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Topics in Millimeter-Wave

Imaging Arrays
Abstract

In this thesis two different types of antenna arrays are investigated as pos-
sible configurations for two-dimensional diffraction limited imaging arrays. The
first configuration is the “fly’s-eye” array of microlenses. It is shown that this
configuration may be utilized to achieve diffraction limited imaging with theo-
retical coupling efficiencies of around 50%. The other configuration is the two-
dimensional horn array. It is shown that in this configuration, wide-angled horns
etched into silicon achieve theoretical coupling efficiencies of 60%. A design for
a two-dimensional imaging array, using horn elements of aperture size 1.5Xg was
suggested. Also covered in this thesis are the radiation losses and the substrate-
mode losses of coplanar transmission lines. It is shown that at millimeter-wave
frequencies these losses are prohibitively high. Finally in the appendix a simula-
tion of Schottky diode mixers is described as a possible design tool for analyzing

millimeter-wave detector circuits.
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CHAPTER 1

Introduction

1.1 Millimeter-Waves

The millimeter-wave region is generally defined as the frequency region from
30 to 300 GHz. Millimeter-wave characteristics differ from those of microwave
and infrared, and these differences make millimeter-wave systems more suitable
for certain applications. In recent years the millimeter-wave region has seen
significant advances in the development of transmitters, receivers [1-2], sources
[3-4], devices [5-8] and components [9-10]. The current resurgence of interest
arises from the limitations of infrared and optical systems and the overcrowd-
ing of the microwave spectrum. However, performance, reliability and cost have
impeded the widespread use of these wavelengths. Therefore considerable re-
search is required to make millimeter-wave systems competitive with infrared
and microwave systems which are based on relatively mature technology.

Short wavelength, large bandwidth and atmospheric propagation effects de-
termine the application of millimeter-wave systems. The short wavelength allows
the use of components with considerably reduced size. The advent of integrated-
circuit technology has not only enabled the fabrication of smaller components,
it has also introduced the concept of monolithic circuits to millimeter-wave sys-
tems. This is highly desirable for missiles, satellites and aircraft. The short
wavelength also results in narrower antenna beamwidth. It provides greater res-
olution and precision in tracking and discrimination. The narrow beamwidth
also gives higher gain and greater immunity to jamming.

The large bandwidth provides higher information rate capability, wide-band

spread spectrum capability and large Doppler shifts. In radar applications these
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characteristics result in high immunity to jamming and interference and greater
sensitivity in areas such as range resolution, detection and target signature. The
atmospheric attenuation and losses are relatively low in the transmission windows
compared to infrared and optical frequencies. Lower attenuation in aerosols,
dust and smoke make millimeter-wave radars and radiometers much more ef-
fective than their optical and infrared competitors. The principal application
of millimeter-wave technology has been in communications [11], radar [12], ra-

diometry [13], remote sensing [14], missile guidance [15] and radio astronomy [16].

Millimeter-waves have also been used in spectroscopy and biological applications.

1.2 Millimeter-Wave Imaging Arrays

Scanned millimeter-wave imaging systems have been made with antenna ar-
rays. Hollinger et al. [17], Hodges et al. [18], Waldman et al. [19] have designed
and implemented such systems. Scanning systems, whether they are electronic
or mechanical, cannot image rapidly moving objects or changing scenes. This is
because the system sees only one pixel at a time. As the total time taken is the
product of the number of pixels and the integration time, this forces one to use
short integration times. Short integration times result in poor noise performance.
The way to circumvent this limitation is to image all points simultaneously onto
multiple sensors. An array of detectors with associated antennas is a possible
configuration.

Evaporography and pyroelectric vidicons have been used as image plane de-
vices [20]. But like all large area thermal detectors, they suffer from low speed
and significant crosstalk. The need for sensitive and fast detection has required
the development of antenna arrays. High-speed detectors such as SIS junction de-
tectors [21], Schottky diodes [22], and microbolometers [23] have been developed

in recent years. These developments coupled with integrated-circuit technology



should facilitate the fabrication of two-dimensional focal plane imaging arrays.
Several focal plane imaging systems based on single-mode antenna arrays and
multi-mode antenna arrays have been built. Fig. 1.1 shows multi-mode imaging
and single-mode imaging. In single-mode arrays each point on the target is
imaged onto a separate element of the array. Properly designed single-mode
systems may achieve diffraction limited imaging. Diffraction limited imaging
is the term used to refer to an imaging system whose resolution is limited by
the resolution of the optical system. It can been shown that diffraction limited
resolution may be achieved only if the antenna array is able to spatially sample
the image above a minimum rate defined by the optical system. In multi-mode
arrays the antenna array acts as a single receptor. Therefore these systems
are suitable only for objects that require low spatial resolution. Rutledge and

Schwarz [24] built a high detectivity multi-mode antenna array at 215 GHz.

N Detectors

Figure 1.1 (a) Multi-mode antenna array (b) Single-mode antennas for high resolution

imaging.

Several one-dimensional imaging arrays have been built [25-26] to do diffrac-

tion limited and close to diffraction limited imaging. Quasi-optical systems [27]
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with lens-coupled antennas are used in many of these systems. Fig. 1.2 shows
a quasi-optical system with a lens-coupled antenna array. Microstrip antennas
(28], V antennas [29)], slots, dipoles and bowties [30] are some of the many pla-
nar antennas that have been used in these arrays. Several different types of
transmission lines and waveguides [31] have also been used in substrate and lens-
coupled circuits. Their performance strongly influences the overall performance
of the system. Schottky diodes, SIS junctions and microbolometers have been
used as detectors for different applications. The SIS junctions has the highest
sensitivity but it requires cryogenic operation. They are best suited for mil-
limeter and submillimeter radio astronomy [32] where high sensitivity is a must.
The microbolometers are easy to fabricate but their response time is limited to
microseconds. They have been used successfully in submillimeter-wave imaging
arrays [25]. The Schottky diode is difficult to fabricate. But they have excellent
high frequency performance and are ideal for room temperature millimeter-wave

work.
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Figure 1.2 Quasi-optical imaging system with substrate lens-coupled antenna array.



1.3 Prospects for Two-Dimensional Imaging Arrays

In implementing one-dimensional imaging arrays the low-frequency leads did
not cause a problem. But in two-dimensional arrays they are much harder to
fabricate because of the shortage of space [33]. In a nutshell the problem is how
does one build a two-dimensional imaging array so that the antennas are close
enough to achieve diffraction limited imaging and at the same time run low-
frequency connections to each antenna. In the two-dimensional tracking array
built by Tong et al. [34], the array is partially multi-mode and therefore does not
require low-frequency leads for each antenna. The solution is to make smaller
antennas. But smaller antennas have smaller effective areas and therefore do not
couple power efficiently. In this work, I discuss two possible ways of increasing
the effective area of the receiving antennas while maintaining diffraction limited

imaging.

\ _
9\ . F—Microlens
I
|
L !
y ; /4
\J Fly's-eye array
Objective lens

Z(()bject plane

Figure 1.3 Fly’s eye array of microlenses for diffraction limited imaging.

The first method is to build an array of microlenses in a “fly’s eye” configu-
ration as shown in Fig. 1.3. The lenses will be small enough to achieve diffraction
limited imaging. Each lens will have its associated antenna which will be physi-

cally a lot smaller than the lens itself. The hope is that the microlens will increase
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the effective area of the antenna to the size of the lens. The absorption losses

due to the lens material may also be reduced considerably.

~

Figure 1.4 Two-dimensional imaging horn array for diffraction limited imaging.

The next configuration is the two-dimensional array of horns. Fig. 1.4 shows
such an array. The advent of integrated-circuit technology has made this possible.
The idea is to etch crystalline silicon along its (111) plane so as to produce a
pyramidal horn like structure. The silicon will be highly doped to make the
walls look 'metallic’. The receiving antenna will be built on a thin silicon nitride
membrane inside the horn. Again due to the focusing effect of the horn the
antenna itself does not have to be large. The extra space on the membrane
surface may be utilized for running low-frequency lines. This system does not
use a lens and may also be used at far-infrared frequencies where the dielectric

absorption is prohibitively high.



1.4 Overview of the Thesis

The major goal is to investigate suitable configurations for two-dimensional
imaging arrays. The above mentioned configurations are treated in Chapters 4
and 5. Chapters 2 and 3 deal with the losses of microstrip lines and coplanar
transmission lines. In Chapter 2 substrate-mode losses of transmission lines on
thin substrates is studied. These losses are due to power from the transmission
lines coupling into extraneous substrate-modes within the dielectric. The dis-
persion properties of these lines are also investigated. It is important to know
when the substrate-modes turn on because the substrate-mode losses are pro-
hibitively large at millimeter-wave frequencies. In Chapter 3 the radiation loss
of transmission lines on thick substrates is studied. The performance of antennas
on thick substrates is also reviewed in this chapter. It is useful to know the per-
formance of antennas and transmission lines on thick substrates because many
imaging systems utilize lens-coupled systems. Parts of this work were published

as a chapter in Infrared and Millimeter Waves [10].

In Chapter 4, the focusing properties of microlenses are investigated. As
mentioned before, to achieve diffraction limited imaging it is important that the
lenses be placed at close proximity to each other. This would require that the lens
radius be of the order of a free space wavelength. Lenses as small as these may not
necessarily focus the incident radiation. In this chapter the focusing properties of
spherical lenses are analyzed rigorously so as to determine the minimum radii of
lenses of different dielectric materials. The losses of these lenses are also studied
to predict the improvement in absorption losses due to the reduction in size.
This work was published in the International Journal of Infrared and Millimeter

Waves [35].

In Chapter 5 the imaging properties of horn arrays are studied. As in the



case of the small lenses a rigorous solution is required because standard solutions
based on diffraction theory do not apply for arrays of small horns. The chapter
begins with an analysis of one-dimenstonal groove type arrays. The section on
one-dimensional grooves is included to test the validity of the stepped waveguide
method which is used later to analyze pyramidal horns. The comparison of
this method with the cylindrical wave function method gives one insight into
the accuracy of the stepped waveguide method. In the next section arrays of
pyramidal horns are analyzed. The primary objective of this chapter is to design
a two-dimensional horn array. The elemental gain and radiation pattern of these
arrays are given along with the antenna coupling efficiency. The chapter ends
with a possible design of a two-dimensional imaging horn array.

The appendix describes the program that simulates Schottky diode mixer
circuits and predicts the conversion loss and noise temperature of the mixer.
This analysis was conducted because of a necessity for theoretical predictions for
the performance of planar Schottky diode imaging arrays built by my colleague
Chung-en Zah [36]. This program is based on Held and Kerr’s excellent paper [37]
on the a.nalysis of Schottky diode mixer circuits and its implementation by Siegel
[38]. This appendix gives a summary of the performance of different Schottky
diode mixer circuits and concludes with a comparison with experimental results

obtained by Zah.
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CHAPTER 2

Substrate-Mode Losses in Coplanar
Transmission Lines

Coplanar transmission lines, along with microstrip lines, are used in mi-
crowave and millimeter-wave integrated circuits as matching elements [1-3], fil-
ters [4], couplers, and as interconnections. For instance, in a millimeter-wave
imaging array, coplanar waveguides may be used to match the IF signal to the
output port or to an intermediary IF amplifier. Therefore, it is imperative that
these lines be of low loss and exhibit good dispersion characteristics. The lat-
ter has been covered extensively in previous work [5-12]. Losses due to lossy
dielectrics and imperfect conductors have also been documented [13-17].

