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ABSTRACT

Sonic flow past a non-lifting, slender body of revolution is
investigated by the use of small disturbance theory. An approxi-
mation for the local Mach number distribution is used to linearize
the transonic potential equation. Solutions for the velocity come
ponents, pressure distribution, and drag are obtained in terms of
simple integrals involving the body geometry. An extension to
other Mach numbers in the transenic range is given. The theafetical
pressure distribution and drag are found to give good agreement

with experimental data.
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1. INTRODUCTION

The analysis of transonic flow about wings and bodies presents
a formidable mathematical problem. The aerodynamic phenomena
are described in mathematical te;'mt by a set of complex differential
equations which must be simplified in order to obtain solutions. This
can be accomplished by assuming that the body or wing introduces
only small disturbances to a uniform free stream. Such a procedure ie
justified if the body or wing is sufficiently slender and if the viscous
effects are disregarded. However, this method of simplification is
not sufficient to reduce the equations to a completely tractable form.
The potential equation obtained in this manner is necessarily none-
linear and of mixed elliptic~-hyperbolic type. The theoretical worker
must continually cope with these two complicating features in
analyzing transonic flow problems.

The complexity of the purely mathematical problem of transonic
flow is a reflection of the equally complex physical structure, The
important flow regimes and phenomena cccurring about a slender body
of re\mlut‘lon immersed in 2 Mach number one free stream are sketched
in fig. 1. The complete flow field can be divided into several distinct
regions; each having quite different physical properties and, hence,
mathematically described by different equations. Starting upstream
the flow initially decelerates to a subsonic velocity, continuingto do so
until it encounters the body where it then accelerates, as the stream-
lines divide around the body, to sonic velocity at the sonic line. In
this region the flow is subsonic and described by an elliptic differential

equation. The flow continues to accelerate past the sonic line reaching
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maximum velocity just ahead of the shock wave. Aft of the sonic
line and ahead of the shock wave the flow is supersonic and de-
scribed by a hyperbolic differential equation. The downstream charac-
teristic from the body intersecting the sonic line at infinity is indi-
cated in the figure. The region bounded by this characteristic and the
sonic line has some upstream influence since in this region all down-
stream characteristice eventually intersect the sonic line and can
possibly interact with the subsonic regime. Aft of the limiting
characteristic no interaction is possible.

After reaching maximum velocity, the flow decelerates to asub-
sonic velocity passing through a weak shock in the process. The flow
continues to decelerate until it passes the body and then accelerates
back to free stream conditions. The boundary layer and turbulent
wake are included in the sketch to indicate the regions where viscous
effects are dominant. |

A brief survey of existing transonic methods clearly illustrates
the difficuities imposed by the nonelinear, mixed nature of the tran-
sonic potential equation. |
Hodograph Methods

Hodograph methods have been studied extensively in the past
and were the first to yield quantitative information about transonic
flow over two dimensional shapes. The hodograph transformation
transformse the two-dimenasional non«linear potential equation in the
physical plane into a linear equation in the hodograph plane. Thisexact
linearization unfortunately complicates the problem in other important

respects. The Jacobian of the transformation can and frequently does
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vanish in the supersonic regim@l locally invalidating the entire process.
Fhysically interesting solutions are commonly many valued in the
hodograph plane. The boundary conditions are transformed only with
great difficulty and often not at all, Principally because of these
difficulties the limited number of analytic solutions obtained by this
method are all restricted to two-dimensional shapes of extreme sim-
plicity. As the geometry becomes more complex, it is necessgary to
resort to numerical methods. Here the duai nature {elliptic-hyperbolic)
of the equations greatly complicates the numerical calculations.

Expansion Methods

If the subsonic, transonic, and supersonic potential equations,
derived from small disturbance theory, are compared, it is evident
‘that the linear terms in each are identical. This would suggest that
an expansion technique based on either the linearized subsonic or
supersonic potential equationas a first order approximation might be
used to study transonic flow conditions, However, Cole and Mesa‘iter“)
have shown that in order to obtain a transonic flowit is necessary
that the differential equation for the first approximatio;n be the non«
linear transonic potential equation of mixed type. The subsonic part
of the fluid iz represented by the elliptic region, the supersonic part
by the hyperbolic region. If the simpler, linearized solution of sub-
sonic or supersonic theory is used as a first approximation, the higher
order terms will only be asymptotic solutions for a high subsonic or
low supersonic Mach number. The closeness of approach to Mach
number one from either side may be made as small as desired by
suitably decreasing the thickness parameter; however, the transonic

limit will not be achieved even in the limit of zero thickness.



Linearization Methods

For the case of transonic flow about a non-lifting, slender body
of revolution the potential equation is nonelinear in both the physical
plane and the hodograph plane so that the hodograph transformation
leads to no essential improvement. An expansion technique also leads
to no improvement since the non-linearity must be retained in the
first approximation. An obvious alternative is to employan additional
assumption regarding the nature of the potential or ite derivatives to
raduce the equation to linear form by simplifying the ntm-linear
terme. Such a procedure is justified if the linear termse are dominant
{which is the case for transonic flow about a slender body in a cloase
neighborhood of the body) and if it is possible to make an accurate
guess as to the nature of the potential or its derivatives. If this
approach can be carried out in a simple and general way the benefits
to be gained are enormous. One needs only to compare the present
status of subsonic and supersonic theory with transonic theory to see
why linearity of the governing equations is necessary. The theory of
subgonic and supersonic flow, based on a linear potential equation,
is essentially complete. A general theory of transonic flow does not
exist. The blame for such a state of affairs must be attributed to the
non-linear term.

The method outlined in subsequent sections of this thesis is
based on a linearization technique. Two other methods, similar in
concept though not in detail, hé,ve appeared in the literature; the
first by Oswatitsch and Ke\me(z). and the second by Spreiter and
Alksne(?" #5, &).
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Oswatitsch and Keune investigated the problem of transonic
flow around a non-lifting, slender, half-body of revolution (maximum
thickness at the trailing edge). They reduced the non-linear tran=
sonic potential equation

4,%)2*_3\_1(&) = (5+\) A?chxx *

Ju

to a linear form by assuming that C&) can be approximated by a
; XX

constant to obtain

2
¢nh+lﬁc{>&——ﬂ» C\)x

This approximation is justified on the basis that in all of its
important parts the flow is accelerating uniformly. The mixed
form of the original egquation has been lost in the approximation as
the final equation is of parabolic type in the entire QX )JL) plane,
This latter condition leads to some difficulties in applying the up-
stream boundary condition because the solution to a parabolic equation
can have no upstream influence. Thus, if the velocity disturbances at
upstream infinity are set equal to zero they remain so all the way up
to the plane containing the body nose and perpendicular to the body
axie. The authors then show, by means of an auxiliary computation,
that if the velocity disturbances are made to vanish in the transverse
plane containing the nose point rather than at upstrearn infinity, the
error introduced ie at least an order of magnitude less than the final

solutions for the disturbance velocity components.

#* These equations are introduced here toclarify the ensuing discussion.
The derivation of these equations and the notation is discussed
in Section 2.
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Computations based on the parabolic equation are actually carried
out only in the subsonic region up to the sonic line. Although there is
ng reason to stop at the sonie line, the authors recommend using a
characteristics method in the supersonic region.

The theoretical pressure distribution and drag are compared
with experimental results obtained by Drmgge”). The agrsemeant
ia‘ quite good except in a region on the aft part of the body where
viscous effects are known to predominate. A particularly intere
esting result for the drag coefficient is obtained; namely, that the
drag coefficient for a half-body is exactly half the value predicted by
lineariged supersonic slender body theory.

