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Abstract

Numerical algorithms are developed to estimate petroleum reservoir properties
such as absolute permeability, porosity, and relative permeabilities based on the
noisy pressure and flow data. Regularization and spline approximation of spatially
varying parameters are employed to convert the ill-posed nature of the problem to
a well-posed one. A stabilizing functional with gradient operator is used to measure
the non-smoothness of the parameter estimates. The number of spline coefficients
along each spatial direction is chosen to be as much as the number of meshes for the
reservoir PDE’s. New history matching algorithms are developed that determine
the regularization parameter during the computation without requiring a priors
information and improve the parameter estimates stepwise. A partial conjugate
gradient method is employed for the estimation of a single set of parameters, and
the steepest descent algorithm is used for the simultaneous estimation of absolute
and relative permeabilities. A rough parametric sensitivity analysis is carried out
for the simultaneous estimation to improve the convergence. Numerical tests are
carried out to estimate the parameters in single- and two-phase reservoirs for the
different choices of the stabilizing functionals, the regularization parameters, and
the degrees of spline approximation; and the effects of the observation error, the
observation time, and the configuration of the observation points are investigated.
The results show that the new algorithms generate better parameter estimates over

the various possible choices of the estimation conditions.
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Chapter I

Introduction

The knowledge of petroleum reservoir properties such as absolute and relative
permeabilities and porosity forms the bases for determining the optimal strategy of
oil recovery. Estimation of the reservoir properties appearing as the coefficients of
reservoir PDE’s from the noisy pressure and production data is an ill-posed inverse
problem due to the insensitivity of the measured data to the reservoir properties
associated with its large dimensionality. Regularization of an ill-posed problem
refers to solving a well-posed regularized problem of the original problem of esti-
mating inhomogeneous coefficients of integral or partial differential equations, where
the regularized solution approximates the solution of the original problem. More
precisely, the parameter estimation by regularization is carried out by minimizing
the smoothing functional, that is a weighted sum of the conventional least-squares
discrepancy function and the stabilizing functional, with respect to the parameter
estimates. The weighting coefficient, called the regularization parameter, represents
the relative importance given to the stabilizing functional. Spline approximation
is another way of alleviating the ill-posed nature of estimating spatially varying
parameters in PDE’s, and it also provides a convenient way of representing the pa-
rameters. By introducing the concept of regularization and spline approximation to
the optimal control algorithms of reservoir history matching, the problems become
to involve additional unknowns, namely, the form of the stabilizing functional, the
regularization parameter, and the degree of spline approximation that should be
determined before or during the estimation processes. In this dissertation, history
matching algorithms are developed to estimate absolute permeability and porosity
by the regularization and the spline approximation and relative permeabilities that

resolve the additional unknowns in a quantitative manner.
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In Chapter II, the estimation of absolute permeability and porosity in the
single-phase, two-dimensional reservoirs or aquifers is considered. Tikhonov’s sta-
bilizing functional is used to measure the non-smoothness of the parameter esti-
mates. The smoothing functional is minimized by the partial conjugate gradient
algorithm of Nazareth. Estimation of spatially varying parameter starts with the
single-valued parameter that is spatially uniform and minimizes the least-squares
discrepancy term. The estimation results are demonstrated for the various de-
grees of spline approximation and for the different regularization parameters. The
quasi-optimality condition of the regularization parameter is investigated for both
the estimation of absolute permeability and porosity. It is shown that the use of
Tikhonov’s stabilizing functional leads to the underestimation of the parameters

due to inclusion of the Euclidean norm of the parameter itself.

In Chapter III, a history-matching algorithm is developed to estimate the abso-
lute permeability from the pressure data in two-phase, two-dimensional petroleum
reservoirs. The number of spline coefficients along each spatial direction is specified
to be as much as the number of grid cells of the governing PDE’s. The algorithm
employs Locker and Prenter’s stabilizing functional with a differential (gradient)
opera?or that does not include the Euclidean norm. The regularization parameter
is determined from the ratio of the disc;epa.ncy term to the stabilizing functional
calculated from the results of the conventional least-squares estimation and addi-
tional regularized estimation is followed. The numerical test shows the superiority

of the regularized estimation to the conventional estimation.

In Chapter IV, the estimation of the absolute permeability and the exponents
of relative permeability expressions are estimated simultaneously. The algorithm
developed in Chapter III is extended for the simultaneous estimation of the param-
eters. The steepest descent algorithm is used as the core minimization technique,

and a rough parametric sensitivity analysis is carried to improve the convergence
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of the minimization. Numerical examples show the identifiability conditions on the
observation time in estimating relative permeabilities.
In Appendix A, an additional example to Chapter III is tested that estimates
the absolute permeability, which varies stiffly. The example shows the identifiability
condition on the configuration of the observation points. In Appendix B, numerical

details of the algorithm developed in Chapter IV are described.
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Chapter II

History Matching by Spline
Approximation and Regularization

in Single-Phase Areal Reservoirs

The text of Chapter II consists of an article coauthored with C. Kravaris and

J. H. Seinfeld, which has appeared in SPE Reservosr Engineering 1 521 (1986).



History Matching by Spline
Approximation and Regularization
in Single-Phase Areal Reservoirs

Tal-yong Lee, California Inst. of Tech.
Costas Kravaris, U. of Michigan

John H. Seinteld, SPE, California inst. of Tech.

Summary. An automnatic history-matching algorithm is developed from bicubic spline approximations of
permeability and porosity distributions and from the theory of regularization to estimate permeability or porosity
in a single-phase, two-dimensional (2D) areal reservoir from well pressure data. The regularization feature of
the algorithm, the theoretical details of which are described by Kravaris and Seinfeld, !* is used to convert the
ill-posed history-matching problem into a well-posed problem. The algorithm uses Nazareth’s? conjugate
gradient method as its core minimization method. A number of numerical experiments are carried out to
evaluate the performance of the algorithm. Comparisons with conventional (nonregularized) automatic history-
matching algorithms indicate the superiority of the new algorithm with respect to the parameter estimates
obtained. A quasioptimal regularization parameter is determined without requiring a priori information on the

statistical properties of the observations.

Introduction
The process of estimating unknown properties, such as
permeability and porosity, in a mathematical reservoir
model to give the best fit to measured well pressure and
production data is commoniy called history matching. Be-
cause the properties in an inhomogeneous reservoir vary
with location, an infinite number of parameters is required
conceptually for a full description of the reservoir. From
a computational point of view, a reservoir simulator con-
tains only a finite number of parameters, corresponding
to each gridblock or element in the spatial domain. In
field-scale simulations, it is not unusual for the reservoir
domain to consist of about 10,000 gridblocks, and con-
sequently 20,000 or more parameters may need to be es-
timated simuitaneously. This potential large dimensional-
ity ofthe unknown parameters distinguishes the reservoir
history-matching problem from other parameter-
estimation problems in science and engineering.
Moreover, the standard reservoir history-matching prob-
lem is mathematically ill-posed, and this ili-posed nature,
coupled with such a large number of unkLown parame-
ters, lies at the root of the difficulties in its solution. The
ill-posed nature of the history-matching problem is
manifested by numerical instabilities in the estimated pa-
rameters. Such instabilities are well documented in the
petroleum engineering and hydrology literature. 45
The principal approach that has been used to alleviate
illconditioning in the parameter estimates is to decrease
the number of unknown parameters and, if possible, to
utilize any available information to constrain the space
of unknown parameters. One commonly used approach
for reducing the number of unknown parameters is to di-
vide the reservoir into a relatively small number of zones
and to assume uniform properties within each zone. While
this approach is effective in reducing the number of
Coppyrage 1988 Society of Petroleum Engineers

SPE Reservoir Engineering, Septeraber 1986

unknowns, sufficient a priori information usually is not
available to enable specification of the zones on any phys-
ical basis, Moreover, although it limits the dimension of
the parameter space, zonation does not alleviate the fun-
damental ill-posed nature of the problem. An alternative
to zonation is to use prior information expressed in the
form of an assumed probability distribution for the reser-
voir properties. If certain a priori knowledge is assumed
about the parameter mean values and correlations, the
history-matching objective function can be modified to
include a term that penalizes the weighted deviations of
the parameters from their assumed mean values.* A form
of Bayesian estimation can then be used to determine the
unknown parameters. While it has been shown that better-
conditioned estimates may be obtained when a priori
statistical information is used, sufficient knowledge of the
nature of the unknown parameters generally is not avail-
able to specify the parameters needed to carry out a Bayes-
ian estimation.

The critical problems in generating an effective al-
gorithm for history matching are two-fold: (1) the origi-
nal problem must be defined in a manner that alleviates
the ill-posed nature of the problem; and (2) an efficient
computational algorithm must be developed for solving
the large, constrained, nonlinear minimization problem
that results from any history-matching problem.

With respect to the inherent ill-posed nature of the
history-matching problem, Kravaris and Seinfeld ! have
shown that the concept of regularization can be applied
rigorously to the estimation of spatially varying parame-
ters in partial-differential equations of parabolic type. The
regularization idea, first advanced by Tikhonov and Arse-
nin,® has been widely used in the solution of ill-posed
integral equations, but had not been developed for the es-
timation of parameters in partial-differential equations.

521
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Regularization of a problem is solving a related prob-
lem (called the regularized problem) with a solution that
is more ‘‘regular’’ (in a certain sense) than the solution
of the original problem and approximates (in a certain
sense) the solution of the original problem. More precise-
ly, regularization of an ill-posed problem refers to solv-
ing a well-posed problem, the solution of which gives a
physically meaningful answer to the original ill-posed
problem. The regularization formulation of parameter es-
timation measures the **nonsmoothness’’ of the estimat-
ed parameter as a norm of the parameter in an appropriate
Hilbert space. No prior information about the parameter
is required other than a general idea of the degree of
smoothness desired in the estimated field. The only un-
specified parameter is that reflecting the relative weight
given to the smoothness norm vs. the usual least-squares
objective function.

Researchers7-!0 have found that the use of spline
representations for spatially varying parameters in one-
dimensional (1D) partial-differential equations of both
parabolic and hyperbolic type leads to well-conditioned
estimates. Although their numerical results were obtained
for low levels of spline discretization, it seems that the
spline representation may impart a degree of smoothness
to the parameter distribution that could circumvent some
of the ill-conditioning inherent in the finite-difference or
zonation representation of the unknown parameters. The
use of 2D bicubic spline approximations for reservoir his-
tory matching is an additional new feature of the work
reported here.

The object of this work is to present an automatic
history-matching algorithm that is based on the concept
of regularization together with bicubic spline approxima-
tions for the estimation of permeability and porosity in
a single-phase, 2D areal reservoir simulation. The two
critical problems cited previously are addressed in the al-
gorithm. First, the regularization formulation converts the
history-matching problem to a mathematically well-posed
problem. Second, we use a particularly efficient numeri-
cal minimization method, Nazareth’s> conjugate gradient
method, as the core technique for the minimization. We
present the results of extensive numerical testing of the
algorithm in which both permeability and porosity distri-
butions are estimated. The effects of the degree of regular-
ization and of the order of the spline approximation on
the behavior of the estimates will be of particular interest.

History Matching by Regularization

The problem of history matching may be viewed in a
general way by expressing the reservoir model, or simu-
lator, as the nonlinear operator equation,

where o represents the reservoir parameters, X is the
operator representing the reservoir model, and u is the
observed portion of the model’s output, such as the well
pressures. The history-matching problem is just the in-
verse problem to Eq. 1—i.e., given u and X, find a. This
inverse problem is well-posed if for every u there exists
a solution «, if the solution is unique, and if the solution
is stable—i.e., small perturbations in « imply small per-
turbations in a.

S22

If any of these conditions are not met, the inverse prob-
lem is ill-posed. Establishing uniqueness of a given u for
operators K typical of reservoir simulators is an extremely
difficult problem, and at this time unic;uencss resuits are
available only for very special cases.'!It can be shown
readily, however, that the inverse problem to Eq. 1 for
spatially - varying parameters in parabolic partial-
differential equations is unstable,! and the estimation of
a from u is an ill-posed problem. As we noted, the ill-
posed nature of the problem manifests itself by highly ill-
conditioned estimates in conventional automatic history-
matching approaches.

Let us now be more specific and consider unsteady flow
of a slightly compressible oil with viscosity u in a 2D,
areal reservoir of unit thickness, spatial domain {2, and
boundary 3Q in which fluid is being withdrawn from n,,
wells located at (x,,,y,), w=1,2...n,. The fluid prop-
erties, u and ¢, are assumed 1o be known, whereas the
porosity, ¢, and permeability, k, are assumed to be
unknown. The pressure distribution in the reservoir is
governed by

3 k <
c¢3.’;.=v(;vp)+ S} aubE-x0-yw) - @)

w=]

in @x%(0,7),
op
=m0 L e e 3
n (€)]
on a2 x(0,T), and
Py 0)=pola,y) ... “)

in Q, where dp/dn is the outward normal derivative of
p on the boundary 3Q and (0,T) is the time interval over
which data are available. Because of the small size of the
wellbores relative to the reservoir dimensions, the well
flow rates are represented as point sink terms in the pres-
sure equation. If there exist observed pressures at nop,
times at ngp locations, py.op, k=1,2.. .npg, n=1,
2...nqp,, then the customary history-matching least-
squares objective function is

"OBr "OB
jl‘s: Z Z [Pi.no. —p(xk)yk'tn)]z'

A=l k=|

The conventional history-matching problem can be viewed
therefore as a nonlinear optimization problem of minimiz-
ing the sum of squares of differences between the observed
and predicted pressures subject to the constraint of the
reservoir model (Eqgs. 2 through 4).

In the regularization approach, we minimize an aug-
mented objective function, called the smoothing function-
al, denoted by Jsy, that consists of the sum of the
least-squares term, J; 5, and a stabilizing functional, J 7.
The stabilizing functional for a parameter a (a=¢ or k)
is of the form

Jsr=|lal|*H>@),

SPE Reservoir Engineering, September 1986



=) j=)

R Q...

=] o

=) o

[=) [=)

=} o
Fig. 1—Pressure and spline grid system, pressure grid: 10 x 15; spline grid: 5 x6; 7x9; 12x 17
(O = observation well; P = production weli}.

where 'l |12 43 is a norm defined in the Sobolev
space H>(Q). [The Sobolev space H3(Q) is the set of
functions that are square-integrable over Q and have

uare-integrable derivatives up to order 3. The norm of
H*(Q) is given by Eq. A-12.] Thus the overall objective
function to be minimized is

Jsu=J s+8.Jst,

SPE Reservoir Engineering. September 1986

where 8, is a weighting coefficient chosen to reflect the
degree of imporiance given 10 Jgr.

The minimuization of J gy is performed over an appro-
priate finite-dimensional subspace of H>(Q), the so-called
space of approximants, which can be spanned by cubic
spline functions. Thus the infinite-dimensional parame-
ter spaces for k and ¢ are reduced to finite-dimensional
spaces by cubic spline approximations, and the finite-

523
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TABLE 1—SPECIFICATIONS OF RESERVOIR FOR HISTORY-MATCHING EXAMPLE

Dimension of reservoir, miles [kmj

Viscosity of fluid, cp [Pa-s]

Number of producnon wells
Production rate, ft/D [m?/s}

initial pressure, atm [Pa]

Pressure grid

Number of observation wells

Number of well pressure data per well

Total number of data points

Compressibility of system, atm ~' [Pa~"}

Time interval of well pressure data, days

12.4x 18.6 {20 x 30)
1.2x107% [1.2x10 7"
20(20:10"{

1

500{5376x10")
150 {1.52x 107}

10x 15

8

35
10
210

dimensional minimization of J gy is carried out by an ap-
propriate numerical minimization method.

Bicubic Spline Approximation of
Permeability and Porosity

A general approach to representing the spatial variation
of reservoir properties is through the use of bicubic spline
functions in which a parameter, a(x,y), is represented as

aey)= 3, Z byt Wy 4 b)(Ly.3), .. (B

=t f=]

where

X
). 6,=12...ny, .0

3

bt x)=x"* (4-1,-1—
. ¥ '
by(lyvy)=x (4“’y+_), ly=‘,2. . .ﬁy,, (10)
Ay,

and where x™( ) is the cubic B-spline function,

_;3 (0 1)—-
- XE(U,
6
=1 @-1D)? @-13
Y%+ > + > - . x€(1,2)
. oy
x4x)= ‘/e—(x——2)2+(Jr ) xe(2,3)
-3 3?2 @=~3)°
y- 24 «-3? -3 xe0.4)
2 2 6
_0 otherwise._J
............................. ap

Here, Ax; and Ay, are the grid distances of the spline
grid along the x and y directions, respectively. With this
approximation, a(x.y) is replaced by the set of unknown
coefficients, W%, , , £, =12. nand f,=12..

The grid used for ‘spline representauon of the unknown
properties need not coincide with that on which the actu-
al reservoir model is solved. The reservoir model will be
solved numerically by use of finite-difference approxima-

524

tions on the block-centered grid system shown in Fig. 1.
Fig. 1 also shows the spline grid system. The finite-
difference grid can be expressed compactly as
Li={i |i;=1,2...n}, [ —{ty!z =12...n,}, and
1, ={tlt—t,+n,(l -1, :x e & el 1= {t{l—l 2.

,} where n,=n.n,.

The finite-difference approximation of the pressure
equation can be written in compact notation as

k(i)
Qcoi(pi"-p;" )= Z QLJ_J(PJ -pi")

for (el,, n=1,2...n,, where

Li={jlj=i-n., i=1,i+1, i+n.} N1y,

Q=AxAy/As, and

_(Ay/Ax, if j=i—1, i+1, and jel,
QLi= | axlAy, if j=i=n,, i+n,, and jel,,

6,, is the Kronecker delta, and k(i j)=(k; +k;)/2. The
initial condition is Di °-—po, i€ly.
The least-squares objective function is then written as

Z Z Z (Pkno."P; 26”“ o (13)

im=] p=|

where we assume that £, ~1,_ =Ar for n=1...nog-

History-Matching Algorithm

The problem we now seek to solve is to minimize the aug-
mented objective function, Jgy, given by Eq. 7 with
respect to the spline coefficients W, 2 6=12..

and {,=1,2. . .n,,, subject to the pressire equation (Eq
12). {‘o obtain an algorithm to solve this problem, two
steps are required. First, we must compute the gradient
of J s with respect to each W*, ., - Second, that gra-
dient is then used in a numerical minimization method to
minimize J gy . The calculation of these gradients repre-
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TABLE 2—TRUE VALUES OF POROSITY AND PERMEABILITY, THE UNIFORM VALUES
OF ¢ AND k THAT MINIMIZE J,;, AND THE CORRESPONDING STARTING
VALUES OF J.q, Jgr, AND Jgy

¢ k

Parameter To Be Estimated {fraction) (darcies)

True value 0.2 -0.05 sin{xx/x,) 0.3-0.1 sin(xxix)

x 8in (2xyly,) x 8in (2xyly,)

initial guess 0.25 and 0.15 0.25 and 0.35

a that minimizes J ¢ 0.184 0.241

Jis 4.6 41.0

Jeor 5.1 8.7

Jaw B, atm? =0 44.6 B8, atm?/darcies® = 0 410
0.01 447 0.01 411
0.1 451 0.1 41.9
1 48.7 1 49.7
10 95.6 10 128.0

sents the most time-consuming part of updating the pa-
rameter iterates. In a problem as large as history matching
in a candidate algorithm, these derivatives must be able
to be calculated directly, not requiring the individual
derivatives dp;"/aW* ¢ o . 12,13 Those algorithms based
on an optimal control or vananonal formulation possess
this necessary property. '4-16 First, we solve the reser-
voir simulator equation (Eq. 13) from ¢t=0to t=T. Then
we solve the adjoint system equation (Eq. A-7) backward,
starting from =T with the terminal condition (Eq. A-8)
to =0, and at the end of each timestep during the solu-
tion of adjoint system, compute the functional derivative
of J s with respect to permeability (Eq. A-9) or porosi-
ty (Eq. A-10) at the simulator grid cells. Then we com-
pute the derivative of J; s with respect to the spline
coefficient W< (Eq. A-11), the derivative of Jgr with
respect to * (Egs. A-12 through A-19), and the deriva-
tive of Jgy with respect to W* (Eq. A-20).

