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Abstract

This work proposes a new simulation methodology in which variable density turbulent flows can be

studied in the context of a mixing layer with or without the presence of gravity. Specifically, this

methodology is developed to probe the nature of non-buoyantly-driven (i.e. isotropically-driven) or

buoyantly-driven mixing deep inside a mixing layer. Numerical forcing methods are incorporated

into both the velocity and scalar fields, which extends the length of time over which mixing physics

can be studied. The simulation framework is designed to allow for independent variation of four

non-dimensional parameters, including the Reynolds, Richardson, Atwood, and Schmidt numbers.

Additionally, the governing equations are integrated in such a way to allow for the relative magnitude

of buoyant energy production and non-buoyant energy production to be varied.

The computational requirements needed to implement the proposed configuration are presented.

They are justified in terms of grid resolution, order of accuracy, and transport scheme. Canonical

features of turbulent buoyant flows are reproduced as validation of the proposed methodology. These

features include the recovery of isotropic Kolmogorov scales under buoyant and non-buoyant condi-

tions, the recovery of anisotropic one-dimensional energy spectra under buoyant conditions, and the

preservation of known statistical distributions in the scalar field, as found in other DNS studies.

This simulation methodology is used to perform a parametric study of turbulent buoyant flows to

discern the effects of varying the Reynolds, Richardson, and Atwood numbers on the resulting state

of mixing. The effects of the Reynolds and Atwood numbers are isolated by looking at two energy

dissipation rate conditions under non-buoyant (variable density) and constant density conditions.

The effects of Richardson number are isolated by varying the ratio of buoyant energy production to

total energy production from zero (non-buoyant) to one (entirely buoyant) under constant Atwood

number, Schmidt number, and energy dissipation rate conditions. It is found that the major dif-

ferences between non-buoyant and buoyant turbulent flows are contained in the transfer spectrum

and longitudinal structure functions, while all other metrics are largely similar (e.g. energy spectra,

alignment characteristics of the strain-rate tensor). Also, despite the differences noted between fully

buoyant and non-buoyant turbulent fields, the scalar field, in all cases, is unchanged by these. The

mixing dynamics in the scalar field are found to be insensitive to the source of turbulent kinetic

energy production (non-buoyant vs. buoyant).
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Chapter 1

Introduction

1.1 Background and Motivation

The first treatment of the effects of buoyancy on mixing was conducted back in 1857 by Professor

Jevons, who was interested in understanding why certain cloud formations, specifically the cirrous

cloud, looked as they did [45, 88]. A cirrous cloud is composed of long, string-like regions that run

almost perfectly parallel to each other over extended tracts of space. Jevons wanted to understand

how and why this parallelism was able to persist. Existing explanations at the time were hand-

waving at best, and Jevons wanted a more rigorous explanation. He had long hypothesized that

this parallelism was due to density differences in stratified regions of atmosphere. He conducted an

experimental investigation to test this theory, and the results bore out his suspicions [45]. Coming

out of this work was the understanding that different portions of fluids, due to slight differences in

density, may be made to mix and pass into one another. If this mixing process is rendered visible,

such as by condensation in the atmosphere, then this could explain the parallel and fibrous structure

observed in these cloud formations.

Years later in 1883, Lord Rayleigh placed the observations made by Jevons on a more firm theo-

retical basis [88]. By applying perturbation theory, Lord Rayleigh was able to show that buoyancy-

induced mixing was attributable to the stability or instability of growing or decaying harmonic

oscillations [88]. Further, Lord Rayleigh developed a criterion to calculate the stability character-

istics of any stratified fluid system. Specifically, if the density of the upper fluid in a stratified

fluid system is greater than that beneath it, these harmonic oscillations are going to grow in time,

resulting in interpenetration and mixing. This is known as an unstable stratification. But, if the

upper fluid is less dense than the lower, then these harmonic oscillations will decay in time, there is

no interpenetration or mixing, and this is known as a stable stratification.

