Small-Signal Frequency Response Theory
for

Ideal Dc-to-Dc Converter Systems

Thesis by

Billy Ying Bui Lau

In Partial fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1987

(Submitted September 11, 1986)



ii

© 1986
Billy Lau

All Rights Reserved



il

lo my parents



iv

Acknowledgements

I am deeply indebted to my advisor Professor R. D. Middlebrook for his in-
valuable encouragement, guidance, and support during my stay at Caltech. He has given
me the freedom to select the research direction. I would like to thank Professor Cuk
for introducing me to the field of Power Electronics. Both of them have offered me the
opportunity to conduct my research in the Power Electronics Group.

I would also like to thank Professor T. Caughey for introducing me to Ad-
vanced System Theory, Professor J. Knowles for introducing me to Advanced Mathemat-
ical Methods, and Professor A. Sabanovié¢ of Energoinvest, Yugoslavia, for introducing
me to Variable Structure System Theory and Sliding Mode Control during his stay as
Visiting Professor of Electrical Engineering at Caltech 1983-85. The bulk of this thesis
is based on what I learned from them.

I would like to acknowledge the financial support provided by Caltech in the
form of Graduate Teaching Assistantships, and by Garrett AiResearch, IBM, GTE, and
Emerson in the form of Graduate Research Assistantships.

I would like to express my gratitude to my colleagues at the Power Electronics
Group for the enlightening discussion, the support, and the pleasure of their company. 1
would like to express my appreciation to my friends at Caltech, who have made my stay
at the Institute very enjoyable.

Finally, and most importantly, I would like to express my deepest thanks to

my family, especially my parents, for their encouragement, support, and understanding.



Abstract

The frequency response problem of switching dc-to-dc converter systems is the
problem of computing the small-signal frequency response of the system with respect
to its inputs. It arises in the study of the small-signal behavior and in the design of
a feedback controller for the dc-to-dc converter system. There are two approaches in
tackling the problem: the numerical approach and the analytical approach. This thesis is
limited to the analytical approach. There are previous efforts in developing approximate
analytical methods for solving the problem; however, these methods are unsatisfactory in
one way or another because they are applicable only to few special cases, and valid only
in limited range of frequency — less than half the switching frequency in many cases.

The Small-Signal Frequency Response Theory presented in this thesis is de-
veloped to overcome the problems encountered in the application of the approximate
analytical methods. Instead of finding an approximate model for a dc-to-dc converter
system and postulating that the response of the model is the same as that of the con-
verter system, as in the approximate analytical methods, the new theory computes the
frequency response of the perturbed output with respect to perturbations at the control-
inputs by the direct application of Fourier Analysis. Hence, the theory is exact in the
small-signal limit. Unlike the approximate analytical methods, the results given by the
theory are valid at all frequencies provided that the system model used in the calculation
of frequency response is valid at all frequencies. In short, the Small-Signal Frequency Re-

sponse Theory is a mathematical theory for the linearization of an ideal dc-to-dc converter
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system in the vicinity of its periodic steady state solution.

In the derivation of the results of the Small-Signal Frequency Response Theory,
two steps are taken: First, find a difference equation that describes the small-signal
motion of the system in the vicinity of the given steady state solution. Second, find the
equivalent hold that relates the samples of the perturbed state of the system, given by
the difference equation, to the analog output signal. The 2-transform of the difference
equation with z = e*T* is used to relate the spectrum of the sampled perturbed control-
input to the spectrum of the sampled perturbed output. The frequency response of the
converter system given by the theory resembles the frequency response of a classical
single-rate sampled-data system.

The prediction given by the theory and the experimental results for three
converter circuits are compared. These three converter circuit have the same basic circuit
topology, but different control strategies. The control strategies in these three examples
are: constant-switching-frequency PWM, constant-switching-frequency programmed, and
bang-bang controlled. It is found that the theory consistently gives good predictions,
even up to many times of the switching frequency, while, in many cases, the approximate
analytical methods break down.

The theory has the best of both the time domain approach and the frequency
domain approach for the analysis of switching dc-to-de converter systems. It has the
exactness of the time domain approach, which uses a difference equation to describe
the system, and the measurability of the of frequency domain approach. The exactness
and the uniformity of the theory, which has not been achieved before, results in signifi-
cant impact in the fields of computer-aided design and modelling and analysis in power

electronics.
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Introduction

For any control system design, one of the most important objectives is to
achieve high performance. The criteria for high performance are defined by a set of
performance specifications. For both high performance plant and high performance feed-
back controller design, it is necessary to find the response of the plant to excitations
at its control-inputs. Depending on the problem, the response required may be in the
time domain, or the frequency domain, or both. When the control system is a de-to-dc
converter system, the performance specifications are usually in both the time domain and
the frequency domain. Time domain response requirements usually influence the choice
of the converter circuit topology, the control strategy, the switching frequency, and the
technology used in building the converter system. Frequency domain response require-
ments usually influence the design of the controller. Time domain response requirements
are usually handled by heuristic methods. Frequency domain response requirements are
usually handled by frequency domain controller design methods.

For both the frequency domain performance specification and the frequency
domain controller design of a dc-to-dc converter system, it is necessary to compute the
small-signal frequency domain response of the system. The computation of the small-
signal frequency response of dc-to-dc converter systems is the frequency response problem
of dc-to-dc converter systems.

The frequency response problem of a physical de-to-dc converter system is not a

simple problem. Nevertheless, this problem may be simplified by modelling the physical



dc-to-dc converter system under study with an ideal dc-to-dc converter system. An
ideal dc-to-dc converter system is a linear time varying system that may be describe by a
system of first-order differential equations in which the coefficients are piecewise constant
functions of time. The control of an ideal dc-to-dc converter system is achieved by varying
the time at which the system differential equation switches from a set of coefficients to
another set of coefficients.

There are two directions in which the frequency response problem of ideal dc-

to-dc converter systems can be tackled:
1. Numerical Simulation — Computation-intensive and expensive.
2. Analytical Solution — Many approximate analytical methods.

In this thesis, only the analytical methods for calculating the frequency response of ideal
dc-to-dc converter systems will be studied.

There are previous efforts to develop approximate analytical methods for com-
puting the frequency response of ideal dc-to-dc converter systems. Common to all the

analytical methods are two essential steps:

1. Find a first-order difference equation that describes the small-signal motion of the
system, with the sampled control-input as the input sequence of the difference
equation and the sampled perturbed state of the converter system as the state

sequence of the difference equation.

2. Relate the sequences in the difference equation to the physical analog input and

output quantities of the converter system.

Different approximate analytical methods handle these two steps differently. The follow-
ing is a summary of the manner in which these two steps are handled by three represen-

tative approximate analytical methods:



1. The State Space Averaging Method of Middlebrook and Cuk[6]:

(a)

(b)

(c)

(d)

Goal: To find a simple linear time-invariant approximate model for ideal dec-
to-dc converter systems, and to find a linear time-invariant circuit model, the

canonical circuit model, for dc-to-dc converter circuits.

The difference equation: Approximate, uses the small-ripple assumption and

the straight line approzimation to simplify the expressions.

The relation between the sequences and the I/O quantities: Assumes that
the switching frequency goes to infinity; the difference equation becomes a
differential equation. The input to this differential equation is a continuous

signal.

Remarks: The method is developed primarily for predicting the low-frequency
small-signal behavior of constant switching frequency open-loop pulse-width-
modulated converter systems. The frequency response problem of converter
systems is tackled as a circuit problem. The method allows semi-analytical
pole-zero placement on the s-plane in converter system design by choosing the
values of the components used in the converter circuit. A modulator model
is added in the frequency domain in an attempt to extend this method to
other classes of converter systems[4,5], such as constant-switching-frequency
current-programmed converter systems. Nevertheless, it fails to predict the
high-frequency behavior (of the order of the switching frequency) of current-
programmed converter systems because the linear time-invariant model breaks
down when there is a feedback loop with crossover frequencies close to or higher

than the switching frequency in the system][1].

2. The Sampled-Data Modelling Method of Brown][1]:



(a) Goal: To find an approximate linear sample-data system model for ideal dc-to-
dc converter systems that can predict the high-frequency behavior of constant-
switching-frequency programmed converter systems.

(b) The difference equation: Approximate, uses the small-ripple assumption and
the straight line approzimation as in the State Space Averaging Method. The
additional sampling processes, however, allows the addition of the modulator
model in the difference equation accurately in the frequency domain (the 2-
domain with z = e*T*, where T, is the switching period).

(c) Therelation between the sequences and the I/O quantities: Assumes that the
switching frequency goes to infinity so that the difference equation becomes
a differential equation. The input to this differential equation is a train of
narrow pulses in time.

(d) Remarks: The method is developed to overcome the difficulties of the State
Space Averaging Method in predicting the high-frequency behavior of constant-
switching-frequency current-programmed converter system. The frequency re-
sponse problem of converter systems is tackled as a system problem. The
method can take into account the finite switching frequency in converter sys-
tems. In comparison to the State Space Averaging Method, this method pro-
vides much better accuracy in the modulator model at high frequencies and
works for a larger class of dc-to-dc converter systems. Nevertheless, the re-
sults of this method are more complex. Pole-zero placement in the z-plane for

converter system design is possible.
3. The Small-Signal Analysis of Resonant Converters of Vorpérian|9]:

a) Goal: To predict the low-frequency response of resonant converter systems.
% q

(b) Difference equation: Exact in the small-signal limit .



(c) Relation between the sequences and the I/O quantities: The method uses the
time-average of the waveform between the consecutive samples of the per-
turbed state of the system given by the difference equation to form another
sequence. A difference equation that relates the control-input sequence and
this sequence is constructed. The z-transform, with z = e*T*, is then used to

relate this difference equation to the analog I/O quantities.

(d) Remarks: This method is developed primarily for resonant converters, in which
the switching period T is of the same order magnitude as the circuit time con-
stants. The frequency response problem of converter systems is tackled as a
system problem. The method gives good low-frequency predictions for reso-
nant converters. Nevertheless, in taking the time average, the high-frequency
information in the output signal is destroyed. The result is essentially a low-
frequency approximation. Very simple converter systems can be easily found

for which this method fails to predict their high-frequency behavior.

Since all the approximate analytical methods for computing the frequency
response of ideal de-to-dc converter systems work for limited classes of dc-to-dc converter
systems and break down under many conditions, it is natural to ask whether the frequency
response of a dc-to-dc converter can be computed without any approximation; in other
words, whether any ezact analytical method exists at all!

The Small-Signal Frequency Response Theory for dc-to-dc converter systems
is developed to answer this question affirmatively. The control-input-to-output frequency
domain response corresponding to a stable steady state solution of any linearizable dc-
to-dc converter system can be computed by using the Small-Signal Frequency Response
Theory without any approximation in the small-signal limit. The steady state solution

of a dc-to-dc converter system is the periodic solution of the system. In other words, the



Small-Signal Frequency Response Theory is the ezact analytical solution to the frequency
response problem of ideal dc-to-de converter systems.

The (line) input-to-output frequency response is not treated in this thesis
because the exact solution in the small-signal limit contains convolution integrals in
the frequency domain and does not give much insight. Nevertheless, useful analytical
approximations may be obtained by modelling the input signal appropriately.

In the Small-Signal Frequency Response Theory for de-to-dc converter systems,
the steady state solution of the converter system under study is assumed to be given.
If the converter system under study has multiple stable steady state solutions under
a given operating condition, then there is a frequency response corresponding to each
of the stable steady state solutions. In general, different stable steady state solutions
have different frequency responses, even though the stable steady state solutions may
correspond to a single operating condition. In order to obtain a closed-form result, the
dc-to-dc converter system under study is assumed to be ideal. An ideal dc-to-dc converter
system is a linear time varying system that may be describe by a system of first-order
differential equations in which the coefficients are piecewise constant functions of time. In
the language of Variable Structure System Theory[8], an ideal dc-to-dc converter system
is a variable structure system, in which each of the structures is linear and time-invariant.
The use of an ideal dc-to-dc converter system model of the physical dc-to-dc converter
system under study in the frequency domain analysis of dc-to-dc converter performance
gives satisfactory results in most practical cases.

The following is a summary of the manner in which the Small-Signal Frequency

Response Theory handles the two steps in computing the frequency response:

1. Goal: To find the exact solution to the frequency response problem of dc-to-dc

converter systems in the small-signal limit.



2. The difference equation: Exact in the small-signal limat.

3. The relation between the sequences and the I/O quantities: The exact perturbed
output waveform between the sample points given by the difference equation is com-
puted. From the exact perturbed output waveform, an equivalent kold is computed
to relate the samples of the perturbed state, which is given by the state sequence of
the difference equation, to the analog output signal. The continuous control-input

and the sampled control-input are related by Shannon’s Sampling Theorem|7).

4. Remarks: The frequency response of an ideal dc-to-dc converter system given by
the theory in the vicinity of its stable steady state solution is exact in the small-
stgnal limit. The frequency response problem of a converter system is tackled as a

system problem. This is the only ezact analytical method.

In the Small-Signal Frequency Response Theory for an ideal dc-to-dc converter
system, the first step in finding the frequency response of the system in the vicinity of
a given steady state solution is to construct a linear difference equation that describes
the small-signal motion of the system in the vicinity of the given steady state solution.
Since the theory is developed to be applicable to any linearizable ideal dc-to-dc con-
verter system, it is necessary to define an ideal dc-to-dc converter system so that the
term linearizable may be defined, and ideal dc-to-dc converter systems may be classi-
fied systematically. This classification is essential to the construction of the difference
equation. The classification method adopted in the theory is very different from what
is commonly used in the power electronics community. The theory classifies converter
systemns according to their control strategy. The control strategy of a converter system is
the sequence of modulation methods that determines the instants at which the switching
from one switched-state or structure to another occurs in the system. With this classi-

fication method, the matrices in the difference equation and the frequency response can



be mechanically associated with the control strategy.

Although the Small-Signal Frequency Response Theory is the only analytical
method that provides a systematic procedure for constructing the difference equation
that describes the small-signal motion of all linearizable ideal dc-to-dc converter systems,
the major difference between the theory and the approximate analytical methods dis-
cussed above is not in this procedure for constructing the difference equation. The major
difference is in the relation between the sequences in the difference equation and the
analog input and output quantities. In all the existing approximate analytical methods,
these relations are postulated intuitively rather than derived mathematically. This is the
reason that all these approximate analytical methods break down at some point. In the
Small-Signal Frequency Response Theory, the contribution of each of the samples of the
perturbed state, which is given by the state sequence of the difference equation, to the
analog perturbed output waveform before the arrival of the next sample, is computed
first in the time domain by using the converter system description in the state space
representation. Then, the contribution is computed in the frequency domain by applying
Fourier Analysis to the contribution in the time domain. The overall result is that the
contribution of the samples of the perturbed state, given by the state sequence of the
difference equation, to the perturbed output in the frequency domain, may be treated as
the hold in a classical sampled-data system. This hold, which is called equivalent hold in
the theory, is different for each of the steady state solutions of each different converter
system. As a result of the direct application of Fourier Analysis, the theory is valid at any
frequency. At very high frequencies, however, the predictions given by the theory and
experimental results are expected not to agree with each other owing to the breakdown of
the ideal dc-to-dc converter system model used in the calculation. The breakdown of the

system model comes from unmodelled delay in the physical converter circuit, unmodelled



high-frequency dynamics, and the breakdown of the circuit model used in obtaining the
state space description of the system.

From the perspective of the Small-Signal Frequency Response Theory, an ideal
dc-to-dc converter system operating in the vicinity of a particular steady state solution is
a sampled-data system in the small-signal limit. The difference equation that describes
the small-signal motion of the converter system in the vicinity of its steady state solu-
tion corresponds to the discrete time system in the classical sampled-data system. The
equivalent hold corresponds to the hold in the classical sampled-data system.

This thesis is divided into five chapters and two appendices. In Chapter 1, ideal
dc-to-dc converter systems are defined and the modulation methods used in ideal dec-to-de
converter systems are discussed. The linearizability of ideal dec-to-dc converter system
is also discussed in Chapter 1. In Chapter 2, the basic concepts of the Small-Signal
Frequency Response Theory are introduced through a very simple example converter
system — a constant-switching-frequency current-programmed buck converter system
with a very large output capacitor. This simple example converter is chosen because
the system can be analyzed with simple geometry. The properties of the steady state
solutions and the concept of the stability of ideal dc-to-dc converter systems are also
introduced in this chapter.

With the foundation of the theory laid down in Chapter 2, the Small-Signal
Frequency Response Theory in the state space formulation for an important class of
ideal dc-to-dc converter systems, the class of two-switched-states converter systems with
continuous output signals, is formally introduced in Chapter 3. This class of converter
systems includes most of the commonly used converter systems. The theoretical predic-
tions and the experimental results of converter circuits with the same circuit topology

but different control strategies are compared. These control strategies are: constant-
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switching-frequency time. modulation (PWM), constant-switching-frequency constraint
modulation (programming), and bang-bang control.

In Chapter 4, the mathematics used in Chapter 3 to derive the results of
the Small-Signal Frequency Response Theory is discussed in detail. In Chapter 5, the
results from Chapter 3 are generalized to all the ideal multiple-switched-network dc-to-
dc converter systems defined in Chapter 1, which includes converter system that have
discontinuous output signals. The procedure introduced in this chapter, for finding the
frequency response of an ideal dc-to-dc converter system given its steady state solution
in the small-signal limat, is uniform with respect to the control strategy of the system.

The exactness and the uniformity of the Small-Signal Frequency Response The-
ory make it ideal for a lot of applications. One of the most important applications of
the theory is in the computer-aided design of de-to-de converter systems. Some of these
applications and the impact of the theory in the field of Modelling and Analysis in Power
Electronics are discussed in the Conclusion of this thesis.

