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Chapter 4

Discrete Connections on Principal Bundles

In collaboration with Jerrold E. Marsden, and Alan D. Weinstein.

Abstract

Connections on principal bundles play a fundamental role in expressing the equations

of motion for mechanical systems with symmetry in an intrinsic fashion. A discrete

theory of connections on principal bundles is constructed by introducing the discrete

analogue of the Atiyah sequence, with a connection corresponding to the choice of a

splitting of the short exact sequence. Equivalent representations of a discrete connec-

tion are considered, and an extension of the pair groupoid composition, that takes

into account the principal bundle structure, is introduced. Computational issues,

such as the order of approximation, are also addressed. Discrete connections provide

an intrinsic method for introducing coordinates on the reduced space for discrete

mechanics, and provide the necessary discrete geometry to introduce more general

discrete symmetry reduction. In addition, discrete analogues of the Levi-Civita con-

nection, and its curvature, are introduced by using the machinery of discrete exterior

calculus, and discrete connections.

4.1 Introduction

One of the major goals of geometric mechanics is the study of symmetry, and its consequences. An

important tool in this regard is the non-singular reduction of mechanical systems under the action

of free and proper symmetries, which is naturally formulated in the setting of principal bundles.

The reduction procedure results in the decomposition of the equations of motion into terms

involving the shape and group variables, and the coupling between these are represented in terms
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of a connection on the principal bundle.

Connections and their associated curvature play an important role in the phenomena of geometric

phases. A discussion of the history of geometric phases can be found in Berry [1990]. Shapere and

Wilczek [1989] is a collection of papers on the theory and application of geometric phases to physics.

In the rest of this section, we will survey some of the applications of geometric phases and connections

to geometric mechanics and control, some of which were drawn from Marsden [1994, 1997]; Marsden

and Ratiu [1999].

The simulation of these phenomena requires the construction of a discrete notion of connections

on principal bundles that is compatible with the approach of discrete variational mechanics, and it

towards this end that this chapter is dedicated.

Falling Cat. Geometric phases arise in nature, and perhaps the most striking example of this is

the falling cat, which is able to reorient itself by 180◦, while remaining at zero angular momentum,

as show in Figure 4.1.

The key to reconciling this with the constancy of the angular momentum is that angular momen-

tum depends on the moment of inertia, which in turn depends on the shape of the cat. When the

cat changes it shape by curling up and twisting, its moment of inertia changes, which is in turn com-

pensated by its overall orientation changing to maintain the zero angular momentum condition. The

zero angular momentum condition induces a connection on the principal bundle, and the curvature

of this connection is what allows the cat to reorient itself.

A similar experiment can be tried on Earth, as described on page 10 of Vedral [2003]. This

involves standing on a swivel chair, lifting your arms, and rotating them over your head, which will

result in the chair swivelling around slowly.

Holonomy. The sense in which curvature is related to geometric phases is most clearly illustrated

by considering the parallel transport of a vector around a curve on the sphere, as shown in Figure 4.2.

Think of the point on the sphere as representing the shape of the cat, and the vector as repre-

senting its orientation. The fact that the vector experiences a phase shift when parallel transported

around the sphere is an example of holonomy. In general, holonomy refers to a situation in ge-

ometry wherein an orthonormal frame that is parallel transported around a closed loop, back to its

original position, is rotated with respect to its original orientation.

Curvature of a space is critically related to the presence of holonomy. Indeed, curvature should

be thought of as being an infinitesimal version of holonomy, and this interpretation will resurface

when considering the discrete analogue of curvature in the context of a discrete exterior calculus.



141

c© Gerard Lacz/Animals Animals

Figure 4.1: Reorientation of a falling cat at zero angular momentum.
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Figure 4.2: A parallel transport of a vector around a spherical triangle produces a phase shift.

Foucault Pendulum. Another example relating geometric phases and holonomy is that of the

Foucault pendulum. As the Earth rotates about the Sun, the Foucault pendulum exhibits a phase

shift of ∆θ = 2π cosα (where α is the co-latitude). This phase shift is geometric in nature, and

is a consequence of holonomy. If one parallel transports an orthonormal frame around the line of

constant latitude, it exhibits a phase shift that is identical to that of the Foucault pendulum, as

illustrated in Figure 4.3.

parallel translate frame
along a line of latitude

cut and
unroll cone

Figure 4.3: Geometric phase of the Foucault pendulum.

True Polar Wander. A particular striking example of the consequences of geometric phases and

the conservation of angular momentum is the phenomena of true polar wander, that was studied by
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Goldreich and Toomre [1969], and more recently by Leok [1998]. It is thought that some 500 to 600

million years ago, during the Vendian–Cambrian transition, the Earth, over a 15-million-year period,

experienced an inertial interchange true polar wander event. This occurred when the intermediate

and maximum moments of inertia crossed due to the redistribution of mass anomalies, associated

with continental drift and mantle convection, thereby causing a catastrophic shift in the axis of

rotation.

This phenomena is illustrated in Figure 4.4, wherein the places corresponding to the North and

South poles of the Earth migrate towards the equator as the axis of rotation changes.

Figure 4.4: True Polar Wander. Red axis corresponds to the original rotational axis, and the gold

axis corresponds to the instantaneous rotational axis.

Geometric Control Theory. Geometric phases also have interesting applications and conse-

quences in geometric control theory, and allow, for example, astronauts in free space to reorient

themselves by changing their shape. By holding one of their legs straight, swivelling at the hip, and

moving their foot in a circle, they are able to change their orientation. Since the reorientation only

occurs as the shape is being changed, this allows the reorientation to be done with extremely high

precision. Such ideas have been applied to the control of robots and spacecrafts; see, for example,

Walsh and Sastry [1993]. The role of connections in geometric control is also addressed in-depth

in Marsden [1994, 1997].

One of the theoretical underpinnings of the application of geometric phases to geometric control

was developed in Montgomery [1991] and Marsden et al. [1990], in the form of the rigid-body phase

formula,

∆θ =
1
‖µ‖

{∫
D

ωµ + 2HµT

}
= −Λ +

2HµT

‖µ‖
,
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the geometry of which is illustrated in Figure 4.5.
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Figure 4.5: Geometry of rigid-body phase.

An example that has been studied extensively is that of the satellite with internal rotors, with a

configuration space given by Q = SE(3)× S1 × S1 × S1, and illustrated in Figure 4.6.

spinning rotors

rigid carrier

Figure 4.6: Rigid body with internal rotors.

The generalization of the rigid-body phase formula in the presence of feedback control is partic-

ularly useful in the study and design of attitude control algorithms.
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4.2 General Theory of Bundles

Before considering the discrete analogue of connections on principal bundles, we will review some

basic material on the general theory of bundles, fiber bundles, and principal fiber bundles. A more

in-depth discussion of fiber bundles can be found in Steenrod [1951] and Kobayashi and Nomizu

[1963].

A bundle Q consists of a triple (Q,S, π), where Q and S are topological spaces, respectively

referred to as the bundle space and the base space, and π : Q → S is a continuous map called

the projection. We may assume, without loss of generality, that π is surjective, by considering the

bundle over the image π(Q) ⊂ S.

The fiber over the point x ∈ S, denoted Fx, is given by, Fx = π−1(x). In most situations of

practical interest, the fiber at every point is homeomorphic to a common space F , in which case,

F is the fiber of the bundle, and the bundle is a fiber bundle. The geometry of a fiber bundle is

illustrated in Figure 4.7.

Fx Q

π

S
x

Figure 4.7: Geometry of a fiber bundle.

A bundle (Q,S, π) is a G-bundle if G acts on Q by left translation, and it is isomorphic to

(Q,Q/G, πQ/G), where Q/G is the orbit space of the G action on Q, and πQ/G is the natural

projection.

If G acts freely on Q, then (Q,S, π) is called a principal G-bundle, or principal bundle, and

G is its structure group. G acting freely on Q implies that each orbit is homeomorphic to G, and

therefore, Q is a fiber bundle with fiber G.

To make the setting for the rest of this chapter more precise, we will adopt the following definition

of a principal bundle,

Definition 4.1. A principal bundle is a manifold Q with a free left action, ρ : G×Q→ Q, of a

Lie group G, such that the natural projection, π : Q→ Q/G, is a submersion. The base space Q/G
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is often referred to as the shape space S, which is a terminology originating from reduction theory.

We will now consider a few standard techniques for combining bundles together to form new

bundles. These methods include the fiber product, Whitney sum, and the associated bundle con-

struction.

Fiber Product. Given two bundles with the same base space, we can construct a new bundle,

referred to as the fiber product, which has the same base space, and a fiber which is the direct

product of the fibers of the original two bundles. More formally, we have,

Definition 4.2. Given two bundles πi : Qi → S, i = 1, 2, the fiber product is the bundle,

π1 ×S π2 : Q1 ×S Q2 → S,

where Q1 ×S Q2 is the set of all elements (q1, q2) ∈ Q1 × Q2 such that π1(q1) = π2(q2), and the

projection π1 ×S π2 is naturally defined by π1 ×S π2(q1, q2) = π1(q1) = π2(q2). The fiber is given by

(π1 ×Q π2)−1(x) = π−1
1 (x)× π−1

2 (x).

Whitney Sum. The Whitney sum combines two vector bundles using the fiber product con-

struction.

Definition 4.3. Given two vector bundles τi : Vi → Q, i = 1, 2, with the same base, their Whitney

sum is their fiber product, and it is a vector bundle over Q, and is denoted V1 ⊕ V2. This bundle is

obtained by taking the fiberwise direct sum of the fibers of V1 and V2.

Associated Bundle. Given a principal bundle, π : Q→ Q/G, and a left action, ρ : G×M →M ,

of the Lie group G on a manifold M , we can construct the associated bundle.

Definition 4.4. An associated bundle M̃ with standard fiber M is,

M̃ = Q×GM = (Q×M)/G,

where the action of G on Q ×M is given by g(q,m) = (gq, gm). The class (or orbit) of (q,m) is

denoted [q,m]G or simply [q,m]. The projection πM : Q×GM → Q/G is given by,

πM : ([q,m]G) = π(q) ,

and it is easy to check that it is well-defined and is a surjective submersion.
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4.3 Connections and Bundles

Before formally introducing the precise definition of a connection, we will attempt to develop some

intuition and motivation for the concept. As alluded to in the introduction to this chapter, a

connection describes the curvature of a space. In the classical Riemannian setting used by Einstein

in his theory of general relativity, the curvature of the space is constructed out of the connection, in

terms of the Christoffel symbols that encode the connection in coordinates.

In the context of principal bundles, the connection provides a means of decomposing the tangent

space to the bundle into complementary spaces, as show in Figure 4.8. Directions in the bundle that

project to zero on the base space are called vertical directions, and a connection specifies a set

of directions, called horizontal directions, at each point, which complements the space of vertical

directions.

vertical direction
horizontal direction

geometric phase

bundle projection

bundle

base space

Figure 4.8: Geometric phase and connections.

In the rest of this section, we will formally define connections on principal bundles, and in the

next section, discrete connections will be introduced in a parallel fashion.

