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Abstract

This chapter investigates the relationship between Routh symmetry reduction and
time discretization for Lagrangian systems. Within the framework of discrete vari-
ational mechanics, a discrete Routh reduction theory is constructed for the case of
abelian group actions, and extended to systems with constraints and non-conservative
forcing or dissipation. Variational Runge-Kutta discretizations are considered in de-
tail, including the extent to which symmetry reduction and discretization commute.
In addition, we obtain the Reduced Symplectic Runge-Kutta algorithm, which can be
considered a discrete analogue of cotangent bundle reduction. We demonstrate these
techniques numerically for satellite dynamics about the Earth with a non-spherical Jo
correction, and the double spherical pendulum. The Js problem is interesting because
in the unreduced picture, geometric phases inherent in the model and those due to
numerical discretization can be hard to distinguish, but this issue does not appear in
the reduced algorithm, and one can directly observe interesting dynamical structures.
The main point of the double spherical pendulum is to provide an example with a
nontrivial magnetic term in which our method is still efficient, but is challenging to

implement using a standard method.

2.1 Introduction

Given a mechanical system with symmetry, we can restrict the flow on the phase space to a level set

of the conserved momentum. This restricted flow induces a “reduced” flow on the quotient of this



level set by the subgroup of the symmetry group that acts on it. Thus we obtain a reduced dynamical

system on a reduced phase space. The process of reduction has been enormously important for many

topics in mechanics such as stability and bifurcation of relative equilibria, integrable systems, etc.
The purpose of the present work is to contribute to the development of reduction theory for

discrete time mechanical systems, using the variational formulation of discrete mechanics described

in|Marsden and West| [2001]. We also explore the relationship between continuous time reduction and

discrete time reduction, and discuss reduction for symplectic Runge-Kutta integration algorithms
and its relationship to the theory of discrete reduction.

The discrete time mechanical systems used here are derived from a discrete variational principle
on the discrete phase space Q x Q. Properties such as conservation of symplectic structure and
conservation of momentum follow in a natural way from the discrete variational principle, and the
discrete evolution map can thus be regarded as a symplectic-momentum integrator for a continuous
system.

The theory of discrete variational mechanics in the form we shall use it has its roots in the

optimal control literature in the 1960’s; see, for example, |[Jordan and Polak| [1964], and [Hwang and|
[1967]. It was formulated in the context of mechanics by Maeda) [1981], [Veselov] [1988| [1991]
and [Moser and Veselov| [1991]. It was further developed by [Wendlandt and Marsden| [1997], and
Marsden and Wendlandt| [1997], including a constrained formulation, and by Marsden et al.| [1998],

who extended these ideas to multisymplectic partial differential equations. For a general overview

and many more references we refer to Marsden and West| [2001].

Although symplectic integrators have typically only been considered for conservative systems,

in Kane et al| [2000] it was shown how the discrete variational mechanics can be extended to

include forced and dissipative systems. This yields integrators for non-conservative systems which
can demonstrate exceptionally good long-time behavior, and which correctly simulate the decay or
growth in quantities such as energy and momentum. The discrete mechanics for non-conservative
systems is discussed in and it is shown how the discrete reduction theory can also handle
forced and dissipative systems.

The formulation of discrete mechanics in this paper is best suited for constructing structure
preserving integrators for mechanical systems that are specified in terms of a regular Lagrangian.

[Jalnapurkar and Marsden| [2003], building on the work of [Marsden and West| [2001], show how to

obtain structure-preserving variational integrators for mechanical systems specified in terms of a
Hamiltonian. This method can be applied even if the Hamiltonian is degenerate.

A complementary approach to the Routh theory of reduction used in this paper is that of Lie—
Poisson and Euler—Poincaré reduction, where the dynamics of an equivariant system on a Lie group

can be reduced to dynamics on the corresponding Lie algebra. A discrete variational formulation of



this was given in [Marsden et al.| [1999} [2000a], Bobenko et al.| [1998], and Bobenko and Suris| [1999).

Eventually one will need to merge that theory with the theory in the present paper.

We shall now briefly describe the contents of each section of this paper. In §2.2|we give a summary
of some well known results on reduction for continuous-time mechanical systems with symmetry.
Specifically, we discuss Routh reduction and its relationship with the theory of cotangent bundle
reduction. In §2:3] we develop the theory of discrete reduction, which includes the derivation of a
reduced variational principle, and proof of the symplecticity of the reduced flow. We also discuss
in this section the relationship between continuous- and discrete-time reduction. In we discuss
a link between the theory of discrete mechanics and symplectic Runge-Kutta algorithms. In §2.5]
we describe how our symplectic Runge—Kutta algorithm for a mechanical system with symmetry
can be reduced to obtain a reduced symplectic Runge-Kutta algorithm. In we put together
in a coherent way the results of the previous sections. We also discuss how the original reduction

procedure of [Routh| [1877, |1884] relates to our results. In we extend the theory of discrete

reduction to systems with constraints and external forces, and lastly, in §2.9| we present a numerical

example of satellite dynamics about an oblate Earth.

2.2 Continuous Reduction

In this section we discuss reduction of continuous mechanical systems, in both the Lagrangian and

Hamiltonian settings. Our purpose here is to fix notation and recall some basic results. For a

more detailed exposition, see Marsden and Scheurle] [1993alb], Holm et al.| [1998], [Jalnapurkar and|
[Marsden| [2000], [Marsden et al|[2000b|, and |Cendra et al|[2001] for Lagrangian reduction, and for
Hamiltonian reduction, see, for example, |Abraham and Marsden| [1978] as well as [1992]

for cotangent bundle reduction.

Suppose we have a mechanical system with configuration manifold @, and let L : TQ) — R be a
given Lagrangian. Let ¢ = (¢!,...,q") be coordinates on Q. The Euler-Lagrange (EL) equations
on TQ are

oL dOL
—— == (2.2.1)
Oq dt 9q

These equations define a flow on T'Q if L is a regular Lagrangian, which we assume to be the
case. Let Xp denote the vector field on T'Q) that corresponds to the flow. We have a Legendre
transformation, FL : TQ — T*(@, defined by

oL
FL:(q,q) — y |-
(g:9) <q aq>
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The Hamiltonian H on T*(@ is obtained by pushing forward the energy function E on T'Q), which is
defined by

We have a canonical symplectic structure Q2¢g on T*@Q). From 2o and H, we obtain the Hamiltonian
vector field Xpy on T*Q. A basic fact is that X is the push-forward of Xg using FL. Since the
flow of Xy preserves €1, the flow of Xg, i.e., the flow derived from the EL equations, preserves
Qp = (FL)*Qq.

Suppose an abelian group G acts freely and properly on @ so that @ is a principal fibre bundle
over shape space S := Q/G. Let mg s : @ — S be the natural projection. Given x € S, we
can find an open set U C S, such that 7TE2715<U) is diffeomorphic to G x U. Such a diffeomorphism
is called a local trivialization. Given a local trivialization, we can use local coordinates on GG and
on S to obtain a set of local coordinates on Q. If g = (¢',...,¢") and z = (a!,...,2°) are local
coordinates on G and U C S, respectively, then ¢ = (g,z) = (¢%,...,9",x',...,2°) can be taken as
local coordinates on Q.

The action of G on @ on be lifted to give actions of G on T'Q and T*Q. We also have a momentum
map J : T*Q — g*, defined by the equation J(«a,) - & = (a4, €q(q)), where ay € T;Q, € € g, and
£0o(q) is the infinitesimal generator corresponding to the action of G on Q evaluated at g. We can
pull-back J to T'Q using the Legendre transform FL to obtain a Lagrangian momentum map
Jp =FL*J :TQ — g*.

If the Lagrangian L is invariant under the lifted action of G on T'Q, the associated Hamiltonian
H will be invariant under the action of G on T*(@). In this situation, Noether’s theorem tells us that
the flows on T'Q and on T preserve the momentum maps Jy, and J, respectively.

Since locally, @ =~ G x S, we also have the local representation T'Q ~ TG x T'S. Thus, if (g, 9)
are local coordinates on TG, and (x, &) are local coordinates on T'S, (g, x, g, ©) are local coordinates
on TQ. From the formula for the momentum map and freeness of the action, one sees that g is
determined from (g,z,4) and the value of the momentum. Thus, J; '(x) is locally diffeomorphic to
G x T'S. If G is abelian (which is what we have assumed), it follows that G acts on J; '(u), and
that J; ' (12)/G is locally diffeomorphic to T'S. Let the natural projection J; ' () — TS be denoted
by m,, L.

In a local trivialization, let ¢ € @ correspond to (g,z) € G x S. Thus T,Q can be identified with
T,G x T, S.

Let 2 : TQ — g be a chosen principal connection. Using a local trivialization, the connection
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can be described by the equation
A(g, ) = A(x)i+g7" - g.

Here A(x) : T, S — g is the restriction of 2 to T,.S. (1,5 is identified with the subspace T,S x {0}
of T,G x T,S, which is in turn identified with T,Q.) Note that the map A(x) depends upon the
particular trivialization that we are using.

The connection gives us an intrinsic way of splitting each tangent space to ) into horizontal and
vertical subspaces. The vertical space V; at ¢ is the tangent space to the group orbit through ¢. If
Ay : T,Q — g is the restriction of 2, then the horizontal space H, is defined as the kernel of 2.
The maps hor : T, — H, and ver : T,(Q — V, are the horizontal and vertical projections obtained
from the split T,QQ = H, ® V.

If L is of the form kinetic minus potential energy, then 2 can be chosen to be the mechanical
connection, although we shall not insist on this choice. However, in this case one gets, for example,

as in Marsden et al.| [2000b], a global diffeomorphism J; ' (1)/G = T'S.

Reduction on the Lagrangian Side. From the connection 2( we obtain a 1-form 2, on () defined
by
Ay, (q)q = (p, A(q))-

The exterior derivative d2,, of 2, is a 2-form on Q. It can be shown (see, for example, Marsden
[1992] or Marsden et al. [2000b]) that d2, is G-invariant and is zero on all vertical tangent vectors
to . Thus, d2,, drops to a 2-form on S, which we shall call 3,,. It is often called the magnetic
2-form.

If ¢ is a curve that solves the Euler-Lagrange equations, then it is a solution of Hamilton’s

variational principle, which states that

b
5/ L(q,q)dt =0,

for all variations dq of ¢ that vanish at the endpoints. The curve x obtained by projecting this
solution ¢ onto the shape space also solves a variational principle on the shape space. This reduced

variational principle has the form
b b
5/ RF(x,)dt :/ By (&, 6x) dt, (2.2.2)

for all variations dx of z that vanish at the endpoints and for a function R* that we shall now define.
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To define the Routhian R* on T'S , we first define a function R* on T'Q) by
RH(Q7 Q) = L(Qa q) - Q[M(Q)q7

where p is the momentum of the solution g. The restriction of R* to J, Y(1) is G-invariant and R
is obtained by dropping R*|J; () to J; ' (n)/G ~ TS.
It is easy to check that the reduced variational principle above is equivalent to the equations
OR"  d OR"
- =i, ; 2.2.3
e di o #Pk) (2:23)
where i; denotes interior product of the 2-form (3, with the vector . We call Equation the

Routh equations.

Reduction on the Hamiltonian Side. If the group G is abelian (which is what we have as-
sumed), then from equivariance of the momentum map, we see that G acts on the momentum level set
J71(w) C T*Q. The quotient J~1(u)/G can be identified with T*S. The projection J~1(u) — T*S
called 7, and can be defined as follows: If a; € J~!(u), then the momentum shift o, — 2A,(q)

annihilates all vertical tangent vectors at ¢ € @, as shown by the following calculation:

(g = 2u(9),€0(9)) = J(ag) - € = (1, €) = (1, &) — (1, §) = 0.

Thus, g — 2, (q) induces an element of TS and 7, () is defined to be this element.

By Noether’s theorem, the flow of the Hamiltonian vector field X leaves the set J~1(u) invariant
and is equivariant, and so the restricted flow induces a reduced flow on T*S. This reduced flow
corresponds to a reduced Hamiltonian vector X H, on T*S, which can be obtained from a reduced
Hamiltonian H,, and a reduced symplectic form €2,,. The reduced energy at momentum level p is
denoted H,, and is obtained by restricting H to J ~1(u) and then, using its invariance, to drop it to
a function on 7*S. Similarly, we get the reduced symplectic form €, by restricting Q¢ to J (1)
and then dropping to 7™S; namely, the reduced symplectic structure 2, is related to Qg by the
equation

T, =1,Qq,

and is preserved by the reduced flow. An important result for cotangent bundles is that 2, =
Og — W}*S’Sﬁu, where g is the canonical symplectic form on 7S, and np-g g : T*S — S is the

natural projection. See, for example, Marsden| [1992] for the proof.
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Relating Lagrangian and Hamiltonian Reduction. The projections 7, 1, : ng(u) — TS and

7t J () — T*S are related by the equation,
myoFL = FR" o Ty, Ly

where FR¥ : TS — T*S is the reduced Routh-Legendre transform and is defined by

. 70
FRM : (x,%) — (x, 8;1) .

Notice that the Routhian R* has the momentum shift built into it as does the projection m,. It
readily follows that the reduced dynamics on T'S and on T%S, given by the Routh equations and the
vector field Xy, , respectively, are also related by the reduced Legendre transform FR*. Thus, the
relationships between the reduced and “unreduced” spaces and the reduced and unreduced dynamics

can be depicted in the following commutative diagram:

(J5 (1), EL) =2 (T (1), X1r)

(T8, R) — " (T%8, X

From the commutativity of this diagram, one sees that conservation of the symplectic 2-form
(FR™)*(g — Tres,50u) by the flow of the Routh equations follows from the conservation of the 2-
form Qg —77. 5 53, by the flow of the reduced Hamiltonian vector field. Conservation of (FR)*(Qg—

Tpss, sPy) can also be shown directly from the reduced variational principle (Equation |2.2.2)).

Reconstruction. There is a general theory of reconstruction for both the Hamiltonian and La-
grangian sides of reduction. The problem is this: given an integral curve in the reduced space T'S
or T*S, a value of 1 and an initial condition in the p-level set of the momentum map, how does one
reconstruct the integral curve through that initial condition in T'Q) or T*@Q? This question involves
the theory of geometric phases and of course is closely related to the classical constructions of so-
lutions by quadratures given a set of integrals of motion. This is not a trivial procedure, even for
abelian symmetry groups, although in this case things are somewhat more explicit. This procedure
is discussed at length in, for example, Marsden et al.| [1990], [Marsden| [1992] and [Marsden et al.
[2000b|. We shall need this theory at a couple of points in what follows.
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2.3 Discrete Reduction

2.3.1 Discrete Variational Mechanics

In this paper, we will be using the theory of discrete mechanics as described in [Marsden and West:

[2001]. In this subsection, we briefly describe the essential features of this theory and fix our notation.

Discrete Lagrangians. Given a configuration manifold ), a discrete Lagrangian system consists
of the discrete phase space ) x Q and a discrete Lagrangian L; : Q x Q@ — R. As we are
interested in discrete systems which approximate a given continuous system, we will take discrete
Lagrangians which depend on a timestep h, so that Lg : Q x Q@ x R — R should be thought of as

approximating the action for time h,

h
Laldo, qu, ) ~ / Liq(t). 4(t)) dt, (2.3.1)

where ¢ : [0,h] — @ is a continuous trajectory solving the Euler-Lagrange equations for L with
boundary conditions ¢(0) = gy and ¢(h) = ¢1. When the timestep is fixed in a discussion, we often

neglect the timestep dependence in Ly and write Lg(qo, q1) for simplicity.

Discrete Euler—Lagrange Equations. Just as continuous trajectories are maps from [0, 7] to
Q, we consider discrete trajectories, which are maps from {0, h,2h,..., Nh =T} to Q. This gives
a set of points in @ which we denote q = {qx}1_,.