Substrate-mode losses are usually very small at microwave frequencies be-
cause the substrate is very thin compared to a wavelength. But at millimeter-
wave frequencies the substrate thickness can be comparable to the wavelength.
At these frequencies the substrates are able to sustain substrate-modes. In sub-
strate supported transmission lines one would expect substrate-mode losses be-
cause the phase velocities of the modes are comparable with the phase velocity
of the transmission line resulting in power coupling into these extraneous modes.
For certain lines these losses can be prohibitively high. This is an interesting
problem because of its similarities with the leaky wave phenomena. Oliner 18]
has studied the leaky properties extensively. Practical microstrip lines use very
thin substrates compared to their line width. Therefore one does not expect to
have substantial substrate-mode losses in microstrip lines. In this chapter, the
substrate-mode losses of coplanar strips and coplanar slots (Fig. 2.1) are investi-
gated. A comparative study of dielectric absorption losses and conductor losses

is also given.
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Figure 2.1 Coplanar transmission lines - (a) Coplanar waveguide (b) two-strip line (c)

three-strip line.

The propagation properties of the lines are required to predict the substrate-
mode losses. The propagation constant and the characteristic impedance of the
lines may be obtained through analytical approximations [7] or numerical meth-
ods [5,6,9]. For most calculations the quasi-static approximations are sufficient.
But for more accurate results one has to use numerical methods. In the next
section I review the work on the calculation of the propagation properties of
coplanar transmission lines. This is followed by the section on substrate-mode

losses. The chapter concludes with the section on other forms of losses.

2.1 Phase Constants for Coplanar Transmission Lines

The study of microstrip lines has been going on since the late sixties. Vari-
ous numerical methods have been used to predict the propagation constant (also
phase velocity) and the characteristic impedance of microstrip lines [5-7]. A

comparable amount of work has been done on predicting the propagation prop-
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erties of coplanar transmission lines [7-12]. In this section some of the numerical
calculations for the propagation properties of coplanar transmission lines are
reviewed. The analysis is based on Knorr and Kuchler’s method [9].

Their analysis is very similar to the analysis of microstrip lines by Itoh and
Mittra [6]. This method is a hybrid-mode analysis, which assumes the fields are
a linear combination of TE and TM modes. The presence of the strips does not
allow a pure TE or TM mode to exist. Instead a linear combination of these
modes is allowed when the dielectric material is isotropic. This is assumed to be
true for the materials in this work.

The TE and TM modes are expressed in terms of scalar potentials in both air
and the dielectric. The components are then Fourier transformed in the direction
parallel to the air-dielectric boundary. Matching the boundary conditions gives
a set of coupled equations relating the currents on the strips to the fields at the
air-dielectric boundary through appropriate Green’s functions. These equatic;ns
may also be derived by the immitance matrix approach of Itoh and Menzel [19].
The latter method gives a better insight into the physics at the boundary. The
coupled equations are solved by the Galerkin method to give values for the line
propagation constant at different frequencies. The losses may also be calculated
by using the appropriate modifications.

Fig. 2.2 shows the effective dielectric constants of a coplanar waveguide, a
two-strip line and a three-strip line. The effective dielectric constants of the
coplanar waveguide and the two-strip line are very similar to that of the slot
line [10]. When the thickness is small compared to the wavelength the propaga-
tion constant tends towards the quasi-static value. The quasi-static value is the

propagation constant in a medium of mean dielectric constant given by

e+ 1
2

€ =

(2.1)
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As the thickness is increased with respect to the wavelength, the effective di-
electric constant tends towards that of the substrate. This is because at higher
frequencies the modes are better confined and most of the power is carried in the

dielectric.

8 T T i 1 i 1 i 1
~-— = COPLANAR WAVEGUIDE |
—-— TWO-STRIP LINE P

. THREE-STRIP LINE Vs

Effective dielectric constant

1

i I !
0.01 0.04 0.07 0.

Substrate thickness, h/xo

Figure 2.2 Effective dielectric constants of a coplanar waveguide, a two-strip line and
a three-strip line on silicon substrates which are assumed to be lossless. This calculation

was done using the immitance matrix method.

Another important observation is that when the thickness of the substrate is
increased (or when the frequency is increased) the line excites substrate-modes in
the dielectric. This is reflected by the poles in the complex plane of the Green'’s
function. The power coupled into the substrate-modes may be obtained from the
residues of these poles [20-21]. But this calculation is laborious, as it involves
contour integration. In the next section the substrate-mode power is calculated
using a much simpler reciprocity argument.

The three-strip transmission line has not been analyzed before. This line was
analyzed using a method similar to Knorr and Kuchler’s. The line was found

to be a lot less dispersive than the two-strip line. The reasoning here being
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that the three-strip line forms a quadrapole resulting in better confinement of
the energy within the substrate. While the two-strip line forms a dipole which
is more sensitive to the thickness of the substrate. The power coupled into
substrate-modes is greater for a dipole than a quadrapole, because the quadrapole
moment is smaller than the dipole moment for small line separations. This effect
makes the substrate-mode losses of the three-strip line a lot smaller than the two-
strip line. These two factors make the three-strip line a much more attractive
proposition than the two-strip line in integrated circuits where a microstrip line
might be difficult to fabricate.

The characteristic impedance is obtained by calculating the total power
transmitted by the line. By integrating the Poynting vector over a cross sec-
tion of the line one gets the total power. A simpler method would be to assume
a TEM-like expression in terms of the dispersive properties as shown by Den-
linger [5]. Approximate analytical expressions for tl;e characteristic impedance
are given in Gupta et al [7]. The quasi-static approximation for the characteristic

impedance of a two strip line is

K(k)

Zo =Nm

where 7, is the wave impedance in a medium of dielectric constant & K(k) and
K'(k) are elliptic integrals [22] and k is the geometric factor defined by Gupta et
al. Similarly the quasi-static value of the characteristic impedance of a coplanar
waveguide is given by

Zp = — ——= (2.3)

2.2 Substrate-Mode Losses in Coplanar Transmission Lines

Dielectric substrates whose thickness is comparable with the wavelength in

that medium may sustain substrate-modes [23-24]. This concept is utilized in
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dielectric waveguides and leaky wave antennas [18,25|. This waveguiding prop-
erty (Fig. 2.3) of substrates manifests as a loss in integrated circuit transmission
lines. It may also increase the cross talk between various elements in the circuit.
In the case of antennas on thin substrates, this results in a loss in gain. Alex-
opoulos and co-workers [20,21,26] have investigated thé latter aspect. Goubau
[27] had investigated the excitation of substrate-modes by elementary sources
as early as 1952. He showed that the total field can be represented by a linear
combination of substrate-modes and a supplementary field. The substrate-mode

losses in coplanar transmission lines are investigated in this section.

Transmitting Antenna
. Trapped Rays
Air /

S
Substrate 26, /

Air

Figure 2.3 Transmitting antenna on a dielectric substrate showing rays trapped as

substrate-modes.

Determining the substrate-mode fields is a laborious calculation of the resid-
ues of the poles of a Sommerfeld integral [28-30]. This procedure is only necessary
when the fields are required, such as in the impedance calculations of microstrip
dipoles [20] and in the power calculations of lossy substrates [31]. However, the
far-fields within substrate, can be found by reciprocity. On lossless substrates,
the far-field can be integrated to find the total power. This method is discussed
for line sources by Walter [32] and more recently for elementary sources by Alex-

opoulos et al [26]. The advantage of the reciprocity calculation is that it is much
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simpler and it also shows the physical factors that influence the substrate mode
power in each mode. For instance, it will be shown that the substrate-mode power
is inversely proportional to the quantity h., which is the effective guide thickness.
Physically this means that when the mode is well confined, the substrate-mode
losses are high. The Lorentz reciprocity theorem as given by Harrington [33] is

as follows
/(ElXHg—EgXHl)'dS‘—‘/(El'Jz'—Eg'Jl)dV (24)
S v

where subscripts 1 and 2 refer to fields and currents associated with sources 1 and
2 respectively. In the next section this equation is used to find the substrate-mode
fields in different types of coplanar transmission lines.

For a transmission line to sustain substrate-modes the propagation constant
of the substrate-modes along the line has to be equal to the line propagation

constant. Therefore the substrate-modes will propagate at an angle ¢, where

cosy =k, /3 (2.5)

and k, is the line propagation constant, 8 the propagation constant of the
substrate-mode. Fig. 2.4 shows the measured substrate-mode radiation patterns
for a two-strip line on a substrate of dielectric constant 12.

Clearly for any given mode, 8 has to be greater than k., for it to be excited
by the transmission line. This is the reason why in the previous section the cal-
culation of propagation constants of coplanar transmission lines was reviewed.
Fig. 2.5 shows the dispersion curves for substrate-modes as a function of thick-
ness for a substrate of dielectric constant 12. The full lines are the dispersion
curves of ungrounded substrates while the broken lines are those of parallel plate
waveguides. Parallel plate guides have metallic planes on both surfaces of the

substrate while a grounded substrate has a metallic plane on only one surface.
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Figure 2.4 Measured substrate-mode radiation pattern from a two-strip line on a
substrate (¢ = 12,h = 1.2cm) at 5 GHz. The angles t7as and g are 21° and 37°

respectively.

Also shown in this plot is the quasi-static propagation constant, k,,. As 8 has to
be greater than k, for a certain mode to be excited it is clear from the figure that
each mode except the TEM mode will have a cutoff thickness below which the
mode won’t be excited by a particular line. Although the quasi-static value for
the line propagation constant is used here for more accurate predictions of the
cutoff thickness, one has to use the frequency dependent value calculated in the
previous section. For the ungrounded substrate the first mode that drains away
energy is the TE,; mode. For the grounded substrate, like in a microstrip line
the first losses are due to the TM, mode and for a parallel plate guide they are
due to both TE; and TM; modes. Only a parallel plate guide may have losses
due to the TEM mode. Fig. 2.6 shows a mode plot for ungrounded substrates,

grounded substrates and parallel plate waveguide.
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Figure 2.5 Dispersion curves for substrate-modes in ungrounded, grounded and parallel
plate substrates, as a function of thickness, with ¢ = 12.

The substrate-mode calculations using reciprocity are relatively straight for-
ward. Fig. 2.8 shows the magnetic source My at £ = zy producing a TM
substrate field with transverse components Ey and H; at £ = 0. For reciprocity
consider a second substrate-mode field, E5, H2 originating outside the box and
propagating in the opposite direction. Applying equation (2.4) to a large box S,
only the right hand side of the box contributes to the surface integral since the

modes exactly cancel at the left hand side, one gets
Ml.Hz dl = 2E1H2 dlhc (26)
where h. is the effective height.

The effective height is the actual thickness plus the apparent ray penetration

depth z,, (Fig. 2.8) required by the Goos-Hanschen shift [23], 2z,, on each side
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Figure 2.7 Reciprocity calculation for a slot on grounded plane.

of the substrate. For TE modes, z, is
2, =1/«

Here a is the evanescent constant in air, given by

a=4/0%—k?
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where (3 is the guide propagation constant. For TM modes, z, is given by

1[8%  p? !
=- |5 +5 - 9
2o = — [kﬁ + k2 1 (2.9)

For slabs without ground plane the effective height is
he =h+2z,, (2.10)

where h is the actual substrate thickness. For slabs with a ground plane the

effective height is

he =h+ 2z, (2.11)

Air . _i_
L

Figure 2.8 Ray optics picture of dielectric waveguide propagation (Kogelnik [23]).

The advantage of using the effective thickness is that one can relate k. to

the power per unit width P, in all these modes given by the formula

_ EHh,
T4

P (2.12)

In calculating the substrate-mode losses it will be seen that the losses are inversely
proportional to h..
One may find the power in the substrate-modes by invoking the reciprocity

equation, (2.4). Details of the calculations are given in [1]. The power lost per
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unit length to TM modes, Pras, from a slot line carrying a voltage Vezp(—k,z2)

is given by
V2 siny
2ndhe sin Hd

Pra = (2.13)

where n4 is the characteristic impedance of the dielectric and 6, the angle of
incidence in the substrate (Fig. 2.8). Similarly the power lost to TE modes is

given by

V? siny cosfy
Prgp = 2.14
TE 2n4h. sinfy tany ( )

In calculating the above formulas it was assumed that the slot width was very
small compared to a wavelength.

