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Chapter 2

Discrete Routh Reduction

In collaboration with Sameer M. Jalnapurkar, Jerrold E. Marsden, and Matthew West.

Abstract

This chapter investigates the relationship between Routh symmetry reduction and

time discretization for Lagrangian systems. Within the framework of discrete vari-

ational mechanics, a discrete Routh reduction theory is constructed for the case of

abelian group actions, and extended to systems with constraints and non-conservative

forcing or dissipation. Variational Runge–Kutta discretizations are considered in de-

tail, including the extent to which symmetry reduction and discretization commute.

In addition, we obtain the Reduced Symplectic Runge–Kutta algorithm, which can be

considered a discrete analogue of cotangent bundle reduction. We demonstrate these

techniques numerically for satellite dynamics about the Earth with a non-spherical J2

correction, and the double spherical pendulum. The J2 problem is interesting because

in the unreduced picture, geometric phases inherent in the model and those due to

numerical discretization can be hard to distinguish, but this issue does not appear in

the reduced algorithm, and one can directly observe interesting dynamical structures.

The main point of the double spherical pendulum is to provide an example with a

nontrivial magnetic term in which our method is still efficient, but is challenging to

implement using a standard method.

2.1 Introduction

Given a mechanical system with symmetry, we can restrict the flow on the phase space to a level set

of the conserved momentum. This restricted flow induces a “reduced” flow on the quotient of this
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level set by the subgroup of the symmetry group that acts on it. Thus we obtain a reduced dynamical

system on a reduced phase space. The process of reduction has been enormously important for many

topics in mechanics such as stability and bifurcation of relative equilibria, integrable systems, etc.

The purpose of the present work is to contribute to the development of reduction theory for

discrete time mechanical systems, using the variational formulation of discrete mechanics described

in Marsden and West [2001]. We also explore the relationship between continuous time reduction and

discrete time reduction, and discuss reduction for symplectic Runge–Kutta integration algorithms

and its relationship to the theory of discrete reduction.

The discrete time mechanical systems used here are derived from a discrete variational principle

on the discrete phase space Q × Q. Properties such as conservation of symplectic structure and

conservation of momentum follow in a natural way from the discrete variational principle, and the

discrete evolution map can thus be regarded as a symplectic-momentum integrator for a continuous

system.

The theory of discrete variational mechanics in the form we shall use it has its roots in the

optimal control literature in the 1960’s; see, for example, Jordan and Polak [1964], and Hwang and

Fan [1967]. It was formulated in the context of mechanics by Maeda [1981], Veselov [1988, 1991]

and Moser and Veselov [1991]. It was further developed by Wendlandt and Marsden [1997], and

Marsden and Wendlandt [1997], including a constrained formulation, and by Marsden et al. [1998],

who extended these ideas to multisymplectic partial differential equations. For a general overview

and many more references we refer to Marsden and West [2001].

Although symplectic integrators have typically only been considered for conservative systems,

in Kane et al. [2000] it was shown how the discrete variational mechanics can be extended to

include forced and dissipative systems. This yields integrators for non-conservative systems which

can demonstrate exceptionally good long-time behavior, and which correctly simulate the decay or

growth in quantities such as energy and momentum. The discrete mechanics for non-conservative

systems is discussed in §2.8.2, and it is shown how the discrete reduction theory can also handle

forced and dissipative systems.

The formulation of discrete mechanics in this paper is best suited for constructing structure

preserving integrators for mechanical systems that are specified in terms of a regular Lagrangian.

Jalnapurkar and Marsden [2003], building on the work of Marsden and West [2001], show how to

obtain structure-preserving variational integrators for mechanical systems specified in terms of a

Hamiltonian. This method can be applied even if the Hamiltonian is degenerate.

A complementary approach to the Routh theory of reduction used in this paper is that of Lie–

Poisson and Euler–Poincaré reduction, where the dynamics of an equivariant system on a Lie group

can be reduced to dynamics on the corresponding Lie algebra. A discrete variational formulation of
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this was given in Marsden et al. [1999, 2000a], Bobenko et al. [1998], and Bobenko and Suris [1999].

Eventually one will need to merge that theory with the theory in the present paper.

We shall now briefly describe the contents of each section of this paper. In §2.2 we give a summary

of some well known results on reduction for continuous-time mechanical systems with symmetry.

Specifically, we discuss Routh reduction and its relationship with the theory of cotangent bundle

reduction. In §2.3 we develop the theory of discrete reduction, which includes the derivation of a

reduced variational principle, and proof of the symplecticity of the reduced flow. We also discuss

in this section the relationship between continuous- and discrete-time reduction. In §2.4 we discuss

a link between the theory of discrete mechanics and symplectic Runge–Kutta algorithms. In §2.5,

we describe how our symplectic Runge–Kutta algorithm for a mechanical system with symmetry

can be reduced to obtain a reduced symplectic Runge–Kutta algorithm. In §2.6 we put together

in a coherent way the results of the previous sections. We also discuss how the original reduction

procedure of Routh [1877, 1884] relates to our results. In §2.8 we extend the theory of discrete

reduction to systems with constraints and external forces, and lastly, in §2.9 we present a numerical

example of satellite dynamics about an oblate Earth.

2.2 Continuous Reduction

In this section we discuss reduction of continuous mechanical systems, in both the Lagrangian and

Hamiltonian settings. Our purpose here is to fix notation and recall some basic results. For a

more detailed exposition, see Marsden and Scheurle [1993a,b], Holm et al. [1998], Jalnapurkar and

Marsden [2000], Marsden et al. [2000b], and Cendra et al. [2001] for Lagrangian reduction, and for

Hamiltonian reduction, see, for example, Abraham and Marsden [1978] as well as Marsden [1992]

for cotangent bundle reduction.

Suppose we have a mechanical system with configuration manifold Q, and let L : TQ→ R be a

given Lagrangian. Let q = (q1, . . . , qn) be coordinates on Q. The Euler–Lagrange (EL) equations

on TQ are

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (2.2.1)

These equations define a flow on TQ if L is a regular Lagrangian, which we assume to be the

case. Let XE denote the vector field on TQ that corresponds to the flow. We have a Legendre

transformation, FL : TQ→ T ∗Q, defined by

FL : (q, q̇) 7→
(
q,
∂L

∂q̇

)
.
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The Hamiltonian H on T ∗Q is obtained by pushing forward the energy function E on TQ, which is

defined by

E(q, q̇) = 〈FL(q, q̇), q̇〉 − L(q, q̇).

We have a canonical symplectic structure ΩQ on T ∗Q. From ΩQ and H, we obtain the Hamiltonian

vector field XH on T ∗Q. A basic fact is that XH is the push-forward of XE using FL. Since the

flow of XH preserves ΩQ, the flow of XE , i.e., the flow derived from the EL equations, preserves

ΩL := (FL)∗ΩQ.

Suppose an abelian group G acts freely and properly on Q so that Q is a principal fibre bundle

over shape space S := Q/G. Let πQ,S : Q → S be the natural projection. Given x ∈ S, we

can find an open set U ⊂ S, such that π−1
Q,S(U) is diffeomorphic to G × U . Such a diffeomorphism

is called a local trivialization. Given a local trivialization, we can use local coordinates on G and

on S to obtain a set of local coordinates on Q. If g = (g1, . . . , gr) and x = (x1, . . . , xs) are local

coordinates on G and U ⊂ S, respectively, then q = (g, x) = (g1, . . . , gr, x1, . . . , xs) can be taken as

local coordinates on Q.

The action of G on Q on be lifted to give actions of G on TQ and T ∗Q. We also have a momentum

map J : T ∗Q → g∗, defined by the equation J(αq) · ξ = 〈αq, ξQ(q)〉, where αq ∈ T ∗qQ, ξ ∈ g, and

ξQ(q) is the infinitesimal generator corresponding to the action of G on Q evaluated at q. We can

pull-back J to TQ using the Legendre transform FL to obtain a Lagrangian momentum map

JL := FL∗J : TQ→ g∗.

If the Lagrangian L is invariant under the lifted action of G on TQ, the associated Hamiltonian

H will be invariant under the action of G on T ∗Q. In this situation, Noether’s theorem tells us that

the flows on TQ and on T ∗Q preserve the momentum maps JL and J , respectively.

Since locally, Q ≈ G × S, we also have the local representation TQ ≈ TG × TS. Thus, if (g, ġ)

are local coordinates on TG, and (x, ẋ) are local coordinates on TS, (g, x, ġ, ẋ) are local coordinates

on TQ. From the formula for the momentum map and freeness of the action, one sees that ġ is

determined from (g, x, ẋ) and the value of the momentum. Thus, J−1
L (µ) is locally diffeomorphic to

G × TS. If G is abelian (which is what we have assumed), it follows that G acts on J−1
L (µ), and

that J−1
L (µ)/G is locally diffeomorphic to TS. Let the natural projection J−1

L (µ) → TS be denoted

by πµ,L.

In a local trivialization, let q ∈ Q correspond to (g, x) ∈ G×S. Thus TqQ can be identified with

TgG× TxS.

Let A : TQ → g be a chosen principal connection. Using a local trivialization, the connection
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can be described by the equation

A(ġ, ẋ) = A(x)ẋ+ g−1 · ġ.

Here A(x) : TxS → g is the restriction of A to TxS. (TxS is identified with the subspace TxS × {0}

of TgG × TxS, which is in turn identified with TqQ.) Note that the map A(x) depends upon the

particular trivialization that we are using.

The connection gives us an intrinsic way of splitting each tangent space to Q into horizontal and

vertical subspaces. The vertical space Vq at q is the tangent space to the group orbit through q. If

Aq : TqQ → g is the restriction of A, then the horizontal space Hq is defined as the kernel of Aq.

The maps hor : TqQ→ Hq and ver : TqQ→ Vq are the horizontal and vertical projections obtained

from the split TqQ = Hq ⊕ Vq.

If L is of the form kinetic minus potential energy, then A can be chosen to be the mechanical

connection, although we shall not insist on this choice. However, in this case one gets, for example,

as in Marsden et al. [2000b], a global diffeomorphism J−1
L (µ)/G ∼= TS.

Reduction on the Lagrangian Side. From the connection A we obtain a 1-form Aµ on Q defined

by

Aµ(q)q̇ := 〈µ,A(q̇)〉.

The exterior derivative dAµ of Aµ is a 2-form on Q. It can be shown (see, for example, Marsden

[1992] or Marsden et al. [2000b]) that dAµ is G-invariant and is zero on all vertical tangent vectors

to Q. Thus, dAµ drops to a 2-form on S, which we shall call βµ. It is often called the magnetic

2-form.

If q is a curve that solves the Euler–Lagrange equations, then it is a solution of Hamilton’s

variational principle, which states that

δ

∫ b

a

L(q, q̇) dt = 0,

for all variations δq of q that vanish at the endpoints. The curve x obtained by projecting this

solution q onto the shape space also solves a variational principle on the shape space. This reduced

variational principle has the form

δ

∫ b

a

R̂µ(x, ẋ) dt =
∫ b

a

βµ(ẋ, δx) dt, (2.2.2)

for all variations δx of x that vanish at the endpoints and for a function R̂µ that we shall now define.
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To define the Routhian R̂µ on TS, we first define a function Rµ on TQ by

Rµ(q, q̇) = L(q, q̇)− Aµ(q)q̇,

where µ is the momentum of the solution q. The restriction of Rµ to J−1
L (µ) is G-invariant and R̂µ

is obtained by dropping Rµ|J−1
L (µ) to J−1

L (µ)/G ≈ TS.

It is easy to check that the reduced variational principle above is equivalent to the equations

∂R̂µ

∂x
− d

dt

∂R̂µ

∂ẋ
= iẋβµ(x), (2.2.3)

where iẋ denotes interior product of the 2-form βµ with the vector ẋ. We call Equation 2.2.3 the

Routh equations.

Reduction on the Hamiltonian Side. If the group G is abelian (which is what we have as-

sumed), then from equivariance of the momentum map, we see thatG acts on the momentum level set

J−1(µ) ⊂ T ∗Q. The quotient J−1(µ)/G can be identified with T ∗S. The projection J−1(µ) → T ∗S

called πµ and can be defined as follows: If αq ∈ J−1(µ), then the momentum shift αq − Aµ(q)

annihilates all vertical tangent vectors at q ∈ Q, as shown by the following calculation:

〈αq − Aµ(q), ξQ(q)〉 = J(αq) · ξ − 〈µ, ξ〉 = 〈µ, ξ〉 − 〈µ, ξ〉 = 0.

Thus, αq − Aµ(q) induces an element of T ∗xS and πµ(αq) is defined to be this element.

By Noether’s theorem, the flow of the Hamiltonian vector fieldXH leaves the set J−1(µ) invariant

and is equivariant, and so the restricted flow induces a reduced flow on T ∗S. This reduced flow

corresponds to a reduced Hamiltonian vector XHµ
on T ∗S, which can be obtained from a reduced

Hamiltonian Hµ and a reduced symplectic form Ωµ. The reduced energy at momentum level µ is

denoted Hµ and is obtained by restricting H to J−1(µ) and then, using its invariance, to drop it to

a function on T ∗S. Similarly, we get the reduced symplectic form Ωµ by restricting ΩQ to J−1(µ)

and then dropping to T ∗S; namely, the reduced symplectic structure Ωµ is related to ΩQ by the

equation

π∗µΩµ = i∗µΩQ,

and is preserved by the reduced flow. An important result for cotangent bundles is that Ωµ =

ΩS − π∗T∗S,Sβµ, where ΩS is the canonical symplectic form on T ∗S, and πT∗S,S : T ∗S → S is the

natural projection. See, for example, Marsden [1992] for the proof.
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Relating Lagrangian and Hamiltonian Reduction. The projections πµ,L : J−1
L (µ) → TS and

πµ : J−1(µ) → T ∗S are related by the equation,

πµ ◦ FL = FR̂µ ◦ πµ,L,

where FR̂µ : TS → T ∗S is the reduced Routh-Legendre transform and is defined by

FR̂µ : (x, ẋ) 7→

(
x,
∂R̂µ

∂ẋ

)
.

Notice that the Routhian R̂µ has the momentum shift built into it as does the projection πµ. It

readily follows that the reduced dynamics on TS and on T ∗S, given by the Routh equations and the

vector field XHµ
, respectively, are also related by the reduced Legendre transform FR̂µ. Thus, the

relationships between the reduced and “unreduced” spaces and the reduced and unreduced dynamics

can be depicted in the following commutative diagram:

(J−1
L (µ), EL) FL //

πµ,L

��

(J−1(µ), XH)

πµ

��

(TS,R) FR̂µ
// (T ∗S,XHµ)

From the commutativity of this diagram, one sees that conservation of the symplectic 2-form

(FR̂µ)∗(ΩS − π∗T∗S,Sβµ) by the flow of the Routh equations follows from the conservation of the 2-

form ΩS−π∗T∗S,Sβµ by the flow of the reduced Hamiltonian vector field. Conservation of (FR̂µ)∗(ΩS−

π∗T∗S,Sβµ) can also be shown directly from the reduced variational principle (Equation 2.2.2).

Reconstruction. There is a general theory of reconstruction for both the Hamiltonian and La-

grangian sides of reduction. The problem is this: given an integral curve in the reduced space TS

or T ∗S, a value of µ and an initial condition in the µ-level set of the momentum map, how does one

reconstruct the integral curve through that initial condition in TQ or T ∗Q? This question involves

the theory of geometric phases and of course is closely related to the classical constructions of so-

lutions by quadratures given a set of integrals of motion. This is not a trivial procedure, even for

abelian symmetry groups, although in this case things are somewhat more explicit. This procedure

is discussed at length in, for example, Marsden et al. [1990], Marsden [1992] and Marsden et al.

[2000b]. We shall need this theory at a couple of points in what follows.
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2.3 Discrete Reduction

2.3.1 Discrete Variational Mechanics

In this paper, we will be using the theory of discrete mechanics as described in Marsden and West

[2001]. In this subsection, we briefly describe the essential features of this theory and fix our notation.

Discrete Lagrangians. Given a configuration manifold Q, a discrete Lagrangian system consists

of the discrete phase space Q × Q and a discrete Lagrangian Ld : Q × Q → R. As we are

interested in discrete systems which approximate a given continuous system, we will take discrete

Lagrangians which depend on a timestep h, so that Ld : Q×Q× R → R should be thought of as

approximating the action for time h,

Ld(q0, q1, h) ≈
∫ h

0

L(q(t), q̇(t)) dt, (2.3.1)

where q : [0, h] → Q is a continuous trajectory solving the Euler–Lagrange equations for L with

boundary conditions q(0) = q0 and q(h) = q1. When the timestep is fixed in a discussion, we often

neglect the timestep dependence in Ld and write Ld(q0, q1) for simplicity.

Discrete Euler–Lagrange Equations. Just as continuous trajectories are maps from [0, T ] to

Q, we consider discrete trajectories, which are maps from {0, h, 2h, . . . , Nh = T} to Q. This gives

a set of points in Q which we denote q = {qk}Nk=0.

Having defined a discrete Lagrangian, we define the discrete action to be a function mapping

discrete trajectories q = {qk}Nk=0 to the reals, given by

Gd(q) =
N−1∑
k=0

Ld(qk, qk+1). (2.3.2)

Hamilton’s principle requires that the discrete action be stationary with respect to variations van-

ishing at k = 0 and k = N . Computing the variations gives

dGd(q) · δq =
N−1∑
k=0

[D1Ld(qk, qk+1) · δqk +D2Ld(qk, qk+1) · δqk+1]

=
N−1∑
k=1

[D2Ld(qk−1, qk) +D1Ld(qk, qk+1)] · δqk

+D1Ld(q0, q1) · δq0 +D2Ld(qN−1, qN ) · δqN .

The requirement that this be zero for all variations satisfying δq0 = δqN = 0 gives the discrete
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Euler–Lagrange (DEL) equations,

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0, (2.3.3)

for each k = 1, . . . , N−1. These implicitly define the discrete Lagrange map, FLd
: Q×Q→ Q×Q;

(qk−1, qk) 7→ (qk, qk+1). We also refer to this map as the discrete Lagrangian evolution operator.