The technique proposed by Spreiter and Alksne is based on the
premise that both Ck)* and ‘bxx are slowly varying functions of the
coordinates. Hence, in the non-linear term, sither may be approxi-
mated };ocally by a constant. If the flow is locally subsonic the tran-

sonic potential equation is replaced by
\ - N
R =
%’a n R ‘l’),_ = d?x X
and if the flow is locally supersenic

‘b * 5 é?“ >‘“<\>u.

If the flow is mixed and includes the sonic line the potential equation
is approximated by

5 ] )1431)\4) %



Here

2 (3
Ne="Me— M (g0 &

[
Moo= Mo L+ M o) &

2
)\p = Mw(*s-H) Q?xx

frmtna-g

These expressions follow directly from the transonic potential

equation for a free stream Mach number close to onc =
M L& = &
\ M°°> (bxx-\” T R CX)A—. QGH)M“’&P*&)XX‘

In each case a solution for d?x is obtained by solving the linearized
form, treating )\E 9 XH or )\P as positive constants. The
exact expressions for >‘r= . >‘a and )\P are reinserted into the
linearived MMIW to obtain ordinary, first order, non-linear

differential equations of the form

g—;(&x) =F Q( ) 4’7()

where the function, F'\X,#)x) differs between the elliptic, hyperbolic,
or parabolic case. The resultant equations are solved by numerical
methods using computing machines,

An extensive comparison with experiment and other theories is
made. The agreement is excellent indicating the results obtained by
this method are of surprisingly high quality. Although no direct



&

justification for the mathematical steps leading to the final solution
is given, the exucellent agreement with other known results amply
justifies the method. In addition itis by far the simplest method yet
devised for investigating transonic flow about arbitrary two and three
dim@néiamal ghapes.

The rethods of Oswatitach and Keune, Spreiter and Alkene,and
that to be outlined in the following sections of thia thesis represent
the first real steps toward a general theory of transonic flow about

arbitrary shapes suitable for engineering applicationa,
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2. METHOD OF SOLUTION

The method outlined in this study, like that of Oswatitsch and
Keune, and Spreiter and Alksne, uses a special approximation to
simplify the non-linear term in the transonic potential equation.
However, uniike the latter twé mathods'. here the solution is obtained
from an equation of mixed elliptic-hyperbolic form. Both of these
methods, first, divide the flow into elliptic, hyperbolic, and parabolic
regions, solving each separately by the appropriate equation of fixed
type, and then use a matching procedure on the common boundaries
to join these separate solutions into a single continuous solution., No
special matching procedure is required in the method given here.
However, unlike that of Spreiter and Alksne, thiz method is restricted
to slender bodies of revolution for which the dominant solution in the
neighborhood of the body axis is known.

Mathematical Formulaticm_

The following analysis solves for the pressure distribution and
drag of a non«lifting, slender body of revolution in a uniform free
stream of Mach number one. The exact non-viscous potential equation
expressed in cylindrical polar coordinates can be simplified using the
axial symmetry condition and the assumption of small disturbances

~ about the free stream Mach number to obtain the approximate equation

c\’)uu Jtcbjl.:: 8+ Qxcbm ‘ (1)

The exact equation is based on the principles of conservation

of mase, momentum and energy throughout the flow. Since the flow is
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uniform upstream and the rotation introduced by shocks is negligible
for the slender, pointed body in transonic flow, it is possible to intro-
duce a potential function.
The velocity components parallel and perpendicular to the {ree

stream are related to the potential function, <\> . by the equations

w=T Q+$,) (2a)

v =&, (2b)
where L is the free stream velocity. All lengths have been made
dimensionlass b‘y dividing by the body length,

The boundary conditions require that the velocities remain
finite at infinity and that the flow is tangent to the body surface. Since
it is assumed fhat q)x«l » the boundary condition of tangent flow on

the body becomes

b X EFW]=8FW ’
where

= 3F W)

is the equation for the body surface, ) being the ratic of maximum
thickness to length of the body. In this form the boundary condition
on the body ie too complicated to use and is inconsistent with the
assumptions used to obtain tvhe# appraximaée transonic eguation.
Multiplying both sides of the equation by 7l and taking the limit

as J{ goes to zero gives the slender body equivalent of the exact

% Here and elsewhere primes indicate differentiation with respect
to the argurnent.
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houndary c:maditim.

Jine (Jv.c\g Y= X (3)

Jt——ao x

The right hand side of equation 3 is just the source strength distri-
butien. * Denoting the source strength distribution by S(), then

Aav.
&x,

The pressure coefficient hased on free stream conditions is

SMW= (4)

given by
2
C?-—“-Zcbx‘-%' | (5)

In the analyeis that follows, we need solve only for C\}x since the
3
term, &)L » evaluated on the body, i{s directly obtained from the
boundary condition.
For the evaluation of the drag
1
L2 = CoSwdx
2T g S f M) (6)
o
where qo is the dynamic pressure based on free stream conditions.

The Approximation for the Non«Linear Term

It is casily seen that the dominant terms contributing to the
solution of flow over a slender body of revolution in the neighborhood
of the body are those involving derivatives with respeet to 2 . If the
non-linear term {8 ignoved an asymptotic expansion, valid for
small, is easily obtained

4%00 MJL*\- 3O+ - "

* See Appendix C,




i2
%QQ and % (X) are arbitrary functions with reapect to the
differential equation which are determined from the boundary cone
ditions. Specifically, %LX) is determined from the inner boundary
condition of tangent flow oix the body.

b _fw_dx
n X dx
M

or
%m = SW .

%Lx) is determined from the outer boundary cendition. For this
purpose it is necessary to solve for the @ntire {filow field retaining the
terms in the differential equation invelving derivatives with respect
to X . Fortunately, this unwieldy procedure can be aveided by cone

fining our attention to a neighborhood of the body., For this purpose
| a complete solution for % (x) is not needed; we need only establish
that %,(%) is of order Sz «* Then it follows that in the neighborhood
of the body

b= Scx)Ly%JL-\.%_u)_,_ e
s(x)ﬁac&sf[Sstﬁn%%+%a*>]+....

% 2
The first term is of order & /V.D%S. the second term is of order )

I¢

and is neglected.
This expreassion can be further simplified by expanding in a
® See Rel. 1 '
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Taylor series

3
4)::&5 (X) 4+ S“(ﬂg-x—;—@ 4+ sM(X) —(—)E:é-)i-)— 4. ]%%

where X is defined by the equation

S(X)=0,

—

Differentiating and retaining only the largest term near X=X,

$ = "X (=) Q@g\ &
X ' (7

The additional approximation is to linearize the transonic
potential equation by replacing Cb by the above expression.

Admittedly, the line of reaaﬁning leading up to the approxi-
mation for Cb ie not strongly convincing. It is included only to
provide a bar: motivation for the approximation. The real justi-
fication for such a procedure is that it leads to the simplest
equation that can be solved in closed form with any economy of effort
and at the same time still retains the two important mathernatical
properties of the original differential equation; namely that (1) it
c&mﬁzges mathernatical form from an elliptic to a hyperbolic differential
equatioh in a cmtinuous fashion across the line, X = X o which
approximates the sonic line, and (2) it has the same dominant be-
havior in the neighborhood of the body axis.

