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Appendix A

Review of Homological Algebra

For the reader’s convenience, we will recall some basic definitions and results from homological

algebra, which we have reproduced from Hungerford [1974].

Definition A.1. A pair of homomorphisms,

A
f

// B
g

// C ,

is said to be exact at B if

Im f = Ker g .

A finite sequence of homomorphisms,

A0
f1 // A1

f2 // A2
f3 // · · ·

fn−1
// An−1

fn // An ,

is exact if

Im fi = Ker fi+1, for i = 1, 2, . . . , n− 1.

An infinite sequence of homomorphisms,

· · ·
fi−1

// Ai−1
fi // Ai

fi+1
// Ai+1

fi+2
// · · · ,

is exact if

Im fi = Ker fi+1, for all i ∈ Z.

Remark A.1. We record below some of the properties of exact sequences.

1. The sequence 0 // A
f

// B is exact iff f is a monomorphism (one-to-one).

2. The sequence B
g

// C // 0 is exact iff g is a epimorphism (onto).
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3. If A
f

// B
g

// C is exact, then gf = 0.

4. If A
f

// B
g

// C // 0 is exact, then

Coker f = B/ Im f = B/Ker g = Coim g ∼= C.

5. An exact sequence of the form 0 // A
f

// B
g

// C // 0 , is called a short exact

sequence, and in particular, f is a monomorphism, and g is an epimorphism.

6. A short exact sequence is another way of presenting a submodule (A ∼= Im f) and its quotient

module (B/ Im f = B/ ker g ∼= C).

We will now consider some results for short exact sequences, such as

0 // A1

f
//

oo
k

___ B
g

//
oo

h
___ A2

// 0 ,

and their splittings.

Lemma A.1 (The Short Five Lemma). Consider a commutative diagram,

0 // A
f

//

α

��

B
g

//

β

��

C //

γ

��

0

0 // A′
f ′

// B′ g′
// C ′ // 0

such that each row is a short exact sequence. Then,

1. α and γ are monomorphisms, implies β is a monomorphism;

2. α and γ are epimorphisms, implies β is an epimorphism;

3. α and γ are isomorphisms, implies β is an isomorphism.

Proof. The proof involves diagram chasing and the exactness of the rows. See, for example, page

176 of Hungerford [1974]. �

The short five lemma allows the following theorem to be proved. This theorem can be used to

relate the various representations of a connection on a principal bundle, in both the continuous and

discrete cases.

Theorem A.2. Given a short exact sequence

0 // A1
f

// B
g

// A2
// 0 ,
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the following conditions are equivalent.

1. There is a homomorphism h : A2 → B with g ◦ h = 1A2 ;

2. There is a homomorphism k : B → A1 with k ◦ f = 1A1 ;

3. The given sequence is isomorphic (with identity maps on A1 and A2) to the direct sum short

exact sequence,

0 // A1
i1 // A1 ⊕A2

π2 // A2
// 0 ,

and in particular, B ∼= A1 ⊕A2.

A short exact sequence that satisfies the equivalent conditions of Theorem A.2 is said to be split

or a split exact sequence. The maps in Theorem A.2 are referred to as splittings of the short

exact sequence.

Proof. We present the proof sketched on pages 177–178 of Hungerford [1974].

1 ⇒ 3. Consider the homomorphism ϕ : A1⊕A2 → B, given by (a1, a2) 7→ f(a1)+h(a2), and verify

that the diagram

0 // A
i1 //

1A1

��

A1 ⊕A2
π2 //

ϕ

��

A2
//

1A2

��

0

0 // A1
f

// B
g

//
oo

h
____ A2

// 0

is commutative. Use the short five lemma to conclude that ϕ is an isomorphism.

2 ⇒ 3. Consider the homomorphism ψ : B → A1 ⊕ A2, given by b 7→ (k(b), g(b)), and verify that

the diagram

0 // A1

f
//

oo
k

____ B
g

// A2
// 0

0 // A
i1 //

��

1A1

A1 ⊕A2
π2 //

��

ψ

A2
//

��

1A2

0

is commutative. Use the short five lemma to conclude that ψ is an isomorphism.