This is a brief overview of the history of buoyancy in mixing, but it was these initial studies

that established the importance of buoyancy in mixing. Since those days, buoyancy-driven mixing

processes have been identified in a broad swath of naturally occuring and engineering-oriented prob-
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lems. A few examples include sedimentation and plumes in oceanographic flows [51], the dynamics

of deflagration waves in atmospheric and astrophysical flows [71, 92], and fusion processes in energy

systems. These are just a few examples, but they serve to underscore the ubiquity of buoyancy in

mixing.

Despite the presence of these buoyancy-induced mixing processes in a broad range of physical

contexts, little is known about the turbulent structure located inside of such buoyant mixing layers.

This lack of understanding is not a result of a lack of interest; this is an important issue, and

it has received attention from both experimental and computational perspectives [11, 18, 28, 31,

55, 56, 84, 88, 90, 106]. However, due to the disparity in scales involved, extracting small-scale

physical features can be too computationally expensive and beyond current experimentally attainable

resolution [28, 31, 84, 106]. Thus, this thesis proposes a new, alternative simulation methodology

which focuses on these small-scale physics with the intent of interrogating the nature of turbulent

structure inside these buoyantly-driven mixing layers. This buoyant structure is then compared

against the structure found in canonical isotropic turbulent mixing layers.

This thesis proposes a new mathematical framework for the conduct of buoyant mixing studies.

In the literature, there are two existing simulation frameworks that are designed to study buoyant

mixing, but neither of these are ideal for the study of the smaller scales of mixing. This non-ideality

is rooted in the problems of space and time, which are now presented. The first existing simulation

framework relies on a shear layer configuration (Fig. 1.1). In the shear layer geometry, there are

two stably stratified fluids of differing densities (ρ1 6= ρ2) with a relative velocity (U) between

them [11, 15, 28, 31, 34, 84, 88, 90, 106]. As the faster moving fluid travels over the slower moving

one, the slower moving fluid is entrained. This entrainment leads to the development of a mixing

layer, which then convects downstream. As it convects, it grows both spatially and temporally. This

leads to the first problem of space. As the mixing layer grows spatially, it requires an increasingly

high resolution to resolve the smallest scale aspects of mixing. This, in general, is not possible,

making the data collected from these types of studies more reflective of the larger scale aspects of

mixing. This configuration also suffers from the problem of time. As the mixing layer develops,

eventually the fluid contained in the layer completely mixes, or homogenizes. This results in a finite

time period over which mixing data can be collected, after which the fluids involved have completely

mixed together.

The second simulation framework relies on the Rayleigh-Taylor unstable configuration (Fig. 1.2,

Fig. 1.3, and Fig. 1.4). In the Rayleigh-Taylor geometry, there are two unstably stratified fluids

separated by a partition. At time equal to zero, the partition is removed and a non-zero gravity vector

is applied across the unstably stratified layer [11, 19, 54, 55, 56]. This results in the interpenetration

of the higher density fluid into the lower density fluid, forming the characteristic spikes and bubbles

common to these type of flows. As the two fluids mix, a mixing layer develops. This mixing layer
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(a) t = t0 (b) t = t1 (c) t = t2

(d) t = t3 (e) t = t4

Figure 1.1: Time evolution of a shear layer induced by mean shear flow (momentum-driven). The
fluids have differing densities (ρ1 6= ρ2), and they are mixed via the mean relative shear velocity (U)
acting parallel to the initial fluid interface. These results obtained using in-house code NGA [26],
which is detailed in Appendix 8.3, Appendix 8.4, Appendix 8.5, and Appendix 8.6.

grows in space and in time, and, as a result, suffers from the same two problems found in the shear

layer configuration. Accordingly, there is a need for a new simulation methodology with which to

study the small scale aspects of buoyant mixing.

