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Chapter 3

Discrete Exterior Calculus

In collaboration with Mathieu Desbrun, Anil N. Hirani, and Jerrold E. Marsden.

Abstract

We present a theory and applications of discrete exterior calculus on simplicial com-

plexes of arbitrary finite dimension. This can be thought of as calculus on a discrete

space. Our theory includes not only discrete differential forms but also discrete vec-

tor fields and the operators acting on these objects. This allows us to address the

various interactions between forms and vector fields (such as Lie derivatives) which

are important in applications. Previous attempts at discrete exterior calculus have

addressed only differential forms. We also introduce the notion of a circumcentric

dual of a simplicial complex. The importance of dual complexes in this field has

been well understood, but previous researchers have used barycentric subdivision or

barycentric duals. We show that the use of circumcentric duals is crucial in arriving

at a theory of discrete exterior calculus that admits both vector fields and forms.

3.1 Introduction

This work presents a theory of discrete exterior calculus (DEC) motivated by potential appli-

cations in computational methods for field theories such as elasticity, fluids, and electromagnetism.

In addition, it provides much needed mathematical machinery to enable a systematic development

of numerical schemes that mirror the approach of geometric mechanics.

This theory has a long history that we shall outline below in §3.2, but we aim at a comprehensive,

systematic, as well as useful, treatment. Many previous works, as we shall review, are incomplete

both in terms of the objects that they treat as well as the types of meshes that they allow.
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Our vision of this theory is that it should proceed ab initio as a discrete theory that parallels the

continuous one. General views of the subject area of DEC are common in the literature (see, for

instance, Mattiussi [2000]), but they usually stress the process of discretizing a continuous theory

and the overall approach is tied to this goal. However, if one takes the point of view that the discrete

theory can, and indeed should, stand in its own right, then the range of application areas naturally

is enriched and increases.

Convergence and consistency considerations alone are inadequate to discriminate between the

various choices of discretization available to the numerical analyst, and only by requiring, when

appropriate, that the discretization exhibits discrete analogues of continuous properties of interest

can we begin to address the question of what makes a discrete theory a canonical discretization of

a continuous one.

Applications to Variational Problems. One of the major application areas we envision is to

variational problems, be they in mechanics or optimal control. One of the key ingredients in this

direction that we imagine will play a key role in the future is that of AVI’s (asynchronous variational

integrators) designed for the numerical integration of mechanical systems, as in Lew et al. [2003].

These are integration algorithms that respect some of the key features of the continuous theory,

such as their multi-symplectic nature and exact conservation laws. They do so by discretizing the

underlying variational principles of mechanics rather than discretizing the equations. It is well-

known (see the reference just mentioned for some of the literature) that variational problems come

equipped with a rich exterior calculus structure and so on the discrete level, such structures will be

enhanced by the availability of a discrete exterior calculus. One of the objectives of this chapter is

to fill this gap.

Structured Constraints. There are many constraints in numerical algorithms that naturally

involve differential forms, such as the divergence constraint for incompressibility of fluids, as well as

the fact that differential forms are naturally the fields in electromagnetism, and some of Maxwell’s

equations are expressed in terms of the divergence and curl operations on these fields. Preserving,

as in the mimetic differencing literature, such features directly on the discrete level is another one

of the goals, overlapping with our goals for variational problems.

Lattice Theories. Periodic crystalline lattices are of important practical interest in material sci-

ence, and the anisotropic nature of the material properties arises from the geometry and connectivity

of the intermolecular bonds in the lattice. It is natural to model these lattices as inherently discrete

objects, and an understanding of discrete curvature that arises from DEC is particularly relevant,

since part of the potential energy arises from stretched bonds that can be associated with discrete
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curvature in the underlying relaxed configuration of the lattice. In particular, this could yield a more

detailed geometric understanding of what happens at grain boundaries. Lattice defects can also be

associated with discrete curvature when appropriately interpreted. The introduction of a discrete

notion of curvature will lay the foundations for a better understanding of the role of geometry in

the material properties of solids.

Some of the Key Theoretical Accomplishments. Our development of discrete exterior cal-

culus includes discrete differential forms, the Hodge star operator, the wedge product, the exterior

derivative, as well as contraction and the Lie derivative. For example, this approach leads to the

proper definition of discrete divergence and curl operators and has already resulted in applications

like a discrete Hodge type decomposition of 3D vector fields on irregular grids—see Tong et al.

[2003].

Context. We present the theory and some applications of DEC in the context of simplicial com-

plexes of arbitrary finite dimension.

Methodology. We believe that the correct way to proceed with this program is to develop, as

we have already stressed, ab initio, a calculus on discrete manifolds which parallels the calculus on

smooth manifolds of arbitrary finite dimension. Chapters 6 and 7 of Abraham et al. [1988] are a

good source for the concepts and definitions in the smooth case. However we have tried to make

this chapter as self-contained as possible. Indeed, one advantage of developing a calculus on discrete

manifolds, as we do here, is pedagogical. By using concrete examples of discrete two- and three-

dimensional spaces one can explain most of calculus on manifolds at least formally as we will do

using the examples in this chapter. The machinery of Riemannian manifolds and general manifold

theory from the smooth case is, strictly speaking, not required in the discrete world. The technical

terms that are used in this introduction will be defined in subsequent sections, but they should be

already familiar to someone who knows the usual exterior calculus on smooth manifolds.

The Objects in DEC. To develop a discrete theory, one must define discrete differential forms

along with vector fields and operators involving these. Once discrete forms and vector fields are

defined, a calculus can be developed by defining the discrete exterior derivative (d), codifferential

(δ) and Hodge star (∗) for operating on forms, discrete wedge product (∧) for combining forms,

discrete flat ([) and sharp (]) operators for going between vector fields and 1-forms and discrete

contraction operator (iX) for combining forms and vector fields. Once these are done, one can then

define other useful operators. For example, a discrete Lie derivative (£X) can be defined by requiring

that the Cartan magic (or homotopy) formula hold. A discrete divergence in any dimension can
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be defined. A discrete Laplace–deRham operator (∆) can be defined using the usual definition of

dδ + δd. When applied to functions, this is the same as the discrete Laplace–Beltrami operator

(∇2), which is the defined as div ◦ curl. We define all these operators in this chapter.

The discrete manifolds we work with are simplicial complexes. We will recall the standard formal

definitions in §3.3 but familiar examples of simplicial complexes are meshes of triangles embedded

in R3 and meshes made up of tetrahedra occupying a portion of R3. We will assume that the angles

and lengths on such discrete manifolds are computed in the embedding space RN using the standard

metric of that space. In other words, in this chapter we do not address the issue of how to discretize

a given smooth Riemannian manifold, and how to embed it in RN , since there may be many ways

to do this. For example, SO(3) can be embedded in R9 with a constraint, or as the unit quaternions

in R4. Another potentially important consideration in discretizing the manifold is that the topology

of the simplicial complex should be the same as the manifold to be discretized. This can be verified

using the methods of computational homology (see, for example, Kaczynski et al. [2004]), or discrete

Morse theory (see, for example, Forman [2002]; Wood [2003]). For the purposes of discrete exterior

calculus, only local metric information is required, and we will comment towards the end of §3.3

how to address the issue of embedding in a local fashion, as well as the criterion for a good global

embedding.

Our development in this chapter is for the most part formal in that we choose appropriate

geometric definitions of the various objects and quantities involved. For the most part, we do not

prove that these definitions converge to the smooth counterparts. The definitions are chosen so as to

make some important theorems like the generalized Stokes’ theorem true by definition. Moreover, in

the cases where previous results are available, we have checked that the operators we obtain match

the ones obtained by other means, such as variational derivations.

3.2 History and Previous Work

The use of simplicial chains and cochains as the basic building blocks for a discrete exterior cal-

culus has appeared in several papers. See, for instance, Sen et al. [2000], Adams [1996], Bossavit

[2002c], and references therein. These authors view forms as linearly interpolated versions of smooth

differential forms, a viewpoint originating from Whitney [1957], who introduced the Whitney and

deRham maps that establish an isomorphism between simplicial cochains and Lipschitz differential

forms.

We will, however, view discrete forms as real-valued linear functions on the space of chains.

These are inherently discrete objects that can be paired with chains of oriented simplices, or their

geometric duals, by the bilinear pairing of evaluation. In the next chapter, where we consider
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applications involving the curvature of a discrete space, we will relax the condition that discrete

forms are real-valued, and consider group-valued forms.

Intuitively, this natural pairing of evaluation can be thought of as integration of the discrete form

over the chain. This difference from the work of Sen et al. [2000] and Adams [1996] is apparent in

the definitions of operations like the wedge product as well.

There is also much interest in a discrete exterior calculus in the computational electromagnetism

community, as represented by Bossavit [2001, 2002a,b,c], Gross and Kotiuga [2001], Hiptmair [1999,

2001a,b, 2002], Mattiussi [1997, 2000], Nicolaides and Wang [1998], Teixeira [2001], and Tonti [2002].

Many of the authors cited above, for example, Bossavit [2002c], Sen et al. [2000], and Hiptmair

[2002], also introduce the notions of dual complexes in order to construct the Hodge star operator.

With the exception of Hiptmair, they use barycentric duals. This works if one develops a theory of

discrete forms and does not introduce discrete vector fields. We show later that to introduce discrete

vector fields into the theory the notion of circumcentric duals seems to be important.

Other authors, such as Moritz [2000]; Moritz and Schwalm [2001]; Schwalm et al. [1999], have

incorporated vector fields into the cochain based approach to exterior calculus by identifying vector

fields with cochains, and having them supported on the same mesh. This is ultimately an unsatisfac-

tory approach, since dual meshes are essential as a means of encoding physically relevant phenomena

such as fluxes across boundaries.

The use of primal and dual meshes arises most often as staggered meshes in finite volume and

finite difference methods. In fluid computations, for example, the density is often a cell-centered

quantity, which can either be represented as a primal object by being associated with the 3-cell,

or as a dual object associated with the 0-cell at the center of the 3-cell. Similarly, the flux across

boundaries can be associated with the 2-cells that make up the boundary, or the 1-cell which is

normal to the boundary.

Another approach to a discrete exterior calculus is presented in Dezin [1995]. He defines a one-

dimensional discretization of the real line in much the same way we would. However, to generalize to

higher dimensions he introduces a tensor product of this space. This results in logically rectangular

meshes. Our calculus, however, is defined over simplicial meshes. A further difference is that like

other authors in this field, Dezin [1995] does not introduce vector fields into his theory.

A related effort for three-dimensional domains with logically rectangular meshes is that of Mans-

field and Hydon [2001], who established a variational complex for difference equations by constructing

a discrete homotopy operator. We construct an analogous homotopy operator for simplicial meshes

in proving the discrete Poincaré lemma.
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3.3 Primal Simplicial Complex and Dual Cell Complex

In constructing the discretization of a continuous problem in the context of our formulation of

discrete exterior calculus, we first discretize the manifold of interest as a simplicial complex. While

this is typically in the form of a simplicial complex that is embedded into Euclidean space, it is

only necessary to have an abstract simplicial complex, along with a local metric defined on adjacent

vertices. This abstract setting will be addressed further toward the end of this section.

We will now recall some basic definitions of simplices and simplicial complexes, which are standard

from simplicial algebraic topology. A more extensive treatment can be found in Munkres [1984].

Definition 3.1. A k-simplex is the convex span of k + 1 geometrically independent points,

σk = [v0, v1, . . . , vk] =

{
k∑
i=0

αivi

∣∣∣∣∣αi ≥ 0,
n∑
i=0

αi = 1

}
.

The points v0, . . . , vk are called the vertices of the simplex, and the number k is called the dimen-

sion of the simplex. Any simplex spanned by a (proper) subset of {v0, . . . , vk} is called a (proper)

face of σk. If σl is a proper face of σk, we denote this by σl ≺ σk.

Example 3.1. Consider 3 non-collinear points v0, v1 and v2 in R3. Then, these three points indi-

vidually are examples of 0-simplices, to which an orientation is assigned through the choice of a sign.

Examples of 1-simplices are the oriented line segments [v0, v1], [v1, v2] and [v0, v2]. By writing the

vertices in that order we have given orientations to these 1-simplices, i.e., [v0, v1] is oriented from

v0 to v1. The triangle [v0, v1, v2] is a 2-simplex oriented in counterclockwise direction. Note that the

orientation of [v0, v2] does not agree with that of the triangle.

Definition 3.2. A simplicial complex K in RN is a collection of simplices in RN , such that,

1. Every face of a simplex of K is in K.

2. The intersection of any two simplices of K is a face of each of them.

Definition 3.3. A simplicial triangulation of a polytope |K| is a simplicial complex K such that

the union of the simplices of K recovers the polytope |K|.

Definition 3.4. If L is a subcollection of K that contains all faces of its elements, then L is a

simplicial complex in its own right, and it is called a subcomplex of K. One subcomplex of K is

the collection of all simplices of K of dimension at most k, which is called the k-skeleton of K,

and is denoted K(k).
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Circumcentric Subdivision. We will also use the notion of a circumcentric dual or Voronoi

mesh of the given primal mesh. We will point to the importance of this choice later on in §3.7 and

3.9. We call the Voronoi dual a circumcentric dual since the dual of a simplex is its circumcenter

(equidistant from all vertices of the simplex).

Definition 3.5. The circumcenter of a k-simplex σk is given by the center of the k-circumsphere,

where the k-circumsphere is the unique k-sphere that has all k + 1 vertices of σk on its surface.

Equivalently, the circumcenter is the unique point in the k-dimensional affine space that contains the

k-simplex that is equidistant from all the k+1 nodes of the simplex. We will denote the circumcenter

of a simplex σk by c(σk).

The circumcenter of a simplex σk can be obtained by taking the intersection of the normals to

the (k−1)-dimensional faces of the simplex, where the normals are emanating from the circumcenter

of the face. This allows us to recursively compute the circumcenter.

If we are given the nodes which describe the primal mesh, we can construct a simplicial trian-

gulation by using the Delaunay triangulation, since this ensures that the circumcenter of a simplex

is always a point within the simplex. Otherwise we assume that a nice mesh has been given to us,

i.e., it is such that the circumcenters lie within the simplices. While this is not be essential for our

theory it makes some proofs simpler. For some computations the Delaunay triangulation is desirable

in that it reduces the maximum aspect ratio of the mesh, which is a factor in determining the rate

at which the corresponding numerical scheme converges. But in practice there are many problems

for which Delaunay triangulations are a bad idea. See, for example, Schewchuck [2002]. We will

address such computational issues in a separate work.

Definition 3.6. The circumcentric subdivision of a simplicial complex is given by the collection

of all simplices of the form

[c(σ0), . . . , c(σk)],

where σ0 ≺ σ1 ≺ . . . ≺ σk, or equivalently, that σi is a proper face of σj for all i < j.

Circumcentric Dual. We construct a circumcentric dual to a k-simplex using the circumcentric

duality operator, which is introduced below.