At the end of this thesis, there are two appendices. In Appendix A, two
concepts of stability are discussed. The concept of the stability of an operating point,
which is widely used in electrenic circuits, is first introduced. Unfortunately, this concept
is found to be neither satisfactcry nor sufficient for nonlinear systems in general, and ideal
dc-to-dc converter systems in particular. The concept of the stability of a solution is then
introduced to overcome these difficulties.

In Appendix B the different concepts of average are discussed and compared.
The concept of average is used in most of the approximate analytical methods to relate
the samples of the perturbed state, given by the state sequence in the difference equation
that describes the small-signal motion of the system, to the physical analog output signal.

Different concepts of average are used in the different methods. The concepts of average
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used in the State Space Averaging Method[6], the Sampled-Data Modelling Method([1],
the Small-Signal Analysis of Resonant Converters[9], and the Sliding-Mode Control in
Variable Structure System Theory[8] are examined. The inadequacy of the concept of

average for computing the frequency response of ideal dc-to-dc converter systems is also

discussed.
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Chapter 1

Ideal Dc-to-Dc¢ Converter Systems

Physical systems are never ideal. Nevertheless, in many cases, for the behavior
under study, an ideal system model that approximates the physical system can be found.
A physical dc-to-dc converter circuit is nonlinear. None of the switching devices in the
circuit behaves like an ideal switch, and the magnetic components have nonlinearities
with memory. Fortunately, for the study of its frequency domain behavior, a physical
dc-to-dc converter system may be modelled as an ideal converter system. Even in the
worst case, the addition of parasitic elements to the model usually gives satisfactory
results. Nevertheless, an ideal converter system model is usually not sufficient to model
the detailed time domain behavior of physical converter systems.

The Small-Signal Frequency Response Theory is a mathematical theory for the
linearization of ideal dc-to-dc converter systems for a given steady state solution of the
system. For a full understanding of the Small-Signal Frequency Response Theory, it is
necessary to define ideal dc-to-dc converter systems mathematically and to study their
properties and the implications of their properties. Furthermore, formally defining ideal
dc-to-dc converter systems allows the definition of the linearizability of converter systems
and the easy classification of converter systems. This classification is necessary for the
construction of the equations that describe the small-signal motion and the frequency
response of the converter systems in the vicinity of their stable steady state solutions.

In Section 1.1, ideal dc-to-dc converter systems are defined. The methods for
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controlling ideal dc-to-dc converter systems are introduced in Section 1.2. The lineariz-
ability of ideal dc-to-dc converter systems is discussed in Section 1.3. The properties of
ideal dc-to-dc converter systems and their implications which are relevant to the Small-

Signal Frequency Response Theory are discussed in Section 1.4.

1.1 The Definition of Ideal Dc-to-Dc Converter Systems

An ideal dc-to-dc converter system is a linear time varying system that has
state space realization in which the A, B, C, and D matrices are piecewise constant
functions of time. An ideal dc-to-dc converter system have many mathematical proper-
ties. These properties, in turn, have implications on how the system should be handled
mathematically. Before discussing the properties of an ideal dc-to-dc converter system,
it is necessary to define the system.

An ideal dc-to-dc converter system is described by Eq. (1.1):

x(t) = A(t)x(t)+B(t)u @)
y(@#) = C()x()+D()u
where x(t) is the state vector, u is the input vector, y(t) is the output vector, A(t)
is the system matriz, B(t) is the input matriz, C(t) is the output matriz, and D(t) is
the transmission matriz. The matrices A(t), B(t), C(t), and D(t) have the following

properties:
1. A(t), B(t), C(t) and D(t) are piecewise constant functions in time ¢; i.e.,

(A(t),B(t),C(t),D(t)) = (4;,8;,C;, D;), T <t< T

2. The ordered quadruple (A(t),B(t),C(t),D(t)) assumes only a finite set of values;
i.e.,

(ﬂj’BJ"CJ':DJ') € {(A::B:»C:,D:) l 1< < Nn}
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where Ny, is the number of switched-networks.

3. An ideal dc-to-dc converter system is not controlled by its input vector u, but by
varying its T;’s (See Section 1.2). If u can be controlled, the converter system is
unnecessary. The scheme that determines the T;’s is the control strategy of the
converter system. The control strategy consists of a sequence of methods that
determine the Tj’s, i.e., the modulation methods. The modulation method that

determines Tj is M;.

An ideal dc-to-dc converter system and its solution can be fully characterized
by the sequences: {(4j, Bj,C;, D)}, {T;}, and {M;}.

In the language of Variable structure System Theory(8], an ideal dc-to-dc con-
verter system is a variable structure system, in which each of its structures is linear
time-invariant with state space realization.

When an ideal dc-to-dc converter system is operating in steady state, its so-
lution is periodic and may be characterized by the sequences {(A;,B;,C;,D;)}, {T;}
and {M;}. These are the sequences {(A;, B;,C;,D;)}, {T;} and {M;}, respectively, corre-

sponding to the steady state solution. The following are the properties of these sequences:
1. In steady state, the sequence {(A;,B;,C;,D;)} is periodic with period Ng; i.e.,
(A;,B;,C;,D;j) = (AN Bian,: Ciang: Djan,), VieZ
For a system to operate as a converter system, N, > 2.
2. In steady state, the sequence {M;} is periodic with period Nys; i.e.,
M; = Mjin,,, Vj € Z
3. Define: Tj = Tj+1 — T;. The sequence {T;} is periodic with period Nr;i.e.,

TNy = T; Vi €Z



15

4. The number of switched-states N, is defined as the least common multiplier of
Ng, N7, and Nypy; ie.,

N, = lcm(Nq, Nr, NM)

For most common converter systems in their steady state, the number of switched-

states is the same as the number of switched-networks.

The steady state switching period T, is defined as:

Ns—1

T,= > T
=0

The steady state switching frequency f, is the reciprocal of the steady state switching

period T,.

1.2 The Control of Ideal Dc¢-to-Dc Converter Systems

Dc-to-dc converter systems, as discussed in Section 1.1, are not controlled
by the input vector u. The input vector usually represents the power sources. If the
power source can be varied to control the dc-to-dc converter system, the converter system
Is unnecessary. In most cases, the variations in the input vector u are regarded as
disturbances. Dc-to-dc converter systems are controlled by changing the T;’s defined in
Section 1.1. There are four major modulation methods that determine the T;’s. In the
following discussion: define At; = T; — T}, and in the small-signal limit, terms of O(A?)
or higher are dropped and A — §; e.g., At; — 6t;.

The four major modulation methods may be described as follows:

1. Unmodulated — The modulation method is denoted by M*. The At;’s corre-
sponding to this method are zeros; i.e. At; =0, Vj € {j| M; = M*}. Quantities

corresponding to the unmodulated case are denoted with the superscript u.



16

2. Time-Modulated — The modulation method is denoted by M*. The At;yn.n,’s,

fixed 1, corresponding to this modulation method are determined by a sequence in

the following manner:
Atiinn, = (mf)~1 Arn], Vie{i|0<i<N,, Miynn, =M, neZ)

where N, is the number of switched-states, Ar;[n] is the sampled control-input
sequence formed from sampling the perturbed control-input signal Ar;(t), and m!
is the slope of the PWM ramp used in M;;,n,. Quantities corresponding to the
time-modulated case are denoted with the superscript t. If Ar;[n] = Ary(Titnn,)
for some signal Ar(t), then Ar is naturally sampled. If Ar;[n] = Ary(Tiynn, + ¢)
for some signal Ar(t) and constant ¢, then Ar is uniformly sampled. In this thesis,
¢ is assumed to be zero. It turns out that these two sampling processes do not make
a difference in the result given by the Small-signal Frequency Response Theory for

¢ = 0; see Section 4.3.

3. Constraint-Modulated — Better known as programming. The modulation method
is denoted by M°. Suppose that the transition from switched-state 1 + nN, — 1 to
switched-state ¢ + nNN, is controlled by this modulation method, then the time at

which this transition occurs T4, satisfies the following constraint equation:

£7 %X(Titnn,) + m§ Atigan, + 6 = ri[n] =0 (1.2)

where N, is the number of switched-networks, f; is a vector, r;[n] is the sampled
control-input sequence formed from sampling the control-input signal r;(t), ¢; is
a constant, and m{ is the slope of a sawtooth wave. The constraint equation is
the condition under which the converter system switches from switched-state ¢ +
nN, — 1 to switched-state + + nN,. In a converter circuit, the constraint equation

is the mathematical model of the switching action of the comparator circuit that
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determines when this change of the switched-state occurs. This comparator circuit
has the control-input r;(t) at one of its inputs, and the sum of a sawtooth ramp
with slope m{ and the weighted sum of the system states f¥ x(t) at its other input.
This sawtooth ramp is the ramp of the sawtooth wave in the case of a closed-loop
PWM converter system, and the stabilizing ramp in the case of the programmed
converter system. Quantities corresponding to the constraint-modulated case are
denoted with the superscript ¢. The derivation of the time of transition from its
steady state value 6t;1nn, may be obtained by linearizing the constraint equation,
Eq. (1.2), and expressing §t;1nN, in terms of other quantities in the linearized

constraint equation.

. Modified-Constraint-Modulated — The modulation method is denoted by M™. It
is used in the control strategies of constant on/off time converters and frequency
modulated converters. Suppose that the transition from switched-state { + nN, — 1
to switched-state ¢ + nNN, is controlled by this modulation method, then the time
at which this transition occurs Tiy,n, satisfies the following modified-constraint

equation:
7 X(Tirnn,) = miln] + mI* (Atiynn, — b Atigynn,) + =0 (L3)

where N, is the number of switched-networks, f; is a vector, r;[n] is the sampled
control-input sequence formed from sampling the control-input signal r;(t), ¢; is a
constant, and m]™ is the slope of the added ramp. The modified-constraint equation
is the condition under which the converter system switches from switched-state
t+nN, —1 to switched-state 1 +nN,. In a converter circuit, the modified-constraint
equation is the mathematical model of the switching action of the comparator circuit
that determines when this change of the switched-state occurs. This comparator

circuit has the control-input r;(¢) at one of its inputs, and the sum of a sawtooth
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ramp with slope m* which is delayed by hA™ At;_14nn, and the weighted sum
of the system states fT x(t) at its other input. The quantity AT is a constant,
which is unity in most converter systems. Quantities corresponding to the modified-
constraint-modulated case are denoted with the superscript m. The derivation of
the time of transition from its steady state value 6t;;,y, may be obtained by
linearizing the modified-constraint equation, Eq. (1.3), and expressing 8t;1,n, in

terms of other quantities in the linearized modified-constraint equation.

As an example, consider the bang-bang controlled converter system. This
converter system is not a constant-switching-frequency converter system. In general, for
any converter system to operate with constant switching frequency, it is necessary that
M* € {M;}. For a two switched-state bang-bang controlled converter system, Nps = 1,
and all the transitions from one switched-state to the next one are constraint-modulated;
ie., M; = M°, Nr = 2 and N, = 2, N, = lem(1,2,2) = 2. From the perspective of
Variable Structure System Theory[8], a bang-bang controlled converter is a simple sliding

mode controlled variable structure system.

1.3 The Linearizability of Ideal Dc-to-Dc Converter Systems

Although an ideal dc-to-dc converter system may be linear with respect to
its input vector u, it is nonlinear with respect to the its control-input r;. For an ideal
dc-to-dc converter system to be linearizable in the vicinity of its steady state solution,
it is necessary that there exists a § > 0, such that for any perturbation with magnitude
smaller than &, the sequences {(4;, 8;,C;,0;)} = {(A;,B;,C;,D;)} and {M;} = {M;}.
Another way of stating the condition is that, for an ideal dc-to-dc converter system to
be linearizable in the vicinity of its steady state solution, it is necessary that the order

of the appearance of the switched-states and the control strategy used to control the
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converter system do not change in the presence of small perturbations, especially, in the
small-signal limit. Furthermore, it is necessary that the sequence indexed by j formed
from the modulation parameters used in the modulation methods M;’s is periodic with
period N,. All the ideal dc-to-dc converter systems discussed in this thesis are assumed

to be linearizable.

1.4 The Properties of Ideal Dc-to-Dc Converter Systems

In order to understand the ideal dc-to-dc converter system problem, the prop-
erties of ideal dc-to-dc converter systems must be studied. Many of the properties of ideal
dc-to-dc converter systems are stated in Section 1.1. The most interesting properties are

the following:

The system is described by a linear differential equation at any instant of time

except at T;’s, the instants of switching.
e The differential equation has piecewise constant coefficients in time.
e The switching time is zero.
e The system is nonlinear with respect ot its control-inputs.
e The switching frequency is finite.
e The systemn state vector is continuous in time.

e The system output vector is discontinuous in time if the output matrix C or the

transmission matrix D is discontinuous in time.

These properties imply that a solution to the ideal dc-to-dc converter system exists at all
times, and given the control r(t) and the initial condition, the output waveform is unique

and can be computed. In fact, the output waveform between two consecutive switching
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instants can be computed analytically. The Small-Signal Frequency Response Theory
makes use to its full advantage of the fact that the output waveform can be computed.
An interesting fact about ideal dc-to-dc converter systems which has always
been overlooked is that these systems, like any nonlinear system, may have multiple
stable steady state solutions for a given operating condition. Therefore, contrary to
what most power electronics engineers think, the small-signal behavior of a converter
system corresponds to a periodic steady state solution of the system, instead of to the
operating condition of the system. It is observed in experiments, that for a given operating
condition, there may be multiple stable steady state solutions in a dc-to-dc converter
circuit (see Section 2.1 and Section 3.4). In addition, the frequency responses of the
converter circuit corresponding to different stable steady state solutions of the circuit are
different in spite of the fact that the operating condition that gives rise to the different

solutions is the same.
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Chapter 2

An Example Ideal Dc-to-Dc¢ Converter System

In this chapter, a very simple example ideal dc-to-dc converter system is used
to demonstrate the basic ideas behind the Small-Signal Frequency Response Theory. The
aim is to provide an understanding as well as a geometrical interpretation of the theory
before introducing it formally in Chapter 3.

Consider the circuit shown in Fig. 2.1, a current-programmed buck converter
circuit. If a sufficiently large output capacitor with very low ESR (equivalent series
resistance) is used, and if the inductor current is the only concern, the circuit shown in
Fig. 2.2 can be used to model this converter circuit. In this chapter, the steady state
operation and the motion of this converter circuit will be studied in detail. Since the
interest of this discussion is limited to the inductor current only, the circuit shown in
Fig. 2.2 will be used in this discussion instead of that shown in Fig. 2.1.

The steady state solutions of the inductor current of the converter circuit
shown in Fig. 2.2 are discussed in Section 2.1. This converter circuit may have infinitely
many solutions for a given operating condition; nevertheless, not all of the solutions are
stable. In Section 2.2, the motion of the converter system for a steady state solution is
studied by using a difference equation. The concept of the stability of the solution of
the converter system is introduced. In Section 2.3, the relation between the difference
equation and the frequency response of the converter are established. The basic concepts

of Small-Signal Frequency Response Theory are those introduced in Sections 2.2 and 2.3.
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Figure 2.1: A current-programmed buck converter circust.

1 L 1
‘ e L L R & e ——
+ ! +
U
vV, ‘:‘T | ‘.j? V,
- ] -
I
I
T
T lQ
¢ ; +
Clock ~—b g“’ d ,
PR °P |CLR T teey

Figure 2.2: The circuit model for inductor current calculation of the converter circuit
shown in Fig. 2.1.
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2.1 The Steady State Solutions of the Converter Circuit

The steady state solutions of the converter circuit shown in Fig. 2.2 can easily
be calculated. The quantity of interest in this study is the inductor current . The state

equation of the circuit for the switch in position 0 is:

di v,
T _f (2.1)
and for the switch in position 1 is:
di _V,-V,
FToa 7 (2.2)

In the framework laid out in Chapter 1, the converter may be described as

follows:
7]
x(t) = 1(t) u =
Az, = 0 Aznp1 = 0
1 1 1
B, = (O; - E) B2n+1 = (z, - f)
N, = 2

V n € Z. In this example, the order of the system is one; as a result, the system matrices
and the state vector degenerate to scalars. In order to simplify the example, the state of
the system x(t) will be used as the output; therefore the output equation will be ignored.

The control strategy of this converter is: the transition from switched-state
2n — 1 to switched-state 2n is a constraint-modulated transition, and the transition from
switched-state 2n to switched-state 2n + 1 is an unmodulated transition, n € Z. In the
framework for describing the control strategy of a converter system laid out in Chapter

1, the control strategy of this converter system may be described as follows:

Ny = 2
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Mznpr = MY
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where n € Z. Denote the steady state solution of the converter system by X(t). The
steady state solution must satisfy the boundary condition:
Ns
X(t) =X+ ) Ty (2.3)
i=1
where N, is the number of switched-states and T; is the duration that the system is in
the switched-state j.

From the description of the switched-networks of the converter circuit, its
control strategy, and the boundary condition of its steady state solution, the steady state
solution of the converter cannot be uniquely determined. Valid steady state solutions
of the system can be found easily by the application of the framework for describing
a converter system and its steady state solution in Chapter 1. Fof example, a valid
steady state solution with Nt = k Nas, where k is a positive integer, can be found, and
the number of switched-states N, = lem(Nas, N7, Ny) = kNps = 2k. For each of the
different choices of k, a unique valid steady state solution of the converter system can be
found.