Having defined a discrete Lagrangian, we define the discrete action to be a function mapping
discrete trajectories g = {qi }+_, to the reals, given by

N—

Ga(a) = > La(qr, qr+1)- (2.3.2)
k=0

[y

Hamilton’s principle requires that the discrete action be stationary with respect to variations van-

ishing at £k = 0 and kK = N. Computing the variations gives

N—-1
d&,(q) - 6q = [D1La(qk, qr+1) - 0qk + Do2La(qk, qk+1) - 0qk+1]
k=0
N—-1
= [D2La(qr—1,qx) + D1La(qr, qr+1))] - 6qn
=1

+ D1L4(qo,q1) - 0go + DaLa(gn-1,9n) - 9qn-

The requirement that this be zero for all variations satisfying dqo = dqny = 0 gives the discrete
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Euler—Lagrange (DEL) equations,

Do La(qr-1,qx) + D1La(qk, qr+1) = 0, (2.3.3)

foreach k =1,..., N—1. These implicitly define the discrete Lagrange map, Fr,, : QxQ — QxQ;

(qk—1,q%) — (qr, qr+1). We also refer to this map as the discrete Lagrangian evolution operator.

Discrete Lagrange Forms. The boundary terms in the expression for d®,; can be identified as

the two discrete Lagrange 1-forms on Q X ), which are

07 (490,q1) = DaLa(qo, q1)dq1, (2.3.4a)
01,(q,q1) = —D1La(q0, 91)dqo. (2.3.4b)
In coordinates, note that
dLg | ;
OLs = g Ui (2.3.5)

We define the discrete Lagrange 2-form on Q X @ to be

Qp, =—doey , (2.3.6)
which in coordinates is
0Ly ) 0°Ly . . ;
Qr, = — “dql | = ——=dq} A dg. 2.3.7
b= (Gt ) = SEot i (237)

A straightforward calculation shows that
Qp, =-dOp . (2.3.8)

The space of solutions of the discrete Euler-Lagrange equations can be identified with the space
Q@ x @ of initial conditions (qo, ¢1). Restricting the free variations of the discrete action to this space
shows that we have

d&4loxq = —O7, + (F,71)*(©7),

and so taking a second derivative and using the fact that d2 = 0 shows that

(FY=YQp, =Qp,.
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In particular, taking N = 2, we see that the discrete Lagrange evolution operator is symplectic; that
is,

(Fr,)"Qr, = Qr,. (2.3.9)

Discrete Legendre Transforms. Given a discrete Lagrangian we define the discrete Legendre

transforms, FT L, F Ly : Q x Q — T*Q, by

F~La(q0,q1) = (g0, —D1La(q0, q1)), (2.3.10a)

F* La(q0, q1) = (1, D2La(q0, 1)), (2.3.10b)

and we observe that the discrete Lagrange 1- and 2-forms are related to the canonical 1- and 2-
forms on T*@ by pull-back under the discrete Legendre transforms; that is, @i = (F¥L4)*(©) and
Qr, = (FXLa)*(Q).

Pushing the discrete Lagrange map forward to 7@ with the discrete Legendre transform gives
the push-forward discrete Lagrange map, Fr, : T*Q — T*Q by F, = FfLyo Fp, o (F¥Ly)~ 1.
One checks that one has the same map for the + case and the — case. In fact, the expression for

the push-forward discrete Lagrange map can be seen to be determined as follows: F, . (qospo) —

(ql ) p1)7 where

po = —D1La(q0, q1), (2.3.11a)

p1 = D2La(qo0,q1)- (2.3.11Db)

Note that by construction, the push-forward discrete Lagrange map preserves the canonical 2-form.

The push-forward discrete Lagrange map is thus symplectic; that is, (F ) (Q) = Q.

Exact Discrete Lagrangians. The relationship between a discrete Lagrangian and the corre-
sponding push-forward discrete Lagrange map is that of generating functions of the first kind.
Generating function theory shows that for any symplectic map T*Q — T*Q (at least those near the
identity), there is a corresponding generating function @ x @ — R which generates the map in the
sense of Equation 2:3.11]

It is thus clear that there is a discrete Lagrangian for every symplectic map, including the exact
flow F}, : T*Q — T*Q of the Hamiltonian system corresponding to the Lagrangian L. This is
referred to as the exact discrete Lagrangian and Hamilton—Jacobi theory shows that it is equal

to the action,

h
L2 (g0, 1, h) = / L(q(t). 4(t)) dt, (2.3.12)
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where ¢ : [0, h] — @ solves the Euler-Lagrange equations for L with ¢(0) = go and ¢(h) = ¢;. This
classical theorem of Jacobi is proved in, for example, [Marsden and Ratiu| [1999].

Using this exact discrete Lagrangian, the push-forward discrete Lagrange map will be exactly
the Hamiltonian flow map for time h, so that FLf = FI'} That is, discrete trajectories q = {qk},ivzo

will exactly sample continuous trajectories ¢(t), namely g = g(kh).

Approximate Discrete Lagrangians. If we choose a discrete Lagrangian which only approxi-
mates the action, then the resulting push-forward discrete Lagrange map will only approximate the

true flow. The orders of approximation are related, so that if the discrete Lagrangian is of order r,
h
Ly= / L(q,q) dt, +O(h"t1), (2.3.13)
0
then the push-forward discrete Lagrange map will also be of order r; that is,
F} =Fp+ O ). (2.3.14)

By choosing discrete Lagrangians which are at least consistent (r > 1) we can regard the discrete

Lagrange map as an integrator for the continuous system.

2.3.2 Discrete Mechanical Systems with Symmetry

Let G be an abelian Lie group that acts freely and properly on the configuration manifold Q. We
will assume that our discrete Lagrangian Ly is invariant under the diagonal action of G on @ x Q.
Such a discrete Lagrangian could have been obtained by discretizing a continuous Lagrangian L that
is invariant under the lifted action of G on T'Q). For a discussion of how to construct G-invariant
discrete Lagrangians from G-invariant Lagrangians using natural charts, please see

Note that @ is a bundle over the shape space S = Q/G. Using a local trivialization, @ can be
locally identified with G x S. Thus Q@ x Q &~ G x S x G x S. With this identification, (¢x, gx+1) =
(hi, g, hgt1, Tpr1). We will use 9/9g;, i = 1,2, to denote partial derivatives with respect to the
first and second group variables, and 0/3s;, i = 1,2, to denote partial derivatives with respect to
the first and second shape space variables.

Given a discrete Lagrangian, the discrete momentum map, J; : Q X @ — g*, is defined by

Ja(qo,q1) - € = DaLq(qo, q1) - E@(aqr)- (2.3.15)
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Since L4 is invariant under the action of G, we have

DiLa(q0,q1) - £0(q0) + D2La(q0,q1) - £o(q1) = 0.

Thus,

Ja(qo,q1) - € = D2La(qo,q1) - €o(q1) = —D1La(qo,q1) - €0 (qo)

= &olq) 407 (q0,q1) =&q(q0) 1 O7,(q0,q1),

where X _| w denotes the interior product of a vector X with a 1-form w. Thus, if {qo,q1,¢2,...}

solves the DEL equations, then

Ja(q1,92) - § = D2La(q1, ¢2) - §q(a2) = —D1La(q1, 42) - (1)

= DyLq(q0,q1) - §o(q1) = Ja(qo, q1) - €.

Thus, the discrete momentum is conserved by the discrete Lagrange map, Fr, : @ x Q — @ x Q,
Fr, : (g0,91) — (q1,q2). In other words, the discrete momentum is conserved along solutions of the
DEL equations, which is referred to as the discrete Noether theorem.

By definition of Jg,
Ja(q0,q1) - € = J(D2La(q0, ¢1)) - &,

where J : T*Q — g* is the momentum map on 7*Q. Thus,
Jg=JoFLyg,

where FLy; = DaLg : Q X Q — T*Q is the discrete Legendre transform. (Note that in we had
two discrete Legendre transforms, F* L, and F~Ly. For the remainder of this paper, we use the term
discrete Legendre transform and the symbol FL4 to denote F™ Ly to make a specific choice.) Thus,
FLq maps J; ' (u), which is the p-level set of the discrete momentum to J (). Also, since Jy is
conserved by the discrete evolution operator Fp,,, it follows that the push-forward discrete Lagrange
map FLd :T*Q — T*Q preserves J.

In a local trivialization, where ¢; = (61, x1),

d
Solar) = 5 | (exp () - 01,21) = (TR, - £,0),
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where Ry, denotes right multiplication on G by 6;. Thus,

TRy, - &
8Ld 8Ld aLd
oo |G YEd | - TR, - €.
Ja(qo,q1) - € {392 832] 32 ° Ry, - €
0
Hence,
OL
Ja(qo, q1) = Td(907x05917x1) o TRy, .
g2

The momentum map, Jg: @ X Q — g*, is equivariant as the following calculation shows:

Ja(0-qo,0-q1) - &= D1La(0-q0,0 - q1) - (0 - qo)
= D1La(0 - qo,0 - q1) - 6 - (Adg-1 £)@(q0)
= D1La(qo,q1) - (Adg-1 §)@(q0)
= Ja(qo, q1) © Adg-1 £
= (Adg-1 Ja(qo, q1)) - &

Thus, the coadjoint isotropy subgroup G, of G acts on J;l(y). Since G is abelian, G, = G, and
thus G acts on J; ' ().

If the value of the momentum is u, the equation

0Lg4
8792(007:1:07 017 331) o TR91 = M,

determines 6 implicitly as a function of 6y, o, 1 and . Thus the level set .J; ' (12) can be (locally)
identified with G x S x S. The quotient J; ' (u)/G is thus locally diffeomorphic to S x S.

If we choose a momentum g, it follows from the above discussion that there is a unique map
Y, 1§ x 8 — @G, such that,

Ja(e, h, Y (Ths Tho1)s Thg1) = Mo

Further, if 0, € G, Ok - (€, 2, Yu(Th, Tht1), Trs1) = (O, Th, Ok - Yp(@k, Try1), Ty1) is also in

Jd_l(u). Thus for a given p, the function giving 01 in terms of Oy, x) and zpyq is

Okt1 = Ok - Vp (@, Ty1)- (2.3.16)

Reconstruction. The following lemma gives a basic result on the reconstruction of discrete curves

in the configuration manifold ) from those in the shape space S. The lemma is similar to its



20

continuous counterpart, as in Lemma 2.2 of Jalnapurkar and Marsden| [2000]. Recall that V, denotes
the vertical space at g, which is the space of all vectors at ¢ that are infinitesimal generators £o(q) €
T,Q. We say that the discrete Lagrangian Ly is group-regular if the bilinear map DsD1Lg(q, q) :
T,Q x T;Q — R restricted to the subspace V, x V; is nondegenerate. Besides regularity, we shall

make group-regularity a standing assumption in this chapter as well.

Lemma 2.1 (Reconstruction Lemma). Let p € g* be given, and x = {xg,...,x,} be a suffi-
ciently closely spaced discrete curve in S. Let gy € Q be such that g s(qo) = xo. Then, there is a
unique closely spaced discrete curve q = {qo,...,qn} such that 7o s(qr) = xx and Ja(qk, Gr+1) = W,

fork=0,....n—1.

Proof. We must construct a point ¢; close to gy such that 7o s(¢1) = x1 and Jg(q0,¢1) = p. The
construction of the subsequent points ¢o, ..., g, will follow in an inductive fashion.

To do this, pick a local trivialization of the bundle 7g ¢ : @ — Q/G, where Q =~ G x S locally,
and write points in this trivialization as q; = (0, ©).

Given the point gg = (0, xo), we seek a near identity group element g, such that ¢; := (g0y, x1)
satisfies Jy4(qo,q1) = p. By the definition of the discrete momentum map (Equation , this

means that we must satisfy the condition

DsLa(qo,q1) - €q(q1) = (1, &)

for all £ € g. In the local trivialization, this means that

D3y L4((00,%0), (960, 21)) - (TRg9,&,0) = (11, &),

where R, denotes right translation on the group by the element g.

Consider solving the above equation for #; = gy as a function of g, xg, z1, with p fixed. We
know the base solution corresponding to the case x1 = xp, namely g = e. The implicit function
theorem tells us that when z; is moved away from xzg, there will be a unique solution for g near
the identity, provided that the derivative of the defining relation with respect to g at the identity is

invertible. But this condition is a consequence of group-regularity, so the result follows. |

Note that the above lemma makes no hypotheses about the sequence satisfying the discrete
Euler-Lagrange equations.

To obtain the reconstruction equation in the continuous case, we require that the lifted curve
is second-order, on the momentum surface, and that it projects down to the reduced curve. It is
appropriate to consider the discrete analogue of the second-order curve condition, since it may not

be apparent where we imposed such a condition.
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We consider a discrete curve x as a sequence of points, (zo, 1), (£1,22),..., (Zn—-1,%,) in S X S.
Lift each of the points in S x S to the momentum surface J;'(4) C @ x Q. This yields the
sequence, (¢3,4Y), (qb,q1),- .-, (g™, ¢!~ "), which is unique up to a diagonal group action on Q x Q.
The discrete analogue of the second-order curve condition is that this sequence in @ x @) defines a
discrete curve in @, which corresponds to requiring that ¢¥ = q(])”'l, for k =0,...,n — 1, which is
clearly possible in the context of the reconstruction lemma.

This discussion of the discrete reconstruction equation naturally leads to issues of geometric
phases, and it would be interesting to obtain an expression for the discrete geometric phase in terms

of the discrete curve on shape space.

Reconstruction of Tangent Vectors. Let (qo,q1) be a lift of (zg, 1) to J; ' (1), and (8o, 6z1)
be a tangent vector to S x S at (xo,x1). Given dqo € Ty, Q, with Tmg s - 6go = o, it is possible
to find a 01 € Ty, Q, with T'mg,s - g1 = dx1, such that (dgo, dg1) is a tangent vector to chl(u)
at (qo,q1). Indeed, if in a local trivialization, dqg = (80g, dz), then the required ¢y is (061, dx1),
where 66, is obtained by differentiating Equation as follows:

001 = 00y - (o, 21) + 6o - D19y (w0, 21)0x0 + 0o - Datpy (20, 21)027.

Discrete Connection. It should be noted that although our discussion of reconstruction is cast in
terms of local trivializations, it is in fact intrinsic and can be thought of as a discrete horizontal lift
in the sense of discrete connections developed in Chapter [l The discrete connection associated with
the reconstruction to the discrete p-momentum surface is represented by the discrete connection
1-form A, : Q@ x Q@ — G, defined on a G-invariant neighborhood of the diagonal by A4(go,q1) = €
iff J4(qo,q1) = 1, and extended to other points by

Aa(9090, 9101) = 9190 -

The reconstruction lemma (Lemmal[2.1)) may be viewed as providing the horizontal lift of this discrete
connection.

The discrete connection given above is the natural choice of connection on @ x @ for the purpose
of constructing a unified formulation of discrete, Lagrangian, and Hamiltonian reduction. Recall the
following diagram,

(TQ, Jp) —E2— (T*Q, J)

TIE‘L(!

(@Q % Q,Ja)
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and consider the horizontal space on T'Q) given by the u-momentum surface, ng(u). Since Jy, =
(FL)*J, and Jq = (FLg)*J, it follows that (FL).J;'(u) = (FL4)«J; (1), and as a consequence,
(FLq)*(FL)«Jy '(p) = J; " (w). This implies that the discrete reconstruction equation is simply the
horizontal lift with respect to the discrete connection on @ x @ that is consistent with the connection
on T'Q) with respect to the fiber derivatives FL and FL,4, and is therefore an intrinsic operation. The
discrete connection obtained in this way is related to the discrete mechanical connection, and is
given by the discrete connection 1-form introduced above.

Discrete connections also yield a semi-global isomorphism (Q x Q)/G = (S x S) & G (see
for neighborhoods of the diagonal, and this induces a semi-global isomorphism J; ! (u)/G = S x S,
which is a discrete analogue of the global diffeomorphism, J; Y(w)/G = TS, that was obtained in

Marsden et al.| [2000b] with the use of the mechanical connection.