The approximation corresponds, physically, to uniformly
accelerating flow in the neighborhood of the body. ¥Frowm the body
nose to some distance aft of the maximum thickness point the approxi-

mation is clearly justified. Ahead of the body the flow is decelerating
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but conditions in this region will not appreciably influence pressures
on the body. The flow will also be decelerating over most of the body
aft of the maxirmum thickness point. In a limited region near the
t/rauing edge of the body the assumed behavior of 4’1& will be imma-
‘terial (presuming the correct order of magnitude is assumed) as the
solution will be dependent only on the dominant linear terms. Thus,
in a limited region aft of the maxirmum thickness point and forward of
the trailing edge the approximation does not agree with the known be-
havior of the fluid. Since this region contributes a large portion of
the drag, it would appear that the approximation might lead to serious
error in predicting the drag. This is not the case, however, as the
dominant terms result in a solution having the correct accelerating~
decelerating property in spite of the approximation. If the geometry
is limited to half-bodies, bodies having the maximum thickness near
the trailing edge, ogive-cylinder combinations, or bodies of high
fineness ratio the approximation should be completely valid since the
decelerating region will either not exist or be completely unimportant,

It is mn@nient to redefine ﬂw origin of coordinates by letting

2= X=X (8)

The nose point (= o) will be denoted by 2 , the trailing edge Q(“--\)

by &, . The source strength distribution (5(4) in this transformed
coordinate system will be denoted by T(). Finally, an acceleration
constant is defined as follows:

o? = (x+1) Tlo) L’"érs' (9)



15

The governing equations then become

2

*n».*_;-m = * Eé?aa (10)
w=U(+d;) (11a)

v = u ¢)~L (11b)

Lo = | (=& 2
A_m(axc%h) Tz (12)

(13)

()
I
|
™~
o~
U
!
57

%\
D - S C?T(i) dz ‘ (14)
2'“"99_ *

o

Characteristics in the Hyperbolic Regime

A general solution is obtained by distributing sources along the
axis of the body in both the elliptic (Z<0)and hyperbolic (%7 0)
regimes. Before carrying out the solution it is neceassary to investi-
gate the characteristic lines in the hyperbolic regime in order to
determine the region of influence of the sources located in this regime.

The differential equation fm* the characteristic directian& is given by

dn 0\
(d,%) ¢z, (15)
Tha eéuatlm for the characteristics become
N - -—F C, | (16a)

& = C | 16b)
A+mﬁ 2. (16b)
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The characteristics take the form of a one~parameter family of
parabolas tangent to the sonic line with the axis of the parabola
parallel to the body axis. The characteristics are plotted in fig. 2.
A source located on the body axis at Z=% will have a region
of influence within a semi«infinite volume of revolution genersted by
the parabola |

3
-(=-%)

Furthermore, conditions at a point (i‘ 3 )1) will be affected only by

sources located on the axis such that
| 2
a.JL
== -5, a7

Source Solution for the ngerboﬁc{ Regime

In this section the potential due to a source® of unit strength
located on the body axis in the hyperbeolic regime is determinsd. The
differential equation takes the ferm

SN 8(2-%)
AR Rcb mi:‘; (e

T

Using the Hankel transform pair

’%qu» = go:T @ny § o ndr

geu= SJ (um)%(w?“’&w

* Here the term "source' is to be interpreted in the mathematical
gense. Since the left hand side of equation 18 is approximately
the contiouity equation, it is evident that the mathematical source
strength must be equal to the {dimensionless) fluld source strength
in the slender body limit. This statement is verified in Appendix C.



17

the transformed equation becomes

b oot

az O Q¢ z

The solution is obtained in terms of Bessel functions;

AE 3,2 8VE) + BEY (2 2F) 27

-
i

O 2<~§

The potential must be zero for %<.f as the source can have no
upstream influence.

The constants A and B are determined from the conditions

that

{i) ’3; is continuous at Z= ? ,

(i) 4} jumps by amount -———-— at &=

¥

Using these conditions plus the Wronskian,

WHIL, V) = 5

the transformed potential for z 7 ‘g becomes

$=‘”“ﬁ{< 448 JeaRITeom)
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Substituting into the inversion integral

(TR ST ads R

#,: °© (22)

o -aa
Tk -Y

The evaluation of this integral is given in Appendix A. The
final result is

o_le'L
o Erio & wRa?
'(.A'l'z. 1
(\> 2?’{(“-"?“%)“‘&A ¢ (23)
=
o VE g,

The subscript, ( ) " has been added to denote the potantial due to
sources located in the hyperbolic regime.
in the neighborhood of the source the potential behaves like

|
q)a - \jﬂz‘i)z— REEX (24)

Locally, the influence of the potential decays like the inverse square
root of the hyperbolic distance analogous to the behavior of the
linearized supersonic source potential. These expressions would be

identical (and also the differential equations for the potential) if ot
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[3
were replaced by (P’\ o \). Actually in the approximation used here

(2
ofz = M, Q—‘- (25)

Thie provides a close connection with the linearization method of
Spreiter and Alksne for locally supersonic flow.

Source Solution for the Euiptic Regime

The analysis of the potential due to a unit-strength subseonic
source follows along the same lines as that for the hyperbolic ecurce.

Starting with the transformed differential equation

~ 2 Y g(z-%)
W = - ——— - {19)
c’p%;— cx.?-z(k> ot =

we have that

WELEEFT)+BFEK (22FF)  2<¥

(26)

CFELESFE)+ DFFK ) 29

¢

The solution must have the following properties:

(i) $ is continuous at 2= ¥,

‘ =
{ii) #’z jumps by amount - a?—éat % ? .
(iii) 39% approachs zero as & —> — oo,

(itv) &, isfiniteas >0,
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Using these conditions plus the Wronskian

W T, K () = J—L} \

the transformed potential becomes

SHEETERFURERFE) et

¢ _ &7
-EEEERFULERFE)

SBubstituting into the inversion imegral‘
rﬂgl( wr?)K (2 r")-J (wh)u.) dw i<§

(28)

S \(2“-‘{”" I(z F?)chn)wclw 2> ¢

The evaluation of these integrals is given in Appendix B.

The final result is
z 5

\ 2--*—'(;’ Q_-Z.'—— _
4)5'_ —4\; 4§.“ (z-¢ _—o03:n® ?‘j (29)

The subscript, ( )E » has been added to denote the potential due to

sources located in the ' elliptic regime.

In the neighborhood of the source the potential becomes
\ \

*= R &~y — atzn?z 3o
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Since Z is always negative the second term decays like the inverse
square root of the elliptic distance analogous to the behavior of a
subsonic source. The comments following equation 24 of the pre-
ceding Section also apply here.
Singular Behavior of the Integrated Solution

The velocity potential is obtained by integrating the product of
the source strength distribution, | (€), and the potential for a unit
strength source over the sources within the domain of dependence of
a peint (% ,Jl). In Appendix C it is shown that the boundary condition
of tangent flow on the body is satisfied if the mathematical source
strength is set equal to the fluid source strength, | \§) .

252
s
For %7 2 the potential becomes

. =g )
S[ \K ?f"?)hofﬂ*e' T

(31)

__\2:[ %*“é-—— ]TU;)CL,;

W Ry

G 2§ - TE®
&?— 4[[—\—\/‘%_ 0..21"2. Jx?} g &{;’

(32)



22

The integrand of the second iﬁtegra! of equation 31 is singular
at the origin and at the upper limit. Both siixgularitiaa are inte-
gi'abie and cause no difficulty, However, the potential and its
darivati-ves are singular on the characteristic from the origin,
Z= 9’2‘: whether approaching from the left {equation 32), or the
right {(equation 31). Thus the above representation for the potential
cannot be a solution since it viclates the regularity condition of no
infinite velocities within the fluid.