For the case k = 1, N, = 2, and To + Ty = T, = T,, where T, is the clock
period. The waveform of the inductor current is Solution (a) shown in Fig. 2.3. The

slope of the waveform of the current ramping up is:

Vv, -V,
my = 42 (2.4)

The slope of the current ramping down is:

- (2.5)
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Figure 2.3: Three steady state solutions of the inductor current for a given operating
condition of the converter circuit shown in Fig. 2.2.
Solution (a): n=1,Ty,=T,, Nr =2, N, = 2.
Solution (b): n=2,T, =2T., Nr =4, N, = 4.
Solution (¢): n=1,T,=2T,, Nr =2, N, = 2.
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The boundary condition for the steady state solution is:

moTo+miTy = 0
Tl - Vo

The steady state duty ratio D =Ty /(To + Th) = V,/V,.

For the case k = 2, N, = Np = kNpp =4, Ty, = To+ Ty + Ty + T, and
T1+ T2 = T,, T5s + To = T.. The waveform of the inductor current is Solution (b) shown
in Fig. 2.3. The slope of the waveform is the same as the case for k¥ = 1. Nevertheless,

the boundary conditions for the steady state solution become:

moTo = m1T1 (2.6)

mng —_ m1T3 (2.7)

Equation (2.6) and Eq. (2.7) together with Ty + T2 = T, and T3 + Ty = T, form a system
of four linear equations with four unknowns Ty, Ty, T2, T3, which can be solved.

In general, for the case k = k*, there is a system of k* linear equations with k*
unknowns. Therefore, for each k* € Z*, a steady state solution of this converter system
can be found for each given operating condition — V; and V,. Nevertheless, not all of
the steady state solutions are stable solutions. Therefore, it does not make any sense
to use an operating condition (or an operating point), a term that is commonly used
in electronic circuits, to characterize the steady state solution for this class of converter
circuits. Any constant-switching-frequency converter circuit which uses the constraint
modulation in its control strategy has this problem. This phenomenon is a manifestation
of the nonlinearity of the ideal dc-to-dc converter circuit, which comes from the switching
action in the circuit.

Furthermore, it is obvious that it is possible to have Ty + Tg = kT, k € Z%,

in this converter circuit, provided Ty > (k — 1)T,. For the case of T} + Tp = 27T, the
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phenomenon is also referred to as period doubling, which is quite commonly observed
experimentally (See Fig. 2.3). Nevertheless, not all operating conditions can result in
this type of phenomenon. It is also possible to have a hybrid of the phenomena discussed
above.

From the steady state solutions of this simple example converter circuit, the

following conclusions can be drawn:

1. It is not sufficient to characterize the steady state solution of converter circuits with
circuit operation parameters, such as the supplied voltages, the supplied currents,

the reference voltages, and reference currents.

2. A possible way to specify the steady state solution is to use the circuit operation

parameters and the T}’s.

3. As a result, it is not appropriate to speak of the frequency response of a converter
circuit under a certain operating condition. Instead, the frequency response of a
converter circuit corresponds to a particular steady state solution of the converter

circuit.

For an example physical converter circuit that has multiple stable steady state

solutions for a given operating condition, see Section 3.4.

2.2 The Small-Signal Motion of the System

Before discussing the frequency response of an ideal dc-to-dc converter system,
the motion of the system in the time domain must be studied. The motion of an ideal
dc-to-dc converter system is complicated. In general, the detailed large-signal motion
of the system can only be studied by numerical simulation. Fortunately, if an ideal

dc-to-dc converter system is linearizable, the small-signal motion of the system can be
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Figure 2.4: Steady state inductor current — I(t), perturbed inductor current — i(t), and
related definitions.

characterized by a difference equation. The sequences in the difference equation represent
the sampled control-input signals and the sampled system states. The trajectory of the
system between the sample points can always be found (See Section 1.4). This is a
fortunate property of ideal dc-to-dc converter systems.

In this section, the small-signal motion of only one particular steady state
solution of the circuit shown in Fig. 2.2 is discussed. This particular steady state solution
is the two-switched-state solution in which Ty + T} = T, (Solution (a) shown in Fig. 2.3).
The steady state solution waveform, that is, the steady state inductor current waveform,

and the perturbed waveform are shown in Fig. 2.4.

The diflerence equation that describes the small motion of a N,-switched-state

converter system, i.e., a converter system with a N -switched-state solution, in the vicinity
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of its steady state solution has the function of relating a sample of the perturbed system
state at a sample point to the sample of the perturbed system state at a similar sample
point N, switched-states earlier, and to the sample of the perturbed control-input. From

the geometry shown in Fig. 2.4, an expression for Atg[n] can be obtained easily:
1 . .
Atg[n] = o {Ad,e5[n] — Adg[n — 1]} + O(A?) (2.8)

With Atg[n] known, Aip[n] may be expressed in terms of Atg[n], and then in terms of

Ai,ep[n] and Adg[n — 1] as follows:
Aio[n] = Aio[n - 1] + (m1 - mo) Ato[n]

- (1 _ -”-‘l—-‘—'-"ﬁ) Adofn — 1] + TL2T0 A4 n] + O(A2)
my my

= k Adpln — 1]+ (1 — k) Adppn] +0(AY) (2.9)

where k = %‘11 In the small-signal limit, terms of O(A?) or higher are dropped, A — §,

and the difference equation becomes:
Sip[n] = k §ig[n — 1] + (1 — k) 6i,ef(n] (2.10)

It is obvious that the small-signal motion of the system is unstable when k& > 1.
Though not discussed here, the difference equation that describes the small-signal motion
in the vicinity of other stable steady solutions of this simple example converter system

can be found easily by using a geometrical approach similar to that discussed above.

2.3 The Frequency Response of the System

In this section, the frequency response of the output, inductor current 1, with
respect to the control-input, reference current 1,.y, is studied, where i(t) = I(t) + §i(¢),

iref(t) = Irey + 81res(t), in which I(t) is the steady state solution of £(t) and I,.s is the
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controlling reference signal 1, in the steady state. Since I(t) is periodic with period T,
the switching period, it does not contribute to the frequency response. The steady state
reference current I,.s is a dc quantity; therefore, it does not contribute to the frequency
response either. As a result, the frequency response of 1 with respect to 1,.s is the same
as the frequency response of 61 with respect to 6¢,.;.

In Section 2.2, the difference equation that describes the relation between
8ig[n] and 6ip[n — 1], Eq. (2.10), is derived. In order to find the small-signal frequency
domain relation between ¢ and t,.y, the following three missing links must be established

in addition to the difference equation:

1. The relation between 8i,,7(s) — the Laplace transform of the perturbed control-
input 8i,.(t), and 61}, ;(s) — the Laplace transform of the sampled 61, (t); 6t7,;(s)

is defined below:

it (s) =L {Z 81pep(nT,) 6(t — nT,)}

2. The relation between 81y, (s), and 13(s) — the Laplace transform of the sampled

8i(t); 61¢(s) is defined below:
sig(s) =L {Z Sioln] 6(t — nTs)}
n
where 1y[n] is defined in Fig. 2.4.

3. The contribution of a sample of the perturbed state 6ig[n] to the perturbed state
§1(t) over one switching period T, and to the spectrum of the perturbed state 6i(s);

see Fig. 2.5.

The first link is established by Shannon’s Sampling Theorem[7]:

1 . .
1rep(s) = EZ&znf(s-i-mw,) (2.11)
n
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where § = /-1, w, = %—-’f Nevertheless, there is a complication that ¢,.y may be naturally
sampled. In other words, 1,.s is not uniformly sampled. Fortunately, it may be shown
that the effect of this almost periodic sampling process is merely the introduction of
additional noise into the system in the small-signal limit when compared to the uniform
sampling process (See Section 4.3).

The second link is obtained by the application of the z-transform to the dif-
ference equation that describes the small-signal motion of the system with z = e*T¢ [3].

If the z-transform is applied to the difference equation Eq. (2.10), it becomes:
§i(z) = 27V k6i(z) + (1 — k) Sires(2) (2.12)

Substituting e*T* for z, then, 1(2) — i*(s), ires(2) — 1,;(s), and Eq. (2.12) becomes:

- 1-k .k
61 (S) - mz"f(s) (213)

The third link is one of the major features of the Small-Signal Frequency Re-
sponse Theory, which makes it different from other approximate analytical methods.
While most other methods use a concept called averaging to relate the sequence of the
sampled perturbed state {§ig[n]} to the spectrum of the analog perturbed state 6i(s),
the Small Signal Frequency Response Theory computes, first, the time domain contribu-
tion of §ip[n] to the §i(t) over one switching period T,, and then, from the time domain

contribution, computes the frequency domain contribution to §i(s).

Figure 2.5 shows the time domain contribution of Aifg[n] on the Ai(t). The
shaded area under the waveform of A:(t) is the contribution of Adg[n] to Ai(t) over one
switching period T,. In the small-signal limit, Ai .y — 8iyes, 8ipey — 0, Adg[n] — 6ip[n]
and Ai(t) — 8i(t). The trapezoidal areas under the waveform approach zero much faster
than the rectangular areas in the small-signal limit; therefore, they can be neglected

for small-signal calculations. Consequently, the contribution of §ig[n] to 6i(t) may be
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Figure 2.5: The contribution of Aig|n] to Ai(t) — shaded area.
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Figure 2.6: The equivalent linear system for the converter circuit shown in Fig. 2.2.

treated as a rectangular piece of the waveform of “length” in time Ty, and of “height”
61p[n]. This shaded part in the small-signal limit is exactly the same as the output of
the zero-order-hold[3] with a §-function with magnitude §ip[n] at the input of the hold.

Hence, the third link is a zero-order-hold. This link may be described by:

1-eTs
bi(s) = ——— bip(s) (2.14)
s
The relation between the spectrum of the output §: and the spectrum of the
control-input 6t,.¢ can therefore be described by a sampled-data system shown in Fig. 2.6.

Tlie overall result is:
6i(s) = G(s) 617, 4(s) (2.15)

where

. 1 . 2nme
bifg(s) = FZ‘S’W <S+ T,)

1-e*Ts 1%k

Gls) = s 1- ke *Ts
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Equation (2.15) describes the frequency response of 67 with respect to §i,.;s.
The ratio 6§i(s)/8i,.s(s) may be loosely referred to as the “transfer function” from i,.;
to ¢, and G(s) is the pulse transfer function.

The small-signal frequency response of 61 with respect to §3,.5 of the converter
circuit shown in Fig. 2.2 for the steady state solution with Tp + Ty = T, Eq. (2.15), may
have little practical application for the converter circuit. For the converter circuit shown
in Fig. 2.1, however, Eq. (2.15) is a good approximation of the frequency response of
the inductor current to the reference current (using the circuit shown in Fig. 2.2 as
the model). The frequency response of §i with respect to éi,.s is extremely useful for
designing a controller for regulating its average inductor current and its output voltage

with analog controller design techniques.



35

Chapter 3

Simple Two-Switched-State Converter Systems

Most of the converter circuits in common use have two switched-networks. In
the example converter circuit in Chapter 2, it is found that even though the converter
circuit has only two switched-networks, the number of switched-states in its steady state
solution may be infinite. Nevertheless, in most cases, one would like to operate a converter
circuit so that the number of switched-states of the steady state solution is the same as
the number of switched-networks of the converter circuit. Therefore, the discussion of this
chapter will concentrate on two switched-state converters systems, in which the number
of switched-states is the same as the number of switched-networks. Furthermore, in
this chapter, the discussion is limited to simple converter systems, those that do not
use modified-constraint modulation in their control strategy and do not have the output
equation; i.e., the output matrix C and the transmission matrix D are ignored. The

non-simple converter systems will be discussed in Chapter 5.

Given an ideal dc-to-dc converter system and its steady state solution, the
Small-Signal Frequency Response Theory gives the control-input-to-output frequency re-
sponse of the system provided that the steady state solution is small-signal stable. The
Small-Signal Frequency Response Theory does not predict anything about the steady
state solution; instead, it assumes that the steady state solution X(t) is known and
given. The steady state solution X(t) is periodic with period T, = Ty + T, where Ty is

the switching period, Tp is the duration of the switched-state 0, and T is the duration
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Figure 3.1: Steady state state vector X(t), perturbed state vector x(t), and related defi-
nitions.
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of the switched-state 1. For the convenience of describing the problem, define:

Tiln] = Tiinn, (3.1)
At; = T; - T, (3.2)
Ati[n] = Atignn, (3.3)
X; = X(Ti[n]) (3-4)
ax(t) = x(t) - X(t) (3.5)
Ax; = Ax(T;+ max(6t;,0)) (3.6)
Axin] = Axiynn, (3.7)
A%; = Ax(Tjs1+ min(Atj11,0)) (3.8)
A%i[n] = AXiian, (3.9)

where T is the time at which the converter system switches from switched-state j — 1 to
switched-state 7, T; is the T; of the steady state solution, At; is the deviation of T; from
T; for the particular solution of the system under study, x(t) is the particular solution
of the state of the system, X(t) is the periodic steady state solution of the state of the
system, Ax(t) is the perturbed state of the system, X; is the value of the steady state
solution of the state at the transition from switched-state ¢ — 1 to switched-state ¢, Ax;
is the value of the perturbed state at the beginning of switched-state 7, and AX; is the
value of the perturbed state at the end of switched-state 7. The subscript j is the index
for the switched-state 7 or the transition from switched-state 5 — 1 to switched-state j.
The subscript 1 is the index in a switching cycle, and the index for the switching cycle is
n. These definitions are depicted in Fig. 3.1.

The procedure for finding the frequency response of an ideal two-switched-
state dc-to-dc converter system is essentially the same as that used for the simple example

converter circuit in Chapter 2. The first step in the procedure is to find the difference
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equation that describes the small-signal system motion in the vicinity of the given steady
state solution. Without loss of generality, only the case of modulating Atg[n] is consid-
ered. This step is discussed in Section 3.1. The second step in the procedure is is to find
the equivalent hold that relates the Ax;’s to Az(s). This step is discussed in Section 3.2.

In the sections following Section 3.2 are three examples of two-switched-state
converter systems; each of the examples has a different control strategy. The three control

strategies in the examples are:
1. Constant-switching-frequency time modulation (PWM) control.
2. Constant-switching-frequency constraint modulation control (programming).
3. Variable-switching-frequency bang-bang control.

For each example control strategy, the general results are discussed first, followed by the
application of these results to predict the frequency response of an example converter
circuit. In addition, experimental results are compared to the theoretical predictions.
The example converter circuit topology used in all three examples is the simple R-L
topology. This topology is chosen for the following reasons: First, its steady state can be
calculated analytically. Second, it is a first-order system with only one reactive element;
therefore, the result is relatively simple. Third, this converter circuit is so simple that
parasitics can be neglected or absorbed into its circuit elements except at relatively high
frequencies. As a result, it offers very good control over the experiments on the circuit.
Fourth, using the different control strategies with this simple topology can illustrate

where the approximate analytical methods fail.
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3.1 The Small-Signal Motion of the Systems

The small-signal motion of a simple ideal dc-to-dc converter system in the
vicinity of a steady state solution may be described by a difference equation that relates
8xo[n — 1] to 6xo[n]. This difference equation is sufficient to describe the motion of the
system because the differential equation that describes the converter system in steady
state has periodic piecewise constant coefficients in time. As a result of the linearity of the
switched-networks or structures of the system, the exact trajectory of the system between
the sample points given by the difference equation can always be found. Furthermore,
if the sequence {6x;[n]} is finite, then 6x(t) is finite; i.e., the stability of the difference
equation implies the small-signal stability of the system.

Before the derivation of the difference equation that describes the small-signal
motion of the system, the converter system and its steady state solution must be put in

the framework laid out in Chapter 1. For a two switched-state converter system in steady

state, Vne Z :
(A2r,B2s,C2n,D2,) = (Ag,Bo, Co, Do) (3.10)
(A2n+1,B2n+1,Can41,D2nt1) = (A1,B1,C1,Dy) (3.11)
My = Mo (3.12)
Myt = M (3.13)
T2 = To (3.14)
Tyns: = Ty (3.15)

For the converter system to be linearizable, it is necessary that when the system is

perturbed in the vicinity of the steady state solution in the small-signal limat:
{(#45,8;,C;,05)} = {(A;,B;,C;,D;)} (3.16)

{M;} = {M;} (3.17)
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Y j € Z. The modulation method M; determines Tj, i.e., the time of the transition from
(A;-1,B;-1,Cj-1,D;_;) to (A;,B;,C;,D;). Furthermore, the modulation parameters
used in MjinN, V n € Z must not alter with change of n for fixed 1. In the following
discussion, the converter system under study is assumed to be linearizable.

Without loss of generality, the converter system can be considered to be mod-
ulated by the control-input ro only. The contribution from modulating Mz, 4+1’s by the
control-input r; may be taken into account later by superposition. Define &, K, k; by

the following equations:

~

55'{,'[1’1] = @,‘5){;[17.] (3.18)

&x;[n] = K; §%;_1[n] + k; 5ri[n] (3.19)

where 6r;[n] is the sampled perturbed control-input. The quantity &, is the transition
matrix that relates value of the perturbed state at the beginning of switched-state 1 +nN,
to that at the end, and it depends on A, and T; only. The quantity K; is the transition
matrix that relates value of the perturbed state at the end of switched-state 1 — 1 + nN,
to that at the beginning of the switched-state ¢ + nN,. The effect of 6r;[n] on 6x;[n] is
determined by the vector k;. There is a different K; and a different k; corresponding
to each modulation method M;,,n,. The &’,-’s, and the K; and k; for each of the three
modulation methods discussed in this chapter, namely, no modulation, time modulation,

and constraint modulation, are derived in the following subsections.