Again omitting the details, one may derive the substrate-mode attenuation
coefficient of a coplanar waveguide from equations (2.13) and (2.14). Assuming
quasi-static approximations for the impedance and the field distributions the
substrate-mode attenuation coefficient for TM modes, for a coplanar waveguide

may be written as

s = 72 2¢, sin® ysinfy w 2 (2.15)
™= 8 Vea+1h KKK (k) \ X '
The attenuation coefficient for TE modes arg is given by
2 2¢, sintcos?ysinbycos?fy [ w )\’
arp = — — (2.16)
8 Ve +1 h.K(k)K'(k) A4

The corresponding losses for a single strip line on a dielectric substrate may also

be obtained from the reciprocity equation. The losses due to the TE modes are

I’ng siny
2h. sinfy

Prg = cos? dTE (2.17)

where ¢rg is given by Kogelnik. The TM losses are

I?’ng siny . cos? 84
— Sln2 ¢TM m (218)

2h,. sinfy

Pry =
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Again assuming the quasi-static approximation for the impedance and the field

distributions the TE mode attenuation coefficient for a two-strip line is

nt e, + 1 sin®siné, 2 w\?
_ el 2.19
“TEZ AN e mEWK(k) © PTE (A) (219)
and the TM mode attenuation coefficient is
rt € + 1 N w2
SN s ' ing 2 §,sin? — 2.20
T M Wi - sin 9 cos® Y sin 04 cos® 84sin” dras (/\1) ( )

These expressions for the losses were also derived in [1].
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Figure 2.9 The substrate-mode losses of a two-strip line and a three-strip line on a
silicon substrate with w = 2mm,s = Imm,h = 2.5cm. Also shown are the dielectric

absorption losses and the conductor losses of the two-strip line.

Fig. 2.9 shows the substrate-mode attenuation coefficient of a two-strip line
plotted as a function of frequency. Also shown are the losses measured in the
millimeter-wave integrated circuit laboratory. These losses were measured for a

6-inch line on a Stycast substrate of dielectric constant 12. At low frequencies
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the substrate-mode losses are non existent. But as the frequency is increased the
modes turn on one by one. This is shown by the sudden changes in the slope of
the calculated curve.

The measured substrate-mode losses of a three-strip line are also shown in
Fig. 2.9. These losses are considerably smaller than the corresponding losses
of the two-strip line. As shown in equations 2.19 and 2.20, the power lost to
substrate-modes in a two-strip line is proportional to the square of the line width.
This means that the losses are proportional to the dipole moment. But in a three-
strip line one has a quadrapole, which means the losses will be smaller than those
due to a dipole. Although an analytical expression for the substrate-mode losses
of a three-strip line is not easy to obtain it is fair to assume that these losses are

proportional to the fourth power of the line width.
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Figure 2.10 The substrate-mode losses of a coplanar waveguide on a silicon substrate

with w = 2mm, s = Imm, h = 2.5cm. Also shown are the losses of each individual mode.

Fig. 2.10 shows the substrate-mode losses of a coplanar waveguide. Also
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shown are the losses measured in the integrated circuits laboratory. The presence
of the ground plane makes the T My mode turn on first. In the coplanar waveguide
the coupling is greater into the TM modes than the TE modes. It can be shown
that the substrate-mode losses due to the TE modes tend to zero when the
frequency is increased while the losses due to TM modes are proportional to the

square of the frequency. This also holds true for the losses of a two-strip line.

Several different methods have been tried to control the substrate modes.
Clifton et al. [1] achieved very good results at 110 GHz by mounting the substrate
at the end of a hollow metal waveguide. Inside the waveguide, the substrate-
modes can be excited only near their resonant frequencies. By operating away
from these resonances one is able to minimize the losses. Another method is to
keep the width of the current carrying elements small. The design width will
have to be a compromise between substrate-mode losses that increase for large

lines, and conductor losses which increase for small lines.

2.3 Dielectric Absorption Losses and Conductor Losses in Coplanar

Transmission Lines

Pucel [13] investigated the dielectric absorption losses and the conductor
losses of microstrip lines. The dielectric loss and the conductor loss are propor-
tional to the loss tangent and the sheet resistance, respectively. The conductor
loss is also inversely proportional to the width of the current element. Other
investigators have found similar relationships for the absorption losses and con-
ductor losses of coplanar transmission lines {14-17]. The absorption losses and
the conductor losses of a two-strip line are shown in Fig 2.9. These losses were
calculated using expressions from Gopinath [17]. This figure clearly illustrates

why it is important that substrate-modes be suppressed.
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2.4 Conclusion

When the substrate thickness is comparable with the free space wavelength,
coplanar transmission lines couple power into substrate-modes. These substrate-
mode losses are considerably higher than the dielectric absorption losses and the
conductor losses and are prohibitively large at millimeter-wave frequencies. The
substrate-mode losses of a three-strip line are smaller than the losses of either a
two-strip line or a coplanar waveguide. Furthermore the three-strip line is less
dispersive than the latter two. The substrate-mode losses of practical microstrip

lines are considerably smaller.
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CHAPTER 3

Radiation Losses of Transmission Lines
on Thick Dielectric Substrates

A variety of coplanar metal structures have been used to guide waves on
thick dielectric substrates [1-2]. As mentioned in the previous chapter, coplanar
waveguides, coplanar strip lines, and three-strip lines are some of them. Another
common transmission line, the slot line, has radiation losses on a thick substrate
that are too large to be useful. Unlike transmission lines on thin substrates
which tend to couple power into substrate-modes, lines on thick substrates tend
to radiate power directly into the dielectric. The radiation occurs because the
wave velocity of the transmission line is greater than the phase velocity of the
waves in the dielectric. The radiation is similar to that of a leaky-wave antenna

[3-4] and is emitted in a semi-cone (Fig. 3.1) near an angle ¢ given by
costp = ky/kq (3.1)

where k, is the guide propagation constant and k, is the propagation constant in
the dielectric. These losses have to be controlled if these lines are to be used either
as guides or as antennas. In this chapter, the radiation losses of transmission
lines on thick substrates are investigated.

Dispersion characteristics of transmission lines on thick substrates may be
calculated in a manner similar to those of lines on thin substrates [5-6]. The
Green’s functions are different for thick substrates and the calculations involve
complex integration. Compton et al. (7], Pozar (8], Kominami et al. [9] have
investigated the radiation properties of antennas on dielectric half spaces. The
radiation was found to be primarily into the dielectric. This is because the phase
velocity in the dielectric is lower than the phase velocity in air. This results in

radiation from a fast-wave structure into the substrate.
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Semi-cone of
radiation

Figure 3.1 Radiation from a two-slot line on a thick substrate, showing a semicone of

radiation near an angle ¥ = cos™!(k,/kq).
3.1 Antennas on Thick Substrates

In the previous chapter it was shown that antennas and transmission lines on
dielectric substrates couple power into substrate-modes. To prevent power being
coupled into these extraneous modes, Brewitt-Taylor et al. [10] and Neikirk et
al. [11] mounted a lens with the same dielectric constant on the back side of
the substrate. This eliminates the substrate-mode problem because radiation
incident on the lens surface does not suffer total internal reflection and except
for a small reflected wave, propagates right through this surface. This reflected
power may be minimized by using quarter-wave matching layers {12-13]. This
gave rise to the substrate-lens coupled system. Fig. 3.2 shows two commonly used
substrate lenses, the hemispheric lens and the hyperhemispheric lens. Antennas
and transmission lines in lens coupled systems behave similar to systems on
dielectric half-spaces.

Performance of elementary sources on dielectric half-spaces has been given

in Rutledge et al. [1]. Elementary slots were shown to radiate power into the
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Figure 3.2 Substrate lenses - (a) the hemispheric lens and (b) the 1, ,rremispheric
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Figure 3.3 The radiation pattern of a slot and a dipole on quartz half-space (e =4

from Rutledge et al.).

two half-spaces in the ratio €3/2 : 1, where € is the dielectric constant of the
substrate. The situation is a little more complicated in the case of elementary
dipoles. But for large dielectric constants the radiated power in the dielectric
dominates the power in the air by roughly the same factor as in slots. Fig. 3.3
shows the radiation pattern of dipoles and slots on dielectric half-spaces. In the
next section the radiation properties of transmission lines are investigated. The
reciprocity relationship is used to calculate the radiation losses of two-strip lines

and two-slot lines.
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3.2 Radiation Losses of Coplanar Transmission Lines

The radiation losses may be calculated using reciprocity. The power radiated
by a travelling wave magnetic line current on a ground plane is calculated first
because this approach allows one to extend the calculations to coplanar wave-
guides. A rigorous solution of Maxwell’s equations [14] will yield similar results
in the far fleld. Omitting the details it can be shown [1] that the radiated power
P, is given by

wegVisiniy [7/2

P =
167 —n/2

4dg (3.2)

Similarly the power radiated by a line current on a thick dielectric substrate

is given by
1'2 -n2 7/2
p = ol sin’ Y r2ds (3.3)
167r _,r/2
where 7 is given by
_ rrmcosiY + rrgtan’? ¢
- cos? 1 + tan? ¢

(3-4)

7 is also proportional to the radiation pattern of the transmission line. Fig. 3.4
shows the radiation pattern of two-slots and two-strips in the plane normal to
direction of propagation..
To apply these formulas to pairs of slots and pairs of strips, one has to
integrate across the transmission line. P; for a two-slot line is given by
1 +o0 x/2
P = — k2sin* Yuweq / yE,dy / 4sin® ¢pdg (3.5)
167 —o0 —x/2 »
where it is assumed that wkysin¢ < 1. E, is the electric field in the slots. The
dual expression for the two-strip line is
Py = — kZsin* Ywpg / yJ,dy / 72 sin? ¢do (3.6)
167 —00 —n/2 .
where J, is the current on the strips. Making the appropriate quasi-static approx-

imations one arrives at the following expressions for the attenuation constants
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Figure 3.4 Calculated patterns of two-slot and two-strip lines. The curves are nor-
malized to their peak values. The angle ¢ is the angle measured from the normal to the

interface.

[1]. The attenuation coefficient of a two-strip line is

™™ (1-1/¢?) w?

“T 52v2 Vit ije NK(RK(K)

(3.7)

The attenuation coefficient of a two-slot line is

752 w?
o = 39 (3—"\/§) \/1+1/67W (38)

where K(K) and K'(k) are elliptic integrals. k is the geometric factor defined
by Gupta et al. and ¢, the relative dielectric constant of the substrate.

The losses for a three-strip line on a thick substrate can be shown to be
proportional to the fourth power of the line width. This makes these losses a
lot smaller than the corresponding losses of two-strip lines and two-slot lines.
An analytical expression for the losses of the three-strip line is harder to obtain

because algebraic simplifications are not available.
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Figure 3.5 Calculated attenuation coefficients for two-slot and two-strip lines.

Fig. 3.5 shows the calculated attenuation coefficients of two-slot lines and
two-strip lines for different dielectric constants. As the dielectric constant is
increased, the radiation losses increase too. This is because the mismatch in
the wave velocities of the line and the dielectric is greater for substrates of high
dielectric constant. The losses for two-slot lines are between two and three times
as high as those of a two-strip line. In both cases the losses are proportional
to the square of the line width. Fig. 3.6 shows the measured radiation losses
of a two-slot line on thick substrate of dielectric constant 12. The losses were
of the order of 60 dB/m at around 5 GHz which makes it comparable to the
substrate-mode losses of a coplanar waveguide from the previous chapter. This
is to be expected, because when the frequency is increased, the substrate-mode

losses should converge towards the radiation losses of a thick substrate.

There are several ways to control the radiation. The line can be made narrow.
But narrow lines have larger conductor losses. Therefore, the design width will

have to be chosen so as to compromise between the radiation losses and the
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Figure 3.6 Measured radiation losses of a two-slot line on a thick substrate with e = 12.

conductor losses. Another way to reduce the losses is to add a superstrate to
form a sandwich line [15]. This slows down the wave velocity of the line thereby

reducing the radiation losses.