The nature of this singularity in the potential is investigated

in Appendix D. The singular part of the potential is found to be
20
\ a St
¢ “”'ET‘°3JL°°3~t* | (33)
bt

independent of the direction of approach. This singular behavior is
somewhat surprising since it is usually associated with some
discontinuity in body geometry which is not the case here.

To analyze the origin of this singularity, it is instructive to
investigate the potential of a unit strength scurce as the source point
approaches and passes through the origin from the left. If we
approximate the unit-strength elliptic source potential {equation 30),

and the hyperbolic source potential (equation 23), in the neighborhood
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of the origin by a series expansion in § we obtain

-3 2
(b [— E% - Wz + gﬁﬁ%Tkﬁ) %7 %2 (34a)
E = 2.2
Ez( , 6(?)1T (§) Z< “—'f (34b)

| * 2.2

Ll (o) o
<L — (34d
4 )
TE€)
The apparently dominant termy, — ——= , appearing in both

[
4’2 and Cb for £7 0‘4{" corresponds to the integrable singu-

larity at the origin of the second integral of equation 31. Since this
term contributes nothing to this integral in the neighborhood of the

origin, it may be disregarded here.

For a fixed point (2, h) such that E7“'4)z there is a jump in

Z 2
e T O T
' a
as the source passes through the origin. Thus, even though the

the potential from —

source strength ia constant, the effoct of the source is doubled as it
moves into the hyperbolic regime. This is in agreement with the
well known property of fluld sources, namely that a supersonic source

is twice as effective as a subsonic scurce of eqtml strength.
2
Jz

For a fixed point @—"- ) J7-> such that 2< -——4_ the potential jumps
%
from to zero as the source passes through the origin,
2(z - &2

In either case this discontinucus behavior at the origin creates a
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gingularity which is propagated along the limiting characteristic
from the origin,

The solution for a single finite source of any order located at
the origin can be easily determined using similarity to reduce the
- number of independent variables. In Appendix E two such solutions
are carried out; the first corresponding to an ordinary source at
the origin, and the second corresponding to a source distribution
baving a finite jump in strength at the origin. The first is shown to
have the same functional form as the unit strength hyperbolic or
elliptic source at the origin. (equation 34). The second has the same
form as the singular part of the potential on the characteristic,Z= g—'f{"z

4
The Complste Solution

The singularity on the characteristic, 2= 0%_{-?‘2 » must be
removed in order to satisfy the regularity cox;dition of no infinite
velocities in the fluid. The interpretation of this procedure is that
the flow cannot be represented simply as a line of sources of the
type constructed; an extra solution must be added to fix up the
singularity. This extra solution is analogous to the solutions used
in supersonic theory to represent the effects of corners on slender
bodies, although a direct physical in&erpretaticm is more difficult here.

Since the singular term, —3 T @’Qmél - ,is a
soluﬁan to the differential equatim and does not aifeet the boundary
conditions either on the body axis or at infinity, it may be subtracted
from the integral expressions for the potential to give a solution
which {s finite in the entire domain.*

* This is strictly true only if we exclude stagnation points.
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2 2
For the region, & 2 Q‘Tf_t , influenced by both the elliptic

and hyperbolic sources the solution is given by

—Tao)Qﬂ%_(z— ) +

~igi* z2eg - ]TK?)
AR GRS
2
(=-%)

‘JT@A? (35)

B} -LH\)(* ?ia; Y

2.2
< LA
=L
sources the solution is given by

For the region, » influenced only by the subsonic

—-\-g(i\+—~—f+$_:%z T_@d,f
S
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The disturbance velocity components are obtained by differ-
entiating with respect to Z and JL , respectively, and then inte-
grating by parts.
r]
For 23 &2 |
A
o

(#a:—%%\lﬁl‘?“;ifi sz_z? de +
© a2
Eﬁsn b TLE dg (37)
A e R T
o G s
‘bq::i)? %ﬁgj@,zh?q::? 2&1{1 T (ﬂclg +
2 =

- a
= gw}” = TR e
2 - __o_:___J_l 2'...0..2112_1
o) ( ? 4- ) \g *
For 2 S atn®
4 9
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The Solution for a Slender Body

If we consider the limit as Jt—> 0 equations 35 through 40 can
be greatly simplified. Such a procedure is consistent with the
aammptiom‘ underlying the derivation of the transonic potential
equation and is justified if we are only interested in conditions on
the body. The details of this cornputation are presented in Appendix C.
If the origin is transformed back to the nose point, the resulting

expressions for the velocity potential and its derivativea are

¢=3gx)Qﬂ3\9§ SS&E)QM& ¢l a‘%’*‘ (41)
_\,st‘us)ﬂew gag - gs“'f)ﬁ"% CElds

ant ) ((S(®)-S'W SNE)-5K)
RS Ty = SN

(42)

4)]1 SLx)

. (43)
Thess expressions are valid for OSXS) o

As shown in Appendix C, the expressions for ¢xcm be expressed

in an alternative form.
For 7&7)( \
y =5 (,Qgc,%o-h x=X! _ s'0) Logii + ”
b
- _gs“(g) log (x-g) dg — S S"(g)Qa%\(x«g‘) de
X .

For X<X

= S'( )J?.U%G“MX A sk X+ (45)

- ‘-S 5'®) ng\(x—%f)dg + j S"Qg)%%(l‘{—x)&g,




28

If equation 45 is compared with the corresponding result for
linearized, subsonic, slender body theory¥® the only difference noted
is in the logarithmic term where \!\-V\z‘o has been replaced by

X~ X . Exactly the same change occurs in the differential
equations from which each solution is derived. The point X must
be interpreted as the tail of the body in comparing with the equiva-
lent linearized result.

A similar result ie obtained if equation 44 ls compared with
the corresponding result for lineariaed supersonic, slender body
theory. %# First,d\“’\ -\ has been replaced by G NX—X i the
logarithmic term analogous to the resuit obtained in the subsonic
case. Second, an integral over the subsonic sources appears which
is identical to the corresponding term in the linearized subsonic case
for the downstream influence of subsonic sources. Here the point X
must be interpreted as the tail of the subsonic body and the nose of the
supersonic body in comparing with the equivalent linearized result.
The Pressure Coefficient and Drag Integral

The pressure coefficient evaluated on the body becomes
2 R&
\ L dR\¢
c,?._-—SLmeAKH (-——)
X
- (TS0 gswa 09
o & X X €

The drag is given by

D \
' = X (6)

% See Ref. 11, page 189
#% See Ref. 11, page 191

Ak‘g (46)
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The details of this integration are given in Appendix ¥. The

result 18

+ SQX{_S f’:_&? A‘%CLX. “n

1 S()=0the drag equation fuzﬂwr reduces to
3 (48)

gﬂg 0 x)[ S0 S:é.sﬂ aﬂ dx

2(%x=X)

It should be noted that in this case the drag is independent-
of O., suggesting 4that the drag of a closed body is not strongly
dependent on the linearizing adsumptien. This result is similar to
that of linearized supersonic theory where CD is independent of M .
Example«Symmetrical Parabolic Body

The pressure distribution and drag of a symmetrical parabolic
body of revolution can be easily worked out.
For this body

S(x) = 45 (X-3x"+2 7«3)’

Uai:xg equation 46

=—(2—2F) +(7¢ ~ 43) x — 88 x* +
—(“@-24ax+24 x2) Leg[- BFSMS\”‘)X(' ]

(49)
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This is plotted as a solid line in figs, 5,8,9, 10, and 11,
Using equation 48 and basing the drag coefficient on the

maximum cross-sectional area

Co &, 22 |
R (50)

or

Linearized supersonic theory predicts for the same body

2
Co= 3¢

Thus, the predicted transonic drag is 85% of the linearized supersonic
drag.
For the parabolic ogive or half-body of revolution the drag

integral given here predicts

Co LI - .