3.1.1 TUnmodulated Transitions

Consider the case that the transitions from switched-state 1 — 1 + nN, to
switched-state ¢ + nN, are unmodulated, i.e., M;;,n, = M*, Vn € Z. Obviously, fc:‘ = 0.
The state x(t) is continuous and 6#;{n] = 0. Therefore, x;[{n] = X;_1[n]. As a result,

6x;[n] = 6%;_1[n], and f{:‘ = I. Quantities related to the unmodulated case are denoted
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by the superscript u.

3.1.2 Time-Modulated Transitions

Consider the case that the transitions from switched-state 1 — 1 4+ nN, to
switched-state { + nN, are time-modulated, i.e., M;1nn, = M*, Vn € Z. Quantities
related to the time-modulated case are denoted by the superscript ¢. If the modulating
perturbed control-input sequence is &r;[n], and the slope of the ramp of the sawtooth
wave used in the pulse width modulator is m!, then the changes in time of transition may

be expressed in terms of ér;[n] as follows:
§tiln] = (m})~*6ri[n] (3.20)

With 6¢;[n] known, the perturbed state just after the transition §x;|n] may be expressed
in terms of the perturbed state just before the transition §X;_1[n] and the control-input

§r;[n]. From the geometry shown in Fig. 3.1, it is obvious that:
Axiln] = A%i_ln) + (X7 +O(A)} Atiln] — (X} + O(A)} At
= AX;_1[n] +k; At[n] + 0O(A?Y) (3.21)
where
X; = A1 Xi+Bi,u

X = A;X;+B;u

=
il

X - X7
= (Aim1— AYX;+ (Bioy — Bi)u
In the small-signal limit:

5x,~[n] = 5i{_1[n] + E,’ 5t,~[n] (3.22)

6x,-[n] = 55(;_1[”] + (mf)_ll_{, 57‘,‘{71} (3.23)
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Hence:

Ki =1 (3.24)

kf = (mf)_l {(A;_l - A,’)X; + (B,'__l - B,‘)u} (3.25)

3.1.3 Constraint-Modulated Transitions

For the case that the transitions from switched-state + — 1 + nN, to switched-
state 1 + nN, are constraint-modulated, i.e., M;1,n, = M®, Vn € Z. The first step in
finding K¢ and k¢ is to express 6t;[n] in terms of 6%;_1[n] and § ri[n]. Quantities related to
the constraint-modulated case are denoted by the superscript ¢. The constraint equation
is:

fT %(Titnn, + Ati[n]) + mé Ati[n] + ¢; — ry[n] = 0 (3.26)

where f,-T is a vector constant and ¢; is a scalar constant corresponding to M;; r;[n] is the
modulating control-input sequence from either the uniform-sampling of the control-input
ri(t), in this case r;[n] = r;(Ti;2n), or the natural-sampling of the control-input r; (t), in
this case r;[n] = r;(Ti12n+ At;i[n]); and m¢ is a constant which is the slope of the ramp of
the sawtooth wave used in the pulse width modulator, in the case of a PWM converter,
or the slope of the added stabilization ramp, in the case of a programmed converter.
The constraint equation is the condition under which the converter system switches from
switched-state 1 +nN, —1 to switched-state i +nN,. In a converter circuit, the constraint
equation is the mathematical model of the switching action of the comparator circuit that
determines when this change of the switched-state occurs. This comparator circuit has
the control-input r;(t) at one of its inputs, and the sum of a sawtooth ramp with slope
m{ and the weighted sum of the system states f7 x(t) at its other input. The constraint

equation, Eq. (3.26), may be linearized by perturbing it and then subtracting steady
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state part from it. In the small-signal limit the linearized constraint equation is:
£fT 6%;_1[n] + £F X[ 6ti[n] + m¢ 6t;[n] — 6ri[n] =0 (3.27)

where X: =A; 1 X;+B;-1u.
The quantity §t;[n] in the linearized constraint equation may be expressed in

terms of the other quantities in the equation as follows,
5t.-[n] = —p,T 5)2,‘..1[".] “+ my 51‘,’[71] (3.28)
where

m; = [f,-T X + m}’]—1

Pi = [ferxf'f‘mf]*lﬂ

With use of this result and Eq. (3.22), the result of the time-modulated case, then:

sxi[n] = Ki6%ioi[n]+ki [‘P:’T 6%i-1[n] + m; 5r,~[n]]
= [I -k p?] §%;-1[n] + m; k; 6ry[n] (3.29)
Hence:
Ki = I-kipf (3.30)
ki = mk (3.31)

3.1.4 Between the Transitions

The relation between the perturbed state at the end of the switched-state
t + nN,, 6%X;[n|, and the perturbed state at the beginning of the switched-state { + nN,,
6x;[n], is relatively easy to find. Consider the differential equation that describes Ax(t)

for max(T;, T;) <t < min(Tj41, Tj+1), 7 =1+ nN,:

A%(t) = x(t) - X(¢)



44
= A; x(t) —A; X(t)
= A; {x(t) -X(t)}
= A; Ax(t) (3.32)
The solution to this equation for max(T;, T;) < t < min(T;41, Tj+1), J = ¢ + nN,, is:
Ax(t) = eAilt-max(T;,T3)) Ax (max(T;, T3)) (3.33)
By using the definition of A%;[n], then:
AXi[n] = Ax(min(T;+1, Tj+1))
= eA"(min(Tf‘f'l’7:7'+1)—mm((Ti’T.f)) Ax(max(Tj, 73))
= Ai(min(T;1,Tj41)-max(T;,7;)) Ax;
= Ai(min(Tjy1,Tjt1)—max(T;,T;)) Ax;[n] (3.34)
In the small-signal limit, A - 6, T; —» T;,Vj € Z:
§%;[n] = MTit1=T5) gx.in]

= A7 §x;[n]

= AT §x[n] (3.35)
= &; sx[n] (3.36)

where
&, = AT (3.37)

Note that 3 = ¢+ nN,, T;;; —T; =Tj, and A; and T; are periodic in § with period N,.

3.1.5 The Difference Equation

With the ®,’s, K,’s, and k;’s derived above, the difference equation that de-

scribes the small-signal motion of the system in the vicinity of its steady state solution
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can be constructed. As mentioned before in this discussion, it is assumed that only Ms,

is being modulated by the control-input §rg; 671 = 0. The difference equation is:

5XQ[n] = Ko 55&1[71. - 1] + l;o 51’0[".]

Il
s
N

0 @1 6x1[n — 1] + ko 67o[n]

i
=
=

0 1I~{1 Sio[n - 1] +1~(0 51‘0[7’1.)

Il
Bh
(o]

0P Kl 60 5X0[n - 1] + 120 51‘0[11] (3.38)

For convenience, define the following quantities:

& = f{o &1:{{1 éo (3.39)

~

k = ko (3.40)
Then, the difference equation that describes the small-signal motion of the system is:

6xo[n] = ® 8xg[n — 1] + k 6ro[n] (3.41)

3.1.6 The Small-Signal Stability of the Systems

For an ideal dc-to-dc converter system to be small-signal stable in the vicinity
of a steady state solution, the difference equation that describes its motion in the vicinity
of the steady state solution must be stable. For the difference equation to be stable, all
the eigenvalues of ® must lie in the unit disk; i.e., max | )\(&) |< 1.

The small-signal stability of the difference equation is a necessary condition for
the stability of the whole system. If the difference equation is asymptotically stable, i.e.,
max | A(®) | < 1, then there exists a stability region in the vicinity of the steady state
solution, such that any perturbation within the stability region will not lead to instability
in the system (See Section 4.2). For some classes of converter systems, there are physical

constraints in the converter circuit that guarantee that the maximum modulus of the
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eigenvalue of the matrix ® is unity regardless of the magnitude of the perturbation to

the system and the operating condition of the system.

3.2 The Frequency Response of the Systems

As discussed in Chapter 2, given the difference equation that describes the
small-signal motion of a converter system in the vicinity of its steady state solution,
Eq. (3.41), three links are required to find the frequency response of the system. The
three links are: the relation between 8ry(t) and 8rg[n| in the frequency domain; the
relation between the sequences of §-functions with magnitude {6ro[n]} and {6xo[n]} in
the frequency domain; and the contribution of éx;[n] to éx(t) and therefore §x(s). As
in Chapter 2, the first link is given by Shannon’s Sampling Theorem[7], and the second
link is given by the z-transform of the difference equation that describes the small-signal
motion of the system followed by the substitution of e*”* for z[3]. The only link that
has to be worked on is the contribution of the sampled perturbed state §x;[n] on the
perturbed state §x(t) and therefore on the spectrum of the perturbed state §x(s).

‘For max(T;, T;) < t <min(Tj41, Tj+1), J = ¢ + nN,, the differential equation

that describes 6x(t) is given below:
&x%(t) = A; 6x(t) (3.42)

There are time intervals in which 6x(t) is not described by this equation. Nevertheless,
the lengths of these time intervals are of the order of §t;[n}; therefore, the perturbed state
6x(t) has a negligible contribution to its spectrum §x(s) during these time intervals in
the small-signal limit (see Section 4.4).

To find out the equivalent hold that relates a sample of the perturbed state
6x;[n], which is also an element in the state sequence in the difference equation that

describes the small-signal motion of the system in the vicinity of the steady state solu-
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tion, to the spectrum of the perturbed state §x(s), the Laplace transform is applied to
Eq. (3.42) for time t, max(T;, T;) < t < min(Tj41, Tj+1), J =1 + nN,.
mm(T y ,T'+1) mm(T F+ ,T‘ )
/ T sx(t) e dt = Ay I sx(t) e dt (3.43)
max(T};,T;) max(T;,T;)
Define 6x;,(s) to be the Laplace transform of the perturbed state 6x(t) for time t, such
that max(T;, T;) <t < min(Tj41, Tj+1), J =1+ nN,,
min(T;41,Tj+1)
oxtn(s)= [ sx(t) e dt
Xin(8) max(T.T) (t)
Then Eq. (3.43) becomes:

min(T;41,Tj4+1)
/ G+ Tt sx(t)etdt = A, 5x?,n(s) (3.44)

max(T;,T;)

min(T;41,Tj41)

6x(t) e +88xi,(s) = A;bxi,(s) (3.45)

max(T;,T;)

By using the fact that éx (min(T;41, Tj41)) = 6%; and 6x (max(T;, T;)) = 6x;, then,
e—* min(Tji1,Tj41) 6% —e™* max(T;,T;) 6x; = [Ay — s 1] 6] ,(s) (3.46)

With use of § = 1 + nN,; 6xi[n] = 6xi1nn,; Tjy1 — Tj = Tj; Tignn, = Ti; in the small-
signal imit, T;41 — T;y; and T; — T;; both A; and T; are periodic with period N,;

and Eq. (3.36); then Eq. (3.46) becomes:

e~ *Tit1 6%; [n] — T 5x,~[n] = [A:’ — SI] 5x:,n(5) (3.47)
e—sT;~ 5X¢ nl — e—aTJ- eAJ'Tj ax‘ n Pt SI — A‘ 5 ‘f‘n s 3.48
X,
Hence:
bt (5) = ¢ T o 1= A {1 e~ T AT g (249

The quantity 6x;,,(s) may be interpreted as the contribution 6x;[n] to §x(s). Equation

(3.49) may rewritten as below:

5x:‘n(s) — e"ﬂT{«}»nNs ﬁ‘(s)gx,[n] (3.50)
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where

H(s) =[sI- A, [I —e T eA"T‘] (3.51)

The spectrum of the perturbed state §x(s) in the small-signal limit is:
5x(s) = D 6xbq(s)+ 6XTn(s)
n

= Ho(s) 6x3(s) + FLa(5) x5 (s)

= Ho(s) 6x}(s) + e *T0 H; (s) Ky B 6x(s)

= {Ho(s) + e™* T H (s) K1 B0} 6x3(s)

= H(s) 6x}(s) (3.52)
where

~

H(S) = ﬁo(s) + e""T" I:f[l(s) Kl 60
§x5(s) = D 6xo[n]e*Toln]
= ) bxq[n]e™"T
6xi(s) = D 6xi[n]e*Tiln]
= ¢ *Tiln E §x1[n] e~*"Ts
n
= e_"T" ZKI éo (SXO[YI.] e"’"T3
n
= e K, & E §xo[n] e~ *nTs
n

= e*ToK; & 6x3(s)

and without loss of generality, To[0] is assumed to be zero. The quantity H(s) is the
equivalent hold of the system corresponding to the given steady state solution with respect
to the perturbed control-input érp.

The relation between 6r§(s), the spectrum of the sampled perturbed control-

input 8ro, and 6§x¢(s), the spectrum of the train of §-functions with magnitude {6xq[n]},
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is given by the z-transform of the equation that describes the small-signal motion of the

system in the vicinity of its steady state solution, Eq. (3.41), with z = ¢*7:

§xo[n] = @ &xoln — 1] +k bro[n]

Z{6xo[n)} = @ Z{6xo[n 1)} +k Z{6ro[n)} (3.53)
6x0(z) = 271® 6x0(2) +k 6ro(2) (3.54)
§xp(2) = [I—z71 @] 1k 6ro(2) (3.55)

where 8xg(z) is the z-transform of the sequence {6xo[n|}, and ro(z) is the z-transform of
the sequence {§ro[n]}. Substitute e*T* for z in Eq. (3.55), then §xo(z) becomes §x}(s),

and §rg(z) becomes §rj(s); and the following equation is obtained:
6xh(s) = [I— e T &] 1k 673(s) (3.56)

where §x¢(s) is the spectrum of the train of §-functions with time T, between consecutive
§-functions and magnitude {6xo[n|}, and r§(s) is the spectrum of the sampled control-
input 8rg with sampling period Ts.

By use of Eq. (3.51), Eq. (3.56), and the Sampling theorem, the spectrum of

the output 6x(s) is:

§x(s) = H(s) {I — T i}-l k 6r3(s) (3.57)
where
. 1 & 2nmi
Sry(s) = T Z bra(s + T ) (3.58)
8 e —oo 8

Equation (3.57) describes the small-signal frequency response of a simple ideal two-

switched-state dc-to-dc converter system.

3.3 Constant-Switching-Frequency PWM Converters

With use of the framework for describing ideal converters discussed above,

an open-loop constant-switching-frequency pulse-width-modulated (PWM) converter is
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described by Mz, = M*? and Ms,,+1 = M*,Vn € Z; i.e., the transition from switched-state
2n — 1 to switched-state 2n is time-modulated, and the transition from switched-state 2n
to switched-state 2n + 1 is unmodulated. Notice that for any converter to be operating
at constant switching frequency, it is necessary that M* € {M;}.

According to Eq. (3.57), the frequency response of an open-loop constant-

switching-frequency PWM converter system with respect to the control-input rg is:
~ ~ ~y-1 ~
§x(s) = {Ho(s) + e *To H, (s) eA"T"} {I — e Ts @} k 6ry(s) (3.59)
where

ﬁ;(s) = [sI- A‘,]—l [I _e—*Ti eA‘T‘]
k = (m})™! {(A1- Ao)Xo + (B — Bo)u}
é = Kg &)1 K’f &0

= AT erTo

In the high-switching-frequency limit, i.e., 1/Ty — oo, Xo — X, H;(s) = T} 1,
and 8r§(s) — 6ro(s)/Ts, Eq. (3.59) becomes:
-1

. T ~ 1
Jim 6x(s) = { e A0+T2A1Tl)} & 7-6ro(c)

= {sI- A} 1{(A; - A¢)Xo + (B1 — Bo) }5’0(8) (3.60)

where A = Z‘%Ao—i- %Al. The quantities Dy and D; are commonly known as duty ratios.
One can easily identify 6ro(s)/(miT,) with the d(s), % with D, the duty ratio; I’I‘% with
the D'; and éx(s) with the %X(s) used in the literature on the State Space Averaging
Modelling Method[4,5,6]. By applying the notation used in the State Space Averaging

Modelling Method, Eq. (3.60) becomes:

:’ljgloﬁ(s) - {SI - (D'Ao -+ DAl)}_l {(Al e Ao) X -+ (B1 - Bo) u} dA(S) (3.61)
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&+

Figure 8.2: A constant-switching-frequency PWM R-L converter:

V, = 15Volts, L = 1.41mH, R =560, R' =0Q, T, = T..
which is exactly the prediction given by the State Space Averaging Modelling Method.
Therefore, the frequency response prediction of the State Space Averaging Modelling
Method for open-loop PWM converter systems is exact when the switching frequency of
the converter systems approaches infinity. This result is not surprisingly new. A similar
result is given in the Fquivalent Control Method of Sliding Mode Control in Variable

Structure System Theory developed by Utkin[8].
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Consider the circuit shown in Fig. 3.2 as an example:

Ay = Rt A, =
By = 0 B; =
X = 1 u ==
Dy = £ D, =
mb = YTﬂ.’“ R =

|
e

IS

S

02

Since both Ao and A; are invertible, the steady state Xo is given by:

Xo=[I- eAlTlerTo]—l {AT [A T 1] Bru+ eAiTiAG? [AoTo I| Bou} (362)

The steady state X; is given by:
X; = eAoTo X+ Ag? [eATo — 1| Bou

Therefore, the steady state I is:

L= [1 . RT]+(12+R')TQ}_1 [1 B e—ﬁgk] %

Then, according to Eq. (3.59), the pulse transfer function is:
G(s) = H(s) (1 - e~*T®)" 1k

where:

24 1- e G+BET 1 _ o~ (e+ )T
s} = T + e
(¢) s+ E—“}JE— s+ %

~ _ RTI+(R+R)T,
d = ¢ p

bl
il

bR O b

T,V, R' [ _ RTy+(R+R)Ty ] -1 [
1—e¢ L 1
LV, R

RT,
-— e— L

_(_,+R;~£!i)1~0}

l}

(3.63)

(3.64)

(3.65)

In this example converter circuit, the resistance R' = 0(2, and the pulse transfer function

from the sampled control-input §v}, ;(s) to the output v,(s), according to Eq. (3.65) is:

T,R/L V,

RG()= TRL v,

(3.66)
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where V,, is the peak-to-peak voltage of the PWM ramp. In this degenerated case of
R' = 011, the expression for the pulse transfer function is very simple when compared
to the non-degenerated case in Eq. (3.65). This predicted pulse transfer function agrees
with what would be expected after examining the circuit shown in Fig. 3.2 — the transfer
function of a R-L low pass filter with time constant L/R.