Definition 3.7. The circumcentric duality operator is given by

?
(
σk
)

=
∑

σk≺σk+1≺...≺σn

εσk,...,σn

[
c(σk), c(σk+1), . . . , c(σn)

]
,

where the εσk,...,σn coefficient ensures that the orientation of
[
c(σk), c(σk+1), . . . , c(σn)

]
is consistent

with the orientation of the primal simplex, and the ambient volume-form.
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Orienting σk is equivalent to choosing a ordered basis, which we shall denote by dx1 ∧ . . . ∧

dxk. Similarly,
[
c(σk), c(σk+1), . . . , c(σn)

]
has an orientation denoted by dxk+1 ∧ . . . ∧ dxn. If the

orientation corresponding to dx1∧ . . .∧dxn is consistent with the volume-form on the manifold, then

εσk,...,σn = 1, otherwise it takes the value −1.

We immediately see from the construction of the circumcentric duality operator that the dual

elements can be realized as a submesh of the first circumcentric subdivision, since it consists of

elements of the form [c(σ0), . . . , c(σk)], which are, by definition, part of the first circumcentric

subdivision.

Example 3.2. The circumcentric duality operator maps a 0-simplex into the convex hull generated

by the circumcenters of n-simplices that contain the 0-simplex,

?(σ0) =
{∑

ασnc (σn)
∣∣∣ασn ≥ 0,

∑
ασn = 1, σ0 ≺ σn

}
,

and the circumcentric duality operator maps a n−simplex into the circumcenter of the n−simplex,

?(σn) = c(σn).

This is more clearly illustrated in Figure 3.1, where the primal and dual elements are color coded

to represent the dual relationship between the elements in the primal and dual mesh.

(a) Primal (b) Dual (c) First subdivision

Figure 3.1: Primal, and dual meshes, as chains in the first circumcentric subdivision.

The choice of a circumcentric dual is significant, since it allows us to recover geometrically

important objects such as normals to (n− 1)-dimensional faces, which are obtained by taking their

circumcentric dual, whereas, if we were to use a barycentric dual, the dual to a (n− 1)-dimensional

face would not be normal to it.
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Orientation of the Dual Cell. Notice that given an oriented simplex σk, which is represented

by [v0, . . . , vk], the orientation is equivalently represented by (v1− v0)∧ (v2− v1)∧ . . .∧ (vk − vk−1),

which we denote by,

[v0, . . . , vk] ∼ (v1 − v0) ∧ (v2 − v1) ∧ . . . ∧ (vk − vk−1),

which is an equivalence at the level of orientation. It would be nice to express our criterion for

determining the orientation of the dual cell in terms of the (k + 1)-vertex representation.

To determine the orientation of the (n−k)-simplex given by [c(σk), c(σk+1), . . . , c(σn)], or equiv-

alently, dxk+1∧ . . .∧dxn, we consider the n-simplex given by [c(σ0), . . . , c(σn)], where σ0 ≺ . . . ≺ σk.

This is related to the expression dx1 ∧ . . .∧ dxn, up to a sign determined by the relative orientation

of [c(σ0), . . . , c(σk)] and σk. Thus, we have that

dx1 ∧ . . . ∧ dxn ∼ sgn([c(σ0), . . . , c(σk)], σk)[c(σ0), . . . , c(σn)] .

Then, we need to check that dx1 ∧ . . . ∧ dxn is consistent with the volume-form on the manifold,

which is represented by the orientation of σn. Thus, we have that the correct orientation for the

[c(σk), c(σk+1), . . . , c(σn)] term is given by,

sgn([c(σ0), . . . , c(σk)], σk) · sgn([c(σ0), . . . , c(σn)], σn).

These two representations of the choice of orientation for the dual cells are equivalent, but the

combinatorial definition above might be preferable for the purposes of implementation.

Example 3.3. We would like to compute the orientation of the dual of a 1-simplex, in two dimen-

sions, given the orientation of the two neighboring 2-simplices.

Given a simplicial complex, as shown in Figure 3.2(a), we consider a 2-simplex of the form

[c(σ0), c(σ1), c(σ2)], which is illustrated in Figure 3.2(b).

Notice that the orientation is consistent with the given orientation of the 2-simplex, but it is not

consistent with the orientation of the primal 1-simplex, so the orientation should be reversed, to give

the dual cell illustrated in Figure 3.2(c).

We summarize the results for the induced orientation of dual cells for the other 2-simplices of

the form [c(σ0), c(σ1), c(σ2)], in Table 3.1.

Orientation of the Dual of a Dual Cell. While the circumcentric duality operator is a map from

the primal simplicial complex to the dual cell complex, we can formally extend the circumcentric

duality operator to a map from the dual cell complex to the primal simplicial complex. However,
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(a) Simplicial complex (b) 2-simplex (c) ?σ1

Figure 3.2: Orienting the dual of a cell.

Table 3.1: Determining the induced orientation of a dual cell.

[c(σ0), c(σ1), c(σ2)]

sgn([c(σ0), c(σ1)], σ1) − + + −

sgn([c(σ0), c(σ1), c(σ2)], σ2) + − + −

sgn([c(σ0), c(σ1)], σ1)

· sgn([c(σ0), c(σ1), c(σ2)], σ2)

·[c(σ1), c(σ2)]

we need to be slightly careful about the orientation of primal simplex we recover from applying the

circumcentric duality operator twice.

We have that, ? ? (σk) = ±σk, where the sign is chosen to ensure the appropriate choice of

orientation. If, as before, σk has an orientation represented by dx1 ∧ . . . ∧ dxk, and ?σk has an

orientation represented by dxk+1 ∧ . . . ∧ dxn, then the orientation of ? ? (σk) is chosen so that

dxk+1∧ . . .∧dxn∧dx1∧ . . .∧dxk is consistent with the ambient volume-form. Since, by construction,

?(σk), dx1 ∧ . . . ∧ dxn has an orientation consistent with the ambient volume-form, we need only

compare dxk+1∧. . .∧dxn∧dx1∧. . .∧dxk with dx1∧. . .∧dxn. Notice that it takes n−k transpositions

to get the dx1 term in front of the dxk+1 ∧ . . .∧ dxn terms, and we need to do this k times for each
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term of dx1 ∧ . . . ∧ dxk, so it follows that the sign is simply given by (−1)k(n−k), or equivalently,

? ? (σk) = (−1)k(n−k)σk. (3.3.1)

A similar relationship holds if we use a dual cell instead of the primal simplex σk.

Support Volume of a Primal Simplex and Its Dual Cell. We can think of a cochain as being

constructed out of a basis consisting of cosimplices or cocells with value 1 on a single simplex or cell,

and 0 otherwise. The way to visualize this cosimplex is that it is associated with a differential form

that has support on what we will refer to as the support volume associated with a given simplex

or cell.

Definition 3.8. The support volume of a simplex σk is a n-volume given by the convex hull of

the geometric union of the simplex and its circumcentric dual. This is given by

Vσk = convexhull(σk, ?σk) ∩ |K|.

The intersection with |K| is necessary to ensure that the support volume does not extend beyond

the polytope |K| which would otherwise occur if |K| is nonconvex.

We extend the notion of a support volume to a dual cell ?σk by similarly defining

V?σk = convexhull(?σk, ? ? σk) ∩ |K| = Vσk .

To clarify this definition, we will consider some examples of simplices, their dual cells, and their

corresponding support volumes. For two-dimensional simplicial complexes, this is illustrated in

Table 3.2.

The support volume has the nice property that at each dimension, it partitions the polytope

|K| into distinct non-intersecting regions associated with each individual k-simplex. For any two

distinct k-simplices, the intersection of their corresponding support volumes have measure zero, and

the union of the support volumes of all k-simplices recovers the original polytope |K|.

Notice, from our construction, that the support volume of a simplex and its dual cell are the

same, which suggests that there is an identification between cochains on k-simplices and cochains on

(n−k)-cells. This is indeed the case, and is a concept associated with the Hodge star for differential

forms.

Examples of simplices, their dual cells, and the corresponding support volumes in three dimen-

sions are given in Table 3.3.

In our subsequent discussion, we will assume that we are given a simplicial complex K of di-
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Table 3.2: Primal simplices, dual cells, and support volumes in two dimensions.

Primal Simplex Dual Cell Support Volume

σ0, 0-simplex ?σ0, 2-cell Vσ0 = V?σ0

σ1, 1-simplex ?σ1, 1-cell Vσ1 = V?σ1

σ2, 2-simplex ?σ2, 0-cell Vσ2 = V?σ2

mension n in RN . Thus, the highest-dimensional simplex in the complex is of dimension n and

each 0-simplex (vertex) is in RN . One can obtain this, for example, by starting from 0-simplices,

i.e., vertices, and then constructing a Delaunay triangulation, using the vertices as sites. Often,

our examples will be for two-dimensional discrete surfaces in R3 made up of triangles (here n = 2

and N = 3) or three-dimensional manifolds made of tetrahedra, possibly embedded in a higher-

dimensional space.

Cell Complexes. The circumcentric dual of a primal simplicial complex is an example of a cell

complex. The definition of a cell complex follows.

Definition 3.9. A cell complex ?K in RN is a collection of cells in RN such that,

1. There is a partial ordering of cells in ?K, σ̂k ≺ σ̂l, which is read as σ̂k is a face of σ̂l.

2. The intersection of any two cells in ?K, is either a face of each of them, or it is empty.

3. The boundary of a cell is expressible as a sum of its proper faces.

We will see in the next section that the notion of boundary in the circumcentric dual has to be

modified slightly from the geometric notion of a boundary in order for the circumcentric dual to be

made into a cell complex.
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Table 3.3: Primal simplices, dual cells, and support volumes in three dimensions.

Primal Simplex Dual Cell Support Volume

σ0, 0-simplex ?σ0, 3-cell Vσ0 = V?σ0

σ1, 1-simplex ?σ1, 2-cell Vσ1 = V?σ1

σ2, 2-simplex ?σ2, 1-cell Vσ2 = V?σ2

σ3, 3-simplex ?σ3, 0-cell Vσ3 = V?σ3

3.4 Local and Global Embeddings

While it is computationally more convenient to have a global embedding of the simplicial complex

into a higher-dimensional ambient space to account for non-flat manifolds it suffices to have an

abstract simplicial complex along with a local metric on vertices. The metric is local in the sense

that distances between two vertices are only defined if they are part of a common n-simplex in the
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abstract simplicial complex. Then, the local metric is a map d : {(v0, v1) | v0, v1 ∈ K(0), [v0, v1] ≺

σn ∈ K} → R.

The axioms for a local metric are as follows,

Positive. d(v0, v1) ≥ 0, and d(v0, v0) = 0, ∀[v0, v1] ≺ σn ∈ K.

Strictly Positive. If d(v0, v1) = 0, then v0 = v1, ∀[v0, v1] ≺ σn ∈ K.

Symmetry. d(v0, v1) = d(v1, v0), ∀[v0, v1] ≺ σn ∈ K.

Triangle Inequality. d(v0, v2) ≤ d(v0, v1) + d(v1, v2), ∀[v0, v1, v2] ≺ σn ∈ K.

This allows us to embed each n-simplex locally into Rn, and thereby compute all the necessary metric

dependent quantities in our formulation. For example, the volume of a k-dual cell will be computed

as the sum of the k-volumes of the dual cell restricted to each n-simplex in its local embedding into

Rn.

This notion of local metrics and local embeddings is consistent with the point of view that exterior

calculus is a local theory with operators that operate on objects in the tangent and cotangent space

of a fixed point. The issue of comparing objects in different tangent spaces is addressed in the

discrete theory of connections on principal bundles in Leok et al. [2003] and Chapter 4.

This also provides us with a criterion for evaluating a global embedding. The embedding should

be such that the metric of the ambient space RN restricted to the vertices of the complex, thought of

as points in RN , agrees with the local metric imposed on the abstract simplicial complex. A global

embedding that satisfies this condition will produce the same numerical results in discrete exterior

calculus as that obtained using the local embedding method.

It is essential that the metric condition we impose is local, since the notion of distances between

points in a manifold which are far away is not a well-defined concept, nor is it particularly useful for

embeddings. As the simple example below illustrates, there may not exist any global embeddings

into Euclidean space that satisfies a metric constraint imposed for all possible pairs of vertices.

Example 3.4. Consider a circle, with the distance between two points given by the minimal arc

length. Consider a discretization given by 4 equidistant points on the circle, labelled v0, . . . , v3, with

the metric distances as follows,

d(vi, vi+1) = 1, d(vi, vi+2) = 2,

where the indices are evaluated modulo 4, and this distance function is extended to a metric on all

pairs of vertices by symmetry. It is easy to verify that this distance function is indeed a metric on
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vertices.
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If we only use the local metric constraint, then we only require that adjacent vertices are separated

by 1, and the following is an embedding of the simplicial complex into R2,
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If, however, we use the metric defined on all possible pairs of vertices, by considering v0, v1, v2, we

have that d(v0, v1) + d(v1, v2) = d(v0, v2). Since we are embedding these points into a Euclidean

space, it follows that v0, v1, v2 are collinear.

Similarly, by considering v0, v2, v3, we conclude that they are collinear as well, and that v1, v3

are coincident, which contradicts d(v1, v3) = 2. Thus, we find that there does not exist a global

embedding of the circle into Euclidean space if we require that the embedding is consistent with the

metric on vertices defined for all possible pairs of vertices.

3.5 Differential Forms and Exterior Derivative

We will now define discrete differential forms. We will use some terms (which we will define) from

algebraic topology, but it will become clear by looking at the examples that one can gain a clear

and working notion of what a discrete form is without any algebraic topology. We start with a few

definitions for which more details can be found on page 26 and 27 of Munkres [1984].

Definition 3.10. Let K be a simplicial complex. We denote the free abelian group generated by a

basis consisting of oriented k-simplices by Ck (K; Z) . This is the space of finite formal sums of the

k-simplices, with coefficients in Z. Elements of Ck(K; Z) are called k-chains.

Example 3.5. Figure 3.3 shows examples of 1-chains and 2-chains.



88

	1
	2 	1

	3

2−chain1−chain

•

•

•

•
•

•

•

•

•

•

•

??
??

??
? yyyyyyyyyy

cccccccc

\\\\\\\\\\\ **
**

**
**1

&&
NNNNNNNN

3
::vvvv 2

��
77

77
7

5

II
������

Figure 3.3: Examples of chains.

We view discrete k-forms as maps from the space of k-chains to R. Recalling that the space of

k-chains is a group, we require that these maps be homomorphisms into the additive group R. Thus,

discrete forms are what are called cochains in algebraic topology. We will define cochains below in

the definition of forms but for more context and more details readers can refer to any algebraic

topology text, for example, page 251 of Munkres [1984].

This point of view of forms as cochains is not new. The idea of defining forms as cochains

appears, for example, in the works of Adams [1996], Dezin [1995], Hiptmair [1999], and Sen et al.