Discrete Lagrange Forms. The boundary terms in the expression for dGd can be identified as

the two discrete Lagrange 1-forms on Q×Q, which are

Θ+
Ld

(q0, q1) = D2Ld(q0, q1)dq1, (2.3.4a)

Θ−
Ld

(q0, q1) = −D1Ld(q0, q1)dq0. (2.3.4b)

In coordinates, note that

Θ+
Ld

=
∂Ld
∂qi1

dqi1. (2.3.5)

We define the discrete Lagrange 2-form on Q×Q to be

ΩLd
= −dΘ+

Ld
, (2.3.6)

which in coordinates is

ΩLd
= −d

(
∂Ld
∂qi1

dqi1

)
=

∂2Ld

∂qi1∂q
j
2

dqi1 ∧ dq
j
2. (2.3.7)

A straightforward calculation shows that

ΩLd
= −dΘ−

Ld
. (2.3.8)

The space of solutions of the discrete Euler–Lagrange equations can be identified with the space

Q×Q of initial conditions (q0, q1). Restricting the free variations of the discrete action to this space

shows that we have

dGd|Q×Q = −Θ−
Ld

+ (FN−1
Ld

)∗(Θ+
Ld

),

and so taking a second derivative and using the fact that d2 = 0 shows that

(FN−1
Ld

)∗ΩLd
= ΩLd

.
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In particular, taking N = 2, we see that the discrete Lagrange evolution operator is symplectic; that

is,

(FLd
)∗ΩLd

= ΩLd
. (2.3.9)

Discrete Legendre Transforms. Given a discrete Lagrangian we define the discrete Legendre

transforms, F+Ld,F−Ld : Q×Q→ T ∗Q, by

F−Ld(q0, q1) = (q0,−D1Ld(q0, q1)), (2.3.10a)

F+Ld(q0, q1) = (q1, D2Ld(q0, q1)), (2.3.10b)

and we observe that the discrete Lagrange 1- and 2-forms are related to the canonical 1- and 2-

forms on T ∗Q by pull-back under the discrete Legendre transforms; that is, Θ±
Ld

= (F±Ld)∗(Θ) and

ΩLd
= (F±Ld)∗(Ω).

Pushing the discrete Lagrange map forward to T ∗Q with the discrete Legendre transform gives

the push-forward discrete Lagrange map, F̃Ld
: T ∗Q→ T ∗Q by F̃Ld

= F±Ld ◦FLd
◦ (F±Ld)−1.

One checks that one has the same map for the + case and the − case. In fact, the expression for

the push-forward discrete Lagrange map can be seen to be determined as follows: F̃Ld
: (q0, p0) 7→

(q1, p1), where

p0 = −D1Ld(q0, q1), (2.3.11a)

p1 = D2Ld(q0, q1). (2.3.11b)

Note that by construction, the push-forward discrete Lagrange map preserves the canonical 2-form.

The push-forward discrete Lagrange map is thus symplectic; that is, (F̃Ld
)∗(Ω) = Ω.

Exact Discrete Lagrangians. The relationship between a discrete Lagrangian and the corre-

sponding push-forward discrete Lagrange map is that of generating functions of the first kind.

Generating function theory shows that for any symplectic map T ∗Q→ T ∗Q (at least those near the

identity), there is a corresponding generating function Q×Q→ R which generates the map in the

sense of Equation 2.3.11.

It is thus clear that there is a discrete Lagrangian for every symplectic map, including the exact

flow F tH : T ∗Q → T ∗Q of the Hamiltonian system corresponding to the Lagrangian L. This is

referred to as the exact discrete Lagrangian and Hamilton–Jacobi theory shows that it is equal

to the action,

LEd (q0, q1, h) =
∫ h

0

L(q(t), q̇(t)) dt, (2.3.12)
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where q : [0, h] → Q solves the Euler–Lagrange equations for L with q(0) = q0 and q(h) = q1. This

classical theorem of Jacobi is proved in, for example, Marsden and Ratiu [1999].

Using this exact discrete Lagrangian, the push-forward discrete Lagrange map will be exactly

the Hamiltonian flow map for time h, so that F̃LE
d

= FhH . That is, discrete trajectories q = {qk}Nk=0

will exactly sample continuous trajectories q(t), namely qk = q(kh).

Approximate Discrete Lagrangians. If we choose a discrete Lagrangian which only approxi-

mates the action, then the resulting push-forward discrete Lagrange map will only approximate the

true flow. The orders of approximation are related, so that if the discrete Lagrangian is of order r,

Ld =
∫ h

0

L(q, q̇) dt,+O(hr+1), (2.3.13)

then the push-forward discrete Lagrange map will also be of order r; that is,

F̃hLd
= FhH +O(hr+1). (2.3.14)

By choosing discrete Lagrangians which are at least consistent (r ≥ 1) we can regard the discrete

Lagrange map as an integrator for the continuous system.

2.3.2 Discrete Mechanical Systems with Symmetry

Let G be an abelian Lie group that acts freely and properly on the configuration manifold Q. We

will assume that our discrete Lagrangian Ld is invariant under the diagonal action of G on Q×Q.

Such a discrete Lagrangian could have been obtained by discretizing a continuous Lagrangian L that

is invariant under the lifted action of G on TQ. For a discussion of how to construct G-invariant

discrete Lagrangians from G-invariant Lagrangians using natural charts, please see §5.3.2.

Note that Q is a bundle over the shape space S = Q/G. Using a local trivialization, Q can be

locally identified with G× S. Thus Q×Q ≈ G× S ×G× S. With this identification, (qk, qk+1) =

(hk, xk, hk+1, xk+1). We will use ∂/∂gi, i = 1, 2, to denote partial derivatives with respect to the

first and second group variables, and ∂/∂si, i = 1, 2, to denote partial derivatives with respect to

the first and second shape space variables.

Given a discrete Lagrangian, the discrete momentum map, Jd : Q×Q→ g∗, is defined by

Jd(q0, q1) · ξ = D2Ld(q0, q1) · ξQ(q1). (2.3.15)
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Since Ld is invariant under the action of G, we have

D1Ld(q0, q1) · ξQ(q0) +D2Ld(q0, q1) · ξQ(q1) = 0.

Thus,

Jd(q0, q1) · ξ = D2Ld(q0, q1) · ξQ(q1) = −D1Ld(q0, q1) · ξQ(q0)

= ξQ(q1) Θ+
Ld

(q0, q1) = ξQ(q0) Θ−
Ld

(q0, q1),

where X ω denotes the interior product of a vector X with a 1-form ω. Thus, if {q0, q1, q2, . . .}

solves the DEL equations, then

Jd(q1, q2) · ξ = D2Ld(q1, q2) · ξQ(q2) = −D1Ld(q1, q2) · ξQ(q1)

= D2Ld(q0, q1) · ξQ(q1) = Jd(q0, q1) · ξ.

Thus, the discrete momentum is conserved by the discrete Lagrange map, FLd
: Q × Q → Q × Q,

FLd
: (q0, q1) 7→ (q1, q2). In other words, the discrete momentum is conserved along solutions of the

DEL equations, which is referred to as the discrete Noether theorem.

By definition of Jd,

Jd(q0, q1) · ξ = J(D2Ld(q0, q1)) · ξ,

where J : T ∗Q→ g∗ is the momentum map on T ∗Q. Thus,

Jd = J ◦ FLd,

where FLd = D2Ld : Q×Q→ T ∗Q is the discrete Legendre transform. (Note that in §2.3.1 we had

two discrete Legendre transforms, F+Ld and F−Ld. For the remainder of this paper, we use the term

discrete Legendre transform and the symbol FLd to denote F+Ld to make a specific choice.) Thus,

FLd maps J−1
d (µ), which is the µ-level set of the discrete momentum to J−1(µ). Also, since Jd is

conserved by the discrete evolution operator FLd
, it follows that the push-forward discrete Lagrange

map F̃Ld
: T ∗Q→ T ∗Q preserves J .

In a local trivialization, where q1 = (θ1, x1),

ξQ(q1) =
d

dt


t=0

(exp (tξ) · θ1, x1) = (TRθ1 · ξ, 0),
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where Rθ1 denotes right multiplication on G by θ1. Thus,

Jd(q0, q1) · ξ =
[
∂Ld
∂g2

∂Ld
∂s2

]
·


TRθ1 · ξ

0

 =
∂Ld
∂g2

◦ TRθ1 · ξ.

Hence,

Jd(q0, q1) =
∂Ld
∂g2

(θ0, x0, θ1, x1) ◦ TRθ1 .

The momentum map, Jd : Q×Q→ g∗, is equivariant as the following calculation shows:

Jd(θ · q0, θ · q1) · ξ = D1Ld(θ · q0, θ · q1) · ξQ(θ · q0)

= D1Ld(θ · q0, θ · q1) · θ · (Adθ−1 ξ)Q(q0)

= D1Ld(q0, q1) · (Adθ−1 ξ)Q(q0)

= Jd(q0, q1) ◦Adθ−1 ·ξ

= (Ad∗θ−1 Jd(q0, q1)) · ξ.

Thus, the coadjoint isotropy subgroup Gµ of G acts on J−1
d (µ). Since G is abelian, Gµ = G, and

thus G acts on J−1
d (µ).

If the value of the momentum is µ, the equation

∂Ld
∂g2

(θ0, x0, θ1, x1) ◦ TRθ1 = µ,

determines θ1 implicitly as a function of θ0, x0, x1 and µ. Thus the level set J−1
d (µ) can be (locally)

identified with G× S × S. The quotient J−1
d (µ)/G is thus locally diffeomorphic to S × S.

If we choose a momentum µ, it follows from the above discussion that there is a unique map

ψµ : S × S → G, such that,

Jd(e, xk, ψµ(xk, xk+1), xk+1) = µ.

Further, if θk ∈ G, θk · (e, xk, ψµ(xk, xk+1), xk+1) = (θk, xk, θk · ψµ(xk, xk+1), xk+1) is also in

J−1
d (µ). Thus for a given µ, the function giving θk+1 in terms of θk, xk and xk+1 is

θk+1 = θk · ψµ(xk, xk+1). (2.3.16)

Reconstruction. The following lemma gives a basic result on the reconstruction of discrete curves

in the configuration manifold Q from those in the shape space S. The lemma is similar to its
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continuous counterpart, as in Lemma 2.2 of Jalnapurkar and Marsden [2000]. Recall that Vq denotes

the vertical space at q, which is the space of all vectors at q that are infinitesimal generators ξQ(q) ∈

TqQ. We say that the discrete Lagrangian Ld is group-regular if the bilinear map D2D1Ld(q, q) :

TqQ × TqQ → R restricted to the subspace Vq × Vq is nondegenerate. Besides regularity, we shall

make group-regularity a standing assumption in this chapter as well.

Lemma 2.1 (Reconstruction Lemma). Let µ ∈ g∗ be given, and x = {x0, . . . , xn} be a suffi-

ciently closely spaced discrete curve in S. Let q0 ∈ Q be such that πQ,S(q0) = x0. Then, there is a

unique closely spaced discrete curve q = {q0, . . . , qn} such that πQ,S(qk) = xk and Jd(qk, qk+1) = µ,

for k = 0, . . . , n− 1.

Proof. We must construct a point q1 close to q0 such that πQ,S(q1) = x1 and Jd(q0, q1) = µ. The

construction of the subsequent points q2, . . . , qn will follow in an inductive fashion.

To do this, pick a local trivialization of the bundle πQ,S : Q → Q/G, where Q ≈ G × S locally,

and write points in this trivialization as qk = (θk, xk).

Given the point q0 = (θ0, x0), we seek a near identity group element g, such that q1 := (gθ0, x1)

satisfies Jd(q0, q1) = µ. By the definition of the discrete momentum map (Equation 2.3.15), this

means that we must satisfy the condition

D2Ld(q0, q1) · ξQ(q1) = 〈µ, ξ〉

for all ξ ∈ g. In the local trivialization, this means that

D2Ld((θ0, x0), (gθ0, x1)) · (TRgθ0ξ, 0) = 〈µ, ξ〉 ,

where Rg denotes right translation on the group by the element g.

Consider solving the above equation for θ1 = gθ0 as a function of θ0, x0, x1, with µ fixed. We

know the base solution corresponding to the case x1 = x0, namely g = e. The implicit function

theorem tells us that when x1 is moved away from x0, there will be a unique solution for g near

the identity, provided that the derivative of the defining relation with respect to g at the identity is

invertible. But this condition is a consequence of group-regularity, so the result follows. �

Note that the above lemma makes no hypotheses about the sequence satisfying the discrete

Euler–Lagrange equations.

To obtain the reconstruction equation in the continuous case, we require that the lifted curve

is second-order, on the momentum surface, and that it projects down to the reduced curve. It is

appropriate to consider the discrete analogue of the second-order curve condition, since it may not

be apparent where we imposed such a condition.
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We consider a discrete curve x as a sequence of points, (x0, x1), (x1, x2), . . . , (xn−1, xn) in S×S.

Lift each of the points in S × S to the momentum surface J−1
d (µ) ⊂ Q × Q. This yields the

sequence, (q00 , q
0
1), (q10 , q

1
1), . . . , (qn−1

0 , qn−1
1 ), which is unique up to a diagonal group action on Q×Q.

The discrete analogue of the second-order curve condition is that this sequence in Q ×Q defines a

discrete curve in Q, which corresponds to requiring that qk1 = qk+1
0 , for k = 0, . . . , n − 1, which is

clearly possible in the context of the reconstruction lemma.

This discussion of the discrete reconstruction equation naturally leads to issues of geometric

phases, and it would be interesting to obtain an expression for the discrete geometric phase in terms

of the discrete curve on shape space.

Reconstruction of Tangent Vectors. Let (q0, q1) be a lift of (x0, x1) to J−1
d (µ), and (δx0, δx1)

be a tangent vector to S × S at (x0, x1). Given δq0 ∈ Tq0Q, with TπQ,S · δq0 = δx0, it is possible

to find a δq1 ∈ Tq1Q, with TπQ,S · δq1 = δx1, such that (δq0, δq1) is a tangent vector to J−1
d (µ)

at (q0, q1). Indeed, if in a local trivialization, δq0 = (δθ0, δx0), then the required δq1 is (δθ1, δx1),

where δθ1 is obtained by differentiating Equation 2.3.16 as follows:

δθ1 = δθ0 · ψµ(x0, x1) + θ0 ·D1ψµ(x0, x1)δx0 + θ0 ·D2ψµ(x0, x1)δx1.

Discrete Connection. It should be noted that although our discussion of reconstruction is cast in

terms of local trivializations, it is in fact intrinsic and can be thought of as a discrete horizontal lift

in the sense of discrete connections developed in Chapter 4. The discrete connection associated with

the reconstruction to the discrete µ-momentum surface is represented by the discrete connection

1-form Ad : Q × Q → G, defined on a G-invariant neighborhood of the diagonal by Ad(q0, q1) = e

iff Jd(q0, q1) = µ, and extended to other points by

Ad(g0q0, g1q1) = g1g
−1
0 .

The reconstruction lemma (Lemma 2.1) may be viewed as providing the horizontal lift of this discrete

connection.

The discrete connection given above is the natural choice of connection on Q×Q for the purpose

of constructing a unified formulation of discrete, Lagrangian, and Hamiltonian reduction. Recall the

following diagram,

(TQ, JL) FL // (T ∗Q, J)

(Q×Q, Jd)

FLd

OO
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and consider the horizontal space on TQ given by the µ-momentum surface, J−1
L (µ). Since JL =

(FL)∗J , and Jd = (FLd)∗J , it follows that (FL)∗J−1
L (µ) = (FLd)∗J−1

d (µ), and as a consequence,

(FLd)∗(FL)∗J−1
L (µ) = J−1

d (µ). This implies that the discrete reconstruction equation is simply the

horizontal lift with respect to the discrete connection on Q×Q that is consistent with the connection

on TQ with respect to the fiber derivatives FL and FLd, and is therefore an intrinsic operation. The

discrete connection obtained in this way is related to the discrete mechanical connection, and is

given by the discrete connection 1-form introduced above.

Discrete connections also yield a semi-global isomorphism (Q×Q)/G ∼= (S×S)⊕ G̃ (see §4.4.8)

for neighborhoods of the diagonal, and this induces a semi-global isomorphism J−1
d (µ)/G ∼= S × S,

which is a discrete analogue of the global diffeomorphism, J−1
L (µ)/G ∼= TS, that was obtained in

Marsden et al. [2000b] with the use of the mechanical connection.

2.3.3 Discrete Reduction

In this section, we start by assuming that we have been given a discrete Lagrangian, Ld : Q×Q→ R,

that is invariant under the action of an abelian Lie group G on Q×Q.

Let q := {q0, . . . , qn} be a solution of the discrete Euler–Lagrange (DEL) equations. Let the value

of the discrete momentum along this trajectory be µ. Let xi = πQ,S(qi), so that x := {x0, . . . , xn}

is a discrete trajectory on shape space. Since q satisfies the discrete variational principle, it is

appropriate to ask if there is a reduced variational principle satisfied by x.

An important issue in dropping the discrete variational principle to the shape space is whether

we require that the varied curves are constrained to lie on the level set of the momentum map. The

constrained approach is adopted in Jalnapurkar and Marsden [2000], and the unconstrained approach

is used in Marsden et al. [2000b]. In the rest of this section, we will adopt the unconstrained approach

of Marsden et al. [2000b], and will show that the variations in the discrete action sum evaluated

at a solution of the discrete Euler–Lagrange equation depends only on the quotient variations, and

therefore drops to the shape space without constraints on the variations.

By G-invariance of Ld, the restriction of Ld to J−1
d (µ) drops to the quotient J−1

d (µ)/G ≈ S×S.