Because of the large dunensxonahty of e, £, One
secks to use an algorithm that is as efficient as possxblc
The essential consideration in the choice of a method is
the computational time needed to minimize the objective
function. Most multivariate minimization methods can be
divided into two groups: conjugate gradient methods and
quasi-Newton methods. The quasi-Newton methods are
preferred for moderate-sized problems but the conjugate
gradfent methods become superior to the quasi-Newton
methods as the number of variables gets large (Scales!’
suggested 250 as a turning point). Although we treat 30
to 204 variables in our cxa.mplcs, the number is larger
for field applications. Nazareth's? conjugate gradient al-
gorithm of was chosen as the core-minimization method
in the current code. '

The remainder of this work is devoted to the numeri-
cal evaluation of the algorithm on the estimation of per-
meability and porosity distributions in a single-phase, 2D
areal reservoir as modeled by Eq. 2. We want to evalu-
ate the algorithm on a well-defined test problem for which
the *‘true’” property distributions are known a priori. For
this reason, we will specify the true parameter values,
generate our own pressure data by solving the reservoir
model with these values, and then try to recover the true
parameter values by using the history-matching algorithm.

Permeability level and distribution is the principal reser-
voir property used to match pressure behavior. Porosity
is usually better known than permeability, and values from
log and core data are often used as initial guesses for ¢.
(Porosity in the aquifer is generally less well known than
in the reservoir itself and can be more readily varied than
¢ in the reservoir.) Aside from aquifer permeability and
porosity, which are generaily not well known, reservoir
permeability is usually more uncertain than porosity.

It is difficult to determine the optimal value of the
regularization parameter even if we know the statistical
properties of measurement error of the well pressure data.
We will choose a set of values of the regularization pa-
rameter so that they form a geometric sequence and de-
termine the optimal regularization parameter from the
quasioptimal value of the regularization parameter® that
minimizes | |8,3w%/88,}],.

The data for the cases we will study are given in Table
1. Although this set of data is hypothetical, every effort
has been made to have the example conform to an actual
field simulation.

An important question concemns starting the algorithm.
Convergence difficulties are sometimes experienced when

Fig. 2-True e{x,y) surface; ¢(x,y) = 0.2 - 0.05 sin (xx/x )
sin (2ryly, ).

SPE Reservoir Enginesring, September 1986

Fig. 3—Trus kix,y} surface; k(x,y}=0.3-0.1 sin (nx/x,)
sin (2xy/y,) darcies.
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Fig. 4—Simulated pressure data vs. time for 0 =0.3 atm:
(1) (3.1, 3.1); (2) (8.9, 3.1); (3) (3.1, 9.3); (4) (9.3, 9.3); (5)
{3.1, 15.5); and (8) (9.3, 15.5) {units are miles).
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Fig. S—Estimated ¢ surface for o0=0.3 atm,
N, xn,=7x8, and from top down: §, =0 atm?, 0.01,
0.1, 1, and 10.
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the initial guesses of the parameters are far from their ac-
tual values. To attempt to alleviate this problem and to
generate an algorithm that is as **hands-off’’ as possible,
we begin the estimation by determining the unknown pa-
rameters as uniform over the entire region. Thus, to start,
we estimate single values of k and ¢ for the entire region,
called k and ¢, that minimize J;5. These values then
serve as starting points for the full history-matching al-
gorithm. The rationale behind this strategy is that con-
vergence problems should not be encountered in
estimating a single parameter. The single value, while not
accurate in its spatial detail, nevertheless serves as a good
starting point for the full algorithm. This strategy has been
used in the results to be presented shortly. The single-
variable minimization is carried out in our code by the
secant method.

Table 2 gives the resuits of this first step for the esti-
mation of ¢ when k is known and the estimation of k when
¢ is known. Listed in Table 2 are the true values of ¢
and k, the initial guesses to start the secant method, the
minimizing parameter value « (@=¢ or k), and the values
of J;5, Jst, and J gy for various values of the regulari-
zation parameter £ at the minimum. The true ¢ and k sur-
faces are shown in Figs. 2 and 3, respectively. To simulate
measurement error, uniformly distributed random num-
bers are added to the pressure data generated from our
presurmed true permeability and porosity distributions. The
resulting data are shown in Fig. 4.

Estimation of Spatially Varying
Permeability and Porosity

We will investigate the effect of the choice of regulariza-
tion parameter (8,), degree of spline approximation
(nx Xny,), and the number of observation wells in the
estimation of ¢ when k is known and the estimation of
k when ¢ is known.

We will use six observation wells for values of the
regularization parameter 8, =0, 0.01, 0.1, 1, and 10
atm? [0, 1x10°%, 10x10°, and 100x 10° Pa?] for the
estimation of ¢ and 8, =0, 0.01, 0.1, 1, and 10 atm?/
darcies? [0, 0.01x10%, 0.1x10%, 1x10%, and
10X 10 Pa2/m*] for the estimation of & and spline grids
My Xny, =5%6, 7x9, and 12X 17, where 12x 17 is the
maximum possible value for the pressure grid we are using
for both the estimation of ¢ and the estimation of k. As
a special case, we will use 18 observation wells for the
estimation of k, with 8, =1 atm?/darcies® [1.054 x 103
Pa?/m*] and n, xn,, = 7x9. Finally, in all our simu-
lations, we assumed that the root-mean-square (RMS)
error in pressure measurements was 0=0.3 atm [30.4 kPa]
(thus a/pg=0.2% and the corresponding J, s value is
18.96 atm? [195%10% Pa?)).

_ The estimation of ¢ started with a uniform value of
¢=0.184 and the smoothing functional Jgy; was mini-
mized until the change in spline coefficient, W*#, and the
gradient of J 5 with respect to W*® satisfied the conver-
gence criteria given by .

[[Womew ol | | ey (142)

and
NG ™ 11 <€2e v (14b)
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TABLE 3—ESTIMATION OF ¢

a. Final values of ‘Performance indices for o= 0.3 atm and n,, xn , =7x9 as a func-

tion of 8, (atm®)

4
Ey=tlEgeht tymh LEe=n.

8, Jsn Jis Jgr* Jir 3 x10% Ui x10°  Jx10?
0 20.67 20.67 15.55 6.47 5.30 30.24 193.63
0.01 20.86 20.76 9.47 6.47 2.67 10.98 61.64
0.1 21.60 20.85 7.48 6.44 1.76 5.11 18.75

1 27.61 21.16 6.45 6.28 0.75 1.47 1.79
10 81.69 24.09 5.76 5.74 0.20 0.12 0.09
true 7.09 6.17 2.83 7.48 1.88
b. Final values of performance indices for ¢= 0.3 atm and 8, =1 atm? as a function

of nyxn,
NaXfn h  Jey his Jg Jyr JEx10P Jyx10d Jgrx10?
5x6 5 2786 21.38 6.47 629 0.50 0.04 0.002
7x9 25 2761 2116 645 628 0.75 1.47 1.79
12x17 109 2717 20.78 640 6.31 3.1 18.38 14.78
Tymh iy -n:, tamh® 1o =n® witnnazs.

The same strategy was used for the estimation of k, where
the starting value of k =0.241 darcies (0.243 darcies for
18 observation wells) was used. Tables 3 and 4 summar-
ize the history-matching results for all the cases studied.

Effect of Regularization. We expect that, as the regular-
ization parameter increases, the value of the least-squares
objective function, J s, at convergence will increase, but
the stabilizing functional, Jgr, will decrease because a
larger value of regularization parameter means more
smoothing of the parameter to be estimated at the expense
of less exact fitting of the observed well pressure data.

This expectation turned out to be true with some ex-
ceptions for the terms Js7™ !, m=0 and 1, in the sta-
bilizing functional during the estimation of k as shown

in Table 4a. That is, Jer' for 8, =0.1 atm?/darcies?
{1.054x10%3 Pa%/m*] is slightly greater than that for
B,=0.01 atm?/darcies? [1.054x1032 PaZ/m*], and
Jsr? for B =10 atm?/darcies? [10.5% 103 Pa?/m*] is
greater than those for 8;=0.1 and 1 atm?2/darcies?
[1.054x10% and 1.054x 103 Pa2/m*). But the total
stabilizing functional, J g7, and its component, Js7*, that
represents the third-order derivative term and is most im-
portant among the four terms, Jgr™+!, m=0, 1, 2, and
3, decreases strictly without exception as 8, increases.

Table 3a shows that Jsr* terms for true ¢ are close
to that for estimated ¢, with 84=1 atm? [1.03x10'0
Pa?)} for which J.s and B4J sr are balanced; but Table
4a shows that J¢r* terms for true k are close to that for
estimated k with 84 between 0.1 and 0.01 atm?/darcies?

TABLE 4—-ESTIMATION OF k

tion of 8, (atm?/darcies?)

a. Final vaiues oltperformanco indices for ¢=0.3 atm and n,, xn, =7x9 as a func-

tunction of n, xn,

By - Jis Jsr® 93, x10% U x10® ug x10°
0 21.26 21.26 2046 1168 7.8 36.75 28.05
0.01 2159 21.44 14868 1138 556 18.14 9.99
0.1 22.82 21.49 1336 1138 479 12.33 4.84
1 33.42 2218 11.24 1054 383 5.38 1.04
10 147 35.70 7.90 739 498 2.86 0.33
True 17.54 1388 10.50 29.97 7.50

b. Final values of performance indices for o =0.3 atm and 8, = 1 atm?/darcies® as a

Naxn, A Jo  dis Jgr Iy JEx102 U3 x10° Jgrx10°
5x6 5 3570 2348 1222 1130 1.30 0.39 0.02
7x9 25 3342 2218 11.24 1054 383 5.36 1.04
12x17 109 3150 2168 991 953 1243 81.60 68.91

¢. Final vaiues of performance indices for o= 0.3 atm, 8, = 1 atm?/darcies?, and
Ny XN, =7 xS with different number of observation wells

tyet. f,-hi.,’,-n‘.“ % witn hm2s.
4
L R S ST LI LY

No. of

Wells  Jg, Jis Jor* Ji s x10® ux10® Jg x10°
6 33.42 22.18 11.24 1054  3.83 5.36 1.04

18 76.96 63.33 1362 1196 5.00 11.28 3.74

SPE Reservoir Engineering, Sepiember 1986
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Fig. 6—Cross-sectional piot of k(x /2, y) vs. y for 0= 0.3
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Fig. 7—Cross sectional plot of o(x,/2,y) v8. y for =0.3
atm, 8, =1 atm?, and (1) n, xn  =5x86, (2) 7x9, (3)
12x 17, (4) true values, and (5) inftial guess.

[1.054 %1033 and 1.054 %1032 PaZ/m*] for which J; 5
is 10 to 100 times as large as B,/ sr. This means k can
be regularized more easily than ¢ can. It is interesting
to compare these numerical indicators of performance
with the surfaces and profiles in Figs. 5 and 6. The esti-
mated parameter surfaces are too bumpy compared with
the true surfaces (Figs. 2 and 3) when small regulariza-
tion parameters are used and in the nonregularized case.
Note the *‘bump’’ in Fig. 5a or the inflection point at
¥y, =08 in curves 1 (8,=0) and 2 (8,=0.01
atm?/darcies? {0.01 x 103 PaZ/m*}) of Fig. 6. On the
other hand, the parameter estimates become too flat for
large values of regularization parameters, as shown in Fig.
Sc and Curve 5 in Fig. 6, as compared to Fig. 2 and Curve
6 in Fig. 6.

To determine the optimal regularization parameter,
|1B.dW=/dBs]l2 can be approximated by
[{(W2%~W,9)(n 8,210 B,1)]], where 8., and
B 42 denote two different regularization parameters, W, ¢
and W, ° are the corresponding spline coefficients that
minimize Jgy, and ||-||; denotes Euclidean vector
norm. Table 5 summarizes the resuits for the estimation
of ¢ and the estimation of k. The optimal 84 =0.1 to 1

528

dw
TABLE 5—VALUES OF | |8, P

112

a. Estimation of ¢

B, |18,0W*idB, ||,
0.01, 0.1 0.167
01,1 0.148
1,10 0.169

b. Estimation of k
[18,dW*Id8, ||,

B (darcies)
0.01, 0.1 0.211
0.1, 1 0.229
1,10 0.456

atm? for the estimation of ¢ and the optimal 8, = 0.01
to 0.1 atm?/darcies? [1.054x10%? to 1.054x10%
Pa2/m*) for the estimation of k, which agree with the
above investigation.

Table 4 also shows that in the estimation of k, the J g7}
term, which is proportional to the Euclidean norm of
k(x,y), in the domain {1, is smaller than that calculated
from the true k. This behavior can be explained from Eq.
2, which shows that the pressure value is governed by
the gradient of k with respect to the spatial variables rather
than the value of k itself. Thus the value of k can be re-
duced to some extent without changing the values of pres-
sure significantly during the estimation of k.

Effect of Spline Approximation (n,, Xn,,). The meas-
urement error (J s for true parameters) is 18.96 atm?,
while J 5 for 84 =0 is 20.67 atm? {212x10° Pa?] for
the estimation of ¢, and Jyg for 8, =0 is 21.26 atm?
{218 x 10° Pa?] for the estimation of k. This can be ex-
plained because the spline approximation has the effect
of smoothing instead of fitting the noisy measured data
in detail.

It is clear that the measured data can be better fit with
more parameters, thus we expect that values of J;g
should decrease as the dimension of spline grid, n ., Xn,,
increases. At the same time, the estimated parameters are
expected to be less regular for larger values of n,, xn,,.
This expectation turns out to be true in our examples in
the estimation of both ¢ and k. The value of Jgr ¢ for the
true ¢ is closer to that for the estimated ¢ when
Ry Xny,=7x9, and the values of Jgr* for the true k lies
between those of the estimated k for s Xny=7x9 and
12x17. If we want the values of J3° not to be greater
than that of true k, however, we conclude that
Ry XNy, =7%9 is the best value for the 10X 15 pressure
grid in our example.

Figs. 7 and 8 show the effect of spline approximation
on the estimation of ¢ and k, respectively. We can ob-
serve ill-conditioning in the estimation of k from Fig. 8¢
(nz Xn,s=12X17), which can be explained because the
ratio of spline grid to pressure grid (h) is only 1.09, so
that we have 204 unknown spline coefficients to be esti-
mated as compared with 210 measured pressure data.

Effect of the Number of Observation Wells. The
regularization effect is relatively less important for more
observation wells and thus the values of J 57 and the terms
inJgr, Jsr™*!, m=0, 1, 2, and 3 are larger, as shown

SPE Reservoir Engineering, Sepiember 1986
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Fig. 8—Estimated k surface for ¢=0.3 atm, B, =1
stm?/darcles? and from top down: n,, xn , =5x8,7x8$,
and 12x17.

in Table 4c. As one can see in Fig. 9, the estimated k
for 18 observation wells is closer to the true k than that
for 6 observation wells. Note that J, ¢ for 18 observation
wells is closer to the true value than that for 6 observa-
tion wells with any set of k and n Xny,.

Convsrgence of the Algorithm

When we seek the minimum of J g5 with respect to W<
(a=¢ or k) with the conjugate gradient algorithm, we
need up to A, XA, conjugate directions to find the ap-
proximation of the inverse of the Hessian matrix. The al-
gorithm used here, however, uses 5 to 10 conjugate
directions to find the approximation of the inverse of the
Hessian matrix. On the whole, the algorithm requires 10
to 20 different inverse Hessian matrix evaluations, or 0.5
to 1 hour of CPU time on a VAX11-780 for a single his-
tory match.

The algorithm determines the minimum of
J s (W +56W<) along s, the step size, by trial and error.
In some cases, if s is too large, some elements of
W= + 56 have negative values that are physically im-
possible. Thus, in the implementation of the algorithm,
a limit on the size of s was used.

Conclusions

In this study we have developed and tested an automatic
history-matching algorithm for estimating spatiaily vary-

SPE Reservoir Enginecring, September 1986

Fig. 9—Estimated and true k surfaces for ¢=0.3 atm,

B, =1 stm?/darcies®, n,, xn, =7x9, and from top
down: 8 observation wolfs, 18 obsarvations wells, and
true k.

ing porosity and permeability in a single-phase areal reser-
voir. The algorithm is based on spline approximations of
the parameters and a regularization formulation. In the
regularization approach to parameter estimation by in-
troduction of the stabilizing functional as a measure of
nonsmoothness, one can control the properties of the pa-
rameter estimates as well as the history match.

We have presented results of a detailed numerical eval-
uation of the performance of the history-matching method.
In this example, we found that the permeability distri-
bution is estimated somewhat better than the porosity dis-
tribution at comparable levels of spline approximation and
degree of regularization. It was also found that increas-
ing the value of the regularization parameter leads to es-
timated property distributions that are smoother than those
obtained for smaller values of the regularization parame-
ter. Some exceptions to this behavior were found at small
values of the regularization parameter and can be attribut-
ed to inherent numerical ill-conditioning in estimation
problems of this size. There appears to be an optimal level
of spline approximation in the case of the example studied.
The optimum was a 7 x9 grid for which the ratio of the
size of the spline grid to that of the pressure grid is 2.5.
This optimal value of approximation appears to represent
a tradeofT between a low-dimensional spline grid that has
as few unknown parameters as possible and a high-
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dimensional spline grid that is better able to represent the
details of property distributions but introduces more
unknowns and therefore inherently more ill-conditioning
in the optimization step.

On the basis of the optimal spline approximation,
the optimal regularization parameters are §4=0.110 1
atm? [1.03x10° to 10x10° Pa?] for the estimation of
é and 8,=0.01 to 0.1 atm?/darcies? [1.054x10% to
1.054x 103 Pa?/m*)] for the estimation of k. These
values were determined from the quasioptimal condition
of regularization and have the same magnitude of the
values of measure of nonsmoothness as the true profiles.

Finally, we can suggest a history-matching strategy as
follows.

1. Choose simulator and spline grid systems. The num-
ber of the spline coefficients need not be as large as the
aumber of simulator grid cells. .

2. Find a uniform initial guess of a parameter to be es-
timated that minimizes J; 5 and calculate J,¢/J ¢ at con-
vergence.

3. Choose the regularization parameter value about the
same as J; ¢/J gy above and find a set of spline coefficients
that minimizes Jgy.