[2000]. Our point of departure is that the other authors go on to develop a theory of discrete exterior

calculus of forms only by introducing interpolation of forms, which we will be able to avoid. The

formal definition of discrete forms follows.

Definition 3.11. A primal discrete k-form α is a homomorphism from the chain group Ck(K; Z)

to the additive group R. Thus, a discrete k-form is an element of Hom(Ck(K),R), the space of

cochains. This space becomes an abelian group if we add two homomorphisms by adding their

values in R. The standard notation for Hom(Ck(K),R) in algebraic topology is Ck(K; R). But we

will often use the notation Ωkd(K) for this space as a reminder that this is the space of discrete (hence

the d subscript) k-forms on the simplicial complex K. Thus,

Ωkd(K) := Ck(K; R) = Hom(Ck(K),R) .

Note that, by the above definition, given a k-chain
∑
i aic

k
i (where ai ∈ Z) and a discrete k-form

α, we have that

α

(∑
i

aic
k
i

)
=
∑
i

aiα(cki ) ,

and for two discrete k-forms α, β ∈ Ωkd(K) and a k-chain c ∈ Ck(K; Z),

(α+ β)(c) = α(c) + β(c) .

In the usual exterior calculus on smooth manifolds integration of k-forms on a k-dimensional

manifold is defined in terms of the familiar integration in Rk. This is done roughly speaking by
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doing the integration in local coordinates, and showing that the value is independent of the choice

of coordinates, due to the change of variables theorem in Rk. For details on this, see the first few

pages of Chapter 7 of Abraham et al. [1988]. We will not try to introduce the notion of integration

of discrete forms on a simplicial complex. Instead the fundamental quantity that we will work with

is the natural bilinear pairing of cochains and chains, defined by evaluation. More formally, we have

the following definition.

Definition 3.12. The natural pairing of a k-form α and a k-chain c is defined as the bilinear

pairing

〈α, c〉 = α(c).

As mentioned above, in discrete exterior calculus, this natural pairing plays the role that inte-

gration of forms on chains plays in the usual exterior calculus on smooth manifolds. The two are

related by a procedure done at the time of discretization. Indeed, consider a simplicial triangulation

K of a polyhedron in Rn, i.e., consider a “flat” discrete manifold. If we are discretizing a continuous

problem, we will have some smooth forms defined in the space |K| ⊂ Rn. Consider such a smooth

k-form αk. In order to define the discrete form αkd corresponding to αk, one would integrate αk on all

the k-simplices in K. Then, the evaluation of αkd on a k-simplex σk is defined by αkd(σ
k) :=

∫
σk α

k.

Thus, discretization is the only place where integration plays a role in our discrete exterior calculus.

In the case of a non-flat manifold, the situation is somewhat complicated by the fact that the

smooth manifold, and the simplicial complex, as geometric sets embedded in the ambient space

do not coincide. A smooth differential form on the manifold can be discretized into the cochain

representation by identifying the vertices of the simplicial complex with points on the manifold, and

then using a local chart to identify k-simplices with k-volumes on the manifold.

There is the possibility of k-volumes overlapping even when their corresponding k-simplices do

not intersect, and this introduces a discretization error that scales like the mesh size. One can

alternatively construct geodesic boundary surfaces in an inductive fashion, which yields a partition

of the manifold, but this can be computationally prohibitive to compute.

Now we can define the discrete exterior derivative which we will call d, as in the usual exterior

calculus. The discrete exterior derivative will be defined as the dual, with respect to the natural

pairing defined above, of the boundary operator, which is defined below.

Definition 3.13. The boundary operator ∂k : Ck(K; Z) → Ck−1(K; Z) is a homomorphism defined

by its action on a simplex σk = [v0, . . . , vk],

∂kσ
k = ∂k([v0, . . . , vk]) =

k∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vk] ,
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where [v0, . . . , v̂i, . . . , vk] is the (k − 1)-simplex obtained by omitting the vertex vi. Note that ∂k ◦

∂k+1 = 0.

Example 3.6. Given an oriented triangle [v0, v1, v2] the boundary, by the above definition, is the

chain [v1, v2]− [v0, v2] + [v0, v1], which are the three boundary edges of the triangle.

Definition 3.14. On a simplicial complex of dimension n, a chain complex is a collection of

chain groups and homomorphisms ∂k, such that,

0 // Cn(K)
∂n // . . .

∂k+1
// Ck(K)

∂k // . . . ∂1 // C0(K) // 0 ,

and ∂k ◦ ∂k+1 = 0.

Definition 3.15. The coboundary operator, δk : Ck(K) → CK+1(K), is defined by duality to

the boundary operator, with respect to the natural bilinear pairing between discrete forms and chains.

Specifically, for a discrete form αk ∈ Ωkd(K), and a chain ck+1 ∈ Ck+1(K; Z), we define δk by

〈
δkαk, ck+1

〉
=
〈
αk, ∂k+1ck+1

〉
. (3.5.1)

That is to say

δk(αk) = αk ◦ ∂k+1 .

This definition of the coboundary operator induces the cochain complex,

0 Cn(K)oo . . .δn−1
oo Ck(K)δk

oo . . .δk−1
oo C0(K)δ0oo 0oo ,

where it is easy to see that δk+1 ◦ δk = 0.

Definition 3.16. The discrete exterior derivative denoted by d : Ωkd(K) → Ωk+1
d (K) is defined

to be the coboundary operator δk.

Remark 3.1. With the above definition of the exterior derivative, d : Ωkd(K) → Ωk+1
d (K), and the

relationship between the natural pairing and integration, one can regard equation 3.5.1 as a discrete

generalized Stokes’ theorem. Thus, given a k-chain c, and a discrete k-form α, the discrete

Stokes’ theorem, which is true by definition, states that

〈dα, c〉 = 〈α, ∂c〉 .

Furthermore, it also follows immediately that dk+1dk = 0.
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Dual Discrete Forms. Everything we have said above in terms of simplices and the simplicial

complex K can be said in terms of the cells that are duals of simplices and elements of the dual

complex ?K. One just has to be a little more careful in the definition of the boundary operator, and

the definition we construct below is well-defined on the dual cell complex. This gives us the notion

of cochains of cells in the dual complex and these are the dual discrete forms.

Definition 3.17. The dual boundary operator, ∂k : Ck (?K; Z) → Ck−1 (?K; Z), is a homomor-

phism defined by its action on a dual cell σ̂k = ?σn−k = ?[v0, . . . , vn−k],

∂σ̂k = ∂ ? [v0, ..., vn−k]

=
∑

σn−k+1�σn−k

?σn−k+1 ,

where σn−k+1 is oriented so that it is consistent with the induced orientation on σn−k.

3.6 Hodge Star and Codifferential

In the exterior calculus for smooth manifolds, the Hodge star, denoted ∗, is an isomorphism between

the space of k-forms and (n−k)-forms. The Hodge star is useful in defining the adjoint of the exterior

derivative and this is adjoint is called the codifferential. The Hodge star, ∗ : Ωk(M) → Ωn−k(M), is

in the smooth case uniquely defined by the identity,

〈〈αk, βk〉〉v = αk ∧ ∗βk ,

where 〈〈 , 〉〉 is a metric on differential forms, and v is the volume-form. For a more in-depth discus-

sion, see, for example, page 411 of Abraham et al. [1988].

The appearance of k and (n− k) in the definition of Hodge star may be taken to be a hint that

primal and dual meshes will play some role in the definition of a discrete Hodge star, since the dual

of a k-simplex is an (n− k)-cell. Indeed, this is the case.

Definition 3.18. The discrete Hodge Star is a map ∗ : Ωkd(K) → Ωn−kd (?K), defined by its

action on simplices. For a k-simplex σk, and a discrete k-form αk,

1
|σk|

〈αk, σk〉 =
1

| ? σk|
〈∗αk, ?σk〉.

The idea that the discrete Hodge star maps primal discrete forms to dual forms, and vice versa,

is well-known. See, for example, Sen et al. [2000]. However, notice we now make use of the volume

of these primal and dual meshes. But the definition we have given above does appear in the work
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of Hiptmair [2002].

The definition implies that the primal and dual averages must be equal. This idea has already

been introduced, not in the context of exterior calculus, but in an attempt at defining discrete

differential geometry operators, see Meyer et al. [2002].

Remark 3.2. Although we have defined the discrete Hodge star above, we will show in Remark 3.8

of §3.12 that if an appropriate discrete wedge product and metric on discrete k-forms is defined, then

the expression for the discrete Hodge star operator follows from the smooth definition.

Lemma 3.1. For a k-form αk,

∗ ∗ αk = (−1)k(n−k)αk .

Proof. The proof is a simple calculation using the property that for a simplex or a cell σk, ?? (σk) =

(−1)k(n−k)σk (Equation 3.3.1). �

Definition 3.19. Given a simplicial or a dual cell complex K the discrete codifferential oper-

ator, δ : Ωk+1
d (K) → Ωkd(K), is defined by δ(Ω0

d(K)) = 0 and on discrete (k + 1)-forms to be

δβ = (−1)nk+1 ∗ d ∗ β .

With the discrete forms, Hodge star, d and δ defined so far, we already have enough to do an

interesting calculation involving the Laplace–Beltrami operator. But, we will show this calculation

in §3.9 after we have introduced discrete divergence operator.

3.7 Maps between 1-Forms and Vector Fields

Just as discrete forms come in two flavors, primal and dual (being linear functionals on primal chains

or chains made up of dual cells), discrete vector fields also come in two flavors. Before formally

defining primal and dual discrete vector fields, consider the examples illustrated in Figure 3.4. The

distinction lies in the choice of basepoints, be they primal or dual vertices, to which we assign vectors.

Definition 3.20. Let K be a flat simplicial complex, that is, the dimension of K is the same as

that of the embedding space. A primal discrete vector field X on a flat simplicial complex K

is a map from the zero-dimensional primal subcomplex K(0) (i.e., the primal vertices) to RN . We

will denote the space of such vector fields by Xd(K). The value of such a vector field is piecewise

constant on the dual n-cells of ?K. Thus, we could just as well have called such vector fields dual

and defined them as functions on the n-cells of ?K.

Definition 3.21. A dual discrete vector field X on a simplicial complex K is a map from the

zero-dimensional dual subcomplex (?K)(0) (i.e, the circumcenters of the primal n simplices) to RN
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(a) Primal vector field (b) Dual vector field

Figure 3.4: Discrete vector fields.

such that its value on each dual vertex is tangential to the corresponding primal n-simplex. We

will denote the space of such vector fields by Xd(?K). The value of such a vector field is piecewise

constant on the n-simplices of K. Thus, we could just as well have called such vector fields primal

and defined them as functions on the n-simplices of K.

Remark 3.3. In this paper we have defined the primal vector fields only for flat meshes. We will

address the issue of non-flat meshes in separate work.

As in the smooth exterior calculus, we want to define the flat ([) and sharp (]) operators that

relate forms to vector fields. This allows one to write various vector calculus identities in terms of

exterior calculus.

Definition 3.22. Given a simplicial complex K of dimension n, the discrete flat operator on a

dual vector field, [ : Xd(?K) → Ωd(K), is defined by its evaluation on a primal 1 simplex σ1,

〈X[, σ1〉 =
∑
σn�σ1

| ? σ1 ∩ σn|
| ? σ1|

X · ~σ1 ,

where X · ~σ1 is the usual dot product of vectors in RN , and ~σ1 stands for the vector corresponding

to σ1, and with the same orientation. The sum is over all σn containing the edge σ1. The volume

factors are in dimension n.

Definition 3.23. Given a simplicial complex K of dimension n, the discrete sharp operator on

a primal 1-form, ] : Ωd(K) → Xd(?K), is defined by its evaluation on a given vertex v,

α](v) =
∑

[v,σ0]

〈α, [v, σ0]〉
∑

σn�[v,σ0]

| ? v ∩ σn|
|σn|

n̂[v,σ0] ,
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where the outer sum is over all 1-simplices containing the vertex v, and the inner sum is over all

n-simplices containing the 1-simplex [v, σ0]. The volume factors are in dimension n, and the vector

n̂[v,σ0] is the normal vector to the simplex [v, σ0], pointing into the n-simplex σn.

For a discussion of the proliferation of discrete sharp and flat operators that arise from considering

the interpolation of differential forms and vector fields, please see Hirani [2003].

3.8 Wedge Product

As in the smooth case, the wedge product we will construct is a way to build higher degree forms

from lower degree ones. For information about the smooth case, see the first few pages of Chapter

6 of Abraham et al. [1988].

Definition 3.24. Given a primal discrete k-form αk ∈ Ωkd(K), and a primal discrete l-form βl ∈

Ωld(K), the discrete primal-primal wedge product, ∧ : Ωkd(K)× Ωld(K) → Ωk+ld (K), defined by

the evaluation on a (k + l)-simplex σk+l = [v0, . . . , vk+l] is given by

〈αk ∧ βl, σk+l〉 =
1

(k + l)!

∑
τ∈Sk+l+1

sign(τ)
|σk+l ∩ ?vτ(k)|

|σk+l|
α ^ β(τ(σk+l)) ,

where Sk+l+1 is the permutation group, and its elements are thought of as permutations of the

numbers 0, . . . , k + l + 1. The notation τ(σk+l) stands for the simplex [vτ(0), . . . , vτ(k+l)]. Finally,

the notation α ^ β(τ(σk+l)) is borrowed from algebraic topology (see, for example, page 206 of

Hatcher [2001]) and is defined as

α ^ β(τ(σk+l)) := 〈α,
[
vτ(0), . . . , vτ(k)

]
〉〈β,

[
vτ(k), . . . , vτ(k+l)

]
〉 .

Example 3.7. When we take the wedge product of two discrete 1-forms, we obtain terms in the

sum that are graphically represented in Figure 3.5.

Figure 3.5: Terms in the wedge product of two discrete 1-forms.



95

Definition 3.25. Given a dual discrete k-form α̂k ∈ Ωkd(?K), and a primal discrete l-form β̂l ∈

Ωld(?K), the discrete dual-dual wedge product, ∧ : Ωkd(?K) × Ωld(?K) → Ωk+ld (?K), defined by

the evaluation on a (k + l)-cell σ̂k+l = ?σn−k−l, is given by

〈α̂k ∧ β̂l, σ̂k+l〉 =〈α̂k ∧ β̂l, ?σn−k−l〉

=
∑

σn�σn−k−l

sign(σn−k−l, [vk+l, . . . , vn])
∑

τ∈Sk+l

sign(τ)

· 〈α̂k, ?[vτ(0), . . . , vτ(l−1), vk+l, . . . , vn]〉〈β̂l, ?[vτ(l), . . . , vτ(k+l−1), vk+l, . . . , vn]〉

where σn = [v0, . . . , vn], and, without loss of generality, assumed that σn−k−l = ±[vk+l, . . . , vn].

Anti-Commutativity of the Wedge Product.

Lemma 3.2. The discrete wedge product, ∧ : Ck(K) × Cl(K) → Ck+l(K), is anti-commutative,

i.e.,

αk ∧ βk = (−1)klβl ∧ αk .