3.4 Conclusion

The antennas and transmission lines on thick dielectric substrates radiate
more into the dielectric than into air. The losses due to this radiation in trans-
mission lines are considerable. These losses are proportional to the line width
and may be minimized by using narrow lines. The radiation losses of two-slot
lines are almost three times as large as the corresponding losses of a two-strip

line. The losses also increase with the dielectric constant of the substrate.
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CHAPTER 4

Focusing Properties of Small Lenses

Substrate lenses are often used in millimeter-wave imaging [1-3] and receiving
[4-5] systems to improve the coupling of power into the antennas. Fig. 4.1 shows
an imaging system consisting of an objective lens, a hyperhemispheric substrate
lens and an imaging antenna array. As shown in the previous chapter, substrate
lenses take advantage of the fact that antennas on dielectric substrates are more
sensitive to radiation coming from the substrate side [6]. This results in better
coupling efficiencies [7]. In addition the substrate lens reduces the size of the
image while increasing its intensity [7,8] resulting in an increase in the effective

area of the receiving antenna.

Antenna
 Array
/\
TN —
l s
L »
N Egggtro ¢ Substrate
Obiect Obiective
jec Lens
Plane

Figure 4.1 Substrate-lens coupled imaging antenna array.

One factor that limits the size of the substrate lens is absorption which can
be very high at millimeter-wave frequencies [9]. For example Zah et al. [3]

estimated the absorption losses of a 2.5 cm diameter hemispherical silicon lens
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to be 1 dB at 94 GHz. Another limiting factor is that the antennas must be
close together to achieve diffraction limited resolution [1]. This can be a problem
for two-dimensional imaging arrays because it is difficult to make low frequency

connections in the plane of the array [10].

One approach to these problems is to make a “fly’s-eye” array of small lenses
with each lens having its own receiving antenna. Fig. 4.2 shows such an imaging
system. The idea is that the lenses would increase the apparent effective area of
the antenna to about the area of the lens while the physical area of the antenna
remains a small fraction of the lens area. For a hyperhemispheric lens, the
effective area is increased by a factor of the dielectric constant squared. This
means for a silicon lens, the effective area is increased by a factor of about 150.
If the lenses can be made small they may be placed close enough to 4achieve
diffraction limited resolution. One also expects the absorption losses to be much
smaller than those of a large lens. In this chapter the focusing properties of
small lenses are investigated with purpose of finding how small lenses can be
made without degrading these properties. The increase in the apparent effective

area and the improvement in the absorption losses are also given.

——Microlens

L

ly's-eye array
/ . Qbjective len
Object plare : s

Figure 4.2 Fly’s-eye imaging antenna array with small dielectric lenses.
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4.1 Analysis of the Radiation Properties of Dielectric Lenses

Previously Zah et al. [7] used diffraction theory to find the focused fields in
the substrate lens. They go on to calculate the coupling efficiency of a substrate-
lens coupled imaging system. This approach is only valid when the radius of the
lens is much larger than a free space wavelength. For spherical lenses, however,
it is possible to solve Maxwell’s equations directly, following Mie’s theory of
scattering by dielectric spheres {11]. However, previous work has concentrated
on the scattered fields outside the sphere for an incident plane wave [12-14]. In
this chapter the calculations are extended to find the fields inside the lens for a
converging spherical wave (fig. 4.3). An extensive review of spherical dielectric
antennas is given by Chatterjee [15]. The radiation from apertures in the presence

of dielectric spheres has also been studied by previous investigators [16-18].

Matching layer W2
\ BN A Focal plane

» Optical axis

Figure 4.3 Spherical lens with matching layer. The lens has an aplanatic focal point

which eliminates spherical aberration.

In this analysis the spherical lens is assumed to have a quarter-wave matching
layer [19-20] as shown in Fig. 4.3. Although a quarter-wave matching layer does

not give a perfect match for a spherical surface, it reduces the reflections at the
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spherical interface considerably. Zah et al. [20] demonstrated a polystyrene cap
on a silicon lens that almost eliminated the reflection losses - an improvement
of about 1.5 dB. They also showed that the match was not very sensitive to the

thickness of the cap.
Theory

Mie uses radial vector potentials to represent the fields inside and outside
the sphere. The radial components of the vector potentials, which satisfy the
scalar Helmholtz equation, are expanded in terms of spherical modes, consist-
ing of spherical Bessel functions and associated Legendre functions [21-22]. The
spherical mode expansion is an useful numerical technique for expressing arbi-
trary fields specified by analytical, experimental or numerical data. Ludwig [23]
uses the spherical wave expansion for computing the near fields from far field
patterns. The lens analysis is similar except that reciprocity is invoked to ana-
lyze the lens coupled antennas in reception rather than transmission. The losses
may be accounted for by introducing a complex propagation constant.

The radial component of the electric vector potential outside the lens (region
1 in Fig. 4.4) may be written as

Fi(r,6,¢) = Zdnlr«sn (r,0,8) + Z Zar($a(r,0,8) + 6u(r,0,4)  (4.1)

n=x1
In the matching layer (region 2) this component is

o

F2(r’0a¢) - Z CandJn(raoa ¢) + dn2r¢n(r’0’¢) (42)

n=1

and outside the lens (region 3) it is

(r,0,4) = chg,r (Yu(r,8,9) + al(r,6,4)) (4.3)
n=1
where
Z'n - jn-l (2n + 1)

n(n +1)
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and ¢, and ¥y, are the nth spherical modes of the outward traveling wave and the
inward traveling wave respectively. The ¢,;’s and dn:’s are constant coefficients.
Note the potential in region 1 is written as a sum of a scattered wave and an
incident plane wave. Z,’s are the coefficients of the incident wave. The magnetic

vector potentials, A,(r,8,¢) are also represented in a similar way.

€

Figure 4.4 Outward and inward traveling waves in the three regions of a spherical

lens.

The fields in each region are completely defined by these two potentials. ¢y,
and dn; are found by applying the boundary conditions that the transverse elec-
tric field and the transverse magnetic fields are continuous at the interface. This
results in four equations for each mode, two for the coefficients of the electric po-
tential and two for the coefficients of the magnetic potential. The two equations
for the coefficients for the electric potential at the interface between regions 1

and 2 may be written in matrix form as

ha'(z)  hE(2) ) Zn> N ha'(z)  h¥(z) ) ( 0 )
kihl(z) kih2(z) ) \ Z, kihl(z) kih2(z) ) \ dn:

([ o () o
kzhy(y)  k2hZ(y) dn2
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where h} and h2 are the spherical Hankel functions representing inward traveling
waves and outward traveling waves respectively. The primes represent derivatives
of these functions. x and y are equal to kja and k,a respectively. Equation (4)

may rewritten as

( h¥(z)  h¥(z) ) (c'm-> _ (,h}:(y) h2(y) ) (m) 4s)
kihl(z) kih2(z) - kahl(y) k2h2(y) ) \ dnz '

where ¢),; = Z, and d},; = dn1 + Z,. The spherical symmetry of the lens permits
one to write such equations for each spherical mode.

By writing similar boundary conditions for the interface between regions
2 and 3, one may relate the outward traveling wave and the inward traveling
wave in region 3 to the corresponding components in region 2 through a matrix
equation similar to (4.5). The unknown coefficients c,3 and d,s, for both the
electric potential and the magnetic potential are found by solving the matrix
equations. Having found the coefficients one may calculate the fields at any
given point inside the sphere for an incident plane wave.

This analysis can extended to a converging beam from an objective lens by
representing the converging beam in terms of its spatial frequency components.
The spatial frequencies represent a spectrum of plane waves. Therefore the field
component in the direction of incident polarization may be found as a superpo-
sition integral given by

't ot fE; ot Pl I (i 2 2 -3/2
ey(r',0',¢") = — / ) e(z,¢:0',¢',¢") (sin® ¢ + zcos? ¢) (z ) dzd¢
0 cos 8,

(4.6)
where z is equal to cosf and e(z,¢ : 6’,¢’,7') is the field component in the
direction of the incident polarization at some point (8’,¢’,7’) due to a plane in
the direction given by (,¢). f is the focal length of the objective lens and 8,,
is the angle shown in Fig. 4.3. This integral is very similar to the diffraction

integral for the fields given by Zah et al. [7].
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4.2 Results and Discussion

A computer program was written to calculate the electric flelds and the mag-
netic fields inside the spherical lenses for different radii and dielectric constants.
Formulas for the Bessel functions and the associated Legendre functions are given
by Abramowitz and Stegun [22]|. Since the fields are represented by an infinite
sum of spherical modes, one has to truncate this series at some point. The series
was truncated at the point at which doubling the number of modes produced a
change of less than 1%. The required number of modes was found to be ten times
the radius of the lens in free space wavelengths. Fig. 4.5 shows the calculated
fleld at the geometrical focal point of a quartz lens (¢ = 4) of radius A, for vary-
ing number of modes. This test was conducted for lenses of different radii and
showed consistent results. The field is normalized by the field calculaf.ed from
ten modes. On an IBM PC-AT the time taken to calculate the contribution due

to a single mode was approximately one second.

2.0 T T T T T T T T

1.0f- —

Normalized field

Number of modes
Figure 4.5 The normalized field calculated from different numbers of modes for € = 4

and a = Ag.

Results are plotted in terms of a normalized intensity which was called the

focusing gain. The focusing gain is defined as the ratio of the component of
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the Poynting vector along the optical axis at the point of observation to the
corresponding component at the geometrical focal point in the absence of the

substrate lens. The focusing gain reflects the factor by which the effective area

of the antenna will increase in the presence of the lens.

Figs. 4.6 and 4.7 show the maximum focusing gain along the optical axis
plotted as a function of the lens radius for silicon and quartz respectively. It
also shows the distance of this maximum from the center of the sphere. The
geometrical f-number, f4 inside the lens was taken to be 0.6 for all the lenses.
The first plot reflects the degradation in the focusing when the lens radius is
made small. For silicon (¢ = 12) the gain falls off rapidly when the radius is
smaller than one free space wavelength. For quartz (¢ = 4) the gain falls off
when the radius is smaller than a half of the free space wavelength. These values
are the minimum radii at which the lenses exhibit good focusing properties.
Rutledge et al. showed that to get diffraction limited imaging using coherent
field detection, the sampling distance had to be less than the product of the f#
and the wavelength of the imaging medium. In this work this results in sampling
distances of 1.2Ao for quartz and 2)g for silicon. As the minimum diameters
for lenses of these two materials are comparable with these values, one may use
these lenses in the fly’s-eye configuration and expect to achieve close to diffraction

limited imaging.

The ripples in the curve are due to resonances of the spherical modes and
have been studied by Kerker [12]. The effect is more noticeable for large dielectric
constants. When the radius of the lens is increased the resonant intensities
become smaller. In the limit, the maximum focusing gain will tend towards the
geometric gain. The geometric gain is the factor by which the maximum intensity

is increased when the power is coupled through a large substrate lens. It is equal
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Figure 4.6 The maximum focusing gain plotted against the radius of the lens for silicon

(e = 12). Also shown is the position of the maximum.

to the square of the dielectric constant.

In the secondary plot one observes that for lenses of small radii the power
is focused further away from the center of the sphere. Clearly the antennas will
have to be built at this position to obtain good coupling. The resonances of the
spherical modes show up as spikes in these curves too. For large radii the curves
tend towards the geometrical focal point.

Fig 4.8 shows the focusing gain plotted along the optical axis for lenses of
different radii for silicon and quartz. The humps on the optical axis reflect the
focusing power of the lenses. One observes that the focusing properties of larger
lenses tend towards the results derived from diffraction theory. This is to be

expected from the correspondence between the electromagnetic solution and the
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Figure 4.7 The maximum focusing gain plotted against the radius of the lens for quartz

(e = 4). Also shown is the position of the maximum.

optics solution. Another interesting feature in these curves is the absence of
standing waves, clearly indicating that most of the power is in the forward going
wave and the back surface has little effect. One may conclude from this obser-
vation that these lenses and the hyperhemispheric lenses have similar focusing
properties. In the absence of the matching layer, the standing waves were found
to be more pronounced.