4. Step 3 can be repeated to evaluate the result for the
different regularization parameter values around the
J1s/J sy value determined in Step 2, so that we can find
the optimum value of regularization parameter discussed
in the previous section.

Nomenciature
A;™ = matrix defined by Eq. A-19, m=0,
1,2, and 3
Ay™ = matrix defined by Eq. A-19, m=0,
1,2,and 3

A7’ = quantity defined by Eq. A-17

Y

a3

23
"

quantity defined by Eq. A-18

b, (¢, x) = cubic spline function defined by

Eq. 9
by(t,,y) = cubic spline function defined by
Eq. 10
B, = ny Xn, matrix of spline function
values
B, = n, xXn, matrix of spline function
values
¢ = compressibility, atm ! [Pa~!]

G:.S'.i’ ‘

G5, = derivative of J; 5 with respect to
the values of k and ¢ at the grid
point of the simulator,
i=1,2...n,

Glstx.y),

GPs(x,y) = functional derivative of J, g with
respect to k and ¢ at (x,y)

W&
Gise, 1,
$ ]
Glsy, 1, = derivative of J 5 with respect to
the values of W‘fﬂ,’ and W7,
Gsmr, .1,

. . - .
G;‘fu‘,p,y = derivative of J gy with respect to
the values of fo',’ and Wf",y
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1,

t.t

nop

W w3

it onow oo

(1

W owu

~«

derivative of Jgr with respect to
the values of W§ , and WP,

Sobolev space of order 3 on the’
domain (1

m, = quantity defined by Eq. A-14

(hehy)*

Ax,/Ax

Ay /Ay

indices for simulator grid,
i=ig+n.(,-1)

a set of integers that indicate the
neighborhood of ith gridblock

set of integers from 1 to n,

set of integers from 1 to n,; and n,

least-squares objective function, Eq.

smoothing functional, Eq. 7

stabilizing functional, Eq. 6

terms in stabilizing functional de-
fined by Eq. A-12, m=0, 1, 2,
and 3

permeability, darcies

permeability values at the ith
simulator grid, i=1...n,,
darcies

indices for bicubic spline approxi-
mation grid, £;=1...n;
ly=1...n,

unit normal to boundary

number of observation locations

number of observation times

n.n,, total number of simulator
gridblocks

number of wells

number of simulator gridblocks
among x and y directions

= number of nodes along x and y

[ 1 I

wonononn

f

]

direction of spline grid
pressure, atm [Pa)
pressure at Gridblock i, atm {Pa)
pressure at Gridblock j, atm [Pa}
observed pressure, atm [Pa)
initial pressure, atm [Pa])
volumetric flow rate per thickness
of reservoir of Well w, ft2/day
[m?2/s]
AxAy/At
Ay/Ax or Ax/Ay
step size
time, days
time interval of observation, days
time periods over which
observations are available, days
spline coefficients for Parameter «

= Rz XNy, matrix of spline coefficient

of k and ¢
spatial variable, milés {km]
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x; = extent of domain in x direction,
miles [km]
Ax,Ay = simulator grid spacings, miles [km]
Ax,,Ay, = spline grid spacings, miles [km]
y = spatial variable, miles [km]}
y. = extent of domain in y direction,
miles [km]
a = unknown parameter to be estimated
(a=k or ¢)
B, = regularization parameter for the
estimation of o
B: = regularization parameter for the
estimation of k, atm?/darcies?
{PaZ/m*)
B¢ = regularization parameter for the
estimation of ¢, atm? [Pa?]
*) = Dirac deita function
5“4' = Kronecker delta
A = difference
€; = convergence criterion, i=1,2
{m+1 = Weighting factor of Sobolev norm
1 Had@, m=0,1,2,and 3
7 = ylAy
# = viscosity, cp [Pa-s]
t = x/Ax
¢ = standard deviation of measurement
error, atm
¢ = porosity
x"(+) = cubic B-spline function, Eq. 11
¥ = adjoint variable
@ = spatial domain of reservoir
00 = boundary of reservoir
V = gradient
Il || = norm »
~ = average
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Appendix A—Gradient of the

Objective Function With Respect

to the Unknown Parameters

Let us begin by supposing that we want to minimize the
feast-squares objective function, J 5, given by Eq. S with
respect to permeability k and porosity ¢ subject to Egs.

2

through 4. By adjoining the model of Eq. 2 to J ;g by

means of an adjoint function Y/{x,y.?),

.M

Ao Mo
Z Z [pOBLn "P(X-)’J)]z

awl  kwl

e

d
xé(x—xk)ao-yk)aa—r..)+w<x.y.:){—c«»b—,—p

Z QWé(x"'xw)

was |

k
X{x,y,)+9: [—Vp(x,y,t)] +
m

><5(y-y.v)} drdedy. ...l (A-1)
inimizing J ;5 leads to the following equations govern-
ing ¥(x,y.1).
] k &
b —Y(x.y.N=~V" [-—wa.y.z)] 22, 2
at I A=l k=l

in

............................ (A-2)

ax{0,7},

W

=0 A-3

. (A-3)
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on 32x[0,T}, and
VEXTI=0 .. (A<)

in @, where n has the direction outward normal to the
boundary, and the functional derivatives of JU with
respect to k-and ¢ at (x,y)el} are

& 1T
Gisyy=——~ S V@Y. Pyt ... .. (A-5)

of'
in Q, and

T a3
Glstxy)=c| Va0 —ple.yndt=ch(z..0
] .

(la
Xpo(xy)+e| {[Ewu.y,:)]pu.y.n]dx .- (A6)

0

in Q.

The first-order necessary condition for a local minimum
of J; ¢ is that p and ¢ satisfy Egs. 2through4andA-2
through A-4, respectively, and that G,_s(.r,y) 0 (for the
estimation of k) or Gf5(x,y)=0 {for the estimation of ¢)
for all (x,y)eQ. The gradients G{s(x,y) and G{s(x,y) are
used in the so-called optimal control algorithms for his-
tory matching. As noted, because these gradients can be
calculated directly without requiring the sensitivity coeffi-
cients, dp/dk and dp/d¢, these optimal-control algorithms
are computationally attractive for history matching.

The adjoint equations (Egs. A-2 through A-4) can be
written in a finite-difference form corresponding to Eq.
T 12 as

Qo (VI =y == D, QLD

d;

fos
-2 2 (’pogk_n —pf')6,-.,~. ............ (A-7)
k=1
for iel,. and n=1,2. . MOB:» and
vromtlao (A-8)

for iel,, where I;={i—n,, i~1, i+1, i+n, }N1I, and
the derivatives of J, ¢ with respect to k; and ¢; are

GU:’""— Z Z QL,/('L,' ' )(Pj"Pn)

B opwmy

for iel,, and

$32

Glsi=-Qc Z vipl-pl

n=1

=Qc[w,’+ PIRTAL —M)p?]

n=]

for iel,.

In our algorithm, k and ¢ are represented by the bi-
cubic spline approximation (Eq. 8), and the actual
unknown parameters are the coefficients W‘; ., and

Thus, we need to obtain the derivatives of the
ovcra’l] objective functional J gy, with respect to W‘t
and WP , . These gradients are then the values used
directly'in the conjugate gradient minimization mcthod

Let the ny, Xn, matrix B; have elements B,y ;.

b it (i, ~ %)Ax] and the ny, Xn, matrix B, have cle‘
ments By, , bylty.Gy %)Ay] Then thc derivative
of J s with respect to thc clements of W (a=k or ¢) is

Z 2 Bxl I,GI.Sa ybyiyr

ip=1 i =]

G&'u

t=1...ny and t,=1...n,

where i=i, +n.(i, —1). Thus Eq. A-11 relates the gra-
dient of the least-squares objective function with respect
to the spline coefficients to that with respect to the in-
dividual reservoir parameters at each grid point of the
simulator.

Eq. A-11 expresses the gradient of the least-squares por-
tion, J 5, of the overall objective function, Jg,. We need
to obtain the gradient of Jgy. Let us consider the sec-
ond component of J 55, namely the stabilizing function-

al, Jgr, given by Eq. 6, which is
Ist=til+ bt b+, (A-122)
where
A, pn,
To= Vet mazdn, (A-12b)
0 o
A en, I/ 3\ 2 da\ 2
=" (—) +(—) ]dd,‘.A-IZ
ST § OS |\ 3¢ an £dn ( <)

2" [ )
i § og 352 aeaf,
2a\ 2
"'(;"{) }didn. ............... (A-12d)
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and

A, on, 33 2 a] 2
7m=1] [(3_5;) +3(352:n)

(U

3 2 3 2
+3(.£ﬁ7) (‘_;ﬂ_‘:) ]dgdq, .. .(A-12¢)

where {; >0, {,=20, {320, {{>0 and {=x/Ax and
n=y/Ay. With { and 5 rather than x and y, b (¢, .x) and
by(t,,y) in Egs. 9 and 10 and their derivatives are

byl )=x @t +EhL), ... (A-13a)
by, )=x"*@—t,+nthy), ............. (A-13b)
a7 =L um @t +em
a‘s—;;bx(lx.x)—;l}fx @-t +&/h,),

m=123, ... (A-13c)

and
" L eum
= “4(m —

'd_;;_by((yr )—-;-;;x_ @=ty+n/hy),

m=123 ... (A-13d)

where x 4™ (.) denotes mth derivatives of x"4(-),
hy=4x /Ax, and k,=A4y,/Ay. By combining Egs. 8,
A-12, and A-13 we obtain

Ox
HST.I,,I,.M,.M, =2f1AI,.many.m,

+0; (A}j,,,'A‘Z{,,,., +A9"'_,,,‘A}’"_,,’)
53 (H A, 24 AT,
+A?f.m.‘4%f.m,)

+8 (A%f,,,‘ AD m, 434, AL m,

+3A}f,,..'A2)’",,’ +AT AT m )

v/ *

B} Ay n
w
Gt = 2 2 Hsrt t,m,m, W m,»

m,xl m, =1
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"n "'
w
o= 2, D, %G, W, 0,
l“l l,:]

where

-3
AS"‘)’: ___h;—'bn Sn” xol(m) (4_'x+_f__)x04(m)
x z 0 hl

(4-m,+i)d(-’-f—). m=0,1,2,3, ....(A-17)

X

My _p1-2m [P aom) M), wam
A(""=hy" S b ¢ 4"ly+-—-— x o
0 hy
(4~m,+—n—)d(-l), m=0,12,3, ....(A-18)
hy y

or in the matrix form,

20 129 60 1
129 1208 1062 120 1
60 1062 239 1191 120 1

A, 1 120 1191 2416 1191 120 |
A L - - e = = = -
7 1 120 1191 2416 1191 120 1
1 120 1191 2396 1062 60
1 120 1062 1208 129
1 60 129 20
— 6 7T -12 -1
7 40 =22 -24 -}
~12 =22 74 -1 ~24 ~1
i -1 =24 ~15 80 ~15 -24 ~1
AV = - -— _— - — —_ —_—
Sthy ~1 =24 ~15 80 -15 -24 -1
-1 ~24 -15 74 -22 -12
-1 -4 -2 40 7
L -1 -12 7 6
— 2 -3 0 1 -
-3 8 -6 0 i
0 -6 14 -9 0 1
| 1 0 -9 16 -9 0 1
A¥ = - - an em e
3} 1 0 -9 16 -9 0 |
1 0 -9 14 -6 0
t 0 -6 8 -3
— P00 -3 2
1 -3 3 -] —_
-3 10 -12 6 -1
3 ~12 19 -15 6 -1
1 -1 6 =15 20 -15 6 -1
AV = - m e e e . -
L -1 6-1S 2 -15 6 -1
-1 6-15 19 -12 3
-1 6-12 10 -3
-1 3 =3 y_J
) e e e e e (A-19)
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and A, AV, A?, and A% have the analogous expres-
sions to Eq. A-19.

Finally, we obtain the gradient of overall objective func-
tion Jgp with respect to W* as

Gt =Glst,e +BaC¥rgg - ovvvnnenn (A-20)

Weighting Factor {u+1, m=0, 1, 2, and 3 in Eq.
A-12a. In the stabilizing functional in Eq. A-12a, we have
four undetermined constants, namely the weighting fac-
tors, ¢m+1, m=0, 1, 2, and 3, which are arbitrary ex-
cept for the conditions that {1, >0, {20, {320, and
£4>0. We can set these constants in a systematic way
by using the fact that we want the four terms in Eq. A-12a,
each of which is a weighting factor { . muitiplied by
J&*V described in Eqs. A-12b through A-12e, to be of
about equal magnitude. We assume that h,, the ratio of
the size of the spline grid to that of the simulator grid along
the x direction is not much different from h,, the ratio
along the y direction, and we let h=(hh,)*" Then, the

334

ratio of terms JG*Y, m=0, 1, 2, and 3 in Egs. A-12
is about
1
R I A e LR yeRbve
and this suggests values for the weighting factors, {1,
m=0, 1,2, and 3 as {1 =1, b =h?, {3=h%, £ =hS,
where {; is independent of A,

SI Metric Conversion Factors

atm X 1.013250* E+05 = Pa
atm? x 1.026676 E+10 = Pa?
atm?/darcies? x 1.054 E+34 = Pal/m*
atm ™! x 0.986 923 E~05 = Pa-!
cp x 1.0* E-03 = Pa-s
fi2 x 9290304 E-02 = m?
mile X 1.609 344* E+00 = km
*Corversion factor is exact. SPERE

Origing manuecript (SPE 13931) received in the Society of Petroieum Engineers office
Jan. 2, 1985, Pape: accepted for pubiication Dec. 30, 1965. Revised manuscript re-
cweived Feb. 20, 1908,
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Chapter III

Estimation of
Two-Phase Petroleum Reservoir Properties

by Regularization

Abstract. An algorithm is developed, based on the theory of regularization and on
spline approximation, to estimate the absolute permeability in two-phase petroleum
reservoirs from noisy well pressure data. The regularization feature of the algorithm
converts the ill-posed estimation problem to a well-posed one. The algorithm, which
employs the partial conjugate gradient method of Nazareth as its core minimiza-
tion technique, automatically chooses the regularization parameter based on the
non-regularized estimation. It is shown that regularized estimation is more stable
and insensitive to the choice of an initial guess as compared to a non-regularized

conventional estimation.

The text of Chapter III consists of an article coauthored with J. H. Seinfeld,

which has been accepted for publication in the Journal of Computational Physics.
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1. Introduction

The spatial distribution of the properties of petroleum reservoirs cannot be mea-
sured directly; rather, they must be inferred from matching the observed reservoir
behavior to that predicted by a mathematical model. A reservoir that can be mod-
eled as containing a single phase, e.g. oil, leads to a single linear PDE of heat
conduction type for the pressure. Although the single-phase reservoir is clearly the
first step in addressing reservoir parameter estimation problems, from the point
of view of practical application, one really must consider two- (oil and water) and
three- (gas, oil, and water) phase reservoirs. In this paper we present a comprehen-
sive study of the estimation of two-phase petroleum reservoir properties.

The estimation of reservoir properties such as permeability fmd porosity based
on measurements of pressure and production data at wells is an ill-posed problem, as
it is neither unique nor continuously dependent on the measured data. Considerable
effort has been devoted recently to attempting to develop well-posed algorithms for
estimating petroleum reservoir properties. The critical problems in generating an
effective algorithm for reservoir parameter estimation are twofold: (1) The original
problem must be defined in a manner that alleviates the ill-posed nature of the
problem; and (2) An efficient computational algorithm must be developed for solving
the large, constrained, nonlinear minimization problem that results.

With respect to the inherent ill-posedness of the reservoir parameter estima-
tion problem, Kravaris and Seinfeld (1985, 1986) have shown that the concept of
regularization can be extended to the estimation of spatially varying parameters
in partial differential equations of parabolic type, and Lee et al. (1986) applied
the approach to estimating parameters in single-phase (oil) reservoirs. The regu-
larization idea, first advanced by Tikhonov (Tikhonov and Arsenin, 1977) has been
widely used in the solution of ill-posed integral equations, but had not heretofore

been developed for the estimation of parameters in partial differential equations.
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In short, regularization of a problem refers to solving a related problem, called the
regularized problem, whose solution is more “regular” (in a certain sense) than the
solution of the original problem and approximates (in a certain sense) the solution
of the original problem. More precisely, regularization of an ill-posed problem refers
to solving a well-posed problem, whose solution gives a physically meaningful an-
swer to the original ill-posed problem. The regularization formulation of parameter
estimation measures the “non-smoothness” of the estimated parameter as a norm
of the parameter in an appropriate Hilbert space. No prior information about the
parameter is required other than a general idea of the degree of smoothness desired
in the estimated field. The only unspecified parameter is that reflecting the rela-
tive weight given to the smoothness norm versus the usual least-squares objective
function.

In the present context, the regularized problem is to find the parameters that
minimize a performance index, called the smoothing functional, Jgas, that con-
sists of the weighted sum of the conventional least-squares discrepancy term, J g,
and a term that penalizes non-smoothness of the parameters, called the stabilizing

functional, Jsr. Thus

IJsm =Jrs + BJsr (1)

where 3 is the weighting coefficient, called the regularization parameter, chosen to
reflect the degree of importance ascribed to Js7.

The second major problem posed above is that of generating an efficient com-
putational algorithm. Because the properties in an inhomogeneous reservoir vary
with location, conceptually an infinite number of parameters are required for a full
description of the reservoir. From a computational point of view, a reservoir model
contains only a finite number of parameters, corresponding to each grid block or
element in the spatial domain. In field scale simulations, it is not unusual for the

reservoir domain to consist of the order of 10,000 grid cells, and consequently, 20,000
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or more parameters may need to be estimated simultaneously.

Banks and coworkers (1982, 1983 1984, 1985) and Kravaris and Seinfeld(1986)
have shown that an effective way to represent the spatial variation of unknown
parameters in PDE’s is by spline approximation. Then the parameter estimation
problem reduces to determining the coefficients in the spline approximation. An
important computational question concerns the choice of the spline parameter grid
relative to the grid employed for the numerical solution of the governing PDE’s.