Proof. We first rewrite the expression for the discrete wedge product using the following computa-

tion,

∑
τ̄∈Sk+l+1

sign(τ̄)|σk+l ∩ ?vτ̄(k)|〈αk, τ̄ [v0, . . . , vk]〉βl, τ̄ [vk, . . . , vk+l]〉

=
∑

τ̄∈Sk+l+1

(−1)k−1 sign(τ̄)|σk+l ∩ ?vτ̄(k)| 〈αk, τ̄ [v1, . . . , v0, vk]〉〈βl, τ̄ [vk, . . . , vk+l]〉

=
∑

τ̄∈Sk+l+1

(−1)k−1 sign(τ̄)|σk+l ∩ ?vτ̄ρ(0)|〈αk, τ̄ρ[v1, . . . , vk, v0]〉〈βl, τ̄ρ[v0, vk+1, . . . , vk+l]〉

=
∑

τ̄∈Sk+l+1

(−1)k−1(−1)k sign(τ̄)|σk+l ∩ ?vτ̄ρ(0)|〈αk, τ̄ρ[v0, . . . , vk]〉〈βl, τ̄ρ[v0, vk+1, . . . , vk+l]〉

=
∑

τ̄ρ∈Sk+l+1ρ

(−1)k−1(−1)k(−1) sign(τ̄ ρ)|σk+l ∩ ?vτ̄ρ(0)|

· 〈αk, τ̄ρ[v0, . . . , vk]〉〈βl, τ̄ρ[v0, vk+1, . . . , vk+l]〉

=
∑

τ∈Sk+l+1

sign(τ)|σk+l ∩ ?vτ(0)|〈αk, τ [v0, . . . , vk]〉〈βl, τ [v0, vk+1, . . . , vk+l]〉 .

Here, we used the elementary fact, from permutation group theory, that a k+1 cycle can be written

as the product of k transpositions, which accounts for the (−1)k factors. Also, ρ is a transposition



96

of 0 and k. Then, the discrete wedge product can be rewritten as

〈αk ∧ βl, σk+l〉 =
1

(k + l)!

∑
τ∈Sk+l+1

sign(τ)
|σk+l ∩ ?vτ(0)|

|σk+l|

· 〈αk, [vτ(0), . . . , vτ(k)]〉〈βl, [vτ(0),τ(k+1), . . . , vτ(k+l)]〉.

For ease of notation, we denote [v0, . . . , vk] by σk, and [v0, vk+1, . . . , vk+l] by σl. Then, we have

〈αk ∧ βl, σk+l〉 =
1

(k + l)!

∑
τ∈Sk+l+1

sign(τ)
|σk+l ∩ ?vτ(0)|

|σk+l|
〈αk, τ(σk)〉〈βl, τ(σl)〉.

Furthermore, we denote [v0, vl+1 . . . , vk+l] by σ̄k, and [v0, v1, . . . , vl] by σ̄l. Then,

〈βl ∧ αk, σk+l〉 =
1

(k + l)!

∑
τ̄∈Sk+l+1

sign(τ̄)
|σk+l ∩ ?vτ̄(0)|

|σk+l|
〈αk, τ̄(σ̄k)〉〈βl, τ̄(σ̄l)〉.

Consider the permutation θ ∈ Sk+l+1, given by

θ =

0 1 . . . k k + 1 . . . k + l

0 l + 1 . . . k + l 1 . . . l

 ,

which has the property that

σ̄k = θ(σk),

σ̄l = θ(σl).

Then, we have

〈βl ∧ αk, σk+l〉 =
1

(k + l)!

∑
τ̄∈Sk+l+1

sign(τ̄)
|σk+l ∩ ?vτ̄(0)|

|σk+l|
〈αk, τ̄(σ̄k)〉〈βl, τ̄(σ̄l)〉

=
1

(k + l)!

∑
τ̄∈Sk+l+1

sign(τ̄)
|σk+l ∩ ?vτ̄θ(0)|

|σk+l|
〈αk, τ̄ θ(σk)〉〈βlτ̄ θ(σl)〉

=
1

(k + l)!

∑
τ̄θ∈Sk+l+1θ

sign(τ̄ θ) sign(θ)
|σk+l ∩ ?vτ̄θ(0)|

|σk+l|
〈αk, τ̄ θ(σk)〉〈βl, τ̄ θ(σl)〉.

By making the substitution, τ = τ̄ θ, and noting that Sk+l+1θ = Sk+l+1, we obtain

〈βl ∧ αk, σk+l〉 = sign(θ)
1

(k + l)!

∑
τ∈Sk+l+1

sign(τ)
|σk+l ∩ ?vτ(0)|

|σk+l|
〈αk, τ(σk)〉〈βl, τ(σl)〉

= sign(θ)〈αk ∧ βl, σk+l〉 .
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To obtain the desired result, we simply need to compute the sign of θ, which is given by

sign(θ) = (−1)kl.

This follows from the observation that in order to move each of the last l vertices of σk+l forward,

we require k transpositions with v1, . . . , vk. Therefore, we obtain

〈βl ∧ αk, σk+l〉 = sign(θ)〈αk ∧ βl, σk+l〉 = (−1)kl〈αk ∧ βl, σk+l〉,

and

αk ∧ βl = (−1)klβl ∧ αk. �

Leibniz Rule for the Wedge Product.

Lemma 3.3. The discrete wedge product satisfies the Leibniz rule,

d(αk ∧ βl) = (dαk) ∧ βl + (−1)kαk ∧ (dβl).

Proof. The proof of the Leibniz rule for discrete wedge products is directly analogous to the proof

of the coboundary formula for the simplicial cup product on cochains, which can be found on page

206 of Hatcher [2001]. This is because the discrete exterior derivative is precisely the coboundary

operator, and the wedge product is constructed out of weighted sums of cup products.

The cup product satisfies the Leibniz rule for an given partial ordering of the vertices, and the

permutations in the signed sum in the discrete wedge product correspond to different choices of

partial ordering. We then obtain the Leibniz rule for the discrete wedge product by applying it

term-wise for each choice of permutation.

Consider

〈(dαk) ∧ βl, σk+l+1〉 =
k+1∑
i=0

(−1)i
1

(k + l)!

∑
τ∈Sk+l+1

sign(τ)
|σk+l ∩ ?vτ(0)|

|σk+l|

· 〈αk, [vτ(0), . . . , v̂i, . . . , vτ(k+1)]〉〈βl, [vτ(k+1), . . . , vτ(k+l+1)]〉,

and

(−1)k〈αk ∧ (dβl), σk+l+1〉 = (−1)k
k+l+1∑
i=k

(−1)i−k
1

(k + l)!

∑
τ∈Sk+l+1

sign(τ)
|σk+l ∩ ?vτ(0)|

|σk+l|

· 〈αk, [vτ(0), . . . , vτ(k)]〉〈βl, [vτ(k), . . . , v̂i, . . . , vτ(k+l+1)]〉.



98

The last set of terms, i = k + 1, of the first expression cancels the first set of terms, i = k, of the

second expression, and what remains is simply 〈αk ∧ βl, ∂σk+l+1〉. Therefore, we can conclude that

〈(dαk) ∧ βl, σk+l+1〉+ (−1)k〈αk ∧ (dβl), σk+l+1〉 = 〈αk ∧ βl, ∂σk+l+1〉 = 〈d(αk ∧ βl), σk+l+1〉,

or simply that the Leibniz rule for discrete differential forms holds,

d(αk ∧ βl) = (dαk) ∧ βl + (−1)kαk ∧ (dβl). �

Associativity for the Wedge Product. The discrete wedge product which we have introduced

is not associative in general. This is a consequence of the fact that the stencil for the two possible

triple wedge products are not the same. In the expression for 〈αk ∧ (βl∧γm), σk+l+m〉, each term in

the double summation consists of a geometric factor multiplied by 〈αk, σk〉〈βl, σl〉〈γm, σm〉 for some

k, l,m simplices σk, σl, σm.

Since βl and γm are wedged together first, σl and σm will always share a common vertex, but σk

could have a vertex in common with only σl, or only σm, or both. We can represent this in a graph,

where the nodes denote the three simplices, which are connected by an edge if, and only if, they

share a common vertex. The graphical representation of the terms which arise in the two possible

triple wedge products are given in Figure 3.6.

α ∧ (β ∧ γ) (α ∧ β) ∧ γ

Figure 3.6: Stencils arising in the double summation for the two triple wedge products.

For the wedge product to be associative for all forms, the two stencils must agree. Since the

stencils for the two possible triple wedge products differ, the wedge product is not associative in

general. However, in the case of closed forms, we can rewrite the terms in the sum so that all the

discrete forms are evaluated on triples of simplices that share a common vertex. This is illustrated

graphically in Figure 3.7.

This result is proved rigorously in the follow lemma.

Lemma 3.4. The discrete wedge product is associative for closed forms. That is to say, for αk ∈
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Figure 3.7: Associativity for closed forms.

Ck(K), βl ∈ Cl(K), γm ∈ Cm(K), such that dαk = 0, dβl = 0, dγm = 0, we have that

(αk ∧ βl) ∧ γm = αk ∧ (βl ∧ γm).

Proof.

〈(αk ∧ βl) ∧ γm, σk+l+m〉

=
∑

τ∈Sk+l+m+1

sign(τ)〈αk ∧ βl, τ [v0, . . . , vk+l]〉〈γm, τ [vk+l, . . . , vk+l+m]〉

=
∑

τ∈Sk+l+m+1

∑
ρ∈Sk+l+1

sign(τ) sign(ρ)〈αk, ρτ [v0, . . . , vk]〉

· 〈βl, ρτ [vk, . . . , vk+l]〉〈γm, τ [vk+l, . . . , vk+l+m]〉

Here, either ρτ(k) = τ(k+ l), in which case all three permuted simplices share vτ(k+l) as a common

vertex, or we need to rewrite either 〈αk, ρτ [v0, . . . , vk]〉 or 〈βl, ρτ [vk, . . . , vk+l]〉, using the fact that

αk and βl are closed forms.

If vτ(k+l) /∈ ρτ [v0, . . . , vk], then we need to rewrite 〈αk, ρτ [v0, . . . , vk]〉 by considering the simplex

obtained by adding the vertex vτ(k+l) to ρτ [v0, . . . , vk], which is [vτ(k+l), vρτ(0), . . . , vρτ(k)]. Then,

since αk is closed, we have that

0 = 〈dαk, [vτ(k+l), vρτ(0), . . . , vρτ(k)]〉

= 〈αk, ∂[vτ(k+l), vρτ(0), . . . , vρτ(k)]〉

= 〈αk, [vρτ(0), . . . , vρτ(k)]〉 −
k∑
i=0

(−1)i〈αk, [vτ(k+l), vρτ(0), . . . , v̂ρτ(i), . . . , vρτ(k)]〉
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or equivalently,

〈αk, [vρτ(0), . . . , vρτ(k)]〉 =
k∑
i=0

(−1)i〈αk, [vτ(k+l), vρτ(0), . . . , v̂ρτ(i), . . . , vρτ(k)]〉.

Notice that all the simplices in the sum, with the exception of the last one, will share two vertices,

vτ(k+l) and vρτ(k) with ρτ [vk, . . . , vk+l], and so their contribution in the triple wedge product will

vanish due to the anti-symmetrized sum.

Similarly, if vτ(k+l) /∈ ρτ [vk, . . . , vk+l], using the fact that βl is closed yields

〈αk, [vρτ(k), . . . , vρτ(k+l)]〉 =
k+l∑
i=k

(−1)(i−k)〈αk, [vτ(k+l), vρτ(k), . . . , v̂ρτ(i), . . . , vρτ(k+l)]〉.

As before, all the simplices in the sum, with the exception of the last one, will share two vertices,

vτ(k+l) and vρτ(k) with ρτ [v0, . . . , vk], and so their contribution in the triple wedge product will

vanish due to the anti-symmetrized sum.

This allows us to rewrite the triple wedge product in the case of closed forms as

〈(αk ∧ βl) ∧ γm, σk+l+m〉 =
k+l+m∑
i=0

∑
τ∈Sk+l+m

sign(ρiτ)〈αk, ρiτ [v0, . . . , vk]〉〈βl, ρiτ [v0, vk+1, . . . , vk+l]〉

· 〈γm, ρiτ [v0, vk+l+1, . . . , vk+l+m]〉 ,

where τ ∈ Sk+l+m is thought of as acting on the set {1, . . . , k + l +m}, and ρi is a transposition of

0 and i. A similar argument allows us to write αk ∧ (βl ∧ γm) in the same form, and therefore, the

wedge product is associative for closed forms. �

Remark 3.4. This lemma is significant, since if we think of a constant smooth differential form,

and discretize it to obtain a discrete differential form, this discrete form will be closed. As such,

this lemma states that in the infinitesimal limit, the discrete wedge product we have defined will be

associative.

In practice, if we have a mesh with characteristic length ∆x, then we will have that

1
|σk+l+m|

〈αk ∧ (βl ∧ γm)− (αk ∧ βl) ∧ γm, σk+l+m〉 = O(∆x),

which is to say that the average of the associativity defect is of the order of the mesh size, and

therefore vanishes in the infinitesimal limit.



101

3.9 Divergence and Laplace–Beltrami

In this section, we will illustrate the application of some of the DEC operations we have previously

defined to the construction of new discrete operators such as the divergence and Laplace–Beltrami

operators.

Divergence. The divergence of a vector field is given in terms of the Lie derivative of the volume-

form, by the expression, (div(X)µ = £Xµ. Physically, this corresponds to the net flow per unit

volume of an infinitesimal volume about a point.

We will define the discrete divergence by using the formulas defining them in the smooth exterior

calculus. The divergence definition will be valid for arbitrary dimensions. The resulting expressions

involve operators that we have already defined and so we can actually perform some calculations to

express these quantities in terms of geometric quantities. We will show that the resulting expression

in terms of geometric quantities is the same as that derived by variational means in Tong et al.

[2003].

Definition 3.26. For a discrete dual vector field X the divergence div(X) is defined to be

div(X) = −δX[ .

Remark 3.5. The above definition is a theorem in smooth exterior calculus. See, for example, page

458 of Abraham et al. [1988].

As an example, we will now compute the divergence of a discrete dual vector field on a two-

dimensional simplicial complex K, as illustrated in Figure 3.8.

Figure 3.8: Divergence of a discrete dual vector field.

A similar derivation works in higher dimensions, where one needs to be mindful of the sign that

arises from applying the Hodge star twice, ∗ ∗αk = (−1)k(n−k)αk. Since div(X) = −δX[, it follows
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that div(X) = ∗d ∗X[. Since this is a primal 0-form it can be evaluated on a 0-simplex σ0, and we

have that

〈div(x), σ0〉 = 〈∗d ∗X[, σ0〉 .