Short Exact Sequence. This decomposition of the tangent space TQ into horizontal and vertical

subspaces yields the following short exact sequence of vector bundles over Q,

0 // V Q // TQ
π∗ // π∗TS // 0 ,

where V Q is the vertical subspace of TQ, and π∗TS is the pull-back of TS by the projection

π : Q→ S.
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Atiyah Sequence. When the short exact sequence above is quotiented modulo G, we obtain an

exact sequence of vector bundles over S,

0 // g̃
i // TQ/G

π∗ // TS // 0 ,

which is called the Atiyah sequence (see, for example Atiyah [1957]; Almeida and Molino [1985];

Mackenzie [1995]). Here, g̃ is the adjoint bundle, which is a special case of an associated bundle

(see Definition 4.4). In particular,

g̃ = Q×G g = (Q× g)/G ,

where the action of G on Q × g is given by g(q, ξ) = (gq,Adgξ), and πg : g̃ → S is given by

πg([q, ξ]G) = π(q).

The maps in the Atiyah sequence, i : (Q× g)/G→ TQ/G and π∗ : TQ/G→ TS, are given by

i([q, ξ]G) = [ξQ(q)]G,

and

π∗([vq]G) = Tπ(vq).

Connection 1-form. Given a connection on a principal fiber bundle π : Q → Q/G, we can

represent this as a Lie algebra-valued connection 1-form, A : TQ → g, constructed as follows

(see, for example, Kobayashi and Nomizu [1963]). Given an element of the Lie algebra ξ ∈ g, the

infinitesimal generator map ξ 7→ ξQ yields a linear isomorphism between g and VqQ for each q ∈ Q.

For each vq ∈ TqQ, we define A(vq) to be the unique ξ ∈ g such that ξQ is equal to the vertical

component of vq.

Proposition 4.1. The connection 1-form, A : TQ → g, of a connection satisfies the following

conditions.

1. The 1-form is G-equivariant, that is,

A ◦ TLg = Adg ◦A ,

for every g ∈ G, where Ad denotes the adjoint representation of G in g.

2. The 1-form induces a splitting of the Atiyah sequence, that is,

A(ξQ) = ξ ,
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for every ξ ∈ g.

Conversely, given a g-valued 1-form A on Q satisfying conditions 1 and 2, there is a unique con-

nection in Q whose connection 1-form is A.

Proof. See page 64 of Kobayashi and Nomizu [1963]. �

Horizontal Lift. The horizontal lift of a vector field X ∈ X(S) is the unique vector field

Xh ∈ X(Q) which is horizontal and which projects onto X, that is, Tπq(Xh
q ) = Xπ(q) for all q ∈ Q.

The horizontal lift is in one-to-one correspondence with the choice of a connection on Q, as the

following proposition states.

Proposition 4.2. Given a connection in Q, and a vector field X ∈ X(S), there is a unique horizontal

lift Xh of X. The lift Xh is left-invariant under the action of G. Conversely, every horizontal vector

field Xh on Q that is left-invariant by G is the lift of a vector field X ∈ X(S).

Proof. See page 65 of Kobayashi and Nomizu [1963]. �

Connection as a Splitting of the Atiyah Sequence. For a review of the basic concepts of

homological algebra, properties of short exact sequences, and splittings, please refer to Appendix A.

Consider the continuous Atiyah sequence,

0 // g̃
i //

oo
(π1,A)

___ TQ/G
π∗ //

oo

Xh

___ TS // 0

We see that the connection 1-form, A : TQ → g, induces a splitting of the continuous Atiyah

sequence, since

(π1,A) ◦ i([q, ξ]G) = (π1,A)([ξQ(q)]g) = [q,A(ξQ(q))]G = [q, ξ]G, for all q ∈ Q, ξ ∈ g,

which is to say that (π1,A)◦ i = 1g̃. Conversely, given a splitting of the continuous Atiyah sequence,

we can extend the map, by equivariance, to yield a connection 1-form.

The horizontal lift also induces a splitting on the continuous Atiyah sequence, since, by definition,

the horizontal lift of a vector field X ∈ X(S) projects onto X, which is to say that π∗ ◦Xh = 1TS .

The horizontal lift and the connection are related by the fact that

1TQ/G = i ◦ (π1,A) +Xh ◦ π∗,

which is a simple consequence of the fact that the two splittings are part of the following commutative
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diagram,

0 // g̃

1g̃

i //
oo
(π1,A)

___ TQ/G
π∗ //

oo

Xh

___

αA

��

TS

1T S

// 0

0 // g̃
i1 //

oo
π1

___ g̃⊕ TS
π2 //

oo
i2

___ TS // 0

where αA is an isomorphism (see Appendix A). The isomorphism is given in the following lemma.

Lemma 4.3. The map αA : TQ/G→ g̃⊕ TS defined by

αA([q, q̇]G) = [q,A(q, q̇)]G ⊕ Tπ(q, q̇),

is a well-defined vector bundle isomorphism. The inverse of αA is given by

α−1
A ([q, ξ]G ⊕ (x, ẋ)) = [(x, ẋ)hq + ξq]G.

Proof. See page 15 of Cendra et al. [2001]. �

This lemma, and its higher-order generalization, that identifies T (2)Q/G with T (2)S ×S 2g̃, is

critical in allowing us to construct the Lagrange–Poincaré operator, which is an intrinsic method of

expressing the reduced equations arising from Lagrangian reduction.

In the next section, we will develop the theory of discrete connections on principal bundles in a

parallel fashion to the way we introduced continuous connections.

4.4 Discrete Connections

Discrete variational mechanics is based on the idea of approximating the tangent bundle TQ of

Lagrangian mechanics with the pair groupoid Q×Q. As such, the purpose of a discrete connection

is to decompose the subset of Q×Q that projects to a neighborhood of the diagonal of S × S into

horizontal and vertical spaces.

The reason why we emphasize that the construction is only valid for the subset of Q × Q that

projects to a neighborhood of the diagonal of S × S is that there are topological obstructions to

globalizing the construction to all of Q×Q except in the case that Q is a trivial bundle.

One of the challenges of dealing with the discrete space modelled by the pair groupoid Q × Q

is that it is not a linear space, in contrast to TQ. As we shall see, the standard pair groupoid

composition is not sufficient to make sense of the notion of an element (q0, q1) ∈ Q × Q being the

composition of a horizontal and a vertical element. We will propose a natural notion of composing

an element with a vertical element that makes sense of the horizontal and vertical decomposition.
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In the subsequent sections, we will use the discrete connection to extend the pair groupoid

composition even further, and explore its applications to the notion of curvature in discrete geometry.

Intrinsic Representation of the Tangent Bundle. The intuition underlying our construction

of discrete horizontal and vertical spaces is best developed by considering the intrinsic representation

of the tangent bundle. This representation is obtained by identifying a tangent vector at a point

on the manifold with the equivalence class of curves on the manifold going through the point, such

that the tangent to the curve at the point is given by the tangent vector. This notion is illustrated

in Figure 4.9.

Figure 4.9: Intrinsic representation of the tangent bundle.

Given a vector vq ∈ TQ, we identify it with the family of curves q : R → Q, such that q(0) = q,

and q̇(0) = v. The equivalence class [ · ] identifies curves with the same basepoint, and the same

velocity at the basepoint.

With this representation, it is natural to consider (q0, q1) ∈ Q × Q to be an approximation of

[q(·)] = vq ∈ TQ, in the sense that,

q0 = q(0), q1 = q(h),

for some fixed time step h, and where q(·) is a representative curve corresponding to vq in the

intrinsic representation of the tangent bundle.

4.4.1 Horizontal and Vertical Subspaces of Q × Q

Recall that the vertical subspace at a point q, denoted Vq, is given by

Vq = {vq ∈ TQ | π∗(vq) = 0} = {ξQ | ξ ∈ g}.
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Notice that the vertical space is precisely that subspace of TQ which maps under the lifted projection

map to the embedded copy of S in TS. We proceed in an analogous fashion to define a discrete

vertical subspace at a point q.

The natural discrete analogue of the lifted projection map π∗ is the diagonal action of the

projection map on Q×Q, (π, π) : Q×Q→ Q×Q, where (q0, q1) 7→ (πq0, πq1). This is because

π∗(vq) = π∗([q(·)]) = [π(q(·))].

In the same way that we embed S into TS by the map x 7→ [x] = 0x, S naturally embeds itself

into the diagonal of S × S, x 7→ (x, x) = eS×S , which we recall is the identity subspace of the pair

groupoid.

The alternative description of the vertical space is in terms of the embedding of Q× g into TQ,

by (q, ξ) 7→ ξQ(q), using the infinitesimal generator construction,

ξQ(q) = [exp(ξt)q].

In an analogous fashion, we construct a discrete generator map, which is given in the following

definition.

Definition 4.5. The discrete generator is the map i : Q×G→ Q×Q, given by

i(q, g) = (q, gq),

which we also denote by iq(g) = i(q, g) = (q, gq).

Then, we have the following definition of the discrete vertical space.

Definition 4.6. The discrete vertical space is given by

Verq = {(q, q′) ∈ Q×Q | (π, π)(q, q′) = eS×S}

= {iq(g) | g ∈ G}.

This is the discrete analogue of the statement Verq = {vq ∈ TQ | π∗(vq) = 0} = {ξQ | ξ ∈ g}.

Since the pair groupoid composition is only defined on the space of composable pairs, we need

to extend the composition to make sense of how the discrete horizontal space is complementary to

the discrete vertical space. In particular, we define the composition of a vertical element with an

arbitrary element of Q×Q as follows.
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Definition 4.7. The composition of an arbitrary element (q0, q1) ∈ Q × Q with a vertical element

is given by

iq0(g) · (q0, q1) = (e, g)(q0, q1) = (q0, gq1).

An elementary consequence of this definition is that it makes the discrete generator map a

homomorphism.

Lemma 4.4. The discrete generator, iq, is a homomorphism. This is a discrete analogue of the

statement in the continuous theory that (ξ + χ)Q = ξQ + χQ.

Proof. We compute,

iq(g) · iq(h) = iq(g) · (q, hq)

= (e, g)(q, hq)

= (q, ghq)

= iq(gh).

Therefore, iq is a homomorphism. �

If we define the G action on Q×G to be h(q, g) = (hq, hgh−1), we find that the composition of

a vertical element with an arbitrary element is G-equivariant.

Lemma 4.5. The composition of a vertical element with an arbitrary element of Q × Q is G-

equivariant,

ihq0(hgh
−1) · (hq0, hq1) = h · iq0(g) · (q0, q1) .

Proof. Consider the following computation,

ihq0(hgh
−1) · (hq0, hq1) = (hq0, hgh−1hq1)

= (hq0, hgq1)

= h(q0, gq1)

= h · iq0(g) · (q0, q1) . �

Having made sense of how to compose an arbitrary element of Q×Q with a vertical element, we

are in a position to introduce the notion of a discrete connection.

A discrete connection is a G-equivariant choice of a subset of Q × Q called the discrete

horizontal space, that is complementary to the discrete vertical space. In particular, given

(q0, q1) ∈ Q×Q, a discrete connection decomposes this into the horizontal component, hor(q0, q1),
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and the vertical component, ver(q0, q1), such that

ver(q0, q1) · hor(q0, q1) = (q0, q1) ,

in the sense of the composition of a vertical element with an arbitrary element we defined previously.

Furthermore, the G-equivariance condition states that

hor(gq0, gq1) = g · hor(q0, q1) ,

and

ver(gq0, gq1) = g · ver(q0, q1) .

4.4.2 Discrete Atiyah Sequence

Recall that we obtain a short exact sequence corresponding to the decomposition of TQ into hor-

izontal and vertical spaces. Due to the equivariant nature of the decomposition, quotienting this

short exact sequence yields the Atiyah sequence. In this subsection, we will introduce the analogous

discrete objects.