This paper is a comprehensive study of the estimation of parameters in two-
phase (oil/water) petroleum reservoirs. The numerical aspects of the problem will
be considered in detail including (1) the choice of the stabilizing functional, (2) the
choice of the regularization parameter, (3) the choice of the spline grid, and (4) the

development of a computationally efficient algorithm.
2. Mathematical Model of Two-Phase Petroleum Reservoir

We consider a two-phase water-oil reservoir which has a sufficiently large areal
extent so that we can assume that the pressure change and hence the flow in the
vertical direction is negligible compared to flow in the other two directions (Aziz
and Settari, 1983). If the water and oil phases are immiscible, then the equations

of mass conservation for water and oil phases are given by

3 o 8(z — 2,.)6(y — v
Rw = _-a'Z(pw¢Sw) -V. (pwvw) + Z pwqw,c (z a )h(y Y ) =0 (20,)

=1

R,

3 e - -
—é't'(pOQSSo) -V. (povo) + Z poQo;c‘S(x xn)}f(y yN) =0 (Zb)

x=1
for (z,y) € 1 C R? and for 0 < t < T and the linear velocities of the two fluid

phases are represented by Darcy’s Law for flow in porous media
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kk.o
Vo = — Vp, 3.b
Ho P ( )
where

Sw+So=1 (4)

The initial conditions are
p(z,¥,0) = po (5)
Sw(xa Y, 0) = Siw (6)

for (z,y) € 0, and the no flux boundary condition
n-Vp=0 )

is assumed to hold for (z,y) € 80 and for 0 < t < T'. The relative permeabilities of
water and oil phases are functions of saturation, relatively general forms of which,

and those employed here, are

S, - S; be
krw(Sw) = @y (1 — ) (8.a)

(8.5)

1“5,-0"5,,, bo
l—sro—si ’

kro(Sa) = a0 (

respectively, where the coefficients ay,, a,, by, and b, are constants independent of

location.
3. Definition of the Parameter Estimation Problem

The reservoir parameter estimation problem can be considered as solving an inverse

problem involving the nonlinear operator equation
Ka= Us (9)

where a is the unknown reservoir parameter, us is the noisy pressure and production

data measured at the observation wells, and the operator K is the reservoir model.
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In a multiphase petroleum reservoir, the parameter a being estimated can
in theory be the absolute permeability (k), porosity (¢), or coefficients appearing
in the expressions for the relative permeabilities (k.o and k,,). In general, the
porosity is better known from log and well data than is the absolute permeability,
and the functional form of relative permeabilities are frequently given as shown
in Eq. (8), so that the unknowns are the coefficients in the relative permeability
expressions (a, Or @4, by, and b,), which are independent of location. In the
present work we focus on the estimation of absolute permeability assuming that
the porosity and relative permeabilities are known so that the reservoir model K
includes the reservoir model equations, Eqgs. (2-8), known parameters (¢, k., and
ko), and the numerical solution scheme. This inverse problem is often referred
to in the petroleum literature as “history matching” since the parameter is to be
estimated from the measured transient history of pressure and production data at
wells distributed over the reservoir domain.

Often there is no solution « that satisfies Eq. (9) exactly, nor is the operator
K directly invertible. Thus: the inverse problem is stated as one of minimizing the
error in approximating Eq. (9). As we have noted, the parameter is usually replaced
by a finite (but usually large) number of new parameters by finite difference (Chen
et al. 1974, Shah et al. 1978) or spline approximation (Banks, 1982, Banks and
Crowley, 1983, Banks and Murphy, 1984, Banks and Lamm, 1985).

Conventional least-squares estimation seeks the parameter that minimizes the

discrepancy between pressure and production data,
Jrs = HKa - u&”z . (10)

The performance function Jrs is generally non-convex, minimized over a large
number of variables, and insensitive to changes in the parameters. As a consequence,
the parameter estimates are (1) dependent on the given initial guess, (2) highly

oscillatory and dependent on the grid system chosen for numerical solution, and (3)
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not continuously dependent on the measured data. Thus, the inverse problem is
“ill-posed” in the sense that the estimation of the parameters is neither unique nor
stable.

Regularization of an ill-posed parameter estimation problem leads to penalizing
the undesired features (non-smoothness) of the parameter estimates. In regulariza-

tion the stabilizing functional represents non-smoothness of the parameter,
2
Jst = “La“H(n)(n) ) (11)

where L is either identity or a differential operator and H(L)(Q) is an appropriate
Sobolev space. The total performance index is then the smoothing functional given

in Eq. (1), which now becomes
Jsm = |[Ka—us|?+ ﬂ“La”%rm(o) (12)

where the regularization parameter, #, measures the relative weight of the penalty
on the non-smoothness compared to the discrepancy in matching data.

Tikhonov’s stabilizing functional (Tikhonov, 1963, Tikhonov and Arsenin, 1977)
is defined as the Sobolev norm of the unknown parameter. When we use spline ap-
proximation with cubic B-spline functions for representing the unknown pa:ra.metér,
afz,y), Tikhonov’s stabilizing functional is given by ”a"%,m), where the Sobolev
space H3(Q) is the set of functions that are square-integrable over {1 and have
square-integrable derivatives up to order 3 (Kravaris and Seinfeld 1986, Lee et al.

1986). More precisely, this stabilizing functional is given by

3
Js =Y ¢mdsr™ (13)

m=0

where Jsr(™), m =0,...,3, represents m-th order derivative terms given by

™ = / / Z( ) (i,,‘;&,:,’il)zdedn (14)
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with dimensionless space variables ¢ = z/Az and n = y/Ay, and the coefficients
¢m, m =0, 1, 2, and 3 satisfy (1) ¢, > 0 for m =0,...,3 (Tikhonov, 1963); or (2)
¢m > 0for m =0, 1, and 2 and ¢3 > 0 (Tikhonov and Arsenin, 1977).

In practical applications of theory of regularization, as Trummer (1984) has
pointed out, Tikhonov’s stabilizing functional can lead to underestimation of the
parameter value itself owing to the term JST(O) in Eq. (13), which is the usual Eu-
clidean norm of the parameter. Locker and Prenter (1980) suggested regularization
with a differential operator defined by “Lklﬁ;u)(n) for the linear least-squares prob-
lem, so that the stabilizing functional is the norm of derivatives of the parameter in
the Sobolev space. When the operator L in Eq. (11) is equal to the two-dimensional

gradient V, Locker and Prenter’s stabilizing functional becomes

3
Js =Y ¢mJsr™ (15)

m=1

where Jsr(m), m = 1,...,3 is the same as above, and the coefficients ¢,,, m =
1,...,3 satisfy ¢; > 0, ¢2 > 0, and ¢35 > 0 so that it does not include the Euclidean
norm of the parameter.

The choice of values of the ¢,’s in Egs. (13) and (15) is arbitrary except for
the inequality conditions given above. One possible choice of ¢,,’s is based on the
length scales used for the finite difference approximation of the PDE’s, Az and Ay.
We will subsequently use ¢; = ¢2 = ¢s = 1 in Egs. (13) and (15), while the choice
of ¢o will be examined in the computational results.

A traditional question in the use of regularization to solve ill-posed problems is
the choice of the regularization parameter 8. Clearly, 8 = 0 corresponds to the non-
regularized problem, while 8 — oo would lead to a physically unrealistic solution.
Miller (1970) suggested a way of determining the regularization parameter 8 from
the ratio of an upper bound of Jr s values evaluated from the measured data (say

Jrs) toan upper bound of Jsr (say Jsr). In this study, assuming that neither Jp g
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nor Jgr is available a priors, we will develop “a rule of thumb” to determine Miller’s
choice of § within our framework of regularization and spline approximation. Ex-
tensive numerical tests show that, for the solutions of non-regularized (§ = 0) and
regularized (8 > 0) problems when the spline approximation is used for both cases,
(a) Jrs does not vary significantly for a wide range of 8 > 0, and the values of

Jrs are close to the observation error in magnitude.
(b) Jsr generally decreases as f increases and Jsr at 8 = O is somewhat larger

than the values of Jgr evaluated for the true profile.

This observation suggests that the value Jpg/Jgr calculated from the non-
regularized (8 = 0) estimation can be used as an approximation of the optimal
regularization parameter. We will discuss later in this paper how this idea can be

implemented in the estimation algorithm.

One might define a “quasi-optimal” value of the regularization parameter as a
B > 0 such that parameter estimates are minimally sensitive to the (logarithmic)
change of 8; i.e., Jsr( %%) is a minimum (Tikhonov and Arsenin, 1977). The
numerical algorithm to find such a quasi-optimal 8 requires repeated solution of
the regularized problem for different #’s. Although we will later examine the effect

on the estimates of the value of 3, we will not use this particular strategy.

The intuitive idea of Generalized Cross Validation (GCV) is to find a 8 at
which the parameter estimate gives the best prediction of unobserved data values.
For that purpose, a GCV function is defined and minimized over 8 > 0 (Craven and
Wahba, 1979). To apply this idea to reservoir parameter estimation, one needs the
parametric sensitivity of pressure and production data, the calculation of which is
specifically avoided in our estimation algorithm for computational efficiency. Thus,

we will not consider the selection of # by GCV.

4. Spline Approximation of Unknown Parameters
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A general approach to representing the spatial variation of the unknown parameters
is through the use of bi-cubic spline functions, in which the parameter a(z,y) is

represented as

NII' Nzn
o(z,y) = Z Z bz(lz, Z)Wi, 1, by (ly, v) (16)
ly=1l,=1
where
balley) = X4 —lat ) L=12..., N, (17)
* y
by(ly,y) = x*(4 - Iy + Ay ) ly =1,2,..., Ny, (18)

and where x*#(-) is the cubic B-spline function. Az, and Ay, are the grid distance
of the spline grid along z- and y-directions, respectively. With this approximation,
a(z,y) is replaced by the set of unknown coefficients, Wi, 1., Iz = 1,2,...,N,, and
l, =1,2,...,N,,.

The grid used for spline representation of the unknown properties need not
necessarily coincide with that on which the actual reservoir model is solved. In
general, the number of coefficients for spline representa.ﬁon should not exceed either
the number of grid cells for the PDE or the number of available data. If too few
coefficients are employed for the spline approximation, the functional derivative of
Jrs with respect to the absolute permeability given by Eq. (B.7) in Appendix
B cannot be properly represented by the derivative of Jrs with respect to the
spline coefficients during the minimization of Jsys, and this may slow the rate of
convergence. Hence, we will employ a spline grid system as dense as that for the
reservoir PDE’s with a minimizing algorithm that is suitable for a system with large

dimensionality.
5. Numerical Algorithm

The problem we now seek to solve is to minimize the augmented objective function

Jsar with respect to the spline coefficoents Wiz =1,2,...,Nz, and I, =
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1,2,...,N,,, subject to Eqs. (2-8). To obtain an algorithm to solve this problem,
two steps are required. First, we must compute the gradient of Jsas with respect
to each W;_; , and second, that gradient is then used in a numerical minimization
method to minimize Jgps. The calculation of these gradients represents the most
time-consuming part of updating the parameter iterates. In a problem as large as
the current one these derivatives must be able to be calculated directly. Seinfeld
and coworkers (Chen et al., 1974, Wasserman et al., 1975, Van den Bosch and
Seinfeld, 1977) and Chavent, et al. (1975) have developed algorithms for estimating
parameters in PDE’s based on optima.} control theory so that the algorithm requires
only first-order functional derivatives of the performance functional with respect
to the parameter to be estimated, and this approach is used here. To compute
the functional derivative of Jrs with respect to the absolute permeability, first
solve the reservoir PDE’s with given initial conditions at ¢ = 0; then, as shown
in Appendix B, solve the adjoint system equations, Eqs. (B.3—4), backward with
terminal constraints given by Egs. (B.5-6). At the end of each time step during
the solution of adjoint system equations, compute 8Jrs/8k;, 1 = 1,...,N by Eq.
(B.7). '

For most multivariate minimization problems, from the point of view of compu-
tational efficiency, methods that require second-order derivatives of the performance
function are not recommended. As a result, various methods have been developed
that utilize only first order derivatives, among which are conjugate gradient, quasi-
Newton, and partial conjugate gradient methods. The conjugate gradient algorithm
requires an exact line search to compute the length of each descent direction vector.
Quasi-Newton methods use the inverse Hessian matrix to compute the descent vec-
tor, which requires a substantial amount of memory, although it does not require
an exact line search. In general, quasi-Newton methods are preferred for relatively

small problems, and conjugate gradient methods for large problems (Scales, 1985).
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On the other hand, partial conjugate gradient methods use about the same amount
of memory as does the conjugate gradient method, without requiring an exact line
search, and show good performance over a range of problem sizes. In this study the
partial conjugate gradient method of Nazareth (1977) is used as the core minimiza-

tion technique.

An important question concerns starting the algorithm. Convergence difficul-
ties are sometimesu experienced when the initial guesses of the parameters are far
from their actual values. To attempt to alleviate this problem and to generate an
algorithm that is as “automatic” as possible, we begin the estimation by deter-
mining the unknown parameter as uniform over the entire region. Thus, to start,
we estimate a single value of k for the entire region, which minimizes Jrs. This
vglue then serves as a starting point for the full estimation algorithm. The ratio-
nale behind this strategy is that convergence problems should not be encountered
in estimating a single parameter. The single value, while not accurate in its spatial

detail, nevertheless serves as a good starting point for the full algorithm
Based on the foregoing discussion we suggest the following algorithm:
Step 1 In the absence of @ priori information on the unknown parameters, find

the flat initial guess of the parameter, i.e., one whose values are the same

over the whole spatial domain, that minimizes Jg.

Step 2 Using the initial guess of the parameter determined from Step 1, find the
spatially varying parameter that minimizes Jp s and compute the values

of JLS and JST-

Step 3 Using the parameter profile and the values of J; g and Jgr determined
in Step 2, let 8 = Jrs/Jsr and find the spatially-varying parameter that

minimizes Jgps.

6. Computational Examples
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The remainder of this work is devoted to the numerical evaluation of the algo-
rithm on the estimation of absolute permeability in a two-phase, two-dimensional
reservoir, as described by Egs. (2-8). We want to evaluate the algorithm on a
well-defined test problem for which the “true” absolute permeability distribution is
known a priori. For this reason, we will specify the true parameter values, generate
the pressure data by solving the reservoir model with these values, and then try to

recover the true parameter values by using the estimation algorithm.

The specification of the reservoir is given in Table I, and its shape and well
locations are shown in Figure 1. The production rate at each of two production wells
(denoted by “P”) is 3 x 103 m3/s, and the injection rate at each of six injection
wells (denoted by “I”) is 10~2 m3/s. The data were chosen so that the system is
representative of actual reservoirs. To generate néisy measured pressure data at
the observation wells, we solve the reservoir PDE’s for the presumed true absolute
permeability profile and add a set of uniformly distributed pseudo-random numbers

(which are generated by the IMSL subroutine GGNML on a VAX 11/780).

The ill-posed nature of parameter estimation problems often leads to irregu-
lar estimated surfaces. In order to demonstrate this ill-conditioning, we will use
the inclined plane shown in Figure 2.a as the true absolute permeability pro-
file. We will also test the ability to recover a k surface of complicated geome-
try such as that shown in Figure 2.b. Since the k profile shown in Figure 2.a
yields Jgr(® = JST(a) = 0 and that shown in Figure 2.b is inadequate to test
ill-conditioned estimation in the middle of the domain, we use yet a third k surface,
shown in Figure 2.c, for which J 37(2) and Jsr (3) have nonzero finite values and for
which irregular behavior of the estimates can be visualized over the whole reservoir

domain.

Throughout the numerical example, we use Locker and Prenter’s (1980) sta-

bilizing functional with differential operator (L = V and ¢; = ¢ = ¢3 = 1), the
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Table I  Specification of Reservoir Shown in Figure 1

(1) Fluid properties

Water Oil
Compressibility, Pa™! 1.94 x 10~° 0.97 x 10~°
Viscosity, Pa-s 10~3 3x10°3
Relative permeability ay =0.9 a, =1.0

by = 2.5 bo=2.0

Siw =0.1 Sro = 0.2

Well flow rate:

gx < O for production wells gy, = 1‘;'\—_,‘!‘709;:

Qo = G — Qu,

g > 0 for injection wells Que = 4x do. =0
(2) Rock and reservoir properties
Compressibility, Pa™! 2.91 x 10~9

Porosity
Initial pressure, Pa

Reservoir Dimension, m

3

é¢sc = 0.2 —0.05sin (2xz/zL) sin (ry/yr)

1.52 x 107
1500 x 1000 x 10
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regularization parameter based on Jrg/Jsr calculated from the non-regularized
estimation, and a 15 x 10 grid system for spline approximation, unless specified
otherwise, with a PDE grid system of 15 x 10. Since absolute permeability can
be estimated from pressure data alone (Van den Bosch and Seinfeld 1977), we use
only pressure data in this study. The smoothing functional is minimized until the
maximum value of the derivative of Jgas with respect to the spline coefficients is
less than 1/1000 of that for the flat initial guess of k. All computations were carried
out on a CRAY X-MP/48.

8.1 Effect of Initial Guess

Since the uniqueness of the solution of the parameter estimation problem is not
guaranteed and there may exist unidentifiable regions based on the configuration of
measurements and the time period over which the data are available, convergence
of the algorithm may depend on the given initial guess.

The assumed true absolute permeability profile shown in Figure 2.a,

k(z,y) = 0.2 + 0.2-— , (19)
L

was estimated using 300 noisy pressure data from 15 wells (20 data from each well)
measured over the period 0 < ¢ < 1.3 years. (The conventional unit of the absolute
permeability, and used in Eq. (19) and thereafter, is the darcy = 0.987 x 10~ 12m?2.
For consistency of units, k in Eq. (3) is in units of m?.) The flat k value described
in Step 1 of our algorithm that minimizes Jr ¢ is 0.29 darcies and the Jrg value at
this value of k is 28.8 times as large as the J.g value calculated from the observa-
tion error. For an initial guess of k(z,y) = 0.29 darcies and k(z,y) = 0.1 +0.4z/z1,
darcies, the smoothing functional was minimized for § = 0 (the suggested 3’s based

2

on our algorithm are 2.25 and 1.88 darcies™“, respectively) and again minimized for

8 = 2.3 darcies™? starting from the result of the non-regularized estimation. Table
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II shows the results of the estimation, and Figure 3 shows the parameter estimates.
Figure 3 shows multiple solutions for non-regularized estimation, whereas for reg-
ularized estimation, the regions of multiple solution exist only near the boundaries
of z = 0 and z = zr, where flows of both oil and water are too small to provide

meaningful data.
6.2 Effect of Spline Grid

To study the effect of the choice of spline grid, we consider 15 x 10, 12 x 9,9 x 7,
and 6 x 5 spline grid systems, where the grid cells are square for the last three cases.
In all cases the PDE grid remains as 15 X 10. The assumed true profile of absolute

permeability shown in Figure 2.b,

k(z,y) = 0.2 + 0.2exp (_ (Af;— 1)2— (255 i 1>2>
+O.2exp(_ (4_5;_3)2_ (2£~1)2)

was estimated. The flat initial guess of k = 0.31 darcies results from Step 1. We then
carry out the estimationfor 8 =0and g = 1.7 darcies ~2 starting from the converged
solution of the # = O case. Figure 4 show the parameter estimates for the cases
given in Table III. Based on the non-regularized estimation, our algorithm suggests
B’s as 1.7, 2.5, 2.2, and 5.0 darcies™2 for the spline grid systems given above. Non-
regularized estimates shows ill-conditioning near the boundaries for the N,, x N,
= 15x 10 and 12 x 9 cases, but the regularized estimates are insensitive to the choice
of spline grid except for 6 x 5 spline grid, for which the parameter estimates are
incorrect no matter whether or not regularization is applied. (See Table III.) CPU
times in Table III show that reducing the number of spline coefficients, N, x Ny,,
does not increase the rate of convergence. Thus a grid system on the order of

that used to solve the PDE’s can be employed for the parameter estimation by
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regularization without introducing the ill-conditioning that is prevalent in non-
regularized algorithms. The regularization parameter depends on the spline grid

system, such that a finer grid system generally yields a smaller value of 8.
6.3 Effect of Stabilizing Functional

The main difference between Tikhonov’s and Locker and Prenter’s stabilizing func-
tionals is the value of the weighting coefficient ¢;. We will test the cases ¢; = 1, 0.3,
0.1, and 0 and ¢; = ¢2 = ¢3 = 1 for the true k shown in Figure 2.c,

k(z,y) = 0.3 — 0.1sin (-2-7-3) sin (1’4) . (21)

TL yL

In this case it is advantageous to have a large amount of data so that effects of
the number of data are absent. Consequently, we use 1500 noisy pressure data
measured over a period 0 <t < 6.3 years (100 data at each of the 15 wells). Step
1 produces the flat initial guess of k = 0.28 darcies. The regularization parameter
is then chosen based on our algorithm using ¢, = 0, which is 2.1 darcies™2. Table
IV shows that the larger ¢, leads to a mismatch of data (JLg), an underestimate
of the parameter (JST(O)), and ill-conditioning of parameter estimates (J (¥ and
Jsr (3)). It can be deduced from this example that, with Tikhonov’s stabilizing
functional, increasing § will amplify the mismatch of data and the underestimate of
the parameter; while decreasing § increases ill-conditioning of the estimates. One
possible way to improve the parameter estimates is by decreasing ¢o, the limiting

case of which is use of a stabilizing functional with the differential operator given

by Eq. (15). Figure 5 shows how the estimates vary as ¢, changes.
6.4 Effect of the Regularization Parameter

We now wish to study the effect of the value of the regularization parameter 8 on

the estimation. To do so we employ the true k given by Eq. (21) and return to
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a.s

k(z,y./2)

z/zp

Figure 5 Effect of stabilizing functional on the estimation of k given by Eq. (21)

true k

cemecmnmcea. =0
v—e—-—-. ¢ =1and 8 = 2.1 darcies™?

cmmmeme—— ¢ =0.32and f = 2.1 darcies™?
—— . ¢ =0.12and 8 = 2.1 darcies™?

cmecmeem. ¢ =0and f = 2.1 darcies™?
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the case of 300 data over the period of 1.3 years. The results are summarized in
Table V. The value of 8 based on the non-regularized estimation is 1.468 darcies™2.
Other values of # were chosen so that they form a geometric sequence increasing
and decreasing by factors of 2 around this value. If 8 < 0.091 darcies™2, the mini-
mization of Jgas, which is started from the result of the non-regularized estimation,
is completed in one iteration, since the regularization component (8Jgsr) is negligi-
ble compared to Jg. If 8 > 11.74 darcies™2, the values of J.g become very large,
and the algorithm experiences convergence difficulties. For 8 = 0.734 darcies™?, the
algorithm converges faster than any of the other cases. On the whole, J. g increases
and Jsr and its component terms (except Jsr (0)) decrease as § increases. Figure
6 shows the effect of the values of 8 on the estimated surface. We note that at
the value of B based on our algorithm, neither is the regularization effect negligible
nor is there significant data mismatch, and the estimated surface shown in Figure

6 approximates the true surface shown in Figure 2.c.