Using the definition of discrete Hodge star, and the discrete generalized Stokes’ theorem, we get

1
|σ0|

〈div(X), σ0〉 =
1

| ? σ0|
〈∗ ∗ d ∗X[, ?σ0〉

=
1

| ? σ0|
〈d ∗X[, ?σ0〉

=
1

| ? σ0|
〈∗X[, ∂(?σ0)〉 .

The second equality is obtained by applying the definition of the Hodge star, and the last equality

is obtained by applying the discrete generalized Stokes’ theorem. But,

∂(?σ0) =
∑
σ1�σ0

?σ1 ,

as given by the expression for the boundary of a dual cell in Equation 3.17. Thus,

1
|σ0|

〈div(X), σ0〉 =
1

| ? σ0|
〈∗X[,

∑
σ1�σ0

?σ1〉

=
1

| ? σ0|
∑
σ1�σ0

〈∗X[, ?σ1〉

=
1

| ? σ0|
∑
σ1�σ0

| ? σ1|
|σ1|

〈X[, σ1〉

=
1

| ? σ0|
∑
σ1�σ0

| ? σ1|
|σ1|

∑
σ2�σ1

| ? σ1 ∩ σ2|
| ? σ1|

X · ~σ1

=
1

| ? σ0|
∑
σ1�σ0

∑
σ2�σ1

| ? σ1 ∩ σ2|
|σ1|

X · ~σ1

=
1

| ? σ0|
∑
σ1�σ0

| ? σ1 ∩ σ2| (X · ~σ
1

|σ1|
) .

This expression has the nice property that the divergence theorem holds on any dual n-chain,

which, as a set, is a simply connected subset of |K|. Furthermore, the coefficients we computed for

the discrete divergence operator are the unique ones for which a discrete divergence theorem holds.

Laplace–Beltrami. The Laplace–Beltrami operator is the generalization of the Laplacian to

curved spaces. In the smooth case the Laplace–Beltrami operator on smooth functions is defined to

be ∇2 = div ◦ curl = δd. See, for example, page 459 of Abraham et al. [1988]. Thus, in the smooth
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case, the Laplace–Beltrami on functions is a special case of the more general Laplace–deRham op-

erator, ∆ : Ωk(M) → Ωk(M), defined by ∆ = dδ + δd.

As an example, we compute ∆f on a primal vertex σ0, where f ∈ Ω0
d(K), and K is a (not

necessarily flat) triangle mesh in R3, as illustrated in Figure 3.9.

σ0

Figure 3.9: Laplace–Beltrami of a discrete function.

This calculation is done below.

1
|σ0|

〈∆f, σ0〉 = 〈δdf, σ0〉

= −〈∗d ∗ df, σ0〉

= − 1
| ? σ0|

〈d ∗ df, ?σ0〉

= − 1
| ? σ0|

〈∗df, ∂(?σ0)〉

= − 1
| ? σ0|

〈∗df,
∑
σ1�σ0

?σ1〉

= − 1
| ? σ0|

∑
σ1�σ0

〈∗df, ?σ1〉

= − 1
| ? σ0|

∑
σ1�σ0

| ? σ1|
|σ1|

〈df, σ1〉

= − 1
| ? σ0|

∑
σ1�σ0

| ? σ1|
|σ1|

(f(v)− f(σ0)) ,

where ∂σ1 = v−σ0. But, the above is the same as the formula involving cotangents found by Meyer

et al. [2002] without using discrete exterior calculus.

Another interesting aspect, which will be discussed in §3.12, is that the characterization of

harmonic functions as those functions which vanish when the Laplace–Beltrami operator is applied
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is equivalent to that obtained from a discrete variational principle using DEC as the means of

discretizing the Lagrangian.

3.10 Contraction and Lie Derivative

In this section we will discuss some more operators that involve vector fields, namely contraction,

and Lie derivatives.

For contraction, we will first define the usual smooth contraction algebraically, by relating it to

Hodge star and wedge products. This yields one potential approach to defining discrete contraction.

However, since in the discrete theory we are only concerned with integrals of forms, we can use the

interesting notion of extrusion of a manifold by the flow of a vector field to define the integral of a

contracted discrete differential form.

We learned about this definition of contraction via extrusion from Bossavit [2002b], who goes

on to define discrete extrusion in his paper. Thus, he is able to obtain a definition of discrete

contraction. Extrusion turns out to be a very nice way to define integrals of operators involving

vector fields, and we will show how to define integrals of Lie derivatives via extrusion, which will

yield discrete Lie derivatives.

Definition 3.27. Given a manifold M , and S, a k-dimensional submanifold of M , and a vector

field X ∈ X(M), we call the manifold obtained by sweeping S along the flow of X for time t as the

extrusion of S by X for time t, and denote it by EtX(S). The manifold S carried by the flow for

time t will be denoted ϕtX(S).

Example 3.8. Figure 3.10 illustrates the 2-simplex that arises from the extrusion of a 1-simplex by

a discrete vector field that is interpolated using a linear shape function.

Figure 3.10: Extrusion of 1-simplex by a discrete vector field.
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Contraction (Extrusion). We first establish an integral property of the contraction operator.

Lemma 3.5. ∫
S

iXβ =
d

dt

∣∣∣∣
t=0

∫
Et

X(S)

β

Proof. Prove instead that ∫ t

0

[∫
Sτ

iXβ
]
dτ =

∫
Et

X(S)

β .

Then, by first fundamental theorem of calculus, the desired result will follow. To prove the above,

simply take coordinates on S and carry them along with the flow and define the transversal coordinate

to be the flow of X. This proof is sketched in Bossavit [2002b]. �

This lemma allows us to interpret contraction as being the dual, under the integration pairing

between k-forms and k-volumes, to the geometric operation of extrusion. The discrete contraction

operator is then given by

〈iXαk+1, σk〉 =
d

dt

∣∣∣∣
t=0

〈αk+1, EtX(σk)〉,

where the evaluation of the RHS will typically require that the discrete differential form and the

discrete vector field are appropriately interpolated.

Remark 3.6. Since the dynamic definition of the contraction operator only depends on the derivative

of pairing of the differential form with the extruded region, it will only depend on the vector field in

the region S, and not on its extension into the rest of the domain.

In addition, if the interpolation for the discrete vector field satisfies a superposition principle,

then the discrete contraction operator will satisfy a corresponding superposition principle.

Contraction (Algebraic). Contraction is an operator that allows one to combine vector fields

and forms. For a smooth manifold M , the contraction of a vector field X ∈ X(M) with a (k+1)-form

α ∈ Ωk+1(M) is written as iXα, and for vector fields X1, . . . , Xk ∈ X(M), the contraction in smooth

exterior calculus is defined by

iXα(X1, . . . , Xk) = α(X,X1, . . . , Xk) .

We define contraction by using an identity that is true in smooth exterior calculus. This identity

originally appeared in Hirani [2003], and we state it here with proof.

Lemma 3.6 (Hirani [2003]). Given a smooth manifold M of dimension n, a vector field X ∈

X(M), and a k-form α ∈ Ωk(M), we have that

iXα = (−1)k(n−k) ∗ (∗α ∧X[) .
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Proof. Recall that for a smooth function f ∈ Ω0(M), we have that iXα = f iXα. This, and the

multilinearity of α, implies that it is enough to show the result in terms of basis elements. In

particular, let τ ∈ Sn be a permutation of the numbers 1, . . . n, such that τ(1) < . . . < τ(k), and

τ(k + 1) < . . . < τ(n). Let X = eτ(j), for some j ∈ 1, . . . , n. Then, we have to show that

ieτ(j)e
τ(1) ∧ . . . ∧ eτ(k) = (−1)k(n−k) ∗ (∗(eτ(1) ∧ . . . ∧ eτ(k)) ∧ eτ(j)) .

It is easy to see that the LHS is 0 if j > k, and it is

(−1)j−1(eτ(1) ∧ . . . ∧ êτ(j) . . . ∧ eσ(k)) ,

otherwise, where êτ(j) means that eτ(j) is omitted from the wedge product. Now, on the RHS of

Equation 3.6, we have that

∗(eτ(1) ∧ . . . ∧ eτ(k)) = sign(τ)(eτ(k+1) ∧ . . . ∧ eτ(n)) .

Thus, the RHS is equal to

(−1)k(n−k) sign(τ) ∗ (eτ(k+1) ∧ . . . ∧ eτ(n) ∧ eτ(j)) ,

which is 0 as required if j > k. So, assume that 1 ≤ j ≤ k. We need to compute

∗(eτ(k+1) ∧ . . . ∧ eτ(n) ∧ eτ(j)) ,

which is given by

s eτ(1) ∧ . . . êτ(j) ∧ . . . ∧ eτ(k) ,

where the sign s = ±1, such that the equation,

s eτ(k+1) ∧ . . . ∧ eτ(n) ∧ eτ(j) ∧ eτ(1) ∧ . . . ∧ êτ(j) ∧ . . . ∧ eτ(k) = µ ,

holds for the standard volume-form, µ = e1 ∧ . . . ∧ en. This implies that

s = (−1)j−1(−1)k(n−k) sign(τ) .

Then, RHS = LHS as required. �

Since we have expressions for the discrete Hodge star (∗), wedge product (∧), and flat ([), we have

the necessary ingredients to use the algebraic expression proved in the above lemma to construct a
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discrete contraction operator.

One has to note, however, that the wedge product is only associative for closed forms, and as a

consequence, the Leibniz rule for the resulting contraction operator will only hold for closed forms

as well. This is, however, sufficient to establish that the Leibniz rule for the discrete contraction will

hold in the limit as the mesh is refined.

Lie Derivative (Extrusion). As was the case with contraction, we will establish a integral

identity that allows the Lie derivative to be interpreted as the dual of a geometric operation on a

volume. This involves the flow of a volume by a vector field, and it is illustrated in the following

example.

Example 3.9. Figure 3.11 illustrates the flow of a 1-simplex by a discrete vector field interpolated

using a linear shape function.

Figure 3.11: Flow of a 1-simplex by a discrete vector field.

Lemma 3.7. ∫
S

£Xβ =
d

dt

∣∣∣∣
t=0

∫
ϕt

X(S)

β .

Proof.

F ∗t (£Xβ) =
d

dt
F ∗t β∫ t

0

F ∗τ (£Xβ)dτ = F ∗t β − β∫
S

∫ t

0

F ∗τ (£Xβ)dτ =
∫
S

F ∗t β −
∫
S

β∫ t

0

∫
ϕτ

X(S)

£Xβdτ =
∫
ϕt

X(S)

β −
∫
S

β . �
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This lemma allows us to define a discrete Lie derivative as follows,

〈£Xβ
k, σk〉 =

d

dt

∣∣∣∣
t=0

〈βk, ϕtX(σk)〉 ,

where, as before, evaluating the RHS will require the discrete differential form and discrete vector

field to be appropriately interpolated.

Lie Derivative (Algebraic). Alternatively, as we have expressions for the discrete contraction

operator (iX), and exterior derivative (d), we can construct a discrete Lie derivative using the Cartan

magic formula,

£Xω = iXdω + diXω.

As is the case with the algebraic definition of the discrete contraction, the discrete Lie derivative

will only satisfy a Leibniz rule for closed forms. As before, this is sufficient to establish that the

Leibniz rule will hold in the limit as the mesh is refined.

3.11 Discrete Poincaré Lemma

In this section, we will prove the discrete Poincaré lemma by constructing a homotopy operator

though a generalized cocone construction. This section is based on the work in Desbrun et al.

[2003b].

The standard cocone construction fails at the discrete level, since the cone of a simplex is not,

in general, expressible as a chain in the simplicial complex. As such, the standard cocone does not

necessarily map k-cochains to (k − 1)-cochains.

An example of how the standard cone construction fails to map chains to chains is illustrated

in Figure 3.12. Given the simplicial complex on the left, consisting of triangles, edges and nodes,

we wish, in the center figure, to consider the cone of the bold edge with respect to the top most

node. Clearly, the resulting cone in the right figure, which is shaded grey, cannot be expressed as a

combination of the triangles in the original complex.

Figure 3.12: The cone of a simplex is, in general, not expressible as a chain.
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In this subsection, a generalized cone operator that is valid for chains is developed which has the

essential homotopy properties to yield a discrete analogue of the Poincaré lemma.

We will first consider the case of trivially star-shaped complexes, followed by logically star-shaped

complexes, before generalizing the result to contractible complexes.

Definition 3.28. Given a k-simplex σk = [v0, . . . , vk] we construct the cone with vertex w and base

σk, as follows,

w � σk = [w, v0, . . . , vk].

Lemma 3.8. The geometric cone operator satisfies the following property,

∂(w � σk) + w � (∂σk) = σk.

Proof. This is a standard result from simplicial algebraic topology. �

Trivially Star-Shaped Complexes.

Definition 3.29. A complex K is called trivially star-shaped if there exists a vertex w ∈ K(0),

such that for all σk ∈ K, the cone with vertex w and base σk is expressible as a chain in K. That

is to say,

∃w ∈ K(0) | ∀σk ∈ K,w � σk ∈ Ck+1(K).

We can then denote the cone operation with respect to w as p : Ck(K) → Ck+1(K).

Lemma 3.9. In trivially star-shaped complexes, the cone operator, p : Ck(K) → Ck+1(K), satisfies

the following identity,

p∂ + ∂p = I,

at the level of chains.

Proof. Follows immediately from the identity for cones, and noting that the cone is well-defined at

the level of chains on trivially star-shaped complexes. �

Definition 3.30. The cocone operator, H : Ck(K) → Ck−1(K), is defined by

〈Hαk, σk−1〉 = 〈αk, p(σk−1)〉.

This operator is well-defined on trivially star-shaped simplicial complexes.

Lemma 3.10. The cocone operator, H : Ck(K) → Ck−1(K), satisfies the following identity,

Hd + dH = I,
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at the level of cochains.

Proof. A simple duality argument applied to the cone identity,

p∂ + ∂p = I,

yields the following,

〈αk, σk〉 = 〈αk, (p∂ + ∂p)σk〉

= 〈αk, p∂σk〉+ 〈αk, ∂pσk〉

= 〈Hαk, ∂σk〉+ 〈dαk, pσk〉

= 〈(dHαk, σk〉+ 〈Hdαk, σk〉

= 〈(dH +Hd)αk, σk〉.

Therefore,

Hd + dH = I,

at the level of cochains. �

Corollary 3.11 (Discrete Poincaré Lemma for Trivially Star-shaped Complexes). Given

a closed cochain αk, that is to say, dαk = 0, there exists a cochain βk−1, such that, dβk−1 = αk.

Proof. Applying the identity for cochains,

Hd + dH = I,

we have,

〈αk, σk〉 = 〈(Hd + dH)αk, σk〉 ,

but, dαk = 0, so,

〈αk, σk〉 = 〈d(Hαk), σk〉.

