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Abstract

A central issue in control system design has been to deal with uncertainty and nonlin-
earity in the systems. In this dissertation, an integrated treatment for both uncertainty
and nonlinearity is proposed. This dissertation consists of two relatively independent parts.
The first part deals with uncertain linear systems, while the second part treats uncertain
nonlinecar systems.

In the first part, the problem of control synthesis of uncertain linear systems is consid-
ered. A linear fractional transformation (LFT) framework is proposed for robust control
design of uncertain linear control systems with structured uncertainty. Linear parameter-
varying systems whose coefficients depend on some time-invariant unknown parameters
are treated in a general algebraic framework; both the stabilization and the H.,-control
problems are considered. For uncertain linear systems under structured perturbations, ro-
bustness synthesis problems are characterized in terms of linear matrix inequalities (LMIs)
in the LFT framework. A generalized PBH test is also used to characterize the robustness
synthesis problems. Moreover, a separation principle for the control synthesis of uncertain
linear systems is revealed. The machinery also streamlines a number of results concerning

the analysis and synthesis of multidimensional systems.

In the second part, the problem of control synthesis for nonlinear systems is addressed;
stabilization, £!-control, H,-control, robustness analysis, and robustness synthesis prob-
lems for nonlinear systems are examined in detail. In particular, locally and globally stabi-
lizing controller parameterizations for nonlinear systems are derived; the formulae generalize
the celebrated Youla-parameterization for linear systems. Both nonlinear £'-control and
nonlinear H..-control are also considered for dealing with disturbance attenuation prob-
lems for nonlinear systems. The L£!-performance and £-control of nonlinear systems are
characterized in terms of certain invariance sets of the state space; in addition, the relation

between the £1-control of a continuous-time system and the ¢1-control of the related Fuler
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approximated discrete-time systems is established. A systematic treatment for H,-control
synthesis of nonlinear systems is provided; the nonlinear H-control problem is charac-
terized in terms of Hamilton-Jacobi Inequalities (HJIs) and nonlinear matrix inequalities
(NLMIs); a class of Ho-controllers are parameterized as a fractional transformation of con-
tractive stable parameters. Finally, the problems of stability and performance robustness
analysis and synthesis for uncertain nonlinear systems subject to structured perturbations
with bounded L3-gains are introduced; they are characterized in terms of HJIs and NLMIs
as well. Computational issues are also addressed; it is confirmed that the computation
needed for robustness analysis and synthesis of nonlinear systems is of equivalent difficulty

to that for checking Lyapunov stability.
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Preface

Control Science as Science

A science, as an organic whole, is a coherent system of principles and methodologies, a more
or less verified or established explanation accounting for known facts or phenomena, and
an internal mechanism which unifies the knowledge as an identity and reconciles practical
ends with new ideas. A successful new idea typically alters and extends the existing body
of the science to allow for observational facts that could not previously be understood or
incorporated. It also makes possible new predictions that can some day be tested. In this
sense, the vitality of a science depends on its well-established infra-structure as a rigorous
discipline and the dynamics of its methodologies and boundaries.

In retrospect, the development of control science follows this pattern. The essential
principle for control science is feedback, i.e., the property of being able to adjust future
conduct by past performance'. Control and feedback are two inseparable terms.

Recorded control practice can be traced back to at least the first half of the 3rd century
B.C., when level regulating devices (float valves), based on the feedback principle, were
used in water clocks®. Yet as a science in the modern sense, control only emerges much
later. James Watt’s use of the governor (1788) can be taken as the starting point for the
development of control as a science. However, it is generally thought that it was J. Clerk
Maxwell who founded the theory of automatic control systems with his 1868 paper On
Governor, in which the method of regulation received a thorough mathematical analysis®.

With feedback control devices being broadly used during the (First) Industrialization, the

'Nobert Wiener, The Human Use of Human Beings: Cybernetics and Society {2nd edition), New York:
Garden City, 1954,

20Otto Mayr, The Origins of Feedback Control, The MIT Press, 1970.
3See for example, A.T. Fuller, “The Early Development of Control Theory I1,” Journal of Dynamic

Systems, Measurement, and Control, Vol.98, pp.224-235, 1976
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growing importance of automatic control was marked by the awarding of the Nobel Prize

in Physics in 1912 to Nils Gustal Dalen, a Swedish scientist, “for his invention of automatic
regulators -« - -+

Nonetheless, the first methodological breakthrough of control science dates as late as
the 1930’s with the development of the feedback amplifier and the genesis of frequency-
response graphical techniques®. Control science entered the classical epoch linked with the
names Bode, Nyquist, and Nichols. Those techniques deal with single-input-single-output
systems, and emphasize design trade-offs, such as the effect of uncertainty. Feedback was
used to desensitize control systems to changes in processes as well as to stabilize unstable
systems. The limitation of the classical techniques, however, was soon revealed; the classical
control theory was overwhelmed by the need for more sophisticated control systems with

more precise specification requirements.

Modern control theory originated under such circumstances. The turning point was
marked by the publication of two celebrated books: Cybernetics® by Nobert Wiener in 1948
and Engineering Cybernetics’ by Hsue-Shen Tsien in 1954. The techniques of prediction,
filtering, smoothing, and optimization symbolize this period via the introduction of rigorous
mathematical methods. The methodological revolution led to a great leap forward for con-
trol science, allowing for the treatment of a broader class of problems. The notable technical
breakthroughs are Wiener’s cybernetics (filtering, prediction, and smoothing), linear and
nonlinear programming, Kolmogorov’s stochastic process theory, Pontryagin’s maximum
principle, Bellman’s dynamic programming, Kalman’s filtering theory, the notions of con-
trollability and observability, the state-space theory of pole assignment and stabilization,
as well as special methods such as LQR, LQG/LTR, geometrical methods, and algebraic
methods. The most comprehensive and significant application of modern control theory was
to the Apollo project in the 1970’s. However, with a few notable exceptions, the techniques
in this period did not have much impact on feedback design because they neglected funda-
mental feedback tradeoffs (effect of plant uncertainty); the robustness of control systems to

some level of uncertainty is guaranteed only a posteriori.

It was a time for change, Industrialization was quickly giving way to Post-industria-

*N. Heathcote, Nobel Prize Winners in Physics 1901-1950. New York: Schuman, 1953.
®A.G.J. MacFarlane, “The Development of Frequency-Response Methods in Automatic Control,” JEEFE

Transactions on Automatic Control, Vol.AC-24, pp.250-265, 1979.
®Nobert Wiener, Cybernetics, or Control and Communication in the Animal and the Machine, New York:

John Wiley & Sons, Inc., 1948 (2nd edition, 1961).
"Hsue-Shen Tsien, Engineering Cybernetics, New York: McGraw-Hill Book Company, Inc., 1954. In

this book, control science was systemized as a rigorous discipline for the first time. Dr. Tsien was then a

professor at Caltech.
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lization. Post-modernism® sprang up in many areas, such as art, literature, and architec-
ture. Post-modernism can be taken as a cultural movement and historical epoch; it is both
a continuation of modernism and its transcendence. The post-modern age is a time of inces-
sant choosing; it is an era when no orthodoxy can be adopted without self-consciousness and
irony, because all traditions seem to have some validity. Post-modernism is fundamentally
the eclectic mixture and synthesis of any tradition with the immediate past. Its best works
are characteristically doubly-coded; they are the inventive combination of modern tech-
niques with something traditional in order to communicate with the public and a concerned
minority; they are also making a feature of the wide choice, conflict, and discontinuity of
traditions, because this heterogeneity most clearly captures pluralism and freedoms of our
culture,

The post-modern period is also a time for control scientists to relocate the control science
and themselves. Control science as an expression of the human mind reflects the active will
and the restless desire for perfection. Like many other disciplines of human knowledge, all
development of control science has its psychological roots in practical requirements. But
once started under the pressure of necessary applications, it inevitably gains momentum in
itself and transcends the confines of immediate utility.

Post-modern control theory? emphasizes control as a strategy for dealing with complex-
ity due to uncertainty and nonlinearity. Although such efforts have been beset from the
beginning with some difficulties, interest in them has been maintained. The main motive
for post-modern control theory is the inadequacy of modern control theory in dealing with
uncertainty and nonlinearity, although there is no vivid “death” for modern control theory.
The internal force to enlarge the boundary of control science and its ideology of progress
which offered technical solutions to many new problems were seen vividly by every well-
motivated control scientist; there is a great desire for control scientists to seek new tools to
deal with these new problems. Today’s control scientists are committed to using new math-
ematical tools and contemporary technology as well as facing current reality. So far, many
advanced mathematical techniques and technological tools have been introduced into con-

trol science'®. The marriage between new techniques and some classical ideas generates new

8Charles Jencks, What Is Post-Modernism? London: Academy Editions/ New York: St. Martine’s Press,

1986. Post-modernism varies for each area, both in its motives and time-frame.
°The term, post-modern control, was coined by John C. Doyle in the late 80s. In a lecture at University

of Minnesota in May 1991, John C. Doyle gave the tenets of post-modern control theory, including 1)
Theoreticians do not design, control systems engineers do, it} The application of any methodology to real
problems will require some leap of faith on the part of engineers and some ad hoc fixes, iii) The goal of the

theoreticians should be to make this leap smaller and the ad hoc fixes less dominant.
For example, George Zames, “Functional Analysis Applied to Nonlinear Feedback Systems,” IEEE

Transactions on Circuit Theory, Vol.CT-10, pp.392-404, 1963; Roger W. Brockett, “Nonlinear Systems and



powerful tools to cope with more complicated control systems. For example, the H,-control
problem formulated by Zames is strongly rooted in classical techniques and has motivated
a powerful paradigm for control system design with uncertainty. In this paradigm, uncer-
tainty is incorporated @ priori in the design. In addition, the state-space solution of the
H oo-control problem establishes a strong connection between H,-control and the classical
LQG optimization. The robustness problem under structured perturbation, formulated by
Doyle, has highlighted the differences as well as technical relations between multiple-input-
multiple-output systems and classical single-input-single-output systems, and has made it
possible to deal with multivariable (uncertain) systems through structured singular value
analysis and synthesis in an elegant way. Thus, the post-modern period of control science
not only has been a period of new advances, but also has been characterized by a successful

return to the classical ideal of coping with uncertainty and nonlinearity.

Control Science as Artificial Science

Science originates from experience. The vitality of science essentially depends on whether
or not the empirical world keeps providing problems which stimulate the generation of new
methodologies and the extension of its boundary. Based on the development of experience,
there are two kinds of science about the objects and phenomena in the empirical world.
Together, they should encompass and reveal the individuals and behaviors which represent
natural rules and human objectives. On one hand, they should disclose the laws and rules
for the system of individual objects, while on the other hand, they should alter the laws
and rules to satisfy some prescribed objectives by changing the system. We call the former
process analysis, and the latter synthesis. Correspondingly, there are two kinds of empirical
sciences: natural science and artificial science.

Natural science is knowledge about natural objects and phenomena. What do we mean
by natural? Epistemologically speaking, nature is what we observe in perception through
the senses. In this sense-perception, we are aware of something which is self-contained
(with its intrinsic goal). It means that nature (or a natural system) can be thought of as
a closed system whose mutual relations do not require the expression of the fact that they
are thought about!!. This property of being self-contained for thought lies at the base of
natural science. Natural science is a descriptive science, and its methodology is analytic.

However, we are oftentimes merely concerned about a particular part of a natural system

which could not be self-contained with the intrinsic goal, or we need to replace its intrinsic

Differential Geometry,” Proceedings of IEEE, Vol.64, pp.61-72, 1976.
'1A.N. Whitehead, The Concept of Nature {Chapter 1), Cambridge University Press, 1920.
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goal with some prescribed alternative with which the system cannot be self-contained either.
In either case, the system needs to be artificially changed such that it evolves according
to some required laws and rules for the new artificial object. The science of the knowl-
edge about artificial objects and phenomena and how to synthesize such artificial objects,
or artifacts, is called artificial science. Artificial science is a imperative science, and its

methodology is mainly synthetic.

We can now identify four indicia that distinguish the artificial from natural; hence we
12

can set the boundaries for artificial sciences

o Artificial things are synthesized (though not always or usually with full forethought)

by man.

o Artificial things may imitate appearances in natural things while lacking, in one or

many respects, the reality of the latter.
o Artificial things can be characterized in terms of functions, goals, and adaptation.

e Artificial things are often discussed, particularly when they are being designed, in

terms of imperatives as well as descriptives.

In the following, let us look a little more closely at the functional or purposeful aspects
of artifacts. The fulfillment of purpose or adaptation to a goal involves a relation among
three terms: the purpose or goal, the character of the artifact, and the environment in
which the artifact performs. Natural science impinges on an artifact through two of the
three terms of the relation that characterizes it: the (internal) structure of the artifact
itself and the environment in which it performs. The artificial sciences are about neither
the internal structure of the artifact itself nor its environment, but the relation between
these two terms such that a specified goal is achieved. On the other hand, the fulfillment of
purpose or adaptation to a goal can also be represented by the interface between the inner
environment, which is the substance and organization of the artifact itself, and an outer
environment, which is the surroundings in which it operates. If the inner environment and
outer environment are appropriate to each other (with respect to the goal), then the artifact
will serve its intended purpose. Thus we can often predict behavior from knowledge of the
system’s goals and its outer environment, with only minimal assumptions about the inner
environment.

While complexity is a key issue to the natural systems, to some extent, we can use simple

models to understand and describe them. This is due to the characteristics of the goals and

2This summary is due to H.A. Simon, in his The Sciences of the Artificials, The MIT press, 1981 (first
edition 1969).
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methodology. Since natural sciences are the studies on self-contained systems, the most
important premise on which the investigations are carried out is that the natural systems
are well ordered. The duty for a natural scientist is to explore the connections between the
simple and the complex, between the universal and the individual, and between the basic
laws of the nature and the manifestations of nature’s complexity!®. In this sense, the criteria
for natural science have some aesthetic flavor. Nevertheless, the implications of complexity
of artificial systems are totally different from those for natural systems. The complexity of
the artificial systems are due to the uncertainty and complexity of human behaviors and
their interactions with other elements of the artificial systems. Artificial sciences are about
synthesis of the external behaviors of artificial systems, more precisely, how to exhibit the
macro stable functions in terms of micro accidental complex events and forms. In this sense,
the criteria for artificial science are mainly pragmatic.

Control science as we discussed in the last section is a typical artificial science. The goal
for a control scientist is to synthesize control systems, which are dynamical artificial systems,
such that the control systems adapt to its environment and achieve some intended perfor-
mances. In control theory, the concept of feedback plays a key role; the implementation
of such control systems is via feedback. To conclude the discussion, we will next examine
some examples to reveal the essential difference between a natural dynamical system and a
control system which achieves some optimal performance.

Typical systems in the natural world are mechanical systems. A mechanical system is
natural if it satisfies Galileo’s principle of relativity and Newton’s principle of determinacy
(i-e., their evolutions are described by Newton’s differential equations); in this case, it also
has the property that the Hamiltonian, which is the sum of kinetic and potential energy,
is constant during the evolution, i.e., the well-known law of conservation of energy holds,
and Hamilton’s principle of least action is satisfied'*. Therefore, a (mechanical) system is
natural if and only if it satisfies the law of conservation of energy and the principle of least
action. In this sense, the notion of naturality can be generalized to include a much broader
class of systems which are not necessarily mechanical by suitably defining the Hamiltonians.

In addition, the least action is an intrinsic performance for a natural system; it is in this

13M. Gell-Mann, The Quark and the Jaguar: Adventures in the Simple and the Complez, New York: W.H.

Freeman and Company, 1994.
*The principle of least action says that the motion of a (natural) mechanical system coincides with the

¢(7)=/1Ldt

where L is the Lagrangian, which is the difference between the kinetic energy and potential energy. Note

minimals of the functional

that there is a unique correspondence between the Hamiltonian # and the Lagrangian L. See V.I. Arnold,
Mathematical Methods of Classical Mechanics, New York: Springer-Verlag, 1978.



sense that the natural system is an optimal system. This observation is also reflected in the
synthesis of control systems.

A dynamical system is not natural if it doesn’t satisfy the law of conservation of energy
and the principle of least action. Such examples include the individual parts of (inter-
connected) natural systems, where there is an exchange of energy between different parts,
and systems which have enforced artificial performances different from the intrinsic per-
formances. In these cases, the objective performances are not the inherent (least action)
performances. Motivated by the observation of natural systems, we need to redefine the
Hamiltonian in terms of the intended performances, and synthesize the system via feedback
techniques such that the Hamiltonian, which is thus the newly-defined energy, is constant.
The resultant system, which is thus optimal, is a control system whose optimum is achieved

through feedback.

Control as a science reflects the human beings’ active will and the restless desire for
perfection. By all standards, the achievements in control science so far have been spec-
tacular. The influence and impact brought about by the advances in control science upon
other sciences, technologies, and human affairs have been important beyond description.
But it is not in these influences and impacts that the glory of control science and the heart
of a control scientist lies. It is not even in the continued enlargement of the domain of
control science, as important as this is, that the control scientist takes the greatest pride
and satisfaction. What makes control science so unique as an intellectual endeavor lies in
the enhanced possibility of human beings’ pursuit of perfection through the provided ideas

and techniques which establish the bridge between the ideal and the reality.
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Chapter 1

Introduction

Control systems are synthesized via feedback so that some of the design goals are achieved.
Hindering the achievement of the goals are the uncertainty and nonlinearity of the control
systems. Therefore, dealing with uncertainty and nonlinearity is a central issue in control
system analysis and synthesis. In this dissertation, we will emphasize on an integrated
treatment for both uncertainty and nonlinearity; two problems will be addressed, i.e., can
stability and/or a target performance for control systems be achieved in the presence of
uncertainty? and how to develop a systematic procedure for designing control systems that
achieve the stability and/or performance limitations in the presence of uncertainty? The
first problem is robustness analysis issue, while the second one is robustness synthesis issue.

A standard representation for an uncertain system can be depicted as in the following

block diagram,

where (7 is the nominal system which is linear or nonlinear, A is the uncertainty, w is external
disturbance signals, and z is the regulated signals. The robustness analysis is to determine
that under what conditions for the nominal system G, the uncertain system is stable and/or
satisfies some performance for all admissible uncertainty A; while the robustness synthesis

problem is to decide under what conditions there is a feedback control law for the uncertain



system such that the closed loop uncertain system has the required robustness, and then

how to design the control law.

1.1 Overview of Some Related Work

This section is not intended as a comprehensive historical review of the literature in robust-
ness analysis and synthesis for uncertain systems, but rather an attempt to outline some of
the work most relevant to this research so as to provide some motivations of the research
as well as to put the present work in context. Because of the diversity of different issues, in

what follows the review is conducted in different categories.

1.1.1 Robustness Analysis: Small-Gain Theorems

The systematic treatment of robustness analysis for uncertain systems can be traced back
to at least the 60’s'; the basic tool for robustness analysis of such uncertain systems is the
small gain theorem introduced to control by Zames [202, 203] and Sandberg [154] (see also
(195, 50]). A general sufficient condition for robust stability analysis against uncertainty
with Lo-gains less than or equal to 1 is that the £y-gain of the nominal system G is less
than 1 [152, 150, 62, 36]. In the case that the uncertainty set are the causal unstructured
operators, Doyle-Stein and Chen-Desoer proved that the small-gain condition, i.e., the £o-
gain of the plant is less than 1, is also necessary for robust stability if both the uncertainty
and the nominal system are linear [62, 36]. Shamma further showed that the necessity is
still true if the uncertainty is linear time-varying or nonlinear, and the nominal plant is
linear or nonlinear with fading memory [156, 166].

However, it is often the case in practical situations that the uncertainty A is structured,
i.e., it consists of multiple uncertainty blocks, A = DiaG{Ay, Ay, .-+, Ay}; the small-gain
test as a sufficient condition could be arbitrarily conservative for robust stability in such
cases. Doyle (1982) in the seminal paper [53] introduced the notion of structured singular
value (u) to formulate the robustness problem in this setting. With the aid of this new
notion, it is shown that in the case where both the uncertainty and the nominal system
are linear time-invariant, a necessary and sufficient condition for robust stability is that the
nominal system has small structured gain, i.e. its structured singular value ua(G) < 1

[53]. However, the computation for y is usually difficult [31]. In the general case, by scaling

1 . . . .
However, the robustness issue was touched much earlier; see for example, Peter Dorato, “A Historical

Review of Robust Coutrol,” IEEE Control Systems Magazine, April 1987,



treatment, a sufficient condition for robust stability in this case is that the nominal system
has scaled small gain: |[DGD™'|, < 1 for some scale D commuting with A (see for
example [53, 151]). This condition is also necessary for certain simple classes of uncertainty
structures [53, 132]. In addition, it is confirmed by Shamma (1993), Megretski (1993),
and Savkin-Petersen (1993) that this condition is still necessary for certain class of general
uncertainty structures in such cases as the nominal plant G is linear time-invariant and
the uncertainty is allowed to be time-varying or nonlinear [159, 123, 124], or the nominal
system is nonlinear with fading memory and the uncertainty structure is linear time-varying
or nonlinear [155]. The scaling treatment not only reduces the conservatism, but also
yields a convex characterization, which facilitates computations. It is remarked that the
scaling treatment for reducing the conservatism arising from the constrained structure was
used earlier in conjunction with so called “interconnected systems stability theory” (see for
example [4, 127]). Some extensions on the robustness analysis in the ¢; sense are made by
Khammash et al. [99, 41, 40].

As for the robust performance analysis problem, Doyle et al. (1982) confirmed that
the performance robustness analysis problem can be treated as a robust stability problem
against the structured uncertainty with an extra “uncertainty” block [63]. Therefore, the
small-gain arguments still apply in this case. The detailed treatments for different cases
appeared in [63, 132, 142, 99, 41, 40] and references therein.

The computational issue has been a major concern in robustness analysis. Some of the
related work is summarized in [200, Section 1.1]. It is noted that the computation of certain
robustness conditions can be converted to the solution of finite dimensional linear matrix
inequalities (LMIs), which have some attractive computational properties. A review of

LMIs and their use will be given in Section 1.1.3.

1.1.2 Robustness Synthesis: Linear H.,-Control Theory

The analysis of robust stability and performance for uncertain systems, which are treated
in the input/output setting, are essentially reduced to system gain analysis. For the linear
systems, both the robust stabilization and the robust performance synthesis problems can be
cast as Ho,-control problems for some nominal systems. Zames in 1981 first formulated the
Heo-control problem in an input-output setting with emphasis on disturbance attenuation
[204]. This problem, which re-established the link to the classical techniques of Bode and

others, was later solved by rigorous use of operator-theoretic techniques [67]. An earlier



state-space results in this context was streamlined by Doyle in 1984 [55]. Detailed accounts
on the development of the H-control theory up to this point were given in [67, 60].

An alternative view of the H.,-control problem is game-theoretic. The H.,-control
synthesis is a worst-case design. The control inputs can be viewed as signals trying to
satisfy the performance objective. The exogenous disturbances and plant perturbations
are regarded as adversaries which are trying to maximize the errors. This linear-quadratic
differential game problem was considered in the 1970’s by Mageirou-Ho [121]. The state
feedback Hoo-control solution is characterized in terms of algebraic Riccati equations [121].
In the late 80’s, Petersen, Zhou, and Khargonekar [140, 208, 100] rediscovered this fact
using the (bounded-real) KYP-lemma, and showed that for the state-feedback 7 ,-control
one can choose a constant gain as a sub-optimal H,-controller. However, a complete state-
space treatment of the Ho-control problem via output feedback was provided by Doyle
et al. in the celebrated DGKF paper [60] as well as [74, 75]. They showed that a sub-
optimal Ho-controller exists if and only if the unique stabilizing solutions to two algebraic
Riccati Equations are positive definite and satisfy certain coupling condition. Under these
conditions, a parameterization of all controllers solving the sub-optimal H,-control problem
is given as a linear fractional transformation on a contractive, stable free parameter. The
controller has a separation structure reminiscent of classical LQG theory. Some other
approaches which lead to the same results or extensions were developed afterwards, for
example, the maximal principle used by Tadmore [178], the differential game-theory used
by Basar and Bernhard [16], and the bounded-real lemma used by Petersen et al. [141]. It
is noted that the state-space treatment for the H.,-control problem not only is conceptually
simple, but also establishes clear connections with traditional methods in optimal control.

More recently, some alternative characterizations to the state-space Hu.-control which
have computationally attractive properties have been derived. The most notable results are
linear matrix inequality (LMI) characterizations [119, 133, 69], whose use is reviewed in the

next subsection.

1.1.3 Robustness and Linear Matrix Inequalities

The story of LMIs in control theory begins in about 1890 when Lyapunov stability theory
was born®. Therefore, the first class of LMIs is that of Lyapunov inequalities where the

existence of positive definite solutions insures the stability of the relevant systems. However,

*For a detailed account of the history of LMIs in control theory, one is referred to Boyd et al. [29, Section
1.2].



the important roles of LMIs in robust control theory was not revealed until the 1960’s when
the solution to the classical problem of Lur’e was reduced to the solutions of some LMIs by
the use of Kalman-Yakubovich-Popov (KYP) lemma. This resulted in the celebrated Popov
Criterion, Circle Criterion, and many other variations. The KYP lemma and extensions
were intensively studied in the latter half of the 1960’s, and were found to be related to
the ideas of passivity, bounded-realness, and quadratic optimal control. It was known then
that the LMI appearing in the KYP lemma could be solved by solving a certain algebraic
Riccati Equation. In the early 1970’s, Willems systematically examined the dissipativity
of general dynamic systems which encompasses the ideas of passivity, bounded-realness,
and quadratic optimization [197]. He thus proposed a characterization of linear quadratic
optimal control in terms of LMIs [196, 197].

While the connection of robustness analysis to LMIs is through the small-gain theo-
rem and the KYP lemma, the characterization of robustness synthesis in terms of LMIs is
through the KYP lemma (LMI version) and Parrott’s Theorem or its variations in operator
dilation theory [139, 45, 55]. The earliest form of LMIs for robustness synthesis was devel-
oped by Doyle-Chu in 1985 [57]. The concrete use of the characterization in the robustness
synthesis of discrete-time systems appeared in [119] to deal with robust stabilization, and
in [133, 131] to deal with robust performance synthesis. The other work in this context
appeared in [134, 111, 132]. A variation of Parrott’s Theorem, which is known as Finsler’s
Theorem, was used to deal with continuous-time systems later [69, 3, 94]. In [29, Chapter
7], there is a detailed discussion about the roles of LMIs in different robustness problems.

One of the advantages of LMI characterization is that it has attractive computational
properties. Some feasible algorithms are available to deal with the computation of LMIs,
such as the ellipsoid method and the interior-point method [128, 29, 70]. It is remarked
that the nonlinear extensions of LMIs for robustness analysis and synthesis of uncertain
nonlinear systems were given in [113, 115], they are known as nonlinear matrix inequalities
(NLMIs); however, the computational implications of the NLMIs are far less straightforward
than those of LMIs.

1.1.4 Nonlinear Robustness Analysis and Synthesis

As pointed out in Section 1.1.1, the small-gain theorem provides a test for robust stabil-
ity and robust performance of uncertain nonlinear systems [202, 154, 203, 156, 166, 155].

Therefore, the study of robustness is reduced to gain analysis [115]. The research on general



dynamical systems which have finite £5-gains can be traced back to at least the early 70’s,
The Lq-gain and the dissipativity for a dynamical system are closely related. A systematic
exploration of general dissipative systems was performed by Willems in 1972 [197]; some
extensions appeared in [126, 84]. In the context of £;-gain analysis, van der Schaft [183]
extensively studied the L£,-gain of input-affine nonlinear time-invariant (NLTT) systems by
using dissipation theory. He reconfirmed that the L£o-gains for a class of systems can be
characterized by Hamilton-Jacobi equations (HJEs) or inequalities (HJIs). Recently, Lu and
Doyle reformulated the Lo-gain characterization in terms of nonlinear matrix inequalities
(NLMIs), which result in convex feasibility problems [113, 115].

The robustness synthesis for a nonlinear system involves the design of controllers such
that the closed-loop system has small Le-gain or small scaled Lo-gain. We will use the
accepted but unfortunate misnomer “nonlinear H,,” to describe this research direction.
The nonlinear H.,-control problem was first recognized and partially solved in the context
of operator theory by Ball-Helton [11], Foias-Tannenbaum [66], and de Figueiredo-Chen
[46]3. We are mainly concerned with the state-space theory in the following review.

The nonlinear generalization of state-space linear H.-control theory is motivated by its
simplicity of the characterization as well as its clear connection with traditional methods
in optimal control [60]. As a result, the initial efforts were concentrated on relating of the
nonlinear Ho-control to differential game theory by several researchers [12, 16], see also [52].
Using the £,-gain analysis result, van der Schaft derived some elegant HJE characterizations
to the H,-control problem for the class of input-affine NLTT systems [183]. He showed that
a sufficient condition for the state feedback H.,-control problem to be solvable is that
the corresponding HJE has a positive solution. In the output feedback case, he asserted
that the H.-control problem is locally solvable if it is solvable for the linearized system.
But this assertion requires that the equilibrium point of the related Hamiltonian vector
field be hyperbolic. Isidori and Astolfi [93, 91] developed other less conservative sufficient
conditions for the output feedback H.,-control problem to be solvable. They showed that
the solution to the H,-control problem requires the existence of positive definite solutions
of two hierarchically coupled HJIs. In [112], Lu-Doyle developed a complete nonlinear

Ho-control theory parallel to the work [60] of Doyle et al.; in particular, a class of local

3The early development of nonlinear Hoo-control theory, in particular the operator-theoretical approach,
was reviewed by J.A. Ball and J.W. Helton in “Nonlinear Heo-Control Theory: A Literature Survey,” Robust
Control of Linear Systems and Nonlinear Control {(M.A. Kaashoek et al. eds), pp.1-12, Boston: Birkhauser,
1990.



Hoo-controllers are parameterized as a fractional transformation of stable and contractive
parameters. Some other notable related work includes the global solutions [82, 110], the

finite-time horizon solutions [107, 102], and the solutions in discrete-time case [76].

Ball-Helton-Walker [15] examined the nonlinear H.,-control problem from another per-
spective. They derived the necessary conditions for the existence of an output feedback
controller such that the HJI related to the closed loop system has a positive smooth solu-
tion (specifically, the H,-control problem is solvable). These conditions are that two HJIs
have positive solutions and the solutions are coupled locally. They confirmed the separation
principle for the nonlinear H.,-control system, and also provided a recipe to construct the
controllers. Similar necessary conditions were also obtained by Van der Schaft and Isidori
[185, 92]. Recently, Lu-Doyle considered a stronger H..-control problem, where necessary

conditions in terms of NLMIs were developed [114].

Basically, the premise on which those generalizations are carried out is to assume that
the (dynamic) output feedback H.-controllers have some separation structures; under this
assumption, some necessary or sufficient conditions for the H,-control problem to be (lo-
cally or globally) solvable are characterized in terms of some Hamilton-Jacobi equations
or inequalities which are partial differential equations or inequalities. Whence, one of the
major concerns in the state-space nonlinear Ho,-control theory is the computation issue to
solve these Hamilton-Jacobi partial differential equations or inequalities, and progress along
this line would be beneficial to applications of nonlinear H,-control theory. For example,
Huang and Lin proposed a systematic procedure to find Taylor series approximations to
the solutions of the HJEs [86] (see also [120, 183]). In addition, van der Schaft [183] con-
sidered the properties of solutions of HJEs in depth in terms of the related Hamiltonian
vector field. Recently, Lu-Doyle (1994) proposed the characterization of a class of nonlinear
Hoo-control solutions in terms of nonlinear matrix inequalities [114, 115], which result in

convex optimization problems and potentially have some nice computational properties.

1.2 Some General Considerations

Both robustness analysis and synthesis problems for a class of uncertain systems are ad-
dressed in this thesis; the emphasis is on the development of systematic state-space design
techniques with attractive computational properties. The following are some considerations

which help to accomplish this goal.




1.2.1 Uncertainty in Control Systems

A physical control system is an artificial system (cf. Preface). Its description should capture
its three functional elements: its goal, its internal character, and its outer environment. It
is convenient and often necessary to conduct analysis and synthesis on the mathematical
model which abstracts, simplifies, and approximates the real behavior of the physical system.
There therefore exists a gap between the model and the real system. This gap is assessed by
uncertainty which is supposed to capture the information lost in the modeling process. This
uncertainty is usually small, and is ignored in the traditional control analysis and design.
However, the need for very sophisticated control systems with high performance makes one
take the uncertainty into account in the design.

Nonetheless, the accurate information about the uncertainty usually is not available a
priori, i.e., it can not be decided until the real system is in operation, or even in many
situations, it is not verifiable a posteriori. Therefore, the description of the uncertainty
does not exactly measure the real gap; on one hand, it reflects the measurement of the
designer’s lack of confidence in the model, on the other hand, it is also a trade-off between
the mathematical maneuverability of the model and the desired accuracy on the performance
of the control system once implemented.

The model of a control system has two facets: the nominal model which approximates
the internal structure of the real system, and the uncertainty which assesses the gap between
the nominal model and the real system. Since the control system is an artificial system,
its model should also reflects some of its functional aspects, i.e., the internal structure of
the system, and its environment. Therefore, the uncertainty in the model correspondingly

comes from two sources.

Internal Perturbations

e Internal Model Errors. The usual way of deriving a model of the internal structure
is by applying the physical laws. However, the general laws and the special reality
usually can not match perfectly, this results in errors. In addition, due to the consid-
eration of mathematical maneuverability, one tends to obtain a model for this part as
simple as possible. For example, the model from the physical laws usually is nonlinear,
its linear approximation some times is preferred because the well-developed linear de-
sign techniques are available; therefore, an error occurs between the nonlinear physical

model and the accepted linearized model. The existing model usually has very high



order, the reduction of the order leads to some error between the original high-order
model and the reduced model. The approximation of a time-varying model by a lin-
ear time-invariant model also leads to model errors. The high frequency dynamics is

usually represented as an additive perturbation with bounded frequency response.

¢ Parametric Perturbation. In many situations, some specific parameters of a pro-
cess are not fixed during operation, such as a spring constant in a mechanical system,
a resistance in a circuit, or the temperature in a chemical process. The perturbation

occurs when one takes some fixed values of the parameters to model the process.

Perturbations from Outer Environment

e A control system (as an artificial system) can not be independent of its outer envi-
ronment. It is however difficult to mathematically model the dynamical interaction of
the internal structure with its outer environment due to its unpredictability. Usually,
the interaction is weak, and it is ignored when modeling the internal structure. This

results in the unmodeled dynamics from the environment.

To conclude this subsection, we remark that besides the dynamical interactions with
internal structure, the outer environment influences the internal structure by imposing some
exogenous input signals, which include some undesired disturbances. The robust control
design, roughly speaking, is to attenuate the external disturbances and uncertainty. This

consideration reflects the other element of an artificial systems: the goal.

1.2.2 State-Space Treatment

The robustness problems are generally formulated in terms of input-output properties of
the relevant control systems. For example, the performances are measured by input-output
(I/0) relations; the uncertainty is modeled as a bounded causal I/O operator. However, the
KYP Lemma establishes the connection between the input-output consideration and the
state-space characterizations; in this thesis, robustness analysis and synthesis are conducted

in state-space setting. There are several advantages for the state-space treatment:

e In the I/O setting, the internal behaviors of the systems, such as asymptotic stability,
are generally hard to capture during the analysis and synthesis. This kind of internal
issues are naturally and directly treated by state-space techniques. In particular, for

the nonlinear systems, the relation between I/O properties and internal properties is
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far less clear, the state-space techniques are thus especially suitable to deal with the

internal issues.

e The characterizations of robustness analysis and synthesis in this thesis are reduced
to gain conditions which are I/O relations. For the linear systems, the state-space
treatment reduces system analysis and synthesis to matrix computations; the matrix
manipulations are inherently more numerically stable than symbolic or (I/0) transfer
function manipulations. On the other hand, for the nonlinear systems, the computa-
tional implications for those characterizations in the I/O setting are far from clear,
however, it will be seen that by the use of state-space techniques, the computation
needed for robustness analysis and synthesis is of equivalent difficulty to the one for
checking the Lyapunov stability; in other words, the provided approach reduces the

robustness analysis and synthesis problems to the possible easiest problems.

1.2.3 Fractional Transformation

Fractional transformations formally represents feedback structures. In this dissertation,
the uncertainty is considered to enter the control systems in feedback fashion, fractional
transformations are natural tools to describe the uncertain control systems. For the linear
systems, one of the advantages of the use of linear fractional transformation (LFT) repre-
sentations is that it facilitates manipulation using state-space-like machinery which could
provide some convenience in computation (see Section 1.2.2). Moreover, the u framework
taken in the linear robustness analysis has an intimate relation with the LFT machinery
[132, 143, 144].

In addition, the adoption of LF'T machinery in linear robustness synthesis simplifies the
design procedure. Because of the nature of a uncertain linear system, whose coefficients
are functions of uncertainty, a controller depending on the uncertainty, instead of a single
linear time-invariant controller, is required to achieve the desired specifications. Such con-
trollers can be implemented for real-time operation in terms of gain/dynamic scheduling or
adaptive/supervisory control schemes. The design of the scheduling schemes is conducted
in a LFT framework in this thesis. The type of scheduling that results from this LFT ap-
proach avoids some potential hazards arising from conventional scheduling [164, 149]. The
need to select (slow) scheduling variables and scheduling procedures, which is addressed
in [149], disappears in this LFT setting. The uncertainties are allowed to vary arbitrarily

fast and the design procedure guarantees stability, which is not guaranteed in the conven-
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tional setting [164]. The conventional ad hoc point-wise controller design and curve-fitting
procedures (see [163, 149]) are also avoided, since the control law is designed analytically.
Although the results might be potentially conservative for slowly varying parameters, the

methods can at least be used as a possible aid in conventional scheduling design (rather

than a replacement).

1.2.4 Convex Characterizations: LMIs and NLMIs

In this thesis, most of the results on robustness analysis and control synthesis are char-
acterized in terms of the elegant linear matrix inequalities (LMIs) for linear systems
or nonlinear matrix inequalities (NLMIs) for nonlinear systems. However, the charac-
terizations are not for the sake of elegance, but rather that they lead to the reduction of
robustness analysis and synthesis problems to a handful of standard convex optimization
problems.

For the LMIs, they can be numerically solved in polynomial-time (cf. Boyd et al. [29]);
this shows that the computation of solving LMIs is tractable. Many algorithms, such as
the ellipsoid algorithm and interior-point method, have recently been developed for these
problems, and have been found to be efficient in practice [29, 70].

An NLMI is in fact a linear partial differential inequality; it can be decomposed into
a state-dependent LMI and a partial differential equation. Although in general, the state-
dependent LMI is unfortunately an infinite-dimensional LMI, it will be shown that the com-
putation needed for solving robustness problems is not harder than the one for checking
Lyapunov stability; in other words, the provided approach reduces the robustness anal-
ysis and synthesis problems to the possible easiest problems. Moreover, the solution of
NLMlIs can be reduced to the solutions of finite many LMIs if the state set of interest is
bounded. Therefore, the existing convex optimization methods for solving LMIs can be

used in practical computation for solving the NLMIs.

1.3 Overview of This Thesis

This dissertation is divided into two parts. The first part (Chapters 2 — 4) deals with
the problems of control of uncertain linear systems where the nominal systems are linear
time-invariant, while the second part (Chapters 5 — 9) tackles the problems of control of
uncertain nonlinear systems where the nominal systems are nonlinear. Each chapter treats

different control problems, and the material for each chapter is made as self-contained as
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possible.

1.3.1 Control of Uncertain Linear Systems
Chapter 2: Linear Parameter-Varying Systems

The control problems of linear parameter-varying (LPV) systems are considered. Those
systems are defined in an algebra of continuous functions. Both stabilization and H,-
control problems are considered in this algebra. The key to the treatment is the employment

of the LMI characterizations of stabilization and H,-control of LTI systems.

Chapter 3: Linear Systems with LTI Uncertainty

The control problems of uncertain linear systems whose coefficients are LF'T of uncertainties,
which are linear time-invariant, are considered. This class of uncertain linear systems are
thus defined in the LFT algebra. Both stabilization and H,-control problems are considered
in the LI'T algebra, and some necessary and sufficient conditions for the solvability in the
LFT algebra are presented. In particular, the robust stabilization under real perturbation

is characterized as a PBH-like test.

Chapter 4: Linear Systems with LTV Uncertainty

This chapter is a continuation of the discussion in the previous chapter. However, the uncer-
tainty is allowed to be linear time-varying or nonlinear. This results in the Q-stabilization
problem, and some necessary and sufficient conditions for the Q-stabilization are presented.
The techniques in this chapter are motivated by those in [60]. In particular, the prop-
erties of Q-stability, stabilizability, and detectability are characterized in terms of LMIs.
The output feedback problem is solved via separation arguments; the stabilizing controllers
are parameterized as LI'T on some Q-stable systems. The structure of the parameterized
closed-loop map is examined. It is remarked that the parameterization formula reduces to

the celebrated Youla-parameterizations for the conventional one-dimensional linear systems.

1.3.2 Control of Uncertain Nonlinear Systems
Chapter 5: Nonlinear Stabilizing Controller Parameterization

In this chapter, a parameterization formula of stabilizing controllers is derived for nonlinear

control systems directly in the state space without using the coprime factorization. In the
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resulting parameterization formula, the asymptotically stabilizing controllers are charac-
terized as fractional transformations of some asymptotically stable parameters. From the
state-space point of view, a parameterized controller is structured as an observer which
estimates the state of the plant with zero input, a state feedback which uses the estimated

state, and a free stable parameter.

Chapter 6: Nonlinear £'-Control

A version of nonlinear generalization of the £!-control problem, which deals with the at-
tenuation of persistent bounded disturbances in L., -sense, is investigated in this paper.
The main idea in the £'-performance analysis and synthesis is to construct a certain in-
variant subset of the state-space such that achieving disturbance rejection is equivalent to
restricting the state-dynamics to this set. The concepts from viability theory, nonsmooth
analysis, and set-valued analysis play important roles. In particular, the £!-performance
for a nonlinear system is characterized in terms of £!-performance domains, which are in-
variance state sets. A continuous static state-feedback £!-controller is constructed based on
controlled L!-performance domains. In addition, the relation between the £1-control of a
continuous-time system and the #!-control of its Euler approximated discrete-time systems

is established.

Chapter 7: Nonlinear H.,-Control: Sufficiency

Our goal in this chapter is to systematically examine the nonlinear H.,-control problem in
state space for a class of nonlinear systems and to obtain an H,, controller parameterization.
This investigation is carried out in a methodical fashion. We follow similar techniques used
in the linear case [60]. We first consider the H,-control problem for four special structures
(FI, FC, DF, and OE). The solutions to the output feedback H..-control problem, are
constructed by the solutions to the special problems. The solvability of this problem requires
the coupled positive definite solutions to two decoupled HJIs. The standard separation
principle in this case is re-examined and a class of H..-controllers are parameterized as a

nonlinear fractional transformation on contractive, stable free nonlinear operators.

Chapter 8: Nonlinear H.,-Control: Necessity

In this chapter, we propose an approach with promising computational properties to the

state-space nonlinear H.,-control problem, and characterize the solutions in terms of convex
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conditions instead of the Hamilton-Jacobi equations or inequalities. In particular, the £,-
gains are characterized in terms of NLMIs. The output feedback H,-control are treated
without the separation assumption, and the solutions are characterized by three NLMIs.
Furthermore. under some (weak) separation structure assumptions, the solvability of the
output-feedback problem implies the solvability by static state-feedback. Some issues related

to the solutions to these NLMIs which yield the H..-control solutions are addressed.

Chapter 9: Nonlinear Robustness Analysis and Synthesis

In this chapter, we give state-space NLMI characterizations of stability and performance ro-
bustness for nonlinear uncertain systems with structured perturbations, and consider both
analysis and synthesis problems. The robust stability, robust performance, and robustness
synthesis are characterized in terms of NLMIs. From the characterizations, it is concluded
that the computation needed for robustness analysis and synthesis of nonlinear uncertain
systems is not more difficult than that for checking Lyapunov stability of nonlinear systems;
in other words, the provided approach reduces the robustness analysis and synthesis prob-
lems to the possible easiest problems. Some computational issues for robustness analysis

and synthesis are addressed.

1.4 Conventions

The following conventions are made in this paper.

Acronyms

AMI Affine Matrix Inequality.

ARE Algebraic Riccati Equation.

BIBO Bounded-Input Bounded-Output.
BIBS Bounded-Input Bounded-State.
DDI Differential Dissipation Inequality.
DF Disturbance Feedforward.

DGKF Doyle-Glover-Khargonekar-Francis.
FC Full Control.

FI Full Information.

HIE Hamilton-Jacobi Equation.

HJI Hamilton-Jacobi Inequality.



DI
1/0
1/S
KYP
LFT
LMI
LPV
LQG
LQR
LSC
LSI
LTI
LTV
MIMO
NLMI
NLTI
NLTV
OF
OF
PBH
SISO
SSV
USC

Notations
Z

Z+

R

R+

C

Ct(CY)

R’n,
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Integral Dissipation Inequality.
Input-Output.

Input-to-State.
Kalman-Yakubovich-Popov.
Linear Fractional Transformation.
Linear Matrix Inequality.
Linear Parameter-Varying.
Linear Quadratic Gaussian.
Linear Quadratic Regulator.
Lower Semi-Continuous.
Linear Shift-Invariant.

Linear Time-Invariant.

Linear Time-Varying.
Multiple-Input Multiple-Output.
Nonlinear Matrix Inequality.
Nonlinear Time-Invariant.
Nonlinear Time-Varying.
Output Estimation.

Output Feedback.
Popov-Belevitch-Hautus.
Single-Input Single-Output.
Structured Singular Value.

Upper Semi-Continuous.

Set of all integers.

Set of all nonnegative integers.

Field of real numbers, i.e., R := (—o00, 00).

Set of nonnegative real numbers, i.e., R* := [0,00) C R.

Field of complex numbers.

Open (closed) right half complex plane.

Field of real or complex numbers when the distinction is un-necessary.

n-dimensional real Euclidean space.



BR"
Fn
Rnxm

anm

X (or X,)

BA

Co(9)

SPAN(M)

N(M)

INT(€2)
DiaG[Dq,- -+, D,]
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BR" := {v e R"||v]| < 1}.
n-dimensional F-valued vector space.
Set of real n x m matrices.

Set of n X m F-valued matrices.

Open ball in some Euclidean space centered at the origin and with
radius 7 > 0 which is measured by Euclidean norm.

State set which is a convex open subset of some Euclidean space and
contains the origin.

Elements of A with norm less than one.

Convex hull of set 5.

Space spanned by the column vectors of matrix M (or set M).
Null space annihilating the row vectors of matrix M.

Interior points of set Q.

Diagonal or block-diagonal matrix with the designated diagonal ele-
ments.

Transpose of matrix 4; if A € F*X™, then AT ¢ Fmxn,
Conjugate transpose of matrix A; if A € F**X™_ then A* ¢ Fmxn,
Inverse of square matrix A4 € Frx",

Pseudo-inverse of matrix 4 € F7xn,

Euclidean norm of vector u € F; [Ju|| 1= vVu*u.

Spectral radius of square matrix A € F7X7,

Largest singular value of matrix A € F*»X™,

Structured singular value of square matrix M € F*X" w.r.t. A.
Q-value of square matrix M € F™*" w.r.t. A.

Generalized structured singular value of ordered matrix pair (M, N) €
FrXm x R™™™ w.r.t. A.

Trace of square matrix A € F*x7,
Determinant of square matrix A € F»X".
Rank of matrix A € F#xm,

Kernel of matrix 4 € F*X™,

Real part of complex number 2 € C.
Imaginary part of complex number z € C.
Support of function .

Domain of map F.

Graph of map F.




Tk(z)

([0, 00), X)
Co(Q,F)
CHQ,F)

F(A,F)

RHOO

C([0, ), X)
L2[0,T]

Lo(RT) (L3(RT))

£5[0, 00)
L[0, 00)

BL [0, 00)
£5,[0, 00)

llufl

Pr

Qr

Fi(M, Q)
S(My, My)
SPay
SPioc
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Contingent cone to set K at z € K.
Class of continuous maps: [0,00)—X.
Class of continuous functions: Q—F.

Class of functions: Q—F, which are continuously differentiable k
times.
Class of linear fractional transformations: A—F.

Class of continuous and strictly increasing functions v : Rt — Rt
with v(0) = 0.
Class of functions v in K with y(s) — oo as s — .

Class of functions 8 : RT x RT — R™T such that for each fixed t, the
mapping ((-,2) is in £ and for each s, 8(s,?) is decreasing to 0 as
t — o0.

Class of real rational matrix-valued functions on C analytic in C* (or
|| < 1).

Class of continuous maps: [0, 00)—X.

Lebesgue space of all measurable (vector-valued) functions wu
[0,T]—R"™ such that fOT |u()|]? dt < oc.

Lebesgue space of all measurable real (p-dimensional) vector-valued
functions u : R*—=R™ such that [y [Ju(?)|]* dt < co.

Extended space of £3[0,00), i.e., set of measurable vector-valued func-
tions u(t) on R* such that Pru(t) € Lo(RT) for all T € RT.

Space of vector-valued functions # : RT—RP which are measurable
and essentially bounded.

BLo[0,00) := {w € L]0, 00)| [lw]|, < 1}.

Extended space of L]0, 00).

Infinity norm of vector-valued function u € £ [0, o0), i.e., [|ul|,, =ess-
supd[Ju(t)]] 1 € R¥}.

Truncation operator for any 7" > 0.

Qr:=1- Pr.

Fractional transformation of operator M on operator Q [144, 73].
Redheffer product of operators My and M, [144].

Class of input-affine locally stable nonlinear systems.

Class of locally stable nonlinear systems.

Class of input-to-state stable nonlinear systems.

Class of input-affine stable nonlinear systems having £,-gains < 1 with
smooth storage functions.

Gradient of C! function V : R*—R: Y(z) = [g%(_a:), R %(x)]
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PART 1

Uncertain Linear Systems
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Chapter 2

Control of Linear

Parameter-Varying Systems

2.1 Introduction

In many applications, the structure of a control system is known to be fixed, but some
of the coefficients of its mathematical model can not be exactly estimated or determined
until the system is in operation. These kinds of systems, whose coefficients are functions of
parameters, are called linear parameter-varying (LPV) systems. The control problem of
interest is to design controllers for such a system such that the closed loop system satisfies
a set of performance specifications for all possible values of the parameters. Two problems
to be treated in this thesis are stabilization and H,-control. In such cases, a designed
controller which also depends on the parameters, instead of a single linear time-invariant
controller, is usually required to achieve the required specifications. Such controllers can be
implemented for real-time operation in terms of gain/dynamical scheduling [162, 163, 164,
149, 145] or adaptive/supervisory control schemes [176, 125].

In this chapter, we are concerned with the linear systems whose coefficients are con-
tinuous and smooth functions of (unknown) parameters. The systems in these classes will
be viewed as linear systems defined over some (commutative) algebras of scalar-valued
functions. An important special case in which a system has coefficients depending on the
unknowns in a linear fractional transformation fashion will be treated in the next two chap-

ters.

Let F be the field R of real numbers or the field C of complex numbers. FV for some
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positive integer N denotes the space of N-element vectors with entries in the field F. The
lz|| will be the norm of z € FV. F™ ™ for some positive integers n and m denotes the
space of n X m matrices with entries in the field F.

Suppose 2 C FN. Let C*(Q, F) (for some integer k¥ > 0) denote the set of all F-valued
functions which is continuous on € and C* on INT(Q). Specially, C(Q,F) and C*(Q,F)
are two sets of continuous functions on €2, and the latter further requires those functions
to be C* on INT(£2).

The set C*(Q2, F) is a commutative ring with the pointwise operations

(f+9)w) = f(w)+g(w)
(fo)(w) = flw)g(w),

where f,g € C*(Q,F), w € 2. With these pointwise operations and the following scalar

multiplication

(af)(w) = af(w),a € F,

C*(Q,F) is a commutative algebra (over F).
Given fixed positive integers m, n, and p, an m-input, p-output, and an n-th order linear
time invariant (discrete-time or continuous time) system X over C*(€Q, F) is denoted by the

following dynamical equations.

A(w)a(t) + B(w)u(t)
C(w)a(t) + D(w)u(t)

{ z(t+1)
y(t)

Il

with t € ZT; or
{:&(t) = Aw)z(t) + Bw)u(t) (2.2)
y(t) = C(w)z(t) + D(w)u(t)

with ¢ € R™; where the matrices A, B,C, and D have their entries in C*(Q2, F).

In the following, we mainly emphasize system (2.1) over C*(Q, F) for some k € Z*.
Some necessary and sufficient conditions are provided for the system to have the controllers
which solve the stabilization and H.-control problem over C*(€, F'),i.e., the coefficients of
the controllers have entries in Ck(Q,F). The results can be correspondingly provided for
the continuous system (2.2) over C*(Q, F) for some k € ZT. To this end, we first review
some results on stabilization and H.,-control of LTI systems in the next section to develop

some tools.
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2.2 Stabilization and H,-Control of LTI Systems

In this section, we will review some characterizations of the basic control properties for linear
time-invariant systems, such as stabilizability, detectability, and solvability of H.,-control

problem. These characterizations are in terms of linear matrix-inequalities (LMIs).

2.2.1 Stabilization of LTI Systems

Two well known characterizations of stabilizability and detectability are PBH tests [95, p.
366], and Riccati equations/inequalities. In this subsection, we will give some characteriza-
tions for stabilizability and detectability in terms of Lyapunov inequalities, which are LMIs
and are more computable. The feedback laws can be constructed by the solutions of the

corresponding LMIs.

Stabilization of Discrete-Time Systems

In this section, the following LTT discrete-time system over F is considered.

{ 2(t+1)
y(t)

Axz(t) + Bu(t)
Ca(t) + Du(t)

(2.3)

Il

with ¢ € Z*, where z,u, y denote the n, p, ¢-dimensional state vector, the input vector, and
the output vector, respectively.

It is known that system (2.3) (with u(¢) = 0) is stable if and only if p(4) < 1, or
(D7 1AD) < 1 for some invertible matrix D € F"*" i.e., there exists a positive definite

matrix P € F™" such that it satisfies the following Lyapunov inequality.
APA* - P <0

which is equivalent to 5(D~'AD) < 1 for some positive definite matrix D = P% ¢ Frx,
It is stabilizable if there is a state feedback F' € FPX" such that the closed loop system,
z(t+1) = (A+BF)z(t), is stable, i.e., p(A+ BF) < 1. It is detectable if there is an output
injection L € F™*? such that system z(¢+ 1) = (A + LC)z(¢) is stable, i.e., p(A + LC) < 1.
Stabilizability and detectability are dual concepts. In the following, only stabilizability is
discussed in detail. The results for detectability can be derived by duality argument.

We first summarize the following properties for stabilizability.

Lemma 2.2.1 Consider system (2.3), then the following statements are equivalent.
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(i) System (2.3) is stabilizable.
(i1) RANK{ 2I—A B ] =n for all z € C and |z| > 1.
(iii) There exists a positive definite F-valued matric P which satisfies the following

Riccati equation,
M+ A*PA—- P~ A*PB(N + B*PB)"'B*PA =0 (2.4)
for some positive definite matrices M € F"*" and N € FP*?,
The following result is from [97, Theorem 5.6].

Lemma 2.2.2 Suppose system (2.3) is a stabilizable over F. Given some positive definite

matrices M € F™*" and N € FP*? | define a Riccati difference equation:
Pop1 =M+ AP A~ A"PB(B*PLB+ N)"'B*P,A, keZt (2.5)
with initial condition Py = I, and
Fy:=(B*P,B+ N)'B"P,A, keZt. (2.6)
Then there exist a positive integer k, such that F, is a stabilizing feedback for all k > k,.

Suppose RANK(B) = p < n and RANK(C) = ¢ < n. Let B, € F™*("~?) be such that
B*B, = 0 and RANK{ B B, J = n, and C| € F=9)%Xn be guch that CCT =0 and

RANK[ c* Cr J = n. We have the following characterizations.

Theorem 2.2.3 Consider system (2.3), then the following statements are equivalent.
(i) System (2.3) is stabilizable.
(1i) There exists a positive definite matriz P € F™ " such that the following LMI is
satisfied
B (APA™ - P)B, < 0. (2.7)
(1ii) There exists a positive definite matriz P € F™™ such that the following LMI is
satisfied
APA* — P - BB* < 0. (2.8)

Moreover, if P = P* > 0 satisfies any of the above inequalities, then a stabilizing static

state feedback matriz can be chosen as

F=—(B*P'B) B PLA. (2.9)
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The following lemma is used in the proof of this theorem.

Lemma 2.2.4 Assume (A, B) € F**" x F**P and RANK(B) = p < n. Let B, € FnX(n—p)
and By € FPX™ be such that BT B = 0 and [ By B, ] is unitary. Then

inf 6(A+ BF)=a(B} A
piM 0(A+ BF) =a(B14)
and the infimum is attained by F = —(B;B)"1 B A.

Proof. Since U := [ By B, } is unitary,

inf 6(A+ BF)= inf o&(U*(A+ BF))

FEFPXTL FGFPXTL
ByA+ B5BF 0
= inf & 04+ 5 =5 = 5(B}A).
FeFpxn BT A Bx A
Moreover the infimum is attained if BjA 4 B;BF = 0 or F = —(B;B)~' B} A. a

Proof. [Theorem 2.2.3] We will show that (i) & (ii) and (ii)« (iii).
(i) ¢ (ii): The given system is stabilizable if and only if there is a positive definite matrix

D € F™" guch that

1> inf &(D(A+BF)D™")= inf &(DAD™'+ DBFD™1).
FEFPX’VL FerXn

Let Vi = (B (D*D)~'B,)~7B% D1, it is easy to check that ViVi=1and Vi(DB) = 0.

By Lemma 2.2.4, we have

1> inf 6(D(A+ BF)D™')=&(ViDAD™Y)
FeFpxn

or equivalently,

ViIDAD WV DAD ) < I. 2.10
L 1

Take P = (D*D)7!, then P € F™™ and P = P* > 0, hence (2.10) is equivalent to the

following inequality.
(BLPBL) TBi APA*B,(B.PB,)"% — [ <0,

or

B (APA* — P)B, <.
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Moreover, if some P € F"*"™ with P = P* > 0 satisfies the above inequality, then we can
construct a constant state feedback matrix F' via Lemma 2.2.4 such that p(A+BF) < 1. Let
Vg = (B*(D*D)B)~Y2B*D*, then [V, V1] unitary; thus FD~' = —(VFDB) 'V DAD™!

by the preceding lemma. Therefore,
F=—(V§DB) "WgDA=—(B*P7'B)"'B*P1 A.
(ii) = (iii): There exists a positive definite matrix Q € F"*" suéh that
AQA™-Q — BB <0,

which is equivalent to

*

L

. (AQA*—Q-BB)[ BL B]<0, (2.11)

ie.,
Bi(AQA* - Q)B. B (AQA*-Q)B
B*(AQA* - Q)B,. —(B*B)?

By Schur complement argument, it follows that the above inequality holds if and only of
B1(AQA™ = Q)By + (BL(AQA" - Q)B)(B*B)2(B*(AQA* -~ Q)BL) <0,  (2.12)

which implies

Bi(AQA™ - Q)BL <0,

which is exactly (2.7) with P = @ positive definite.
(iii) = (ii): Conversely, as (B (APA*— P)B)(B*B)~?(B*(APA* - P)B, ) is a symmetric

matrix, if a positive definite matrix P satisfies (2.7), then there is a @ > 0, such that
B} (APA” — P)B, + a(B;(APA™ — P)B)(B*B) *(B*(APA* — P)B,) < 0.

