N1 not tidally evolve through corotation.

1.2 Introduction

Three of the giant planets possess regular satellite systems; Neptune does not.
Instead, it has one massive satellite, Triton, on a highly inclined, retrograde
orbit, a small distant satellite, Nereid on a very eccentric and inclined orbit,
and a regular set of small inner satellites. The smallest, and innermost of
this regular set is also inclined by ~ 4.7°. Thus, the origin and dynamical
history of this system is clearly different than that of the satellite systems of
the other three giant planets.

A number of workers (Farinella et al. 1980; McKinnon 1984; Goldreich
et al. 1989) have suggested that Triton was once a rogue body in Helio-
centric orbit, which was captured by Neptune. This hypothesis can explain

many of the features of Neptune’s satellite system. But it only partly solves



the puzzles surrounding the small inner satellites. This paper addresses the
dynamical history of these inner satellites.

This work is based upon the scenario outlined in Goldreich et al. (1989)
(hereafter referred to as GMLB), in which they proposed that Triton was
captured from a heliocentric orbit by collision with a primordial satellite
of Neptune. Triton’s orbit then circularized due to tides. In examining
this proposition in detail, GMLB made predictions about what would be
observed in the Neptune system by the Voyager spacecraft. We re-examine
their conclusions in light of the Voyager encounter with Neptune in 1989,
extending the scenario to explain some of the new discoveries made during
the encounter.

Before Voyager, the only known constituents of Neptune’s satellite system
were Triton, Nereid, and what were believed to be ring arcs. Triton was
known to be a large satellite on a circular retrograde inclined orbit. Nereid,
a small body, was observed to follow a large, prograde inclined and eccentric
orbit about Neptune. The ring arcs were found close to Neptune, at only a
few planetary radii. GMLB concluded that the most plausible scenario for
generating this system started with the capture of Triton from heliocentric
orbit. Subsequently, tidal dissipation reduced the initially large eccentricity
and semimajor axis of Triton’s orbit, leaving the inclination unchanged.

Early in this tidal evolution, Triton’s orbit passed through the region in
which Nereid orbits Neptune. GMLB showed that the perturbations caused
by Triton on Nereid’s orbit were sufficient to account for Nereid’s irregular
(both inclined and eccentric) orbit. They also moted that Triton passed

through Neptune’s equatorial plane numerous times. They inferred that this



would have caused the destruction of any primordial satellites outside of 5
Neptune radii (Rn). Voyager observations confirmed this: six new satellites
were discovered, all inside 4.7 Ry. Thus, the capture scenario of GMLB
successfully predicted the nature of Neptune’s inner satellite system.

Nevertheless, there were predictions made by GMLB that were not found
to be accurate. They predicted that there would be a satellite inside of 5
Ry on an inclined orbit. This satellite was supposed to be large enough to
act as a shepherd to the ring arcs. The satellite was predicted to be on an
inclined orbit, due to chaotic perturbations forced by Triton. Triton would
have imparted a large eccentricity to the satellite as well, but GMLB noted
that any such eccentricity would be damped out by tides on a time scale
short compared to the age of the solar system.

The Voyager observations of the inner Neptunian satellite system revealed
not one inclined moon, but six moons, five of which are on nearly equatorial
orbits. The sixth, the innermost and smallest satellite discovered, follows an
orbit inclined by about 4.7°, and is too small to act as a shepherd to the ring
arcs (Smith et al. 1989). Thus, it appears that there is more to the history
of the Neptune satellite system than was conjectured in GMLB.

In the second section of this paper, we examine the implications of the
above scenario for the early history of the original inner satellites of Neptune.
The third section considers the effects of tidal evolution on the satellites. We
also derive limits on the tidal quality factor, @), of Neptune. The fourth
section explains the inclination of 1989N6 in terms of a temporary resonance
capture. We then discuss the effects of similar resonances on the other inner

satellites, followed by our conclusions.



1.3 Self Destruction of Original System

The conclusions of GMLB were based on the implicit assumption that the
interior satellites of Neptune did not collide with one another. As mentioned
above, GMLB showed that perturbations due to Triton during the time its
orbit circularized would have caused increases in the eccentricity and incli-
nation of the orbits of inner Neptunian satellites. However, if there were
multiple inner satellites, the possibility arises that they would have been
perturbed onto crossing orbits and hence destroyed.

The eccentricities imparted to a satellite by Triton during its orbital cir-
cularization can be estimated as a function of the satellite’s semimajor axis.
GMLB stated that the Triton perturbations can be expressed as a func-
tion of the semimajor axis of the satellite. For eccentricity, this function is
Ae o (a/5RN)%/ m. GMLB also showed that the satellites’ evolu-
tion would be chaotic, and thus can be modeled as a diffusive process, with
eccentricity increasing as the square root of time. We found the constant of
proportionality in this relation by fitting it to the curves in Fig. 6 of GMLB,
which shows the results of a 7 x 107 year calculation of the eccentricity of test
satellites. GMLB noted that when the satellites’ eccentricities are large, they
are also subject to damping under satellite tides. Therefore, in our model of
the effects, we limit the eccentricity gained during the Triton perturbations
to about 0.3, above which tides are more effective at reducing the eccentricity
than the Triton perturbations are at raising it. The value of 0.3 is consistent
with the results in Fig. 6 of GMLB. This analysis yields a function which

is near zero at 2Ry and quickly rises to e ~ 0.3 for ¢ — 5Ry. With these



eccentricities, one satellite just outside of the Roche limit (at ~ 2.7TRy for
ice) would collide with another just inside 5Ry. If there were more satellites
in this region, as there are now, the problem would only be worsened. There-
fore, we believe that any reasonable set of parent satellites in orbit around
Neptune at the time of Triton’s capture would have been on crossing orbits
for some period of time. The timescale for which these orbits overlap is the
eccentricity damping time for these small satellites, roughly 108 years.

We examine the likelihood of mutual collisions between the inner satel-
lites. The orbital periods of these satellites are of order half a day, and their
precession times are of order 3 years. For times much greater than 3 years,
the longitudes, lines of nodes and lines of apses may be considered random.
Without loss of generality, we take a satellite (satellite 1) to be in the equator
plane, and another, satellite 2 to be inclined to that. We denote the satel-
lite radius, semi-major axis and eccentricity by r, @ and e. Our attention is
then focussed on the time when the equatorial satellite is on the other’s line
of nodes. We assume that satellite 1 can be found anywhere along this line
from apocenter to pericenter, with equal probability. Satellite 2 is somewhere
along its orbit, but the probability that it is a satellite radius or less from the
line of nodes is just ra/ma;. The next requirement for collision to occur is
that the first satellite lies between the second’s apoapse and periapse. This
probability is given by [a2(1 +e2) —a1(1—e1)]/[a1(1 + €1) — a1(1 — e;)] where
we have assumed that the satellite 1 is the interior one and that the eccen-
tricities are large enough that the denominator is greater than a satellite
radius. Finally, we require that the second satellite be within the satellites’

radii of the first satellite, along the line of nodes. This probability is just
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(r1+72)/azes. Thus, the probability of a collision per orbit of the first satel-
lite is the product of these three quantities. We take a; ~ a; ~ 3.5RxN and
ey ~ ey ~ 0.3 and r; ~ ry ~ 80km which allows us to simplify the equation

to:
P 2r?

~4

orbit  ma%e’

(1.1)

This yields a collision timescale of about 10® years. Thus, mutual collisions
would almost certainly occur over the 108 years it would take the eccentric-
ities to damp out. Note that this calculation is roughly equivalent to calcu-
lating the number of satellite orbits required for a satellite’s cross-section to
fill in the area in the equator plane accessible to it.

A collision between any of Neptune’s current inner satellites and its neigh-
bor would easily destroy both of the satellites involved. This can be shown

with the following relation from Stevenson et al. (1986):

1 3GM:2
§Mbady1/ifnpact ~ MsatS + ——zat (12)
'Yrsa_t

with § ~ 10%rg - g~ and 4 ~ 0.1. This says that the energy of the impacting
body must be roughly equal to the energy, S, stored in material strength of
the target body plus the gravitational energy of the target body in order
to break it up. For the eccentricities expected, about 0.3, all but 1989N1
could be easily destroyed by an impact with 1989N6, the smallest satellite,
and 1989N1 could be destroyed by 1989N2, 1989N3 or 1989N4. We conclude
that the current satellites could not have existed prior to the time of Triton’s

orbit circularization.
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We propose that the original inner satellite system of Neptune was like the
present inner satellite system, but was destroyed through mutual collisions.
The shards of the collisions quickly damped out all remaining eccentricities
and inclinations due to further collisions, and thus erased any signature of
Triton’s chaotic perturbations. After Triton’s orbit circularized, new satel-
lites formed out of this equatorial disk of rubble within 5Ry, the remnants
of the primordial inner Neptunian system. The daughter satellites had no
“memory” of the inclination or eccentricity perturbations given to their par-
ent bodies by Triton.

To back up these assertions, we examine the magnitudes of the timescales
and processes involved. The timescale for a rubble disk to damp to the
equator plane can be estimated by looking at the optical depth of such a
disk. We model the remnants of the original system as a distribution of
bodies following a power-law size distribution, n(r)dr = n,r=3dr cm™3, (e.g.,
Burns et al. 1984, p. 211). We choose a lower limit of r; ~ lcm, the size
at which sticking forces are significant in the accretion of bodies (Longaretti
1989, p. 54). For the upper bound we choose r, ~ 8km (Harris 1984, p.
653). Neither assumption strongly affects the results. We further assume
that the total mass of 1989N1-1989N6, M,,:, is spread out evenly in a disk

of height h over the range of semimajor axes, a; = 1.9Ry to a, = 4.7Ry.

Msa.ts = %7"2/’”’0(&: - a?)h(ru - 7'1) (13)
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We then wish to determine the optical depth of this disk.
T=hn,mln— (1.4)

Solving (1.3) for hn, and employing the result in (1.4) we find 7 ~ 1073.
We can then estimate the inclination (or eccentricity) damping time scale by
multiplying the orbital period of the particles by the inverse of the optical
depth. This calculation yields timescales on the order of 1 year. Therefore,
it 1s safe to say that an inclined and eccentric rubble disk will quickly damp
to an equatorial disk.

The timescale for re-forming the satellites is an important, although more
difficult question to address. We estimate the accretion time using a simple

formula from Stevenson et al. (1986), assuming a disk of material as above.

m

(1.5)

Tace ™
wric,S)

where m is the mass of one of the satellites, r is its radius, { its orbital
frequency and o, is the surface density of the proto-satellite disk. This yields
a timescale of about 10 years. Because the satellites are near (or within) the
Roche limit, the accretion would probably not be as efficient as is assumed
in this calculation. Nevertheless, the re-accretion timescale is quite short
compared to the age of the solar system. Thus, the rubble quickly settles
down to a flat disk, then slightly more slowly re-forms satellites.

It is unlikely that the sizes or orbital configuration of the primordial

satellites were passed on to their daughter bodies. This is because, given the
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eccentricities involved (~ 0.3), the collision velocities were of the same order
as the orbital velocities, and we can presume that the masses of the colliding
bodies (the primordial satellites) were also of the same order. Therefore,
energy exchanges in the collisions were large enough to have caused significant
semi-major axis changes, Aa/a ~ O(1) in addition to destroying the bodies
involved. We expect the re-accreted bodies to bear little resemblance to their

parents.

1.4 Orbital Evolution

To track the history of the satellites from the time of Triton’s orbital cir-
cularization to the present, we must recognize that other effects have had
much influence on the system. Smith et al. (1989), and Colwell and Espos-
ito (1992), estimate the flux of cometary bodies passing through the Neptune
system in this time period. They show that this flux of impactors would have
destroyed all of the current inner satellites except 1989N1 over the lifetime
of the solar system. These authors derive expected lifetimes for the current
satellites, with that for 1989N6 being as low as 1 to 2 billion years. The
result of a collision between a substantial comet and one of the inner satel-
lites would be similar to the evolution following mutual collision disruption:
damping of the rubble from the parent satellite to a disk, possibly followed
by equatorial re-accretion.

Tides raised by the satellites on Neptune have also had significant influ-
ence on the system over this time period. Furthermore, by examining the

tidal evolution of the inner satellites, we can derive upper and lower limits on
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the @ value of Neptune. Because 1989N1 is the only satellite likely to have
survived intact since the time Triton’s orbit circularized, Teirc, it is the only
one we can use to set a lower limit on Qu. Tides raised on Neptune by a
satellite affect that satellite’s semimajor axis (e.g., Goldreich and Soter 1966).
Prograde satellites outside corotation move away from the planet, while satel-
lites inside corotation move inward. At the semimajor axis corresponding to
corotation with the planet, there is no evolution of the satellite’s semimajor
axis. Therefore, because we observe 1989N1 outside of corotation, it was
never inside that point. The lowest value of @ that would place 1989N1 at
corotation just after Triton’s orbit circularized is 12,000 x ilq,'i—if:ﬂ. Note,
however, that this and other calculations in this paper assume a time and
frequency independent value for Qn.

We can also derive an upper limit for Qn because, as we will discuss
below, 1989N6 must have gone through a particular inclination resonance
to explain its currently observed 4.7° inclination. That is, there must have
been enough tidal change in the satellites’ orbits for them to have once been
in this resonant configuration. Furthermore, this had to have occurred since
the time 1989N6 was created by the disruption of its parent body. Because
this time is not well known, we will derive the upper limit under the weaker
constraint that this occurred since Triton’s orbit circularized. This yields a
value of @y < 330,000 x é%cifa—rﬁ; probable limits are one half to a quarter
of this value since the survival time for 1989N6 against cometary impacts is
1 to 2 billion years.

As Fig. 1.1 shows, the four innermost moons are inside the Roche limit

(~ 2.7Ry for icy satellites). However, this situation is not unique in the Solar
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1688N1-Proteus

........
- ° s
--------

® e

............
c e,
°

1888N4—-Galatea

1888N3~Deupina

1989N8~Nalad

Neptune

Fig. 1.1: This shows the inner Neptunian satellite system in plan view at
the current time. The planet is at the bottom, the orbits of the satellites
are shown to scale, and the rings have been left out for clarity. We have
also indicated the location of the corotation orbit and the Roche limit for icy
bodies. Note that there are four satellites currently inside the Roche limit.
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System. Jupiter has two satellites well inside the Roche limit and Uranus
has five. The average radius of these bodies is ~ 20km. Accretion is possible
within the Roche limit, as non-gravitational forces can allow bodies to stick
together after collisions. This is particularly true for bodies of this size and
smaller, where material strength is a force comparable in magnitude to that of
gravity. However, accretion is not the only mechanism for producing satellites
inside the Roche limit. We sketch here a possible scenario for the satellites’
history which could yield the current distribution. We do not suggest that
this scenario is unique, merely that it is possible. 1989N1 has probably
survived since the time of Triton’s orbital circularization, moving out to its
present location under the action of planetary tides. 1989N2-1989N4 now
straddle the Roche limit, but could easily have all formed outside of it, then
migrated inwards due to planetary tides. It is also possible that 1989N5 and
1989N6 are the remnants of an impact on a larger parent body. This parent
body could have formed beyond 2.7Ry and migrated inside the Roche limit
due to the stronger tides produced by its larger mass. We conclude that the
satellites could have accreted within the Roche limit or arrived there under

the action of tides and collisions.

1.5 Inclination of 1989IN6

The only puzzle that the above scenario leaves about the inner satellites is
that 1989N6 is elevated out of the equatorial plane by 4.7°. The five other
newly discovered satellites all have orbits that lie very near to the equator

plane of Neptune, as we would expect from the formation scenarios sketched
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above. What produced the inclination of 1989N67

One possibility is that a collision between 1989N6 and a passing comet
explains the satellite’s observed inclination of 4.7°. However, this comet must
not destroy 1989N6; otherwise it would just re-accrete from an equatorial disk
of debris. Using the collisional breakup calculation from above, (1.2), and a
cometary impact speed of ~ 14km - s, we find that the largest comet that
could hit 1989N6 without destroying it is only ~ 10™° the mass of 1989NG6.
Such an impact would impart an inclination of roughly that same magnitude,
well under the 4.7° that is observed. We conclude that an impact by a comet
cannot produce the observed inclination of 1989N6.

Uranus’ satellite, Miranda is observed to be inclined by a few degrees,
much like 1989N6. A possible explanation for this inclination is given in
Tittemore and Wisdom (1989) (T&W89), and in Malhotra and Dermott
(1990) (M&D90). These authors demonstrate that an inclination resonance
between Miranda and one of the other satellites of Uranus probably existed
for some time in the past. A consequence of this occurrence is that Miranda’s
inclination grew as the satellites’ orbits evolved under tidal dissipation in the
resonance. Eventually, Miranda was ejected from the resonant configuration
due to a secondary resonance, leaving Miranda with its current inclination.
1989N6 could have experienced a temporary resonance capture in a manner
much like Miranda. Therefore, in the remainder of this paper we will explore
the possible resonant states that the inner Neptunian satellite system passed
through since its formation, with a watchful eye for those resonances that
could have resulted in the observed inclination of 1989N6. The responsible

primary-secondary resonance combination should not only have a reasonably
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Table I: Inner Neptunian Satellites Physical Characteristics®

Name Radius a i e Mass?
1989N1 Proteus 208+ 8km 4.75Ry 0.04° 0.0004 4.0 x 10*g
1920N2  Larissa 96+ 7km 2.97Ryx 0.20° 0.0014 4.3 x 10%g
1989N4 Galatea 79+ 12km 2.50Ry 0.05° 0.0001 3.7 x 10%'g
1989N3 Despina 74+ 10km 2.12Ry 0.07° 0.0001 2.1 x 10%'g
1989N5 Thalassa 40+8km 2.02Ry 0.21° 0.0002 3.2 x 10%°g
1989N6  Naiad 29 + 6km 1.94Ry 4.74° 0.0003 9.9 x 10'°g
! The data for this table was taken from Owen et al. (1991) and

Thomas and Veverka (1991).