Therefore, βk−1 = Hαk is such that dβk−1 = αk at the level of cochains. �

Example 3.10. We demonstrate the construction of the tetrahedralization of the cone of a (n− 1)-

simplex over the origin.
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If we denote by vki , the projection of the vi vertex to the k-th concentric sphere, where the 0-th

concentric sphere is simply the central point, then we fill up the cone [c, v1, ...vn] with simplices as

follows,

[v0
1 , v

1
1 , . . . , v

1
n], [v

2
1 , v

1
1 , . . . , v

1
n], [v

2
1 , v

2
2 , v

1
2 , . . . , v

1
n], . . . , [v

2
1 , . . . , v

2
n, v

1
n].

Since Sn−1 is orientable, we can use a consistent triangulation of Sn−1 and these n-cones to con-

sistently triangulate Bn such that the resulting triangulation is star-shaped.

This fills up the region to the 1st concentric sphere, and we repeat the process by leapfrogging at

the last vertex to add [v2
1 , ..., v

2
n, v

3
n], and continuing the construction, to fill up the annulus between

the 1st and 2nd concentric sphere. Thus, we can keep adding concentric shells to create an arbitrarily

dense triangulation of a n-ball about the origin.

In three dimensions, these simplices are given by

[c, v1
1 , v

1
2 , v

1
3 ], [v2

1 , v
1
1 , v

1
2 , v

1
3 ], [v2

1 , v
2
2 , v

1
2 , v

1
3 ], [v2

1 , v
2
2 , v

2
3 , v

1
3 ].

Putting them together, we obtain Figure 3.13.

Figure 3.13: Triangulation of a three-dimensional cone.

This example is significant, since we have demonstrated that for any n-dimensional ball about a

point, we can construct a trivially star-shaped triangulation of the ball, with arbitrarily high resolu-

tion. This allows us to recover the smooth Poincaré lemma in the limit of an infinitely fine mesh,

using the discrete Poincaré lemma for trivially star-shaped complexes.
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Logically Star-Shaped Complexes.

Definition 3.31. A simplicial complex L is logically star-shaped if it is isomorphic, at the level

of an abstract simplicial complex, to a trivially star-shaped complex K.

Example 3.11. We see two simplicial complexes, in Figure 3.14, which are clearly isomorphic as

abstract simplicial complexes.

∼=

Figure 3.14: Trivially star-shaped complex (left); Logically star-shaped complex (right).

Definition 3.32. The logical cone operator p : Ck(L) → Ck+1(L) is defined by making the

following diagram commute,

Ck(K)
pK // Ck+1(K)

Ck(L)
pL // Ck+1(L)

Which is to say that, given the isomorphism ϕ : K → L, we define

pL = ϕ ◦ pK ◦ ϕ−1.

Example 3.12. We show an example of the construction of the logical cone operator.

pK //

pL //
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This definition of the logical cone operator results in identities for the cone and cocone operator

that follow from the trivially star-shaped case, and we record the results as follows.

Lemma 3.12. In logically star-shaped complexes, the logical cone operator satisfies the following

identity,

p∂ + ∂p = I,

at the level of chains.

Proof. Follows immediately by pushing forward the result for trivially star-shaped complexes using

the isomorphism. �

Lemma 3.13. In logically star-shaped complexes, the logical cocone operator satisfies the following

identity,

Hd + dH = I,

at the level of cochains.

Proof. Follows immediately by pushing forward the result for trivially star-shaped complexes using

the isomorphism. �

Similarly, we have a Discrete Poincaré Lemma for logically star-shaped complexes.

Corollary 3.14 (Discrete Poincaré Lemma for Logically Star-shaped Complexes). Given

a closed cochain αk, that is to say, dαk = 0, there exists a cochain βk−1, such that, dβk−1 = αk.

Proof. Follows from the above lemma using the proof for the trivially star-shaped case. �

Contractible Complexes. For arbitrary contractible complexes, we construct a generalized cone

operator such that it satisfies the identity,

p∂ + ∂p = I,

which is the crucial property of the cone operator, from the point of view of proving the discrete

Poincaré lemma.

The trivial cone construction gives a clue as to how to proceed in the construction of a gener-

alized cone operator. Notice that if a σk+1 is a term in p(σk), then p(σk+1) = ∅. This suggests

how we can use the cone identity to inductively construct the generalized cone operator.

To define p(σk), we consider σk+1 � σk, such that, σk+1 and σk are consistently oriented. We

apply p∂ + ∂p to σk+1. Then, we have

σk+1 = p(σk) + p(∂σk+1 − σk) + ∂p(σk+1).
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If we set p(σk+1) = ∅,

σk+1 = p(σk) + p(∂σk+1 − σk) + ∂(∅)

= p(σk) + p(∂σk+1 − σk).

Rearranging, we have

p(σk) = σk+1 − p(∂σk+1 − σk),

and

p(σk+1) = ∅.

We are done, so long as the simplices in the chain ∂σk+1 − σk already have p defined on it. This

then reduces to enumerating the simplices in such a way that in the right hand side of the equation,

we never evoke terms that are undefined.

We now introduce a method of augmenting a complex so that the enumeration condition is always

satisfied.

Definition 3.33. Given a n-complex K, consider a (n − 1)-chain cn−1 that is contained on the

boundary of K, and is included in the one-ring of some vertex on ∂K. Then, the one-ring cone

augmentation of K is the complex obtained by adding the n-cone w � cn−1, and all its faces to the

complex.

Definition 3.34. A complex is generalized star-shaped if it can be constructed by repeatedly

applying the one-ring augmentation procedure.

We will explicitly show in Examples 3.13, and 3.16, how to enumerate the vertices in two and

three dimensions. And in Examples 3.15, and 3.17, we will introduce regular triangulations of R2

and R3 that can be constructed by inductive one-ring cone augmentation.

Remark 3.7. Notice that a non-contractible complex cannot be constructed by inductive one-ring

cone augmentation, since it will involve adding a cone to a vertex that has two disjoint base chains.

This prevents us from enumerating the simplices in such as way that all the terms in ∂σk+1 − σk

have had p defined on them, and we see in Example 3.18 how this causes the cone identity, and

hence the discrete Poincaré lemma to break.

Example 3.13. In two dimensions, the one-ring condition implies that the base of the cone consists

of either one or two 1-simplices. To aid in visualization, consider Figure 3.15.

In the case of one 1-simplex, [v0, v1], when we augment using the cone construction with the new
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Figure 3.15: One-ring cone augmentation of a complex in two dimensions.

vertex w, we define,

p([w]) = [v0, w] + p([v0]), p([v0, w]) = ∅,

p([v1, w]) = [v0, v1, w]− p([v0, v1]), p([v0, v1, w]) = ∅.

In the case of two 1-simplices, [v0, v1], [v0, v2], we have,

p([w]) = [v0, w] + p([v0]), p([v0, w]) = ∅,

p([v1, w]) = [v0, v1, w]− p([v0, v1]), p([v0, v1, w]) = ∅,

p([v2, w]) = [v0, v2, w]− p([v0, v2]), p([v0, v2, w]) = ∅.

Example 3.14. We will now explicitly utilize the one-ring cone augmentation procedure to compute

the generalized cone operator for part of a regular two-dimensional triangulation that is not logically

star-shaped.

As a preliminary, we shall consider a logically star-shaped complex, and augment with a new

vertex, as seen in Figure 3.16.

Figure 3.16: Logically star-shaped complex augmented by cone.

We use the logical cone operator for the subcomplex that is logically star-shaped, and the aug-
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mentation rules in the example above for the newly introduced simplices. This yields,

p


 = + p


 = ,

p


 = ∅,

p


 = + p


 = + ∅

= ,

p


 = ∅,

p


 = + p




= + = ,

p


 = ∅.

Example 3.15. Clearly, the regular two-dimensional triangulation can be obtained by the successive

application of the one-ring cone augmentation procedure, as the following sequence illustrates,
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7→ 7→ 7→ 7→ . . . ,

which means that the discrete Poincaré lemma can be extended to the entire regular triangulation of

the plane.

Example 3.16. We consider the case of augmentation in three dimensions. Denote by v0, the center

of the one-ring on the two-surface, to which we are augmenting the new vertex w. The other vertices

of the one-ring are enumerated in order, v1, . . . , vm. To aid in visualization, consider Figure 3.17.

Figure 3.17: One-ring cone augmentation of a complex in three dimensions.

If the one-ring does not go completely around v0, we shall denote the missing term by [v0, v1, vm].

The generalized cone operators are given as follows.

k=0,

p([w]) = [v0, w] + p([v0]), p([v0, w]) = ∅,

k=1,

p([v1, w]) = [v0, v1, w]− p([v0, v1]), p([v0, v1, w]) = ∅,

p([vm, w]) = [v0, vm, w]− p([v0, vm]), p([v0, vm, w]) = ∅,

k=2,

p([v1, v2, w]) = [v0, v1, v2, w] + p([v0, v1, v2]), p([v1, v2, w]) = ∅,
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p([vm−1, vm, w]) = [v0, vm−1, vm, w] + p([v0, vm−1, vm]), p([vm−1, vm, w]) = ∅.

If it does go around completely,

p([vm, v1, w]) = [v0, vm, v1, w] + p([v0, vm, v1]), p([v0, vm, v1, w]) = ∅.

Example 3.17. We provide a tetrahedralization of the unit cube that can be tiled to yield a regular

tetrahedralization of R3. The 3-simplices are as follows,

[v000, v001, v010, v10], [v001, v010, v100, v101], [v001, v010, v011, v101],

[v010, v100, v101, v110], [v010, v011, v101, v110], [v011, v101, v110, v111].

The tetrahedralization of the unit cube can be seen in Figure 3.18.

(a) Tileable tetrahedralization of the unit cube (b) Partial tiling of R3

Figure 3.18: Regular tiling of R3 that admits a generalized cone operator.

Since this regular tetrahedralization can be constructed by the successive application of the one-

ring cone augmentation procedure, the Discrete Poincaré lemma can be extended to the entire regular

tetrahedralization of R3.

In higher dimensions, we can extend the construction of the generalized cone operator inductively

using the one-ring cone augmentation by choosing an appropriate enumeration of the base chain.

Topologically, the base chain will be the cone of Sn−2 (with possibly an open (n− 2)-ball removed)



119

with respect to the central point.

By spiraling around Sn−2, starting from around the boundary of the n−2 ball, and covering the

rest of Sn−2, as in Figure 3.19, we obtain the higher-dimensional generalization of the procedure we

have taken in Examples 3.13, and 3.16.

Figure 3.19: Spiral enumeration of Sn−2, n = 4.

Notice that n = 2 is distinguished, since S2−2 = S0 is disjoint, which is why in the two-

dimensional case, we were not able to use the spiraling technique to enumerate the simplices.

Since we have constructed the generalized cone operator such that the cone identity holds, we

have,

Lemma 3.15. In generalized star-shaped complexes, the generalized cone operator satisfies the fol-

lowing identity,

p∂ + ∂p = I,

at the level of chains.

Proof. By construction. �

Lemma 3.16. In generalized star-shaped complexes, the generalized cocone operator satisfies the

following identity,

Hd + dH = I,

at the level of cochains.

Proof. Follows immediately from applying the proof in the trivially star-shaped case, and using the

identity in the previous lemma. �

Similarly, we have a discrete Poincaré lemma for generalized star-shaped complexes.
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Corollary 3.17 (Discrete Poincaré Lemma for Generalized Star-shaped Complexes).

Given a closed cochain αk, that is to say, dαk = 0, there exists a cochain βk−1, such that, dβk−1 =

αk.

Proof. Follows from the above lemma using the proof for the trivially star-shaped case. �

Example 3.18. We will consider an example of how the Poincaré lemma fails in the case when the

complex is not contractible. Consider the following trivially star-shaped complex, and augment by

one vertex so as to make the region non-contractible, as show in Figure 3.20.

(a) Trivially star-shaped complex (b) Non-contractible complex

Figure 3.20: Counter-example for the discrete Poincaré lemma for a non-contractible complex.

Now we attempt to verify the identity,

p∂ + ∂p = I,

and we will see how this is only true up to a chain that is homotopic to the inner boundary.

(p∂ + ∂p)


 = p


+

-

+ ∂




= +

= +
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Since the second term cannot be expressed as the boundary of a 2-chain, it will contribute a non-

trivial effect, even on closed discrete forms, and therefore the discrete Poincaré lemma does not hold

for non-contractible complexes, as expected.

3.12 Discrete Variational Mechanics and DEC

We recall that discrete variational mechanics is based on a discrete analogue of Hamilton’s principle,

and they yield the discrete Euler–Lagrange equations. A particularly interesting property of DEC

arises when it is used to construct the discrete Lagrangian for harmonic functions, and Maxwell’s

equations.

In particular, for these examples, the following diagram commutes,

Lagrangian
L : TQ→ R

DEC //

��

Discrete Lagrangian
Ld : Q×Q→ R

��

Euler–Lagrange
EL : T 2Q→ T ∗Q

DEC //
Discrete Euler–Lagrange

ELd : Q3 → T ∗Q

Which is to say that directly discretizing the differential equations for harmonic functions, and

Maxwell’s equations using DEC results in the same expressions as the discrete Euler–Lagrange equa-

tions associated with a discrete Lagrangian which is discretized from the corresponding continuous

Lagrangian by using DEC as the discretization scheme.

This is significant, since it implies that when DEC is used to discretize these equations, the

corresponding numerical scheme which is obtained is variational, and consequently exhibits excellent

structure-preserving properties.

In the variational principles for both harmonic functions and Maxwell’s equations, we require

the L2 norm obtained from the L2 inner product on Ωk(M), which is given by

〈αk, βk〉 =
∫
M

α ∧ ∗β .

The discrete analogue of this requires a primal-dual wedge product, which is given below for forms

of complementary dimension.

Definition 3.35. Given a primal discrete k-form αk ∈ Ωkd(K), and a dual discrete (n − k)-form
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β̂n−k ∈ Ωn−kd (?K), the discrete primal-dual wedge product is defined as follows,

〈αk ∧ β̂n−k, Vσk〉 =
|Vσk |

|σk|| ? σk|
〈αk, σk〉〈β̂n−k, ?σk〉

=
1
n
〈αk, σk〉〈β̂n−k, ?σk〉 ,

where Vσk is the n-dimensional support volume obtained by taking the convex hull of the simplex σk

and its dual cell ?σk.

The corresponding L2 inner product is as follows.

Definition 3.36. Given two primal discrete k-forms, αk, βk ∈ Ωkd(K), their discrete L2 inner

product, 〈αk, βk〉d, is given by

〈αk, βk〉d =
∑
σk∈K

|Vσk |
|σk|| ? σk|

〈αk, σk〉〈∗β, ?σk〉

=
1
n

∑
σk∈K

〈αk, σk〉〈∗β, ?σk〉 .

Remark 3.8. Notice that it would have been quite natural from the smooth theory to propose the

following metric tensor 〈〈 , 〉〉 for differential forms,

〈 〈〈αk, βk〉〉v, Vσk〉 = |Vσk | 〈α
k, σk〉
|σk|

〈βk, σk〉
|σk|

,

where the |Vσk | is the factor arising from integrating the volume-form over Vσk , and

〈αk, σk〉
|σk|

〈βk, σk〉
|σk|

is what we would expect for 〈〈αk, βk〉〉, if the forms αk and βk were constant on σk, which is the

product of the average values of αk, and βk.