2.3.3 Discrete Reduction

In this section, we start by assuming that we have been given a discrete Lagrangian, Ly : @ xQ — R,
that is invariant under the action of an abelian Lie group G on @ x Q.

Let q := {qo, - - -, gn } be a solution of the discrete Euler-Lagrange (DEL) equations. Let the value
of the discrete momentum along this trajectory be p. Let x; = mg s(¢;), so that x := {x¢,..., 2}
is a discrete trajectory on shape space. Since q satisfies the discrete variational principle, it is
appropriate to ask if there is a reduced variational principle satisfied by x.

An important issue in dropping the discrete variational principle to the shape space is whether
we require that the varied curves are constrained to lie on the level set of the momentum map. The
constrained approach is adopted in|[Jalnapurkar and Marsden|[2000], and the unconstrained approach
is used in Marsden et al.|[2000b|. In the rest of this section, we will adopt the unconstrained approach
of [Marsden et al|[2000b], and will show that the variations in the discrete action sum evaluated
at a solution of the discrete Euler—Lagrange equation depends only on the quotient variations, and
therefore drops to the shape space without constraints on the variations.

By G-invariance of L, the restriction of Ly to J; ' (1) drops to the quotient J; ' ()/G &~ S x S.
The function obtained on the quotient is called the reduced Lagrangian and is denoted Lq. Let
Tpd - Jd_l(u) — S x S be the projection. Let (go,q1) € Jd_l(u), and (0qo,dq1) € T(qo)ql)Jd_l(/,L). If
7Q,s - ¢ = x; and Tmg g - 6g; = dx;, 1 = 0,1, then 7, 4(qo,q1) = (xo,21) and T'my, q - (690, 0q1) =

(0xg,0x1). In this situation, we get Li(qo,q1) = f/d(x07x1)7 and so
DL4(q0,q1) - (0g0,8q1) = DLa(x0, 1) - (520, 01). (2.3.17)

For q a solution of the DEL equations, and x the corresponding curve on the shape space
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S, let 0x = di X. be a variation of x. Let dq = di

=3 = |€:0q€ be any variation of q such that

Trg,s - 0q; = 6x;. Then,

n—1
d
6 La(qe, qrs1) = T > Lagre: aet1.)
=0 g le=0 %
= DLa(gk, qr41) - (6, 6Gk41)
k
= D1La(qo, q1) - 6q0
n—1
+ Y (DaLa(gr-1, k) + D1La(gr, gr+1)) - 5ax
k=1

+ D2Ld(Qn—17 qTL) : 5%

= D1L4(q0,q1) - 9o + D2La(qn—1,qn) - 0qn, (2.3.18)

where we have used the fact that q satisfies the discrete Euler-Lagrange equations.

Recall that the discrete momentum map is given by

Ja(qr, qet1) - € = DaLa(qr, qr+1) - $@(qr+1) = —D1La(qr, ar+1) - $Q(ar)-

Given any connection 2 on (), we have a horizontal-vertical split of each tangent space to Q.

Thus,

DsLa(¢n-1,Gn) - 0¢n = D2Lq(gn—1,¢n) - hor 8¢, + DaLa(¢n—1,qn) - ver 0qp.

Now, ver dqy, = £q(¢n), where & = (g, ). Thus, A(dq,,) = A(ver dgn) = A(€q(gn))- So,

D2Ld<Qn717qn) - ver 6Qn = D2Ld(qn717Qn) ' gQ(qn)
= Jd(qnfh%z) £ = <;U’7£> = </1'7Q1(£Q(qn))>
= (1, 2A(8qn)) = Aplqn) - Ogn. (2.3.19)

Thus,

DZLd((Inflv(In) : 5(]n = D2Ld(Qn717 Qn) - hor 5Qn + Qlu(%) . 5(]n~ (2320)

Similarly,

D1La(q0,q1) - 9g0 = D1La(qo,q1) - hor dgo — 2A,.(qo) - dqo- (2.3.21)
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Thus, from Equation [2.3.18

d% o > La(gke: @k+1.) =D1La(go,q1) - hor 6go + DaLa(gn—1,n) - hor dg,,
K
+ A (qn) - 0gn — Au(qo) - 0qo. (2.3.22)
Define a 1-form A on @ x @ by
A(q0,91)(0g0,9q1) = Au(q1) - 61 — Au(q0) - 0qo.- (2.3.23)

If m, 7m0 : @ X Q — @ are projections onto the first and the second components, respectively. Then,
A=m3, — 72,
Using G-invariance of 2,,, it follows that A is G-invariant. Also,

Algo,q1)(€q(q0),€q(q1)) = Au(q1) - Eolqr) — Aulqo) - €qlq0) = (1, €) — (1, &) = 0.

Thus, A annihilates all vertical tangent vectors to @ x Q. It is easy to check that the 1-form
A|J; (1), obtained by restricting A to J; ' (u) is also G-invariant and annihilates vertical tangent
vectors to J; ! (u). Therefore, A|J; (i) drops to a 1-form A on J;*(1)/G ~ S x S.

If mpa s Iy () — J; () /G is the projection, and i, 4 : J; ' (1) — Q x Q is the inclusion, then
A and A are related by the equation

ﬂ-;,dA = i;,dA'

We define the 1-forms A+ and A~ on S x S and the maps fh, Ay :Sx S —T*S by the relations

AJr(:co,:cl) - (6zg,011) = flg(xo,xl) Sy = fl(zo,xl) - (0,0x1),

A7($0,$1) . (51‘0,5131) = Al(IQ,IIJl) . 51?0 = A(Jfo,:ﬁl) . (51‘0,0)
Note that we have the relations A = At + A~ and
A(Io,l‘l) . (5$0,5$1) = Al(Io,l‘l) . 5580 +A2(I0,CE1) . 5I1.

From Equation [2:3.23] it follows that,

n—1

u(n) - 0qn — Au(q0) - 560 = Y Au(qrs) - 0qrrr — Au(qr) - 6
k=0



n—1
= Alqr, qrt1) - (0qk, 0i+41)- (2.3.24)
k=0
Thus, Equation 2.3:22] can be rewritten as
d n—1
‘ Z La(qkes qe+1.) =D1La(qo, ¢1) - hor dgo + D2Lg(gn—1,¢y) - hor dgy,
de | e=0 P
n—1
+ Z A(ar, qr+1) - (0qk, 0qK+1), (2.3.25)
k=0

or equivalently,

n—1

> (DLa— A)(qk, qr41) - 0k, 6qk41) = D1La(qo, q1) - hor 8o + DaLa(gn-1,qn) - hor dgy. (2.3.26)
k=0

The following lemma shows the sense in which the 1-form (DL; — A) on @ x @ drops to the
quotient J; ' (n)/G ~ S x S.

Lemma 2.2. If (qo, 1) € J; " (1) and (8qo,0q1) € Tgo,q0)Q X Q with mg s(q;) = x; and Trg,5-0¢; =
ox;, 1=0,1, then

(DLd — A)(QO,Q1) . (5q0,6q1) = (D[A/d - A)($0,$1) . (61‘0,5331).

Proof. As we showed in the discussion at the end of §2.3.2] we can find d¢; € Ty, @ such that
Trg,s - 0q; = dx1 and (dqo,dq)) € T(qo,ql)Jd_l(u). Let 6g1 = 8¢} + d¢Y. Thus d¢} € Ty, @Q is vertical,
ie., Tmg,s-0¢) =0. Now,

(DLq — A)(q0,q1) - (390,6q1) = (DLa — A) (g0, q1) - (390,41) + (DLa — A)(g0, q1) - (0,9q7).
Using Equation and the fact that A|J; (1) drops to a 1-form A on S x S, we get
(DLa — A)(qo, q1) - (6g0,0¢;) = (DLg — A)(wo, 1) - (320, 01).
Also, by a calculation similar to that used to derive Equation [2.3.19] we have that

(DLq — A)(q0,q1) - (0,0¢Y) = DaLa(qo, q1) - 6¢7 — A,.(q1)d¢7 = 0. 0
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With this lemma, and Equation [2.3.26] we conclude that

n—1

Z(Did — A)(wk, 2141) - (628, 02351) = D1La(qo, q1) - hor 8qo + DaLa(gn—1,n) - hor g,.
k=0

(2.3.27)

If 0x is a variation of x that vanishes at the endpoints, then hor §gy = 0, and hor dgq; = 0. Therefore,

n—1
>~ (DLa = A) (s, wisr) - (O, asr) = 0.
k=0
Equivalently,
n—1 n—1
63" La(wn,wien) = Y Alwn, a1 - (620, 02441). (2.3.28)
k=0 k=0

Equating terms involving dz on the left-hand side of Equation [2:3:28] to the corresponding terms
on the right, we get the discrete Routh (DR) equations giving dynamics on S x S:

DoLg(zk_1,21) + D1La(wk, trs1) = As(zr_1, %) + Ay (2h, Tpy)- (2.3.29)

Note that these equations depend on the value of momentum pu.

Thus, we have shown that if q is a discrete curve satisfying the discrete Euler—Lagrange equations,
the curve x, obtained by projecting q down to S, satisfies the DR equations (Equation [2.3.29)).

Now we shall consider the converse, the discrete reduction procedure: Given a discrete curve x
on S that satisfies the DR equations, is x the projection of a discrete curve q on ) that satisfies the
DEL equations?

Let the pair (go,q1) be a lift of (zg,21) such that J4(qo,q1) = p. Let @ = {qo,...,qn} be the
solution of the DEL equations with initial condition (gg,¢1). Note that q has momentum p. Let
x' = {x{,..., 2z} be the curve on S obtained by projecting q. By our arguments above, x’ solves
the DR equations. However x’ has the initial condition (xg, 1), which is the same as the initial
condition of x. Thus, by uniqueness of the solutions of the DR equations, x’ = x. Thus x is the
projection of a solution q of the DEL equations with momentum p. Also, for a given initial condition
qo, there is a unique lift of x to a curve with momentum g. Such a lift can be constructed using the
method described in §2:3:2] Thus, lifting x to a curve with momentum g yields a solution of the
discrete Euler—Lagrange equations, which projects down to x.

We summarize the results of this section in the following Theorem.

Theorem 2.3. Let x is a discrete curve on S, and let q be a discrete curve on Q with momentum
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u that is obtained by lifting x. Then the following are equivalent.
1. q solves the DEL equations.

2. q is a solution of the discrete Hamilton’s variational principle,

n—1
8> La(gr, qri1) =0,
k=0

for all variations éq of q that vanish at the endpoints.

3. x solves the DR equations,
DyLg(z—1,2k) + DiLa(xk, 241) = As(zp—1, 21) + A1 (24, Tpt1)-

4. x is a solution of the reduced variational principle,

n—1

0y La(wr,wen) = ) Alwy, apia) - (62k, 62141),
k 0

£
I

for all variations éx of x that vanish at the endpoints.

2.3.4 Preservation of the Reduced Discrete Symplectic Form

The DR equations define a discrete flow map, Fi,:Sx8—8x5. We already know that the flow
of the DEL equations preserves the symplectic form {7, on @ X Q. In this section we show that the
reduced flow F}, preserves a reduced symplectic form €2, 4 on S xS, and that this reduced symplectic

form is obtained by restricting 7, to J; ' (1) and then dropping to S x S. In other words,
Th.dd = 1, aS0L,-
The continuous analogue of this equation is
T, =1,Qq.

Since the projections 7, 4 and 7, involve a momentum shift, the reduced symplectic forms €2, 4 and
2, include magnetic terms.

Recall that Ly : S x S — R is the reduced Lagrangian, and DLy is a 1-form on S x S. Define
1-forms Dﬁ}' and D[A/g on S x S by

Di/jl_($07$1) - (6z0,021) = DLg(z0,21) - (0,021) = DaLa(xo,21) - 621,
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Di;(a:o,xl) . (53?0,5331) = Did(l‘o,xl) . (5560,0) = D1[A/d(l‘0,$1) . 5330.

Note that the partial derivatives Dlﬁd and Dgﬁd are both maps S x S — T*S.
Define 2-forms B and B on Q@ xQand S x S as follows:

B=dA, B=dA.

Since ’/T:)d./i = iy, 4A, we get W;’dé = iy, 4B. Thus B can be obtained by restricting B to Jd_l(u) and
then dropping to J; ' (1)/G = S x S.

Since A = w3, — 12, it follows that B = n3B,, — 7] B,,, where B,, = d%,, is a 2-form on Q.

Now B, drops to a 2-form 3, on S. Using this fact, we find that B = w58, — 71 B,. Here,
1,79+ 8 x § — S are projections onto the first and second components, respectively. If we define
Bt :=#58,, and B~ := —#{,, then B =B~ + B+.

We define a function §: S x S — R by

|
-

n

S(.’I]O,J}l) = [A’d(xkamk+1)7
k=0
where x = {xg,...,2,} is a solution of the DR equations with initial condition (xg, ;). Thus,
n—1
8(1'07931) = Ld(Fk(on,.’El)).
k=0

Our goal in this section will be to show that symplecticity of the reduced flow follows from the fact
that d?S = 0.

Recall that if we lift x to a discrete curve q on @ with momentum u, then q is a solution of the
DEL equations. Let (dz,dx1) = ;E ]520(11305,3:18), and let x. = {zqg,...,Zn.} be a solution of the

discrete Routh equations with initial condition (z¢.,z1.). Let dq be any variation of q such that

Trg,s - 6g; = dz;. Using Equation in §2.3.3] we get

dS(zo, 21)(0x0, 071) = . S(woa,$1s)
d
- ¢ Ll
| 01;) d(Thes Trt1,)

n—1
= Z DLj(xk, Tpt1) - (0Tk, 0%p41)
k=0

= D1L4(q0,q1) - hor dgo + D2L4(¢n—1,gn) - hor dgy
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n—1
+ A(Q?k,xk+1) . (5$k75xk+1).
0

=
Il

Thus,

dS(zo,71)(6x0,6x1) =D1La(qo,q1) - hor dqo + DaLa(qn—1,qn) - hor dq,
1

n

+ > (Fp A) (o, 21) - (620, 621). (2.3.30)
=0

o

We will eventually prove conservation of a reduced symplectic form by taking the exterior derivative

of Equation [2.3.30} To do this, we need a number of preliminary calculations.
n=Llofx NN _ (fx B+ _ B+ 3

Lemma 2.4. d{ o ( kA)} =(F}_ BT —-B")-B.

Proof. This is a straightforward verification using the facts that dA = B, and that

(F]:B)(l‘o, xl)((éx(% &51)7 (5‘%'67 5CC/1)) = B(xkﬂxk+1)((6xk76xk+l)ﬂ (5%;“ &C%Jrl))

= Bu(@rt1)(0p41, 025 11) — Bulwr) (0w, 0,).

Here dxy, 02, are obtained by pushing forward dxo, dxj, respectively, and dxy 1, ), are obtained

by pushing forward dz1, 0z}, respectively. O

Lemma 2.5.

D1L4(q0,q1) - hordgo = —D2L4(qo,q1) - hor 6g1 + (DLg — A)(qo,q1) - (690,0¢1).

Proof.

D1L4(qo,q1) - hor dgo =D1La(qo,q1) - 0o — D1La(qo,q1) - ver dqo
=DL4(q0,q1) - (690,9q1) — D2La(qo,q1) - 6q1 — D1La(qo, q1) - ver dqo
=DL4(q0,q1) - (690,0q1) — D2La(qo, q1) - hor dq;

— DyLa(qo0,q1) - ver 6q1 — D1Lqa(qo,q1) - ver dqo.