Let ¢ = aP which is positive definite, then the above inequality is equivalent to inequality

(2.12), which is equivalent to (2.11) or (2.8). o

Remark 2.2.5 The above LMI characterization (2.8) is derived directly from the definition

of stabilizability. It can also be derived from Riccati characterization. In fact, system (2.3)

! This observation is provided by Zhou [206].
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is stabilizable if and only if there exists a positive definite matriz € F"*™ which satisfies

the following Riccati inequality:
A*QA—-Q - A"QB(I + B*QB)™'B*QA < 0, (2.13)

which is equivalent to
AT+ QBB 'QA-Q <0,

or

AQE(1+ QBB Q?)™Q7A-Q <.
By Schur complement argument, the above inequality is equivalent to

Q AQ?

L 1 1 >0
QA I+ Q2BB*Q>

Using Schur complement argument again,
I+QBB*Q7 — Q7 AQ~1A*Q% > 0.
Now take P = Q7! it follows that
APA™ - P - BB* <0.

It is noted that the above characterizations of stabilizability have a direct application

to the determination of the stability degree for the closed loop system.

Corollary 2.2.6 Consider system (2.3), there exists a state feedback F € FPX"™ such that
p(A 4+ BF) < a™' for some o > 1 if and only if there exists a positive definite matriz
P € F™" such that the following LMI is satisfied

B (a?APA* — P)B, <0, (2.14)
or the following LMI is satisfied
a?APA" - P - BB* < 0. (2.15)

Moreover, if P = P* > 0 satisfies any of the above inequalities, then a stabilizing static

state feedback matriz which achieves the stability degree can be chosen as

F=—(B*P'B)y"'B*plA. (2.16)
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Dually, we have the following results about detectability.

Theorem 2.2.7 Consider system (2.3), then the following statements are equivalent.
(i) System (2.3) is detectable.
(ii) There exists a positive definite matriz X € F™" such that the following LMI is
satisfied
CLAXACT - C L XCT <. (2.17)

(iii) There exists a positive definite matric X € F"*" such that the following LMI is

satisfied
A XA-X -C"C <. (2.18)

Moreover, if X = X* > 0 satisfies any of the above inequalities, then a stabilizing static

state feedback matriz can be chosen as

L=-AX"tcx(cx~ o)L (2.19)

Stabilization of Continuous-Time Systems

In this section, we will consider the following LTI (continuous time) system over F

{:&(t) = Az(t) + Bu(t) (2.20)
y(t) = Ca(t)+ Du(t)

with ¢ € R*, where z,u,y are n, p, ¢g-dimensional state vector, input vector, and output
vector, respectively.

It is known that system (2.20) (with w(t) = 0) is stable if and only if there exists a
positive definite matrix P € F™*" guch that it satisfies the Lyapunov inequality A*P+PA <
0.

System (2.20) is stabilizable if there is a state feedback F € FPX™ such that system
& = (A+ BF)z is stable. It is detectable if there is a output injection L € F"*? such that
system & = (A 4+ LC)z is stable.

Suppose RANK(B) = p < n and RANK(C) = ¢ < n. Let B, € F*X("~?) be such that
B*B, = 0 and RANK[ B B, } = n, and C; € F("=9X" he such that CCY = 0 and

RANK[ c o } = n. We have the following characterizations.

Theorem 2.2.8 Consider system (2.20), then the following statements are equivalent.

(i) System (2.20) is stabilizable.
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(i1) There exists a solution X in the class of positive definite F-valued matrices to the
following LMI,
B (XA 4+ AX)BL < 0. (2.21)

(111) There exists a positive definite F-valued matriz X such that the following LMI is
satisfied,
XA*+ AX — BB* < 0. (2.22)

Moreover, a state feedback which yields the stability of the closed loop system is given by

F=-1p"x"1

Proof. We will show that (1) = (i1) = (iii) = (i).
(i) = (ii): Let F be such that ¢ = (A4 BF)z is stable, then there exists a positive definite
matrix X € F»*" such that

X(A+BF) +(A+ BF)X <0,

which implies

Bl (X(A+BFYy +(A+ BF)X)B, <0,

which in turn implies (2.21).
(i) = (iii): Follows from the similar arguments in the proof ((ii) < (iii)) of Theorem 2.2.3.
(ili) = (i): Let X € F"*" be positive definite and satisfies

XA*+ AX — BB* <0,

or

1,
X(A- —Q—BB*X_l)* +(A - %BB*X*)X <0,

which implies (i).

Remark 2.2.9 Statement (iii) can actually derived from Riccati equation characteriza-
tions. In fact, system (2.20) is stabilizable if and only if there exists a unique positive

definite matriz P € F**™ such that the following Riccati equation is satisfied,

PA+A*P - PBN7'B*P+ M =0 (2.23)
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fJor some 0 < M € F™" and 0 < N € FP*P; or equivalently, there exvists a solution P in

the class of positive semi-definite matrices to the following Riccati inequality,
PA+ A*P—- PBB*P <0. (2.24)

Now define Y = P~Y, (2.24) is equivalent to (2.22).

Similarly, we have the following results on determining the stability degree for the closed

loop system.

Corollary 2.2.10 Consider system (2.20), given 3 € RT the following statements are
equivalent. There exists a stale feedback F' € FP*" such that RE(A) < =8 for all X €
A(A + BF) if and only if there ezists a positive definite matriz X € F™*" which satisfies
the following LMI,

Bi(X(A+ B+ (A+ BNX)By <0, (2.25)

or the following LMI.
X(A+ 80+ (A+ B0)X — BB* < 0. (2.26)

Moreover, a state feedback which yields the required stability degree of the closed loop system
is given by F = —IB*X 1 with X > 0 satisfies (2.26).

Dually, we have the following results for detectability.

Theorem 2.2.11 Consider system (2.20), then the following statements are equivalent.
(i) System (2.20) is detectable.
(i) There exists a positive definite matriz X € F™*" such that it satisfies the following
LMI,

CL(XA+ A X)Ct <0, (2.27)

or the following LMI
XA+ AX - C*C <. (2.28)

Moreover, a state feedback which yields that the stability of the closed loop system is given
by [ = -—%X—IC* with X > 0 satisfying (2.28).
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2.2.2 H.-Control of LTI Systems

The solutions of linear H.,-control problems are characterized in terms of Riccati equations
[60]. However, in the following, we only review the characterization in terms of LMIs, which
were first appeared in [119, 133]. In the following review, the results are taken from [69].

The following system is considered.

4| B B
|

{ #(1) } |
y(1)

w(?) } (2.29)
Cy

D21 D22

where ¢ € Z™ for a discrete-time system and ¢t € R for a continuous-time system; w, u, z, y
are p, pa, p, g2-dimensional disturbance input, control input, regulated output, and measured

output vectors, respectively. It is assumed that n 4+ p > g3 and n + p > p;. Define

i A B B |
A= , B:= , C::[C‘2 Dm}-
Cy D1 Dy

Suppose RANK(B) = py and RaNK(C) = ¢o.

The system (2.29) is said to have H.,-control solution if for each fixed w € €, there

exists a output feedback controller

(2.30)

with the coefficient matrices having entries in F, such that the closed loop system is well-
posed and stable, and has Hs,-norm < 1. Moreover, the problem is said to have state
feedback solutions if the above measurement output y, based on which the control action
is produced by (2.30), is all states; the problem is said to accept full-information feedback

solutions if both states and disturbances are available to the measurement output v.

Discrete-Time Systems

We first have the following result for state-feedback solutions.

Theorem 2.2.12 Consider the system (2.29) with t € Zt. The following statements are
equivalent.

(i) The Hoo-control problem has a full-information feedback solution.

(i) There exists a positive definite matrizc P € F™" such that it satisfies the following
LMI,
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g | APAT= P+ BiB; APCT 4 BiDjy
CiPA* + Dy1Bf  CiPC} + Dy D3y — I

B <0, (2.31)

where By : Q—TF(rta)x(nta=r) is sych that NuLi(B) = SPAN(BL).
(iii) For each fized w € ), there exist a positive definite matriz P € F**™ and a real
number o > 0 such that they satisfy the following LMP,

P 0
0 of

APA* - P-BB*<0, P:= : (2.32)

It is noted that if (i) is satisfied, then the solutions can be chosen as static feedbacks.
The LMI characterization to the full-information feedback H.,-control problem is obtained

for the first time in {119, 133].

Proof. (i) & (ii) is verified in [69]; (il) < (iil) follows from the technique used in the
proof of theorem 2.2.3 ((ii) < (iii)). =

For the state-feedback solution, we have the following characterization [86].

Theorem 2.2.13 Consider the system (2.29) with t € Zt. Then the Mo -control problem
has a static state feedback solution if and only if there ewists a positive definite matriz

P € F"*" such that it satisfies the following two LMIs,

. [ APA* =P+ BB  APC; + B D%

By <0,
C\PA* + DB CPC; + DDy — 1

BBy - P B{Dx*
147 111 <0,
Dy By DDy~ 1

where B, : Q—Fta)x(ntai=r2) js sych that NurL(B) = SPaN(BL).

The following result characterizes a dynamic output feedback solution to the H,-control

problem.

2or equivalently,

APA* - P -+ ClBlB; — BQB; APC{ -+ CMBth — BQDTQ
01PA*+(1/D11BI—D12.B§ a(C’lPC{‘—f—DnDi’l —])—Dquz
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Theorem 2.2.14 Consider the system (2.29) with t € Z*. The Hoo-control problem has
solution if and only if there are two positive definite matrices P,Q € F™"*" such that they

satisfy the following LMIs,

[ APA* — P+ B,B*  APC*+ BD* ]
B T 1T 51 BL <0, (2.33)
ChPA* + DllBT le)CT + D11DT1 - I i
[ A*QA-Q+C:C,  A*QBy+CiDy ]
c 4 J + 010 Q 1-|-»1 11 €, <0, (2.34)
BiQA +D;,Ci BiQBy + DiDyy 1 |

>0

- Y

(2.35)

P I
I Q
where By : Q—Frta)x(ta=r) gng ¢ . Qo FHp)X(4r1=2) gre such that NuLL(B) =

SPAN(BL) and NULL(C) = SPAN(C).

Continuous-Time Systems
The results for the continuous-time systems are similar to the ones for discrete-time systems.
Theorem 2.2.15 Consider the system (2.29) with t € RY. Then the Hy.-control problem

has full-information feedback solution if and only if there exists a positive definite matriz

P € F™™ such that it satisfies the following LMI,

AP + PA* + B\B; PC; + B1D%,
CiP + Dy, B Dy Dy =1

*

1 B_L < 0, (236)

where By : Q—FHa)x(ntai=p2) jg sych that NvuLL(B) = SpanN(B_).

It is noted that the feedback solution can be static if exists; the state-feedback solution
additionally requires that D1 D5, — I < 0. The following result characterizes a dynamic

output feedback solution to the H.-control problem.

Theorem 2.2.16 Consider the system (2.29) with t € Z*. The Hy,-control problem has
solution if and only if there are two positive definite matrices P,Q € F™"*™ such that they
satisfy the following LMIs,

AP 4+ PA* + B\Bf PCi + By D*
B Rt I TP} (2.37)

C1P + Dy B; Dy Dy — 1
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AQ L QA+ C3Cy OBy + CoD
or | AQTQATCGC QB CIDn L (2.38)
BiQ+Di,Cy DiDy—1
P oI
>0, (2.39)
I Q

where By : Q—Fta)xtnta=r) gnd ¢ : Qo FO+rOX04r1=9) gre such that NULL(B) =

SPAN(B 1) and NUuLL(C) = SPAN(C').

2.3 Stabilization of Linear Parameter-Varying Systems

In this section, we will apply the characterization of stabilizability and detectability devel-
oped in the last section to the stabilization of linear systems whose coefficients are functions
of parameters. Given fixed positive integers p, ¢, and n, a p-input-g-output n-th order linear
time invariant (discrete-time or continuous time) system over C*(€2, F) is denoted by the

following dynamical equations.

{ p(t+1) = A(w)z(t)+ Blw)u(t) (2.40)
y(t) = C(w)a(t) + D(w)u(t)
with t € ZT; or
{ #(t) = A(w)z(t) + B(w)u(t) (2.41)
W) = C@et) + D)

with ¢ € R*; where the matrices A, B, C, and D have their entries in Ck(Q,F). In each
case, ¥, u,y denote the n, p, ¢-dimensional state, input, and output vectors, respectively. It
is further assumed that RANK(B(w)) = p < n, and RANK(C(w)) = ¢ < n for all w € Q.

The system (2.40) (or (2.41)) is said to be pointwise stable if it is stable for all w € Q
with u(t) = 0. Equivalently, for all w € ©, p(A(w)) < 1 for system (2.40) or RE(A) < 0
for all A € A(A(w)) for system (2.41). In the following, only the linear system (2.40) over
C*(, F) is considered, the continuous-time LPV system (2.41) is treated similarly.

Given the linear system (2.40) over C*(€2, F). It is said to be pointwise stabilizable
if for each w €  the system is stabilizable; i.e., there is a p X n matrix Fl, over F such
that the closed loop system with system matrix A(w) + B(w)F, is stable; or equivalently,
the following PBH rank condition is satisfied,

RANK | 2 - A(w) B(w) | =n,
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for all z € C with |2| > 1 and w € Q. It is stabilizable if there exists a state-feedback
u(t) = F(w)z(t) where the p x n feedback matrix F is over C*(2, F) such that the closed
loop system is pointwise stable. It is obvious that the stabilizability implies pointwise
stabilizability; it is also known that if € is a closed bounded subset of FV, then pointwise
stabilizability implies stabilizability [97, Theorem 5.10]. In the following we will extend the
latter statement, in which case the set € is not required to be bounded or closed. To this
end, we first have the following results about the pointwise stabilizability of the system

(2.40) which extend the results in the previous section.

Proposition 2.3.1 Consider system (2.40), it is pointwise stabilizable if and only if any
of the following two conditions are satisfied.

(i) For each w € S, there exists a positive definite matriz P, € F**", such that
A" (w)P,A(w) — P, — B(w)B*(w) < 0. (2.42)
(i1) For each w € Q, there exists a positive definite matriz P,, € F™*", such that
Bl (w)(A"(w)PuA(w) — P,)BL(w) < 0. (2.43)
In both cases, a state-feedback is given by
Fy = —(BY(@)P; ' B(w)) ™ B (w) P Aw). (2.44)

Proposition 2.3.2 Consider system (2.40) over C*(Q,F). If it is pointwise stabilizable
then the corresponding LMIs (2.42) and (2.43) have positive definite solutions over C*(S2, F).

Proof. We just consider LMI condition (2.42), the condition (2.43) follows similarly. Sup-
pose system (2.40) is pointwise stable, then for each w, € Q, there exists a positive definite

matrix P, € F**", such that the LMI (2.42) is satisfied, i.e.,
A™(wo) Py A(wo) — P, — B(wy)B*(w,) < 0. (2.45)

Since matrices A(w) and B(w) are over C*(Q, F), they are continuously dependent on w € Q.
Thus, there exists a neighborhood B(w,) of w,, such that the above inequality holds for all
W€ B(w,) N, ie.,

A (W)P,A(w) = P, — B(w)B*(w) < 0, VYw € B(w,).
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Now, {B(w,)}Hw,e is an open covering of €2, i.e.,

Q=] Blw,)n e
wWo€ES)

Since 2 C FV where FV is paracompact, there is a locally finite open subcovering {B;}|iex
for some index set I which refines {B(w,)}|w.ca. Now P; € F™*" is taken to be positive

definite for each 7 € I such that
A*(w)PA(w) = P, = B(w)B™(w) < 0, Vw€ B;.

It is known from the standard argument of partitions of unity that there is C*
partition of unity {t;}|;ex to € subordinated to the covering {B;}|ier; i.e., ¥; is C*° and
non-negative with support Supp(¢;) C B; for each 7 € I, and

Y iw) =1, Vwe. (2.46)
tel
Define a matrix-valued function P : Q—F™*" ag
Plw) =) thi(w)P, Ywe, (2.47)
1€l
which is positive definite and C* since it is locally a finite sum of C*> positive definite

matrix-valued functions. Since the inequality (2.42) is affine in the unknown, it follows that

for all w € €2,
AN (@) P(w)A(w) = P(w) = B(w)B™(w)
=Y %i(w)(A*(w) P A(w) — P — B(w)B*(w)) < 0.
i€l
Therefore, the positive matrix defined by (2.47) is over C¥(2, F) and satisfies (2.42).
a

The following theorem is the main result on stabilizability of linear systems over C*(Q2, F),

which generalizes Theorem 5.10 in [97].

Theorem 2.3.3 Consider the system (2.40) or (2.41) over C*(S2, F). Then it is stabilizable

if and only if it is pointwise stabilizable.
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Proof. The necessity is obvious. We will show the sufficiency. Ounly system (2.40) is
considered. The proof for system (2.41) follows almost the same arguments.
Suppose the system considered is pointwise stabilizable, then by the preceding propo-

sition, it follows that there exists a positive definite matrix P(w) over C*(2, F), such that

for all w € €2,
A*(w)P(w)A(w) — P(w) — B(w)B*(w) < 0,

and the corresponding state feedback control is given by

F(w) = —(B(@) P~ () B()) ™ B (@) P~ (@) A(w), (2.45)
which is over C*(Q, F). O

By Stone-Weierstrass Theorem [148], we have the following observation.

Corollary 2.3.4 Consider the system (2.40) or (2.41) over C*(Qgr, F), where Qg is com-
pact real subset in FN. If it is pointwise stabilizable, then the solution to (2.42) or (2.43)
and the stabilizing feedback matriz can be chosen such that their entries are polynomials (or

rational functions) of the parameters on Qp.

Next, we will consider the stabilization by output feedback. To this end, we need
the notions of detectability which is dual to stabilizability. Consider system (2.40) over
Ck(Q, F), it is pointwise detectable, if for all w € Q, there exists an output injection matrix
L, in F™*? such that A(w) + L,C(w) is stable; in addition, it is said to be detectable if
there is an n x ¢ matrix L over C*(Q, F) such that A(w)+ L(w)C(w) is pointwise stable.

Dually, we have the following theorem.

Theorem 2.3.5 Consider the system (2.40) or (2.41) over C¥(Q, F). Then it is detectable

of and only if it is pointwise detectable.

The detectability of system (2.40) implies that there exists an observer over C*(Q, F)

which has the following realization,
Bt +1) = Aw)E(1) + B)u(t) - Lw)(y(t) - C)a(t) — Dw)u(t),

where L(w) is over C¥(Q,F) such that A(w) + L(w)C(w) is pointwise stable for w € Q.
Therefore, #(t)—a(1)—0 as t—oo for allw € Q. Moreover, we have the following result about

stabilization by output feedback controller over C*(§2, F). The proof is straightforward.
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Theorem 2.3.6 Consider system (2.40) over CF(Q,F). Then there exists a stabilizing
feedback controller for the system if and only if it is pointwise stabilizable and detectable,

and such a controller is given by

{ E(t+1) = A(w)E(t) + B(w)u(t) — L(w)(y(t) — C(w)E(t) — D(w)u(t))
u(t) = F(w)z(t)
where F and L are matrices over C*(Q, F) such that both A(w) + B(w)F(w) and A(w) +
L(w)C(w) are pointwise stable.

Moreover, any stabilizing controller over Ck(Q,F) can be parameterized as Fi(J,Q),
where

A(w) + B(w)F(w) + L(w)C(w) + L(w)D(w) F(w) ’ —L(w) B(w)+ L(w)D(w)
J = F(w) 0 1 :
—(C(w) + D(w)F(w)) I ~D(w)

which is over C*(Q,F) and Q is a pointwise stable system over C*(Q,F) such that the

resulting closed loop system is well-posed for all w € Q.

2.4 'H.-Control of Linear Parameter-Varying Systems

In the following, we consider the performance synthesis problem for a linear system over

CHQ,F).
Given an n-dimensional linear system over C*¥(Q, F) as follows,
Aw) | Biw)  Byw)
z(t w(t
l> yEt; } = Cl(w) Dn(w) D12<w) l: u((t)) :' 5 (249)

Cg(w) Dzl(w) D22(w)

where ¢t € Z*1 (or t € RY), w,u, 2,y are p, pz, q, go-dimensional disturbance input, control
input, regulated output, and measured output vectors. It is assumed that the dimensions of
external disturbance vector and regulated output vector are the same, i.e., p = ¢, without
loss of generality. The matrices have entries in C*(Q, F). It is assumed that n+p > ¢y and
n+ p > pg. Define

Aw) = [ Aw) - Bilw) },B(w) = [ Bale)

*

5 Clw):= Co(w) Dayylw .
Ci(w) Dii(w) Dya(w) (@) { (w) ( )J

Suppose RANK(B(w)) = py and RANK(C(w)) = ¢o for all w € Q.
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The system (2.49) is said to have pointwise H,,-control solution if for each fixed
w € Q, there exists an output feedback controller
A, | B,

u(t) = —
() & b,

y(1)

with the coefficient matrices having entries in F, such that the closed loop system is well-
posed and stable, and has He-norm less than 1. The system (2.49) over C*(£2,F) is said

to have Ho-control solution over C*(2, F) if there exists an output feedback controller

u(t) = [ ) | Blw) } (1)

~

C(w) | D(w)
which is over C*(2,F), such that the closed loop system is well-posed and stable, has

Hoo-norm less than 1 for all w € €.

In the following, we first consider the solvability of the H.,-control problem via state

t
feedback , in which case y(t) = #(t), and full-information feedback, where y(¢) = [ a:(( )) } .
w(t

Ounly discrete-time case (t € Z™) is considered. We immediately have the following result
on pointwise solvability.

Theorem 2.4.1 Consider the LPV system (2.49) with t € Z*. Then the Heq-control
problem is pointwise solvable by a full-information feedback if and only if for each fized
w € 82, there exists a positive definite matriz P, € F"*™ such that it satisfies the following
LMTI:

AW)ByA"(w) = Py + Bi(w)Bi (w)  A(w)P,Ci(w) + Bi(w) D5 (w)

BJ_(w) <0,
Ci(w)PoA*(w) + Dui(w) B (w)  C1(w)P,CT(w) + D1y (w)Diy(w) — I

Bi(w)

(2.50)

where By : Q—F+p)X(n+=p2) s defined such that NULL(B(w)) = SPAN(B (w)).

Similarly, the state-feedback solutions can also be characterized by two LMIs. Next we

will give a PBH-like rank necessity test for state-feedback robust performance solutions.

Theorem 2.4.2 Consider the LPV system (2.49) over CK(Q,F) with t € Z*. The sys-
tem has a state-feedback robust performance solution only if the following rank condition is
satisfied,
2zl — Alw —Bi(w)A, Ba(w
RANK ) 1) 2() =n+p (2.51)
~Ci(w) I—Dp(w)A, Diz(w)

Jor all z € C with |2] > 1, w € Q, and A, € CP*P with 5(A,) < 1.
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Proof. We first have the following lemma, which follows from Proposition 3.4.2.

A| B
C|D

Lemma 2.4.3 Consider an p-input-p-output discrete-time LTI system z(t) =

(t € Z%). It has Heo-norm less than 1 if and only if

B

DeT(I -
D

An)#0, Apy:= {:

for all z € C with |z] > 1 and A, € CP*P with d (A,) < 1.

Now for fixed w € Q, there exists a state feedback F,, such that the following closed

loop system,
A(w) + Ba(w)F, | Bi(w)

C1(w) + Dis(w)F, | Dia(w)

has Hoo-norm less than 1. Thus, from the previous lemma, the following rank condition is

w(t),

2(t) =

satisfied,
[ AW+ By(w)F,  Bi(w) | [ 2 0]
RaNk(I — (@) + Ba(w) () ‘ )=n+p.
i Cl(w) + Dlg(w)Fw Dn(w) ] 0 A, ]
It is observed that
, AW+ Bo(w)F, Biw) | [ 0 ]
i Cl(W)—f- Dlg(W)Fw Dll(W) ] 0 Aa i
I 0
| T-Aw)zt =Bi(w)A, —By(w)e! -
~Cl(w)z_1 I - Dll(w)Aa —Dlz(w)z'l oo

So it follows that

ntp=Ran(f— | TR BMHZ“I 0 J)

C’l(u)) -+ D12((.U)Fw Dn(w) 0 A

I-Aw)z™ —Bi(w)A, —Bs(w)z™1
—Ci(w)z™t T = Dy(w)A, —Dig(w)z?
2zl — A(w) —Bl(w)Aa Bg(w)
<n+p.
—Cl(w) I - Du(w)Aa D12(w)
Therefore, the (full row) rank condition (2.51) is satisfied. O

< RanNk

= RANK [

We have the following statement which reveals the relations between the pointwise

solvability and solvability over C*(2, F) for the state feedback Ho-control problem.
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Theorem 2.4.4 Consider the system (2.49) over C¥(Q,F). The state feedback H o, -control
problem is solvable over C*(Q2,F) if and only if the corresponding pointwise He,-control

problem is solvable.

Proof. The necessity is obvious. We only need to show the sufficiency. Suppose the
pointwise state feedback Ho,-control problem has a solution, then by Theorem 2.4.1, for
each fixed w € €, there exists positive definite matrix P, € F**” which satisfies the LMI
(2.50). Note that the left hand side of the LMI is affine in P,. Therefore, the argument
used in the proof of Proposition 2.3.2 can also be applied here. We therefore can find a
smooth positive definite matrix-valued function P : Q—F"*" such that P(w) € C*(Q,F)
satisfies the LMI (2.50). Furthermore, a static state-feedback controller over C*(Q2, F) can

be constructed in terms of P(w). a

Finally, we have the following theorem on the solvability of output feedback H.-control

problem for system (2.49).

Theorem 2.4.5 Consider the system (2.49) over C¥(Q,F). The Hoo-control problem is
solvable over CF(QU,F) if and only if the corresponding pointwise H.ao-control problem 1is

solvable.

Proof. Only the discrete time case (¢ € Z%1) is considered. The continuous time case
follows the similar arguments. The necessity is obvious. We only need to show the suf-
ficiency. Basically, the proof is the same as in the previous theorem. We only give an
outline here. Suppose the pointwise Ho,-control problem has a solution. Then it follows
from Theorem 2.2.14 that for each fixed w € €2, there are two positive definite matrices

P,,Q. € F"*™ such that they satisfy the following LMIs:

Bi ) | AOPA@ =Pt B@BIW)  A@PRCIW + Bi@)Di) | ) <0
. C1(w)PuA* (@) + Diy()Bi(w)  Co(w)PuClw) + Di(@)Dfy () — 1 | ’
(2.52)
) | AWRAW) = Qu+ CIWICw) A @QBI) +CI@)Dulw) | ) <0
B} (w)QuAw) + Di1(w)C1(w)  Bi(w)QuBi(w) + Diy(w) Dy (w) — I ’

(2.53)
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>0

- H

2.54
_— (2.54)

where B) : Q—F@+e)x(n4r-p2) i such that NuLL(B(w)) = SPAN(By(w)); and C :

Pw[}

Q-FO+p)x(v4r=2) guch that NULL(C(w)) = SPAN(Cy(w)). Moreover, the coefficients
fiw, Bw, C'w, and C, of a pointwise H,-controller can be chosen to be smoothly dependent
on P,,Q,.

Since the three LMIs are affine in P, and ¢,. Then the argument used in the proof
of Proposition 2.3.2 can be applied here. And we can find two smooth positive definite
matrix-valued functions P, Q : @—F"*" such that P(w) and Q(w), which are in C*¥(Q, F),
satisfy the three LMIs (2.52) — (2.54). Then an output-feedback controller over C*(Q, F)

can be constructed in terms of P(w) and Q(w). O

2.5 Notes and References

The control issues of of linear systems over some algebras were considered extensively in
[65, 101, 97] and references therein. The consideration in this chapter basically follows the
treatment in [97]. The basic definitions of pointwise stability, pointwise stabilizability, and
stabilizability in this chapter extend those defined in [97]. However, the general results here,
which justify the pointwise design is enough for synthesis, do not require the parameter sets
to be compact as assumed in [97]. In addition, we considered the H,-control issue for LPV
systems to reflect the recent development in the robust control areas.

The traditional PBH test and Ricatti characterization of stabilizability and detectability
can be found in standard text books, such as [95]. The LMI characterizations are basically
from [57, 119, 125]. The LMI conditions for H..-control solutions are derived by Lu et al.
[119, 111], Packard et al. [133, 131], Gahinet-Apkarian [69], and Huang-Lu [86].

In practice, the implementation of the LPV controllers for LPV systems is carried out
by gain/dynamic scheduling [164, 149, 145] or adaptive/supervisory control [176, 125]. The
Justification of the pointwise design for gain scheduling is made by Shamma [162, 163).
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Chapter 3

Control of Uncertain Linear

Systems with LTI Perturbations

3.1 Introduction

In this chapter, we will consider a class of uncertain dynamical systems, whose coeflicients
can be represented as linear fractional transformations (LFTs) [144, 73, 132] on some
block structure. This description is very natural for systems where the uncertainty (un-
known parameters or perturbations) enter the model in a feedback fashion. For a linear
discrete-time system with structured uncertainty Ap, it can be alternatively represented
as an LFT on an augmented block structure A = Diag[z711, Ap] where the first repeated
scalar block 271 is a delay operator; in this case, the LFT formulation is a direct gen-
eralization of the now standard notation for state-space realizations of transfer functions.
Also, a linear shift invariant (LSI) multidimensional system can be represented by an
LFT formula [119].

The robustness analysis and synthesis issues under structured uncertainty were exten-
sively investigated by Doyle et al. [53, 63, 54, 56, 119, 133, 111, 132, 137]. This chapter is a
continuation of such pursuits. We consider the problem of generalized robust stabilization
under linear time-invariant (LTI) or parametric perturbations. The uncertain discrete-
time systems are emphasized, while most of the results can be easily generalized to the case
of uncertain continuous time systems. The stability notions employed in this chapter are
quite standard; they are a natural generalization of the conventional notions of stability for

linear discrete systems, Ho, performance of linear discrete systems [63, 133, 111, 132], and
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robust stability or performances for linear uncertain systems with (structured) paramet-
ric/dynamic uncertainties [63, 119, 133, 132]. In particular, in the linear uncertain system
case, if the uncertainty Ap represents complex norm-bounded parametric or LTI dynam-
ical uncertainty, the robust stability test reduces to a u-test, which is referred to as the
pu-stability test. The treatment for the case where Ap represents nonlinear or linear time

varying (LTV) dynamical uncertainty leads to the Q-stability [119].

In this chapter, an algebraic structure (LFT algebras) is introduced, and the issue of
stabilization by controllers over this algebra is considered. This consideration for synthesis
implies that both plant and controller are described by LFTs on some block structures, and
in particular, the controller is allowed to depend on the same block structure as the plant.
The control scheme thus can be implemented as gain scheduled or dynamically scheduled
[176, 145], provided the uncertainties can be measured or identified on line. It is remarked
that the control synthesis of uncertain linear systems over some other general algebraic

structures was pursued in [97, 101, 115]. Some other related work includes [131, 3].

The properties of stabilizability and detectability for uncertain linear systems, which are
related to the solvability of the stabilization problem, are examined in the defined algebras.
In particular, it is shown how these properties can be reduced to a PBH-like test, which
originated the work in [137, 138] where stability robustness analysis was conducted in the

behavioral setting, and which extends the notion of structured singular value.

The remainder of this chapter is organized as follows. In Section 2, a generalized notion
of structured singular-value is introduced, it is used in robustness synthesis problem. In Sec-
tion 3, the description of uncertain linear systems in terms of LFTs is proposed. In Section
4, the robustness analysis is conducted. The robust stabilization and robust performance

synthesis are considered in Sections 5 and 6.

3.2 Preliminaries: Structured Singular Values

In this section, we review and generalize the standard notion of structured singular values
developed by Doyle [53]. The more detailed material about this subject is considered in the
expository article [132].
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3.2.1 Structured Singular Values
Consider a matrix M € F™*" and an underlying block structure A,

A = {DI1AG[61 1y, -+, 0.1, Ay, -, Af] 16, € F,Aj € F™aXmi} ¢ FrXn (3.1)
where the full blocks are allowed to be repeated.

Definition 3.2.1 The structured singular value pa (M) of a matriz M with respect to

structure A is defined as

1
pa(M) = Asgg{g(—A—j : DET[I — AM] = 0} (3.2)

unless no A € A makes I — AM singular, in which case ua(M) := 0.

From the definition, it follows immediately that ua(M) = p(M) if A = {61 : 6 € C}
and pa(M) =&(M)if A = C™*",
The definition of ;1 can be extended to the case where M is an LTI operator and the

block structure A is a set of structured LTI operators. Define
BA:={AeA:5(A) <1} (3.3)
It is known from p-definition that ua (M) < 1 if and only if
RANK(L —= MA) =n,

ice., I — MA is invertible for all A € BA. Thence the u-value has a clear robust control
interpretation.

The exact computation of y is generally difficult. Usually, an alternative notion, known
as Q-values whose computation is a convex feasibility problem, is used to approximate it.

To this end, we define the commutative matrix set D of A as follows,
D={DeF"™" :DA=AD,DET[D] #0,A € A}. (3.4)

Thus D depends only on the structure of A. In addition, if D, Dy, Dy € D, then D! €
D,D* €D and DyD, € D.

Definition 3.2.2 The Q-value of M with respect to structure A is defined as

QA(M) := 5153 g(DMD™1). (3.5)
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Note that Qa(M) < 1 if and only if there is a positive definite matrix P € D such that
MPM* — P <0. (3.6)

Qa(M) is an upper bound of ua (M) [53], i.e.,
< inf & .
pa(M) < if 5(DMD™)

The relation of ¢ and its upper bound in C is discussed in detail in [53, 132]. Specially, the
upper bound is achieved for the following special block structures:

1) A = {D1aG[8],,A]: § € C,A € Cr=7)x(n=r),

2) A = {Di1aG[Aq,---,Af] + A; € C™iXmi} ¢ C™X" f < 3, where no blocks are

repeated.

Remark 3.2.3 Both pua(M) and Qa(M) are continuous functions of M for fized block

structure A in the case F = C.

To end this review, we state the following result known as main loop theorem in [132,

Theorem 4.3].

Lemma 3.2.4 Given a block structure A = DIAG[A1, Ay] and a F-valued matriz M parti-
My, Mo

tioned as M :=
My My

j!, then ua(M) < 1 if and only if

HA, (MQQ) < 1, 6&3)};_1 A, (f[(IW,AQ)) < 1.

3.2.2 A Generalized Notion of the Structured Singular Values

In the robustness synthesis to be treated in the next few sections, we will make use of a
generalized p.

Given M,N € F™*" with m < n and RANK(N) = m, the underlying block structure
A is defined as (3.1), and the corresponding sets BA and D are also defined in (3.3) and
(3.4).

Definition 3.2.5 The generalized structured singular value ua(M, N) of an ordered

matriz pair (M, N') with respect to structure A is defined as

pa(M,N):= sup {:—1— : RANK[N — MA] < m} (3.7)
AelA a(A)

unless no A € A makes N — MA drop rank, in which case ua(M,N):= 0.
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It is noted that for all nonsingular matrix £ € C™*™, @ € A with (@) = 1, and

DeD,
IU’A(MaN) = :U’A(EM7EN) = MA(MQvN) = MA(IMD7ND)

From this definition, ua (M, N) < 1 if and only if the following full row rank condition

is satisfied,
RANK(N — MA)=m

for all A € BA. Additionally, one has the following observation.

Proposition 3.2.6 Define

OA(M,N):= Oggfe'p{'y : MPM* —y*NPN* < 0,7 > 0}. (3.8)

Then MA(MvN) < QA(MvN)'

Therefore, the Q-value defined by (3.8) is an upper bound for ua(M, N); the computa-
tion of Q-value is an inf-optimization problem (cf. [28]). In the following, let F = C, we
will see under what condition, the above upper bound can be achieved. To this end, we
define quadratic functions ; : C"—C"*" and ¢; : C"—C (i = 1,---,5;j = 1.+, f) as
follows,

Qi(n) = (" M);(n"M)i = (" N); ("N )i, i=1,---,s (3.9)

4(m) = (0" M)y (M) sy = (TN )ori(0°N)syj =1, f (3.10)
where for a vector v € F7, it is partitioned as
of - o] VIS %T+f ]7

where v; € F™ and vey; € F™ for i =1,---,8;7=1,---, f.

Next, define two sets as follows,

V= {D1ac[Qi(n),- -+, Qs(n), q1(n), -+, q5(n)] :

Qi(n) and ¢;(n) are defined in (3.9) and (3.10),7 € C™,||n|| = 1} (3.11)

X = {D1aG[Xy, -, Xy, 21, -, 24] : 0< X; = XF € C77i g, € RY). (3.12)

Definition 3.2.7 The block structure A is said to be p-simple with respect to (M,N) if
the set V defined in (3.11) is such that VN X = @ implies Co(V)N X = Q.
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We have the following theorem.

Theorem 3.2.8 Ifthe block structure A is p-simple with respect to (M, N '), then ua (M, N) <
1 if and only if OA(M,N) < 1.

Proof. The sufficiency immediately follows from Proposition 3.2.6; only the necessity is
proved. The ideas of the proof basically follow the treatments in [53, 132, 138], and is

divided into two steps.
Claim 1: pua(M,N) < 1implies VN X = 0.

In fact, if VN X # @, then from the definition of V| it follows that for some € C"
with [|n]] = 1,

Qi(n) = (" M) ("M)i = ("N )i(n"N)i 20, i=1,--+,s

0(m) = ("M )ssj ("M )sp; = (M N)oqj ("N )3y ; 20, j=1,---, f.

This implies that for ¢ = 1,---,s, there exists §; € C with [6;] < 1 such that (n*M);6; =
(n*N)i, and for j = 1,---, f, there exists a matrix A; € C™*™ with ¢ (A;) < 1, such that
(1" M)s4jAj = (77N )s4;. Define

A= DIAG[ Ly, -+, 8510, Ay, o+ A,

then A € BA, and
n"MA =n"N,
or
(N - MA)=0
with 7 # 0, which implies
RANK(N — MA) < m,

which contradicts pa(M,N) < 1. This confirms the claim.
Claim 2: If the block structure is y-simple with respect to (M, N), then Qa (M, N)< 1.

Define a new matrix set
D= {D1aG[Dy,-- D dy,---,d¢] : Dy = DY € C”X”,dj €R}.

Then D is a real vector inner-product space whose inner product is defined as

s Y
(X, D) = ZTR(XiDi) + Z?ﬂjdj’.
1=1 j=1
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By the assumption, Co(V)N X = @ in the inner product space D. From the definition
of V, it follows that V is a compact set in D, therefore Co(V) is also compact. Also note
that X is a closed and convex set in D. Thence, by Hahn-Banach theorem, there exists a

positive definite matrix X = DiaG[Xy, -+, X, 21, -+, 2] € X such that
(X,D) <0
for all D € V. Therefore, for all € C™ with ||n]| = 1, one has

(X, D1ac[Q1(n), -+, Qs(m)s qu(n)s -+, qs(m)]) <0,

or

7 (MPN* = NPN*)y < 0,
where P := DIAG[Xq, -+, X, 211, -,z 4] > 0; this leads to
MPM* - NPN* <0,

which implies QA (M, N) < 1. O

Using the same argument as in [132], one also has the following result.

Corollary 3.2.9 If the block structure is ji-simple with respect to (M, N), then ua(M, N) =
Qa(M,N).

Remark 3.2.10 From the work of [53, 132, 138], we know that A is u-simple w.r.t. (M, N)
if A has any one of the following structures:

(i) A ={6I:6¢€ C}C Cxn,

(i) A = Cmxn,

(iii) A = {DIAG[A1, Ag] 1 A; € C™Xmi} © Crxn,

3.3 Uncertain Linear Systems in the LFT Framework

In this section, we review some standard material on descriptions of systems in terms of
LFTs. For additional background material on both linear fractional transformations(LFTs),

see [143, 144, 73], or the survey article [132].
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3.3.1 Linear Fractional Transformations

The LFT formula arises naturally when we describe a well-posed feedback system as shown

by the following block diagram.
2 w

G
K

The resulting input /output relation can be represented as z = F;(G, K)w, where F;(G, K) is

defined as the (lower) linear fractional transformation (LFT) on K with the coefficient

matrix GG. More explicitly, suppose G is partitioned as

Gy G
G=| 1" 7 (3.13)
Ga G
with entries in F, then for a F-valued matrix K,
f[(G, I() = G + Glzf((f - GQQ[()—].GQ]_ (314)

provided the inverse is well defined [143, 144]. If Goy is square and nonsingular, then
f[(G,I() = (A + BK)(C' + le)_l with 4 = G11G2_11,B = Gg — G11G2_11G22,C = G2_11
and D = —GZ_IIGQZ. Similarly, the (upper) LET on A, which corresponds to the feedback

A around upper loop, is defined as
FulG,A) = Gog + Gn A1 — G1A) LG, (3.15)

We have the following observation about the equivalent relation between the two LFT

representations (3.14) and (3.15), which can be verified directly from their definitions.

Lemma 3.3.1 Suppose matrices M and N are compatibly partitioned, and

)

where the dimensions of the identity matrices are compatible with the partitions of M and

N, then Fu(N,A) = F(M, A).

The following observation is about the inverse property of an LFT. The proof can be

found in [73].
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Lemma 3.3.2 Suppose G is partitioned as in (3.13).

(1) Assume G119 and Gg1 have full column and row rank, respectively, if matrices K1 and
Ko are such that Fi(G, K1) = Fi(G, K3) then K1 = K.

(ii) Let P = Fi(G, K). If G, G5 and Gqy are square and invertible, and DET(G11—P) #
0, then K = F,(G™L, P).

The following properties about LFTs can be directly verified by the definitions (see
[207]).

Lemma 3.3.3 The LFT formula is closed under addition, multiplication, and inversion,
e, if T1(A1) := Fu(My, Av) and To(Ay) := Fy(My, Ag), then there exist suitable M4, Mp,
and M; such that
T1(Ar) + To(Az) = Fu(Ma, A)
Ti(A)TH(Ag) = Fu(Mp, A)
T A = Fu(My, Ay)

with A := DIAG[Ay, Ay], provided that the operations are well defined.

In the following, let 7 (A, F) denote the set of linear fractional transformations on some

copies of A € A C F*"*", eg.,if g € F(A,F), then
g(A) = fu(Mv DIAG[Aa o 7A])

for some matrix M with entries in F. In the following, we will view A in the definition as
a symbol to represent the structure A. However, given g € F(A,F), g(A) is a well defined
F-valued functions on some subset of A where the corresponding LFT is well defined. To

emphasize the set € C A, the notation (€2, F) is used.

Proposition 3.3.4 The set F(A,F) is a commutative algebra over F with the following
pointwise operations.
(f+9)(A) = f(A)+g(A)
(Fg)(A) = f(A)g(A)
(af)(A) =af(a)

where f,g € F(A,F), a € F, A € A.
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Proof. The proof that the pointwise operations are closed follows from the above lemma.

a

It is noted that if we view F™"*™ as the space F¥ with N = n?, and for each g € F(Q,F),
g(A) is well defined for all A € ), then F(R,F) is a subalgebra of C*(Q,F). Also the
polynomial algebra P(€2,F) and rational algebra R(€2,F) (cf. [97]) are subalgebras of
F(A,F).

3.3.2 Linear Systems over LFT Algebras

In this section, we will consider a linear system over F(Ap,F) as follows,

G:{ p(t+1) = O(Ap)a(t) + I(Ap)u(t) (3.16)

y() = @(Ap)z(t) + II(Ap)u(t)

where t € Z; z,u, and y are n,,p, and ¢-dimensional state, input, and output vectors,

respectively; Ap is the symbol of the block structure Ap, which defined as follows,
Ap = {D1aG[61 1, , -+, 6,1, Aq, -, Ay] 1 6 € F,A; € X7} ¢ FXm, (3.17)

0,1, 9, and II are matrices with entries in F(Ap,F). As we agreed, the Ap appearing in

the coeflicients is just a symbol which indicates the “spatial” structure of the perturbation.

A Feedback Control Interpretation

The linear system over F(Ap,F) has a clear feedback interpretation. More concretely, if
system (3.16) is over F(Ap, F), then the perturbation Ap enters the system in a feedback
fashion by “pulling out A’s” [27, 207] as follows!

[— ]

Go

(T — [

for some nominal system Gop.

'Tn general, the block structure in the following block-diagram is not the same as the one (3.44) appears
in the coefficient matrices in (3.16). However, they are assumed to be the same in the following discussion

for simplicity and without loss of generality.
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Conversely, the class of linear parameter-varying systems whose unknown parameters

or perturbations enter the modeled system in a feedback fashion can be described in terms

of LFTs on some specified perturbation structures.

In fact, since G := F,(Go, Ap), suppose that the nominal system, where no uncertainty

is imposed, is described by the following equations.

£E(t + 1) = Mllx(t) + Mlzud(t) + Mlgu(t)

Go 1§ wa(t) = Maz(t) + Magug(t) + Mazu(t)
y(t) = Msz2(t) + Magua(t) + Mszu(t)
with t € Z7T; define
My My My
M= | My My; My
Mz1 My Mss

The input/output map Go can be represented as LFT on 2717, i.e.,
Go == Fu(M,z7'),

where 2717 can be viewed as a symbol to represent the delay operator. Since the uncertainty

Ap enters the system in an LFT way, the uncertain system can be represented as
G(Ap) = FulGo,Ap) = Fu(Fu(M,>711), Ap) (3.18)

O(Ap) I(Ap)
®(Ap) I(Ap)
Therefore, G(Ap) has representation (3.16) where the coefficients matrices ©,I', ®, and

, 27,

IT are matrices with entries in F(Ap, F) which are defined as follows,

My M Mys M

oap) =A(l " T AR, T@ap =R 0 TP AR, (319)
21 22 Moz 22
Moy M My, M

(Ap)=F,(| 7 T | ap), Map =F (] 2 TP Ap. (3.20)
Msy Mz Msy  Mss

An Alternative Representation

The linear system (3.16) over F(Ap,F) has an alternative representation which is more

convenient in some case. In fact, from (3.18), one has
710
: (3.21)

i.e., G can be represented as following block diagram.

G = Fu(M,A), A=
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Ap

274

Y B D———)

Therefore, the linear system over F(Ap,F) can be represented as an LFT on some
block structure A, i.e.,
270

0 Ap

A
C

A B
¢ D

LAY = : (3.22)

B
G:fu(,: D}(A)z, A=

where (A4, B,C,D) € RV x R"*? x R7*" x R?*? with n = n, + m are defined as follows,

My M
A= " 1 , B:=
Mz Mpy

Ml 3

, (= [ Mz Ms, J ;D= Mss, (323)
M3

where 27!7 is a delay operator, and Ap is the symbol of Ap C F™X™ In general, Ap is

taken as follows,
Ap ={D1aG[61 1, -+, 650, , A, -+, Af] 1 6 € FJA; € FT9X™} ¢ FmX™,

which could include repeated full blocks. For simplicity, the system (3.22) is also called an
LFT system® By analogy with standard terminology, we will refer to the representation
(3.22) as a “state-space realization” of the transfer function G.

As in the conventional linear systems, (non-singular) state variable transformations are
useful in the analysis and synthesis of LFT systems. However, not all transformations are
allowed in this setting, the admissible state variable transformations are therefore specified.
Consider the LFT system (3.22) with block structure A of dimension n X n and commu-
tative matrix set D of A. If we think of the system as having “state” vector z, then

a state variable transformation z — 2 := Tz is admissible if the transformation matrix

*In this notation, the structure symbol A might be ignored if it is clear from context.
%A class of linear shift-invariant multidimensional systems can also be represented as LFT systems, see

Section 3.8.
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T € D. The corresponding state-space realization transformation is

4o

Note that the transfer function after the transformation does not change. In the next

TAT! | TB
cr- | p J(A) '

section we will further see that some properties of LFT systems are also invariant under

admissible state variable transformations.

3.4 Stability and Performances of Systems over LFT Alge-

bras

In the next two sections, we introduce some basic notions for linear systems over F(Ap, F),

including stability, stabilizability, and detectability. The system under consideration is given

by
G:{ z(t+1) O(Ap)z(t) + T(Ap)w(t)
2(t) = ®(Ap)z(t) + I(Ap)u(t)

with ¢t € ZT, where z, u, and y are n,,p, and ¢-dimensional state, input, and output vectors,

il

(3.24)

respectively; ©,1', ®, and II are matrices with entries in F(Ap,F). Or equivalently

Al B 20
, (3.25)
C|Dp

G(A) =
0 Ap
where 2711 is a delay operator and Ap the symbol of Ap; The real matrices (A,B,C,D) e

(A)7 A=

R™*™ x R™P x RI*™ x RI*P are defined in the previous section.

3.4.1 Robust Stability and Robust Performances

Given an uncertainty set 2 € Ap, the system (3.24), or equivalently (3.25), over F(Ap, F)
(or F(Q,F))is said to be robustly stable if it is pointwise stable, i.e., for each Ap € 2,
the coefficient matrices in (3.24) are well-defined, and the system is stable for all Ap € Q
with w(t) = 0, or equivalently,

p(O(Ap)) = p(Fi(A,Ap)) < 1 (3.26)
for all Ap € Q. From the definition of the robust stability, the following proposition follows.

Proposition 3.4.1 Consider the system (3.24), or equivalently (3.25), over F(Q,F), then

the following statements are equivalent.
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(i) It is robustly stable.
(ii) The following rank condition is satisfied,

RANK (21 — O(Ap)) =n, (3.27)

for all z € C with |z] > 1 and Ap € Q.
(iii) The following rank condition is satisfied,

RANK (I — AA) =n, A :=Diac[z"1,Ap] (3.28)

for all z € C with |z| > 1 and Ap € 2.
(iv) For any Ap € S, there exists a positive matriz Qa, € F™"*™ such that the following
LMI is satisfied,
O(AP)Qa,0"(Ap) — Qa, < 0. (3.29)

The system, in which case it is assumed that p = ¢ without loss of generality, is said
to have robust performance if for each Ap € Q, the coefficient matrices in (3.24) are

well-defined and the system has H.,-norm < 1, or equivalently,
g (Fu(M,A)) <1

for all A := D1ag[z"'1, Ap] with |2| > 1 and Ap € Q. The following proposition summa-

rizes some characterizations for robust performance. The proof is omitted.

Proposition 3.4.2 Consider the system (3.24), or equivalently (3.25), over F(S2,F), then
the following statements are equivalent.

(i) It has robust performance.

(ii) The following rank condition is satisfied for all z € C with |2| > 1, A, € CP*P with
6(A,) <1, and Ap € 9,

zI — O(A —T'(Ap)A,
RANK (Ap) (&r) =y + p. (3.30)
-®(Ap) I-TI(Ap)A,
(i) The following rank condition is satisfied for all z € C with |z| > 1, A, € CPXP with

G(Ay) <1, and Ap € 9,
RANK(I — MAN) =n+p, Apn:=Diaclz7'I,Ap, A,]. (3.31)

(iv) For any Ap € Q, there exists a positive matriz Qa, € F™*" such that the following
LMI is satisfied,
0(Ap) T(Ap)

(Ap) T(Ap) 0 I || I*(Ap) I*(Ap) 0 I

Qar o} [@*(Aw o*(Ap) _{@AP 0

] <0. (3.32)
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3.4.2 Special Cases: u-Stability

In the following, we will consider the case where F = C and Q@ = BA:
BA :={Ap€ Ap:5(Ap) <1} Cc C™™, (3.33)

which is a bounded and closed set in C"*", so it is compact. Therefore, in this case, robust
stability is equivalent to the uniform stability, i.e.,
sup p(Fi(4,Ap)) <1,

ApeBA

since p(Fi(A, Ap)) is a continuous function of Ap € BA. Now suppose p(M71) < 1, which

means that the nominal system is stable. Define
A={A= DIAG[Z_lf, Apl:z€ C,Ap € Ap}.

From the Main-Loop Theorem (Lemma 3.2.4), it is known that the above condition is

equivalent to the p-test: ua(A) < 1.
Now suppose pa(A) < 1, which means that the system is robustly stable as discussed
above. The test for robust performance in this case is equivalent to the requirement:

sup g (Fu(M,A)) < 1.
l2|>1,Ap€BA

Since the maximization is also over a compact set, and & (F,(M, A))is a continuous function
of z and Ap € BA. Define

Ay = {DIAG[A, A, ] : A € A A, € CPXP},

Again from the Main-Loop Theorem (Lemma 3.2.4), the robust performance test is equiv-
alent to p-test: pa, (M) < 1.

Motivated by the above observation, we give the following definition.
Definition 3.4.3 The (3.22) over F(BA, C) is p-stable (with respect to A) if ua(A) < 1.

Therefore, the p-stability notion is an abstraction of robust stability and robust perfor-
mance tests. Since the u computation is generally hard, we usually use a sufficient condition,

Q-test, as follows,

Definition 3.4.4 The system (3.25) over F(BA,C) is Q-stable (with respect to A) if
Qa(A) <1, ie., there is a D € D such that (DAD™) < 1.
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It is noted that Q-stability is just a sufficient condition for p-stable in general. We have
the following Lyapunov characterization of the Q-stability.

Lemma 3.4.5 System A with frequency structure A is Q-stable if and only if there exists
a P eD with P= P* >0 such that APA™ - P < 0.

The computational problem for solving the above Lyapunov inequality, which is a LMI,
is a convex feasibility problem.
The following structural property of LFT systems follows immediately from the above

definitions of u-stability and Q-stability and properties of p.

Theorem 3.4.6 The p-stability and Q-stability of LFT systems are invariant under the

admissible state variable transformations.

Another important structural property of LET systems is expressed by the following

theorem.

Theorem 3.4.7 Let A1 and A, be two system matrices with respect to the frequency struc-

tures A1 and As, respectively. Then

Ay A
(1) if the system matriz ! 2 with any compatibly dimensioned matrices A1
A Ag
. . Ay 0
and Agy is i (Q)-stable with respect to the frequency structure A = , where
0 A,

Ay and Ay are independent, then Ay and Ay are also p (Q)-stable with respect to structures

Ay and Aq, respectively.

.. A A . : . : . .
(ii) the system matriz with any compatibly dimensioned matriz Aqo is p
0 A
: Ay 0 . ‘
(Q )-stable with respect to the frequency structure A := if and only if Ay and
0 A,

Ag are also p (Q )-stable with respect to structures Ay and Ay, respectively.

Note that the statement (i) holds only in the case where the structures Ay and A, are

independent, while (ii) holds even when Ay and A, depend on each other.

Ay 0
0 Ay

are

Proof. Assume that the commutative matrix sets of Ay, Ay and A = [

D1, Dy and D, respectively.
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(1) For the p-case, these properties can be checked easily via the basic properties of p.
Ay Ar

is assumed to be Q-
Ay Ay

We will now focus on the Q-case. Note that system l:

Py
€D (thus, Py e Dy and P, e Dy
0 P

P 0 AT A3, P 0
0 P || An, A3 0 P

- { ALPLAS + A PyAsy — Py ALPLAG, + A Py A }

stable, so there exists a positive definite P = l

are both positive definite) such that

A A
Ay Ay

0>APA*—P:[

A PiAT + AgPo A%y AsPyAs + As PLAS, — Py
This implies
/11})1‘41< - P < 141]31.41< + A12P2AT2 - P <0

and
AQPQA; - P < AQPQA; + A21P1A§1 - Py, <0,

which are what we need.

(i1) We first claim that Ay =
Ay
if Ay and Ay are p (Q)-stable with respect to Ay and A; respectively. In fact, in the p

0
} is p (Q)-stable with respect to A if and only

case, it follows by observing

pa(An) = max{pa, (A1), pa,(42)}.

As for the Q case, the conclusion follows by using the Lyapunov inequality characterization
in Lemma 3.4.5.
Now we return to the proof of (ii). We just give the proof in p case. The arguments

for @ case follow similarly. From the above discussion, it is known that 4; and A, are u-
Ay 0

stable with respect to Ay and A, respectively if and only if Ay = [ ! :l is p-stable
Az

with respect to A, i.e., ua(An) < 1. It is known that a p-value is a continuous function,

therefore for the given matrix Ay,, there is an o € R, such that

A A
HA([ 1@ 12})<1'
0 A

Al OzAlz al 0

0 A 0 I
state transformation for system A. Since the transformation does not change the stability

Observe that { } = TAT™! with T = ’i :l € D, which is an admissible
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by the preceding theorem, it follows that Ay is p stable with respect to A if and only if A
is p stable with respect to A. O

Remark 3.4.8 Part (ii) of the above theorem also implies that a cascade system is p (Q)-
stable if and only if each subsystem is 1 (Q)-stable.

3.5 Stabilization of Linear Systems over LFT Algebras

Given the block structure Ap (see (3.44)). Consider the linear system (3.24) over F(Ap, F).

" { w(t+1) = OApe(n)+I(Apu() . [ Al B } )
(1) ®(Ap)z(t) + T(Ap)w(t) Clp

with ¢t € Z*, where z,u, and y are n,, p and g-dimensional state, input, and output vectors,

Il

Il

respectively; A := D1aG[z7 ], Ap]; ©,1, ®, and 1I are matrices with entries in F(Ap,F);
A, B,C, D are real matrices defined by (3.23).

3.5.1 Robust Stabilizability and Detectability

Given an uncertainty set & C Ap, we consider next the properties of system (3.24), or
equivalently (3.25), over F(Ap,F) (or F(€2, F)) related to stabilization, i.e., stabilizability
and detectability. As explained before, we will assume that for all Ap € €, the coefficient
matrices in (3.24) are well defined. The system (3.24) is said to be robustly stabilizable
if it is pointwise stabilizable, i.e., for each fixed Ap € €, there is a state feedback matrix
Fap with entries in F such that p(©(Ap) + FAo,I(Ap)) < 1. The system (3.24) is said
to be stabilizable over F(Q,F) if there is a state feedback matrix F(Ap) over F(Q,F)
such that p(O(Ap) + F(Ap)I'(Ap)) < 1 for all Ap € Q. The detectability notions can be
correspondingly defined in terms of output injection.

The robust stabilizability test for linear system over F(€2,F) can be conducted by a
generalized PBH test.

Theorem 3.5.1 Consider system (5.24) over F(2, F), the following statements are equiv-
alent.

(i) It is robustly stabilizable.

(i1) For each Ap € 2, there exists a positive definite matriz Qnap € FoX%  guch that

@(AP)QAP@*(AP) — QAP - F(AP)F*(AP) < 0.
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(117) The following rank condition is satisfied,
RANK | 2T - ©(Ap) I(Ap) | =mny

for all z € C with |z2| > 1 and Ap € €.
(iv) The following rank condition is satisfied,

RANK[ I—AA B |=mn, A=Diaclz7'I,Ap]

for all z € C with |z] > 1 and Ap € 1.
(v) The following rank condition is satisfied,

RANK(B} (I — AA))=n—p, A= Diac[z"'1,Ap]

for all z € C with |z2| > 1 and Ap € Q; and By € R™("P) with B*B = 0 and
RANK[ B B } =n.

The following lemma is needed to prove the above result.

A Ap

Lemma 3.5.2 Consider a block matriz [ :l whose entries are in F and Aqq 1s

A1 Az
wnvertible. It has full row rank if and only if the mairiz Ay + A12A521A21 has full row rank.

Proof. [Theorem 3.5.1] (i) < (ii) follows from Theorem 2.2.3. (i) & (iii) straightfor-
wardly follows from the PBH test. (iv) < (v) follows from easy algebraic manipulations.
It is sufficient to show (ili) < (iv).