If we adopt this as our definition of the metric tensor for forms, we can recover the definition we

obtained in §3.6 for the Hodge star operator. Starting from the definition from the smooth theory,

∫
〈〈αk, βk〉〉v =

∫
αk ∧ ∗βk ,

and expanding this in terms of the metric tensor for discrete forms, and the primal-dual wedge

operator, we obtain

〈 〈〈αk, βk〉〉v, Vσk〉 = 〈αk ∧ ∗βk, Vσk〉 ,
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|Vσk | 〈α
k, σk〉
|σk|

〈βk, σk〉
|σk|

=
|Vσk |

|σk|| ? σk|
〈αk, σk〉〈∗βk, ?σk〉 .

When we eliminate common factors from both sides, we obtain the expression,

1
|σk|

〈βk, σk〉 =
1

| ? σk|
〈∗βk, ?σk〉 ,

which is the expression we previously obtained in Definition 3.18 of §3.6.

The L2 norm for discrete differential forms is given below.

Definition 3.37. Given a primal discrete k-form αk ∈ Ωkd(K), its discrete L2 norm is given by

‖αk‖2d = 〈αk, αk〉d

=
1
n

∑
σk∈K

〈αk, σk〉〈∗αk, ?σk〉

=
1
n

∑
σk∈K

| ? σk|
|σk|

〈αk, σk〉2 .

Given these definitions, we can now reproduce some computations that were originally shown in

Castrillón-López [2003].

Harmonic Functions. Harmonic functions φ : M → R can be characterized in a variational

fashion as extremals of the following action functional,

S(φ) =
1
2

∫
M

‖dφ‖2v,

where v is a Riemannian volume-form in M . The corresponding Euler–Lagrange equation is given

by

∗d ∗ dφ = −∆φ = 0,

which is the familiar characterization of harmonic functions in terms of the Laplace–Beltrami oper-

ator.

The discrete action functional can be expressed in terms of the L2 norm we introduced above

for discrete forms,

Sd(φ) =
1
2
‖dφ‖2d

=
1
2n

∑
σ1∈K

∣∣?σ1
∣∣

|σ1|
〈dφ, σ1〉2.
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The basic variations needed for the determination of the discrete Euler–Lagrange operator are ob-

tained from variations that vary the value of the function φ at a given vertex v0, leaving the other

values fixed. These variations have the form,

φε = φ+ εη̃,

where η̃ ∈ Ω0(M ; R) is such that 〈η̃, v0〉 = 1, and 〈η̃, v〉 = 0, for any v ∈ K(0) − {v0}. This family of

variations is enough to establish the variational principle. That is, we have

0 =
d

dε

∣∣∣∣
ε=0

Sd(φε)

=
1
n

∑
σ1∈K

∣∣?σ1
∣∣

|σ1|
〈dφ, σ1〉〈dη̃, σ1〉

=
1
n

∑
v0≺σ1

∣∣?σ1
∣∣

|σ1|
〈dφ, σ1〉 sgn(σ1; v0), (3.12.1)

where sgn(σ1; v) stands for the sign of σ1 with respect to v. Which is to say, sgn(σ1; v) = 1 if

σ1 = [v′, v], and sgn(σ1; v) = −1 if σ1 = [v, v′]. On the other hand,

〈∗d ∗ dφ, v0〉 =
1

| ? v0|
〈d ∗ dφ, ?v0〉

=
1

| ? v0|
〈∗dφ, ∂ ? v0〉

=
1

| ? v0|
∑
v0≺σ1

〈∗dφ, ?σ1〉 sgn(σ1; v0)

=
1

| ? v0|
∑
v0≺σ1

| ? σ1|
|σ1|

〈dφ, σ1〉 sgn(σ1; v0),

where in the second to last equality, one has to note that the border of the dual cell of a vertex v0

consists, up to orientation, in the dual of all the 1-simplices starting from v0. This is illustrated in

Figure 3.21, and follows from a general expression for the boundary of a dual cell that was given in

Definition 3.17.

The sign factor comes from the relation between the orientation of the dual of the 1-simplices

and that of ∂ ∗ v0. From this, we conclude that the variational discrete equation, given in Equation

3.12.1, is equivalent to the vanishing of the discrete Laplace–Beltrami operator,

∗d ∗ dφ = −∆ = 0.

Maxwell Equations. We can formulate the Maxwell equations of electromagnetism in a covariant

fashion by considering the 1-form A (the potential) as our fundamental variable in a Lorentzian
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(a) Vertex v (b) ?v (c) ∂ ? v

(d) σ1 � v (e) ?σ1

Figure 3.21: Boundary of a dual cell.

manifold X. The action functional for a Lagrangian formulation of electromagnetism is given by,

S(A) =
1
2

∫
X

‖dA‖2v ,

where ‖ · ‖ is the norm on forms induced by the Lorentzian metric on X, and v is the pseudo-

Riemannian volume-form. The 1-form A is related to the 4-vector potential encountered in the

relativistic formulation of electromagnetism (see, for example Jackson [1998]).

The Euler–Lagrange equation corresponding to this action functional is given by

∗d ∗ dA = 0 .

In terms of the field strength, F = dA, the last equation is usually rewritten as

dF = 0 , ∗d ∗ F = 0 ,

which is the geometric formulation of the Maxwell equations.

For the purposes of simplicity of exposition, we consider the special case where the Lorentzian
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manifold decomposes into X = M × R, where (M, g) is a compact Riemannian 3-manifold. In

formulating the discrete version of this variational problem, we need to generalize the notion of a

discrete Hodge dual to take into account the pseudo-Riemannian metric structure. This can be

subtle in practice, and to overcome this, we consider a special family of complexes instead.

Let K ′ be a simplicial complex modelling M . For the sake of simplicity we consider M = R3

although this is not strictly necessary. We now consider a discretization {tn}n∈Z of R. We define

the complex K, modelling X = R4, the cells of which are the sets σ = σ′ × {tn} ⊂ R3 × R, and

σ = σ′ × (tn, tn+1) ⊂ R3 ×R for any σ′ ∈ K ′ and n ∈ Z. Of course, this is not a simplicial complex

but rather a “prismal” complex, as shown in Figure 3.22.

Space

T
im

e

Figure 3.22: Prismal cell complex decomposition of space-time.

The advantage of these cell complexes is the existence of the Voronoi dual. More precisely, given

any prismal cells σ′×{tn} ∈ K and σ′× (tn, tn+1) ∈ K, the Lorentz orthonormal to any of its edges

coincide with the Euclidean one in R4 and the existence of the circumcenter is thus guaranteed. In

other words, the Lorentz circumcentric dual ?K to K is the same as the Euclidean one in R4.

Remark 3.9. Much of the construction above can be carried out more generally by considering

arbitrary cell complexes in R4 that are not necessarily prismal, as long as none of its 1-cells are

lightlike. This causality condition is necessary to ensure that the circumcentric dual complex is well-

behaved. However, it is sufficient for computational purposes that the complex is well-centered, in

the sense that the Lorentzian circumcenter of each cell is contained inside the cell. These issues will

be addressed in future work.

Recall that the Hodge star ∗ is uniquely defined by satisfying the following expression,

α ∧ ∗β = 〈〈α, β〉〉v ,

for all α, β ∈ Ωk(X). The upshot of this is that the Hodge star operator depends on the metric, and

since we have a pseudo-Riemannian metric, there is a sign that is introduced in our expression for
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the discrete Hodge star (Definition 3.18) that depends on whether the cell it is applied to is either

spacelike or timelike. The discrete Hodge star for prismal complexes in Lorentzian space is given

below.

Definition 3.38. The discrete Hodge star for prismal complexes in Lorentzian space is a

map ∗ : Ωkd(K) → Ωkd(∗K) defined by giving its action on cells in a prismal complex as follows,

1
| ? σk|

〈∗αk, ?σk〉 = κ(σk)
1
|σk|

〈αk, σk〉,

where | · | stands for the volume and the causality sign κ(σk) is defined to be +1 if all the edges of

σk are spacelike, and −1 otherwise.

The causality sign of 2-cells in a (2 + 1)-space-time is summarized in Table 3.4. We should note

that the causality sign for a 0-simplex, κ(σ0), is always 1. This is because a 0-simplex has no edges,

and as such the statement that all of its edges are spacelike is trivially true.

Table 3.4: Causality sign of 2-cells in a (2 + 1)-space-time.

σ2

κ(σ2) +1 +1 −1 −1 −1

This causality term in the discrete Hodge star has consequences for the expression for the discrete

norm (Definition 3.37), which is now given.

Definition 3.39. Given a primal discrete k-form αk ∈ Ωkd(K), its discrete L2 Lorentzian norm

is given by,

‖αk‖2Lor,d =
1
n

∑
σk∈K

〈αk, σk〉〈∗αk, ?σk〉

=
1
n

∑
σk∈K

κ(σk)
| ? σk|
|σk|

〈αk, σk〉2 .

Having defined the discrete Lorentzian norm, we can express the discrete action as

Sd(A) =
1
2
‖dA‖2Lor,d
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=
1
8

∑
σ2∈K

〈dA, σ2〉〈∗dA, ?σ2〉

=
1
8

∑
σ2∈K

κ(σ2)
| ? σ2|
|σ2|

〈dA, σ2〉2 .

The basic variations needed to determine the discrete Euler–Lagrange operator are obtained from

variations that vary the value of the 1-form A at a given 1-simplex σ1
0 , leaving the other values fixed.

These variations have the form,

Aε = Aε + εη̃,

where η̃ ∈ Ω1
d(K) is given by 〈η̃, σ1

0〉 = 1 for a fixed interior σ1
0 ∈ K and 〈η̃, σ1〉 = 0 for σ1 6= σ1

0 .

The derivation of the variational principle gives

d

dε

∣∣∣∣
ε=0

Sd(Aε) =
1
4

∑
σ2∈K

| ? σ2|
|σ2|

κ(σ2)〈dA, σ2〉〈dη̃, σ2〉

=
1
4

∑
σ1
0≺σ2

| ? σ2|
|σ2|

κ(σ2)〈dA, σ2〉〈dη̃, σ2〉

=
1
4

∑
σ1
0≺σ2

| ? σ2|
|σ2|

κ(σ2)〈dA, σ2〉 sgn(σ2, σ1
0),

which vanishes for all the basic variations above. On the other hand, we now expand the discrete

1-form ∗d ∗ dA. For any σ1
0 ∈ K, we have that

〈∗d ∗ dA, σ1
0〉 =

|σ1
0 |

| ? σ1
0 |
κ(σ1

0)〈d ∗ dA, ?σ1
0〉

=
|σ1

0 |
| ? σ1

0 |
κ(σ1

0)〈∗dA, ∂ ? σ1
0〉

=
|σ1

0 |
| ? σ1

0 |
κ(σ1

0)
∑
σ1
0≺σ2

sgn(σ2, σ1
0)〈∗dA, ?σ2〉

=
|σ1

0 |
| ? σ1

0 |
κ(σ1

0)
∑
σ1
0≺σ2

| ? σ2|
|σ2|

κ(σ2)〈dA, σ2〉 sgn(σ2, σ1
0),

where the sign sgn(σ2, σ1) stands for the relative orientation between σ2 and σ1. Which is to say,

sgn(σ2, σ1) = 1 if the orientation induced by σ2 on σ1 coincides with the orientation of σ1, and

sgn(σ2, σ1) = −1 otherwise. For the second to last equality, one has to note that the border of the

dual cell of an edge σ1
0 consists, conveniently oriented with the sgn operator, of the union of the

duals of all the 2-simplices containing σ1
0 . This statement is the content of Definition 3.17, which

gives the expression for the boundary of a dual cell, and was illustrated in Figure 3.21 for the case

of n-dimensional dual cells.

By comparing the two computations, we find that for an arbitrary choice of σ1
0 ∈ K, 〈∗d∗dA, σ1

0〉
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is equal (up to a non-zero constant) to δSd(A), which always vanishes. It follows that the variational

discrete equations obtained above is equivalent to the discrete Maxwell equations,

∗d ∗ dA = 0.

3.13 Extensions to Dynamic Problems

It is desirable to leverage the exactness properties of the operators of discrete exterior calculus

to construct numerical algorithms with discrete conservation properties. For these purposes, it is

appropriate to extend the scope of DEC to incorporate dynamical behavior, by addressing the issue

of discrete diffeomorphisms and flows.

As discussed in the previous section, DEC and discrete mechanics have interesting synergis-

tic properties, and in this section we will explore a groupoid interpretation of discrete mechanics

that is particularly appropriate to formulating the notion of pull-back and push-forward of discrete

differential forms.

3.13.1 Groupoid Interpretation of Discrete Variational Mechanics

The groupoid formulation of discrete mechanics is particularly fruitful and natural, and it serves as

a unifying tool for understanding the variational formulation of discrete Lagrangian mechanics, and

discrete Euler–Poincaré reduction, as discussed in the work of Weinstein [1996] and Marsden et al.

[1999, 2000a].

The groupoid interpretation of discrete mechanics is most clearly illustrated if we consider the

discretization of trajectories on TQ in two stages. Given a curve γ : R+ → TQ, we consider a

discrete sampling given by

gi = γ(ih) ∈ TQ.

We then approximate TQ by Q×Q, and associate to gi two elements in Q. We denote this by

gi 7→ (q0i , q
1
i ).

Or equivalently, in the language of groupoids, see Cannas da Silva and Weinstein [1999]; Weinstein

[2001], we have

G

α

��
β

		
Q
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where α is the source map, and β is the target map. Then,

gi 7→ (α(gi), β(gi)) = (q0i , q
1
i ).

This can be visualized as

q0i = α(gi) q1i = β(gi)
• •!!

gi

A product · : G(2) → G is defined on the set of composable pairs,

G(2) := {(g, h) ∈ G×G | β(g) = α(h)}.

The groupoid composition g · h is defined by

α(g · h) = α(g),

β(g · h) = β(h).

This can be represented graphically as follows,

•
α(g) = α(g · h)

•
β(g) = α(h)

•
β(h) = β(g · h)

g

!!

h

!!

g·h

!!

The set of composable pairs is the discrete analogue of the set of second-order curves on TQ. A

curve γ : R+ → TQ is said to be second-order if there exists a curve q : R+ → Q, such that,

γ(t) = (q(t), q̇(t)).

The corresponding condition for discrete curves is that given a sequence of points in Q × Q,

(q01 , q
1
1), . . . , (q0p, q

1
p), we require that

q1i = q0i+1.

This implies that the discrete curve on Q×Q is derived from a (p+ 1)-pointed curve (q0, . . . , qp) on
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Q, where

qi =

q
0
i+1, if 0 ≤ i < p;

q1i , if i = p.