The function obtained on the quotient is called the reduced Lagrangian and is denoted L̂d. Let

πµ,d : J−1
d (µ) → S × S be the projection. Let (q0, q1) ∈ J−1

d (µ), and (δq0, δq1) ∈ T(q0,q1)J
−1
d (µ). If

πQ,S · qi = xi and TπQ,S · δqi = δxi, i = 0, 1, then πµ,d(q0, q1) = (x0, x1) and Tπµ,d · (δq0, δq1) =

(δx0, δx1). In this situation, we get Ld(q0, q1) = L̂d(x0, x1), and so

DLd(q0, q1) · (δq0, δq1) = DL̂d(x0, x1) · (δx0, δx1). (2.3.17)

For q a solution of the DEL equations, and x the corresponding curve on the shape space
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S, let δx = d
dε


ε=0

xε be a variation of x. Let δq = d
dε


ε=0

qε be any variation of q such that

TπQ,S · δqi = δxi. Then,

δ
n−1∑
k=0

Ld(qk, qk+1) =
d

dε


ε=0

∑
k

Ld(qkε, qk+1ε)

=
∑
k

DLd(qk, qk+1) · (δqk, δqk+1)

= D1Ld(q0, q1) · δq0

+
n−1∑
k=1

(D2Ld(qk−1, qk) +D1Ld(qk, qk+1)) · δqk

+D2Ld(qn−1, qn) · δqn

= D1Ld(q0, q1) · δq0 +D2Ld(qn−1, qn) · δqn, (2.3.18)

where we have used the fact that q satisfies the discrete Euler–Lagrange equations.

Recall that the discrete momentum map is given by

Jd(qk, qk+1) · ξ = D2Ld(qk, qk+1) · ξQ(qk+1) = −D1Ld(qk, qk+1) · ξQ(qk).

Given any connection A on Q, we have a horizontal-vertical split of each tangent space to Q.

Thus,

D2Ld(qn−1, qn) · δqn = D2Ld(qn−1, qn) · hor δqn +D2Ld(qn−1, qn) · ver δqn.

Now, ver δqn = ξQ(qn), where ξ = A(δqn). Thus, A(δqn) = A(ver δqn) = A(ξQ(qn)). So,

D2Ld(qn−1, qn) · ver δqn = D2Ld(qn−1, qn) · ξQ(qn)

= Jd(qn−1, qn) · ξ = 〈µ, ξ〉 = 〈µ,A(ξQ(qn))〉

= 〈µ,A(δqn)〉 = Aµ(qn) · δqn. (2.3.19)

Thus,

D2Ld(qn−1, qn) · δqn = D2Ld(qn−1, qn) · hor δqn + Aµ(qn) · δqn. (2.3.20)

Similarly,

D1Ld(q0, q1) · δq0 = D1Ld(q0, q1) · hor δq0 − Aµ(q0) · δq0. (2.3.21)
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Thus, from Equation 2.3.18,

d

dε


ε=0

∑
k

Ld(qkε, qk+1ε) =D1Ld(q0, q1) · hor δq0 +D2Ld(qn−1, qn) · hor δqn

+ Aµ(qn) · δqn − Aµ(q0) · δq0. (2.3.22)

Define a 1-form A on Q×Q by

A(q0, q1)(δq0, δq1) = Aµ(q1) · δq1 − Aµ(q0) · δq0. (2.3.23)

If π1, π2 : Q×Q→ Q are projections onto the first and the second components, respectively. Then,

A = π∗2Aµ − π∗1Aµ.

Using G-invariance of Aµ, it follows that A is G-invariant. Also,

A(q0, q1)(ξQ(q0), ξQ(q1)) = Aµ(q1) · ξQ(q1)− Aµ(q0) · ξQ(q0) = 〈µ, ξ〉 − 〈µ, ξ〉 = 0.

Thus, A annihilates all vertical tangent vectors to Q × Q. It is easy to check that the 1-form

A|J−1
d (µ), obtained by restricting A to J−1

d (µ) is also G-invariant and annihilates vertical tangent

vectors to J−1
d (µ). Therefore, A|J−1

d (µ) drops to a 1-form Â on J−1
d (µ)/G ≈ S × S.

If πµ,d : J−1
d (µ) → J−1

d (µ)/G is the projection, and iµ,d : J−1
d (µ) → Q×Q is the inclusion, then

Â and A are related by the equation

π∗µ,dÂ = i∗µ,dA.

We define the 1-forms Â+ and Â− on S×S and the maps Â1, Â2 : S×S → T ∗S by the relations

Â+(x0, x1) · (δx0, δx1) = Â2(x0, x1) · δx1 = Â(x0, x1) · (0, δx1),

Â−(x0, x1) · (δx0, δx1) = Â1(x0, x1) · δx0 = Â(x0, x1) · (δx0, 0).

Note that we have the relations Â = Â+ + Â−, and

Â(x0, x1) · (δx0, δx1) = Â1(x0, x1) · δx0 + Â2(x0, x1) · δx1.

From Equation 2.3.23, it follows that,

Aµ(qn) · δqn − Aµ(q0) · δq0 =
n−1∑
k=0

Aµ(qk+1) · δqk+1 − Aµ(qk) · δqk
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=
n−1∑
k=0

A(qk, qk+1) · (δqk, δqk+1). (2.3.24)

Thus, Equation 2.3.22 can be rewritten as

d

dε


ε=0

n−1∑
k=0

Ld(qkε, qk+1ε) =D1Ld(q0, q1) · hor δq0 +D2Ld(qn−1, qn) · hor δqn

+
n−1∑
k=0

A(qk, qk+1) · (δqk, δqk+1), (2.3.25)

or equivalently,

n−1∑
k=0

(DLd −A)(qk, qk+1) · (δqk, δqk+1) = D1Ld(q0, q1) · hor δq0 +D2Ld(qn−1, qn) · hor δqn. (2.3.26)

The following lemma shows the sense in which the 1-form (DLd − A) on Q × Q drops to the

quotient J−1
d (µ)/G ≈ S × S.

Lemma 2.2. If (q0, q1) ∈ J−1
d (µ) and (δq0, δq1) ∈ T(q0,q1)Q×Q with πQ,S(qi) = xi and TπQ,S ·δqi =

δxi, i = 0, 1, then

(DLd −A)(q0, q1) · (δq0, δq1) = (DL̂d − Â)(x0, x1) · (δx0, δx1).

Proof. As we showed in the discussion at the end of §2.3.2, we can find δq′1 ∈ Tq1Q such that

TπQ,S · δq′1 = δx1 and (δq0, δq′1) ∈ T(q0,q1)J
−1
d (µ). Let δq1 = δq′1 + δq′′1 . Thus δq′′1 ∈ Tq1Q is vertical,

i.e., TπQ,S · δq′′1 = 0. Now,

(DLd −A)(q0, q1) · (δq0, δq1) = (DLd −A)(q0, q1) · (δq0, δq′1) + (DLd −A)(q0, q1) · (0, δq′′1 ).

Using Equation 2.3.17, and the fact that A|J−1
d (µ) drops to a 1-form Â on S × S, we get

(DLd −A)(q0, q1) · (δq0, δq′1) = (DL̂d − Â)(x0, x1) · (δx0, δx1).

Also, by a calculation similar to that used to derive Equation 2.3.19, we have that

(DLd −A)(q0, q1) · (0, δq′′1 ) = D2Ld(q0, q1) · δq′′1 − Aµ(q1)δq′′1 = 0. �
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With this lemma, and Equation 2.3.26, we conclude that

n−1∑
k=0

(DL̂d − Â)(xk, xk+1) · (δxk, δxk+1) = D1Ld(q0, q1) · hor δq0 +D2Ld(qn−1, qn) · hor δqn.

(2.3.27)

If δx is a variation of x that vanishes at the endpoints, then hor δq0 = 0, and hor δq1 = 0. Therefore,

n−1∑
k=0

(DL̂d − Â)(xk, xk+1) · (δxk, δxk+1) = 0.

Equivalently,

δ
n−1∑
k=0

L̂d(xk, xk+1) =
n−1∑
k=0

Â(xk, xk+1) · (δxk, δxk+1). (2.3.28)

Equating terms involving δxk on the left-hand side of Equation 2.3.28 to the corresponding terms

on the right, we get the discrete Routh (DR) equations giving dynamics on S × S:

D2L̂d(xk−1, xk) +D1L̂d(xk, xk+1) = Â2(xk−1, xk) + Â1(xk, xk+1). (2.3.29)

Note that these equations depend on the value of momentum µ.

Thus, we have shown that if q is a discrete curve satisfying the discrete Euler–Lagrange equations,

the curve x, obtained by projecting q down to S, satisfies the DR equations (Equation 2.3.29).

Now we shall consider the converse, the discrete reduction procedure: Given a discrete curve x

on S that satisfies the DR equations, is x the projection of a discrete curve q on Q that satisfies the

DEL equations?

Let the pair (q0, q1) be a lift of (x0, x1) such that Jd(q0, q1) = µ. Let q = {q0, . . . , qn} be the

solution of the DEL equations with initial condition (q0, q1). Note that q has momentum µ. Let

x′ = {x′0, . . . , x′n} be the curve on S obtained by projecting q. By our arguments above, x′ solves

the DR equations. However x′ has the initial condition (x0, x1), which is the same as the initial

condition of x. Thus, by uniqueness of the solutions of the DR equations, x′ = x. Thus x is the

projection of a solution q of the DEL equations with momentum µ. Also, for a given initial condition

q0, there is a unique lift of x to a curve with momentum µ. Such a lift can be constructed using the

method described in §2.3.2. Thus, lifting x to a curve with momentum µ yields a solution of the

discrete Euler–Lagrange equations, which projects down to x.

We summarize the results of this section in the following Theorem.

Theorem 2.3. Let x is a discrete curve on S, and let q be a discrete curve on Q with momentum
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µ that is obtained by lifting x. Then the following are equivalent.

1. q solves the DEL equations.

2. q is a solution of the discrete Hamilton’s variational principle,

δ
n−1∑
k=0

Ld(qk, qk+1) = 0,

for all variations δq of q that vanish at the endpoints.

3. x solves the DR equations,

D2L̂d(xk−1, xk) +D1L̂d(xk, xk+1) = Â2(xk−1, xk) + Â1(xk, xk+1).

4. x is a solution of the reduced variational principle,

δ
∑
k

L̂d(xk, xk+1) =
n−1∑
k=0

Â(xk, xk+1) · (δxk, δxk+1),

for all variations δx of x that vanish at the endpoints.

2.3.4 Preservation of the Reduced Discrete Symplectic Form

The DR equations define a discrete flow map, F̂k : S × S → S × S. We already know that the flow

of the DEL equations preserves the symplectic form ΩLd
on Q×Q. In this section we show that the

reduced flow F̂k preserves a reduced symplectic form Ωµ,d on S×S, and that this reduced symplectic

form is obtained by restricting ΩLd
to J−1

d (µ) and then dropping to S × S. In other words,

π∗µ,dΩµ,d = i∗µ,dΩLd
.

The continuous analogue of this equation is

π∗µΩµ = i∗µΩQ.

Since the projections πµ,d and πµ involve a momentum shift, the reduced symplectic forms Ωµ,d and

Ωµ include magnetic terms.

Recall that L̂d : S × S → R is the reduced Lagrangian, and DL̂d is a 1-form on S × S. Define

1-forms DL̂+
d and DL̂−d on S × S by

DL̂+
d (x0, x1) · (δx0, δx1) = DL̂d(x0, x1) · (0, δx1) = D2L̂d(x0, x1) · δx1,
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DL̂−d (x0, x1) · (δx0, δx1) = DL̂d(x0, x1) · (δx0, 0) = D1L̂d(x0, x1) · δx0.

Note that the partial derivatives D1L̂d and D2L̂d are both maps S × S → T ∗S.

Define 2-forms B and B̂ on Q×Q and S × S as follows:

B = dA, B̂ = dÂ.

Since π∗µ,dÂ = i∗µ,dA, we get π∗µ,dB̂ = i∗µ,dB. Thus B̂ can be obtained by restricting B to J−1
d (µ) and

then dropping to J−1
d (µ)/G ≈ S × S.

Since A = π∗2Aµ − π∗1Aµ, it follows that B = π∗2Bµ − π∗1Bµ, where Bµ = dAµ is a 2-form on Q.

Now Bµ drops to a 2-form βµ on S. Using this fact, we find that B̂ = π̂∗2βµ − π̂∗1βµ. Here,

π̂1, π̂2 : S × S → S are projections onto the first and second components, respectively. If we define

B̂+ := π̂∗2βµ, and B̂− := −π̂∗1βµ, then B̂ = B̂− + B̂+.

We define a function S : S × S → R by

S(x0, x1) :=
n−1∑
k=0

L̂d(xk, xk+1),

where x = {x0, . . . , xn} is a solution of the DR equations with initial condition (x0, x1). Thus,

S(x0, x1) =
n−1∑
k=0

L̂d(F̂k(x0, x1)).

Our goal in this section will be to show that symplecticity of the reduced flow follows from the fact

that d2S = 0.

Recall that if we lift x to a discrete curve q on Q with momentum µ, then q is a solution of the

DEL equations. Let (δx0, δx1) = d
dε


ε=0

(x0ε, x1ε), and let xε = {x0ε, . . . , xnε} be a solution of the

discrete Routh equations with initial condition (x0ε, x1ε). Let δq be any variation of q such that

TπQ,S · δqi = δxi. Using Equation 2.3.27 in §2.3.3, we get

dS(x0, x1)(δx0, δx1) =
d

dε


ε=0

S(x0ε, x1ε)

=
d

dε


ε=0

n−1∑
k=0

L̂d(xkε, xk+1ε)

=
n−1∑
k=0

DL̂d(xk, xk+1) · (δxk, δxk+1)

= D1Ld(q0, q1) · hor δq0 +D2Ld(qn−1, qn) · hor δqn
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+
n−1∑
k=0

Â(xk, xk+1) · (δxk, δxk+1).

Thus,

dS(x0, x1)(δx0, δx1) =D1Ld(q0, q1) · hor δq0 +D2Ld(qn−1, qn) · hor δqn

+
n−1∑
k=0

(F̂ ∗k Â)(x0, x1) · (δx0, δx1). (2.3.30)

We will eventually prove conservation of a reduced symplectic form by taking the exterior derivative

of Equation 2.3.30. To do this, we need a number of preliminary calculations.

Lemma 2.4. d
{∑n−1

k=0(F̂ ∗k Â)
}

= (F̂ ∗n−1B̂+ − B̂+)− B̂.

Proof. This is a straightforward verification using the facts that dÂ = B̂, and that

(F̂ ∗k B̂)(x0, x1)((δx0, δx1), (δx′0, δx
′
1)) = B̂(xk, xk+1)((δxk, δxk+1), (δx′k, δx

′
k+1))

= βµ(xk+1)(δxk+1, δx
′
k+1)− βµ(xk)(δxk, δx′k).

Here δxk, δx′k are obtained by pushing forward δx0, δx
′
0, respectively, and δxk+1, δx

′
k+1 are obtained

by pushing forward δx1, δx
′
1, respectively. �

Lemma 2.5.

D1Ld(q0, q1) · hor δq0 = −D2Ld(q0, q1) · hor δq1 + (DLd −A)(q0, q1) · (δq0, δq1).

Proof.

D1Ld(q0, q1) · hor δq0 =D1Ld(q0, q1) · δq0 −D1Ld(q0, q1) · ver δq0

=DLd(q0, q1) · (δq0, δq1)−D2Ld(q0, q1) · δq1 −D1Ld(q0, q1) · ver δq0

=DLd(q0, q1) · (δq0, δq1)−D2Ld(q0, q1) · hor δq1

−D2Ld(q0, q1) · ver δq1 −D1Ld(q0, q1) · ver δq0.

As in Equation 2.3.19,

D2Ld(q0, q1) · ver δq1 = Aµ(q1) · δq1.
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Similarly,

D1Ld(q0, q1) · ver δq0 = −Aµ(q0) · δq0.

Thus,

D2Ld(q0, q1) · ver δq1 +D1Ld(q0, q1) · ver δq0 = A(q0, q1) · (δq0, δq1).

The statement of the lemma now follows. �

Thus, Equation 2.3.30 can be rewritten as

dS(x0, x1)(δx0, δx1) =(D2Ld(qn−1, qn) · hor δqn −D2Ld(q0, q1) · hor δq1)

+
n−1∑
k=0

(F̂ ∗k Â)(x0, x1) · (δx0, δx1) + (DLd −A)(q0, q1) · (δq0, δq1)

=(D2Ld(qn−1, qn) · hor δqn −D2Ld(q0, q1) · hor δq1)

+
n−1∑
k=0

(F̂ ∗k Â)(x0, x1) · (δx0, δx1) + (DL̂d − Â)(x0, x1) · (δx0, δx1). (2.3.31)

Lemma 2.6. D2Ld(q0, q1) · hor δq1 = ((DL̂d)+ − Â+)(x0, x1) · (δx0, δx1).

Proof. Using Lemma 2.2, we get

D2Ld(q0, q1) · hor δq1 = D2Ld(q0, q1) · δq1 −D2Ld(q0, q1) · ver δq1

= DLd(q0, q1) · (0, δq1)− Aµ(q1) · δq1

= (DLd −A)(q0, q1) · (0, δq1)

= (DL̂d − Â)(x0, x1) · (0, δx1)

= ((DL̂d)+ − Â+)(x0, x1) · (δx0, δx1). �

A consequence of this lemma is that

D2Ld(qn−1, qn) · hor δqn = ((DL̂d)+ − Â+)(xn−1, xn) · (δxn−1, δxn)

= (F̂ ∗n−1((DL̂d)
+ − Â+))(x0, x1) · (δx0, δx1).

Define the map F̂ : S × S → T ∗S by

F̂(x0, x1) = D2L̂d(x0, x1)− Â2(x0, x1).
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The map F̂ will play the role of a discrete Legendre transform. Let ΘS be the canonical 1-form on

T ∗S.

Lemma 2.7. (DL̂d)+ − Â+ = F̂∗ΘS .