In fact the full row rank condition in (iii) is equivalent to
RANK | T— ©(Ap)e! T(Ap)z~! | =n, (3.34)

for all |z] > 1 and Ap € Q.

From (3.19) in the previous section, one has

My Myo _
O(Ap) = 7‘—1([ } JAp) = My + MiaAp(I — MasAp)™' My,

21 Moo

Mz Mo

I'(Ap) = Fl([ Ap) = My + MigAp(I — My Ap)~! Mas.

23 Mag



60

Therefore,

| T-0(ap)="t T(Ap)-! |
= { I — (Mg + MigAp(I — MaaAp) ™ Ma1)z™! (Mg + MigAp(I — MaaAp)~' My3)2~! }
= [ I — Myz=Y Myzz™* ] — My Ap(I - M22AP)_1 [ Ma1z7t Mgzt } .

From Lemma 3.5.2, it follows that the rank condition (3.34), which implies that the last

matrix has full row rank ng, is equivalent to that the matrix

I - Muz"l M13Z—1 MisAp
Maz=b Masz™ [ — MypAp

has full row rank n; or

RANK | - AA B | =Rank[I-4A Bz ]

= RANK =n

I - ‘7\4112_1 Mi,Ap M13Z_1
Myz™t I — MpAp Masz™?

for all |z| > 1 and Ap € Q. 0

In the following, we consider the case over 7(Q2g, R), where Qp is real, bounded and

closed. And one has the following statement about robust stabilizability and stabilizability

over F(Qgr,R).

Theorem 3.5.3 Suppose Qp is a compact real subset of Ap. Consider the system (3.22)
over F(Q2r,R). It is stabilizable over F(Qg, R) if and only if it is robustly stabilizable.

The technique used in the proof closely follows the one used in [97, Theorem 5.10].

Proof. [Theorem 3.5.3] The necessity is obvious. We just prove the sufficiency next.
Suppose the system is robustly stabilizable. By Lemma 2.2.2, there is a positive integer Na
for each fixed Ap € Qg such that

Fi(Ap) = (T*(Ap) Pe(A)T(Ap) + I)T'T*(Ap) Po(Ap)O(Ap)

is a stabilizing feedback for all k& > Na, where P, is defined recursively by the Riccati

difference equation:

Freri(Ap) =T+ 0°(Ap)P(Ap)O(AP)

—O*(Ap)Pe(AP)T(Ap)(IT™(ApP)P(AP)T(AP) + 1) 'T*(Ap) Pr(Ap)O(Ap)
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with k € Z™ and Py = I. By induction, it can be shown by the use of Lemma 3.3.3 that
Pr(Ap) has all its entries in F(Qp, R) for all k € Zt, therefore Fiy, (Ap) also has its entries
in F(Qr,R).

By continuity of ©, ', and Fl,, there is an open neighborhood B(Ap) of Ap such that
Fr(Ap) is a stabilizing feedback for all Qg € B(Ap) forall k > Na. Now {B(Ap)}Hapeny is
an open cover of £2g; since §2g is compact, there exists a finite subcover {B(Ap,)}i=1,2,....r-

Taking N := max{Na, :¢=1,2,---,7}, then it follows that Fy(Ap) stabilizing the system
for all £ > N and Ap € Qp, and it is over F(Qp,R). O

Next we just state the dual results for detectability.

Proposition 3.5.4 Consider system (3.24) over F(S2,F), the following statements are
equivalent.

(i) It is robustly detectable.

(ii) For fived Ap € 82, there exists a positive definite matriz Qa, € F X" such that

@*(AP)QAPQ(AP) —Qap, — P (Ap)P(Ap) < 0.

(tii) For all z € C with |z| > 1 and Ap € Q,

Ko [ 2T — O(Ap)
B(Ap)

(iv) For all z € C with |2| > 1 and Ap € Q,

I—-AA 10
KEeR =0, A=
C 0 Ap
(v) For all z € C with |2] > 1 and Ap € Q,
27170
Ker((I — AA)CT) =0, A=
0 Ap

C
where C € RODX™ with CC* =0 and RANK{ } = n.
CyL

Theorem 3.5.5 Suppose Qg is a compact real subset of Ap. Consider the system (3.22)
over F(2r,R). It is detectable over F(Qp,R) if and only if it is robustly detectable.
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3.5.2 p-Stabilizability and u-Detectability

In this section, we will assume F = C and € = BA C C™*™ which is defined in (3.33).
We consider the system (3.25) over F(Ap,C) (or F(BA, C)) as follows,

Al B
C|D

We have the following conditions about robust stabilizability based on the generalized sin-

270
0 Ap

G= (A), A:= . (3.35)

gular values.

Theorem 3.5.6 Consider system (3.16) over F(BAp,F), the following statements are
equivalent.

(i) It is robustly stabilizable.

(it) pa(B} A, BT ) < 1, where

A = DiaG[6I,Ap], 6 € C, |§] < 1, Ap € BAp. (3.36)

Proof. The equivalence is a restatement of the equivalence (i) < (v) of Theorem 3.5.1,

by virtue of Definition 3.2.5. m

Note that the above characterization in general does not constructively give the stabi-
lizing feedback; a more conservative criterion with computational advantages is based on

the @-value bounds.

Theorem 3.5.7 Consider the given system over F(BAp,F). Let A be as in (3.36), D

the commutator set. The following are equivalent,
(1) Qa(B1A, B} ) < L.
(i1) There ezists a positive definite matriz P € D satisfying the following LMI,

B%(APA™ — P)B, < 0. (3.37)

(iii) There exists a constant “state-feedback” F such that A+ BF is QA -stable.
Furthermore, if P is a solution of (8.87), the corresponding F in (iii) is given by

F=—(B*P'B)'BPlA.
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Proof. (i)« (ii) follows from the definition (3.8) of @. A proof of (ii)«(iii) can be found
in previous work [119] on Q-stabilizability. a

The conditions (7), (4¢), (4i7) in Theorem 3.5.7 are sufficient conditions for robust sta-
bilizability as in Theorem 3.5.6. This follows obviously from the fact that pa < Qa.

Since the structure A in (3.36) is not generally p-simple, the converse does not hold
in general, and the conditions in Theorem 3.5.7 are therefore conservative for robust sta-
bilizability. This conservatism is reflected in the fact that in Theorem 3.5.7 we obtain
a constant stabilizing state feedback, whereas in Theorem 3.5.6 a Ap-dependent state

feedback is allowed.

In the following, we consider the stabilizability and detectability over F(BA, C), which

are defined in terms of the following two special structures, respectively,

{AB AI}
Gsp = (A),
Ilo clo

where the block structures A in both cases are the same as the one for G*.

(A), Gor =

Definition 3.5.8 The system G with block structure A is u-stabilizable if there exists a

dynamical controller for the corresponding system Gsr,

Fiqy | Fio

K = Fuy(F,Ao) = { (Ao), Ag:=DIag[A, -+, A],

21 | Fag

such that the closed loop system is p-stable with respect to the induced block structure.

It is noted that if 7,,(F, Ag) is well defined, then the system is p-stabilizable if and only
if p((A+ BF,(F,A¢))A) < 1fora(A) <1,

Definition 3.5.9 The system G with block structure A is u-detectable if there exists a

dynamical controller for the corresponding system Goy,

L | L
K = Fu(L,Ag) = | —2 112

21 L22

} (Ag), Ag:=DiaglA,- -, A],

such that the closed loop system is u-stable with respect to the induced block structure.

*It is noted that in this case, the coefficient matrices for (3.24) are not assumed to be well defined for

all Ap € BA.
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Note that in both cases, the state feedback and output injection are allowed to be
dynamical, i.e., they are allowed to depend on the delay operator z~!'/. The above two
properties can be also characterized in terms of stabilizing some augmented systems by

static state feedback and output injection by using the following lemma.

Lemma 3.5.10 System G is pu-stabilized by some K = (Ag) with block structure

Ag related to A if and only if the augmented system

A 0B 0

0 0|0 [I A0
Go = (An), Ay =

C 0|D 0 0 Ag

60 70 O

D
is p-stabilized by static feedback F =
B A

} with respect to block structure Ap.

Proof. This follows from the feedback-interconnection properties of LFTs. m]

The following theorem gives a characterization of the u-stabilizability.

Theorem 3.5.11 The system is u-stabilizable only if the following rank condition is satis-

Jied,
RaNK[ T—AA B |=n, A=Dua[="',Ap] (3.38)

for all z € C with |z| > 1 and Ap € BA. If the uncertainty set BA is real, the rank
condition (3.38) is sufficient.

Proof. [Necessity] Suppose the system is u-stabilizable, then there is a u-stabilizing
“state”-feedback:

i | Fia

K = fu(F, AO) = ‘: (Ao), Ag = DIAG[A, .. ,A]

21 22

Suppose [ is such that Ag € C*!. From Lemma 3.5.10, it follows that

AO+BO FQQFQI)AO
0 0 0 I 0 Ap

RANK(I —( o
12 11

J=n+1
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for all z € C with |z] > 1 and Ap € BA. Therefore, one has

A0 B 0 by F A0
n+ 1= Rank(] —( + “orn )
0 0 0 I F12 F11 0 A0
I—-AA 0 B 0
< RANK <n+l.
0 0 0 I

Therefore, the above inequalities become equalities. Thence,
RANK| T—4A B |=n
for all z € C with |2| > 1 and Ap € BA.
[Sufficiency] It is noted that RANK [ I-AA B } = n if and only if the system is robustly

stabilizable, then the conclusion follows from Theorem 3.5.3. a

From the above theorem and Theorem 3.5.3, one has the following statement.

Corollary 3.5.12 Suppose the set BA is real. The system is p-stabilizable if and only if
there is a static state feedback controller K(A,) = Fy,(F,A,) where A, only depends on

Ap.

This corollary implies that if the perturbation is real, then p-stabilizability, robust sta-
bilizability, and stabilizability over F(BAp, R) are equivalent. Note that latter two notions
of stabilizability are defined in terms of static state feedback, while for p-stabilizability it
is allowed to have dynamic state feedback.

The following theorem characterizes a class of systems over F(BA, C) for which the

u-stabilizing controllers can be obtained by solving some LMIs.

Theorem 3.5.13 Consider the given system over F(BA,C). The implications between
Jollowing statements, (i) = (ii) = (iii), hold.
(i) There ezxists a positive definite matriz P € D satisfying the following LMI,

APA" — P - BB* < 0. (3.39)
(i1) There exists a p-stabilizing “state-feedback” controller which is given by
u(t) = —(B*P~'B)" !B Pl Ai(1),

where P € D is the solution of LMI (3.39).
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(i11) The following rank condition is satisfied,
RANK [ I-AA B |=n, A=Diac[z7I,Ap]

for all z € C with || > 1 and Ap € BA.
In addition, let By € R"™*(""P) is such that B B = 0 and DET[ B B, } £0. If the

block structure A defined by
A :={Diag[z"},Ap]: 2 € C,Ap € Ap}

is p-simple with respect to (B% A, B} ), then the above statements are equivalent.

Proof. (i) = (ii) follows from the discussion in the next section. (ii) = (iii) follows
from Theorem 3.5.11.
Finally, we are in the position to prove (iii) < (i) if A is u-simple with respect to

(B A, B}); however, it follows from Theorem 3.2.8. O

Dually, one has the following statement about u-detectability.

Theorem 3.5.14 The system is p-detectable only if the following kernel condition is sat-

1sfied,
21T 0

0 Ap

I-AA
C
for all z € C with |z| > 1 and Ap € BA. In addition, if BA is real, then the above

Ker =0, A= (3.40)

>

rank condition is sufficient, and moreover there is a (static) output injection controller

K(A,) = Fu(L,A,) where A, only depends Ap.

Remark 3.5.15 The kernel condition first appears in [137, 138] when stability robustness
analysis is conducted in the behavioral setting. It is a generalization of the PBH test for

detectability.

3.5.3 Output Feedback Stabilization of Systems over LFT Algebras

In this section we outline how the results in the last two subsections can be combined to
provide an output feedback stabilizing controller for the system (3.16). The controller will
itself be a system over F(,F) which can be given a gain-scheduling interpretation: for
each value of the parameter space  C Ap, we schedule a controller which must stabilize

the corresponding plant.
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Stabilization over 7 (2, F)

The system over F(€2,F) to be considered is given in (3.16), i.e.,

a { z(t+1)
y(t)

O(Ap)a(t) + T(Ap)u(t)
S(Ap)e(t) + T(Ap)u()

where ¢t € Z*; z,u, and y are n,,p, and ¢g-dimensional state, input, and output vectors,
respectively; Ap is the symbol of the block structure Ap, ©,I', ®, and II are matrices with
entries in F(Q,F).

In this section, we need to find an output feedback controller over F(2,F), i.e.,

K { e+ 1)
u(t)

O(Ap)E(t) + T(Ap)y(t)
S(Ap)E(t) + T(Ap)y(t)

f

such that the closed loop system is robustly stable.

A version of this problem in terms of Q-stability was covered in [119]; in fact, the same
“separation” structure can be used in the context of stabilization over (€2, F) given in this
chapter. We state the result for completeness; the proof follows similar lines as the one in

[119].

Theorem 3.5.16 Consider the system G (3.16) over F(Q,F), assume it is stabilizable
and detectable over F(2,F). Let F(Ap) and L(Ap) be the corresponding state feedback
and output injection over F(S2,F), respectively. Then there exists a controller K over
F (2, F) such that the feedback interconnection Fi(G, K), which is defined over F(S2,F), is

robustly stable. Such a controller K has the following structure,

O(Ap) + T(Ap)F(Ap) + L(Ap)®(Ap) + LIAPI(AR)F(Ap) | ~L(Ap)

K=
F(Ap) o

(3.41)

p~Stabilization

Next, we consider the u-stabilization via output feedback of the system over F(BAp,F).
Consider the following system over F(BAp, F) (3.22):

A BJ [2‘1] 0
(A), A:=
clp 0 Ap

G =
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The p-stabilization problem via output feedback is to find a controller

A~ ~

. | A|B

K= (Ag), Ag = DI1ag[A, -, A]
C

such that the closed loop system is u stable with respect to the newly induced block structure

An := DIAG[A, Ag]. The main result is stated as in the next theorem.

Theorem 3.5.17 Consider the system G (3.22) over F(BAp,F), there exists a controller
K over F(BAp,F) such that the feedback interconnection Fi(G, K), which is defined over
F(BAp,F), is p-stable if and only if the system (3.22) is u-stabilizable and p-detectable.

Proof. The necessity is obvious. Next, we just show sufficiency; the proof is constructive.

Suppose

F Fi:
Erp=|—11"12 1 (Ag), Ap:=DiaglA, .-, A
Fay | Py

is the p-stabilizing “state feedback,” and

L | L |
I(L _ 11 12 (A0)7 AO = ])IAG,[ZX7 . ,A]
Ly | Ly

K

is the p-stabilizing “output injection.” Without loss of generality, it can be assumed that

both block structures (Ag) are the same. Now define

A0 B 0 C 0 D 0
Ay = , By = , Uy = , Dy = ,
0 I 0 7 0 0

0 0
where the increased dimensions are compatible with the dimension of Ag. Consider the

augmented system

A, | B, A0
Gy = (AL), Ay = . (3.42)
Cy | Dy 0 Ay
. . « " e Fy
Then by Lemma 3.5.10, it is u-stabilizable by constant “state feedback” F :=
Fip Fy

Loy Lo

Lz Ln
feedback” controller for the augmented system (3.42) as follows,

or by constant “output injection” L := [ :} Now we construct an “output

I(II(Aa) fflz(Aa)
lle(Aa) ]S'.YQQ(AQ)

)

) Ay + B,F + LC, + LD,F | —I
K, = ’ (A,) =:
I3 } 0
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where the block sizes in the latter matrix are compatible with the structure of

A0
0 Ao |
It can be shown by the argument in [119] that the augmented closed loop system, which is

defined as

. Aq B, F A, O
fl(Ga(Aa)a Ea(Aa)) = ‘Fl( ’ )7
-LC, A+ B, F+ LC, 0 A,
Ay 0]
is p-stable with respect to the block structure . Therefore, the controller
0 Ag

K(Ay) Kn(Ay) |

. . ’AO)
I&'12(Aa) ]in(Aa) i

K :=F,(

A|B
= ’: } (AK), AK = DIAG[A07A7A0]7
C

for some suitable constant matrices A, B,C, D with entries in F pi-stabilizes the system

(3.22). o

3.6 Robust Performance Synthesis of Systems over LFT Al-

gebras

In this section, we consider the following linear system over F(Ap, F),
z(t+1) = O(Ap)z(t) + I'i(Ap)w(t) + I'a(Ap)u(t)
Gpiq 2(1) Oy (Ap)z(t) + Uy (Ap)w(t) + My2(Ap)u(t) (3.43)
y(t) = ®2(Ap)a(t) + Ioi(Ap)w(t) + Taa(Ap)u(t)

where t € ZT; z,w,u,z,y are n,, p, p2, P, go-dimensional state, disturbance input, control

Il

input, regulated output, and measured output vectors, respectively; Ap is the symbol of

block structure Ap, which is defined as follows,

Ap = {DIAGS Ly, -+, 6,1, Aqy -+, Al 6 € Fy A € F™Xmi} ¢ FrXm. (3.44)

R
0,1, ®;, and II;; (i,j = 1,2) are matrices with entries in F(Ap,F). An alternative
representation is as follows,
Al B B
Gp:=| C | Dy Dip | (D), A=
Ca | Doy Doy

a0 } (3.45)
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for some real matrices A, B;,C;, D;; with 1,7 = 1,2.

We first consider the robust performance synthesis problem by full-information feedback
in which both the state 2 and the disturbance w are available. Given an uncertainty set £ C
Ap, consider the system (3.43) over F(A,F), or F(Q,F), whose coefficient matrices are
assumed to be well defined for all Ap € Q; the full-information feedback robust performance
synthesis problem is said to have pointwise solution if for each Ap € Q, there exists a
full-information feedback Fa . (z), which could be dynamic, such that the closed loop system
has Hoo-norm < 1. The full-information feedback robust performance problem is said to
have solution over 7 (2, F), if there exists a full-information feedback u := F(Ap), which
could be dynamic and over F(£2,F), such that the closed loop system has Ho,-norm < 1
for all Ap € Q. Define

O(Ap) TIv(Ap)
¢ (Ap) Iin(Ap)

A B1 ~ B2
, B:=
Cl -Dll D12

We first have the following result about pointwise solvability, which is just a re-statement

of Theorems 2.4.1 and 2.4.4.

I2(Ap)
I12(Ap)

A(Ap) == , B(Ap):=

Theorem 3.6.1 Consider system (3.43) over F(2, F). The following statements are equiv-
alent.
(i) The full-information feedback robust performance problem has pointwise solution.
(ii) For each fized Ap € S, there exists a positive definite matriz Xa, € F"*" and
o > 0, such that the following LMI is satisfied,

A(Ap) { X(?P ! } A*(Ap) — [ X(?P O] } —~ B(Ap)B*(Ap) < 0. (3.46)

(#1) The following (full row) rank condition is satisfied,

2T=0(Ap)  —I1(Ap)A,  Ta(Ap)

RaNk
~®(Ap)  I—-1L1(Ap)As Ija(Ap)

:! =n,+p (3.47)

Jor all z € C with |2| > 1, Ap € , and A, € CP*? with 6 (A,) < 1.
(iv) The following (full row) rank condition is satisfied,
RANK { I—AAy B ] =ng+m+p, Ay =Diaclz" ], Ap, A

Jor all z € C with |2] > 1, Ap € Q, and A, € CP*P with 5 (A,) < 1.
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Proof. (i) & (ii) & (iii) follows from Theorem 2.4.2. (iii) < (iv) is derived by the use

of a similar argument in Theorem 3.5.1. a

In the following, we consider the special case where @ = BA and F = C. The following
theorem characterizes a special class of systems over F(BA, C) for which the solutions can

be obtained by solving some LMIs.

Theorem 3.6.2 Consider the system (3.43), or equivalently (3.45), over F(BA,C). The
implications between following statements, (i) = (ii) = (iii) = (iv), hold.
(i) There exists a positive definite matriz P € D satisfying the following LMI,
. -1 P 0 . P
Bi(A A% —
0

)B. <0,

where By € F")X" sych that B* B = 0 and DET [ B B, } £ 0.
(i) There exists a (static) full-information feedback controller F solving the robust per-

Jformance problem over F(BA, C), which is given by

. Pt 0| . P L]
u(t) = —(B* By B~ A (®) :
0 I 0 I w(t)
(iii) For each fized Ap € Q, there exists a positive definite matriz Xap, € FoXre and
o > 0, such that the following LMI is satisfied,

- X 0 - X 0 _ .
A(Ap)| 787 A(Ap)— | 787 — B(Ap)B*(Ap) < 0. (3.48)
0 aof 0 al
(iv) The following (full row) rank condition is satisfied,
RANK[ I-AAN B ] =n,+m+p, AN:DIAG[Z"II,AP,AQ]

Jor all z € C with 2] > 1, Ap € Q, and A, € CP*P with 5 (A,) < 1.
In addition, if the block structure Ay defined by

Ay = {DIAG[Z_I,AP,ACL} :2€ C,Ape Ap, A, € CP*P}

18 p-simple with respect to (EIA,Bj_), then the above statements are equivalent.
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Proof. (i) = (ii) follows from the discussion in the next section. (ii) = (iii) follows
from Theorem 3.6.1. We show next (iii) = (iv).
In fact, (iii) implies that for each fixed Ap € BA, there exists a pointwise state feedback

Fp . such that the closed loop system

P

O(Ap) + Ta(Ap)Fap | T1(Ap)
1(Ap) + Iia(Ap)Fa, | y(Ap)

Z(t) =

has robust performance, i.e.,

O(A I'y(Ap)F T (A -0
RANK(I — (Ap)+ To(Ap)Fa, 1(Ap) ¢ )= n, + p.
Q1 (Ap)+ Hi2(Ap)Fa, 11(Ap) 0 A,
Therefore
O(Ap)+ I'y(Ap)F (A 2710
no + p = RANK(] — (Ap) + La(Ap)Fap  Ti(Ap) )
&1 (Ap)+ Wi2(Ap)Fa, 1 (Ap) 0 A,
I —0(A -T'1(Ap)A, T'y(A
< RANK ? (&p) 1(Ar) 2(Ar) < n, + p.
-0 (Ap) I-1IIu(Ap)A, Iia(Ap)

Therefore the inequalities as above become equality.
On the other hand, from Theorem 3.6.1, it follows that (iv) holds.
Finally, we are in position to prove (iv) & (i) if Ay is p-simple with respect to

(Bx A, B}); however, it follows from Theorem 3.2.8 o

3.7 Notes and References

The LPV systems where the unknown parameters enter the systems in feedback fashions
are considered in this chapter. This class of systems are described in LFT framework. The
idea of LI'T is originated in [143, 144], the detailed discussion is carried out in [207]. The
basic tool for analysis in LFT framework is structured singular value: u, which is developed
mainly by Doyle [53] (some of the ideas also appear in [151]). The connection of u and
robustness analysis is made in [63]. A complete exposition of this issue is made in [132].
The synthesis issue is also considered in a sequence of conference papers by Doyle
[53, 54, 56, 57, 55]. See also [119, 133, 134, 111, 131]. However, in those synthesis consid-
erations, only sufficient conditions are provided for LTI perturbation case. The robustness

synthesis in LFT framework can be reduced to the PBH-like test, which is motivated by



73

the work in [137] where the robustness analysis is conducted in a behavioral settings. This

consideration results in a generalized notion of p. The discussion of the generalized u follows

the techniques by Doyle [53, 132, 138].
The results in this chapter is reported in [118].

3.8 Appendix: Multidimensional Systems Described in LFT

Framework

Consider a 2-dimensional LSI system of order (nq,7n2) which is described by the Roesser

state-space equations [147],

zi(kr+ Lke) = Auwi(k, ko) + Aveza(k, ko) + Bru(k, ko)
$2(k1, kz ‘I'- 1) = A21$1(k1, k‘g) + A22$2(k‘1, kQ) —I— BQU(’Cl, k‘g)
y(k‘l,k'g) = 01.171(]6‘1, kz) + CQwQ(k17 k’g) + Du(kl, kg)

where z1(k1,k2) € R™ and z3(ky, k) € R™ denote the state vectors, u(ky, k) € RP the
input vector, and y(ky, k2) € R? the output vector. Define

A A B
A= H 12 , B:= ! , C::[CI C’z}
Ay Agp B,

27, 0
and A = [ tom . , Where z{II can be interpreted as a backward shift operator.
0 2y Ip,
The transfer matrix for this system with zero initial conditions is
sl 0
Gay=n+c(| ™ ~A)'B
0 ZQI
A B

=D+ CA(I - AA)'B = Fy( L A), (3.49)

i.e., this system is represented as an LFT with respect to frequency structure A.

More generally, an N-dimensional discrete LSI system with order (ny,---,ny) can also

be represented in terms of an LFT as (3.49) with respect to frequency structure
A = DiaGley M, -, vy e

Define
N .= {(z1,-,2n) 121 € Cy| 2 |> 1}
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and
T(z,---,2nv) = DET[ — AA].

It is known that the N-dimensional system with system matrix A defined above is internally
stable if and only if T'(zy,--+,2n) # 0in UV [25, 1]. Equivalently, the system is stable if and
only if for any zi0, . .., zno such that T(z19,- -, 250) = 0, then max{| zl"ol [y z]:;lg [} < 1.
In addition, the system is stable if there exists P = Diac{Py,---, Py} which is positive
definite with P; € R™*™ 4§ =1,.--, N, such that the following Lyapunov inequality holds
(1,
APA* — P < 0.
Define
A = {Diac[z7 Ly, 20 ] s 2 € CF.

It is noted that the above internally stability definition is equivalent to ua(A4) < 1, and the
Lyapunov condition is equivalent to Qa(A4) < 1.
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Chapter 4

Synthesis of Uncertain Linear

Systems with LTV Perturbations

4.1 Introduction

In the last chapter, we have seen that the solvability conditions of stabilization and perfor-
mance synthesis are equivalent to some PBH-like tests, which reduced to some generalized
p-tests if the class of systems has LTI uncertainty. Moreover, the corresponding Q-tests pro-
vide the sufficient conditions. It will be shown that if arbitrary linear time-varying (LTV)
uncertainty is allowed, then the Q-stability tests become necessary for robust stability and
robust performance.

In this chapter, we further consider the class of linear uncertain systems which are de-
scribed in terms of linear fractional transformation (LFT) formulas, and the bounded
uncertainty is allowed to be LTV. In particular, we examine the corresponding robust sta-
bilization problem in detail. This stabilization problem is treated in an axiomatic fashion.
The notions of Q-stabilizability and Q-detectability are defined; they are characterized by
the positive definite solutions of linear matrix inequalities, which result in constant full
information and full control (feedback) solutions. For the general output feedback control
problem, we particularly consider the dynamic feedback solution. It is shown that both
Q-stabilizability and Q-detectability are necessary and sufficient for robust stabilization by
output feedback, and the resulting controllers are represented by LFTs on the same block
structures as the plants, which means that they are dynamical and depend on the pertur-

bation; they therefore may be thought of as gain scheduled or dynamically scheduled
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[176, 145]. The application implications of such control schemes are obvious when the un-
certainties can be measured or identified on line [176, 145]. A disadvantage of the proposed
approach is that unless the uncertainties are arbitrary time-varying operators, the stability
analysis on which the synthesis is based is potentially conservative, and possibly highly
so. This conservativeness may be most troublesome when A represents slowly varying pa-
rameters, since neither the slow variation nor the parametric nature of the uncertainty is
exploited. Thus the methods in this chapter should be viewed as a possible aid in conven-
tional scheduling rather than a replacement.

The techniques in this chapter are motivated by those in [60], and directly generalize
standard stabilization results and state-space methods, while streamlining much of the
development. The construction for the output feedback (OF) problem is achieved via
a separation argument which involves the reduction of the OF problem to two special
problems: full information (FI) and full control (FC). The FI and FC Q-stabilization
problems are solved in terms of the positive definite solutions of certain LMIs, and the
controllers can be chosen as static feedbacks. The resulting dynamic controller for the OF
problem has a separation structure; all stabilizing controllers are parameterized as an LFT
on a free stable parameter. An appealing benefit of this approach is that the necessity
portion of the controller parameterization relies more heavily on elegant LFT machinery
and avoids the need for coprime factorizations [199, 55, 129]. In a further generalization it is
noted that all that is required for the separation principle to hold for the LFT systems is that
the stability is invariant under certain system transformations and cascade interconnections.
Thus the p-stabilization problem admits a separation structure as well. It is remarked that
the elegant separation property can not be easily carried out for the performance synthesis
problem, although the synthesis by full-information feedback, partial-information feedback
is similar to the the stabilization problem. This is the essential difference between the
approaches used here and in [133, 131].

The structure of this chapter is as follows: in Sections 2 and 3, background material is
provided, the properties of Q-stability, stabilizability and detectability are characterized.
In Section 4, the main results on the synthesis problems are stated; in addition, the static
output feedback problem is considered. In Section 5, Q-stabilization of the different special
problems are examined and the relationships among them are established. The output
feedback problem is solved via separation arguments. In Section 6, the stabilizing controller
characterization problem is considered, and the parameterization of all stabilizing controllers

is obtained from the special problems via separation arguments. The structure of the
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parameterized closed-loop map is examined.

4.2 Robust Stability, Robust Performance, and Q-Stability

In the following discussion, we will re-examine the linear system over the LFT algebra

(3.16), and it has the following representation.

Al B
C|D

with (A4, B,C,D) € R™™ x R"*P x RIX™ x R7*P. Ap is a symbol to represent the block

B
D

G(A) = Fu( ,A) =t (A), A :=Diag[z"',Ap] (4.1)

structure Ap.
It is also known from the discussion in Section 3.3.2 that system (4.1) can be represented

as

G(AP) = Fu(Gol2), Ap) = Fu(Fu(M, 2~11), Ap) (4.2)

A B
¢ D

In this section, our emphasis is on dealing with the uncertain structure Ap which

with M = {

includes time-varying uncertainty. To describe this, let £5** denote the linear time-varying

causal operators: (4(Z1)—£5(Z). Ap denotes the structure of the linear time-varying

causal perturbations:
Ap = {DIAG[61 Lp -+, 8L, Ay, Ay] 6 € LA € 4MIXT} C 4MX™ (4.3)

which may include repeated full blocks. In addition, the permissible uncertainty is defined

as

BA :={Ap € Ap : ||Ap]l,, < 1}. (4.4)

The system (4.1) is said to be robustly stable if the system is asymptotically stable
for each fixed Ap € BA. It has robust performance if the system is stable and has
{3-induced norm < 1 for each Ap € BA.

Now define

Dp :={D € C™*™ nonsingular : ”DAD“IHZ = [|All,, . A € Ap}, (4.5)
2

D := {D := D1aG[Dy, Dy] € Clretm)X(notm) . p, e @reXmo is nonsingular, D, € Dp}.
(4.6)
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Gn(z) Glg(z)
Glz(z) GQQ(Z)

Let Go(z) be partitioned as Go(z) := . The following proposition is

well known (cf. [159, 123]).

Proposition 4.2.1 Consider the system (4.1), or equivalently (4.2).
(1) It is robustly stable if and only if the nominal system is stable, i.e., p(My1) < 1, and

there erists a positive definite matriz Dp € Dp such that
HDPG11(Z)D1—31H < 1.
o0

(ii) It has robust performance if and only if the nominal system is stable, and there

exists a positive definite matrizc Dg € Dp such that

-1
0o 1

Dg 0
0 I

Go(z) < 1.

oG

Moreover, we have the following LMI characterizations.

Theorem 4.2.2 Consider the system (4.1), or equivalently (4.2).
(i) It is robustly stable if and only if there exists a positive definite matrizx P € D such
that
APA* — P < 0.

(1) It has robust performance if and only if there exists a positive definite matriz () € D
0 , 0
M ¢ M* — @ < 0.
0 I 0 7

Proof. We will show (i), and (ii) is verified similarly. In fact, let 4 =: [

such that

My My,
My My |
then

My | M
Gu(2) = Fu(A,z7) = [ i } .

My | Moy

From the previous proposition, the system is robustly stable if and only if there exists
Dp € Dp such that

|DpGu(z)DFY| <1 (4.7)
Since

DpGi1(2)Dpt = Fu(

My, My D5t TS
DpMy DpMpDp' |7 7
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by the main-loop theorem, (4.7) is equivalent to

My My D3

L <L (4.8)
DpMy1 DpMyDp

1A, (
with A, € A,, where
A, = {D1ac[z7 L, , Ag)|z ™! € C, Ag € Cmmo)x(n=mo)y, (4.9)

With the above block structure, the u-value is equal to its upper bound: Q-value; therefore,

there exist Py € R™*" nonsingular, and v > 0, such that

P, 0 M M2 D3} Pt0
5( 0 11 12tp 0 ) < 17
0 ~I DpMy DpMyD3! 0 A7l
or
Py 0 My M Pyt 0
5( 0 11 12 0 )< 1
0 ~Dp My Moy 0 ’}’_lDl_pl
. 0
where vDp € Dp; ie., 6(DAD™Y) < 1, where D := € D. Thus, the
0 ~Dp
conclusion follows by defining P = (D*D)~! which belongs to D. O

It is known that the system (3.25) over 7(BA, C) (or the system matrix A) is Q-stable
(with respect to A) if Oa(A) < 1, i.e., thereis a D € D such that 5(DAD™1) < 1. The Q-
stability is equivalent to there existing a P € D with P = P* > 0 such that APA* — P < 0.
Therefore, from Theorem 4.2.2 and the definition of Q-stability, we can see that the Q-
stability is an abstraction of robust stability and robust performance of linear system under
LTV perturbations.

It is also known from the previous chapter that Q-stability is invariant under the ad-
missible state variable transformations. A cascade system is Q-stable if and only if each

subsystem is Q-stable.

4.3 Characterizations of Q-Stabilizability

In this section, we will consider @-stabilization of the following system over F(BA, C),

aa) = |25
“lclp
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with (4,B,C, D) € R™"™ x R™? x R¥*" x R*? and assume further that B and C are
of full column and row ranks, respectively, i.e., RANK(B) = p < n and RANK(C) = ¢ < n.
Denote the commutative matrix set of A by D.

Q-stabilizability and Q-detectability are defined similarly to their u-counterparts as in

the last chapter. For example,

Definition 4.3.1 The system G(A) with frequency structure A is Q-stabilizable if there

A B
exists a dynamical controller for the corresponding system Ggp(A) := ,
110
Fi1 | F;
K(Ao) = Fu(F,Ag) = |[———22|
Fou | Fap

such that the closed loop system is Q-stable with respect to the induced frequency structure.

Also stabilizability and detectability can be characterized in terms of stabilizing some
augmented systems by static state feedback and output injection.

For a one-dimensional system, stabilizability (detectability) is equivalent to the fact
that the system can be stabilized by static state-feedback (output-injection). An immediate
question arises: is this property still true for Q-stabilizability? To answer it, we shall first
consider how to characterize static state-feedback Q-stabilizability.

Suppose the system is Q-stabilizable by a static state-feedback matrix £ € RP*", i.e.,
Oa(A+ BF) < 1, or there exists a matrix P € D with P = P* > 0 such that

(A+ BF)P(A+ BF)" — P < 0.

If RANK(B) = p < n we can find a B, € R™("?) guch that B*B, = 0 and RANK(BL) <

n — p, then we have
Bi(A+ BF)P(A+ BF)'B, — B} PB, <0,

or

B* APA*B, — BXPB, < 0.

So the solvability of the last LMI is necessary for the system to be static-state-feedback
Q-stabilizable. But, surprisingly, this condition is also sufficient if RANK(B,) = n — p as

stated in the following proposition.
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Proposition 4.3.2 Consider the system G(A) with block structure A and RANK(B) = p <
n. Let By € R™("=P) be such that B*B, = 0 and [ B B, } be invertible. There exists a
static state feedback F such that A+ BF is Q-stable with respect to the frequency structure
A if and only if there exists a matriz P € D with P = P* > 0 such that

BXAPA*B, — BXPB, <. (4.10)

Moreover, if P € D with P = P* > 0 satisfies the above inequality, then a Q-stabilizing

static state feedback matriz can be chosen as

F=—(B*P'B)"'B*P~1A. (4.11)

Proof. By the definition of Q-stability, there exists a static feedback F' such that the
closed loop system matrix A+ BF is Q-stable with respect to the frequency structure A if
and only if there exists D € D such that

1> inf o(D(A+BF)D™YY = inf &(DAD™'4+ DBFD™').
FeRpxn ’ FeRpxn

Let V' = (Bi(D*D)“lBL)‘%BID_l, it is easy to check that V'V, = I and V}(DB) =
0. By Lemma 2.2.4, we have

1> inf &(D(A+ BF)D™Y)=&(VyDAD™),
ot a(D(A+BF)D™) = o(V} )

or

(VIDAD™Y(VIDAD V)" < I.
Take P = (D*D)™!, then P € D and P = P* > 0, hence we have
(B PB, ) 3B* APA*B, (B, PBL)"% — I <0,
or
B APA*B, — BiPB, < 0.

Moreover, if some P € D with P = P* > 0 satisfies the above inequality, then we can con-
struct a constant state feedback matrix F via Lemma 2.2.4 such that A+ BF is Q-stable. Let
Vg = (B*(D*D)B)~'/?B*D*, then [Vo, V] unitary; thus FD™! = —(VGDB) Vg DAD™!

by preceding lemma. Wherefore,

F=—(VgDB) "WyDA=—(B*P'B)"1B*P 1A,

Using the above result we can easily get
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Theorem 4.3.3 The system G(A) is Q-stabilizable if and only if there exvists a static feed-
back matriz F such that A + BF is Q-stable with respect to the same frequency structure.

Proof. If B issquare and of full rank, then the result is straightforward. We thus consider

the case where RANK(B) = p < n.
The sufficiency is obvious. As for the necessity, assume that the system can be Q-
i Fio

For Fo
Aqg depends on the system frequency structure A. By Lemma 3.5.10, this is equivalent to

stabilized by a dynamical controller K(Ag) = F,(Fo,Ao) where Fy = and

the fact that the augmented system

A 0B 0
0|0 I
G (An) =
I 0]0
0 70 0
. e . Fyy By .
is Q-stabilized by the static feedback with respect to the frequency structure
Fiy P
A
Ay = Al Denote the commutative matrix set of Ay by Dy, then by the above
0 Ao
" : P P I e .
proposition, there exists a Py =: € Dy, which is positive definite such that
Pl p
BL A0 A0 Bl BL Bl
Py - Py <0,
0 0 0 0 0 0 0 0

ie.,
B1APA™B, — B] PB; <.
So the above LMI has a solution P > 0. It can be verified that P € D by using the

assumptions on the frequency structures and their commutative matrix sets. Therefore, the

system can be Q-stabilized by a static feedback matrix via the previous proposition. a

The next theorem provides some alternative characterizations to the Q-stabilizability.

Theorem 4.3.4 Consider the system ({.1), the following statements are equivalent.
(i) The system is Q-stabilizable.
(ii) There exists a static feedback matriz F such that A + BF is Q-stable with respect

to the same block structure.
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(i1i) There exists a matriz P € D with P = P* > 0 such that
B1APA™B; — B1PB, <0. (4.12)
(iv) There exists a matriz P € D with P = P* > 0 such that
APA* — P - BB* < 0. (4.13)
(v) The map [ I-AA B ] with A := DIaG[81, Ap], which maps (5 P(ZT) to (H(Z),
is surjective for all & € £ with ||é]|,, <1 and Ap € BA.

Moreover, if P € D with P = P* > 0 satisfies the above inequalities ({.12) or (4.13),

then a Q-stabilizing static state feedback matriz can be chosen as

F=—(BP'B)'B P A (4.14)

Proof. It has been shown that (i) < (ii) < (iii) in Proposition 4.3.2 and Theorem 4.3.3.
(iii) © (iv) follows from the Schur complement argument (see Theorem 2.2.3). (iii) &
(v) follows from [138]. O

The characterizations of Q-detectability is derived by some dual arguments. We have

the following theorem.

Theorem 4.3.5 Consider the system (4.1), the following statements are equivalent.

(i) The system is Q-detectable.
(ii) There exists a static output-injection matriz L such that A + LC is Q-stable with

respect to the same block structure.

(iii) There exists a matriz P € D with P = P* > 0 such that
C_LA*PACI - C‘LPC_T_ < 0. (4.15)
(iv) There exists a matriz P € D with P = P* > 0 such that

A*PA— P —C*C < 0. (4.16)

I—AA 6r 0
(v) The map with A 1= , which maps (3(Z+) to LyY4(ZT), is
C 0 Ap

injective for all 6 € £ with [[6]|,, <1 and Ap € BA; i.e.,

I - AA 6 0
=0, A:=
0 Ap

C

KEr
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Jor all § € £ with ||8,, < 1 and Ap € BA.

In addition, if P € D with P = P* > 0 satisfying the LMI ({.15) or AMI (4.16), a
static output injection matriz I such that A+ LC is Q-stable with respect to the same block

structure can be taken as
L=-ArP7tc*(CcP7tCc?)~L.

4.4 Stabilization and Controller Characterization

In this section, the main results for LF'T system stabilization problems are stated; their

constructive proofs will be given in the next two sections.

4.4.1 Problem Statements and Assumptions

Consider the control system with standard block diagram

Z w
— e

=)

where (' is the plant with two sets of inputs: the exogenous inputs w and the control inputs

u, and with two sets of outputs: the measured outputs y and the regulated outputs z.
The control problem is to design a feedback controller K such that the resulting closed
loop system has some prescribed properties. In this chapter, we only consider a generalized

stabilization problem.
Suppose (w,u,z,y) € RP1 x RP2 x R x R%, and G(A) with frequency/uncertainty

structure A has the following realization (with state 2 € R"™),

G(A) Gra(A) Al B
G(A) = n(8) G =| Ci | D Diz | (4.17)
Ga(A) Gaa(A)
Cy | Dyy Dy

where all matrices are real and have compatible dimensions with the related physical vari-
ables. We further assume that RANK(B3) = ps < n and RANK(Cy) = ¢o < n. We will

mainly consider the non-trivial case where py < n and ¢ < n. In addition, let the state-

Al B (4.18)
Bk .

space realization of K (Ag) be

I((AO) =
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which is assumed throughout to be Q-stabilizable and Q-detectable. In the following, it is
assumed that I — Dyo D is invertible to insure the well-posedness of the feedback system.
The frequency/uncertainty structure Ag of the controller is determined by A. In particular,
the controller could have the same dependence on the frequency/uncertainty structure as the
plant. As discussed in the introduction, in the linear uncertain system case, the controller
can be given a “gain scheduling” or “dynamic scheduling” interpretation, as the controller
depends on the same perturbations as does the plant; in the linear multidimensional system
case, this means that a dynamical feedback controller is allowed.

From now on, we will concentrate on stabilization-related synthesis problems. We will
mainly consider the case where there is no constraint on the controller’s frequency structure
Ag, so the controller can access all information about the plant’s frequency structure A, i.e.,
Ag can be some copies of A; hence Ag = diag[A, A, --]; however, under the stabilizability
and observability conditions, we will see it is sufficient that Ag = A. In the static controller
case, no information about the plant frequency structure A is available to the controller. On
the other hand, the robust performance synthesis problem for a (uncertain) linear system
can be viewed as a “stabilization” problem of an augmented systems with an extra block
(see [133, 111]); in this case, only partial information about the plant block structure is
available to its controllers; its solution is considered in [111, 133] in some detail.

A feedback controller K(Ag) is said to be admissible if it Q-stabilizes G(A), (i.e.,
Fi(G(A), K(Ag)) is Q stable). For convenience, this general synthesis problem is called the
output feedback (OF) problem.

Next, we define the admissible controller set as K, i.e.,
K = {K(Ao) : Fi(G(A), K(Ag)) is Q stable}.
And a subset K, of K is defined as
Ks = {K € RP?*% : Fi(G(A),K) is Q stable}.
The following two synthesis problems are considered in this chapter,
e Find a static or dynamic output feedback K(A) € K which Q-stabilizes G(A).

e Characterize all controllers K € K that Q-stabilize 7, or more specifically, find J such
that K = {F(J,Q) : Q(A) is Q-stable}.

Note that G is Q-stabilizable by K if and only if G35 can be Q-stabilized by K. Thus,

the input w and output z in the diagram do not affect the final stabilization results; they



86

are reserved for some technical reasons, since they can also be viewed as some auxiliary
input and output in the stabilization problem. They appear naturally when the external

performance is considered [111, 133].

4.4.2 Solutions to Synthesis Problems: Static Controllers

In this subsection, we seek the conditions under which the system can be Q-stabilized by
static output-feedback controllers. The results in this subsection are essentially obtained in
[55], and included here for completeness. The following lemma is key to our solutions (c.f.

[139, 45, 55]).

Lemma 4.4.1 (i) (Parrott’s Theorem) Assume (X, B,C,A) € R™MX™ x R™MXm2 x

R XM x RM2XM2  then

Xea%fmﬁ([i jD=max{6([C A]),a([ﬂ)}:%

and the infimum can be achieved by X = =Y A*Z, where Y and Z solve the matriz equations

Y (v3 — A*A)Y? = B and (421 — AAY2Z = O,

. . X B
(ii) Suppose v > vo. The solutions X such that &

< v are exactly those
¢ A

of the form
X=-YAZ+yI =YYW (I - 7°2)\/?,

where Y = B(y?1 — A*A)™Y2, Z = (y*I — AA*)"Y2C, and W is an arbitrary contraction
(E(W)<1).

As a corollary to the above lemma, we have the following result.

Lemma 4.4.2 Consider the triple (A, B,C') € R™*" xR"™Px RT*" with RANK(B) = p < n
and RANK(C) = ¢ < n. Let By € R"™ (") qnd By € RPX" be such that BB =0 and
{ By B } is unitary, and let C; € R"™9*" and Cy € R™¥9 be such that C | C* = 0 and

Co | . .
18 unitary. Then
Cy

inf & — — * P 3\
et (A + BFC) = max{o(B} A),5(ACT)}
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Proof. Note that
BXAC: + BXBFCC: BrAC*
5(A+ BFC) =5 04t0 + % R I8
B ACy By ACT

then the results follow the preceding lemma. O

Given v > max{a(B] A),c(ACT )}, it is a routine adaptation of Parrott’s theorem to
get a parameterization of all matrices F' such that 6(A+ BF(C) < 7.
A | By

Cy | D2
proved similarly to proposition 4 by using the above lemma (see also [131]).

Consider the system Ggg = . We give the following theorem which can be

Theorem 4.4.3 Consider the given system with RANK(Bz) = p; < n and RANK(Cy) =
gy < m. Assume that B € R™X(n=P2) is such that B5B, =0 and [ B, B; } is invertible,

and C; € RM2)X7 ¢ such that C1C5 =0 and

C
: 18 tnvertible. Then there exists
on

an admissible static controller, i.e., Ks # 0, if and only if there exists a positive definite

matric X € D such that the following two matriz inequalities hold,
BTAXA*B, — B} XB, <0,
CLA*X'ACT —C X0t <.

Note that by the same procedure in the proof of Proposition 4, we can constructively
get a Q-stabilizing static controller and the static controller characterization in terms of
the solutions of the above two matrix inequalities. Note also that in the trivial cases, i.e.,
when p; = n or ¢, = n, this problem is reduced to the state-feedback or output-injection
problem.

As stated in Lemma 2, every stabilization problem with dynamic controllers can be
transformed to a stabilization problem with static controllers; the solutions can therefore

be obtained by statically Q-stabilizing its augmented system by using the above theorem.

4.4.3 Solutions to Synthesis Problems: Dynamical Controllers

In this section, we give the main results about the stabilization of LFT systems. The

controllers needn’t be static, the constructive proofs will be given in the next two sections.

Theorem 4.4.4 Consider the given system G with RANK(By) = p2 < n and RANK(Cy) =
g2 < n. Assume that B, € R™("=r2) s such that B;B; =0 and [ B, B ] is invertible,
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and that C, € R2)X" {5 sych that CiC5 =0 and is invertible. Then there

o

exists an admissible controller, i.e., K # 0, if and only if there exist two positive definite

matrices X € D and Y € D such that the following two LMIs hold:
BYAXA*B, — BT XB, <0 (4.19)

and

CLAYACT] —C L YCT] <. (4.20)
Moreover, when these conditions hold, such a controller is given by

[ A4 BoF 4+ LCy + LDooF ] L

K(A) = (4.21)
F K
with the same frequency structure A as the plant, where
F=—-(B3X7'By) 'B;X14 L=-AY~IC5(Cy o)™ (4.22)

The controller given in this theorem has a separation structure, and is of the “observer
form,” we will discuss its structure in the next section. The next theorem gives a charac-

terization of K.

Theorem 4.4.5 Assume that the conditions in the last theorem are satisfied, then the ad-

missible controller set can be characterized by
K =A{F(J(A),Q(A)): Q(A) is Q-stable} (4.23)

where
A+ BoF + LCo+ LDaoF | =L By + LDa
J= F 0 I
—(Cq + DqaF) 1 ~Dso

Remark 4.4.6 If ps = n or go = n, then the corresponding LMI condition in the theorems
disappears. In this case, F' or L can be obtained easily without solving any LMI. For exam-
ple, if p, = n then a corresponding constant state-feedback matriz can be ' = By *(Ap — A)

where Ap is chosen such that Qa(Ar) < 1, say Ar = ol for some |a] < 1.
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4.5 Stabilization Problem: Special Problems and Construc-

tions

In this section we will consider the general stabilization problem which leads to a construc-
tive proof of theorem 4.4.4. Since the necessity is obvious, we only need to consider the
sufficiency. The LMI conditions (4.19) and (4.20) in Theorem 4.4.4 imply that there are
constant matrices #’ and L such that A+ By F and A+ LCy are Q-stable, and they are given
in (4.22) as in theorem 4.4.4, We therefore can assume this and do the constructions without
being involved in explicitly solving an LMI at this stage. We first discuss four problems

from which the solutions in Theorem 4.4.4 are constructed via a separation argument.

4.5.1 Duality, Equivalence, and Special Problems
Duality of Linear Systems

Duality plays an important role in the analysis and synthesis of linear systems. We now
examine this notion further in the setting employed in this chapter. Algebraically, the dual
system of an LF'T system represented by transfer function G(A) is defined as the system
Al B
represented by the transpose of G(A), i.e., GT(A). For concreteness, if G(A) = [ J ,
C|D

AT T
then its dual system is realized as GT(A) =

o J It is noted that the frequency
B | D

structures for both systems are the same.

Next, we consider a standard feedback system with block diagram

Z w

G

K

where the plant G(A) and the controller K(Ag) are assumed to be LFTs with respect to

the frequency structures A and Ag. The dual structure of the above feedback system is

shown as follows

GT

yl [ j U/
KT
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whose plant and controller are the dual objects of G(A) and K(Ay), i.e., GT(A) and

KT(Ao), respectively. Tt is routine to verify that F(GT, K1) = [F,(G, K)]*. In addition,
A

K Q-stabilizes G' with respect to the induced frequency structure Ay = if and
0 Ag

only if KT Q-stabilizes GT with respect to the frequency structure Ay. Whence, as far as

stabilization or other synthesis problems are concerned, we can obtain the results for GT

from its dual object G if available.

Equivalence of Linear Systems

The notion of system equivalence will also play an important role in this chapter. Two
systems are said to be equivalent if every achievable closed loop map of one system can be
achieved by the other through some controller. More concretely, two LFT systems G1(A)
and G2(A) are equivalent, if for all possible K1(Ay), there exists a suitable K5(Ap), such
that Fi(G1(A), K1(Ao)) = Fi(G2(A), Ko(Ag)); and also for all possible Ky(Ag), there is a
suitable K1(Aq), such that F(G1(A), K1(Ag)) = Fi(Ga(A), Ko(Ag)).

Special Structures

Structurally, we will define four special problems which are related to the general OF

problem whose associated plant G/(A) has the following structure (4.17),

A| B B
G(A)=| C1 | Dy Dyy |- (4.24)
Cy | Dy Dy

¢ Full information (FI) problem. The corresponding plant has the following structure,

A B B,
Ch Dy Dy

Hak

where the “state” and the disturbance are directly measured.

Gri(A) = (4.25)

¢ Full control (FC) problem. The associated plant is given by
Al B [10]
Gro(A)=| Cy | D [0 1] (4.26)
Cy | Doy [ 0 0 }
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where two independent parts of the control input directly affect both the “state” and

regulated output.

¢ Disturbance feedforward (DF) problem. The corresponding plant has the following

structure,
4| B B
Gpr(A)=1| Cy | D11 Dig (4.27)
Co| I 0

where the disturbance enters the measurement directly.

e Output estimation (OE) problem. The corresponding plant has the following struc-

ture,
4| B, B

Gop(A)=| C; | Dy T (4.28)
Cy| Dyy 0

where the control input enter the regulated output directly.

Note that all of these special systems have the same frequency structures as G(A).
However, the parameters in the special structures do not necessarily refer to the same
parameters of the above OF structure G(A). They are said to be special cases of the OF
problem only in the sense that their structures are specified when compared with the general
OF problems. The reader is referred to [60] for motivations of different problems.

Structurally, the FI and FC problems are dual, and so are the DF and OE problems.
More precisely, G%;(A) has an FC structure, G%.(A) has an FI structure, and so on. In
addition, FT and DF, and FC and OE are equivalent structures, respectively; this point
will be made precise in the next subsection. These relationships therefore are shown in the

following diagram:

Fl <~ Dual . FC

Equivalent Equivalent

Dual

DF - ~ OFE
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4.5.2 Equivalence Relations between Special Problems

The equivalence relations between the DF and FI, and the OE and FC problems are exam-
ined in this subsection. The different structures Grr(A), Gro(A), Gpr(A), and Gog(A)

are given as in the preceding subsection. We first have the following observation about the

DF and FI problems.

Proposition 4.5.1 Consider the FI and DF structures as given in section 5.1. We have

0 0

(i) Gpr(A) = 0 ¢ 1

} Gri(A),

(i1) Grr = S(Gpr, Ppr), where S denotes the Redheffer star product and

A - B16’2 B1 BZ
0 0 I

R IEAANAN

Proof. (i) is straightforward, we only prove (ii). Consider system S(Gpr, Ppr), let z and

(4.29)

& denote the state of Gpr and Ppp, respectively; take e := 2 — & and & as the states of the

resulting interconnected system, then its realization is

[ A-B,C, 0 0 0 |
B1C, A By By
Cq Cq Dy D1s
0 r]][o 0
) LI EL
with respect to the frequency structure [ Zg Z . The resulting transfer matrix is exactly
J

GFr, as claimed. O

The following theorem follows the above observation immediately:

Theorem 4.5.2 (i) Kp; := KDF{ Cy I] Q-stabilizes Gpr if Kpp Q-stabilizes Gpp.
Furthermore, Fi(Gpr, Kpr | Cy I |) = Fi(Gpr, Kpr).

(ii) Suppose that A — B1Cy is Q-stable. Then Kpp := Fi(Ppr, Krr) Q-stabilizes Gpp
if Kpy Q-stabilizes Gpr. Furthermore, F(Gpr, Fi(Ppr, Krr)) = Fi(Grr, Krr).



93
Proof. (i) it is easy. As for (ii), note that by Proposition 4.5.1, we have
FilGrr, Krr) = F(S(Grr, Ppr), Kr1) = Fi(Gpr, Fi( Ppr, Krr)).

The Q-stability of the latter is confirmed by theorem 2.2.8 (ii), because of the structure of
the closed loop system in terms of previous observation, the Q-stability of A — B1Cy, and

the choice of K. ]

Remark 4.5.3 This theorem shows that if A— B1C5 is Q-stable, then problems FI and DF
are equivalent, since the stabilizing controllers for the FI and DF structures can be obtained
from each other such that the resulting closed-loop I/O properties are the same.

Dually, we have the following results about the structures FC and OE.

Proposition 4.5.4 Let the FC and OF structures be given as in section 5.1. We have

I 0
(i) Gor(A) = Gri(A) | 0 B,
0 I

(it) Gro = S(Gog, Pog), where Pog is

[ A-B.ci |0 [1 -B, ]
Pop(A) = Cy 0 [ 0 1 ] . (4.30)
Cy I [ 0 0 }

By

Theorem 4.5.5 (i) Kp¢ := Kogp Q-stabilizes Gre if Kog Q-stabilizes Gog.

A

B
Furthermore, .7:[((;}70, [2 } IK’OE) = fl(GOEalirOE)-

(ii) Suppose that A — BoC, is Q-stable. Then Kog := Fi(Pog, Krc) Q-stabilizes Gog
if Ko Q-stabilizes Gre. Furthermore, E(GOE,E(POE, fi’Fc)) = -7:1(GF07 Ich).

Remark 4.5.6 This theorem shows that if A — ByCy is Q-stable, then the FC and OF

problems are input/output equivalent.



94

4.5.3 OF Problem and Separation Property

In this section we constructively prove Theorem 7. Since the necessity is clear, we only
consider the sufficiency. The construction essentially involves reducing the O F problem to
the simpler FI and FC problems with the separation argument as a byproduct.

Consider System G(A) (4.17)

A|lB B
G(A)=| C1 | Dy D12
Ca | Doy Dy

We shall assume Dyy = 0 without loss of generality. In fact, if Doy # 0, then the

mapping
fx(A) = K(A)(I - DQQK(A))—l = Fi( 0 , K(A))
22

is well defined by the assumption that the closed-loop system is well-posed. Define

A ] B, B,
G(A)= | ¢y Dy Dio
Cy | Doy 0

Then F(G(A), K(A)) = F(G(A), K(A)). Thus, if K is designed for the above structure,
then K can be obtained from Lemma 3.3.2 as
—D22 I

0

K(A) = A K(2)) = A K(A), (48D)

—Ly
which justifies the simplification.

Next, we construct the controllers for the OF problem with Dy = 0. Let z denote the
state of the system G(A). Since (A, By) is O-stabilizable, there is a constant matrix F such
that A+ By F is Q-stable. Note that [ F 0 ] is actually a special FI stabilizing controller.
Let

v=u~— Fuz,

then the system can be broken into two subsystems G and Gy, as shown pictorially below

Z
(G4 v w
Gtm
P
) U
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with
Ga(a) - | AT | B B, |
Ci + Do F ‘ Dy Dy
which is Q-stable, and
A | B B
Gimp(A)=| —-F| 0 I
Cy | Doy 0O

Since Gy is Q-stable, by Theorem 2.2.8, K Q-stabilizes G if and only if K Q-stabilizes G,y p.

L
Note that Gy, is of OF structure. Let L be such that A 4+ LC5 is Q-stable, then [ is
0

a Q-stabilizing controller for the corresponding FC problem. Since A 4+ By F is Q@-stable by

construction, by Theorem 4.5.5 (ii) we have a controller for G, as follows,

Lb
0

A+B2F)O (1 -5, ]
Jay={ -r |o o 1]
Cy 1 [0 OJ

K(A) = F(J,

where

Then we have

A+ By F+ LCy | —L
K(A) = + Bo k" + 2} }

F o

Now we drop the assumption Dj; = 0, by the transformation (4.31), we have the

following result which restates Theorem 7.

Proposition 4.5.7 Consider the general OF problem. Let F and L be such that A+ LC,
and A+ BoF are Q-stable, then the controller

K(A) =

A+ ByF + LCy + LDy F ] -
I3 ] 0

with the frequency structure A Q-stabilizes the given system.