This condition has a direct equivalent in groupoids,

β(gi) = q1i = q0i+1 = α(gi+1).

Which is to say that the sequence of points in Q×Q are composable. In general, this hierarchy of

sets is denoted by

G(p) := {(g1, . . . , gp) ∈ Gp | β (gi) = α (gi+1)} ,

where G(0) ' Q.

In addition, the groupoid inverse is defined by the following,

α(g−1) = β(g),

β(g−1) = α(g).

This is represented as follows,

β(g−1) = α(g) α(g−1) = β(g)
• •

g

!!

g−1

aa }
v

ng_XP
I

Visualizing Groupoids. In summary, composition of groupoid elements, and the inverse of

groupoid elements can be illustrated by Figure 3.23. As we will see in the next subsection, rep-

resenting discrete diffeomorphisms as pair groupoids is the natural method of ensuring that the

mesh remains nondegenerate.

3.13.2 Discrete Diffeomorphisms and Discrete Flows

We will adopt the point of view of representing a discrete diffeomorphism as a groupoid, which was

first introduced in Pekarsky and West [2003], and appropriately modify it to reflect the simplicial

nature of our mesh. In addition, we will address the induced action of a discrete diffeomorphism on

the dual mesh.

Definition 3.40. Given a complex K embedded in V , and its corresponding abstract simplicial

complex M , a discrete diffeomorphism, ϕ ∈ Diffd(M), is a pair of simplicial complexes K1, K2,
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β-fibers
g

gh

h

β(g) = α(h)

α-fibers

g−1

G(0) ' Q

Figure 3.23: Groupoid composition and inverses.

which are realizations of M in the ambient space V . This is denoted by ϕ(M) = (K1,K2).

Definition 3.41. A one-parameter family of discrete diffeomorphisms is a map ϕ : I →

Diffd(M), such that,

π1(ϕ(t)) = π1(ϕ(s)), ∀s, t ∈ I.

Since we are concerned with evolving equations represented by these discrete diffeomorphisms,

and mesh degeneracy causes the numerics to fail, we introduce the notion of non-degenerate discrete

diffeomorphisms,

Definition 3.42. A non-degenerate discrete diffeomorphism ϕ = (K1,K2) is such that K1

and K2 are non-degenerate realizations of the abstract simplicial complex M in the ambient space

V .

Notice that it is sufficient to define the discrete diffeomorphism on the vertices of the abstract

complex M , since we can extend it to the entire complex by the relation

ϕ([v0, ..., vk]) = ([π1ϕ(v0), ..., π1ϕ(vk)], [π2ϕ(v0), ..., π2ϕ(vk)]).

If X ∈ K(0) is a material vertex of the manifold, corresponding to the abstract vertex w, that is

to say, π1ϕt(w) = X,∀t ∈ I, the corresponding trajectory followed by X in space is x = π2ϕt(w).

Then, the material velocity V (X, t) is given by

V (π1(w), t) =
∂π2ϕs(w)

∂s

∣∣∣∣
s=t

,
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and the spatial velocity v(x, t) is given by

v(π2(w), t) = V (π1(w), t) =
∂ϕs(ϕ−1

t (x))
∂s

∣∣∣∣
s=t

.

The distinction between the spatial and material representation is illustrated in Figure 3.24.

E1

E2

E3

X

e1

e2

e3

x

ϕ

Figure 3.24: Spatial and material representations.

The material velocity field can be thought of as a discrete vector field with the vectors based at

the vertices of K, which is to say that Tϕt ∈ Xd(K), is a discrete primal vector field. Notice that

ϕt on K induces a map ?ϕt on the vertices of the dual ?K, by the following,

?ϕt(c[v0, . . . , vn]) = (c[π1ϕt(v0), . . . , π1ϕt(vn)], c[π2ϕt(v0), . . . , π2ϕt(vn)]).

Similarly then, T ? ϕt ∈ Xd(?K) is a discrete dual vector field.

Comparison with Interpolatory Methods. At first glance, the groupoid formulation seems

like a cumbersome way to define a one-parameter family of discrete diffeomorphisms, and one may

be tempted to think of extending ϕt to the ambient space. We would then be thinking of ϕt : V → V .

This is undesirable since given ϕt and ψs which are non-degenerate flows, their composition ϕt ◦ψs,

which is defined, may result in a degenerate mesh when applied to K. Thus, non-degenerate flows

are not closed under this notion of composition.

If we adopt groupoid composition instead at the level of vertices, we can always be sure that if

we compose two nondegenerate discrete diffeomorphisms, they will remain a nondegenerate discrete

diffeomorphism.

Discrete Diffeomorphisms as Pair Groupoids. The space of discrete diffeomorphisms natu-

rally has the structure of a pair groupoid. The discrete analogue of T Diff(M) from the point of

view of temporal discretization is the pair groupoid Diff(M) × Diff(M). In addition, we discretize
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Diff(M) using Diffd(M), which is in turn a pair groupoid involving realizations of an abstract sim-

plicial complex in an ambient space.

3.13.3 Push-Forward and Pull-Back of Discrete Vector Fields and Dis-

crete Forms

For us to construct a discrete theory of exterior calculus that admits dynamic problems, it is critical

that we introduce the notion of push-forward and pull-back of discrete vector fields and discrete

forms under a discrete flow.

Push-Forward and Pull-Back of Discrete Vector Fields. The push-forward of a discrete

vector field satisfies the following commutative diagram,

K
? //

f

��

?K
X //

?f

��

RN

Tf

��

L
? // ?L

f∗X // RN

and the pull-back satisfies the following commutative diagram,

K
? //

f

��

?K
f∗X

//

?f

��

RN

Tf

��

L
? // ?L

X // RN

By appropriately following the diagram around its boundary, we obtain the following expressions

for the push-forward and pull-back of a discrete vector field.

Definition 3.43. The push-forward of a dual discrete vector field X ∈ Xd(?K), under the

map f : K → L, is given by its evaluation on a dual vertex σ̂0 = ?σn ∈ (?L)(0),

f∗X(?σn) = Tf ·X(?(f−1(σn))).

Definition 3.44. The pull-back of a dual discrete vector field X ∈ Xd(?L), under the map

f : K → L, is given by its evaluation on a dual vertex σ̂0 = ?σn ∈ (?K)(0),

f∗X(?σn) = (f−1)∗X(?σn) = T (f−1) ·X(?(f(σn))).

Pull-Back and Push-Forward of Discrete Forms. A natural operation involving exterior

calculus in the context of dynamic problems is the pull-back of a differential form by a flow. We
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define the pull-back of a discrete form as follows.

Definition 3.45. The pull-back of a discrete form αk ∈ Ωkd(L), under the map f : K → L, is

defined so that the change of variables formula holds,

〈f∗αk, σk〉 = 〈αk, f(σk)〉,

where σk ∈ K.

We can define the push-forward of a discrete form as its pull-back under the inverse map as

follows.

Definition 3.46. The push-forward of a discrete form αk ∈ Ωkd(K), under the map f : K → L

is defined by its action on σk ∈ L,

〈f∗αk, σk〉 = 〈(f−1)∗αk, σk〉 = 〈αk, f−1(σk)〉.

Naturality under Pull-Back of Wedge Product. We find that the discrete wedge product we

introduced in §3.8 is not natural under pull-back, which is to say that the relation

f∗(α ∧ β) = f∗α ∧ f∗β ,

does not hold in general. However, a metric independent definition that is natural under pull-back

was proposed in Castrillón-López [2003].

Definition 3.47 (Castrillón-López [2003]). Given a primal discrete k-form αk ∈ Ωkd(K), and

a primal discrete l-form βl ∈ Ωld(K), the natural discrete primal-primal wedge product,

∧ : Ωkd(K)×Ωld(K) → Ωk+ld (K), is defined by its evaluation on a (k+l)-simplex σk+l = [v0, . . . , vk+l],

〈αk ∧ βl, σk+l〉 =
1

(k + l + 1)!

∑
τ∈Sk+l+1

sign(τ)α ^ β(τ(σk+l)) .

In contrasting this definition to that given by Definition 3.24, we see that the geometric factor

|σk+l ∩ ?vτ(k)|
|σk+l|

,

has been replaced by
1

k + l + 1

in this alternative definition. By replacing the geometric factor which is metric dependent with a

constant factor, Definition 3.47 becomes natural under pull-back.
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The proofs in §3.8 that the discrete wedge product is anti-commutative, and satisfies a Leibniz

rule, remain valid for this alternative discrete wedge product, with only trivial modifications. As for

the proof of the associativity of the wedge product for closed forms, we note the following identity,

∑
τ∈Sk+l+1

|σk+l ∩ ?vτ(k)|
|σk+l|

=
∑

τ∈Sk+l+1

1
k + l + 1

= (k + l)! ,

which is a crucial observation for the original proof to apply to the alternative wedge product.

3.14 Remeshing Cochains and Multigrid Extensions

It is sometimes desirable, particularly in the context of multigrid, multiscale, and multiresolution

computations, to be able to represent a discrete differential form which is given as a cochain on a

prescribed mesh, as one which is supported on a new mesh. Given a differential form ωk ∈ Ωk(K),

and a new mesh M such that |K| = |M |, we can define it at the level of cosimplices,

∀τk ∈M (k), 〈ωk, τk〉 =
∑

σk∈K(k)

sgn(τk, σk)
|Vτk ∩ Vσk |
|Vσk |

〈ωk, σk〉,

and extend this by linearity to cochains. Here, sgn(τk, σk) is +1 if the orientation of τk and σk

are consistent, and −1 otherwise. Since k-skeletons of meshes that are not related by subdivision

may not have nontrivial intersections, intersections of support volumes are used in the remeshing

formula, as opposed to intersections of the k-simplices.

We denote this transformation at the level of cochains as, TK,M : Ck(K) → Ck(M). This has

the natural property that if we have a k-volume Uk that can be represented as a chain in either the

complex K or the complex M , that is to say, Uk = σk1 + . . .+ σkl = τk1 + . . .+ τkl , then we have

〈ωk, τk1 + . . .+ τkm〉 =
m∑
i=1

〈ω, τki 〉 =
m∑
i=1

∑
σk∈K(k)

sgn(τki , σ
k)
|Vτk

i
∩ Vσk |

|Vσk |
〈ωk, σk〉

=
m∑
i=1

l∑
j=1

sgn(τki , σ
k
j )
|Vτk

i
∩ Vσk

j
|

|Vσk
j
|

〈ωk, σkj 〉

=
l∑

j=1

m∑
i=1

sgn(τki , σ
k
j )
|Vτk

i
∩ Vσk

j
|

|Vσk
j
|

〈ωk, σkj 〉

=
l∑

j=1

〈ωk, σkj 〉 = 〈ωk, σk1 + . . .+ σkl 〉.

Which is to say that the integral of the differential form over Uk is well-defined, and independent of

the representation of the differential form.
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Note that, in particular, if we choose to coarsen the mesh, the value the form takes on a cell in

the coarser mesh is simply the sum of the values the form takes on the old cells of the fine mesh

which make up the new cell in the coarser mesh.

Non-Flat Manifolds. The case of non-flat manifolds presents a challenge in remeshing akin to

that encountered in the discretization of differential forms. In particular, if the two meshes represent

different discretizations of a non-flat manifold, they will in general correspond to different polyhedral

regions in the embedding space, and not have the same support region.

We assume that our discretization of the manifold is sufficiently fine that for every simplex, all

its vertices are contained in some chart. Then, by using these local charts, we can identify support

volumes in the computational domain with n-volumes in the manifold, and thereby make sense of

the remeshing formula.

3.15 Conclusions and Future Work

We have presented a framework for discrete exterior calculus using the cochain representation of

discrete differential forms, and introduced combinatorial representations of discrete analogues of

differential operators on discrete forms and discrete vector fields. The role of primal and dual cell

complexes in the theory are developed in detail. In addition, extensions to dynamic problems and

multi-resolution computations are discussed.

In the next few paragraphs, we will describe some of the future directions that emanate from the

current work on discrete exterior calculus.

Relation to Computational Algebraic Topology Since we have introduced a discrete Laplace-

deRham operator, one can hope to develop a discrete Hodge-deRham theory, and relate the deRham

cohomology of a simplicial complex to its simplicial cohomology.

Extensions to Non-Flat Manifolds. The intrinsic notion of what constitutes the discrete tan-

gent space to a node on a non-flat mesh remains an open question. It is possible that this notion

is related to a choice of discrete connection on the mesh, and it is an issue that deserves further

exploration.

Generalization to Arbitrary Tensors. The discretization of differential forms as cochains is

particularly natural, due to the pairing between forms and volumes by integration. When attempting

to discretize an arbitrary tensor, the natural discrete analogue is unclear. In particular, while it is
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possible to expand an arbitrary tensor using the tensor product of covariant and contravariant one-

tensors, this would be cumbersome to represent on a mesh. In Chapter 4, which is on discrete

connections, we will see Lie group-valued discrete 1-forms, and one possible method of discretizing a

(p, q)-tensor that is alternating in the contravariant indices, is to consider it as a (0, q)-tensor-valued

discrete p-form.

It would be particularly interesting to explore this in the context of the elasticity complex (see,

for example, Arnold [2002]),

se(3) � � // C∞(Ω,R3) ε // C∞(Ω,S) J // C∞(Ω,S) div // C∞(Ω,R3) // 0 ,

where S is the space of 3 × 3 symmetric matrices. One approach to discretize this was suggested

in Arnold [2002], which cites the use of the Bernstein–Gelfand–Gelfand resolution in Eastwood [2000]

to derive the elasticity complex from the deRham complex. Alternatively, it might be appropriate

in the context of the elasticity complex to consider Lie algebra-valued discrete differential forms.

Convergence and Higher-Order Theories. The natural question from the point of view of nu-

merical analysis would be to carefully analyze the convergence properties of these discrete differential

geometric operators. In addition, higher-order analogues of the discrete theory of exterior calculus

are desirable from the point of view of computational efficiency, but the cochain representation is

attractive due to its conceptual simplicity and the elegance of representing discrete operators as

combinatorial operations on the mesh.

It would therefore be desirable to reconcile the two, by ensuring that high-order interpolation

and combinatorial operations are consistent. As a low-order example, Whitney forms, which are

used to interpolate differential forms on a simplicial mesh, have the nice property that taking the

Whitney form associated with the coboundary of a simplicial cochain is equal to taking the exterior

derivative of the Whitney form associated with the simplicial cochain. As such, the coboundary

operation, which is a combinatorial operation akin to finite differences, is an exact discretization of

the exterior derivative, when applied to the degrees of freedom associated to the finite-dimensional

function space of Whitney forms.

It would be interesting to apply subdivision surface techniques to construct interpolatory spaces

that are compatible with differential geometric operations that are combinatorial operations on the

degrees of freedom. This will result in a massively simplified approach to higher-order theories

of discrete exterior calculus, by avoiding the use of symbolic computation, which would otherwise

be necessary to compute the action of continuous exterior differential operators on the polynomial

expansions for differential forms.