As in Equation 2:3.19]

Do La(qo,q1) - ver g1 =, (q1) - 6q1.
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Similarly,
D1L4(qo,q1) - ver 6qo = —2A,,(qo) - qo.
Thus,
D2La(qo, q1) - ver g1 + D1La(qo, q1) - ver g0 = A(qo, q1) - (340, dq1).
The statement of the lemma now follows. ]

Thus, Equation [2.3.30] can be rewritten as

dS(zo, x1)(6x0, 6x1) =(D2Li(qn-1,4n) - hor dg, — D2L4(qo,q1) - hor dq)
+ Z E¢A) (0, 21) - (30, 621) + (DLg — A) (g0, q1) - (6g0,0q1)
=(D2La(qn-1,qn) - hor ég, — DaL4(qo,q1) - hor dq1)

+ Z )(xo, 1) - (820,0x1) + (DLg — A)(z0, 1) - (620,021). (2.3.31)

Lemma 2.6. D>L4(qo,q1) - hordq1 = ((DLg)* — A1) (0, 21) - (00, 61).

Proof. Using Lemma [2.2] we get

DyLa(go,q1) - horéq1 = DaLa(qo,q1) - 6g1 — D2La(qo, q1) - ver dq1
= DL4(q0,q1) - (0,6q1) — A, (q1) - dq1
= (DLg — A)(q0,q1) - (0,6q1)
= (DLq — A)(wo, 21) - (0, 621)

= ((Df/d)+ — A+)(.130,I1) . (51‘0, 51‘1) |
A consequence of this lemma is that

D2Ld(Qn—17 Qn) - hor 6Qn = ((D[A/d)Jr - A+)(xn—17xn) . (6xn—176xn)

= (F;_((DLa)™ = A™))(z0, 71) - (620, 621).

Define the map F: § x § — T*S by

F(x0, 1) = DaLa(zo, 21) — Az (0, 71).
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The map I will play the role of a discrete Legendre transform. Let ©g be the canonical 1-form on
T*S.
Lemma 2.7. (DLg)" — AT = F*Qg.

Proof.

(F*O5) (0, 1) - (620,021) = Og(DaLa(z0, x1) — As(z,21)) - TF - (60, 61)

= (Dgid(l’o,xl) - A2($0,$1)) ~T7T5' . TIE? (5$0,6$1),

where g 5 : T*S — S is the projection. Note that 775 g o F = 79, where 715 : S X S — § is the

projection onto the second component. Thus,

(F*Og) (20, 1) - (90, 021) = (DaLg(zo, 1) — Aa(wo, 1)) - Ta - (80, 621)
= (DyLa(z0, 1) — Ax(20,71)) - 621
= ((Did)Jr — A+)($0,.’L’1) . (5560,51‘1). O

Using Lemmas [2.6] and 2.7] Equation [2:3331] can be rewritten as:
n—1
dS = (Fy;_,(F*0g) —F*05) + > (F}A)+ DLy — A.
k=0
Taking the exterior derivative on both sides of this equation and using Lemma [2.4] and the fact that
d? = 0 yields
0=Fr (F*Qg — BY) — (F*Qg — BY),
where {05 = —dOg is the canonical 2-form on 7*S. Since 7«5 g © = 7o,
Thus,

F*Qg — BT = F*(Qg — T s,50u)-

We have thus proved the following Theorem.

Theorem 2.8. The flow of the DR equations preserves the symplectic form

Qua=FQg - BF

= (DoLg — A2)*Qs — 73,



32
= ]}7’*(95 - W;*s,sﬂu)-

We remark that the symplectic form €, 4 is just the pull-back by [F of the same symplectic form
on T*S that is obtained by the process of cotangent bundle reduction (see §2.2)). The fact that 2, 4
is closed follows from the closure of (s — 775 g5)-

We will now complete our argument by showing that
ﬂ-;,dQH«,d = i;,dQLd'

We showed in section that the discrete Legendre transform FLy : Q X Q — T*Q, (qo,q1) —

Do L(qo,q1) maps J; ' (1) to J~*(u), where Jg and J are the discrete and continuous momentum

maps, respectively. For the rest of this section, let F’ : ng(u) — J~1(u) be the restriction of FL,.

Thus F' 0 i, =i, q0FLg, where i, : J~ () — T*Q and i, 4 : J; ' (1) — Q x Q are inclusions.
Recall that we had defined the map F: S x S — T*S as DaLg — As.

Lemma 2.9. The following diagram commutes.

Tyt ) = T )

ﬂ'u,dl JTFM
)

SxS———T*S

Proof. Let (qo,q1) € J; " (). Thus DyLa(qo, q1) € J (1), and

7. (F' (g0, q1)) = 7 (DaLa(qo, q1))-

Recall from that (D2La(go,q1) — A.(g1)) annihilates all vertical tangent vectors and that
7u(D2aLa(qo,q1)) is the element of T} S determined by (DaLa(qo,q1) — Au(q1)). For dq1 € T,,Q,

(D2Lq(qo, 1) — Aulqr),0q1) = (D2L4q(qo, q1) — Au(qr), hor dgy).

Using the fact that 2, (¢:) annihilates horizontal vectors, and Lemma we obtain

(D2Lq(qo, q1) — Au(aqr), 0q1) = (D2La(qo, q1), hor dq1)

= Dgid($0,$1) . (le — Az(x(hl'l) . 5.’E1 .

Thus,

mu(D2La(q0,q1)) = DoLa(x0, 1) — As(z0,21),
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which means F o Tp,d = Ty o . |

Using this lemma, we get

W;Ade = W:,d]ﬁ* (s — W;*S,Sﬁu)
= (F/)*WZ(QS - W?*s,sﬁu)
= (F/)*iZQQ =i, dFLaSq
=1y, a2,
Here, we have used the fact that 7, (Qs — 7 3,,) = i7{2q, which comes from the theory of cotangent
bundle reduction. We have thus proved the following Theorem.

Theorem 2.10. The flow of the DR equations preserves the symplectic form
Qua = IAF*(QS - W?*S,sﬁu)
Qu,q can be obtained by dropping to S x S the restriction of Q1 to ng(u). In other words,
T = 1y, aS0L,-

In proving Theorem we started from the reduced variational equation (Equation .
There is also an alternate route to proving symplecticity of the reduced flow which relies on the fact
that discrete flow on @ x ) preserves the symplectic form Qy,,. We will give an outline of the steps
involved, without giving all the details. The idea is to first show that the restriction to J;l(u) of
the symplectic form Qp,, drops to a 2-form 2, 4 on S x S. The fact that the discrete flow on @ x @
preserves the symplectic form €1, is then used to show that the reduced flow preserves €1, 4.

The outline of the steps involved is as follows.

1. Consider the 1-form O, on Q x @ defined by O,,(qo,q1) - (0g0,d¢1) = D2L4(q0,q1) - d¢q1. Or,

is G-invariant, and thus the Lie derivative L¢,, ,O1, is zero.

2. Since Qp, = —dOy,, Qp, is G-invariant. If i, 4 : Jd_l(u) — @ x Q is the inclusion, ©7 =
ir, 491, and O, = ir, 4§21, are the restrictions of ©p, and Qy,, respectively, to Jd_l(u). It is

easy to check that ©7 and Q)  are invariant under the action of G on I ().

3. If ng—l(u) is an infinitesimal generator on J; ! (u), then

St @, = St - de;, = _LEJ;w) Lot dSyige - 0L, =0.
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This follows from the G-invariance of ©7 , and the fact that ©' - 551(”) = (u,§).

4. By steps 2 and 3, the form €7 = drops to a reduced form €, 4 on JCI_I(M)/G ~ S x S. Thus, if
Tyud Jd_l(u) — § xS is the projection, then 77 €, 4 = Q- Note that the closure of 2, 4
follows from the fact that 7 is closed, which in turn follows from the closure of 2, and the

3 / gk
relation QLd = Z,,,,dQLur

5. If Fi, : Q x Q@ — @Q x Q is the flow of the DEL equations, let F}, be the restriction of this flow
to Jd_l(,u). We know that Fj, drops to the flow F}, of the DR equations on S x S. Since F},
preserves p,,, F] preserves Q’Ld. Using this, it can be shown that F, preserves €, 4. Note

that it is sufficient to show that W;,d(FI:Qu,d) =7 iu.d-

6. It now remains to compute a formula for the reduced form €2, 4. Using Lemma (whose

proof, in turn, relies on Lemma , it follows that

W:,ded = i;,dQLd = ’L';dFLZQQ = (]F/)*ZZQQ
= (F) "7 (Qs — 77e5,55)

= ’]T;’dIEA‘*(QS - W;"*S,Sﬁ#)'

Thus 7}, ;2y.q = w;7dIAF*(QS —T7g.50u), from which it follows that 2, 4 = [ (Qs _W;*S,Sﬁu)
Incidentally, this expression shows that €2, 4 is nondegenerate provided the map F = DyLg—A,

is a local diffeomorphism.

2.3.5 Relating Discrete and Continuous Reduction

As we stated in §2.3.1] if the discrete Lagrangian Ly approximates the Jacobi solution of the
Hamilton—Jacobi equation, then the DEL equations give us an integration scheme for the EL equa-
tions. In our commutative diagrams we will denote the relationship between the EL and DEL

equations by a dashed arrow as follows:
(TQ,EL)- -+ (Q x Q,DEL).

Thus, —— — can be read as “the corresponding discretization”. By the continuous and discrete
Noether theorems, we can restrict the flow of the EL and DEL equations to J; *(u) and J;*(u),
respectively. We have seen that the flow on J; '(x) induces a reduced flow on J; '(u)/G ~ TS,
which is the flow of the Routh equations. Similarly, the discrete flow on J 1(/4) induces a reduced
discrete flow on J; ' (1) /G & S x S, which is the flow of the discrete Routh equations. Since the DEL

equations give us an integration algorithm for the EL equations, it follows that the DR equations
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give us an integration algorithm for the Routh equations.
Thus, to numerically integrate the Routh equations, we can follow either of the following ap-

proaches:

1. First solve the DEL equations to yield a discrete trajectory on @, which can then be projected

to a discrete trajectory on S.
2. Solve the DR equations to directly obtain a discrete trajectory on Q.

Either approach will yield the same result. We can express this situation by the following commu-

tative diagram:

(JIjl(M)»EL) -7 (JJI(U)v DEL) (2'3'32)
(TS,R)— — — — (S x S, DR)

The upper dashed arrow represents the fact that the DEL equations are an integration algorithm
for the EL equations, and the lower dashed arrow represents the same relationship between the DR
equations and the Routh equations. Note that for smooth group actions the order of accuracy will be
equal for the reduced and unreduced algorithms. We will state this result precisely in the following

corollary.

Corollary 2.11. Given a discrete Lagrangian Lg : Q X Q — R of order r, and a smooth group
action, the discrete Routh equations associated with the reduced discrete Lagrangian, Lg:SxS =R,

obtained by dropping Lg to S x S, is of order r as well.

Proof. Recall that the order of the discrete Lagrangian is equal to the order of the push-forward
discrete Lagrangian map, and as such, the discrete Euler-Lagrange equations yield a r-th order
accurate approximation of the exact flow. When the group action is smooth, the projections 7, 1,
and 7, q are smooth as well. Since the two projections agree when restricted to the position space,
and the projections are smooth, the commutative diagram in Equation together with the
chain rule, implies that the discrete Routh equations yield a r-th order accurate approximation to

the reduced flow. O

2.4 Relating the DEL Equations to Symplectic Runge-Kutta
Algorithms

Symplectic Partitioned Runge—Kutta Methods. A well-studied class of numerical schemes

for Hamiltonian and Lagrangian systems is the partitioned Runge-Kutta (PRK) algorithms (see
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Hairer et al.| [1993] and Hairer and Wanner| [1996] for history and details). Stated for a regular
Lagrangian system, a partitioned Runge-Kutta scheme is a map F : T*Q — T*Q defined by
F: (go,po) — (q1,p1), where

S S
@=qo+hy bQ; pr=po+hY bPj (2.4.1a)

j=1 j=1
QiZQQ—FhZa,’ij, Pi:p0+hz&ijpj7 1=1,...,8, (2.4.1b)

j=1 j=1

oL . . 0L .

Pizi. iy i)s P’in 7 i)y ':1,..., 5 241

57 (@ Q) 5 (@ Q) i s (2:4.10)
where b;, l~7,-, a;; and a;; are real coefficients for 7,5 = 1,...,s which define the method. Note that

Equation implicitly determined the Hamiltonian vector field (Ql, R) at the point (Q;, P;) =
FL(Qi, Q:)-

The partitioned Runge-Kutta method, F' : T*Q — T*Q, approximates the flow map, F}; :
T*Q — T*Q, of the Hamiltonian system corresponding to the Lagrangian L, so that

F(q,p,h) = Ffy(q,p) + O(h™™1),

where r, the order of the integration algorithm, is determined by the choice of the coefficients b;, IN)i,
a;; and ag;.

As discussed in the flow map F}; of the Hamiltonian system on 7*(@) preserves the canonical
symplectic form 2 on T*@Q. It can be shown that the partitioned Runge-Kutta method F' preserves

the canonical symplectic form if, and only if, the coefficients satisfy

bld” + Bjajz- = bigj, Z,] = 1, Ly S (242&)

b; = by, i=1,...,s. (2.4.2b)
Such schemes are known as symplectic partitioned Runge-Kutta (SPRK) methods.

Discrete Lagrangians for SPRK Methods. For any given time-step h, a symplectic partitioned
Runge-Kutta method is a symplectic map F : T*Q — T*Q. Therefore, as discussed in §2.3.1] there
is a discrete Lagrangian L, which generates it.

An explicit form for this discrete Lagrangian was found by |Suris| [1990], and is given by

La(qo,q1,h) = h Y biL(Qi, Qy),
i=1
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where Q;, Q;, P, and P, are such that Equations [2.4.1b| and [2.4.1d are satisfied. It can then be

shown, under assumptions (Equations [2.4.2a] and [2.4.2b)) on the coefficients, that the push-forward

of the discrete Lagrangian map is exactly the symplectic partitioned Runge—Kutta method. The
details of this calculation can be found in [Suris| [1990] or [Marsden and West| [2001].

For a partitioned Runge-Kutta method to be consistent, the coefficients must satisfy Zle b; = 1.
With this in mind, it can be readily seen that the Ly defined above is an approximation to the action

over the interval [0, h], as one would expect from §2.3.1|

Discrete Lagrangians from Polynomials and Quadrature. While the discrete Lagrangian
given above generates any symplectic partitioned Runge-Kutta method, there is a subset of such
methods for which the discrete Lagrangian has a particularly elegant form. These can be derived
by approximating the action with polynomial trajectories and numerical quadrature.

As shown in §2.3.1] a discrete Lagrangian should be an approximation

L h) = t S
d(CIO7Q1> ) qég}(CO,h) (Q)a

where C(0, h) is the space of trajectories ¢ : [0,h] — Q with ¢(0) = g9 and g(h) = ¢, and S :
C(0,h) — R is the action S(q) = [i" L(g, q)dt.

To approximate this, we take a finite-dimensional approximation C4(0,h) C C(0, k) of the trajec-
tory space,

Ca(0,h) = {q € C(0,h) | ¢ is a polynomial of degree s},
and we approximate the action integral by numerical quadrature to give an approximate action
Sd : C(O,h) — R,
Salg) = h Y _ biL(q(cih), g(cih)),
i=1

where (b;,¢;) is the maximal-order quadrature rule on the unit interval with quadrature points ¢;.

We now set the discrete Lagrangian to be

L ,qi,h)= ext S ,
a(q0,q1, ) X 1(qa)

which can be explicitly evaluated. This procedure corresponds to the Galerkin projection of the
weak form of the ODE onto the space of piecewise polynomial trajectories, an interpretation which

is further discussed in Marsden and West| [2001].

Theorem 2.12. Tuoke a set of quadrature points c¢; and let Ly be the corresponding discrete La-

grangian as described above. Then the integrator generated by this discrete Lagrangian is equivalent
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to the partitioned Runge—Kutta scheme defined by the coefficients

a;j = / ljs(T)dr, (2.4.3)
0
_ aji
aij:bj (1—&)7
where the l; s(T) are the Lagrange polynomials associated with the c;.