The schematic of the converter circuit used in the experiment is shown in
Fig. 3.3. The waveform of the steady state solution of the voltage across the load resistor
R = 5611, and the corresponding Bode plots up to three times the switching frequency
of the theoretical “transfer function” from v,.s to vo; i.e., RG(s)/Ts, overlaid with mea-
surement results are shown in Fig. 3.4 through Fig. 3.6. Three switching frequencies:
100Hz, 40kHz, and 20kHz are used in these Bode plots. These switching frequencies are
chosen because: at 100kHz, ||[AT,|| < 1, the small-ripple assumption is valid; at 40kHz,
||AT,|| =~ 1, the small-ripple assumption begins to break down; at 20kHz, ||AT,|| > 1, the
small-ripple assumption breaks down totally and the ripple is large. The discrepancies
between the theoretical and the measurement results in the Bode plots at high frequen-
cies come from the unmodelled dynamics in the pulse width modulator circuit which
are unaccounted for in the ideal converter circuit model, Fig. 3.2, used in obtaining the

theoretical prediction.
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Figure 8.8: The realization of the constant-switching-frequency PWM converter circuit
shown in Fig. 8.2 for use tn the experiments.
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3.4 Constant-Switching-Frequency Programmed Converters

The control strategy of constant-switching-frequency programmed converters
may be described by Ms,, = M¢ and My, = M*, Vn € Z; i.e., i.e., the transition from
switched-state 2n — 1 to switched-state 2n is constraint-modulated, and the transition
from switched-state 2n to switched-state 2n + 1 is unmodulated. As in Section 2.1, it is
possible for this class of converter circuit to have multiple stable steady state solutions
under a given operating condition. In this section, the frequency response of only one of
the solutions, the two-switched-state solution, with T = Ty + Ty = T, is treated. The
non-uniqueness of the stable steady state solution under a given operating condition in
an experimental converter circuit using the constant-switching-frequency programming
control strategy is also discussed.

Suppose the constraint equation for determining when to switch from switched-

state 2n — 1 to switched-state 2n, V n € Z, is:
fg X(TnNs + Ato[n]) + mg Ato[n] + ¢ — ro[n} =0 (3.67)

The constraint equation is the mathematical model of the switching action
of the comparator circuit that determines when this change of switched-state occurs in
a constant-switching-frequency programmed converter circuit. This comparator circuit
has the control-input ro(t) at one of its inputs, and the sum of the weighted sum of
the system states f7 x(t) and a sawtooth ramp with slope m{ at its other input. The

linearized constraint equation, according to Eq. (3.27), is:
£ 6%1(n — 1]+ £7 Xg bto[n] + m§ 6to[n] — bro[n] = 0 (3.68)

where X5 = A; X0 + B; u.

According to Eq. (3.57), the frequency response of the converter system with



respect to the control-input rg corresponding to the steady state solution X () is:

§x(s) = {ﬂo(s) + e T H; (s) eA°T°} {I — e *Ts i’}‘l k 6r3(s)

where

-~

Po
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[sT—A,! [I —e % eA‘T"]
Kg eA1T1 erTo
mo l—{o

I-kop]

(A1 —_ Ao)Xo + (B1 - Bo)u

-1
[ (A1Xo+ By u) + m]

mg fo

(3.69)

The quantity Xo which is used in calculating K§ and l~<8 may be found by using Eq. (3.62)

if Ag and Aj is invertible.

As an example, consider the converter circuit shown in Fig. 3.7, in which,

— _ R+R’
Ay = I
By = 0
X = 1

= Do
Dy = T
m§ =

fo

N -

o

[y

(3.70)

The schematic of the converter circuit used in the experiment is shown Fig. 3.8.

As discussed in Section 2.1, constant-switching-frequency constraint-modulated dc-to-

dc converter circuits may have multiple stable steady state solutions. To illustrate this

phenomenon, an experiment is performed on the circuit. In this experiment, the reference

voltage Vs is raised slowly from OV to 14V, and then slowly lowered from 14V back to
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Figure 8.7 A constant-switching-frequency programmed R-L converter:
Vy = 15Volts, L = 1.41mH, R = 561, R' = 51.402.
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OV. Of the many type of solution observed as V. is varied, only three are discussed here.
They are:
Type (a): Ty =T,, Ny =2, N, = 2.
Type (b): Ty =2T., Nr =4, N, = 4.
Type (¢): Ty =2T,, Nr =2, N, = 2.
The reference voltages V,.s at which the steady state solution changes from
Type (a) to Type (b) and vice versa, and from Type (b) to Type (c) and vice versa are

recorded. For convenience of recording the results, define the following quantities:

Vi = Vis at which the solution changes from Type (a) to Type (b) as V,s is raised.
Vy = V,.s at which the solution changes from Type (b) to Type (c) as V,.; is raised.
Vi = Vs at which the solution changes from Type (c) to Type (b) as Vres is lowered.
vi = Vres at which the solution changes from Type (b) to Type (a) as Vi is lowered.

The result of this experiment is listed in the following tables:

1. Clock frequency f, = 20kHz:

Vres raised || V. lowered

1%4 12.7V 12.2V | v}

%4 12.8V 12.7v | V}

The waveform of the stable steady state solutions of the voltage across the resistor

R = 56Q) for V,.y = 12.4V and V,.s = 12.8V are shown in Fig. 3.9 and Fig. 3.10

respectively.
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2. Clock frequency f. = 40kHz:

Vres raised || V;.r lowered

vr 8.6V 8.3V | v}

%4 9.9V 9.1V | Vi

The waveform of the stable steady state solutions of the voltage across the resistor

R = 5611 for V,.s = 9.8V are shown in Fig. 3.11.

3. Clock frequency f. = 100kHz:

Vres raised || V,.r lowered

Vi 6.5V 6.5V | V}

Vi 6.6V 7.2V |V}

The waveform of the stable steady state solutions of the voltage across the resistor

R = 56(1 for V,.y = 7.1V are shown in Fig. 3.12.

These results indicate that it is possible to have more than one stable steady
state solutions to the system under a given operating condition — V;, and V,,;. In
addition, it is possible to measure the frequency response of the system corresponding to
the different stable steady state solutions of the system under a given operating condition
with a network analyzer. In general, the frequency response corresponding to the different

steady state solutions of the system under the same operating condition are different.
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In the following analysis of the frequency response of the converter system,
only solution Type (a): Ty = Te, Ny = 2, N, = 2, will be studied. By using Eq. (3.62),

the steady state I is:

I = [1 - e"w]_l [1 - 6_51&] Y}% (3.71)
According to Eq. (3.69), the pulse transfer function is:
G(s)=H(s)(1 - e *T*®) 1k (3.72)
where:
H(s) = [1- 5—(”&%‘%)% 1= el Dm e-(s+&%3i)T0\
i s+ &LE— s+ % }
& = o "EEER (1 fopy)
E = moko
k = %' Ip+ %Vg
mo = (—% I+ %Vg)_l
po = (*‘% I+ %Vg>-1

The Bode plots of the theoretical “transfer function” %—aG(s) overlaid with
measurement results of this dc-to-dc converter circuit and the waveforms of the cor-
responding steady state solution of the voltage across the resistor R = 56 operating
with different switching frequencies are shown in Fig. 3.13 through Fig. 3.15. The three
switching frequencies chosen for the calculations and the experiments are: 20kHz, 40KHz,
100kHz. The switching frequency 20kHz is chosen because it is the large-ripple or the
resonant case. The switching frequency 100kHz is chosen because it is the small-ripple
or the high-switching-frequency case. The switching frequency 40kHz is chosen because
l|A; Ts|]| = 1. The discrepancies between the theoretical predictions and the measure-

ments in the Bode plots at high frequencies are the results of the unmodelled dynamics
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in the converter circuits, especially, the controller circuit. These unmodelled dynamics
are mostly from distributed resistances and reactances, nonidealities in switching devices,
active devices, and logic circuits; above all, the nonidealities in the comparator integrated
circuits.

For this example converter circuit which uses the constant-switching-frequency
constraint modulation (programming) control strategy, all of the three approximate an-
alytical methods which are discussed in the introduction, namely, the State Space Av-
eraging Modelling Method[4,5,6], the Sampled-Data Modelling Method[1], and the Small
Signal Analysts of Resonant Converters[9] break down at some point. It is well known
that the State Space Averaging Model does not work for any constant frequency pro-
grammed converters when the frequency of the signal injected for measurement is close
to and higher than half the switching frequency|1]. The Sampled-Data Modelling Method
breaks down when the time constants in the converter circuit are much shorter than the
switching period — this converter circuit does not satisfy the small-ripple assumption if
the switching frequency is lower than approximately 50kHz. The Small Signal Analysis of
Resonant Converter can handle the large ripple in the circuit. For the injected signal at
a multiple of half the switching frequency, however, its predicted transfer function of any
converter system is always real; therefore, the phase is always a multiple of 180 degrees.
From the experimental results on the Bode plots, it is obvious that this is clearly not the
case.

The Bode plots of the frequency response of the converter circuit shown in
Fig. 3.8 in this section clearly demonstrate the breakdown of the approximate analytical
methods discussed in the Introduction and the validity of the prediction of the Small-
Signal Frequency Response Theory. This is not a surprising result because the Small-

Signal Frequency Response Theory linearizes ideal dc-to-dc converter systems exactly in
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the vicinity of its steady state solution, instead of finding an approximate linear model
for the system under an operating condition. The discrepancies between the theoretical
prediction and experimental measurement in the Bode plots at high frequencies suggest
that the circuit shown in Fig. 3.7 is not an adequate model for studying the very high-

frequency behavior of the physical converter circuit used in the experiment.
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3.5 Bang-Bang Controlled Converters

The control strategy of a bang-bang controlled two-switched-state converter
system may be characterized by M; = M°¢, Vj € Z, N, = 2; i.e., the converter has two
switched-states and all the transition from one switched-state to another is constraint-
modulated. The first step in finding the frequency response of the system is to find Kg,
K¢, kS, and kS. These quantities are defined in Eq. (3.30) and Eq. (3.31). The X, and
X used in calculating these quantities may be found by using Eq. (3.62) and Eq. (3.63)
provided that Agp and A; are invertible.

The frequency response of §x with respect to §rp, according to Eq. (3.57), is:
bx(s) = {Ho(s)+e *ToH;(s) K eAoTo}
. ~ -1 .
. {I — ¢~ °Ts Kj§ AT K{ eA"T"} k§ 8ry(s) (3.73)

where H;(s) = [s I — A;] 7 {I — e=*Ti ATi}.
The frequency response of §x with respect to ér; may be obtained by inter-
changing the subscripts 0 and 1 in Eq. (3.73):
5x(s) = {Hi(s)+e T Ho(s) K e}

~ o~ -1 .
{1- e TR AT RG AT K bri(s)  (374)

Figure 3.16 is a bang-bang controlled converter circuit, in which:

A, = -EE A, = -&
Bo = 0 B; = 1
X = 1 u =V,
mi = 0 mé = 0
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With use of Eq. (3.62) and Eq. (3.63), Ip and I3, the steady state ¢ at the transitions,

are:
_Rp, _Rir'p ]! -Ep1 YV,
I = [l—e £T e~ 5% 0] [1-eE72) 22 (3.75)
R
!
Il = e_RLR To I() (3.76)
Then:
-~ Iy(R+ R')
Kf = —————
0 V, — IR (3.77)
~ V,—- LR
¢ _ g
Ki = _—-———Il(R—I— ) (3.78)
~ V, + LR
c  __ g
ki = —Vg “LE (3.79)
~ V,+ LR
ki = £ .
! L(R+ R (3.80)
According to Eq. (3.73), the frequency response of §¢ with respect to §ipesy is:
8i(s) = Go(s) 81reso(s) (3.81)
where
Vot LR { ~ (o4 BER YT, Vo - LR - }
GO(S) = Vg — IOR HO(S) € L m Hl(S)
(1o tn oain T Yy iy
L V., - IR
N 1— e-(s+R—‘Eﬁ’-)To
Ho(s) = RiR'
s+ A
~ 1-— e_(5+%)T1
Hi(s) = ———5—
s+ A
C 1 ) 2nni
51,-¢f0(s) = -j;- Z&"fo(s + T )
sy s

The schematic of the bang-bang controlled converter circuit used in the ex-

periments is shown in Fig. 3.17. The Bode plots of the theoretical “transfer function”
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for modulating f,.s, only, Go(s)/T,, overlaid with the experimental results for various
operating conditions and switching frequencies are shown in Figs. 3.18 through 3.20.
An interesting feature in the Bode plots is that the phase of the “transfer
function” is increasing with increase in frequency up to the switching frequency for the
case D = Ty/T, > 0.5, and decreasing with increase in frequency for the case of D < 0.5.
Three switching frequencies, 25kHz, 40kHz, and 100kHz are chosen in the experiments.
The switching frequency 25kHz is chosen because it is the large-ripple or the resonant
case. The switching frequency 100kHz is chosen because it is the small-ripple or the high-

switching-frequency case. The switching frequency 40kHz is chosen because ||A; T;|| =~ 1.
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erating at f, = 1/T, = 100kHz, D = T /T, = .3; only t,.5, ts modulated.
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The frequency response of 8¢ with respect to 84,.r,, according to Eq. (3.73),

1s:

8i(s) = Gi(s) 5inf;(s) (3.82)
where
_ Vo—-LR |- —(e+8)7, (R+ R') -~
GI(S) - I]_(R+ RI) {Hl(s) € L Vg _ IOR HO(S)
(1o em ot oo B D)
LV, - LR
Fole) 1 — e~ (s+ 2R,
o\Ss = 7
s+ R-{iR
-~ 1-— e—(’+%)Tl
Hi(s) = ——g—
S + A
C . 1 . 2nmi
51,,_,-1(3) = -T-; Z&"fl(s + T )
n

If both 615, and &i,.s, are modulated with the same signal §¢,.s, then the “transfer
function” from 61,5 to 81 is G /T, = [Go(s)+G1(s)]/Ts. The Bode plots of the theoretical
prediction overlaid with experimental measurements of this “transfer function”, and the
waveform of the steady state solution of the voltage across the load resistor R = 560
to which the Bode plots correspond, are shown in Figs. 3.21 through 3.23. Again, three
switching frequencies, 25kHz, 40kHz, and 100kHz are used. The theoretical predictions
and the experimental results are almost indistinguishable in the Bode plots, except at
relatively high frequencies.

All of the three approximate analytical methods discussed before, namely, the
State Space Averaging Modelling Method[4,5,6], the Sampled- Data Modelling of Switching
Regulator[1}, and the Small-Signal Analysis of Resonant Converter[9], fail to predict the
high-frequency response and the fine features of this bang-bang controlled converter, such

as, the direction of the phase response as the frequency of the injected signal increases.
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Only the Small-Signal Frequency Response Theory can predict the fine features in the
frequency response. The discrepancies between the theoretical predictions and the ex-
perimental results at high frequencies are mostly from the unmodelled behavior of the
circuit elements, such as the delay in the active circuit elements and non-ideal switching

in switching elements.
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Figure 8.21: The waveform of the steady state solution of the voltage across the load re-
ststor R = 56(1 and the corresponding Bode plots of the theoretical prediction
and the ezperimental results of the converter circuit shown in Fig. 8.17 op-
erating at f, = 1/T, = 25kHz, D = T1/T, = .7; both i,.5, and i,.;, arc
modulated by the same signal.
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Figure 8.22: The waveform of the steady state solution of the voltage across the load re-
sistor R = 56() and the corresponding Bode plots of the theoretical prediction
and the ezperimental results of the converter circuit shown in Fig. 8.17 op-
erating at f, = 1/T, = 40kHz, D = T,/T, = .5; both trefo 0nd fy.5, are
modulated by the same signal.
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Figure 8.28: The waveform of the steady state solution of the voltage across the load re-
sistor R = 56(1 and the corresponding Bode plots of the theoretical prediction
and the experimental results of the converter circuit shown in Fig. $.17 op-
erating at fy = 1/Ty = 100kHz, D = T1/Ts = .3; both t,.5, and 1,cy, are
modulated by the same signal.
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Chapter 4
The Mathematics of the Small-Signal Frequency

Response Theory

In the establishment of the Small-Signal Frequency Response Theory for ideal
dc-to-dc converter systems in Chapter 3, a few key results are taken for granted without

much justification. These results are:

1. The effect of the excitation at the control-input ro on the spectrum of the state x
of a converter system is the same as the effect of the excitation at the control-input

ro on the spectrum of the perturbed state Ax.

2. The small-signal asymptotic stability of a steady state solution of an ideal dc-to-dc
converter system guarantees the existence of a stability region in the vicinity of

that steady state solution.

3. For an analog signal Ar(t), Ar)(s) — the spectrum of the naturally sampled Ar(¢),
is the same as Ar}(s) — the spectrum of the uniformly sampled Ar(t), with the

addition of noise and harmonics.
4. The equivalent hold is exact in the small-signal limat.