6.5 Stability of Regularized Solution

The most important feature of regularization is the stability of the solution so that
small perturbations in measured data (random measurement error in the pressure
data) imply small perturbations in the parameter estimates. To explore the sta-
bility of the parameter estimates, we use the absolute permeability given by Eq.
(19) and three different simulated noisy pressure sequences scaled so that the root
mean-square observation error is about 0.3 x 10° Pa. Figure 7 shows that the
non-regularized estimates are unstable over the entire reservoir domain while the
regularized estimates exhibit instability only in the regions near the boundaries
(z = 0 and = = z) of the reservoir where the flow is negligible. Table VI shows
the performance data for the three different data sets. Note that the difference

between the values of Jgr and its terms (except J ST(O) ) for the different data sets
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are reduced by a factor of 10 as a consequence of regularization.

7. Conclusions

The purpose of this study has been to develop an algorithm for parameter estimation
by regularization and spline approximation for two-phase petroleum reservoirs.

The algorithm is divided into three steps. Step 1 seeks a flat initial guess of the
parameter. This step avoids convergence difficulties that may arise in estimating
spatially varying parameters from a poor initial guess. Usually this step converges
within a few (4-6) iterative solutions of the reservoir and adjoint equations. Step
2 is devoted to non-regularized (8 = 0) conventional least-squares estimation by
spline approximation. The spline grid system is chosen so that the number of spline
coefficients is the same as the number of grid cells for the solution of reservoir
PDE’s, unless the number of observed data is less than the number of unknown
coefficients. The parameter estimates from this step are usually ill-conditioned and
dependent on the choice of the spline grid. This step usually requires 20-40 iterative
solutions of the reservoir and adjoint equations to reduce the gradient value of the
performance index to 1/1000 of its starting value. In this step, approximate values
of the upper bounds of Jp s and Jgr are then estimated. In Step 3, parameter
estimation by regularization and spline approximation is carried out to obtain the
final solution. In this step, the regularization parameter is selected as the ratio of
Jrs to Jgr determined in Step 2, and Locker and Prenter’s stabilizing functional
is used. The algorithm generally converges after 20-40 iterative solutions of the
reservoir and adjoint equations.

For non-regularized estimation, the parameter estimates are sensitive to the
choice of the spline grid, whereas for regularized estimation, the results are found
to be insensitive to the choice of the spline grid (unless it is too coarse to properly

represent the spatial variation). Since the value of the regularization parameter is
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dependent on the dimension of the spline grid, it is recommended that one use a
grid system for spline approximation such that the number of spline coefficients is
approximately equal to the smaller of the number of PDE grid cells or the number of
observation data. Locker and Prenter’s stabilizing functional with gradient operator
was found to be superior to Tikhonov’s stabilizing functional from the point of view
of numerical performance.

The algorithm does not require any a priors information on the parameter to
be estimated except that the parameter can be properly represented by a spline
approximation. The parameter estimates based on the algorithm are shown to be
superior to conventional non-regularized least-squares estimation in the sense of

stability to the observation error and initial guess dependency.
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Appendix A. Finite Difference Reservoir Equations

The basic model consists of two coupled nonlinear PDE’s for pressure p and
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water saturation S,. It is customary to discretize them usihg finite difference
approximations to yield a set of nonlinear algebraic equations. We solve these
equations sequentially at each time step, i.e., solve the equations for pressure first,

then for water saturation, and repeat these procedures until the solution converges

(Aziz and Settari, 1983).

In order to solve the reservoir PDE’s, Egs. (2), (3), and (7) are discretized to

give implicit time finite difference approximation by

¢ % 75— ¢ 'y n -—
=-Q Bi_ (cw + €5)Sul (pF ~ 97 71) = Bsf_l(sw, Su? ™)
Al
-ZQMJ WgJ _pJ)+Zqu ( )
JEJ;
=0
r=- Q250 ¢Sf: (ot ¢)(1 = Su2)(P7 — 5771 + Qs "‘S,?: (Sul = Su?™)
By? By
Ne 4.
- E Qi.J')‘O?,j(P? - ?) + Z 402_};’ o
JEJ; =1
=0
(A.2)
forn=1,...,N; and 1 € N defined by
N={i|t=4,+N (s, -1),é,=1,...,N,, ¢, =1,...,N, }
(A.3)

={1,...,N}

where N = NN, and ¢, and 1, denote PDE grid blocks along z- and y-direction,

respectively, and the index set J;, defined for each 1 € N by
3i={jlj=i-Nai-1i+1L,i+ N} [N, (A.4)

is introduced for simplicity, with initial conditions
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Su? = Siu. (A.6)

In Eqgs. (A.1) and (A.2) the mobilities A, ; and A,l;, ¢ =1,..., N are given by

ki ikew?
Aolj= =200 (A.7)
’ B
ki ikeol
APy = —2 120 (A.8)
' HBo
where the algebraic average is used for the absolute permeability
k; +k;
ki = '.; 2 (A4.9)

and upstream weighting is used for the relative permeabilities for the stability of

numerical integration given by

krw?,j = krw (Sw ) and kro, g kf-o(‘Sw;l if P? D P?
(4.10)
krwztj = krw(sw?) and kro:j = kro(sw?) otherwise.

The porosity distribution at pressure psc, denoted by ¢sc, is known where SC
denotes “standard condition.” Compressibility effects are included by using the

so-called formation volume factor of rock By,
By (p) = e°(pscP) (A.11)

where in evaluating B; an explicit time difference scheme is used in the finite

difference approximation.

First-order variations of Egs. (A.1-2) with respect to S, are given by

6RT = - Q5% (cu +e)8SuT (0T ~ P} 7Y) — Quiii 65,7

B"" B!
=Y 0 (D, + 2ss.r) (67 - 0
ﬁJ’aw‘ 3547 Y (4.12)

dqwk n t‘L
+stw?65 b ]
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SR,P =+ Q; ¢sc=1 (co+¢£)6Su, T (P? — p?71) +Qt ¢sc, 25Ci 5g,7
B;? B,
ONolyso n y ol o
_ }: Qi.s (as,,,:‘ S5 5%+ 3 5 nas ) (p? - p7) (A1)
J€d;
N
R dgop ,,5, i
+’§ aSr 65uP =2

to solve the finite difference equations for S,,.

At time step t, = nAt, n = 1,..., N, take initial guesses of p?* = p:“l and

Sul =Sur tfori=1,...,N and solve
R,}+ R,: =0 (A.14)

for p?, + = 1,...,N where R,’s and R,’s are given in Egs. (A.1) and (A.2),
respectively. Eq. (A.14) does not include time-derivative terms of Sy, and is a

linear pentadiagonal system with respect to p, so that it is easily solved by the

Iterative Alternate Direction Implicit (IADI) method.

Secondly, solve

(o + cf)(l

w Sw n
(c +c°f JSulpn_g (A.15)
X

13

w
3 Rw:l —

t

for Sy, ¢+ = 1,...,N by Newton’s method, since Eq. (A.15) is nonlinear with
respect to Sy,. Eq. (A.15) does not include time-derivative terms of p, and the total

compressibility, ¢, is given by
el = (cw +¢7)Suwl + (co+cf)(1— Sul) . (A.16)
Taylor series expansion of Eq. (A.15) up to first order gives

7
_lewten)Sul paspm 2o (4.17)

(ot e)L=Su?) p o, sp o

b ”
Ct; Ce;
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fori=1,...,N, where the first-order variation terms, §R,’s and §R,’s, are given

in Eqs. (A.12) and (A.13), respectively. Eq. (A.17) is a linear pentadiagonal system
with respect to 6S, and solved for 6S5,,¢=1,...,N by the IADI method.

Then we compare the current iterate of p? and S,, ¢ = 1,..., N with the

previous ones, and repeat solving Egs. (A.14-—17) until convergence.
Appendix B. Functional Derivative of J. g

We present the finite difference version of the first-order necessary condition

for a minimum of the least-squares discrepancy function defined by

o

Ne 2
NtN ZZ[ ( zu,yu,tn)—p“‘:)

lyv=1

Jrs =
(B.1)

2
+WF' (FWO(xu’yV7tﬂ) F'z};‘”) }

where p°®] and FZb*, are the pressure and water-to-oil ratio (= S,/ S,) data
measured from the v-th observation well located at (z,,y.), v =1,...,N,, at time
tn,n=1,...,N;. The corresponding Hamiltonian of the conventional least-squares

problem is
_ N: N
Jes=Jis+ ) ) (bulRul + Yo RoF) . ; (B.2)
n=1i=1

Collecting terms that include 6p? yields

Rp Qt¢scs ((Cw +Cf) n+1¢w:$+1 + (Co+c_f)(1 _ n+1)¢on+1)

- Q. f‘fc ((cw + €1)Sulbul + (co + ¢r)(1 = Su?)to?)
- Z Qt,] Awrj (ww; ¢w?) + Ao;,; (‘/’o? - ‘l’o?)) (B3)
JEJ;

obs
: Sy
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and terms that include 65, yield

R,*=Q, (¢SC‘(ww“+1 Yot t1) — ;Sf: (Yu? — wo:‘))

— (6w + €5)Pul = (o + e)th0) Qo585 (o1 — p2-1)

tB n—l
My} ] o
= ¥ i (FmE Wl — bul) + G el wo;-‘)) (57 - 23)
JEJI
QWr dFy.? <2 Mo o s,
St woy n __ pobs™ n SHwg Yk
+ NtN dSw:; l’-.].(F"A“'-"t Fwo u)6‘|‘v + (wwt ¢01 ) z dsw:z h
=0
(B.4)

fort € N and n = N;, Ny — 1,...,2,1 with terminal constraints
wittl =0 (B.5)

ot tl =0 (B.6)

for ¢ € N. The functional derivative of J s with respect to k;, 1 € N is given by

8.] rw; krO:' n n n ny
LS :—-“‘ZZQt,J( J d)wt ¢w?)+—l;;-i(¢°i —¢°J')) (p‘ —pj}.

n=1jeJ;

(B.7)

The adjoint system equations are solved sequentially; i.e., Eq. (B.3) is solved

for a new variable ¢, defined by

n_ (Cwter)Sul o (cotes)(l—S,T
gy = ot etlBely Lot )02 Fud) (B9
Ctg Ct;
and Eq. (B.4) for ¢, defined by
‘po? = ¢'w? - ¢o? (BQ)

where the JADI method is employed for the solution of each equation, repeating
this procedure until the solution converges. From 8Jrs/8k;, ¢+ = 1,...,N and
the derivative of Jsr with respect to the spline coefficients we can compute the

derivative of Jsar with respect to each spline coefficient (Lee et al., 1986).
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List of Symbols

o

P
-
€

maximum value of oil phase relative permeability

maximum value of water phase relative permeability

formation volume factor of rock

power index of oil phase relative permeability function

power index of water phase relative permeability function
function given in Eq. (17)

function given in Eq. (18)

compressibility of rock, Pa™!

compressibility of oil, Pa~!

total compressibility defined by (cw + ¢f)Suw + (co + ¢5)(1 — Su)

Pa~!
compressibility of water, Pa™1

s

Vthickness of reservoir, m
Sobolev space of functions that are square-integrable and have

square-integrable derivatives up to order 3

Sobolev space associated with the differential operator L
index set defined by Eq. (A.4)

least-squares discrepancy term

upper bound of J. s

Hamiltonian of Jz s associated with reservoir PDE’s Egs. (A.1-2)
smoothing functional

stabilizing functional

upper bound of Jsr

nonlinear operator defined by Eq. (9)

absolute permeability, darcies

relative permeability of oil

relative permeability of water



2z zz® 232N

vz E 7

Psc

Qi,f
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differential operator

number of PDE grid cells given by NN,

index set defined by Eq. (A.3)

outward normal vector defined at the reservoir boundary, m
number of observation wells

number of observations at each well

number of injection-production wells

number of PDE grid cells along z-direction

number of spline grid points along z-direction

number of PDE grid cells along y-direction

number of spline grid points along y-direction

pressure, Pa

initial pressure, Pa

pressure at standard condition, Pa

quantity defined by Ay/Az if 1 —j = +1; Az/Ay if i — j = £N,;

0 otherwise

total volumetric flow rate at injection-production well, m3/s
volumetric flow rate of oil at injection-production well, m>/s
quantity defined by AzAy/At, m?/s

volumetric flow rate of water at injection-production wells, m3/s
residue of oil phase equation defined by Eq. (2.b)

residue of water phase equation defined by Eq. (2.a)

irreducible water saturation

oil saturation

residual oil saturation

water saturation

total time period of observation, s
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t time, s

tn time of observation, s

uUs noisy measured data

Vo linear velocity of oil, m/s

Vu linear velocity of water, m/s

Wg weighting coefficient for water-to-oil ratio discrepancy term in Jr g
Wi i, spline coefficient for parameter a at spline grid point (Iz,1,)
W, weighting coefficient for pressure discrepancy term in Jr s

z space variable, m

Ty z-coordinate of x-th injection-production well, m

zr width of reservoir, m

T, z-coordinate of v-th observation well, m

y space variable, m

Y y-coordinate of k-th injection-production well, m

YL length of reservoir, m

Yo y-coordinate of v-th observation well, m

Greek Letters

a unknown parameter to be estimated

B regularization parameter, darcies™2

5(1) Dirac delta function

6R, first-order variation of R, defined by Eq. (A.12)
SR, first-order variation of R,, defined by Eq. (A.11)
6 5 Kronecker delta

6Sy ﬁrst—order variation of S,

At time interval of each observation, s

Az PDE grid size along z-direction, m



Ay
Ay,
on

Po

Pw

bsc

x**

Yo
Yo
Vs
Yuw
Nl

Subscripts
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spline grid size along z-direction, m

PDE grid size along y-direction, m

spline grid size along y-direction, m

boundary of reservoir

weighting coefficient in stabilizing functional, m =0,...,3
dimensionless space variable defined by y/Ay
mobility of oil defined by kk,o/u,, darcies/Pa -s
mobility of water defined by kk,y /pw, darcies/Pa -s
viscosity of oil, Pa-s

viscosity of water, Pa-s

dimensionless space variable defined by z/Az

density of oil, Kg/m3

density of water, Kg/m3

porosity of rock

porosity of rock at standard condition

cubic B-spline function

adjoint variable associated with oil phase equation
quantity defined by Eq. (B.8)

quantity defined by Eq. (B.9)

adjoint variable associated with water phase equation

reservoir domain

rock

grid cell for the solution of PDE, € N

PDE grid cell at which k-th injection-production well is located
PDE grid cell at which v-th observation well is located

grid cell for the solution of PDE, € J;



Superscripts
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time step, € {1,2,...,N;}
order of derivative of parameter
oil phase

standard condition

water phase

injection-production well, € {1,2,..

observation well, € {1,2,...,N,}

order of derivative of parameter

time step, € {1,2,...,N: }

°’Nw}
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Chapter IV

Estimation of Absolute and Relative Permeabilities

in Petroleum Reservoirs

Abstract. The estimation of absolute and relative permeabilities for petroleum
reservoirs on the basis of noisy data at wells is considered. The spatially varying
absolute permeability is estimated by regularization combined with a bicubic spline
approximation. Relative permeability is represented by a given function of satu-
ration with unknown coefficients. Numerical results provide an indication of the
estimability of the two permeabilities in conventional petroleum production opera-

tions.

The text of Chapter 4 consists of an article coauthored with J. H. Seinfeld,

which has been submitted to Inverse Problems.
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1. Introduction

Once wells have been drilled down into a reservoir containing recoverable petroleum,
the local properties of the reservoir rocks and fluids must be determined. A variety
of complex acoustical, electronic and magnetic techniques are available that, when
lowered into the well, can be used to determine the local properties of the formation
and fluids in the neighborhood of the well. Estimates of the reservoir properties
are needed, however, throughout the entire reservoir, not just at the wells, in order
to simulate various production strategies to try to 6ptimize the recovery of the
petroleum. To estimate the properties on the reservoir, past production histories
are simulated. The properties are determined as those that produce the closest
possible match of the observed and predicted histories. This so-called history-
matching process has been addressed in the petroleum, hydrology, and mathematics
literature for some 20 years or so (Jacquard and Jain, 1965, Carter et al., 1974, Chen
et al., 1974, Chavent et al., 1975, Wasserman et al., 1975, Chen and Seinfeld, 1975,
Gavalas et al., 1976, Shah et al., 1978, Neuman and Yakowitz, 1979, Yakowitz
and Duckstein, 1980, Neuman and Carrera, 1985, Neuman, 1973, Sun and Yeh,
1985, Yeh, 1986, Yeh and Yoon, 1981, Yeh et al., 1983, Carrera and Neuman, 1986,
Seinfeld and Chen, 1978, Yoon and Yeh, 1976, Tang and Chen, 1984, Van den Bosch
and Seinfeld, 1977, Watson et al., 1984, Lee et al., 1986, and Lee and Seinfeld, 1986).