Fig. 4.9 shows the focusing gain in the focal plane, which is the plane on which
the axial power is a maximum. One may observe that these patterns resemble
Airy patterns which may be obtained from Fraunhofer diffraction theory [24].
Fraunhofer diffraction theory applies only to systems with large f4’s and large

axial distances. In most of these calculations the fx inside the substrate lens
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Figure 4.8 The focusing gain along the optical axis of a small lens for (a) € = 4 and (b)

€=12.
is less than 1. Therefore it is interesting to note that the deviation is minimal
especially when the lens radius is larger than the minimum radius. The shape
of the field pattern in the focal plane will determine what type of antenna one
must use as a receptor in the imaging array.

Fig. 4.10 shows the absorption losses at 94 GHz plotted for three different

lens materials as a function of the lens radius. The absorption coefficients are
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Figure 4.9 The focusing gain in the focal plane of a small lens for (a) ¢ = 4 and (b)
€= 12.

taken from Afsar and Button [9]. The losses in the matching layer are neglected in
all the calculations. The losses were extremely small for lenses of small radii. For
silicon lens of the minimum radius, A, the losses are 0.2 dB. For a fused quartz
lens of radius Ao/2 the losses were even smaller, about 0.02 dB. For comparison,
Zah estimated the losses of his lens of radius 1.2cm to be about 1 dB at 94 GHz.

The absorption loss is close to that of a plane wave propagating through a slab



.52

of the same material, with a thickness of (n + 1)a/n. This is the distance from

the front of the lens to the geometric focus.
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Figure 4.10 Absorption losses of small lenses at 94 GHz, for fused quartz, silicon and

GaAs. Absorption coefficients from Afsar and Button [9].

Fig. 4.11 shows the coupling efficiencies of a lens coupled dipole with a silicon
lens of radius 1) for different f~-numbers. The coupling efficiency was calculated
by using a method similar to Zah et al. [7]. For comparison the coupling efficien-
cies of a large silicon lens coupled dipole (from Zah et al. [7]) and the coupling
efficiencies of a dipole in free space are also given. The coupling efficiency is es-
sentially the efficiency of coupling between the incident radiation on the primary
lens and the antenna [7,23]. The dipole in free space loses 50% efficiency off the
top because it radiates in both directions. The lens coupled dipoles do not have
this degradation in their performance because the radiation into air is negligible.
The coupling efficiency of the small lens coupled dipole is almost as good as the
large lens coupled dipole. At large fu’s it is in fact slightly better than the large

lens coupled dipole. This could be due to the resonances of the small lens having
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a constructive influence on the field at the focal point. The efficiency of the small

lens coupled dipole is greater than 40% for fu’s less than 0.7.

f-number substrate lens
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Figure 4.11 The coupling efficiencies of a silicon lens coupled dipole with a = g for
different fg4’s. Also shown are the coupling efficiencies of a large silicon lens coupled

dipole 7] and a dipole in free space.

Fig. 4.12 shows the smallest useful radius of the lens plotted as a function
of the refractive index of the lens. The curve seems to have a linear dependance
on the refractive index. The sampling distance for coherent diffraction limited

imaging is given by [1]

A
Tg =22 fa (4.7)
ny

where A is the free space wavelength and n; is the refractive index of the medium

the image is formed in. Now in the fly’s-eye configuration the imaging is done in
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free space. Therefore the sampling distance is given by
Tg = Ao f¢ (4.8)

From Fig. 4.12 one may conclude that for an f4 of 2 in air (corresponds to an
f4 of 0.6 in silicon) diffraction limited imaging will be possible with small lenses
with refractive indices up to about 5.

In systems where the diameter of the substrate lens is much smaller than the
spot size of the primary lens, the coupling of power was found to be small. This
is because when the lens is smaller than the spot size, not all the power in the
primary beam is incident on the lens. In a fly’s-eye array this will also lead to
a degradation in resolution due to the spot size being larger than the resolution
cell. Therefore it is important that the lens radius is not too much smaller than
the spot size at the focal plane of the primary lens. The field distribution near
the focal plane of the primary lens is given by Born and Wolf [25].
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Figure 4.12 The minimum useful radius plotted against the refractive index of the

lens.
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4.3 Conclusion

The calculations indicate that the small lenses may be used as good focusing
elements down to radii comparable with the free space wavelength. For fused
quartz one may go down to about half a free space wavelength and still maintain
good focusing properties. Similarly for silicon this radius is about one free space
\.avavelength. For large lenses the focusing gain approaches the geometric gain
which is equal to the square of the dielectric constant. The absorption losses of
the small lenses at 94 GHz are considerably smaller than those of larger lenses.
For a silicon lens of radius 1A these losses were 0.2 dB and for quartz lens of
radius Ao/2 the losses were about 0.02 dB. Finally the coupling efficiency of a
silicon lens coupled dipole with a lens radius of Ao, does not show any degradation

in comparison to a large silicon lens coupled dipole.
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CHAPTER 5.

Two-Dimensional Horn Arrays for Diffraction
Limited Imaging.

Several non-scanned imaging systems using fast, sensitive detection by focal
plane devices at millimeter-wave frequencies have been developed in recent years
[1-3]. Most of these systems use quasi-optical imaging techniques [4] utilizing
either a parabolic dish or a lens [5-7] as the primary antenna. Yngvesson [8]
discusses the advantages and the disadvantages of reflector and lens systems.
In focal plane systems it is crucial that one has good feed antennas that couple
efficiently to the primary antenna. A considerable amount of work has been done
in studying planar antennas and antenna arrays as possible feed antennas [9-11].

In high resolution imaging arrays, not only must the antennas couple effi-
ciently to the primary antenna but they also have to be in close proximity to
each other to satisfy the sampling requirements. The first condition requires
that the antennas have effective areas comparable to their physical size. Schwarz
[12] and Zah et al. [13] have studied the coupling efficiencies of feed antennas.
It can be shown that to maximize the coupling the antenna beam pattern of
the feed antenna should match the pattern of the incident radiation [12]. The
second condition’requires the antennas be small, thereby reducing their effec-
tive area. In addition, for two-dimensional arrays there is also a problem of
space for low-frequency lines [11]. Therefore the design objective is to be able
to build a two-dimensional imaging array consisting of small antennas placed in
close proximity to each other, while also maintaining good coupling efficiencies.
As mentioned in the previous chapter, one solution would be a multiple lens-
coupled array. In this chapter I look at another possible design which uses a

two-dimensional array of small horns etched into crystalline silicon.
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Figure 5.1 Two-dimensional imaging array consisting of pyramidal horns etched into

highly doped crystalline silicon. The antennas are built on a silicon nitride membrane.

Arrays of planar log-periodic antennas on thin membranes have been built
and tested successfully in the past year [14]. This came about because of a need
to build far-infrared imaging arrays which did not use lossy substrate lenses. The
highly successful work on antennas on thin membranes gave rise to the idea of
two-dimensional horn arrays. Fig. 5.1 shows such an array. The plan is to deposit
a thin layer, about 10um of silicon nitride on a crystalline silicon substrate and
then etch through the silicon until only a thin membrane of silicon nitride is left.
Another piece of silicon is etched to form the back short. The etching of silicon
occurs along the (111) plane resulting in a pyramidal structure with a horn half-
angle of 35.3° as shown in Fig. 5.2(a). The highly doped silicon walls will appear
‘'metallic’ at the design frequencies. The membranes will be used to build planar

feed antennas and other supporting circuitry. An additional advantage of this
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method is that by using many such etched silicon wafers on top of each other
with a slight mismatch at the boundary, one may introduce corrugations inside

the horn as shown in Fig. 5.2(b).
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Figure 5.2 (a) Cross-section of horn etched into silicon. (b) Cross-section of corrugated
horn with many different silicon wafers (the corrugations are exaggerated). Horn half-

angle, o = 35.3°.

In this chapter, the pyramidal horn array is analyzed to study the coupling
efficiencies of these horns and to design a possible diffraction limited imaging
system. As the horn dimensions are comparable with the free space wavelength,
the array has to be analyzed rigorously using a complete electromagnetic solution.
Love [15], in an excellent collection of papers, reflects the development of horn
antennas over the years. In the past, investigators have used diffractjon theory
to predict the radiation properties of pyramidal horns and sectoral horns [16-18].
Unfortunately these methods of analysis are not valid for horns with large horn
angles and short axial lengths. In addition, in a horn array, the horn elements
tend to couple with each other, especially when the array spacing is small.

Rectangular horn arrays and rectangular waveguide arrays have been an-
alyzed by Amitay and his co-workers [19-21]. Most of their work has been

documented in their authoritative text on phased arrays [22]. Even though they
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analyze their arrays incorporating the ideas of electromagnetic grating theory
[23], they make approximations which make their analysis not valid for horns
with large flare angles. The small flare angle approximation assumes that the
coupling between the different modes in a horn element is negligible. In our
analysis using the stepped waveguide method this coupling was found to be sig-
nificant.

The chapter starts with a review of the sampling requirements for diffraction
limited imaging. In the next section I analyze one-dimensional groove arrays. In
this section the groove array is analyzed as a possible configuration for diffraction
limited imaging arrays. This analysis also helps to estimate the performance of
two-dimensional arrays. The final section looks at two-dimensional pyramidal
horn arrays. The radiation pattern and the gain of a single horn element in the
array and its coupling efficiency to the primary lens antenna are calculated so as

to design a two-dimensional imaging array.

5.1 Sampling for Diffraction Limited Imaging.

All imaging systems have finite resolving power. This results in the system
acting as a low-pass spatial filter, that is the spatial frequency components of the
image will contain frequency components less than some system cutoff frequency.
In diffraction limited imaging, one designs an imaging array that samples the
image at such a rate that the resolution of the reconstructed image is limited
only by the resolving power of the optical system. The reconstruction algorithm
given by the Whittaker-Shannon sampling theory [24] is

0= 2 o(d) (o)) e

n=-—0o0

where g(z) is either the complex field E or the intensity I. The function ¢ (5’}—0>

is the sampled image points separated by 1/2fo, fo the spatial cutoff frequency
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and sinc(z) = (sinnz)/7rz.

In this chapter the cutoff frequency fo implies that the optical system passes
all spatial frequency components of the field E(z) up to fo. Now because the
intensity, I(z) is given by the square of the field it will contain frequency com-
ponents up to 2fy;. Therefore the Nyquist criterion woﬁld require that for field
sampling the maximum separation of sampling points be 1/2f; and for inten-
sity sampling, like in video detection, the sampling distance should be less than
1/4f,.

Born and Wolf [25] show that the cutoff frequency in the image plane is

n;siné;

fo= g (5.2)

where n; is the index of refraction of the medium in which the image is formed,
8, is the half angle subtended by the exit pupil (Fig. 5.3) and )¢ the free space
wavelength. It can be shown [24] that for objects far from the entrance pupil the
image point approaches the focal point, and the f-number (f4) of the optics is
then related to 8, by

fa = — (5.3)

- 20 4
Tg nlf#, (5.4)
for field detection and *
Ao
Tr = —fu, 5
1= o T (5.5)

for intensity detection.
In calculating the f4 of the optical system, it is important all the optical
elements be taken into account. For instance, the fg of a substrate coupled

imaging system is related to that of a imaging system in free space by

0
£ = %ﬁ (5.6)



64

n
0 Optical \‘ M
System w\
0 O’
Entrance Exit
Pupil Pupil

Figure 5.3 Optical system showing the extreme ray path into the entrance pupil and

out of the exit pupil.

where 4 and f% are the fu’s of the substrate coupled imaging array and the free
space imaging array respectively and n; the index of refraction of the substrate
lens. Rutledge et al. [26] describe methods of imaging coherent and incoherent
images.