Proof.

(F̂∗ΘS)(x0, x1) · (δx0, δx1) = ΘS(D2L̂d(x0, x1)− Â2(x0, x1)) · T F̂ · (δx0, δx1)

= (D2L̂d(x0, x1)− Â2(x0, x1)) · TπS · T F̂ · (δx0, δx1),

where πT∗S,S : T ∗S → S is the projection. Note that πT∗S,S ◦ F̂ = π̂2, where π̂2 : S × S → S is the

projection onto the second component. Thus,

(F̂∗ΘS)(x0, x1) · (δx0, δx1) = (D2L̂d(x0, x1)− Â2(x0, x1)) · T π̂2 · (δx0, δx1)

= (D2L̂d(x0, x1)− Â2(x0, x1)) · δx1

= ((DL̂d)+ − Â+)(x0, x1) · (δx0, δx1). �

Using Lemmas 2.6 and 2.7, Equation 2.3.31 can be rewritten as:

dS = (F̂ ∗n−1(F̂∗ΘS)− F̂∗ΘS) +
n−1∑
k=0

(F̂ ∗k Â) +DL̂d − Â.

Taking the exterior derivative on both sides of this equation and using Lemma 2.4 and the fact that

d2 = 0 yields

0 = F̂ ∗n−1(F̂∗ΩS − B̂+)− (F̂∗ΩS − B̂+),

where ΩS = −dΘS is the canonical 2-form on T ∗S. Since πT∗S,S ◦ F̂ = π̂2,

B̂+ = π̂∗2βµ = F̂∗π∗T∗S,Sβµ.

Thus,

F̂∗ΩS − B̂+ = F̂∗(ΩS − π∗T∗S,Sβµ).

We have thus proved the following Theorem.

Theorem 2.8. The flow of the DR equations preserves the symplectic form

Ωµ,d = F̂∗ΩS − B̂+

= (D2L̂d − Â2)∗ΩS − π̂∗2βµ
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= F̂∗(ΩS − π∗T∗S,Sβµ).

We remark that the symplectic form Ωµ,d is just the pull-back by F̂ of the same symplectic form

on T ∗S that is obtained by the process of cotangent bundle reduction (see §2.2). The fact that Ωµ,d

is closed follows from the closure of (ΩS − π∗T∗S,Sβµ).

We will now complete our argument by showing that

π∗µ,dΩµ,d = i∗µ,dΩLd
.

We showed in section §2.3.2 that the discrete Legendre transform FLd : Q × Q → T ∗Q, (q0, q1) 7→

D2Ld(q0, q1) maps J−1
d (µ) to J−1(µ), where Jd and J are the discrete and continuous momentum

maps, respectively. For the rest of this section, let F′ : J−1
d (µ) → J−1(µ) be the restriction of FLd.

Thus F′ ◦ iµ = iµ,d ◦ FLd, where iµ : J−1(µ) → T ∗Q and iµ,d : J−1
d (µ) → Q×Q are inclusions.

Recall that we had defined the map F̂ : S × S → T ∗S as D2L̂d − Â2.

Lemma 2.9. The following diagram commutes.

J−1
d (µ) F′ //

πµ,d

��

J−1(µ)

πµ

��

S × S
F̂ // T ∗S

Proof. Let (q0, q1) ∈ J−1
d (µ). Thus D2Ld(q0, q1) ∈ J−1(µ), and

πµ(F′(q0, q1)) = πµ(D2Ld(q0, q1)).

Recall from §2.2 that (D2Ld(q0, q1) − Aµ(q1)) annihilates all vertical tangent vectors and that

πµ(D2Ld(q0, q1)) is the element of T ∗x1
S determined by (D2Ld(q0, q1)− Aµ(q1)). For δq1 ∈ Tq1Q,

〈D2Ld(q0, q1)− Aµ(q1), δq1〉 = 〈D2Ld(q0, q1)− Aµ(q1),hor δq1〉.

Using the fact that Aµ(q1) annihilates horizontal vectors, and Lemma 2.6, we obtain

〈D2Ld(q0, q1)− Aµ(q1), δq1〉 = 〈D2Ld(q0, q1),hor δq1〉

= D2L̂d(x0, x1) · δx1 − Â2(x0, x1) · δx1 .

Thus,

πµ(D2Ld(q0, q1)) = D2L̂d(x0, x1)− Â2(x0, x1),
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which means F̂ ◦ πµ,d = πµ ◦ F′. �

Using this lemma, we get

π∗µ,dΩµ,d = π∗µ,dF̂∗(ΩS − π∗T∗S,Sβµ)

= (F′)∗π∗µ(ΩS − π∗T∗S,Sβµ)

= (F′)∗i∗µΩQ = i∗µ,dFL∗dΩQ

= i∗µ,dΩLd
.

Here, we have used the fact that π∗µ(ΩS − π∗βµ) = i∗µΩQ, which comes from the theory of cotangent

bundle reduction. We have thus proved the following Theorem.

Theorem 2.10. The flow of the DR equations preserves the symplectic form

Ωµ,d = F̂∗(ΩS − π∗T∗S,Sβµ).

Ωµ,d can be obtained by dropping to S × S the restriction of ΩLd
to J−1

d (µ). In other words,

π∗µ,dΩµ,d = i∗µ,dΩLd
.

In proving Theorem 2.10, we started from the reduced variational equation (Equation 2.3.30).

There is also an alternate route to proving symplecticity of the reduced flow which relies on the fact

that discrete flow on Q×Q preserves the symplectic form ΩLd
. We will give an outline of the steps

involved, without giving all the details. The idea is to first show that the restriction to J−1
d (µ) of

the symplectic form ΩLd
drops to a 2-form Ωµ,d on S ×S. The fact that the discrete flow on Q×Q

preserves the symplectic form ΩLd
is then used to show that the reduced flow preserves Ωµ,d.

The outline of the steps involved is as follows.

1. Consider the 1-form ΘLd
on Q×Q defined by ΘLd

(q0, q1) · (δq0, δq1) = D2Ld(q0, q1) · δq1. ΘLd

is G-invariant, and thus the Lie derivative LξQ×Q
ΘLd

is zero.

2. Since ΩLd
= −dΘLd

, ΩLd
is G-invariant. If iµ,d : J−1

d (µ) → Q × Q is the inclusion, Θ′
Ld

=

i∗µ,dΘLd
and Ω′Ld

= i∗µ,dΩLd
are the restrictions of ΘLd

and ΩLd
, respectively, to J−1

d (µ). It is

easy to check that Θ′
Ld

and Ω′Ld
are invariant under the action of G on J−1

d (µ).

3. If ξJ−1
d (µ) is an infinitesimal generator on J−1

d (µ), then

ξJ−1
d (µ) Ω′Ld

= −ξJ−1
d (µ) dΘ′

Ld
= −Lξ

J
−1
d

(µ)
Θ′
Ld

+ dξJ−1
d (µ) Θ′

Ld
= 0.
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This follows from the G-invariance of Θ′
Ld

, and the fact that Θ′
Ld
· ξJ−1

d (µ) = 〈µ, ξ〉.

4. By steps 2 and 3, the form Ω′Ld
drops to a reduced form Ωµ,d on J−1

d (µ)/G ≈ S × S. Thus, if

πµ,d : J−1
d (µ) → S × S is the projection, then π∗µ,dΩµ,d = Ω′Ld

. Note that the closure of Ωµ,d

follows from the fact that Ω′Ld
is closed, which in turn follows from the closure of ΩLd

and the

relation Ω′Ld
= i∗µ,dΩLd

.

5. If Fk : Q×Q→ Q×Q is the flow of the DEL equations, let F ′k be the restriction of this flow

to J−1
d (µ). We know that F ′k drops to the flow F̂k of the DR equations on S × S. Since Fk

preserves ΩLd
, F ′k preserves Ω′Ld

. Using this, it can be shown that F̂k preserves Ωµ,d. Note

that it is sufficient to show that π∗µ,d(F̂
∗
kΩµ,d) = π∗µ,dΩµ,d.

6. It now remains to compute a formula for the reduced form Ωµ,d. Using Lemma 2.9 (whose

proof, in turn, relies on Lemma 2.6), it follows that

π∗µ,dΩµ,d = i∗µ,dΩLd
= i∗µ,dFL∗dΩQ = (F′)∗i∗µΩQ

= (F′)∗π∗µ(ΩS − π∗T∗S,Sβµ)

= π∗µ,dF̂∗(ΩS − π∗T∗S,Sβµ).

Thus π∗µ,dΩµ,d = π∗µ,dF̂∗(ΩS−π∗T∗S,Sβµ), from which it follows that Ωµ,d = F̂∗(ΩS−π∗T∗S,Sβµ).

Incidentally, this expression shows that Ωµ,d is nondegenerate provided the map F̂ = D2L̂d−Â2

is a local diffeomorphism.

2.3.5 Relating Discrete and Continuous Reduction

As we stated in §2.3.1, if the discrete Lagrangian Ld approximates the Jacobi solution of the

Hamilton–Jacobi equation, then the DEL equations give us an integration scheme for the EL equa-

tions. In our commutative diagrams we will denote the relationship between the EL and DEL

equations by a dashed arrow as follows:

(TQ,EL) //___ (Q×Q,DEL).

Thus, −− → can be read as “the corresponding discretization”. By the continuous and discrete

Noether theorems, we can restrict the flow of the EL and DEL equations to J−1
L (µ) and J−1

d (µ),

respectively. We have seen that the flow on J−1
L (µ) induces a reduced flow on J−1

L (µ)/G ≈ TS,

which is the flow of the Routh equations. Similarly, the discrete flow on J−1
d (µ) induces a reduced

discrete flow on J−1
d (µ)/G ≈ S×S, which is the flow of the discrete Routh equations. Since the DEL

equations give us an integration algorithm for the EL equations, it follows that the DR equations
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give us an integration algorithm for the Routh equations.

Thus, to numerically integrate the Routh equations, we can follow either of the following ap-

proaches:

1. First solve the DEL equations to yield a discrete trajectory on Q, which can then be projected

to a discrete trajectory on S.

2. Solve the DR equations to directly obtain a discrete trajectory on Q.

Either approach will yield the same result. We can express this situation by the following commu-

tative diagram:

(J−1
L (µ), EL) //___

πµ,L

��

(J−1
d (µ), DEL)

πµ,d

��

(TS,R) //_____ (S × S,DR)

(2.3.32)

The upper dashed arrow represents the fact that the DEL equations are an integration algorithm

for the EL equations, and the lower dashed arrow represents the same relationship between the DR

equations and the Routh equations. Note that for smooth group actions the order of accuracy will be

equal for the reduced and unreduced algorithms. We will state this result precisely in the following

corollary.

Corollary 2.11. Given a discrete Lagrangian Ld : Q × Q → R of order r, and a smooth group

action, the discrete Routh equations associated with the reduced discrete Lagrangian, L̂d : S×S → R,

obtained by dropping Ld to S × S, is of order r as well.

Proof. Recall that the order of the discrete Lagrangian is equal to the order of the push-forward

discrete Lagrangian map, and as such, the discrete Euler–Lagrange equations yield a r-th order

accurate approximation of the exact flow. When the group action is smooth, the projections πµ,L

and πµ,d are smooth as well. Since the two projections agree when restricted to the position space,

and the projections are smooth, the commutative diagram in Equation 2.3.32, together with the

chain rule, implies that the discrete Routh equations yield a r-th order accurate approximation to

the reduced flow. �

2.4 Relating the DEL Equations to Symplectic Runge–Kutta

Algorithms

Symplectic Partitioned Runge–Kutta Methods. A well-studied class of numerical schemes

for Hamiltonian and Lagrangian systems is the partitioned Runge–Kutta (PRK) algorithms (see
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Hairer et al. [1993] and Hairer and Wanner [1996] for history and details). Stated for a regular

Lagrangian system, a partitioned Runge–Kutta scheme is a map F : T ∗Q → T ∗Q defined by

F : (q0, p0) 7→ (q1, p1), where

q1 = q0 + h
s∑
j=1

bjQ̇j , p1 = p0 + h
s∑
j=1

b̃jṖj , (2.4.1a)

Qi = q0 + h
s∑
j=1

aijQ̇j , Pi = p0 + h
s∑
j=1

ãijṖj , i = 1, . . . , s, (2.4.1b)

Pi =
∂L

∂q̇
(Qi, Q̇i), Ṗi =

∂L

∂q
(Qi, Q̇i), i = 1, . . . , s, (2.4.1c)

where bi, b̃i, aij and ãij are real coefficients for i, j = 1, . . . , s which define the method. Note that

Equation 2.4.1c implicitly determined the Hamiltonian vector field (Q̇i, Ṗi) at the point (Qi, Pi) =

FL(Qi, Q̇i).

The partitioned Runge–Kutta method, F : T ∗Q → T ∗Q, approximates the flow map, F tH :

T ∗Q→ T ∗Q, of the Hamiltonian system corresponding to the Lagrangian L, so that

F (q, p, h) = FhH(q, p) +O(hr+1),

where r, the order of the integration algorithm, is determined by the choice of the coefficients bi, b̃i,

aij and ãij .

As discussed in §2.2, the flow map F tH of the Hamiltonian system on T ∗Q preserves the canonical

symplectic form Ω on T ∗Q. It can be shown that the partitioned Runge–Kutta method F preserves

the canonical symplectic form if, and only if, the coefficients satisfy

biãij + b̃jaji = bib̃j , i, j = 1, . . . , s (2.4.2a)

bi = b̃i, i = 1, . . . , s. (2.4.2b)

Such schemes are known as symplectic partitioned Runge–Kutta (SPRK) methods.

Discrete Lagrangians for SPRK Methods. For any given time-step h, a symplectic partitioned

Runge–Kutta method is a symplectic map F : T ∗Q→ T ∗Q. Therefore, as discussed in §2.3.1, there

is a discrete Lagrangian Ld which generates it.

An explicit form for this discrete Lagrangian was found by Suris [1990], and is given by

Ld(q0, q1, h) = h
s∑
i=1

biL(Qi, Q̇i),
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where Qi, Q̇i, Pi and Ṗi are such that Equations 2.4.1b and 2.4.1c are satisfied. It can then be

shown, under assumptions (Equations 2.4.2a and 2.4.2b) on the coefficients, that the push-forward

of the discrete Lagrangian map is exactly the symplectic partitioned Runge–Kutta method. The

details of this calculation can be found in Suris [1990] or Marsden and West [2001].

For a partitioned Runge–Kutta method to be consistent, the coefficients must satisfy
∑s
i=1 bi = 1.

With this in mind, it can be readily seen that the Ld defined above is an approximation to the action

over the interval [0, h], as one would expect from §2.3.1.

Discrete Lagrangians from Polynomials and Quadrature. While the discrete Lagrangian

given above generates any symplectic partitioned Runge–Kutta method, there is a subset of such

methods for which the discrete Lagrangian has a particularly elegant form. These can be derived

by approximating the action with polynomial trajectories and numerical quadrature.

As shown in §2.3.1, a discrete Lagrangian should be an approximation

Ld(q0, q1, h) ≈ ext
q∈C(0,h)

S(q),

where C(0, h) is the space of trajectories q : [0, h] → Q with q(0) = q0 and q(h) = q1, and S :

C(0, h) → R is the action S(q) =
∫ h
0
L(q, q̇)dt.

To approximate this, we take a finite-dimensional approximation Cd(0, h) ⊂ C(0, h) of the trajec-

tory space,

Cd(0, h) = {q ∈ C(0, h) | q is a polynomial of degree s},

and we approximate the action integral by numerical quadrature to give an approximate action

Sd : C(0, h) → R,

Sd(q) = h
s∑
i=1

biL(q(cih), q̇(cih)),

where (bi, ci) is the maximal-order quadrature rule on the unit interval with quadrature points ci.

We now set the discrete Lagrangian to be

Ld(q0, q1, h) = ext
qd∈Cd(0,h)

Sd(qd),

which can be explicitly evaluated. This procedure corresponds to the Galerkin projection of the

weak form of the ODE onto the space of piecewise polynomial trajectories, an interpretation which

is further discussed in Marsden and West [2001].

Theorem 2.12. Take a set of quadrature points ci and let Ld be the corresponding discrete La-

grangian as described above. Then the integrator generated by this discrete Lagrangian is equivalent
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to the partitioned Runge–Kutta scheme defined by the coefficients

bi = b̃i =
∫ 1

0

li,s(τ)dτ,

aij =
∫ ci

0

lj,s(τ)dτ,

ãij = b̃j

(
1− aji

bi

)
,

(2.4.3)

where the li,s(τ) are the Lagrange polynomials associated with the ci.