Proof. Evaluating the conditions which imply that g4 extremizes Sy and combining this with the
definition of the push-forward of the discrete Euler-Lagrange equations give the desired result. See

Marsden and West| [2001] for details. O

2.5 Reduction of the Symplectic Runge-Kutta Algorithm

Consider the SPRK algorithm for mechanical systems described in The equations defining this

algorithm are

(thl) = (qO,po) + hZ(b]Q], I;jpj), (2.5.1a)
J

(Qi, P) = (g0, po) + hZ(aiija ai; Py), (2.5.1b)
J

(Qj, Pj) = Xu(Q;, Py), (2.5.1c)

for some coefficients bj,?)j,aij,dij satisfying Equation These equations specify the push-
forward discrete Lagrange map for some discrete Lagrangian, as discussed in §2.4] We will assume
that there is an abelian group G that acts freely and properly on the configuration manifold @, and
that the Lagrangian and the Hamiltonian functions are invariant under the lifted actions of G on T'Q)
and T*Q, respectively. Locally, @ ~ G x S, where S = /G is the shape space. Let 0 = (6*,...,6")
be local coordinates on G such that the group operation is addition, i.e., 61 - 63 = 61 + 62. (Since
the group is abelian, such coordinates can always be found.) Let # = (2!,...,2°) be coordinates
on S. In a local trivialization, (6, z) are coordinates on Q. Let (6, x,pg, p,) be canonical cotangent
bundle coordinates on T*@Q, and (6, , H,x) be canonical tangent bundle coordinates on T'Q). It is
easy to show that in these canonical coordinates on T*Q, elements of the set J~!(u) C T*Q are of
the form (0, z, u,p,). Also, since the Hamiltonian H on T*(Q) is group invariant, H (0, z,pg, ps) is
independent of §. Note that here we are implicitly assuming that the vector space structure used to

define the SPRK method is that in which the group action is addition.
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For the remainder of this section, we will adopt a local trivialization to express the SPRK method

in which the group action is addition. Rewriting the symplectic partitioned Runge-Kutta algorithm

in terms of this local trivialization gives

01:90+hzbj@jv (po)1 :(P9)0+hzgj(-p9)j’
J J
zy=z0+hY_ b;Xj, (p2)1 = (Pa)o +h Y bi(Pa);,
J
@izeo-i-hzaij@j, (Pa)i: (p6)0+hzdij(p9)jv
j J
Xi:$0+hzainj, (Pz)z:(pz)0+hzal](P$)J’
J
and further,
. OH . OH
S el P = ———
6] 8p9’ ( 9)] 89’
OH . OH
inaipw’ (Pz)j**%'

(2.5.2)

(2.5.3)

(2.5.4)

(2.5.5)

(2.5.6)

(2.5.7)

By group invariance, H does not depend on 6, and so H /0 = 0. Thus (P;); = 0, and therefore,
(o)1 = (Py); = (po)o. Hence, if (qo,po) € J (1), then (q1,p1) and (Q;, P;) also lie on J (). (We

already know from the theory in the previous sections that the symplectic partitioned Runge—Kutta

algorithm preserves momentum; what we have verified here is that the intermediate points (Q;, P;)

do not move off the momentum surface.)

If 2 is a connection on @), it can be represented in local coordinates as

A(0,x)(0, &) = A(x)z + 6.
Thus, the 1-form 2, on @ is given by
A, (6,2)(0,8) = (1, A@)i +6) = [ pA(w)]

Thus, Q’[}L(07x) = (0,$,/¢,/LA(I))

0

T

As we have seen in §2.2} there is a projection m,, : J~'(u) — T*S. If ag € J; (1), (g —A,u(q)) €

T;Q annihilates all vertical tangent vectors at ¢, and 7, (cy) is the element of T);'S determined by

(g = 2Au(q))-

Suppose that in local coordinates, oy = (6, x, i, pz). Then, (ayq

—Au(q)) = (0,2,0,pa — pA(x)).



40
Thus, 7,0, 2, jt,ps) = (@, py — pA(x)). Therefore, Tw, : TJ () — T(T*S) is given by

- ) .. 0A .
Tr,:(0,2,0,py) — (&, 05 — u%x)

In components, pA(x) can be represented as p, A%(x) (sum over the repeated index a is implicit),
and

%fb _ o4l iJ
gt = Hagei ™

Let (¢,p) € J ') and let (¢,p) = Xg(q,p). By Noether’s theorem, we have that (¢,p) €
T(q,p)(J 71 (1)). In local coordinates,

(97 z, 07pz) = XH(ev €T, M?pz)'
Now, by the theory of cotangent bundle reduction (see §2.2]),

Tﬂ—u : XH(CLP) = XHH (ﬂ—,u(q’p))>
ie.,
I 0A .
(& Pe = ng—i) = X, (2, po — nA(2)).
x
If (go,po) € J (1), we have seen how (Q;, P;) and (g1, p1) also lie in J~1(u). Let
Wu(q(),po) = (3?0780) = (xo, (pa;)o - MA(J?O)),

mu(Qi, ) = (X3, Si) = (X, (Pr)i — pA(X:)),

7u(q1,p1) = (21, 51) = (21, (p)1 — pA(z1)).
Then,

(Xiv Sz) = Xpg, (X, 8;) = (Xu (P:v)z - N%(Xz)Xz) (2.5.8)

Remark 2.1. The Routh equations,

oR*  d OR*
o0 @ or k)
define a vector field on T'S which is related to the vector field Xy, by the reduced Legendre transform
FR*. The equations
oLk

s = %(x,:b), (2.5.9)
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and

i= 0 0 i)~ iaa(e), (2.5.10)

can be used to solve for (i, $) in terms of (v, s), and thereby implicitly define the vector field Xg,, .

Recall that
(Pa)1 = (Pa)o+h Y bj(P);.

J

Adding and subtracting terms, this becomes

(Pa)1 — HA(@1) = (pa)o — pA(wo) + hz b; [(Px)j - uax(Xj)Xj}

J

~ 0A .
+ {hz (bjuam(Xj)Xj> = (nA(z1) = pA(z0)) (2.5.11)
J
This can be rewritten as
- - OA .
si=so+hY bjSi+ [ bipg—(X5)X; | = (nA(w1) = pA(wo)) | - (2.5.12)
J J
Similarly, it can be shown that
L e . 0A :
Si=so+h> aiS;+ |k i (X)X ) = (A(X) = pA(w0)) | - (2.5.13)
J J

Putting the above equations together with the equations for x1 and X;, we get the following algorithm

on T*S:

zp =30+ hY_ bX;, (2.5.14a)
- - OA )
s1=s0+hY biSi+ [k bip— (X)) X; | = (nA(w1) = pA(wo)) | , (2.5.14b)
J J
X =x9+ hZainj, (2.5.140)
. _ a4 :
Si=so+hy aS;+ by i —(X)X; ) = (A(X) = pA(w0)) | (2.5.14d)
J J
AR .
Si = (X5, X5), (2.5.14¢)
. R ) ‘
8 = U (x,,K,) — i BulX,). (2:5.141)
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We shall refer to this system of equations as the reduced symplectic partitioned Runge—Kutta
(RSPRK) algorithm. Since we obtained this system by dropping the symplectic partitioned Runge—
Kutta algorithm from J~1(u) to T*S, it follows that this algorithm preserves the reduced symplectic
form Q, = Qg — 7. g g8, on T*S.

Since the SPRK algorithm is an integration algorithm for the Hamiltonian vector field Xz on
T*Q, the RSPRK algorithm is an integration algorithm for the reduced Hamiltonian vector field
Xp, on T*S. The relationship between cotangent bundle reduction and the reduction of the SPRK

algorithm can be represented by the following commutative diagram:

(J7 (), Xu) - -+ (J (), SPRK)

(T*S,Xpy,) - — — = (T*S, RSPRK)

The dashed arrows here denote the corresponding discretization, as in Equation We saw in
§2.4that the SPRK algorithm can be obtained by pushing forward the DEL equations by the discrete
Legendre transform. By Lemma this implies that the RSPRK algorithm can be obtained by
pushing forward the DR equations by the reduced discrete Legendre transform F = DyLg — As.

These relationships are shown in the following commutative diagram:

(J; (), DEL) —% (J=\(u), SPRE)

Tl'u,dJ lﬂ'u

(S x S,DR) — " (T*S, RSPRK)

2.6 Putting Everything Together

Let us now recapitulate some of the main results of the previous sections.
We saw in §2.2] that the relationship between Routh reduction and cotangent bundle reduction

can be represented by the following commutative diagram:

(J7 Y (), BL) — (J " (1), Xr)

W;L,Ll Jﬂp

(TS, R) — " (T%8, Xy )

We saw in §2.3.5| that if L; approximates the Jacobi solution of the Hamilton—Jacobi equation, the
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relationship between discrete and continuous Routh reduction is described by the following diagram:

(Jp ' (n), BL) = =+ (J3 (), DEL)

’ﬂ'u,Ll lﬂu,d

(T'S,R) - — — — + (S x S, DR)

The dashed arrows mean that the DEL equations are an integration algorithm for the EL equations,
and that the DR equations are an integration algorithm for the Routh equations.

If Ly is defined as in we saw that the algorithm on 7@ obtained by pushing forward the
DEL equation using the discrete Legendre transform FL, is the symplectic partitioned Runge-Kutta
algorithm (Equation , which is an integration algorithm for Xy . This is depicted as follows:

(Jp (), BL) = = = (Jg " (u), DEL)

Ml Jud

(J ), Xg)— -~ (J Yp), SPRK)

The SPRK algorithm on J~(x) C T*Q induces the RSPRK algorithm on J~1(u)/G ~ T*S. As we
saw in this reduction process is related to cotangent bundle reduction and to discrete Routh

reduction as shown in the following diagram:

(7M. Xp) = =+ (J~\(n), SPRE) ¢~ (J; *(u), DEL)

(T*S,Xp,) —— - (T*S, RSPRK) «——— (5 x S, DR)

Putting all the above commutative diagrams together into one diagram, we obtain Figure

2.7 Links with the Classical Routh Equations

The Routhian function B* that we have been using is not the same as the classical Routhian defined
by Routh| [1877]. The classical Routhian, which we shall denote R¥, is a function on T'S that is

co

related to our Routhian by the equation

R (z,2) = Rz, &) + (p, A(2)).

Recall from that the map A(z) : T,,S — g is the restriction of the connection 2 to T,,S. (1S
is identified with the subspace T, S x {0} of T;G x TS, which in turn is identified with 7,Q.) Note
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TN ), X == = == = = +J7Y (), SPRK
FL FlLa
T ), BL— == — = — = - +J; ' (n), DEL e
Ty
Ty, L T*S,XH“ _____ - - - _>T*Sa RSPRK
FR* Tp.d
’ i
TSSR————————— — +S xS DR

Figure 2.1: Complete commutative cube. Dashed arrows represent discretization from the contin-
uous systems on the left face to the discrete systems on the right face. Vertical arrows represent
reduction from the full systems on the top face to the reduced systems on the bottom face. Front

and back faces represent Lagrangian and Hamiltonian viewpoints, respectively.

that the map A(z) depends on our choice of local trivialization. Thus R‘c‘, too, depends on the
trivialization.
The classical Routh equations are

ORE  d ORY
Or dt 0%

= 0. (2.7.1)

It can be verified (see, for example, Marsden and Ratiuf [1999]) that these equations are equivalent
to the modern Routh equations (Equation [2.2.3]), which we restate here:
OR*  d OR"

oo T d o~ @) (272)

Thus the classical and the modern Routh equation define the same vector field X on T'S.

To obtain dynamics on T*S, we could use the fiber derivative of either the modern Routhian
FR* or that of the classical Routhian FR¥. In coordinates on T'S and T*S, these fiber derivatives
are

. R
FR* : (z,2) € TS — (x, %(m,@) eT*S, (2.7.3)
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. DL D
FRE: (2,4) € TS — (z, %(Jc,i«)) ~ (z, %(m) + pA(z)) € T*S. (2.7.4)

Note that the map ]FR/; depends upon the trivialization.

We have seen in that by pushing forward the dynamics on T'S by FR", we obtain the vector
field Xp, on T*S. Recall that the restriction of the Hamiltonian vector field Xp to J~*(u) is
my-related to Xy, , where 7, J~Y(u) — T*S is the projection. Also recall that Xp, is Hamiltonian
with respect to the non-canonical symplectic structure €2, = Qg — m7. g ¢, on T™S.

If, on the other hand, we use IFR’C‘ to push forward the dynamics from T'S to T*S, we obtain a
vector field (which we shall call Xg-) that is Hamiltonian with respect to the canonical symplectic
structure Qg on T*S.

Consider the following symplectic partitioned Runge-Kutta scheme for integrating Xpg:

Ty = .TO—Fthij, Y1 :yo—i-th;ij, (2.7.5a)
j=1 j=1
Xi:I0+hZainj, E:yoJth&,JYj, iil,...,s, (275b)
J=1 Jj=1
OR: : . ORM .
Yvi: CXiaXia Y;: cXiinv ‘:1a"'7 ) 2.7.
(X, Xo) = (X, Xi) i s (2.7.50)

for some coefficients b;, l;j, aij, a5 satisfying Equation It follows from that condition that this
scheme preserves the canonical symplectic structure Q0g. A particularly simple scheme of this form,
that is second-order, was developed independently by |Sanyal et al.[ [2003].

A natural question to ask at this point is how the above integration scheme for the reduced
dynamics is related to the RSPRK scheme (Equation . To answer this question, consider the
map o := FRF o (FR*)~ : T*S — T*S. In coordinates, o : (x,s) — (z,y) = (z,s + pA(x)). Note
that the o transforms Xp, to Xgr, ie,, Xgr = 0, Xp,. It can be verified that this map o also
transforms the RSPRK scheme (Equation to the above SPRK scheme for Xpg/. Thus, these
two schemes for integrating the reduced dynamics are equivalent, and are related to each other by
a momentum shift.

Though the derivation for the SPRK scheme for Xp (Equation is shorter than the re-
duction process through which we obtained the RSPRK scheme (Equation , there are several
reasons to prefer the RSPRK scheme. Firstly, the classical Routhian R/g and therefore the fiber
derivative IF]A%QL and the vector field Xps are dependent on the trivialization. Consequently, the
SPRK scheme for X/ is non-intrinsic. On the other hand, as we saw in the RSPRK scheme
(Equation is derived by dropping the SPRK scheme (Equation for Xy onto the quo-
tient 7*S = J~*(p)/G,, in a manner that is independent of the trivialization. (Though the equations
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defining the RSPRK scheme have terms involving the map A(x), which is trivialization dependent,
the trivialization dependence “cancels out”, causing the overall scheme to be trivialization indepen-
dent.)

Secondly, since the vector field Xp and the SPRK scheme (Equation are not derived by
a reduction process, it is not possible to fit them in a natural way into a commutative diagram like
that depicted in Figure 2.1]

Furthermore, the classical theory of Routh reduction does not generalize to the case of non-
abelian symmetry groups, whereas the intrinsic, modern version does (see, for example, Marsden
and Scheurle| [1993aljb], |Jalnapurkar and Marsden| [2000], and [Marsden et al.| [2000b]). Thus, to
develop numerical algorithms for the reduced dynamics of systems with non-abelian symmetry, one

would need to build on the intrinsic approach developed in this paper.

2.8 Forced and Constrained Systems

2.8.1 Constrained Coordinate Formalism

It is often desirable for computational reasons to realize the configuration space as a constraint
manifold @ in a containing space V.

Assume that the constraint manifold @ can be expressed as the preimage of a regular value of
a G-invariant constraint function, g : V' — R™. Then, ¢~! (0) = Q C V is a constraint manifold of
codimension m.