In the early stages of production of a petroleum reservoir, it can often be as-
sumed that the reservoir contains only a single fluid, oil. In that case the reservoir
behavior is described by a single linear parabolic PDE for pressure. The reservoir
parameters that enter the equation, and are subject to estimation, are the rock
porosity ¢ and the absolute permeability &, both of which vary with location in
the reservoir. Most of the above cited references are addressed to the case of a
single-phase reservoir. (In case of an aquifer, although the reservoir fluid is wa-

ter, the pressure is governed by the same PDE as in the case of an oil reservoir.)



- 64 —
Generally, one must account for the fact that oil and water are present together
in petroleum reservoirs, and the resulting reservoir model consists of two coupled
nonlinear PDE’s. In addition to the porosity ¢ and absolute permeability k, the
two-phase case is characterized by the relative permeabslities k., and k.o, (“0” refer-
ring to oil — “w” referring to water) that are presumed to be functions of the local
fluid saturation in the medium. The precise values of the two relative permeabilities

are usually not known.

The essential difficulties in the petroleum reservoir inverse problem are twofold.
First, the reservoir properties are spatially varying, and the estimation of a spatially
varying permeability is well known to be an ill-posed problem (Chavent, 1979ab,
Seinfeld and Kravaris, 1982, Kravaris and Seinfeld, 1985). Second, the oil-water
reservoir is aA highly nonlinear system, for which rigorous results concerning its

inverse problems do not exist.

The ill-posed nature of the single-phase permeability estimation problem has
been attacked by Bayesian approaches (Gavalas et al., 1976, Shah et al., 1978) regu-
larization (Tang and Chen, 1984, Seinfeld and Kravaris, 1982, Kravaris and Seinfeld,
1985, 1986, Lee et al., 1986, Neuman and de Marsily, 1976) and spline approxima-
tion (Banks and Lamm, 1985). While the Bayesian approach-requires a priors
statistical information on the unknown parameters that may not be generally avail-
able and spline approximation, in and of itself, does not guarantee well-posedness,
the regularization approach offers both rigorous stability and convenient computa-
tional implementation. The first step of the regularization formulation is to measure
the non-smoothness of the parameter by its norm in an appropriate Hilbert space,
called the stabilizing functional, and thén to seek the value of the parameter that
minimizes the weighted sum of the least-squares discrepancy term and the stabiliz-
ing functional. In previous applications of regularization to the petroleum reservoir

inverse problem, Lee et al. (1986) estimated absolute permeability and porosity in



- 65—
a single-phase reservoir and Lee and Seinfeld (1986) estimated the absolute perme-
ability in a two-phase reservoir.

The object of the present paper is to develop an algorithm for the simultaneous
estimation of absolute and relative permeabilities in two-phase petroleum reservoirs.
In related work on two-phase reservoirs Van den Bosch and Seinfeld (1977) inves-
tigated the estimation of constant absolute permeability and porosity and relative
permeabilities near a single producing well where radial syr;a.metry can be exploited.
Watson et al. (1984) estimated absolute permeability, porosity and relative perme-
abilities simultaneously, assuming that the absolute permeability and porosity are
each a constant independent of location. The present paper addresses the more
practical case in which the absolute permeability is spatially varying. (Since the
porosity is generally less variable than the permeability and also is better identified,
we do not consider its estimation here.) |

The next section defines the mathematical model of the oil-water petroleum
reservoir. Section 3 then defines the inverse problem associated with estimating
absolute and relative permeabilities. In Section 4 we present a numerical regular-

ization algorithm, and section 5 is devoted to a detailed computational example.
2. Mathematical Model of Two-Phase Petroleum Reservoir

Consider a two-dimensional oil-water reservoir that has sufficiently large areal extent
so that we can assume that the pressure change and hence the flow in the vertical
direction is negligible compared to that in the other two directions (Aziz and Settari,
1983, pp. 204 - 243). Assuming that the oil and water phases are immiscible, the

equatioﬁs of mass conservation for the oil and water phases are

™ é(z — 2c)6(y — yx)

(Po¢so) +V- (Povo) = Zpo ok h (1)
(pw¢S )+ V- (puVa) pr wna(z — z"),f(y = ) (2)
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for (z,y) € N and 0 < t < T, where S, and S,, the volume fractions of oil
and water with respect to the total fluid volume, called oil and water saturations,
respectively, satisfy S, = 1 — S,. The oil-water reservoirs that do not include
gas phase generally are slightly compressible systems; i.e., the porosity, ¢, and the
density of oil, p,, and water, p,,, are weak functions of pressure. R is customary that
the functional dependencies are given by ¢; = (1/¢)(d¢/dp), co = (1/p0)(dpo/dp),
and ¢y = (1/pw)(dpw/dp) where ¢y, ¢,, and ¢,, denote the compressibilities of rock,
oil, and water and are assumed to be constant over the entire region of pressure
change of the reservoir (Aziz and Settari, 1983, p. 13). The volumetric flow rates
of the water and oil phases at the wells located at (z,y.) are denoted by ¢, and
Quwes £ = 1,...,Ny. For injection wells, g, = 0 and ¢,, > 0. For production wells,
g, and ¢, are negative, and the ratio g,, /g, is proportional to the ratio of local flow
velocities of water to oil at the bottom of wells. The thickness of the reservoir, A,
is assumed to be constant over the whole reservoir domain.* The linear velocities

of the oil and water phases are assumed to be described by Darcy’s Law,

kk.o

Vo = — . Vp (3)
kk

Vo = ———Vp, 4
VP (4)

where the absolute permeability k is a parameter characterizing the fluid conduc-
tivity of a porous medium, u, and u, are the viscosities of oil and water, respec-
tively, and the relative permeabilities of oil and water, k,, and k,, respectively,
are assumed to be functions of fluid (water) saturation within the porous medium

independent of flow rate and fluid properties. Widely used functional forms of the

* If h is spatially varying, then the integrated properties Ak and h¢ are subject
to estimation instead of k and ¢, respectively, in the reservoir parameter estimation

problem, but it does not change the structure of problems.
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relative permeabilities, and those employed in this study, are

1"Sro"sw)bo

kro(sw) = Qo (1 — Sro — Si (5)

St = S )b' ©)

krw(sw) = Gw (1 - Sro - S,'

for S < Sw < 1 — S,, where irreducible (or connate) water saturation, S,
and residual oil saturation, S,,, are the lower bounds of S,, and S,, respectively,
under which water and oil, respectively, become immobile with reasonable pressure
gradients. The relative permeabilities are each less than unity, and typically, their
sum is also less than unity for S;, < Sw < 1 - S,, (Collins, 1961, pp. 53 - 55).

Egs. (1 - 6) together with the no-flux boundary condition,
n-Vp=0, (7
for (z,y) € 91 and 0 < t < T, and the given initial conditions
p(2,,0) = po(z, ) (8)

SW(Ia Y, 0) = SWO(I: y) (9)

for (z,y) € Q1 describe the water-driven oil recovery process for a petroleum reservoir
with an impermeable boundary. Egs. (1 - 9) are solved numerically using finite
difference approximation. Physically, these equations describe the movement of
both phases, usually as water is intentionally pumped down certain wells to drive the
oil in place toward other wells where it is produced. When the water breaks through

at the production wells, the displacement process is considered to be complete.

3. The Inverse Problem

It is desired to estimate simultaneously the absolute permeability k and the relative

permeabilities, k., and k,,, from data normally available at wells that have been



- 68 -
drilled into the reservoir. Since k,, and k., are assumed to be given by Egs. (5)
and (6), their estimation reduces to that of the two unknown constant parameters
b, and b,,. The measured data consist of the pressure at N, wells and at N, discrete

times over 0 <t < T and of the water fraction of the total flow at each well,

krw /IJ'w
= . 10
¢ krw/tiw + keofto (10

The usual least-squares objective function consists of two contributions, one
each from the pressure and the water flow observations. We define o;‘,’ as the mean-
square error between the calculated and measured pressure data

Nt o n 2
( zu,yu: )—pOb‘y) (11)

n-.-lv-l

where (z,,y.) € 1, v = 1,..., N, denote the locations of the observations, that is
the wells, and t,, n = 1,..., N; are the observation times. Similarly, we define a?
as the mean-square error in the water flow data,

N: N,

o = NN,ZZ (fw(:cuayu, n) — fO5 )2 . (12)

n=iv=l
Then the least-squares objectlve function is given by a weighted sum of the two

contributions

Jrs(kyboyby) = Wpo? + WioF (13)

where W, and W; are the weighting coefficients for the pressure and flow-rate terms,
respectively.

The conventional least-squares identification problem is to estimate k(z,y),
b, and b, to minimize Jrs. The spatial variation of k leads to an ill-posed in-
verse problem, and hence we turn to a regularization formulation. Kravaris and
Seinfeld (1985, 1986) extended the concept of regularization to the estimation of
coefficients in PDE’s. Regularization of a problem refers to solving a problem re-

lated to the original problem, called the regularized problem, the solution of which
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is both more “regular” and approximates the solution of the original problem. In
Tikhonov’s regularization formulation (Tikhonov and Arsenin, 1977), the measure
of non-smoothness of the parameter being estimated, called the stabilizing func-
tional, is represented by a norm of the parameter in an appropriate Hilbert space,

for example,

Ist(k) = ||k|[Zrs () » (14)
where the Sobolev space H3(1) is the set of functions that are square-integrable over
1 and have square-integrable derivatives up to order 3. More precisely, Tikhonov’s
stabilizing functional is given by

Jst(k) = i Sm //0; (r:) (aa—;g'(n—f,:?z—);)zdfdn (15)

m=0

where convenient dimensionless variables are £ = N,z/z; and n = N,y/yL, where
zr and y; are the lateral reservoir dimensions, and N, and N, are the number of
PDE grid cells employed along z- and y-directions, respectively. The conditions for
the coefficients ¢, are ¢ > 0, ¢; > 0, ¢ > 0, and ¢3 > 0 (Tikhonov, 1963); or ¢5 > 0,
¢120,¢>0,and ¢3 >0 (Tikhonov and Arsenin, 1977, pp. 69 — 70). As Trummer
(1984) has pointed out, using the stabilizing functional that includes the Euclidean
norm of the parameter itself leads to the underestimation of the parameter. Locker
and Prenter (1980) suggested the use of a stabilizing functional with a differential
operator. Lee and Seinfeld (1986) used the stabilizing functional with the gradient
operator (V) so i;ha.t it does not include the Euclidean norm term (¢ = 0 in Eq.
(15)) for the estimation of absolute permeability.

The regularization formulation of the inverse problem seeks the minimum of

the smoothing functional,

JSM(kabO,bw;rB) = JLS(ka baa bw) +ﬁJST(k) 3 (16)

where B is the regularization parameter that represents the relative importance

given to Jgr. In the present problem, Jr s is composed of the two terms as shown
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in Eq. (13); hence, Jsas includes three quantities, Wpcrg, Wfa?, and fJsr, where
two of the three weighting coefficients W,, W;, and B must be determined inde-
pendently. W; /W, can be chosen as the ratio 52/57, where 52 and 7 denote the
variances associated with the pressure and production data measurements, respec-
tively (Watson et al., 1980). In the present study, b’f,/b‘% is assumed to be known
and W, /W, is chosen as that value. An important question regarding the regu-
larization method is determining a suitable value of B for the given noisy data,
especially where the noise level may or may not be known. The value of 8 is chosen
in several different ways (Miller, 1970; Tikhonov and Arsenin, 1977, pp. 87 — 94;
and Craven and Wahba, 1979). Miller suggests that  be determined from the ratio
of an upper bound of the measurement error to an upper bound of the measure of
non-smoothness. Craven and Wahba (1979) used the method of generalized cross
validation (GCV) to determine the regularization parameter. Since GCV requires
para.metri'c sensitivity information, this method is not pra.étical for such a large-scale
problem like reservoir parameter estimation. Lee and Seinfeld {(1986) developed an
algorithm based on Miller’s idea, which determines othe regularization parameter

automatically during the estimation process without requiring a priort information.

The absolute permeability in a two-phase reservoir is primarily estimated from
the pressure data (Van den Bosch and Seinfeld, 1977; Watson et al., 1984). Thus,
we can determine 8/W, from the ratio of an npper bound of af, to an upper bound
of Jsr. In practice, these values are usually not known and Lee and Seinfeld (1986)
used the values of Jgr and the pressure discrepancy of the results of the non-
regularized (8 = 0) estimation to determine 8. Without loss of generality W, will

be specified as 1/72.

Spline approximation of spatially varying parameters has several merits includ-
ing a built-in smoothing and computational convenience (Banks and Lamm, 1985;

Kravaris and Seinfeld, 1986) The spline approximation of the spatially varying ab-
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solute permeability is given by
Nye N,,
k(z,y) = Z Z x** (4 .+ Ziz:) x* (4 -1, + Aiy,-> W, (17)
ly=1lz=1
where x**(0) is cubic B-spline function,
(63/6 8 €0,1]
1/6+(0-1)/2+(0-1)2/2+(0-1)3/2 6€1,2]
X*(0) =14 4/6 — (0 -2)2+ (6 — 2)3/2 6 € 2,3 (18)

1/6-(0-3)/2+(0-3)%/2-(0-3)3/6 0¢€3,4]

L 0 otherwise,

Az, and Ay, are the grid spacings for the spline approximation and I = I,+N_, (-
1) forl, =1,...,Ngyand l, =1,..., Ny,. In applying the spline approximation to
the parameter estimation problem, if the number of spline coefficients, N,, x Ny (=
N,), is too few then the spline approximation cannot represent the spatial details
properly. On the other hand, the number of spline coefficients should not exceed the
number of grid cells for the solution of the PDE’s. When the spline approximation is
used together with regularization, the smoothing power of the spline approximation
becomes less important than in its absence and N,, and N,, can be chosen as large
as the numbers of grid cells along z- and y-directions for the solution of the PDE’s

(Lee and Seinfeld, 1986). The unknown parameters characterizing k(z,y) are now

w,l=1,...,N,.
4. Numerical Algorithm

The reservoir parameter estimation problem is a large nonlinear least-squares prob-
lem. The number of unknown parameters to be estimated is the same magnitude
as the number of grid cells for the discretization of the PDE’. That number is of

order of at least one hundred in the field applications. In general, because of the size
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of the estimation problem, a minimization method that requires the first derivative
of the objective function is preferred over one that requires the second derivatives.
The first order derivatives of the least-squares performance index can be derived
using optimal control theory (Chen et al., 1974 and Chavent et al., 1975). The

functional derivative of Jpg with respect to k(z,y) is

8J T (kpy kro
L= [ (B2 Yo+ Z20y,  Vp) @ (19)
5k 4] w I“O

and the partial derivatives of J s with respect to b, and b,, are

aJ,,S / // ind dt{k ak"’wo

+ Z' (¢w aqw:c + ¢oaaq::) 5(I - Ioc)h&(y - ylc) ) (20)
Nt a
b e 2D (fu = ) 2602 — )60y — w)3(e ~ ta)
n..lv—
aJLS / / / dzdydt k ak"” v¢w .Vp
+ Z (¢w a%un + tpoa‘bx,) 6(5 - zn)}f(y - y:c) (21)

N: N,
B SNSRIl )

n-—lu:l

The adjoint variables ¢, and ¢,, satisfy the following adjoint equations

a2 7]
= (ew + cf)b"‘t'wswtf’w) ~ (co+ cf)é;(‘ﬁsod’O)

Kk, kky,o
-V ( Kuw Veu + Ho Vd)o) (22)
2W Ne Xo
) §(z — 2,)6(y — v,)6(t — tn)

=lr=l
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from the terms including the variation of p and

~ 216 — o)l + B((ew + e)hu — (co + c,)wa)—-

keo
+-—-—'° %’;""Vzp,,, Vp +—: Zs Vi, - Vp
Gwa 6q¢,,c 6(z — z)6(y — yi) (23)
"Z "b'” 38, h
x=1 w
N: N,

= w ™ obe 6 v 5(y — v 6 t—1tn

NoNgnzzluE__ﬂ(f %) et = 28y~ w)s(e — ta)

from the terms including the variation of S,, for (z,y) € 1 and 0 < t < T with the

terminal constraints

Yo(z, y,T)=0 (24)

Yu(z,y,T)=0 (25)
for (z,y) € 1 and the boundary condition
n- (kl’f”'” Vibw + k::“’ ngo) =0 (26)

for (z,y) €8N and0<t < T.

Shah et al. (1978) have evaluated the sensitivities of the reservoir state variables
(p and f,) to the parameters. It is considerably more difficult to simultaneously
estimate k, b,, and b, than to estimate k only or to estimate k,, and k,, only.
Since the quantities appear as kk,, and kk,,, p and f,, are especially insensitive to
changes in k, b,, and b,,. This observation suggests that k and (b,,b,) should be
estimated separately during the minimization process.

The problem is to estimate the spline coefficients, W;, l = 1,..., N,, and the
dimensionless exponents, b, and b, in the relative permeability expressions, that
minimize the smoothing functional Jsys. Consider the minimization of Jgpr by a
steepest descent technique. The gradient of Jg)s with respect to W;, I =1,...,N,

is

8Jsn |0V,

Ew (27)

BJSM/aWN, .
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The partial derivatives 8Js)/0W;, I = 1,...,N, can be directly calculated from

(the finite difference approximation of) the functional derivative §J.¢/6k and the

partial derivatives 8Jsr/0W;. The gradient of Jsas with respect to (bo,by) is
simply

s.= (97/ae) 29)

In the following discussion we will refer to (Wy,...,Wy,) and (b,,bw) 2s W and b,

respectively. The line search step in the steepest descent method starting at (W,b)

along the descent direction dw = —g,, (W,b) and d, = —g,(W,b) is to find the

step length s such that
g, (W +sdw,b +sdp) - dw + g,(W + sdw,b + sdb) -dp =0. (29)

In its practical application, the line search step represented by Eq. (29) is dependent
on the linear scale (unit) of absolute permeability and thus is not unique. To see
this, let k= ck, where ¢ is an arbitrary positive constant. Then W = ¢W and the
line search step is to find 3 such that

——~—

1 W 4 . W .d -
58w (7+s—fi,b+sdb) -dw +g, (T+sTw’b+Sdb) -dy=0. (30)

The arbitrariness of ¢ suggests a modification of the line search step that finds the

set of step lengths (r, s) such that
gw(W+rdW,b+sdb) -dw =0 (31)

g,(W +rdw,b+sdy)-dp =0 (32)

independent of the linear scale ¢.
To estimate (k,bo,by) simultaneously, the following three-step algorithm will

be used assuming that no @ priori information is available for the spatial variation

of k(z,y) and 5.
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Step 1 Assuming that k(z,y) = k over the whole domain, find (%, bo, by) that
minimize Jpg.
Step 2 Starting from W; = 75, l=1,...,N,, calculated from step 1, minimize J.s
with respect to (W, b,,bw). Compute 8 = Wpa?, /JsT at convergence.
Step 3 Using f and starting from (W, b,, b, ) determined in step 2, minimize Jsas

with respect to W, b,, and b,,.