=3 + \-gwlé‘. (51)
Linearized supersonic theory gives

Co . &

83,

In both of the latter two cases O is eséual to the maximum thickness
divided by twice the length of the half-body. In this case the transonic
drag is 47% of the supersonic drag.

From the above results it is evident that in the transonic case a
much greater portion of the total drag is carried on the back half of a
symmetrical parabolic body of revolution than in the supersonic case.
In the transonic case 24% of the drag acts on the front half and 76% on
the back half. In the supersonic case 44% is on the front half and 56%
on the back half,
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Extension to Mach Numbers Near One
This methed can be immediately extendad to other Mach

numbers in the transonic range. If M _is not exactly equal to one

the potential equation is given by

Q- M;) C‘Dxx N 43&:;‘. %. Cbn.: @+ 1) M:; ‘{)x $%Y~ 9

or

N N
Redefining X ,

bk leeamt b o, oo

2
bz — t— M o
S(X) @) ME L’%% (53)

and Q- ,

ot = (¥+)M, 5"%) Log b (54)
the differential equation reduces to the same form as before
{(equation 1),

As long 28 X remains on the front portion of the body forward
of the maximum thickness point, the solutions previously given, with
the appropriate changes in X and Cﬁ' » should be appreximately
valid, When X occurs at the maximum thickness point this ah@d
correspond to the first appearance of supersonic flow. When %
occurs at the leading edge the subsonic flow regime will have dis«
appeared entirely.

The rate of change of drag coefficient with free stream Mach
number at sonic velocity for a closed body of revolution can be aasily
determined.
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(-‘?—Q 3%
aM

where the reference area on which drag coefficient ie based is the
maximum cross~sectional area.

Differentiating equation 48,

|
é(é%‘) S S STx) dx

g B X— X
3 X o :

Differentiating equation 53,

Evaluating at M _ = 1,

Hence

3o - [ (31 S S') dx
&m) “\ U‘H\QD‘%SLAWS“R)S x = X (55)

00
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The integral can be approximately evaluated as follows.

\ XM W -
S 509 8'e) 4, S S80S ISy
x— X x — X
(o (a]
7 mox S(x) S'x)
b 3
+ S“(Tx)SSW) dx + S‘““;:‘;“‘" A"‘
© X wasc
Since . Xemag
e g Sex) dox
2T
o]
- then

(scb) . { e LS - ST At
ﬁwmvx (x+\)QU%S AWS( ) X =X
|
2T Sexy 'R 4
+ o — b S
AWS QX)S X~ X ]
wa .

500 = SHR) (x=F)]

X — %

(56)

Within the interval O SXEX ax 9
is a small quantity which changes _sign at X= X ., Furthermore, the
magnitude of this qua.ntﬁ:y is maximum at the endpoints of the interval
where O (X) equals zero. Since S\) is always positive within the
interior of the interval, the second term of equation 56 must be small.

Within the interval X, ¢ % £\ S(x) alse
changes sign. Since §%} is always negative and S (%) equals zero at
the endpoints where g‘(x) is maximura in magnitude, the third term
of equation 56 must also be small,
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Thus, the rate of change of drag coefficient with Mach pumber
at sonic velocity is very nearly independent of the shape and is approxi.
mately equal to

Qaco ) ~ & {57)
RV - S
Mol b‘“r\ﬂc% .

Bl
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3., COMPARISON WITH EXPERIMENT

MeDevitt and Taylerw’ have measured the pressure field and
drag of a related series of bodies of revolution of fineness ratio 12
having the maximum thickness at 0.3, 0.4, 0.5, 0.6, and 0.7 of the
body length. The data were obtained with the various hodies at zero
angle of attack. The Mach number varied from 0.80 to 1.20. The
Reynolds number based on body length was 24 x 106. These tests
were conducted in the Ames 14-foot, slotted, transonic wind tunnel.

Each body was 72 inches in leangth and had a maximum
diameter of 6 inches. The body shape was determined from the

equation
n _
R=_=c %B\—x)—(\—x)] Koy & O-5

1R
J1=C%[X - X } Xmay 205

where the constants, ¢ and n, are tabulated below.

Location of maximum

cross-sectional area ¢ n
0.3 1.712 6. 044
0.4 2.364 3.390
0.5 - 4. 000 2.000
0.6 2.364 3.390
0.7 1.712 6. 044

The measured pressure coefficients for two Mach numbers,
Mo = 1.00 and M = 1.025, are plotted in each of figs. 3 through
7. The experimental points indicated in these figures are not those
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measured but éorrespuud to values at increments in X of 0.05 taken
from the recommended fairing through the actual measured data. For
this small increment in Mach number, there are quite significant
differences in the pressure coefficient. The severe increase in
pressure on the aft portion of the body is attributed to the presence
of a shock and viscous effects induced by the tunnel walls and the
sting support system.

Taylor and Mc K}evitt(é) have also measured the pressure field
and drag of two additional symimetrical parabolic-arc bodies of
revolution of fineness ratio 10 and 14 for similar test conditions as
- previously described. These data are plotted in figs. 8 and 9.’

Drmgge(?, has measured the surface pressure and drag of two
symmetrical parabolic-arc bodies of revolution of fineness ratio e
and © at sonic speeds. The pressure coefficient data from these
tests are presented in figs. 10 and 11,

Page(m). in an unpublished analysis for circular, porous-
walled, transonic wind tunnels, has shown that the Mach number error

due to wall interference at sonic apeeds is given by

M~~08&—«> Q~>

M= 1= AM

where MWT is the indicated Mach number in the wind tunnel, ,D\, is
*
the half-tunnel height, and X and 1" are the coordinates of

the sonic point on the hody surface. For the bodies tested
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by Mc Devitt and Taylor this correction varies between A M= -0.018
andiM = -0.027, hence the data for Mw: 1.025 in figs. 3 through
9 very nearly correspond to free flight sonic conditions.

The Mach number correction for the data obtained by Drougge
is estimated to beAN= -0.018. Thus, the experimental data
plotted in figs. 10 and 11 correspond to a free flight Mach number
of approximately 0, 98,

The theoretical curves plotted in figas. 3 through 1l are based
on equation 46 for pressure coefficient. The theoretical calculations
for figs. 3,4,6, and 7 were carried out on electronic computing
equipment. The theoretical curves on figs. 5,8,9, 10, and 11 were
obtained directly from equation 49 for the pressure distribution on a
symmetrical parabolic-arc body of revalution.

The agreement of the theory with the experimental data is fair.
The largest discrepancies occur for bodies having the position of
maximum thickness forward of the midpoint. As the position of maxi-
murn thickness moves aft, the agreement between theory and experi«
ment improves until, for the body with maximurn thickness at 0.7 of
the body length, the agreement is nearly perfect. This is expected
because as the position of maximurm thickness moves aft the flow con-
ditions more nearly conform to those assumed in the approximation
of nearly uniform acceleration. Also, the effective slende?mu is
much less for a body with maximum thickness near the rear.