3 ⇒ 1, 2. Consider the commutative diagram

0 // A1

i1 //
oo
π1

___ A1 ⊕A2

π2 //
oo
i2

___ A2
// 0

0 // A1
f

//
��

1A1

B
g

//
��

ϕ

A2
//

��

1A2

0

with exact rows, and where ϕ is an isomorphism. Let h = ϕi2 : A2 → B and k = π1ϕ
−1 : B →

A1, and show using the commutativity of the diagram that kf = 1A1 and gh = 1A2 . �
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Appendix B

Geometry of the Special Euclidean Group

To allow the reader to apply the construction of the exact discrete connection using exponentials

and logarithms to problems arising in geometric control, we review some of the basic geometry of

the Special Euclidean Group in three dimensions, SE(3), which is the Lie group consisting of

isometries of R3. A more detail discussion of the geometry of SE(3), and its applications to robotics

can be found in Murray et al. [1994].

Representation of SE(3). The group SE(3) is a semidirect product of SO(3) and R3. Using

homogeneous coordinates, we can represent SE(3) as follows,

SE(3) =


R p

0 1

 ∈ GL(4,R)

∣∣∣∣∣R ∈ SO(3), p ∈ R3


with the action on R3 given by the usual matrix-vector product when we identify R3 with the section

R3 × {1} ⊂ R4. In particular, given

g =

R p

0 1

 ∈ SE(3),

and q ∈ R3, we have

g · q = Rq + p,

or as a matrix-vector product, R p

0 1

q
1

 =

Rq + p

1

 .
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The Lie algebra of SE(3) is given by

se(3) =


ω̂ v

0 0

 ∈M4(R)

∣∣∣∣∣ ω̂ ∈ so(3), v ∈ R3

 ,

where ·̂ : R3 → so(3) is given by

ω̂ =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 .

Exponentials and Logarithms. The exponential map, exp : se(3) → SE(3), is given by

exp

ω̂ v

0 0

 =

exp(ω̂) Av

0 1

 ,

where

A = I +
1− cos ‖ω‖

‖ω‖2
ω̂ +

‖ω‖ − sin ‖ω‖
‖ω‖3

ω̂2,

and exp(ω̂) is given by the Rodriguez’ formula,

exp(ω̂) = I +
sin ‖ω‖
‖ω‖

ω̂ +
1− cos ‖ω‖

‖ω‖2
ω̂2.

The logarithm, log : SE(3) → se(3), is given by

log

R p

0 1

 =

log(R) A−1p

0 0

 ,

where

log(R) =
φ

2 sinφ
(R−RT ) ≡ ω̂,

and φ satisfies

Tr(R) = 1− 2 cosφ, |φ| < π,

and where

A−1 = I − 1
2
ω̂ +

2 sin ‖ω‖ − ‖ω‖(1 + cos ‖ω‖)
2‖ω‖2 sin ‖ω‖

ω̂2.
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Appendix C

Analysis of Multiscale Finite Elements in One

Dimension

This appendix will analyze the discrete l∞ error for multiscale finite elements (MsFEM) in one

dimension when applied to a multiscale second-order elliptic equation with homogeneous boundary

conditions. This will serve to motivate the use of multiscale shape functions in the construction of

variational integrators, for problems with multiple temporal scales, as discussed in §5.7.

Let a(y) be a smooth, periodic function in y, with period 1. Moreover, we assume that a(y) ≥

c1 > 0 for some positive constant c1, and that f(x) is a smooth function. Let ε > 0 be a small

parameter. Consider the following second-order elliptic PDE,

∂

∂x

(
a
(x
ε

) ∂

∂x
uε (x)

)
= f(x), 0 < x < 1 ,

with homogeneous boundary conditions, uε(0) = 0 = uε(1).

Analytical Solution. To obtain convergence estimates, it is relevant to consider the analytical

solution of the above PDE. We have

∂

∂x

(
a
(x
ε

) ∂

∂x
uε (x)

)
= f (x) ,

a
(x
ε

) ∂

∂x
uε (x)− a (0)

∂

∂x
uε (0) =

∫ x

0

f (s) ds .

Denoting a(0) ∂∂xu
ε(0) by c, we obtain

∂

∂x
uε (x) =

∫ x
0
f (s) ds− c

a
(
x
ε

) ,

uε (x) =
∫ x

0

∫ y
0
f (s) ds− c

a
(
y
ε

) dy .
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We impose the boundary condition uε(1) = 0, which yields

0 = uε(1)

=
∫ 1

0

∫ y
0
f(s)ds
a
(
y
ε

) dy − c

∫ 1

0

dy

a
(
y
ε

) ,
c =

∫ 1

0

R y
0 f(s)ds

a( y
ε ) dy∫ 1

0
dy

a( y
ε )

.