In each step, the minimization of Jpg or Jgas will be carried out by the steepest
descent method using Egs. (31 - 32).

Step 2 of the algorithm is the conventional least-squares estimation of k by
spline approximation, and of 4, and b,,, that gives the best fit of observed pressure
and flow data. The major contribution of step 3 in the algorithm is to alleviate the
ill-conditioning of the estimated k by a regularization. Generally, the exponents of
the relative permeabilities, b, and by, will not change significantly in step 3. In

practice, therefore, step 3 can usually be replaced by

Step 3’ Using 3, b,, and b,, and starting from W determined in step 2, minimize

Jsam with respect to W,

In step 3’ the smoothing functional Jgys is minimized with respect to the single set
of parameters, W, and the minimization can be carried out by a general multivariate
gradient algorithm. The partial conjugate gradient method of Nazareth (1977) is
chosen, as it is suitable for a large-scale minimization.

For the numerical implementation of the stabilizing functional with the gradient
operator, Jgr with ¢ = 0 in Eq. (15), the weighting coefficients ¢,,, m = 1, 2, and
3, need to be specified. Since the integration in Eq. (15) is based on the length
scales of discretization of the PDE’s, z /N, and y. /N, the grid spacings for the

reservoir PDE, ¢,,’s of the derivative terms can be chosen as ¢} = ¢3 = ¢3 = 1.

5. Computational Examples
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In order to test the performance of the algorithm thoroughly, we will introduce
a hypothetical reservoir for which the true properties are assumed to be known.
The assumed fluid and reservoir properties are shown in Table I. The assumed true

absolute permeability distribution is given by

k(z,y) = 0.3 — 0.1sin (-2-3’3) sin (H) (33)

IL

in units of darcies (1 darcy = 0.987 x 10™!2 m?) for (z,y) € 0. The location of
wells and the true absolute permeability contour map are shown in Figure 1. The
governing PDE’s (1 — 9) are solved on a 15 X 10 mesh with the time stepsize of
23.1 days. The observation data are taken from nine observation wells that include
two production wells with observation time interval 23.1 days and perturbed by
uniformly distributed random numbers (generated by IMSL subroutine GGNML
on VAX 11/780), with zero mean and standard deviations 0.34 atm and 0.0085
for p and f,, respectively. These noisy data are then used to attempt to recover
(kybo,by).

Water-breakthrough time has an important significance in the identifiabilities of
the parameters. Watson et al. (1984) have shown, in the two-phase one-dimensional
reservoir where water is injected at one end and oil is produced at the other end, that
absolute permeability can be estimated from the data up to the water-breakthrough
time and that the prebreakthrough production data carry little information about
the relative permeabilities. Figure 2 shows the transient pressure and fractional
flow of water at the production wells located at (450 m, 550 m) and (1050 m, 550
m) calculated on the basis of the true (k, b, b, ). We note that, for the conditions of
this example, the water-breakthrough time of this reservoir model occurs at about
6.4 years after the inception of water injection. In the following examples, two
different time periods of the observed data will be chosen, one of 9.5 and the other

of 6.4 years.
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Table I  Specification of Reservoir Model

Properties of Water and Oil

a, =08 a, =10
by, =235 bo = 2.0
Siw = 0.1 Sro = 0.2
pw = 10"3Pa-s Bo =3%x1073Pa-s

cw =194%x107°Pa~'! ¢, =097x107°Pa"!
Production Wells

g, = 0.003 f, m3/s go = 0.003 (1 - f,)m3/s
Injection Wells

gw = 0.001 m3/s go =0

Properties of Reservoir

¢; =291x10"°Pa~!
¢ = 0.2 —-0.05sin(27z/z.)sin{7y/yL)
zr X yr X b = 1500 x 1000 x 10 m®
p(z,y,0) = 1.52 x 107 Pa
Sw(z,y,0) =01
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The convergence criteria of the minimization are

8Jrs | )
L l <10 and ||g,]je < 10 (34)
Ok
for step 1 and
llgwllo <2 and |[[g,|lc <5 (35)

for steps 2 and 3. Although the same conditions are used for steps 2 and 3, they
are in effect more strict for step 3, due to the additional term SJs+. In case of step
3/, only the first criterion in Eq. (35) is used to terminate the iteration.

Over a period of 9.5 years, 150 pressure and 150 production data are taken
at each of the 9 observation wells and (W, b,,b,,) is estimated using the suggested
3-step algorithm. The results of the estimation are summarized in Table II. The
first step is to estimate the set (E, bo, by) that minimizes J. g, where k denotes a
spatially uniform k. Although the resultant k is not an acceptable estimate of a
spatially varying & in most cases, it is a reasonable average of the spatially varying
k. Two different sets of (E, boybw)’s, (0.2 darcies, 1.5, 1.5) and (0.4 darcies, 3.0,
3.0) were chosen as the starting point of this step. The convergent results, (0.289
darcies, 2.09, 2.51) and (0.286 darcies, 2.06, 2.48), show good agreement indicating
the robustness of this step. In Figure 3, kkry (Sw), kkro(Sw), and fu(Sw) calculated
from these values are depicted by the solid lines. This step makes the remainder
of the algorithm to be insensitive to the choice of the initial guess (-k?, by, by). The
next step is the pure least-squares estimation of (k,b,,bs) with 8 = 0, where k is
represented by the set of spline coefficients W. In this step, o, and o decrease sub-
stantially and approach those calculated from the true (k, b5, by ). The estimated &
is shown in Figure 4 2nd (b,, by ) = (1.98, 2.50). From the resultant Wpaﬁ and Jsr,
B = 2.63 darcies™2. Step 3 is the final regularized estimation of {k,b,,by) with 8
determined from step 2. The resultant k is shown in Figure 4 and (b,, b, ) = (1.98,
2.50). Table II shows that, in step 3, Js7 is reduced significantly due to its inclu-

sion, Jp 5 is reduced slightly due to continued minimization, and Jgus is increased
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compared to the values in step 2. Comparison of the k contours in Figure 4 shows
the smoothing effect of regularization on the “hump” near the lower right corner
of the reservoir. As an alternative of step 3, step 3’ is the regularized estimation
of W, while b, and b,, are fixed to the values determined by step 2 and the same
3 is used as step 3. The contours of the resultant k are shown in Figure 4, which
shows more smoothing effect compared to that of step 3. Both the discrepancy
and the stabilizing functional terms are smaller than those of step 3, while step
3’ required more computing time as shown in Table II. Throughout the estimation
process, (b,, by ) is estimated accurately even in step 1. The entire algorithms, steps
1, 2, and 3, required 63 and 74 iterations (solutions of state and adjoint PDE’S),
corresponding to 252 and 297 seconds of computing time and steps 1, 2, and 3’, 66
and 77 iterations corresponding to 263 and 308 seconds (4.0 seconds per iteration)
on a Cray X-MP/48 for the given initial guesses (0.2 darcies, 1.5, 1.5) and (0.4

darcies, 3.0 3.0), respectively.

The identifiability condition of relative permeabilities giver »v V .son et al.
(1984} is not directly applicable to the two-dimensional reser-:ir w 1 multiple
injection and multiple production wells considered in this study. ¢ investigate the
effect of the observation time period we consider the case in which 100 pressure and
100 production data are taken over a period of 6.4 years. Both of the production
wells begin to produce water as well as oil, but flow data after water-breakthrough
are not available from the well located at (450 m, 550 m) by the time period of
6.4 years for the given reservoir. As is shown in Table III, this example shows the
same tendency as the previous example in terms of the insensitivity of the result
of step 1 to the choice of initial guess and the slight improvement of data match
in steps 3 and 3’ as compared to step 2. Step 1 is started with (0.2 darcies, 1.5,
1.5) and (0.4 darcies, 3.0, 3.0) and converges to (0.329 darcies, 2.75, 3.49) and

(0.328 darcies, 2.74, 3.40), respectively. The resultant k (0.328 - 0.329 darcies) is a
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reasonable average of spatially varying k given in Eq. (33}, although it is 0.4 darcies
higher than that estimated in the previous case. In contrast to the previous case,
however, the values of (b,,b,) are far from the true ones. Nevertheless, as shown
in Figure 3 by the dashed line, kk,(Sy), kkyo(Sy), and f,(Sy) do not disagree
substantially from those values calculated in the previous case. Step 2 is started
with (0.329 darcies, 2.75, 3.49) and 8 = 0. The resultant k surface is shown in
Figure 5 and (b,, by) is (1.99, 2.53), where (b,,b,,) shows good agreement with the
true one. Comparison of {b,,b, ) in steps 1 and 2 shows that the flow data up to the
water-breakthrough can be fitted by the wide range of different values of (b,,b,),
and in this case the estimation of (b,, b,,) should be carried out based on the k that
matches the observed data accurately. The value of 3 estimated by the algorithm is
3.30 darcies™2. The final (b,, by, ) is (1.99, 2.51) for step 3, and the estimated k’s for
steps 3 and 3’ are shown in Figure 5. The discrepancy and the stabilizing functional
terms of step 3 are smaller than those of step 3’ (See Table IIL), but Figure 5 shows
about the same degree of smoothing effect for the two different regularization steps.
The algorithm required 101 and 104 iterations corresponding 279 and 290 seconds
of computing time (2.8 seconds per iteration) for step 3 and 70 and 73 iterations
corresponding to 195 and 206 seconds for step 3’ for the given initial guesses (0.2

darcies, 1.5, 1.5) and (0.4 darcies, 3.0 3.0), respectively.

€&. Conclusions

Two numerical algorithms are developed to estimate the spatially varying absolute
permeability, £, and the exponents in the relative permeability expressions for two-
phase petroleum reservoirs, based on noisy pressure and flow data. The spatially
varying absolute permeability is estimated by regularization with bicubic spline
approximation. The algorithms developed suggest the choice of the regularization

parameter based on the ratio of the level of the observation error in pressure data to
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the measure of non-smoothness of parameter. The regularized estimation alleviates
the ill-conditioning that resulted from the conventional least-squares estimation.
We demonstrate conditions under which the absolute and relative permeabilities

can be estimated simultaneously.
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Chapter V

Conclusion

In this dissertation, automatic history-matching algorithms are developed to
estimate the petroleum reservoir properties from the noisy measured data by reg-
ularization and spline approximation. Since no rigorous mathematical guide is
available in formulating the estimation problem as a regularized problem, exten-
sive numerical tests were carried out and the algorithms are developed based on
the numerical tests. In Chapter II, absolute permeability and porosity are esti-
mated in single-phase reservoirs, and it was demonstrated that the use of a uniform
value of parameter that gives the best fit of observed data serves as a good starting
point of spatially varying parameter estimation. The choice of the regularization
parameter was restricted by the inclusion of the Euclidean norm in the stabilizing
functional and the restriction leads to the use of a rather coarse spline grid sys-
tera. In Chapters III and IV, 3-step history matching algorithms are developed to
estimate the absolute permeability (Chapter III} and absolute and relative perme-
abilities simultaneously (Chapter IV) in two-phase reservoirs. The non-smoothness
of the parameter estimate is better measured as a Sobolev norm of gradient of the
parameter in the absence of the Euclidean norm of parameter itself. The number of
spline coefficients was chosen as much as the number of PDE meshes to represent
the spatial details of parameters. The regularization parameter determined from
the pressure discrepancy and stabilizing functicnal with gradient operator always
provided a reasonable regularization effect, so that the algorithm gave physically
meaning estimates. For the simultaneous estimation of parameters in Chapter IV,
a minimization technique is suggested that calculates the parametric sensitivity of
smoothing functional along the given descent direction.

In Chapter IV, the regularization parameter for the estimation of absolute

permeability is determined from the ratio of the pressure discrepancy to the non-
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smoothness of an absolute permeability estimate. This idea can be applied to the
estimation of porosity by determining the regularization parameter from the ratio
of the flow data discrepancy to the non-smoothness of porosity estimates and can be
extended to the simultaneous estimation of absolute permeability and porosity by
combining two stabilizing functionals in the smoothing functional. Since the form
of the stabilizing functional and the degree of spline approximation do not have
any relation with specific properties of absolute permeability, they can be directly
used to the estimation of porosity. If the idea of a rough parametric sensitivity
analysis is applied to the general class of multivariate minimization algorithms such
as conjugate gradient and variable metric algorithms, the rate of convergence of

minimization can be accelerated.
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Appendix A

Estimation of Absolute Permeability

with Stiff Spatial Variation
1. Description of Example

In Chapter III, a history matching algorithm has been developed to estimate the
spaﬁially varying absolute permeability, k, of two-phase two-dimensional petroleum
reservoirs. The algorithm was tested for the reservoirs with known absolute per-
meability distributions, that can be represented by combinations of polynomials
and elementary transcendental functions. The distributions were fitted by spline
approximation. In this section we will try to estimate an absolute permeability
distribution that varies more stiffly. The reservoir domain is divided into a 10 x 10
mesh, and 100 values of the absolute permeability k are given on the mesh. (See
Figure 1.) This example was suggested by the Chevron Oil Field Research Com-
pany with the reservoir specification shown in Table I and the locations of wells
depicted in Figure 2. The minimum and maximum values of k are 0.5 and 5.5
darcies, where with a maximum difference of two consecutive mesh values of 3.0
darcies. The spline approximation of the distribution is calculated on a 10 x 10
spline grid and the contour map of that approximation is shown in Figure 2. The
root-mean-square error of the spline fit on the mesh is 0.31 darcies. In this example,
the oil recovery policy is different from the previous ones in Chapter [II; in that
the oil production rate of each production well is specified and kept constant, and
as a result, the water production rate (¢u = [fu/{(1 — fu)lgo), and thus the total
production rate of the well, increases after the water-breakthrough time so that the
overall pressure inside the reservoir decreases. In Chapter IIl, the total production
rate of each well was kept constant.

In this study we will consider the effects of a number of observation points
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10 x 10 mesh



-97 -

Table I  Specification of Reservoir Model

Properties of Water and Oil

ay =1.0 a, =10
by =20 bo = 2.0
= 0.0 = 0.0
pw =10"3Pa-s po =05x10"3Pa-s
cw = 1.45x10~° Pa~! co =0.15x 10"9 Pa~!

Production Wells

gw = 0.00184 f,/(1- f,)m%®/s ¢, = 0.00184 m3/s
Injection Wells

¢w = 0.00276 m>/s go =0

Properties of Reservoir

cg =0
¢ =0.2
rr X yr X h = 1220 x 1220 x 6.2 m®
p(z,y,0) = 2,07 x 107 Pa
Sw(z,¥,0) = 0.2
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D Injection wells
O Production wells
© QObservation wells

1 —memee 4
————— 2 5
-------- 3
Figure 2 Location of wells and contours of the spline approximated absolute

permeability in darcies by 10 x 10 spline grid
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and the noise in observation as well as the effect of regularization on the ability to
estimate the absolute permeability k. Three production wells will be used as the
observation points for the estimation and three pure observation points will be added
to test the effect of number of observation wells. The regularization parameter is

chosen by the algorithm suggested in Chapter III.

2. Computational Results

Seventeen pressure data and 17 flow data points are measured at each of 6 or 3
observation wells over a time period of 170 days with a time interval of 10 days,
giving a total of 102 (6 wells) or 51 (3 wells) each of pressure and flow data for
the estimation. In the case of noisy observation data, the root-mean-square error
of pressure data (op) is 0.029 atm, and the of the error of water-to-oil ratio data
(or) is 0.007. The value of J g calculated from these data is 2.01. Throughout,
to test the robustness of the algorithm the 3-step history-matching algorithm was
started with two different initial guesses of uniform absolute permeabilities, k, 5
and 1 darcies. The following 4 cases are considered:

Case 1 Noisy data from 6 wells.

Case 2 Noiseless data from 6 wells.

Case 3 Noisy data from 3 wells.

Case 4 Noiseless data from 3 wells.

In Case 1, the absolute permeability was estimated from the noisy 102 pressure
and 102 flow data measured at the 6 observation points that include 3 production
wells and 3 pure observation wells. For the given initial guesses of k = 5 and 1
darcies, Jp g = 97.7 and 540, respectively, and Step 1 converged to k = 2.42 - 2.43
darcies with Jps = 32.0. (See Table IL.} In the next step k is estimated with 3 =
0. The resultant k is shown in Figure 3a with a corresponding value of Jp ¢ = 1.78.

Figure 3a shows that the estimated k contour map agrees reasonably with the map
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in Figure 2 in the middle of the reservoir, where the observation wells are located. 3
is determined from the ratio of the pressure discrepancy term (W,02) to Jsr, that
is, 0.0016 darcies™2. The regularized estimation of k is shown in Figure 3b, where
the contour of 5 darcies is lost as a result of the smoothing effect of regularization.
Comparison of Figures 3a and 3b shows that there exist regions around the contours
of 1 and 2 darcies where the estimates are neither correct nor show a consistent effect
of regularization with the regions of contours 3, 4, and 5. The algorithm required
90.7 - 91 seconds of computing time on a Cray X-MP/48.

Case 2 is the same as Case 1 except that the measured data do not include an
observation error. Table III shows that the results of Steps 1 and 2 do not differ
significantly from the previous case except for the values of the discrepancy terms
that represent the effect of random error in the data used in Case 1. From the
results of Step 2, B is chosen as 0.00011 darcies™2, that is, 7 % of the value of 8
of Case 1. Step 3 finished immediately since the term B8Jsr is negligible compared
to Jrg; consequently Figure 3d does not show a significant change compared to
Figure 3c. In Step 3 Jgr increased by 2 % (corresponding to 1 % of Jsps) after

regularization, but the estimated k satisfied the given tolerable limit,
!aJSMfﬁwh’;y! <0 foralll,=1,.",Ng,andl, =1,... s Nys. (A.l)

The absclute permeabilities were not estimated correctly in the regions around the
contours of 1 and 2 darcies in Figures 3¢ and 3d. Also the shapes of the contours
of 1 and 2 darcies are different from those in Case 1. Comparison of four contour
maps in Figure 3 shows that the estimates in these regions were not improved by the
reduction of the noise level or by regularization, since the unidentifiability results
from the lack of fluid flow in that region for the given configuration of injection and
production wells. The total fluid velocity vectors on the mesh at the end of 170 days
are depicted in Figure 4. This case required 53.2 - 53.4 seconds of CPU time, 37.5

seconds less than that of Case 1. The difference was attributed to regularization in
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Case 1.

Now we consider the 17 pressure and flow data measured at the three pro-
duction wells. This is Case 3. At the initial guesses of & = 5 and 1 darcies, the
discrepancy in pressure data (op,) shown in Table IV is about the same as that of
the corresponding 6 observation point case. Step 1 converged to k = 2.64 darcies
and Jrg = 2.2. Although the uniform k estimated by Step 1 is far from the true &
in its spatial detail, the adequate data match with the given observed data indicates
the insufficiency of the observations. Estimation of spatially varying k in Step 2
converged to the k shown in Figure 5a that more resembles the uniform k estimated
by Step 1 than it does the true k& while the discrepancy terms are less than those
calculated from the true k. (3 determined by Step 2 was 0.26 darcies™2 and the
estimation was continued to Step 3, although the estimation in Step 2 was poor.
Figure 5b shows the resulting k. As shown in Table IV, the resulting Jgr is only 10
% of the starting Jgr, and the reduction in Jgr indicates that the relative impor-
tance of the stabilizing functional term was emphasized by the algorithm. In this
case, the discrepancy in flow data (op) was kept constant at 0.006 indicating the
insensitivity of flow data to variation of the absolute permeability. The computing
time required for Case 3 was 25 seconds, that reflecting the fact that the observed
data used in this case easy to match by the algorithm regardless of the accuracy of

the estimation of k itself.