Short Exact Sequence. The decomposition of the pair groupoid Q×Q, into discrete horizontal

and vertical spaces, yields the following short exact sequence of bundles over Q.

0 // VerQ i // Q×Q
(π,π)

// (π, π)∗S × S // 0,

where VerQ is the discrete vertical subspace of Q × Q, and (π, π)∗S × S is the pull-back of S × S

by the projection (π, π) : Q×Q→ S × S.

Discrete Atiyah Sequence. When the short exact sequence above is quotiented modulo G, we

obtain an exact sequence of bundles over S,

0 // G̃
i // (Q×Q)/G

(π,π)
// S × S // 0 ,

which we call the discrete Atiyah sequence. Here, G̃ is an associated bundle (see Definition 4.4).

In particular,

G̃ = Q×G G = (Q×G)/G ,



155

where the action of G on Q × G is given by g(q, h) = (gq, ghg−1), which is the natural discrete

analogue of the adjoint action of g on Q×g. Furthermore, πG : G̃→ S is given by πG([q, g]G) = π(q).

The maps in the discrete Atiyah sequence i : G̃→ (Q×Q)/G, and (π, π) : (Q×Q)/G] → S×S,

are given by

i([q, g]G) = [q, gq]G = [iq(g)]G ,

and

(π, π)([q0, q1]g) = (πq0, πq1) .

4.4.3 Equivalent Representations of a Discrete Connection

In addition to the discrete connection which arises from a G-equivariant decomposition of the pair

groupoid Q×Q into a discrete horizontal and vertical space, we have equivalent representations in

terms of splittings of the discrete Atiyah sequence, as well as maps on the unreduced short exact

sequence.

Maps on the Unreduced Short Exact Sequence. These correspond to discrete analogues of

the connection 1-form, and the horizontal lift.

• Discrete connection 1-form, Ad : Q×Q→ G.

• Discrete horizontal lift, (·, ·)hq : S ×Q→ Q×Q.

Maps That Yield a Splitting of the Discrete Atiyah Sequence.

• (π1,Ad) : (Q×Q)/G→ G̃, which is related to the discrete connection 1-form.

• (·, ·)h : S × S → (Q×Q)/G, which is related to the discrete horizontal lift.

Relating the Two Sets of Representations. These two sets of representations are related in

the following way:

• The maps on the unreduced short exact sequence are equivariant, and hence drop to the

discrete Atiyah sequence, where they induce splittings of the short exact sequence.

• The maps that yield splittings of the discrete Atiyah sequence can be extended equivariantly

to recover the maps on the unreduced short exact sequence.

Furthermore, standard results from homological algebra (see Appendix A) yield an equivalence

between the two splittings of the discrete Atiyah sequence.
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In the rest of this section, we will also discuss in detail the method of moving between the

various representations of the discrete connection. The organization of the rest of the section, and

the subsections in which we relate the various representations are given in the following diagram.

§4.4.1
discrete connection
hor : Q×Q→ Horq
ver : Q×Q→ Verq

§4.4.4
discrete connection 1-form

Ad : Q×Q→ G

zz

§4.4.4
::uuuuuuuuuuu

§4.4.5
discrete horizontal lift
(·, ·)hq : S × S → Q×Q

$$

§4.4.5
ddIIIIIIIIIII

//
§4.4.5

oo

§4.4.6
splitting (connection 1-form)

(π,Ad) : (Q×Q)/G→ G̃

��

§4.4.6

OO

§4.4.7
splitting (horizontal lift)

(·, ·)h : S × S → (Q×Q)/G

��

§4.4.7

OO

4.4.4 Discrete Connection 1-Form

Given a discrete connection on a principal fiber bundle π : Q→ Q/G, we can represent this as a Lie

group-valued discrete connection 1-form, Ad : Q×Q→ G, which is a natural generalization of

the Lie algebra-valued connection 1-form on tangent bundles, A : TQ→ g, to the discrete context.

Discrete Connection 1-Forms from Discrete Connections. The discrete connection 1-form

is constructed as follows. Given an element of the Lie group g ∈ G, the discrete generator map

g 7→ iq(g) yields an isomorphism between G and Verq for each q ∈ Q. For each (q0, q1) ∈ Q × Q,

we define Ad(q0, q1) to be the unique g ∈ G such that iq(g) is equal to the vertical component of

(q0, q1). In particular, this is equivalent to the condition that the following statement holds,

(q0, q1) = iq0(Ad(q0, q1)) · hor(q0, q1).

Remark 4.1. It follows from the above identity that the discrete horizontal space can also be ex-

pressed as

Horq0 = {(q0, q1) ∈ Q×Q | hor(q0, q1) = (q0, q1)}

= {(q0, q1) ∈ Q×Q | Ad(q0, q1) = e} .
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We will now establish a few properties of the discrete connection 1-form.

Proposition 4.6. The discrete connection 1-form, Ad : Q × Q → G, satisfies the following

properties.

1. The 1-form is G-equivariant, that is,

Ad ◦ Lg = Ig ◦ Ad,

which is the discrete analogue of the G-equivariance of the continuous connection, A ◦ TLg =

Adg ◦ A.

2. The 1-form induces a splitting of the Discrete Atiyah sequence, that is,

Ad(iq(g)) = Ad(q0, gq0) = g,

which is the discrete analogue of A(ξQ) = ξ.

Proof. The proof relies on the properties of a discrete connection, and the definition of the discrete

connection 1-form.

1. The discrete connection 1-form satisfies the condition

(q0, q1) = iq0(Ad(q0, q1)) · hor(q0, q1) .

If we denote hor(q0, q1) by (q0, q̄1), we have that

(q0, q1) = (q0,Ad(q0, q1)q̄1) .

Similarly, we have,

(gq0, gq1) = igq0(Ad(gq0, gq1)) · hor(gq0, gq1)

= igq0(Ad(gq0, gq1)) · g · hor(q0, q1)

= (e,Ad(gq0, gq1))(gq0, gq̄1)

= (gq0,Ad(gq0, gq1)gq̄1) ,

where we have used the G-equivariance of the discrete horizontal space. By looking at the
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expressions for gq1 and q1, we conclude that

Ad(gq0, gq1)gq̄1 = gq1

= gAd(q0, q1)q̄1 ,

Ad(gq0, gq1)g = gAd(q0, q1) ,

Ad(gq0, gq1) = gAd(q0, q1)g−1 ,

which is precisely the statement that Ad ◦Lg = Ig ◦Ad, that is to say that Ad is G-equivariant.

2. Recall that iq(g) is an element of the discrete vertical space. Since the discrete horizontal

space is complementary to the discrete vertical space, it follows that ver(iq(g)) = iq(g). Then,

by the construction of the discrete connection 1-form, Ad(iq(g)) is the unique element of G

such that

iq(Ad(iq(g))) = ver(iq(g)) = iq(g) .

Since iq is an isomorphism between G and the discrete vertical space, we conclude that

Ad(iq(g)) = g, as desired. �

The second result is equivalent to the map recovering the discrete Euler–Poincaré connection

when restricted to a G-fiber, that is, Ad(x, g0, x, g1) = g1g
−1
0 . In particular, it follows that the map

is trivial when restricted to the diagonal space, that is, Ad(q, q) = e.

The properties of a discrete connection are discrete analogues of the properties of a continuous

connection in the sense that if a discrete connection has a given property, the corresponding contin-

uous connection which is induced in the infinitesimal limit has the analogous continuous property.

The precise sense in which a discrete connection induces a continuous connection will be discussed

in §4.5.2.

Discrete Connections from Discrete Connection 1-Forms. Having shown how to obtain a

discrete connection 1-form from a discrete connection, let us consider the converse case of obtaining

a discrete connection from a discrete connection 1-form with the properties above. We do this by

constructing the discrete horizontal and vertical components as follows.

Definition 4.8. Given a discrete connection 1-form, Ad : Q × Q → G that is G-equivariant and

induces a splitting of the discrete Atiyah sequence, we define the horizontal component to be

hor(q0, q1) = iq0((Ad(q0, q1))−1) · (q0, q1) .
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The vertical component is given by

ver(q0, q1) = iq0(Ad(q0, q1)) .

Proposition 4.7. The discrete connection we obtain from a discrete connection 1-form has the

following properties.

1. The discrete connection yields a horizontal and vertical decomposition of Q×Q, in the sense

that

(q0, q1) = ver(q0, q1) · hor(q0, q1) ,

for all (q0, q1) ∈ Q×Q.

2. The discrete connection is G-equivariant, in the sense that

hor(gq0, gq1) = g · hor(q0, q1) ,

and

ver(gq0, gq1) = g · ver(q0, q1) .

Proof. The proof relies on the properties of the discrete connection 1-form, and the definitions of

the discrete horizontal and vertical spaces.

1. Consider the following computation,

ver(q0, q1) · hor(q0, q1) = iq0(Ad(q0, q1)) · iq0((Ad(q0, q1))−1) · (q0, q1)

= iq0(Ad(q0, q1)(Ad(q0, q1))−1) · (q0, q1)

= iq0(e) · (q0, q1)

= (q0, q1) ,

where we used that iq is a homomorphism (see Lemma 4.4).

2. We compute,

hor(gq0, gq1) = igq0((Ad(gq0, gq1))−1) · (gq0, gq1)

= igq0(g(Ad(q0, q1))−1g−1) · (gq0, gq1)

= (e, g(Ad(q0, q1))−1g−1)(gq0, gq1)
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= (gq0, g(Ad(q0, q1))−1q1)

= g · iq0((Ad(q0, q1))−1) · (q0, q1)

= g · hor(q0, q1) ,

where we have used the fact that the composition of a vertical element with an arbitrary

element is G-equivariant (see Lemma 4.5). Similarly, we compute,

ver(gq0, gq1) = igq0(Ad(gq0, gq1))

= igq0(gAd(q0, q1)g−1)

= (gq0, gAd(q0, q1)g−1gq0)

= g · (q0,Ad(q0, q1)q0)

= g · iq0(Ad(q0, q1))

= g · ver(q0, q1) . �

Local Representation of the Discrete Connection 1-Form. Since the discrete connection

1-form can be thought of as comparing group fiber quantities at different base points, we obtain the

natural identity that

Ad(gq0, hq1) = hAd(q0, q1)g−1.

In a local trivialization, this corresponds to

Ad(x0, g0, x1, g1) = g1Ad(x0, e, x1, e)g−1
0 .

We define

A(x0, x1) = Ad(x0, e, x1, e),

which yields the local representation of the discrete connection 1-form.

Definition 4.9. Given a discrete connection 1-form, Ad : Q × Q → G, its local representation

is given by

Ad(x0, g0, x1, g1) = g1A(x0, x1)g−1
0 ,

where

A(x0, x1) = Ad(x0, e, x1, e) .

Lemma 4.8. The local representation of a discrete connection is G-equivariant.
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Proof. Consider the following computation,

Ad(g(x0, g0), g(x1, g1)) = Ad((x0, gg0), (x1, gg1))

= gg1A(x0, x1)(gg0)−1

= g(g1A(x0, x1)g−1
0 )g−1

= gAd((x0, g0), (x1, g1))g−1 ,

which shows that the local representation is G-equivariant, as expected. �

Notice also that in the pure group case, where Q = G, this recovers the discrete Euler–Poincaré

connection, as we would expect, since the shape space is trivial. In particular, x0 = x1 = e, which

implies that A(x0, x1) = Ad(e, e, e, e) = e, and Ad(g0, g1) = g1g
−1
0 .