In this chapter, these results are discussed in detail. The derivation and the implications

of these results are discussed in Sections 4.1 through 4.4,
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4.1 The Spectrum of the State of the System

Suppose that in the steady state, the state of an ideal dc-to-dc converter system
x(t) is X(t). When the control-input rq of the system is perturbed, the state x(t) is no
longer X(t), and the perturbed state Ax(t) = x(t) — X(t) # 0. In the small-signal limit,
Ax(t) — 6x(t).

The spectrum of the state x is the Laplace transform of x(t), £{x(t)}.

L{x(t)} = /0  x(t) e dt. (4.1)

The Laplace transform operator £ is linear; i.e.,
L{x(t)} = L{X(t)} + L{Ax(t)} (4.2)

The steady state solution of the state of the system X(t) is periodic with
period Ts; 1/T, is the steady state switching frequency. As a result, the steady state
solution of the state X(t) has frequency components only at multiples of the steady state
switching frequency. Consequently, it does not contribute to the frequency components
of x(t) that are not at a multiple of the steady state switching frequency. Therefore,
any frequency component in the state x(t) that is not at a multiple of the steady state
switching frequency comes from the perturbed state Ax(t). This simple result which
is based on the linearity of the Laplace transform operator is trivial. Nevertheless, it
has profound implications: for the study of the change in the spectrum of the state x(t)
resulted from perturbations at the control-input of an ideal dc-to-dc converter system,
it is not necessary to compute the spectrum of the state x(s); it is only necessary to
compute the spectrum of the perturbed state Ax(s).

The difficulties in computing the steady state solutions of the state X(t) and
the state x(t) of an ideal dc-to-dc converter system arise from the fact that if the system

matrix A; of any of the switched-state 1 is not invertible, then the closed-form solutions
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of both x(t) and X(t) contain an integral of the form ftto eAi7 dr B;u. The integral in the
expression for the state x(t) and the expression for the steady state solution of the state
X(t) make the computation of the equivalent hold for the state x discussed in Section 3.2
very difficult.

Fortunately, the perturbed state Ax(t) is governed by a set of differential
equations which is quite different from that which governs the state x(t) and the steady
state solution of the state X(t). Except in very short time intervals about the instants
of switching, the set of differential equations governing the perturbed state Ax(t) has
no forcing term u, and therefore, no integral. Furthermore, these time intervals which
are close to the instant of switching can be made arbitrarily small in the small-signal
limit. As a result, the perturbed state Ax(t) in these time intervals have arbitrary small
contribution to the spectrum of x (see Section 4.4). In the small-signal limit, Ax(t)
becomes 6x(t) and the evolution of §x(t) in these time intervals can be described by a
constant matrix that can be computed easily (see Section 3.1). The initial conditions of
the perturbed state Ax(t) for the time intervals between consecutive switching are given
by the samples of the perturbed state Ax;[n].

In general, for any system, studying the effect of the excitations at the control-
input ro on the spectrum of the state x of a system may be simplified to studying the
effect of excitations at ry on the spectrum of the perturbed state Ax of the system. In
the case of an ideal dc-to-dc converter system, computing the perturbed state Ax is much

easier than computing the state x.

4.2 The Small-Signal Stability of the System

The concept of the stability of an operating condition or an operating point

is widely used in analog electronic circuits. This concept of stability only applies to sys-
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tems which have a unique constant steady state solution corresponding to each operating
condition. Obviously, this concept of stability cannot be applied to nonlinear systems
in general, because nonlinear systems in general may have multiple stable steady state
solutions under a given operating condition; for example, the simple ideal dc-to-dc con-
verter discussed in Chapter 2, and the constant-switching-frequency programmed L-R
converter of Section 3.4. It is, therefore, necessary to apply the concept of the stability
of a solution to a nonlinear system. For a detailed discussion of the stability of a system,
see Appendix A.

The small-signal or local stability of a steady state solution of an ideal dc-to-dc
converter system is determined by the difference equation that describes its small-signal
motion in the vicinity of its steady state solution. Nevertheless, the small-signal stability
may not have any meaning for a steady state solution of nonlinear system such as the ideal
dc-to-dc converter system, because, while the solution may be small-signal stable, it may
also be a meta-stable solution. In the case of meta-stable, any infinitesimal perturbation
to the system will result in the instability of the solution.

Fortunately, for ideal dc-to-dc converter systems, if a steady state solution is
asymptotically stable, then this solution is not meta-stable. This is a result developed

by Caughey and Masri{2], which is stated in the theorem below.

Theorem 1 For the nonlinear difference equation:

Ax[n] = ® Ax[n — 1] + R(Ax[n — 1]) (4.3)
If: 1. ||Ax[0]|| 1s sufficiently small,
[B(Ax)]| _

. hm =0,
faxj—o ||Ax]]

8. The difference equation Ax[n] = ® Ax[n — 1] is asymptotically stable;

i.e., max [A(®)| < 1,
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then the nonlinear difference equation, Eq. (4.8), is also asymptotically stable.

This theorem is extremely important for the class of ideal dc-to-dc converter
systems which have small-signal asymptotically stable solution; i.e., all the eigenvalues of
the transition matrix @ in the difference equation that describes the small-signal motion
of the system in the vicinity of the solution have modulus less than unity. This class of
converter systems includes all the constant-switching-frequency converter systems. In this
class of converter systems, R(Ax) = O(A?). This theorem guarantees that if the steady
state solution of this class of converter systems is small-signal stable, then the solution
is not meta-stable. As a result, the small-signal frequency response corresponding to a

small-signal asymptotically stable solution always has meaning.

4.3 Almost Periodic Sampling

Natural-sampling is commonly used in the control of converter systems. It
is chosen over uniform-sampling because it does not require the relatively costly sample
and hold circuitry, and it does not introduce delay in the control loop. Nevertheless,
the analysis of a natural-sampling process is not as straightforward as that of a uniform-
sampling process. This section is devoted to the analysis of the difference between the
spectrum of a naturally sampled signal and the spectrum of the corresponding uniformly
sampled signal.

Given an analog signal Ar(t), the uniformly sampled Ar(t) is:
> Ar(nT) 6(t — nT) (4.4)
n
where T is the sampling period. The almost-periodically-sampled Ar(t) is:

> Ar(nT + At[n]) §(t — nT — At[n]) (4.5)
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where {At[n]} is a sequence. If At[n] satisfies Eq. (4.6), the constraint equation:
Ar(nT + At[n]) = m At[n] (4.6)

for m € R, and Vn € Z, then the signal Ar(t) is naturally sampled.

If {At[n]} is a random sequence, it is natural to expect that the spectrum
of the resulting almost-periodically-sampled Ar(t) is the same as the spectrum of the
uniformly sampled Ar(t) except that it is corrupted by random noise. For the naturally
sampled Ar(t), however, the sequence {At[n]} and the analog signal Ar(t) has correlation.
This correlation may add extra frequency components to the spectrum of the naturally
sampled Ar(t). Exactly how the spectrum of the naturally sampled Ar(t) is related to the
spectrum of Ar(t), and to the spectrum of the uniformly sampled Ar(t) is not obvious.

Let Arj(s) denote the spectrum of the uniformly sampled Ar(t), and Ar%(s)

denote the spectrum of the naturally sampled Ar.
Ari(s) = > Ar(nT)e™"T (4.7)
n
Ari(s) = Y Ar(nT + At[n]) e~ *("T+4Hn) (4.8)
n

On the assumption that the series in Eq. (4.7) and Eq. (4.8) converge uniformly, Ar},(s)

may then be expressed in terms of Ar}(s) and other terms.
Arr(s) = Z Ar(nT + At[n]) ¢~ *(nT+Atn])
n

= > Ar(nT)e T

+ > Ar(nT + At[n]) e~ *(PT+AHR)) _ Ap(nT) e~

Ary(s) + D> _{Ar(nT + At[n]) — Ar(nT)} e~*"7

+ 3" Ar(nT + At[n]) e=*"T(e=* 2t _ 1)
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= ari(e) + L {AHT)AM) + GAHAT) At +O(a) | T

+ 34 [Ar(nT) + AH(nT) At[n] + O(4%)]

. [_s At[n] + i;(At[n])z + 0(A3)] et
Hence:
Ar}(s) = Ari(s) + D {AH(nT) Atln] - s Ar(nT) Atln] + O(A%)} e™*"T  (4.9)

A first approximation for At[n] is:

_ Ar(nT)

At[n] + 0(A?) (4.10)

where m is defined in Eq. (4.6). With use of this approximation, Eq. (4.9) becomes:
1
Arp(s) = Ary(s)+ > - {Af(nT) Ar(nT) — s[Ar(nT))? + O(As)} e T (4.11)
n

The difference term between Ar,(s) and Ar}(s) is of O(A?). These difference
terms do not have a linear correlation with Ar. The effects of these terms on r}(s)
may be described by additional noise or harmonic distortion. In the small-signal limit,
Ar — 0, these difference terms, of O(A?), approach zero faster than Ar. Therefore, these
difference terms may be neglected and a naturally sampled signal may be treated as a

uniformly sampled signal in the small-signal limat.

4.4 The Equivalent Hold

In the derivation of the equivalent hold in Section 3.2, it is assumed that given
the initial perturbed state Ax;[n], the perturbed state for Tiynn, < t < Tit14nN, is
given by:

AxH(t) = eAit-Titnne) Ax;[n] (4.12)



94

where Ax}(t) is the assumed perturbed state, and T; is the time at which the sys-
tem switches from switched-state 5 — 1 to switched-state 7 in steady state. Never-
theless, the actual perturbed state Ax(t) = x(t) — X(t) is considerably more compli-
cated than what is described by Eq. (4.12). For time t, max(Titnn,, TitnN,) < t <
min(Ti;14nN,> Ti+1+nN,), the differential equation that describes the actual perturbed
state Ax(t) is:

Ax(t) = eAilt=Tienns) (Ax;[n] + 0(A%)) (4.13)
There are three discrepancies between the assumed perturbed state Ax*(t) described by

Eq. (4.12) and the actual perturbed state Ax(t) described by Eq. (4.13).

1. The initial value of the perturbed state is not exactly Az;[n]; it is off by O(A?).

2. If TitnNs > TitnN,, then Eq. (4.12) and Eq. (4.13) cannot describe the evolution
of the perturbed state Ax(t) for T;inn, <t < Titnn,. Nevertheless, it is possible

to prove that for Tiynn, <t < TiynN,, Ax(t) is of O(Ax;[n]).

3. Similarly, if Tiy14nN, < Tit14nn, then Eq. (4.12) and Eq. (4.13) cannot describe
the evolution of the perturbed state Ax(t) for Tit14nn, <t < Tit14nN,. It is also

possible to prove that for TN, <t < Titnn,, Ax(t) is of O(Ax;41[n]).

For the claim that the equivalent hold derived in Chapter 3 is exact in the small-signal
limit to be valid, it is necessary to prove that there is negligible difference for calculating
the equivalent hold by using the assumed perturbed state Ax*(t) described in Eq. (4.12),
instead of the actual perturbed state Ax(t) in the small-signal limat.

Consider the time period t € I';, T; = {¢t | T; < t < Tj41}. For the quantity
Ax%.j (s) to be the Laplace transform of the assumed perturbed state Ax*(t), t € T';, it

must satisfy the following equation:

I

2

- ek, = {[, oo~ oo o)
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=0 (4.14)

where || - ||, is the spatial Euclidean norm. The I'j-norm, || - lip;» of a signal is a measure
of its energy for time ¢t € I';. Consider a norm similar to that defined in Eq. (4.14) for

the perturbed state Ax(t) for t € I,

1
2

IS T - 1A 2
|lax@) - £ {Axrj(s)}”rj = { fter,- |ax() - ¢ {Axr’,(s)}”z dt} (4.15)
Obviously, this norm is not zero because the perturbed state Ax(t) is not exactly the

same as the assumed perturbed state Ax*(t). The square of this norm may be expanded

as follows:
”Ax(t) - IZ'I{AXR(S)}”;,
_ ./terj Ax(t) - £7{axt ()} a

=/ (ax() - axi() + (axi(e) - £ axd (o)) [ at

2
= Ax(t) — Axi(t dt
er, 4% - axi @)

+2 /t . (axn - axt(t)" (axt(t) - L7 {Axb (s))) at
+ /t _Jaxio- £ axh ()] @ (4.16)

The only term in the expansion in Eq. (4.16) that has significant contribution is the
first integral. Equation (4.14) implies that the sum of all the time intervals for which
B“l{Ax%‘j(s)} is different from Ax}(t) for ¢t € I'; has measure zero. Since Ax(t) — Ax}(t)
is continuous, well-behaved, and of order A, the second integral in the expansion is zero.

The third integral in the expansion is zero from Eq. (4.14). Hence:

|ax() - £ axt ()L = [ |ax@) - axt@)|] @ (4.17)
L; ter; 2
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For convenience, define three nonintersecting subsets of T'; as follows:

=
<,
R

i

{t| T; <t <max(T;, T;)}
Ljg = {t|max(T;,T;) <t < min(Tjt1,Tjs1)}

{t | min(Tj41, Tjs1) <t < Tjpa}

M
5
il

Depending on the values of T; and T;4;, both I';, and I'j, may be empty. Since the
integrand is well-behaved, the integral in Eq. (4.17) may be further split up into three

integrals:
”Ax(t)—[i‘l{Ax}j(s)}”zj - / ) |ax() - axt (o) at
+ / [Ax(t) axt) at
+ / ‘Ax(t) —-Ax*(t)“ dt  (4.18)
Consider the first integral in Eq. (4.18):

ftem HAx(t)-Ax*(t)“z dt < max(0,At;) e | ax(e) - axt)?

I

0(A%) (4.19)
Similarly, for the third integral in Eq. (4.18):
2 2
- b — At - 1
/t‘el‘,u, “Ax(t) Ax (t)”2 dt < max(0,—-Atj4) trélﬁ)f, ”Ax(t) Ax (t)“2
= 0(a%) (4.20)

For the time period t € T4, ||Ax(t) — Ax*(t)|| = O(A?); therefore, for the second integral

in Eq. (4.18):

IA

/t - |ax@) - axt@)|} @ < 13 mp [ Ax(y) - axt() I

o(aY) (4.21)
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Hence,
|ax() - IZ‘I{Axf‘j(s)}”;j = 0(AY) (4.22)

Equation (4.22) indicates that the error in the energy of the perturbed state
Ax for t € Tj results from using the assumed perturbed state Ax* instead of the per-
turbed state Ax, is of O(A3%). Nevertheless, the energy of the perturbed state for t € T;
is ]]Ax(t)“%j which is of O(AZ?). Therefore, the ratio of the error in energy resulted
from using the assumed perturbed state Ax} instead of the actual perturbed state Ax
for calculating the equivalent hold, to the energy of the perturbed state, can be made

arbitrarily small in the small-signal limit. As a result, the equivalent hold is exact in the

small-signal limat.
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Chapter 5

Multiple-Switched-State Converter Systems

Systematic procedures for the construction of the difference equation that de-
scribes the small-signal motion of a simple two-switched-state ideal dc-to-dc converter
system in the vicinity of its steady state solution and the frequency response correspond-
ing to the solution are developed in Chapter 3. Nevertheless, the formulation introduced
in Chapter 3 can neither be applied to converter systems that use the modified-constraint
modulation in its control strategy, nor can it take into account the output equation if the
output signal is discontinuous. In this chapter, this formulation is modified to overcome
these problems, and extended to accommodate multiple-switched-state ideal dc-to-dc con-
verter systems — ideal dc-to-dc converter systems with multiple-switched-state solutions.

Two steps are involved in modifying the formulation discussed in Chapter 3.
First, the state of the system and the difference equation that describes the small-signal
motion of that system in the vicinity of its steady state solution are augmented to carry
the information for describing the modified-constraint modulation. In Section 5.1, a
systematic procedure for constructing this augmented difference equation is developed.
Second, the equivalent hold is generalized to take into account the discontinuities in
the output signal. This generalized equivalent hold uses the augmented state to obtain
information on the discontinuities of the output signal. The generalized equivalent hold is
discussed in Section 5.2. Since all the basic concepts are already introduced in Chapters

3, along with the mathematical details in Chapter 4, the results in this chapter are



presented without detailed derivation.

5.1 The Small-Signal Motion of the Systems

The difference equation that describes the small-signal motion of the converter
systems in the vicinity of their steady state solutions, introduced in Chapter 3, does not
carry the necessary information for describing the modified-constraint modulation. In this
section, the difference equation is augmented to carry this information. In formulating
this augmented difference equation, a new approach is taken, in which all the modulation
methods discussed in Chapter 3 are treated as degenerate cases of the modified-constraint
modulation. This approach has the advantage of treating all of the four modulation
methods uniformly. Consequently, the results can be put into a very concise form.