Separation Principle for LFT Systems

The above construction was conducted by reducing the synthesis of OF problem to the
independent synthesis of FI and OE problems. This reduction is based on a separation

argument. And it also leads to a separation structure for the resulting closed loop system.
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Let =z and Z be the state vectors for the plant and controller. The controller has the

following realization:
{ A™1F = Ad + Byu— L(y — Co)

u=Fz

z
} be the state vector of the closed loop

which has an observer structure. Let 7 = [ )
z

system, the corresponding realization is

A By F By
—LCy A+ By F+LCy | — LDy
Cy Do F ‘ Dy
x . I 0 .
Next, we conduct state transformation & — TZ = ,le, T = . It is
z—z -1 1

easy to see that the state transformation T is admissible. After the transformation, the

realization is

A+ B F BoF B,
0 A+ LCy | By — LDy |,
C1— DyoF' DyoF Dy

i.e., the system is decoupled into two separated Q-stable subsystems, i.e., state-feedback
system and output-injection system. Hence the closed-loop system after the admissible

state variable transformation is also Q-stable with respect to the new frequency structure

A0
Ay = [ A } by Theorem 2.2.8, so is the original closed-loop system as desired.
0

4.6 Construction of the Stabilizing Controller Parameteriza-
tion

This section is mainly devoted to the proof of Theorem 8, i.e., to construct the parameter-
ization of all admissible controllers. We follow [60] to present a state-space-like approach
to this problem without using any ideas from coprime factorization techniques. The tech-
niques to be used are from the LFT theory, especially the inversion property of an LFT.
The main idea of this approach is similar to the one for stabilization problem. That is,
we will reduce the OF problem into the simpler FI and OE problems, then solve the out-
put feedback problem by separation argument. To this end, we will first parametrize the

equivalent classes of FI and FC stabilizing controllers which lead to all achievable closed
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loop maps for FI and FC problems. In this chapter, two controllers, X and K’, are said to
be equivalent if they produce the same input/output relationships for the corresponding
closed loop systems, i.e., (G, K) = Fi(G, K'), written as K = K'. The parameterizations
for DF and OE controllers are then obtained from the results for FI and FC problems by

the equivalence between related systems.

4.6.1 Admissible Controllers for FI and FC Problems

We first examine the FI structure. Consider plant Gpy (4.25) which is given in the last

section, the feedback configuration is as follows,
z w

e} R —

Grr

YFrI j %
Kgy

We first have the following lemma about the structure of the FI stabilizing controllers.

Lemma 4.6.1 The FI stabilizing controllers have the following general structure,
Kpi(A) = [ Ki(A) Eo(D) |

P S A | By
with K1(A) Q-stabilizing

} and arbitrary Q-stable Ky(A).
I|0

Proof. It follows from theorem 2.2.8. O

Proposition 4.6.2 Let I’ be a constant matriz such that A + BoF is Q-stable. Then all

admissible controllers for FI can be parameterized as
Kpi(A) = [ F Q(A) }

with Q-stable Q(A).

Proof. It is easy to see that the controller given in the above formula Q-stabilizes the
system Grr(A). Hence we only need to show that the given set of controllers parameterizes
all equivalence classes of Q-stabilizing controllers. It is enough to show that there is a choice
of Q-stable Q(A) such that the transfer functions from w to u for any stabilizing controller

Krr(A) = [ Ki(A) Ky(A) ] and for K%,(A) = [ F QA) ] are the same, since this
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implies Fi(Grr, Krr) = Fi(Gpr, K%;). To show that, make a change of control variable
v = u — Fz, where 2 denotes the state of the system Gp;(A), then the system with the
controller Kpj(A) is shown as in the following diagram,

A w
DU e PN
GFrr

YrI E v
Kpr

A4+ By F By By
- Ci + Do F 0 Dy,

R RARIAERI

Let Q(A) be the transfer matrix from w to v; it is Q-stable by the Q-stability of the closed
loop system. Then u = Fz +v = Fa + Qw, so Kpj(A) { F Q(A) } a

where

ffF[ = Kpr — [F 0].

Next, the F'C problem is considered. G r¢ is given by (4.26) in the last section. We have

the following dual result.

Proposition 4.6.3 Let L be a constant matriz such that A + LCy is Q-stable. Then the
set of equivalent classes of all admissible controllers for FC in the above sense can be pa-

rameterized as
L

I(FC(A) = O(A)

with any Q-stable Q(A).

4.6.2 Admissible Controllers for Problems DF and OE

The DF and OE problems can be coped with by their equivalence relations to FI and FC
problems, respectively. We first consider the DF structure. The plant Gpy is given by (4.27)
in the last section. We will further assume that A — B;C, is Q-stable in this subsection. It
should be pointed out that this assumption is not necessary for DF problem to be solvable;
however, it does simplify the solution.

Under the above assumption, the FI and DF problems are equivalent, as pointed out
in the last section. It can be shown that if Kpp = Kpp in the DF structure, then
Kpr { Cy T } ~ Kpp [ Cy T } in the corresponding FI structure. Also if Kpr & Kfp,
then Fy(Ppr, Krr) = Fi(Ppr, K};), where Ppr is defined in (4.29).
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Next, the parameterization of DF controllers is considered. Let Kpp(A) be an ad-
missible controller for DF then Kpr(A) = Kpp(A) [ Cy 1 } Q-stabilizes the correspond-
ing Grr(A). Assume Kpp(A) 2 K (A) = { F QA) ] for some Q-stable Q(A), then
K 51(A) Q-stabilizes Gpr(A) and

Fi(Jpr(A),Q(A)) = Fi(Ppr(A), Kpi(A)),
where
A+B,F — BiC, | By B,
Jpr(A) = F 0 I
—Cy I 0
with F such that A+ By F'is Q-stable. Hence by Theorem 4.5.2, K, o(A) := Fi(Jpr(A), Q(A))

stabilizes Gpp(A) for any Q-stable Q(A). Since Kpy(A) = K r(A), we have Kpp(A) =
Kpp(A) = F(Jpr(A), Q(A)), which characterizes the equivalence classes of all controllers

for DF problem by the equivalence of FI and DF structures.
Actually, the above construction of parameterization characterizes all admissible con-

trollers (not just the equivalence classes) for the DF system.

Proposition 4.6.4 All admissible controllers for the DF problem can be characterized by
Kpr(A) = F(Jpr(A),Qo(A)) with Q-stable Qo(A), where Jpr(A) is given as above.

Proof. From the above construction, it is known that the controllers expressed in the
given LI'T formula do Q-stabilize Gpp. Let Kpp be any admissible controller for Gpr,
then @ := fl(jpp, Kpr)is Q-stable, where

A B B,
Co | T 0

since Jpp and Gpr have the same parameters (Cy, A, By) which are the only parameters
affecting the stabilization results. We now claim that Kpp = Fi(JpF, Q).
In fact, Fi(Jpr, Q) = Fi(Jpr, Fi(Jpr, KpF)) =: Fi( Junp, KpF), where Jim, is defined
as
A—-DBiCo+ BoF —BoyF | By By
- B (s A B By
F —F 0 I
—CY Cy I 0

Jtmp -
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[ A-BiCy —ByF | By B

~ 0 A+BF| 0 0

- 0 _F |0 I

0 C, |1 o
o
=1,

Hence, Fi(Jpr,Q) = FilJimp, Kpr) = Kpp. This shows that any admissible controller

can be expressed in the form of F(Jpr, Q) for some Q-stable Q. |

Next, we turn to the OE problem, Gog is given by (4.28) in the last section. Similarly,
we will assume that A — ByC is Q-stable. The OE problem can be considered similarly
to the above treatment. However, since OE problem is dual to DF problem, we have the

following dual result.

Proposition 4.6.5 All admissible controllers for the OF problem can be characterized as

Fi(Jog, Qo) with any Q-stable Q¢, where Jog is defined as

A—ByCi +LCy | L ~By
Jog = Cq 0 I
Cs I 0

with L such that A + LCy is Q-stable.

4.6.3 All Admissible Controllers for Problem OF

Consider the system G(A) which is given by (4.17):

A| B B
G(A)=| C; | D1y Dy
Cy | Dy Dy

As before, it is assumed that (A4, By) is Q-stabilizable and (Cy, 4) is Q-detectable with
respect to the frequency structure A. We are now going to prove Theorem 8 which is

restated as
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Proposition 4.6.6 Let F' and L be such that A+ LCy and A+ By F are Q-stable, then all
controllers which Q-stabilize G(A) can be parameterized as Fi(J(A), Q(A), where

A+ BoF + LCy + LDy F § _I By + LDy
J(A) = I3 0 I
—(Cq + DypF) 1 —Day

and Q(A) is Q-stable such that the resulting closed loop system is well-posed.

Proof. We will assume again Dyy = 0 for simplicity. Let & denote the state of system G.
Since (A4, By) is Q-stabilizable, there is a constant matrix F' such that A+ By F is Q-stable.
Note that [ F 0 ] is actually a special FI Q-stabilizing controller. Let

v=u-—Fz

as in the proof of Proposition 4.5.7, thus K (A) Q-stabilizes G(A) if and only if it Q-stabilizes

A { B, B,
Gimp(A) =) =F | 0 I
CQ D21 0

However, Gymp(A) is of the OE structure. Let L be such that A + LC is Q-stable. Then
by Theorem 4.5.5 all controllers Q-stabilizing Gypp(A) are given by

K(A) = F(J(A),Q(A)),

where
A+ B P+ LG | L By A+BF 10, | -1 By
J(A) = —F 0o I |= F 0o I
Cy I 0 —(y I 0
This concludes our proof. ]

This theorem shows that any admissible controller K(A) can be characterized as an
LEFT of a Q-stable parameter matrix Q(A), i.e., K(A) = Fi(J(A),Q(A)). In fact, such a
() can be uniquely determined by K in some sense. To see this, by the inversion formulas
for LFTs in Lemma 3.3.2, we can solve the equation K(A) = F;(J(A),Q(A)) to uniquely
give

Q=F, (I K)=F(],K),
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where
AlB L
J—-l - Cz D22 I
- I 0
and
0 I 0 I AL B Ty J
j: J_]_ _ _Flo i —. 11 12 .
I 0 I 0 Jar Ja
CQ I D22

Note that () is stable if and only if K stabilizes Jog. But Joy = Glaa, so () is stable if and

only if K stabilizes G, as desired. We summarize this observation as follows.

Theorem 4.6.7 Any admissible controller K(A) can be characterized as an LFT of a Q-
stable parameter matriz Q(A), i.e., K(A) = Fi(J(A),Q(A)) with Q(A) realized by

Q(A) := Fi(J(A), K(A)),

where
A‘L B,
J(AY=| -Flo I
Cz I D22

and the realization for K(A) is Q-stabilizable and Q-detectable. Moreover, this character-
wzation is unique for a given pair F and L satisfying the requirements stated in the above

theorem.

Remark 4.6.8 Note that the key technique used in the stabilizing controller parameteriza-
tion for both the disturbance feedforward and the output feedback problem is the inversion

property of linear fractional transformation (Lemma 3.3.2).

4.6.4 Structure of Closed Loop Systems

The central controller for this parameterization, i.e., the parameterized controller with the

parameter ¢) = 0, is an observer-based controller, and the observer is as follows

o A‘la”::Ai—i—Bu—}—L(y——C’a?)
| 9=0Ci

where & is the estimated state 2 of the original system. Therefore, a parameterized controller

has some separation structure, and the closed loop system is structured as follows
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z w

G
y u
| z |
! Q] F _{? :
: - (] :
e T |

Yo g
Q

Next, consider the closed loop map which is also parameterized as

T = FI(G, K) = FI(G, F(J,Q)) =: F(T, Q).

We have the following theorem about the structures of the closed loop maps, whose proof

is straightforward and is omitted.

Theorem 4.6.9 Let the state feedback and output injection matrices F' and L be chosen as

in the previous theorem. Then the closed loop maps are parameterized as T,, = F(T,Q)

with
A+ BF —BF By B
| T Te | 0 A+ LC | B+ LDy 0
- [ Tor T } - Ci+ DB —DyoF Dyy D12
0 C Dy 0

and ) is stable. Moreover, T,,, is affine in @, i.e.,

Top = Ti1 + T12QT2.

4.7 Notes and References

(4.33)

We have considered the problems of robust stabilization and parameterization of all sta-

bilizing controllers for LFT systems with structured LTV perturbations. All of the ma-

nipulations have been based on some naturally defined Q-stability notions. A separation

principle is confirmed. It should be noted that most of the results, including the separation
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theory, also hold in the p-stability case via simple change of notation. An exception is that
the stabilization for FI structure by dynamic state feedback might not be equivalent to
stabilization by constant state feedback.

The separation property discussed in this chapter holds in greater generality than for
just the @ and p stability problems. All that is required for the separation proof is that the
notion of stability satisfy two requirements: 1) stability invariance under a sufficiently rich
set of similarity transformations, as in Theorem 2.2.7, and 2) a certain structural property
as given in Theorem 2.2.8. It would clearly be possible to develop a more abstract axiomatic
stabilization theory using these 2 properties.

This chapter is largely based on the conference paper [119], where the main results
in this chapter were presented. The solution in the context of H,,-control was solved by
Packard et al. at the same time [133]. Subsequently, many extensions and generalizations
have appeared [111, 134, 131, 86]. The LMI characterization of the pure state-feedback
solution and its application to an autopilot design example for a missile were given in [86].
More recently, the LMI treatment has been extended to cope with robust performance
synthesis for continuous time systems [69, 94, 3]; see also [29] and references therein. The
current discussion about relating robustness analysis of LPV system with LTV perturbation
to Q-stability follows from [159, 123, 124, 137, 138]. The synthesis approach, which leads

to separation interpretation, basically follows from [60, 73].
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PART 11

Uncertain Nonlinear Systems
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Chapter 5

Parameterization of Stabilizing

Controllers for Nonlinear Systems

5.1 Introduction

Youla-parameterization for linear systems has two properties, i.e., (i) the free parameter set
for the parameterized controllers is actually a linear space, and (ii) the stabilizing closed
loop maps are also parameterized, and are affine in the free stable parameters. This fact
therefore makes it possible to (exactly) solve various robust and optimal control problems
(see for example, [199, 49, 204, 55, 192, 67, 27, 40] and references therein). As the basic
requirement or constraint for feedback control design is that the designed controllers stabilize
the feedback system, while Youla-parameterization provides a systematic way to choose the
(optimal) stabilizing controllers. In the Youla-parameterization formula, each input-output
(I/0) stabilizing controller can be characterized as a linear fractional transformation of some
(I/0) stable parameter. The basic technique used in the derivation is coprime factorization.
Due to the clear connections between the stability notions in both the I/0O description and
the state-space description for a linear system, a state-space formula has also been derived
using the coprime factorization technique [101, 55, 129], and each internally stabilizing
controller is characterized as a linear fractional transformation of some internally stable

system.

When nonlinear systems are considered, it is expected that they could also enjoy the
similar controller parameterizations and the properties which the linear parameterized

closed-loop systems have. It is indeed the case for a special class of nonlinear systems
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[48, 47, 66, 188]. However, for a more general class of nonlinear systems, the answer is
not very straightforward. As far as the controller parameterization is concerned, a natu-
ral approach is to analogically use coprime factorization-like technique, although the pa-
rameterization formulas for some special cases can be derived without explicitly involving
coprime factorization (see, e.g., [48, 47]). Nonetheless, the generalizations of the coprime
factorization notion for nonlinear systems largely depend on how to define (I/O) stability
and coprimeness of (I/O) (stable) operators. There have been a rich variety of versions of
coprime factorization for nonlinear systems, because different stability and/or coprimeness
notions have been used (cf. [80, 188, 168, 170, 180, 37, 135, 189] and references therein).
The controller parameterizations can be more or less conducted based on these notions of
coprime factorization [80, 188, 180, 135]. However, unlike in the linear system case, neither
the computational implications of these results nor their implications in the state-space are
clear. Some efforts have been made in this direction such that the coprime factorization
can be conducted in terms of the state-space techniques [168, 169, 170, 189]. Contrary to
the linear systems, one of the difficulties is that the state-space stability notion, i.e., asymp-
totic stability, doesn’t imply any I/O stability notion in general. Thence, some concepts,
such as the notion of input-to-state (I/S) stability proposed by Sontag in [168, 170], are
needed to insure I/O stability by considering asymptotic stability. In particular, in the nice
work by Sontag [168, 170], the finite I/O-gain-like stability notion is used to carry out the
coprime factorization in the state space, where a finite I/S-gain-like notion of I/S stability
is suggested as a bridge between asymptotic stability and I/O stability; it is concluded
that if a nonlinear system is smoothly stabilizable, then there is a coprime factorization for
the system; moreover, this coprime factorization can be constructed by using smooth state
feedback. Verma and Hunt [189] use the similar technique to deal with the coprime factor-
ization in the context of BIBO stability with a slightly different version of coprimeness, and
another version of I/S stability, i.e. the bounded-input/bounded-state (BIBS) stability, is
used. It is believed that the potential use of coprime factorization in the nonlinear con-
trol theory is to parameterize the stabilizing compensator laws (see [168]). So there comes
up the question: do we really need to use the coprime factorization technique to get the

stabilizing controller parameterization?

The answer to the above question is NO. In this chapter, we derive a parameterization
formula of stabilizing controllers for time-invariant linear, input-affine nonlinear, and general

nonlinear control systems directly in the state-space without using the coprime factoriza-
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tion. We use a state-space technique developed in Doyle et al. [60] and in Lu et al. [119] to
deal with the controller parameterization problem. Basically, in this machinery, the general
problem is decomposed into some simpler output-estimation and state-feedback problems
by a technique of changing variables; the controller parameterization is constructed from
the considerations of the simpler problems by the employment of a separation argument.
(A separation principle follows from the construction.) In the resulting parameterization
formula, the asymptotically stabilizing controllers are characterized as fractional transfor-
mations of some asymptotically stable parameters. From the state-space point of view, a
parameterized controller is structured as an observer which estimates the state of the plant
with zero input, a state feedback which uses the estimated state, and a free stable parameter.
In the linear case, this formula is exactly the Youla-parameterization, which characterizes
all internally stabilizing time-invariant linear controllers, and the parameterized closed-loop
maps are affine in the free parameters. In the nonlinear case, in general, it just character-
izes a class of asymptotically stabilizing controllers which have separation structures. This
consideration is additionally motivated by some other work in which separation structures
for some nonlinear feedback systems are confirmed [190, 167, 34, 122, 104, 181, 15, 113].
Unlike linear systems, the parameterized closed-loop maps do not have similar affine-like

representation.

The Lyapunov technique is used in this chapter to deal with stability issue. The rest
of this chapter is organized as follows. In section 2, the stabilizability and detectability of
input-affine nonlinear systems are examined, they are characterized in terms of Hamilton-
Jacobi inequalities. The parameterization of input-affine nonlinear system is considered
in section 3, the formula of the parameterized input-affine locally stabilizing controllers is
derived. In sections 4, the parameterization results extended to general nonlinear systems

are briefly considered.

5.2 Preliminaries: Stabilizability and Detectability

The reader is referred to [79] for the basic Lyapunov stability theory (see also the survey

article [171]). Consider a nonlinear system with a input-affine realization as follows,

o { i = f(2) + g(x)u 5.1)
y = h(z)
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where 2 € R" is the state vector, u € RF and y € R? are the input and output vectors,
respectively. We will assume f,¢,h € C%, and f(0) = 0,/(0) = 0. Therefore, 0 € R" is an

equilibrium of both systems with u = 0.

Definition 5.2.1 (i) The dynamical system G (5.1) (or [f(z),g(z)]) is said to be locally
smoothly (or exponentially) stabilizable if there is a C* function F : R™ — RP such that
& = f(z)+ g(x)F(z) is locally asymptotically (or exponentially) stable about x = 0.

(ii) The dynamical system G (5.1) (or [h(z), g(z)]) is said to be (locally) smoothly (or
exponentially) detectable if there is a C* matriz-valued function L : R® — R™*? such that

& = f(z)+ L(x)h(z) is (locally) asymptotically (or exponentially) stable about z = 0.

The global versions of stabilizability and detectability can be defined similarly. The
definition of stabilizability is quite standard. The detectability notion is defined in terms
of output injection, which is analogical to the one in the linear case. However, the output
injection depends on the state variable. This consideration is just of technical interests,
since the implication for the detectability notion is that if the system is locally exponentially
detectable, then there exists a local state observer for the original system, and the observer

can be constructed by the output injection.

Remark 5.2.2 The smooth stabilizability and the smooth detectability can be characterized
in terms of Lyapunov functions. For instance, from the inverse Lyapunov theorem, it follows
that system G (5.1) is (locally) smoothly stabilizable, if and only if there are a (locally) C*
positive definite function (i.e., Lyapunov function for the closed loop system)V : R” — R,
a C? function F : R" — RP with F(0) = 0, and C? functions 1, 2,73 of class K such that

n(llzlh) < V(z) < y2(l]]) (5.2)

D) 1@+ 9@ < () (5.3)

for x € B, with some r > 0.

Moreover, system (5.1) is locally exponentially stabilizable if and only if its linearized
system around 0 is stabilizable, it is also noted that besides conditions (5.2) and (5.3), the
necessary and sufficient conditions for local exponential stabilizability additionally require
that

. 73(s)
11_1% —2 € (0, 00). (5.4)
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To conclude the review, we give a Hamilton-Jacobi Inequality (HJI) characterization for

stabilizability and detectability.

Proposition 5.2.3 Consider the system G (5.1).

(i) 1t is (locally) smoothly stabilizable, if there exists a (locally) C* positive definite
function V : R* — R* with 31(|jall) < V(2) < 3a(llall) for some C* functions 1,72 of
class K such that the following HJI is satisfied for x € B, with some r > 0,

8V(a:) 8V(az)g(

W) pyy 1@ < el (5.5)

with v3 being of class K. Moreover, F(z) = —gT(x)Q%T%Q is such a stabilizing state feedback

controller.

(ii) It is (locally) smoothly detectable, if there exists a (locally) C* positive definite
Junction U : R™ — R with o1(||z]]) < U(z) < o3(]|z]]) for some C? functions 01,05 of
class K such that, for x € B, with some r > 0, the following HJI is satisfied,

oU(x)

5o f (@) = b (@)h(z) < —os(|l2]) (5.6)

with o3 being of class K, and there is a C* matriz-valued function L(z) such that

aU(z)

o L) = —hT (2). (5.7)

Moreover, u = L(x)y is such a stabilizing oulput injection.

The proof is straightforward, so it is omitted. It is noted that the above character-
izations are just sufficient in general (, system @ = z* 4+ 2%u is such a counter-example
for stabilizability condition (5.5)). However, they are also necessary for linear systems.

Moreover, we have the following result about exponentially stability and detectability.

Proposition 5.2.4 Consider the system G (5.1).

(i) It is locally exponentially stabilizable if and only if there exists a (locally) C* positive
definite function V : R* — RY with v1(||z]]) < V(z) < 72(||z]]) for some C? functions
71,72 of class K such that the HJI (5.5) is satisfied for x € B, with some r > 0 and 3

z)

being of class K and satisfying lim,_,q > As— € (0,00). Moreover, F(z) = -gT(x)% s a

locally exponentially stabilizing state feedback controller.

(11) It is locally ezponentially detectable if and only if there are a (locally) C? positive
definite function U : R™ — RT with o1(||z]]) < U(z) < oy(||z||) for some C? functions
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01,09 of class K such that, for x € B, with some r > 0, the HJI (5.6) is satisfied with o3
being of class K and lim,_q 03’5(3 € (0,00). Moreover, u = L(z)y with L(z) being a solution

to (5.7) is such a locally exponentially stabilizing output injection.

Proof. The sufficiency is straightforward. The necessity follows from the fact that the
linearized system of (' is stabilizable and detectable. In fact, let’s consider part (i); the
detectability of the linearized system implies that there exists a positive definite matrix P
such that

PAT + AP - BBT <0
with A = g—i(O),B = ¢(0) [125]. Now define V(z) = 2T P~'z, it follows that V locally
satisfies HJI (5.5) with some 3 being of class K and satisfying (5.4). Similar argument

applies to part (ii). |

5.3 Stabilization of Input-Affine Nonlinear Systems

In this section, we will consider a simple class of nonlinear systems, i.e., the input-affine
systems; the results can be extended to handle a broader class of systems, and the extension
is the main issue of the next section. Basically, the techniques to be used are demonstrated
in the last section. In this section, it is examined to what extent the treatments and results
for linear systems in the last section can be extended to handle the input-affine nonlinear

systems. All results are local, unless otherwise noted.

5.3.1 Controller Parameterization Problem Statement

In this section, the standard feedback configuration is as follows,

w
e

Gaf
?J;‘ v—;u
K

The plant has the following input-affine realization

&= f(z)+ g1(e)w + g(z)u
Gag 13 2= hi(2) + ki (2)w + ka(2)u (5.8)
y = h(z)+ ko(2)w + k(z)u
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where z € R” is the state vector, u € R? and w € RP! are input vectors, and y € R?
and z € R™ are output vectors, respectively. We will assume f, g1, ¢, b1, h, kij, k € C%, and
S(0)=0,h1(0) = 0,h(0) = 0. Therefore, 0 € R" is an equilibrium of the system with w = 0
and u = 0. It is known that a controller locally stabilizes system G,; with w = 0 if and

only if it stabilizes the following system,

G:{ ¢=fl)rglau (5.9)
y=h(z)+ k(z)u

In the following discussion, although we could guess the controller parameterization formula
from the linear case, prove it directly using Lyapunov theory under some additional condi-
tions, and develop a theory without involving the input w and output z, the development
would be less appealing for the following reasons: (i) The alternative approach provides
a constructive proof; (ii) The techniques used in the linear case could fail somewhere, the
parallel treatments to the linear case would reveal this; (iii) It is natural to take the extra
input w and output 2 into account to reveal some I/O properties for nonlinear systems.
For example, with this (I/O) consideration, we shall see that, unlike in the linear case, the

parameterized I/O maps are not affine in the parameters.

In this section, we assume that the system G is locally smoothly stabilizable and locally
smoothly detectable. We are interested in finding a time-invariant controller u = Ky which

has the following input-affine realization,

. &= a(i)+b(d)y
u=c(&)+ d(&)y
with a,b,¢,d € C? and ¢(0) = 0,¢(0) = 0, such that the closed loop system Fy(Gyf, K) is
asymptotically stable with w = 0. It is assumed that I — k(z)d(Z) is invertible to guarantee
the well posedness of the feedback system. We shall assume &(z) = 0 for simplicity.

We are interested in the following problem: To what extent, can the parameteriza-
tion formula for linear systems be extended to handle the input-affine nonlinear
systems? Actually, in this section, we shall parameterize a class of input-affine time in-
variant controllers which locally asymptotically stabilize G such that the parameterized
controllers are characterized as fractional transformation of some locally stable parameters.
We denote SP,; as the class of input-affine nonlinear systems which have input-affine real-
izations like (5.9) and are locally asymptotically stable around 0 with zero inputs. Therefore,

if @ € SPyy, by inverse Lyapunov theorem, it admits a C* Lyapunov function Vg(-).
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Definition 5.3.1 Consider a system G, two controllers K and K' are equivalent if their

corresponding closed loop map are identical for zero initial conditions, i.e. Fi(G,K) =

Fi(G, K", written as K = K'.

5.3.2 State-Feedback and Output-Injection

As in the linear case, the construction of controller parameterization is accomplished by
decomposing the original output feedback problem into some simpler problems, which are

known as full information (FI) and full control (FC) problems. In this subsection, those

problems are considered.

We first deal with full information (FI) system, in which case both state and disturbance

w are measured.

fle)  + g@w +  gla)u
7 = hi(z) + kn(x)w + kia(2)u

Nt

It is assumed that [f(z),g(z)] is smoothly stabilizable, therefore, there exists a C2

3.
Il

(5.10)

S
Il

function F’ such that v = F(z) is a smooth stabilizing state feedback. Since both state z
and disturbance w are available to the control input u, the control law u = F(z)+ Qw with
Q € SPay is legal and it stabilizes the FI structure (5.10). Moreover, we have the following

result about the parameterization of stabilizing controllers for FI structure.

Proposition 5.3.2 Let F : R — RP with F(0) = 0 be a smooth function such that
& = f(z) + g(x)F(z) has an asymptotically stable equilibrium at x = 0. Then every input-
affine stabilizing controller for FI structure (5.10) is equivalent to one of the controllers in

the parameterized set as follows
Ker={| F() Q]:QesPy,}.

Proof. Tt can be easily verified that the control law v = F(z) + Qu with Q € SP,;
stabilizes the FI structure by Vidyasagar’s stability theorem for cascade systems [191].
Now, given a stabilizing controller Kz, we need to show that there is a @ € SP,s such
that Apy = [ F()y Q } To this end, make a change of control variable as v = u — F(z),
where 2 denotes the state of the system Gy, then the feedback system with the controller

Kpr has the following block diagram,



2] P
Gr1
5

where

.
I

f@)+g(@)F(z)  + q(@)w + gz
. z = hi(2)+ke(a)F(z) + ku(z)w + k(e

IRt

K=Ke—|F() 0]

Let @ be the map from w to v; it belongs to SP,; by asymptotic stability of the closed loop
system. Then u = F(z)+v = F(z)+Qw. It follows that 7;(Grr, Krr) = Fi(GFr, [ F(y @ b
provided that the initial states are zero, so K pj = [ F() @ } |

Remark 5.3.3 If the system [f(z),g(2)] is globally smoothly stabilizable, then there is a
smooth Frio : R" — RP, such that the system

&= f(z)+g(z)Frjo(z) + g(z)v

with input v is 1/S stable [168] (see Definition 5.4.7). Then by Sontag’s theory [168] and the
argument used in the above proof, it can be shown that every input-affine globally stabilizing
controller is equivalent to Kpy = Fo(2)+Quw with @ € SP,5 being globally asymptotically
stable about 0.

As in the linear case, the stabilization problem where the control is directly injected to

the state is considered next. Such structure is called full control (FC):

i = f(@) + g@xw + [T 0w
Gre:q 2z = h(2) + kul@)w + [o [}u . (5.11)

y = h(z) + ka(z)w
It is assumed that [A(z), f(z)] is smoothly detectable. Thus, there exists a C? smooth
Lz
function L : R® — R™*? such that v = () J y is a smooth stabilizing output injection.
0

The following statement follows easily.
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Proposition 5.3.4 Let L(-) be a smooth matriz function such that & = f(z) + L(z)h(z)
has an asymptotically stable equilibrium at x = 0. Then the following parameterized set

characterizes a class of stabilizing controllers for FC structure (5.11),

ICF0={{L(CC)} :QESPaf}.
Q

It is noted that the controller is also allowed to depend on the state z. This consideration

is mainly of technical interests as we will see soon.

Remark 5.3.5 Ifthe system [h(z), f(x)] is globally smoothly detectable, let L(-) be a smooth
matriz function such that & = f(z)+ L(2)h(z) has a globally asymptotically stable equilib-

Zz
rium at © = 0. Then from Sontag’s argument [168], it follows that Kpe = { () } y with
Q

Q) € SP,5 being 1/S stable globally stabilizes system Gro.

5.3.3 Locally Stabilizing Controller Parameterization

The main results of this section are given in this subsection. It will be shown that a class of
input-affine (locally) stabilizing controllers are parameterized as fractional transformation
of the parameters in SP,y; the structures of the parameterized closed-loop maps are also

examined. However, unlike linear systems, the closed loop maps are not affine in Q.

Controller Parameterization

We now consider the general output feedback stabilization problem. The solutions to this
problem are based on the results in the last subsection. The nonlinear time-invariant plant
is an input-affine system G,y (5.8) with kyo(z) = 0. It is assumed that [f(z),¢(2)] is
locally smoothly stabilizable and [h(z), f(2)] is locally smoothly detectable. So there are
two C? positive definite functions V,U/ : R* — R¥, two C? functions F : R* — R?,

L:R" — R™4 and two C? functions 7 and o of class K, such that

Hsr(V, F2) = P (1) 1 g()P(2)) < () (512)
Hor(U, L,2) = 22 (1(2) 4 L(@)h(x)) < o o] (519)

for z € B, with some r > 0.
As in the linear case, make a change of variable, i.e., let v = u — F(2), then we get the

following system,
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¢ o= flz) + al@)v + g(@)u
Gog:q v = —F(z) + + u (5.14)
y = hiz) + ko(a)w

which has a constraint that ¢ = f(z) + g(z)F(z) is asymptotically stable at z = 0. As far
as the local asymptotic stabilization is concerned, u = Ky stabilizes Gop if and only if it

stabilizes (7,y. The above structure of Gog is known as output estimation (OE).

Unlike the linear case, the two structures I'C, which is discussed in the last subsection,
and OE are not equivalent if it is just assumed that [A(z), f(z)] is smoothly detectable. But
there are indeed some close relations between this two structures. We can therefore take
advantage of the FC results to deal with OE problem as in the linear case. Analogically,

define a system Pog,

Po= J@re@F@ + [ 1 —g(@) |
Pop:i{ u = —F(z) + [0 1]u
yo = —hZ) +

Motivated by the linear treatment, we would expect that Gre = S(Gog, Por). However,
this conjecture generally fails in this case, since the internal dynamics for both systems
with zero inputs are not identical in general. As we only consider local stabilization, there
naturally arises a question: can we still use the FC local controllers to recover the OE
controllers by Ko = Fi(Pog, Krc) as in the linear case? Or can the system F;(Gog, Kog)
remain (locally) stable? The answer is positive if some stronger assumption about the

detectability is imposed.

In this case, it is additionally assumed that [h(z), f(x)] is locally exponentially de-
tectable. Therefore, there are a C? locally positive definite function U/ : R® — R, a
locally smooth function L : R® — RP, and a C? function ¢ of class K such that (5.13) is
satisfied, and in addition,

lim a(s) € (0,00). (5.15)

5—0 .52

We have the following result about the stabilization, where the controller is recovered

v

L
by K = Fi( Pog, Kpe) with Kpe = [ :l .
Q
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Theorem 5.3.6 Consider the system (5.8). Suppose that it is locally smoothly stabilizable
and locally exponentially detectable. Let F(-) and L(-) be determined by the above charac-
terizations (5.12), (5.13), and (5.15). Then the controller

. { = [(3)+ 9()F () + L(DA(E) ~ L(#)y (5.16)
F(3)

=2
i

(1

(locally) asymptotically stabilizes system Gz around 0.

Moreover, the controller parameterized as w = Fi(M,Q)y with

F@) + 9@ F (@) + L@M(E) - LEy + g(&)uo

z

M : T F(j) + Ug (5.17)
Yo = —h(Z) + (]

for all Q € SPqyy also (locally) asymptotically stabilizes system G around 0.

We use Lyapunov technique to prove the above theorem. First, we have the following

observation.

Lemma 5.3.7 Let U(z) > 0 and L(z) satisfy (5.13) and (5.15), and z,% be states of

systems Gog and Kog, e = & — x. Define

Ha(e,2) = 0o+ 2) - fa) + Lie + 2)(h(e+ 2)  h(a)))+

22 g @)~ gle+ ) Fle + ).

Then for all e,z € B, with some r > 0, there exists a function 1 of class K with

such that Hg(e,z)+ n(|le]]) < 0.

Proof. Recall that

HorlU Le) i= “L(f(e) + L(eph(e)) < o)

for a C? function o of Class K. The conclusion follows by observing that the Hessian matrix
of Hg(e, &) with respect to e at 0 can be arbitrarily close to the one of Hor(U, L,e) with
respect to e at 0 if £ € B, for » small enough. In this case, the Hessian matrix of He(e, z)

is negative definite. The conclusion follows. a

The following lemma, which is from [170, Corollary 5.1], is used in the proof.
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Lemma 5.3.8 Suppose system @ = f(z,u) with f € C° has an asymptotically stable equi-
librium at 0 when uw = 0. Then there exists a continuous function o : Rt —R™T with o(s) # 0
if s # 0, such that given a number r > 0 there is r,, > 0, for each ro € (0,ry,), if initial
state (0) € By, and u € L]0, 00) for which ||u||, < o(ro) and u(t)—0 as t—oco, then the
solution x(t) exists with ||z(t)|| < 7 for all t € R, and it satisfies 2(t)—0 as t—o0.

Next, we give a proof of the stabilization result which closely follows the treatments of

Sontag in [170].

Proof. [Theorem 5.3.6] Only the latter statement that u = F;(M, Q) with Q € SP,y
locally stabilizes system (5.8) is proved, as the central controller (5.16) is obtained by letting
¢ =0.

Consider Fi(G,z, Fi(M,Q)) for Q@ € SP,; which has the following realization (up =

Qyﬂ)a
{ E=al&)+b(E)po
uo = ¢(§) + d(€)yo

So the dynamics of closed loop system with w = 0 is as follows,

& = f(2) + g(2)F(Z) + g(2)(c(§) + d(E)(—1(E) + h(z)))
¥ = [(7)+ g(2)F() + L(&)(h(Z) = h(2)) + 9(#)(e(€) + d(€)(—h(&) + h(=))) -
€= a(€) + b(E)(~h(@) + h(x))

Let e = £ — 2, the reorganization of the system yields

e =1n(e,x)+ (g(e+z) — g())(c(€) + d(§)(—h(e + z) + h(z)))
€ = a(&) + b(E)(~h(e+ z) + h(x))
& = f(z) + g(2)F(e+ )+ g(z)(c(§) + d(§)(~hle + ) + h(z)))

where 7 is a function defined as
(e, @)= fle+a) = f(z) + L(z + e)(h(e + 2) = h(z)) + (9(e + 2) — g(2)) F(e + @),
The proof of stability of the closed-loop system is divided into the following three steps.

Step 1. We first prove that e(t)—0 as t—o0 if €(0) € B,,, £ € B,, and z € B,, for some

7o, 7,74 > 0. Consider the e-subsystem:

é=1n(e, )+ (9(e+ ) — g(2))(c(§) + d(€)(—h(e + z) + h(x))). (5.18)
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Take the U as given in the theorem, it was shown in Lemma 5.3.7 that there exists
r>0,forz € B,ec B,

oU(e)
de

where 7 is a function of of class K with lim,_.q ﬁsgﬂ € (0,00). Therefore, there exists r, > 0,

ne,z) = Hg(e,z), < —W(He“)

and for all £ € B,,, there is a function g of class K such that for all e,z € B, with updated
r > 0,

—7(]le

Thus, for all e,z € B,,
U(e)

agie)w +2) = g(2))(e(&) + d(E)(=hle + ©) + h(x))) < 7o(]le])).

9U(e)
de

(?U(e)

Ule) = (e, t) + ——=(g(e + z) — g(@))(c(§) + d(§)(=h(e + z) + h(z)))

——(g(e+2) = g(2))(c(§) + d()(=h(e + z) + h(x)))

< =mo([lel)-

=7 ([lel]) +

Therefore, there is a function 3, of class KL such that
el < Bo(lle(O)l, 1) (5.19)

for allt € R, e(0) € B,, C R" for some 7o > 0 such that Bo(ro,0) < r,and x € B,,£ € B, .
Thus, e(t)—0 uniformlyon z € B,,£ € B,, as t—oo if €(0) € B,,. Without loss of generality,
it is assumed that r and ry are chosen such that (5.19) holds for all t € R*, ¢(0) € B,,, and
z € B, € qu, where B, is the closure of B,.

Step 2. We will next show £(t)—0 as t—oo for £(0) € By, , 2(0) € B,,, and z(t) € B, for

some qg, 79,7 > 0. Consider the £-subsystem:
€= a(€) +b()(=h(e + ) + h(z)) (5.20)

(with e as an input). If e = 0, then the system becomes ¢ = a(€) which is locally stable.
By Lemma 5.3.8, there exists a continuous function ¢ with o(s) # 0 if s # 0, for the given
¢ > 0, there is go > 0 with go < 7, such that if [le(¢)|| < o(go) with e(t)—0 as t—o0, then
1€()]lo, < 7y and 2(t)—0 as t—oo. Therefore, if the above conditions for e(t) satisfying
(5.19) are satisfied, then it is done.

We now verify that e(t) satisfying (5.19) has the required properties for some suitable
7o > 0. We first show that £(t) satisfying (5.20) also satisfies [|£(t)]|., < 7, for all £(0) € B,,,
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and e evolving according to (5.18) with e(0) € B,, for some 79 > 0 and =z € B,. In
fact, ro is adjusted such that §,(r0,0) < o(go). Suppose there is a time T such that
HE(T)H|| > ry with some £(0) € By, (here T is chosen to be the minimal such time). As
E®)] < 7y for t € [0,T], then for all z(t) € B,, (5.19) is satisfied for ¢t € [0,7], i.e.,
lle(D)]] < Bo(lle(0)]],t) < B5(]|e(0)]],0) < o(go) for t € [0,T]. By the previous statement
and the causality of system (5.20), we have £(t) € B, for ¢ € [0,T] which contradicts the
assumption ||{(T)|| > rq. Therefore, £(t) € B,, for t € [0,00). Thence, if €(0) € B,, and
[|2]lo < r then |le(t)]] < Bo(]le(0)]], 1) < Bo(]|e(0)]],0) < (go) for t € [0, 0). Therefore, by
Lemma 5.3.8, it is concluded that £(¢)—0 as t—oo for £(0) € By, , z(0) € B,,, and z(t) € B,

for some gg, 70,7 > 0.

Step 3. Finally, we will prove z(¢)—0 if 2(0),e(0) € B,, and £(0) € go. Consider the

x-subsystem:

&= f(z)+9(z)F(e +z)+ g(2)(c(§) + d(E)(—h(e + z + h(z))) (5.21)

Note that if (e, £) = 0, then the system becomes # = f(z)+g(z)F(z) which is asymptotically
stable by assumption. It is also known from the above proofs that if £(0) € B, , z(0) € B,,,
and x(t) € B, for some go,ro,7 > 0, then e(t)—0 and £(¢)—0 as t—oo. By the same
argument as in Step 2, it is shown that ||z(¢)|] < r and z(t)—0 if 2(0),e(0) € B,, and
£(0) € go for some suitably adjusted rg, go > 0.

This completes the proof. O

Remark 5.3.9 (i) In Theorem 5.3.6, the parameters in the parameterization can also be

chosen as general asymptotically stable systems whose realizations are not necessarily input-

affine.

(ii) In general, the parameterization given in Theorem 5.3.6 only characterizes a class
of stabilizing controllers. One reason is that the conditions of local asymptotic stabilizability
and exponential detectability in the theorem are sufficient, but generally not necessary for

output stabilization.
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Separation Structures of Parameterized Controllers

The parameterized controller has a separation structure, and it is an observer-based con-

troller. The observer is as follows.

VE@E) + L@)(W(T) ~y)

@
Q
(A
——
=
Il
—~
~~
=21
e ——
-
&
Vamn
=2

The estimated state is # and #(¢) — z(¢)—0 as t—o0 for w = 0 because of the locally expo-
nentially stability. The feedback system with a parameterized controller is thus structured

as the following diagram.

5.3.4 Structures of Closed-Loop Maps

In this subsection, we will consider structures of the closed maps with the parameterized

controllers. We first have the following definition of an I/O property.

Definition 5.3.10 Consider an I/O operator P : L& [0,00)—LE [0,00). It is said to be
locally 1/0 stable if there are ki, ko > 0 such that for all w € L]0, 00) with l|wl]., < ki,
then z := Pw € L[0,00) and ||z||, < ko.

We first have the following lemma about the relation between asymptotic stability and
I/0 stability for a nonlinear system, which follows from [170, Corollary 5.1] (see also [189,
Lemma 4.1]).
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Lemma 5.3.11 Consider the following system,

" { i = f(z) + golz)w
z = he(z) + ko(z)w

with feyge, he, ke € CO. It is assumed that © = f.(x) is locally asymptotically stable around
0. Then given € > 0, there is a 6 > 0, such that for all ||w||, <6, ||2|| < €.
Next, consider the closed-loop map from w to z which is parameterized as follows,
Tzw:fl(Gafyj:l(MaQ)):FZ(T7Q)7 Qespaf

where T has the following realization,

¢ = f(z)+g(2)F(2) + gi(@)w +  g(x)uo
¢ = f@)+g@DFE) + L@WE) - b(z)) - L@ka(x)w +  g(F)uo '
z = hl(ac) + klz(af)F(f) + k’n(ﬂ))w + k’lg(ib)uO
Yo = h(i') - h(:ﬂ) + kzl(w)w
(5.22)

Now consider the structure of I/O map 7" which has zero initial conditions 2(0) = 0 and

Z(0) = 0, the closed-loop map T, is locally 1/0 stable and parameterized as follows,

Tzww - Tl(w7 TQ(Q)w)v

where Ty and 75(Q) are locally I/O maps, and 7; defines the map from { v :’ to z as
o

follows,
po= f(a)+ g(a)F(3) + glew + glou
vo= f(&)+g(D)F(@)+ LE)E) ~ h(z)) - L@ka(e)w +  g(@)uo
z = h1($)+k12($)F(£§) 4 k‘n(ﬂ?)’w + k‘lz(l')UQ

and 75(€)) is the map from w to ug defined as follows.

8.

= f(2) + 9(2)F(Z) + g1(z)w + g(2)Q(1(&) — h(z) + kn(z)w)
& = f(&)+ g(&)F (&) + L(E)(h(E) = h(z) = kaa (2)w) + g(£)Q(M(E) — h(z) + ko (2)w) -
wo = Q(h(Z) — h() + ki (a))
Both 77 and T3(Q) are locally asymptotically stable with zero inputs as guaranteed from
the development, then they are locally I/O stable by Lemma 5.3.11.
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It is noted that that unlike in the linear case, the closed loop maps have no affine-
like relation with () for nonlinear systems in general. To conclude the I/O discussion,
we consider an example from [48]. The parameterization of the closed-loop map is used in

the nonlinear H.-optimal controller design in [66].

An Example

Consider a feedback system with the following block diagram,

]

w1 e u,l\ B Y
N

D)
Q

where P is a (locally) I/O stable plant. we need to parameterize a class of controllers C

wy

such that the resulting maps from [ } to [ ! } are (locally) I/O stable. This problem
Y

w2
is considered in [48] in an I/O setting. In the following, we consider it in the state-space

framework.
Suppose system P has the following input-affine realization,
p.) E=Iple)+gp(z)wo
y=hp(z)

with fp,gp,hp € C?; and & = fp(z) is locally exponentially stable around 0. Define

w u
w = l: ! :l and z = [ } , then the system block diagram is redrawn as follows,
Y

w3z
2 ] Y
Gp
C
with
&t = fp(z) + [O gp(a;)}w +  gr(z)u

AT
hp(m) 0]

e = —hp(z) + [1 0]w
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As P is assumed to be locally exponentially stable around 0, the state feedback and output

injection can be chosen as F' = 0 and L = 0, respectively. Then by Theorem 5.3.6, a class
of controllers C' can be represented as C' = F;(Mp,Q), with
& = fp(&) + gp(&)uo

Mp .

S
1l

Uo
Yo = hp(Z) +e

and ¢ € SP,s. Next, we examine the structure of the parameterized controller.

Lemma 5.3.12 The controller C = Fi(Mp,Q) has structure C = Q(I — PQ)™".

Proof. let ug = Quo, then
o E= fp(%)+ gp(#)Q(hp(Z) + €)
u=Q(hp(Z)+e)
with #(0) = 0. Let yo = hp(Z)+e. Since u = Qypo, it is sufficient to show yo = (1 — PQ) e,
ore=(I—PQ)yo.
In fact, consider y, := (I — PQ)yo, it can be written as
&= fp(z) +gp(z)Qyo
Yu = Yo — hP($)
Now replace yo := hp(Z) + €, then we have
&= fp(z)+ gp(2)Q(hp(Z) +¢)
Yu = hp(Z) + e = hp(z)
As z(0) = 0, by the uniqueness of the solution to differential equations, we have z(¢) = #(#).
Then y, = e, ie., e = (I - PQ)yo. |
We finally examine the structure of the closed loop map from w; to y provided wsy = 0.
Lemma 5.3.13 The closed loop map from wy to y with wy = 0 is parameterized as Ty =

PQ.

Proof. Let wy = 0. then the closed loop map is parameterized as Tow, = Fi(T,Q) where

T is as given in (5.22),
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with (0) = £(0) = 0, and ug = Qyo. Therefore,
& = fp(z)+ gp(2)Q(hp(Z) — hp(E) + w)
Town +§ %= fp(2)+ gp(£)Q(hp(F) — hp(z) + w)
z = hp(z)
with 2(0) = £(0) = 0. Therefore, &(t) = 2(t) for all ¢ > 0, then T}, = PQ which is locally
I/0 stable. 0

The interested reader can compare the above results with those in [48].

5.4 Stabilization of General Nonlinear Systems

In the last section, we considered the input-affine nonlinear systems, which have nice struc-
tures close to linear systems. The stabilizing control laws and stabilizing controller pa-
rameterizations are constructed based on observers. In this section, we will consider the
parameterization problem for a more general class of nonlinear systems whose structures are
not required to be input-affine. The treatment in this section is motivated by the results on
input-affine systems. A set of stabilizing controllers for system  will also be characterized
as fractional transformations of some stabilizing parameters, i.e., 7;(M, Q). Furthermore,

the feedback systems will have the following separation structure.

5.4.1 Local Controller Parameterization

The plant considered in this subsection is
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G, : { &= Jlwu) (5.23)
y = h(2)

where f(0,0) = 0,2(0) = 0, f,h € C% 2, u and y are assumed to have dimensions n,
p, and ¢, respectively. Clearly, the origin 0 is an equilibrium of the system with « = 0.
In this subsection, the locally stabilizing controller parameterization for system G, (5.23)
is considered. The parameterized controllers are represented as fractional transformations
of some locally stable parameters. We first define the following a class of the local stable

parameters.

Definition 5.4.1 The class SPi,. of time-invariant nonlinear systems is so defined that

each member has the following realization,

T = fQ(:v,u)
Q : 5.24
{ y = ho(z,u) ( )

for some fg,hg € C°, and is locally asymptotically stable at 0 with u = 0.
Q@ 1Q

So if @ € SPjec, by inverse Lyapunov theorem, it admits a locally C' Lyapunov function
Vo (o).

Next, the notions of stabilizability and detectability for system G, (5.23) are examined.

Definition 5.4.2 G, (5.23) is locally stabilizable around x = 0 if there is a continuous
Junction F' : R"—=RP with F(0) = 0 such that ¢ = f(z, F(z)) is locally asymptotically

stable around z = 0.
The following technical definition is from [190].

Definition 5.4.3 System G is said to be locally weakly detectable, if there are a C° map-
ping fo : R" X R x RP—=R" with f,(0,0,0) = 0, a C! locally positive definite function
W :R" x R"—=R™, and functions ¢1, ¢a, &3 of class K such that

P1(lle — &) < W(z, ) < éa(]lz - 7)) (5.25)
awa(?@f(ﬂ”’“) + szgﬂfo@h(x)m) < =ds(lle — ) (5.26)

Jor allw € B,, and z,% € B, for some ry,r > 0.
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If the system G is (locally) weakly detectable, standard arguments show that there is a
function Bp of class KL such that the error state e = Z — z evolves according to the following
dynamics,

é= fole+a,h(z),u)— flz,u) = nle,z,u) (5.27)

which satisfies

eI < Bo([le(0)[] ;1) (5.28)

for all t € R*, 2 € B,, and u € B,,. Therefore, —z as t—o0, i.e., the system & =

Jo(&,h(x),u)is a local observer for system G,.

Remark 5.4.4 A local observer for the general system (5.23) with f,h € C? can be con-
structed if there is a matriz-valued function L(z) such that @ = f(z,0)+ L(z)h(z) is locally

exponentially stable. In fact, it can be shown that & = f,(Z,y,u) with

fo(@,y,u) = f(Z,u) + L(Z)(R(F) — y)

is such a local observer. It is exactly the case for the observers constructed for the input-

affine systems in the last section.

We have the following theorem about the local controller parameterization for system

(5.23).

Theorem 5.4.5 Suppose system G, (5.23) is locally asymptotically stabilizable and lo-
cally weakly detectable. If in addition, there is a C° function F : R"—RP such that
& = f(x, F(z)) is locally asymptotically stable at 0, and the function f, : R x RI x RP—R"
is chosen as in the definition 5.4.3, then the controller parameterized as w = Fy(M;,Q)y
with My given by

Mp:q w=F(Z)+ ug

Jor all Q € SPi,e also locally asymptotically stabilizes system Gy around 0.

The following proof basically follows the proof of Theorem 5.3.6, we just give a sketch

here.
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Proof. Assume up = Qo for § € 8P, with the following realization

{ g': a(&, o)

Uy = 6(67 yO)
The dynamics of the closed loop system is described by

z

F, F(Z) + ¢(&, h(ZT) — h(z)))
fo(&, h(z), F(&) + (&, h(7) = h(z))) -
a(§, h(Z) - h(z))

Take e 1= & — x as the error state, then equivalently, the closed loop system can be repre-

Il

&
£

sented with the state z, = [T &7 2T)7 as

€= fO(e + x,h(l’),u) - f(mvu)
¢ =a(&,h(z+e) - h(z))
&= f(z, F(z+e€)+c(& (v + €) = h(x)))

where u = F(z + e) + ¢(§, h(z + €) — h(2)).

We first prove that e(t)—0 and £(t)—0 as t—oo if (e(0),£(0)) € By, x B,, for some

To,qp > 0.

Consider the e-subsystem. By the detectability, there is a function 8, of class KL such

that
eIl < Bo(lle(O)f, 1) (5.29)

for all t € RT, e(0) € B,, C R® and Bo(r0,0) < r, ¢ € B, C R™, and u € B,, for some
T, 7,7y > 0. S0 e(t)—0 as t—oo, for all e(0) € B,,. Asu= F(z+e)+c(& h(z+e)—h(z))
is continuous function of ¢, ¢, and =, it can be assumed that u € B, ife,z € B, and £ € B,.,

for some ry > 0.

Next, consider the £-subsystem £ = a(€,h(z + €) — h(z)). If e = 0, then it becomes
é = a(£,0) which is locally asymptotically stable. By Lemma 5.3.8, there exists a continuous
function o with o(s) # 0if s # 0, for the given r, > 0, there is o > 0 with ¢y < r, such that
if [le(t)]] < o(go) with e(t)—0 as t—oc, then ||£(¢)]] < 7, and z(1)—0 as t—oc. However,
from the similar arguments as in the proof of Theorem 5.3.6 (Step 2), it follows that e(t),
which satisfies (5.29) also satisfies the above conditions for £(0) € B,,, €(0) € B,,, and
z(t) € B, for some g, ro,7 > 0. Therefore, by Lemma 5.3.8, it is concluded that £(¢)—0 as

1—00.
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The proof of this theorem is completed by showing that z(t)—0 as t—oo if 2(0),e(0) €
B, and £(0) € g for some suitably adjusted ro,qo > 0, but the latter follows the similar

arguments as above.

Remark 5.4.6 The central controller for this parameterization can be recovered by letting

@ = 0. By doing so, we have Vidyasagar’s Theorem [190] as follows:

Suppose that system Gy is locally asymptotically stabilizable and locally weakly detectable.
If C° function F : R"—RP is such that & = f(z, F(z)) is locally asymptotically stable at
0, and C° function f, : R x R? x RP—R" is chosen as in the definition 5.4.3, then the
controller w = Ky given by

s { B = fo(@y, (@)
u= F(Z)

locally asymptotically stabilizing the feedback system at 0 € R"™ x R™.

5.4.2 Global Controller Parameterization

In this subsection, we generalize the local result in the previous subsection to get a global
characterization. However, the conditions in general are very restrictive. The system con-

sidered is the same in (5.23), i.e.,

@:{i:ﬂ%w (5.30)

where z € R" is the state vector, v € R? and y € R? are the input and output vectors,
respectively. f,h € C° f(0,0)=0,h(0) = 0. Clearly, the origin 0 is an equilibrium of the
system with u = 0. It is assumed that for all v € £5[0,00), z(¢) is defined for all initial
state z(0) € R™ and (almost) all # € R*. We first have the following technical definition
due to Sontag [168].

Definition 5.4.7 Consider system & = f(z,u). It is input-to-state (I/S) stable if there
exist functions 3 of class KL and v of class K such that for each essentially bounded mea-
surable control u(-) and each initial state x(0), the solution z(t) exists for each t > 0; and

furthermore, it satisfies

lz@Il < 511201, 1) + y(llull - (5.31)
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Definition 5.4.8 The class SPy/g of nonlinear systems is defined such that each system
in SPys has a realization like (5.24) and is I/S stable.

The following definition is due to Vidyasagar [190].

Definition 5.4.9 System G, (5.30) is said to be globally weakly detectable, if there are «
C° mapping f, : R* x R? x RP—R" with f,(0,0,0) = 0, a C! positive definite function
W :R" x R"—=R", and functions ¢1, ¢, ¢3 of class Koo such that

P1(llz — &) < W(a, %) < ol - &) (5.32)
——_awagi’j)f (@) + %%@fo(f,h(m),u) < ~o([|lz ~ 7)) (5.33)

for alluw e R? and z,% € R".

By Lyapunov Theorem, the above definition of detectability implies that there is a

function fp of class KL such that the error state e := & — z satisfies
lle@Il < Bo(|le(0)]] ;1) (5.34)

for all t € RY, 2 € R", and u € RP. Therefore, system & = f,(&, h(z,u), u) is an observer
for system G.

Motivated by the construction of the stabilizing controller parameterization in the last
subsection, we have the following result regarding the parameterization of a class of stabi-

lizing controllers.

Theorem 5.4.10 Suppose the system G, (5.30) is globally stabilizable and globally weakly
delectable. Let the function f, : R" x R? x RP—R"™ be chosen as in the definition 5.4.9. If
in addition, there are a C° function F : R* x R™—R? for some integer m > 0 such that

&= f(z, F(z 4+ v, w)) with input Y } is 1/S stable, and a C° function H : R™ x R?—R/
w

Jor some integer I > 0 such that ||H(x1,h(z2))|| < &4(||z1 — 22||) for some function k), of
class K and for all z1,z9 € R™. Then the controller parameterized as u = Fi(M,,Q)y with
M, given by ’
&= f,(,y, F(,u0))
My S uw= F(Z,u0)
yo = H(Z,y)
Jor all Q € SPy/s also globally asymptotically stabilizes system Gy around 0.
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Remark 5.4.11 The central controller can be recovered by letting () = 0. This theorem is

reduced to the following statement about global stabilizability (see also [104, 181]).

Suppose the system G, is globally asymptotically stabilizable and globally weakly de-
tectable. Let the function f, : R" x R? x RP—R" be chosen as in the definition 5.4.9. If
in addition, A C° function F: R"—RP is such that & = f(z, F(z + v)) with input v is 1/S

stable, then the controller w = Ky given by

globally asymptotically stabilizes the feedback system at 0 € R™ x R™.

The above theorem is given in [108] in the case where the output y depends on both z
and u,i.e.,y = h(z,u). In the following, we just give a sketch of the proof for completeness,

and mainly emphasize on the discussion about the restrictiveness of the conditions.

Proof. [Theorem 5.4.10: A Sketch] The proof basically follows Sontag’s arguments
about global stability of cascade systems. Assume ug = Qyo for Q € SPrss with the
following realization,
{ f = a(&, yo)
uo = ¢(£, yo)
The dynamics of the closed loop system is represented with the state z, = [eT ¢7 27]T
(with e := Z — @) as
é= fole+z,h(z),u)— flz,u) = nle,z,u)
€= a(&, H(z + e, h(2)))
&= fle, Pz + e,c(€, H(z + e, h(z)))))
with v = F(z +e,c(§, H(z + e,h(z)))), where z, 3, £ are states of plant, observer, and the

parameter, respectively.

By the detectability and the choice of f,, there is a function 8, of class KL such that
(] < Bo(lle(O)]],1) (5.35)

for all t € RT, e(0) € R", 2 € R™, and u € R”.