On the constraint manifold @, the discrete Hamilton’s variational principle states that

n—1

52 L (qr,qr+1) =0

k=0

for all variations dq of q that vanish at the endpoints. By the Lagrange multiplier theorem, in the
containing space V, this is equivalent to the discrete Hamzilton’s variational principle with

constraints,

n—1 n
1) Z Ly (Uk, Uk+1) + Z )\Zg (Uk) =0,
k=0 k=0

for all variations dv of v that vanish at the endpoints.
As the variations are arbitrary and vanish at the endpoints, this is equivalent to the discrete

FEuler—Lagrange equations with constraints,

DyLg (vg—1,vk) + D1Lg (vg, vkt1) + AL Dg (vg) = 0,

g (vg) =0.
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In the case of higher-order discrete Lagrangians, one must be careful about the choice constrained
discrete Lagrangians. In particular, the internal sample points used in defining the constrained
discrete Lagrangian must lie on the constraint manifold (). In practice, this corresponds to the
inclusion of Lagrange multiplier terms for each of the internal sample points in the variational
definition of the higher-order constrained discrete Lagrangian.

Consider the preshape space, U = V/G. As the constraint function g : V' — R™ is G-invariant,
this induces the function g : U — R™.

In addition, we have a G-invariant discrete Lagrangian, L}i/ : V xV — R, and the discrete
Lagrangian on @ x @ is simply the restriction, i.e., LdQ = L¥| 0OxQ" The discrete momentum maps

are related by the following lemma.

Lemma 2.13. The discrete momentum map, J(? 1 Q X Q — g*, is obtained from J) 1V x V — g*
by restriction, i.e., Jé’? = J(HQXQ.
Proof. Since qo € Q C V, &g (qo) € Ty, Q — Ty, V. Q is G-invariant, thus, the group orbits lie on @,

and in particular, £ (go) = &v (o) - The result then follows from the calculation:

Jflg (q0,q1) - & = D1 L (%#11)'5@ (q0)
= D1L (q0,q1) - §v (qo)
=DiLY (90,01) - €v (q0)

=JY (q0,q1) - € O

Since the discrete momentum map on the constraint manifold is obtained by restriction, and in
our subsequent discussion, all the forms are evaluated on the constraint manifold, we shall abuse
notation and omit the superscripts denoting the spaces. We are thereby able to formulate the main

theorem of this section.

Theorem 2.14. Let x be a discrete curve on S, and let y be a discrete curve on U. Then, the

following are equivalent.

1. x solves the discrete Routh equations,

DoLa (zk—1,2k) + D1La 2k, try1) = Az (21, 21) + A1 (21, Trs1) -

2. x is a solution of the reduced variational principle,

n—1 —

5§ Lg(xp, Try1) E A (21, Thy1) - 02k, 0Tk
k=0 k=0
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for all variations §x of x that vanish at the endpoints.

3. y solves the discrete (reduced) Routh equations with constraints,

DyLa (Ye—1,9) + D1La (Y, Yt1) + A Dg (yi) = Az (Y1, y&) + A1 (Y Yrt1) s

g (yx) = 0.

4. y is a solution of the reduced discrete variational principle,

n—1 n n—1
S La(Wroyesn) + D M3 )| =D Awe vkr) - 09k, Y1) ,
k=0 k=0 k=0

for all variations 0y of y that vanish at the endpoints, and g (yr) = 0.

Proof. If q is a lift of x onto the py-momentum surface, then the first two statements are equivalent
to the discrete Hamilton’s variational principle, which states that
n—1
0 Z Ld (Qka Qk-‘rl) = 07

k=0

for all variations dq of q that vanish at the endpoints. By the Lagrange multiplier theorem, this is

equivalent to the discrete Hamilton’s variational principle with constraints,

n—1 n
1) Z Ly (Uk, Vgt1) + Z Afg (’Uk) =0,
k=0 k=0

for all variations dv of v that vanish at the endpoints.
As the variations are arbitrary and vanish at the endpoints, this is equivalent to the discrete

Euler-Lagrange equations with constraints,

DL (vk—1,vk) + D1Lg (vk, vit1) + A Dg (vi) = 0,

g (vg) = 0.

Let v be a solution of the discrete Euler-Lagrange equations with constraints. Then,

n—1 n
4 lz La (vk, vg41) + Z A9 (Uk)l
k=0 k=0

n—1 n
Z La (vk,, vk41.) + Z A9 (’ng)]
k=0

k=0

de e=0




49

n—1

= D1 Lg (vo,v1) - dvo + Z (D2Lg (Vk—1,vk) + D1Lg (Vk, Vg41)) - 6vg
k=1

+ DaLa (Un—1,0n) - 000 + > g (vk) - SAk + AG Dy (vo) - 6o

k=0
n—1
+ Z ()\ng (vk)) - dvg + )\ZDg (vp) - dvp,
k=1

= (DlLd (Uo, 1}1) + )\ng (UO)) : 61}0 + (D2Ld (Un—h Un) + AZDQ (Un)) : 5'Un
+ [D2La (vi—1,vk) + D1Lg (v, vgs1) + AL Dg (vi)]
1

|
—

>
Il

0

= (DlLd (vo,v1) + )\OTDg (vo)) -0vg + (Dng (Vn—1,vn) + /\ZDg (U”)) - OUy,.

Therefore, we have that v solves the discrete Euler-Lagrange equations with constraints if, and

only if,

d

de

e=0

n—1 n
lz La (vk,,vkg1.) + Y AL g (0r,)
k=0 k=0

= (D1Lq (vo,v1) + A§ Dg (v0)) - v + (DaLa (Vn—1,v5) + AL Dg (vy)) - 6vp,

for all variations, including those that do not vanish at the endpoints.

Let y be the projection of v, the solution of the DEL equations with constraints, onto the

preshape space V/G, and dy = % —o Ye be a variation of y. By construction,

9 (k) =g (vk.).

The terms A} Dg (vg) and A\ Dg (v,,) correspond to forces of constraint, and are therefore normal
to the constraint manifold. Since the constraint manifold @ is G-invariant, the group orbits lie on
the constraint manifold. As a consequence, the forces of constraint annihilate vertical variations,

implying that

)\(:)FDg (vp) - ver dvg = 0,

M'Dg (vy,) - ver v, = 0.

From which we conclude,

d

de

n—1 n
lz L (vk,, vk41.) + Z Mg (vr,)
e=0 k=0

k=0
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= (DlLd (vo,v1) + )\OTDg (vo)) - 0vg + (DQLd (Vn—1,vn) + /\ng (Un)) - dvy,
= (DlLd (vo,v1) + )\ng (vo)) - hor dvg + (Dng (Un—1,vn) + )\ng (vn)) - hor dv,,
— A, (vo) - dvg + Ay, (vy) - dvp

= (DlLd (v, v1) + )\OTDg (vo)) - hor dvg + (Dng (Vn_1,vn) + AL Dg (vn)) - hor év,
n—1

+ Z A (Vk, V1) - (00, OVk41)
k=0

where we used Equation [2.3.19] for the second to last equality. Then,

(DlLd (vo,v1) + )\OTDg (vo)) - hor dvg + (Dng (Vn—1,vn) + /\ZDg (vn)) - hor dv,

_d
T de

n—1
ZLd (Vke Vk1.) + Z)‘k g (vr,) ] =) Ak, Uk41) - (G0, SVR11) -

k=0 k=0

e=0
From Lemma and the fact that § (yx.) = g (vk,), this can be rewritten in terms of the reduced

quantities,

(DlLd (vo,v1) + )\OTDg (vo)) - hor dvg + (DQLd (Vn—1,vn) + )\z:Dg (vn)) - hor v,

n—1 n n—1
> La(yko,verr) + YA §yk] > AWk Ynar) - (Y, Syria) -

k=0 k=0 k=0

_4d
T de

e=0

If the variations Jy vanishes at the endpoints, i.e., dyg = dy, = 0, then hor dvg = hor dv, = 0,

and therefore

n—1 n n—1
é lz La (ks yrr1) + ) Med yk‘| > AWk, yrr) - (Our, ysr)
k=0 k=0 k=0

for all variations dy of y that vanish at the endpoints, and g (yx) = 0.
Since the variations are arbitrary and vanish at the endpoints, this is equivalent to the Discrete

Routh equations with constraints,

DoLa (yk—1,Yx) + D1La (Yk, Yr1) + AE DG (yx) = Az (yk—1,9r) + A1 Uk, Yr1) s

9 (yk) = 0.

Conversely, if y satisfies the reduced variational principle, and v is its lift onto the g-momentum
surface, then a construction analogous to the derivation of the discrete Routh equations shows that

v satisfies the discrete Hamilton’s variational principle with constraints. O
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2.8.2 Routh Reduction with Forcing

Mechanical systems with external forcing are governed by the Lagrange—d’Alembert variational
principle,

5/L<q<t>,q<t>>dt+/F<q<t>,q'<t>>-6th=o.

We define the discrete Lagrange—d’Alembert principle (Kane et al.|[2000]) to be

n—1 n—1
6 Lalqraee1) + >, Fa(@rs Grsr) - (0gx, 0grs1) =0,
k=0 k=0

for all variations dq of q that vanish at the endpoints. Fjis a 1-form on ) X ), and approximates the
impulse integral between the points ¢ and gx41, just as the discrete Lagrangian L, approximates
the action integral. We define the 1-forms FJ and F;” on @ x Q and the maps FLF?:QxQ—T*Q

by the relations

Ff (q0.q1) - (890, 6q1) = F7 (g0 q1) - 6q1 = Fy (g0, q1) - (0,0q1)

EFy (g0, q1) - (890, 6q1) = Fy (g0 q1) - 6q0 = Fy (g0, q1) - (30, 0) .

The discrete Lagrange—d’Alembert principle may then be rewritten as

n—1 n—1
0 Lalgrqer1) + > [Fi (@rs i) - 0ai + F3 (@ @ryr) - 0gei1] =0,
k=0 k=0

for all variations dq of q that vanish at the endpoints. This is equivalent to the forced discrete

FEuler—Lagrange equations,

DoLa (qe-1,qk) + D1La (qr, ai1) + F (ar, qes1) + F3 (qr—1, 1) = 0.

As we are concerned with mechanical systems with symmetry, we shall restrict our discussion
to discrete forces that are invariant under the diagonal action of G on @ x Q. In particular, for all

¢ € g, and all variations (dqo, dq1) of (go,q1),

Fy (exp (t€) qo, exp (t&) q1) - (0g0, 0q1) = Fy (g0, q1) - (0g0,0q1) -

Since the Routh reduction technique requires that the momentum map be conserved, we shall
further restrict our discussion to G-invariant forcing that satisfies the discrete Noether theorem.

This constrains our choice of forcing, as the following lemma illustrates.

Lemma 2.15. Let q be a discrete curve on Q) that solves the forced discrete Euler—Lagrange equa-
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tions. Then, the discrete Noether theorem is satisfied if, and only if,

(F7 (qr—1,q%) + Fj (qr, qus1)) - ver égy, = 0.

Proof. Given £ € g, consider the {-component of Jy, given by

J5 (90, q1) = (Ja (g0, 1) , &) -

We compute the evolution of Jg along the flow of the forced discrete Euler-Lagrange equations:

5 (@1,02) = J5 (90, 1)
=Ja(q1,42) - &€ — Ja(qo,q1) - €
=—D1La(q1,42) - €@ (@1) — D2La (90, 1) - § (q1)
=-D1Li(q1,42) - €@ (a1) — D2La (90, 1) - § (q1)

+ [D2La (q0, 1) + D1La (g1, 92) + F (q0,¢1) + Fi (q1,02)] - € (@1)

0

= [F7 (q0.q1) + Fy (q1,42)] - €0 (1) -

Since Jy : Q x Q — g*, the discrete Noether theorem is satisfied if, and only if, J§ (q1,92) —
J§ (g0,91) =0, for all £ € g. As the vertical space ver, is given by

VeTrq, = {gQ (1) | € € g},

this is equivalent to F7 (qo,q1) + Fj} (q1, g2) vanishing on all vertical vectors. a

For the rest of our discussion, we shall specialize to the case whereby F7 (qo,q1) and F} (q1,q2)
individually vanish on vertical vectors, which is a sufficient condition for momentum conservation.

The discrete forcing term Fjy is an invariant 1-form under the diagonal action of G on Q X @,
and vanishes on vertical vectors. By restricting Fj to Jd_l(,u), it drops to Fjy: S x § — T*S x T*S.

In this context, we may formulate a discrete Routh reduction theory for the discrete Lagrange—

d’Alembert principle.

Theorem 2.16. Let x be a discrete curve on S, and let q be a discrete curve on QQ with momentum

u that is obtained by lifting x. Then, the following are equivalent.

1. q solves the forced discrete Euler—Lagrange equations,

DoLa (qr-1,q%) + D1La (qk, qr1) + F3 (qe—1,98) + Fi (qk, gr41) = 0.
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2. q is a solution of the discrete Lagrange—d’Alembert variational principle,

n—1 n—1
4 Z La(qr, qrt1) + Z [F (aks @h41) - 0ar + FF (qrs @ryr) - 0aig] =0,
k=0 k=0

for all variations éq of q that vanish at the endpoints.

3. x solves the Discrete Routh equations with forcing,

DoLg (xk—1, k) + DiLg (xg, xps1) + F2 (xp_1, 2x) + F} (2k, Trs1)

= Ay (w1, 21) + A1 (Th, Trp1) -

4. x is a solution of the reduced variational principle,

n—1 n—1
5 Z IA/d (I‘k,xk+1) —+ Z {ﬁ'dl (:ck,ack+1) . 5:1}k —+ ﬁg (xk,l'k+1) . (5$k+1
k=0 k=0

-1

3

= Az, z41) - 0Tk, 0111)
k=0

for all variations §x of x that vanish at the endpoints.

Proof. We begin with the discrete Lagrange—d’Alembert variational principle,

n—1 n—1
6 La(qk arr1) + > [Fi (@ ars1) - 0k + F (qr, ara1) - dquga] =0,
k=0 k=0

for all variations dq of q that vanish at the endpoints.
Since the variations are arbitrary and vanish at the endpoints, this is equivalent to the forced

discrete Euler—Lagrange equations,

DoLa (qe-1,qk) + D1La (qr, ai1) + Fi (@r—1,a1) + Fj (qr, qe41) = 0.

Let q be a solution of the forced discrete Euler—Lagrange equations, then,

n—1 n—1
6> La(ak qrr1) + > [Fi (qr ars1) - 0 + F (qr, ah1) - 0qu41]
k=0 k=0
n—1 n—1
. L F; Sqi + F} 5
= 7 . Z d (o Q1) + Z [Fi (qr qiv1) - 0qk + F (qrs qrsr) - 0qira |
=0 k=0 k=0

n—1

=D1Lq(qo0,q1) - 0q0 + Z (D2La (qk-1,ar) + D1La (qr, qr+1)) - 6qx
k=1
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+ DoLa (Gn—1,4n) - 8¢ + Fi (90, q01) - g0
n—1

+ ) (Fi (@krarsr) + Fi (@h-1a8)) - ak + F3 (qn-1,0n) - 0an
k=1

= (D1La (g0, q1) + F} (q0. 1)) - g0 + (D2La (qn—1,4n) + F3 (qn-1,qn)) - 6¢
n—1

+ [DaLa (qr—1,ar) + D1La (ar: qes1) + F (ar—1, ) + Fy (ar: qe+1)] - San
-1

o

0

= (D1La (g0, q1) + F} (90, 1)) - g0 + (D2Lag (qn—1,4n) + F3 (qn-1,qn)) - 6¢n.

Conversely, for an arbitrary discrete curve q and an arbitrary variation dq, the final equality

only holds if q satisfies

DoLa(qr—1,qr) + D1La (qk, qe1) + F7 (qr-1,q%) + Fy (qr, qres1) = 0,

which is the forced DEL equation.