All of the four types of transitions, controlled by the four different modulation
methods described in Section 1.2, namely, unmodulated transitions, time-modulated tran-
sitions, constraint-modulated transitions, and modified-constraint-modulated transitions,

may be described by Eq. (5.1) and Eq. (5.2) below:

5t,-[n] = my 51‘,‘[1‘&] + h,' 5t,-_1{n] - p:r 5i;_1[n] (5.1)
§x;[n] = 6%;_1[n] +k; 6t;[n] (5.2)

where k; = (Aj—1 — A X; + (Bi—1 — B;)u. Equation (5.1) describes the dependence of
8t;[n], the derivation of the time of transition from switched-state s — 14+ nN, to switched-
state 1 +nN, from its steady state value, on the current sample of the control-input §r;[n],
the derivation of the time of the previous transition from its steady state value, and the
value of the perturbed state before the transition, in the small-signal limit. For each
type of modulated transition, there is a different set of m;, h;, and p;. The values of
m;, h;, and p; depend on the modulation method as well as the parameters used in the

modulation. Equation (5.2) is the same as Eq. (3.22), which is derived in Section 3.1.2.
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The values of m;, h;, and p; are derived below for each of the four types of

transitions:

1. For unmodulated transitions, in which M;,,n, = M* and 6t;[n] =0, Vn € Z:

m; = 0
hi = 0
pi = 0

2. For the time-modulated transitions, in which My, ,n, = M*,Vn € Z, from Eq. (3.20):
8ti[n] = (m) ™" &ri[n]

Hence:

m; = (mi)™?
hy = 0
pi = 0

3. For constraint-modulated transitions, in which M;i,n, = M®, VYn € Z, the con-

straint equation is:
fiT X(T;'*H!Ns) + mtc AtiinN, + i — 1 [n] =0

where N, is the number of switched-networks, f; is a vector, r;[n] is the sampled
control-input sequence formed from sampling the control-input signal r;(t), ¢; is
a constant, and m{ is the slope of a sawtooth wave. The constraint equation is
the condition under which the converter system switches from the switched-state
1t + nN, — 1 to the switched-state 1 + nN,. In a converter circuit, the constraint

equation is the mathematical model of the switching action of the comparator circuit
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that determines when this change of the switched-state occurs. This comparator
circuit has the control-input r;(t) at one of its inputs, and the sum of a sawtooth
ramp with slope m{ and the weighted sum of the system states f7 x(t) at its other

input. In the small-signal limit, the linearized constraint equation is:
£7 X[ 6t;[n] + £F 6%:[n] — &r:[n] + m¢ 6t;[n] = 0

where X; = [A;_1 X; + B;_;u]. The quantity §t;[n] may be expressed in terms of
other quantities in the linearized constraint equation:
. _y-1
stiln] = {mi+e7 X7} {oniln) - 17 6%:n]}

= {me+47 X7} braln] — {m¢ + 17 X7} 67 640n)
Hence:

m; = {mf+f,T[Ai—1X;+Bi—1u]}_1
hy = 0

Pi = my ftT

. For modified-constraint-modulated transitions, in which M;,,n, = M™, Vn € Z,

the modified-constraint equation is:
7 X(Tiann,) — riln] + m7 (Atignn, — A Ati_14nn,) + 6 =0

where N, is the number of switched-networks, f; is a vector, r;[n] is the sampled
control-input sequence formed from sampling the control-input signal r;(t), ¢; is a
constant, and m!™ is the slope of the added ramp. The modified-constraint equation
is the condition under which the converter system switches from switched-state
1+nN,—1 to switched-state 1+ nN,. In a converter circuit, the modified-constraint

equation is the mathematical model of the switching action of the comparator circuit
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that determines when this change of the switched-state occurs. This comparator
circuit has the control-input r;(t) at one of its inputs, and the sum of a sawtooth
ramp with slope m[™ which is delayed by A At;_14nn, and the weighted sum of
the system states f7 x(t) at its other input. In the small-signal limit, the linearized

modified-constraint equation is:
£7 X[ 8ti[n] + £7 6%;[n] — ri[n] + mP(6ti[n] — R 6t;_1[n]) = 0O

where X,T = [A;-1X; + B;_1u]. The quantity §t;[n] may be expressed in terms of

the other quantities in the linearized modified-constraint equation:
L2 _1
sti{n] = {m + €7 X7} {6riln) - £7 8%i[n]} + mP B 5t;_s[n]
Hence:

-1
m; = {m?‘+f?[Ai—13(i+Bi-1u]}

hi = mim]h]

pi = mfl

In this framework, it is obvious that a closed-loop PWM converter system
is the same as a programmed converter system with an added stabilizing ramp; the
control strategy is: Mp, = M, Ms,1 = M". An open-loop PWM converter system,
however, is very different from its closed-loop version; its control strategy is: Ma, = M?,
Mjp4+1 = M*. Hence, the steady state solution of both closed-loop PWM converter
systems and programmed converter systems may go unstable under certain conditions
while the steady state solutions of open-loop PWM converter systems are always stable.

From Eq. (5.1) and Eq. (5.2), its is obvious that for those converter systems

which use the modified-constraint modulation to control the transition from one switched-

state to the other, the difference equation introduced in Chapter 3 which involves only
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the sequences 6x;[n] and ér;[n] is not sufficient for describing the small-signal motion of
the system. There is a relation between 6t;[n] and 6t;_1[n]. This difference equation has
to be augmented to overcome this problem. The first step in augmenting the difference

equation is to augment the states of the equation from &x;[n] to §%;[n], where:

5;‘{‘- [n] Sx,- [n]

I

(5.3)
5t,~[n]

With use of Eq. (5.1) and Eq. (5.2), then:

5x,- [ﬂ]
8%;[n] =
5t; [n]
| 8Zian]+ k; {m; 6r;[n] + h; 6t;_1[n] — pT 6%;_1[n]}
m; 6ry[n] + h; 6t;_1[n] — pT 6%;_1[n]
I-kpl hk 6%;_1[n] m; k;
- + rs [n]
-p7 h; 8ti_1[n] m;
Hence,
I-k;pT}eri-1Timn pk m; k;
55'("[71.] = { } 532;__1[71] -+ 57‘,‘[7‘&} (5.4)
—P,T eAi-1Tio1 h; m;
For convenience, define:
I-Kpl}eAmTo hE
@1 = ¢ ) (5.5)
_p'{ eA.‘——lT‘—l hi
my 1_{:'
ki = (5.6)
myg

Then Eq. (5.4) may be rewritten as:

5)'{,'[71] =&, 4 55'{,'__1[11] + k; 57‘,’[".] (5.7)
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Before the construction of the augmented difference equation that describes
the small-signal motion of an ideal dc-to-dc converter system in the vicinity of its steady

state solution of the state X(t), the following steps must be taken first:

1. The converter system and its steady state solution are described in the framework
laid out in Chapter 1, that is, the sequences {(A;,B;,C;,D,)}, {T;} and {M;};

0<1< N,.

2. The values of the steady state solution of the state at T;, X;, 0 < { < N,, are

calculated.

3. The modulation parameters, m;, h;, and p;, that correspond to each of the modu-

lation methods M; in the control strategy of the system, 0 < 1 < N,, are evaluated.

For constructing the difference equation, consider the case in which only M,n,’s
are modulated; i.e., the system is only modulated by the control-input ro[n]. The case
in which M;.nnN,’s, { # 0, are modulated may be taken into account later. Set r;[n] =0,
0 <1< N, VnelZ. Byrepeated applications of Eq. (5.7) for N, times, Eq. (5.8) below

i1s obtained.

5)"{0[11] =& 55[0[7& - 1} +k 51‘0[11] (5.8)

where

® = ON,1PN,—2-- 1D

k = ko

Equation (5.8) is the augmented difference equation that describes the small-signal motion
of an ideal dc-to-dc converter system in the vicinity of its multiple-switched-state steady
state solution. This augmented difference equation is used in the following section for

calculating the frequency response of the system.
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5.2 The Frequency Response of the Systems

The state x(t) of a dc-to-dc converter system is always continuous. Neverthe-
less, if the output matrix C(t) or the transmission matrix D(t) in Eq. (1.1) is discontinu-
ous in time, the output y(t) is discontinuous. The equivalent hold introduced in Section
3.2 for calculating the frequency response of the system is only applicable to continuous
output signal. Therefore, it is necessary to generalize the equivalent hold to take into
account the discontinuity.

The contribution of the discontinuity in the output y(t), to the perturbed
output 8y(t) in the small-signal limit, is the addition of a pulse train of “width” |5t;[n]| and
“height” sgn(6t;[n]) {(Ci-1—C:)X;+(D;-1—D;)u}. In order to study the contribution of
the discontinuity in the output to the perturbed output in the frequency domain, consider
the contribution of a single pulse with “height” sgn(6t;[n])h; and “width” |6t;| to the
perturbed output signal spectrum 6y (s), where h; = {(C;-1 — C;)X; + (D;-1 — D;)u}.
Denote the contribution by 5yf,n(s):

/ Teanmy téitr] h; e~ dt, 6t;[n] > 0
Titnn,
6yinls) =

Tt'+nN
-—/ ° h; e * dt, 5t,~[n] <0
T.'.‘x.,.N‘ +6t.'[n]

§tiln
= eT"+"Ne ——-—-—————1 € i

8

Hence, in the small-signal limat,
3! (5) = €T+ 5ty [n] By (59)

Therefore, the contribution of the discontinuity in the output to the perturbed output
8y(s) can be approximated by the contribution of a train of §-functions of magnitude

§ti[n] {(Ci=1 — Ci)X; + (D;-1 — D;)u} in the small-signal limit.
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Denote the contribution of éx;[n] and §t;[n] to the perturbed output signal in

the frequency domain by 6y}, (s). By using the results in Eq. (3.49) and Eq. (5.9),
6yin(s) = Ci&xin(s)+8y},(s)

= e *Titnn, C; [SI - A,-]’l - T eA.‘T.'] 51-‘.[“]

+ [(Ci-1 — C))X; + (Ds—1 — D;)u] 6t;[n] p (5.10)

Obviously, the information carried in the difference equation that describes the
small-signal motion of the system introduced in Section 3.1 is not sufficient for calculating
the spectrum of the perturbed output signal §y because it does not carry the information
on §t;[n]. It is necessary to use the augmented difference equation developed in Section
5.1, Eq. (5.8), with the augmented state §%;[n] to find 8y. In this case, Eq. (5.10) may
be rewritten as:

8YIn(s) = e™*Titnrs Hi(s) 6%i[n] (5.11)

where

Hi(s) = [ Ci[sI—- A [I-eTeATi], (Ciog - C))X; + (Di—1 — Di)u ]

With use of the augmented difference equation that describes the small-signal
motion of the system in the vicinity of its steady state solution in Section 5.1 and
Eq. (5.11), the control-input-to-output frequency response of a multiple-switched-state
ideal dc-to-dc can be found. The procedure for finding the frequency response is similar
to that laid out in Section 3.2. In this section, only the frequency response of the system
to the perturbed control-input érg is considered. The frequency response of the system
to other control-inputs may be taken into consideration by superposition.

The first step in finding the frequency response is to establish the relation

between §rg(s) — the spectrum of the perturbed control-input 8rg, and ér§(s) — the
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spectrum of the uniformly sampled or naturally sampled perturbed control-input. The
relation for the uniformly sampled case was first established by Shannon — the Sampling
Theorem|[7]. This relation is proved to be valid even for the naturally sampled case and
the almost periodically sampled case in the small-signal limit in Section 4.3. This relation

is restated below:

§ro(s z5ro(s+ inw,) (5.12)

where 1 = /=1, T, is the steady state switching period of the system, and w, = 27 /T, is
the steady state radian switching frequency.

The next step in finding the frequency response is to relate §xj(s) — the
Laplace transform of the train of §-functions with period T, and magnitude {6Xo[n]},
to 6r5(s). This relation is established by applying the z-transform(3] to Eq. (5.8), the
augmented difference equation that described the small-signal motion of the system in

the vicinity of its steady state solution, followed by the substitution of z with e*T; then,

6ro(z) — 6r§(s) and 6%o(2) — 6%5(s).

§%oln] = & 8X%o[n — 1] +k brg|n] (5.13)

> 6%o[n]z" = @ Z&xo [n-12z""+k Z5ro (5.14)
" Z{6%o[n]} = ® Z{6%o[n — 1]} +k Z{broln]} (5.15)
6%o(2) 271 ® xo(2) + k bro(2) (5.16)

6%o(z) [I-2z"18]7" kéro(2) (5.17)

5%5(s) [I— 57T &]7" k 6r5(s) (5.18)

Finally, §y(s), the spectrum of the perturbed output signal in the small-signal

limit, may be computed as follows:

8y (s)

o
/ Sy (t) e—st dt
)
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Ne-1 »T.14n)
= > > / Sy (t) e—st dt

n =0 '[n]
Ns—1

= Y > byin(s)

n =0
With use of Eq. (5.8) and Eq. (5.11),

Ng—-1

sy(s) = Z z e~*Tiln] H;(s) 8x%;[n]

n s—-O

> E e *Tilnl 1, (s) @, - - @0 6%[n]
n =0
Ng—-1
= > ettt T) Hy(s) @iy --- B > e Tolnl §%n]
1=0 n
Ng—1
— Z e—a(T-_1+...+To) H{(S) b, _1---Bg Z e—anTa 55’(0[11]
=0 n
Ng-1
— z e"’(T‘—x+"'+T°) H,‘(s) &, ,--- B 5i8(s)
1=0

I

where

(T-1+---+ To)

@-1"'@0 = I

Hence,
8y(s) = H(s) 6%5(s)

where,
Ns-1
H(s) = Z e—’(T'“1+m+T°) H; (S) P, _;.--P
1=0

(5.19)

(5.20)

The quantity H(s) is the generalized equivalent hold of the stable steady state solution

of the ideal dc-to-dc converter system under study for the control-input rg.

By using the results in Eq. (5.12), Eq. (5.18), and Eq. (5.19),

8y(s) = H(s) [I-e*T* @] 7" k 6r4(s)

(5.21)
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Equation (5.21) describes the control-input-to-output frequency response of an ideal
multiple-switched-state dc-to-dc converter system in the vicinity of its steady state solu-
tion with respect to the perturbed control-input 87 in the small-signal limat.

As proved in Chapter 4, this result is exact in the small-signal limit. Sim-
ilar to the control-input-to-output frequency response of the class of ideal simple two-
switched-state dc-to-dc converter systems discussed in Chapter 3, the control-input-to-
output frequency response of a generic ideal multiple-switched-state dc-to-dc converter
system resembles the frequency response of a classical single-rate sampled-data system;
with the steady state switching period T, of the converter system as the sampling period
of the classical sampled-data system, the augmented difference equation that describes
the small-signal motion of the converter system in the vicinity of its steady state solution,
Eq. (5.8), as the discrete time system embedded in the classical sampled-data system, and
the generalized equivalent hold H(s) of the converter system as the hold in the classical
sampled-data system.

It is obvious that the exact small-signal control-input-to-output frequency re-
sponse of an ideal dc-to-dc converter system in the vicinity of its steady state solution
given by Eq. (5.21) is complicated. Nevertheless, Eq. (5.21) can be easily evaluated at
different frequencies by using a computer to obtain useful plots for controller design,
such as the Bode plot and the Nyquist plot. Furthermore, analytical approximations
of Eq. (5.21) can be found in some special cases; for example, the open-loop constant-
switching-frequency PWM converter system in the high-switching-frequency limit dis-
cussed in Section 3.3. Analytical approximations of the frequency response of a converter
system are important for the understanding of the general small-signal behavior of differ-
ent classes of dc-to-dc converter converter systems, and the design of the basic converter

circuits and the feedback controllers.
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Conclusion

The Small-Signal Frequency Response Theory is a mathematical theory for the
linearization of an ideal dc-to-dc converter system in the vicinity of its steady state solu-
tion. The theory provides an exact solution to the frequency response problem of dc-to-dc
converter systems. This theory overcomes the problems encountered when other approx-
imate analytical methods, namely, the State Space Averaging Modelling Method[4,5,6),
the Sampled-Data Modelling of Switching Regulator(1], and the Small-Signal Analysis of
Resonant Converters[9], are employed. These problems include: not applicable to many
classes of converter system, and not accurate at high frequencies. The theory assumes
that the periodic steady state solution of the ideal dc-to-dc converter system under study
is known. Given a stable steady state solution of the system, the theory will give the
control-input-to-output frequency response of the system corresponding to the solution.
In contrast to the approximate analytical methods, the results given by the theory is valid
at all frequencies provided that the system model used in the calculation of frequency
response is valid at all frequencies. The theory is applicable to any linearizable dc-to-dc
converter system. The frequency response of a dc-to-dc converter system given by the
theory resembles the frequency response of a classical single-rate sampled-data system
with a very complicated hold.

In a generic ideal dc-to-dc converter circuit, there may be multiple stable
steady state solutions under a single operating condition. In general, the frequency

response corresponding to one of the stable steady state solutions is different from the
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frequency response corresponding to other stable steady state solutions; even though
the stable steady state solutions may correspond to a single operating condition of the
converter circuit.

The procedure for finding the frequency response of simple‘two-switched-state
ideal dc-to-dc converter systems with continuous output in the vicinity of its stable steady
state solution is laid out in Chapter 3. For any converter system not covered in Chapter
3 but defined in Chapter 1, a procedure for finding its frequency response in the vicinity
of its stable steady state solution is laid out in Chapter 5.

The first step in the procedure for finding the frequency response of a dc-to-dc
converter system is to find the difference equation that describes the small-signal mo-
tion of the system in the vicinity of its steady state solution. The procedure for the
construction of the difference equation that describes the small-signal motion of simple
two-switched-state ideal dc-to-dc converter systems is described in Section 3.1. In Sec-
tions 3.3 through 3.5, the difference equations, in closed-form, of some representative and
popular dc-to-dc converter systems, namely, the two-switched-state constant-switching-
frequency PWM converter system, the two-switched-state constant-switching-frequency
programmed converter system, and the two-switched-state bang-bang controlled con-
verter system, are derived. For the ideal dc-to-dc converter systems defined in Chapter
1, a systematic procedure for constructing the augmented difference equation that de-
scribes the small-signal motion of the systems in the vicinity of their steady state solutions
is developed in Section 5.1.

The second step in the procedure for finding the frequency response of a dc-
to-dc converter system is to find the equivalent hold that relates the sequences in the
difference equation and in the analog output signal. In Section 3.2, the equivalent hold is

derived for simple two-switched-state ideal dc-to-dc converter systems without consider-
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ation of the output equation. This equivalent hold only works for converter systems with
continuous output signals, because it cannot take into account the possible discontinuity
in the output signals. In Section 5.2, the generalized equivalent hold, which is used with
the augmented difference equation described in Section 5.1, is introduced to overcome this
problem. This generalized equivalent hold is applicable to all the ideal dc-to-dc converter
systems described in Chapter 1.