Consider the £-system, the I/S stability of £ = a(€,yo) with input yo = H(z + e, h(z))

and the growth condition on H imply that there exist a function B, of class KL and a
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function v, of class K such that

€N < B (HECONT 1) + ynllelloo ) (5.36)

for all t € R, 2(0) € R", and essentially bounded function e : R* —R".

Now according to Sontag’s argument in [170, 104], define

51(57 t) = 6(1(5(](3, t/2) + '}/h(ﬁo(sa O)),t/?) + 7h(ﬂ0(57 t/Z)) + ﬂo(sa t)'

€
Then it is easy to verify that 8y is also of class KL. Define & = l: ; }, from (5.35) and

(5.36), it follows that
12O < Bu([l2(0)]],t), ¥t € RF.

Finally, consider the z-system & = f(z, F(x 4 €,u0)) with uo = ¢(&, H(z + e, h(z))).

€
The I/S stability assumption about the system with as the input, the continuity of
Uo

function ¢, and the growth condition on H together imply that there exist a function 3, of

class KL and a function 7, of class K such that
2l < Bs(Nlz(0)l . 2) + 7s(ll2]])-

Now use the similar argument as the above, we can conclude that there is a function 3
of class KL such that
lze(DIl < B(Jlz(0)]] ,1), Yt € RT.

Z
(2, = [ }) This concludes the globally asymptotic stability of the closed loop system.

z
O

Further Remarks

In general, the conditions in Theorem 5.4.10, i.e. the I/S stability condition and the growth
rate condition on H, are restrictive. In the following, we will examine some examples that

satisfy the conditions.

Remark 5.4.12 A class of smoothly stabilizable (input-affine) nonlinear systems satisfy
the 1/S stability conditions in Theorem 5.4.10 [104, 108]. More generally, let’s consider a
globally (smoothly) stabilizable nonlinear system, & = f(x,u) with f smooth. By Sontag’s
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arguments [170, 104], there ezists a feedback law u = Frjo(x) and a smooth function G :
R"—R* with 0 < G(z) < Cy, < 00 for all x € R™ such that the following system
i = (2, Fyjole) + Gla)o)

with input v is I/S stable, i.e., there are a function B of class KL and a function g of class
K such that
[zl < B2 (0)]}, %) + vo(llv]l)

for all 2(0) € R™ and t € RT. In addition, assume Fj,o is a globally Lipschitz function
with constant C' > 0, and G(z) > C, with some C, > 0 for all z € R™. Define function
F:R" x RP—RP as F(z,w) = Frjo(x) + w. Therefore, for x(t) which satisfies

&= f(z, Fz +v,w)) = f(z, Frjo(z) + (Fjo(z +v) = Frjo(z) +w)),
we have

le()]l < A=), 1)+ 30( |G (@) Fijo(e + v) = Fijo(e) +w)| )

smwwmm+%%jawmwwmu»

M

with y(s) 1= 'yg(%"—ggs) being of class K, which implies that the system & = f(z, F(z +v,w))

< B(llz(0), ) +~( )

with input [ v jl is 1/S stable.

w

Remark 5.4.13 A class of feedback linearizable input-affine nonlinear systems satisfy the
I/S stability conditions in Theorem 5.4.10 [68]. Suppose & = f(z)+g(x)u with z € R",u €
R and [, g smooth is exactly linearizable, i.e., there is a coordinate transformation z = ®(z)
(in fact, z; = Lj(“l(a:)) with ® : R"—R" being a diffeomorphism such that the system under

the new coordinate z = f(z) + §(2)u is as follows

2.’1222

Zp—1 = Zp

2, = b(z) + a(2)u

Then by [68, Theorem 1], there is a control law u = u(z), such that 5 = f(z) + §(2)u(z)
is globally asymptotically stable and in addition, > = f(z) + §(2)(p(z + d) + w) with input
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d .
[ } is I/S stable, i.e., there are a function § of class KL and a function o of class K
w

d
w

for all z(0) € R™ and t € RY. Now return to the original system, define F : R™ x RP—R?
(p=1) as F(z,w) = p(®(x))+ w; the original system becomes & = f(z)+ g(2)F(z + v, w)

and under the transformation z(t) = ®(x(1)) it becomes

such that

)

o0

I2(O1F < B0, 1) + 7(

2= f(2) +9(2)(u(z + ((3(z + v) - 9(2))) + w).
As ®71 : R"—R" is still a diffeomorphism, it is continuous, therefore there is a function
K of class K such that ||®~1(2)]| < k(||z]]). Now we additionally assume ® : R"—R" is
globally Lipschitz with constant C' > 0, then
)

o0

(Ol = || @~ ()| < w(ll=(0)) < wBUIREOI 1)+ 7(

[ B(z +v) — B(z) }

w

<SRBI 2], 1) +7(ClIllo + llwlloo))
)7

N

where B.(s,t) = w(26(Cs,t)) is again of class KL and v.(s) = x(27(Cs + s)) is of class K.

< Be(llz(O)]],8) + el

Remark 5.4.14 If the output function h is globally Lipschitz, then an H, which satis-
fies the requirement in the above theorem, can be taken as H(z,y) = h(z) —y. In fact,
[1H (21, h(22))| = [|P(21) — A(z2)|| < Cllz1 — 22| for some C > 0, and ky(s) = Cs is of

class K.

From the above discussions, we see that the I/S stability conditions and growth condi-
tions on H for the classes of systems we examined are reduced to the uniform continuity (or
globally Lipschitz) conditions for some functions (as a reviewer pointed out). The global

Lipschitz condition is a restrictive omne.

5.5 Concluding Remarks

We have proposed a state-space approach to the parameterization of stabilizing controllers

for time-invariant nonlinear systems without adopting coprime factorization technique. The
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central idea here is the decomposition of output feedback problem into simpler state feedback
and state estimation problems. The stabilizing controllers are represented as fractional
transformations of some stable parameters. Both local and global parameterizations are
derived for the general nonlinear systems. These problems are treated under the assumption
that the controllers have the same dimensions as the plants and have separation structures,
and the observers are assumed to exist. However, in the general case, especially in the
global case, the constructions of the observers are not provided.

The material in this chapter forms the papers [108, 109].
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Chapter 6

Attenuation of Persistent
L~-Bounded Disturbances for

Nonlinear Systems

6.1 Introduction

The problem of optimal rejection of persistent bounded disturbance for a linear
system was posed by Vidyasagar in [193]. It is a minimax optimization problem, i.e.,
the problem of minimization of the worst possible impact of a class of persistent bounded
disturbances on the system. If the disturbance is denoted by w and the signal measuring
the impact by z, and both signals are measured in L (in continuous time case), then the
performance to be minimized is

J = sup [E (6.1)
wE Lo [0,00),||w]] <1

This problem is known as L!-optimal control problem [42, 43, 40], because the mini-
mization (6.1) amounts to the minimization of the L. .-induced norm, i.e., the £'-norm,
of the linear system. The linear £'(or ¢! in discrete-time case)-optimal control problem
was extensively investigated in an input/output setting by using Youla-parameterization
[42, 43, 40]. The relation between the L!-control of a linear continuous-time system and
the ¢!-control of its Fuler approximated discrete-time systems was established in [23]. Re-
cently, for a linear discrete-time system, the corresponding ('-optimal control problem was

solved in a state-space setting in terms of dynamical state-feedback [51, 40}, continuous



137

nonlinear static state-feedback [158, 160], and piece-wise linear static state-feedback [24].
Furthermore, Shamma [160] showed that if the linear £!-optimal control has any kind of
solution, then there must exist a continuous (nonlinear) static state-feedback ¢!-controller.
It is possible that by allowing the class of continuous nonlinear controllers, one can make
the closed-loop £!-performance (6.1) strictly smaller than one can do using only linear con-
trollers [44, 174]. Therefore, it is natural to consider such an optimal disturbance rejection
problem in the nonlinear domain.

In this chapter, we will consider the problem of optimal rejection of £.,-bounded distur-
bance for continuous-time nonlinear systems. However, in the nonlinear setting, the min-
imax optimization problem (6.1) is not equivalent to the minimization of the L., -induced
gains of the corresponding nonlinear operators, while we will borrow the terminology non-
linear L!-control to refer to the corresponding nonlinear minimax optimization problem
for convenience. The methods used in this chapter are greatly motivated by Shamma
[158, 160], in which the ¢;-control problem for a linear discrete-time system is construc-
tively solved in terms of continuous nonlinear static state-feedback. The main idea in the
L({Y)-performance analysis and synthesis is to construct a certain invariant subset of the
state-space such that achieving disturbance rejection is equivalent to restricting the state
dynamics to this set. The techniques from viability theory, nonsmooth analysis, and set-
valued analysis [9, 10, 39, 7] are extensively used; and the notion of (controlled) invari-
ance [198, 7, 160] plays a central role. This treatment provides some geometrical insights
into the robust (£') control problem. It is remarked that the invariance notion has also been
employed in other nonlinear contexts, such as the control synthesis with state and control
constraints (see [78, 98, 22, 71] and references therein) and the zero dynamics [90, 8, 130].

The remainder of this chapter is organized as follows. Some mathematical preliminaries
are provided in Appendix A, in which some concepts from set-valued analysis and nons-
mooth analysis are reviewed, and the emphasis is on set-valued maps and contingent cones.
In section 2, the £!-performance for a nonlinear system is analyzed. The L'-performance
of a nonlinear system is characterized in terms of £!-performance domains. In section 3,
the nonlinear £'-control synthesis problem is considered. The L£!-control problem is char-
acterized in terms of controlled £!-performance domains; a continuous static state-feedback
L'-controller is constructed. In section 4, the (controlled) £!'-performance domains are
characterized in terms of the (controlled) invariance domains of some (controlled) differ-
ential inclusions. Some algorithms for computing the (controlled) invariance domains are

provided. In section 5, the computation issues are considered, and some approximation
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methods are suggested. In particular, the relation between the £'-performance analysis
and synthesis of a continuous-time system and and the {!-performance analysis and syn-
thesis of its Euler approximated discrete-time systems is established. Those proofs that are

relatively technical and less related are put in Appendix B.

6.2 L!-Performance Analysis of Nonlinear Systems

In this section, we will give some characterizations of the £!-performance for a nonlinear
system. In the next section the synthesis problem is considered based on the analysis results

in this section.

Consider a system with external disturbances as follows,
z = flz,w
Fla,w) 62
w

where z € R" is the state vector, w € BR? := {v € RP|||v|]]| < 1} and z € R? are the
external disturbance input and the regulated output, respectively. Suppose that if w(¢) = 0
and z(0) = 0, then 2(¢) = 0 and 2(¢) = 0. The performance which measures the property
of disturbance rejection in Lo, for system (6.2) was formulated by Vidyasagar in [193] as

follows,

J= s e (63)
wWEBLe[0,00)

Note that, in the linear case, this performance J is |G|, i.e., the L-induced norm of
the input/output map G : w +— 2. We say that the system has a disturbance attenuation

property if J < 1. This motivates the following definition.

Definition 6.2.1 Consider the given system (6.2) with z(0) = 0. It has L'-performance
if for all w(t) € BLoo[0,00), [l2(1)]|, < oo and [|2(1)]|, < 1.

Therefore, system (6.2) has £!-performance, if and only if it is bounded-input-bounded-
state (BIBS) stable and J < 1. The above definition is a natural generalization of the
L1-performance for a linear system. In the next few subsections, we will characterize the

L'-performances.

6.2.1 L!'-Performances and Reachable Sets

Consider system (6.2). We will assume f and h are continuous, and f(0,0) = 0, (0,0) = 0.

Therefore, 0 € R” is an equilibrium of the system with w = 0. Moreover, we assume the
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admissible disturbance set is
W = {w:[0,00)—~BRP| w is measurable} = BL,[0, c0). (6.4)
We also define a subset W, C W as follows,
W, = {w € W| w is continuous}. (6.5)

It is assumed that system (6.2) has the BIBS property. Therefore, all possible solutions with
the admissible inputs are in the space C(R*, R"). We assume that system (6.2) is complete
in the sense that for each w(t) € W and zo € R", the solution z(¢) to (6.2) starting at
z(0) = =z is uniquely defined for almost every ¢ € [0,00), and the solution continuously
depends on the initial conditions with respect to the compact convergence topology in
C(R*,R"™). The state transition function ¢ : RT x R® x W — R" is so defined that
(1) = ¢(T, zo, w*) means that system (6.2) evolves from initial state 2o to state z in time
T under the input action w*. Note that ¢ is well-defined and is continuous with respect
to initial state because of completeness of system (6.2). We define the reachable state
maps of system (6.2) with the admissible input set W and W, in (6.4) as set-valued maps
R:R"~ R"™ and R.: R" ~ R"™ with

R(z) = {é(t,z,w)Vw e W,t € R}, (6.6)

Re(z) = {$(t,z,w)|Vw € W,,t € RT}. (6.7)

Both R(z) and R.(z) are bounded sets since system (6.2) is BIBS.

Definition 6.2.2 A4 set K € R" is « weak invariant set for system (6.2) with respect to
an admissible input set W if for all z € K, and w € W, ¢(t,2,w) € K for almost allt > 0.

The sets R(0) and R.(0) have the weak invariance property. The case for R(0) is stated as

in the following proposition.

Proposition 6.2.3 For all z € R(0), and w € W, ¢(t,z,w) € R(0) for all t > 0. The
closure R(0) of R(0) has this weak invariance property.
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Proof. If z € R(0), then by the definition of map R(0), there exist wy € W and T € R+
such that ¢ = ¢(T,0,w;). Now take wy € W, define w : RT—=BR? as

w(t):{ wi(t) ?fte [0, 7]
wy(t) ift>T

and w € W. Therefore,
#(t,0,w) € R(0), VteRT.

In particular,if t > T,

¢t =T, z,wy) = ¢(t — T, (T, 0,w1), w2) = ¢(,0,w) € R(0).

To show R(0) is invariant, we need to show that given z € R(0) and w € W, §(t, z,w) €
R(0) for all t € R*. In fact, suppose there exists a sequence {z,} C R(0), such that z,—z
as n—o0. Therefore, ¢(t,z,, w) € R(0) C R(0) for all ¢t € RT. R(0) is bounded since R(0)
is bounded, therefore, by the completeness assumption, ¢(¢,z,w) = lim,—oo ¢(f, 2, w) €

R(0) for all t € RT. o

Next, we will characterize the £!-performance for system (6.2) in terms of the reachable

set. We first give a weaker definition as follows,

Definition 6.2.4 Consider the given system (6.2) with (0) = 0. It has weak L'-performance
if for all w(t) € Wy, [lz(t)]]., < oo and ||z(t)||., < 1.

Therefore, if system (6.2) has weak £!-performance, then
Jw = sup |l < 1. (6:8)
weEW,

As system (6.2) is BIBS, then there exists a compact set X C R, such that ¢(t, 0, w) €
X for all w(t) € W. Define a closed set as follows,

Q:={z € X|||Az,w)|| < 1,Yw € BRF}. (6.9)
Then  is bounded. We immediately have the following assertion.

Theorem 6.2.5 The system (6.2) has L'-performance J < 1 if and only if R(0) C Q. It
has weak L'-performance Jy < 1 if and only if R.(0) C Q.

Furthermore, the optimal performance J is given by

J = sup{||h(z,w)|| |z € R(0),w € BRF}.
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It is noted that in general the reachable set R(0) and R.(0) are not easily computable
by the definitions. In the next subsection, we will give some alternative characterizations

in terms of the notion of invariance for differential inclusions.

6.2.2 L'-Performance Domains

The nonlinear systems with £!-performances can be described with the aid of a differential

inclusion. Indeed, let’s consider system (6.2), define a set-valued map F': R" ~» R" as
F(z):={f(z,w)lw € BR?} (6.10)

with the domain DoMm(F) = Q. It is noted that all solutions to the differential equation

&= f(z,w) with w(t) € W are the solutions of the following differential inclusion,
& € F(z). (6.11)

However, in general, not all solutions of differential inclusion ¢ € F(z) are the admissible
solutions for the system (6.2) for some w € W; therefore, these two descriptions are not
equivalent. We first have the following definition. The contingent cone of a set is defined

in Section 6.7.2.

Definition 6.2.6 Consider system (6.2); the bounded set Q is defined as in (6.9). A closed
set K € Q is an L'-performance domain for system (6.2) if 0 € K and for all z € K
and w € BR?,

f(z,w) € Tg(w), (6.12)

where T () is the contingent cone of set K at x.

It will be seen that an L!-performance domain is a nonempty invariance domain of its
corresponding differential inclusion (6.10)-(6.11) (see Section 6.4.1).
We first have the following theorem about the weak L!-performance.

Theorem 6.2.7 Consider system (6.2). It has the weak L*-performance if and only if there

exists an L'-performance domain for system (6.2).

The proof of this theorem is given in the next subsection. As for the £!-performance,

we first have the following assertion for a class of nonlinear systems.
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Theorem 6.2.8 Consider system (6.2).
(i) It has L -performance, then there exists an L!-performance domain.
(ii) If f(z,w) is locally Lipschitz in x € R™, then system (6.2) has the L'-performance

if and only if there exists an L'-performance domain.

The proof of this theorem is given in the next subsection. In the following, we will
mainly consider the case of interest in the sequel, where system (6.2) is affine in w. As a
result, the Lipschitz property in Theorem 6.2.8 (ii) is not required. More concretely, we

consider the following system,

z= fz)+g(z)w
f(z) +g(2) 7 (6.13)
z = h(z,w)

i.e., the function f(z,w) in (6.2) is replaced by f(z) 4+ g(2)w; the other assumptions on
f(z,w) are also imposed on f(z) + g(z)w.
Theorem 6.2.9 Consider system (6.13) which is affine in w. The following statements
are equivalent,

(i) There exists an L'-performance domain for system (6.13).

(ii) System (6.13) has weak L1-performance.

(iii) System (6.13) has L'-performance.

The proof will be given in the next subsection. Theorems 6.2.5 and 6.2.9 imply that if
R(0) C Q, then it is an £'-performance domain for system (6.13). In fact, it is the smallest
L1-performance domain (Section 6.4.1). We next give an algorithm to compute the optimal

performance J in (6.3) by using the bisection method (which is used in computing Heo-

performance [26]).

Given ¢ > 0, one needs to find a v* > 0 such that v*—¢ < J < y*+¢. Let v > 0, define
D, :={z € R"|||h(z,w)]| < 7v,YVw € BRF} (6.14)

and let DINV(D,) be the largest invariance domain of the differential inclusion (6.10)-(6.11)
in D, (see Section 6.4.1).

Algorithm 6.2.10 Give ypr > 7y > 0 such that v, <J < v,
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Step 1: If yar — vm < 2¢, let v* = (ym + Ym )/ 2, then stop; otherwise go to step 2.
Step 2: Lety = (Ym + Ym)/2 and compute K., := DINvV(D.,).

Step 3: If 0 € K.,, then redefine vy := 7; otherwise let v, 1= 7. Go to step 1.

The above algorithm can be used to get an approximation of optimal £'-performance

for system (6.13).

6.2.3 Proofs of the Main Theorems

Next, we will prove Theorems 6.2.7, 6.2.8, and 6.2.9. The techniques used in the proofs are
basically from [7, 179, 201].

PROOF OF THEOREM 6.2.7
The following lemma from [9, 201] will be used in the following discussion.

Lemma 6.2.11 Consider a differential equation & = ¢¥(z,t) with ¥ : R™ x RT—R" being
continuous. Suppose a set K C R"™ is closed. If (z,t) € Tr(z) for allz € K and t € RT,
then for any zo € K, there exists a solution x(t) to the differential equation starting at zg

which is viable in K, i.e. x(t) € K for almost all t € [0,00).

Proof. [Theorem 6.2.7]

[Necessity] Let K := R.(0) C Q, we now show it is an £'-performance domain. We need
to show that for all wy € BR? and 2¢ € K, f(zo,wo) € Tk (z). In fact, given 7 > 0, one
has 2(t) = ¢(t,z0, w(t)) € K for all ¢ € [0,7] where w(t) € W, with w(0) = wy because of

the weak invariance of the set R.(0). Therefore,

z(t) = xg + /Ot:i'(s)ds =20+ t(% /Otf(r(s), w(s))ds).

Notice that f(x(s),w(s))is bounded in [0,T7], then by Lebesgue’s differentiation theorem,

one has
%ij%%/o flz(s),w(s))ds = f(zg, wo).

Therefore, one can find two sequences {t,} and {v,} with t,—0% and v,— f(zo,w0) as
n—00, such that zo + t,v, € K for all n € Z*. Hence, f(zo,wo) € Tk(%0), the conclusion

then follows by Lemma 6.7.5.
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[Sufficiency] Suppose K C  is an L!-performance domain. Given w(t) € W,, consider

the following time-varying differential equation,
= fz,w(t)) = fulz,t).

Note that the function f,, : R™ x RT—R" is continuous; and by assumption, fulz,t) €
Tx(z)for all 2 € K and ¢t € RT, then by Lemma 6.2.11, for all z € K, ¢(¢,z,w) € K for
all ¢ > 0. In particular, R.(0) C K C Q. O

PROOF OF THEOREM 6.2.8

Theorem 6.2.8 basically follows from [201]. We first restate a result from [201] which is

used in the proof. The weak invariance is defined in Definition 6.2.3.

Lemma 6.2.12 ([201, Theorem 3.9]) Consider system (6.2)

(i) If K is a closed weak invariant set with respect to W, then f(z,w) € Tx(z) for all
z € K and w € BRP.

(i) If function f(z,w) is locally Lipschitz in x, K is a closed set, and f(z,w) € Tx(z)

for all x € K and w € BRP, then both K and its interior are weak invariant sets.

Proof. [Theorem 6.2.8] (i) Suppose system (6.2) has £'-performance J < 1, by Theo-
rem 6.2.5, one has that the closure K := R(0) of R(0) belongs to €, since  is closed. By
Proposition 6.2.3 and Lemma 6.2.12 (i), one has that for all z € K,

flz,w) € Tg(z), VYw e BRP,

or F(z) C Tx(x). Thus, K is an invariance domain for F, which is closed, and 0 € K.

Therefore 0 € K C DINv(Q).

(ii) The necessity is proved in (i), only the sufficiency is proved here. Suppose K :=

Dinv(Q2) 3 0, then F(z) C Tk(z), or
flz,w) € Tk(z), Vw e BRP.

Then by Lemma 6.2.12 (ii), one has that for all ¢ € K, and w € W, ¢(t,z,w*) € K for all
t > 0; in particular, R(0) C K C Q. Then the assertion follows from Theorem 6.2.5. O

PROOF OF THEOREM 6.2.9

The following lemma is needed in the proof of Theorem 6.2.9.
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Lemma 6.2.13 Let continuous functions f(x) and g(x) be defined in (6.13). Given v > 0
and T > 0 and w(t) € W, define

(e, w(t), ) = sup{|[f(2) + g(z)w(t) = f(y) — g(y)w(®)[| V2, y € Q, ]z — yl| < 7} (6.15)

for almost every t € [0,T]. Then map t — §(x(t), w(t),y) is measurable on [0, T]. Moreover,
let {vy,} be a positive decreasing sequence converging to zero, and {7, } be a positive sequence

converging to zero. Then

lim 1 /:-Hn 6(z(s),w(s),v,)ds =0 (6.16)

n—oo T,

almost everywhere in [0,T].

Proof. It is obvious that the map ¢ — 6(x(¢), w(t),v) is measurable on [0,7]. It is noted
that for almost ¢ € [0,7], and vy > v2 > 0 6(2(¢), w(t), 1) > 6(2(t), w(t),v2), and

Alﬂi_r% 6(z(t),w(t),y) = 0.

Now let {7,} is a decreasing sequence converging to zero. We will show (6.16) holds almost

everywhere in [0,7]. In fact, by Lebesgue’s differentiation theorem, one has

lim L / T (a(5), (o), v)ds = 6(2 (1), w(t), 1) (6.17)

T—ot T Jt

almost everywhere in [0, 7] for each n € ZT. Therefore, (6.17) holds almost everywhere in
[0,T] for all n € Z7, since Z™ is countable.

Now take ¢ € [0,77] such that (6.17) holds for all n € ZT. Let ¢ > 0 be given. Then we
can find ny,ny € Z1, such that 6(z(t), w(t),v,,) < €/2, and

_T%/tﬁ—fn 8(2(8), w(s), Yny )ds < 6(z(t), w(t), Yn,) + €/2

for n > ngy. Therefore, if n > max{ny, ny}, we have

i_ t+7n 5($(S), w(SL’Yn)dS < ;_1; /tH'T” 5(9«“(3)7 w(s), 7n1)d8

Tn Jt

< (z(t),w(t),yn,) + €/2 < €.
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Proof. [Theorem 6.2.9]

It is noted that the implication (7¢¢)=-(4¢) is obvious, and (iz)=>(%) follows from theo-
rem 6.2.7. We only need to show (i)=>(4it). Suppose K C € is a compact L!-performance
domain. Tt is sufficient to show that if 2o € K, then for all w € W, ¢(t, 29, w) € K for all
t € [0,00). The proof is divided into two steps.

Claim 1: Given T > 0, for the given w € W, ¢(¢,z,w) € K for all t € [0,T].

Indeed, take 7 > 0, define a function f, : K x [0,7]—R" as follows,

1 T
Fres) = = [ (@) + g@uls)ds = F(@) + g(@hun(0) (6.15)
where
t+7
wa(t) = % /t w(s)ds,

which is continuous on [0,77]. In fact, for all ¢, € [0,77],

<2 - ull,

1 to+T t2
Jortt2) = wotll =+ | [ wts)ds = [ w(epds

/ t1+7T t1
since w(s) € BR? for almost all s € [0,7"]. Therefore, f. is continuous on the compact set
K x [0,T]. because of the continuity of f and g, we can assume ||f(z) + g(z)w| < § with
some § > 0 for all (z,w) € K x BRP. Therefore, by (6.18), it follows that || f-(z,?)]| < 8.

Note that
i+
ool < - [ let)lds < 1

for all t € [0,T]. Therefore, w, € W, C W. Then one has

fr(,t) = fl2) + g(2)w, (1) € Tie(2)

for all z € K t € RT. By Lemma 6.2.11, the solution z,(¢) to @, = f.(2,,t) for ¢ € [0,7T]
is viable in the compact set K, i.e., z.(t) € K for ¢t € [0,T].

On the other hand, one has that ||2,]| = || f-(z,?)|] < f. Take a sequence {x,(:)} :=
{z+,(-)}, where 7,,—0 as n—oo0, then the sequence is equicontinuous. Then by Ascoli’s
Theorem, the sequence remains in a compact subset of the Banach space C([0,7],R");
therefore, there exists a subsequence, denoted as {z,} without loss of generality, which
converges uniformly on [0,T] to an absolutely continuous function # which is viable in K
since K is closed. Furthermore, the sequence {Z,} converges to & because &, = f,(z,(1),1)

and f is uniformly continuous on the compact set K x [0,7].
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A sequence {7, } is chosen as follows,
Yo = llzn(t) — 2] + 57a

such that {v,} is decreasingly converges to zero (otherwise, we can choose a decreasingly

subsequence instead), and for all s € [, + 7],
lzn(t) = 2(s)]| < Jzn(t) — 2(O)]] + BT = .

Given € > 0, by Lemma 6.2.13, there exists an ng € Z*, such that if n > ng,

a0 = [ () + gla(uls))ds
= |G + ateatoDeNds — [ (S(6)) + alats) s
< ;1; tt—Hn 6(z(s), w(s),vn)ds < e.

By Lebesgue’s differentiation theorem, one has
lim = [ (FGal9) + oa()s))ds = Fx(t) + el l1),
since f(z(s)) + g(z(s))w(s) is bounded, is thus integrable on [0,T]. Therefore,
&(t) = f(e() + g(z(t)w(t), =(0) = zo,

almost everywhere in [0,T]. By the completeness of system (6.13), ¢(¢, vo, w) = z(t) € K
for all t € [0, T].
Claim 2: The viable solution #(¢) in K can be extended to [0, co).

In fact, by Zorn’s Lemma, one can extend the viable solution z(¢) in K to the interval
[0, Tnqw) for some Ty > 17 [201], ice.,

a(t) e K, Yt€[0,Thnas)

and T4, is such a maximal number. Now, we show T, = co. In fact, if not so, define

C :=limsup [|z(t)]| < oo,
t—Tmaz
as I is closed and bounded. Thence, [[z(t)|| < C + 1 for ¢t € [Thae — ) Tmas] With some
7 > 0. Since [Jw(?)|| < 1, then ||&(¢)]] = ||f(2(?)) + g(2(t))w(t)|| < 3. Therefore, for all

tly t2 € [Tma:v -7, Tmax] with tl S t2,

o) =a()]1 < [ (6] ds < 5002~ 1),
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Therefore, the Cauchy criterion implies that lim, ;- z(t) exists. Let 2(Tinae) = lim,_ - 2(t) €
K. Since

2(t) = @ + /Ot:b(s)ds,

let t—T~ . one has

e Tmam
2(Thaz) = To —%—f z(s)ds.
0
Then the solution can be extended to [0, Trn4z]. Now @(Thas) € K, the same argument as
in Step 1 shows that there exists Ty > 0 such that z(t) can be extend to [0, Tpnas + To)-

This leads to a contradiction about the maximality of T,,,. Therefore, T},,, = 00. O

6.3 L!-Control of Nonlinear Systems

In this section, we will consider the nonlinear £'-control synthesis problem based on the
characterizations of £!-performance in the previous section. A static state-feedback £l-
controller is constructed for a nonlinear system.

Consider the following input-affine system,

{ &= f(z)+ g1(x)w + ga(a)u (6.19)

z=h(z)+ k(z)w + ko(z)u
where z € R” is the state vector, w € BR? := {v € R?|||v|| < 1}, v € R™, and z € R?
are the external disturbance input, the control input, and the regulated output, respec-
tively. We will assume f, g1, g9, b, k1, and ky are continuous on R™, RaANK(g1(z)) = n and
RANK(go(2)) = m for all € R", and f(0) = 0 and h(0) = 0. Therefore, 0 € R™ is an
equilibrium of the system with w = 0 and u = 0. Moreover, we assume the admissible

disturbance set for system (6.19) is
W= {w € Lo[0,00)] [|w]|,, <1} = BL[0,00). (6.20)
The £!-control problem for system (6.19) is defined as follows,

Definition 6.3.1 The state-feedback L1-control synthesis problem is to find a continuous
state-feedback u = () for system (6.19) such that the resulting closed-loop system has the

LY -performance.

Define a set-valued map U : R" ~ R™ as follows,

U(z) == {u € R™|||2]| = ||A(2) + k1(z)w + ka(2)u]| < 1,Yw € BRP} (6.21)
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with domain

Dom(U) := {z € R"|U(x) # 0}.

Therefore, if u = 9(z) is an admissible £'-controller, then it necessarily satisfies )(z) €
U(z) for all z € DoM(U). We thus define the set of admissible (state-feedback) controllers

for the system G as follows,
K :={¢:R"—=R™| 9 is continuous on Dom(U) and

p(x) € U(z) for all & € Dom(U) with 1(0) = 0}. (6.22)

Let F': GRAPH(U) ~ R™ be another set-valued map defined as follows,
F(z,u) = {f(2) + n(z)w + go(z)ulw € BRF}. (6.23)

One immediately has the following observations. The upper semi-continuous (USC),

lower semi-continuous (LSC), and Marchaud maps are defined in Appendix A.

Lemma 6.3.2 (i) The set-valued map U : R" ~» R™ defined in (6.21) is locally bounded,
USC, as well as LSC with closed values; and Dom(U) is closed.

(it) The set-valued map F : GRAPH(U) ~ R™ defined in (6.23) is USC; if in addition
Dowm(U) is bounded, then it is Marchaud.

Define F. : R® ~ R™ by

Fo(z):= U F(z,u), (6.24)
weU ()

then the differential inclusion @ € F,(z), which is derived from system (6.19), is a con-
trolled differential inclusion (F, U) defined by (6.21) and (6.23). We first have the following

definition.

Definition 6.3.3 Consider system (6.19) and its corresponding controlled differential in-
clusion (F,U) defined by (6.21) and (6.23). Suppose K C DoM(U) is closed, then K is a
controlled £!-performance domain if 0 € K and for each = € K there exists u € U(z)
such that

F(z,u) C Tk(z). (6.25)

It will be shown in the next section that a controlled £!-performance domain for system

(6.19) is a closed controlled invariance domain of (F,U). Next, we will characterize the
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solvability of L£'-control synthesis problem in terms of the controlled £!-performance do-
mains. It is assumed that system (6.19) is complete in the sense that for each w(t) € W,
u(t) € Loo[0,00) or u = (z) € K, and 2o € R", the solution z(¢) to (6.19) starting at
z(0) = zo is uniquely defined for almost every ¢ € [0, 00), and the solutions are continuously

dependent on the initial states. We first have the following assertion.

Theorem 6.3.4 (Necessary Conditions) Consider system (6.19). If the L'-control
problem has a static state-feedback solution, then there exists a controlled L'-performance

domuain.

Proof. If the £!-control problem has a state-feedback solution, then there exists a state

feedback ¢ € K such that the following closed-loop system

{ i = f(z)+ g2(2)¥() + g1 (x)w (6.26)

z=h(z)+ ko(z)v(z) + ki (z)w
has the £!-performance. Define a set
Q. = {z € R"|||h(z) + k2(2)¢(2) + ky(2)w]] < 1,YVw € BRP}.

Let DINV(€) be the largest £!-performance domain of the closed-loop system (6.26) con-
tained in Q. By Theorem 6.2.8, 0 € DINV(Q,) # 0; and moreover, DINV(£2,) is a controlled

Ll-performance domain for the original system by Definition 6.3.3. g

It is noted that, the above theorem holds for more general class of nonlinear systems in
addition to the class of input-affine systems. Next, we will give a sufficient condition for
a modified £!-control problem to have a solution. Consider system (6.19). For € € [0,1),
define the following performance,

JE = sup 1zl - (6.27)

WELoo[0,00),[[w[ o L1—e
We will construct a state-feedback u(-) € K such that the closed-loop system satisfies J¢ < 1
for any € € (0,1). We have the following theorem. The sleek sets are defined in Section 6.7.2.

Theorem 6.3.5 (Sufficient Conditions) If there exists a sleek compact controlled L'-
performance domain for system (6.19), then for all € € (0,1), there exists a continuous

static state feedback such that the closed-loop system satisfies J¢ < 1.
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Proof. Suppose K # () is a sleek compact controlled £!-performance domain for system

(6.19). It is sufficient to construct a state-feedback £!-controller u = ¢ € K such that the

following modified system

{é=ﬂ@+ﬂ—dm@m+mww 6.28)
z=hz)+ (1 - e)ki(x)w+ ka(z)u

with the constructed controller achieves £'-performance.
As K € DoM(U) is sleek, T : K ~ R™ is LSC with closed convex values. Define a

set-valued map T¢: K ~ R"™ as
T(z) :={€€+ (1 — e)g1(2)w € T,k(z),Vw € BRP}. (6.29)

It is easy to see that set-valued map 7€ is LSC with closed convex values on K. Define the

(allowable control) set-valued map C¢: K ~ R™ as
C*(a) i= {u € U(@)| () + ga(w)u € T(2)}.

It can also be seen that the set-valued map C¢ has closed convex values on K.
On the other hand, we claim that there exists an a > 0 such that for all z € K, there

exists a u € C°(z) such that
fl2)+ g2(z)u+r € T(x)

for all » € R™ such that ||r|| < a. In fact, since T7%z) C T%(z) for 0 < ¢, we have
C%z) C C(z). Also K # 0 implies C°(z) # @ for all + € K. Therefore, there exists
u € C%x) C C%(2), such that

[(@) + ga(2)u € T°(2),

or

f(2) + go(2)u + €g1(z)w € T(z), Yw € BRP.

Then the claim is justified since g;(2) has rank n on the compact set K.

By employing Theorem 6.7.3, we can immediately deduce that the set-valued map C*
is LSC. Furthermore, it can be verified that 0 € C¢(0). We now use Michael’s selection
theorem (Proposition 6.7.4) to conclude that there exists a continuous selection 9 : K —R™

of set-valued map C* : K ~ R™ with ¥(0) = 0, then ¢ € K.
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Now we claim that the state feedback u = (z) is the desired controller. Indeed, the

closed-loop system is

{ &= f(z) + g2(2)(z) + (1 — e)ga (2)w (6.30)

2= h(z) + ka(2)(2) + (1 — ki (z)w

From the construction, we know that for all z € K and w € BRP,

f(@) + g2(2)d(2) + (1 = )gi(2)w € Ti ().

Thus the sleek set K # ) is an L!-performance domain for the above closed-loop system
(6.30). Thus, Theorem 6.2.9 shows that the closed-loop system (6.30) has £!-performance.
Therefore, the resulting controller for system (6.19) yields J¢ < 1. |

6.4 L'-Control and (Controlled) Invariance

In this section, we will characterize the (controlled) £!-performance domains in terms of
corresponding (controlled) differential inclusions. The notions of (controlled) invariance

play a central role.

6.4.1 Differential Inclusions and Invariance Domains

Given a set-valued map F' : X ~» X, we mainly consider, in this subsection, the following

differential inclusion

&(t) € F(x(t)), for almost all ¢ € [0, 00). (6.31)

A function z : R*— X is said to be viable in a subset K C X if z(t)e K forallt € RT
[7]. We have the following definition.

Definition 6.4.1 Consider differential inclusion (6.31). The subset K C X is said to be
invariant under F if for all zo € K, any solution to (6.31) starting at z, is viable in K.
Given any closed subset @ C DoM(F). The largest closed subset of Q which is invariant
under F, denoted by INVE(Q)!, is called the invariance kernel (IK) of Q. The smallest
closed subset of X invariant under F containing Q is called invariant envelope (IE) of

Q, denoted as ENvE(Q)L.

We first have the following lemma.

LIf clear from context, the subscription F' will be dropped.
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Lemma 6.4.2 The class of invariance subsets under F is closed under the operation of

subset union.

The above lemma implies that the invariance kernel, if exists, is unique; The invariant
envelope, which always exists by Zorn’s lemma, is also unique. It is known that if F is
Lipschitz, then there exists an invariance kernel for closed subset @ C Dowm(F') [7, Theorem

5.4.2]. The following theorem gives another class of such nonlinear systems of interest in

this chapter.

Theorem 6.4.3 Suppose the set-valued map F : DoM(F) ~ X is Marchaud. Then, for
any closed subset @ C DoM(F'), there exists an IK (possibly empty) of Q. It is the subset

of enitial points such that all solutions starting from them are viable in ).

The proof of this theorem is given in Appendix B. Definition 6.4.1 can hardly be conveniently
implemented for checking the invariance sets and computing the invariance kernels. We next

give an alternative notion.

Definition 6.4.4 Let I': X ~ X be given. i C DoM(F) is an invariance domain (ID)
of I if for all x € K, F(z) C Tk(z). Given any closed subset Q@ C Dom(F). We denote
by DINVE(QQ) the largest closed invariance domain under F in Q, and by DENVE(Q) the

smallest closed invariance domain of F containing Q.

Recall the definition of the £!-performance domains in Section 2, it is known from the
above definition that any £!-performance domain is an invariance domain of the corre-
sponding differential inclusion (6.10) and (6.11). Therefore, DINVE(Q) exists for a class of
parameterized set-valued maps F : R™ ~ R". From Theorem 6.2.9, we immediately have
the following theorem which characterizes the £!-performance of system (6.2) in terms of

the invariance domains.

Theorem 6.4.5 Consider system (6.2) and its corresponding differential inclusion (6.10)
and (6.11); the compact set § is defined in (6.9). Then the following statements are equiv-

alent.
(i) The system has weak L*-performance.
(7i) 0 € DINVE(Q).

(#i) DENVE({0}) C .
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K, whick is well-defined, one has
0 € DENVE({0}) C K C DINVE(R2) C .

Therefore, if the system has the weak L!-performance (or L!-performance for a sys-
tem affine in w), then DENVE({0}) and DINvE(Q) are the smallest and the largest £!-
performance domains, respectively. In the following, we will give some algorithms for com-
puting the (closed) invariance domains in a given closed subset @ C DoM(F). By modifying

viability kernel algorithms in [7, pp.147—153], one has the following algorithms.

Algorithm 6.4.6 Let F' : X ~ X and a closed subset @ C Dom(F) be given. Define
recursively the subsets K, by
Ko =,
Kop1:={z € K,|F(z) C Tk, (2)}
where if K, is empty in some step n stop there; otherwise define
oo
Ko :=[) K. (6.32)
n=0
It is observed that if K, = {} for some n € Z*, then DINVF(Q) = (); otherwise,
DINVE(§2) C Ko if exists, since DINVE(Q) C K, for all n. However, in general, the
inclusion can not be replaced by equality, i.e., the above algorithm does not yield the max-
imal invariance domain contained in Q. Because the algorithm does not guarantee the
subsets K, to be closed; also in general the upper limit of the contingent cones 7’ K, () is
not necessarily contained in the contingent cone to the upper limit of the subsets K, [7]. In
the following, an alternative algorithm yielding a closed invariance domain which is a subset
of DINVE(Q?) is provided. This algorithm is a modification of viability domain algorithm

[7, p.151]; the set-valued map T% : X ~ X defined in Definition 6.7.8 is used.

Algorithm 6.4.7 Let F': X ~ X and a compact subset Q C DoM(F) be given. Given a

constant ¢ > 0, define recursively the subsets K¢ by
K§:=Q,
K. ., ={ze K |F(z)C Te(z)}

If K3, is empty in some step n, then stop there; otherwise define

K =) K¢ (6.33)
n=0
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Theorem 6.4.8 Let F: X ~ X be LSC and @ C DoM(F) be a compact subsel. In the

above algorithm, if KE # 0 for alln € ZT, then K¢, is a nonempty closed invariance domain

of F.

The proof is given in Appendix B.

6.4.2 Controlled Differential Inclusions and Controlled Invariance

Let X.,Y, and Z be metric spaces. Given two set-valued maps, U : X ~ Z and F :
GRraPH(U) ~ Y, Define a parameterized set-valued map F; : X ~ Y as follows,
F.(z):= U F(z,u)
uel(z)
with DoMm(F,) = DoM(U). Then the differential inclusion & € F,(z) is called a controlled
differential inclusion (CDI), denoted as (F,U).

Definition 6.4.9 Consider a CDI defined by (F,U). A subset K € Dom(U) is controlled
invariant under (F,U) if there exists a measurable function u : RT —R™ such that for all
z, € K, the differential inclusion & € F(z,u(t)) has all solutions starting at x, and viable
in K, and u(t) € U(z(t)) for all t € RT. Given any closed subset Q@ C Dom(U), The
largest closed subset of Q which is controlled invariant under (F,U), denoted by CINV(Q),
is called the controlled invariance kernel (CIK) of Q, and the controlled invariance
envelope (CIE) CENV(Q) of Q is defined as the smallest closed controlled invariant subset

containing @ under (F,U).

The notion of controlled invariance (or (A, B)-invariance for linear systems) was defined
for linear systems to deal with disturbance decoupling in [198], and for nonlinear systems
in the context of zero dynamics [90, 8]. The controlled invariance envelope exists and is
unique. The controlled invariance kernel, if exists, is also unique, because of the following

observation.

Lemma 6.4.10 The class of controlled invariance subsets under (F,U) is closed under the

operation of subset union.
The following theorem characterizes the existence of CIK in a given closed set.

Theorem 6.4.11 Consider the CDI defined by (F,U). Suppose @ C Dom(U) C X is
compact, the set-valued maps U : Dom(U) ~ Z is LSC with closed convex values, and
F: Graru(U)~ X is Marchaud. Then there exists a CIK (possibly empty) of Q.
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Proof. Since U : Dom(U)~+ Z is LSC, by Michael’s selection theorem (Proposition 6.7.4)
there exists a continuous selection u(z) € U(x). Define a new set-valued map £, : @ ~ X
as Fy(z) := F(z,u(z)). Since F' : GRAPH(U) ~ X is Marchaud, then there exists C' > 0
such that

[E.(2)]] = [[F(e, w(z))]| < Clz]| + [[u(@)]| + 1) < C(Cu + )(ll2][ + 1)

with Cy, > 0 being such that |[u(z)| < C, as u is continuous on the compact set §2, so F),
is also Marchaud. Therefore, by Theorem 6.4.3, there exists a maximal invariance kernel
INVE,(£2), and it is controlled invariant under (F,U) by the definition. Zorn’s Lemma

implies that there exists a maximal controlled invariance subset, which is the CIK, of 2. O

From the above theorem and Lemma 6.3.2, the controlled differential inclusion (F,U)

defined by (6.21) and (6.23) has the CIK in Dom(U) if Dom(U) is compact.

Definition 6.4.12 Consider the CDI defined by (F,U). A subset K € DoMm(U) is a con-
trolled invariance domain (CID) of (F,U) if for all x € K, there exists a u(z) € U(z)
such that F(z,u(z)) C Tx(2). Given any closed subset 2 C Dom(U), Dci(R) is the largest
closed controlled invariance domain in Q under (F,U), and DcE(Q) is the smallest closed

controlled invariance domain containing Q for (F,U).

Recall the definition of the controlled £'-performance domains in the last section, it
is known from the above definition that any controlled £!-performance domain of system
(6.19) is a controlled invariance domain of the controlled differential inclusion (F, U') defined
by (6.21) and (6.23). Therefore, Dci(2) exists for a class of parameterized controlled
differential inclusions. We immediately have the following theorem which characterizes the

controlled £'-performance of system (6.19) in terms of the controlled invariance domains.

Theorem 6.4.13 Consider system (6.19) and its corresponding controlled differential in-
clusion (F,U) defined by (6.21) and (6.23). Suppose DoM(U) is compact, and K € Dom(U)

is a controlled L' -performance domain. Then
0 € Dce({0}) c K C Dci(Dom(U)) ¢ Dom(U).

Therefore, if the system has a controlled £!-performance domain, then Dcr({0}) and
Dci(Dom(U)) are the smallest and the largest controlled £!-performance domains, respec-
tively. In the following, we give some algorithms to compute the controlled invariance do-

mains in some given closed set. Those algorithms are modifications of the (A4, B)-invariance
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algorithm for linear systems [198], the controlled invariance kernel algorithm for con-

trolled difference inclusions [160], and the zero dynamics algorithm [90, 130].

Algorithm 6.4.14 Let F' : X ~ X and a closed subset Q@ C Dom(F) be given. Define

recursively the subsets K, by
Ky := Q,
Ko :={z € K,|F(a,u) € Tk, (z), for somew € U(z).}

Define
Koo =[] K. (6.34)

n=0

It is observed that Dci(Q) C K, for all n, then Dci(2) € K. However, in general,
the inclusion can not be replaced by equality. In the following, we give a remedy to this
problem as in Algorithm 6.4.7, however, instead of DcI(f) itself, only a closed invariance

domain, which is a subset of DcI(£2), is obtained.

Algorithm 6.4.15 Let F': X x Z ~ X and a compact subset @ C Dom(F) be given.

Given a constant ¢ > 0, define recursively the subsets K¢ by

Ki o ={z € K;|F(z,u) € Tie(x), for some v € U(z)},

Then either K is empty in some step n, or
(o)
K = ﬂ K (6.35)
n=0
s not empty.

Theorem 6.4.16 Suppose Q is compact and F': X X Z ~ X is LSC, U : Z ~ X is locally
bounded USC with closed values. In the above algorithm, either K¢ is empty in some step

n, or K¢, is a nonempty closed controlled invariance domain of F.

The proof is given in the Appendix B.
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6.5 Approximation Methods for £!-Performance Analysis and

Synthesis

The L£'-performance analysis and synthesis for nonlinear systems are reduced to the com-
putations of (controlled) invariance domains for some (controlled) differential inclusions.
However, unlike the discrete time systems, the algorithms given in the last section are not
easy to implement. In this section, we will try to give some alternatives characterization
for the (controlled) invariance domains and approximate them in terms of the (controlled)
invariance domains of the corresponding Euler approximated discrete-time systems. To this

end, we give the following definition [10, p.17].

Definition 6.5.1 Let {K,}|,cz+ be a sequence of subsets of a metric space X. The upper

limit of the sequence is a closed subset of X defined as

limsup K, := {¢ € X|liminfd(z, K,,) = 0}.

Y de el

Therefore, lim sup,,_, ., K, is the set of cluster points of sequence z,, € K, i.e., of limits
of subsequence z,;, € K,,.
6.5.1 ('-Performance of Discrete-Time Nonlinear Systems

The material in this subsection is just the reformulation of some results from [160].
(*-PERFORMANCES

Consider the following discrete-time nonlinear system

(6.36)

{ (b +1) = fa(2(k), w(k))
2(k) = ha(z(k), w(k))

where f; and hq are continuous. The ¢}-performance for system (6.36) is defined similarly to
that in the continuous times case (see Definition 6.2.1). Let a set-valued map Fy : R" ~» R™
be defined as

Fy(z) := {fa(z, w)lw € BR?}

with the domain DoM(Fy;) = Q, where

Q:={z € R"|||hg(z,w)|| < 1,YVw € BR?}
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is assumed bounded. We can also similarly define the invariance and the invariance kernel

of a closed set for the corresponding difference inclusion. We have the following result [160,

Proposition 4.1].

Proposition 6.5.2 The invariant kernel INvg, (Q) in Q for difference inclusion (k+1) €
Fy(x(k)) exists, and
INVFd(Q) = ﬂ I(j
J=1

where Ko = Q, Kj11 = {&¢ € K; : Fy(a) C K,;}. Moreover, system (6.36) has (-
performance

Ji=  swp <1,
weloo fJu]] <1

if and only if 0 € INvE,(Q) # 0.

CONTROLLED INVARIANCE AND /!-CONTROL

Let X and Y be metric spaces. Given two set-valued map Uy : X ~ Y, Fy : GRaAPH(Uj) ~
X, then the difference inclusion
e(k+1)€ U Fy(a(k),u)
u€Uq(z (k)

defines a controlled difference inclusion, denoted as (Fy, Uy), we can similarly define such
concepts as controlled invariance and controlled invariance kernel of a closed set under
(Fy4, Uq) [160, Definitions 4.3 and 4.4]. The following result is due to Shamma [160, Propo-
sition 4.2].

Proposition 6.5.3 Consider a controlled difference inclusion defined by (Fy,Uy). Suppose
Q C Dowm(Uy) is compact, Uy : X ~ Y is locally bounded USC with closed-values, and
Fy : Graru(Ug) ~ X is LSC. Then the controlled invariance kernel CINV(Q) of Q for
(Fq,Uy) exists (possibly empty). And

Civv(Q) = () K;
j=0
where K; is recursively defined, Ko:=Q, K;11 = {z € K;|Fy(z,u) C K;,3u € Ug(z)}.

Next, consider the following discrete-time control system

{x%+U=MﬂW+m®WWW+M@WM®

‘ (6.37)
2(k) = ha(2(k)) + kar(z(k)w(k) + kaa(z(k))u(k)
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with fg, 941, 942, ha, ka1, and kqo being continuous, and RANK(gi(2)) = n for all z € R™.
Similarly, the ¢!-control problem for system (6.37) can be defined as did for the continuous

time case (see Definition 6.3.1). Define U, : R" ~» R™
Ug(z) :={u € R™|||hq(z) + ka1 (2)w + kgo(z)u|] < 1,Yw € BRP}.

Suppose © := Dowm(Uy) is bounded. Note that Uy is locally bounded USC with closed

values. Let a set-valued map Fy : R” x R™ ~» R™ be defined as
Fa(zu) = {fa(z) + gar (2)w + gaz(2)u)|w € BR"}
with domain DoM(Fy) = Q. We have the following results about ¢1-control problem slightly
generalizing Shamma’s theorems [160, Theorem 5.1] and [158, Theorem 3.1].
Proposition 6.5.4 Consider system (6.37). Then the following statements are true.
(i) CINV(Q) exists.
(i) If the system has (*-control solution such that J < 1, then 0 € CINv(Q2) # 0.

(iii) If 0 € Cinv(Q) # 0 and CINV(Q) is convez, then for all € € (0,1), there exists a

continuous static state feedback such that the closed-loop system satisfies:

Je = sup 1zl < 1. (6.38)
welso|[w]]o, <1-¢

It is remarked that the results about ¢!-performance analysis and synthesis can also
be characterized in terms of (controlled) invariance envelope. For example, we have the
following version of Proposition 6.5.4.

Proposition 6.5.5 Consider system (6.37). Then the following statements are true.

(i) If the system has £*-control solution, then CENV({0}) C Q.

(iit) If Cenv({0}) C Q and CENV({0}) is convez, then for all € € (0,1), there exists a
continuous static state feedback such that the closed-loop system satisfies (6.38).
6.5.2 Approximation of L!-Performance Domains

Consider system (6.13) which is rewritten as follows,

{ &= f(z,w)
z = h(z,w)
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where w € W. Given 7 > 0, define a corresponding difference equation as

{ 2ok +1) = fr(ar (), welk) (6.59)
z(k) = h(z7(k), wo(k))
where w.(k) := w(7k), and

fr(z,w) =z + 7f(z,w). (6.40)

It is noted that the discrete-time system (6.39) is a Euler approximation of system (6.13).

Let a set-valued map F; : R™ ~ R” be defined as
Fr(z) := {f-(z,w)|w € BRF}
with the domain DoM(F;) = Q, where
Q= {z € R"||h(z,w)]| < 1,Yw € BR?}

is assumed bounded. Note that the map F, is LSC because of the continuity assumption
on f for system (6.13). Counsider the difference inclusion z.(k + 1) € F.(z.(k)). Then
by Proposition 6.5.2, we know that invariant kernel INVg, (2) in © for difference inclusion
z-(k+1) € Fr(2-(k)) exists; and the discrete-time system (6.39) has {}-performance if and
only if INvg, () # 0.

We have the following result about the approximations of the £!-performance domains

for system (6.13).

Theorem 6.5.6 Consider system (6.13). Let {7,} be a decreasing sequence such that 7,—0
as n—oo, and V., C Q be closed and invariant under F;, for each 1, with 0 € V. Then

Voo :=limsup,_, . Vs, is a L'-performance domain for system (6.13).

It is noted that in Theorem 6.5.6, for each 7,, the corresponding Euler approximated
discrete-time system has (*-performance J < 1. Possible choices for V;, are INVp, ()

and Exvpg, ({0}).

Proof. Choose w € W, and 29 € V., then the solution ¢(¢,zo,w) to the differential
equation & = f(z,w(t)) with 2(0) = z¢ is bounded. We first show that, for all 7 > 0,
(t, zo,w) € Voo for all ¢ € [0,7).

Consider the function f,(z,?) := f(2,w(t)), which is continuous on compact set Q X

[0,T]; therefore, ||f(z,w(t))]] < B for some 8 > 0, and it is uniformly continuous on
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Q x [0,T]. Given € > 0, there thus exists § > 0 such that for all 7 € (0, §],
1/ (@1, w(t1)) = fz2, w(t2))]| <€ (6.41)

for all (z;,t;) € @ x [0,7] (1 = 1,2) with [Jz1 — @9]| < 6 and [ty — 13] < 6.
Since zg € V., there exists a:% € V., such that z¢ is a cluster point of the sequence
{z2}; we assume 20—z as n—oo without loss of generality. On the other hand, 7,—0 as

n— 00, there exists N > 0 such that 7, € [0, min{é,6/3}) for all n > N. Take n > N, we

consider a solution z,,(k) for the difference equation defined in (6.39):

bry(k+1) = fr, (2, (k), wr,(k))

with 2,,(0) = 2%. Then a, (k) € V,, for all k € Z* by the definition of V,, . Now we

ne

associate with the solution a function 2, € C([0,7),R") as

Pk 4 1) — 20, ()

Tn

Tn(t) = 2, (k) + (t—kr,)

for all £ > 0 and t € [k7,,(k + 1)7,) such that ¢ € [0,7"). Note that z,, (k+ 1) — z,,(k) =
Tnf (27, (k), wr,(k); thus,

Tn

Tn < Br, <6

l#n(t) = 27, (R)|| <

and 2,(t) = f(z,(k), w,,(k)) for t € [k7,, (k+ 1)7,) (hence ||z, (2)|| < 8). From (6.41), we
thus have

& () = f2a(t), w()]l < € (6.42)

for all ¢t € [0,7). On the other hand, #,(¢) is bounded, then z,(t) is equicontinuous.
Similar argument in terms of Ascoli’s Theorem in the proof of Theorem 6.2.9 (i) yields that
a subsequence of {z,(t)}, still denoted as {z,(¢)} without loss of generality, converges to
an absolutely continuous function #(t), and their derivatives @, (¢)—&(?) as n—oc. (6.42)
implies that
(1) = fle(t), w(t)).

Since z,(0) = z,,(0)—z¢ as n—o0; and each ¢ > 0 is the limit of nodes k7, so z(¢) is the
limit of 2, (k) € K,. Then 2(t) € V, for all ¢ € [0,T). By the completeness of the given
system, ¢(t,z0,w) = ¢(t) € Vo for all t € [0, 7).

Finally, from similar argument in Theorem 6.2.7, one can conclude that for all z € Vi,
f(z,w) € Ty, () for all w € BR?. Therefore, V,, is an L£'-performance domain for system

(6.13). 0
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The following theorem, which generalizes [23, Theorem 2], characterizes the £!-performance

domains for a class of special systems which include the linear systems.

Theorem 6.5.7 Consider system (6.13). Suppose there exists T > 0 such that V, C Q is
closed, convez, and invariant under F, with 0 € V.. Then V, is an L -performance domain

for system (6.13).

Proof. Since V; C Q is invariant under F., one has that for all € V,, F,(z) € V,, or
given w € BR?,
z+7f(z,w)€e V..

By the assumption V; is convex, then
z+ hf(z,w)eV;
for all h € [0,7]. Now by Lemma 6.7.5, it follows that
f(z,w) € Tv,(x)

for all w € BRP. Therefore, V; is an £'-performance domain for system (6.13). O

6.5.3 Approximation of Controlled £!-Performance Domains

Consider system (6.19), which is rewritten as follows,

{ &= f(z)+ gi(e)w + g2(z)u
z=h(z)+ k(2)w + kz(z)u

where w € W,. Given 7 > 0, define a corresponding difference equation, which is a Euler

approximation of system (6.19), as follows,

{ (k4 1) = fr(er(k), we(k), ur(k)) (6.43)
(k) = Wzr (k) + Fa (27 (k)wr (k) + koo, (k))ur (k)
where w,(k) := w(7k), and

fr(z,w,u) =2+ 7(f(2) + g1(2)w + ga(2)u). (6.44)

Define U : R™ ~» R™ as

U(z) := {u € R"[||h(x) + ki(2)w + ka(2)u]| < 1,Yw € BRP}.
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Let © := DoMm(U) be bounded. Since U is locally bounded USC with closed values by
Lemma 6.3.2. Then there exists a compact set &/ C R™, such that

U U=) cu.

TEQ

Let a set-valued map F, : R™ Xx R™ ~» R" be defined as
Fr(zyu) := {f-(z,w,u)|w e BRP}

with the domain DoM(F;) = Q. Consider the controlled difference inclusion defined by
(F,,U). By Proposition 6.5.3, the controlled invariance kernel Cinv(Q) of (#;,U) exists in
2; and under some mild conditions, the discrete-time system (6.43) has ¢!-control solution

if and only CINv(2) # @ (see Theorem 6.5.4).

We have the following result on the approximations of controlled £!-performance do-

mains.

Theorem 6.5.8 Consider system (6.19). Let {1,} be a decreasing sequence such that ,—0
as n—oo, V., C Q be controlled invariant under (F, ,U) for each 7, with 0 € V,,. Then

Voo :=limsup,_, ., V,, is a controlled L-performance domain for system (6.19).