2 The masses are calculated assuming p ~ 1.2 g-cm™

3

likely capture probability for the primary resonance, but also that primary
resonance must be stable against tidal forcing. Furthermore, the secondary
resonance involved should also have a reasonable capture probability and
be stable against tidal forcing as well. The secondary resonances must also
cause the satellites to be ejected from the primary resonance at an inclination
roughly matching 1989N6’s current 4.7°.

In order to identify possible resonance passages, Fig. 1.2 shows a model of
the tidal evolution of the inner Neptunian satellites, with Q) chosen to start
1989N2 just inside corotation at time, T... Had there been no cometary
impacts, this would be the most possible tidal evolution the system could
have experienced. The values of the masses used are given in Table I. The
masses are very poorly constrained for these satellites, so the calculations
were also performed for reasonable limiting cases. However, the curves are
not significantly affected by this. We have restricted our attention to second-
order resonances because those are the lowest order resonances that involve,

and thus can affect, the inclination. The vertical bars on Fig. 1.2 represent
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Fig. 1.2: A model of the tidal history of satellites 1989N1-1989N6, cal-
culated with Qn assumed to be 23,000. The vertical lines represent times
when 1989N6 was in a second-order commensurability with one of the other
satellites. Note that none of the satellites cross corotation.
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the times when the two satellites connected by a bar passed through one of
these commensurabilities. Because we are interested in explaining a change in
1989N6’s inclination, we have only indicated those involving 1989N6. Com-
mensurabilities between 1989N6 and 1989N1 were also ignored, due to the
fact that any resonance passages between these two satellites could not re-
sult in capture (e.g., Peale 1986, p. 178). 1989IN1 is evolving outwards, and
1989N6 is falling in; so the divergence of their orbits causes possible reso-
nances between them to have zero probability of capture. The other satellites
are all falling towards Neptune faster than 198IN6 (a result of 1989N6’s very
small size, which outweighs its proximity to Neptune), and thus resonance
passages with them could result in capture.

There are roughly 35 second-order mean motion commensurabilities that
1989N6 could have passed through since Triton’s orbit circularization. They
range from a 4:2 commensurability with 1989N2, to a 36:34 commensurabil-
ity with 1989N5. Each of these mean motion commensurabilities actually
consists of six resonances, three involving inclinations and three involving
eccentricities. The names and arguments of these resonances are given in the

order they are encountered by:

12 resonance bz = (p+2)Az — pre — 206

16ty TESONAnce Bigi, = (p+ 2)he — pre — 6 — {1z
42 resonance $2 = (p+2)As — phe — 20y

e2 resonance $e2 = (p+ 2)Az — pls — 200,

€¢€, Tesonance Gege. = (P+ 2)Ag — pre — We — We

eZ resonance ¢z = (p+2)As — phe — 2w
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where the subscript = denotes the other satellite involved in the resonance.
We have ignored the eccentricity resonances (€2, eges, e ) for two reasons.
First, we are interested only in the possible inclination effects of resonance
capture, and eccentricity resonances do not affect inclination. Secondly, their
perturbations on the other resonances are small. The magnitude of the per-
turbations between two resonances can be expressed by the ratio of the res-
onances’ libration widths to their separations (Dermott et al. 1988). We
have examined this ratio for all of the eccentricity resonances, both first and
second-order, and for all of the inclination resonances. We found that, for
reasonable eccentricities (e ~ 0.0004) and initial inclinations (i ~ 0.06°), the
perturbations due to the eccentricity resonances are smaller than the per-
turbations due to the nearest inclination resonance. Therefore, it is safe to
ignore the eccentricity resonances.

We have further restricted our attention to only one of the three incli-
nation resonances, that which affects only the inclination of 1989N6, or the
i2 resonance. The inclination resonances are well separated from each other
at the presumed initial inclinations and thus can be considered individually
during capture. We ignore the third inclination resonance encountered, 2,
because it only involves the inclination of the other satellite in the reso-
nance, and thus could not have increased 1989N6’s inclination. The second
inclination resonance, %gis, involves both inclinations, but has the effect of
increasing both satellites’ inclinations if they are captured into it. In order to
increase 1989N6’s inclination to 4.7°, the inclination of any of the other satel-
lites would have had to be increased to a value higher than what we observe

today. An unlikely possibility is that this did occur, but that a later cometary
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impact then obliterated the remnant inclination of the other satellite in the
resonance, thus reconciling this possibility with the observations. We believe
it is safe to take this as so unlikely that none of the i4t, resonances were re-
sponsible either, and we are left with only the 1989N6 inclination resonance
at each commensurability as a viable candidate.

We are now interested in the likelihood that the satellites will become
captured into these i2 resonances. Particularly good discussions of the math-
ematics involved can be found in Borderies and Goldreich (1984), Tittemore
and Wisdom (1988), and Dermott et al. (1988), and we refer the reader there
for the details of the calculations. A property of these resonances is that if
the resonance is encountered with the satellite having an inclination below
a certain value, then capture into the resonance is certain. The probability
of capture falls off if encounter occurs with an inclination above this value.
Table II lists the critical inclinations, and the resulting capture probabilities
for the 35 possible resonance encounters. In calculating these quantities, we
have assumed an initial inclination of 0.06° for 1989N6. This value is con-
sistent with the current distribution of the inclinations of the other inner
Neptunian satellites. Under this assumption, the resonances are all encoun-
tered at an inclination well above the critical inclinations. It is interesting
to note that all of the resonances have capture probabilities between 2% and
10%. We can conclude from this that if the satellites passed through most
of the commensurabilities, the chances that 1989N6 was caught into one of
these is about 76%. Therefore, it is very likely that 1989N6 was temporarily
caught into one of these resonances.

Are the resonances strong enough to actually retain the satellites’ tra-
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Table II: 1989N6 Primary Resonance Results

Resonance

Sats p+2:p ferit Pcapture Qmin
N6-N5 16:14 .00138° 2.1 130
N6-N5 17:15 .00138° 2.1 110
N6-N3 6:4 .00431° 6.5 1500
N6-N5 18:16 .00138° 2.1 96
N6-N5 19:17 .00137° 2.1 85
N6-N2 4:2 .00677° 10.2 3000
N6-Nb5 20:18 .00137° 2.1 75
N6-Nb 21:19 .00137° 2.1 67
N6-N3 7:5 .00422° 6.3 1200
N6-N4 5:3 .00596° 8.9 2300
N6-Nb 22:20 00137° 2.1 59
N6-N5 23:21 .00137° 2.1 53
N6-N5 24:22 .00137° 2.1 48
N6-N3 8:6 .00417° 6.3 880
N6-N5 25:23 .00137° 2.1 43
N6-N5 26:24 .00137° 2.1 39
N6-N3 9:7 .00412° 6.2 670
N6-N5 27:25 .00137° 2.0 35
N6-N5 28:26 .00137° 2.0 32
N6-N3 10:8 .00409° 6.1 530
N6-N5 29:27 .00137° 2.0 29
N6-Nb 30:28 .00136° 2.0 26
N6-N3 119 .00406° 6.1 420
N6-N5 31:29 .00136° 2.0 24
N6-Nb 32:30 .00136° 2.0 22
N6-N3 12:10 .00404° 6.1 340
N6-N4 6:4 .00579° 8.7 1700
N6-N5 33:31 .00136° 2.0 20
N6-N3 13:11 .00403° 6.0 270
N6-Nb5 34:32 .00136° 2.0 19
N6-N3 14:12 .00401° 6.0 230
N6-N5 35:33 .00136° 2.0 17
N6-N3 15:13 .00400° 6.0 190
N6-N5 36:34 .00136° 2.0 16
N6-N3 16:14 .00399° 6.0 160

net capture probability ~ 76% I
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jectories? Tidal evolution brings the satellites into a resonant configuration,
yet it can also carry them right through a resonance unless the strength of
the resonance is enough to maintain the configuration. At very high rates
of tidal dissipation, or with very weak resonances, the satellites’ trajectories
will not be remain in the resonance (Dermott et al. 1988). We can address
this issue by examining the strongest tidal dissipation that will allow the
resonance to remain intact at the point when the resonance is weakest. The
strength of the resonance is proportional to the square of the inclination of
1989N86, so that at very small inclinations the resonance is very weak. Thus,
if we find that the resonance is strong enough at plausible initial inclinations,
the resonant configuration will be maintained throughout the satellite’s tidal
evolution and climb in inclination, ignoring other effects. A complete discus-
sion of the mathematics involved can be found in M&D90. We have chosen
to represent the minimum strength of the resonance by the minimum tidal

@n value that would allow it to retain the satellites:

(p + 2) RN 5a; 1 1
> 2k — ) —3 1.6
QN = 26?;721(&) ( a, ’ ae Zg [p2(%:)2 + (P + 2)2%] ( )

where m is a satellite mass and 65721 (a) is the Laplace coefficient. The Love
number is ky = 3GMpyJz/w?Ry ~ 0.39 (Dermott et al. 1988) using the
values of J;, My and Ry given in Tyler et al. (1989) and wy from Warwick
et al. (1989). The results of this calculation for each of the resonances are
also shown in Table II. These minimum Qn’s are all well under 12,000, which
is likely to be the actual minimum value of Q) as discussed above. Therefore,

all of these primary resonances are strong enough to be viable.
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We now need to determine which of the 35 possible resonances could
have raised 1989N6 to its currently observed 4.7° inclination. T&W89 and
M&D90 found that Miranda was ejected from an inclination resonance by
a secondary resonance inside the primary one. This occurred at the 4.3°
of inclination at which we find Miranda. Therefore, we will investigate the
inclinations 1989N6 would be at if it had been ejected from each of these 35
primary resonances by a low-order secondary resonance. A good discussion of
the events that occur during evolution in the resonance appears in T& W89,
particularly their Figs. 5 through 14. These authors have described the
system in terms of action-angle coordinates, which we adopted as well. The
angle is chosen to be the argument of the i2 resonance, which librates about a
particular value if in resonance. The action is then a function directly related
to the satellite’s inclination. So, under tidal evolution in the resonance, the
resonance is said to climb in inclination (action) and carry the satellite with
it.

How do the satellites escape the resonance? As we mentioned before, the
resonances are weakest at low inclinations, so that as they climb in inclina-
tion, they become stronger. This means that they occupy a larger region
of space in action-angle coordinates. The strength of the ¢gi, resonance is
proportional to the inclination of 1989N6 as well. So as 1989N6 climbs in in-
clination, the g7, resonance is growing in strength too. At some point, these
resonances will have grown in strength enough so that they are no longer
well separated. That is, the libration regions of the resonances will nearly
overlap, and the resonances will significantly perturb one another. This is

dramatically evident in Fig. 7 of T&W89. At this point, the separatrices of
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the resonances become chaotic, and secondary resonances, caused by pertur-
bations from the 7gi, resonance on the librations in the 7% resonance, start
to appear. The secondary resonances are the result of low-order commensu-
rabilities between the libration frequency of the satellites’ trajectories in the
i2 resonance with the perturbation frequency of the other resonances; in our
case, the most important resonance is the igi, resonance. The frequency of
libration in the i2 resonance is a function of the amplitude of the libration,
being highest for very small oscillations and dropping to zero at the separa-
trix. Furthermore, the libration frequency for small oscillations increases as
the strength of the resonance grows and the satellite climbs in inclination.
The perturbation frequency of the i4i, resonance is given by the difference of
the circulation rates of the resonant arguments of the i% and igi, resonances.
The result of all of this is that secondary resonances are created at the stable
fixed point of the primary resonance and then move out towards the separa-
trix of the resonance as evolution continues. Thus, the secondary resonances
sweep past the trajectory of the satellites in action-angle coordinates and can
possibly capture their trajectory, much like the primary resonance did. If the
secondary resonance does capture the satellites’ trajectory, it then drags it
out to the separatrix, where it can escape the primary resonance entirely.
To decide which primary resonance carried 1989N6 to its current inclina-
tion, we now need to examine each primary resonance’s secondary resonances
in similar detail as we did the primary ones. That is, their capture proba-
bilities, strengths against tidal forcing, and inclinations at which they would
eject the satellites from the primary resonance must be computed. This is

because the scenario requires the satellites’ trajectory to be caught into a sec-
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ondary resonance (hence the necessity of the capture probabilities) and follow
it out to the separatrix (meaning that stability against tides is necessary).
At that point, the satellites’ trajectory can escape the primary resonance at
a particular inclination depending upon which primary and secondary res-
onances are being examined. This inclination of escape should match the
observed 4.7° for the appropriate primary-secondary resonance combination
responsible for 1989N6’s inclination.

To compute the secondary resonances’ capture probabilities, we followed
the analysis presented in Malhotra (1990) for perturbations on the 72 res-
onance by the i, resonance. She considers only the 4:1, 3:1, 2:1 and 1:1
resonances because those are the strongest secondary resonances. We find
that this is reasonable for our case as well, since the 4:1 secondary resonances
are already of almost negligible capture probability. Furthermore, we did not
need to consider the 1:1 secondary resonances at all because in all cases, the
2:1 resonances were encountered below their critical value and thus all had a
capture probability of unity. As a result, the trajectories could never reach
the 1:1 secondary resonances. In Table III, we present the results of the calcu-
lations for capture probability into the 4:1, 3:1 and 2:1 secondary resonances
for each of the possible primary resonances. For the capture probabilities
in the table, we include both the probability concerning capture into that
particular primary resonance, and the probability of not being caught into
a secondary resonance before the one considered. That is, the probabilities
listed in the table are the overall probabilities for the satellites’ trajectory
to be caught into that particular secondary resonance of that primary res-

onance. In these calculations, the initial inclination of 1989N6 was again
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Table ITI: 1989N6 Secondary Resonance Results

Resonance 4:1 Secondary 3:1 Secondary 2:1 Secondary
Sats p+2: D P(%) Qma'n z.eu:ape P(%) Qmin iescape P(%) Qmin iescape
N6-N5 16:14 0.3 33x10t 2.0° 03 9.0x10% 25° 1.5 260 3.8°
N6-N5 17:15 0.3 2.5x 104 1.6° 04 7.6x10% 2.0° 1.3 240 3.0°
N6-N3 6:4 iencounter > 15° iencounter > 15° icncounter > 15°
N6-Nb 18:16 0.4 1.9 x 104 1.3° 04 6.4x10° 1.7° 1.3 220 2.5°
N6-N5 19:17 0.4 1.6 x 104 1.1° 0.4 5.5 % 103 1.4° 1.3 200 2.0°
N6-N2 4:2 fencounter > 15° tencounter > 15° fencounter > 15°
N6-N5 20:18 0.4 1.3 % 10* 0.9° 04 4.7x10% 1.2¢ 1.2 190 1.7°
N6-Nb 21:19 0.4 1.1 x 104 0.8° 04 4.1x10° 1.0° 1.2 180 1.5°
N6-N3 7:8 fencounter > 15° fencounter > 15° fencounter > 16°
N6-N4 5:3 lencounter > 10° iencounter > 15° fencounter > 18°
N6-N5 22:20 05 8.7x10% 0.7° 05 36x102 09° 1.2 160 1.3°
N6-N5 23:21 05 7.3x10% 0.6° 05 23x10%. 0.8° 1.1 120 1.1°
N6-N5 24:22 05 6.2x10% 0.5° 05 28x10% 0.7° 1.1 140 1.0°
N6-N3 8:6 05 7.9x10% 11° 0.9 1.1 x 108 15° fencounter > 18°
N6-N5 25:23 05 53x103 04° 0.5 25x10% 0.6° 11 140 0.9°
N6-N5 26:24 05 46x10% 0.4° 05 23x10% 0.5° 1.0 130 0.8°
N6-N3 9:7 05 44x10% 7.0° 1.0 7.0x10* 9.3 4.7 1200 15°
N6-N5 27:25 06 4.0x10° 04° 05 21x10% 05° 1.0 120 0.7°
N6-N5 28:26 06 35x10% 0.3° 0.5 1.9x10% 04° 1.0 120 0.6°
N6-N3 10:8 0.6 2.6x10° 4.8° 1.0 49x10%¢ 6.2° 4.5 960 9.7°
N6-N5 29:27 06 31x10% 0.3° 05 1.7x10% 04° 0.9 110 0.6°
N6-Nb 30:28 06 28x10% 0.3° 05 16x102 0.3° 0.9 110 0.5°
N6-N3 11:9 0.7 16x10° 3.4° 1.1 35x10¢  4.3° 4.3 800 6.6°
N6-N5 31:29 06 25x10% 0.2° 0.5 1.5x 103  0.3° 0.9 100 0.5°
N6-Nb5 32:30 07 23x10% 0.2° 0.5 14x10% 03° 0.9 96 0.4°
N6-N3 12:10 0.8 1.0x 105 24° 1.1 2.6x 10%  3.1° 4.1 690 4.7°
N6-N4 6:4 iencountcr > 15° iencounter > 15° iencounter > 15°
N6-N5 33:31 0.7 21x10° 0.2° 0.5 1.3x 108  0.3° 0.9 93 0.4°
N6-N3 13:11 0.9 7.0x 104 1.8° 1.2 20x10% 23° 3.9 560 3.4°
N6-N5 34:32 0.7 20x10% 0.2° 0.5 1.2x 108  0.2° 0.8 90 0.4°
N6-N3 14:12 1.0 4.9x 104 1.4° 1.2 1.6 x 10* 1.7° 3.8 520 2.6°
N6-Nb& 35:33 0.7 18x10% 0.2° 05 LIx103 0.2° 0.8 87 0.3°
N6-N3 15:13 1.1 3.6x104 1.1° 1.3 1.2 x 104 1.3° 3.6 460 2.0°
N6-N5 36:34 0.7 1.7x10% 0.2° 05 1.0x10° 0.2° 0.8 84 0.3°
N6-N3 16:14 1.2 27x10* 0.8° 1.3 1.0 x 10% 1.1° 3.5 410 1.6°
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assumed to be 0.06°. Some of the entries are listed as “tencounter > 15°.”
The inclinations of encounter for these particular secondary resonances were
sufficiently high that one of the central approximations of the analysis, that
sin? ~ ¢, was no longer valid.