Hence,

uε (x) =
∫ x

0

∫ y
0
f (s) ds
a
(
y
ε

) dy −

∫ 1

0

R y
0 f(s)ds

a( y
ε ) dy∫ 1

0
dy

a( y
ε )

∫ x

0

dy

a
(
y
ε

)
=
∫ x

0

F (y)
a
(
y
ε

)dy −
∫ 1

0
F (y)

a( y
ε )dy∫ 1

0
dy

a( y
ε )

∫ x

0

dy

a
(
y
ε

) .
Analytical Expressions for the MsFEM Shape Functions. The MsFEM shape functions

can be obtained analytically as follows,

∂xa
(x
ε

)
∂xϕ

ε
i = 0 ,

a
(x
ε

)
∂xϕ

ε
i = c1 ,

∂xϕ
ε
i =

c1

a
(
x
ε

) .
For x ∈ [xi−1, xi], we have

ϕεi(x) = c1

∫ x

xi−1

ds

a
(
s
ε

) ,
ϕεi(xi) = c1

∫ xi

xi−1

ds

a
(
s
ε

) = 1 ,

c1 =
1∫ xi

xi−1

ds

a( s
ε )
,

ϕεi (x) =

∫ x
xi−1

ds

a( s
ε )∫ xi

xi−1

ds

a( s
ε )
.

For x ∈ [xi, xi+1], we have

ϕεi(xi+1)− ϕεi(x) = c1

∫ xi+1

x

ds

a
(
s
ε

) ,
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0− 1 = ϕεi (xi+1)− ϕεi (xi)

= c1

∫ xi+1

xi

ds

a
(
s
ε

) ,
c1 = − 1∫ xi+1

xi

ds

a( s
ε )
,

ϕεi (x) =

∫ xi+1

x
ds

a( s
ε )∫ xi+1

xi

ds

a( s
ε )
.

Then, in general,

ϕεi (x) =



[∫ xi

xi−1

ds

a( s
ε )

]−1 [∫ x
xi−1

ds

a( s
ε )

]
, x ∈ [xi−1, xi] ;[∫ xi+1

xi

ds

a( s
ε )

]−1 [∫ xi+1

x
ds

a( s
ε )

]
, x ∈ (xi, xi+1] ;

0 , otherwise .

Discrete Error Analysis of the One-Dimensional MsFEM. Consider a uniform partition

on the interval I = [0, 1],

P : 0 = x0 < x1 < . . . < xN = 1 ,

with mesh size h = 1/N. Further, let Ii = [xi, xi+1] . We define the discrete l2 and l∞ norms as

follows,

‖f‖l2 =

(
N∑
i=0

|f (xi)|2
)1/2

,

‖f‖l∞ = max
i=0,...,N

|f (xi)| .

In this section, we will show that the l∞ error for one-dimensional MsFEM is zero, and in particular,

the l2 error for one-dimensional MsFEM is zero as well.

The stiffness matrix is given by

Ahij = a
(
ϕεi , ϕ

ε
j

)
= −

∫ 1

0

a
(x
ε

)
∇ϕεi∇ϕεjdx

=

−
∫ xi+1

xi−1
a
(
x
ε

)
∂xϕ

ε
i∂xϕ

ε
jdx , j = i− 1, i, i+ 1 ;

0 , otherwise .
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Since ϕεi−1 + ϕεi ≡ 1 in Ii−1 for all i, we have, ∂xϕεi−1 + ∂xϕ
ε
i ≡ 0 in Ii−1, and hence,

Ahii = −
∫
Ii−1

a
(x
ε

)
∂xϕ

ε
i∂xϕ

ε
idx−

∫
Ii

a
(x
ε

)
∂xϕ

ε
i∂xϕ

ε
idx

= −
∫
Ii−1

a
(x
ε

)
∂xϕ

ε
i

(
−∂xϕεi−1

)
dx−

∫
Ii

a
(x
ε

)
∂xϕ

ε
i

(
−∂xϕεi+1

)
dx

= −

(
−
∫
Ii−1+Ii−2

a
(x
ε

)
∂xϕ

ε
i∂xϕ

ε
i−1dx−

∫
Ii+Ii+1

a
(x
ε

)
∂xϕ

ε
i∂xϕ

ε
i+1dx

)
= −

(
Ahii−1 +Ahii+1

)
,

where the second to last equality is because supp
(
∂xϕ

ε
i∂xϕ

ε
i−1

)
⊂ Ii−1.

We note further that a(·, ·) is a symmetric bilinear form, and consequently,

Ahij = Ahji.