Example 4.1. As an example, we construct the natural discrete analogue of the mechanical con-

nection, A : TQ → g, by the following procedure, which yields a discrete connection 1-form,

Ad : Q×Q→ G.

1. Given the point (q0, q1) ∈ Q × Q, we construct the geodesic path q01 : [0, 1] → Q with respect

to the kinetic energy metric, such that q01(0) = q0, and q01(1) = q1.

2. Project the geodesic path to the shape space, x01(t) ≡ πq01(t), to obtain the curve x01 on S.

3. Taking the horizontal lift of x01 to Q using the connection A yields q̃01.

4. There is a unique g ∈ G such that q01(1) = g · q̃01(1).

5. Define Ad(q0, q1) = g.

This discrete connection is consistent with the classical notion of a connection in the limit that q1

approaches q0, in the usual sense in which discrete mechanics on Q × Q converges to continuous

Lagrangian mechanics on TQ. As mentioned before, this statement is made more precise in §4.5.2.

4.4.5 Discrete Horizontal Lift

The discrete horizontal lift of an element (x0, x1) ∈ S × S is the subset of Q × Q that are

horizontal elements, and project to (x0, x1). Once we specify the base point q ∈ Q, the discrete

horizontal lift is unique, and we introduce the map (·, ·)hq : S × S → Q×Q.

Discrete Horizontal Lifts from Discrete Connections. The discrete horizontal lift can be

constructed once the discrete horizontal space is defined by a choice of discrete connection.
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Definition 4.10. The discrete horizontal lift is the unique map (·, ·)hq : S × S → Q × Q, such

that

(π, π) · (x0, x1)hq = (x0, x1) ,

and

(x0, x1)hq ∈ Horq .

Lemma 4.9. The discrete horizontal lift is G-equivariant, which is to say that

(x0, x1)hgq = g · (x0, x1)hq .

Proof. Given (x0, x1) ∈ S × S, denote (x0, x1)hq0 by (q0, q1). Then, by the definition of the discrete

horizontal lift, we have that

(π, π) · (q0, q1) = (x0, x1) ,

and it follows that

(π, π) · (gq0, gq1) = (x0, x1) .

Also, from the definition of the discrete horizontal lift,

(q0, q1) ∈ Horq0 ,

and by the G-equivariance of the horizontal space,

(gq0, gq1) ∈ g ·Horq0 = Horgq0 .

This implies that (gq0, gq1) satisfies the conditions for being the discrete horizontal lift of (x0, x1)

with basepoint gq0. Therefore, (x0, x1)hgq0 = (gq0, gq1) = g · (q0, q1) = g · (x0, x1)hq0 , as desired. �

Discrete Connections from Discrete Horizontal Lifts. Conversely, given a discrete horizontal

lift, we can recover a discrete connection.

Definition 4.11. Given a discrete horizontal lift, we define the horizontal component to be

hor(q0, q1) = (π(q0, q1))hq0 ,
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and the vertical component is given by

ver(q0, q1) = iq0(g) ,

where g is the unique group element such that

(q0, q1) = iq0(g) · hor(q0, q1) .

The last expression simply states that the discrete horizontal and vertical space are complemen-

tary with respect to the composition we defined between a vertical element and an arbitrary element

of Q×Q.

Discrete Horizontal Lifts from Discrete Connection 1-Forms. We wish to construct a

discrete horizontal lift (·, ·)h : S × S → (Q × Q)/G, given a discrete connection Ad : Q × Q → G.

We state the construction of such a discrete horizontal lift as a proposition.

Proposition 4.10. Given a discrete connection 1-form, Ad : Q × Q → G, the discrete horizontal

lift is given by

(x0, x1)h = [π−1(x0, x1) ∩ A−1
d (e)]G.

Furthermore, the discrete horizontal lift satisfies the following identity,

iq0(Ad(q0, q1)) · (π(q0, q1))hq0 = (q0, q1),

which implies that the discrete connection 1-form and the discrete horizontal lift induces a horizontal

and vertical decomposition of Q×Q.

The horizontal lift can be expressed in a local trivialization, where q0 = (x0, g0), using the local

expression for the discrete connection,

(x0, x1)hq0 = (x0, g0, x1, g0(A(x0, x1))−1).

Proof. We will show that this operation is well-defined on the quotient space. Using the local

representation of the discrete connection in the local trivialization (see Definition 4.9), we have,

A−1
d (e) ∩ π−1(x0, x1)

= {(x̃0, g, x̃1, g · (A(x̃0, x̃1))−1) | x̃0, x̃1 ∈ S, g ∈ G}

∩ {(x0, h0, x1, h1) | h0, h1 ∈ G}

= {(x0, g, x1, g · (A(x0, x1))−1) | h ∈ G}
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= G · (x0, e, x1, (A(x0, x1))−1),

which is a well-defined element of (Q × Q)/G. Since this is true in a local trivialization, and both

the discrete connection and projection operators are globally defined, this inverse coset is globally

well-defined as an element of (Q×Q)/G.

In particular, the computation above allows us to obtain a local expression for the discrete

horizontal lift in terms of the local representation of the discrete connection. That is,

(x0, x1)h(x0,e)
= (x0, e, x1, (A(x0, x1))−1),

(x0, x1)h = [(x0, e, x1, (A(x0, x1))−1)]G.

By the properties of the discrete horizontal lift, this extends to π−1(x0, x1) ⊂ Q×Q,

(x0, x1)h(x0,g)
= (x0, x1)hg(x0,e)

= g · (x0, x1)h(x0,e)

= g(x0, e, x1, (A(x0, x1))−1)

= (x0, g, x1, g(A(x0, x1))−1).

To prove the second claim, we have in the local trivialization of Q×Q, (q0, q1) = (x0, g0, x1, g1).

Then, by the result above,

(π(q0, q1))hq0 = (π(q0, q1))h(x0,g0)
= (x0, g0, x1, g0(A(x0, x1))−1).

Also, by the local representation of the discrete connection,

Ad(q0, q1) = g1A(x0, x1)g−1
0 .

Therefore,

iq0(Ad(q0, q1) · (π(q0, q1))hq0 = (e,Ad(q0, q1)) · (π(q0, q1))hq0

= (e, g1A(x0, x1)g−1
0 ) · (x0, g0, x1, g0(A(x0, x1))−1)

= (x0, g0, x1, (g1A(x0, x1)g−1
0 )(g0(A(x0, x1))−1))

= (x0, g0, x1, g1)

= (q0, q1),
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as claimed. �

Discrete Connection 1-Forms from Discrete Horizontal Lifts. Given a horizontal lift (·, ·)hq :

S × S → Q×Q, we wish to construct a discrete connection 1-form, Ad : Q×Q→ G.

Lemma 4.11. Given a discrete horizontal lift, (·, ·)hq : S × S → Q ×Q, the discrete connection

1-form, Ad : Q×Q→ G, is uniquely defined by the following identity,

iq0(Ad(q0, q1)) · (π(q0, q1))hq0 = (q0, q1).

Proof. To show that this construction is well-defined, we note that π1(q0, q1) = π1(π(q0, q1))hq0 , by the

construction of (·, ·)hq0 from (·, ·)h : S × S → (Q×Q)/G. Furthermore, π2(q0, q1) and π2(π(q0, q1))hq0
are in the same fiber of the principal bundle π : Q → Q/G and are therefore related by a unique

element g ∈ G. Since this element is unique, Ad(q0, q1) is uniquely defined by the identity. �

4.4.6 Splitting of the Discrete Atiyah Sequence (Connection 1-Form)

Consider the discrete Atiyah sequence,

0 // G̃
(q,gq)

//
oo
(π1,Ad)

___ (Q×Q)/G
(π,π)

//
oo

(·,·)h

___ S × S // 0 .

As we see from Theorem A.2, given a short exact sequence

0 // A1

f
//

oo
k

___ B
g

//
oo

h
___ A2

// 0 ,

there are three equivalent conditions under which the exact sequence is split. They are as follows,

1. There is a homomorphism h : A2 → B with g ◦ h = 1A2 ;

2. There is a homomorphism k : B → A1 with k ◦ f = 1A1 ;

3. The given sequence is isomorphic (with identity maps on A1 and A2) to the direct sum short

exact sequence,

0 // A1
i1 // A1 ⊕A2

π2 // A2
// 0 ,

and in particular, B ∼= A1 ⊕A2.

We will address all three conditions in this and the next two subsections.
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Splittings from Discrete Connection 1-Forms. A discrete connection 1-form, Ad : Q×Q→ G,

induces a splitting of the discrete Atiyah sequence, in the sense that

(π1,Ad) ◦ i = 1G̃ .

Lemma 4.12. Given a discrete connection 1-form, Ad : Q × Q → G, we obtain a splitting of the

discrete Atiyah sequence, ϕ : (Q×Q)/G→ G̃, which is given by

ϕ([q0, q1]G) = [q0,Ad(q0, q1)]G.

We denote this map by (π1,Ad).

Proof. This expression is well-defined, as the following computation shows,

ϕ([gq0, gq1]G) = [gq0,Ad(gq0, gq1)]G

= [gq0, gAd(q0, q1)g−1]G

= ϕ([q0, q1]G).

Furthermore, since

(π1,Ad) ◦ i([q, g]G) = (π1,Ad)([q, gq]G)

= [π1(q, gq),Ad(q, gq)]G

= [q, g]G,

it follows that we obtain a splitting of the discrete Atiyah sequence. �

Discrete Connection 1-Forms from Splittings. Given a splitting of the discrete Atiyah se-

quence, we can obtain a discrete connection 1-form using the following construction.

Given [q0, q1]G ∈ (Q × Q)/G, we obtain from the splitting of the discrete Atiyah sequence

an element, [q, g]G ∈ G̃. Viewing [q, g]G as a subset of Q × G, consider the unique g̃ such that

(q0, g̃) ∈ [q, g]G ⊂ Q×G. Then, we define

Ad(x0, e, x1, g
−1
0 g1) = g̃.

We extend this definition to the whole of Q×Q by equivariance,

Ad(x0, g0, x1, g1) = g0g̃g
−1
0 .
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Lemma 4.13. Given a splitting of the discrete Atiyah sequence, the construction above yields a

discrete connection 1-form with the requisite properties.

Proof. To show that the Ad satisfies the properties of a discrete connection 1-form, we first note

that equivariance follows from the construction.

Since we have a splitting, it follows that ϕ([q, gq]G) = [q, g]G, as ϕ composed with the map from

G̃ to (Q×Q)/G is the identity on G̃. Using a local trivialization, we have,

[q0, g]G = ϕ([q0, gq0]G)

= ϕ([(x0, e), (x0, g
−1
0 gg0)]G)

= [(x0, e), g̃]G

= [(x0, g0), g0g̃g−1
0 ]G.

Then, by definition,

Ad((x0, e), (x0, g
−1
0 gg0)) = g̃,

and furthermore, g = g0g̃g
−1
0 . From this, we conclude that

Ad(q0, gq0) = Ad((x0, g0), (x0, gg0))

= g0Ad((x0, e), (x0, g
−1
0 gg0))g−1

0

= g0g̃g
−1
0

= g.

Therefore, we have that Ad(q0, gq0) = g, which together with equivariance implies that Ad is a

discrete connection 1-form. �

4.4.7 Splitting of the Discrete Atiyah Sequence (Horizontal Lift)

As was the case with the discrete connection 1-form, the discrete horizontal lift is in one-to-one

correspondence with splittings of the discrete Atiyah sequence, and they are related by taking the

quotient, or extending by G-equivariance, as appropriate.