Proof. Evaluating the conditions which imply that qd extremizes Sd and combining this with the

definition of the push-forward of the discrete Euler–Lagrange equations give the desired result. See

Marsden and West [2001] for details. �

2.5 Reduction of the Symplectic Runge–Kutta Algorithm

Consider the SPRK algorithm for mechanical systems described in §2.4. The equations defining this

algorithm are

(q1, p1) = (q0, p0) + h
∑
j

(bjQ̇j , b̃jṖj), (2.5.1a)

(Qi, Pi) = (q0, p0) + h
∑
j

(aijQ̇j , ãijṖj), (2.5.1b)

(Q̇j , Ṗj) = XH(Qj , Pj), (2.5.1c)

for some coefficients bj , b̃j , aij , ãij satisfying Equation 2.4.2. These equations specify the push-

forward discrete Lagrange map for some discrete Lagrangian, as discussed in §2.4. We will assume

that there is an abelian group G that acts freely and properly on the configuration manifold Q, and

that the Lagrangian and the Hamiltonian functions are invariant under the lifted actions of G on TQ

and T ∗Q, respectively. Locally, Q ≈ G×S, where S = Q/G is the shape space. Let θ = (θ1, . . . , θr)

be local coordinates on G such that the group operation is addition, i.e., θ1 · θ2 = θ1 + θ2. (Since

the group is abelian, such coordinates can always be found.) Let x = (x1, . . . , xs) be coordinates

on S. In a local trivialization, (θ, x) are coordinates on Q. Let (θ, x, pθ, px) be canonical cotangent

bundle coordinates on T ∗Q, and (θ, x, θ̇, ẋ) be canonical tangent bundle coordinates on TQ. It is

easy to show that in these canonical coordinates on T ∗Q, elements of the set J−1(µ) ⊂ T ∗Q are of

the form (θ, x, µ, px). Also, since the Hamiltonian H on T ∗Q is group invariant, H(θ, x, pθ, px) is

independent of θ. Note that here we are implicitly assuming that the vector space structure used to

define the SPRK method is that in which the group action is addition.
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For the remainder of this section, we will adopt a local trivialization to express the SPRK method

in which the group action is addition. Rewriting the symplectic partitioned Runge–Kutta algorithm

in terms of this local trivialization gives

θ1 = θ0 + h
∑
j

bjΘ̇j , (pθ)1 = (pθ)0 + h
∑
j

b̃j(Ṗθ)j , (2.5.2)

x1 = x0 + h
∑

bjẊj , (px)1 = (px)0 + h
∑
j

b̃j(Ṗx)j , (2.5.3)

Θi = θ0 + h
∑
j

aijΘ̇j , (Pθ)i = (pθ)0 + h
∑
j

ãij(Ṗθ)j , (2.5.4)

Xi = x0 + h
∑

aijẊj , (Px)i = (px)0 + h
∑
j

ãij(Ṗx)j , (2.5.5)

and further,

Θ̇j =
∂H

∂pθ
, (Ṗθ)j = −∂H

∂θ
, (2.5.6)

Ẋj =
∂H

∂px
, (Ṗx)j = −∂H

∂x
. (2.5.7)

By group invariance, H does not depend on θ, and so ∂H/∂θ = 0. Thus (Ṗθ)j = 0, and therefore,

(pθ)1 = (Pθ)i = (pθ)0. Hence, if (q0, p0) ∈ J−1(µ), then (q1, p1) and (Qi, Pi) also lie on J−1(µ). (We

already know from the theory in the previous sections that the symplectic partitioned Runge–Kutta

algorithm preserves momentum; what we have verified here is that the intermediate points (Qi, Pi)

do not move off the momentum surface.)

If A is a connection on Q, it can be represented in local coordinates as

A(θ, x)(θ̇, ẋ) = A(x)ẋ+ θ̇.

Thus, the 1-form Aµ on Q is given by

Aµ(θ, x)(θ̇, ẋ) = 〈µ,A(x)ẋ+ θ̇〉 =
[
µ µA(x)

]θ̇
ẋ

 .
Thus, Aµ(θ, x) = (θ, x, µ, µA(x)).

As we have seen in §2.2, there is a projection πµ : J−1(µ) → T ∗S. If αq ∈ J−1
q (µ), (αq−Aµ(q)) ∈

T ∗qQ annihilates all vertical tangent vectors at q, and πµ(αq) is the element of T ∗xS determined by

(αq − Aµ(q)).

Suppose that in local coordinates, αq = (θ, x, µ, px). Then, (αq − Aµ(q)) = (θ, x, 0, px − µA(x)).
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Thus, πµ(θ, x, µ, px) = (x, px − µA(x)). Therefore, Tπµ : TJ−1(µ) → T (T ∗S) is given by

Tπµ : (θ̇, ẋ, 0, ṗx) 7→ (ẋ, ṗx − µ
∂A

∂x
ẋ).

In components, µA(x) can be represented as µaAai (x) (sum over the repeated index a is implicit),

and

µ
∂A

∂x
ẋ = µa

∂Aai
∂xj

ẋj .

Let (q, p) ∈ J−1(µ) and let (q̇, ṗ) = XH(q, p). By Noether’s theorem, we have that (q̇, ṗ) ∈

T(q,p)(J−1(µ)). In local coordinates,

(θ̇, ẋ, 0, ṗx) = XH(θ, x, µ, px).

Now, by the theory of cotangent bundle reduction (see §2.2),

Tπµ ·XH(q, p) = XHµ(πµ(q, p)),

i.e.,

(ẋ, ṗx − µ
∂A

∂x
ẋ) = XHµ

(x, px − µA(x)).

If (q0, p0) ∈ J−1(µ), we have seen how (Qi, Pi) and (q1, p1) also lie in J−1(µ). Let

πµ(q0, p0) =: (x0, s0) = (x0, (px)0 − µA(x0)),

πµ(Qi, Pi) =: (Xi, Si) = (Xi, (Px)i − µA(Xi)),

πµ(q1, p1) =: (x1, s1) = (x1, (px)1 − µA(x1)).

Then,

(Ẋi, Ṡi) := XHµ(Xi, Si) = (Ẋi, (Ṗx)i − µ
∂A

∂x
(Xi)Ẋi). (2.5.8)

Remark 2.1. The Routh equations,

∂R̂µ

∂x
− d

dt

∂R̂µ

∂ẋ
= iẋβµ(x),

define a vector field on TS which is related to the vector field XHµ
by the reduced Legendre transform

FR̂µ. The equations

s =
∂R̂µ

∂ẋ
(x, ẋ), (2.5.9)
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and

ṡ =
∂R̂µ

∂x
(x, ẋ)− iẋβµ(x), (2.5.10)

can be used to solve for (ẋ, ṡ) in terms of (x, s), and thereby implicitly define the vector field XHµ
.

Recall that

(px)1 = (px)0 + h
∑
j

b̃j(Ṗx)j .

Adding and subtracting terms, this becomes

(px)1 − µA(x1) = (px)0 − µA(x0) + h
∑
j

b̃j

[
(Ṗx)j − µ

∂A

∂x
(Xj)Ẋj

]

+

h∑
j

(
b̃jµ

∂A

∂x
(Xj)Ẋj

)
− (µA(x1)− µA(x0))

 . (2.5.11)

This can be rewritten as

s1 = s0 + h
∑
j

b̃jṠj +

h∑
j

(
b̃jµ

∂A

∂x
(Xj)Ẋj

)
− (µA(x1)− µA(x0))

 . (2.5.12)

Similarly, it can be shown that

Si = s0 + h
∑
j

ãijṠj +

h∑
j

(
ãijµ

∂A

∂x
(Xj)Ẋj

)
− (µA(Xi)− µA(x0))

 . (2.5.13)

Putting the above equations together with the equations for x1 andXi, we get the following algorithm

on T ∗S:

x1 = x0 + h
∑

bjẊj , (2.5.14a)

s1 = s0 + h
∑
j

b̃jṠj +

h∑
j

(
b̃jµ

∂A

∂x
(Xj)Ẋj

)
− (µA(x1)− µA(x0))

 , (2.5.14b)

Xi = x0 + h
∑

aijẊj , (2.5.14c)

Si = s0 + h
∑
j

ãijṠj +

h∑
j

(
ãijµ

∂A

∂x
(Xj)Ẋj

)
− (µA(Xi)− µA(x0))

 , (2.5.14d)

Sj =
∂R̂µ

∂ẋ
(Xj , Ẋj), (2.5.14e)

Ṡj =
∂R̂µ

∂x
(Xj , Ẋj)− iẊj

βµ(Xj). (2.5.14f)
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We shall refer to this system of equations as the reduced symplectic partitioned Runge–Kutta

(RSPRK) algorithm. Since we obtained this system by dropping the symplectic partitioned Runge–

Kutta algorithm from J−1(µ) to T ∗S, it follows that this algorithm preserves the reduced symplectic

form Ωµ = ΩS − π∗T∗S,Sβµ on T ∗S.

Since the SPRK algorithm is an integration algorithm for the Hamiltonian vector field XH on

T ∗Q, the RSPRK algorithm is an integration algorithm for the reduced Hamiltonian vector field

XHµ
on T ∗S. The relationship between cotangent bundle reduction and the reduction of the SPRK

algorithm can be represented by the following commutative diagram:

(J−1(µ), XH)

πµ

��

//___ (J−1(µ), SPRK)

πµ

��

(T ∗S,XHµ
) //____ (T ∗S,RSPRK)

The dashed arrows here denote the corresponding discretization, as in Equation 2.3.32. We saw in

§2.4 that the SPRK algorithm can be obtained by pushing forward the DEL equations by the discrete

Legendre transform. By Lemma 2.9, this implies that the RSPRK algorithm can be obtained by

pushing forward the DR equations by the reduced discrete Legendre transform F̂ = D2L̂d − Â2.

These relationships are shown in the following commutative diagram:

(J−1
d (µ), DEL)

FLd //

πµ,d

��

(J−1(µ), SPRK)

πµ

��

(S × S,DR) F̂ // (T ∗S,RSPRK)

2.6 Putting Everything Together

Let us now recapitulate some of the main results of the previous sections.

We saw in §2.2 that the relationship between Routh reduction and cotangent bundle reduction

can be represented by the following commutative diagram:

(J−1
L (µ), EL) FL //

πµ,L

��

(J−1(µ), XH)

πµ

��

(TS,R) FR̂µ
// (T ∗S,XHµ

)

We saw in §2.3.5 that if Ld approximates the Jacobi solution of the Hamilton–Jacobi equation, the
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relationship between discrete and continuous Routh reduction is described by the following diagram:

(J−1
L (µ), EL) //___

πµ,L

��

(J−1
d (µ), DEL)

πµ,d

��

(TS,R) //_____ (S × S,DR)

The dashed arrows mean that the DEL equations are an integration algorithm for the EL equations,

and that the DR equations are an integration algorithm for the Routh equations.

If Ld is defined as in §2.4, we saw that the algorithm on T ∗Q obtained by pushing forward the

DEL equation using the discrete Legendre transform FLd is the symplectic partitioned Runge–Kutta

algorithm (Equation 2.4.1), which is an integration algorithm for XH . This is depicted as follows:

(J−1
L (µ), EL) //___

FL
��

(J−1
d (µ), DEL)

FLd

��

(J−1(µ), XH) //___ (J−1(µ), SPRK)

The SPRK algorithm on J−1(µ) ⊂ T ∗Q induces the RSPRK algorithm on J−1(µ)/G ≈ T ∗S. As we

saw in §2.5, this reduction process is related to cotangent bundle reduction and to discrete Routh

reduction as shown in the following diagram:

(J−1(µ), XH) //___

πµ

��

(J−1(µ), SPRK)

πµ

��

(J−1
d (µ), DEL)

FLdoo

πµ,d

��

(T ∗S,XHµ
) //____ (T ∗S,RSPRK) (S × S,DR)F̂oo

Putting all the above commutative diagrams together into one diagram, we obtain Figure 2.1.

2.7 Links with the Classical Routh Equations

The Routhian function R̂µ that we have been using is not the same as the classical Routhian defined

by Routh [1877]. The classical Routhian, which we shall denote R̂µc , is a function on TS that is

related to our Routhian by the equation

R̂µc (x, ẋ) = R̂µ(x, ẋ) + 〈µ,A(x)ẋ〉.

Recall from §2.2 that the map A(x) : TxS → g is the restriction of the connection A to TxS. (TxS

is identified with the subspace TxS ×{0} of TgG× TxS, which in turn is identified with TqQ.) Note
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J−1(µ), XH
//________

πµ

��

J−1(µ), SPRK

πµ

��

J−1
L (µ), EL //_________

FL

??����������������

πµ,L

��

J−1
d (µ), DEL

FLd

??����������������

πµ,d

��

T ∗S,XHµ
_____ //____ T ∗S,RSPRK

TS,R //___________

FR̂µ

??����������������
S × S,DR

F̂

??����������������

Figure 2.1: Complete commutative cube. Dashed arrows represent discretization from the contin-

uous systems on the left face to the discrete systems on the right face. Vertical arrows represent

reduction from the full systems on the top face to the reduced systems on the bottom face. Front

and back faces represent Lagrangian and Hamiltonian viewpoints, respectively.

that the map A(x) depends on our choice of local trivialization. Thus R̂µc , too, depends on the

trivialization.

The classical Routh equations are

∂R̂µc
∂x

− d

dt

∂R̂µc
∂ẋ

= 0. (2.7.1)

It can be verified (see, for example, Marsden and Ratiu [1999]) that these equations are equivalent

to the modern Routh equations (Equation 2.2.3), which we restate here:

∂R̂µ

∂x
− d

dt

∂R̂µ

∂ẋ
= iẋβµ(x). (2.7.2)

Thus the classical and the modern Routh equation define the same vector field X on TS.

To obtain dynamics on T ∗S, we could use the fiber derivative of either the modern Routhian

FR̂µ or that of the classical Routhian FR̂µc . In coordinates on TS and T ∗S, these fiber derivatives

are

FR̂µ : (x, ẋ) ∈ TS 7→ (x,
∂R̂µ

∂ẋ
(x, ẋ)) ∈ T ∗S, (2.7.3)
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FR̂µc : (x, ẋ) ∈ TS 7→ (x,
∂R̂µc
∂ẋ

(x, ẋ)) = (x,
∂R̂µ

∂ẋ
(x, ẋ) + µA(x)) ∈ T ∗S. (2.7.4)

Note that the map FR̂µc depends upon the trivialization.

We have seen in §2.2 that by pushing forward the dynamics on TS by FR̂µ, we obtain the vector

field XHµ
on T ∗S. Recall that the restriction of the Hamiltonian vector field XH to J−1(µ) is

πµ-related to XHµ , where πµ : J−1(µ) → T ∗S is the projection. Also recall that XHµ is Hamiltonian

with respect to the non-canonical symplectic structure Ωµ = ΩS − π∗T∗S,Sβµ on T ∗S.

If, on the other hand, we use FR̂µc to push forward the dynamics from TS to T ∗S, we obtain a

vector field (which we shall call XH′) that is Hamiltonian with respect to the canonical symplectic

structure ΩS on T ∗S.

Consider the following symplectic partitioned Runge–Kutta scheme for integrating XH′ :

x1 = x0 + h
s∑
j=1

bjẊj , y1 = y0 + h
s∑
j=1

b̃j Ẏj , (2.7.5a)

Xi = x0 + h
s∑
j=1

aijẊj , Yi = y0 + h
s∑
j=1

ãij Ẏj , i = 1, . . . , s, (2.7.5b)

Yi =
∂R̂µc
∂ẋ

(Xi, Ẋi), Ẏi =
∂R̂µc
∂x

(Xi, Ẋi), i = 1, . . . , s, (2.7.5c)

for some coefficients bj , b̃j , aij , ãij satisfying Equation 2.4.2. It follows from that condition that this

scheme preserves the canonical symplectic structure ΩS . A particularly simple scheme of this form,

that is second-order, was developed independently by Sanyal et al. [2003].

A natural question to ask at this point is how the above integration scheme for the reduced

dynamics is related to the RSPRK scheme (Equation 2.5.14). To answer this question, consider the

map σ := FR̂µc ◦ (FR̂µ)−1 : T ∗S → T ∗S. In coordinates, σ : (x, s) 7→ (x, y) = (x, s + µA(x)). Note

that the σ transforms XHµ
to XH′ , i.e., XH′ = σ∗XHµ

. It can be verified that this map σ also

transforms the RSPRK scheme (Equation 2.5.14) to the above SPRK scheme for XH′ . Thus, these

two schemes for integrating the reduced dynamics are equivalent, and are related to each other by

a momentum shift.

Though the derivation for the SPRK scheme for XH′ (Equation 2.7.5) is shorter than the re-

duction process through which we obtained the RSPRK scheme (Equation 2.5.14), there are several

reasons to prefer the RSPRK scheme. Firstly, the classical Routhian R̂µc and therefore the fiber

derivative FR̂µc and the vector field XH′ are dependent on the trivialization. Consequently, the

SPRK scheme for XH′ is non-intrinsic. On the other hand, as we saw in §2.5, the RSPRK scheme

(Equation 2.5.14) is derived by dropping the SPRK scheme (Equation 2.5.1) for XH onto the quo-

tient T ∗S = J−1(µ)/Gµ in a manner that is independent of the trivialization. (Though the equations
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defining the RSPRK scheme have terms involving the map A(x), which is trivialization dependent,

the trivialization dependence “cancels out”, causing the overall scheme to be trivialization indepen-

dent.)

Secondly, since the vector field XH′ and the SPRK scheme (Equation 2.7.5) are not derived by

a reduction process, it is not possible to fit them in a natural way into a commutative diagram like

that depicted in Figure 2.1.

Furthermore, the classical theory of Routh reduction does not generalize to the case of non-

abelian symmetry groups, whereas the intrinsic, modern version does (see, for example, Marsden

and Scheurle [1993a,b], Jalnapurkar and Marsden [2000], and Marsden et al. [2000b]). Thus, to

develop numerical algorithms for the reduced dynamics of systems with non-abelian symmetry, one

would need to build on the intrinsic approach developed in this paper.

2.8 Forced and Constrained Systems

2.8.1 Constrained Coordinate Formalism

It is often desirable for computational reasons to realize the configuration space as a constraint

manifold Q in a containing space V.

Assume that the constraint manifold Q can be expressed as the preimage of a regular value of

a G-invariant constraint function, g : V → Rm. Then, g−1 (0) = Q ⊂ V is a constraint manifold of

codimension m.

On the constraint manifold Q, the discrete Hamilton’s variational principle states that

δ

n−1∑
k=0

Ld (qk, qk+1) = 0

for all variations δq of q that vanish at the endpoints. By the Lagrange multiplier theorem, in the

containing space V , this is equivalent to the discrete Hamilton’s variational principle with

constraints,

δ

[
n−1∑
k=0

Ld (vk, vk+1) +
n∑
k=0

λTk g (vk)

]
= 0,

for all variations δv of v that vanish at the endpoints.

As the variations are arbitrary and vanish at the endpoints, this is equivalent to the discrete

Euler–Lagrange equations with constraints,

D2Ld (vk−1, vk) +D1Ld (vk, vk+1) + λTkDg (vk) = 0,

g (vk) = 0.