In Sections 3.3 through 3.5, three example converter circuits are studied. All
three converters circuit have the same circuit topology, the R-L topology, but use differ-
ent control strategies: constant-switching-frequency PWM, constant-switching-frequency
programming, and bang-bang control. When the Bode plots of the predictions given by
the Small-Signal Frequency Response Theory are compared to the corresponding exper-
imental measurements, it is found that the theory consistently gives good predictions
even up to many times the switching frequency, while, in many cases, the approximate
analytical methods obviously break down. In the case of the example bang-bang con-
trolled converter system in Section 3.5, the theory even predicts the fine features of the
frequency response of the converter system.

In introducing the Small-Signal Frequency Response Theory through a simple
example in Chapter 2, it is found that the operating condition of a dc-to-dc converter
circuit cannot fully specify the steady state solution of the converter. A similar obser-
vation is made in the experiments on the real life current-programmed converter circuit
in Section 3.4. What is commonly referred to by the power electronics community as
the instability of a dc-to-dc converter system under a certain operating condition is actu-
ally the instability of a particular steady state solution corresponding to that operating
condition, while other stable steady state solutions corresponding to the same operating

point are unacceptable. A method for specifying an ideal dc-to-dc converter system and
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its steady state solution is proposed in Section 1.1.

In the development of a general procedure for the construction of the difference
equation that describes the small-signal motion of a dc-to-dc converter system, it is found
that there is no difference between the mathematical description for PWM converters in
closed-loop operation and current-programmed converters. This fact is consistent with
the experimental observation in the programmed converter system that, if the slope of
the added stabilization ramp is varied, its frequency response varies from that of a typical
current programmed converter to that of a typical closed-loop PWM converter. In con-
trast, in many approximate analytical methods, closed-loop PWM converter systems are
treated as open-loop PWM converter systems with analog feedback, while programmed
converter systems are treated using the modulator model approach|1,4,5].

From the formulation of the Small-Signal Frequency Response Theory de-
scribed in Chapter 5, it is obvious that the theory is a powerful tool that has many
applications. The most important application of the theory is in the computer-aided-
design of dc-to-dc converter systems based on frequency domain controller design meth-
ods. There is no analysis method available besides the Small-Signal Frequency Response
Theory that has a systematic procedure for calculating the frequency response of all the
linearizable ideal dc-to-dc converter systems in the vicinity of their stable steady state
solutions, except the costly and time-consuming numerical simulation. The limits and
the nonuniformities in handling different classes of ideal dc-to-dc converter systems in the
approximate analytical methods make these methods unsuitable for building a general
purpose computer-aided-design system for dc-to-dc converter system design. The Small-
Signal Frequency Response Theory, on the other hand, though not suitable for hand
calculation except for very simple converter systems, is uniform in handling all classes

of converter systems. This fortunate property of the theory makes the theory ideal for
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building a general purpose computer-aided-design system. Furthermore, the analytical
result of the theory is exact in the small-signal limit. The error in the approximate an-
alytical methods from approximating the output signal of a converter system with the
average of the signal is eliminated.

The Small-Signal Frequency Response Theory does not differentiate between
small-ripple (PWM) converter systems and large-ripple (resonant) converter systems in
its formulation. Therefore, the theory can be applied to analyze real life converter circuits
that are commonly used but cannot not be satisfactorily analyzed with the approximate
analytical methods, such as PWM converter systems with snubber protection circuits —
a hybrid of small-ripple and large-ripple converters.

In the area of Modelling and Analysis of dc-to-dc converter systems in Power
Electronics, the term modelling almost exclusively means finding an epprozimate linear
system model for an ideal dc-to-dc converter system and approzimating the response of the
system with the response of the approzimate model. The modelling of a physical converter
circuit using an ideal lumped circuit model is often overlooked, except in numerical
simulation, because other then the use of a difference equation, there was no method for
analyzing the response of an ideal dc-to-dc converter system exactly, even in the small-
signal limst. Unfortunately, the predictions using the difference equation or time domain
approach cannot be compared to experimental data directly, because the experimental
measurements involve aperiodic sampling and evaluation of small differences of large
numbers. The Small-Signal Frequency Response Theory changes this situation. The
theory is an exact analytical method for the analysis of the frequency response of dc-to-dc
converter systems in the vicinity of its steady state solution. In other words, the theory
is an exact solution of the frequency response problem of dc-to-dc converter systems.

Furthermore, the prediction of the theory can be compared directly to the experimental
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measurements from network analyzers. The Small-Signal Frequency Response Theory
combines the best of the time domain approach and the frequency domain approach for
analyzing the small-signal behavior of dc-to-dc converter system: the exactness of the
time domain approach and the measurability of the frequency domain approach. It is
now possible to study whether a certain ideal lumped circuit model, and therefore, a
certain ideal dc-to-dc converter system model, is advisable for a certain physical dc-to-de

converter circuit.
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Appendix A

The Stability of a System

Stability is always a subject of interest in the study of systems. For a linear
time-invariant system, the stability of the system is determined by the eigenvalues of the
constant system matrix. For a generic nonlinear system, the concept of eigenvalue is not
applicable.

For a class of nonlinear systems which has relatively mild nonlinearity, the
concept of the stability of an operating point is widely used. Many analog electronic
circuits belong to this class of nonlinear systems. There are two major characteristics in
this class of systems. First, for each operating point of the system, the system can be
linearized. In other words, the linearized system can be parametrized by the operating
point. Second, corresponding to each operating point of the system, there is a unique
constant steady state solution. The steady state solution of the system is usually used
to characterize the operating point of the system. The stability of an operating point of

a system is defined below:

Suppose that the solution to a system with perturbation only before time ¢,
is x(t); and the steady state solution of the system is the constant vector X.
The system is small-signal or locally stable if and only if 3 a § > 0 such that
Y x(t,) - X|| < 6,

Jim [lx(t) - X|| < M

where M is a non-negative constant, || - ||p is any spatial p-norm, p > 1.
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If M = 0, then the system is asymptotically stable. If § can be any positive
constant, then the system is globally stable. The steady state solution X may

be interpreted as the operating point of the system.

For nonlinear systems in general, the concept of the stability of an operating
point is not appropriate because nonlinear systems may have multiple solutions which
are not constant in time. An example of such a system, a current-programmed buck
converter, is given in Section 2.1. Therefore, it is necessary to use a different concept,

the concept of the stability of a solution of a system, to define the stability of a general

nonlinear system. The stability of a solution to a system is defined below:

Suppose X(t) is a solution to a system without perturbation, and x(t) is the
perturbed solution to the system with perturbation only before time t,. The
solution X(t) is small-signal or locally stable, if and only if 3 a § > 0, such

that V ||x(t,) — X(t,)|lp < 8,
lim [Ix(8) - X ()], < M

where M is a non-negative constant and || - ||, is any spatial p-norm, p > 1.
If M = 0, then the solution to the system is asymptotically stable. If § can be

any positive constant, then the solution to the system X(t) is globally stable.

For systems which have a state space representation, i.e., the system may be
described by a differential equation of the form % = f(x, t), x(t) is the state of the system,

and X(t) is the steady state solution of the state of the system.
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Appendix B

The Concept of Average

Average is a concept for removing the change in a quantity with time. When
the concept is applied to a system, it is used to remove the change in the motion of a
system with time. In most approximate analytical frequency domain analysis methods for
ideal dc-to-dc converter systems, the concept of average is extended to relate its sampled
perturbed state, given the difference equation that describes the small-signal motion of the
system, to its analog output signal. From another perspective, the concept of average is
used in the approximate analytical analysis methods to separate the slow motion from the
fast motion of the system. Different concepts of average are used in different approximate
analytical analysis methods. The differences in the different concepts of average used in
the approximate analytical analysis methods indicate that average is not a precise, but
a fuzzy concept for the motion of a system. A few different concepts of average are
examined below. In this discussion, ideal dc-to-dc converter systems are assumed to be
in state space representation. The forcing term u is neglected in the present study.

In the State Space Averaging Modelling Method of Middlebrook and Cukl6],
the process of taking the average is called averaging. This averaging process is taken
at the equation level; in which an averaged system matriz A is formed from a weighted
sum of the system matrices A;’s of the switched-networks of the dc-to-dc converter un-
der analysis. The first step of this averaging process is the straight line approzimation:

eAT in the difference equation that describes the motion of the system is replaced by
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I+ A;T. This approximation greatly simplifies the expression in the difference equation
that describes the small signal motion of the system. The second step is to approxi-
mate the difference equation by a differential equation through replacing the first order
difference in the approximate difference equation from the first step by the product of
the corresponding derivative and the switching period, together with approximating the
steady state solution of the state X(t) by the time-average of the steady state solution
X. This differential equation describes the averaged system. Another interpretation of
the results is that: since the steady state solution of the state X(¢) changes very little
with time (the small-ripple assumption), AX, a weighted vector sum of the A Xs, is
the averaged time derivative of the state x in over a switching period. The major as-
sumptions of the State Space Averaging Modelling Method are that: the switching period
1s much shorter than any of the time constants in the system, and the frequency of the
modulation signal is low compared to the switching frequency. The final result of the
State Space Averaging Method is a differential equation that describes the averaged mo-
tion of the system. The result is exact in the small-signal high-switching-frequency limit
for open-loop constant-switching-frequency PWM converter system. However, it cannot
predict the high-frequency response of constant-switching-frequency current-programmed
converter systems accurately; because the linear time-invariant model breaks down when
it is applied to high-bandwidth feedback control loop design/[1].

The development of the Sampled-Data Modelling Method of Brown[1] is mo-
tivated by the inadequacy of the State Space Averaging Method in predicting the high-
frequency response of current-programmed converter systems. The step for computing
the averaged system in the Sampled-Data Modelling Method is essentially the same as
that used in the State Space Averaging Method. Brown suggests that the inadequacies

of the State Space Averaging Method come from the elimination of the sampling process.
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Brown puts the sampling processing into the State Space Averaging Modelling Method to
form the Sample-Data Modelling Method. The addition of the sampling process has two
effects: First, the averaged differential equation used in the State Space Averaging Method
performs the function of the equivalent hold discussed in Sections 2.3 and 3.2. Second,
the averaged differential equation with the sampled control-input, in essence, contains a
discrete time system which is an approximation of the difference equation that describes
the small-signal motion of the converter system discussed Sections 2.2 and 3.1. With this
sampling process, the changes in the difference equation that describes the small-signal
motion of the basic converter system that come from the application of feedback can be
made correctly by using sampled-data system theory.

In resonant converter systems, some of the system time constants and the
steady state switching period are of the same order of magnitude. Furthermore, the
magnitude of the change of the state with time is large when compared the the mag-
nitude of the state. Hence, the small-ripple assumption is not valid. As a result, the
linear combination of the state matrices of the switched-networks cannot approximate
the system motion. A different concept of average is developed for analyzing this class of
converter systems by Vorpérian|9] in the Small-Signal Analysis of Resonant Converters.
In the Small-Signal Analysis of Resonant Converters, the average is taken at the out-
put signal level. The perturbed output waveform is averaged over each switching period.
The frequency response of the system is postulated to be the z-transform of the difference
equation that describes the relation between the control-input sequence and the sequence
form by the time-average of the output signal over each switching cycle with z = 77,
where T, is the switching period. Unfortunately, the process of taking the time-average
destroys the high-frequency signal content of the output signal. Furthermore, the se-

quence that is formed by the time-average of the output signal over a switching cycle
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does not have a hold to relate it to the analog output signal. The absence of the hold
in the model introduces even more errors to its prediction of the frequency response of
the system at high frequencies — of the order of the switching frequency. An interesting
property of the results of this method is that at multiples of half the sﬁtching frequency,
the predicted transfer function is always real. As a result, the phase of the predicted
transfer function is always a multiple of 180 degrees at multiple of half the switching
frequency. This property is a direct result of the application of the z-transform to the
difference equation that describes the relation between the time-average of the perturbed

system state and the perturbed control-input, with z = e°T*.

Obviously, counter ex-
amples of this method can be constructed easily. Nevertheless, this method gives good
prediction at low frequencies; i.e., low when compared to the switching frequency.

A more mathematically tractable concept of average is used in the Sliding
Mode Control of Variable Structure System Theory[8). It defines the average motion as

follows:

Consider the function x(t); X(t) is the average motion of x(t) if
%) - %(®)ll, < M

for some positive constant M, where || - ||, is any spatial p-norm, p > 1.
Obviously, for a given M, at least one X(t) can be found. Furthermore, the average motion
x(t) for each M is not unique if there is no other constraint. This non-uniqueness is a
manifestation of the fuzziness of the concept of average. Even in the methods mentioned
above, the concepts of average have similar fuzziness. In the Small-Signal Analysis of
Resonant Converters, the starting point of a switching period is not unique. It is obvious
that a different result will be obtained with a different starting point of the switching
period, although the numerical results for the different choices may be close to each other.

In the State Space Averaging Modelling Method and the Sample-Data Modelling Method,
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the postulated weights which are used for combining the matrices A;, B;, C;, and D; to
form the averaged matrices A, B, C, and D, become increasingly bad as the switching
frequency is lowered. In addition, the information on the order of the appearance of
the switched-networks is lost after the averaging process. In the Eqin'valent Control of
Sliding Mode Control[8], this non-uniqueness is removed by the extra condition that the
average motion %(t) is the limiting case, in which the imperfection disappears; i.e., the
switching period approaches zero. The formal term used in the Sliding Mode Control for
this limiting process is called the passage of limat.

Although in the Sliding Mode Control the concept of average is not only
tractable mathematically, but also gives a unique average motion, the concept cannot
be applied to resonant converter systems which use the resonance in the converter cir-
cuits to transfer power. If the switching frequency is raised, the converter systems do
not function as desired. One can conclude from these facts that the concept of average
is good, but not adequate for the precise description of the behavior of ideal dc-to-de
converter systems in the frequency domain.

To further illustrate the fuzziness of the concept of average when the concept is
applied to extract the slow motion from a signal with a mixture of fast and slow motions,

consider f(t), a function of time, where,

200t
o

f(t) = 10asin + sin 2x¢

The following are some possible definitions of average:

1. The average over an infinite period of time: This is the universally acceptable

definition of average that has no ambiguity. By using this definition:
The average of f(t) =0

The average in this case is the dc component of the function in Fourier Analysis,
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which is mathematically tractable. The definition, however, cannot extract the slow

or average motion from the function f(t) as desired.

. The average over consecutive time intervals of length T: Consider the case in which
a = 1. This definition leads to a sequence that represents the average over consec-
utive time intervals of length T. This definition has the essence of the concept of

average used in the Small-Signal Analysis of Resonant Converters.

(a) If T = 1, the period of the low-frequency component of f(t), the result is a

constant sequence, a sequence of 0’s.

(b) T = 1/100, the period of the high-frequency component of f(t), the sequence
is {sin(27n/100) + €.}, where |en] < 27/100. The exact value of ¢, depends

on the starting time of the time intervals used to calculate the average.
(c) If T < 1/100, then the elements in the sequence representing the average is

bounded by +10.

In general, different choices of the length of the time intervals used for calculat-
ing the sequence that represents the averages and the starting time of the time
intervals has drastic effect on the sequence. This property of the definition is very

undesirable.

. An average of f(t), f(t), defined by | f(t) — f(t) | < M, Vt: For each choice of M,
there is a different set of f(t). Consider the case in which a = 1:

(a) For M = 11, 0, sin 2rt, and 10sin 222 are in the set of f(t).

(b) For M = 10, 0, sin 2xt, and 10sin 222%¢ are in the set of f(t) but not 0.

(c) For M < 10, 10sin 2%2%¢ jg in the set of f(t) but O and sin 2t are not.
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In the Sliding Mode Control in Variable Structure System Theory, the unique av-

erage is the one which a — 0, that is, f(t) = sin2xt.

4. The concept of average similar to that in the State Space Averaging Method and the
Sampled-Data Modelling Method: The sequence of averages is formed from sampling
f(t) at a fixed time interval T = {35. The sequence is {8 + sin 2rnT}, where 8
depends on the time at with f(t) is sampled and bounded by £10. This sequence
is not a continuous function of time. The continuous average in this concept of
average is postulated to be sin 2xrnT with n = t/T, i.e., sin 2nt (8 postulated to be

zero to eliminate the dc component).

In general, for any given two different concepts of average, an arbitrary number of f(t)’s
can be constructed easily so that the averages given by the concepts are very different.

With the fuzziness of the concept of average for dc-to-dc converter systems
in mind, it is natural to wonder why it is necessary to find the averaged motion of the
system. In the study of the frequency response of an ideal dc-to-dc converter system, the
only purpose of finding the averaged motion of the system is to use the frequency response
of the average motion to external excitation to approximate the frequency response of
the system. Thus, a new question arises: Can the frequency response of an ideal dc-to-dc
converter system be computed directly by using the Fourier Analysis? This question
is the starting point of the Small-Signal Frequency Response Theory for ideal de-to-dc
converter systems.

As a final remark, the extraction of any frequency component from a signal in
the frequency domain is in essence an averaging process in the time domain. The concept
of average used, however, is very different from all those discussed above. The extraction
of a frequency component from a signal is equivalent to the passing of the signal through

an ideal band pass filter. The effect of the ideal band pass filter in the time domain is
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the convolution of the signal and the impulse response of the band pass filter, though
the impulse response of the filter is not causal. The convolution integral is in essence
a moving weighted average. The weight used in the convolution integral is the impulse

response of the band pass filter.



[1]

2]
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