Splittings from Discrete Horizontal Lifts. Given a discrete horizontal lift, we obtain a splitting

by taking its quotient.

Lemma 4.14. Given a discrete horizontal lift, (·, ·)hq : S × S → Q × Q, the map (·, ·)h : S × S →

(Q×Q)/G, which is given by

(x0, x1)h = [(x0, x1)h(x0,e)
]G ,
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induces a splitting of the discrete Atiyah sequence.

Proof. We compute,

(π, π) ◦ (x0, x1)h = (π, π)([(x0, x1)h(x0,e)
]G)

= (x0, x1) ,

where we used the G-equivariance of the discrete horizontal lift, and the property that (π, π) ·

(x0, x1)hq = (x0, x1) for any q ∈ Q. This implies that (π, π) ◦ (·, ·)h = 1S×S , as desired. �

Discrete Horizontal Lifts from Splittings. Given a splitting, (·, ·)h : S × S → (Q×Q)/G, we

obtain a discrete horizontal lift, (·, ·)hq : S × S → Q×Q, using the following construction.

We denote by (x0, x1)hq0 the unique element in (x0, x1)h, thought of as a subset of Q ×Q, such

that the first component is q0. This is the discrete horizontal lift of the point (x0, x1) ∈ S×S where

the base point is specified.

Lemma 4.15. Given a splitting of the discrete Atiyah sequence, the construction above yields a

discrete horizontal lift with the requisite properties.

Proof. Since the quotient space (Q × Q)/G is obtained by the diagonal action of G on Q × Q, it

follows that if (x0, x1)hq0 ∈ (x0, x1)h ⊂ Q×Q, then g · (x0, x1)hq0 ∈ (x0, x1)h ⊂ Q×Q. Since the first

component of G · (x0, x1)hq0 is gq0, and g · (x0, x1)hq0 ∈ (x0, x1)h ⊂ Q×Q, we have that

(x0, x1)hgq0 = g · (x0, x1)hq0 ,

which is to say that the discrete horizontal lift constructed above is G-equivariant.

Since (·, ·)h is a splitting of the discrete Atiyah sequence, we have that (π, π) ◦ (·, ·)h = 1S×S ,

and this implies that any element in (x0, x1)h, viewed as a subset of Q × Q, projects to (x0, x1).

Therefore, the discrete horizontal lift we constructed above has the requisite properties. �

4.4.8 Isomorphism between (Q × Q)/G and (S × S) ⊕ G̃

The notion of a discrete connection is motivated by the desire to construct a global diffeomorphism

between (Q × Q)/G → S and (S × S) ⊕ G̃ → S. This is the discrete analogue of the identification

between TQ/G→ Q/G and T (Q/G)⊕ g̃ → Q/G which is the context for Lagrangian Reduction in

Cendra et al. [2001]. Since a choice of discrete connection corresponds to a choice of splitting of the

discrete Atiyah sequence, we have the following commutative diagram, where each row is a short
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exact sequence.

0 // G̃

1G̃

(q,gq)
//

oo
(π1,Ad)

___ (Q×Q)/G
(π,π)

//
oo

(·,·)h

___

αAd

��

S × S

1S×S

// 0

0 // G̃
i1 //

oo
π1

___ G̃⊕ (S × S)
π2 //

oo
i2

___ S × S // 0

Here, we see how the identification between (Q×Q)/G and (S×S)⊕ G̃ are naturally related to the

discrete connection and the discrete horizontal lift.

Recall that the discrete adjoint bundle G̃ is the associated bundle one obtains when M = G, and

ρg acts by conjugation. Furthermore, the action of G on Q × Q is by the diagonal action, and the

action of G×G on Q×Q is component-wise.

Proposition 4.16. The map αAd
: (Q×Q)/G→ (S × S)⊕ G̃ defined by

αAd
([q0, q1]G) = (πq0, πq1)⊕ [q0,Ad(q0, q1)]G,

is a well-defined bundle isomorphism. The inverse of αAd
is given by

α−1
Ad

((x0, x1)⊕ [q, g]G) = [(e, g) · (x0, x1)hq ]G,

for any q ∈ Q such that πq = x0.

Proof. To show that αAd
is well-defined, note that for any g ∈ G, we have that

(πgq0, πgq1) = (πq0, πq1),

and also,

[gq0,Ad(gq0, gq1)]G = [gq0, gAd(q0, q1)g−1]G

= [q0,Ad(q0, q1)]G.

Then, we see that

αAd
([gq0, gq1]G) = αAd

([q0, q1]G).

To show that α−1
Ad

is well-defined, note that for any k ∈ G,

(x0, x1)hkq = k · (x0, x1)hq ,
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and that

α−1
Ad

((x0, x1)⊕ [kq, kgk−1]G) = [(e, kgk−1) · (x0, x1)hkq]G

= [(e, kgk−1) · k · (x0, x1)hq ]G

= [(ek, kgk−1k) · (x0, x1)hq ]G

= [(ke, kg) · (x0, x1)hq ]G

= [k · (e, g) · (x0, x1)hq ]G

= [(e, g) · (x0, x1)hq ]G

= α−1
Ad

((x0, x1)⊕ [q, g]G). �

Example 4.2. It is illustrative to consider the notion of a discrete connection, and the isomorphism,

in the degenerate case when Q = G, which is the context of discrete Euler–Poincaré reduction. Here,

the isomorphism is between (G×G)/G and G̃, and the connection Ad : G×G→ G is given by

Ad(g0, g1) = g1 · g−1
0 .

Then, we have that

αAd
([g0, g1]G) = (πg0, πg1)⊕ [g0,Ad(q0, q1)]G

= (e, e)⊕ [g0, g1g−1
0 ]G .

Taking the inverse, we have,

α−1
Ad

([g0, g1g−1
0 ]G) = [(e, g1g−1

0 ] · (e, e)hg0 ]G

= [(e, g1g−1
0 ] · (g0, g0)]G

= [eg0, g1g−1
0 g0]G

= [g0, g1]G ,

as expected.

4.4.9 Discrete Horizontal and Vertical Subspaces Revisited

Having now fully introduces all the equivalent representations of a discrete connection, we can

revisit the notion of discrete horizontal and vertical subspaces in light of the new structures we have

introduced.
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Consider the following split exact sequence,

0 // A1

f
//

oo
k

___ B
g

//
oo

h
___ A2

// 0 .

We can decompose any element in B into a A1 and A2 term by considering the following isomorphism,

B ∼= f ◦ k(B)⊕ h ◦ g(B).

Similarly, in the discrete Atiyah sequence, we can decompose an element of (Q × Q)/G into a

horizontal and vertical piece by performing the analogous construction on the split exact sequence

0 // G̃
(q,gq)

//
oo
(π1,Ad)

___ (Q×Q)/G
(π,π)

//
oo

(·,·)h

___ S × S // 0 .

This allows us to define horizontal and vertical spaces associated with the pair groupoid Q×Q, in

terms of all the structures we have introduced.

Definition 4.12. The horizontal space is given by

Horq = {(q, q′) ∈ Q×Q | Ad(q, q′) = e}

= {(πq, x1)hq ∈ Q×Q | x1 ∈ S}.

This is the discrete analogue of the statement Horq = {vq ∈ TQ | A(vq) = 0} = {(vπq)hq ∈ TQ |

vπq ∈ TS}.

Definition 4.13. The vertical space is given by

Verq = {(q, q′) ∈ Q×Q | (π, π)(q, q′) = eS×S}

= {iq(g) | g ∈ G}.

This is the discrete analogue of the statement Verq = {vq ∈ TQ | π∗(vq) = 0} = {ξQ | ξ ∈ g}.

In particular, we can decompose an element of Q×Q into a horizontal and vertical component.

Definition 4.14. The horizontal component of (q0, q1) ∈ Q×Q is given by

hor(q0, q1) = ((·, ·)h ◦ (π, π))(q0, q1) = (πq0, πq1)hq0 .

Definition 4.15. The vertical component of (q0, q1) ∈ Q×Q is given by

ver(q0, q1) = (i ◦ (π1,Ad))(q0, q1) = (q0,Ad(q0, q1)q0) = iq0(Ad(q0, q1)).
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Lemma 4.17. The horizontal component can be expressed as

hor(q0, q1) = iq0((Ad(q0, q1))−1) · (q0, q1).

Proof.

iq0(Ad(q0, q1)−1) · (q0, q1) = (q0, (Ad(q0, q1))−1q0) · (q0, q1)

= (e, (Ad(q0, q1))−1)(q0, q1)

= (q0, (Ad(q0, q1))−1q1).

Clearly, (π, π)(q0, (Ad(q0, q1))−1q1) = (π, π)(q0, q1). Furthermore,

Ad(q0, (Ad(q0, q1))−1q1) = (Ad(q0, q1))−1Ad(q0, q1) = e.

Therefore, by definition, (q0, (Ad(q0, q1))−1q1) = hor(q0, q1). �

Lemma 4.18. The horizontal and vertical operators satisfy the following identity,

ver(q0, q1) · hor(q0, q1) = (q0, q1).

Proof.

ver(q0, q1) · hor(q0, q1) = iq0(Ad(q0, q1)) · (iq0((Ad(q0, q1))−1) · (q0, q1))

= (e,Ad(q0, q1))(e, (Ad(q0, q1))−1)(q0, q1)

= (e,Ad(q0, q1))(q0, (Ad(q0, q1))−1q1)

= (q0,Ad(q0, q1)(Ad(q0, q1))−1q1)

= (q0, q1),

as desired. �

4.5 Geometric Structures Derived from the Discrete Con-

nection

In this section, we will introduce some of the additional geometric structures that can be derived

from a choice of discrete connection. These structures include an extension of the pair groupoid

composition to take into account the principal bundle structure, continuous connections that are a
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limit of a discrete connection, and higher-order connection-like structures.

4.5.1 Extending the Pair Groupoid Composition

Recall that the composition of a vertical element (q0, gq0) with an element (q0, q1) is given by

(q0, gq0) · (q0, q1) = (q0, gq1).

The choice of a discrete connection allows us to further extend the composition, in a manner that

is relevant in describing the curvature of a discrete connection. The decomposition of an element

of Q×Q into a horizontal and vertical piece naturally suggests a generalization of the composition

operation on Q×Q (viewed as a pair groupoid), by using the discrete connection, and the principal

bundle structure of Q.

We wish to define a composition on Q×Q such that the composition of (q0, q1) ·(q̃0, q̃1) is defined

whenever πq1 = πq̃0. Furthermore, we require that the extended composition be consistent with the

vertical composition we introduced previously, as well as the pair groupoid composition, whenever

their domains of definition coincide.

The extended composition is obtained by left translating (q̃0, q̃1) by a group element h, such

that q1 = hq̃0, and then using the pair groupoid composition on (q0, q1) and the left translated term

h(q̃0, g̃1). This yields the following intrinsic definition of the extended composition.

Definition 4.16. The extended pair groupoid composition of (q0, q1), (q̃0, q̃1) ∈ Q×Q is defined

whenever πq1 = πq̃0, and it is given by

(q0, q1) · (q̃0, q̃1) = (q0,Ad(q̃0, q1)q̃1).

As the following lemmas show, this extended composition is consistent with the vertical compo-

sition and the pair groupoid composition.