Let us define Bhi ≡ Ahii−1, and therefore, Ahii+1 = Ahi+1,i = Bhi+1. This allows us to conclude that

(
AhUh

)
i
= AhijU

h
j

= Ahii+1U
h
i+1 +AhiiU

h
i +Ahii−1U

h
i−1

= Ahii+1U
h
i+1 −

(
Ahii+1 +Ahii−1

)
Uhi +Ahii−1U

h
i−1

= Ahii+1

(
Uhi+1 − Uhi

)
−Ahii−1

(
Uhi − Uhi−1

)
= D+

(
Ahii−1

(
Uhi − Uhi−1

))
= D+

(
Bhi
(
Uhi − Uhi−1

))
= D+

(
Bhi D

−Uhi
)
,

where the forward and backward difference operators D+ and D− are defined by

D+ (f (ui)) = f (ui+1)− f (ui) ,

D− (f (ui)) = f (ui)− f (ui−1) .

The MsFEM equation is given by

AhijU
h
j = fhi ,

where fhi =
∫ 1

0
f (x)ϕi (x) dx. In particular,

fhi =
∫ 1

0

f (x)ϕi (x) dx
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=

[∫ xi+1

xi

dx

a
(
x
ε

)]−1 ∫ xi+1

xi

f (x)

[∫ xi+1

x

dx

a
(
x
ε

)] dx
+

[∫ xi

xi−1

dx

a
(
x
ε

)]−1 ∫ xi

xi−1

f (x)

[∫ x

xi−1

dx

a
(
x
ε

)] dx
=

[∫ xi+1

xi

dx

a
(
x
ε

)]−1
∫ xi+1

xi

F (x)
a
(
x
ε

)dx−
∫ 1

0
F (x)

a( x
ε )dx∫ 1

0
dx

a( x
ε )

∫ xi+1

xi

dx

a
(
x
ε

)


−

[∫ xi

xi−1

dx

a
(
x
ε

)]−1
∫ xi

xi−1

F (x)
a
(
x
ε

)dx−
∫ 1

0
F (x)

a( x
ε )dx∫ 1

0
dx

a( x
ε )

∫ xi

xi−1

dx

a
(
x
ε

)
 ,

where we performed an integration by parts to obtain the last equality. We will further rewrite the

expression above using the difference operators.

fhi = D+

[∫ xi

xi−1

dx

a
(
x
ε

)]−1
∫ xi

xi−1

F (x)
a
(
x
ε

)dx−
∫ 1

0
F (x)

a( x
ε )dx∫ 1

0
dx

a( x
ε )

∫ xi

xi−1

dx

a
(
x
ε

)


= D+

[∫ xi

xi−1

dx

a
(
x
ε

)]−2 [∫ xi

xi−1

1
a
(
x
ε

)dx] (uε (xi)− uε (xi−1))


= D+

−
∫ xi

xi−1

a
(x
ε

)[∫ xi

xi−1

dx

a
(
x
ε

)]−1
1

a
(
x
ε

)
[∫ xi

xi−1

dx

a
(
x
ε

)]−1
−1
a
(
x
ε

)
 dx

D−uε (xi)


(C.0.1)

Recall from our analytical expression for the MsFEM shape functions that

ϕεi (x) =



[∫ xi

xi−1

ds

a( s
ε )

]−1 [∫ x
xi−1

ds

a( s
ε )

]
, x ∈ [xi−1, xi] ;[∫ xi+1

xi

ds

a( s
ε )

]−1 [∫ xi+1

x
ds

a( s
ε )

]
, x ∈ (xi, xi+1] ;

0 , otherwise ,

and hence,

∂xϕ
ε
i (x) =



[∫ xi

xi−1

ds

a( s
ε )

]−1
1

a( x
ε ) , x ∈ [xi−1, xi] ;[∫ xi+1

xi

ds

a( s
ε )

]−1
−1

a( x
ε ) , x ∈ (xi, xi+1] ;

0 , otherwise .

We therefore recognize two of the terms in Equation C.0.1 as ∂xϕεi and ∂xϕ
ε
i−1. Consequently, we
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have that

fhi = D+

(
−

(∫ xi

xi−1

a
(x
ε

)
∂xϕ

ε
i∂xϕ

ε
i−1dx

)
D−uε (xi)

)
= D+

(
Ahii−1D

−uε (xi)
)

= D+
(
Bhi D

−uε (xi)
)
.

Hence,

Ahiju
ε (xj) = D+

(
Bhi D

−uε (xi)
)

= fi = AhijU
h
j .

Since the matrix Ah is invertible, we can conclude that

Uhi = uε (xi) .

This implies that one-dimensional MsFEM is exact at the nodal points, and in particular,

‖uε − uh‖l2 = 0 ,

and

‖uε − uh‖l∞ = 0 .