The drag coefficient data, obtaired from theory and experiment,
for the five symmetrical parabolicearc bodies of different fineness ratio
are presanted in figs. 12, 13, 14 and 15. The theoretical point, although

determined for a sonic free stream velocity, has been plotted at a
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slightly higher Mach number carkesponding to the estimated differ-
ence between wind tunnel Mach number and the aqﬁivalent free flight
Mach number. As expected the theoretical drag coefficient compares
more favorably with the experimental data than do the pressure

coefficients.
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Appendix A _
Evaluation of the Inversion Integral for the Hyperbolic Sources

From equation 22 of the text

g('_i‘@a@)tna#)—a(z )T enede - @)

Writing the integral in terms of Hankel functions

b=- Qa@ngH (28FF) H (2 E’)-Joﬁwn)w&u).

{A.1)

Imaginary W

Interpreting W

28 a complex

variable and using

the illustrated contour

the integral can be

evaluated along each arc

%
The ssymptotic formulas for large values of the argument are
given by

o et e 3
W o [ o AEERe ™ 2
H, (S1F) “[W] (A.2)
-v+zs.<.-e-szv-28
R)-Irle

_2TT +a8.<_esv—?—5
Vor - ie Lo 1
_ | ArRe*=iw]  -inRe
Joon) =| nere] [5 Tre &9
- $e-8Tr

where S is any positive acute angle. Multiplying these quantities
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together and tranaforming the variable of integration to © ,

the integrand becomes '
2R - -
A_Q.(Re”g')_ -8 R umol@-'+30] LE coa SFE-T§+22 4}
T (2n) % @¥) '/4-

-2 R sme-ﬂ'" -] A,S:‘"R we o WE 1§ - Q.Ll]_\.‘n' }1

+E

Thus, if ' @1 a.)‘c > QO . the integral will
give no contribution in the nmit ag R—> 00 |
The approximate series for small values of the argument are

given by

Ho)(e.‘*’f“) {;pei&—L Za'\ CA. 5)

2. = a
Hc‘)@%@)zg(ae A G (. 6)

J wn)= | (A7)

The integral becomes

o 2
» A aS _ i a
14 = SW—-—————M_“_?_{? d.e- A ZT\’@”‘? . (A. 8)

it

A
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The Aintagral along the imaginary axis is obtained by replacing

W by AW to give

(il denedo  wa

O

Since there are no singularities within the contour, the sum of
all contributions must equal zero to give

SH“’( 22 F)H LT T, rw do =

O

(A

=LZTF\[=E_€‘

_SH!(‘)(aid“l )H(la)(af&’ )JO(LQn)wdw (A.10)

o

Thus

o0

4>= Zq O?‘-(—‘ Q’"LSH?) M\E‘)H (a*wf—’)\.] (Lh.\ﬁ)wA.LD (A. n)

and using the equations

H(\)( Mg@) — __%Kl@_%@) (A,iz)
IR R) = T ERR) 2T T)

we obtaln

= Eié +L% SK (2 -—r‘) J 2 )T Gwr) w dw (A1)

o0

o]
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Integrating by parts

SK.@‘%.’.V%”)M%’@) e wde =

[}
oo

s K e2F)d, EAPORCY

O

+;%SK,,<2-‘§_@)F§6 ELTTG-rd R Teuedw (as)
o

¥ VE e - % PAY the boundary terms give no cone

tribution and we have that

4>= “"a-*'é -*d‘ng QZ“JF)J (?. F)J (Lwrnyw DL(O +

oo

20 SK REE)IEET) Jpodude g

s%

Watsanag). page 412, and Whittaker and Wats@nﬂg). page 326,

give formulas for evaluating these integrals. In general we have

SKﬂ(oi)Jo(M)Jﬂ(a))i”“olt =
o

oM [Umeds)
i o
= 21)-\-\ (M)/’" r(0+\) X}L"\"‘l}*‘\ﬁz}t ‘1)'4“\92/“‘" ‘0+— 1)+(3X2)(A 17)
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o}-«-lrz-\-cz
20

where X =~

F denotes the hypergeometric function and for convergence

RL(axilr+ic)>0

Using equation A. 17 (}: becomes

=\ \ Loy by 3 (oo L
¢_--§€+ g X Flagslixe) 4§X1H2"3Z’ X2) (a8)

where 03‘){“

2%
X = M{'\é‘!
and e - A
{F g -5 70,
The hypergeometric functions can be evaluated in closed form.*
!
- /2

e q eV
FQ,%5! v“i’a) = (\~ J—iz (A.19)
3 . 2 NGE
(31523 52)= 2X (= 52) -] (4.20)

Substituting for X the poteantial for a unit strength hyperbolic

source {8 obtained

2+¢ — “‘:J_T‘z
¢— 2‘;{(2 e 9,3:4_{__13)2_ O.?‘Jt?‘g (23)

* See Ref.14, page 8.
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Appendix B
Evaluation of the Inversion Integral for the Elliptic Sources

From equation 28 of the text

3 (L ORI ode wep
oo (28)
R o FRLEs PR enede 2e

Integrating by parts, for %< ‘§
00

¢ = 22 K Q“’F)I REFE ) W)
2. w [ w
- *@SKOQAE_ %)To(’&-a\[j?)t}o&wn)w dw +

(8]
- v

+ f[:.:—g SKO(Z%’,F?)I‘@%’—‘F? )J (wr)w dw . (B.1la)
For &7 *{ o0
- J:—?_%LEK V=% 2 E)J ()
_ 5.% )Kotaﬁﬁj)lo(z%ﬁ)tfo(w@ Wadw +
._%f— SKO@—“&@)I\@@&_ ~2)J\(um) Wdw (B.1b)

o
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The boundary terms are zero at either limit. Using the relations
T, e5FE) =, etL EV-%) (B.2)
I, @eF%) =-3d, (2 WT-_‘) (B.3)

the integrals can be put in the proper form corresponding to the
integration formula, equation A.17.
For =2< f

RS SK (224??) O(Q%V:?) J(wr)wdew +

oo

+..,__..g \F—?)J(a F)J\mn}wdw (B. 4a)
For Z7§
b=- gK S TRAERTF)T, @wdw

@)

i %?SK )T AT J 0y wdw s

After carrying out the integrations we obtain, for either case
).L'Z
K-
# — A _ﬂ;‘ — (30)
R
_ Although equation 30has been warked out for 2<0, itis valid

in the extended domain & < gf
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Appendix C
The Velocity Potential in the Slender Body Limit

Equations 35 through 40 for the velocity potential and
the velocity components can be simplified by taking the limit as M —>0

retaining only the dominant terms.,

Zy ‘
(=-2)
~ % T
= 4 -
zowl(z—fe el :

The integrand in the third term will be singular at the upper limit.
To investigate this singularity we introduce a new integration

variable, -©- , where

\:; =\Z - 93?:.1 oo-nﬁw.e)z (C.1)
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The potential becomes

wok 2 -2 e’

&%

_S (- g owaho + $F salo) T -Soochejy |

\— 1 covhe + QU 2, ' - a2t o
oﬂ = m%gdve-b iw?umk ]

Taking the limit as 7t —>0 , (&4~ )

z, i
#-¢ wqjt.\a—’:g‘%
Ll 2+€ T
-4 g de —T) S do
k)
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Integrating the second and third terms by parte

S T(\e") A\§__\_T(_o> Qm}% +§TL§\%(E—€) ?m 4

2+% T8 le Tz (z-)-2 [(-e) Log e+
Si = A,; Tz E)% QD}
Z-&
z-€ \ Jd
(T lyleldg <2 | Tio D=0 e

z_ Z,

For the fourth térm o E
‘”“r‘ 2E
Jt——»O > B sz . o

Combining terms and taking the limit as & —> O

z
=T we L (')l |Bld e +
<3‘> TLE}QD%\R agzot %

- G‘@ Qn%\xz-% de - S?r‘&) Qﬁg@”‘@ A“?. (.7

(2]
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Integrating each integral by parts and then differentiating with

respect to &

4, -_-T‘(z)ﬂﬂg\w%ﬁ' -—T‘('-l.'-o) VzE—Z,
z

o Z '
-3 ST"&&;) Qma\(% -¢) cig — ST‘(‘\?)M%—”@ A-‘% 9
Z, )

Equation 44 of the text is obtained by transforming the independent
variable from Z to X .