Lemma 4.19. The extended pair groupoid composition is consistent with the composition of a ver-

tical element with an arbitrary element.

Proof. Consider the composition of a vertical element with an arbitrary element,

(q0, gq0) · (q0, q1) = (q0, gq1).
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This is consistent with the result using the extended composition,

(q0, gq0) · (q0, q1) = (q0,Ad(q0, gq0)q1)

= (q0, gq1) ,

where we used that the discrete connection yields a splitting of the Atiyah sequence. �

Lemma 4.20. The extended pair groupoid composition is consistent with the pair groupoid compo-

sition.

Proof. The pair groupoid composition is given by

(q0, q1) · (q1, q2) = (q0, q2) .

This is consistent with the extended composition,

(q0, q1) · (q1, q2) = (q0,Ad(q1, q1)q2)

= (q0, eq2)

= (q0, q2) . �

The extended composition is G-equivariant, and is well-defined on the quotient space, as the

following lemma shows.

Lemma 4.21. The composition · : (Q×Q)× (Q×Q) → (Q×Q) is G-equivariant, that is,

(gq0, gq1) · (gq̃0, gq̃1) = g · ((q0, q1) · (q̃0, q̃1)).

Furthermore, the composition induces a well-defined quotient composition · : ((Q×Q)×(Q×Q))/G→

(Q×Q)/G.

Proof. Given g ∈ G, we consider,

(gq0, gq1) · (gq̃0, gq̃1) = (gq0,Ad(gq̃0, gq1)gq̃1)

= (gq0, gAd(q̃0, q1)g−1gq̃1)

= (gq0, gAd(q̃0, q1)q̃1)

= g · (q0,Ad(q̃0, q1)q̃1)

= g · ((q0, q1) · (q̃0, q̃1)) ,



175

where we used the equivariance of the discrete connection. It follows that the composition is equiv-

ariant. Furthermore,

[(gq̃0, gq̃1) · (gq0, gq1)]G = [(q̃0, q̃1) · (q0, q1)]G,

which means that · : ((Q×Q)× (Q×Q))/G→ (Q×Q)/G is well-defined. �

Corollary 4.22. The composition of n-terms is G-equivariant. That is to say,

(gq10 , gq
1
1) · (gq20 , gq21) · . . . · (gqn−1

0 , gqn−1
1 ) · (gqn0 , gqn1 )

= g · ((q10 , q11) · (q20 , q21) · . . . · (qn−1
0 , qn−1

1 ) · (qn0 , qn1 )).

Proof. The result follows by induction on the previous lemma. �

We find that the extended composition we have constructed on the pair groupoid is associative.

However, as we shall see in §4.7.3, composing pair groupoid elements about a loop in the shape space

will not in general yield the identity element eQ×Q, and the defect represents the holonomy about

the loop, which is related to curvature. This may yield the discrete analogue of the expression giving

the geometric phase in terms of a loop integral (in shape space) of the curvature of the connection.

Lemma 4.23. The composition · : (Q×Q)× (Q×Q) → (Q×Q) is associative. That is,

((q00 , q
0
1) · (q10 , q11)) · (q20 , q21) = (q00 , q

0
1) · ((q10 , q11) · (q20 , q21)) .

Proof. Evaluating the left-hand side, we obtain

((q00 , q
0
1) · (q10 , q11)) · (q20 , q21) = (q00 ,Ad(q10 , q01)q11) · (q20 , q21)

= (q00 ,Ad(q20 ,Ad(q10 , q01)q11)q21)

= (q00 ,Ad(q10 , q01)Ad(q20 , q11)q21) ,

and the right-hand side is given by

(q00 , q
0
1) · ((q10 , q11) · (q20 , q21)) = (q00 , q

0
1) · (q10 ,Ad(q20 , q11)q21)

= (q00 ,Ad(q10 , q01)Ad(q20 , q11)q21) .

Therefore,

((q00 , q
0
1) · (q10 , q11)) · (q20 , q21) = (q00 , q

0
1) · ((q10 , q11) · (q20 , q21)) ,
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and the extended groupoid composition is associative. �

4.5.2 Continuous Connections from Discrete Connections

Given a discrete G-valued connection 1-form, Ad : Q × Q → G, we associate to it a continuous

g-valued connection 1-form, A : TQ→ g, by the following construction,

A([q(·)]) = [Ad(q(0), q(·))],

where [·] denotes the equivalence class of curves associated with a tangent vector.

This uses the intrinsic representation of the tangent bundle, which is obtained by identifying a

tangent vector at a point on the manifold with the equivalence class of curves on the manifold going

through the point, such that the tangent to the curve at the point is given by the tangent vector,

which was illustrated earlier in Figure 4.9 on page 151.

More explicitly, given vq ∈ TQ, we consider an associated curve q : [0, 1] → Q, and construct the

curve g : [0, 1] → G, given by

g(t) = Ad(q(0), q(t)).

Then,

A(vq) =
d

dt

∣∣∣∣
t=0

g(t).

When computing the equations in discrete reduction theory, it is often necessary to consider

horizontal and vertical variations, which we introduce below.

Definition 4.17. We introduce the vertical variation of a point (q0, q1) ∈ Q×Q. Given a curve

qε1 : [0, 1] → Q, such that qε1(0) = q1, the vertical variation is given by

ver δq =
d

dε

∣∣∣∣
ε=0

ver(q0, qε1) =
d

dε

∣∣∣∣
ε=0

iq0(Ad(q0, qε1)) .

Definition 4.18. We introduce the horizontal variation of a point (q0, q1) ∈ Q × Q. Given a

curve qε1 : [0, 1] → Q, such that qε1(0) = q1, the horizontal variation is given by

hor δq =
d

dε

∣∣∣∣
ε=0

hor(q0, qε1) =
d

dε

∣∣∣∣
ε=0

(π(q0, qε1))
h
q0 .

4.5.3 Connection-Like Structures on Higher-Order Tangent Bundles

Given a continuous connection, we can construct connection-like structures on higher-order tangent

bundles. This construction is described in detail in Lemma 3.2.1 of Cendra et al. [2001]. In particular,

given a connection 1-form, A : TQ→ g, we obtain a well-defined map, Ak : T (k)Q→ kg.
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As we will see later, these connection-like structures on higher-order tangent bundles will provide

an intrinsic method of characterizing the order of approximation of a continuous connection by a

discrete connection.

We will describe the discrete analogue of this construction. To begin, the discrete analogue of the

k-th order tangent bundle, T (k)Q, is k + 1 copies of Q, namely Qk+1. Intermediate spaces between

T (k)Q and Qk+1 arise in the general theory of multi-spaces, which is introduced in Olver [2001].

The discrete analogue of tangent lifts, and their higher-order analogues, are obtained by compo-

nentwise application of the map, since a tangent lift of a map is computed by applying the map to a

representative curve, and taking its equivalence class. Therefore, given a map f : M → N , we have

the naturally induced map,

T (k)f : Mk+1 → Nk+1 given by T (k)f(m0, . . . ,mk) = (f(m0), . . . , f(mk)).

And in particular, the group action is lifted to the diagonal group action on the product space.

The discrete connection can be extended to Qk+1 in the natural way, Akd : Qk+1 → ⊕k−1
l=0 G ≡ kG,

Akd(q0, . . . , qk) = ⊕k−1
l=0 Ad(ql, ql+1).

Similarly, we can define the map from Qk+1 to the Whitney sum of k copies of the conjugate

bundle G̃ by

Qk+1 → kG̃ by (q0, . . . , qk) 7→ ⊕k−1
l=0 [q0,Ad(ql, ql+1)]G.

In a natural way, we have the following proposition.

Proposition 4.24. The map

αAk
d

: Qk+1 → (Q/G)k+1 ×Q/G kG̃

defined by

αAk
d
(q0, . . . , qk) = (πq0, . . . , πqk)×Q/G ⊕k−1

l=0 [q0,Ad(ql, ql+1)]G,

is a well-defined bundle isomorphism. The inverse of αAk
d

is given by

α−1
Ak

d

(
(x0, . . . , xk)×Q/G ⊕k−1

l=0 [ql, gl]G
)

= [(e, g0, g1g0, . . . , gk−1 . . . g0)) · (x0, . . . , xk)hq0 ]G,
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where (x0, . . . , xk)hq0 = (q̄0, . . . , q̄k) is defined by the conditions:

q̄0 = q0,

πq̄l = xl,

Ad(q̄l, q̄l+1) = e.

Remark 4.2. In a local trivialization, where q0 = (h0, x0), we have,

q̄l+1 =
(
(A(xl, xl+1) · · ·A(x0, x1))−1h0, xl+1

)
.

4.6 Computational Aspects

While we saw in the previous section that a discrete connection induces a continuous connection

in the limit, we are often concerned with constructing discrete connections that approximate a

continuous connection to a given order of approximation. This section will address the question of

what it means for a discrete connection to approximate a continuous connection to a given order,

as well as introduce methods for constructing such discrete connections.

4.6.1 Exact Discrete Connection

It is interesting from the point of view of computation to construct an exact discrete connection

associated with a prescribed continuous connection, so that we can make sense of the statement that

a given discrete connection is a k-th order approximation of a continuous connection.

Additional Structure. To construct the exact discrete connection, we require that the configu-

ration manifold Q be endowed with a bi-invariant Riemannian metric, with the property that the

associated exponential map,

exp : TQ→ Q,

is consistent with the group action, in the sense that

exp(ξQ(q)) = exp(ξ) · q.

We extend the exponential to Q×Q as follows,

exp : TQ→ Q×Q,

vq 7→ (q, exp(vq)),
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and denote the inverse by log : Q×Q→ TQ, which is defined in a neighborhood of the diagonal of

Q×Q.

Construction. Having introduced the appropriate structure on the configuration manifold, we

define the exact discrete connection as follows.

Definition 4.19. The Exact Discrete Connection AEd associated with a prescribed continuous

connection A : TQ→ g and a Riemannian metric is given by

AEd (q0, q1) = exp(A(log(q0, q1))).

This construction is more clearly illustrated in the following diagram,

Q×Q
log

//
GF ED

AE
d

��

TQ
A

// g
exp

// G

Properties. The exact discrete connection satisfies the properties of the discrete connection 1-

form, in that it is G-equivariant, and it induces a splitting of the discrete Atiyah sequence. The

equivariance of the exact discrete connection arises from the fact that each of the composed maps

is equivariant, and the splitting condition,

AEd (iq(g)) = g,

is a consequence of the compatibility condition,

exp(ξQ(q)) = exp(ξ) · q.

Since the logarithm map is only defined on a neighborhood of the diagonal of Q×Q, it follows that

the exact discrete connection will have the same restriction on its domain of definition.

Example 4.3 (Discrete Mechanical Connection). The continuous mechanical connection is

defined by the following diagram,

T ∗Q
J // g∗

TQ
A

//

FL

OO

g

I

OO
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Correspondingly, the discrete mechanical connection is defined by the following diagram,

Q×Q
FLd

//
GF ED

Jd

��

T ∗Q
J

// g∗

Q×Q@A BC
Ad

OO
// g

exp
//

I

OO

G

This is consistent with our notion of an exact discrete mechanical connection as the following diagram

illustrates,

Q×Q
FLd

//
GF ED

Jd

��

T ∗Q
J

// g∗

Q×Q@A BC
Ad

OO

log
// TQ

FL

OO

A // g
exp

//

I

OO

G

where the portion in the dotted box recovers the continuous mechanical connection. In checking G-

equivariance, we use the equivariance of exp : g → G, Jd : Q×Q→ g∗, and the equivariance of I in

the sense of a map I : Q→ L(g, g∗), namely, I(gq) ·Adg ξ = Ad∗g−1 I(q) · ξ.

