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by
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Doctor of Philosophy

Abstract

Geometric mechanics involves the study of Lagrangian and Hamiltonian mechanics using geometric
and symmetry techniques. Computational algorithms obtained from a discrete Hamilton’s principle
yield a discrete analogue of Lagrangian mechanics, and they exhibit excellent structure-preserving
properties that can be ascribed to their variational derivation.

We construct discrete analogues of the geometric and symmetry methods underlying geometric
mechanics to enable the systematic development of computational geometric mechanics. In par-
ticular, we develop discrete theories of reduction by symmetry, exterior calculus, connections on
principal bundles, as well as generalizations of variational integrators.

Discrete Routh reduction is developed for abelian symmetries, and extended to systems with
constraints and forcing. Variational Runge—Kutta discretizations are considered in detail, includ-
ing the extent to which symmetry reduction and discretization commute. In addition, we obtain
the Reduced Symplectic Runge-Kutta algorithm, which is a discrete analogue of cotangent bundle
reduction.

Discrete exterior calculus is modeled on a primal simplicial complex, and a dual circumcentric
cell complex. Discrete notions of differential forms, exterior derivatives, Hodge stars, codifferentials,
sharps, flats, wedge products, contraction, Lie derivative, and the Poincaré lemma are introduced,
and their discrete properties are analyzed. In examples such as harmonic maps and electromag-
netism, discretizations arising from discrete exterior calculus commute with taking variations in
Hamilton’s principle, which implies that directly discretizing these equations yield numerical schemes

that have the structure-preserving properties associated with variational schemes.



Discrete connections on principal bundles are obtained by introducing the discrete Atiyah se-
quence, and considering splittings of the sequence. Equivalent representations of a discrete connec-
tion are considered, and an extension of the pair groupoid composition that takes into account the
principal bundle structure is introduced. Discrete connections provide an intrinsic coordinatization
of the reduced discrete space, and the necessary discrete geometry to develop more general discrete
symmetry reduction techniques.

Generalized Galerkin variational integrators are obtained by discretizing the action integral
through appropriate choices of finite-dimensional function space and numerical quadrature. Explicit
expressions for Lie group, higher-order Euler—Poincaré, higher-order symplectic-energy-momentum,
and pseudospectral variational integrators are presented, and extensions such as spatio-temporally

adaptive and multiscale variational integrators are briefly described.
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