A method for estimating the strength of the secondary resonances against
tidal forcing is presented in M&D90. We have used this to compute the mini-
mum @y values at which each of the secondary resonances could still capture
a satellite. These calculations are also presented in Table III. Note that the
minimum @p’s of the differently indexed secondary resonances each vary by
roughly an order of magnitude. The 2:1 resonances only need Qn greater
than about 400 in order to hold the trajectory, while the 3:1 resonances need
Qn greater than about 10%. The 4:1 secondary resonances require @ n values
greater than about 10* to remain intact against tidal forces. We found earlier
that due to considerations of tidal evolution and the location of co-rotation,
the @) value of Neptune could be no less than about 12,000. Therefore, the
2:1 and 3:1 secondary resonances are unaffected by the tides, but the 4:1
resonances could have been broken up by them if the @) value of Neptune is
near its lower limit.

The only question left to address is the actual inclination at which these
trajectories escape from the resonance. This is the observable that we are
trying to match with our scenario, and thus an important quantity. Previous
works of this nature, e.g., T&W89 and M&D90 have performed numerical
simulations of the evolution in the resonance to determine at which incli-
- nation the trajectory would escape. We calculate the inclination at which

the satellite is ejected from these various resonances analytically. When
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the primary resonances’ libration regions start to overlap, their perturba-
tions on one another become significant. In addition to creating secondary
resonances, the perturbations also cause the separatrices of the primary res-
onances to broaden into regions of chaotic trajectories. Soon after a sec-
ondary resonance, bearing the satellites’ trajectory, reaches the inner edge of
the chaotic separatrix, the trajectory escapes from the primary resonance en-
tirely. Therefore, we examine when the relevant secondary resonance meets
the chaotic separatrix of the primary resonance, and then postulate that it is
at this inclination that the trajectory will escape. We verify this approach by
comparing with the results of numerical simulations carried out by M&D?90.

The width of the separatrix can be estimated using the Melnikov-Arnold
integral as outlined in Chirikov (1979), and Lichtenberg and Lieberman
(1983). The libration amplitude at the inside edge of the primary resonance’s
chaotic separatrix, ¢s, is expressed by:

AH iz (S 7S
COS sy = T 16w — (———) exp (— 2w10> (1.7)

g \Wi,

where S is the perturbation frequency of the igi, resonance on the 2 res-
onance, wy,(z) is the central libration frequency of the primary resonance,
and AH/H,, is the fractional variation of the energy along the separatrix of
the primary resonance. We find the position of the secondary resonance by
solving the equation for the libration frequency in the primary resonance as
a function of libration amplitude, and equating that to a multiple of the igi,
resonance perturbation frequency. The perturbation frequency is a constant,

and the libration frequency as a function of the libration amplitude, ¢4z, is
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given by (e.g., Lichtenberg and Lieberman 1983, p.26):

w = wl°(i)2)C7r_(n) (1.8)

where & = sin @mes/2, and K(&) is the complete elliptic integral of the first
kind. The inclination at which the secondary resonance and the chaotic
separatrix first touch is then used as the inclination of escape. The results of
these calculations for each of the secondary resonances in each of the primary
resonances, are presented in Table III.

We have assumed that when the secondary resonance encounters the
stochastic layer about the primary’s separatrix, the trajectory escapes the
primary resonance. We checked this assumption using statistics from
M&D90. They ran 55 trajectories through similar resonances involving Mi-
randa, and found distributions for the inclinations of escape. These are
plotted in Fig. 1.3, along with a calculation of the width of the chaotic layer
and the position of the secondary resonances in libration amplitude. The
intersection between the inner edge of the chaotic zone and the location of
the secondary resonance corresponds quite well with the inclination at which
the trajectories escaped, verifying our assumption. Therefore, we feel that
this calculation is a valid method for estimating the inclination at which a
secondary resonance will eject a trajectory from a primary resonance. How-
ever, it is important to note that the M&D90 integrations were performed
at an artificially low value of Q. This may have affected their results in that
the stronger tides might have destroyed the actions of other subtle effects

that were neither observed in their investigation nor accounted for in our
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We have used the intersection of these curves to predict the inclination at
which satellites captured in resonance would escape that resonance. To back
this up, we show the results of numerical simulations by M&D90 in which
they evolve 55 trajectories through the primary resonance. The inclinations
of escape that they found agree quite well with the intersections of the curves
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analyses.

Upon examining Table I11, it is clear that there are 3 candidate resonances
that could have resulted in an expulsion of 1989N6 from a primary inclina-
tion resonance at ¢ ~ 4.7°. These are the 1989N6-1989N3 12:10 resonance
(through its 2:1 secondary resonance), the 1989N6-1989N3 11:9 resonance
(through its 3:1 secondary resonance), and the 1989N6-1989N3 10:8 reso-
nance (through its 4:1 secondary resonance). The last one, employing the
4:1 secondary resonance has a probability of occurrence of at most 0.6%,
assuming the @) value of Neptune is greater than 250,000; an assumption
that is not wholly sound. The second one, using the 3:1 secondary resonance
has a probability of occurrence of about 1.1%, assuming that Neptune’s Q)
is greater than about 34,000. The first one mentioned, the 12:10 resonance
between 1989N6 and 1989N3 with the orbit trajectory exiting the resonance
on the back of the 2:1 secondary resonance has a probability of occurrence of
about 4.1%. Therefore, we believe that this is the best candidate for explain-
ing the inclination of 1989N6. The total probability, including capture into
the primary resonance, capture into the secondary resonance, and escape at
the right inclination works out to be ~ 4%. This is not an overwhelmingly
likely probability, but neither is it astronomically small. In fact as mentioned
above, the more interesting statistic to look at is the probability that 1989N6
didn’t get caught into any of these resonances, only 24%. Therefore, since
it is very probable that 1989N6 was caught into one of the resonances, this
particular resonance, being as likely as any of the others, is a good candidate.
Furthermore, this scenario matches the observations.

Because the actual masses of the satellites are so poorly known, we did
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these calculations again for both higher and lower ratios of the other satel-
lites’ masses to 1989N6. The results showed very similar capture probabilities
and resonance strength limits on Qu. The major difference was that the in-
dex of the primary resonance responsible for the inclination may have altered
by one. That is, instead of the 12:10 resonance being the most likely can-
didate, the 11:9 (or 13:11) resonance through the 2:1 secondary resonance
may have better fit the 4.7° observation. The important thing to note is that
the probability of capture is unchanged, and the scenario is fundamentally
unchanged as well. Therefore, the actual masses of the satellites, within the
bounds consistent with the observations, are not critically important pieces

of information to these calculations.

1.6 Other Satellites’ Resonances

As a consistency check, it is possible to perform all of the resonance calcula-
tions for 1989N5 as well, treating it as we did 1989N6 above. One finds that
1989N5 passed at most 23 commensurabilities. If @ is taken to be at its
lower limit, 12,000, then the probability that 1989N5 was caught into a res-
onance that would eject it at an inclination greater than what it is observed
to be at (0.14 £ 0.06°) is about 70%. However, if Qn is taken to be near its
upper limit, 330,000, then the reduced tidal evolution means that 1989N5
passed fewer resonances, and had a probability of arriving at an inclination
higher than that observed of only about 40%. Furthermore, regardless of the
value of Qp, there was about a 20% chance that 1989N5 was caught into

a resonance and ejected at an inclination consistent with the observations.
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Therefore, the resonances involving 1989N5 are not inconsistent with the
observations, however they do slightly favor a high value of Q.

We mentioned above that there are in fact three inclination resonances
for each mean motion commensurability. In the preceding discussions, we
only considered the first one encountered, the 2 resonance. We should rec-
ognize that the other two resonances are encountered, and if the trajectory
escapes the first resonance, the other two could possibly catch it, and raise
the other satellites’ inclinations. We have calculated the capture probabilities
for these other two sets of inclination resonances for each commensurability.
The overall probability that one of these resonances caught either 1989N5
and another satellite or 1989N6 and another satellite is about 60%. This
probability is calculated assuming Q) is at its lower limit. If Q)x were near
its upper limit, this probability would drop to about 40%. Because we do not
observe the other satellites to be inclined to any great degree, we conclude
that none of these resonance passages resulted in capture. This part of the
analysis also somewhat favors a high value for Q.

The orbits of 1989N1-1989N4 are all diverging, so that no two of these
satellites were ever captured into resonance. However, the inclination reso-
nances are still encountered, and a consequence of a non-capture resonance
encounter is that the satellite’s inclination is slightly increased. The inclina-
tion increase is roughly that value corresponding to the critical inclination
for capture into the resonance (Dermott et al. 1988). These satellites passed
through something less than 21 non-capture inclination resonances. We have
calculated the rough magnitude of the inclination increases this would result

in for these satellites, finding Ai ~ 0.05°. This number is consistent with the
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current distribution of inclinations of the inner satellites, which vary from
about 0.014° to 0.2°. Although the current inclinations of 1989N1-1989N4
are consistent with these inclination changes, they can give no diagnostic
support to the dynamical history of the inner satellite system.

Just as there are three inclination resonances for each commensurability,
there are also three eccentricity resonances. We would like to be able to deter-
mine whether the inner satellites were caught into some of these resonances
also, but this is difficult. Eccentricities damp in these satellites on a timescale
of order 108 years, and therefore any memory of their eccentricity is lost after
that time. Furthermore, because of this loss of memory, it is impossible to
know at what eccentricity the satellites encountered the resonances, and thus
impossible to know their capture probabilities. Nevertheless, if we naively
assume that the eccentricities have always been roughly what they are now,
we find that it is almost certainly true that both 1989N5 and 1989N6 were
once captured into eccentricity resonances. This is consistent with obser-
vations because, as mentioned above, the satellites would quickly lose their

memory of these resonance passages.

1.7 Conclusion

We have extended the scenario put forth in GMLB concerning the capture
of Triton and its effects on the Neptune system to include the inner satel-
lites discovered by Voyager. We note that 1989N1-1989N6 are all confined
within 5Ry as predicted in GMLB. By showing that a satellite system exist-

ing at the time of Triton’s capture would have destroyed itself due to mutual
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collisions, we infer that the observed inner satellites formed on equatorial
orbits after the Triton capture event and later cometary disruption events.
The four innermost satellites are inside the Roche limit. There are several
other examples of this in the Solar System. Hence, it is possible that these
satellites accreted within the Roche limit. It is also possible that the inner-
most satellites, 1989N5 and 1989N6, are the largest shards of a parent body
that migrated into the Roche zone under tides before its destruction, while
1989N2-1989N4 may be the tidally evolved remnants of other parent bodies
which had also started outside the Roche limit.

The issue of 1989N6’s 4.7° inclination is then resolved by examining the
possibility of a temporary inclination resonance capture. We show that this
is very likely (76%), in addition to being the only feasible mechanism. We
suggest that 1989N6 was inclined to its observed value by the 1989N6-1989N3
12:10 resonance, ejected via the primary resonance’s 2:1 secondary resonance
at roughly 7 ~ 4.7°. This particular scenario has an overall probability of
about 4%, comparable to or greater than all the other possible resonances.
Finally, by applying tidal constraints, @ limits for Neptune are established.
The lower limit is found by requiring that 1989N1 not pass corotation, and
the upper limit by requiring the satellites, 1989N3 and 1989N6, to have once

been in the 12:10 resonance. These limits for @y are:

Tcirc

12,000 < @n x 4 x 10%years

< 330, 000.
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Chapter 2

A Steady-State Kalman Filter
for Assimilating Data from a

Single Polar Orbiting Satellite

2.1 Abstract

We examine a steady-state scheme for data assimilation in the context of
a single, short period (relative to a day), sun-synchronous, polar-orbiting
satellite. If the satellite takes observations continuously, the gains, which are
the weights for blending observations and predictions together, are steady in
time. For a linear system forced by random noise, the optimal steady-state
gains (Wiener gains) are equivalent to those of a Kalman filter. Computing
the Kalman gains increases the computational cost of the model by a large

factor, but computing the Wiener gains does not. The latter are computed
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by iteration using prior estimates of the gains to assimilate simulated obser-
vations of one run of the model, termed ‘Truth,” into another run termed
‘prediction.” At each stage, the prediction errors form the basis for the next
estimate of the gains. Steady-state is achieved after 3 or 4 iterations. Fur-
ther simplification is achieved by making the gains depend on longitudinal
distance from the observation point, not on absolute longitude. For a single-
layer primitive equation model, the scheme works well even if only the mass
field is observed but not the velocity field. Although the scheme was devel-
oped for Mars Observer, it should be applicable to data retrieved from Earth
atmosphere satellites, e.g., UARS.

2.2 Introduction

Kalman filtering is a recipe for blending predictions of a model with obser-
vations of a physical system to obtain an optimal estimate of the current
system state (e.g., Gelb 1974). Unfortunately, Kalman filtering increases the
computational burden of the model by a factor of order M, the number of
state variables in the model system. This burden is prohibitive for atmo-
spheric general circulation models (GCMs), where M is 10° or greater. In
addition Kalman assimilation is often numerically unstable for large systems
(Bierman 1977), so Kalman filtering has been an unreachable goal for atmo-
spheric GCMs (Ghil et al. 1981, Miller 1986, Ghil 1989, Cohn and Parrish
1991, Daley 1992b).

The problem arises because the prediction error covariance matrix, whose

dimension is M x M, must be advanced forward in time as the system evolves.
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This time-dependence arises because the observing pattern, the observation
error, and the model error can all be time-dependent. But when these quan-
tities (and thus the prediction error covariance matrix) are constant in time,
the Kalman filter approaches a steady-state. In such a case, the computa-
tional burden can be reduced to a factor of order one, i.e., the model runs
almost as fast with data assimilation as without it because the prediction
error covariance matrix need not be advanced in time. Moreover, the per-
formance of such a steady-state Kalman filter is optimal, at least for linear
constant-coefficient systems forced by white noise. Steady-state Kalman fil-
ters (Wiener filters) have much in common with Optimal Interpolation (OL;
see Bengtsson and Gustavsson 1971, Rutherford 1972, Bergman 1979), which
is much used in operational forecasting. But currently operational observing
systems have little in common with a system comprised of only a single polar
orbiting satellite. The present paper is an attempt to describe and evaluate
an application to a single-satellite observing system.

Knowledge of the prediction error covariance matrix is necessary for com-
puting the optimal weights (gains) that are used for blending the predictions
and the observations together. Our iterative scheme uses the current best
estimate of the gains to assimilate data during a simulated flight of the space-
craft, from which a new estimate of the prediction error covariance matrix is
obtained. The simulation uses one run of a model as ‘Truth’ and another run
for prediction. Simulated observations, with realistic errors, are made from
the ‘Truth’ run. The resulting data are then assimilated into the prediction
run using the current best estimate of the gains. The errors are measured by

subtracting the ‘Truth’ field from the prediction field, and the error products
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are collected as sums. After integration for a suitable length of time, the
sums are turned into averages and a new estimate of the prediction error
covariance matrix is obtained. This leads to a new estimate of the gains, and
the iteration is repeated. Convergence is complete in three or four iterations.
The steady-state gains are then used with real data for as long as the ob-
serving pattern and the statistical properties of the system remain constant
in time.

There are advantages and disadvantages to using a model as “Truth.” An
advantage is that the model’s ‘Truth’ is known, whereas that of the real
atmosphere is not. Knowing the ‘Truth’ allows us to bypass costly forward-
integration of the prediction error covariance matrix: Instead of trying to
compute the errors, we can measure them, which requires much less computer
time. The disadvantage is that the model ‘Truth’ is not the real truth, which
is the atmosphere itself. Since we are using a model both for prediction and
for ‘“Truth,’ our estimates of the error would tend to be low. To counter this
identical twin problem, we add system noise to the ‘Truth’ run but not to
the prediction run. The result provides an approximation to the true model
€error.

Our scheme was developed for use with Mars Observer. Although the
spacecraft failed before going into orbit, the goal was to produce a continuous
record of global weather over the planned two-year lifetime of the mission.
The Mars GCM (MGCM) developed at Ames Research Center (Pollack et
al. 1990, Haberle et al. 1992) was chosen as the model. Like all GCMs,
it computes the state vector (temperature, pressure, wind, dust, and water

vapor on a finite-difference global grid) at time ¢ 4+ At from that at time ¢.
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Our plan was to assimilate data continuously, i.e., to use observations taken
during each integration step of the model to modify the state vector at that
time step. The amount of modification takes into account the expected error
of the observation and the expected error of the prediction. The output of
the model after the assimilation step becomes the current best estimate of
the global weather. The model then integrates this estimate forward to the
next time step, during which new observations are collected and the process
is repeated.

Mars Observer was designed for a sun-synchronous polar orbit with a
period of 0.08 sols (Martian days). While Mars spins, the orbit stays fixed
at the same local time of day, so successive dayside equator crossings move
west by slightly less than 30 degrees. In one sol the spacecraft covers the
globe with 12-13 equally-spaced (in longitude) polar passes on both dayside
and nightside. For our purposes, a steady-state observing system is one
where the same instruments are taking data from the same point in the
orbit on each polar pass. Qur first objective was to assimilate data from one
instrument, the Pressure Modulator Infrared Radiometer (PMIRR), which
obtains profiles of temperature, water vapor, and dust to 80 km altitude
every 115 km down-track, i.e., along the track of the spacecraft (McCleese et
al. 1992). Since the spacecraft moves at 3.3 km/s, more than 10 profiles are
obtained during each 7-minute time step of the MGCM.