Differentiating equation C.7 with respect to T

_ (&) ‘
$, = el (C.9)

Thus,
Qim »L<)> = T(z)
S (e )
which verifies the boundary condition of tangent flow on the body in

the hyperbolic regime.

afn?
For &S ,

4}: %T(O) QD’C}QQZ{-{C*— ) +

) o ke o1 Teg)
._4_8;[\ +\1(E - %ﬁz—&ﬂlv’f] ¢ CLE (36}
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To investigate the singularity of the integrand let

¢ = - (FZ - Ltane) (c.10)

The potential becomes
$=LT© QU%(M __a) +

Cl.)‘t

= s
SI r__?_o} )‘—0--’12?{{ ? A-?%—
~‘er-m1 .
[—a:*i’t”“e"' ]TL V==-¢ )1 gLe.
-z i— Estane — %gm?‘e-' - ‘tom,e-] N
o 2[R AT

(A™ra

Qi
2+~ T(§)
higl‘_‘_\l*‘ s ,l——-——s &g (C.11)
(F-g-)-abrgd ¥
Z+E .
Taking the limit azs L —> O

cl)__\_T(o)Q,o%\(—?f) %S - T(’@ (_-L§+

:EO
ton = o
,_lT(E)S do | —‘—5 TL%) Aﬁ (C.12)
2 Qo 2 z -
e 2+€ )

ey
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Integrating the second and fourth terms by parts

STK@M(—?)AE ST«;)QU%(% g)ag ()
(T dg =Tearnloge -Too Loy o2 +
- STU?)M(\; z)&g .14

Z+te

For the third term
o
Wt~ &'
0; S d.o-
>0 L6

B o

- E'
Combining terms and taking the limit as € —> O

p=To g %+ L(Tiglog cOIdE +

EO
* O
--‘a- ST‘(@) Qm}(‘f—?) 0‘-; + —‘Z-ST (%) Q”%\(? ~%) Ct‘? .(c. 16)
£ P

If the limits of integrationare changed in equations C.7 and C. 16 they‘

(C.15)

both take the form

¢ = Tez) g & + ST (g)ﬂm}\lg d.g +
-.'Z.ST‘og) Jog c2-%) o\g - %Sﬂg) brglz-¢idg (cm

*o
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Equation 41 of the text is obtained by transforming the independent
variable from & te X .

Integrating the second, third, and fourth terms of equation C. 16
by parts and then differentiating with respect to =

b, = Tem log o=z “z’* ~Tiz,) Logyz—2, +

-1 STE‘Q) Q%(a ~g)dg+ ,'—aST‘ég) QD%Q‘{ ~Z) 3-‘%‘ (C.18)

Z b=

Equation 45 of the text is obtained by transforming the independent
variable from Z to X .
If the four integrals appearing in equations C.8 and C. 18 for
¢E are integrated by parts, the resultant expressions reduce to
the same algebraic form.

Integrattng by parts

ST(Q) Q,crg\(f ‘;)c\? [T(z)-—T(EO_) oo,méﬂ?. Zo) +

T(% T 2)
T gz - S ) 3~§ (C.19)

8‘\"&@ QD’%(E g)cb§~ T &) QD%J"-‘ +

T&ﬁ’) T(z) d (©. 20)
¢ - ?
Q

ST (?) (& - ?) G\-g Er( %)—T(:go) QO’B‘E—
__g T(fé):‘;&z) &\? .

i_‘o .
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ST (8) QD’%(? Z) c\‘% =-T&@ QM&K**)

(TR - T(%)A
(TER e

Combining these integrals

\ T(ﬁ’) -T2
#--TK%)QD‘%\A'_(E ZO)*ZS v = dg +

o

(C.22)

T (%
+L T W) ! Ag 2,2 E (C.23)
2 ? .
O
Eqguation 42 of the text is obtained by transforming the independent

variable from 2% to A .

Differentiating equation C.16 with resgpect to JL

b = T (C.24)
b B '

[ 4

Thus

Qim (chb ) =T

>0
which verifies the boundary condition of tangent flow o the body in

the elliptic regime.



Agmnéix D
Singular Behavior of the Inte ﬁrated Solution

The potential obtained by integrating over the source dis-

tribution is given by
z

2y &2 )
) O__ “-“'E"g’;{s T(\?)A +
§ = 4‘8; (z—-ﬁ—?ffz)z— o}nzg] 2 %
2
(‘ﬁ?‘%) A 4
1 2 =24+ "%—LZ “]T__SE) CL? 31)
a*n®
z < 4
° ZE - :;_ T Y
- R
'Eo
Entegratini zy f_;a;ts @_1_&%’&
d= __l.Tno) Qﬂ%‘(*" -‘2‘1) *3 TLO}QD’S_M +3 ST {@Q‘”}('?)
| ; ( E—w) ?(E-\-QJL) &. 4
—Z- TC?)QU%J X/z+~? &%_i_q,.)z) ?
Z

O
(-4 o,.n_z)

*%ST\%Q’O‘%‘ (*“9“;_&12 +(i— == ) —E(Er Y

X?+e- (= “'9“;‘3'11)
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o?‘Jtz

<

4,--.%)25%@1 2’)-*-—‘@“")9%%‘ *

L (2--"”‘ p (2= ) g2+ O*"L)
A'ST Q%)QMH "t+’§ (i-\-“”l”)

+ -‘és?\"b@ Qﬁ%(*f> CL’? (D. Ib)

deg +

where
2.2

x = (¢ -

The integrals are all finite as 27 _Z hence the singularity

is given by the boundary term,

$. =-%Tw QU%\‘*“‘ (33)

1



Appendix £
Simila.x_.'ity Solutions for a S:mrce Located at the Origin

The solution for the potential due to a source located at the
origin can be easily obtained by a similarity transformation.
First, we consider a discrete scurce of unit strength at the

origin.
\ 2 R ICOR1SD)
¢Jm.+ b8 4)& o= 47%% 7T (E. 1)

A similarity analysis shows that the solution must be of the

form a2
\ a."Jt
b=+ $(55°) (E.2)
_ % :
Letting TL- AZ the differential equation becomes
"1(“‘*\)‘6’1\& +(\"4—Y\)%y1 —?.g' =0 (E.3)
The solution for # is
2,2
l T S
o= 5 F(1,23515 az) = (;_%f_c‘)’&. (E.4)

This checks the behavior of a source at the origin obtained in
equation 34,
As a second example, we consider a line of sources having &

discontinuous jump in strength at the origin.