In Case 4, the same number of data and the same observation points are used
as in Case 3, but the data are error free. Table V shows that the low data mismatch
was negligible during the estimation even for initial guesses of k = 5 and 1 darcies.
The results of Steps 1 and 2 in this case are the same as those in Case 3. Although
it is possible that different k’s will fit the observed data (the true k as an example),
Step 2 in Cases 3 and 4 converged to the same but incorrect k, since the k shown

in Figure 3a and 3c are close to the initial guess of k (= 2.63 darcies). f estimated
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in this step was 0.011 darcies™2, which is 42 % of 3 in Case 3. In comparison with
the fact that 8 in Case 2 is only 7 % of that in Case 1,  in Step 4 determined by
the algorith: is relatively large reflecting the relative importance of the stabilizing
functional fc: estimation with insufficient data. As a result of regularization, the
estimated k shown in Figure 5d is smoother than that in Figure 5c. This case
required 14.5 — 14.6 seconds of computing time smaller than that for Case 3. The
reduction is mainly due to less computing time for the regularization in Step 3.
The time period of observation in this study, 170 days, is relatively short com-
pared to the total time period of oil recovery in this reservoir. Since the goal of
reservoir parameter estimation is to be able to predict the future behavior of the
reservoir, it is worthwhile to investigate how the estimated absolute permeabilities
will enable prediction of future pressures. Figure 6 shows the true and predicted
transient pressures at the production well located at (670 m, 670 m) up to 850 days,
which are calculated from the true k and 8 different estimated k’s. The 4 predicted
transient pressures from Cases 1 and 2 are indistinguishable from each other with
the same being true for the Cases 3 and 4. The errors in pressures prediction at 850
days after the observation started is 7 atm for the 6 observation point cases and 40

atm for the 3 observation cases

3. Conclusion

In this study, some new results are demonstrated, that we did not consider in
Chapter 3. An example configuration of the observation points shows that, with
the pressure histories observed at those points, we could not get a meaningful esti-
mation of absolute permeability. The estimates were improved by using additional
pressure histories. The effect of random observation error was investigated. With
noiseless data, the regularization parameter 8 determined by the 3-step algorithm

was small enough so that regularization does not change the parameter estimated
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by the conventional least-squares estimation. But if the observation points are not

sufficient to estimate the parameter, the estimation was affected by regularization.
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Appendix B

Numerical Description of

Derivation of History Matching Algorithms

1. Derivation of Reservoir Equations

Consider a two-dimensional (areal) oil-water reservoir with uniform thickness k that
is much smaller than the other two dimensions. Assuming that the oil and water

phases are immiscible, the equations of mass conservation for oil and water phases

are
] ol 6(z — z.)6(y — yx)
R, = ""5;(90¢Sa) -V. (povo) + ZPOQan 3 =0 (B'l)
k=1

6(z - zx)o(y —ys) _
h

N
a -
Rw = "“(pw¢5w} ~-V. (pwvw) + prqwn 0 (‘82)

ot

K==l
for (z,y) ¢ N,and 0 <t < T. S, and S, denote the saturations of oil and water,
and S, =1 - S,. The porosity, ¢, and the density of oil, p,, and water, p,,, are

weak functions of pressure. Define the compressibility of rock, ¢y, oil, ¢,, and water,

Cos by
1d¢
Cf = z'd';' (33}
1 dp, ‘
Co == = = B4
po dp (B-4)
1 dpy
Cop = = B35
Pw dp (B3)

and assume that the compressibilities be constant over the entire region of pressure

change in this reservoir model. The formation volume factor of rock is defined by

By = fsco (B.6)
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The linear fluid velocities of oil and water, v, and v, respectively, are assumed to

obey Darcy’s law in porous medium

Vo = —-—Elngp (B.7)
Ho
vy = _.":"" Vp (B.8)

where k denotes absolute permeability, and k,, and k,,, denote relative permeabil-

ities of oil and water, respectively, which are assumed to be functions of saturation

given by
1- Sro " Sw %o |
ko = ao (1 s ) (B.9)
b
kew = Gy (1 fu,;' fSF« ) (B.10)

for Siw € Suw <1 - 8;5. S0 and S;, denote residual oil and irreducible (connate]
water saturations, respectively, and a,, @y, bo, 2nd b,, are constants. By combining
Egs. (B.1) and {B.7), the divergence term in the oil phase equation becomes

kkro kkra kkro
v. (po " Vp) = poV - ( Vp) + copoVp - ( p Vp) (B.11)

o Ko o

and the second term on righthand side is ignored. The injection and production
rates of oil and water, ¢,, and qu,. at wells £ = 1,..., N, located at (z,,y.) are
specified as

(B.12)

Gox =0 and gy, = ¢« for injection wells
Gox = (1 = fu)ge and gy = fuge for production wells

for Chapters III and IV, where ¢., £ = 1,..., N,, denote the total injection (> 0}
or total production (< 0) rates. For the example reported in Appendix A, the oil

production rates are specified and the water production rates are given by

Gun = [fu/(1 = fu)lgox - (B.13)
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Using above assumptions, Egs. (1) and (2} become

— @sc _ op Psc OSw
Fo== T et el =5+ 55
(B.14)
L. (kk,o ) + E on&(z :n,c)é(y Ye)
_ bso ap _ $ag 85, |
By == Frlewte)Suzg; - 55
(B.15)

; - !
+V.(kkrw ) qu (z z.cé(y Ys)

for (z,y) € 0 and 0 <t < T. The no—ﬁux boundary condition at the impermeable
boundary is
n-Vp=0 (B.16)
for (z,y) € 81 and 0 <t < T. Initial conditions are given by
p(z,v,0) = p°(z,v) (B.17)
Sw(z,v,0) = .5,%z,y) (B.18)

for (z,y) € ). Egs. (B.14 - 18) are discretized by implicit time finite difference

approximation. Define sets of integers

N={ili=i,+N(iy—1),i2=1,...,Ng, iy =1,..., Ny, }
(B.19)
={1,...,N},

where N, and N, denote the numbers of grid cells along z- and y-directions for

PDE’s and N = N, N,, and

J={i-Nyi-Li+1,1+ N} N (B.20)
fori € N.
RO::”:——Q B¢s:: (Cg+cf)(1"' ‘!Uz (ps ?-1)
I
ésc: n n-1
+ QtB — (Swt Swt )
i3 (B.21)
kighrols
- ZQ*;J -~ L ( pJ + Zq""
3&-7: O w=1

=0



Ru? == Qi (eu + 1)SuT (7 — 77)
Ji
- Quest; (su7 - 5uP ™)
I (B.22)
ki kv
_ZQ*,J ’Juw J ¥ "P,)‘*‘qu;
JEJ; =1

=0
fori€ N andn=1,...,N; where Q; = AzAy/At and
Ay/Az forje{z-—l i+1}ON
Qz.]

Az/Ay forje {{—Nz,i+ N} N (B.23)
0 otherwise.

Initial conditions are

p =p° (B.24)

5.,2=5,° (B.25)

for 1 € N. In Egs. (B.21) and (B.22), the arithmetic average is used for the absolute

permeability
ki + k;
2

ki = (B.26)

and upstream weighting is used for the relative permeabilities (Settari and Aziz,

1975)

{ kro:j = kro(sw?) and krw:":j = krw (Sw?) if p? > P? (327)

kror; = keo(Suy) and ko7, = krw(Suwy) if pP < pT.
2. Solution of Reservoir Equations

To solve the finite difference reservoir equations, it is convenient to define the “ex-
pansion equation”

R,!+ R, =0 (B.28)
to solve for the pressure and

(CO + cf)(l - Sw?)

Ct?

(cw +¢4)Su

Ct?

Ro? — R, =0 (B.29)
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Step 4 Solve Eq. (B.31) for §S,,™ by the IADI method.
Step 5 If Eq. (B.29) is not satisfied then repeat Step 4.

Step 6 If ||p” — P™°M||oc > €1 OF ||Su™ — Su™|co > €2, repeat Step 2.
3. Derivation of Adjoint System

The least-squares discrepancy function Jp s consists of two contributions, the pres-

sure and the flow measurements, given by

JLs—/ / ii[ ( zwyu,tn)_pob,:)2

+Wf (fw(zu,yvatn) fObs ) } (x"‘zv)é(y"yv)s(t‘”tn)

N:.N,
(B.34)

where pobe” , and f2 obs”™ , denote the pressure and fractional flow of water data mea-
sured at wells v = 1,..., N, located at (z,,y,) and at time t,, = nAt,n =1,..., N,.

The fractional flow of water is defined by

2

krw /pw
= — . B.35
fo = T + Frfie (B:35)

By adjoining the Egs. (B.14) and (B.15) by means of adjoint variables, 1, and 1,

we get

T
Jrs =Jrs + / / (@boRo -+ ¢WRW) dzdydt . (3.36)
[y Q

From the first variation of Eq. (B.36), the adjoint equations are given by

Ry =(ew + ¢1) 5 (8Sutha) + (co + ¢7) or (4(1 - Su)o)

+9. (’“k”“‘ vs, + E2vy,)

Hw o

. (B.37)
Zwy t No

(P =57 6(z = z)6(y — .)6(t ~ 1)
e=ir=l
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from the terms including the variation of p and

gt [¢(¢w - d’o)} = ¢((Cw + Cf)t,"}w — (co + cf)¢o)?_g

it
k Okw k Bk,o
u,,, Y Vibu - Vp - 35,

R, =

Vo Vp

“’?fé,zzx - 120) L= 2 sty - -

from the terms including the variation of Sy, for (z,y) € @ and 0 < ¢t < T with the

terminal constraints

Yo(z,y,T) =0 (B.39)

Yulz,y,T) =0 (B.40)

for (z,y) € {1 and the boundary condition

rw k o
n-(kk Vo + E wo):o (B.41)
Kw Ko

for (z,y) € 811 and 0 < t < T. The functional derivative of J.g with respect to
k(z,y) is

-

6Jrs = —/ f—’—"-f‘lvx,&w -Vp kro -Vpldt, (B.42)
bk G Kw Ho

and the partial derivatives of Jz g with respect to b, and b,, are

H T
OJis _ _ / / dzdydt [-’iak”’wo.vp
G

db Ho abo
"’ 3‘]11);; aq{);g 5(3 - 35)5(!! - yﬂ)
+ Z (dzw bogp ) - (B.43)
N,

2W N aw
! ZZ ;ﬁ:bsv ajb: ( —zb')é(y'—yu)a(t'—tn)

nw lpzi
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3JL° /[/ dzdydt{ b Y iy - Vp

N Z ( v aq,.,,c qu:) 5z - zs)}f(y ~ Yx) (B.44)

2W N: N, 8f,
LYY (fu = 1) SR 6(z = 2)6( = w)6(¢ 1)

n.-lu-l

4. Solution of Adjoint Equations

The finite difference correspondences of Egs. (B.34) and (B.36) are

JLS=W§§:O:Z{ (- 50) 4w, (fw?—fzb‘f)z} 6:c, (B.43)

n=lr=li=1

and
Ne N

Jis =Jos+ ) ) (YulRul + ol RoT) - (B.46)

n=l il

Collecting terms that include the first variation of p} yields

Ry? =Qu 8255 ((ew + c)SuT I + (co o) (1 = SuP 102"
fi
¢SC; S n: n S n b3
- Q: B!n_l ((Cw + Cf) wi Yw; + (ca + cf)(l T Mwy )¢’°i )
ks" 'krw? ; " % kﬁ'. L ? ] n ny
_ Z < +J ¥ (ww{ i tpwj) + TGO, 4 ("f;o{ — ¢oj,§) (347)
oy Lo Ko /
N
zwp ~ n obs AW
+ Nth,O‘;{ps V)O‘ [
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and terms that include the first variation of S, yield

no__ ¢gci n+l n-+1 sc‘. n
Rai _Qt (Bf? ( Wy 'l’o., ) B n-—l(d"w; "»bo;)
n n ¢ 3 ” n—
— ((cw + €f)¥ui — (co + ¢f)dor) QtB s:-l (p? — p; 1)
rw k; Bk J
Thrwdg n tJ Yhrosd n n n
-2 (uw 95,7 Per ) sy el 'b"")) (7E = 27)
JE€
N N
W, afw" < " ba® = 3¢y dq,
we — fa )00 wi e or s ) 6o
NN, asw,y__ (ful = f2™) ‘“+§=:1 ¢‘6Sw?+"b*asw? iy
=0
(B.48)
fort € N and n = N, N; — 1,...,2,1 with terminal constraints
wittl =0 (B.49)
ottt = (B.50)

for 1 € N. The functional derivatives of Jrs with respect to k;, 1 € N, are given by

aJ Q rwe " rm ., n n n
L =““ZZ ( J (Ywi “¢w3)+ 3(¢o; ‘/’oj)) (P; _pil)

n—IJEJ
(B.51)
BJ ro; n 7% g
s =—-Z[ZZ T (2~ 3) (7 — 75)
n=1 t—lJGJ- O
a YHwe 1 na K 5"‘."’
+ Z (d)m ? Yos aq; ) R (552
2Wf obs ™ af"’? ..
TN, E (fu? = £27) db, 5}
8J ks a"""*
LS__:__Z[ZZ J "zl)w])(’_.p.?)
n=1Lli=1 Jejs
N
w 3g. 9%\ s )
02, e\ i, B.53
.;L( “ b, TV ) h o

T NO 7}
13?1\{0; (fw? - ibsp.> 2 a';u: 5{,;‘,}
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It is convenient to solve Eqs. (B.47) and (B.48) for a new set of variables ¢,

and v, defined by

pyr = Coten)Sul o (Cote)1=Sul (B.54)

c‘t Ctg
¢a? = ‘bw:‘ - wo? . (B.55)

Define ¥," = (¢p7,...,¥yy) and ¥,” = (¢,7,...,¥,%); then the numerical

scheme to solve the adjoint equations and to compute the derivatives of Jy s for

n=Ng N —1,...,2,1is as follows

Step 1 Let ¥,” = ¥,**! and ¥,” = ¥, L.

Step 2 Let ¥,™°¥ = ¥, and ¥,™°M = ¢,".

Step 3 Solve Eq. (B.47) for ¥, by the IADI method.

Step 4 Solve Eq. (B.48) for ¥, by the IADI method.

Step 5 If || ¥, — ¥,™M ||, > €5 or ||¥,™ — ¥,™M||, > ¢4 then repeat Step 2.

Step 6 Compute the contribution of n-th time step values of 8J;5/8k;, i € N
and of 8J5/8b, and 8JL5/8by,.

5. Calculation of Derivatives of Jsa w.r.t. Wy ;.

To apply the spline approximation of the absolute permeability to the history-
matching algorithms, we need the expression of the derivatives of Jgps with respect
to the spline coefficients, W;_; , Iz = 1,...,Nz, and [, = 1,...,N,,. From the
derivatives of Jy s to k;, t+ € N, the derivative of J; s with respect to the spline

coefficients can be calculated by

aJLg Ns 3]};(‘ *4 T *d ) y
=3 Z (4 lx+5$8>x s-n,+L) @

fp=mliy=l

forl; = 1,...,N;, and I, = 1,...,N,,, and ¢ = ¢, + N.(i, — 1). The derive-

tives 8Js7/0Wi 4,, 1z =1,..., N, and I, = 1,...,N,, can be calculated exactly
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(Kravaris, 1984). Finally we have

dJsym _ OJrs + 0Jst

= . B.57
an,,zv aW,,‘;” aWJ”[” ( )

©. Minimization Algorithms

In this dissertation, two different minimization techniques are employed. The par-
tial conjugate gradient algorithm of Nazareth (1977) is used for the minimization of
a single set of parameters, and the steepest descent algorithm is used for the mini-
mization of two sets of parameters, that are spline coefficients to represent absolute
permeability and the exponents of relative permeability expressions. To simplify
the following discussion, we will use new sets of variables in this section. Let x be
an n-dimensional vector, F(x) be a function to be minimized ‘over x, and g(x) be
the gradient of F at x. Let d denote the descent direction vector, which will be
determined during the minimization. The partial conjugate gradient algorithms are
generally preferable for large-scale problems that have hundreds of variables. To
maximize the overall efficiency, the Nazareth algorithm terminates the line search
step early without exact search, and to keep the conjugacy of the search direction,
the new descent direction is calculated from two previously determined descent

directions given by

hj—i-hy d;_; + h,-h;

dj1 = —hy + VT

d; (B.58)

where h; = g;41 — g; and j is the minor iteration count. (See Figure 1.) In the
examples reported in this dissertation, the algorithm required usually 2 line search
iterations and 5 = 10 minor iterations. The number of the major iterations was much
dependent on the given problems but, on the whole, the 3-step history-matching
algorithm reported in Chapter III required 20 - 40 solutions of state and adjoint

equations.
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X; given

F1=F(x1)
g: = g(x1)
k=k+1
1=0¢=40
-
J=Ji+1 A

Correction step

7> >

d; from Eq. (B.58)

X1
A
X3 = X; + scC g
F1 = F(Xl) i‘
g: = g(x1) ‘%
p>

Xj+1 = X; + sd;
A | Fipi=F(x;4)
gi+1 = 8(X;41)

Minor iteration
Line search iteration
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£ Modify s ¢ =c¢— s34y
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Figure 1 Flow chart of Nazareth’s partial conjugate gradient Algorithm
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In Chapter IV, the smoothing functional was minimized by an alternative of
the steepest descent algorithm, which redefines the descent direction from the rough
parametric sensitivity analysis to improve the convergence. Let y, z, g?, g*, dv,
and d* be n-vectors and let the last n — m (m < n) elements of y and the first
m elements of z be zero and the same is true for g¥ and g#*, respectively, and for
d¥ and d%, respectively. Let the two vectors y and z satisfy x = y + z, and gV
and g satisfy g = g¥ + g*. Let d¥ = —g¥ and d* = —g?*; then d¥ + d® is the
usual descent direction of the steepest descent method. Let y and z represent two
different physical quantities to which F has different sensitivities. This is the case

of simultaneous estimation of absolute and relative permeabilities. Define
Gy(sy,s:) = g¥(y + 8,dY,z + s.d*) - d¥ (B.59)

Ga(sy,8:) = g*(y +8yd?,z + 5.,d%) - d*; (B.60)

then Egs. (31) and (32) in Chapter IV can be rewritten as G, = G, = 0. The
stepsizes (8y,$;) can be determined from the Taylor series expansions of Egs. (B.59)

and (B.60) given by

8G, 3G, . c
3 Fas —

(25_:’1 g&) (sf)‘*‘(g’:)""’ (B.61)
dsy ds,

and the descent direction in Figure 2 is given by
d= syd"" + s:d*% ' (8.62)
and the line search is carried out in the direction d.
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X; given
k=20

Fy = F(x;)

g1 = g(x1)

k=k+1
A

d = —g}

di = —gf

Solve Eq. (B.61)
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Figure 2 Flow chart of steepest descent algorithm with correction of the descent

direction by parametric sensitivity analysis
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