The foundations of our assimilation technique are expanded upon in the
next section, showing its roots in standard OI theory and its relation to
Kalman and Wiener filters. We discuss the assumptions that we have made

in the details of our assimilation technique. We also introduce a method of
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determining our gain functions, which we call Wiener gains. We have exper-
imented with a number of simple (and not so simple) models to verify our
assumptions. The remainder of the paper is devoted to detailing those mod-
els and the conclusions drawn from them. We first use a linear Rossby wave
model that has one dimension (longitude) and one dynamical variable (hori-
zontal streamfunction). We demonstrate the effectiveness of our technique of
deriving the Wiener gains on this model, and discuss the east-west asymme-
try of the gain function for a sun-synchronous satellite. We then use a 2-D
one-variable model to show that the gain functions can be made functions of
latitude as well as latitudinal and longitudinal distance between the space-
craft and the analysis point. With this model, we also investigate the severity
of ignoring the serial correlations of observation errors. The next model is
a three-variable Rossby wave/gravity wave model in one dimension. Omly
one variable, geopotential, is observed. The wind vector is analyzed from its
correlation with geopotential. Furthermore, with this model we test whether
topography is a serious perturbation to the Wiener gains, and thus whether
we can ignore it. Finally, we implement our scheme on a non-linear spherical
shallow water model, tuned to simulate Mars. The full implementation on

the MGCM will be described in a later paper.
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2.3 Assimilation Gains

2.3.1 Background Theory

The key to data assimilation lies in determining the weighting of the obser-
vations in computing an analysis. These weights, or gain functions, specify
the changes to be applied to the prediction at an analysis point as a function
of the difference between the prediction and observation at the observation

point. This is mathematically written as

U =98 + ﬁ’: oy (U7 — UF) (2.1)
j=1

where W, is an element of the state vector (at a point k) and the ay;’s are
the gain function coefficients specifying how the discrepancy between the
observation and prediction at point j should affect the state variables at
point k. There are N observations in this update. The superscripts a, p and
o represent the analysis, prediction and observation state vectors respectively.
Optimal interpolation (OI) is based on minimizing the analysis errors that
result from blending model predictions with observational data (Bengtsson
and Gustavsson 1971, Rutherford 1972, Bergman 1979). OI tries to deter-
mine the values of ay; that give the best estimate of the true state of the
physical system. For a proper derivation of OI, the reader is referred to
Rutherford (1972). The assumptions that one makes in the definition of OI
are that the physical system and the observing system are statistically steady
and that the observational errors are uncorrelated with the prediction errors.

Minimizing the errors made in the analysis state vector yields a matrix equa-
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tion for the gain functions as a function of the observation error covariance

and the prediction error covariance,

N

S (e + E)an; = el (2.2)

—

Ay

where the €’s are prediction errors at point ¢ and the ¢’s are observation
errors at point 2. The overbars indicate averaging over many realizations.
This equation is solved for the gain functions by inverting the matrix on the
left side.

The above equations are expressed in a form that implicitly handles a
large number of observations at once, assimilating them in parallel. For
Earth, observations from the global synoptic network are typically assimi-
lated at 0,6,12, and 18 hours GMT (e.g., Baker et al. 1987, DiMego 1988).
Satellite observations are usually simply moved to the synoptic times where
they are assimilated along with data from the synoptic network. For Mars,
however, and to some extent for the Earth’s upper atmosphere, the data are
all asynoptic. Different longitudes are observed at different times. Our ap-
proach is to assimilate data serially, at the time step nearest to when they
were taken.

If the observation errors are uncorrelated, i.e., the observation error co-
variance matrix €2¢? is diagonal, then each observation can be handled sep-

arately. Equation (2.2), expressing the gain function for each observation,
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then becomes a simple division:

ehel

Qi = Z_’-’_efk-i——a'? (2.3)
where o? is the error variance for observation ¢. The assumption of no correla-
tions in the observation errors is generally not valid (Daley 1992a), however,
we will show later that making this assumption presents little loss in per-
formance for an application like Mars Observer. Jazwinski (1970, p.198)
discusses processing the components of the observation vector one by one
when the observation error covariance is diagonal and there is no change in
the state vector due to the dynamics. He states, “That this is equivalent to
processing the whole observation vector at once is conceptually clear and can
be proved algebraically (very tedious!).” Jazwinski does not give a proof, but
we outline one in the appendix.

Equation (2.1) relates an observation at point j to the kth element of
the state vector, ¥y. Efficient but sub-optimal forms of OI are obtained
by assuming that the prediction error correlations are compact in space,
symmetric about the observation point, and have Gaussian or other simple
dependence on distance (e.g., Baker et al. 1987). In this paper k includes
all elements, so that the assimilation step is global in extent. We make
no assumptions about the spatial form of the prediction error covariance
matrix. Further, we make no assumptions (e.g., geostrophic balance) about
how different variables (e.g., wind and pressure) are related. Instead, we rely

on the prediction error covariances to establish the relation.

The equivalence of these gains to the gains of a steady-state Kalman
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filter is easily seen by examining the equation for the discrete Kalman gain

function (expressed in matrix form):
K = PHT(HPHT + R)! (2.4)

where K is the Kalman gain function matrix, PH? is the prediction error
covariance matrix times the transpose of the observation matrix and R is the
observational error covariance matrix (Gelb 1974). This equation is simply
a more general form of (2.2), where the matrix H contains the transform
between the observations and the state vector elements. Thus, our technique
differs from Kalman only in the way in which the prediction error covariance
matrix is determined. Kalman filtering advances it mathematically in time
with the state vector, while in our technique, it is measured via models and

stored for later use with real data.

2.3.2 (Gain Simplifications

In order that the gains be constant in time, the atmosphere and the obser-
vation system must be statistically steady. This means that we must have
different gains for different seasons, and perhaps also for periods when the
atmosphere is clear and periods when it is dusty. In addition, the character-
istics of the instrument must not change, i.e., the observation error must be
constant in time. And finally, the observing pattern must be steady.

The last condition needs some explanation. We need separate gains for
each latitude of observation, because the coverage of the poles is different

from that of the equator. For example, points near the poles are observed
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every orbit, whereas points near the equator are observed once per day. But
if the instrument is taking data all the time, then each time the spacecraft
passes a certain latitude the positions of past observations relative to the
spacecraft is the same. In other words, the observing pattern is constant.
This satisfies the criterion for a steady-state Kalman filter. Even if the
instrument is off during part of the orbit, the gains will be steady provided
the on-off cycle is a function of latitude only.

In principle, the gains should also be functions of the longitude of obser-
vation. Relative to a scale height, the topography of Mars is significantly
greater than the Earth’s (Esposito et al. 1992), so the weather at one lon-
gitude is systematically different from that at another. Thus the prediction
error covariance matrix should depend not only on the longitudinal distance
from the observation point j to the analysis point k, but also on the absolute
longitude of both. We have chosen to ignore this latter dependence. Below,
we show that even for Mars, with its great topographic relief, the assumption
presents an insignificant loss of performance. Thus, in ignoring longitudinal
variations of the gain functions, we have reduced the dimensionality of the
gain functions from four (2-D for all observing points and 2-D for all analysis
points) to three (1-D for all observing latitudes and still 2-D for all analysis
points). The magnitude of the problem of maintaining special gain functions
is more manageable in this case.

We do not assume that the gain functions are symmetric about the ob-
servation point. For a polar-orbiting spacecraft, points to the east of the
observation point were observed on the previous orbit, while points to the

west were observed on the previous day. Thus, one would expect to find some
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east-west asymmetry in the prediction error covariances of such an observing
system. We observe such asymmetries in the results of some of our models,
justifying this general treatment of the gain functions, although the asym-
metry appears less important in other of our models. The experiments we
present later in the paper exhibit the increase in performance in anisotropic
over isotropic gain functions, and show that the loss in ignoring topography is
minor. As a reference, we compare our assimilation scheme to Kalman filter-
ing with favorable results. However, we also need to demonstrate a method

of determining these Wiener gain functions.

2.3.3 Gain Function Recipe

As shown in (2.2) and (2.3), the gains a;; depend on the error covariances.
The observation error depends on instrument noise and on retrieval uncer-
tainty — that associated with converting calibrated radiances into vertical
profiles of physical quantities. The retrieval process introduces correlations
within each profile, so the observational error should be a matrix whose
dimension is the number of points in the profile. Such considerations are
beyond the scope of this paper, however, since we are not discussing the im-
plementation into the 3-D MGCM. In our simpler models presented herein,
we assume that the observational errors are uncorrelated from one horizontal
location to the next. The observational error variance is an input parameter
to the assimilation scheme.

The other quantity that appears in (2.2) and (2.3) is the prediction er-

ror covariance, which we obtain by iteration. The first estimate comes from
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the weather covariances, the spatial correlations of the weather fluctuations,
which are the differences between the instantaneous state vector and its time
mean. These covariances are much larger than the prediction error covari-
ances obtained with the optimal gains, but they have a similar spatial struc-
ture.

The iteration process has been described earlier. With an estimate of the
error covariances, one determines the gains using (2.2) or (2.3). One then
assimilates some synthetic observations of the ‘Truth’ run into a prediction
run, keeping track of the prediction errors. From these a new prediction error
covariance is computed, and the process repeats. We do not mathematically
show the convergence of this method, but have tested it on a number of
different models, and all have converged in a few iterations. Furthermore,
we have compared it to Kalman filters implemented on linear models, and
the gain functions converge to the same functions as the Kalman gains in

steady-state.

2.4 1-D One-Variable Model

In this section, we introduce the iterative procedure yielding the Wiener gains
with an application to a 1-D Rossby wave model. We used a 1-D Rossby
wave model on a latitude circle written in a geopotential-like variable, with

damping and random forcing. The equation of motion is:

a 1, 0° 1 ov
'a—t-l-;)(a—x;- E)\y+ﬂ3_x_p (2.5)



85

where F' is the random forcing, taken to be white noise in space and time,
and B,Lp and T were chosen to represent possible Mars-like conditions at
the equator. z is longitude with period 27, and ¢ is time with one sol being
2x. Lp is the radius of deformation. We choose Lp = 1/3, about one third
of Mars’ radius in the model’s dimensionless units. It emphasizes wavenum-
ber three Rossby waves, like those reported in Barnes(1980, 1981) from the
Viking Lander data. 7 was taken to be 87, corresponding to a decay time of
4 sols (Barnes 1980, 1981, Banfield et al. 1994). f is 2 in these dimension-
less units. The equation yields a spectrum of Rossby waves. Wavenumbers
1,2 and 3 have the largest amplitudes and a coherence time of order 4 sols.
We decomposed the system into 12 spectral modes of Fourier sine and cosine
functions plus a constant term, with 25 terms in the representation. Observa-
tions of the state were degraded with Gaussian noise which had an amplitude
of 5% of the average amplitude of the system. We modeled our observing
system after Mars Observer, which would have crossed the equator on a de-
scending node about 12 times a sol. Thus, the observing pattern was simply
an observation about every 1/12 of a sol. This was also the model time-step
as we analytically advanced the models in time from one observation to the
next.

The simplicity of the system allowed us to analytically integrate the equa-
tion of motion from time ¢ to time ¢ + Af, at which point the forcing changes
discontinuously and a new observation is made. There is no leapfrog time
step; the system remains first-order in time, and is computationally stable.
We are thus able to derive explicit formulations for the transition and noise

forcing matrices of the Kalman formalism. We implemented a Kalman filter
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for this system, which is depicted as it begins to assimilate data in Fig. 2.1.
The vertical bars in the ‘Truth’ model column are the actual observations
made under the spacecraft, which is drifting westwards, making one cycle in
a sol. They simply represent the value of the observed geopotential under
the spacecraft, as measured from the dotted line which is the z-axis, with
some artificial observational noise. The Kalman filter very quickly adjusts
the estimate to the ‘Truth’ run in roughly a sol. Similarly, the shape of the
Kalman' gains can be seen to change over that time, as the prediction er-
ror covariances adjust to the new influx of information. The gain functions
quickly settle to a steady-state which is a function of the longitudinal differ-
ence between the spacecraft and the analysis point only. In other words, the
gain functions have a constant shape in the reference frame of the spacecraft.

Initially the Kalman gains are symmetric about the observation point and
fairly broad. However, over the course of the next sol, they exhibit a shorter
correlation length and more asymmetry from east to west. The asymmetry
arises because the location just to the east of the spacecraft was visited one
orbit (0.08 sols) earlier, while the location to the west of the spacecraft was
visited 12 orbits (one sol) earlier. Additionally, § causes information to be
advected westwards, adding to the asymmetry. The steady-state Kalman
gain follows the spacecraft as it travels westward. It is depicted again as the
solid line in Fig. 2.2. The asymmetry is particularly evident in this figure,
where the spacecraft is taken to be at z = 0.

The analyses are all done in the spectral coordinates of the model, and
thus the gain functions relate an observation in space to a correction of a

spectral mode. The gains in Fig. 2.2 are obtained from the spectral coefficient
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Truth Estimate Residuals Gain Vector

Fig. 2.1: 1-D 1-Variable model’s evolution over about 3 sols, with time ad-
vancing downwards and each column representing one quantity over the full
domain of the model. The leftmost column shows the state of the ‘Truth’
run, or what is taken to be the real atmospheric state. Observations, repre-
sented by the vertical bars from the dotted zero line to the curve, are being
taken by a satellite which progresses westward with time. The second col-
umn corresponds to an estimate of the true state made by a Kalman filter.
The third column shows the difference between the ‘Truth’ and the estimate.
Finally, the fourth column shows the Kalman gains used to weight the ob-
servation taken at that time step. Note the speed with which the Kalman
filter improves the estimate, and how the shape of the gain function changes
over the first sol.
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-— — Wiener #0
====== Wiener #2
Kalman

Fig. 2.2: Three gain functions for the 1-D 1-Variable model, the zeroth
iterate Wiener gain, the second iterate Wiener gain and the steady-state
Kalman gain. The spacecraft is at z = 0. A gain of 1.0 means that the
observation is solely used to make the analysis, while a gain of 0.0 means
that only the prediction is used in the analysis. The similarity between the
second iteration Wiener gains and the Kalman gains shows the near optimal
nature of the iterated Wiener gains.
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gains by a linear transformation. This method is used throughout the paper,
including the more complex models that follow. It is a natural choice for
these models as they are formulated in spectral space, and it is currently in
use in operational schemes (Parrish and Derber 1992).

The other two curves in Fig. 2.2 are the zeroth and second iteration of
the Wiener gains for this system. The zeroth iteration is computed from
(2.3) using the total weather covariance as the prediction error covariance.
This is necessarily a sub-optimal gain function, as it is the equivalent of the
prediction errors made using no predictive model at all. It does however
roughly correspond to the western half of the Kalman gain function, perhaps
indicating that that side of the Kalman gain is controlled by the correlation
length scale of this model’s weather. Since the zeroth iterate has no informa-
tion about the spacecraft’s orbit, it is a symmetric (i.e., isotropic) function.
After some 1000 sols of model time, the statistics were clean enough on the
prediction error covariances in this iteration to yield the new (first iterate)
gain functions. This procedure was then repeated to generate the second
iteration gain functions, the dotted line in Fig. 2.2. The latter are strikingly
similar to the Kalman gains, and perform just as well as they do. Further
iterations change the gain functions insignificantly from either the second
iterate, or the Kalman gain. Therefore, we find that this iterative technique
does in fact converge to the steady-state Kalman gains, or the true Wiener
gains, for this simple model.

Figure 2.3 shows the predictive performance during the first 10 sols of as-
similation using the Kalman gains, the zeroth iterate Wiener gains, and the

second iterate Wiener gains. Random weather variations make these curves
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Fig. 2.3: Performance of the three gain functions of Fig. 2.2. The ordinate
is the variance of the analysis errors from the model’s true state. The error
variances are normalized by the model’s weather variance, so that an error
variance of 1.0 is correctly analyzing essentially none of the model’s weather
variance. The curves run for 10 sols, and were all started from a zero state
at the initial time. The dashed curve is for the zeroth iterate Wiener gains,
which performs relatively poorly. The other two curves correspond to the
iterated Wiener gains and the Kalman gains, which are nearly identical in
performance and clearly superior to the zeroth iterate Wiener gains.
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much less smooth for any particular 10 sols, but this plot is the result of
averaging 1000 independent 10 sol start-up periods for the different filters.
The prediction models were initialized to a zero state for all of these runs, so
the initial errors were of the same order of magnitude as the model weather
variance. The errors are normalized to the field’s average variance, a normal-
ized error of 1.0 corresponding to essentially no accuracy in the analysis, and
a normalized error of 0.0 meaning that the predictive model exactly tracks
the ‘Truth’ model’s trajectory. Again, the solid curve corresponds to using
the Kalman gains, which were able to bring the error variance down to about
25% of the model’s weather variance in just over one sol. The dashed line
corresponds to using the zeroth iterate Wiener gains, which took two or three
sols to reach a steady-state with an error variance of about 46%. The dotted
line corresponds to using the second iterate Wiener gains, the performance
of which is almost indistinguishable from the Kalman gains.

This is a good model for comparing the computational burdens of the
Kalman filter versus the constant Wiener filter. Every sol of assimilation
using the Kalman filter on this model took three times as long as the Wiener
filter to execute. The Kalman filter has the extra overhead of propagating
the prediction error covariance matrix through every time step. For more
complex models, this step becomes prohibitively slow because it scales as
M?, the square of the number of elements in the state vector. In our models,
the Wiener filter’s computational requirements scale as M, the same as in OL
Therefore, we expect our technique to present about the same computational

burden as OI, and significantly less than Kalman filtering.
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2.5 2-D One-Variable Model

To test the validity of this technique in a model with varying weather statis-
tics from north to south, we used a 2-D one-variable Rossby wave model.
This system is described by :

6 & 82 1 ov

where the only differences from the 1-D model are that the state vector now
consists of the components of a 2-D Fourier transform. We used somewhat
lower resolution for this model to reduce the computational burden; zonal
wavenumbers of zero to seven, and meridional wavenumbers of one to five
satisfying a no-normal-flow boundary condition. We implemented a Kalman
filter for this model and also derived the iterated Wiener filters. The space-
craft orbit was modeled as traveling once per sol around the planet to the
west, and making about 12 north-south passes in that time. The gain func-
tions were kept in the reference frame of the spacecraft as separate functions
for each latitude that the spacecraft observed, because the weather and pre-
diction error covariances are assumed to depend on latitude only. Also, the
gain functions were kept as global functions, relating the observation point
to analysis points everywhere in the domain. This is the same as in the
1-D model, but with a 2-D domain and separate gain functions for differ-
ent spacecraft latitudes. This implementation of the iterated Wiener filter
worked just as well as the 1-D implementation, with similar improvements

in performance between the zeroth iterate gain function and the later iter-
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ates. Furthermore, the performance difference between the Kalman gains
and the later iterations on the Wiener gains were indistinguishable. Finally,
the shape of the Wiener gains was almost indistinguishable from the Kalman
gains after only two iterations.