8¢v) Hez)
¢M+ DLz 4’){_ OFEC}’Z%: JtJL (E.5)

where H (Z)is the Heaviside function. The solution must be of the form

b=f02) =6
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2,7

Letting YL=~%—% the differential equation becomes
n(-M) ‘B’V\V\*‘Q"a"\) %’V‘k: ©. (E.T)
The solution is | 2.1
a.Jr
CXP_’ C +C 4“(%— P ) E. 8
o | otnE (E.8)
2,2

at
The logarithmic divergence of the potential on the line Z= = is
identical to the behavior of the incomplete potential determined in

equations D. ]
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Aggendix F
The Drag Integxal

The drag is given by

(6)

(F. la)

(F. lb)

(F.lc)

(F. 1d)

ZTTQF gC? 5(&) C.‘LX
o
Substituting equation 46 for the pressure coefficient into equation 6
we obtain
-2 T+ T, +T,+1,
2‘“’%
where
I, g5“°5<ﬂgﬁb4x
IE_:: g Au X
(]
\
.= SSO«) g S9-S5 dg’] dx
3 ? - X
o O
(8@ -5
T =\ 95 OLE d.x
4 - ? - X
o X [}

Integrating I by parts

___- CL)CL\) d‘xq—
I, LSt QU% 8 S Qd,x)
ugamﬁuy%}xdx
O

(F.2)



Using the relation
*s\ s » —d g5< -
S ?) CLE ) ,Qma\x €) QD‘%\("\

and integrating by parts, I becomes

--S(\)SS(X)QM}(\ x)&x +g5(x)8(>q XCLX—\—

(@]

+g 5‘0«)[ S 5‘0{)%@—@ cL\:Z] dx e

The last integral in equation ¥.4 is put in a more convenient form by

(F 3)

interchanging the role of X and ? , interchanging the order of inte~

gration, and then splitting up into three separate integrals as follows-

(S Seplogu-piglase ] Soleg-adiy
§S<’°KSS“?>Q”%\<‘?**>¢%]M= .
S MS‘L@M@»@@]&H
su{g;s@ Loy g-dglex+
o] ooz,

X



€0

Using the relation

S S8 - sm dg mﬂg%\ | %= XI= %gsaqﬂn%(ﬁ *tcb;

(F. 6)

a.nd integrating by partn I4.becomes

14: — 30 &S (x) Qﬁ%(\— X) d X+
X
! —
+%S(x) 5'(x) Qméq x—X|dx+
(o)
\ X \
+g S‘mm S‘(‘»‘{)%\? - x| o\ﬂ A X
o X :
Splitting the last integral of equation F. 7 into two parts

SS(X)US(@QE%‘ xldx{]clx_g
g S (x){ gS (Q)ﬁm}(“{ = ciﬂo[x—r

\‘X A el
+@S«)U§5 (E)QU;(X 2 ?}CLX’

X

(F.7)

(F.8)



b1
Combining equations F.1b, ¥.2, F.4, F.5, F.7and F.8 the

drag becomes

O

o X0 0~”»°> +50) gsmﬁp%(\ ) dox 4

-\
zq‘y [ A

g (-x) dox = (500 ' Log [ =X dox+
SW S OAEGN-R) AR =} 56 > (X B
sufSlmnde =

__S;Skx)[ g;S‘(E)QO’%\l’%“‘ N CL*‘{] OLX , (F.9)

—
—

Integrating the fourth and fifth terms of equation F.9 by parts

the dra.g equatian reduces to

_ ___ S%() QD—%\CL)L Q) (\“‘K)

1
+SL\)SS‘CX>QD%(\-X)&X ¥ %S%% dx +
© | 0

ol

if SU)= O then the drag equation further reduces to

l 1
LR 2(x—X) - X -*% \‘Z:

(48)
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6. NOTATION

Some of the symbols have been used in several different contexts.
In this event reference is made to the first page where each different

meaning is best illustrated.

A = arbitrary coastant
Am « maximum cross~sectional area
a - axial acceleration constant
as used by Oswatitsch and Keune, p. §
for sonic velocity case, p. 14
for extendsd tranasonic case, p. 31

constant in integration formula, p. 42

B - arbitrary constant
& < constant in integration formula
C - arbitrary constant

CosC , = integration constants, p. 57

C‘ ,Cz - characteristics constants, p. 15

Co - drag coefficient based on maximum cross-aectional area

C-f - pressure coefficient based on free stream conditions

C - constant in body geometry eguation, p. 3%
constant in integration f@:mula. pe 42

D . drag, p. i1 |
arbitrary constant, p. 19

€ - base of natural logarithms

F - to denote functional form, p. 7
body shape function, p. 10
hypergeometric function, p. 43

%p - Poisson term in parabolic eguation of Spreiter and Alksne
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%(T\) - general function, p. 56

%(X) - general function, p. 11

%(f(} - general function, p. 16

%(uo)- Hankel transform of %(’1)

-%(x) - general function

H (@)« Heaviside function, p. 56
H(,\)c, Hsﬂ « Hankel functions of the first and second kind
J‘\. = halfetunnel height

IO,I\ - Bessel functions of imaginary argument of the firat
kind, p. 19

I.‘,Iz,]; ,14_- ghorthand notation for integrals, p. 58
Sm - {maginary
L o=V
0_0 fJ { = Bessel functions of the firet kind

K.b.;K‘«- Bessel functions of imaginary argument of the second
kind

/Q“"g\ - natural logarithm
M - free stream Mach number
Mol - local Mach number
Muwr = measured Mach number in wind tunnel

AM < Maeh number increment between measured Mach

number in wind tunnel and equivalent free flight
Mdach number

T« constant in body geometry equation
& . order of

9. - free stream dynamic pressure

R . \w|

RL - reat

U = radial coordinate {(/1=0 at body axis)
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R« body radius distribution
s - radial coordinate of sonic point on body surface
5(")- source strength distribution
2. source strength distribution in transformed coordinates
x - integration variable in integration formula
. free stream velocity
W . dimensionless axial velocity component
V'« dimensionless radial velocty component
W . wronskian
X . 024 A2 4t
2C

X « axial coordinate { X=O at body nose, X= ) at body
trailing edge)

X - axial coordinate where O (X) =0
Xmox= axial location of maximum ¢ross-sectional area
x* < axial coordinate of sonic point on body surface
YogY\- Bessel functions of the second kind
\3\ - general independent variable
Z - transformed axial coordinate {Z=OATX=X)
Zo = nose point in transformed coordinates
Z| - trailing edge point in transformed coordinates
T « Gamma function
¥ - gas constant { ratio of specific heats)
O . ratio of body thickness to length, p. 10
delta function, p. 16
positive acute angle specified in limits on © , p.39
€ « small increment in axial coordinate

o
- 4z
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e-am%\w » Do 39

integration variable, p. 46
>\g - axial velocity constant, elliptic case
)\“- axial velocity constant, hyperbolic case
>\p~ axial acceleration constant, parabolic case
M = index in integration formula
’L) - index in integration formula
€ - axial coordinate of source
P .- lw)
4) - velocity potential
complete potential, p. 10, 25
incomplete potential, p. 21
for a unit-strength source, p. 18, 20
4)5 - unit-strength potential for an elliptic source
(h\ - unit-strength potential for a hyperbolic source
(bsu\%\ - singular part of incomplete potential
g «» Hankel transform of potential

W =« Hankel transform variable
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