Therefore, we have that q solves the forced discrete Euler-Lagrange equations if, and only if,

n—1 n—1
d
= E La (qr., qry1.) + E [E} (@, qir1) - 0ar + F7 (e, qis1) - 0qh41]
=0 =0 k=0

= (D1La (g0, q1) + Fj (q0,01)) - g0 + (D2La (¢n—1,n) + F (qn=1,an)) * 6qn,

for all variations, including those that do not vanish at the endpoints.

Let x be the projection of q, the solution of the forced DEL equations, onto the shape space
S, and dx = % .—oXe be a variation of x. Since (qk, qk+1) is on the p-momentum surface, and
(0qk, Oqr+1) is tangent to the momentum surface, we have by the construction of F; the following

relations

E} (2, wpq1) - 0xn + F2 (2h, Tpgn) - 0Thpn

= Fy (xr, 2hi1) - (07%,0) + Fy (2r, i) - (0,02541)

= Fy (2, Tps1) - 02k, 07p 1)

= Fy (qr: qi1) - (6qk, 6qr+1)

= Fa (ar, qr+1) - (0qk, 0) + Fa (qr, qr+1) - (0, 0Gx+1)
= F} (k> qrr1) - 0k + F (qr, Gres1) - 0qrr-

This allows us to rewrite the sum over discrete forces in the discrete Lagrange—d’Alembert prin-
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ciple in terms of a sum over the reduced discrete forces,

n—1 n—1

> La(gro arir) + [Fdl (@h, @hyr) - 52k + F (2h, Tpp1) - 5$k+1}
€=0 k=0 k=0

= (D1La(q0,q1) + Fj (90, q1)) - 6g0 + (D2La (qn-1,qn) + Fj3 (qn-1,qn)) - 6¢y.

d

de

Splitting the variations into horizontal and vertical components, and using the assumption that

the discrete forces vanish on vertical vectors, we have

(D1La (q0,q1) + Fy (90, 01)) - 6q0 + (D2La (¢n—-1,4n) + Fi (qn-1,4n)) - 6Gn
= (D1Lq (g0, 1) + F} (qo,q 1)) - (ver 6go + hor dqo)
+ (D2La (gn—1,an) + F (qn-1,an)) - (ver 8q, + hor dqy)
= (D1La (g0, q1) + Fj (g0, q1)) - hor 8go + (D2Lg (¢n—1,4n) + F3 (gn—1,9n)) - hor dq,,
— 2, (q0) - 9q0 + A, (qn) - 0¢n

= (D1La(q0,q1) + Fj (g0, q1)) - hor 6go + (D2Lq (qn—1,4n) + Fj (qn—1,qn)) - hor dq,,
n—1

+ ) Algrs Ger1) - (0k, 0qrsa)

k=0

where, as before, we used Equation [2.3.19| for the second to last equality. Then,

(D1La (q0,q1) + Fy (q0,q1)) - hor 6go + (D2La (qn-1,qn) + F (qn—1,4n)) - hor 8gy

n—1 n—1
d . .
= 7 > Lalae ak1.) + Y [Fj (Th, Thy1) - Ok + FJ (@, Trqr) - 5$k+1}
“le=0 =0 k=0
n—1
= Agrs Grr1) - (0gk, 0qr11) -
k=0

If the variations §x vanishes at the endpoints, i.e., dxg = dz,, = 0, then hor d¢y = hor d¢q,, = 0,

and therefore,

n—1 n—1
8> La(wh, o) + Y |:Fd1 (@k, @h11) - Sp + F (wp, wppa) - 5$k+1}
k=0 k=0

|
—

n

A (@, Tr1) - (62, 0p41)
0

>~
Il

for all variations dx of x that vanish at the endpoints.

Since the variations are arbitrary and vanish at the endpoints, this is equivalent to the Discrete
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Routh equations with forcing,

DoLa (zp—1,7k) + DiLa (Th, pr1) + F3 (21, wx) + EF (Th, Tp1)

= ./212 (Tp—1,2k) + -/le (@h, Thg1) -

Conversely, if x satisfies the reduced variational principle, and q is its lift onto the y-momentum
surface, then a construction analogous to the derivation of the discrete Routh equations show that

q satisfies the discrete Lagrange—d’Alembert principle. O

2.8.3 Routh Reduction with Constraints and Forcing

By applying the techniques of the previous sections, we may synthesize the formalisms involving
constraints and forcing. We shall state, without proof, the relevant equations in the following

theorem.

Theorem 2.17. Let x be a discrete curve on S, and let q be a discrete curve on QQ with momentum
u that is obtained by lifting x. Let y be a discrete curve on U obtained from x by the inclusion
S = g71(0) — U, and let v be a discrete curve on V with momentum u that is obtained by lifting

y. Then, the following are equivalent.

1. v solves the forced discrete Euler—Lagrange equations with constraints,

DyLg (vg—1,v1) + D1La (v, vps1) + F3 (vg—1, %) + Fy (g, vp41) + i Dg (vg) = 0,

g (vg) =0.

2. v is a solution of the discrete Lagrange—d’Alembert variational principle with constraints,

n—1 n
4 Z L (vk, vk41) + Z e g (vr)
k=0 k=0
n—1
+ Z [F; ('Uk,'Uk-i-l) - 0vg, + Fd2 ('Ukyvk-',-l) . (5Uk+1] =0,
k=0

for all variations 0v of v that vanish at the endpoints, and g (vy) = 0.

3. y solves the Discrete Routh equations with forcing and constraints,

D3La (ye-1,y) + D1La (e, Yrr1) + F3 (yn—1, ) + F§ (Y, Y1) + A D (yie)
= Ay (Yr—1,Yx) + Ay (Vs Yt1) 5

g (yx) =0.
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4. y is a solution of the reduced variational principle,

n—1 n
d lz La (yr, yr+1) + Z X 9 ()
k=0 k=0

n—1 n—1
+) [Fj (Y Y1) - 6Yk + FF (Y Y1) - 5yk+1] = Ak, ykr1) - (Ok, 6yk41)
k=0 k=0

for all variations 0y of y that vanish at the endpoints, and g (yr) = 0.

2.9 Example: J, Satellite Dynamics

2.9.1 Configuration Space and Lagrangian

An illustrative and important example of a system with an abelian symmetry group is that of a single
satellite in orbit about an oblate Earth. The general aspects and background for this problem are
discussed in [Prussing and Conway| [1993], and some interesting aspects of the geometry underlying
it are discussed in |Chang and Marsden| [2003].

The configuration manifold Q is R3, and the Lagrangian for the system has the form, kinetic

minus potential energy,

Lo, (0)) = M.l ~ M.V (),

where M, is the mass of the satellite and V : R? — R is the gravitational potential due to the Earth,

truncated at the first term in the expansion in the ellipticity,

GM, GMEREJ 3(¢%)? 1
V(q) _ 2 ( (q ) )

llal lall> \2 llql* 2
Here, G is the gravitational constant, M, is the mass of the Earth, R, is the radius of the Earth, J5 is
a small non-dimensional parameter describing the degree of ellipticity, and ¢2 is the third component
of q.

We will now assume that we are working in non-dimensional coordinates, so that

G [k (3 1
a.a) =5l [nqn*nan (2||q||2 2” (290)

This corresponds to choosing space and time coordinates in which the radius of the Earth is 1 and

the period of orbit at zero altitude is 2 when J; = 0 (spherical Earth).
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2.9.2 Symmetry Action

The symmetry of interest to us is that of rotation about the vertical (¢*) axis, so the symmetry
group is the unit circle S*. Using cylindrical coordinates, ¢ = (r,0, 2), for the configuration, the
symmetry action is ¢ : (r,6,2) — (r,0 + ¢,2). Since ||q||, ||d|l, and ¢ = 2 are all invariant under
this transformation, so too is the Lagrangian.

This action is clearly not free on all of Q = R3, as the z-axis is invariant for all group elements.
This is not a serious obstacle, however, as the lifted action is free on T'(Q\ (0,0, 0)) and this is enough
to permit the application of the intrinsic Routh reduction theory outlined in §2:2] Alternatively, one
can simply take @ = R?\ {(0,0,2) | z € R} and then the theory literally applies.

The shape space, S = Q/G, is the half-plane S = RT x R and we will take coordinates (r, z) on
S. In doing so, we are implicitly defining a global diffeomorphism S x G — @ given by ((r, 2),0) —
(r,0,2).

The Lie algebra g for G = S is the real line g = R, and we will identify the dual with the real
line itself, g* = R. For a Lie algebra element £ € g, the corresponding infinitesimal generator is
given by

g (r,0,2) = ((r0,2),(0,¢,0)).

Recall that the Lagrange momentum map, Jr, : T'Q — g*, is defined by

JL(vg) - & = (FL(vq),£0(2)),

so we have

To((r,0,2), (7,6,2)) - € = {(7,7%6,2),(0,€,0) ) = r*e,

and

Jo((r,0,2), (7,6, %) = r0.

This momentum map is simply the vertical component of the standard angular momentum.
Consider the Euclidean metric on R3, which corresponds to the kinetic energy norm in the

Lagrangian. From this metric we define the mechanical connection, 2 : T'(Q) — g, which is given

by 2((r, 0, z), (r,ﬁ,z)) = 0. The 1-form A, on @ is thus given by A, = udf. Taking the exterior

derivative of this expression gives d2,, = pud?6 = 0, and so the reduced 2-form is 3, = 0.
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2.9.3 Equations of Motion

Computing the Euler-Lagrange equations for the Lagrangian (Equation [2.9.1]) gives the equations

. 1 J2 (3(¢°)? 1)}
o[ (21
gl llal® N2 flal> 2

To calculate the reduced equations, we begin by calculating the Routhian,

of motion,

RH(T,Q,Z,f“,é,Z) = L(r,@,z,f“,é,é:) — Ay, (r,0,2) - (7“,9,2)
1 : 1 Jo (322 1 .
= F0)1P - |- += (=25 —= )| — pb.
s10:0.90° - |2+ % (35 -3)] -
We now choose a fixed value p of the momentum and restrict ourselves to the space J, Y(p), on
which 6 = . The reduced Routhian, Rr TS — R, is the restricted Routhian dropped to the
tangent bundle of the shape space. In coordinates, this is

S L. 1, .. 1 Jy (322 1 1
s = gl - [+ 5 (55 -5)] -

Recalling that 3, = 0, the Routh equations (Equation [2.2.3) can now be evaluated to give

1 JQ 3 22 1
P — v L Ja /3522 1
(T’,Z) (r,z) |:’l" + r3 <2 r2 2):| ;
which describes the motion on the shape space.
To recover the unreduced Euler-Lagrange equations from the Routh equations, one uses the

procedure of reconstruction. This is covered in detail in Marsden et al. [1990], Marsden| [1992] and

Marsden et al.| [2000Db].

2.9.4 Discrete Lagrangian System

We now discretize this system with the discrete Lagrangian used in Theorem [2.12] Recall that
the push-forward discrete Lagrange map associated with this discrete Lagrangian is a symplectic
partitioned Runge-Kutta method with coefficients given by Equation [2.4.3

Given a point (go,q1) € @ x Q we will take (go,po) and (¢1,p1) to be the associated discrete
Legendre transforms. As the discrete momentum map is the pull-back of the canonical momentum

map, we have that

Jr4(q0,q1) = (pe)o = (po)1-

Take a fixed momentum map value p and restrict Ly to the set Jgdl (1). Dropping this to S x .S now

gives the reduced discrete Lagrangian, Lg:SxS—R.
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As discussed in the fact that we have taken coordinates in which the group action is
addition in 6 means that the push-forward discrete Lagrange map associated with the reduced
discrete Lagrangian is the reduced method given by Equation In fact, as the mechanical
connection has A(r,z) = 0 and §, = 0, the push-forward discrete Lagrange map is exactly a
partitioned Runge-Kutta method with Hamiltonian equal to the reduced Routhian. As we saw in
§2.7] these are generically related by a momentum shift, rather than being equal.

Given a trajectory of the reduced discrete system, we can reconstruct a trajectory of the unre-
duced discrete system by solving for the § component of Equation Correspondingly, a trajec-
tory of the unreduced discrete system can be projected onto the shape space to give a trajectory of

the reduced discrete system.

2.9.5 Example Trajectories

Solutions of the Spherical Earth System. Consider initially the system with J; = 0. This
corresponds to the case of a spherical Earth, and so the equations reduce to the standard Kepler
problem. As this is an integrable system, the trajectories consist of periodic orbits.

A slightly inclined circular trajectory is shown in Figure in both the unreduced and reduced
pictures. Note that the graph of the reduced trajectory is a quadratic, as ||¢|| = V2422 is a

constant.
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Figure 2.2: Unreduced (left) and reduced (right) views of an inclined elliptic trajectory for the

continuous time system with J, = 0 (spherical Earth).

We will now investigate the effect of two different perturbations to the system, one due to taking

non-zero Jo and the other due to the numerical discretization.
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The J, Effect. Taking J, = 0.05 (which is close the actual value for the Earth), the system
becomes near-integrable and experiences breakup of the KAM tori. This can be seen in Figure 2.3}

where the same initial condition is used as in Figure

0.4

0.3

-0.2

-0.3

-0.4

Figure 2.3: Unreduced (left) and reduced (right) views of an inclined elliptic trajectory for the
continuous time system with J, = 0.05. Observe that the non-spherical terms introduce precession

of the near-elliptic orbit in the symmetry direction.

Due to the fact that the reduced trajectory is no longer a simple curve, there is a geometric-
phase-like effect which causes precession of the orbit. This precession can be seen in the thickening

of the unreduced trajectory.

Solutions of the Discrete System for a Spherical Earth. We now consider the discrete
system with Jo = 0, for the second-order Gauss—Legendre discrete Lagrangian with timestep of
h = 0.3. The trajectory with the same initial condition as above is given in Figure [2.4

As can be seen from the reduced trajectory, the discretization has caused a similar breakup of
the periodic orbit as was produced by the non-zero Js. The effect of this is to, once again, induce
precession of the orbit in the unreduced trajectory, in a way which is difficult to distinguish from
the perturbation above due to non-zero J, when only the unreduced picture is considered. If the
reduced pictures are consulted, however, then it is immediately clear that the system is much closer

to the continuous time system with Jo = 0 than to the system with non-zero Js.

Solutions of the Discrete System with J; Effect. Finally, we consider the discrete system
with non-zero Js = 0.05. The resulting trajectory is shown in Figure|2.5] and, clearly, it is not easy
to determine from the unreduced picture whether the precession is due to the .Jo perturbation, the

discretization, or some combination of the two.
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Figure 2.4: Unreduced (left) and reduced (right) views of an inclined trajectory of the discrete
system with step-size h = 0.3 and J, = 0. The initial condition is the same as that used in Figure
The numerically introduced precession means that the unreduced picture looks similar to that
of Figure with non-zero Jo, whereas, by considering the reduced picture we can see the correct

resemblance to the J, = 0 case of Figure

Figure 2.5: Unreduced (left) and reduced (right) views of an inclined trajectory of the discrete
system with step-size h = 0.3 and J> = 0.05. The initial condition is the same as that used in
Figure The unreduced picture is similar to that of both Figures[2.3]and By considering the

reduced picture, we obtain the correct resemblance to Figure [2.3
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Taking the reduced trajectories, however, immediately shows that this discrete time system
is structurally much closer to the non-zero .J, system than to the original Jy = 0 system. This
confusion arises because both the J; term and the discretization introduce perturbations which act
in the symmetry direction.

While this system is sufficiently simple that one can run simulations with such small timesteps
that the discretization artifacts become negligible, this is not possible in general. This example
demonstrates how knowledge of the geometry of the system can be important in understanding the
discretization process, and how this can give insight into the behavior of numerical simulations. In
particular, understanding how the discretization interacts with the symmetry action is extremely

important.

2.9.6 Coordinate Systems

In this example, we have chosen cylindrical coordinates, thus making the group action addition in
6. One can always do this, as an abelian Lie group is isomorphic to a product of copies of R and S?,
but it may sometimes be preferable to work in coordinates in which the group action is not addition.
For example, cartesian coordinates in the present example.