The sampling criterion as shown above restricts the distance between the im-
age points. This means that the antennas have to be in close proximity to attain
diffraction limited imaging. The sampling distance Tg (and T7) is proportional
to the f4. Therefore for imaging systems with small f4 the antenna spacing
becomes small and may not be physically realizable. Most optical systems are a
compromise between small fg systems necessary for high image resolution and
large f4 systems required for minimizing aberrations. Such a system would re-
quire that the antenna spacing be of the order of a free space wavelength. In the
next section arrays with spacing comparable with the free space wavelength are

analyzed.

5.2 One-Dimensional Groove Arrays.

Several one-dimensional imaging arrays have been made both at millimeter
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and near millimeter frequencies [1-2]. In this section a one-dimensional imag-
ing array consisting of small antennas placed in V-shaped grooves (Fig. 5.4) is
analyzed. The V-shaped groove acts as a focusing element similar to a reflec-
tor antenna. V-shaped grooves have been used before as corner reflectors [7,27).
Fabrication methods developed in the millimeter-wave integrated circuits labora-
tory allows one to make these arrays of V-shaped grooves by etching crystalline
silicon [28]. Rebeiz et al. [14] developed a fabrication process to build planar

antennas on thin membranes. This process allows one to build the feed antennas

on thin membranes inside the groove.

Figure 5.4 One-dimensional horn array with (a) dipole aligned parallel to groove (b)

dipcle aligned perpendicular to groove.

[

In this section the one-dimensional groove antenna array is analyzed using
a rigorous and an approximate electromagnetic solution. The array of V-shaped
grooves, because of its cylindrical configuration and its periodicity, is amenable to
a complete electromagnetic solution. The fields inside the groove are represented
by cylindrical modes [29] and the fields outside by Floquet modes [23,30]. The
radiation pattern is found by reciprocity by calculating the response to plane

waves at different angles of incidence. In all the calculations the antennas are
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assumed to be small and that they do not affect the fields inside the groove.
The arrays are also assumed to be infinite so that the fields are given completely
by Floquet modes. The approximate method is the stepped waveguide method
where the groove is sectioned into short lengths of parallel plate waveguides.
In this method the fields inside the groove are given by a combination of the
waveguide modes. In the limit, this approximation should give the same results
as the cylindrical wave function method. The results of the one-dimensional
V-groove array also allows one to estimate the performance of two-dimensional

pyramidal horn arrays.
Analysis Using Cylindrical Wave Functions.

The fields inside the groove may be represented by electric and magnetic
vector potentials along the direction of the groove (Fig. 5.4). The choice of
vector potential will depend on the polarization of the feed antennas. In all the
calculations it is assumed that the feed antenna is a linearly polarized antenna
aligned parallel to the grooves or perpendicular to the grooves as shown in Fig.
5.4 (a) and 5.4 (b) respectively. The former case will require electric potentials
to represent the fields inside the groove and the latter magnetic potentials if the
incident plane wave is in the classical diffraction plane [31] which is the plane
normal to the groove axis. From Harrington [29] the potential functions inside

the groove are

Fi=) am¥m(p,9), (5.7)
m=0
where
Ym(p,$) = % T, (kop) 2 (v(6 — o)), (5.8)
_mnr
= 2a’

Ju(kop) is the Bessel function of order v, ko the free space propagation constant

and a the half-angle of the groove (Fig. 5.4). The sine dependance occurs for
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T E modes and the cosine dependence for the TM modes. There is no variation
in the y-direction. In this design the angle o is constrained to be equal to 35.3°
because the etching is conducted along the (111) plane.

The fields in air may be represented by potentials of Floquet modes which

are given by

oo
Fy= ) bndni(z,2) + codo-(z,2), (5.9)
n=-—oo
where
1 .
Pni(z,2) = \/_E—o: exp — jlanz + Ynz), (5.10)
1 .
bo-(z,2) = —\/T_o ezp — J{ooz — o2), (5.11)
2nm
anp = ao + —,
€o

Yo =\ k3 — 2,

agp = ko sin ;.

®n+(z, 2) represents the reflected modes and ¢o_(z, z) the incident mode. ¢q is
the aperture size.

Having found the fields in terms of these potential functions, one solves
for the boundary conditions. The boundary in this case is the arc AOB as
shown in Fig. 5.4. This boundary was chosen for computational expediency,
because this would require only one value of the Bessel function and its derivative.
The computation of the Bessel functions take considerably more time than the
computation of Floquet modes. Galerkin’s method of moments [32-33] is utilized
to get a set of linear equations with the modal coefficients as the unknowns. One
has to truncate the infinite series at some point to arrive at a numerical solution.
As expected, this number was found to be dependent on the size of the grooves
in terms of wavelengths. The number of modes N,, beyond which the error in

the field strength was less than 1% was found to be ten times the radial distance.
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The matrix form of the linear equations for the electric fields at the boundary
is

=U(b+c) (5.12).

where a, b and c are vectors representing the coefficients of the potentials of the
fields inside the groove, the reflected fields in air, and the incident fields in air

respectively. For the TE modes, the elements of the matrix U are given by

Upn = e’ (anz+7n2) g (5.13)

1 *
—————W(kop) /.a sin(v(¢ — a))

Similarly the equations for the magnetic fields are given by
a=TU'(b-c) (5.14)

where the elements of the matrix U’ are given by

U, )

mn = \/&?5}' (kop) [_ sin (v(¢ — a))e’(a""’""") (—cos¢+ — sin qb) doé

ko

(5.15)

Similar equations may be written for the TM modes in the other configuration.
By manipulating the matrix equations (5.12) and (5.14) one may find either

the coefficients of the reflected fields b, or the coefficients of the fields inside the
groove a, as a linear combination of the incident fields. In all the calculations
reciprocity is invoked to find radiation patterns and coupling efficiencies. If one
finds the fields inside the groove for a given set of incident waves, then from
reciprocity one may find the transmitted fields and power. Using reciprocity the
transmitted fields at a distance R in a given direction for an infinitesimal dipole

of length h and current I, is given by

B(0,9) = 22l0.8) (£ I (5.16)

where 70 is the free space wave impedance and e(d, ¢) the field strength at the

dipole for a unit plane wave incidence.
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The following tests were conducted for convergence and accuracy.

(1) Conservation of power — the sum of power in all the propagating reflected
modes has to be equal to the sum of the power in all the incident modes.

(2) Reciprocity theorem - the coupling efficiencies between any two propa-
gating modes should be the same.

(3) The fields at the boundary calculated from the cylindrical potential func-
tions should be equal to the fields at the boundary calculated from the Floquet
mode representation.

(4) The field calculated using Ny modes should be less than 1% off the fields

calculated using 10 Ny modes. This is a test for convergence.
Analysis Using Stepped Waveguide Approximation.

In this section an approximate method for analyzing the V-shaped grooves
is introduced. Fig. 5.5 shows a V-shaped groove sectioned into parallel plate
waveguides of varying heights. When the length of these sections is small this
structure will look like a V-shaped groove. This type of approximation has been
used before for analyzing gratings [34] and more recently rectangular horns [35].
I analyze the parallel plate structure in this section for two reasons. This ap-
proximation involves simple potential functions consisting of sines and cosines
which help to reduce the computation time considerably. The other reason is to
be able to check the validity of this approximation, so that a similar rectangular
waveguide type of approximation may be applied to the pyramidal horn in the
next section. Unlike the V-shaped grooves the pyramidal horns do not have any
known analytical potential functions. Therefore by analyzing the accuracy of the
parallel plate approximation, one is able to estimate the accuracy of the rect-
angular waveguide approximation. In addition the stepped waveguide method

provides greater insight into the physics of this problem.
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Figure 5.5 Stepped waveguide method - V-groove sectioned into parallel plate waveg-
uides. a; and by are the waves traveling in the positive z-direction and the negative

z-direction, in the ith waveguide section.

The fields in air are represented by the same Floquet modes as in the previous
section (eq. 5.9). The fields in the ith parallel plate waveguide section are given

by the potential function [36]

o0

F; = Z (a,m :;1+($,Z) +bm '(,b::n_(z7z))a (517)
m=0(1)
where
$ 2-6 m) si mZ .
"pm:i: (273) = ‘(_—c_—q—) c:s((imz))e:cp(¥]"/mz), (5.18)
km — m7r’
Cq

Tm =y kg — k2,

and c¢; is the height of the waveguide section. The index in brackets applies to the
TE modes. The sine dependence applies to odd TM modes and even TE modes
while the cosine dependence applies to even TM modes and odd TE modes.

The TMo mode is also known as the TEM mode. ¢m+(z,2) and ¢,—(z,2)
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represent modes traveling in the positive z-direction and the negative z-direction
respectively.

" Again the method of moments solution is used, but in this structure the
fields have to be matched at several boundaries. The number of boundaries
depends on the size of the groove and the length of the waveguide sections.
Although these extra boundaries appear to complicate things, the fact that the
potential functions are simple trigonometric expressions makes the computation
a lot faster.

A simple matrix equation relates the coefficients of the fields in one waveguide

section those in the adjacent waveguide section as

Vv Vv a;i\ _ I I iyl
(v 5= (v (B2) o

where the elements of the matrix V are given by the scalar product of the tangen-
tial fields at the interface, and the elements of the diagonal matrices Y; and Y.
are the impedances of the individual waveguide modes. I is the unit matrix. a
and b represent the coefficients of the modes traveling in the positive z-direction
and the negative z-direction respectively. The upper half of this matrix equation
is the boundary condition for the tangential electric field and the lower half the
boundary condition for the tangential magnetic field.

The fields in air are connected to the fields in the last waveguide section by
a similar matrix equation. By multiplying the matrices together, the coefficients
of the fields in the first waveguide section (the one closest to the apex of the
groove) are related to the coefficients of the fields in air through a set of linear
equations. Now the first waveguide section is shorted at the end so that the
coefficient of the wave traveling in the positive z-direction and the coefficient of
the wave traveling in the negative z-direction of each mode are equal and opposite

at the short. Using this boundary condition, one may find either the coefficients
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of the reflected fields or the coefficients of the fields inside the groove. In this

work one is interested in the fields inside the groove.

Results and Discussion.

The position of the antenna inside the groove, the dimensions of the groove,
" the elemental radiation pattern and the coupling efficiency are the parameters
one has to consider in this design. The radiation resistance, which is strongly
dependent on the type of antenna, is also an important parameter in designing
an efficient imaging array. But in this section all the feed antennas are linearly
polarized infinitesimal dipoles. Only estimates for the radiation resistance of

these antennas are given.

In this design the antenna will be placed along the bisection CO of the
groove. The fields along this line have to be known to find the position at which
the antenna is to be placed. The larger the fields greater will the radiation re-
sistance be. But this is not the only criterion for the vertical position. One
has to be able to build a membrane on a mechanically stable and rigid piece of
silicon. Furthermore the size of the membrane will depend on its vertical posi-
tion. For fabrication purposes one would like the membrane to be small. Results
shown below were all obtained using the stepped waveguide method. Identi-
cal results were obtained using the cylindrical wave function method indicating
that the stepped waveguide method is extremely accurate. The results from the
cylindrical wave function method were coincident with these curves and there-
fore not shown here. The formulas for the Bessel functions were obtained from
Abramowitz and Stegun [37].

Fig. 5.6 shows the electric fields along CO for grooves of different sizes with a
plane wave incident normal to the horn apertures. Fig. 5.6(a) is for polarization

perpendicular to the grooves and Fig. 5.6(b) is for polarization parallel to the
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Figure 5.6 Fields along the horn bisection for (a) polarization perpendicular to the

groove and (b) polarization parallel to the groove. ¢o is the aperture size.

grooves. In both cases the incident radiation seems to focus at a fixed distance
from the apex of the groove. For the perpendicular polarization focusing occurs
at a cross-section of about 0.4\y and for the parallel polarization it occurs at

about 0.8\q. This distance is independent of the groove size because near the
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apex the power is carried mainly by the lowest order mode. Therefore the goal is
to couple efficiently to these lowest order mode so as to get a reasonable radiation

resistance and good coupling efficiency.