This model is also a good one with which to examine the impact of serially
correlated observation errors. In this series of experiments, the observations
were degraded with noise of the form n; = pn;_; + (1 — p?)!/?r;, where n; is
the noise of the ith observation. p is a number less than 1, and r; is a random
number. The correlation coefficient between the noise at position ¢ and that
at position ¢z — m is p™. The n; have the same mean and variance as the r;.
We process these observations as before, ignoring the fact that the errors are
correlated, and see what effect an increase in p has on the performance of the
assimilation scheme. The serial correlations were modelled to have roughly
the same meridional structure as the weather fluctuations themselves. For
10 observations in each north-south pass, this means a serial correlation of
about 0.75 from one observation to the next. We modelled the northernmost
observation as uncorrelated with observations preceding it.

Presented in Figure 2.4 is the performance of the zeroth, first, second
and third iteration gain functions with an observation error of 5% relative to
the weather fluctuations. The solid lines represent the performance without
serially correlated observation errors p = 0, and the dotted lines represent
those with serially correlated observation errors p = 0.75. The performance
loss in ignoring these serial correlations is apparently negligible for this ap-
plication, which in structure resembles the scenario of Mars Observer. The

observation errors comprise such a small fraction of the prediction errors for
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Fig. 2.4: Performance of the zeroth, first second and third gain functions for
the 2-D 1-Variable model both with and without serially correlated observa-
tion errors. This is for observation errors of 5% of the total weather variance
of the model. The solid lines represent the runs without serially correlated
observation errors, and the dotted lines represent the corresponding runs
with serially correlated observation errors. The error variance is normalized
in the same way as in Fig. 2.3. The zeroth iterate yielded the solid and
dotted lines asymptoting to about 0.5, while the subsequent iterates yielded
the lower error variances. Note the similarity between each solid line and its
corresponding dotted line.

10
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this problem, that whether they are serially correlated or not is insignificant.
However, if the observation errors were of greater amplitude, this is less true.

The PMIRR instrument of Mars Observer would have yielded atmo-
spheric radiances which could have been inverted for temperatures with an
accuracy of about 1-2K (McCleese et al. 1992). The atmospheric waves on
Mars represent variations on the order of 5K (e.g., Barnes 1980). Therefore,
a more reasonable estimate of the observation errors for the Mars Observer
scenario is about 40%. Figure 2.5 shows the decrease in performance when
serially correlated observation errors are present for the case of 40% errors.
It shows a more notable decrease in performance than the 5% case, indicat-
ing that observation errors contribute more strongly to the prediction errors
in this case. Nevertheless, the performance loss is small compared to the
performance difference between the zeroth iterate gain function and subse-
quent iterates of the gains functions. Because of this, we believe that it is an
adequate assumption to ignore the possibility of serial correlations in the ob-
servation errors for the Mars Observer scenario. However, if the observation
errors are still greater, the assumption clearly will break down. Figure 2.6
shows the performance difference for a case with 200% observation errors. In
this case, ignoring the serial correlations causes performance losses which are
much greater than the performance increases found between the zeroth and

subsequent iterations.
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Fig. 2.5: Same as Fig. 2.4, but for observation errors of 40% of the total
weather variance. This value is similar to that which had been expected
for Mars Observer. Note that the later iterates still perform better than
the zeroth iterate, even when there are serially correlated observation errors.
This suggests that ignoring serial correlations of the observation errors does
not represent a serious loss in performance.
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Fig. 2.6: Same as Fig. 2.4, but for observation errors of 200% of the total
weather variance. In this extreme case, the runs with serially correlated
observation errors perform significantly worse than those without. The zeroth
iterate’s performance is actually worse than no assimilation at all. In such a
case, serial correlations of observation errors can not be ignored.

10



68

2.6 1-D Three-Variable Model

To test the performance of the Wiener gains on the primitive equation system,
we applied them to the following linearized 1-D shallow water model. The
objective was to observe only the mass field and see how well the mass and

velocity fields follow the ‘Truth’ run.

0 1
(G +7)¥+fx = F

g 1

0 1 . 0%x
Gt 7+

(2.7)

In (2.7) ¥ is the streamfunction, x is the velocity potential and @ is the
geopotential. 7 is again a damping time (~ 4 sols), f is the coriolis param-
eter (taken to be at 30°N), and beta is neglected in order to simplify the
algebra for Kalman filter implementation. ¢? is the critical wave speed, with
a value of 1/9. With these settings, the radius of deformation, Lp = ¢/f, is
again 1/3. The forcing functions, F, G and H are red in their time and space
spectra (Lorentzians centered at zero frequency and zero wavenumber, with
half-power points at a period of 4 sols and a longitudinal wavenumber of 3), so
as not to force the gravity waves too strongly. The relative amplitudes of the
forcings are chosen to mimic the non-linear terms which have been dropped
from the system. Thus, F' ~ H and G ~ F/4, because the amplitude of y is

one- quarter that of ¥ and ® when the forcing period is 4 sols. This model is
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Fig. 2.7: Evolution of the 1-D 3-variable model over an 8-sol interval. Again,
time advances downwards, and each column shows a dynamical quantity over
the whole domain of the model. The streamfunction and geopotential evolve
slowly and exhibit a great degree of geostrophy, while the velocity potential
is dominated by quickly propagating gravity waves.

like the simple 1-D one-variable model with the addition that it also admits
fast modes. The time evolution of the model’s three variables during an eight
sol run of this model is shown in Fig. 2.7. The geopotential and streamfunc-
tion fields are nearly in geostrophic balance. They also closely resemble the
geopotential field of the simple one-variable model discussed above. How-

ever, the velocity potential field is dominated by rapidly propagating east
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and west-bound gravity waves. It is smaller in amplitude than the other
two fields by a factor of five, reflecting the fact that gravity waves are not
strongly forced in this model and that geostrophic balance dominates. The
dynamical result of neglecting § is that the slow modes do not propagate,
although they drift randomly under the influence of the forcing. However,
Rossby waves propagate rather slowly even when f is included, so we feel
that this is not a crucial difference. Geopotential only is observed, and a 5%
error has been added to the observations as before.

Again, we tested the iterative Wiener filter technique on this model and
compared the results to a real Kalman filter. The results were similar to
those obtained with the two Rossby wave models. After a few iterations,
the Wiener gains were almost indistinguishable from the Kalman gains, and
performed equally well. Figure 2.8 shows the Kalman gains, and the zeroth
and fifth iteration Wiener gains. In this case there are three gain functions,
because they relate an observation in geopotential to changes in all three
dynamical variables. One can still notice the asymmetry between the east and
west sides of the sub-spacecraft point first noticed with the 1-D one variable
model. In this case, the asymmetry is not as dramatic, probably because this
model has no B which likely serves to enhance east-west asymmetries.

The performance increase from the symmetric zeroth iterate gain func-
tion to the fifth iterate is not as drastic as with the simpler models, but still
worth noting. Figures 2.9a, 2.9b and 2.9¢ depict the magnitude of the predic-
tion error variance for the first 10 sols of assimilation for the streamfunction,
velocity potential and geopotential fields respectively. The predictive runs

were initialized to a zero state in all cases. The zeroth iterate (dashed line)
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Fig. 2.8: Gain functions for the 1-D 3-variable model, each relating an
observation of geopotential to an analysis weight in one of the dynamical
variables. As in the 1-variable model, the iterated Wiener gains are nearly
indistinguishable from the Kalman gains and longitudinally asymmetric. The
gain functions for streamfunction and geopotential are similar due to the high
degree of geostrophy present in the model. The low values of the velocity po-
tential gain functions are indicative of the independent nature of geopotential
and velocity potential in this model.
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Fig. 2.9: Performance of the 3 sets of gain functions presented in fig. 2.8 for
a period of 10 sols. The predictive runs were started from a zero state at the
initial time. The three graphs show the analysis errors in streamfunction,
velocity potential and geopotential, respectively. Note the speed with which
the Kalman gains (solid line) reduce the errors, and the favorable compar-
ison of the fifth iterate Wiener gains (dotted line) with the Kalman gains.
Furthermore, note the increase in performance between the zeroth iterate
and the fifth iterate Wiener gains in steady-state. Note the different vertical
scale on 2.9b.
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reaches a steady-state in about 3 sols, predicting all but 18% of the vari-
ance of the model in streamfunction, 16% in geopotential, and essentially
nothing of the velocity potential field (> 98% unexplained variance). The
fifth iterate Wiener gains (dotted line) reach a steady-state in only about 2
sols, predicting all but about 15% of streamfunction, 12% of geopotential,
and again essentially none of velocity potential (> 98% unexplained vari-
ance). The Kalman filter (solid line) produces some strong oscillations at
first, especially in the velocity potential field, probably as a result of improp-
erly specified initial prediction error covariances. However, at least in the
geopotential field, it settles down in about 2 sols. When the filter reaches
its steady-state, it predicts all but about 9% of geopotential variance, about
11% of streamfunction variance and appears to predict a small percent of the
velocity potential variance (~ 70% unexplained variance).

The fact that none of the sets of gain functions is able to effectively
predict the velocity potential is not surprising because the only observed
field is geopotential, which is dominated by Rossby waves, while the velocity
potential is dominated by gravity waves. The lack of communication between
these fields is also reflected in the much smaller amplitudes for the velocity
potential gain function. The fact that streamfunction and geopotential gain
functions are similar in shape and predictive ability simply reflects a high
degree of geostrophy in the model.

This model is interesting in that it demonstrates how one can effectively
use observations of one dynamical variable to predict the others. Cross-
correlations between an observed variable and other dynamical variables

are commonly used in operational assimilation schemes. It is these cross-
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correlations that allow one to use information about one observed dynami-
cal variable to guide the trajectory of the entire dynamical system through
phase space. Mars Observer would have returned temperature soundings of
the Martian atmosphere, and would have no access to direct wind measure-
ments. It is then important to be able to predict the full dynamical state
of the system from measurements of only one variable. This scheme, like
currently operational OI schemes (e.g., Parrish and Derber 1992) makes no
assumptions about dynamical balance in the cross-correlations relating dif-
ferent variables. Rather, we use the prediction error covariances relating the
system variables with each other. This should give the right relation be-
tween the dynamical variables of the model system, without the difficulties
geostrophy presents near the equator.

We neglected § in this model in order to be able to easily solve the equa-
tions of motion analytically, and thus easily cast the system into a Kalman
filter formulation. However, in anticipation of real applications of this tech-
nique with finite difference models (GCMs), we implemented this model in a
finite difference formulation as well. We used a leapfrog time-stepping scheme
to advance the dynamics, thereby changing the system from first-order to
second-order in time. The new state vector (at time ¢ + At ) is computed
from the current and past state vectors (times ¢ and ¢ — At). We applied the
same corrections to the past state vector as to the current one. Applying the
correction to only the current state vector excited the computational mode
in the integration.

Transforming this model into a finite difference model also allowed us to

add /3 and topography to the model. We have been ignoring topography in
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assuming that the gain functions are not functions of the absolute longitude
of the spacecraft. Adding topography to the model is a way of checking this
assumption. With these changes, the equations of the system become:

(at )\Il+fx = F

(§t+ “IXx—fU¥+9 =

4+ et L@y - s =

(2.8)

where c?(z) represents the topography through c*(z) = gh(z), gravity times
the local depth of the layer. These expressions are not directly derivable from
the shallow water equations, but they have the same behavior at both low
and high frequencies. They have the further property of energy conservation
in the absence of forcing and damping. We used a Galerkin scheme with a
finite number of Fourier modes as the set of basis functions. This scheme
conserves energy when the leapfrog time step is sufficiently small. We chose
the function graphed in Fig. 2.10 as the layer depth. It is roughly 13km
minus the meridionally averaged topography of Mars, scaled to yield a high
degree of modulation on ¢*(z). Since the topographic relief of Mars is quite
dramatic (on the order of an atmospheric scale height) this should be a good
test of the relevance of specifying the gain functions in the spacecraft’s frame
of reference.

We include the effect of topography on the dynamics both for the ‘Truth’

runs, which have random forcing, and for the prediction runs, which are
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Fig. 2.10: Layer depth of the 1-D 3-variable model as a function of longi-
tude. It corresponds to the actual Martian topography, subtracted from a
reference of 13km, meridionally averaged and scaled to yield a high degree
of modulation on the quantity ¢2. The Tharsis plateau of Mars shows up
quite clearly at around —110°. It appears as a low value because this is layer
depth, as opposed to surface height.
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forced only by assimilated observations. However, we ignore the effect of
topography on the gain functions when we assume that they are the same
for all spacecraft longitudes. With this assumption, we derived the longitu-
dinally averaged iterated Wiener gains in the spacecraft’s frame of reference
and evaluated the predictive performance of these gain functions. Then,
we included the effect of topography by having separate gain functions for
the different spacecraft longitudes, and again derived a set of Wiener gains.
These latter gain functions explicitly included information about the local
topography, and thus should have performed better than the former gain
functions.

The solid line in Fig. 2.11 represents the gain functions derived ignoring
the presence of topography, assuming that the same function can be used for
all spacecraft longitudes. The dashed line shows a gain function derived with
topography explicitly included, one of a set which is different for each space-
craft longitude. This particular gain function is for the longitude with the
greatest topographic relief, Mars’ Tharsis region. As one might expect, this
is the location where the two sets of gain functions differ the most. However,
even in this region, the differences are not dramatic. Throughout most of
the rest of the domain, the differences are considerably smaller. The impact
of these differences in the gain functions is most evident in Fig. 2.12 which
shows the errors made in the geopotential field during the first 10 sols of
assimilation using different gain functions. The dotted line corresponds to
using the zeroth iterate Wiener gains. It takes 4 sols to reach a steady-state
in which about 30% of the geopotential variance is unexplained. The solid

line corresponds to the third iterate Wiener gains derived ignoring topog-
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Fig. 2.11: Effect of topography on the gain functions. The dashed line is
for the Tharsis region, where the topographic relief is greatest. The gain
function for this region differs the most from the gain function derived by
ignoring topography (solid line). The differences are not astounding in this

example, and are much smaller at other longitudes.



Error Variance (fraction of total variance)

80

0.8

0.6

0.4

0.2

0 2 4 6 8 10

Time (sols)

Fig. 2.12: Performance difference in analyzing the geopotential field using
gain functions derived ignoring the presence of topography and gain func-
tions derived explicitly including topographic effects, for a 10 sol run. The
predictive model was started from a zero state. The solid line corresponds
to the gain functions derived ignoring topography, while the dashed line cor-
responds to the gain functions with topography included. The performance
difference is insignificant, particularly when compared to the performance of
the zeroth iterate Wiener gains (dotted line).
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raphy. The dashed line is the result of using the gain functions including
topography. Their performance is essentially indistinguishable from the gain
functions derived without including topography. Both reach steady-state
in one to two sols, and can explain all but about 22% of the geopotential
variance. Similar results were found for the other two state variables, with
streamfunction being equivalently well predicted as geopotential (~ 22% un-
explained variance) and velocity potential remaining essentially unpredicted
(~ 88% unexplained variance).

Thus, while local differences can be found between the gain functions
that accounted for topography and those that did not, the performance dif-
ference is insignificant. The gain functions which included topography out-
performed those without topography by less than 1% of explained variance,
while the standard symmetric zeroth iterate gain functions performed roughly
8% worse than either of the Wiener gains. Therefore, we believe that it is
acceptable to ignore topography and any other satellite longitudinal depen-

dence of the gain functions.

2.7 Spherical Shallow Water Model

Since our first operational application of the Wiener filter will be on a full-
scale multi-layer Martian GCM (Pollack et al. 1981, 1990, Haberle et al.
1992), a high-resolution, single-layer primitive equation model appeared ap-
propriate to serve as the last milestone in our testing hierarchy. We have
thus derived the Wiener gains for the single-layer spherical shallow water

model discussed in Keppenne (1992). This model is based on the following
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dimensionless system of prognostic equations:

%A\II = —V-[u(AT + f)] — TUAT — yAT — AT — T¥)
-(%Ax = k-V x [u(AU + f)] — rUAx — yA%y — A[%—E + @]
) .
52 = V- [u(@- )] - (¢ - w)Ax

(2.9)

The notation and non-dimensionalization are different from those of ear-
lier sections. The first two lines of (2.9) above are the vorticity-divergence
form of the momentum equation and the third line of (2.9) is the mass conser-
vation equation. ¥(A,8,t), x(X,0,t), and ®(),0,t), are the streamfunction,
velocity potential, and the deviation of the geopotential height of the free
surface h(}A,0,1), representing the top of the atmosphere, from its global av-
erage ¢, so that @ + ¢ = gh, where g is the acceleration of gravity. A is
longitude, 6 latitude, and t time. The dimensionless time unit is equal to
the Martian rotation period 27/} and the dimensionless length unit is the
equatorial radius of Mars. u(),4,1?) is the horizontal fluid velocity in these
units, f = 20 sin @ is the Coriolis parameter, 7 is a drag coefficient, v is a
diffusion coefficient, U is the mean square-root zonal kinetic energy per umnit
mass, ®p(), ) is topography and A is the Laplacian operator. k is the local
vertical unit vector. U* is the forcing field. The forcing-dissipation term,
eA(¥ — U*) is applied only to the zonal part of the streamfunction field.

The global mean geopotential height ¢ of the free surface is 50. In di-
mensional units this height is (50/¢)(r§2/27)?, about 20 km for Mars. At a
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latitude of 30° the radius of deformation, Lp is r/50 /2w, which is ~ 3 times
greater than in our earlier examples. The drag coefficient 7 is 0.1, and the
relaxation time, 1/¢, is 10 sols, which is a factor of 2.5 times greater than in
our earlier examples. The diffusion coefficient v is 5 x 10712,

Equation (2.9) is expanded in terms of spherical harmonics and its spec-
tral form is integrated at rhomboidal truncation R15 using an associated
Gaussian grid with 40 Gaussian latitudes and 48 meridians. A realistic moun-
tain field is interpolated from the topography of Pollack et al.’s (1990) Mar-
tian GCM whose horizontal resolution is equivalent to the one used here. The
transform method (Orszag 1970, Eliassen et al. 1970, Bourke 1972) is used
to iterate back and forth between the grid-point and spectral representations
of the model variables.

This model’s global behavior is fairly representative of the Martian atmo-
sphere, and locally, the statistics of its geopotential time series match well
those of the surface pressure data at the sites of Viking Landers I and II.