47

In the case of higher-order discrete Lagrangians, one must be careful about the choice constrained

discrete Lagrangians. In particular, the internal sample points used in defining the constrained

discrete Lagrangian must lie on the constraint manifold Q. In practice, this corresponds to the

inclusion of Lagrange multiplier terms for each of the internal sample points in the variational

definition of the higher-order constrained discrete Lagrangian.

Consider the preshape space, U = V/G. As the constraint function g : V → Rm is G-invariant,

this induces the function ĝ : U → Rm.

In addition, we have a G-invariant discrete Lagrangian, LVd : V × V → R, and the discrete

Lagrangian on Q×Q is simply the restriction, i.e., LQd = LVd
∣∣
Q×Q. The discrete momentum maps

are related by the following lemma.

Lemma 2.13. The discrete momentum map, JQd : Q×Q→ g∗, is obtained from JVd : V × V → g∗

by restriction, i.e., JQd = JVd
∣∣
Q×Q .

Proof. Since q0 ∈ Q ⊂ V , ξQ (q0) ∈ Tq0Q ↪→ Tq0V. Q is G-invariant, thus, the group orbits lie on Q,

and in particular, ξQ (q0) = ξV (q0) . The result then follows from the calculation:

JQd (q0, q1) · ξ = D1L
Q
d (q0, q1) · ξQ (q0)

= D1L
Q
d (q0, q1) · ξV (q0)

= D1L
V
d (q0, q1) · ξV (q0)

= JVd (q0, q1) · ξ. �

Since the discrete momentum map on the constraint manifold is obtained by restriction, and in

our subsequent discussion, all the forms are evaluated on the constraint manifold, we shall abuse

notation and omit the superscripts denoting the spaces. We are thereby able to formulate the main

theorem of this section.

Theorem 2.14. Let x be a discrete curve on S, and let y be a discrete curve on U. Then, the

following are equivalent.

1. x solves the discrete Routh equations,

D2L̂d (xk−1, xk) +D1L̂d (xk, xk+1) = Â2 (xk−1, xk) + Â1 (xk, xk+1) .

2. x is a solution of the reduced variational principle,

δ
n−1∑
k=0

L̂d (xk, xk+1) =
n−1∑
k=0

Â (xk, xk+1) · (δxk, δxk+1) ,
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for all variations δx of x that vanish at the endpoints.

3. y solves the discrete (reduced) Routh equations with constraints,

D2L̂d (yk−1, yk) +D1L̂d (yk, yk+1) + λTkDĝ (yk) = Â2 (yk−1, yk) + Â1 (yk, yk+1) ,

ĝ (yk) = 0.

4. y is a solution of the reduced discrete variational principle,

δ

[
n−1∑
k=0

L̂d (yk, yk+1) +
n∑
k=0

λTk ĝ (yk)

]
=
n−1∑
k=0

Â (yk, yk+1) · (δyk, δyk+1) ,

for all variations δy of y that vanish at the endpoints, and ĝ (yk) = 0.

Proof. If q is a lift of x onto the µ-momentum surface, then the first two statements are equivalent

to the discrete Hamilton’s variational principle, which states that

δ

n−1∑
k=0

Ld (qk, qk+1) = 0,

for all variations δq of q that vanish at the endpoints. By the Lagrange multiplier theorem, this is

equivalent to the discrete Hamilton’s variational principle with constraints,

δ

[
n−1∑
k=0

Ld (vk, vk+1) +
n∑
k=0

λTk g (vk)

]
= 0,

for all variations δv of v that vanish at the endpoints.

As the variations are arbitrary and vanish at the endpoints, this is equivalent to the discrete

Euler–Lagrange equations with constraints,

D2Ld (vk−1, vk) +D1Ld (vk, vk+1) + λTkDg (vk) = 0,

g (vk) = 0.

Let v be a solution of the discrete Euler–Lagrange equations with constraints. Then,

δ

[
n−1∑
k=0

Ld (vk, vk+1) +
n∑
k=0

λTk g (vk)

]

=
d

dε

∣∣∣∣
ε=0

[
n−1∑
k=0

Ld (vkε
, vk+1ε

) +
n∑
k=0

λTkε
g (vkε

)

]
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= D1Ld (v0, v1) · δv0 +
n−1∑
k=1

(D2Ld (vk−1, vk) +D1Ld (vk, vk+1)) · δvk

+D2Ld (vn−1, vn) · δvn +
n∑
k=0

g (vk)︸ ︷︷ ︸
0

· δλk + λT0 Dg (v0) · δv0

+
n−1∑
k=1

(
λTkDg (vk)

)
· δvk + λTnDg (vn) · δvn

=
(
D1Ld (v0, v1) + λT0 Dg (v0)

)
· δv0 +

(
D2Ld (vn−1, vn) + λTnDg (vn)

)
· δvn

+
n−1∑
k=1

[
D2Ld (vk−1, vk) +D1Ld (vk, vk+1) + λTkDg (vk)

]︸ ︷︷ ︸
0

=
(
D1Ld (v0, v1) + λT0 Dg (v0)

)
· δv0 +

(
D2Ld (vn−1, vn) + λTnDg (vn)

)
· δvn.

Therefore, we have that v solves the discrete Euler–Lagrange equations with constraints if, and

only if,

d

dε

∣∣∣∣
ε=0

[
n−1∑
k=0

Ld (vkε , vk+1ε) +
n∑
k=0

λTkε
g (vkε)

]

=
(
D1Ld (v0, v1) + λT0 Dg (v0)

)
· δv0 +

(
D2Ld (vn−1, vn) + λTnDg (vn)

)
· δvn,

for all variations, including those that do not vanish at the endpoints.

Let y be the projection of v, the solution of the DEL equations with constraints, onto the

preshape space V/G, and δy = d
dε

∣∣
ε=0

yε be a variation of y. By construction,

ĝ (ykε) = g (vkε) .

The terms λT0 Dg (v0) and λTnDg (vn) correspond to forces of constraint, and are therefore normal

to the constraint manifold. Since the constraint manifold Q is G-invariant, the group orbits lie on

the constraint manifold. As a consequence, the forces of constraint annihilate vertical variations,

implying that

λT0 Dg (v0) · ver δv0 = 0,

λTnDg (vn) · ver δvn = 0.

From which we conclude,

d

dε

∣∣∣∣
ε=0

[
n−1∑
k=0

Ld (vkε , vk+1ε) +
n∑
k=0

λTkε
g (vkε)

]



50

=
(
D1Ld (v0, v1) + λT0 Dg (v0)

)
· δv0 +

(
D2Ld (vn−1, vn) + λTnDg (vn)

)
· δvn

=
(
D1Ld (v0, v1) + λT0 Dg (v0)

)
· hor δv0 +

(
D2Ld (vn−1, vn) + λTnDg (vn)

)
· hor δvn

− Aµ (v0) · δv0 + Aµ (vn) · δvn

=
(
D1Ld (v0, v1) + λT0 Dg (v0)

)
· hor δv0 +

(
D2Ld (vn−1, vn) + λTnDg (vn)

)
· hor δvn

+
n−1∑
k=0

A (vk, vk+1) · (δvk, δvk+1) ,

where we used Equation 2.3.19 for the second to last equality. Then,

(
D1Ld (v0, v1) + λT0 Dg (v0)

)
· hor δv0 +

(
D2Ld (vn−1, vn) + λTnDg (vn)

)
· hor δvn

=
d

dε

∣∣∣∣
ε=0

[
n−1∑
k=0

Ld (vkε
, vk+1ε

) +
n∑
k=0

λTkε
g (vkε

)

]
−
n−1∑
k=0

A (vk, vk+1) · (δvk, δvk+1) .

From Lemma 2.2, and the fact that ĝ (ykε
) = g (vkε

), this can be rewritten in terms of the reduced

quantities,

(
D1Ld (v0, v1) + λT0 Dg (v0)

)
· hor δv0 +

(
D2Ld (vn−1, vn) + λTnDg (vn)

)
· hor δvn

=
d

dε

∣∣∣∣
ε=0

[
n−1∑
k=0

L̂d (ykε
, yk+1ε

) +
n∑
k=0

λTkε
ĝ (ykε

)

]
−
n−1∑
k=0

Â (yk, yk+1) · (δyk, δyk+1) .

If the variations δy vanishes at the endpoints, i.e., δy0 = δyn = 0, then hor δv0 = hor δvn = 0,

and therefore

δ

[
n−1∑
k=0

L̂d (yk, yk+1) +
n∑
k=0

λTk ĝ (yk)

]
=
n−1∑
k=0

Â (yk, yk+1) · (δyk, δyk+1) ,

for all variations δy of y that vanish at the endpoints, and ĝ (yk) = 0.

Since the variations are arbitrary and vanish at the endpoints, this is equivalent to the Discrete

Routh equations with constraints,

D2L̂d (yk−1, yk) +D1L̂d (yk, yk+1) + λTkDĝ (yk) = Â2 (yk−1, yk) + Â1 (yk, yk+1) ,

ĝ (yk) = 0.

Conversely, if y satisfies the reduced variational principle, and v is its lift onto the µ-momentum

surface, then a construction analogous to the derivation of the discrete Routh equations shows that

v satisfies the discrete Hamilton’s variational principle with constraints. �
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2.8.2 Routh Reduction with Forcing

Mechanical systems with external forcing are governed by the Lagrange–d’Alembert variational

principle,

δ

∫
L (q (t) , q̇ (t)) dt+

∫
F (q (t) , q̇ (t)) · δqdt = 0.

We define the discrete Lagrange–d’Alembert principle (Kane et al. [2000]) to be

δ
n−1∑
k=0

Ld (qk, qk+1) +
n−1∑
k=0

Fd (qk, qk+1) · (δqk, δqk+1) = 0,

for all variations δq of q that vanish at the endpoints. Fd is a 1-form on Q×Q, and approximates the

impulse integral between the points qk and qk+1, just as the discrete Lagrangian Ld approximates

the action integral. We define the 1-forms F+
d and F−d on Q×Q and the maps F 1

d , F
2
d : Q×Q→ T ∗Q

by the relations

F+
d (q0, q1) · (δq0, δq1) = F 2

d (q0, q1) · δq1 = Fd (q0, q1) · (0, δq1) ,

F−d (q0, q1) · (δq0, δq1) = F 1
d (q0, q1) · δq0 = Fd (q0, q1) · (δq0, 0) .

The discrete Lagrange–d’Alembert principle may then be rewritten as

δ
n−1∑
k=0

Ld (qk, qk+1) +
n−1∑
k=0

[
F 1
d (qk, qk+1) · δqk + F 2

d (qk, qk+1) · δqk+1

]
= 0,

for all variations δq of q that vanish at the endpoints. This is equivalent to the forced discrete

Euler–Lagrange equations,

D2Ld (qk−1, qk) +D1Ld (qk, qk+1) + F 1
d (qk, qk+1) + F 2

d (qk−1, qk) = 0.

As we are concerned with mechanical systems with symmetry, we shall restrict our discussion

to discrete forces that are invariant under the diagonal action of G on Q×Q. In particular, for all

ξ ∈ g, and all variations (δq0, δq1) of (q0, q1) ,

Fd (exp (tξ) q0, exp (tξ) q1) · (δq0, δq1) = Fd (q0, q1) · (δq0, δq1) .

Since the Routh reduction technique requires that the momentum map be conserved, we shall

further restrict our discussion to G-invariant forcing that satisfies the discrete Noether theorem.

This constrains our choice of forcing, as the following lemma illustrates.

Lemma 2.15. Let q be a discrete curve on Q that solves the forced discrete Euler–Lagrange equa-



52

tions. Then, the discrete Noether theorem is satisfied if, and only if,

(
F 2
d (qk−1, qk) + F 1

d (qk, qk+1)
)
· ver δqk = 0.

Proof. Given ξ ∈ g, consider the ξ-component of Jd, given by

Jξd (q0, q1) = 〈Jd (q0, q1) , ξ〉 .

We compute the evolution of Jξd along the flow of the forced discrete Euler–Lagrange equations:

Jξd (q1, q2)− Jξd (q0, q1)

= Jd (q1, q2) · ξ − Jd (q0, q1) · ξ

= −D1Ld (q1, q2) · ξQ (q1)−D2Ld (q0, q1) · ξQ (q1)

= −D1Ld (q1, q2) · ξQ (q1)−D2Ld (q0, q1) · ξQ (q1)

+
[
D2Ld (q0, q1) +D1Ld (q1, q2) + F 2

d (q0, q1) + F 1
d (q1, q2)

]︸ ︷︷ ︸
0

· ξQ (q1)

=
[
F 2
d (q0, q1) + F 1

d (q1, q2)
]
· ξQ (q1) .

Since Jd : Q × Q → g∗, the discrete Noether theorem is satisfied if, and only if, Jξd (q1, q2) −

Jξd (q0, q1) = 0, for all ξ ∈ g. As the vertical space verq1 is given by

verq1 = {ξQ (q1) | ξ ∈ g} ,

this is equivalent to F 2
d (q0, q1) + F 1

d (q1, q2) vanishing on all vertical vectors. �

For the rest of our discussion, we shall specialize to the case whereby F 2
d (q0, q1) and F 1

d (q1, q2)

individually vanish on vertical vectors, which is a sufficient condition for momentum conservation.

The discrete forcing term Fd is an invariant 1-form under the diagonal action of G on Q × Q,

and vanishes on vertical vectors. By restricting Fd to J−1
d (µ), it drops to F̂d : S × S → T ∗S × T ∗S.

In this context, we may formulate a discrete Routh reduction theory for the discrete Lagrange–

d’Alembert principle.

Theorem 2.16. Let x be a discrete curve on S, and let q be a discrete curve on Q with momentum

µ that is obtained by lifting x. Then, the following are equivalent.

1. q solves the forced discrete Euler–Lagrange equations,

D2Ld (qk−1, qk) +D1Ld (qk, qk+1) + F 2
d (qk−1, qk) + F 1

d (qk, qk+1) = 0.
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2. q is a solution of the discrete Lagrange–d’Alembert variational principle,

δ
n−1∑
k=0

Ld (qk, qk+1) +
n−1∑
k=0

[
F 1
d (qk, qk+1) · δqk + F 2

d (qk, qk+1) · δqk+1

]
= 0,

for all variations δq of q that vanish at the endpoints.

3. x solves the Discrete Routh equations with forcing,

D2L̂d (xk−1, xk) +D1L̂d (xk, xk+1) + F̂ 2
d (xk−1, xk) + F̂ 1

d (xk, xk+1)

= Â2 (xk−1, xk) + Â1 (xk, xk+1) .

4. x is a solution of the reduced variational principle,

δ
n−1∑
k=0

L̂d (xk, xk+1) +
n−1∑
k=0

[
F̂ 1
d (xk, xk+1) · δxk + F̂ 2

d (xk, xk+1) · δxk+1

]
=
n−1∑
k=0

Â (xk, xk+1) · (δxk, δxk+1) ,

for all variations δx of x that vanish at the endpoints.

Proof. We begin with the discrete Lagrange–d’Alembert variational principle,

δ

n−1∑
k=0

Ld (qk, qk+1) +
n−1∑
k=0

[
F 1
d (qk, qk+1) · δqk + F 2

d (qk, qk+1) · δqk+1

]
= 0,

for all variations δq of q that vanish at the endpoints.

Since the variations are arbitrary and vanish at the endpoints, this is equivalent to the forced

discrete Euler–Lagrange equations,

D2Ld (qk−1, qk) +D1Ld (qk, qk+1) + F 2
d (qk−1, qk) + F 1

d (qk, qk+1) = 0.

Let q be a solution of the forced discrete Euler–Lagrange equations, then,

δ
n−1∑
k=0

Ld (qk, qk+1) +
n−1∑
k=0

[
F 1
d (qk, qk+1) · δqk + F 2

d (qk, qk+1) · δqk+1

]
=

d

dε

∣∣∣∣
ε=0

n−1∑
k=0

Ld (qkε , qk+1ε) +
n−1∑
k=0

[
F 1
d (qk, qk+1) · δqk + F 2

d (qk, qk+1) · δqk+1

]
= D1Ld (q0, q1) · δq0 +

n−1∑
k=1

(D2Ld (qk−1, qk) +D1Ld (qk, qk+1)) · δqk
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+D2Ld (qn−1, qn) · δqn + F 1
d (q0, q1) · δq0

+
n−1∑
k=1

(
F 1
d (qk, qk+1) + F 2

d (qk−1, qk)
)
· δqk + F 2

d (qn−1, qn) · δqn

=
(
D1Ld (q0, q1) + F 1

d (q0, q1)
)
· δq0 +

(
D2Ld (qn−1, qn) + F 2

d (qn−1, qn)
)
· δqn

+
n−1∑
k=1

[
D2Ld (qk−1, qk) +D1Ld (qk, qk+1) + F 2

d (qk−1, qk) + F 1
d (qk, qk+1)

]︸ ︷︷ ︸
0

· δqk

=
(
D1Ld (q0, q1) + F 1

d (q0, q1)
)
· δq0 +

(
D2Ld (qn−1, qn) + F 2

d (qn−1, qn)
)
· δqn.

Conversely, for an arbitrary discrete curve q and an arbitrary variation δq, the final equality

only holds if q satisfies

D2Ld (qk−1, qk) +D1Ld (qk, qk+1) + F 2
d (qk−1, qk) + F 1

d (qk, qk+1) = 0,

which is the forced DEL equation.

Therefore, we have that q solves the forced discrete Euler–Lagrange equations if, and only if,

d

dε

∣∣∣∣
ε=0

n−1∑
k=0

Ld (qkε , qk+1ε) +
n−1∑
k=0

[
F 1
d (qk, qk+1) · δqk + F 2

d (qk, qk+1) · δqk+1

]
=
(
D1Ld (q0, q1) + F 1

d (q0, q1)
)
· δq0 +

(
D2Ld (qn−1, qn) + F 2

d (qn−1, qn)
)
· δqn,

for all variations, including those that do not vanish at the endpoints.