4.6.2 Order of Approximation of a Connection

We have the necessary constructions to consider the order to which a discrete connection approxi-

mates a continuous connection. There are two equivalent ways of defining the order of approximation

of a continuous connection by a discrete connection, the first is more analytical, and is given by the

order of convergence in an appropriate norm on the group.

Definition 4.20 (Order of Connection, Analytic). A discrete connection Ad is a k-th order

discrete connection if, k is the maximum integer for which

∃0 < c <∞,

∃h0 > 0,

such that

sup
vq ∈ TQ,

|vq| = 1

‖AEd (q, exp(hvq))(Ad(q, exp(hvq)))−1‖ ≤ chk+1, ∀h < h0.

The second definition is more intrinsic, and is related to considering the infinitesimal limit of a
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discrete connection to connection-like structures on higher-order tangent bundles, without the need

for the introduction of the exact discrete connection.

Recall from §4.5.2 that we can construct a continuous connection from a discrete connection by

the following construction,

A([q(·)]) = [Ad(q(0), q(·))].

Given Akd : Qk+1 → kG, we can obtain the continuous limit Ak : T (k)Q→ kg in a similar fashion.

Definition 4.21 (Order of Connection, Intrinsic). A discrete connection Ad is a k-th order

approximation to A if, k is the maximum integer for which the diagram holds,

Ad : Q×Q→ G

��

A : TQ→ g

��
Akd : Qk+1 → kG //_______ Ak : T (k)Q→ kg

Here, the double arrows represent the higher-order structures induced by the connections, and the

dotted arrow represents convergence in the limit.

4.6.3 Discrete Connections from Exponentiated Continuous Connections

To apply the exponential and logarithm approach to construct a discrete connection from a pre-

scribed connection, in the sense of the diagram,

Q×Q
log

//
GF ED

Ad

��

TQ
A

// g
exp

// G ,

we can rely on explicit expressions for the exponential and logarithm, such as those given in Ap-

pendix B for the special Euclidean group, or we can rely on approximations to the exponential and

logarithm.

The explicit formulas for the special Euclidean group are particularly useful for applying the

theory of discrete connections to the geometric control of problems such as robotic manipulators, and

clusters of satellites. In dealing with other configuration manifolds, approximants to the exponential

and logarithm may be required due to the absence of explicit formulas.

Even when explicit formulas are available, it may be desirable to rely on a more computationally

efficient approximation, such as the Cayley transformation, methods based on Padé approximants

(see, for example, Cardoso and Silva Leite [2001]; Higham [2001]), or Lie group techniques (see, for

example, Celledoni and Iserles [2000, 2001]; Zanna and Munthe-Kaas [2001/02]). Clearly, these will
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yield a discrete connection that has an order of approximation equal to the lower of the two orders

of approximation of the numerical schemes used for the exponential and the logarithm.

When used in the context of geometric control, high-order approximations to the continuous

connection may not be necessary, since the optimal trajectory is often recomputed at each step, and

in such instances, a low-order approximation suffices.

4.6.4 Discrete Mechanical Connections and Discrete Lagrangians

We will introduce a discrete mechanical connection that is consistent with the structure of discrete

variational mechanics, and will yield a discrete connection that has an order of approximation that

is equation to that obtained from the discrete mechanics.

Consider a G-invariant k-th order discrete Lagrangian, Ld : Q×Q→ R, which is to say that

Ld(gq0, gq1) = Ld(q0, q1),

and

Ld = Lexact
d +O(hk+1),

where the exact discrete Lagrangian, Lexact
d : Q×Q→ R, is given by

Lexact
d (q0, q1) =

∫ h

0

L(q01(t), q̇01(t))dt.

Here, q01 : [0, h] → Q is the solution of the Euler–Lagrange equations with q01(0) = q0, and

q01(h) = q1. The exact discrete Lagrangian is a generator of the symplectic flow, coming from the

Jacobi solution of the Hamilton–Jacobi equation.

This k-th order discrete Lagrangian yields a k-th order accurate numerical update scheme,

through the discrete Euler–Lagrange equations,

D2Ld(q0, q1) +D1Ld(q1, q2) = 0,

which implicitly defines a discrete flow Φ : (q0, q1) 7→ (q1, q2). By pushing this numerical scheme

forward to T ∗Q using the discrete fiber derivative FLd : Q × Q → T ∗Q, which maps (q0, q1) 7→

(q0,−D1Ld(q0, q1)), we can obtain a Symplectic Partitioned Runge–Kutta scheme of the same order.

We also introduce the discrete momentum map, Jd : Q×Q→ g∗, given by

〈Jd(q0, q1), ξ〉 = −D1Ld(q0, q1) · ξQ(q0).



183

The discrete Lagrangian is G-invariant, which implies that for any ξ ∈ g, we have,

Ld(q0, q1) = Ld(exp(ξt) · q0, exp(ξt) · q1),

0 =
d

dt

∣∣∣∣
t=0

Ld(exp(ξt) · q0, exp(ξt) · q1)

= D1Ld(q0, q1) · ξQ(q0) +D2Ld(q0, q1) · ξQ(q1).

If we restrict to the flow of the discrete Euler–Lagrange equations, we have that

(D1Ld(q0, q1) +D2Ldq(q1, q2)) · ξQ(q1) = 0,

which upon substitution into the previous equation, yields

D1Ld(q0, q1) · ξQ(q0)−D1Ld(q1, q2) · ξQ(q1) = 0,

−D1Ld(q1, q2) · ξQ(q1) = −D1Ld(q0, q1) · ξQ(q0),

〈Jd(q1, q2), ξQ(q1)〉 = 〈Jd(q0, q1), ξQ(q0)〉,

Φ∗Jd = Jd.

which is the statement of the discrete Noether theorem, that the discrete momentum map is preserved

by the discrete Euler–Lagrange flow.

We note that the mechanical connection corresponds to a choice of horizontal space corresponding

to the zero momentum surface. That is to say that the horizontal distribution corresponding to the

continuous mechanical connection is

Horq = {vq ∈ TQ | J(vq) = 0},

and the discrete horizontal subspace corresponding to the discrete mechanical connection is

Hordq = {(q, q′) ∈ Q×Q | Jd(q, q′) = 0}

Remark 4.3. For the discrete horizontal subspace we defined above to have the correct dimension-

ality, the discrete Lagrangian needs to satisfy certain non-degeneracy conditions, which dictates the

size of the neighborhood of the diagonal that the discrete connection is defined on.

Since the continuous momentum map is preserved by the continuous Euler–Lagrange flow, and the

discrete momentum map is preserved by the discrete Euler–Lagrange flow, it follows that the order

of approximation of the continuous mechanical connection by the discrete mechanical connection is
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equal to the order of approximation of the continuous Euler–Lagrange flow by the discrete Euler–

Lagrange flow. To construct a discrete mechanical connection of a prescribed order, we use the

following procedure.

1. Consider a k-th order G-invariant discrete Lagrangian, Ld : Q×Q→ R,

Ld = Lexact
d +O(hk+1).

2. Construct the corresponding discrete momentum map, Jd(q0, q1) → g∗,

〈Jd(q0, q1), ξ〉 = −D1Ld(q0, q1) · ξQ(q0).

3. Then, the k-th order discrete mechanical connection is given implicitly by considering the

condition for the discrete horizontal space,

Ad(q0, q1) = e iff Jd(q0, q1) = 0,

and then extending the construction to the domain of definition by G-equivariance.

4. More explicitly, given (q0, q1) ∈ Q × Q, we consider a local trivialization, in which (q0, q1) =

(x0, g0, x1, g1), and we find the unique g ∈ G such that

Jd(x0, g0, x1, g) = 0.

Then, we have that

Ad(x0, g0, x1, g) = e,

from which we conclude that

Ad(x0, g0, x1, g1) = Ad(x0, g0, x1, g1g
−1g)

= g1g
−1 · Ad(x0, g0, x1, g)

= g1g
−1 .

4.7 Applications

This section will sketch some of the applications of the mathematical machinery of discrete connec-

tions and discrete exterior calculus to problems in computational geometric mechanics, geometric

control theory, and discrete Riemannian geometry.
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4.7.1 Discrete Lagrangian Reduction

Lagrangian reduction, which is the Lagrangian analogue of Poisson reduction on the Hamiltonian

side, is associated with the reduction of Hamilton’s variational principle for systems with symmetry.

The variation of the action integral associated with a variation in the curve can be expressed in

terms of the Euler–Lagrange operator, EL : T (2)Q → T ∗Q. When the Lagrangian is G-invariant,

the associated Euler–Lagrange operator is G-equivariant, and this induces a reduced Euler–Lagrange

operator, [EL]G : T (2)Q/G → T ∗Q/G. The choice of a connection allows us to construct intrinsic

coordinates on T (2)/G and T ∗Q/G, and the representation of the reduced Euler–Lagrange operator

in these coordinates correspond to the Lagrange–Poincaré operator, LP : T (2)(Q/G) ×Q/G 2g̃ →

T ∗(Q/G)⊕ g̃∗.

The reduced equations obtained by reduction tend to have non-canonical symplectic structures.

As such, näıvely applying standard symplectic algorithms to reduced equations can have undesirable

consequences for the longtime behavior of the simulation, since it preserves the canonical symplectic

form on the reduced space, as opposed to the reduced (non-canonical) symplectic form that is

invariant under the reduced dynamics.

This sends a cautionary message, that it is important to understand the reduction of discrete vari-

ational mechanics, since applying standard numerical algorithms to the reduced equations obtained

from continuous reduction theory may yield undesirable results, inasmuch as long-term stability is

concerned.

Discrete connections on principal bundles provide the appropriate geometric structure to con-

struct a discrete analogue of Lagrangian reduction. We first introduce the discrete Euler–Lagrange

operator, which is constructed as follows.

Discrete Euler–Lagrange Operator. The discrete Euler–Lagrange operator, ELd : Q3 → T ∗Q

satisfies the following property,

dSd(Ld) · δq =
∑

ELd(Ld)(qk−1, qk, qk+1) · δqk.

In coordinates, the discrete Euler–Lagrange operator has the form

[D2Ld(qk−1, qk) +D1Ld(qk, qk+1)] dqk.

Discrete Lagrange–Poincaré Operator. The map ELd(Ld) : Q3 → T ∗Q, being G-equivariant,

induces a quotient map

[ELd(Ld)]G : Q3/G→ T ∗Q/G,
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which depends only on the reduced discrete Lagrangian ld : (Q × Q)/G → R. We can therefore

identify [ELd(Ld)]G with an operator ELd(ld) which we call the reduced discrete Euler–Lagrange

operator.

If in addition to the principal bundle structure, we have a discrete principal connection as de-

scribed in the previous section, we can identify

Q3/G with (Q/G)3 ×Q/G (G̃⊕ G̃).

The isomorphism between these two spaces is a consequence of Proposition 4.24, which is higher-

order generalization of Proposition 4.16. The discrete mechanical connection which was introduced

in §4.6.4 is a particularly natural choice of discrete connection, since it does not require any ad hoc

choices, as it is constructed directly from the discrete Lagrangian.