The modeled spacecraft trajectory was chosen to obey a polar sun-
synchronous orbit, with a sampling rate of 1000 geopotential observations
per sol - about one observation every 250 km of spacecraft down-track mo-
tion. Since Mars Observer would have observed the vertical structure of the
temperature field over the entire depth of the Martian atmosphere, one single
geopotential observation here amounts to a snapshot of the vertical temper-
ature profile in the case of a multi layer GCM. As in the other experiments,
the observations were degraded with 5% Gaussian noise, and the model was
randomly forced with red noise so that the ‘Truth’ and predictive runs were

not identical twins. The variance of the random forcing term that affects
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the time evolution of each spectral coefficient was set equal to that of the
corresponding nonlinear term.

Since this is a nonlinear model, there is no analytic solution to the op-
timal filtering problem. Although an implementation of the Kalman filter
by linearizing the model about its continuously evolving state is conceivable,
such an implementation would overwhelm even the fastest current-generation
supercomputers. We thus restricted our data assimilation applications on
this model to the derivation of the corresponding steady-state Wiener gains.
Three iterations were sufficient for the Wiener gains to reach a quasi-steady-
state, i.e., a fourth iteration with the predictive model assimilating data using
the third iterate gain functions resulted in virtually no change from the third
to fourth iterate. Each set of gain functions was computed from the statis-
tics of the second half of a 2000-sol prediction run, continuously forced with
geopotential observations of a comparatively long history tape of a ‘Truth’
run.

In order to successfully initialize the iterative procedure, it was necessary
to scale down the zeroth iterate gain functions. When unscaled, these gain
functions induced the predictive run’s trajectory to oscillate wildly about

” 'This undesirable behavior arose

the ‘Truth’ and in some cases “blow up.
probably because the weather statistics, which were used in the zeroth iterate
Wiener gains, differ more substantially from the steady-state error statistics
than in the experiments with the linear models. The result could be an
overestimation of the error covariances by the zeroth iterate Wiener gains. It

is also possible that the zeroth iterate Wiener gains did not have the proper

balance between variables (geopotential and wind, for example), and that the
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improper balance excited some of the model’s unstable modes. Whatever the
case, multiplying the zeroth iterate Wiener gains by a number from 0.1 to
0.5 was sufficient to alleviate this problem. The problem did not occur on
subsequent iterations, and no further reductions of the gain functions were
necessary. Once properly initialized, the iteration converged as before.

Contour maps of the longitudinally independent third iterate Wiener gain
functions are shown in Fig. 2.13 in the spacecraft’s frame of reference, with
the sub:spacecraft grid point located along the center meridian at the ap-
propriate latitude. These maps correspond to the Gaussian latitudes
closest to 67.5°N, 22.5°N, 22.5°S and 67.5°S. Presumably (since we could not
check this assumption with an analytically derived Kalman filter), they show
how geopotential observations should be weighted to optimally update the
streamfunction (Fig. 2.13 a-d), velocity potential (Fig. 2.13 e-h) and geopo-
tential field (Fig. 2.13 i-1) to steer the predictive model toward the “Truth’
model.

Several points are worth noting about the shapes of these gain functions.
First, the longitudinal asymmetry reported in our discussions of the linear
models’ gain functions is less noticeable, although it is still present (Fig. 2.13
d and 1). We are not sure of the cause of this reduction, but suspect that it
is due to the greater relaxation time used in this model (10 sols versus 4 sols
previously). A longer relaxation time would result in less errors being built
up over 1 sol. Thus, differences between the east and west sides of the obser-
vation point would also be reduced, and the gains would be more symmetric
than in the previous models. Second, there is a substantial departure from

geostrophic adjustment, especially in the tropics (see Fig. 2.13 b, ¢, j, and
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Fig. 2.13: Contour maps showing the longitudinally independent third iter-
ate Wiener gains for the global nonlinear shallow water model in the space-
craft’s frame of reference, with the sub-spacecraft grid point located along
the center meridian at the appropriate latitude. These maps correspond to
the Gaussian latitudes closest to 67.5°N, 22.5°N, 22.5°S and 67.5°S. Fig. 2.13
a-d, e-h, and i-1 correspond to the gain functions used to update the stream-
function, velocity potential and geopotential fields, respectively, when obser-
vations are taken at these latitudes. These maps show how one should expect
the theoretical Kalman gains to be spatially distributed, for this model of
Mars’ atmosphere when the observational pattern matches that of a single,
sun-synchronous polar orbiting satellite.
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k) where the Coriolis approximation can not be made. The streamfunction
weights are characterized by a dipole pattern at low latitudes (Fig. 2.13 b
and c). The geopotential weights (Fig. 2.13 i-1) resemble more the Gaus-
sian bell patterns of operational OI schemes. The velocity potential gain
functions (Fig. 2.13 e-h), are of much lesser magnitude than their stream-
function and geopotential counterparts because the velocity potential and
geopotential fields are essentially uncorrelated. They display a more com-
plicated organized structure that reflects long-distance correlations in the
velocity potential error field.

The analysis performance of the third iterate Wiener gains are compared
in Fig. 2.14, which shows the normalized streamfunction, velocity potential,
and geopotential error variances for a 20-sol run of the predictive model
against a history tape of the ‘Truth’ model. The predictive model was ini-
tialized with a zero initial state. After 20 sols, the third iterate Wiener
gains give unexplained variances of 4%, 16% and 3% in the streamfunction,
velocity potential and geopotential fields, respectively. Considerably larger
residual errors remain when the zeroth iterate weights are used. Note that
the streamfunction and geopotential errors decrease exponentially during the
first day of the experiment and linearly thereafter, while the velocity poten-
tial errors decrease linearly from the start. The magnitude of the errors in
assimilating with this model are smaller than those found with the other
models tested. This is due to a difference in the strengths of the random
forcings as compared to the simpler models. The random forcing completely
dominated the behavior of the previous models, while in this model, the zonal

flow and topography have a more significant effect on the climatology. Thus,
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Fig. 2.14: Plot showing the performance of the third iterate Wiener gains
derived with the global nonlinear shallow water model. The solid line shows
the evolution of the normalized streamfunction error variances during a 20-sol
prediction run against a history tape of a ‘Truth’ run, perturbed by random
forcing terms. The dashed and dotted lines show the corresponding evolu-
tions of the velocity potential and geopotential error variances, respectively.
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the prediction runs and ‘Truth’ runs for this experiment were more similar
than for the previous models, and analysis performance increased. The main
result of the experiments with this model is simply that the assimilation

scheme works on this advanced model.

2.8 Conclusion

The main result of this work is the development of a new approach to data
assimilation to be used with a single polar-orbiting satellite like Mars Ob-
server. It shares some of the advantages of OI and some of the advantages
of Kalman filtering. As in OI the gains are constant in time, but they are
equivalent to steady-state optimal Kalman gains. Because the gain functions
are computed off-line, this technique has similar computational requirements
as OI, and thus considerably less than Kalman filtering. We showed that the
effects of longitudinal differences on the shape of the gain functions were not
significant. This allows the optimal gain functions to be simplified to be a
function of only the observational point’s latitude. Furthermore, we showed
that for an application like Mars Observer, serial correlations in the obser-
vation errors could be safely ignored without a significant loss in predictive
performance.

We also demonstrated the feasibility of using these gain functions on a
suite of models of increasing complexity, approaching that of a full GCM.
These models were observed in only one dynamical variable, as Mars Ob-
server would have done for the Martian atmosphere, yet we were able to

make predictions about all three dynamical variables. Furthermore, we veri-
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fied the success of an iterative technique in determining these optimal Wiener
gains with each model. The next step will be to employ these techniques on a
full GCM-scale model, for the assimilation of data from the next Mars atmo-
spheric mission, or perhaps of data from a single polar-orbiting stratospheric-

sounding Earth satellite.

2.9 Appendix: Serial and Parallel Assimila-
tion

We show here that serial and parallel assimilation are equivalent when the ob-
servation error covariance matrix is diagonal (i.e., uncorrelated observational
errors) and there is no change to the state vector due to dynamics (i.e., be-
tween time-steps of the model). The proof is by induction: One shows that

the equivalence holds for n observations provided it holds for n — 1 observa-

tions. We define ai’f"l)

; as the gain matrix, linking the observation at point

j to the state vector at point k, in processing n — 1 observations. Thus, for

simultaneous assimilation of n — 1 observations,

n—1
W =90+ 3ol - 0, 241

i=1

where \I!g)) is the state vector before the processing begins, and \Ilfc"-'l) is the
state vector after n — 1 observations have been processed. The ag;“l) are

assumed to satisfy
n—1

S (rij + 0365 )als Y =i (2.A2)

j=1
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Here r;; = €} €}, where € and €} are the prediction errors associated with \II(O)
and \Ifgo), respectively. Also, v; = aj is the error variance of the jth obser-
vation, and §;; is the Kronecker delta. Equations (2.A1) and (2.A2) follow
from the assumption that serial and simultaneous processing are equivalent

for the first n — 1 observations.

Serial processing can be written
7™ = g 4 o (@ — wlin-D), (2.A3)

Note that n denotes both the location of the observation and its order in the

(n )

processing sequence. The aj, are computed as in (2.3), but the errors €}

and € are the errors in \I’f ) and \Ilg-"_l), respectively. From (2.A1), these
errors satisfy
n—1
n— 0 n—1 o
D = P 4 T ol (e - ). (2.A4)
J=1

We substitute (2.A4) into (2.3), recognizing that the observation errors are

uncorrelated with the prediction errors and that r;; = rj;. This yields

o - a("—l) - a(” 1)7',k + Za(n l)ag; 1)(r,-j + v;65)
kn — .

Tnn + Up — 2 Z a(n—l)r;m + Z 2 a(n-l) (n 1)(7‘” + v] 1.’1)
(2.A5)

The single sums are over j from 1 to n — 1. The double sums are over ¢ and

4, both of which vary from 1 to n — 1. With (2.A2) this becomes

L) ~ Ty Urey

Cpn = (n 1)
Tan + Un = 2 Qp; rnj

(2.A6)
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Substituting (2.A1) into (2.A3), one can relate a}c’;) to afg—l) for j < n:

ag;) = ag_l) oo (n_l). (2.A7)

Equations (2.A6) and (2.A7) follow from (2.A3), the nth step of the
serial assimilation. The remainder of the proof is showing that (2.A6) and
(2.A7) are consistent with the expression for simultaneous assimilation, the
n-dimensional version of (2.A2), i.e., with (n — 1) — n. First separate out

the nth row and nth column:

(Pnn + vn) ag;) + Z rmakj = Tpk. (2.A8)
i=1
rmakn + E(r,] + vjé,,)aij) = ik, (2.A9)

j=1

where ¢ varies from 1 to n—1. Then substitute for ascr;) in (2.A8) and (2.A9),
using (2.A7). Equation (2.A9) becomes an identity and (2.A8) becomes
(2.A6), which shows that the equations are consistent. In other words, serial
and simultaneous assimilation are equivalent for n observations provided they
are consistent for n—1 observations. Since they are equivalent for n = 1, they
are equivalent for all n. A corollary is that the result of serial assimilation is

independent of the order with which the observations are processed.
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Chapter 3

Martian Weather Correlation
Length Scales from Viking
IRTM T15

3.1 Abstract

Spring and fall equinox Viking infrared thermal mapper (IRTM) 154m chan-
nel atmospheric temperature (T15) observations are used to estimate the
weather correlation length scale of Mars in the pressure range 0.5-1 mbar.
The results are important in providing a benchmark for validating Martian
general circulation models (GCMs), in determining the optimal placement
of a network of landers, and in guiding data assimilation efforts for orbiters
and landers. Observations of atmospheric temperature are used to compute

an atmospheric mean state, as a function of time-of-day and latitude, which
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is then subtracted from the observations to yield weather temperature resid-
uals. These residuals are correlated with each other to determine (1) the
weather temperature correlation length scale (~ 1500km) as a function of
latitude and (2) the globally averaged weather temperature variance (~ 4K?
for Lg ~ 0°, ~ 11K? for Ls ~ 180°). Good general agreement is found in
comparing to the Rossby radius of deformation and to inferences made from
other data sets. The results are also compared with GCM results yielding
generally good agreement, with some interesting differences in the magni-
tudes of the weather temperature variances. An estimate is made of ~ 110
landers needed to globally observe the weather of Mars, although the south-

ern hemisphere could be observed with ~ 10.

3.2 Introduction

Mars has weather. Baroclinic waves and perhaps even frontal systems have
been observed passing over the Viking Landers (e.g., Barnes 1980, Tillman et
al. 1979). The Mariner and Viking Orbiters observed many types of clouds,
which resemble what we consider weather on Earth (Kahn 1984). Local and
global dust storms have been observed on Mars for roughly a century (Martin
and Zurek 1993). However, although we are aware that there is weather on
Mars, we know very little about it. The simplest details of the weather are
still poorly constrained by the existing analyses of the Martian atmospheric
data sets. For example, the length scale over which a weather system can
be considered a coherent body has not been directly determined. The main

focus of this work is to quantify the length scale of weather systems on Mars.
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The weather correlation length scale is important for a number of reasons.
The first is simply to better understand the nature of the weather systems on
Mars. The length scale and shape of weather correlations are indicative of the
spatial coherence of the atmospheric variations, and perhaps the dominant
lengths of waves in the atmosphere. These physical quantities of the Martian
atmosphere and its weather add a crucial benchmark with which to evaluate
the performance and validity of existing Martian GCM’s. While other work
has allowed the temporally averaged meridional cross-sections in these models
to be well compared with observations (e.g., Santee and Crisp 1993, Haberle
et al. 1993), weather phenomena in these models have been constrained
mainly by the Viking Lander observations located at just two surface points
(Barnes et al. 1993).

Another reason for wanting to know the weather correlation length scale is
for use in the assimilation of observational data into numerical models: data
assimilation. With Mars Observer, it was planned to take the atmospheric
data from the pressure modulator infrared radiometer (PMIRR) instrument
which would have given continuous soundings of the temperature structure
of Mars’ atmosphere and assimilate them into a Martian GCM (Banfield et
al. 1994). This can be realized with possible future Mars Observer rebuilds,
which could yield an accurate estimate of the complete Martian atmospheric
state at all times during the mission. However, to properly insert data into a
model, the length scale over which weather systems are correlated is needed.
With an optimally designed assimilation scheme, an observation at one lo-
cation will influence the state of the model over a region specified roughly

by this weather correlation length scale. If this length scale is not properly
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specified, significant performance decreases are found in the data assimila-
tion system’s accuracy (Banfield et al. 1994). The technique outlined in
Banfield et al. (1994) requires using a GCM to predict the weather correla-
tion length scales. Determining this length scale from data will allow us to
better understand the errors made in using a GCM as a substitute for Mars.

Seaman (1977) showed that the optimal placement of a network of lan-
ders is directly related to the weather correlation length scale. Thus, under-
standing the nature of this quantity, as it changes with latitude, season and
dustiness of the atmosphere, can help us intelligently decide where to place
landers for future meteorological investigations of Mars, such as a meteoro-
logical network.

In this work, we determine the Martian weather correlation length scale
using Viking Orbiter IRTM T15 observations. However, before proceeding
to that portion of the work, we present the results of some techniques used
to estimate the order of magnitude of this quantity. We do this using simple
theory and Viking Lander meteorological data. Then we proceed to discuss
the techniques we use to extract only weather effects from the IRTM T15
data, and produce the weather correlations. After presenting the results,
we compare them with the simple estimates, results from the Earth, and

published results from a Mars GCM and other analyses of observations.



104

3.3 First Estimates

3.3.1 Theory

Some simple estimates of the weather correlation length scale can be inferred
from theory. Using quasi-geostrophic theory, we expect the weather correla-
tion length scale to be roughly the same as the Rossby radius of deformation,
the length scale at which buoyancy and rotational effects are comparable
(e.g., Ghil et al. 1979, Krauss et al. 1990). The Rossby radius of deforma-
tion can be defined by Lp = NH/ f where N is the buoyancy frequency of the
atmosphere, H is the equivalent depth, and f is the coriolis parameter. For
Mars, N is about 0.01 hz, H is about a scale height, 11.5 km (Barnes 1984),
and f = 2Qsin ¢, yielding Lp ~ 800km X (sin ¢)™!. Thus for mid-latitudes,
where the atmospheric wave activity is probably centered, we might expect

a weather correlation length scale of order 1000 km.

3.3.2 Viking Lander Data

There were two Viking Landers operating on the surface of Mars from
September 1976 until April 1980. Viking Lander 1 continued to return data
until November of 1982. Among the data returned by the landers were surface
pressure, temperature and wind observations at the two sites. Barnes (1980,
1981) interpreted these data as indicative of baroclinic waves propagating in
the Martian atmosphere. He reported frequency spectra as a function of sea-
son for the pressure, wind and temperature data taken at the site of Viking

Lander 2 (48°N, 226°W).
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From his results, one can surmise the correlation time of Martian weather,
at least at the latitude and times the observations were taken. The widths of
the peaks in the frequency spectra are indicative of the inverse of the corre-
lation times of the atmospheric waves. Reading from Figs. 12, 13 and 14 in
Barnes (1980), a rough number of 0.08 sol ™' for the full width at half maxi-
mum is found from the spectra during fall, winter, and spring. If we assume
these spectral peaks represent waves which have oscillatory and damped com-

twt—t/r

ponents of the form: e , and then Fourier transform this to yield the

resulting power spectral density, we find:

1/7

RSy~

(3.1)
Equating the width of this power spectral density with that found from
Barnes (1980), we find a coherence time of 7 ~ (A frwnm)™t ~ 4 sols.
While this is not the final quantity that we are seeking, it is an interesting
result along the way to deriving the correlation length scale. The coherence
time of Earth’s weather is somewhat shorter than this, as can be similarly
detected looking at surface pressure power spectra for the Earth. Hamilton
and Garcia (1986) publish frequency spectra for surface pressure at several
sites on the Earth, which generally exhibit a structure which is more like
“white noise” than those of Mars. However, the higher time resolution spec-
tra in Hamilton and Garcia’s Figs. 11 and 12 show a characteristic width of
about 0.0055hour ™! for an equatorial normal mode of the atmosphere. Thus,
these spectra correspond to a correlation time of less than 60 hours, or 2.5

days. As an aside, the greater correlation time-scale for disturbances in the
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Martian atmosphere may make the Martian atmosphere more predictable
than that of the Earth.