Let x be the projection of q, the solution of the forced DEL equations, onto the shape space

S, and δx = d
dε

∣∣
ε=0

xε be a variation of x. Since (qk, qk+1) is on the µ-momentum surface, and

(δqk, δqk+1) is tangent to the momentum surface, we have by the construction of F̂d the following

relations

F̂ 1
d (xk, xk+1) · δxk + F̂ 2

d (xk, xk+1) · δxk+1

= F̂d (xk, xk+1) · (δxk, 0) + F̂d (xk, xk+1) · (0, δxk+1)

= F̂d (xk, xk+1) · (δxk, δxk+1)

= Fd (qk, qk+1) · (δqk, δqk+1)

= Fd (qk, qk+1) · (δqk, 0) + Fd (qk, qk+1) · (0, δqk+1)

= F 1
d (qk, qk+1) · δqk + F 2

d (qk, qk+1) · δqk+1.

This allows us to rewrite the sum over discrete forces in the discrete Lagrange–d’Alembert prin-
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ciple in terms of a sum over the reduced discrete forces,

d

dε

∣∣∣∣
ε=0

n−1∑
k=0

Ld (qkε
, qk+1ε

) +
n−1∑
k=0

[
F̂ 1
d (xk, xk+1) · δxk + F̂ 2

d (xk, xk+1) · δxk+1

]
=
(
D1Ld (q0, q1) + F 1

d (q0, q1)
)
· δq0 +

(
D2Ld (qn−1, qn) + F 2

d (qn−1, qn)
)
· δqn.

Splitting the variations into horizontal and vertical components, and using the assumption that

the discrete forces vanish on vertical vectors, we have

(
D1Ld (q0, q1) + F 1

d (q0, q1)
)
· δq0 +

(
D2Ld (qn−1, qn) + F 2

d (qn−1, qn)
)
· δqn

=
(
D1Ld (q0, q1) + F 1

d (q0, q1)
)
· (ver δq0 + hor δq0)

+
(
D2Ld (qn−1, qn) + F 2

d (qn−1, qn)
)
· (ver δqn + hor δqn)

=
(
D1Ld (q0, q1) + F 1

d (q0, q1)
)
· hor δq0 +

(
D2Ld (qn−1, qn) + F 2

d (qn−1, qn)
)
· hor δqn

− Aµ (q0) · δq0 + Aµ (qn) · δqn

=
(
D1Ld (q0, q1) + F 1

d (q0, q1)
)
· hor δq0 +

(
D2Ld (qn−1, qn) + F 2

d (qn−1, qn)
)
· hor δqn

+
n−1∑
k=0

A (qk, qk+1) · (δqk, δqk+1) ,

where, as before, we used Equation 2.3.19 for the second to last equality. Then,

(
D1Ld (q0, q1) + F 1

d (q0, q1)
)
· hor δq0 +

(
D2Ld (qn−1, qn) + F 2

d (qn−1, qn)
)
· hor δqn

=
d

dε

∣∣∣∣
ε=0

n−1∑
k=0

Ld (qkε
, qk+1ε

) +
n−1∑
k=0

[
F̂ 1
d (xk, xk+1) · δxk + F̂ 2

d (xk, xk+1) · δxk+1

]
−
n−1∑
k=0

A (qk, qk+1) · (δqk, δqk+1) .

If the variations δx vanishes at the endpoints, i.e., δx0 = δxn = 0, then hor δq0 = hor δqn = 0,

and therefore,

δ
n−1∑
k=0

L̂d (xkε
, xk+1ε

) +
n−1∑
k=0

[
F̂ 1
d (xk, xk+1) · δxk + F̂ 2

d (xk, xk+1) · δxk+1

]
=
n−1∑
k=0

Â (xk, xk+1) · (δxk, δxk+1) ,

for all variations δx of x that vanish at the endpoints.

Since the variations are arbitrary and vanish at the endpoints, this is equivalent to the Discrete
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Routh equations with forcing,

D2L̂d (xk−1, xk) +D1L̂d (xk, xk+1) + F̂ 2
d (xk−1, xk) + F̂ 1

d (xk, xk+1)

= Â2 (xk−1, xk) + Â1 (xk, xk+1) .

Conversely, if x satisfies the reduced variational principle, and q is its lift onto the µ-momentum

surface, then a construction analogous to the derivation of the discrete Routh equations show that

q satisfies the discrete Lagrange–d’Alembert principle. �

2.8.3 Routh Reduction with Constraints and Forcing

By applying the techniques of the previous sections, we may synthesize the formalisms involving

constraints and forcing. We shall state, without proof, the relevant equations in the following

theorem.

Theorem 2.17. Let x be a discrete curve on S, and let q be a discrete curve on Q with momentum

µ that is obtained by lifting x. Let y be a discrete curve on U obtained from x by the inclusion

S = ĝ−1(0) ↪→ U , and let v be a discrete curve on V with momentum µ that is obtained by lifting

y. Then, the following are equivalent.

1. v solves the forced discrete Euler–Lagrange equations with constraints,

D2Ld (vk−1, vk) +D1Ld (vk, vk+1) + F 2
d (vk−1, vk) + F 1

d (vk, vk+1) + λTkDg (vk) = 0,

g (vk) = 0.

2. v is a solution of the discrete Lagrange–d’Alembert variational principle with constraints,

δ

[
n−1∑
k=0

Ld (vk, vk+1) +
n∑
k=0

λTk g (vk)

]

+
n−1∑
k=0

[
F 1
d (vk, vk+1) · δvk + F 2

d (vk, vk+1) · δvk+1

]
= 0,

for all variations δv of v that vanish at the endpoints, and g (vk) = 0.

3. y solves the Discrete Routh equations with forcing and constraints,

D2L̂d (yk−1, yk) +D1L̂d (yk, yk+1) + F̂ 2
d (yk−1, yk) + F̂ 1

d (yk, yk+1) + λTkDĝ (yk)

= Â2 (yk−1, yk) + Â1 (yk, yk+1) ,

ĝ (yk) = 0.
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4. y is a solution of the reduced variational principle,

δ

[
n−1∑
k=0

L̂d (yk, yk+1) +
n∑
k=0

λTk ĝ (yk)

]

+
n−1∑
k=0

[
F̂ 1
d (yk, yk+1) · δyk + F̂ 2

d (yk, yk+1) · δyk+1

]
=
n−1∑
k=0

Â (yk, yk+1) · (δyk, δyk+1) ,

for all variations δy of y that vanish at the endpoints, and ĝ (yk) = 0.

2.9 Example: J2 Satellite Dynamics

2.9.1 Configuration Space and Lagrangian

An illustrative and important example of a system with an abelian symmetry group is that of a single

satellite in orbit about an oblate Earth. The general aspects and background for this problem are

discussed in Prussing and Conway [1993], and some interesting aspects of the geometry underlying

it are discussed in Chang and Marsden [2003].

The configuration manifold Q is R3, and the Lagrangian for the system has the form, kinetic

minus potential energy,

L(q, (̇q)) =
1
2
Ms‖q̇‖2 −MsV (q),

where Ms is the mass of the satellite and V : R3 → R is the gravitational potential due to the Earth,

truncated at the first term in the expansion in the ellipticity,

V (q) =
GMe

‖q‖
+
GMeR

2
eJ2

‖q‖3

(
3
2

(q3)2

‖q‖2
− 1

2

)
.

Here, G is the gravitational constant, Me is the mass of the Earth, Re is the radius of the Earth, J2 is

a small non-dimensional parameter describing the degree of ellipticity, and q3 is the third component

of q.

We will now assume that we are working in non-dimensional coordinates, so that

L(q, q̇) =
1
2
‖q̇‖2 −

[
1
‖q‖

+
J2

‖q‖3

(
3
2

(q3)2

‖q‖2
− 1

2

)]
. (2.9.1)

This corresponds to choosing space and time coordinates in which the radius of the Earth is 1 and

the period of orbit at zero altitude is 2π when J2 = 0 (spherical Earth).
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2.9.2 Symmetry Action

The symmetry of interest to us is that of rotation about the vertical (q3) axis, so the symmetry

group is the unit circle S1. Using cylindrical coordinates, q = (r, θ, z), for the configuration, the

symmetry action is φ : (r, θ, z) 7→ (r, θ + φ, z). Since ‖q‖, ‖q̇‖, and q3 = z are all invariant under

this transformation, so too is the Lagrangian.

This action is clearly not free on all of Q = R3, as the z-axis is invariant for all group elements.

This is not a serious obstacle, however, as the lifted action is free on T (Q\(0, 0, 0)) and this is enough

to permit the application of the intrinsic Routh reduction theory outlined in §2.2. Alternatively, one

can simply take Q = R3 \ {(0, 0, z) | z ∈ R} and then the theory literally applies.

The shape space, S = Q/G, is the half-plane S = R+ × R and we will take coordinates (r, z) on

S. In doing so, we are implicitly defining a global diffeomorphism S ×G→ Q given by ((r, z), θ) 7→

(r, θ, z).

The Lie algebra g for G = S1 is the real line g = R, and we will identify the dual with the real

line itself, g∗ ∼= R. For a Lie algebra element ξ ∈ g, the corresponding infinitesimal generator is

given by

ξQ : (r, θ, z) 7→ ((r, θ, z), (0, ξ, 0)).

Recall that the Lagrange momentum map, JL : TQ→ g∗, is defined by

JL(vq) · ξ = 〈FL(vq), ξQ(q)〉,

so we have

JL((r, θ, z), (ṙ, θ̇, ż)) · ξ =
〈
(ṙ, r2θ̇, ż), (0, ξ, 0)

〉
= r2θ̇ξ,

and

JL((r, θ, z), (ṙ, θ̇, ż)) = r2θ̇.

This momentum map is simply the vertical component of the standard angular momentum.

Consider the Euclidean metric on R3, which corresponds to the kinetic energy norm in the

Lagrangian. From this metric we define the mechanical connection, A : TQ → g, which is given

by A((r, θ, z), (ṙ, θ̇, ż)) = θ̇. The 1-form Aµ on Q is thus given by Aµ = µdθ. Taking the exterior

derivative of this expression gives dAµ = µd2θ = 0, and so the reduced 2-form is βµ = 0.
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2.9.3 Equations of Motion

Computing the Euler–Lagrange equations for the Lagrangian (Equation 2.9.1) gives the equations

of motion,

q̈ = −∇q
[

1
‖q‖

+
J2

‖q‖3

(
3
2

(q3)2

‖q‖2
− 1

2

)]
.

To calculate the reduced equations, we begin by calculating the Routhian,

Rµ(r, θ, z, ṙ, θ̇, ż) = L(r, θ, z, ṙ, θ̇, ż)− Aµ(r, θ, z) · (ṙ, θ̇, ż)

=
1
2
‖(ṙ, θ̇, ż)‖2 −

[
1
r

+
J2

r3

(
3
2
z2

r2
− 1

2

)]
− µθ̇.

We now choose a fixed value µ of the momentum and restrict ourselves to the space J−1
L (µ), on

which θ̇ = µ. The reduced Routhian, R̂µ : TS → R, is the restricted Routhian dropped to the

tangent bundle of the shape space. In coordinates, this is

R̂µ(r, z, ṙ, ż) =
1
2
‖(ṙ, ż)‖2 −

[
1
r

+
J2

r3

(
3
2
z2

r2
− 1

2

)]
− 1

2
µ2.

Recalling that βµ = 0, the Routh equations (Equation 2.2.3) can now be evaluated to give

(r̈, z̈) = −∇(r,z)

[
1
r

+
J2

r3

(
3
2
z2

r2
− 1

2

)]
,

which describes the motion on the shape space.

To recover the unreduced Euler–Lagrange equations from the Routh equations, one uses the

procedure of reconstruction. This is covered in detail in Marsden et al. [1990], Marsden [1992] and

Marsden et al. [2000b].

2.9.4 Discrete Lagrangian System

We now discretize this system with the discrete Lagrangian used in Theorem 2.12. Recall that

the push-forward discrete Lagrange map associated with this discrete Lagrangian is a symplectic

partitioned Runge–Kutta method with coefficients given by Equation 2.4.3.

Given a point (q0, q1) ∈ Q × Q we will take (q0, p0) and (q1, p1) to be the associated discrete

Legendre transforms. As the discrete momentum map is the pull-back of the canonical momentum

map, we have that

JLd
(q0, q1) = (pθ)0 = (pθ)1.

Take a fixed momentum map value µ and restrict Ld to the set J−1
Ld

(µ). Dropping this to S×S now

gives the reduced discrete Lagrangian, L̂d : S × S → R.
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As discussed in §2.5, the fact that we have taken coordinates in which the group action is

addition in θ means that the push-forward discrete Lagrange map associated with the reduced

discrete Lagrangian is the reduced method given by Equation 2.5.14. In fact, as the mechanical

connection has A(r, z) = 0 and βµ = 0, the push-forward discrete Lagrange map is exactly a

partitioned Runge–Kutta method with Hamiltonian equal to the reduced Routhian. As we saw in

§2.7, these are generically related by a momentum shift, rather than being equal.

Given a trajectory of the reduced discrete system, we can reconstruct a trajectory of the unre-

duced discrete system by solving for the θ component of Equation 2.5.1. Correspondingly, a trajec-

tory of the unreduced discrete system can be projected onto the shape space to give a trajectory of

the reduced discrete system.

2.9.5 Example Trajectories

Solutions of the Spherical Earth System. Consider initially the system with J2 = 0. This

corresponds to the case of a spherical Earth, and so the equations reduce to the standard Kepler

problem. As this is an integrable system, the trajectories consist of periodic orbits.

A slightly inclined circular trajectory is shown in Figure 2.2, in both the unreduced and reduced

pictures. Note that the graph of the reduced trajectory is a quadratic, as ‖q‖ =
√
r2 + z2 is a

constant.
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Figure 2.2: Unreduced (left) and reduced (right) views of an inclined elliptic trajectory for the

continuous time system with J2 = 0 (spherical Earth).

We will now investigate the effect of two different perturbations to the system, one due to taking

non-zero J2 and the other due to the numerical discretization.
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The J2 Effect. Taking J2 = 0.05 (which is close the actual value for the Earth), the system

becomes near-integrable and experiences breakup of the KAM tori. This can be seen in Figure 2.3,

where the same initial condition is used as in Figure 2.2.
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Figure 2.3: Unreduced (left) and reduced (right) views of an inclined elliptic trajectory for the

continuous time system with J2 = 0.05. Observe that the non-spherical terms introduce precession

of the near-elliptic orbit in the symmetry direction.

Due to the fact that the reduced trajectory is no longer a simple curve, there is a geometric-

phase-like effect which causes precession of the orbit. This precession can be seen in the thickening

of the unreduced trajectory.

Solutions of the Discrete System for a Spherical Earth. We now consider the discrete

system with J2 = 0, for the second-order Gauss–Legendre discrete Lagrangian with timestep of

h = 0.3. The trajectory with the same initial condition as above is given in Figure 2.4.

As can be seen from the reduced trajectory, the discretization has caused a similar breakup of

the periodic orbit as was produced by the non-zero J2. The effect of this is to, once again, induce

precession of the orbit in the unreduced trajectory, in a way which is difficult to distinguish from

the perturbation above due to non-zero J2 when only the unreduced picture is considered. If the

reduced pictures are consulted, however, then it is immediately clear that the system is much closer

to the continuous time system with J2 = 0 than to the system with non-zero J2.

Solutions of the Discrete System with J2 Effect. Finally, we consider the discrete system

with non-zero J2 = 0.05. The resulting trajectory is shown in Figure 2.5, and, clearly, it is not easy

to determine from the unreduced picture whether the precession is due to the J2 perturbation, the

discretization, or some combination of the two.



62

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

r

z

Figure 2.4: Unreduced (left) and reduced (right) views of an inclined trajectory of the discrete

system with step-size h = 0.3 and J2 = 0. The initial condition is the same as that used in Figure

2.2. The numerically introduced precession means that the unreduced picture looks similar to that

of Figure 2.3 with non-zero J2, whereas, by considering the reduced picture we can see the correct

resemblance to the J2 = 0 case of Figure 2.2.
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Figure 2.5: Unreduced (left) and reduced (right) views of an inclined trajectory of the discrete

system with step-size h = 0.3 and J2 = 0.05. The initial condition is the same as that used in

Figure 2.3. The unreduced picture is similar to that of both Figures 2.3 and 2.4. By considering the

reduced picture, we obtain the correct resemblance to Figure 2.3.
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Taking the reduced trajectories, however, immediately shows that this discrete time system

is structurally much closer to the non-zero J2 system than to the original J2 = 0 system. This

confusion arises because both the J2 term and the discretization introduce perturbations which act

in the symmetry direction.

While this system is sufficiently simple that one can run simulations with such small timesteps

that the discretization artifacts become negligible, this is not possible in general. This example

demonstrates how knowledge of the geometry of the system can be important in understanding the

discretization process, and how this can give insight into the behavior of numerical simulations. In

particular, understanding how the discretization interacts with the symmetry action is extremely

important.

2.9.6 Coordinate Systems

In this example, we have chosen cylindrical coordinates, thus making the group action addition in

θ. One can always do this, as an abelian Lie group is isomorphic to a product of copies of R and S1,

but it may sometimes be preferable to work in coordinates in which the group action is not addition.

For example, cartesian coordinates in the present example.

It may be easier, both in terms of computational expense, and in the simplicity of expressions,

if we adopt a coordinate system in which the group action is not addition. We can still apply the

Discrete Routh equations to obtain an integration scheme on S×S. The push-forward of this under

F̂ yields an integration scheme on T ∗S. The trajectories on the shape space that we obtain in this

manner could be different from those we would get with the RSPRK method. However, in both

cases we would have conservation of symplectic structure, momentum, and the order of accuracy

would be the same. One could choose whichever approach is cheaper and easier.

2.10 Example: Double Spherical Pendulum

2.10.1 Configuration Space and Lagrangian

We consider the example of the double spherical pendulum which has a non-trivial magnetic term

and constraints. The configuration manifold Q is S2 × S2, and the embedding linear space V is

R3 × R3.