Fig. 5.7 shows the radiation patterns in the classical diffraction plane of
these grooves for different groove spacing with the dipole placed at the point
of maximum coupling. These patterns were found by calculating the fields at
the position of the dipole in its absence. If the dipole is small and does not
perturb the fields around it then by reciprocity the available power at the dipole
is proportional to the square of the field. Fig. 5.7(a) shows the patterns for
the perpendicular configuration. This figure shows that the radiation pattern
of the ¢o = 1.5)0 is worse than that of ¢cg = \o. But the third curve shows
that one may obtain a better radiation pattern with the former if the dipole
was moved to another position — at a cross-section of 1.1Ao. Therefore the point
of maximum coupling is not necessarily the point which gives the best radiation
pattern. Fig. 5.7(b) shows that the patterns of the parallel configuration is better
behaved and steadily improve with increased groove spacing. The reason for this
improvement is, in the latter case the electric fields taper off to zero at the edges
of the grooves. Therefore the radiation pattern which is the Fourier transform of
the aperture illumination is well behaved and has no side lobes. This is not true
for the perpendicular configuration because the fields are normal to the groove
edge and therefore not constrained to be zero. One way to improve this pattern
is to introduce corrugations which make the groove walls look inductive thereby

reducing the normal electric fields at the edge.

When the dipoles were placed at the nulls of the curves in Fig. 5.6 the
patterns were broad and full of sidelobes. This is because at the nulls the fields

are extremely sensitive to the changes in the incident angle, especially around
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Figure 5.7 The radiation pattern in the classical diffraction plane, of grooves of different
sizes for (a) the perpendicular dipole configuration and (b) the parallel dipole configu-
ration. The dipoles were placed at the point where the fields were maximum except for

the best pattern in (a) where the dipole was placed at a distance 1.1X; from the apex.



76

normal incidence. Finally if one was to build an imaging array consisting of
parallel grooves it is clear from Fig. 5.7 that the parallel configuration is better

suited. In this configuration the pattern in the plane along the groove will look

like a cosine pattern resulting in good coupling efficiencies.

5.2 Two-Dimensional Pyramidal Horn Arrays.

The final design objective in this chapter was the two-dimensional pyramidal
horn array. In the previous section, one-dimensional groove arrays were ana-
lyzed with the hope of being able to estimate the performance of pyramidal horn
arrays. Horns have been studied extensively and their performance at RF and
microwave frequencies have been documented [15]. But most of the standard
analysis methods apply to large horns with small horn flare angles. In this de-
sign the horn-half angle is 35.3° and the horn aperture is of the order of a free
space wavelength. The aim is to design an array where the horn dimensions and
the dipole position are best suited to give optimum performance with a specific

optical system.

The stepped waveguide method is again used to analyze pyramidal horns.
For pyramidal horns, the horn is sectioned into small sections of rectangular
waveguides as shown in Fig. 5.8. This method has been used before in the analysis
of waveguide filters [38-39] and horns [35]. The coupling between rectangular
waveguide sections of different sizes has been investigated thoroughly [40-42].
The advantage of this method is that one may use it to analyze simple horns of
any flare angle and size as long as enough modes are taken and if the sectioning
is such that it closely approximates the real pyramidal horn. Furthermore this
method may be used to analyze corrugated horns too [35]. The horns in this

design were assumed to have a square cross-section.
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Figure 5.8 The stepped waveguide method for the pyramidal horn. Instead of a short
at the apex a infinitely long rectangular waveguide section starting at a point at which

the fields have decayed to some small value is added on at the end.
Analysis Using the Stepped Waveguide Method.

The analysis is similar to that of the previous section. The horn is approxi-
mated by a structure more suitable for numerical methods. The horn is sectioned
into multiple rectangular waveguide sections and the fields in each section are
given by a linear combination of the waveguide modes [36]. The fields in air are
given by two-dimensional Floquet modes [23]. The method of solution is exactly
the same as the previous section. The boundary conditions are matched at each
of the waveguide discontinuities and at the aperture of the horn. The Galerkin
method gives a set of linear equations which may be solved to give the field

components.

The fields in the sth rectangular waveguide section is given by the potential

function

Ff = Z Z (amnt/):;,n+(x, Y, 2) + bmn¢:nn—(x’ Y, 2)), (5.20)

m:.t(O) 1 n=(0)1
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where
~ 2 = b0m)(2 — bon .
B (y,9) = YEZOmCZbon) oy o) cap(zimmns), (521
ko = mm
m - 01 3y
nm
kn - —C_;‘—,

Imn = \/kg*kfn—kg,

where f(kmz) and g(k,y) are simple sine or cosine functions and ¢; the dimension
of the waveguide wall.

Using the Galerkin method at every waveguide discontinuity one gets a set of
linear equations like equation (5.19). In this case the diagonal matrices Y, and
Y are the impedances of the individual rectangular waveguide modes. Having
written similar matrix equations for each waveguide discontinuity one combines
them all into one matrix equation that relates the coefficients in the last section
to the coefficients in the first section. The fields in air may be given by the

potential

Fr= 3 3 (cmn®mnt(2:3:2) + dmn bmn—(2,9,2)), (5.22)

m o0 N==—00
where .
1 )
Pmnt = — e2p = J(0mZ + By £ Ymnz), (5.23)
where
2mr
Am = Q0 + ]
o
2nm
iBn = )60 + Ty
co
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Again one may use the Galerkin method to get a matrix equation similar to
equation (5.19) relating the coefficients in the last section to the coefficients in
air.

In this analysis instead of taking the first section at the apex, it is taken to be
a section which is not necessarily very small but small enough to have only rapidly
decaying evanescent waves (Fig. 5.8). This section is assumed to be an infinite
rectangular waveguide with waves only traveling in the negative z-direction. This
is a reasonable assumption because the waves decay so fast that the reflected
fields beyond this section are negligible. Unlike the parallel plate case, all the
modes in the rectangular waveguide have finite cut-off points. The advantage of
this method is that one does not have to deal with extremely small waveguide
sections where the decay constants are large. Large decay constants tend to
introduce large errors because they make the stepped waveguide approximation
less accurate (smaller sections are required). Tests similar to those in the previous

section were used to check the accuracy and the convergence of these solutions.
Results and Discussion.

A program was written to calculate the fields inside the horn for plane waves
incident at different angles of incidence. To illustrate the effect of the flare angle
the radiation pattern was calculated for a waveguide coupled horn of aperture
size 1) for different flare angles. Figs. 5.9(a) and 5.9(b) show these radiation
patterns in the E-plane and the H-plane respectively. The patterns were cal-
culated for horn half-angles of 10°, 20° and 30°. The E-plane patterns clearly
degrade fast when the flare angle is increased. But the H-plane pattern is not
very sensitive to the flare angle. In this design the horn half-angle is 35.3°.
Therefore the E-plane patterns will look somewhat like the large angle patterns

in Fig. 5.9(a). The coupling between the different modes in a horn element was
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found to increase with the flare angle. This is one of the reasons why conventional

analysis techniques fail for large angle horns. Coupling between horn elements

was observed for horn sizes smaller than 1g.
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Figure 5.9 The radiation patterns of a waveguide-fed horn of aperture size 1Xo. (a)

shows the E-plane patterns and (b) shows the H-plane patterns.
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In all the other calculations it was assumed that the horn was excited by
an infinitesimal dipole which does not perturb the fields inside the horn. The
position of the dipole not only determines the radiation resistance but it also
determines the size of the membrane. Fig. 5.10 shows the normalized electric
ﬁelds along the horn axis plotted for horns of different aperture sizes. Again like
the groove array the fields seem to focus at some fixed point. In this case this
focus was at a cross-section of about 0.8¢. For a horn array with aperture size of
1) this would mean that the dipole (and the membrane) will be very close to the
horn aperture, making the structure mechanically unstable. One suitable solution

is to build the membrane deeper at the expense of lower radiation resistance. One

would prefer to get around this by using a larger horn size.
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Figure 5.10 Fields inside the horn along the horn axis for different horn sizes.

Figs 5.11, 5.12 and 5.13 show the E-plane and H-plane radiation patterns of
horns of different aperture sizes. The H-plane pattern is well behaved for horns
of most sizes. But the E-plane pattern has side lobes. Larger horns have more
side lobes in the E-plane than smaller horns. Again this is due to the pattern

being the Fourier transform of the aperture illumination. Therefore, when the
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horn aperture size is increased, the side lobes get closer together. An interesting
observation in calculating the radiation pattern of the pyramidal horns was that,
unlike the patterns of the grooves with perpendicular dipoles, these patterns were
not very sensitive to the position of the dipole inside the horn. This is because
in the pyramidal horn all the modes are evanescent béyond a cross-section of
0.5)o, while in the groove power travels all the way to the apex of the groove

and reflects back. Therefore the effect on the pattern due to higher order modes

is greater in the latter, resulting in a greater sensitivity to the dipole position.
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Figure 5.11 The E-plane and H-plane elemental radiation patterns of a pyramidal horn

in an infinite array. The aperture size co = 1)o.

Fig. 5.14 shows the coupling efficiencies of a horn element in a two-dimension-
al array plotted against the f4. The aperture size is 1.5)¢. The figure also shows
the spillover loss and the taper loss. The coupling efficiency peaks around 60%
for a f4 of about 0.75. If one is to use this horn array for diffraction limited

imaging then the fu has to be greater than 1.5. The efficiency at this fg is
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Figure 5.12 The E-plane and H-plane elemental radiation patterns of a pyramidal horn

in an infinite array. The aperture size ¢ = 1.5A¢.
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Figure 5.13 The E-plane and H-plane elemental radiation patterns of a pyramidal horn

in an infinite array. The aperture size co = 2Aq.
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about 40% which is still very good. The broad maximum in this curve allows

some flexibility in designing a diffraction limited imaging array.
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Figure 5.14 The coupling efficiency of a horn element in an infinite array. The horn
aperture size is 1.5\ and the dipole is placed at a distance 0.6\, from the apex. The

efficiency calculations are from [13].

Horns with larger apertureé have better radiation patterns. But larger horns
require large f4’s (equation (5.4)) to achieve diffraction limited imaging. This
would mean a degradation in the intrinsic resolution of the optical system. There-
fore the optimum size would be something in between. The improvement in the
patterns between ¢o = 2Xg and ¢y = 1.5\ is small compared to the improve-
ment between the latter and ¢ = 1Ao. This would suggest that the most suitable
design would be to use an array with horns of the size 1.51; in an optical sys-
tem with f/1.5. The f/1.5 optical system provides high resolution along with
reasonably aberration-free imaging.

The most suitable position for the membrane is at the point where the electric

fields are the highest, 0.6 from the apex. At this point the dipole will have the



85

highest radiation resistance. This point is sufficiently deep inside the horn to be
able to use a small membrane. The membrane size would be about 0.8)q, which
at 94GHz would be about 2.5mm. A membrane of this size can be fabricated
and would have good mechanical strength.

The elemental gain of the above horn was found to be about 13dB. This
translates to an effective area of about 1.5A2. Therefore the aperture efficiency is
about 67% . These numbers are very promising considering that the horn’s aper-
ture is small. The impedance of the infinitesimal dipole was found to be about
7072 (h/Xo)2. If one compares this with 8072 (h/Xo)2, which is the impedance of
the same dipole in free space, and assuming that one may extrapolate to finite

length dipoles, one would expect an impedance of about 64{1 for a quarter-wave

dipole.