It may be easier, both in terms of computational expense, and in the simplicity of expressions,
if we adopt a coordinate system in which the group action is not addition. We can still apply the
Discrete Routh equations to obtain an integration scheme on S x S. The push-forward of this under
1) yields an integration scheme on T*S. The trajectories on the shape space that we obtain in this
manner could be different from those we would get with the RSPRK method. However, in both
cases we would have conservation of symplectic structure, momentum, and the order of accuracy

would be the same. One could choose whichever approach is cheaper and easier.

2.10 Example: Double Spherical Pendulum

2.10.1 Configuration Space and Lagrangian

We consider the example of the double spherical pendulum which has a non-trivial magnetic term
and constraints. The configuration manifold Q is S? x S2, and the embedding linear space V is
R3 x R3.

The position vectors of each pendulum with respect to their pivot point are denoted by q; and
2, as illustrated in Figure[2.6] These vectors are constrained to have lengths I and [, respectively,

and the pendula masses are denoted by m; and ms.
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q2

Figure 2.6: Double spherical pendulum.

The Lagrangian for the system has the form, kinetic minus potential energy,

. 1 . 1 . .
L(q1,92,41,4q2) = 577”L1||(11||2 + §m2||0h + da||* — migqs - k — mag(qs + q2) - k,

where ¢ is the gravitational constant, and k is the unit vector in the z direction. The constraint

function, ¢ : V — R2, is given by

c(ar, az) = ([laill = &, lazl = I2)-

Using cylindrical coordinates, q; = (r;, 6;, 2;), for the configuration, we can express the Lagrangian
as
. 1 .9 242 ] 1 .2 2,2 -2 202
L(q,q) = §m1 (7‘1 + 7"191 + Zl) + §m2 {7"1 +7‘101 + Ty + T262
+2 (7.“17"2 + ’/'17“29192) cosp+ 2 (7‘17'“29.1 — 7’27;19.2) sin ¢ + (21 + 22)2}

—migz1 —mag (21 + 22) ,

where ¢ = 03 — #;. Furthermore, we can automatically satisfy the constraints by performing the
following substitutions,
TZTZ

ViZ—r2

) Zi = —
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2.10.2 Symmetry Action

The symmetry of interest to us is the simultaneous rotation of the two pendula about vertical (2)
axis, so the symmetry group is the unit circle S'. Using cylindrical coordinates, q; = (74, 0;, z;), for
the configuration, the symmetry action is ¢ : (1, 60;, ;) — (r;,0;+ ¢, 2;). Since ||q;l|, ||d:l, ||d1 +dz2],
and q; - k are all invariant under this transformation, so too is the Lagrangian.

This action is clearly not free on all of V = R3 x R3, as the z-axis is invariant for all group
elements. However, this does not pose a problem computationally, as long as the trajectories do
not pass through the downward hanging configuration, corresponding to r; = ro = 0. To treat the
downward handing configuration properly, we would need to develop a discrete Lagrangian analogue
of the continuous theory of singular reduction described in [Ortega and Ratiul [2001].

The Lie algebra g for G = S is the real line g = R, and we will identify the dual with the real
line itself g* = R. For a Lie algebra element £ € g, the corresponding infinitesimal generator is given
by

&g i (r1,01, 21,72,02, 22) — ((r1,61, 21,72, 02, 22), (0,£,0,0,&,0)).

Recall that the Lagrange momentum map Jr, : T'Q) — g* is defined by

JL(vg) - € = (FL(vq),£0()),

so we have

JL((r1,01,21,72,02, 22), (71, 01, 21,72, 02, 2)) - €
= <(m17'"1 + mo [7'"1 + 79 cosp — r292 sin go} ,
mlrfél + mo [r%él + rlrgég cos ¢ + 1179 Sin @} ,
miz1 + ma [21 + Z2], Mo [7"2 + 71 cos ¢ + 7167 sin g@} ,
ma [7‘%92 + 117901 COS @ — Trorq sin cp} ,ma |21 + zg]) ,(0,£,0,0,¢&, O)>

= ((ml + mg) T%él + mngéz —+ moriry (91 + 92) COS Y + (7“17'“2 — 7“27"1) sin <p) &,
and

JL((r1,01, 21,72, 02, 22), (71, 01, 21,72, 02, £))

= (m1 + ma) T%él + mgrgég + MaoriTe (91 + 92) cos p + (1179 — 271 ) sin .

This momentum map is simply the vertical component of the standard angular momentum.
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The locked inertia tensor is given by [Marsden| [1992],
I(arqz) = mulai |* + moll(ar + az) ||

= myr? + ma(r? + 72 + 2r17ry cos ).
Furthermore, the mechanical connection is given by

a(qr, a2, 41, 42) = I(ar, g2) I (a1, a2, 41, 42)

(mq + mo) 7“%0'1 + mgrgég + MoTiTo (91 + 92) cos p + (r17y — 7271 ) sin @

mar? +ma(r? + 12 + 2rire cos @)
As a 1-form, it is given by

1

mar? +ma(r? + 13 + 2r1ra cos )

a(qr,qz) =

X [(ml + ma) rfd@l + m2r§d02 + marira (df; + dbs3) cos
+ (ridrg — rodry) sin ¢] .
The p-component of the mechanical connection is given by

U
mari +ma(r? + 13 + 2r1re cos @)

au(ar, az2) =
2 2
X { [(ml + mg) r{ + marire cos go} dé; + [m2r2 + morire COS cp] d@g} .
Taking the exterior derivative of this 1-form yields a non-trivial magnetic term on the reduced space,

I

[m1r? + ma (r? + 73 + 2ry73 cos @)]2

day, =

x {mara [2 (my +ma) rire + (mar? + ma(rf 4+ 13)) cos | dry A db,
—mary [2(my +ma) rire + (marf + ma(r] 4 13)) cos ] dra A db,
+ marire sin p[mirf + ma(r — r3)|d A Ay
—mars [2(my +ma) rire + (marf + ma(r] 4+ 13)) cos ] dri A dfs
+ mar [2 (mq 4+ mgo) rire + (mlr% + ma(r? + 7’%)) cos ga] dry A df,

-+ MoriTe Sin @[mlrf +ma(r? — r%)]d@l A dbs}.
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This 2-form drops to the quotient space to yield

1

[mar? + ms (12 + 13 + 27173 cos o))

ﬁu:

x {mara [2(my + ma) rire + (marf + ma(ri +13)) cos ] dp A dry

—mary [2(my +ma) rire + (marf + ma(rf 4 13)) cos o] dp Adra}

mo |2(m1 +m rr+mr2+m r2+7"2 Ccos
:/J 2[( 1 2) 11T ( 177 2(r{ 2)) dd(p/\(rgdh—ﬁd?"z).

[mar? + ms (12 + 13 + 27173 cos )]

The local representation of the connection can be computed from the expression

a(01,71,79,0) (01,71, 2, P)
1
= A(r1,7m2,0) || + 01
@
71

ma

iy np 13 |+ 6.

mlrf T mg(r% T r% I Tp— @) [ roSinp Tisiny 13+ TriraCosp| |12 1
®

From this, we observe that

ma
mar? + ma(r? + r2 + 2r17re cos )

A(ry,m2,0) = —rosing 7rysing r% +7rire cosgo] .

The amended potential V), is given by

Vila) = V(@) + 5. T0) )
2

m19q1 m29 ql q2 : l: .

/ 1 u?
_ l2 2 \/l2 2 \/l2 2 Z. .
Mgy T T2y ( A 2 mir? + ma(rf + 73 + 2r1ra cos p)

The Routhian has the following expression on the momentum level set,

1
R = L hor(q.0)? - V.
Recall that hor(v,y) = vy — g (vg), where & = a(vy), and g (vy) = (0,€,0,0,£,0). Then, we obtain

hor(vg) = v — (0, a(vy), 0,0, a(vy), 0)
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= (7;13 él - a(vq)a 217f'23 9.2 - a(“q)a ZQ)

From this, we conclude that

Sl hor(q, )12
_ -Tr a1 -
1 mi + mo 0 0 mocose  —marssing 0 1
0, — o 0 (mq + ma)r? 0 mory sing marirecose 0 0, —
1 21 0 0 my + ma 0 0 0 2
T2 9 Mo COS mar1 sin @ 0 mo 0 0 T9
92 -« —Marasin  MariTs COS P 0 0 mgrg 0 92 —«
29 0 0 0 0 0 mo 2
= % {(m1 + ma)1r? 4 2maorro cos @ + mgrg} o?

— {mlrfél —+ mo |:7‘1’I’2(9.1 + 92) COos ¢ —+ (’I"17;2 — Tzf’l) sincp —+ (’I"%él —+ T§62):| } (6%

1 .
+ =mq (7] + 1707 + 57)

2
+ 3m2 {r% + 7307 4+ 75 + 1303 + 2(F179 4+ r1720102) cos
+2(T‘17;'29.1 — 7’27.’19-2) sin<p + (21 + 22)2} s
where o = £

T
These combine to yield an expression for the Routhian R, which drops to T'S to give R“, and

allow us to apply the Reduced Symplectic Partitioned Runge—Kutta algorithm.

2.10.3 Example Trajectories

We have computed the reduced trajectory of the double spherical pendulum using the fourth-order
RSPRK algorithm on the Routh equations, and the fourth-order SPRK algorithm on the classical
Routh equations.

As discussed in §2.7] these two methods should yield equivalent reduced dynamics, related to
each other by a momentum shift, and in particular, their trajectories in position space should agree.
We first consider the evolution of 1, ro, and ¢, using the RSPRK algorithm on the Routh equations,
as well as the projection of the relative position of mo with respect to m; onto the zy plane as seen
in Figure 2.7

Figure [2.§] illustrates that the energy behavior of the trajectory is very good, as is typical of
variational integrators, and does not exhibit a spurious drift. In comparison, when a non-symplectic

fourth-order Runge-Kutta is applied to the unreduced dynamics, with time-steps that were a quarter
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Figure 2.7: Time evolution of r1, 72, ¢, and the trajectory of ms, relative to my, using RSPRK.

of that used in the symplectic method, and we notice a systematic drift in the energy behavior.
Finally, we consider the relative error between the position trajectories and energy obtained

from the RSPRK algorithm applied to the Routh equations as compared to the trajectories from

the SPRK algorithm applied to the classical Routh equations. As Figure[2.9]clearly illustrates, these

agree very well, as expected theoretically.

2.10.4 Computational Considerations

The choice of whether to compute in the unreduced space, and then project onto the shape space to
obtain the reduced dynamics, or to compute the reduced dynamics directly using either the Discrete
Routh equations, or the RSPRK algorithm, depends on the nature of the problem to be simulated.

Given a configuration space of dimension n, and a symmetry group of dimension m, we are faced
with the option of implementing a conceptually simpler algorithm in 2n dimensions, as compared
to a more geometrically involved algorithm in 2(n — m) dimensions. Whether the additional effort
associated with implementing the reduced algorithm is justified depend on a number of factors,
including the relative dimension of the configuration space and the symmetry group, the computa-

tional complexity of the iterative schemes used to solve the resulting implicit system of equations,

and any additional structure that may arise in either the reduced or unreduced system.
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Figure 2.8: Relative energy drift (E — Ey)/Ey using RSPRK (left) compared to the relative energy

drift in a non-symplectic RK (right).
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Figure 2.9: Relative error in rq, 1o, ¢, and E between RSPRK and SPRK.
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For instance, if longtime or repeated simulations are desired of systems with high-dimensional
symmetry groups, it can be advantageous to compute in the reduced space directly. An example
of this situation, which is of current engineering interest, is simulating the dynamical behavior of
connected networks of systems with their own internal symmetries.

If the systems to be connected are all identical, the geometric quantities that need to be computed,
such as the mechanical connection, have a particularly simple repeated form, and the additional
upfront effort in implementing the reduced algorithm can result in substantial computational savings.

Non-intrinsic numerical schemes such as the Symplectic Partitioned Runge-Kutta algorithm
applied to the classical Routh equations can have undesirable numerical properties due to the need
for coordinate-dependent local trivializations and the presence of coordinate singularities in these
local trivializations, such as those encountered while using Euler angles for rigid-body dynamics.
In the presence of non-trivial magnetic terms in the symplectic form, this can necessitate frequent
changes of coordinate charts, as documented in Wisdom et al.| [1984] and [Patrick| [1991]. In such
instances, the coordinate changes can account for an overwhelming portion of the total computational
effort. In contrast, intrinsic methods do not depend on a particular choice of coordinate system, and
as such allow for the use of global charts through the use of containing vector spaces with constraints
enforced using Lagrange multipliers.

Coordinate singularities can affect the quality of the simulation in subtle ways that may depend
on the choice of numerical scheme. In the energy behavior of the simulation of the double spherical
pendulum, we notice spikes in the energy corresponding to times when r; or 5 are close to 0. While
these errors accumulate in the non-symplectic method, the energy error in the symplectic method
remains well-behaved. However, sharp spikes can be avoided altogether by evolving the equations as
a constrained system with V' = R3xR3, and constraint function g(v1,va) = (||v1]|—l1, || v2||—I2) that
is imposed using Lagrange multipliers, as opposed to choosing local coordinates that automatically

satisfy the constraints. Here, the increased cost of working in the six-dimensional linear space V' with

2

i,» Which can be significant

constraints is offset by not having to transform between charts of 5'121 xS
if the trajectories are particularly chaotic.

While in simple examples, the effect of choosing local coordinates that allow the use of non-
intrinsic schemes can be properly corrected for, this is not true in general for more complicated
examples. Here, intrinsic schemes such as those we have developed in this paper for dealing with

reduced dynamics and constrained systems are preferable, since they do not depend on a particular

choice of local trivialization, and as such do not require frequent coordinate transformations.
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2.11 Conclusions and Future Work

In summary, we have derived the Discrete Routh equations on S x S, which are symplectic with
respect to a non-canonical symplectic form, and retains the good energy behavior typically associated
with variational integrators. Furthermore, when the group action can be expressed as addition, we
obtain the Reduced Symplectic Partitioned Runge—Kutta algorithm on T*S, that can be considered
as a discrete analogue of cotangent bundle reduction. In addition, the theory has been extended to
include constraints and forcing. By providing an understanding of how the reduced and unreduced
formulations are related at a discrete level, we enable the user to freely choose whichever formulation
is most appropriate, and provides the most insight into the problem at hand.

Certainly one of the obvious things to do in the future is to extend this reduction procedure to
the case of nonabelian symmetry groups following the nonabelian version of Routh reduction given
in |Jalnapurkar and Marsden| [2000] and Marsden et al.| [2000b]. There are also several problems,
including the averaged Jo problem, in which one can also carry out discrete reduction by stages and
in particular relate it to the semidirect product work of|Bobenko and Suris| [1999]. This is motivated
by the fact that the semidirect product reduction theory of Holm et al.|[199§] is a special case
of reduction by stages (at least without the momentum map constraint), as was shown in |Cendra
et al.| [1998]. In further developing discrete reduction theory, the discrete theory of connections on
principal bundles developed in |Leok et al. [2003] and Chapter [4]is particularly relevant, as it provides
an intrinsic method of representing the reduced space (Q x Q)/G as (S x S) & G.

Another component that is needed in this work is a good discrete version of the calculus of
differential forms. Note that in our work we found, being directed by mechanics, that the right
discrete version of the magnetic 2-form is the difference of two connection 1-forms. It is expected
that we could recover such a magnetic 2-form by considering the discrete exterior derivative of a
discrete connection form in a finite discretization of space-time, and taking the continuum limit in
the spatial discretization. Developing a discrete analogue of Stokes’ Theorem would also provide
insight into the issue of discrete geometric phases. Some work on a discrete theory of exterior
calculus can be found in [Desbrun et al.| [2003a] and Chapter

Of course, extensions of this work to the context of PDEs, especially fluid mechanics, would be

very interesting.