It is noted that, in Theorem 6.5.8, for each 7,, the corresponding Euler approximated
discrete-time system has a nonempty controlled ¢!-performance domain. Possible choices

for V,, are CINV(2) and CENV({0}).

Proof. One needs to show that there exists v € U(z) such that f(z,w,u) € Ty, (z) for
all z € V, and w € BR".

Suppose w € W, and ¢ € V. We first show that, given 7" > 0, there exists a measur-
able function u(t) such that the solution £(¢) to the differential equation & = f(z,w(t), u(t))
with 2(0) = 2¢ is in V. for all t € [0,7) and u(t) € U(£(1)).

Consider the function f,(z,t,u) := f(2,w(t),u), which is continuous on compact set
Q x [0, T] x U; therefore, || f(z,w(t),uw)|| < B for some # > 0, and it is uniformly continuous
on Q2 x [0,7]. Now given ¢ > 0, there exists § > 0 such that for all 7 € (0, §],

[f(z1, w(tr), w) = f(za, w(ta), u)ll < € (6.45)

for all (@;,t;,u) € Q x [0,T] x U with ||z1 — 22| < § and [t; — t5] < 6.
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Since g € Vi, therefore there exists 20 € V;, such that zq is a cluster point of the
sequence {z9}; we assume 22—z as n—oc without loss of generality. On the other hand,

Tn—0 as n—oo, there exists N > 0 such that 7, € [0,min{é,6/5}) for all n > N. We

consider a solution z,,(k) for the difference equation defined in (6.39) for some n > N,

Er(k + 1) = [ra(27,(k), wr (E), ur, (K))

with 2,,(0) = z). Then by the definition of V,,,, there exists u,, (k) € U(z,,(k)) such that
z.,(k) € V., for all k € ZT. We define a function z,, € C([0,T),R") as

Tr,(k+1) = @7, (k)

T‘TL
for all £ > 0 and ¢ € [k7y,, (k4 1)7,) such that ¢ € [0,T). Note that z,,(k+ 1) — 2,,(k) =
Tnf(aan(k')a an(k)7 uTn(k))v thus:

(t —kry)

ea(t) = 2, () +

2oy + 1) = 2, (R)

Tn
and 2,(t) = f(z.,(k), ws,(k),ur,(k)) for t € [krn,(k + 1)7,). Let the function u, :
[0,7)—R™ be defined as

T < OB, < 6

llen(t) — 27, (R)II <

Un(t) 1= un, (k),
for t € [k, (k+ 1)7,) C [0,T). Therefore, from (6.45), we have
[8n(2) = f(2n(t), w(2), un(D))]| < € (6.46)
forall t € [0,T).
It is noted that, #,(¢) is bounded, hence z,(¢) is equicontinuous. Then the similar
argument in terms of Ascoli’s Theorem in the proof of Theorem 6.2.9 (i) yields that a

subsequence of {z,(%)}, still denoted as {z,(¢)} without loss of generality, converges to an

absolute continuous function z(t), and their derivatives @, (t)—i(t) as n—oc.

On the other hand, given ¢ € [0,T'), then (%) is a limit point of some =, (k); since for
t € [kt (k+1)70), un(t) = ur, (k) € U(z,(k)) € U, there exists a subsequence of {u, (1))},
still denoted it as {u,(?)}, converges to some u(t) € U(z(t)) since U is USC with closed

values. Note that u :[0,7)—R™ can be chosen to be measurable by the construction?.

Therefore, (6.46) implies that

(1) = fa(t), w(t), u(t)).

*For example, u(t) = (limsup,, o up(t), -, imsup,_ . u7(t))? where u, := (g™ w(t) is

measurable since its components are upper limits of simple functions.
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Since z,(0) = z,,(0)—zg as n—oo; for each ¢ > 0 is the limit of nodes k7, z(t) is the
limit of z,, (ki) € K,,. Then 2(t) € V,, for all ¢t € [0,T). The completeness of the given
system implies (%) = z(t) € Vi, for all t € [0,7).

Finally, we will show that V. is a controlled £!-performance domain for system (6.19).
Take zg € Vi. For given w € U,, there exists an essentially bounded function u : R*—R™,
such that the unique solution z(t) for & = f(z) + ¢g1(z)w(?) + g2(z)u(?) with z(0) = a is
viable in V,, and u(t) € U(z(t)). One only needs to check that 2(0) = f(20) + g1(20)w(0) +
g2(z0)u(0) € Ty, (o). In fact, for all ¢ € [0,T7], z(t) € Vi, and

2(1) = a:o—i-/ot:i:(s)ds

= o+ 15 [ )+ nla()w(s) + ga(als))uls))ds).

Notice that f(z(s)) + g1(z(s))w(s) + g2(z(s))u(s) is essentially bounded in [0,77], then by

Lebesgue’s differentiation theorem, one has

. 1ot
limg 1 [ () + g1 (a(5))5) + o) u(s))ds = [(z0) + g1(0)u(0) + galo)u(0).
Therefore, one can find two sequences {t, } and {v, } with ¢,—0" and v,— f(z0)+g1(z0)w(0)+
g2(20)u(0) as n—oo, such that zo+1t,v, € Vi, for all n € Z*. Hence, f(zo)+ g1(zo)w(0)+

g2(z0)u(0) € Ty, (zg), the conclusion then follows by Lemma 6.7.5.
(]

The following theorem characterizes the controlled £!-performance domains for a class

of special systems which include the linear systems.

Theorem 6.5.9 Consider system (6.19). Suppose there exists T > 0 such that V, C Q is
closed, convez, and controlled invariant under (F;,U) with 0 € V,. Then V; is a controlled

L1 -performance domain for system (6.19).

Proof. The argument is similar to that in the proof of Theorem 6.5.7. a

6.6 Conclusions

In this chapter, the £!-control problems for nonlinear systems were investigated. The £!-
performance analysis and the £!-control synthesis problems were characterized in terms

of the £!-performance domains and the controlled £!-performance domains, which are the
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invariance domains and the controlled invariance domains of the corresponding differential
inclusions, respectively. This treatment therefore provided some geometrical insights into
the robust (£!) control problem. In addition, the relation between the L!-control of a
continuous-time system and the £!-control of its Euler approximated discrete-time systems
was established. Nonetheless, the computational implications of the results for general
nonlinear systems in this chapter are not clear. The results in this chapter can serve for
didactic purpose, and can be used to guide the design of nonlinear control systems with
disturbance attenuation properties.

Another issue that was not explicitly addressed in this chapter is the asymptotic property
of the nonlinear £!-control systems, i.e., when the initial states are not in any of the £!-
performance domains, in which case the systems do not have £!-performance initially, do
the systems eventually have £!-performance as they evolve? This issue can be investigated
in the framework reported in [105]. Also the L'-optimal disturbance rejection problem
in terms of minimizing the L., -induced gains of the corresponding nonlinear operators is

addressed in [46].

6.7 Appendix A: Set-Valued Maps

In this section, we will review some basic notions from set-valued analysis. We refer to the

books [9, 10, 7] for detailed account about the related issues.

6.7.1 Set-Valued Maps and Their Selections

Let X and Y be two normed spaces. A set-valued map F from X to Y is a map that
associates with any z € X a subset F(z) of Y. We denote it as

F:X~Y.

The subset F(z) is called the value of F' at z € X. The domain and graph of F are
defined as

DoM(F):={z € X : F(z) # O}.

GRAPH(F) := {(z,y) € X x Y|y € F(2)}.

Definition 6.7.1 Consider a set-valued map F : X ~ Y.
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(i) It is said to be lower semi-continuous (LSC) if for all zo € X, yo € F(z0), and
any sequence of elements x, € DOM(F') converging to xo, there exists a sequence of elements

Yn € F(z,) converging to yo.

(71) It is said to be upper semi-continuous (USC) if for all zo € X, y € F(xg), and
for any open subset N of Y containing F(xy), there exists a neighborhood N(zo) of o such
that F(N(z¢)) C N.

Note that if F' is USC with closed domain and closed values, then GraPH(F) is closed.
Two special classes of continuous set-valued maps are defined as follows,
Definition 6.7.2 Consider a set-valued map F : X ~ Y.

(i) It is said to be Marchaud, if it is USC, has compact convex images, and has linear

growth property, i.e., there exists C > 0 such that for all @ € DoMm(F),
£ ()] < Cl=]| + 1), (6.47)

where ||[F(2)|] := supyepe) yl-
(1) It is said to be Lipschitz around « € X if there exist a positive constant L and a
netghborhood W C Dom(F) of @ such that, for all 1,20 € W,
F(z1) C F(zg) + L2y — z2]| By.
Note that, if F': X ~» Y is bounded on DoMm(F), then it has the linear growth property
(6.47).

The following technical result will be used [9, p.49].

Proposition 6.7.3 Let X be a metric space and Y and Z be Banach spaces. Let f :
X X Z—=Y be a continuous map such that for all z € X,u — f(z,u) is affine. Let set-
valued maps T : X ~ Y and U : X ~ Z be LSC, and let U be locally bounded. Suppose there
exists an o« > 0 such that for all x € X, there exists a u € U(x) such that f(z,u)+r € T(z)
for all 7 € Y with ||r]| < a. Then the set-valued map C : X ~ U defined by

Clz):={ue U(x)|f(z,u) € T(z)} (6.48)

is LSC.
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Given a set-valued map F : X ~ Y, there is map f : X—Y which is a selection of F,
ie. f(z) € F(z) for each 2 € X. For a class of set-valued maps, we have the following

lemma which is known as Michael’s selection theorem (cf [10, p.355]).

Proposition 6.7.4 Let X be a metric space, Y a Banach space, F' : X ~ Y which has
the closed convex subsets as its values be LSC. Then there exists a continuous selection
[ X=Y from F. In addition, if yo € F(xq), then the continuous selection f of F can be
chosen such that f(xo) = yo.

6.7.2 Contingent Cones

Let X be a finite dimensional normed space, K be a nonempty subset of X, for each z € X,

define the distance of z to K as
di(¢) :=d(z,K):= inf ||z —y]. (6.49)
yeK

Define a set-valued map Tk : X ~ X,

Ty (z) = {vll%minf dic(z + hv) — dg(z) <0). (6.50)

—o+ h
For all z € X, the value Tx(z) is a closed cone, and is called the contingent cone
to K at z. Note that if K denotes the closure of K, then T = Tk; if ¢ € K, then
Tk(z) = {v|liminf,_ o+ di(z + hv)/7 = 0}, and if z € INT(K) # 0, then Tx(z) = X. Also
if K is a manifold in X, then for any # € K, Tx(x) defines the tangent space of K at z.

The following lemma characterizes contingent cones in terms of sequences [10, p.122].

Lemma 6.7.5 Given a set K C X and ¢ € K. v € Tx(z) if and only if there exist a

nonincreasing sequence h,—0 and a sequence v,—wv, such that x + hyv, € K for all n.

A subset K of X is said to be sleek if the set-valued map T : K ~ X is LSC. The
following result is from [7, p.161].

Proposition 6.7.6 If K is sleek, then for all z € K,

T(e)={v[ _lim dg(y+hv)/h =0}

WK

and Tk (z) is a closed conver cone for all z € K.

Convex sets are sleek. We next state a result about the computing the contingent cone

of a set which is defined by some inequalities [10, p.123].




170

Proposition 6.7.7 Given a C' vector-valued function g = (g1, g2, +, gp) : X —=RP. Define
a set

K:={z€e X|gi(z) >0,i=1,2,---,p}.
Given x € K, define I(z) := {i = 1,2,---,plgi(z) = 0}, then under the regularity condition
that there exists vg € X such that for all i € I(z), (¢/(z),vo) > 0. Then one has that for
all x € K such that if I(z) = 0, Tk(z) = X, otherwise

Tk(z) = {v € X[{gi(z),v) 2 0,¥i € I(x)}.

Some alternatives to Tx : X ~+ X have some nice properties, one is the Clarke cone
which has convex closed values [39]. In the following, we give another set-valued map

Tg : X ~ X, whose values belong to the values of Tk [7, p.148].

Definition 6.7.8 Let K C X be closed, ¢ > 0, and € K. The global contingent set,
denoted by Ty (), is the subset of all v € Tk () such that there exists a measurable function

v(-) bounded by ¢ and satisfying
t
4o+ / (t = r)y(r)dr € K.
Jo

It is noted that if ¢; > ¢; > 0, then 73} D T72. And if v € Tk(z), then there exists ¢ > 0
such that v € T (). One of the nice properties about the global contingent set is that its

graph is closed (see Lemma 6.8.2).

6.8 Appendix B: Proofs
PROOF OF THEOREM 6.4.3
Given F': X ~» X, consider the following differential inclusion,
#(t) € F(z(t)), for almost all ¢ € [0, 00). (6.51)

Define a set-valued map
Sp: DoM(F) ~ C([0,00); X), (6.52)

such that Sp(z) is the set of all solutions to the differential inclusion (6.51) starting at
z(0) = 2 € DoM(F). Sp is called the solution map of differential inclusion (6.31) (see
[7]). We have the following result about the solution map which follows from [7, Theorem

3.5.2].
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Lemma 6.8.1 Suppose F : X ~ X is Marchaud, then the set-valued map Sp defined in
(6.52) is USC with compact values supplied with the compact convergence topology. More-
over, the graph of the restriction Sg|x of Sr to any compact subset K of DoMm(F) is compact

in X x C([0,00); X).

The proof of Theorem 6.4.3 follows the similar ideas in the proof of existence of viability

kernel [7, Theorem 4.1.2].

Proof. [Theorem 6.4.3] Let V(Q) C C([0, >); X) denote the subset of functions viable
in © C DoM(F). Define

INVE(Q) == {x € Q|Sp(z) C V(Q)}.

We first show the set INVF(Q) is closed. In fact, given @ € INVF(Q), and let {z,} C
INVE(R2) be a sequence such that 2,—z as n—oo. Therefore, there exists a compact set
K C X such that z and 2, € K. Take a sequence {{,} C Sr(z,), then the sequence
{(2,,,&,)} belongs to GRAPH(SF)|x, which is compact by Lemma 6.8.1. Therefore, there
exists a subsequence of {(z,,&,)} converging to some (z,€) € GRAPH(SF)|x. Therefore,
£ € Sp(z) C V(). Hence, z € INvp(Q).

Next, we show INVE () is invariant under F. Indeed, take z € INVF(Q), we need to
show that any £ € Sp(z) is viable in INVE(Q), ie., £(T) € INvE(Q) for all T > 0. In fact,
let £&7 € Sp(€(T)), define a function & as follows,

) 1= { £(1) if“t € [0,T};
Er(t—T) ift>T.
Then & is a solution to the differential inclusion starting at 2 at time 0, and thus, is
viable in © by the definition of INV#(Q2). Hence for all ¢ > T, £p(t — T') € Q, therefore
Sr(E(T) C V(Q),ie, ET) € Invp(Q).

Finally, we show INV () is the largest invariance set contained in Q. Indeed, let K C Q

is a closed invariance set of F', then for all x € K, there exists a solution £ to the differential

inclusion starting at z which is viable in K, thus in Q. Therefore, z € INVE((). 0

PROOFS OF THEOREMS 6.4.8 AND 6.4.16

The set-valued map, 7% : X ~ X, is defined in Definition 6.7.8. The proofs of the two
theorems make use of the following properties of T [7, Proposition 4.4.2]. The upper limit

of a set sequence is defined in Definition 6.5.1.
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Lemma 6.8.2 The graph of the set-valued map Ty : K ~ X is closed. In addition, let

Koo :=limsup,,_, ., K, denote the upper limit of a sequence of closed subsets K,. Then

lim sup GraPH(TE, ) C Graru(Tfk_ ).

00

Proof. [Theorem 6.4.8] We first show that K¢ defined in the Algorithm 6.4.7 is closed
for each n € ZT. In fact, Ky is closed by definition. Suppose K¢ is closed, it is sufficient to
show K7, is closed. To this end, take a sequence {z;} C K, such that z;—z € K as

n—o00. Note that
F(wz) C T[C\TCL(%) (6.53)

We need to show F(z) C T, ().
In fact, take any y € F(x), since F'is LSC, then there exists a sequence y; € F(z;), such
that y;,—y as i—o00. Note that from (6.53),

(z:,9:) € GraPH (T, ).
Since GRAPH(T.) is closed by Lemma 6.8.2, one has

lim (@5, 9;) = (2,y) € GRAPH(TF. ).
—O n

2
Thus, y € Tc(z) as required. Therefore, z;—z € K£_ ;.

To show K¢, is invariant under F, take x € KZ , we need to verify F(z) C Tie ().
Note that z € K¢ for n € Zt, then we have F(z) C Tie(z). Now for all y € F(z), then
y € Tk (). Therefore, (z,y) C GraPH(Tf.), or

o0
(z,9) C () GrAPH(T]:) C GrAPH(Tf:. ),
n=1

where the last inclusion is from Lemma 6.8.2. Thus, y € T%. (). O

Next, we prove Theorem 6.4.16,

Proof. [Theorem 6.4.16] We first show that K¢ defined in the Algorithm 6.4.15 is closed
for each n € Z*. In fact, Ky is closed by definition. Suppose K¢ is closed, it is sufficient to
show K., is closed. To this end, take a sequence {z;} C K¢, such that z;—z € K¢ as

n—o0. Note that there exists u; € U(z;) such that

Flai,ui) C The (i) (6.54)



173

for each ¢ € Z*. Note that U is locally bounded and USC with closed value. Then there
exists a subsequence, still denoted as {u;} without loss of generality, converging to some
u € U(z). Now we show that F'(z,u) C Tie(2).

In fact, take any y € F(z,u), since F is LSC, then there exists a sequence y; € F(z;, u;),
such that y;—y as i—o0. Note that from (6.54),

(zi,9:) € GraPH(TR ).
Since GRAPH(Tg. ) is closed by Lemma 6.8.2, one has
lim (z;,y;) = (z,y) € GRaPH(T}.).
=00 n

Thus, y € Tk () as required. Therefore, 2;—z € K7 ;.

We next show K¢, is controlled invariant under (F,U). To this end, take z € K¢, then
z € K, for n € Z%, therefore there exists u, € U(z) for each n € Z*, F(z,u,) C Tie(2).
Since U is locally bounded and USC with closed value, there exists a subsequence, {u,,} C
{un}, converging to some u € U(z). We now show F(z,u) C T (@)

In fact, for all y € F(x,u), there exists a sequence {y,,}, such that y,, € F(z,u,,) C
Tf(ﬁi (2), and yn,—y € F(&,u) as i—o0. On the other hand,

(z,y) = lim (z,y,,) € GRAPH(Tf. ).
100 ™

Then y € T, (7). Note that

o o0
SC TC -~ C
K = ﬂ KX = ﬂ Ky,
n=1 i=1

then
(z,9) C () GRAPH(Tf, ) C GRAPH(T. )
=1 ’

where the last inclusion is from Lemma 6.8.2. Therefore, y € TS, (). d
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Chapter 7

Hoo-Control of Nonlinear Systems:

A Class of Controllers

7.1 Introduction

An important issue in control system synthesis is to design a control system which attenuates
the effects of external disturbances on some desired signals. In the last chapter, this problem
was considered in the setting where the disturbances are persistently £.,-Bounded. In this

chapter, the disturbances are considered to have finite energy. The standard configuration

where (' is the generalized plant and K is the controller to be designed; w is the vector

we will consider is

of exogenous disturbance inputs and u is the vector of control inputs; z is the the vector
of outputs to be regulated; and y is the vector of measured outputs based on which the
control action is generated. In this chapter and the next chapter, the performance of a
system is measured by L,-gain. The synthesis problem, known as H.,-control, is to find
the controller(s) which stabilizes the closed loop system and its L£y-gain is small enough.
The general linear time invariant case was first solved by [55], but the resulting state-

space formulas and derivations were substantially streamlined in [60]. The simplicity of this
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characterization together with its clear connections with traditional methods in optimal
control have stimulated several attempts to generalize the H., results in state space to
nonlinear systems [183, 93, 15, 112, 185, 91].

Our goal in this chapter is to systematically examine the nonlinear H,-control problem
in state space for a class of nonlinear systems and obtain an H, controller parameterization.
This investigation is carried out in a methodical fashion. We follow similar techniques used
in the linear case [60], and propose a machinery for nonlinear Ho.-controller design. Four
problems: full information (FT), disturbance feedforward (DF'), full control (FC) and output
estimation (OE), are also considered. These problems are essential for the constructions of
the controllers, but structurally are not the special cases for the output feedback structure
of the class of nonlinear systems considered in this paper; in addition, they are important
in their own right. Any concept or result in this chapter is local unless otherwise noted.
Specifically, problems DF, OFE and the output feedback (OF) are treated locally. The
sufficient conditions for solvability are obtained and a parameterized class of controllers are
derived for each Hoo-control problems (note that the FI problem has been solved by van der
Schaft [183, 93, 91]). Sufficient conditions for the output feedback H..-control problem to
be locally solvable are also derived using this machinery. Like the conditions in the linear
case, the solvability of the H.,-control problem requires the positive definite solutions to
two parallel decoupled HJIs with the same numbers of dependent parameters and these
two solutions satisfy an additional condition. A class of H..-controllers are parameterized
as a nonlinear fractional transformation on contractive, stable free nonlinear operators. It
would be appropriate to emphasize at this point that similar sufficient conditions are also
obtained by Isidori [91] with different machinery.

The remainder of this chapter is organized as follows: In section 2, some background
material related to the £,-gains is given. In section 3, the H.,-control problem is stated
and the structure of the general system is simplified. We also give the four nonlinear
structures of special problems related to the general system: FI, DF, FC and OE. In section
4, the Ho,-control problem for four special structures are considered, both the solvability
conditions and controller parameterizations are given. In section 5, the main results of this
paper, solutions to the output feedback H,,-control problem, are given. The solvability of
this problem requires the coupled positive definite solutions to two decoupled HJIs. The
standard separation principle in this case is re-examined and a class of H.-controllers are
parameterized. As an illustrative example, the H.,-control design for a passive system is

conducted.
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7.2 Lo-Gains of Nonlinear Systems

In this section, some background material about Ly-gain analysis of nonlinear systems is

provided. [197, 183].

Consider the following affine nonlinear time-invariant (NLTI) system,

G { i = f(z)+g(z)u 1)
y = h{z)+ k(z)u

where z € R™ is state vector, u € R? and y € RY are input and output vectors, respectively.

We will assume f,g,h,k € C%, and f(0) = 0,h(0) = 0. Therefore, 0 € R" is the equilibrium

of the system with u = 0. The state transition function ¢ : Rt x R® x R? — R" is so

defined that z = @(T, zg, u*) means that system G evolves from initial state z¢ to state x

in time T under the control action u*.

Definition 7.2.1 (i) A system G (or [f(2),g(z)]) is reachable from 0 if for all z € R™,
there exist T € RT and u*(t) € L4[0,T] such that 2 = §(T',0, u*);

(i1) A system G (or [h(z), f(z)]) is (zero-state) detectable if for allz € R", h(¢4(t,z,0)) =
0 = ¢(t,z,0)—0 as t—oo; it is (zero-state) observable if for all x € R", h($(t,z,0)) =
0 = ¢(t,z,0)=0 for allt € RT.

Definition 7.2.2 A system G is said to have Lo-gain less than or equal to 1 if

[ wiPas [l a 72)

for all T > 0 and u(t) € L2[0,T], and y(t) = h(z(t)) + k(z(t))u(t), as long as z(t) =
#(t,0,u(t) € X.

Note that in the above definition, we take the initial state z(0) = 0. Define

G@yi= s = [l - o). (73)

u€L3[0,7],7>0,2{0)=z

Note that V,(z) > 0 for all z € X, and if the system has Ly-gain < 1, then V,(0) = 0. We

will assume V,(0) = 0 from now on.

As pointed out by Willems [197], V,(z) < oo if and only if there exists a solution
V : X—RT with V(0) = 0 to the integral dissipation inequality (IDI):

Da(V,,0) = Vi)~ Vi(wo) [ (uto)? ~ (o)) <0 &
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where z = ¢(T, 2o, u(t)) and u(t) € L2[6,T], i.e. system G is dissipative with respect to
supply rate [[u(t)]|® — ||y(1)]|*, and V,(-) is also a solution. Moreover, the solutions to IDI
(7.4) form a convex set, and any solution V(z) > 0 for z € X with V(0) = 0 satisfies
V(z) > Vu(z). The following lemma, which is from [196, 197], characterizes L,-gains.

Lemma 7.2.3 (i) System (¢ (7.1) has Ly-gain <1 if V,(z) < o0, for all 2z € X.

(1) If system G (7.1) is reachable from 0, then it has Lq-gain < 1 only if V,(z) < oo,
for all z € X.

Proof. (i) V,(z) < oo satisfies IDI (7.4), so
/OT([W(t)H2 — lly@)1*)dt > Va(2(T)) = Va(0) = Va(2(T)) 2 0
forall T € R*.

(ii) Take z € X, by the reachability assumption, there exist 7 € R and w(¢) €
Lo[=T,0) such that z(0) = z for z(=7) = 0. Now take any us(¢) € L£2[0,00). Define
u € La[=T,00) as

u(t):{ wy(t), ifte[~T,0);
ug(t), if ¢t €[0,00).
Since the NLTT system (7.1) has Lz-gain < 1, for all 7 > 0, then

[ i< [ ol ar

by time-invariance of (7.1), i.e.,

~ [l = loolPie < [ (ol = o)

Therefore,

V)= o= [ = @RS [ @I = ) < oo

0
up €L£2[0,7],7>0,z(0)=x 0 T
|

Thus, if the system is reachable from 0, then £3-gain < 1 if and only if the system is
dissipative with respect to supply rate |[u(t)||* — ||y(¢)||*; also V() > 0 is well-defined for
all z € X, and there exists a solution V : X—R™ to IDI (7.4). Now define

H(V,2) = (@) () + o) R @)k (@)h(a)+

T
@@ R @) (@) D (a) + B (@)1 - R@R (@) R, (75)

The following lemma characterizes a class of nonlinear systems having Lo-gain < 1.
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Lemma 7.2.4 Consider a system G with R(z) := I —kT (2)k(z) > 0 for all z € X, suppose
G has Lo-gain < 1.

i) If Vo(z) defined by (7.3) is differentiable with respect to © € X, then it satisfies
Hamilton-Jacobi equation (HJE): H(V,z) = 0.

ii) If V : X—R s differentiable on X and satisfies IDI (7.4), then it satisfies Hamilton-
Jacobi inequality (HJI): H(V,z) < 0.

Proof. Part (i) follows from the standard argument (cf. [96]). As for Part (ii), since V(z)
is differentiable, the IDI (7.4) reduces to the following differential dissipation inequality

(DDI):

Dp(V,z,u):= %%(w)(f(fﬂ) +g(@)u) = [Ju()I* + ly(1)]]*
= V(a) = [Ju()* + ly(1)|* < 0. (7.6)
It follows that Dp(V,z,u) < 0 for all w € RP if and only if

sup Pp(V,z,u) <0.

uERP
Let

GDD(Vv €z, u)

——‘__“‘—|u=u* = 07

du
then .
W = R @ @ (@) + LB ()" (0) D (2,

Thus,

Dp(V,z,u*) = sup Dp(V,z,u) <0 — H(V,z) < 0.
wERP

O

It is easy to see that the converse results in the above lemma are also true (see [96]).

The following statement follows from the above proof.

Corollary 7.2.5 Suppose w(x) is a function defined on X with x(0) = 0, then V(x) with
V(0) = 0 satisfies HII: H(V,z) + 7(z) < 0 for = € X if and only if it satisfies DDI:
Dp(V,z,u)+m(z) <0, or

%(@‘)(ﬂ%‘) +g(2)u) < Jlu(t)]|* = ly@)|* - n(2)

Jor all u(t) € RP. Moreover, if 7(z) > 0 and V(z) > 0 for all z € X, then the Ly-gain < 1.
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The above discussion can be summarized as following Theorem which slightly generalizes

[183, Theorem 2].

Theorem 7.2.6 Consider system G (7.1) for x € X, suppose it is reachable from 0, then
each of the following implications holds for all x € X under the specified condition.

Lo-Gain < 1
V(z) =0 Vv, €C?
Dr(V,z,u)<0 H(Va,z) =10
Vecl? V="
Dp(V,z,u) <0 H(V,z)<0

Recall that V : R*—RT is locally positive-definite if there exists » > 0 such that
for € B,, V(z) = 0=2 = 0; it is globally positive-definite if V(z) = 0=z = 0, and
limg o V() = 00. The following lemma, which is due to Hill and Moylan [84] (see also
[183]), partially establishes the relationship between finite gain (stability) and asymptotic
stability.

Lemma 7.2.7 (i) Suppose system G with u = 0 is asymptotically stable at 0, then any
Junction V(z) on X with V(0) = 0 satisfying IDI: Dy(V,z,u) < 0 is non-negative. Specially,
if V() satisfies HII: H(V,z) < 0 with V(0) = 0, then V(z) > 0 for all z € X.

(ii) Assume system G is zero-state detectable. If there is a positive definite solution V()
on X to HJI: H(V,z) < 0 for all z € X, then the system G with u = 0 is asymptotically
stable at 0.

Definition 7.2.8 The class FG of (affine) NLTI systems is defined as
FG = {G|G is asymptotically stable and related HJI has a positive definite solution}.

Therefore, if G € FG with state z, then there exists a positive definite V(z) such that
V(z) < flull® = |ly]|* (here y = Gu), so it has Ly-gain < 1.

We conclude this section with an observation. Consider the system G, define a new

system G as




180

G { i = f(z) + gn(a)u

yn = hn(z)
with
fn(z) = f(z) = g(2)(T = k" (2)k(2)) "'k (2)h(),
gn(z) = g(a)(I = k' (2)k(z))™?,
and

hy(e) = (I - k(2)k" (2))"/?h(x).
System G can be simplified as Gy in the following sense.

Theorem 7.2.9 G s of Lo-gain < 1, and the related HJE (or HJI) has solution V, > 0
(or V. > 0) if and only if G has Ly-gain < 1, and its corresponding HJE (or HJI) also has

the same solution. Moreover, G is zero-state detectable if and only if G is.

Proof. Simple algebra shows both systems correspond to the same HJE(or HJI). It is
obvious that G is detectable if and only if & is. a

7.3 Hs-Control: Problem Statement and Special Problems

7.3.1 H,-Control Problem

The basic block diagram considered in the H,-control synthesis problem is

z w
— ] R

G

where G is the nonlinear plant with two sets of inputs: the exogenous disturbance inputs

w and the control inputs u, and two sets of outputs: the measured outputs y and the
regulated outputs z. And K is the controller to be designed. Both G and K are nonlinear

time-invariant and can be realized as affine state-space equations:

flz) + ql@)w +  ga(z)u
ha(z) + ku(z)w + kip(z)u (7.7)
hQ(lE) + kgl(ac)w -+ kzg(l‘)u

o
™ 8.
T

<
fl
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where f, i, hi, kij € C?, and f(0) = 0,h1(0) = 0,h2(0) = 0; =, w, u, z, and y are assumed
to have dimensions n, p1, P2, g1, and ¢,, respectively, and

T »
v = (&) + d(@)y

with a,b,c,d € C? and a(0) = 0,¢(0) = 0.
The initial states for both plant and controller are 2(0) = 0 and 2#(0) = 0. The
closed loop system will be denoted as nonlinear operator Q(G, K) which represents the

input/output relation: z = Q(G, K)w. In the following, we consider the following local

Hoo-control problem.

Heo-CONTROL PROBLEM: Find an input-affine feedback controller K (or a class such
controllers) for system G (7.7) if any, such that the closed-loop system Q(G, K') is locally
asymptotically stable with w = 0 and has Ls-gain < 1, i.e.,

T
QoI = o)Pyat = o
for all T € RT, as long as the state of the closed loop system (z,%) € B, x B; for some
r,s > 0.

The following assumptions on system structure are made:
[A1]: k11(2) = 0, koa(z) = 0;
[A2]: k52 [ ha(e) k(o) | = [0 1];

g1(%)

T () = 0
o o= 1|

It is known that a large class of nonlinear systems can be simplified to satisfy the above

[A3]:

assumption when H., control problem is considered (cf. [153]).

7.3.2 Special Problems

As in the linear case [60], we will consider four special problems which is essential to the
construction of the H,-controllers for the output feedback problem considered in this pa-
per, and will help us to examine the insights of the constructions and structures of nonlinear
Hoo-controllers, especially to reveal the separation property for nonlinear H.-control sys-
tems. Structurally, those problem are not the special cases for the output feedback problem
considered in this paper; they are also very important in their own right. The reader is

referred to [60] for the motivations and interpretations about those problems.
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e Full Information (FI) Problem.

In this case, both state z and disturbance w are directly available to controller. The

plant is

& = flz) + gq(z)w + g22)u
hi(z) + k1a(z)u

R R

where the structural assumption for this structure is

[A2): kfy(2) [ hu(e) kia(e) | =] 0 1]

w0
Il

1

¢ Full Control (FC) Problem

The control action has full access to both state z through output injection and the

regulated output. The plant is

io= S 4 g + 10
Gre:{ 2z = hi(z) + [0 IJ
y = ho(z) + ko(z)w

(7

with

| ax) | g o) = 0
2 T 2]

e Disturbance Feedforward (DF) Problem
¢ = flz) + gi@)w + goz)u

Gpr: z = hl(m) -+ k12($)u
y = holz) + w

where
[A2): kly(2) [ hi(2) hus(2) [ =[0 1]

e Output Estimation (OE) Problem

& = flz) + gi(z)w + go(2)u
Gog:{ z = hi(z) + U
y = holz) 4+ ka(z)w
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where

[A3]: { 91() J kL (z) = IV 0 :I
k‘21 T 1

In the linear case, the two pairs, FI and FC, DF and OE, are dual in structure. But it
would be un-realistic to expect the same thing happens in the nonlinear case. In the next

section, we will mainly consider those special problems.

7.4 'H.-Control Synthesis: Solutions to Special Problems

Unlike linear case, the solutions for the special H,-control problems cannot be obtained

by duality (if there is any). This section is devoted to the discussion of different special

problems.

7.4.1 Full Information Problem

Consider

& o= flz) + g@)w +  gfz)u
z = h(z) + kio(a)u

HEnL

with 2z € X. In addition to the structural constraints [A2], we further assume

Gpr: (7.9)

<@
Il

[A4]: [hi(z), f(z)] is zero-state detectable.

The Hoo-control problem for FI was first explicitly introduced and solved in [183] (see
also [91]). The solutions to H,-control problem are related to the following HJT,

T
Rt (Vo) = SE@)1(@) 4 10 (@)oot () — ()af (2) o) + BT () (2) < 0

(7.10)

z

The following theorem reveals more properties related to HJI for FI.

Theorem 7.4.1 (i) Hp(V,2) <0 (z € X) has a solution V(z) with V(0) = 0 if and only
if there is Fy(z) such that

T
Hew (Vs Foy) = 3 () (2) + 02(0) o) + 5 O (2 )gn (@) (1) )+

+(ha(2) + k1a(2) Fo(2)) (hi(2) + kia(2) Fo(2)) < 0.
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Moreover, if V(z) solves Hpp(V,z) < 0 with V(0) = 0, then Fy(z) can be taken as
ovt
Fo(z) = - T( )= (®)-

(ii) If [hi(x), f(z)] is assumed to be zero-state observable, then any solution V(z) > 0
to Hpr(V,z) < 0 with V(0) = 0 is positive definite.

Property (ii) insures that the HJI corresponding to FI has a positive definite solution
under some mild assumption (observability). This justifies the assumption that HJI has

positive definite solutions in the next Theorem.

Proof. (i) Note that there exists F(z) such that
HSF(‘C FO’ SU) S 07

if and only if
0> Piolg) Hsp(V Fo, ¢) = Hsp(V, Fo, )|

The latter can be confirmed by taking

OHsr

V, F =
oFy T 0,%) =0
for fixed z.

(ii) Suppose V(z) > 0 is such that Hps(V,z) < 0. Then by the completion of square
technique, it follows that

V() = %(m)(f(m o)+ galo))

= {101 + el

vt | ovT

ut 3ol (@)% (@)

91 (2)—5—(2)

If u=-21g7(x)2L then

V(z) < = [2l* + |lwl*.

Since V(z) > 0, the closed-loop system

{ i = f(z) — sg2(2)9d (2) (@) + g1 (2)w

2 = hy(a) = thio(z)gd () 2L
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is dissipative with respect to supply rate ||w|* — ||z||*. Thus, for all 2 € R™,

V> s = [l - 0]

wELy[0,7],720,2(0)=x
> = [Tl = [T 0]
Therefore, V(2) = 0 = [z = (@) + } |of ()3 @)| = 0,50
&= flz
o ))_o “ { hl(x)(:)o ‘
Thus, z = 0 by observability assumption. (Moreover, the closed-loop system is also observ-

able.) V(z) is (locally) positive definite. O

{ &= f(z) = $92(2)9d (2) %
z = hi(z) - §k12( )92 (

The solutions to the H-control problem for FI in the above setting, which are given

n [183, 91, 93], are included here for completeness.

Theorem 7.4.2 Consider G'py (7.9), suppose there exists a local positive definite function
V(z) > 0 such that Hpi(V,z) < 0, for € B, with some r > 0, and V(0) = 0. Then the
H o -control problem for FI is solvable, and such a FI H.,-controller is provided by

T
w= sl 0% (@),

Moreover, for all Q) € FG, the controller

T T
@)+ Qo — 2ol ()2 (@)

u:—ig ()

solves the FI H., control problem.

Remark 7.4.3 If V(x) is globally positive definite, and Hpp(V,z) < 0 for all z € R",
then Theorem 7.4.1 gives the global solution. The same thing happens for FC H,-control

problem to be investigated later.

7.4.2 Disturbance Feedforward Problem

Consider
o= flz) + gila)v +  g2)u
Gpr:§y z = m(z) + kya(z)u (7.11)
y = ho(z) + w

where f, g1, 92, b1, ho, k12 € C? under the constraints [A2].
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The additional assumptions relevant to DF problem are as follows,
[A4]: [hi(), f(2)] is (locally) zero-state detectable;
[A6]: & = f(z)+ g1(2)ho(2) is locally exponentially stable at 0.

By converse Lyapunov Theorem, assumption [A6] implies that there exists a locally

positive definite function U : R"—R™, such that

oU
Lp(U;z) = 5—(2)(f(z) + 91(2)ho(2)) (7.12)
is locally negative definite. Furthermore, the Hessian matrix of Lp(U,z) is nonsingular at
z = 0 by suitably choosing the Lyapunov function U(z). And if U(z) has these properties,
so does kU(z) for all constant k£ > 0.

Theorem 7.4.4 Consider Gpr (7.11), suppose there ezists a smooth solution V(z) > 0
with V(0) = 0 to Hpr(V,z) < 0 for z € B,. Then the Hs-control problem for DF is

solvable. Moreover, the controller given by

{izﬂ@—m@Md@+%®ﬁwﬂ+m@M mﬂ

Fo(.f) = ——92

U= Fo(:ﬁ) ( )

solves the Ho.-control problem.

Consider the following system

8.
i

(&) = g1(®ho(2) + g1(B)y + g2(3)u
Ppr:
B I n 0
v Pt

We have the following lemma.
Lemma 7.4.5 Given two functions V,U : R"—R, where the function V(z) > 0 with
V(0) = 0 additionally satisfies HII: Hp(V,2) < 0 for x € B,. Let x,% be states of systems

Gpr and Ppr, e := z — Z. Define
. ou . - -
5(U,¢,8) := 5 (e)[(f(z) = (7)) = 02(&)(ho(2) — ho(2))];

Ri(e, &) := hi (2)hy(2) = hi (2)ha(Z);

auT | L Lov 8UT

Ry(e,2) = - (91 () = (fﬂ))——( )+ 557 (@a(@)g {(2) -

-(e)
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T
'%%U@(:ﬁ)@{(@ - gg(i))age (¢).

Then under the assumption [A8), there exists locally positive definite function U(z) such
that for all z,% € B, with some r > 0,

(1) 5(U,e,&) <0,

(1) S(U,e, %) + Ry(e, &) + Ra(e, &) < 0.

Proof. By assumption [A6], there exists locally positive definite function U,(z) such that
Lp(U,,z) defined by (7.12) locally negative definite and the Hessian matrix of Lp(U,, =)
is nonsingular at # = 0. Note that S(U,,e, %) has the same Hessian matrix with respect
to e at (e,2) = 0 as does Lp(U,,e€) at e = 0. Therefore, for & € B, for some r > 0 small
enough, S(U,, e, %) is dominated by its quadratic term of e which is the same as the one
of Lp(U,,e), s0 §(Us,e,%) <0 for z, € B, with the adjusted » > 0. This confirms (i).
Also note that if U,(2) is such that Lp(U,,e) has negative definite Hessian matrix with
respect to e at 0, so is kU,(z) for all constant & > 0. Thence, we can choose k& > 0 large
enough such that S(kU,,e, %)+ Ry(e, z) also has negative Hessian matrix with respect to e
at (e,) = 0; it is dominated by its quadratic term of e. By adding the higher order term
Ry(e, %), we can conclude that S(U, e, &)+ Ri(e,2) + Ra(e, &) < 0 with U(2) := kU,(z) for
z,& € B, with adjusted » > 0. This confirms (ii). Note that the new U also works for (i).
O

Proof. [Theorem 7.4.4] Consider ¥(Gpr, Ppr), which has following realization

i = f(2) +  gi@)w + ga(2)u
o= (f(2) = g1(£)ho(Z) + g1(Dho(2)) + q(@)w +  g2F)u
z = hy(z) + kia(z)u -

y = [ ¢ J + [OJ’UJ
ho(z) — ho(&) I

Let e := x — &, define

Wie, &) :=U(e) + V (&),

where U(z) is given in the above lemma, then W(e, &) > 0, and W(0,0) = U(0)+V(0) = 0.
For all (z,%) € B,,

Wie, ) = U(e) + V(&)
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= I0(N(H(&) ~ (@) - (@) hol) — ho(E)))

L (E)(a(x) — u (@) + (g2<x> 92(5))u)+

T @) + 0B+ 980 + T (B (3 hol) — ho(@)
< 8(U,e,8) 4 TUN5r(2) ~ 13w+ T e)(gal) — g2l
T
S (@eT (@)~ 9o 0D D () — ] () +
@00+ 92()0) + T ()00 (3) (hol) — hol®)
= S(U,e,%) 4+ Ri(e, ) + Rale, )+
T T |? T 2
wt S8 @%@+ 56 - F @ T ()|~ 1+ o) - o (20 Do) -
T T |2
w2005 % (2) ~ (T @) = aF @ Do) 1P + ol
T T2
<o+ 202 @4 kot - st L] - Lot - o0 2o
T T |
W Sl (B 5@~ 2 (67 @) = gl @) o) el + ol
If we take
T
w= 2 (&) (3) = (@)
then
W(e,) < = I + .
Thus, -

[l = 1Py 2 W), 5) - W0,0) = WieT), 5T) > 0.
forall T > 0 and (z,%) € B,.

Next, consider the asymptotic stability of the closed-loop system. It is sufficient to show
if (2(0),2(0)) € B,, then (z(t),&(t))—0 or (e(t),z(t))—0 as t—o0. Take

T
u:——gQT(a:)aaV~ (Z) and w=0.

V() and U(e) is positive definite by assumptions. Therefore W (e, &) = U(e) + V() is

also positive definite, and it can be used as a Lyapunov function.
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We already have
W(e, &) < —|l2]” + [Jw]|* = = |I=l|* < 0.

Now W(e,2) =0 = 2z =0, then z(¢)—0 as t—oc by assumption [A4]. On the other
hand, U(e) = T(U, e, %) is negative definite for (z,%) € B, by previous lemma, then e(t)—0
as t—o0. By LaSalle’s Theorem, the closed loop system is (locally) asymptotically stable.

Finally, the DF controller uw = Q(Ppp, Kpy)y is recovered as

{i‘:f(a:«)—%gm 1@ (@) - p(@ho(2) - @)y

= ~393 (2) 5 ()

Next, we consider the H.,-controller parameterization. Denote

T T
ol ) 1= 5652~ F @) —(e), eule,2) = 567 () — gF () (),
Define
T T
u* = ——g ( )6(;; (Z) = ey(z,2), w":= g (i)aazi (%) + ey, 7).

From the previous proof,
Wie,@) < [lu—u*||* = [jw — ™| = ||z + fJw]*-

If
uv=u"+ Qw— w")

with @ € FG, let { be the state variable for ), and Ug be a solution to the HJI with respect

to @, then
Ug(€) < JJw — w*||* = Jju—u”||>.
Therefore,
W (e, &)+ Ug(€) < —|I2)1* + [Jw]*,

[l = e1yie 2 (o), 30 + Uate(r) 2 0

It seems that the controller recovered from u = u* + Q(w — w*) solves the H,-control
problem for DF. However, it can hardly be physically implemented, since (i) @ requires
some extra high order terms €,(z,%) and €,(z,Z) as parts of its input and output, but

they can not be provided by the closed loop system; and (ii) the term ho(z) — ho(&),
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which is a part of the measured output, does not appear in the required input for ¢). But,
fortunately, the terms €,(z, %) and €,(z,Z) can be eliminated by the assumption [A6]; and
ho(x) — ho(%) is actually the measured noise introduced by the controller. It is reasonable

to take wpr = w + ho(z) — ho(&) as the total disturbance.
The DF H.,-control problem can be modified as follows.

DF H,, CONTROL PROBLEM: Find a class of controllers such that the closed loop

system is locally asymptotically stable and satisfies

T
| A = ol < 0

for all T > 0, as long as the state of the closed loop system z,% € B,; i.e., the controllers

attenuate the external disturbance and the measured noise introduced by itself.

Theorem 7.4.6 Under the assumptions of previous Theorem, define

The controller u = Q(Mpp,Q)y with Mpp given by

z

= f(&) + 02(2)Fo(Z) — gu(2)ho(2) + 01(@)y + g2(F)uo
(7 = Fo(.i)) Uo
yo = —ho(Z) - k() + y

for all Q) € FG also solves the DF H.,-control problem.

Proof. Consider system Q(Gpr, U Mpr,Q))), assume £ is the state of Q. Take W (e, 7)

v

the same as in previous them, the same arguments in previous proof yield that, for all
(2,%,€) € By,

2 2

ovT

T
oV WpF — —91 16 BE: (Z)

ut 500 (3) 5= (@)

W(e, &) < ~I2l* + lhwprl®

Since @ € FG, then there is a positive definite Ug(&) related to () such that

9

’ ovT

. T
Ug(€) < —N (50)8(;{ (%) wpr — =01 (F)—=— o (z)

So
W(e, &)+ Ug(€) < = [|2II* + lwprll*.
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It can be concluded that
T 2 2
| lwprll? = 2)de 2 0,97 € B,
4]

Next, consider the stability of the closed loop system whose state is (e, Z,£), set w = 0,

then it is of the form

é=a(te)
i =Bt e i)
€= a(€) +b(E)yo

where yo|(c,z)=0 = 0. Notice that the subsystems with states e, # and £ can be viewed as
being hierarchically interconnected!. Assume the closed loop system evolves in B,. e—0 as
t—oo by the similar argument in the proof of previous Theorem. Consider the connected
system with state (Z,¢&); Lpr(&,€) := W(e, &)|c=o0 + Ug(£) is positive definite, and can be

used as the Lyapunov function. Let w = 0. Since e = & — 2z = 0, wppr = 0, then
Lpr(#,6) < ~|lzI* < 0,

thus LDF(:E,f) = 0 implies z = 0, so &(t) = z(t)—0 as t—oco. On the other hand, z = 0 —
yo = 0, this also implies £(t)—0 as t—oo. LaSalle’s Theorem implies interconnected system
with states (£, &) is asymptotically stable. By the stability Theorem of hierarchical systems
[191], the closed loop system is locally asymptotically stable.

7.4.3 Full Control Problem

The main purpose of considering FC problem is to provide some required tools for the

construction of output feedback H..-controllers. The system is as follows,

&

ll

flz) + gz + [I O]u

Gro:{ 2z = hy(z) + o 1] (7.13)
y = hoz) + ka(z)w

with constraint [A3]. An additional assumption for this structure is as follows,

[AB]: [ho(z), f(2)] is zero-state detectable.

!8trictly speaking, the subsystems are not hierarchically interconnected; this issue is discussed in detail

in [108].
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The solvability of He,-control problem to FC is also related to the HJI:

Hro(U,) = 22 (a)f(e) = 29 )y )t () ()4
R (2)hy(z) — b (2)hy(z) < 0. (7.14)

Theorem 7.4.7 (i) If U(z) with U(0) = 0 satisfies

Hor(U, Lo, @) := %(w)(f(:v) + Lo(z)ho(2))+

L0 ) an(e) + (e ban(2))(01(2) + (e () () + T (2 () < 0

Jor some Lo(z), then U(z) satisfies Hrpc(U,2) < 0 with U(0) = 0 as well.
Conversely, if U(x) satisfies Hpo(U,z) < 0 with U(0) = 0, and Lo(z) is such that

00 (@) Lolw) = ~2hT (),

then Hor(U, Lo, z) <0.
(ii) If system [hq(x), f(2)] is zero-state observable, suppose U(z) > 0 solves Hpc (U, z) <
0 with U(0) =0 and
oU T
O () olx) = ~2h] (2)

has a solution Lo(z), then U(x) is positive definite.

Proof. (i) Notice that there exists Lo(z) such that
HOI(Ua L07 33) < 0
only if

0> inf  Hor(U, Lo,z) = Hos(U, Lo’x)|%§—(x)Lo(x)=~2hg"(x) = Hrc(U, ).

(@) Lo(x)
It is also sufficient if 2%(2)Lo(z) = —2h% (z) has a solution Lo(z).

(ii) Will be proved during the proof of the following Theorem. O

Theorem 7.4.8 Suppose U : R*—R™ is locally positive definite such that Hpc(U,z) < 0.
If Lo(z) satisfies

‘;Z( VLo(a) = —2hT (a), (7.15)

then the controller given by “output injection”

Lo(z) J ,

u(z) = {
0

solves the H,-control problem for FC.
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Proof. (i) Le-gain < 1. Just U(z) > 0 is assumed.

0(@) = S0 @) (@) + aaleo+ [ 10 ]w)

T
< 20 (w)a ()07 () 20— () = 1 () + B (o)

L@+ [ 0w

aU :

(@) + kg (@ha(2)| = ll* + [lwl* +

=[lo 1] -
([%(w) 2h%’<:c>] wt 2 (@) ko) + Fan()).
Note that kyi(z)kd,(z) = I for all z € R™ by assumption [A3], so ||k21(2)v]| < [|v]] for all
v e RP.
Observe that y = he(z) + kar(2)w = ko1 (z)(w %g;f(a)%(l) + kL (2)ho(2)), then

ouT 2

1yl = [|ha(2) + ka1 (2)w|* < |w— “91 (ﬂf) —() + kdy (z)ha(z)

So
Oy < [ o 1 ]u| =l = 1212 + el + ([ Z(o) 287 (@) | ut 265 @),

Note that
Ue) < =gl = 11201 + [wl® < = [l21* + flw]f?

if u is such that { 0 I ] % = 0 and [ L (z) 2ni(x) } u + 2hT (z)y = 0; but the latter is

guaranteed by taking the controller as the given “output injection:”
Lo(ll?)
u(z) = [ . ¥

where Lo(z) solves

80 () ofr) = ~2h5 ().

It follows that
[l = el 2 0(e) ~ 0(0) = U(a(1)) 2 0

forall T > 0.

(ii) Proof of Theorem 7.4.7(ii). It is assumed [hy(z), f(2)] is observable in this proof.
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If the above controller is taken, then the closed loop system is

& = f(z) + Lo(z)ha(z) + (91(z) + Lo(x )k (z))w
Z = hl(ﬁ)
y = ho(z)+ kor(z)w

From the previous proof,
U(z) < = llyl* = 11207 + [l

Since U(z) > 0, the closed loop system is dissipative with respect to [Jw(t)||* = ||2(¢)]|* —
ly()]|*. For all z € R™,
U(z) 2 sup —/0 (I = 1201 = ly(e)lI*)dt

weLy[0,00),z(0)=z

> - /OOO(O = LI = ly(D)*)dt = /OOQ(IP«’(‘t)II2 + [yt

Therefore, U(z) = 0 = y(t) = ha(z(t)) = 0 for w(t) = 0, thus

&= f(z)+ Lo(z)ha(z) o) T=1E)
hg(x) =0 hg(’C) =
By the observability assumption z = 0, U(x) is (locally) positive definite.

(iii) Asymptotic Stability
U(z) is positive definite by assumption, it can be used as a Lyapunov function.

Set w =0,
U() < oI = |20 = B2 ()] = = [|2(0)] = [Ih2(2(0)]]* < 0.

SoU(z)=0 = hy(2(t))=0 = a(t)—0 as t—oo by assumption [A5]. LaSalle’s
Theorem implies & = f(z) + Lo(2)ha(z) is asymptotically stable.

From the above proof,
: 2 2 2 2, OU T T
U@) < fluall” = llgll” = =l + llwll® + (G -(@)ur + 27 (2)uz + 2h; ()y).

Assume Ly(z) is such that

ou
b—;(a:)Ll(a:) = —ZhIT(x)‘
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Take u; = Lo(z)y + L1(2)ug, then

oU .
%(z)ul + th (z)ug + 2h2T(:c)y = 0.

Therefore,

U(x) < Juzll® = yll* = [121* + fJwl*-

Let ug = Qy with Q) € FG (so uy = Lo(a)y+ La(z)Qy then), @ can be assumed to have
the following realization,
{ €= a(8) +b(&)y
ug = ¢(§) '

Then there exists U.(£) > 0 positive definite such that

Ue(&) < |1yl = Jfuzl?

and £ = a(€) is asymptotically stable.
Define W(z,€&) = U(z) + U.(€) for (z,£) € R™ x R, then W(z,£) > 0 is positive
definite. Notice that
W(e,€) = U(a) + U.(¢)

< (lluall® = llyll® = ll=l* + Twll) + (il = fuzl®)
= [lwl* = [l=If*.

Thus,
/OT(Hsz ~||=l1*)dt > W(2(T),&(T)) = W(0,0) = W(x(T),&(T)) > 0

for all 7 > 0.

Thus, we motivated the characterization of a class of controllers.

Theorem 7.4.9 The assumptions are the same as in the last Theorem. If in addition, U

is such that Hpc(U, ) is negative definite, and L1(z) also satisfies
O ) a) = —2hT () (7.16)

then

Q
Jor all ) € FG also solves the H,-control problem for FC.

. [ Lo(x) + Li(2)Q J ,
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Proof. We only need to consider the stability. Since Hrc (U, ) is negative definite, then

there exist a positive definite 7(z), such that
Hrc(U,z)+ m(z) <0.
By Corollary 7.2.5,
U(z) < Jlusl® = [lyl* = Iz + wl* = = (2).

Wiz, &) = U(z)+ Us(§) is positive definite, as U(z) and U,(€) are. It can be taken as

Lyapunov function, let w = 0, then
Wz, €) < (lual® = llyll® = 121 = 7 (@) + lyl* = flual*) = = [|2]* = =(2) < 0.

Note that W(z,f) = 0 implies 7(z) = 0, = 0 by assumption. If z = 0, then £ =
a(&) + b(&)y = a(€) is asymptotically stable; so £(t) — 0 as t — oo. LaSalle’s Theorem
implies the asymptotic stability. |

Remark 7.4.10 Notice that the suggested He,-controllers for FC problems characterized in
terms of HJI (7.14) in general depend also on the full state z. This is because the solutions
Lo(x) and Ly(z) of equations (7.15) and (7.16) in general depend on the state . The
pure full control solution is possible when equations (7.15) and (7.16) both have constant
solutions; however this condition is restrictive. At this point, we would satisfy with the way
the controllers are constructed. It might be argued that the obvious controller u with uq
stabilizes the system, say w; = — f(z) — ¢, and ug = —hy(x) can do this job with resulting
Lo-gain = 0, since z = 0 in this case. Nevertheless, the main purpose of considering the FC
problem in terms of HJI (7.14) is to build up the required machinery for the output feedback

problem. The current treatment indeed achieves this goal. This point will be clear soon.

7.4.4 Output Estimation Problem

Consider

fle) + al@w + golz)u

hi(z) + u (7.17)
y = ho(z) + ku(2)w

&

I

Gog: 4 =z

where g1, go, b1, ho, ka1 € C? with constraint [A3]. An additional assumption for this struc-

ture is as follows,

[A5]: [ha(2z), f(2)]is (locally) zero-state detectable.
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Theorem 7.4.11 Consider Gog (7.17), suppose there exists a local positive definile solu-
tion U(z) to HJI: Hpc(U,z) < 0, with U(0) = 0; and U(z) makes the Hessian matriz of
Hre (U, z) with respect to x € R™ be negative definite at 0. If Lo(x) satisfies

ou

S (©)Tofe) = =24 (@),

then there exists a controller such that the closed loop system has Lo-gain < 1 as long as

the state of the closed loop system does not leave B,. And such a controller can be given by

o { Fo= (&) - go(®)h(#) + Lo(#)ha(E) — Lo()y
\OF - .
u o= —hl(i)

Furthermore, the closed loop system is also locally asymptotically stable at 0, if in addi-
tion,

[AT]: & = f(z) — go(z)hi(z) is locally asymptotically stable.

Lemma 7.4.12 Suppose there exists a locally positive definite function U(x) > 0 such that
Hrco (U, z) is locally negative definite. Let x,% be states of systems Gog and Kog, e = ¥—z.
Define

Hale,8) 1= DUNJ(E) ~ (@) + Lo(E)(ha() — ha(2))+

T
190 () 01(2) + Lof@hrale))(gn(w) + Lo(@)bua(e)) T oo —(e)+

(h (&) = hi (2))(h(¥) = ha(2)) ~ %g(ff)(go(fﬂ) = 90(%))h(Z)

with Lo(&) defined as in previous Theorem. Then for all (z,%) € B, with some r > 0,
He(e, &) < 0. Moreover, there ewxists a locally positive definite function n(e) such that

H.(e, %) + m(e) < 0.

Proof. Recall that Hor(U, Lo, e) = Hrco(U, €), where

oU
Oe

Hor(U, Lo, €) := (e)(f(e)+ Lo(e)ha(e))+

T
$ 9N () + Lolelean(e)g(e) + Lo(eWhan(e) 2o —(e) + B (e)m(e).

Also note that the Hessian matrix of H.(e, Z) with respect to e at 0 is the same as the one
of Hor(U, Lo, ¢) = Hpc(U, €) with respect to e at 0. The conclusion follows by the similar

argument in the proof of Lemma 7.4.5. a
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Io(3
Remark 7.4.13 If we take u = { ol#) } y with yo = ha(%) — ha(z) — kia(z)w, let 2 =
0

hi(z) — hi(Z) + [ 0 I } u, then

06 = 22 (e)( (@)~ fle) 4 (e + [ 10 |w)

oU

< = llwoll” + [lwll® = [1211” = 5 (e)(g0(2) = g0(&))ha (%)

for all (z,%) € B,.

Proof. [Theorem 7.4.11] Consider Q(Gog, Krc) which has following realization,

& = f(z)=go(2)(2) + g1(@)w
r = (f(&) = go(#)h (7)) + Lo(Z)(ha() = ha(x)) — Lo(&)kn(z)w
z = hi(z)— h(T)

Let e = & — z, for (2,%) € B,,

_ov

U(e) = -

()(f(Z) = f(2) + Lo(&)(ha(Z) — ha(2))-

(Lo(Z)ka1(2) + g1(2))w) — %g(e)(go(a?) = g0(z))h1(Z)

< Jwl® = Jl211% = llyoll* < = |I2II* + [|w]®
[ ol = 1> Uy~ 0(0) = ey 2 0
for all T > 0.