We can use the correlation time to estimate the correlation length scale
one should find at Mars. Given the phase speeds of the waves on Mars
and their correlation times, one can calculate the distances over which the
waves would travel while they remain coherent disturbances. This distance
is not precisely the same as their instantaneous spatial correlation length,
but should be similar to it. By assuming geostrophy between the wind and
pressure observations, Barnes (1980) also computed phase speeds for the
waves, with values between 5 and 15 m s™! at the location of Lander 2.
Thus, with correlation times of order 4 sols, a correlation length scale of
order 3000 km is expected at this latitude.

Another not entirely unique approach for estimating the correlation
length scale can be employed for the second year of Mars Viking Lander data
(Barnes 1981). Barnes (1981) again assumed geostrophy between the wind
and pressure measurements. From the cross-spectra of the observations, he
derived wavenumber frequency spectra for the waves travelling around Mars.
He states that the reported variances in the derived zonal and meridional
wavenumbers are indicative of the spread of the pressure wavenumber spec-
trum at a given frequency. Thus, we can use the variances to estimate the
width of the wavenumber spectra of these Martian disturbances. Then these
widths can be used to infer a correlation length, just as the frequency widths
are indicative of a correlation time. The values reported by Barnes are a
standard deviation in the zonal wavenumber spectra of about 1 wavenumber

at 48°N for fall and winter. If that standard deviation is taken to be the
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half width at half maximum of a spectral peak, then a correlation length
of about 2000 km is found in the zonal direction at this latitude. Barnes
also reports meridional wavenumbers and standard deviations, which we use
to infer a meridional correlation length scale. The meridional wavenumber
spectra have standard deviations of about 2.5 wavenumbers. This value sug-
gests a correlation length scale of about 1000 km in the meridional direction
at this latitude. This result interestingly suggests a possible difference in the
length scale depending on the direction in which the correlations are per-
formed. That is, this result suggests that weather is correlated over longer
distances in the zonal direction than in the meridional direction at this lat-
itude. Nevertheless, these two values are similar to the value derived using
the preceding technique. This is in part a reflection of the fact that both
techniques essentially make the same assumptions (geostrophy) in handling
the data sets to arrive at the same quantity (the length scale). However, the
results are individually interesting as they are from two separate years at

Mars.

3.4 Viking IRTM Data

The best method of determining the weather correlation length scale is to
take observations of the whole planet at one time and correlate the weather
perturbations with each other. While highly instructive, the Viking Lander
data were hardly a global data set. The Viking Orbiters had an infra-red
instrument (IRTM) which was able to sense the atmospheric temperature at

a pressure of about 0.6 mbar (about 25 km elevation) in the atmosphere using
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its 15um channel (Martin and Kieffer 1979). This data set is the focus of
this body of work, and we have used it to determine the weather temperature
correlation length scale over most of Mars for two seasons. This data set is
most like the scenario described above, that of a global simultaneous view of
the true atmospheric state. While the observations are not both global and
simultaneous, there are observations covering nearly half of the globe within
an hour. For the weather systems on Mars, observations within an hour of
each other should be effectively the same as simultaneous observations. It
is, however, also important to note that the data set from this instrument
probes a different region of the atmosphere than that studied by the Viking
Landers.

We chose two subsets of the IRTM data to examine in detail, namely
16 weeks centered around Ls ~ 0° (northern spring equinox) and 8 weeks
centered about Lg ~ 180° (northern fall equinox). These subsets were chosen
because they had the best global coverage of the whole data set, and were
obtained during times of low dustiness in the atmosphere. Furthermore,
seasonal differences between the fall and spring equinoxes might be evident in
the analyses. Eventually, data taken during the winter and summer seasons
and during dust storms should also be examined in this manner, but was

beyond the scope of this work.

3.4.1 Climatology

The difficulty of using the IRTM data set lies in separating the climatolog-

ical mean state from the transient weather temperature residuals. In this
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case, we are using the word climatology to include all of the systematic tem-
perature effects in the atmosphere: seasonal trends, vertical temperature
gradients, and the steady daily temperature fluctuations. This climatology
will be primarily a function of latitude and time-of-day, reflecting the strong
hemispheric and diurnal effects. However, other effects such as emission an-
gle, local topographic elevation and perhaps longitude of the observation can
contribute to the systematic variation of the mean temperature observed in
the atmosphere. Seasonal effects will present longer-term variations in the
climatology, particularly in the latitudinal distribution of mean temperature,
and must be considered as well. In this section, we will discuss the details
of our fit to the climatology of the IRTM data set, with which we have
attempted to explain as much systematic variance as possible. It is this cli-
matological mean state that we must remove from the observations to yield
the weather temperature effects we are ultimately interested in.

As mentioned above, we expect the atmospheric climatology to be mostly
described by functions of latitude and time-of-day. Therefore, the primary
component of our fit will consist of spherical harmonics in latitude and time-
of-day. However, we must also consider the emission angle of the observa-
tions, as observations taken at higher emission angles actually sample the
temperature of the atmosphere at higher altitudes. We will model this ef-
fect by fitting constant vertical gradients in temperature centered about the
mean altitude of the observations. Furthermore, we will allow these vertical
gradients to be a function of latitude, but not time-of-day. This assumption
is suggested from the work of Santee and Crisp (1993) (and Santee, private

communication, 1992) who inverted Mariner 9 infrared spectroscopy (IRIS)
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spectra to yield temperature profiles of the Martian atmosphere. Their re-
sults, from one of the same seasons that we examined (Lg ~ 0°), suggest
that the vertical temperature gradient in the region sampled by the IRTM
instrument is essentially constant with altitude and only a function of lati-
tude. We also attempted to fit spherical harmonics in latitude and longitude
to the data, to allow for the possibility of topographically fixed waves in the
atmosphere. However, that functionality yielded no consistent results, and
was not used in the final analysis. Mathematically, we express our fit in the

following manner:

T,-esid = Tobserv Trﬁ’e:zn
Lmam Lmaz

T,f;ﬁ;n — Z E Tz latltude hour)+(lt %) Z Tlo Yio(latitude)
1=0 m=—I I=0

(3.2)

where g = cos (emission angle) and 7 is the average of that quantity over the
period being fit. The Y},,’s are the spherical harmonic functions. The Tl‘f:
are the fit coefficients of the spherical harmonics in latitude and time-of-day.
The T} are the fit coefficients in latitude and emission angle.

To maintain quality in the data and the fits, filtering was done on IRTM’s
quality flag, emission angle, and local topography of the observations. Only
observations tagged with an IRTM quality flag less than 4096 were consid-
ered. This represents data with the only potential flaw being unremoved
spikes (see Kieffer 1989, PDS Viking IRTM CD-ROM, IRTM.TXT). The

emission angle was limited to below 65°, effectively limiting the vertical ex-
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tent sampled by the observations. Above this, the constancy of the vertical
derivative became suspect. As the 15um band’s weighting function is fairly
broad, observations taken over topographically high regions are also suspect.
For nadir observations, the weighting function is at 25% of its maximum value
at 12 km altitude (Kieffer et al. 1976). Observations taken over locations
topographically higher than this will clearly be significantly contaminated
by surface temperatures, and thus need to be discarded. We chose 12 km as
the cut-off, because only a very small portion of the planet is then excluded
(Tharsis volcanoes and Olympus Mons) and the IRTM instrument’s 15um
band weighting function drops off very quickly below that altitude.

One also quickly recognizes that the climatology will be a function of
season, so we limited the time domain covered in each of our climatology fits.
The trade-off is that seasonal trends slowly change the mean temperature at
any particular location on the planet, but computing a mean from too short
a data set causes insufficient coverage, creating large errors in the fit. We
could not perform one climatology fit to the entire 8 or 16 week subset of the
data analyzed for Lg ~ 0° or Ls ~ 180°, as the errors due to seasonal trends
would overwhelm the weather temperature fluctuations. We found that a
practical balance of 14 sols (Martian solar days) allowed sufficient coverage,
yet negligible seasonal changes and the error in our climatology was similar
for both of these effects. Specifically, the seasonal changes were less than or
on the order of 1K at any particular location over 14 sols, while the coverage
in that time allowed our fits to be accurate to of order 1K as well. The value
we quote of about 1K accuracy in the fits is found from comparing 2 similarly

good fits, e.g., an Lme, =7 fit and an L., =6 fit. Their differences in the
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regions in which there are data are less than about 1K. Thus, we fit to the
14 sol periods, and then after subtracting off the climatology, combined four
or eight 14 sol periods to comprise the larger subsets analyzed. Figure 3.1
shows the coverage allowed in one of the 14 sol periods of the IRTM data that
we have analyzed. The number of observations in the 0.34H (1H is defined
as 1/24th of a sol) by 3.6° latitude bins range from 0 (white) to 200(black).

Figure 3.2 shows the climatological mean state at a few particular lat-
itudes for one 14 sol period. The figure also shows some of the raw data
from which the climatology was derived. At first glance, this fit does not
appear good, but keep in mind that the weather temperature fluctuations
are present in the data, but not in the climatology fits. We will show later
* how the weather temperature fluctuations are of order 5K2, while the errors
in the climatology fits and the observational errors are of order 1K2. Thus,
this does in fact show good agreement between the data and the climatology
in the regions in which there are data.

We computed fits out to L.q. =15, yet found that L., =5 was always
sufficient. That is, the terms which most decreased the x? of the fit were
all Ly, =5. Figure 3.3 shows an L., =7 fit in latitude and time-of-day
to a 14 sol period of the data at Ls ~ 0°. Most noticeable in this fit is
the diurnal component of the daily temperature oscillation. It reaches a
peak at about 13H, or just after local noon. The amplitude of this diurnal
tide is roughly 14K at the equator, although it is difficult to separate the
diurnal tide from the semidiurnal tide in this representation. The semi-
diurnal component is also noticeable, although the large cold area in the

atmosphere at 22H around the equator is mainly due to a hole in the coverage
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Fig. 3.1: The coverage afforded by Viking IRTM observations from JD 3428
- 3442 (Northern spring equinox, Ls ~ 0°). The number of observations in
this period is binned by 0.24H and 3.6° latitude, with values ranging from 0
to 484 per bin. The grey scale is adjusted so that white represents a data gap
(no observations) and it saturates to black at 200 observations per bin. Note
the poor coverage in the North, and at certain times-of-day farther South.
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Fig. 3.2: A comparison of the climatology fit and the data used to derive
it for one 14 sol period (JD 3428 - 3442) of the Viking IRTM T15 data.
Shown on this plot are cross-sections of the global fit at three latitudes: the
equator, 65°S, and 80°N. Note the good accord between the data and the fits
in regions in which there are data. The discrepancies between the fit and the
data mainly represent the weather temperature variations we are primarily
interested in.
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Fig. 3.3: The mean temperature of a 14 sol period of the IRTM data as a
function of latitude and time-of-day. Dark represents hot, and the contours
are between 149K and 195.4K, spaced by about 4.6K. This fit is in spherical
harmonics out t0 L.z = 7. The diurnal variation has an obvious peak
near the equator at a time-of-day just slightly after local noon. The rough
latitudinal symmetry is indicative of this period being near equinox (Ls ~
0°). The local temperature maximum just north of the equator and 22H is
spurious and is due to no coverage in that region (see Fig. 3.1).
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of the data (see Fig. 3.1). The atmospheric cooling towards the poles is also
prominent in this plot, with a difference of 50K between the highest equatorial
temperature and the coldest polar temperature. Again, this fit (and thus,
the tidal amplitudes) is roughly within 1K of the actual climatology of Mars’
atmosphere at this altitude and season in regions which were well sampled
by the IRTM instrument. Clearly there is much information in these fits
about the structure, amplitude and phase of the thermal tides in the Martian
atmosphere at this altitude. However, a detailed analysis is beyond the scope
of this paper, but will be explored in later work.

Most of the systematic variation in the mean temperature of the atmo-
sphere is the result of latitudinal gradients and daily temperature fluctua-
tions. Figure 3.3 represents these functionalities. However, recall that we also
fit functions describing the vertical derivatives of the temperature profiles as
a function of latitude and emission angle of the observation. In addition to
daily fluctuations, latitudinal and vertical gradients of the mean atmospheric
temperature, one might expect to find stationary or topographically-fixed
temperature fluctuations in the atmosphere as well. These would be man-
ifest as systematic temperature deviations as a function of location on the
planet, or latitude and longitude. As mentioned above, we did not fit terms
as a function of latitude and longitude to the data because they showed little
consistency between consecutive 14 sol periods. That is, the differences be-
tween the latitude and longitude fits of one 14 sol period and the next were of
the same order as the power in those functions themselves. As a comparison,
the differences between latitude and time-of-day fits of one 14 sol period and

the next were less than about 10% of the power in the latitude and time-of-
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day functions. Furthermore, the power in the latitude and longitude terms
was roughly only 10% of the power in the latitude and time-of-day terms.
Finally, visually the latitude and time-of-day fits were very consistent from
one 14 sol period to the next, while the latitude and longitude fits bore no
resemblance from one to the next. Thus, either topographically fixed waves
changed significantly on a time scale of 14 sols, or simply could not be dis-
cerned from this data set. We estimate that a minimum amplitude of order
5K should have been observable in latitude and longitude variations, as this
is the apparent level of noise present in the terms with this functionality.
After subtracting the climatological fits from the data, scatter plots of the
residuals were used to check for any systematic variation left as a function
of any of the independent variables, i.e., emission angle, latitude, longitude,
local topography, etc.. No apparent correlations were found in any of the
independent variables. Thus, the combination of the data filtering and the
functionality of our fits adequately describes the systematic variation in the

data set.

3.4.2 Weather Correlations

Having derived the climatological mean state, we then subtract it from the
raw data to leave the transient weather temperature fluctuations. In this
section, we will discuss how we compute the weather temperature correlations
and their variances as well as present the results of these calculations.

For each datum, its departure from local climatology is now the part of

the data set we are interested in. We correlated each weather temperature
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residual with each of the other nearly contemporaneous (within 1 Earth hour,
i.e., ~ 1 Mars hour) weather temperature residuals in its 20° latitude bin.
We binned the variances and covariances by the latitude of the observation

and the separation distance between the two observations being correlated.

coV|Tresia( @1, 01 ), Tresia( 2, 02)]
Vavr[Tresid(qS)]

p(¢,d) = (3.3)

where p represents the correlation, and ¢ is the latitude bin of the obser-
vations. d is the two observations’ separation distance. ¢;, 8; and ¢2, 05
represent the latitude and longitude of the first and second observations re-
spectively. Attempts were made to also compute the correlations as a func-
tion of the azimuth angle from north between the two observations being
correlated, but poor results were found and will not be reported here.

We had to choose a time window in which we could consider observations
to be simultaneous, at least from the perspective of trying to correlate moving
weather systems. As mentioned previously, we can expect a phase speed of
these systems of roughly 20 m s™! (at least in the mid-latitudes) (Barnes
1981). Our previous simple estimates of the weather correlation length scale
suggest a length scale of order 2000 km. We can consider two observations of
a weather system simultaneous if it has moved only a small fraction of its own
size in the time between the observations. So as not to automatically select
out the same length scale as previously estimated we will use conservative
estimates to determine an acceptable time window. If we require a 500 km
disturbance to move less than one fifth of its size, it could only move 100 km.

If it is traveling at 30 m/s, this means it could go for about 1 hour before
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it propagated 100 km. Thus, we use a window of 1 hour during which we
consider observations to be simultaneous. We also tried performing all the
calculations with a time window of 3 hours, which negligibly changed the
results.

We defined above how we calculated the correlations as a function of lat-
itude and separation distance between the points being correlated. However,
the weather temperature variance in the denominator of the correlation is
not simply the average product of the observational residuals with them-
selves, because such a product would include observational noise and errors
in the climatology. That is, the total residual variance will be the sum of
the weather temperature variance (the part we’re interested in), the obser-

vational error variance and the climatological fit error variance.

2 2 2 2
Ootal = Twx + Oobs + Tgie (34)

The observational noise variance is not small (~ 3K?), and must be con-
sidered. It can be assumed to be uncorrelated from one observation to the
next, as it is primarily due to detector noise (Chase et al. 1978), but it will
certainly correlate with itself. It is a function of the temperature of the ob-
servation as the detector sensitivity changes with observed temperature. The
climatological fit error variance is somewhat smaller than the observational
error variance (~ 0.5K?), but is also a function of latitude, and hard to esti-
mate well. We could model these error variances and remove them from the
total variance calculations. However, we chose not to do this, as our ability

to model these error variances is poor and would likely introduce significant



120

errors into our weather temperature variance estimates.

To correct the total variances to the weather temperature variances, we
use the idea the the weather correlations should approach 1.0 at zero sep-
aration. Unless there are significant small scale structures in the weather,
the weather correlations should smoothly rise to unity at the origin. Thus,
by requiring this of the correlations, we can implicitly remove the observa-
tional and climatclogical fit error variances without modelling them. We
have performed this by extrapolating the original correlations at 25 and 75
km separation to zero separation. Then the weather temperature variances
were adjusted so that this correlation at zero separation was 1.0. We did
attempt to quantify and remove the unwanted variances in the total residual
variances, and found results quite similar to that found by extrapolating to
zero separation. Nevertheless, we believe that the extrapolation technique
introduced less errors in the results.