5.3 Conclusion.

It has been shown that small horns with aperture sizes comparable with the
free space wavelength coupled with dipole antennas may be used as feed antennas
in diffraction limited imaging systems. The groove arrays when coupled to a
parallel dipole may also be used either as a one-dimensional imaging array or
as a two-dimensional imaging array. The radiation patterns of these horns and
grooves were very well behaved in the H-plane, but the patterns in the E-plane
had sidelobes. A two-dimensional array consisting of pyramidal horns of aperture
size 1.5Ao was suggested as a possible design with an f/1.5 optical system. The
elemental gain of these horns was shown to be about 13dB with a aperture
efficiency of around 67% . The impedance of a quarter-wave dipole inside this

horn was estimated to be around 641}.
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CHAPTER 8.

Future Work in Millimeter-Wave
Imaging Arrays.

In this thesis I have looked at two different ways of achieving diffraction
limited imaging at millimeter-wave frequencies. The first method uses a substrate
lens-coupled imaging system [1]. The other is a two-dimensional array of small
horns. There is more work to be done in both of these projects. This includes
the implementation of these designs and also improvements to them.

The lens-coupled array requires some work into the proper implementation
of the design. The lenses have to be small and be of optical quality material.
Wengler et al. [2] have used small quartz lenses before in their near-millimeter SIS
junction receivers. The lens in their receiver had a diameter of about 3.3mm.
Recent work [3-4] on material processing techniques makes the fabrication of
smaller lenses more viable. This design could get a major boost if it is possible
to monolithically fabricate such an array of small lenses. Work along these lines
is being done at Corning [5].

The biggest drawback of lens-coupled systems is that the lens degrades the
radiation pattern of the feed antennas. However good the feed antenna is, it
is impossible to get good radiation patterns from lens coupled systems. One
possible improvement is to use stratified lenses of different dielectric constants.
Another method would be to synthesize patterns using layers of dielectric sub-
strates [6]. If one judiciously selects the dielectric materials and their thicknesses,
it is possible to synthesize a reasonable radiation pattern. This design will also
suppress substrate-modes if it is built like a impedance transformer. It will still
have the advantage of radiating mainly into the dielectric side, which improves

the gain and the coupling efficiency.
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The second imaging array consisting of pyramidal horns requires some work
in the fabrication process. Although log-periodic antennas have been built suc-
cessfully on thin membranes [7] the extension of this to the pyramidal horn re-
quires further development. This would mean developing ways of building horn
elements which are about a wavelength in size and aligning the horn elements
with their backshorts. One may also think of making corrugations inside the
horn to improve the E-plane pattern. Another possibility is to develop new etch-
ing techniques that will result in smaller horn angles. This would enhance the

patterns considerably and improve the coupling efficiency.

There is room for improvement in the membrane fabrication. Currently in
the integrated-circuits laboratory it possible to make membranes up to 3mm
in size. One would like to be able to build larger membranes with the hope
of working at lower frequencies like 60 GHz. This would require development
work in the material processing techniques. It may also be possible to build thin
silicon supports for the membranes. This would allow one to use the existing
membranes in lé.rger apertures. Another possible improvement to this project
would be to build arrays on GaAs. One may think of using GaAs membranes
also. This would allow one to build Schottky diode detectors on the membrane

and achieve coherent detection.

Furthermore, as these arrays are free standing in air, they may be also used
as phased arrays at millimeter-wave frequencies [8]. Considerable amount of work
is going on in developing efficient phase shifters and beam steering equipment
[9] at millimeter-wave frequencies. The horns in the phased array will have to
placed much closer together. This is because of the grating lobes. The element
spacing will have to be smaller than a wavelength if one hopes to avoid grating

lobes. But as the horn pattern is reasonably directed even at an aperture size of
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1Xo, it is possible to make a good phased array with these horns. One might be
limited to small scan angles though.

Finally, these horns may be used even at submillimeter-wave frequencies [7].
Problems may arise due to small wafer sizes when the frequencies are greater
than 700 GHz. But by using large f4 systems, one rﬁay be able to push this

limit to around the 1 THz mark. As microbolometers perform well at these

frequencies one should consider using them for these designs.
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APPENDIX

Analysis of Schottky Barrier Diode
Mixer Circuits.

Schottky diode mixers have been used extensively in millimeter-wave re-
ceivers [1-3] and imaging arrays [4]. The GaAs Schottky diode is especially
suited for millimeter-wave systems because of its low capacitance and series re-
sistance. Different varieties of Schottky diodes have been used in receivers up
to 300 GHz (3] with single side band conversion losses of about 6 dB. Most pre-
vious diodes have been of the point contact variety. But in recent times with
the advent of monolithic circuits, considerable research has gone into making
high performance planar Schottky diodes for integrated circuits [4]. The work
presented in this appendix is an analysis of Schottky diode heterodyne mixer
circuits with subsequent optimization of mixer circuit design.

The analysis is based on an excellent piece of work analyzing the performance
of Schottky diode mixer circuits by Held and Kerr [5]. Some of this work was
presented in the doctoral thesis of Peter Siegel [6]. In their analysis Held and
Kerr use an equivalent circuit consisting of the intrinsic diode, the series resis-
tance and stray capacitance, and a frequency dependent embedding network as
shown in Fig. A.1. The embedding network consists of all circuit elements exter-
nal to the diode like the transmission lines, the antenna and the waveguide feed.
The analysis constitutes of two sections. First the effect of the local oscillator
is determined in the large signal analysis [7]. In this section the voltage, cur-
rent, capacitance and conductance waveforms of the diode are generated and the
Fourier series components of these waveforms are calculated. Next, the signal is
introduced as a linear perturbation on the existing large signal environment. In

this section the mixer is modeled by a linear multi-port network with each port
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representing a side band frequency [8]. The small signal analysis predicts the
performance of the mixer circuit by calculating the single side band conversion

loss and the noise temperature of the mixer.
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Figure A.1 The equivalent circuit of a single diode mixer (from Siegel [6]).

A program based on Held and Kerr’s model was written to analyze mixer
circuits. In this appendix, I present results to show how different circuit param-
eters and diode parameters influence the performance of the mixer. The diode
parameters here are the series resistance, the zero bias capacitance, the stray ca-
pacitance and the diode temperature. The circuit parameters are the embedding
impedances at the different side band frequencies, the bias voltage and the local
oscillator power. Certain parameters effect the conversion loss and others the
noise temperature. But in most cases the effects on the conversion loss and the
noise temperature are similar. Finally this program is used to simulate the het-
erodyne detection process in the GaAs Schottky diode imaging array developed

by my éolleague Chung-en Zah [4,9].

A.1 Simulation of Schottky Diode Mixer Circuits.

The simulation program consists of two subroutines for the large signal anal-

ysis and the small signal analysis. The values of the embedding impedance at all
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the side band frequencies have to be predetermined and stored in a data file. The
program begins with tables showing the default values of the circuit parameters
and the diode parameters. These values may be changed to suit a given diode
at any operating condition. Having adjusted all the parameters, the program
is then run to calculate the large signal Fourier coefficients. Fig. A.2 shows the
simulated voltage and current waveforms of Zah’s diode [4] over a local oscillator
cycle. The Fourier coefficients are also calculated for the conductance and the
capacitance of the diode. These values are required in the small signal analysis

to find the incremental change in voltage and current.
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Figure A.2 (a) The diode voltage waveform and (b) the current waveform over a local

oscillator period.

Having calculated the Fourier coefficients from the large signal analysis the
small signal analysis routine then calculates the power received at the interme-
diate frequency (IF) for a given input signal (RF). The conversion loss is defined
as the ratio of the power delivered at the IF frequency to the power in at the
RF frequency. The single side band (SSB) conversion loss is calculated by taking
into consideration the power in the IF signal side band, while the double side

band (DSB) case takes both the signal and the image side band power into con-
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sideration. In most cases the DSB conversion loss is less than the SSB conversion
loss by approximately 3dB.

The noise analysis calculates the contributions of the shot noise and the
thermal noise at the IF frequency. A good analysis of the noise mechanisms in
resistive diodes is given by Dragone [10]. In his work Siegel [6] shows that the shot
noise in the different ports are correlated while the thermal noise is uncorrelated.
The thermal noise is due to the series resistance of the diode and is zero for a
purely resistive mixer [11] which has zero series resistance and capacitance. The
noise temperature is defined as the temperature of a ideal noise generator at the
input of the mixer circuit needed to produce an equivalent amount of noise power

at the output. The noise figure is related to the noise temperature by,
F=1+3~, (A.1)

where F is the noise figure, T the mixer noise temperature and T, the ambient

temperature.

A.2 Results and Discussion.

The diode conductance is given by,
9a = al,ezp(aVy), (A.2)

where o is a number dependent on the diode doping and temperature, I, is the
saturation current which also depends on the temperature and V; is the diode
voltage. It is this non-linear conductance that causes mixing, which results in
power being transferred to the side band frequencies. Therefore ideally one would
like this non-linear conductance to be large. In frequency multipliers the non-

linear junction capacitance is used to generate harmonics [6,12].
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The conversion loss was determined for Zah’s diode while varying different
circuit parameters and diode parameters. Figs. A.3 to A.7 show the conver-
sion loss plotted against the zero-bias capacitance, the stray capacitance, the
series resistance, the local oscillator power and the bias voltage respectively. The
noise temperature showed similar dependence on these parameters, except its

dependence on the series resistance and the diode temperature were stronger.
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Figure A.3 Conversion loss vs. zero-bias capacitance for Zah’s diode.

Figs A.3 and A.4 show that by increasing either the zero-bias capacitance
or the stray capacitance of the diode the mixer performance may be degraded.
This is to be expected as the increase in the capacitance results in less efficient
transfer of power due to the phase difference. The series resistance will have a
similar effect (Fig. A.5). In this case the series resistance increases the loss in
the mixer circuit by dissipating power. The increase in thermal noise due to the
series resistance makes the noise temperature strongly dependent on the former.
For above-mentioned reasons, one of the objectives of Schottky diode designers is

to try and minimize the series resistance and the capacitances of the diode [13].
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Figure A.4 Conversion Loss vs. stray capacitance for Zah’s diode.
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Figure A.5 Conversion loss vs. series resistance of Zah’s diode.

The conversion loss was found to increase with the diode temperature, but
the dependence was very slight. The diode temperature had to change consider-
ably to show significant changes in the conversion loss. The noise temperature,
on the other hand, showed a strong dependence on the diode temperature. This

is because the thermal noise power generated by the series resistance is directly
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proportionate to the diode temperature.

Fig. A.6 shows that by increasing the bias voltage the conversion loss may
be reduced. In fact this dependence on the bias voltage is quite strong especially
at low bias voltages. This is due to the diode having a finite turn on voltage
below which the diode non-linear conductance is neg1i>gibly small. The diode
must operate in the non-linear region to have good mixer performance. Finally,
Fig. A.7 shows that the local oscillator power has a similar effect as the bias
voltage. This is because by increasing the LO power, one is effectively increasing
the voltage shift. This results in improved non-linear performance as shown

before.
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Figure A.6 Conversion loss vs. bias voltage for Zah’s diode.

Fig. A.8 shows the measured conversion loss and the calculated conversion
loss. Zah’s diode mixer was simulated by adjusting the device parameters to
those measured experimentally, and the circuit parameters to those estimated
from the measurement setup. The results show good agreement. The conversion
loss in this plot includes the antenna coupling efficiency (about 5dB), and the IF

port coupling efficiency.
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Figure A.7 Conversion loss vs. LO power for Zah’s diode.
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Figure A.8 Measured and calculated conversion loss vs. LO power for Zah’s diode.

The conversion loss includes the antenna coupling loss.

A.3 Conclusion.

The mixer simulation program was shown to be a good analysis tool to
study the performance of Schottky diodes mixers. The simulation helps to study
the effects of different device and circuit parameters on the mixer performance.

Finally, the simulation program was shown to predict experimentally obtainable
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results indicating that it is a useful tool for mixer diode design and circuit design.
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