Next, the asymptotic stability of the closed loop system is considered. It has the real-

ization as follows

{£=f@)—%@Mﬂ@+Ld®wx@—hﬂ@)‘
é=n(t,e)

Since U(e) is positive definite from the negative definiteness of (Hessian matrix of)
Hro(U, e). Therefore e(t) — 0 as t — co. Note also that & = f(#) — go(&)h1(%) is asymp-
totically stable. Since the two systems are hierarchically interconnected, and asymptotically

stable, the interconnected system is asymptotically stable [191]. a
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Remark 7.4.14 It is observed that the requirement for system & = f(z)— go(x)h1(z) to be
(locally) asymptotically stable is necessary for the zero-dynamics of the closed loop system

to be (locally) asymptotically stable [186].

Theorem 7.4.15 Under the assumption of the previous Theorem, if in addition, Li(z) is
such that

oUu
(@) a(e) = —2b] (),

then the controller w = Q(Mog, Q)y with Mog given by

o= f(#) - go(2)h1(8) + Lo(@)ha(2) — Lo(B)y + (92(%) + L1(&))us
U = —hl(é}) -+ U
Yo = ho(Z) - Y

for all ) € FG also (locally) solves H,-control problem for OF.

Proof. Counsider Q(Gog, U Mog,Q)) for @ € FG which has following realization,
€= a(6)+b()y
ug = ¢(§)
The similar argument shows that there exists r > 0, for (z,2,€) € B,,
Ule) < flwll® = lI211* = ligoll® + [luzll* = 7 (e)
for some locally positive definite 7(e).
And Ug is a solution to the HJI with respect to @ with state £, then
Ug(€) < llwol* = flual® -

So
U(e) + Ug(€) < = ll2l* + [lwl® = m(e) < = ||| + [Jw]* -
Therefore, ’
P = ol < U(0) - U(e(r)) = ~U(e(T) < 0
As for the stability, let w = 0, then the closed loop system has the following hierarchical

structure?,
é = n(t,e)

€ = a(€) + b()(ho(#) — ha(a))
& = [(7) — go()h1(F) + Lo(&)(ha(#) = ha(2)) + (92(F) + L1())e(€)

2Strictly speaking, the closed-loop system is not hierarchically interconnected, see Section 5.3.
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Take Log(e,€) = U(e) + Ug(€) as the Lyapunov function of the interconnected system
with state (e,£), then Log(e,€) < —||2||* = 7(e). Now Log(e,£) = 0 = n(e) = 0, so
e = 0. So in this case § = a(£); but it is asymptotically stable, so £(¢)—0 as t—oco. The
interconnected (e, £) is locally asymptotically stable by LaSalle’s Theorem. Now if (e,£) = 0
then & = f(&) — go(#)h1(&); but it is locally asymptotically stable at 0 by assumption [AT].
Thus, we can conclude that this closed loop system is asymptotically stable by the stability

Theorem for hierarchical systems [191]. O

7.5 Ho-Control: Output Feedback Problems

We now consider the output feedback H,, control problem. The solutions to this problem
are based on the results in the last section.
7.5.1 Solutions to Output Feedback Problems
The NLTT plant is realized as the following input-affine state-space equation,
= flz) + ql@w 4+ g¢g2)u

G:{ 2z hi(z) + k1z(e)u (7.18)
y = ho(z) + ka(z)w

where f, gi, hi, ki; € C? and f(0) = 0,h1(0) = 0,h2(0) = 0; z, w, u, 2, and y are assumed to

have dimensions n, p1, p2, g1, and g9, respectively.

The following assumptions are made,

[A2]: k() [ hi(z) kio(z) } = [ 0 1 J?

| (=) R U
[ 29 L]

[A4]: [h1(z), f(z)] is zero-state detectable.

The main idea in the construction of H,-controllers is to convert the general problem

OF into the simpler problems which have been solved.

Let V(z) > 0 be the solution of Hz7(V,z) < 0, and

T
Ro(@) = ~3f @)% @), A= ol o) ). (7.19)
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Define new variables r := w — Fy(z) and v := u — Fp(z). We get a new system
¢ = fulz) + gla)r + ga(z)u
Goig v = ho(z) + + u (7.20)
y = ho(z) + ku(z)r
where fy () := f(z) + g1(2)Fi(z) and hy(z) := Fo(z).

We have the following lemma.

Lemma 7.5.1 Consider systems G (7.18) and G, (7.20). If the controller K makes
Q(Gy, K) have Lqy-gain < 1, it also results in Q(G, K) having Lo-gain < 1.

Proof. Note that z = Q(G, K)w and r = Q(Gy, K)v.
Since V() > 0 solves Hpy(V,2)+ ¢(z) = 0, then

V() = @) f0) + ) + ga(e)n)

2

T
= et el - - 22 )] + ot Lt o - o
< ==+ Hfel® = N1l + ol
So for all T > 0,
Sl = P [ = ol + ) 2 [P ol

T T
L= petdez 0 = [l - P> o.

Now define

M) 1= D @)1 + -0 ()or()a] (1) o () 4 T (0 a(2) — ] (0,

Take W(z) = U(z) — V(z) with W(0) = U(0) — V(0) where V() > 0 is given just now.
Note that
Ha(W,z) = Hro(U,2) = Hpi(V,2) = Hre(U, z) + ¢(2),

where ¢(z) > 0 is such that Hpr(V,2)+ ¥(z) = 0. Thus, H,(W,z) < 0 if and only if
Hro(U,z) + ¢¥(z) < 0. Assume U(z) is such that Hpc(U,z) + ¥(z) < 0 has a positive

definite Hessian matrix at z = 0, then H, (W, z) also has negative definite Hessian matrix
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at 0. Suppose Lo(z) is such that 9% (z)Lo(z) = —2h% (). The controller K for the new
O F structure given by Theorem 7.4.11 is

3
K
U

is such that system Q(G,, K') locally has £o-gain < 1.

fa(#) + 92(8)ha(2) + Lo(2)ha(E) — L(2)y
ha(2)

fl

By lemma 7.5.1, Q(G, K) has Lo-gain < 1. Next, we examine the stability of the closed
loop system (G, K') which has the following realization,

& = f(x) + g2(x) Fo(2) + g1(w)w
& = fr(&)+ Lo(#)(ha(#) = ha(2)) + Lo(&)ka(z)w
z = hi(z) + ki2(z) Fo(2)
where
T (@) := f(2) + g1(2) F1(2) + g2(2) Fo(Z). (7.21)

Take e = & — z. Note that H,(W,-) has negative definite Hessian matrix as does
Hre(U, ). Using the same technique as in the proof of Theorem 7.4.8, it can be concluded

that for some locally positive definite 7 : R™ — R™, such that if (z,%) € B, for some s > 0,
W(e) < |lrll? = [lol* = = (e)-

Let Lop(z,e) = V(z) + W(e) with e = & — . By assumption V(z) and W(e) are

positive definite, so is L(z,e), and it can be used as a Lyapunov function. Take w = 0,
V() < = [l2l* + [lol* = lI)1*

Lor(z,€) = V(z) + W(e) < —||2|* = 7(e) < 0.
Then Lop(z,e) =0 = 2=0and 7(¢) = 0= 2 = 0 and ¢ = 0. Therefore, Loz(z,e) is
locally negative definite, the closed loop system is locally asymptotically stable.

Therefore, we have the following results about output H,-control problem,

Theorem 7.5.2 Consider G (7.18), if there is some (z) > 0 with ¥(0) = 0 such that
(i) there exists a locally positive definite V() which solves the HIE: Hpp(V,z)+v¢(z) =0
with V(0) = 0.
(it) there exists a locally positive definite U(x) which satisfies the HJI: Hpc(U,z) +
Y(z) <0 with U(0) = 0. And Hpc(U, z) + ¢(z) has nonsingular Hessian matriz at 0.
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(iii) U(z) — V(z) > 0 is locally positive definite. And

ou ov
(55(@) = Go(@)Lo(e) = ~2] (@),

has a solution Lo(z). Then the output feedback Ho.-control problem is solvable. Further-

. { b = fi(8) + Lo(#)ha(2) — Lo(d)y
U = FQ(:%)

18 such a controller.

Similar results to the above theorem are also obtained by Isidori in [91]. Note that H.-
controllers have separation structures. The separation principle for the H,-performance in
nonlinear systems was first confirmed by Ball et al. [15] (see also [91]). Similar arguments
to Theorems 7.4.15 and 7.5.2 can be also used to construct the controller parameterization

as follows.

Theorem 7.5.3 Consider a system G (7.18) satisfying the condition in Theorem 5.1. If

in addition L(x) satisfies

ou ov
(57(2) = 5= (@))alz) = —2hi (@),
then the controller w = Q(M, Q)y with M given by
& = [x(E) - L@y + (92(2) + Li(F))uo
v o= IFo(Z) + N
Yo = ho(Z) - y

for all Q € FG also solves output feedback H,-control problem.

Proof. By lemma 7.5.1 and theorem 7.4.15 it follows that the closed loop system Q(G, K)
with K = Q(M, Q) has the Lo-gain < 1. Now it is sufficient to consider the stability issue.
Suppose ) has the following realization

€= a(&) +b(E)yo

up = ¢(£)
and Ug(€) is such that Ug(€) < |luol|* = ||yo||>. Take w = 0, the closed loop system has

following “hierarchical” structure,

& = f(2) + g2(2)(Fo(Z) + c(£))
€ = a(€) + b(E)(ha(&) — ha(2))
& = fr (&) + Lo(#)(ha() — ha(e)) + (92(8) + L1 (F))e(€)
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Let V,W : R"—R™ positive definite be defined as in the preceding discussion. Denote

e = & — x. Similar arguments to theorems 7.4.15 and 7.5.2 show that
W(e) < |Irll* = [l = llyol* + fluoll = 7(e)

for some positive definite 7 : R"—R*. Define Lop(z,e,€) := V(z) + W(e) + Ug(§) as
the Lyapunov function of the closed loop system, then ﬁop(m, e,&) < — ||z||2 — w(e). Now
Lor(e,£) =0 = 7(e) = 0 and ||z]] = 0, s0 ¢ = 0 and z = 0; the latter implies z(#)—0 as
t—o0 by [A4]; on the other hand if e = 0,z = 0, then € = a(¢), which is asymptotically
stable and £(¢)—0 as t—oo. The interconnected (e, &) is locally asymptotically stable by
LaSalle’s theorem and Vidyasagar’s theorem [191]. O

7.5.2 Examples

In this subsection, we will examine an example from [59]. The basic block diagram is as

Wy
0 -
P S

follows,

K

Where P is a passive nonlinear plant; K is the controller to be designed such that the
output z is regulated; y is the measured output, based on which the control action u is
produced; wy is the disturbance from the actunator; and w; is the noise from the sensor.
The control problem is to design the controller K such that the influence of the noises
wy and wo on the regulated output z; can be reduced to the minimal with the reasonable
effort (control action should not be too large).

To formulate this problem, all the signals are considered in space £3[0,00). The H,-
control problem in this setting is to find a controller K (if any) for given v > 0, such

that
T T R
L Qal? + 7 e < 92 [l + o), VT € RF 5,3 € £200,00),

where 7 > 0 is weighting factor. Let 4*(r) be the smallest v satisfying the above inequality.
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The case where P is a general lossless plant is considered in [185]. In the following, a

passive plant which has the following realization is considered.

& =e"(wy + u)
Z7=z+u

Y=+ uy

We will consider two cases with different weighting factors » = 0 and » = 1. In both
cases, since the stability of the resulting closed loop systems can be easily checked by using

the corresponding Theorems, we just consider the H ,-performance problem in a local sense.

Case I: r =0

Consider the control problem that a controller K is designed such that:
T 2 2 (7 2 2
[ lalPde < g [l + oy, vr € RF

where 9 = 1/(1 — ¢€) for some 0 < € < 1.

To standardize the problem, take

Thus, the state-space realization is

F— {0 e’d’}w 4+ e*u
z = (l-¢z + [1—6 OJw
y = @ + |1 o]w

Change the variable v’ = e"u. Now it looks like the output-injection control problem.
But it is not standard, since we need to get ride of the term { 1l—¢ 0 ] w in the regulated
output z. By using the simplification method by Safonov et al. [153], we have the following
simplified system,

;& pd !: O ea: } w _I_ ul

1—¢

= =t
UV = v+ {1 O}w

with yy = v2¢ — €?y. Now the system has a required output-injection structure.
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Consider the HJI with respect to this structure:

Hre(U,z) = %—(x) 0+ 211_6290(%%(;5))2 * (\/%1)2 - (\/26 e =

A class of local positive solutions U(z) are such that

ou .
5@—(3/:) = 2pe” "z
for 0 < p < 1. Take p = 1, the solution L(z) to
ou 2z
V) = e
bz O] = ——sy
is
L(z)=~—=

It follows that the controller is

W = L(a)yy = ——e—— 26— 2y = —7y,

2¢ — €2
or the output-injection can be recovered as u = —y. Note that it is independent of .

This Hs controller is identity (A = —1). Actually, we have following general result

which appears in [59].

Theorem 7.5.4 Consider the feedback system as shown. Suppose the plant P has the same

number of inputs and outputs, and is passive, i.e.,
/i (Pe)ledt >0, VT € RT,
0
and K = —1, then
T 2 T 2 2
Ll aes [ (ol + walPyar, v € R

CaseIl: r =1

Consider the control problem that a controller K is designed such that:
T 2 2 [T 2 2
P+ frle < 53 [ ol + wal)de v7 € RY,

where 7 = v/2/(1 — ¢) for some 0 < € < 1.

Take
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Thus, the state-space realization is

r = [Oex}w—}— ety
S A R A R P

0 0 0 7;
y = z + J[1o0]w

To standardize this structure, we can get the simplified system by the method introduced

in [153] as follows,

io= [0 e u + Leuy
1—e¢ r 0
» — V1+2e—e2 + UN
0 1
_ 2
Yn = 12—z ? + [ 10 }w
with uy = 1—\/'§u and yy = Ltz—;—_—ﬁJ. Now the system has a required output feedback

structure.

Now take 1(z) = 0 as in Theorem 7.5.2, consider the following HJE,

The positive solution V() is such that

v 21 — €)?

-
—(2) = ——2—¢""u.
oz ) 1+ 2¢— 2

Also consider an HJT as follows,

— — ) - (| ————2)% <.
893(33)) +(\/1+2€——€2x) ( 1+26——€2$) =0

A class of positive definite solutions U(x) are such that

oU 1
Hrc(U,z) = %-(x) 0+ Ze%(

ou .
—%(x) = 2pe "x
for 0 < p < 1. They make Hpc(U, ) have negative Hessian matrix at 0.
Now it can be easily checked that U(z) — V(z) is positive definite if p is taken to be
close enough to 1. And Lg(z) can be solved by

o te) = S ole) = 2y 1

Then the controller can be constructed by Theorem 7.5.2.



208
7.6 Notes and References

The material in this section forms the paper [112]. The generalization of the results in this
chapter to deal with the finite-time horizon and time-varying systems is given in [107], and
the one for global solution is derived in [110].

The first state-space effort might be the relating of the nonlinear H.,-control to dif-
ferential game theory by several researchers [12, 16, 52]. The state-feedback nonlinear
Hoo-control problem was first solved by Van der Schaft [183]. Isidori and Astolfi [93, 91]
developed some sufficient HJI characterizations for the output control problem. They also
parameterized a class of controllers for the full information (FI) structure [93].

Ball-Helton-Walker [15] derived necessary conditions for some H.,-control problem to
be solvable. These conditions are that two HJIs have positive solutions and the solutions
are coupled locally. They confirmed the separation principle for the nonlinear H..-control
system, and also provided a recipe to construct the controllers from the necessary conditions.
Van der Schaft and Isidori also similarly considered the necessity part [185, 92]. In the next

chapter, we will derive the necessary conditions in terms of NLMIs (see also [113]).
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Chapter 8

Hoo-Control of Nonlinear Systems:

Convex Characterizations

8.1 Introduction

The simplicity of the state space characterization of H.,-control theory together with its
clear connections with traditional methods in optimal control [60] have stimulated several
attempts to generalize the linear H, results in state space to nonlinear systems [183, 93, 15,
113]. Basically, in those treatments, the (dynamic) output feedback H..-controllers have
separation structures; necessary and sufficient conditions for the H,-control problem to be
(locally or globally) solvable are characterized in terms of Hamilton-Jacobi equations (HJE)s
or inequalities (HJIs) [183, 93, 15, 113, 92, 185, 52]. Specifically, a local output feedback
Hoo-controller, and a class of parameterized local H, controllers are designed based on
the required local solutions of some Hamilton-Jacobi equations or inequalities [93, 113];
also the fact that there exist output feedback Hoo-controllers (with separation structures)
implies the solvability of two Hamilton-Jacobi equations or inequalities [15, 185]. Some
efforts have been made to characterize the global solutions; a one-inequality sufficient and
necessary condition for global solutions is given by Helton and Zhan in [82]; the necessary
conditions can be further refined by two Hamilton-Jacobi Inequalities [15]. Whence, one
of the major concerns in the state-space nonlinear H,,-control theory is the computation
issue involving in solving these Hamilton-Jacobi (partial differential) equations (HJEs) or
inequalities (HJIs); progress along this line would be beneficial to applications of nonlinear

Hoo-control theory. For example, Huang and Lin proposed a systematic procedure to find
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Taylor series approximations to the solutions of the HJEs [86] (see also [120, 183]).

In this chapter, we propose an alternative approach with promising computational prop-
erties to the nonlinear H,-control problem. This is motivated by the fact that, essentially,
the linear Hoo-control problem can be characterized as a convex problem which has some
appealing computational properties [132, 29] (see also [119, 133, 111, 69, 94] for the treat-
ments in linear case in terms of linear matrix inequalities (LMIs), which result in convex
problems). We therefore examine the convexity of the nonlinear H,-control problem, and
characterize the solutions in terms of nonlinear matrix inequalities (NLMIs) instead of
the Hamilton-Jacobi equations or inequalities. Both state feedback and output feedback
solutions are derived. In the output feedback case, the H.,-controllers are not required to
have separation structures; some necessary conditions are characterized in terms of three
algebraic NLMIs. It is also confirmed that the three-NLMI characterization is sufficient for
local solutions. It is noted that the algebraic NLMIs are in fact the state-dependent LMIs,
therefore, some convex optimization methods for solving LMIs can be possibly used in the
practical computation for solving NLMIs. Unfortunately, unlike the linear case, the solution
of the NLMIs by themselves are not sufficient to guarantee the existence of the required
controller, some additional condition is required, and the computational implications of the
required additional constraints on the NLMI solutions are not totally clear at this moment.
This issue is discussed more in the body of the chapter.

The remainder of this chapter is organized as follows: In section 2, some background
material related to the £y-gains analysis is provided; the NLMI characterization of £3-gains
is given. In section 3, the H,-control problem is stated; some assumptions on the system
structures are made. In section 4, the main results of this chapter, i.&., solutions to the out-
put feedback H,-control problem, are given; the solvability of this problem is characterized
by three NLMIs. In section 5, it is further shown that under some (weak) separation struc-
ture assumptions for the H.,-controllers, the solvability of the output-feedback Ho.-control
problem implies the solvability by static state-feedback and output-injection. In section 6,
the conditions for the existence of the solutions to these NLMIs which yield the H,-control

solutions is examined. Some required technical material is reviewed in the appendix.

8.2 Stability and H.-Performances

In this section, some background material about stability and £,-gain analysis of nonlinear

systems is provided. The reader is referred to Willems [197], van der Schaft [183], and Lu
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and Doyle [112] for more characterizations. We will reformulate these characterizations in
terms of nonlinear matrix inequalities (NLMIs).

Consider the following input-affine nonlinear time-invariant (NLTT) system,

. { i = f(z)+ g(a)w 5.1)

z = h{z) + k(z)w

where ¢ € R" is state vector, w € R? and 2z € RY are input and output vectors, respectively.
f,9,h,k € C° are vector or matrix valued function, and f(0) = 0,%(0) = 0. From now on
we will assume the system evolves on a convex open bounded subset X C R" containing the
origin. Thus, 0 € R" is the equilibrium of the system with w = 0. The corresponding state
transition function is denoted as 1 : RT x Rt x R"™ x L5(RT)—R". It is assumed that the
system (8.1) is reachable from 0 in the sense that for all z € X, there exist T € R* and
w*(t) € L3[0,T] such that z = ¥(T,0,0,w*).

Note that in many cases system (8.1) can be rewritten (nonuniquely) as the following

form which is also used in this chapter,

G { &= A(z)z + B(z)w (3.2)

z=C(z)z 4+ D(z)w
where 2 € R" is state vector, w € R? and z € R? are input and output vectors, respectively.
We will assume A, B, C, D are C° matrix-valued functions of suitable dimensions.
We first consider the Lyapunov stability of system (8.1). The Lyapunov theorem can
be explicitly applied to the system (8.1) as follows.

Theorem 8.2.1 Consider system (8.1). It is asymptotically stable around 0 if and only if
there is a Cl positive definite function V : X—R* such that

%(m)f(:c) <0 (8.3)

for all z € X\ {0}.

In the sequel, we mainly consider the performance of the system (8.1) in terms of its

Ly-gain.

Definition 8.2.2 The system (8.1) or (8.2) with initial state z(0) = 0 is said to have

Lo-gain less than or equal to v for some v > 0 if

T T
L@ <t [ o a (34)

Jor all’ T > 0 and w(t) € L3[0,T], as long as the state z(t) € X for t € [0,T].
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In the following discussion, we only consider the case v = 1 without loss of generality.
As pointed out by Willems [197], if the system has £;-gain < 1, if and only if there exists a
function V : X—R* with V(0) = 0, which is called storage function in [197], such that

T
V(2(T)) - V(2(0)) —/O (o) = l=(0)|*)dt < 0, (8.5)

where w(t) € £,[0,77], and z(t) € X for ¢ € [0,T]. Moreover, the functions V(z) satisfying
(8.5) form a convex set.
The following proposition characterizes Lo-gains for a class of nonlinear systems in terms

of NLMIs.

Theorem 8.2.3 Consider system G given by (8.1) with R(z) = I — kT(2)k(z) > 0, it
is asymptotically stable and has Lq-gain < 1 if there exist a C' positive definite function
V : X—=R"T such that

v V(@) f(z)+hT(2)h(z)  L9(2)g(x)+ AT (2)k(2)

R L) = T . 0 8.6
52" LgT(2)2 (2) + kT (2)h(x) kT (2)k(z) ~ <0 (6

for all z € X\ {0}.

Proof. By Schur’s complement argument, we have that (8.6) is equivalent to

MG o)1= S (@) f() + K (@)h(a)+
T
Lo @lgla) + K (2R~ K (@) g7 () D () 4 KT (b)) < 0 (5.7
for all € X\ {0}. Thus,
V(@) = I ()(/() + gl
= I (@)gla >w+H<-3—Z ¢) - KT (2)h(z)—
T
(5 9 (2)a(@) + K@)~ K (o)h() " (07 (@) () 4 K ()h(2)  (5.5)
= (o)l - 0] -
R0 ~ R R @h(z) ~ R 0D ()] + 1 0)
< (O = =) + (S 2) (39)

< w1~ [l=(8)I*, (8.10)
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which implies that
T
[P as [ a- vy < [ o) a

for all T € R*, since V(0) = 0 and V(z) > 0; i.e., the system has L3-gain < 1.
On the other hand, take w(t) = 0, (8.9) becomes

V() <~ |1 + O ).

Therefore, V(a:) = 0 implies H(%%,x) = 0, which in turn implies # = 0. Therefore,

V : X—RT is a Lyapunov function, and system G is asymptotically stable. o

Remark 8.2.4 It is remarked that the above theorem on the Lq-gain analysis exhibits some
appealing computational properties. It is noted that the left-hand side of inequality (8.6) in
Theorems 8.2.3, as well as (8.3) in Theorem 8.2.1, is affine in V(z), and all positive definite
solutions form convex sets, i.e., the characterization is a convexr condition. This trivial
fact has only been exploited systematically in the linear case, but we hope that numerical
techniques may be developed to exploit it in the nonlinear case as well. The inequalities (8.3)
and (8.6) are actually differential linear (or affine) matriz inequalities, but we will refer to
them as nonlinear matrix inequalities (NLMIs) to emphasize their use in nonlinear
problems. All of the conditions that are derived for the analysis problems in the remainder

of this chapter are similarly conver, and this property will not be discussed for each problem.

Although (8.6) provides a convex characterization of the C! positive definite function V'
which yields £o-gain < 1, this fact has not been well exploited as in the linear case, where
the corresponding conditions are also finite dimensional algebraic LMIs (see for instance,
[132, 29]). It is possible to provide alternative characterizations which are more immediately
comparable to the linear case, and which are useful in the synthesis problem, but at the
price of increased conservatism. Consider system (8.2), suppose V : X—RT™ satisfies (8.6).
In addition, let 2%(z) = 227 PT(2) with some C° matrix valued function P : X —=R"X",
then (8.6) becomes

{ e H(AT (2)P(2) + P (2)A(2) + CT(2)C(a))z «"(PT(2)B(2) + CT(2)D(2)) } <0
(BT (2)P(z) + D (2)C(x))a DT (2)D(z) ~ 1 -
It is clearly sufficient for the above NLMI to hold that
MPre) { AT(2)P(a) + PT(@)A2) + CT(@)C(x) P (2)B(2) + CT () D(x) } 0
BT (z)P(z) + DT(2)C(x) DT(z)D(z) -1
(8.11)
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for all z € X. This observation is summarized as following theorem which gives alternative

characterizations of the L£,-gain of the system.

Theorem 8.2.5 Consider the system G given by (8.2), suppose I — DT (z)D(z) > 0. Given
any C° matriz-valued function P : X—R"™", the following inequalities are equivalent.

(i) P satisfies (8.11), i.e., M(P,z) < 0 for all z € X.

(ii) P satisfies

AT(2)P(z) + PT(2)A(z) PT(2)B(z) CT(z)
M(P,z) = BT (z)P(z) I DT(z) | <0 (8.12)
C(z) D(z) I

for all z € X.

In addition, if there are a positive definite C° matriz-valued function P : X—R"M%"
satisfying any of the above inequalities and a function V : X—R such that %(m) = 2z P(x),
then the system has Lo-gain < 1 and is asymptotically stable.

Proof. The standard result of Schur complements yields M(P,z) < 0 if and only if
M(P,z) < 0,since I— DT (2)D(z) > 0. The later statement is confirmed by Theorem 8.2.3.

a

In section 5, we shall examine the computational implications of the above NLMIs.

Remark 8.2.6 It should be emphasized that the existence of a C° matriz-valued function
P X—R™" which satisfies any of the above NLMIs is not enough to guarantee the system
to have Lo-gain < 1; it is additionally required that there exists a function V : X—R such
that %g(a:) = 22T P(z). (See Lemma 8.8.1 for a characterization of a class of matriz-valued

Junction P : X—R™"™ which satisfies this additional requirement.)

Remark 8.2.7 If there is a C° matriz-valued matriz Py such that M(Py,z) < 0 for z € X,
then by continuity of M with respect to z, there is another C° matriz-valued matriz P such
that M(P,z) < 0 and 3%(z) = 22T PT(z) for some C' function V : By—R* for some
d > 0. In fact, a natural choice is a constant matric P = Py(0), and V(z) = 2T Px. The

same observation for Hamilton-Jacobi characterizations is made in [183].

It is noted that by Lemma 8.8.1, the C! function V : X—R which satisfies %(w) =
227 P(z) for some positive definite matrix-valued solutions PT(z) = P(z)>0and V(0)=0
is positive definite on X. Now we conclude the above discussions by defining a stronger

Hoo-performance.
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Definition 8.2.8 The concerned system (8.2) is said to have strong H..-performance
if there is a C° positive definite matriz-valued function P(z) = PT(z) > 0 which satisfies
any of inequalities (8.11) and (8.12) for all z € X such that $5(z) = 22T P(z) for some
C! function V : X—R.

Therefore, if the system has a strong H,-performance, by Lemma 8.8.1 and Theo-

rem 8.2.5, it has Lo-gain < 1.

Example 8.2.9 Consider the following system.

{ i=-a(@)e+ [ —a(@) a(e) Jw [ w }
z= x4+ [ 3 0 } w ' Ws
where a : R—R is C° and a(z) > 0 for allz € R, and 8 € R. Now we show that it has
strong Hoo performance for all |3 < 1. In fact, consider the NLMI (8.11),
—2a(z)P(z)+1 f? —a(z)P(z) o(z)P(x)
5% — a(z)P(z) B2 -1 0 <0,
aP(z) 0 -1
all solutions P : R—R™, are positive definite, satisfy P(z) > a~1(x). The other conditions

in Definition 8.2.8 are trivially satisfied. Then the system has strong H..-performance.

To see the conservativeness of the strong H.-performance characterized by NLMI (8.11)
or (8.11),it may be noted that even its point-wise solution is not necessary for either stability

or performance, as is well-known. This is shown in the following example.

Example 8.2.10 Consider the following system of order two,
T = —2q + xlx%
{ iy = —ziwy — 19
which evolves on R?. Take a positive definite (quadratic) function V(xy,29) = 23 + 232,
which is actually a Lyapunov function for the system and satisfies (8.8). In fact, V(zy,24) =

—2(2% + z3), which is negative definite; the system is therefore asymptotically stable.
On the other hand, the system can be rewritten as the form (8.2), i.e., & = A(z)z for

x € R2. There are two representations in which
—1+4 22 0 -1 1T
Az) = ? and A(z) = e
0 e $% —T1T2 -1
Obviously, neither A(z)’s are point-wise asymptotically stable on R?. This may be compared

to the pointwise use of (8.6), which is discussed further in Section 6.3.
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8.3 H.-Control Problems

The feedback configuration for the H,-control synthesis problem is depicted as follows,

z w
P
G

where (7 is the nonlinear plant with two sets of inputs: the exogenous disturbance inputs w

and the control inputs u, and two sets of outputs: the measured outputs y and the regulated
outputs z. K is the controller to be designed. It is required that the feedback configuration
be well-posed. Both G and K are nonlinear time-invariant and can be realized as input-

affine state-space equations:

&t = Alz)r + Bi(z)w + Ba(z)u
G:3 z = Cilz)a + Du(@)w + Dia(z)u (8.13)
y = Cyz)z + Dau(z)w + Da(z)u
where A, B;,C;, D;; € C° (4,5 = 1,2); @, w, u, 2, and y are assumed to have dimensions

n, D1, P2, q1, and gq, respectively, without loss of generality, it is assumed that n + p; > ¢

(e

(74

and n + ¢, > po, and
A©)e + B(ey
C&E + Dy

with A, B,C,D € CO 1t is assumed that the feedback system (8.13)-(8.14) evolves on

f
—~
o0
-
Wos
—

1

X x X,, where X and X, are convex open bounded sets and contain the origins. The initial
states for both plant and controller are z(0) = 0 and £(0) = 0.

In this chapter, we shall consider the following version of H,-control problem.
(STRONG) Hoo,r-CONTROL PROBLEM: Find a feedback controller K, if any, such
that the closed-loop system has strong H..-performance, and is asymptotically stable

with w = 0. In this case, the feedback system has Lo-gain < 1, i.e.,

T
| ol = ol > o

with 2(0) = 0,£(0) = 0, for all T' € R* and w € L3(R7), as long as the states (z(t), £(1)) €
X x X, for t € [0,T]. The strong Hoo-control problem is said to accept local solutions
if the above requirements for the closed-loop system hold for (z(t),£(t)) € B, x B, with
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some 7,8 > 0 for ¢ € [0,7]. The controllers to be sought in solving the above H,-Control

Problem is called strong H.,-controllers.

The following assumptions are made for the H.,-control problem.

Assumption 8.3.1 Consider the given system (8.13) and controller (8.14).

Bz(ﬂ?)
Dlz(m)

[A1] RANK = py for all z € X.

[A2] RANK[ Cy(z) Du(z) | =g for all v € X.
[A3] Dy(2)Di(2) < I forall z € X.
[A4] T — D(€)Dyo(x) is invertible for all (z,€) € X x X,.

The first three regularity assumptions are for technical reason. The last assumption
assures the well-posedness of the feedback structure.
In the next few sections, we will characterize the solvability of the strong H..-control

problem. Basically the treatment is divided into the following steps.

e Given a controller (8.14) for system (8.13) which yields a stable closed-loop system
with strong H..-performance, characterize this closed-loop property in terms of NLMI
(8.15) by Theorem 8.2.5. This NLMI depends on the coefficient (matrix-valued) func-

tions of the controller.

e Further characterize the above NLMI such that the new characterizations are inde-
pendent of the coefficient matrix-valued functions of the controller using Finsler’s

Theorem. The new characterizations are three NLMIs.

e Examine the conditions under which the three NLMIs derived in the last step have

the solutions that yield strong H.-control solution.

In the next section, the first two steps are mainly covered. The last step is treated in

detail in Section 6.

8.4 Solutions to H,,-Control Problem

In this section, we will consider the general strong H.-control problem for the system given
by (8.13) under assumptions [A1], [A2], and [A3]. The solvability conditions for the H.-
control problem to have solutions are characterized in terms of NLMIs without assuming

the controllers have separation structures.
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Consider the system (8.13) which evolves on X. Define
B(z):= | B(z) D) |. C(@):=|Cy(a) Dule). |.
Let N'(B(z)) be the distribution on X which annihilates the row vectors of B(z). The main

theorem of this section is stated as follows.

Theorem 8.4.1 Given the system (8.13), suppose there is a solution to the output feedback
(strong) He, control problem. Then under Assumption 8.8.1 there are two C° positive
definite matriz-valued functions X,Y : X—=R"™*"™ such that for all x € X C R™", the
following three NLMIs are satisfied,

. { X(2)4"(2) + A(2)X () + Bu() B (2) X(2)CF(2)+ Bi(s) D (o) } Bi(e) <0
Cr(2)X () + Du(z) B (v) Dui(2)Dy(2) ~ 1
(8.15)
with By : X—Ra)x(vta=r2) sych that N(B(z)) = SPAN(BL(z)).
o7 () [ AT(2)Y (2) + Y (2)A(2) + Cf(m\)cl(fﬂ) Y(2)Bi(z) + O (2) Du() L) <0
B ()Y (z) + Diy()C1(2) Dfy(z)Du(x) — 1
(8.16)
with C : X—ROFTPIX(4p1=0) gych that N'(C(z)) = SPAN(CL(z)).
RGN > 0. (8.17)
I Y(z) J

The proof of the main theorem is given next. The techniques used in the proof closely

follows from [141, 15, 185, 119, 133, 69, 94].

Proof. Suppose there exists a strong H..-controller which is of control-affine form as
follows,
. { € = A€ + Bl
w o= CE + Dy
with A,ﬁ,é’,f) € C° Suppose £ € X, C R™ for some integer ng > 0, where X, is a

convex open subset containing the origin. The closed loop system evolves on X x X,. Now

x
take z, = [ j! to be the state of the closed loop system; define

R(z.) := (I — D(€)Dyy(x))", (8.18)
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which is well defined for (z,£) € X x X, by assumption [A4]. The feedback system has the

following description,
T, = Ac(xc):pc + Bc(zc)w
z = Cc(fpc)xc + Dc(wc)w

with
Ac(ze) = A%(2) + B3(zc) Fo(z.)C3(2), Be(x:) = By(x) 4+ B3 (2)Fo(2:) D3y (), (8.19)

Ce(ze) = CF + Diy(a)Fe(2)C5 (), De(we) = Diy() + Dig(w)Fo(we) Dy (), (8.20)

where
a(g) e A(z) 0 4(g) e By(z) “(p) e By(z) 0
A()““lr 0 0}7 Bl()_ 0 }7 BZ( C)' l:B(f)Dgg(l‘) IJ
Co(z) = [ Ci(z) 0 ] Diy(2) := Dia(z), Diy(x):= { Dia(z) 0 ]
a 2) = Cg(ﬁ) @ 2) = Dgl(l’) o 2) = 0 0
Cz()-—[ 0 Ik D21()-“[ 0 ) Dzz()-—[OOJy
and
Fy(ss) = [R(a:f)mo R(z)C(€) } (s21)
B(¢) A(¢)

Since the feedback system has strong H.,-performance, by Definition 8.2.8, there is a

CY positive definite matrix-valued function P.(z.) on X x X, such that
AZ(mC)PC(%) + Pe(zc)Ac(ze) Pe(c)Bo(z.) CcT(xc)

Mc(Peyz.) = BT (2. )P.(x.) —I DI(z.) | <0. (8.22)
Celz.) D.(z.) I

Re-organizing the left-hand side of the above NLMI yields
M(Peywe) = My(Poyze) + CT (2 ) FE (2.) B(2)To(z.) + TT ()BT (2,)Fu(2)C(z.) < 0

(8.23)

where

(A%(2) T Pe(we) + Pelwe)A%(2)  Poac)Bi(z) (Ci(e))T
Ma(Fe,zc) = (B (2))" Pe(axe) —1 (DS (=) | 5
Ci(z) D (=) —1

B(zc) = [ (B(z )T 0 (Dg,y(2)T } ) CN'(%) = { C3(z) Dj(z) 0 J ’
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and
Plz:) 0 0
Te(z.) = 0 I0
0 0 I

It follows from Lemma 8.8.4 that (8.23) holds only if the following two inequalities hold

(see Lemma 8.8.4),
BY (2 )T (2) Mo(Pay )T (2) By (20) < 0, (8.24)
CT(z )Mo (P, 2)CL(z) <0 (8.25)

for all B, (z.) with SPAN(BJ_(xC)) € N(B(z.)) and Oy (z.) with SPAN(C’L(xC)) € N(C(ze)).
Next, we consider (8.24), notice that A'(B(z.)) = N(B(z)) for

Bf(z) 0 0 Diy(x)

B(z) :=
0 I 0 0
Thence, (8.24) holds if and only if
BI ()T T (2 )Ma(Py2) T (2)BL(z) < 0 (8.26)

for all B, (z) with SPaN(B(z)) € N(B(z)).
On the other hand, notice that

T (2 )Mo (P, 2 )T (20)

c

Pl (ze) Bi(z) PM@)(Ch(e) ]

*c

[ P (e )(A%(@)T + A%(2)
= (Bi ()" -1 Di;(x)
Ci(2) P () Dui(z) -1
Since Py(x.) = Pu(x,£) is invertible on X X X,, assume X (z) = X7(2) € R" ", which

is positive definite and of class CY on X, is such that

X(2) X{(a) }

8.27)
Xl(l“) Xo(l') (

Pz, ¢(2)) = [
for some continuously differentiable function ¢ : 2 — ¢ in X such that ¢(X) C X, (for
example ¢ can be chosen as ¢(z) = 0). Therefore, by the arguments of Schur complements,
(8.26), i.e. (8.24) implies (8.15). Thus, the first part is proved.

Next, consider (8.25), if we take Y (z) € R™", which is of class C°, such that

Y(2) Y{(z) } | 5.28)

Fela,¢(2)) = [Y(:C) Yo(z)
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Notice that C(z.) just depends on z € X, (8.25) implies (8.16).
Finally, by Lemma 8.8.3, (8.27) and (8.28) hold if and only if

X(z) I >0
I Y()|

This concludes the proof. |

Remark 8.4.2 It is noted that all couples (X (z),Y (z)) satisfying the NLMIs (8.15), (8.16),
and (8.17) form a convez set. Therefore, Theorem 8.4.1 provides a convex characterization

to the necessary conditions for the strong output feedback H.-control problem to be solvable.

Remark 8.4.3 From the above proof, we can conclude that if the strong H,-control prob-
lem has a static output feedback solution, then there are two CP positive definite matriz-
valued functions X,Y : X—=R™" such that they satisfy the conditions (8.15) and (8.16)
in Theorem 8.4.1, and X ()Y (z) = I for all @ € X. Note that the characterization is not

conver in this case.

It is noted that in general, the NLMI characterization in Theorem 8.4.1 is not sufficient,
because on one hand, the strong H.-control characterization by NLMI (8.23) holds only
if (8.24) and (8.25) hold, the converse implication in general is not true since the matrix-
valued matrix function Fi(z.) has some special structure (8.21) which is not guaranteed
to recover by Lemma 8.8.4; on the other hand, as noted in Remark 8.2.6, the existence
of the positive definite matrix-valued function P.(z.) satisfying the NLMI (8.22) is not
enough to guarantee the closed loop system has storage function V, : X x X,—R™T such
that g%/f(xc) = 227 P.(x.), some additional constraints are required (see Lemma 8.8.1).
Nontheless, the characterization is sufficient if the H,-control problem is considered locally

as stated as follows.

Theorem 8.4.4 Consider system (8.13), there exists a local solution to the output feedback
(strong) Heo control problem if and only if there are two C° positive definite matriz-valued
functions X,Y : B,—R"" with B, C R™ for some r > 0 such that they satisfy the NLMIs
(8.15), (8.16), and (8.17) for all z € B,.

Proof. The necessity follows from the previous theorem. The sufficiency follows from
the continuity argument, we just give an outline for this part. We make a simplification

assumption that Dyy(z) = 0 without loss of generality.



222

Suppose two C° positive definite matrix-valued functions X,Y : B,—R™" satisfy
(8.15), (8.16), and (8.17) for all z € B,. By the continuity of the coefficient matrix-valued
functions A, B;,C;, Dy; (1,7 = 1,2), By, and C, it follows that the three NLMIs has local
constant positive definite solutions X, := X(0),Y. := Y(0) for all € B, with some ad-
justed r > 0. From condition (8.17) and Lemma 8.8.3, it follows that we can find a constant

positive definite matrix P, such that

Y. v
i Yo

Pl =

c

X, x{
X X

Moreover, the constant matrix P, locally satisfies (8.24) and (8.25). Now by Lemma 8.8.4,
P, locally satisfies (8.22) with the coefficient matrix-valued functions defined by (8.19) and
(8.20) for some matrix valued function F.(z.). Still by continuity argument, we can find

a constant matrices A, B,C, and D, such that (8.22) locally holds by replacing F.(z.)

. D C
with F, : { := F.(0). Define a positive definite function V,(z,) := 2T P2, with

[ :l then —9(:6 ) = 22T P,. Therefore, by Theorem 8.2.5, the controller given by
&€ = A+ By
K. : ) .
u = C& + Dy

is a local strong Ho-controller, and the resulting closed loop system is locally asymptotically

stable.

To conclude this section, we examine an example which is from [59, 113].

Example 8.4.5 The basic diagram is as follows.

wy

w2
. |
P O u

L

K

P is a passive nonlinear plant; K is the controller to be designed. The control problem

is to design the controller K such that the influence of the noises wy and wy on the requlated
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output z; can be reduced to the minimal with the reasonable effort (control action u should

not be too large). This problem can be formulated in the Ho,-control framework as follows.

Given v > 0, find a controller K (if exists) such that
T 2 2 2 [T 2 2
|l 4l <9 [ (ol + loal ), vT € B,
In this example, the plant P has the following realization:

&= e"(wy+ u)
21 =+ wy

y=z+uw

w z
Take v > /2, let w := [ ! J and z 1= % l: ! J be input and output vectors, then the
w2

standard state-space realization is

T = [0 ewa+ etu
e L)

0 0 0 1
y = s+ |[1o]w

From the Fxample 8.2.9, it is known that the above system accepts strong Ho,-solutions;
i.e., there exists a controller K (actually K can be chosen as K = —1) such that the closed
loop system has strong Heo-performance. Whence, the three NLMIs (8.15), (8.16), and
(8.17) in Theorem 8.4.1 should be satisfied. We now verify this.

We first consider NLMI (8.15), which is as follows

el ’)/_1X(Q:) 0 0 -1
0 1 0
7 1X(z) y7%7-1 0 1 0 |<0. (8.29)
-1 0 ~€
0 0 -1 0 ~e¥

All positive definite solutions satisfy X (z) < (7% — 1)e”.
The NLMI (8.16) is as follows

-2 =2 e"Y (x 0 1
o i 2 72 1 0() 0 0 (8.30)
- T — -1 < 0. .
1 -1 0 ! !
e”Y (z) 0 —1 1 0

All positive definite solutions satisfy Y (z) < ™.
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We then take the special solutions for the two NLMIs (8.29) and (8.30) as

X(z)= (7%= 1a"te?, Y(z)=a"te™® (8.31)

for \/17_1- < a < 1. Then X(z)Y(z) > 1, which implies condition (8.17). Therefore, the
oo

three NLMI conditions are satisfied. Moreover, since v = —y is a static output feedback,

by Remark 8.4.3, it is required that X(z)Y(z) = 1, which is however satisfied by taking

o= \/72—_? in (8.31).

8.5 Separation Structures and State Feedback

In the last section, when the solvability conditions for the strong H.,-control problem for
system (8.13) are derived, the H.,-controller is not assumed to have separation structures.
The implications of NLMIs (8.15) and (8.16) in the last section have not been sufficiently
revealed. This issue will be pursued further in this section. Actually, the NLMIs (8.15)
and (8.16) are closely related to the state-feedback and output-injection conditions for
nonlinear Ho,-control. In this section, it will be shown that under a weaker separation
structure constraints, if the H.,-control problem is solvable by output feedback, then it is
also solvable by static state feedback.

We first state a theorem which justifies that the NLMI (8.15) characterizes state-feedback

solution under additional constraints.

Theorem 8.5.1 The strong He,-control problem is solvable by static state feedback if and
only if there is a C° matriz-valued function X(z) = X*(z) > 0 with Z-(z) = 227X ()
for some C! function V : X—R*T such that for all x € X, the following NLMI holds,

X(2)AT(z) + A(@)X (2) + By(2)B{ (z) X (2)C] (2) + Bi(2)Dfy(2)

B_]_(ZC) <0
Cy(z)X (2) + Dy1(2)Bi (z) Dyy(z)Dfy(z) - T

Bi(z)

(8.32)

with By : X—RMFa)x(vta=r2) gych that SPan(B, (2)) = N(B(z)).

Proof. The necessity basically follows the arguments in the proof of Theorem 8.4.1. The
sufficiency also follows the proof of Theorem 8.4.1 by noting the converse direction in the
proof goes through in this case, since a smooth static state-feedback can be constructed by

using Lemma 8.8.4; then the conclusion follows by Theorem 8.2.5. a
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Next, we will find the relation between output feedback sclutions and state-feedback
solutions. Suppose the output feedback strong H,-control problem for the given system
(8.13) is solvable, then there is a C° positive definite matrix-valued function P.(z.) such
that (8.22) holds. Moreover, there is a positive definite function V, : X x X,—R™ such that

A
Oz,

(z¢) = 22T Py(x.). (8.33)

Assumption 8.5.2 Consider the positive definite function V, : X x X,—~R7* satisfying
(8.83). There is a C! function ¢ : x — £ with ¢(0) = 0 such that %(z,é)k:(ﬁ(a,) = 0 with
(z,8) € X x X,.

Remark 8.5.3 Note that the function V. is a Lyapunov function of the closed loop system.
Assumption 8.5.2 has a (weak) separation structure interpretation. In fact, many dynamical
controllers have well-defined separation structures [15, 93, 118]. In such case, the states z,£

of a plant and its controller satisfy that
E(t) — ¢(z(t))—0 as t—oo

for some Cl function ¢ : z — & with $(0) = 0; in particular, if the initial states satisfy
£(0) = ¢(x(0)), then &(t) = ¢(x(t) for allt € RT. A Lyapunov function U, for the closed

loop system is constructed as follows,

Ue(,€) = V(2) + U(£ = ¢(x))

where V. and U are Lyapunov functions of the state-feedback system and the error system.

Thence,
oU, U

56—(6)|e=5_¢(z)-

If e =0, i.e. £=¢(x), then

oU, ou
76—(3776)[&:(25(33) = —é—é—(e)lezo = 0
Therefore, U, satisfies the assumption.

From the proof of Theorem 8.4.1, it follows that (8.22) implies that there is a C° positive

definite matrix-valued function X : X —=R"*" guch that

X(z) X{(z) J

P2, 4(2)) = {X () Xo(z)
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for some continuously differentiable function ¢ : z — £ on X, and the NLMI (8.32) holds.

Since g—gf(:cc) = 22! P.(z.) implies %(azc)Pgl(mc) =2z1 or

[ %(a,6) 2e(a,6) | P8 =2] o7 € ]. (8.34)

Take the function ¢ as in Assumption 8.5.2, define V() := V.(z, ¢(z)), then (8.34) implies

O (0, 9(2) X (2) = 207,

Define V(z) := V.(z,¢(z)), then V(z) is positive definite, and by Assumption 8.5.2, one

has

g—Z(x) =227 X Y(). (8.35)

Therefore, the H,-control problem is solvable in terms of static feedback. The above

observation is summarized as follows.

Theorem 8.5.4 If the strong H.-control problem is solvable (by the output feedback), then

under Assumption 8.5.2, it can also be solved by static state feedback.

Remark 8.5.5 The above theorem also implies that under the separation structure as-
sumption for the Hoo controllers, the dynamic state-feedback can not do better than static

state-feedback can as far as the strong Ho, control problem is concerned.
Similar argument applies to output injection problem.

Theorem 8.5.6 The strong output injection Ho,-control problem is solvable if and only if
there is a C° matriz-valued function Y (z) = YT (z) > 0 with 3Z(z) = 22TV (2) for some

C! function U : X—R*T such that for all x € X, the following NLMI holds,

AT(2)Y () + Y (2)A(z) + Cf (2)C1(2) Y (2)Bi(2) + O (2) Dur(x)

CT (2
L) BT (2)Y (z) + D% (2)C1(2) DL (2)Dya(2) — T

:'C_L(JI)<0

(8.36)
with O : X—RHPIX(n4p1-02) sych that N(C(z)) = SPAN(CL(z)).

Let ¢ : 2 — £ be ¢(z) = 0 for all z € X. Define a C° positive definite matrix-valued
function Y : X—=R"*" such that

V() ¥ () } |

0= { Yiz) Ya(a)
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Define U(z) = V.(z,0), which is positive definite, then —g—x‘%(xc) = 221 P.(z.) implies

ou

5 (z) = 22TV (2). (8.37)

Thus, by Theorem 8.5.6, we also have the following result.

Theorem 8.5.7 If the strong Ho,-control problem is solvable (by output feedback), then it

can also be solved by static output injection.

8.6 Nonlinear Matrix Inequalities and Computational issues

In this section, we will address computational issue for strong H..-control performance
analysis and synthesis. The material in this section is also of independent interest. We
have known that, the H,-control performance analysis and synthesis involves solving some
NLMIs, i.e., (8.11), (8.15), (8.16). We will show that under some regularity conditions,
there exist positive-definite smooth solutions to NLMIs, and those solutions guarantee the

solvability of H..-control problems.

8.6.1 Existence of Positive Definite Solutions

In this subsection, we examine under what condition, the solutions to NLMIs are positive

definite. To be more concrete, we consider the NLMI (8.11) as follows,

AT(2)P(z) + PT(2)A(2) + CT(2)C(z) PT(2)B(z)+ CT(2)D(x) <
BT (2)P(z) + DT (2)C(x) DT (z)D(z) - T B

M(P,z) = 0.

(8.38)
By Schur Complement argument, there exists a matrix valued function P : X —R"*"?
such that M(P,z) < 0 if and only if there exists a matrix valued function @ : X —R"*"
with @(z) > 0 for all 2 € X such that the following state-dependent Riccati equation has
solution P : X —R"*",
H(P, )+ Qz) = 0,

where

H(P,z) = AT (2)P(z) + PT(2)A(2) + CT(2)C(z)

—(PT(2)B(x) + CT(2)D(2))(I = D" (2)D(x))™"(B" (2) P(x) + DT (2)C(x)).
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Let R(z) := I — DT(2)D(z) > 0, define a state-dependent Hamiltonian H : X —R2"X2"

Hiz) = A(z) 0 N
| =CT(@)C(a) - Q) —AT(x)
B(x) _
R Y2)| DT()\C(z) BT(x (8-39)
e | @ PT@0E) 5@ ]

Using the terminology in [60, 75], we have the following result which is essentially from

[75, Lemma 2.4].

Theorem 8.6.1 M(P,z) < 0 has non-negative definite solutions P(x) > 0 if and only if
the state-dependent Hamiltonian H : X—R*"*2" defined in (8.39) for some matriz-valued
Junction @ : X—=R™ " with Q(z) > 0 for all z € X is in dom(Ric), i.e. H(z) € dom(Ric)
for each € X, and Ric(H(z)) > 0 is such a solution. In addition, if for each x € X,

C(z) }
Q'*(x)

n—1
ﬂ ker(C(z)A'(z)) = 0, Clz) = l:
=0

this solution is positive definite, i.e., Ric(H(z)) > 0.

The above theorem implies that under the condition H(z) € dom(Ric) for each z € X,
the NLMI M(P, z) < 0 has non-negative definite solutions. To apply this theorem, the non-
negative definite matrix valued function )(z) can be chosen on ad hoc basis, the verification
of the state-dependent Hamiltonian H(z) € dom(Ric) can be conducted by invoking the
linear result in [60, 75] and continuity argument. However, how to systematically choose

Q(z) and to verify H(z) € dom(Rzc) are still practical issues.

8.6.2 Existence of Continuous Solutions

In the last subsection, we justified the existence of positive definite solutions to NLMIs
under some regularity conditions. Since the solvability for each strong H,-control problem
requires that the positive definite solutions to the corresponding NLMIs be continuous,
a natural question is that, is there such a solution to a NLMI if it has pointwise positive
definite solutions? In this section, we will justify this, i.e., we will consider the existence of
continuous solutions to the given NLMIs provided that there are positive definite solutions

for fixed z € X.



229

Let X be an open subset R™ with 0 € X, consider a general matrix-valued map M :
R™X7 x X—R™*™_ which is continuous and satisfies
N N
MO~ apPrz) =Y apM(Py, ) (8.40)
k=1 k=1

for all ax > 0 with ch\;l ap = 1. Consider the following matrix inequality,
M(P,z) < 0. (8.41)

Note that all of the NLMIs discussed in this chapter are in this matrix inequality

class.

The main result of this subsection is stated as follows:

Theorem 8.6.2 Suppose the matriz inequality (8.41) has a positive definite solution P,
for each x € X, i.e., M(Py,z) < 0 for ¢ € X, then there exists a C° (in fact, C*)
positive-definite matriz-valued function P : X—R"*", such that M(P(z),z) < 0 for all
r e X.

Proof. Consider the NLMI (8.41): M(P,z) < 0 for « € X. By assumption, for each
z € X, there is a positive definite P, € R™*" such that M(P,,z) < 0. By continuity of M
with respect to z, there is a 7, > 0 such that for all y € N(2) := {y: ||y — z|| < 7.},

M(P,,y) < 0. (8.42)
On the other hand, {N(#)}|.ex is an open covering of X, i.e.,

X c |J N(a). (8.43)
reX

Then there is a locally finite open subcovering {N,}|;c1 for some index set I which refines

{N(2)}sex. By (8.42), P, € R™*™ is taken to be positive definite for each i € I such that
M(Pz) <0 (8.44)

for all z € N;.

It is known by the standard results of partitions of unity that there is a C* partition
of unity {¢;}|;e1 to X subordinated to the covering {N; }|;er; i-e., ¥; is C* and non-negative
with support Suprp(¢;) C N, for each 7 € I, and

> i(z) =1,Yz € X. (8.45)

i€l



230
Define a matrix-valued function P : X—R"™*" as
P(z)= Zzﬁi(w)Pi,V:c € X, (8.46)
1€l
which is positive definite and C® since it is locally a finite sum of C* positive definite

matrix-valued functions.

It follows from (8.45), (8.46) and (8.40) that
M(P(z),2) = MO _ti(2)Bi,z) = Y thi(z)M(P;,z) < 0.
i€l i€l
The last equality holds since the sum is finite for each z € X.
Thence, the constructed C* matrix-valued function P : X—R"*" in (8.46) is positive

definite and is a solution to M(P(z),z) < 0. O

A nice convex property for NLMIs is stated by the following theorem, which is essentially

from [197] and whose proof is easy and omitted here.

Theorem 8.6.3 The C° solutions P : X—R™ " to NLMI M(P,z) < 0 form a convex
set; the subset of all CY non-negative definite solutions P = PT : X—R" ™ such that
%(x) = 22T P(z) for some function V : X—R is convex; the subset of all C° positive

definite solutions PT(z) = P(z) > 0 such that $%(z) = 22T P(z) for some function V :

X—R s also convez.

8.6.3 Existence of Lyapunov Functions

As mentioned in Remark 8.2.6, the existence of positive definite matrix-valued function
P : X—R" " to NLMIs is not enough to guarantee the strong H..-control problem to have
solution; some additional requirement is imposed in this chapter, i.e. there is a C! storage

function, V : X—R™, such that
ov

'a—x(.fb) = Q.ITP(SL')
for all # € X. In this subsection, we will examine explicitly when it is the case for the
solution constructed in the preceding subsection.

From the preceding subsection, a matrix-valued function P : X—=R"™", which satisfies
M(P,z) <0, is constructed as (8.46):

P(z) =) ¥i(z)P:,Ve € X,

1€l
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for some index set I, where {¢;}|se1 is a C* partition of unity of X and P; = P! > 0.
Notice that the above summation is locally finite. (If X C R™ is bounded, then I can be
chosen to be finite.)
Theorem 8.6.4 Suppose the matriz valued function P : X—R"™*"™ defined by

= vi(z)P; (8.47)

1€l
with ¥; : X—R* being of class C' and P; € R™*" for i € 1 satisfies (8.41): M(P,z) <0
Jor all z € X; let Vi(z) = 2T Pz for all i € 1. There exists a C? function V : X—R such
that §%(z) = 227 P(x) if and only if
3% 6¢z 8‘/2

4
Z(?azj Bml 25':1:1 8m (2) (848)

forallz € X and j,l € {1,2,---,n} with j # .

Notice that the summations in (8.48) are finite for each # € X by the construction.

Next, we will give a direct proof to this theorem.

Proof. Define a 1-form w on X as follows,

wi= Zzbde, (8.49)

i€l
which is well defined since the summations are locally finite. Since

dzy
w(z) = ZQ@bi(w)mTPida? = 2T P(z)dz, dz:= : ,
1€L dz,
there is a C? function V : X—R such that 2-(z) = 227 P(z) if and only if w = dV/, i.e. the
I-form defined by (8.49) is exact. By Poincare Lemma (cf. [175]), the later statement is
equivalent to that the 1-form w is closed. i.e. the 2-form dw on X, which is the differential
of w, is 0.

On the other hand,
do = d(Y " pdVi) = dipi AdV;

1€l €l

—Z@‘M jwz i

i€l j=1




= —.-—————;-——i)dx'Adxl (8.50)
ZEZIE((%J (93?1 6331 (927j I
dpi OV, By Vi
=L 2 G T e, N (8:51)
J<i el

where (8.50) is derived by re-organization using that dz;Adz; = —da;Adz; (so dz;Adz; = 0)
for j,l e {1,2,---,n}.
From (8.51) and the linear independence of 2-forms {dz;Adz;}|;<;, it follows that dw = 0

if and only if

ov; OV; o, OV , ,
2:__.___.__: [

which is equivalent to (8.48).

It is noted that Theorem 8.6.4 can also be proved using Lemma 8.8.1.