Furthermore, each discrete G-valued connection 1-form, Ad : Q × Q → G, induces in the in-

finitesimal limit a continuous g-valued connection 1-form, A : TQ → g, as shown in §4.5.2. This

continuous principal connection allows us to identify

T ∗Q/G with T ∗(Q/G)⊕ g̃∗.

The discrete Lagrange–Poincaré operator, LPd(ld) : (Q/G)3 ×Q/G (G̃⊕ G̃) → T ∗(Q/G)⊕ g̃∗, is

obtained from the reduced discrete Euler–Lagrange operator by making the identifications obtained

from the discrete connection structure.

The splitting of the range space of LPd(ld) as a direct product (as in §3.3 of Cendra et al. [2001])

naturally induces a decomposition of the discrete Lagrange–Poincaré operator,

LPd(ld) = Hor(LPd(ld))⊕Ver(LPd(ld)),

and this allows the discrete reduced equations to be decomposed in horizontal and vertical equations.

4.7.2 Geometric Control Theory and Formations

There are well-established control algorithms for actuating a control system to achieve a desired

reference configuration. In many problems of practical interest, the actuation of the mechanical

system decomposes into shape and group variables in a natural fashion.

A canonical example of this is a satellite in motion about the Earth, where the orientation of the

satellite is controlled by internal rotors through the use of holonomy and geometric phases, and the

position is controlled by chemical propulsion.

In this example, the configuration space is SE(3), the group is SO(3), and the shape space is
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R3. The group variable corresponds to the orientation, and the shape variable corresponds to the

position. When given an initial and desired configuration, it is desirable, while computing the control

inputs, to decompose the relative motion into a shape component and a group component, so that

they can be individually actuated.

Since the discrete connection is used here to provide an efficient choice of local coordinates for

optimal control, the discrete connection is most naturally obtained by exponentiating the continuous

connection, in the manner described in §4.6.3, in conjunction with the explicit formulas for the expo-

nential and logarithm for SE(3) that are given in Appendix B. The natural choice of the continuous

connection is one in which the horizontal space is given by the momentum surface corresponding to

the current value of the momentum.

To illustrate why it may not be desirable from a control-theoretic point of view to decompose

the space using a trivial connection, consider a satellite that is in a tidally locked orbit about the

Earth, with the initial and desired configuration as illustrated in Figure 4.10.

Initial configuration Desired configuration

Figure 4.10: Application of discrete connections to control.

Here, if we choose a trivial connection, then the relative group element would be a rotation by

π/4, but this choice is undesirable, since the motion is tidally locked, and moving the center of mass

to the new location would result in a shift in the orientation by precisely the desired amount. In

this case, the optimal control input should therefore only actuate in the shape variables, and the

relative group element assigned to this pair of configurations should be the identity element.

As such, the extension of mechanically relevant connections to pairs of points in the configuration

space with finite separation, through the use of a discrete connection, can be of immense value in

geometric control theory.

Similarly, in the case of formations, discrete connections allow for the orientation coordination

problem to be handled in a more efficient manner, by taking into account the dynamic coupling of

the shape and group motions automatically through the use of the discrete mechanical connection.
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4.7.3 Discrete Levi-Civita Connection

Vector bundle connections can be cast in the language of connections on principal bundles by con-

sidering the frame bundle consisting of oriented orthonormal frames over the manifold M , which is a

principal SO(n) bundle, as originally proposed by Cartan [1983, 2001]. For related work on discrete

connections on triangulated manifolds with applications to algebraic topology and the computation

of Chern classes, please see Novikov [2003].

To construct our model of a discrete Riemannian manifold, we first trivialize the frame bundle

to yield SO(n)×M . Then, Q = SO(n)×M , and G = SO(n).

Here, we introduce the notion of a semidiscretized principal bundle, where the shape space, S =

Q/G, is discretized as a simplicial complex K, and the structure group G remains continuous. In this

context, the semidiscretization of the trivialization of the frame bundle is given by Q = SO(n)×K.

A discrete connection is a map Ad : Q × Q → G, and we can construct a candidate for the

Levi-Civita connection on a simplicial complex K, using the discrete analogue of the frame bundle

described above. However, we will first introduce the notion of a discrete Riemannian manifold.

Definition 4.22. A discrete dual Riemannian manifold is a simplicial complex where each

n-simplex σn is endowed with a constant Riemannian metric tensor g, such that the restriction of

the metric tensor to a common face with an adjacent n-simplex is consistent.

This is referred to as a discrete dual Riemannian manifold as we can equivalently think of

associating a Riemannian metric tensor to each dual vertex, and as we shall see, by adopting Cartan’s

method of orthogonal frames (see, for example, Cartan [1983, 2001]), the connection is a SO(n)-

valued discrete dual 1-form, and the curvature is a SO(n)-valued discrete dual 2-form.

For each n-simplex σn, consider an invertible transformation f of Rn such that f∗g = I. In

the orthonormal space, we have a normal operator that maps a (n − 1)-dimensional subspace to a

generator of the orthogonal complement, denoted by ⊥. Then, we obtain a normal operator on the

faces of σn by making the following diagram commute.

f
//

⊥

��

⊥

��

f
//

The coordinate axes in the diagram represent the normalized eigenvectors of the metric, scaled
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by their respective eigenvalues.

The local representation of the discrete connection is given by

Ad((σn0 , R0), (σn1 , R1)) = R1A(σn0 , σ
n
1 )R−1

0 ,

and so the discrete connection is uniquely defined if we specify A(σn0 , σ
n
1 ), where σn0 and σn1 are

adjacent n-simplices. Since they are adjacent, they share a (n − 1)-simplex, denoted σn−1. In

particular, this can then be thought of as a SO(n)-valued discrete dual 1-form, since to each dual

1-cell, ?σn−1, we associate an element of SO(n).

This element of SO(n) is computed as follows.

1. In each of the n-simplices, we have a normal direction associated with σn−1, denoted by

⊥ (σn−1, σni ) ∈ Rn.

2. If these two normal directions are parallel, we set

〈A, ?σn−1〉 = I,

otherwise, we continue.

3. Construct the (n − 2)-dimensional hyperplane Pn−2, given by the orthogonal complement to

the span of the two normal directions.

Pn−2 =⊥ (span(⊥ (σn−1, σn0 ),⊥ (σn−1, σn1 ))).

4. If ?σn−1 is oriented from σn0 to σn1 , we set

〈A, ?σn−1〉 = {R ∈ SO(n) | R|Pn−2 = IPn−2 , R(⊥ (σn−1, σn0 )) =⊥ (σn−1, σn1 )}.

The curvature of this discrete Levi-Civita connection is then a SO(n)-valued discrete dual 2-form.

There is however the curious property that the boundary operator for a dual cell complex may not

necessarily agree with the standard notion of boundary, since that may not be expressible in terms

of a chain in the dual cell complex. This is primarily an issue on the boundary of the simplicial

complex, and if we are in the interior, this is not a problem.

Since curvature is a dual 2-form, it is associated with the dual of a codimension-two simplex,

given by ?σn−2. Consider the example illustrated in Figure 4.11.
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Simplicial
Complex,

K

primal
(n− 2)-simplex,

σn−2

dual 2-cell,
?σn−2

dual 1-chain,
∂ ? σn−2

primal
(n− 1)-chain,
?∂ ? σn−2

Figure 4.11: Discrete curvature as a discrete dual 2-form.

The curvature B of the discrete Levi-Civita connection is given by

〈B, ?σn−2〉 = 〈dA, ?σn−2〉 = 〈A, ∂ ? σn−2〉.

As can be seen from the geometric region ?∂ ? σn−2, the curvature associated with ?σn−2 is given

by the ordered product of the connection associated with the dual cells, ?σn−1, where σn−1 � σn−2.

This also suggests that we can also think of the discrete connection as a primal (n − 1)-form, and

the curvature as a primal (n − 2)-form, where the curvature is obtained from the connection using

the codifferential.

When the group G is nonabelian, we see that the curvature is only defined up to conjugation,

since we need to specify a dual vertex on the dual one-chain ∂ ?σn−2 from which to start composing

group elements. To make this well-defined, we can adopt the approach used in defining the simplicial

cup product, and assume that there is a partial ordering on dual vertices, which would make the

curvature unambiguous.

As a quality measure for simplicial triangulations of a Riemannian manifold, having the curvature

defined up to conjugation may be sufficient if we have a norm on SO(n) which is invariant under

conjugation. As an example, taking the logarithm to get an element of the Lie algebra so(n), and

then using a norm on this vector space yields a conjugation-invariant norm on SO(n). This allows

us to detect regions of the mesh with high curvature, and selectively subdivide the triangulation in

such regions.

Similarly, we can define a discrete primal Riemannian manifold, where the Riemannian metric

tensor is associated with primal vertices, and the connection is a G-valued primal 1-form, and the

curvature is a G-valued primal 2-form.

Abstract Simplicial Complex with a Local Metric. Recall that in the §3.4, we introduced

the notion of an abstract simplicial complex with a local metric defined on pairs of vertices that are

adjacent.
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In this situation, we can compute the curvature around a loop in the mesh using local embed-

dings. We start with an initial n-simplex, which we endow with an orthonormal frame. By locally

embedding adjacent n-simplices into Euclidean space, and parallel transporting the orthonormal

frame, we will eventually transport the frame back to the initial simplex.

The relative orientation between the original frame and the transported frame yields the integral

of the curvature of the surface which is bounded by the traversed curve. This results from a simple

application of the Generalized Stokes’ theorem, and the fact that the curvature is given by the

exterior derivative of the connection 1-form.

4.8 Conclusions and Future Work

We have introduced a complete characterization of discrete connections, in terms of horizontal and

vertical spaces, discrete connection 1-forms, horizontal lifts, and splittings of the discrete Atiyah

sequence. Geometric structures that can be derived from a given discrete connection have been

discussed, including continuous connections, an extended pair groupoid composition, and higher-

order analogues of the discrete connection. In addition, we have explored computational issues, such

as order of accuracy, and the construction of discrete connections from continuous connections.

Applications to discrete reduction theory, geometric control theory, and discrete geometry, have

also been discussed, and it would be desirable to systematically apply the machinery of discrete

connections to these problems.

In addition, connections play a crucial role in representing the nonholonomic constraint distribu-

tion in nonholonomic mechanics, particularly when considering nonholonomic mechanical systems

with symmetry, wherein the nonholonomic connection enters (see, for example, Bloch [2003]). There

has been recent progress on constructing nonholonomic integrators in the work of Cortés [2002] and

McLachlan and Perlmutter [2003], but an intrinsically discrete notion of a connection remains absent

from their work, and they do not consider the role of symmetry reduction in discrete nonholonomic

mechanics.

It would be very interesting to apply the general theory of discrete connections on principal

bundles to nonholonomic mechanical systems with symmetry, and to cast the notion of a discrete

nonholonomic constraint distribution and the nonholonomic connection in the language of discrete

connections, and thereby develop a discrete theory of nonholonomic mechanics with symmetry. This

would be particularly important for the numerical implementation of geometric control algorithms.

The role of discrete connections in the study of discrete geometric phases would also be an area

worth pursuing. A discrete analogue of the rigid-body phase formula, that involves the discrete me-

chanical connection, that is exact for rigid-body simulations that use discrete variational mechanics,
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would yield significant insights into the geometric structure-preservation properties of variational in-

tegrators. In particular, it would provide much needed insight into how discretization interacts with

geometric phases, and yield an understanding how much of the phase drift observed in a numerical

simulation is due to the underlying geometry of the mechanical system, and how much is due to the

process of discretizing the system.