The position vectors of each pendulum with respect to their pivot point are denoted by q1 and

q2, as illustrated in Figure 2.6. These vectors are constrained to have lengths l1 and l2, respectively,

and the pendula masses are denoted by m1 and m2.
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Figure 2.6: Double spherical pendulum.

The Lagrangian for the system has the form, kinetic minus potential energy,

L(q1,q2, q̇1, q̇2) =
1
2
m1‖q̇1‖2 +

1
2
m2‖q̇1 + q̇2‖2 −m1gq1 · k−m2g(q1 + q2) · k,

where g is the gravitational constant, and k is the unit vector in the z direction. The constraint

function, c : V → R2, is given by

c(q1,q2) = (‖q1‖ − l1, ‖q2‖ − l2).

Using cylindrical coordinates, qi = (ri, θi, zi), for the configuration, we can express the Lagrangian

as

L(q, q̇) =
1
2
m1

(
ṙ21 + r21 θ̇

2
1 + ż2

1

)
+

1
2
m2

{
ṙ21 + r21 θ̇

2
1 + ṙ22 + r22 θ̇

2
2

+2
(
ṙ1ṙ2 + r1r2θ̇1θ̇2

)
cosϕ+ 2

(
r1ṙ2θ̇1 − r2ṙ1θ̇2

)
sinϕ+ (ż1 + ż2)

2
}

−m1gz1 −m2g (z1 + z2) ,

where ϕ = θ2 − θ1. Furthermore, we can automatically satisfy the constraints by performing the

following substitutions,

zi =
√
l2i − r2i , żi = − riṙi√

l2i − r2i
.
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2.10.2 Symmetry Action

The symmetry of interest to us is the simultaneous rotation of the two pendula about vertical (z)

axis, so the symmetry group is the unit circle S1. Using cylindrical coordinates, qi = (ri, θi, zi), for

the configuration, the symmetry action is φ : (ri, θi, zi) 7→ (ri, θi+φ, zi). Since ‖qi‖, ‖q̇i‖, ‖q̇1+ q̇2‖,

and qi · k are all invariant under this transformation, so too is the Lagrangian.

This action is clearly not free on all of V = R3 × R3, as the z-axis is invariant for all group

elements. However, this does not pose a problem computationally, as long as the trajectories do

not pass through the downward hanging configuration, corresponding to r1 = r2 = 0. To treat the

downward handing configuration properly, we would need to develop a discrete Lagrangian analogue

of the continuous theory of singular reduction described in Ortega and Ratiu [2001].

The Lie algebra g for G = S1 is the real line g = R, and we will identify the dual with the real

line itself g∗ ∼= R. For a Lie algebra element ξ ∈ g, the corresponding infinitesimal generator is given

by

ξQ : (r1, θ1, z1, r2, θ2, z2) 7→ ((r1, θ1, z1, r2, θ2, z2), (0, ξ, 0, 0, ξ, 0)).

Recall that the Lagrange momentum map JL : TQ→ g∗ is defined by

JL(vq) · ξ = 〈FL(vq), ξQ(q)〉,

so we have

JL((r1, θ1, z1, r2, θ2, z2), (ṙ1, θ̇1, ż1, ṙ2, θ̇2, ż2)) · ξ

=
〈(
m1ṙ1 +m2

[
ṙ1 + ṙ2 cosϕ− r2θ̇2 sinϕ

]
,

m1r
2
1 θ̇1 +m2

[
r21 θ̇1 + r1r2θ̇2 cosϕ+ r1ṙ2 sinϕ

]
,

m1ż1 +m2 [ż1 + ż2] ,m2

[
ṙ2 + ṙ1 cosϕ+ r1θ̇1 sinϕ

]
,

m2

[
r22 θ̇2 + r1r2θ̇1 cosϕ− r2ṙ1 sinϕ

]
,m2 [ż1 + ż2]

)
, (0, ξ, 0, 0, ξ, 0)

〉
=
(
(m1 +m2) r21 θ̇1 +m2r

2
2 θ̇2 +m2r1r2

(
θ̇1 + θ̇2

)
cosϕ+ (r1ṙ2 − r2ṙ1) sinϕ

)
ξ,

and

JL((r1, θ1, z1, r2, θ2, z2), (ṙ1, θ̇1, ż1, ṙ2, θ̇2, ż2))

= (m1 +m2) r21 θ̇1 +m2r
2
2 θ̇2 +m2r1r2

(
θ̇1 + θ̇2

)
cosϕ+ (r1ṙ2 − r2ṙ1) sinϕ.

This momentum map is simply the vertical component of the standard angular momentum.
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The locked inertia tensor is given by Marsden [1992],

I(q1q2) = m1‖q⊥1 ‖2 +m2‖(q1 + q2)⊥‖2

= m1r
2
1 +m2(r21 + r22 + 2r1r2 cosϕ).

Furthermore, the mechanical connection is given by

α(q1,q2, q̇1, q̇2) = I(q1,q2)−1JL(q1,q2, q̇1, q̇2)

=
(m1 +m2) r21 θ̇1 +m2r

2
2 θ̇2 +m2r1r2

(
θ̇1 + θ̇2

)
cosϕ+ (r1ṙ2 − r2ṙ1) sinϕ

m1r21 +m2(r21 + r22 + 2r1r2 cosϕ)
.

As a 1-form, it is given by

α(q1,q2) =
1

m1r21 +m2(r21 + r22 + 2r1r2 cosϕ)

×
[
(m1 +m2) r21dθ1 +m2r

2
2dθ2 +m2r1r2 (dθ1 + dθ2) cosϕ

+(r1dr2 − r2dr1) sinϕ] .

The µ-component of the mechanical connection is given by

αµ(q1,q2) =
µ

m1r21 +m2(r21 + r22 + 2r1r2 cosϕ)

×
{[

(m1 +m2) r21 +m2r1r2 cosϕ
]
dθ1 +

[
m2r

2
2 +m2r1r2 cosϕ

]
dθ2
}
.

Taking the exterior derivative of this 1-form yields a non-trivial magnetic term on the reduced space,

dαµ =
µ

[m1r21 +m2 (r21 + r22 + 2r1r2 cosϕ)]2

× {m2r2
[
2 (m1 +m2) r1r2 +

(
m1r

2
1 +m2(r21 + r22)

)
cosϕ

]
dr1 ∧ dθ1

−m2r1
[
2 (m1 +m2) r1r2 +

(
m1r

2
1 +m2(r21 + r22)

)
cosϕ

]
dr2 ∧ dθ1

+m2r1r2 sinϕ[m1r
2
1 +m2(r21 − r22)]dθ2 ∧ dθ1

−m2r2
[
2 (m1 +m2) r1r2 +

(
m1r

2
1 +m2(r21 + r22)

)
cosϕ

]
dr1 ∧ dθ2

+m2r1
[
2 (m1 +m2) r1r2 +

(
m1r

2
1 +m2(r21 + r22)

)
cosϕ

]
dr2 ∧ dθ2

+m2r1r2 sinϕ[m1r
2
1 +m2(r21 − r22)]dθ1 ∧ dθ2}.
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This 2-form drops to the quotient space to yield

βµ =
µ

[m1r21 +m2 (r21 + r22 + 2r1r2 cosϕ)]2

× {m2r2
[
2 (m1 +m2) r1r2 +

(
m1r

2
1 +m2(r21 + r22)

)
cosϕ

]
dϕ ∧ dr1

−m2r1
[
2 (m1 +m2) r1r2 +

(
m1r

2
1 +m2(r21 + r22)

)
cosϕ

]
dϕ ∧ dr2}

=
µm2

[
2 (m1 +m2) r1r2 +

(
m1r

2
1 +m2(r21 + r22)

)
cosϕ

]
[m1r21 +m2 (r21 + r22 + 2r1r2 cosϕ)]2

dϕ ∧ (r2dr1 − r1dr2).

The local representation of the connection can be computed from the expression

α(θ1, r1, r2, ϕ)(θ̇1, ṙ1, ṙ2, ϕ̇)

= A(r1, r2, ϕ)


ṙ1

ṙ2

ϕ̇

+ θ̇1

=
m2

m1r21 +m2(r21 + r22 + 2r1r2 cosϕ)

[
−r2 sinϕ r1 sinϕ r22 + r1r2 cosϕ

]
ṙ1

ṙ2

ϕ̇

+ θ̇1.

From this, we observe that

A(r1, r2, ϕ) =
m2

m1r21 +m2(r21 + r22 + 2r1r2 cosϕ)

[
−r2 sinϕ r1 sinϕ r22 + r1r2 cosϕ

]
.

The amended potential Vµ is given by

Vµ(q) = V (q) +
1
2
〈µ, I(q)−1µ〉

= [m1gq1 +m2g(q1 + q2)] · k +
1
2
· µ2

m1‖q⊥1 ‖2 +m2‖(q1 + q2)⊥‖2

= −m1g
√
l21 − r21 −m2g

(√
l21 − r21 +

√
l22 − r22

)
+

1
2
· µ2

m1r21 +m2(r21 + r22 + 2r1r2 cosϕ)
.

The Routhian has the following expression on the momentum level set,

Rµ =
1
2
‖hor(q, v)‖2 − Vµ.

Recall that hor(vq) = vq − ξQ(vq), where ξ = α(vq), and ξQ(vq) = (0, ξ, 0, 0, ξ, 0). Then, we obtain

hor(vq) = vq − (0, α(vq), 0, 0, α(vq), 0)
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= (ṙ1, θ̇1 − α(vq), ż1, ṙ2, θ̇2 − α(vq), ż2).

From this, we conclude that

1
2
‖hor(q, v)‖2

=
1
2



ṙ1

θ̇1 − α

ż1

ṙ2

θ̇2 − α

ż2



T

m1 +m2 0 0 m2 cosϕ −m2r2 sinϕ 0

0 (m1 +m2)r21 0 m2r1 sinϕ m2r1r2 cosϕ 0

0 0 m1 +m2 0 0 0

m2 cosϕ m2r1 sinϕ 0 m2 0 0

−m2r2 sinϕ m2r1r2 cosϕ 0 0 m2r
2
2 0

0 0 0 0 0 m2





ṙ1

θ̇1 − α

ż1

ṙ2

θ̇2 − α

ż2


=

1
2
{
(m1 +m2)r21 + 2m2r1r2 cosϕ+m2r

2
2

}
α2

−
{
m1r

2
1 θ̇1 +m2

[
r1r2(θ̇1 + θ̇2) cosϕ+ (r1ṙ2 − r2ṙ1) sinϕ+ (r21 θ̇1 + r22 θ̇2)

]}
α

+
1
2
m1(ṙ21 + r21 θ̇

2
1 + ż2

1)

+
1
2
m2

{
ṙ21 + r21 θ̇

2
1 + ṙ22 + r22 θ̇

2
2 + 2(ṙ1ṙ2 + r1r2θ̇1θ̇2) cosϕ

+2(r1ṙ2θ̇1 − r2ṙ1θ̇2) sinϕ+ (ż1 + ż2)2
}
,

where α = µ
I .

These combine to yield an expression for the Routhian Rµ, which drops to TS to give R̂µ, and

allow us to apply the Reduced Symplectic Partitioned Runge–Kutta algorithm.

2.10.3 Example Trajectories

We have computed the reduced trajectory of the double spherical pendulum using the fourth-order

RSPRK algorithm on the Routh equations, and the fourth-order SPRK algorithm on the classical

Routh equations.

As discussed in §2.7, these two methods should yield equivalent reduced dynamics, related to

each other by a momentum shift, and in particular, their trajectories in position space should agree.

We first consider the evolution of r1, r2, and ϕ, using the RSPRK algorithm on the Routh equations,

as well as the projection of the relative position of m2 with respect to m1 onto the xy plane as seen

in Figure 2.7.

Figure 2.8 illustrates that the energy behavior of the trajectory is very good, as is typical of

variational integrators, and does not exhibit a spurious drift. In comparison, when a non-symplectic

fourth-order Runge–Kutta is applied to the unreduced dynamics, with time-steps that were a quarter
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Figure 2.7: Time evolution of r1, r2, ϕ, and the trajectory of m2, relative to m1, using RSPRK.

of that used in the symplectic method, and we notice a systematic drift in the energy behavior.

Finally, we consider the relative error between the position trajectories and energy obtained

from the RSPRK algorithm applied to the Routh equations as compared to the trajectories from

the SPRK algorithm applied to the classical Routh equations. As Figure 2.9 clearly illustrates, these

agree very well, as expected theoretically.

2.10.4 Computational Considerations

The choice of whether to compute in the unreduced space, and then project onto the shape space to

obtain the reduced dynamics, or to compute the reduced dynamics directly using either the Discrete

Routh equations, or the RSPRK algorithm, depends on the nature of the problem to be simulated.

Given a configuration space of dimension n, and a symmetry group of dimension m, we are faced

with the option of implementing a conceptually simpler algorithm in 2n dimensions, as compared

to a more geometrically involved algorithm in 2(n −m) dimensions. Whether the additional effort

associated with implementing the reduced algorithm is justified depend on a number of factors,

including the relative dimension of the configuration space and the symmetry group, the computa-

tional complexity of the iterative schemes used to solve the resulting implicit system of equations,

and any additional structure that may arise in either the reduced or unreduced system.
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Figure 2.8: Relative energy drift (E −E0)/E0 using RSPRK (left) compared to the relative energy

drift in a non-symplectic RK (right).
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Figure 2.9: Relative error in r1, r2, ϕ, and E between RSPRK and SPRK.
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For instance, if longtime or repeated simulations are desired of systems with high-dimensional

symmetry groups, it can be advantageous to compute in the reduced space directly. An example

of this situation, which is of current engineering interest, is simulating the dynamical behavior of

connected networks of systems with their own internal symmetries.

If the systems to be connected are all identical, the geometric quantities that need to be computed,

such as the mechanical connection, have a particularly simple repeated form, and the additional

upfront effort in implementing the reduced algorithm can result in substantial computational savings.

Non-intrinsic numerical schemes such as the Symplectic Partitioned Runge–Kutta algorithm

applied to the classical Routh equations can have undesirable numerical properties due to the need

for coordinate-dependent local trivializations and the presence of coordinate singularities in these

local trivializations, such as those encountered while using Euler angles for rigid-body dynamics.

In the presence of non-trivial magnetic terms in the symplectic form, this can necessitate frequent

changes of coordinate charts, as documented in Wisdom et al. [1984] and Patrick [1991]. In such

instances, the coordinate changes can account for an overwhelming portion of the total computational

effort. In contrast, intrinsic methods do not depend on a particular choice of coordinate system, and

as such allow for the use of global charts through the use of containing vector spaces with constraints

enforced using Lagrange multipliers.

Coordinate singularities can affect the quality of the simulation in subtle ways that may depend

on the choice of numerical scheme. In the energy behavior of the simulation of the double spherical

pendulum, we notice spikes in the energy corresponding to times when r1 or r2 are close to 0. While

these errors accumulate in the non-symplectic method, the energy error in the symplectic method

remains well-behaved. However, sharp spikes can be avoided altogether by evolving the equations as

a constrained system with V = R3×R3, and constraint function g(v1,v2) = (‖v1‖−l1, ‖v2‖−l2) that

is imposed using Lagrange multipliers, as opposed to choosing local coordinates that automatically

satisfy the constraints. Here, the increased cost of working in the six-dimensional linear space V with

constraints is offset by not having to transform between charts of S2
l1
×S2

l2
, which can be significant

if the trajectories are particularly chaotic.

While in simple examples, the effect of choosing local coordinates that allow the use of non-

intrinsic schemes can be properly corrected for, this is not true in general for more complicated

examples. Here, intrinsic schemes such as those we have developed in this paper for dealing with

reduced dynamics and constrained systems are preferable, since they do not depend on a particular

choice of local trivialization, and as such do not require frequent coordinate transformations.
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2.11 Conclusions and Future Work

In summary, we have derived the Discrete Routh equations on S × S, which are symplectic with

respect to a non-canonical symplectic form, and retains the good energy behavior typically associated

with variational integrators. Furthermore, when the group action can be expressed as addition, we

obtain the Reduced Symplectic Partitioned Runge–Kutta algorithm on T ∗S, that can be considered

as a discrete analogue of cotangent bundle reduction. In addition, the theory has been extended to

include constraints and forcing. By providing an understanding of how the reduced and unreduced

formulations are related at a discrete level, we enable the user to freely choose whichever formulation

is most appropriate, and provides the most insight into the problem at hand.

Certainly one of the obvious things to do in the future is to extend this reduction procedure to

the case of nonabelian symmetry groups following the nonabelian version of Routh reduction given

in Jalnapurkar and Marsden [2000] and Marsden et al. [2000b]. There are also several problems,

including the averaged J2 problem, in which one can also carry out discrete reduction by stages and

in particular relate it to the semidirect product work of Bobenko and Suris [1999]. This is motivated

by the fact that the semidirect product reduction theory of Holm et al. [1998] is a special case

of reduction by stages (at least without the momentum map constraint), as was shown in Cendra

et al. [1998]. In further developing discrete reduction theory, the discrete theory of connections on

principal bundles developed in Leok et al. [2003] and Chapter 4 is particularly relevant, as it provides

an intrinsic method of representing the reduced space (Q×Q)/G as (S × S)⊕ G̃.

Another component that is needed in this work is a good discrete version of the calculus of

differential forms. Note that in our work we found, being directed by mechanics, that the right

discrete version of the magnetic 2-form is the difference of two connection 1-forms. It is expected

that we could recover such a magnetic 2-form by considering the discrete exterior derivative of a

discrete connection form in a finite discretization of space-time, and taking the continuum limit in

the spatial discretization. Developing a discrete analogue of Stokes’ Theorem would also provide

insight into the issue of discrete geometric phases. Some work on a discrete theory of exterior

calculus can be found in Desbrun et al. [2003a] and Chapter 3.

Of course, extensions of this work to the context of PDEs, especially fluid mechanics, would be

very interesting.