8.6.4 Existence of (Local) Constant Solutions to NLMIs

The above treatments about H,-performance analysis and synthesis are in terms of NLMIs,
which are pointwise LMIs on state set X, modulo some additional constraints on the solu-
tions. We also know that if X is bounded, then we only need to solve a finite number of
LMIs to get the solution for the NLMI on X. In addition, if the set X is small enough, then
we can get a constant solution to the NLMIs by using similar treatments in [29], which is
motivated by the notion of global linearization of nonlinear systems developed by Liu et al.
[106]. More concretely, we consider the following NLMI:
AT(2)P(z) + P(2)A(z) P(z)B(z) CT(x)
BT (2)P(z) ~1 DT(z) | <0,
Clz) D(z) -1
where the coefficient matrix-valued functions A(z), B(z),C(z), D(z) are assumed to be

continuous on X. The coefficient matrices are assumed in a convex set:
[A(CC), B(.I'), C(l‘)7 D(CL’)] € CO{[AH -Bi7 C’iv Di]|i€{1,2,~~,L}}7 Vz € Xa

for some A;, B;, C;, D; with I — D?Di <0 fore¢ e {1,2,---, L} with some integer L > 0,
where Co stands for the convex hull.

If there is a constant (semi-)positive definite matrix P € R™ such that

ATP+ PA; PB; CT
BTP I DZT < 07 Vi g {1727"'7L}7

K3

Cs D, -1
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which are a set of linear matrix inequalities (LMIs) and can be solved in terms of convex

optimization methods [29], then P also satisfies

AT(z)P + PA(z) PB(z) CT(z)
BT(z)P -1 DT@) | <0
C(z) D(z) -1

for all z € X.

The solution automatically satisfies the condition (8.52), and the corresponding Lya-
punov function is V(z) = 27 Pz.

This treatment suggests a tractable approach to get local solutions, which can be used
to find constant solutions on each partitioned state set IN; in the proof of Theorem 8.6.2.
However, this approach generally leads to conservative results if the prescribed state set is

large enough.

8.7 Notes and References

In this chapter, the H.,-control problem for a class of nonlinear systems has been charac-
terized in terms of nonlinear matrix inequalities which result in the convex problems. The
solutions of NLMIs which insure the solutions of H,-control problems have been examined.
Unfortunately, unlike the linear case, the solution of the NLMIs by themselves are not suffi-
cient to guarantee the existence of the required controller. However, the proposed approach
points out a new direction to make the nonlinear H,-control theory to be applicable.

The material in this chapter forms the paper [113].

8.8 Appendix: Some Technical Results

8.8.1 Equation 2 (z) = 227 P(x)

The following result is quite standard (see, for example [21, Lemma 2.22]).

Lemma 8.8.1 Suppose a vector-valued function p : X—R" is of class C* for some integer
k>1;let

p(z) = [p1(2), -+, pu(@)]" for z € X.
Then there exists a C**1 function V : X—R such that

& (w) = 27 ()
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if and only if

op; , . Op;

forallz € X and i,j = 1,2,--+,n. Moreover, if (8.52) holds, then an function V : X—R
with V(0) = 0 is given by
1
V(e) = 227 / p(tz)dt. (8.53)
0

In addition, if p(z) = P(z)z for some C* positive definite matriz-valued function P :
X—R"" then V(z) is also positive definite function.

8.8.2 Schur Complements

A reference for the material here is [85].

Lemma 8.8.2 Suppose M = M7T ¢ Rn+m)x(ntm) 45 portioned as

M =

with C' € R™™ s non-singular, then M > 0 if and only if C > 0 and A — BC~'BT > 0.

Lemma 8.8.3 Let X = XT Y = YT € R™" be two positive definite matrices. Then there

is a positive definite matriz P = PT € RU™X(4m) gyeh that

P =

y vyl
i ¥

T
X Xi 7 Pl
X1 Xo

of and only if
Y

X I
> 0.
I

8.8.3 Characterization of a State-Dependent LMI

Given an integer k > 0 and a CF matrix-valued function B : X—R™", with m < n,
and RANK(B(z)) = m for all 2 € X. Thus, there is an (n — m)-dimensional distribution
N(B(z)) on X which annihilates the row vectors in B(z). Moreover, there is a C* matrix-
valued function B : M—R™("=™) such that its columns span the distribution N'(B(z)),
i.e. N(B(z)) = SPAN(B, (z)) for 2 € M (cf. [90]). The following lemma generalizes its

constant matrix version in [45] (see also for example, [55, 69, 94, 29]).
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Lemma 8.8.4 Gliven three C* matriz-valued functions Q = QT : X—R™ ™ U : X—R"*™
with RANK(U(z)) = r < m, and V : X—=R**™ with RANK(V(z)) = s < m. There exists a

C* matric-valued function F : X—R5*" such that the following matriz inequality is satisfied
Q(z) + U () FT(2)V(z) + VI (2)F(z)U(z) < 0 (8.54)

if and only if
U (2)Q(2)UL(z) <0, VE(@)Q(z)Vi(z) <0 (8.55)

for some C* matriz-valued functions Uy : X—=R™"=7) with SpaN(U,(z)) = N(U(z))

and Vi : X—-R™(m=3) with Span(Vy(z)) = N(V(z)).

Proof. The necessity is obvious. As for the sufficiency, suppose the condition (8.55) is
satisfied, from the constant matrix version of the above lemma, it follows that for each fixed

z € X, there exists a matrix F,, € R**" such that
Q(z)+ UT(2)FIV(2) + VI(2)F,U(2) < 0,

i.e., the NLMI (8.54) has a pointwise solution. Now by Theorem 8.6.2 and its proof, we can
find a smooth matrix-valued function F': X—R**" such that NLMI (8.54) is satisfied. O
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Chapter 9

Robustness of Nonlinear Uncertain

Systems

9.1 Introduction

In this chapter, a state-space characterization of robust stability and robust performances
for a class of nonlinear systems subject to Ls-bounded structured uncertainty is proposed;
both analysis and synthesis problems are addressed. A standard representation for an

uncertain system is depicted as in the following block diagram,

A

where (7 is the nominal system which is nonlinear time-invariant, A is the uncertainty
which belongs to a designated uncertainty set, where in this chapter it is assumed to be Lo-
bounded strictly by 1. Both G and A are causal, and the interconnection for the uncertain
system is well-posed for each admissible uncertainty; w is some external disturbance vector,
and z is the regulated signal vector. The robustness analysis is to determine that under
what conditions for nominal system G, the uncertain system is stable and/or satisfies some
performance for each admissible uncertainty A; while the robustness synthesis problem is to

decide under what conditions there are feedback control laws for the uncertain system such
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that the closed loop uncertain system has required robustness, and then design a control
law.

The basic tool for robustness analysis of such uncertain systems is the small-gain the-
orem (see for example [203]). A general condition for robust stability analysis is that the
Lo-gain of the nominal system G is less than or equal to 1 [152, 62, 36, 156, 166]. When
the uncertainty A is structured, i.e. it consists of multiple uncertainty blocks, the sufficient
small-gain condition can be arbitrarily conservative for robust stability. By scaling treat-
ment, a sufficient condition for robust stability in this case is that the nominal system has
scaled small-gain: ]IDGD‘IHCQ < 1 for some scale D commuting with A (see for example
[53, 151]). It is noted that under some additional time-varying, nonlinearity, or structural
constraints on plant or uncertainty, the scaled small gain is necessary as well [159, 41, 155].
The scaling treatment not only reduces the conservatism, but also yields a convex charac-
terization, which benefits computations. As for robust performance analysis problem, the
performance robustness analysis problem can be transferred into a robust stability problem
with structured uncertainty by adding an extra “uncertainty” block [63], the above small-
gain arguments therefore still apply; see [63, 132, 142, 41] and references therein for this
consideration.

In the above reviewed research, the systems are described in terms of their I/O behav-
iors, and robustness analysis is essentially reduced to gain analysis of the corresponding

transfer matrices or 1/O operators. The computational implications for the characteri-

QI oo

zations of robustness analysis and synthesis in this setting are not immediate, since the
computational manipulations with symbols and transfer functions are not very numeri-
cally efficient. However, this problem can be remedied by taking a state-space treatment
(60, 119, 127, 133, 134, 111, 132, 3, 29]. For the linear system, the small-gain conditions can
be characterized in terms of linear matrix inequalities (LMIs) in state-space by the use
of the KYP Lemma. Therefore, the robustness analysis and synthesis can be conducted by
matrix manipulations which are inherently more numerically stable than symbolic or (I/0)
transfer function manipulations; in addition, the LMI characterizations are convex condi-
tions, which are computationally efficient (see [29] for a tutorial review of LMIs and their
use). For the nonlinear systems, the state-space treatment enables the robustness analysis
problems to be reduced to some computationally easier problems. In this chapter, it will
be shown that the computation needed for robustness analysis and synthesis for nonlinear
uncertain systems is not more difficult than that for checking the Lyapunov stability. The

other advantage for the state-space treatment is that it captures the internal properties
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as well, besides the I/O-behaviors. Therefore, instead of the notion of I/0-stability, the
notion of asymptotic stability is employed in this chapter; robust stability thus stands for
robust asymptotic stability in the sequel. With the shifting of the emphasis, the robustness

problems considered in this chapter are slightly different from the robustness problems in

I/O-setting.

In this chapter, we give state-space characterizations of asymptotic stability and perfor-
mance robustness for nonlinear uncertain systems, and consider both analysis and synthe-
sis problems. By robust stability, we mean that the feedback systems are asymptotically
stable for each admissible uncertainty; the robust performance means that the uncertain
systems are asymptotically stable and has L3-gain < 1 for each admissible uncertainty.
The treatments of the robustness issues in this chapter are motivated by the work on
the LMI characterization of robustness analysis and synthesis for linear systems [119, 133]
(see [134, 111, 3, 29] for some extensions). The robustness results are characterized in
terms of nonlinear matrix inequalities (NLMIs), which imply small-gain conditions. It
is noted that the robustness results can be also represented in terms of Hamilton-Jacobi
equations/inequalities. However, the NLMI characterizations offer potentially attractive
computational features. In particular, like the linear case, the NLMIs trivially give convex
conditions on the unknowns. The computation is not more difficult than that for checking
Lyapunov stability; in other words, the provided approach reduces the robustness analysis
and synthesis problems to the possible easiest problems. Unfortunately, the NLMI condi-
tions involve neither a finite number of unknowns nor a finite number of constraints, so
the computational advantages are far less immediate than for LMIs. Clearly much addi-
tional work will be needed on the computational aspects and sophisticated approximation

techniques may be required to make the NLMI computation feasible.

The rest of the chapter is organized as follows. In Section 2, some standard results
for robustness analysis are reviewed. In particular, the small-gain theorems are given for
uncertain systems with structured uncertainty, and asymptotic stability and £;-gain anal-
ysis for nonlinear systems are reformulated as NLMIs. In Section 3 the stability robustness
and performance robustness of nonlinear uncertain systems are characterized in state-space.
The characterizations are in terms of NLMIs. In Section 4, we deal with the robustness
synthesis problem; we just take the state feedback performance robustness synthesis prob-
lem as an example, and the solvability conditions are also in terms of NLMIs. We address

some computational issues for robustness analysis and synthesis in Section 5.
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9.2 Preliminaries: Small-Gain Theorems

To motivate the techniques to be used in this chapter, some standard results from robustness
analysis are reviewed in this section. In particular, we will review the small-gain theorems for
uncertain systems in input-output (I/0) setting, and a general description of the uncertainty

of interest.

9.2.1 Robust I/O-Stability and Small-Gain Theorems

Consider a causal, nonlinear, and time-invariant operator! G : £5[0, c0)—L5[0, 00) with
2 2

G(0) = 0. The Ly-gain for G is defined as

”GHQ = sup sup H_PI%

, (9.1)
Te(0,400) ue L[0,00) || Prull,#0 |1 LTUll

where Pr denotes the truncation operator. Therefore, for the operator GG : u — y, if it has

Ly-gain less than or equal to v for some v > 0 if and only if

T T
| @ ae <o [ lugo)? (02)

for all T € RT. The system represented by the operator G is I/O-stable if G|z, < oc.

Consider an uncertain system, denoted as (G, A), with the following block diagram,

A

where the nominal system G is time-invariant and causal, and the uncertainty A is causal

and has structure defined as follows,
A € A := {block-diag[Ay,- -, An]|A; : L5[0, 00)—LE]0, 00) is causal}, (9.3)
and has £3-gain < 1, i.e., it belongs to the following admissible uncertainty set.

BA := {A € Al|A], < 1}. (9.4)

'The notions of causality, time-invariance, and well-posedness etc. are extensively discussed in [195].



240

The feedback structure is assumed to be well-posed! for any uncertainty A € BA. The
robust I/O-stability for the system (G, A) requires that [ — AG is stably invertible for
all A € BA.

The robust stability in the above sense can be checked by the use of small-gain theorem
(see for example [203]), and a sufficient condition for the robust I/O-stability of the system
(G,A)is

G, <1
Because of the block-diagonal structure (9.4), the above small-gain characterization can
be arbitrarily conservative. We next define a non-conservative robustness measure for the

plant GG as follows.

Definition 9.2.1 The structured gain ua (G) of operator G with respect to the structure
A defined in (9.3) is defined as follows,

pa(G) == sup {HAHZ; |1 — AG is not stably invertible}; (9.5)
AeA
otherwise, if I — AG stably invertible for all A € A, then pa(G) := 0.
With the above notion of structured gain, we immediately have the following assertion.

Proposition 9.2.2 The uncertain system (G,A) with A € BA is robustly I/O-stable if
and only if ua(G) < 1.

However, the structured gain, pa(G), is not exactly computable in general. To get a
more computable and less conservative condition, a scaling manipulation can be used to

reduce the resulting conservatism.

— D1 A D —

D G D——l <_1

where D is some real invertible matrix. Note that the above uncertain system (DG D=, DAD™)

is equivalent to the original system (G, A). Define a real valued matrix set D as

D := {block-diag{dyI,d1,---,dnI} : d; € R,d; > 0}, (9.6)
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where each of the identity matrices is compatible with the corresponding nonlinear uncer-
tainty A;. It is noted that [|All, = HDAD'1||L2 for all D € D and A € BA; therefore,
for each D € D, A € BA if and only if DAD™! € BA. The following result is the well-
known scaled small-gain theorem, which follows directly by the application of the small-gain

theorem to the scaled system (DGD~!, DAD™!).

Proposition 9.2.3 (Scaled Small-Gain Theorem) The uncertain system (G,A) is ro-
bustly 1/0O-stable if there is D € D such that the following small scaled gain condition is
satisfied,

< 1. (9.7)

L2

”DGD*‘

Remark 9.2.4 (i) Under some additional assumptions, such as that the plant is linear
or nonlinear with fading memories, the small scaled gain condition (9.7) is also necessary
[159, 123, 155].

(ii) For analysis of robust performances against structured perturbations, the similar

scaling treatment can be conducted to reduce the conservatism.

In this chapter, we will mainly emphasize the internal properties of the uncertainty.
Instead of I/O-stability, the asymptotic stability is considered in the sequel. The corre-
sponding characterizations of stability and the £y-gains in the state-space setting are given

in the last chapter. Next, we will give a general description of the uncertainty of interest.

9.2.2 Description of £;-Bounded Uncertainty

In the following, we follow Willems [195] to get a general internal description of the £o-

bounded uncertainty. We first have the following definition for general dynamical systems.

Definition 9.2.5 Given a causal 1/O-stable operator A : L]0, 00)—L3[0, 00) with A(0) =
0, its internal property is characterized by a triple (X, ¥, n), where

o X is an abstract set called state-space.

o o : RTXRT XX xLE[0, 00)—X is the state transition function; i.e., x = ¥(t, to, 2o, w™)
means that system G is driven from initial state o at time to to state x at time 1, by

the input w* € LH(RY). And ¢ obeys the following azioms:

(i) P(to, to, o, w) = xo for all ty € R, 20 € X, and u € L5(RT).
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(i'l) Zb(tl,to, Z‘O,Ul) = ’gb(tl,tg,.?}o, UQ) for all (tl,tg) eRT x R+, zg € X, and U, Uy €
LE(RT) satisfying uq(t) = uz(t) for almost every t € RY.

(”Z) ¢(t2,t0,$0,%) = 1/)(t2,t171b(t1,t0,x0,u),u) fOT’ almost all tO S (51 S tZ; g € X;
and u € L5(RT).

o 77: X X RP—=RY is the read-out function, which satisfies 1(0,0) = 0. And the function
y(t) = n(¥(t, to, zo, u), u(t)) for all t >ty defines the output of the systems for t > tq.

In the above description, no explicit realization for the system A is required; so this
description has some generality, e.g., the system can be infinite dimensional and can have

time delay. In the following, we will impose the following constraints on the system.

Assumption 9.2.6 Consider the system A as defined in Definition 9.2.5, the state-transition
function 1 satisfy the following requirements,

(1) P(t1,t0, zo, u(t — t9)) = Y(t1 — 0,0, 20, u(t)) for almost all ty > ty, g € X, and
u € LE(RT).

(1) ¥(t1,10,0,0) = 0 for all t1,to € RY, i.e., the origin is an equilibrium of the system.

(ii) For all x € X and to € R™, there exist u € LLRT) and t; > to such that
z = (t1,t0,0,u).

(iv) (1, to, ¢, 0) is continuous in t for all t > ty and in x for z € X.

The requirement (i) says that the system A is time-invariant. The requirement (ii)
guarantees that there is an equilibrium point for the system with zero-input. (iii) says that
the system is reachable from 0, the equilibrium point. (iv) is a regularity assumption; the
systems represented by differential equations satisfy this condition.

We first state the general Lyapunov Theorem about asymptotic stability as follows:

Proposition 9.2.7 Consider the dynamical system A defined in Definition 9.2.5 and sat-
isfied Assumption 9.2.6. The following statements are equivalent.

(1) The equilibrium 0 of the system A with zero-input is asymptotically stable.

(i1) There exists a C! positive definite function V : X—R* such that V(z) < 0, where
V(m) =0 if and only if z = 0.

(iii) There exists a Cl positive definite function V : X—R* such that V(a:) <0, and
those state trajectory z(t) such that V(z(t)) = 0 satisfy 2(t)—0 as t—oo.
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The positive definite functions V in the above theorem is called Lyapunov functions.
The stability test (iii) in the above proposition is LaSalle theorem.

It is known from [197, 84] that the system A : u — y has £y-gain < 1if and only if there
exists a non-negative function, which is known as storage function [197], V : X—RT such

that for all ¢g,%; € RT, 2o € X, and u € LE(RT), the following dissipation inequality holds,
ty

V(e = Viwo) < [ (I = vl (98)
0

where 21 = ¥(t1, o, 2o, u) and y(t) = p(L(¢, o, o, u), u(?)).

We further make the following assumptions:

Assumption 9.2.8 Consider the system A which has Lo-gain < 1, the storage function
V:X—=Rt is a C! defined as above is a C! positive definite function.

The above assumption on V guarantees the equilibrium of the system A is asymptotically
stable by Lyapunov Theorem (see [197, Section 5]) with V' being a Lyapunov function. In
fact, the requirement that the storage function V is continuously differentiable can be

weakened as that it is continuous [197, Theorem 6].

With the above preparation, we define the class € of time-invariant structured uncer-

tainties with N blocks as follows,

Q := {block-diag[A, -, An]| A, : L5 (RF)—LE(RT) is defined as in Definition 9.2.5

and satisfies Assumptions 9.2.6 and 9.2.8 for each i € {1,---, N} }, (9.9)

where p; is some positive integer for each i € {1,---, N}.
Thus, if A € €, then A has £o-gain < 1, and A is globally asymptotically stable when
the input is set to zero. Note that the case of time-varying uncertainty can be treated

similarly [197], and the subsequent results can be generalized accordingly.

9.3 Stability and Performance Robustness of Uncertain Sys-
tems
In this problem, we will characterize robust stability and robust performances for nonlinear

uncertain systems in state-space. The internal description for the uncertainty of interest is

given in the previous section section.
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9.3.1 Asymptotic Stability Robustness

Consider the uncertain system represented by the following standard feedback structure,

A

where the nominal system G has an input-affine realization, i.e.,

o { &= J(z)+g(a)u (9.10)
y=h(z)z + k(z)u

and the uncertainty A belongs to the set Q defined in (9.9). Therefore, each admissible
uncertainty A is a causal time-invariant operator having Lq-gain < 2 with continuously
differentiable positive definite storage function. In the following, the uncertain system is

denoted as (G, A).

Definition 9.3.1 The uncertain system (G, A) is robustly stable if for each A € €2, the

feedback system is well-posed and asymptotically stable around 0.

In the following, it is assume that k(z) = 0 for all # € X, therefore the nominal system
is strictly causal in this case. The case where k(z) # 0 for some 2 € X is considered in
[113]. This assumption assures that each uncertainty A € € the corresponding feedback

configuration is well-posed. In the following, the robust stability is characterized.

To reduce the conservatism arising from the uncertainty structure, we also perform the
following standard manipulation as in the I/O-setting. Define the scaling matrix set D as

follows,

D := {block-diag{di1,dI,---,dnI} : d; € R,d; > 0}, (9.11)

where each of the identity matrices is compatible with the corresponding nonlinear uncer-
tainty A;. It is noted that if A € Q, then for each D € D, DAD™! € Q. Therefore,
DAD™" is a legal (transformed) uncertainty structure. Hence, instead of (G, A), the new

scaled uncertain system (DGD~!, DAD™1) with some suitable scaling matrix is considered
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(see section 2 for the motivation). We have the following theorem about the robust sta-
bility for the structured uncertain systems, which gives a natural NLMI generalization to

nonlinear systems of the LMI conditions for the linear case.

Theorem 9.3.2 Consider the given uncertain system (G, A), it is robustly stable if there
exist a positive definite C' function V : X—R* and a positive definite matriz Q € D such
that the following NLMI holds,

(9.12)

(@) f(2) + KT (@)Qh(x) 5L (x)a() } 0

ov
Moty @)= [ 167 (2)2 (2) -0

Jor all z € X\ {0}.

Proof. Consider (9.12). Note that

I 0 2% I 0
{ 0 Q_1/2 :l MRS(EL__', Q?x) [ 0 Q_l/2 :l

[ E@re s i@ene) HE@e@e ]
107" (@) (@) -1
Define §(z) = g(x)Q~'/* and h(z) = Q'/?h(z). Using Schur complements argument,

We have that the above inequality is equivalent to the following Hamilton-Jacobi inequality,

ﬂ(%,(g,m) = (x)f(:c)—{-hT(x)h(a?)-l—i(;V( )4(2)g T(w)

(m) <0 (9.13)

for all 2 € X\{0}. Take V" as defined in the statement, and define @ = Ql/zu and § = Q'/%y,
then

V() = @) (@) + ()i
T 2
= @l = WO - () + 36 () % (@) + AT @),
V() < NI - 9P + (S0, 2). (9.14)

On the other hand, notice that @/2 € D; denote Q'/? = block-diag{q, 1, ¢z1,- - -, qn1}.
Since for each A € Q, QY/?AQ~/2 ¢ €; there therefore is a positive definite function
U; : X;—R™ for nonlinear system inz-qi"1 for each 7 € {1,2,---, N} such that

Ui&) < i

(9.15)
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where 1; = q;u;, §; = q;y; and §; is the state vector of A; on X;. Note that

(5 (0
X () X (P}
u = 5 y —

uN | UN ]

Therefore,
N N
<2 .12 . N2
= llal’, 1911% = > 11gll° -

Next, define a positive definite function W on X x X3 X --- x X as

W(magla : 75]\7 ‘+‘ZU(£Z

So from (9.14) and (9.15), it follows that

Wz, &, &n) < () = [13(0)]1* + H( ,Q,fv)+ Z(Hyz

< ﬂ(a—V,Q,x).

i ()|I")

Thence, if W(z,&, -+, En) = 0, then H( 8x,Q, &) = 0; it in turn implies z = 0.

On the other hand z = 0 implies y = 0. Moreover, for each uncertain system A; with

(9.16)

input y = 0, it is asymptotically stable by the discussion in Section 3.1, i.e., §(¢)—0 as

t—oc. By LaSalie’s theorem, W : X x X{ X -++ X Xy—RT is a Lyapunov function for the

feedback system, and the system is asymptotically stable. Therefore, the uncertain system

is robustly stable.

9.3.2 Performance Robustness

O

Consider the following feedback uncertain system which is represented by the following

block diagram,
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where w is some external disturbance vector, and it is assumed w € L5(R™); z is the

regulated signal vector. The nominal plant G has the following realization,

&= f(z)+ g1(z)u + g2(w)w
G:{ y=hi(a)+ ki (2)u+ ka(z)w (9.17)
z = ho(@) + kor(@)u + kog(z)w

and the uncertainty A is structured which is assumed to belong to the set € defined by
(9.9). In the following, we denote the uncertain system as (G, A).

Definition 9.3.3 The uncertain system (G, A) depicted above satisfies robust perfor-
mance if for each A € €, the corresponding feedback system is well posed and has Lo-gain
<1, e,

T 2
/0 (Ul = lw()]*)dt < 0

for all T € RT; in addition, it is asymptotically stable around 0 for w = 0.

In this section, we will examine under what conditions, the uncertain system depicted
above has robust performance. We will assume k11(z) = 0 for all z € ky; for simplicity,
it is noted that the nominal system & is strictly causal with respect to the input » in this

case. The case where k11 # 0 for some z € X is considered in [115].

We take the similar scaling treatment for the nominal system G to reduce the conser-

vatism arising from the structural constraints of the uncertainty. Instead of the system

D 0 D' 0 . , _
(G, A), the scaled system ( G ,DAD™1) is treated in the following,
0 I 0 I
where D € D with the scaling matrix set D defined in (9.11).
Let

ho(z) ka1(z)  kao(z)

we have the following result about robust performance analysis.

9(@):= [ () gQ(xH’h(m)::[h”} k()—[ | '““(”””)},

Theorem 9.3.4 Consider the uncertain system (G,A). It has robust performance if there
exist a positive definite function V : X—R and a positive definite matriz Q € D such that
the following NLMI holds,

(z
)5

f(2) + ' (2)Qh() %%‘ﬁa:)g(a:)mT(:c)@k(m)} <0

av
M —,,T) =
ST Lg( C(@)+ K (@)Qke)  HT()QK(x) -
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(9.18)
with @ := [Q 0} for all z € X\ {0}.
0 I
Proof. Consider (9.18). It is equivalent to the following inequality,
55 (2)f(2) + b (2)Qh(z) 350 (2)g(2)Q ™' + KT (2)Qk(2)Q /2
Q71297 (2) 5 (2) + Q7T (2)Qh()Q /2 Q72K (2)Qk(2)Q ™V — 1
1 0 A% I 0
= [ 0 o2 } MRP(a_x,Q,$) [ P } < 0. (9.19)

Define §(z) := g(2)Q /2, h(z) := Q'/?h(2) and k(z) := Q'/%k(2)Q~1/2. Using Schur

complements argument and the above inequality is equivalent to the following two inequal-

ities,
R(z):=1 -k (2)k(z) > 0,
and
- OV 7% - 5
H(EE—,Q,:(;) == (@)f(2) + AT (2)h(z)+

1av, . cr oo 1o avT cr s
(55;(56)9(9:)%1 (2)k(z))(I =k (2)k(z)) Ha)(59° (2) " (@) + K (2)h(x)) <0 (9.20)

for all 2 € X\ {0}. Take V as defined in the statement; define & := Q/2 [ ! :, and
w

g =QY? [ Y then

z

V(&) < NI ~ 19IP + A2 Q) (9.21)

On the other hand, notice that Q'/? € D; denote Q1/? = block-diag{¢1 1, 21, -+, qnI}.
Since A € 2, Q/2AQ~1/2 € §; therefore there is a positive definite function U; : X;—R*
for nonlinear system ¢;A;q7" for each i € {1,2,---, N} such that

Ui(&) < 3(I* = llas()))?, (9.22)
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where 4; = q;u;, §; = ¢;v; and & is the state vector of A; on X;. Note that

iy 0
() (7}
L= 5 @7 = :
(Y N
w Z ]
N

Therefore,
e [Edl

|9

1=1

@

N
‘= gllﬂill2 + [l 191" = >

Next, define a positive definite function W on X x Xy x --- x Xy as

N
W(e,&r,---,6n) = V() + Y Ui(&). (9.23)

=1

So from (9.21) and (9.22), it follows that

: NP oz OV I 2 N 2
W(e, €1, 6n) < I = [P + A Q2) + LI = o))
< el ~ =P + F(SE 0, 0) (9.21)
< flwl® = 121"
The latter inequality implies
! (9.25)

|l = elya > o

for all T € R™*, i.e., the feedback system has £y-gain < 1.
Next, we consider the asymptotic stability for w = 0. In this case, (9.24) becomes

Wz &1, En) < — ||2]7 + ﬁ(%,Q,x)_

Thence, if W(z,&;,- -,&n) = 0, then ’H(%‘E/., ¢, z) = 0,it in turn implies = 0 by (9.20).
But z = 0 implies y = 0, therefore &;(¢)—0 as t—oo, for A; is asymptotically stable with

zero-input (Section 3.1). By LaSalle’s theorem, W : X x Xy x - - x Xy—R7 is a Lyapunov

function for the given closed loop system, and the system is asymptotically stable.
(]

Therefore, we conclude that the uncertain system is of robust performance.

Next, we further relax the condition in the last theorem to get an alternative character-

ization for the robust performance of the depicted uncertain system.
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Assumption 9.3.5 Consider the nominal system G, define a new system:
&= f(z)+ g1(z)u
z = hz(l‘) + k‘21($)u

The state trajectory z(t) of the system with all possible u(t) such that z(t) = 0 satisfies
z(t) =0 for allt € RY.

It is noted that in the linear case, the above assumption corresponds to the condition

that the system has no transmission zero.

Theorem 9.3.6 Under assumption 9.3.5, the uncertain system (G,A) has robust perfor-
mance if there exist a positive definite C! function V : X—R and a positive definite matriz

Q € D such that the following NLMIs hold,

V() f(z)+ hT(2)Qh(z)  $55(a)g(z) + hT (2)Qk ()
19T (2) 2 (2) + KT (2)Qh(x) K (2)Qk(z) - Q

} <0 (9.26)

L (2)Qk(z)—Q < 0 (9.27)

) 0
with g(z), h(z),k(z) defined previously and Q) := |i @ } for all z € X.
0 1

Proof. The proof is a combination of the one for the previous theorem and the one for

theorem 8.2.3. We just give an outline here.

Take V : X—=RT as given, and U; : X;—R™ as in the proof of the last theorem. Define

a positive definite function W on X X Xy X -+ X Xy as

N

=1
It follows that
W(x7§17 o 75]\7) S H’UJ”2 - “ZH2 >

which implies that the feedback system has Lo-gain < 1.

Next, we consider the asymptotic stability for w = 0. In this case,

W(:Uagla"'vg]\f) < - HZHQ

Thence, if W(z,&1,---,En) = 0, then 2 = hy(z) + ky1(z)u = 0 which implies z(t) = 0
by assumption 9.3.5. But z = 0 implies y = 0, therefore £;(t)—0 as t—oo0, for A; is
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asymptotically stable with zero-input. By LaSalle’s theorem, W : X x Xy X - -+ x Xy—R™T
is a Lyapunov function for the given closed loop system, and the system is asymptotically

stable.

Therefore, the uncertain system satisfies robust performance. |

9.3.3 An Example

Consider an uncertain feedback system with block diagram as follows,

w
A e
I o
z
9 P U
Ue

Ym

K

where P is the nonlinear plant; K is the controller such that the output z is supposed to
be regulated; y,, is the measured output, based on which the control action u. is produced;
w is the disturbance from the actuator; and w» is the disturbance from the sensor which
is generated by v = Au, with A being the bounded causal scalar uncertainties. The
robustness analysis problem is to check that for a given controller K, whether or not
the influence of the noises w on the regulated output z is reduced to the required degree
for all possible A.

To formulate this problem, all the signals are considered in space L3[0,00). We will

check that given v > 0 and K, does
T T
/ 2|2 dt < 72/ llw||? dt,¥T € R¥,
0 0

for all admissible A?

In this example, the plant has the following realization,

T =e"(u+ u.)
2=+ w

Ym =T+ w

and the controller K’ = —1, each admissible uncertainty A € 71—59 (where the block number

N = 1), which has L5-gain < —\/% We will check if the Lq-gain of the feedback uncertain is
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less than or equal to —\}—-5 To this end, the standardized block diagram for the closed system

is redrawn as follows

A
Y U
G
Zp T T w
with
= —er — e u+ ew

G:¢ y= —%x - 71-2—u
Zr = %x + 7%“
Therefore, z, = v/2z. In this case, the admissible uncertainty A; € €.
It is sufficient to check if the above feedback system has robust performance. We first
consider zy = ¢z, = e(—lﬁw -+ —\}—Su) for some positive € < 1. Consider the NLMI (8.6) as

follows,
27 P(e) + HQ + ) —"P(a)+ }Q+ &) e Pla)
e P+ i@+ HE-Q) 0 <o (920
e”P(x) 0 -1
There exist positive solutions (@, P(z)) to the above two inequalities, which satisfy

¢ =1and ;;—i":—ie_x < P(z) < e™®. Hence,
T T
/ HZN”?dtg/ |2 dt, VT € R*.
0 0

Therefore, the L£o-gain for the closed loop system < 71; for all € < 1, which in turn implies

the £y-gain < 71_5

9.4 Robustness Synthesis for Uncertain Systems

In the last two sections, the robustness conditions of uncertain systems are essentially char-
acterized as the small-gain conditions for (scaled) nominal systems modulo some appropriate
stabilizing conditions. So the robustness synthesis can be pursued by combining the robust-
ness analysis results in the last two sections with the treatments of H.,-control synthesis
(see for example [183, 15, 113]). We just take the performances robustness synthesis prob-

lem as an example, the other problems can be done similarly. Technically, we closely follow
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the treatments in [113, 112], so we just take the state feedback case as an example. The
output feedback case can be done similarly by just modifying the treatments in [113, 112].
It is remarked that the robust stabilization with unstructured uncertainty is also considered
in [185].

Consider the following feedback uncertain system which is described as a feedback sys-

tem set,

A
) U
Z e G DI 7)
Y] [ U

where w € L5(R™T) is some external disturbance vector, z is the regulated signal vector, y,,
is the measured output vector, and based on which the control input vector u, is produced.

The nominal plant & has the following realization,

= f(z)+ g1(x)u + g2(2)w + g3(2)u,
ey Y= hl(ilﬂ + kll(a:)u + k12<33)w + klg(m)uc (930)
z = ho(x) + ka1 (2)u + koa(2)w + keg(z)u,

Ym = ha(z) + ks1(2)u + ksz(2)w + kaz(z)u,

where f,g;,hj,kij € C°, and f(0) = 0,h;(0) = 0, for 4,5 = 1,2,3. In this section, the
state vector of the nominal system is directly measured, i.e., y,, = x; the uncertainty A is
structured and belongs to the set £ defined by (9.9). The performance robustness synthesis
problem by state feedback is defined as follows.

Definition 9.4.1 (State Feedback Synthesis Problem) Find a state feedback law u, =
K(z) with K € C° and K(0) = 0 for the uncertain system depicted above such that the

closed loop uncertain system satisfies robust performance.

If u. = K(z)is a state feedback law, then the closed loop uncertain system is as follows,
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Gr

with
&= (f(2)+ ga(2)K(2)) + g1(z)u + g2(w)w
Gr:§ y=(hi(z)+ kia(z)K(2)) + k11(z)u + kia(z)w
z = (hg(ﬁ) + kz;g(&?)[((l’)) + ]Cgl(ﬂ?)’u + k‘gg(%)w

Define the scaling matrix set D is defined as before,
D := {block-diag{diI,d21, --,dyI} : for eachi, d; € R, d; > 0}. (9.31)

Next, we consider two cases about robustness synthesis by state feedback.

9.4.1 State Feedback Solutions

Consider the uncertain system with the nominal plant as (9.30). Define

g(z) = { g1(z) g2(2) } h(e) = { ha () J ,

[ Eu(e) ks ks ) |
9= ) bate) || bt |

The following structural constraints are imposed.

Assumption 9.4.2 ki(z) = 0, and ki (z) { h(z) ko(z) ] = [ 0 Ro(z) ] where Ro(z) >
0 for all x € X.

We first have the following lemma.

Lemma 9.4.3 Consider the system defined in (9.30) with the structural assumption 9.4.2.
The following two statement are equivalent.
(i) There exist a C° vector-valued function K(z) on X, a C' positive definite function

V : X—R*, and a positive definite matriz Q € D such that the following NLMI holds,

55 @)(f(2) + g3(2) K (2)) + (h(2) + ke(2) K (2))TQ(h(2) + ka(2) K (2))  +55(2)g(2) <

T 0
T() % @) -0
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for all z € X'\ {0}.
(i) There exist a C! positive definite function V : X—R™T and a positive definite matriz

Q € D such that the following NLMI holds,
——(w)f(iv) + -—-—(iv)(g(w)Q 9" (2) = gs(2) Ry (2)g3 (33)) 6 (fﬂ) + 4T (2)Qh(z) <0

for all z € X'\ {0}.

Moreover, if (ii) is true, then a state feedback function K (x) makes (i) true is as follows,

K(@) = 3 B3 (2)od (1) 5 ().

Proof. Note that the NLMI in statement (i) is equivalent to the following Hamilton-Jacobi

inequality,
O @)1(@) + aa(2 K (@) + 22 )10 (1) ()
+(h(x) + ka(2) K () Q(h(x) + ka(2) K (2)) < 0
for all z € X'\ {0}. By the same arguments as in [112], the conclusion follows. O

The main result in this subsection is stated as follows.

Theorem 9.4.4 Consider the uncertain system with nominal plant as (9.30). Under as-
sumplion 9.4.2, the state feedback robust performance synthesis problem has a solution if
there exist a positive definite C* positive definite function V : X—R* and a positive definite
matriz () € D such that the Sollowing NLMI holds,

(az) + 1T (2)Qh(z) < 0

(9.32)
Jor all z € X\ {0}. Moreover, if (V(z),Q) is such a pair of solutions, then a state feed-

(@) + T2 @0 (@) - ool B5 e ()

back functz'on K{(z) makes the closed loop system has a robust performance is K(z) =

~3 R (2)g3 () e ().

Proof. Let (V(2),Q) be as in the theorem. By the preceding lemma, there exists a C°
matrix valued function K(z) on X defined as K(z) = —2 Ry (2)gd (2 2V.(z), such that

@) (f(2) + g3(2) K () + (A(z) + ka(2) K (2)TQ(h(2) + ko(@) K (2)) 12L(2)g(z)
L9 (2) 2 (2) -Q

(9.33)
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for all z € X'\ {0}. On the other hand, take v, = K(z) as a state feedback law, so the

closed loop nominal system is as follows,

&= (f(z)+ g3(2)K(z)) + g1(z)u + ga(w)w
Gr:§ y=(hi(z) + kr3(2) K (2))
Z = (hz(fc) + k23(l‘)]§r(ﬂ?))

By theorem 9.3.4, the closed loop uncertain system satisfies robust performance. O

Note that the above characterization is not convex in general. In the next subsection, we

will give a convex characterization which have some computationally appealing property.

9.4.2 A Convex Characterization for State Feedback Solutions

In this section, instead of the nominal plant (9.30), the following nominal plant is examined,

& = A(z)z 4+ Bi(z)u + Ba(z)w + Bs(z)u.
Yy = Cl(LL’).’L‘ + Dll(x)u —|— Dlz(af)w —|— Dlg(l‘)uc
zZ = Cz(ﬂ?)$ + D21((E)U + ng(a:)w + ng(m)uc

G (9.34)

Ym = T

where A, B;,C;, D;; are CP matrix-valued functions. It is assumed that Dy1(z) = 0 for all
2z € X for simplicity.

We now define

r 1

B(e) = | Bi(e) Bafe) |, C(0) = [ZE; J’D(m) - [020@) ii”

and
B(z):=| Bl(2) Dhz) Dh(e)].

Let N'(B(z)) be the distribution on X which annihilates all of the row vectors of B(z).

We first have the following lemma.

Lemma 9.4.5 The following two statements are equivalent.

(i) There exist a C° matriz valued function F(z), a positive definite matriz-valued func-
tion P : X—=R™" and a positive definite matric Q € D such that the following NLMI
holds,

Af(2)P(z) + P(2)Ap(2) + CE(2)QCF(z)  P(2)B(z) + CH(2)QD(w)

0 9.35
BT () P(2) + D7 (2)QCr(2) prwane -0 | <0
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with () := l: Q0 } for all x € X, where
0 I
Ci(z) + Dys(z)F(z)
Ap(z) = A(z) + Bs(z)F(z), Cr(z) = .
F(z) = A(z) + Bs(z)F () r() Cz($)+D23($)F($)}

(11) There exist a positive definite matriz-valued function X : X—R™" and a positive

definite matriz Y € D such that the following NLMI holds,

Mgy (X, Y, )=
)X (x 2)AT(z Tz T 2)CT(x T Tz
Bl | A@X@+X@AT@)+ B @)Y Be) X(@)CT()+ Ba)Y DT(2) } Bi(e) < 0
C(z)X(z)+ D(z)Y BT (2) D(z)YDT(2)-Y
(9.36)
withY := 0 ’ J , and By (z) is a C° matriz-valued function on X such that span(B(z)) =

N(B(z)) for all z € X.
Moreover, if any one of the above statements holds, then the solutions of the other NLMI

can be chosen such that P(z) = X~Y(z) and @ = Y 1.

The proof of the above lemma, which uses Finsler’s Theorem (cf. [29]), follows the
arguments in [113] and [3]; it is omitted. It is noted that the NLMI (9.36) is affine in
unknown P(z) and ). We have the following theorem which gives a convex characterizations

for robust performance synthesis by state feedback.

Theorem 9.4.6 Consider the uncertain system with nominal plant defined as (9.34). The
state feedback robust performance synthesis problem has a solution if there exist a positive
definite matriz-valued function X : X—R™" and a positive definite matriz Y € D such
that the NLMI (9.36) holds for all x € X, and %(:v) = 22T XY(z) for some C function
V on X with V(0) = 0.

Proof. Let (X(z),Y) be as in the theorem. By the preceding lemma, there exists a CY

matrix valued function F(2) on X such that

AL (2)X T (2) + XY (2)Ap(2) + CE(2)Y 7' Cr(z) X' (2)B(z)+ CE(x)Y 1 D(x)
BT (2)X~Ya)+ DT (2)Y ' Cp(2) DT ()Y 'D(z) - Yt

(9.37)
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On the other hand, take u, = F(z)z as a state feedback law, so the closed loop nominal
system is as follows,
& = (A(z) + Bs(z)F(z))a + Bi(z)u + Ba(z)w
Gr 1y y=(Ci(z) + Dis()F(z))z + D1a(z)w
z = (Cy(z) + Dos(z)F(z))x + Day(a)u + Daa(z)w
We now claim the closed loop uncertain system satisfies robust performance. In fact,

take (P(z),Q) = (X 1(z),Y™!). By the remarks in section 2.3, (9.37) implies

2T(Af(2)P(2) + P(2)Ap(2) + C(2)QCr(x))e 2" (P(2)B(z) + Ch(2)QD(x))
(BT(2)P(z) + DT(2)QCp(x))z DT(2)QD(z) - Q

< 0.

The conclusion therefore follows from theorem 9.3.4. 0O

9.5 NLMIs and Computational Considerations

We have examined different problems including Lyapunov stability, Lo-gains, robust asymp-
totic stability, robust performance, and robustness synthesis. It is noted that the compu-
tation about robustness analysis and synthesis involves solving some NLMIs. We address
computational issues for robustness analysis and synthesis in this section. The characteri-
zations of different problems share a common structure, i.e., each of the solutions involves
solving an algebraic NLMI and a partial differential equation (PDEs). The structures
for different problems are summarized in the following table, where p : X—=R**" with

p(0) =0, X : X—=R™" and Q,Y € RPX? are the unknowns.

Problems NLMlIs PDEs
Lyapunov Stability (8.3) p(z)f(z) <0 Y (2) = p(x)
£-Gains (8:6) MGain(p,2) <0 | §i(2) = p(e)

Robust Asymptotic Stability | (9.12) Mps(p,Q,z) <0 %(3:) = p(x)

Robust Performances (9.18) Mrp(p,Q,2) <0 | $5(2) = p()

Robustness Synthesis (9.36) Msyn(X,Y,2) <0 | Z5(z) = 22T X ()
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Therefore, we have the following observation from the above discussion:

The computational effort needed for robustness analysis and synthesis

is not more difficult than that for checking Lyapunov stability.

In other words, the provided approach reduces the robustness analysis and synthesis
problems to the possible easiest problems, whose solutions involve solving NLMIs and PDEs.

We will pursue these two issues in the next two subsections.

9.5.1 Solution Properties of NLMIs

Because of the similarity between the NLMIs (8.6), (9.12), (9.18), and (9.36). We just take

(9.18) as an example to discuss the solutions. More explicitly, consider the following NLMI,

p(a)f(z) + W (2)Qh(z)  gp(e)g(e)+ hT (2)Qk(x)

<0, (9.38)
397 (@)p" (2) + k" (2)Qh(z) kT (2)Qk(z) - Q

MRP(Z% Qv 37) =

which is actually a state-dependent LMI. Therefore,

In general if the state set X is not finite, then the computation for

solving NLMIs is an infinitely dimensional LMI problem.

This is bad news for computational efforts to deal with nonlinear problems. We will
examine some properties for the solutions of NLMIs, which will provide some guideline to
computational efforts.

We first consider the solution about (9.38), we need to find a continuously differentiable
function p(z) on X and a constant positive definite matrix @ € RPXP. If we assume
f(z) = A(z)z,9(x) = B(z),h(z) = C(2)z, k(z) = D(z), and p(z) = P(z)z in (9.38),
then (9.38) is implied by the following NLMI (which is a more conservative characterization

about robustness),

M(P,Q,z) =
AT(z)P(z) + PT(z)A(z) + CT(2)QC(x) PT(2)B(z) + CT(2)QD(z) <o, (939)
B (z)P(z)+ DT(2)QC(2) DT (2)QD(z) - Q

Therefore, it is sufficient to find a C° matrix-valued function P : X—R" ™ and a positive
definite matrix @ such that M(P,Q,z) < 0. In other words, if (P(z),Q) is a solution to
(9.39), then (P(z)z, Q) is a solution to (9.38). However, as discussed in [115], this treatment

is conservative.
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Next, we will justify the existence of continuous and positive definite solutions to the
NLMI under some regularity conditions. Given a matrix valued function 5 : X—R"*"
with S(z) > 0 for all z € X. Let R(z):= @ — DT(2)QD(z) > 0, define a state-dependent

Hamiltonian H : X —R2nX2n ug

Hiz) = A(z) 0
~CT(2)QC(z) - §(z) —AT(x)
B() ]
R Yz) | DT(x)QC(z) BT(z) |. 9.40
et | © @ P@0cE) 5@ ] (9.40)

The following result is essentially from [75, lemma 2.4].

Proposition 9.5.1 M(P,Q,z) < 0 has non-negative definite solutions P(z) > 0 and Q >
0 if and only if the state-dependent Hamiltonian H : X—R**?" defined in (9.40) for some
matriz-valued function S : X—=R™" with S(z) > 0 for all z € X is in dom(Ric), i.e.
H(z) € dom(Ric) for each x € X. Moreover, P(z) := Ric(H(z)) > 0 is such a solution
with Q) > 0 as given. In addition, if for each z € X,

n—1 _ . _ _ B QI/ZC(x)
ZQ ker(C(z)A'(2)) = O, C(z) = { §1/2() J ,

this solution is positive definite, i.e., Ric(H(z)) > 0.

1

Lo no b o o Y
1O €dlil & & Ay,

m
i

PPN P
L€ ap

ove theorem implies
the NLMI (9.39), M(P,Q,z) < 0, has non-negative definite solutions P(z) > 0 and @ > 0.
The following theorem further shows that such solutions can be chosen to be continuous in

the case of interest in this chapter.

Theorem 9.5.2 Suppose the matriz inequality M(P,Q,z) < 0 has a positive definite so-
lution P, for each @ € X and @ > 0, then there exists a C° matriz-valued function

P : X—R™" with P(z) = PT(z) > 0, such that M(P(z),Q,2)< 0 for all z € X.

Proof. Consider the NLMI (9.39), M(P,Q,2) < 0 with 2 € X. Then M : R™*" x RP*? x
X—R(+)x(n4p) ig o continuous matrix-valued function and satisfies

N N N
M arPe, Y akQpyz) = Y apM( Py, Q, ) (9.41)
k=1 k=1

k=1

for all g > 0 with S0, ax = 1.
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By assumption, there exist a positive definite matrix ¢ € RP*? and a positive definite

matrix P, € R™*"™ and for each z € X such that
M(P.,Q,z) < 0.
By continuity of M with respect to z, there is an 7, > 0 such that
M(Py,Q,20) <0 (9.42)

for all zp € N(z) := {zo : ||zo — || < 74}
On the other hand, {N(z)}|,ex is an open covering of X, i.e.,
X c |J N(z). (9.43)
zeX
Since the space R™ is paracompact, there is a locally finite open subcovering {IN;}};e1 for
some index set I which refines {N(2)}|zex. By (9.42), P, € R™*" is taken to be positive
definite for each ¢ € I such that
M(P;,Q,2)<0 (9.44)

for all z € N;.

It is known by the standard argument of continuous partitions of unity that there
is a smooth partition of unity {¢;}|;e1 to X subordinated to the covering {N,}|;er; i-e., ¢;
is smooth and non-negative with support SuppP(¢;) C N; for each i € I, and

> ¢i(z) =1,z € X. (9.45)
1€l

Define a matrix-valued function P : X —R"*™ as

P(z)=> ¢i(z)P;,Vz € X, (9.46)
1€1
which is positive definite and smooth since it is locally a finite sum of smooth positive

definite matrix-valued functions.

It follows from (9.45), (9.46) and (9.41) that
M(P(2),Q,2) = MY ¢i(2) P, Q,2) = 3 ¢i(2) M(F;, Q,2) < 0.
1€l 1€l
The last equality holds since the summation is finite for each 2 € X.

Thence, the constructed smooth matrix-valued function P : X—R" " in (9.46) is posi-

tive definite and is a solution to M(P(z),Q,z) < 0. a
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Remark 9.5.3 The similar technique can be used to directly examine the continuous solu-
tions to the following NLMI (9.38), Msp(p,Q,z) < 0 for all z € X\ {0}. As a matter of
fact, we can get a continuous solution p(z) on X\ {0} to the above NLMI using the similar
arguments as in the preceding proof. If lim,_op(z) = 0, then the vector valued function
p(z) on X\ {0} can be continuously extended to X by defining p(0) = 0. The extension is
a solution to (9.38) on X.

A nice convex property for NLMIs is stated by the following proposition whose proof is

easy and omitted here.

Theorem 9.5.4 The C° solutions (P(z),Q) to NLMI M(P,Q,z) < 0 such that P :
X—=R" "™ and @ > 0 form a convex sel; the subset of solutions (P(z), Q) such that P(z) is
C° non-negative definite with %—(w) = 22T P(z) for some function V : X—R. is convez; the
subset of solutions (P(z),Q) such that P(z) is C° positive definite with 3“(z) = 227 P(z)

for some function V : X—R is also convez.

9.5.2 Existence of Lyapunov Functions

As mentioned earlier, the existence of solutions to NLMIs is not enough to give positive as-
sertion about Lyapunov stability, Lo-performance, robust stability, and robust performance;
some additional requirement is imposed, i.e. there is a C! Lyapunov function V : X—R*,

such that
oV

25, %)= 2p"(2)
for all z € X. In this subsection, we will examine explicitly when it is the case for a class

of such solutions.

The following result is quite standard, the reader is referred to [21] for the proofs (see

also [113]).

Proposition 9.5.5 Suppose a vector-valued function p : X—R" is of class C'; let p(z) =
[p1(2), -+, pu(2)]T for 2 € X. Then there exists V : X—R such that

ov., . 7

(@)= 2" (=)
if and only if

Ip; d

7 ()= aﬁj@:) (9.47)
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foralze X andi,j = 1,2,---,n. Moreover, if (9.47) holds, then an function V : X—R
with V(0) = 0 is given by
1
V(z)= QCCT] p(tx)dt. (9.48)
0

In addition, if p(x) = P(z)x for some positive definite matriz-valued function P(z), then

V() is also positive definite function.

For a class of solutions constructed in the proof in theorem 9.5.2, we can specially
characterize the existence of the Lyapunov function in this case. The positive definite
matrix-valued function P : X—R"*" which satisfiles M(P,Q,z) < 0, is constructed as
(9.46)

= ¢i(z)P,Vz € X,

1€l
for some index set I, where {¢;}|;c1 is a partition of unity of X and P; = PZ»T > 0. Notice
that the above summation is locally finite. Similar argument leads to the following theorem,

which can be verified by the previous proposition.

Theorem 9.5.6 Suppose the matriz valued function P : X—R"*"™ defined by
=Y ¢ulx)P, (9.49)
1€L
with ¢; : X—RY being of class C* and P; € R™™ for i € 1 satisfies: M(P,z) < 0 for all
z € X; let Vi(z) = 2T Pz for all i € 1. There exists a C? function V : X—R such that
%—%(m) = 22T P(z) if and only if

8@ (?V 8¢z 8%
Z 8% Z ax a:) (9.50)

forallz € X and j,l1 € {1,2,---,n} with j # 1.

Notice that the summation in (9.50) is finite for each z € X.

9.5.3 Further Remarks

The above treatments about robustness analysis and synthesis are in terms of NLMIs, which
are pointwise LMIs on state set X, modulo some additional constraints on the solutions.
From the proof of Theorem 9.5.2, we know that if X is bounded, then we only need to solve
a finite number of LMIs to get the solution for the NLMI on X. In the following, we will

give an approach to obtaining a local solution.
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Consider the NLMI (9.39). In the light of the notion of global linearization of nonlinear
systems developed by Liu et al. [106], as in [29], the coefficient matrices in (9.39) are

assumed in a convex set:
[A(2), B(2), C(z), D(z)] € Cof[As, Bi, Ci, Dillieq1 2,13}, V2 € X,

where Co stands for the convex hull. In this case, a constant solution (P, Q) € R™*" x
R7%9 to (9.39) is sought. Therefore, consider the following equations,
ATP+ PTA; + CTQC; PTB; + CTQD;
Bl P+ DIQC DIQD; - Q

for all ¢ € {1,2,---,L}, their common constant solutions (P, @) can be obtained by the
methods suggested in [29]. If such a solution (P, Q) exists, then (P, ) is also a solution to
(9.39), i.e.,

[ AT(2)P + PTA(z) + CT(2)QC(z) PTB(z)+ CT(2)QD(x) } o
BT(2)P + D7 (2)QC(x) DT(2)QD(z) - Q

The solution automatically satisfies the condition (9.47), and the corresponding Lyapunov
function is V(z) = 27 Pa.

This treatment suggests a tractable algorithm to get local solutions, which can be used
to seek constant solutions on each partitioned state set N; in the proof of theorem 6.2.
However, this approach generally leads to conservative results if the prescribed state set is
large enough. This can be seen by the example in Section 3; it is obvious that there is no
constant pair (P, ()) which satisfies the NLMI (9.29) for all z € R.

To summarize the above discussion, we suggest the following algorithm, based on The-
orems 9.5.2 and 9.5.6, for the robustness analysis problem, which is characterized by the

NLMI (9.38). The state set X C R™ is assumed to be bounded.

Algorithm 9.5.7 Consider the robustness analysis problem.
(1) Find a covering {N;}|™o, for state set X such that X C %, N;; construct a C!
partition of unity {¢;} to the bounded set X subordinated to the covering such that

> di(z)=1, VYzeX.
(i) Find constant solutions P; for i € {1,---m} and Q such that for z € X N Ny,

M(P;,Q,2) < 0; (9.51)
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(iii) If there is a solution in Step (ii), then the robustness analysis problem has positive

assertion; otherwise, go to Step (1).

In the above algorithm, the computation for finding P; for ¢ € {1,---m} and @ which
satisfy (9.51) can be done by the method similar to the local solution algorithm described
above, it is a finite-dimensional LMI problem. Nonetheless, this algorithm is still problem-
atic. It only provides a positive answer, i.e., if the above procedure can not be passed, the
problem may still have solutions. Besides, in Step (i), to find a suitable partition for X is

ad hoc.

9.6 Concluding Remarks

This chapter deals with the robustness analysis and synthesis for nonlinear systems in the
state-space. The scaling treatment for the robust performance problem or robust stability
analysis in the structured uncertainty case was used to reduce the possible conservatism
arising from the structural constraints of the uncertainty. The characterizations are in
terms of NLMIs which offer some computationally attractive properties. In an input-output
point of view, the characterizations imply that both (structured) uncertainty and a (scaled)
nominal plant have small £y-gain. From this characterization, it is concluded that the
computation needed for robustness analysis and synthesis of nonlinear uncertain systems is
not more difficult than that for checking Lyapunov stability of nonlinear systems; in other
words, the provided approach reduces the robustness analysis and synthesis problems to the
possible easiest problems. However, in general, the computation for solving such an easy

problem is an infinitely dimensional problem.
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Chapter 10

Conclusions

In the last two decades, much effort and attention have been devoted by control scientists
to dealing with uncertainty and nonlinearity. While such efforts have been beset from the
beginning with great difficulties, great interest in them was maintained. This dissertation
is a continuation of such efforts. In this thesis, we deal with the uncertainty and nonlin-
earity in two cases where the nominal systems are linear time-invariant and the nominal
systems are nonlinear time-invariant, respectively. Both robustness analysis and robustness
synthesis under structured bounded uncertainty are treated; some systematic robustness
design techniques are developed with the consideration of their computational properties.
However, the development of efficient computational methods for the nonlinear problems is
far from satisfactory. Much work remains to be done.

Since a control system is an artificial system, its description should capture its three
functional elements: its goal, its internal character, and its outer environment. Formally,
one can represent a control system as the triple (G, A;J), where G is the nominal model
which describes the internal structure of the control system, and A can be viewed as the
uncertainty which describes the interaction between the internal structure and the outer
environment!; the interconnection of G and A is through feedback in this thesis. J repre-
sents the goal of the robust control systems, which in this dissertation is, roughly speaking,
to attenuate the external disturbances and uncertainty. This consideration about modeling
of control systems also manifests the relation between simplicity of the ideal and com-

plexity of the reality. More precisely, the (structured) uncertainty description reflects the

Strictly speaking, in this thesis, G does not exactly describe the internal structure, it is just an approx-
imation, while A measures difference between the nominal model and the reality, and comes from both the

internal perturbation and the interactions between the internal structure and the outer environment.
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complexity of a control system in a simple, yet possibly conservative way.

Complexity is an essential issue for artificial systems. Although the consideration of un-
certainty and nonlinearity in the modeling captures some aspects of the complexity, other
powerful methodologies are still expected to more deeply understand the complexity and to
more effectively synthesize control systems. Different development levels of control science
reflect different depths of human understanding and ability to deal with the complexity.
Nontheless, the difficulty inherent in the state of the development always exists. Since each
level of concepts is connected with and in fact built upon the previous levels, when inade-
quacies manifest themselves, one must reach greater depth by penetrating previous levels
and examining the whole structure of previous concepts. The difficulty of this task rapidly
diverges with the depth of the examinations. Furthermore, the power of the (individual)
human intellect is known to be limited. It is also noticed the fact that psychological and
social limitations on the development of the creative ability of each individual may be even
more stringent than natural limitations.

In addition, a dangerous side-effect of the development of control science is that the
development might result in unfortunate separation between pure theories and the vital
applications?, while new concepts and new theories can not be created by free imagination
without their justification in reality. This separation should be organically united so that the
control science can regain its internal force and control scientists can have ever-increasingly

clear comprehension of the control systems without losing sight of applications. At any

challenges, intellectual limitations, and the social reality is continuous reinjection of directly

empirical ideas.

*However, it is possible that a good new theory does not have immediate applications (see the Preface).
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