Although the errors in the climatology fit are small compared to the
variance of the weather temperature residuals, there was concern that our
correlation length scales might simply represent the smallest length scales in
the fits. We tested for this by computing the correlations using climatology
fits of differing length scales, namely Limaz =2, Linaz =3, Lmaz =4, Lmaz =39,
Loz =6, Lymaz =7 and L.z =10. The results were that the correlations of
the Loz =5, Lmaz =6, Limez =7 and Ly, =10 fits were nearly identical (as
were the largest terms in the fits), but the Liar =2, Linae =3 and L., =4 fits
differed greatly from the others. These correlations are shown for a particular
latitude band and 14 sol period in Fig. 3.4. Thus, we conclude that our

correlations are measuring the weather temperature correlation length scale.
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Fig. 3.4: Correlations as a function of distance for a particular latitude
band and 14 sol period of the Viking IRTM T15 data. The seven curves
on the plot represent different spherical harmonic truncations in the model
of the climatology. The four curves which are nearly super-imposed on one
another are for Lmaz =10, Lmaz =7, Lmez =6 and L., =3, suggesting that
their climatology fits all adequately describe the climatological variations.
The other three curves which all differ are for Loz = 4, Ljmer = 3 and
L. =2 suggesting that their climatology fits have insufficient resolution to
adequately describe the climatological variations.
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This also indicates again that the climatology fits can be adequately described
by a fit with L, =5.

As mentioned before, we computed the climatology fits and correlations
of the weather temperature residuals for each 14 sol period of the IRTM
data set analyzed. However to reduce noise, we co-added four such periods
of 14 sols each (8 weeks) to compute one set of correlations. We analyzed
two such 8 week sets centered about Lg ~ 0° to assess the reproducibility of
our correlation calculations. That is, for Lg ~ 0°, we computed two groups
of correlations, one from the 1st, 3rd, 5th and 7th 2 week periods, and the
other composed of the 2nd, 4th, 6th and 8th 2 week periods. The differences
between the two groups should be indicative of the errors present in the
correlations. The 8 weeks of Lg ~ 180° observations were also analyzed
in 14 sol periods, but were then all combined to make only one group of
correlations to compare with the opposite season.

As an example of the correlations computed, in Fig. 3.5 we present the
results for the latitude band centered at 20°N at Lg ~ 0°. This latitude band
encompasses the Viking Lander 1 site, and thus is instructive for comparisons
with the Lander results. The figure shows the correlations from both the first
and second group of observations analyzed at this season. The differences
between these curves are indicative of the reproducibility of the results, and
thus the errors in the correlation curves. While the curves are not identi-
cal, they do follow a similar trend out to about 2000 km. Beyond there,
the curves are less similar, primarily due to the fact that fewer covariance
pairs were calculated at the longer separation distances, increasing the noise

in the calculation. The curves show a correlation which drops off roughly
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Fig. 3.5: Correlation as a function of separation distance for the latitude
bin centered on 20°N. The solid lines are the correlations computed for the
two groups of data around Lg ~ 0°. The dotted lines represent the log of
the number of individual covariances averaged in each 50 km bin for the two
groups. There are roughly 10° individual covariances in each bin, reducing
the noise on each correlation curve. The correlation drops like an exponential
with a characteristic length of order 1000 km.
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exponentially, with a characteristic length scale of order 1000 km, similar to
the simple estimates presented above.

Figure 3.6 shows these same correlation curves for all of the latitude bins
for the first and second groups of correlations around Lg ~ 0°. Again, the
two solid lines are not identical but follow the same general trends. In general
the correlations are all falling off roughly exponentially with a characteristic
length scale of order 1000 km. However, there do appear to be significant
differences in the curves between different latitudes. These differences are
in the shape of the correlation and also in its overall length scale. We do
not attempt to quantify or explain the shape differences here, as those are
at least in part due to noise in the correlation calculations.

We attempted to fit exponentials of the form p = e~*¢ where k is a fit
parameter and d is again the separation distance. We weighted the fits by the
number of covariance pairs in each bin to produce a weighted least squares
fit to each of the curves. For the Lg ~ 0° subset, this yielded values for each
20° latitude bin from north to south of 240km, 700km, 1300km, 1200km,
1700km, 1500km, 2600km, 1500km, and 2400km respectively. The numbers
listed here are an average of the two results from the first and second groups
analyzed at Ls ~ 0° except in cases where the correlation curves were poorly
fit by an exponential. An example of this is the upper curve for the latitude
bin centered on 40°N where the correlation curve is essentially constant out
to 4000km.

We also tried to quantify the correlation length scales by integrating the
area under the correlation curves out to their first zero crossing. The results

of this attempt were less useful than the exponential fits, as the noise on the
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Fig. 3.6: Correlation as a function of separation for all of the latitude bins
for the two groups of data analyzed around Lg ~ 0°. The structure of each
plot is the same as that of Fig. 3.5. Note the similarities between the two
solid lines in each plot, and the differences in overall length scale and shape
of the correlation curves among the different plots.
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correlation curves significantly influenced the overall result. We present no
results from this attempt.

Perhaps the most infallible method is simply to estimate ‘by eye’ the ex-
ponential length scale one would fit to the correlation curves. In doing so,
we note similar trends as found with the least squares fits. Going from north
to south, values of about 250km, 600km, 1500km, 700km, 1300km, 1400km,
2500km, 1700km, and 1800km are found. Note that the northernmost corre-
lation curves seem to have a significantly shorter length scale than the others
during this season.

Figure 3.7 shows the correlation curves for the northern fall equinox sea-
son (Ls ~ 180°). In this case, we only computed one group of correlations
for this season, so the errors in these correlations can only be estimated from
those found in the opposite season. As the coverage was somewhat worse
during the northern fall equinox, the errors are probably slightly larger for
this subset. Nevertheless, one again sees similar general behavior in these
plots, namely, a drop-off in roughly 1000 km, perhaps being shorter in the
north. However, there are features present at this season not observed in the
opposite season. From the equator southwards (panels 5, 6, 7, and 8), the
correlation curves are not simply exponential in form. They seem to indi-
cate a dominant mode of oscillation, in addition to the general decrease in
correlation with separation distance. At the equator, this oscillation has a
wavelength of roughly 27 x 1000 km. At 20°S, the wavelength is ~ 27 x 700
km. Between 40°S and 60°S the wavelength is roughly 27 x 640 km. These
correspond to zonal wavenumbers of 3-4 at these latitudes.

With the oscillations present in the southern correlation curves for Ls ~
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Fig. 3.7: Correlation as a function of separation for all of the latitude bins
for the data analyzed around Lg ~ 180°. The structure of each plot is the
same as that of Fig. 3.5. Note the general fall-off in about 1000km, and the
wave-like structure suggested in the southern plots. Compare this figure with
Fig. 3.6.
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180°, we did not attempt to fit those curves to simple exponentials, p =
e~*@. However, for the northern correlation curves for Ls ~ 180° we found
characteristic length scales of 600km, 750km, 400km, and 550km for the
latitude bins centered at 80°N, 60°N, 40°N and 20°N respectively. Using the
‘by eye’ fits, these same general length scales are found for the north during
this season. One can also estimate ‘by eye’ probable characteristic correlation
length scales for the southern curves in this season, although with quite large
errors. We estimate 2500km for the equator, 1800km for 20°S, 3000km for
40°S, 3000km for 60° and about 1100km for 80°S. These estimates again
support a shortening of the length scale towards to north as was seen during
the Lg ~ 0° season.

We have compiled these weather correlation length scale determinations
in Fig. 3.8. For the Ls ~ 0° results (solid lines), which show a significant
range of values for each latitude bin, we have indicated the rough extremes as
found through the two techniques (i.e., exponential fits and ‘eye’ fits) for the
two subsets analyzed. For the Ls ~ 180° results (dotted line) we only show a
single point for each latitude bin as the two estimation techniques gave similar
values for the one subset analyzed in this season. In this plot, it is clear that
the northern latitudes consistently show smaller weather correlation length
scales, while the south exhibits generally larger length scales.

We also examined the magnitude of the weather temperature variance.
Figure 3.9 depicts the weather temperature variance as a function of latitude
for the two groups analyzed around Lg ~ 0° (solid line) and the one group
centered on Lg ~ 180° (dotted line). The differences between the solid curves

are indicative of the errors present in this calculation, which are significant.
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Fig. 3.8: Weather temperature correlation length scales as a function of
latitude for Lg ~ 0° (solid lines) and Lg ~ 180° (dotted line). The vertical
solid lines connect the extrema of the length scales found for each latitude bin
for the Lg ~ 0° subsets, showing roughly the precision of these values. Only
one subset of Lg ~ 180° was analyzed so no ranges are shown for those values.
All these values were determined by fitting exponentials (mathematically or
by ‘eye’) to the correlation curves in Figs. 3.6 and 3.7. Note the smaller
length scales in the north.
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Fig. 3.9: Weather temperature variance as a function of latitude for the two
groups around Lg ~ 0° (solid lines) and the group around Lg ~ 180° (dotted
line). These curves represent the variance in the temperature at the 0.6mbar
level caused by weather phenomena on Mars. They are computed by requir-
ing the extrapolated weather temperature correlations at zero separation to
be 1.0, then adjusting the variance to achieve this. The differences between
the two solid curves are indicative of the errors in these results, which are
significant. Thus, only global averages should be considered. For the two
groups at Lg ~ 0°, values of 3 — 5K? are found, while for Ls ~ 180°, a value
of about 11K? is found.
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Table 3.1
Martian Weather Correlation Length Scale Estimates
Technique Length (km)
Theory Lp(45°) ~ 1000
Lander V - At ~ 3000
Lander Ak 1000-2000
This Work 250-3000

The latitudinal structure in these curves is mostly due to noise, so only
global averages should be considered. Thus, a weather temperature variance
of between 3 — 5K? is found as an area-weighted global average for Ls ~ 0°.

At Ls ~ 180°, a value of ~ 11K? is found.

3.5 Discussion

In this section, we summarize our determination of the weather tempera-
ture correlation length scale. We also suggest some explanations for details
observed in the correlation curves, and what that might suggest about the
weather of Mars. Furthermore, we use our length scale estimates to suggest
a number of landers necessary to observe well the global atmospheric state of
Mars. Finally, we compare our determinations of the weather temperature
variances with published results from GCM simulations and other data sets.

We have summarized our weather correlation length scale determination
from IRTM data and estimates from other techniques in Table 3.1. The results

are quite consistent, suggesting a length scale on the order of 1500km globally,
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with hints of seasonal and latitudinal differences. There are indicators in
the Viking Lander data estimates that the length scale may be different
in the zonal direction than it is in the meridional direction, although our
IRTM analysis could not be used to address this question. These results can
be compared with the published results from GCM calculations reported in
Barnes et al. (1993). They provide wavenumber-frequency spectra for the
transient eddies found in the Ames GCM simulations for several seasons and
at particular latitudes. Their spectra have similar widths in wavenumber
and frequency as the Viking results presented in Barnes (1980,1981). It was
these spectra from Barnes (1980,1981) which we used to estimate the weather
correlation length scale from Viking Lander data, and which we found to be
consistent with our IRTM analysis. Therefore, we also find good accord
between our IRTM results and those of the Ames GCM simulations.

Why all of these different data sets should yield the same weather corre-
lation length scales is an interesting question of itself. The Landers sampled
the surface pressure, while the IRTM T15 was measuring temperature at
about an altitude of 25km. The fact that they yield similar results is indica-
tive that the weather phenomena are similarly manifested in both pressure
and temperature variations for Mars. It also implies that the weather phe-
nomena investigated have large vertical extents, i.e., extending over at least
two scale heights. This hypothesis is supported by GCM calculations re-
ported in Barnes et al. (1993). In that work, they also discuss the vertical
structure of the eddies observed in their model runs. They find eddies which
are vertically coherent over the full domain of the model, namely about 4

scale heights. This behavior was also previously observed in the Martian
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atmosphere by Conrath (1981) who analyzed Mariner 9 IRIS spectra. He
observed an atmospheric disturbance which had both a consistent frequency
spectra and phase structure with height up to about 4 scale heights as well.
Therefore, we do not find it surprising that the length scales we derive from
these different data sets (and regions of the atmosphere) are all consistent.

We noted an apparent latitudinal dependence in our estimates of the
weather temperature correlation length scales (see Fig. 3.8). This was man-
ifested as a quickly decreasing length scale toward the north pole. Such a
phenomenon was noted in the Earth’s atmosphere by Ghil et al. (1979) who
examined prediction error correlations for use in data assimilation. They ex-
plained it in terms of the variation of the Rossby radius with latitude. Recall
that the Rossby radius can be expressed by Lp = NH/2{sin ¢, and so de-
creases with increasing latitude (¢). This phenomenon has also been observed
in eddies in the Earth’s oceans as reported in Krauss et al. (1990). Thus,
we do not find it surprising to see a variation with latitude of the weather
temperature correlation length scale that roughly echoes the variation of the
Rossby radius.

It is interesting, however, that we do not see a symmetrical distribution of
length scales about the equator in these equinoctial observations. Although
the southern-most latitude bin also showed slightly shortened length scales,
the decrease was much less dramatic than in the north. This trend was the
same for both Ls ~ 0° and Lg ~ 180°, not reversing between fall and spring
as might be expected. The retreating polar cap during the equinoxes switches
hemispheres between these two time periods, namely being in the north for

Lg ~ 0° and in the south for Lg ~ 180°. Thus, the hemispheric asymmetry



136

of the weather correlation length scales is not just a seasonally controlled
phenomena, and is perhaps due to persistent hemispheric differences in the
weather. Examples of potential persistent influences on the weather correla-
tion length scale could be topography or thermal inertia differences between
the hemispheres. These could influence the regions in which weather systems
are generated, and thus their length scales. For example, if the northern lat-
itudes during Ls ~ 0° and Lg ~ 180° are dominated by weather generated
locally (i.e., waves centered on far-north latitudes), then we would expect
them to exhibit the shorter length scales observed. Similarly, if the southern
latitudes during these seasons are dominated by larger, nearly planet-scale
weather systems generated nearer the equator, we would expect them to
exhibit longer, more consistent length scales throughout the southern hemi-
sphere. Correlations computed in that region would sample the same, large
weather system. Note, however, that this is simply one of many possible
self-consistent explanations of the hemispheric differences we observe in the
length scales during both seasons.

During Lgs ~ 180°, we also noted a dominant oscillation in the atmo-
sphere in the southern hemisphere of zonal mode 3-4. This is similar to the
observations of Barnes (1980,1981), and the GCM results reported in Barnes
et al. (1993), although they found dominant wavenumbers of between 2 and
4 during this season. QOur analysis seems to quite strongly support the higher
wavenumbers reported by Barnes et al. (1993) from the GCM. Thus, most of
the gross structures found in our correlation analysis can be explained within
the current understanding of the nature of the transient eddies present in the

Martian atmosphere.
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Seaman (1977) showed that the accuracy in estimating the atmospheric
state from a network of landers is directly related to the spacing of landers
divided by the weather correlation length scale. Thus, one can estimate
the number of landers needed on Mars to observe the global surface pres-
sure without missing any significant features in the weather signal. We will
take the smallest length scale measured in each latitude bin for either season
investigated and assume that that is the separation of landers in that latitu-
dinal bin. Seaman’s (1977) results show that this is a good choice for lander
spacing. Performing this yields a total number of landers of roughly 110,
yet with only 10 south of the equator. However the northern mid-latitudes
require some 70 landers because of the extremely small (i.e., 400km) length
scales observed there in this analysis. Calculating the number of landers
needed from the smallest length scales found might seem like a worst-case
scenario, but if complete resolution is desired, then this number is required.
Furthermore, this number could grow if even smaller length scales were found
upon analyzing the other Martian seasons.

The weather temperature variances computed in our IRTM analysis can
be also compared with other published work. Barnes et al. (1993) report
the GCM’s transient eddy temperature variance as a function of latitude
and altitude. At Ls ~ 0° (their Fig. 18), near 25 km altitude, they report
variances of between 0.5K? and 3K?, with a globally averaged value of about
1K2. Qur results were consistently higher than this, with a globally averaged
value of about 4K? for this season. Nevertheless, the match is good on
an order of magnitude level. At Ls ~ 180° (their Fig. 16), near 25 km
altitude, they report variances of between 0.5K?% and 11K?, although values
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above 4K? are found only between 40°N and 65°N. A globally averaged value
of their findings is roughly 2.5K?2. For this season, we again found values
consistently higher than this, with a globally averaged value of about 11K2.
While we caution against interpreting the latitudinal structure in our weather
temperature variance results, for Ls ~ 180°, we do see somewhat greater
values north of 40°N. This hints at an agreement with the GCM results, in
spite of the magnitude differences.

As another comparison for our variance calculations, Conrath (1981) also
computed a temperature amplitude from a wave he observed in Mariner 9
IRIS data. While his data set is from a time slightly earlier (Ls ~ 340°) than
our northern spring equinox subset (Ls ~ 0°), it is still useful to compare
against. He found wave amplitudes of up to 4K at the 25 km altitude, in
a latitudinally confined region between about 50°N and 70°N. This observa-
tion is more consistent with the GCM results than our observations, however
the agreement with our analysis is not particularly bad either. One possible
explanation for the discrepancy between our analysis and the Conrath and
GCM results could be interannual variability. Thisbcould be addressed with
GCM simulations, although to date, no multi-year statistics have been re-
ported in the literature. Nevertheless, we at least see an agreement in the
order of magnitude of the weather temperature variances revealed in these

three analyses.
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3.6 Summary

In analyzing the Viking IRTM T15 data sets to derive the weather temper-
ature correlation length scales, we have established another benchmark with
which to compare the current crop of Martian GCM’s to the realities of the
Martian atmosphere. We found consistent length scales for the correlation
of roughly 1500 km, and hints that it may have some interesting latitudinal
structure (shorter in the north). We found weather temperature variances
at 25 km altitude of order 4K? (Lg ~ 0°) and 11K? (Ls ~ 180°), some-
what higher than that reported by others (e.g., Barnes et al. 1993, Conrath
1981). The in-depth analysis on the IRTM data was only performed during
the non-dusty times around spring and fall equinox. However, both Lander
observations and GCM calculations suggest that perhaps the most interest-
ing time to study weather phenomena is during the winter season, when the
temperature variances increase by perhaps a factor of two. Therefore, to
add to this work, to better constrain the number of meteorological landers
needed at Mars and to further understand the nature of weather on Mars, we
hope to eventually perform this type of study throughout the whole of the
IRTM data set. Furthermore, the weather correlation length scales derived
here should be useful in developing the first operational atmospheric data
assimilation systems for Mars, when global data becomes available. Finally,
these length scales should be used as a guide in determining the density of

landers required to compile a useful meteorological network for Mars.
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