Further, the existing methods of simulating variable density mixing suffer an additional limita-

tion. These methods cannot independently vary the four non-dimenionsional parameters of impor-

tance in mixing studies, which are the Reynolds number (Re), the Richardson number (Ri), the

Schmidt number (Sc), and the Atwood Number (A). The Reynolds number informs the relative

importance of inertial and viscous forces present in the fluid system itself. The Richardson number

indicates the relative strength of buoyancy versus fluid inertia. The Schmidt number is reflective of

the ratio of fluid viscosity to scalar diffusivity. The Atwood number describes the extent of density

variation in the fluids being mixed. In the Rayleigh-Taylor unstable geometry, buoyancy forces lead

to mixing in two initially stationary fluids. As a result, any velocity imparted to the fluid parcels as

they mix is due to buoyant effects, which couples the Reynolds and Richardson numbers intrinsically.

Current efforts focus on increasing the overall numerical resolution, and, hence, the Reynolds num-

ber, in order to get insight into the character of small scale mixing [11, 56, 19]. Unfortunately, the

high computational cost limits the parameter space that can be spanned using these conventional

simulation geometries, and several open questions about the physics, specifically at the small scales,
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(a) t = t0 (b) t = t1 (c) t = t2 (d) t = t3

Figure 1.2: Time evolution of a shear layer induced by Rayleigh-Taylor instability (buoyancy-driven).
The denser fluid (ρ1) is atop the lighter fluid (ρ2). Gravity acts normal to the fluid interface. These
results obtained using in-house code NGA [26], which is detailed in Appendix 8.3, Appendix 8.4,
Appendix 8.5, and Appendix 8.6.

Figure 1.3: Rayleigh-Taylor instability in the fully turbulent regime. Light (white) fluid is light
(density = 1) and dark (black) fluid is heavy (density = 3). The gray colors represent mixed fluid of
various compositions. The pure fluids above and below the mixing region are not shown. Gravity is
directed downwards. This figure and the caption description are taken from Fig. 1 in reference [11].
The computational grid on which these simulations were performed was N3 = 30723.
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(a) Initial density field (b) Density field at maximum ki-
netic energy

(c) Homogenized density field
(late time)

Figure 1.4: Buoyant mixing using a variant of the Rayleigh-Taylor configuration. This geometry
does not include reservoirs of pure fluid, but instead buoyancy forces act on variations in the initial
density field (a), and these lead to turbulent mixing. These show the initial density field (a) and its
evolution toward a fully homogenized state (b and c). Black and white denote high and low fluid
densities, and gray denotes a state of complete fluid mixing. Figures and caption descriptions are
taken from Fig. 1 and Fig. 2 in reference [54].

remain unanswered.

Thus, there is a need for an alternative means of performing variable density turbulence simu-

lations that can effectively and efficiently span the needed parameter space (Re, Ri, Sc, A) at a

lower computational cost. This work proposes such a new simulation methodology to study variable

density turbulent mixing. Based on the discussion of the existing simulation methods, the require-

ments in the development of this new method are fourfold. First, to ensure that the driving force

behind mixing is sustained in time, the velocity field needs to be numerically forced. The role of

forcing is to provide turbulent kinetic energy to the velocity field via either isotropic or buoyant

energy production sources. This ensures that the turbulent fluctuations do not decay, and are per-

petuated in time. Second, the scalar field needs to be numerically forced also. Implementing a scalar

field forcing term ensures that the variance of the scalar quantity being mixed does not decay. As

long as the variance of the scalar field is held constant, the scalar quantity never completely mixes,

perpetuating in time the relevant mixing physics. Third, the density field must be prevented from

homogenizing. If the density field homogenizes, gravitational effects cease to be important. These

three requirements address the time problem mentioned earlier. The fourth requirement addresses

the space problem. The geometry of interest must be specifically chosen such that small scale mixing

physics are accurately captured. Since the focus of this work is on the small scales, and this aspect

of mixing physics is confined to the inner region of the mixing layer, then only this region is included

in the computational domain. This has the effect of reducing significantly the computational burden

required in these types of simulations and, consequently, addresses the problem of space discussed
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Figure 1.5: Region in which the proposed simulation methodology is applicable.

previously. This also allows for a simplifying assumption to be made. As the region of interest is

located in the inner region of the mixing layer, it can be assumed that the boundary conditions are

infinitely far away such that the mixing dynamics are independent of them. This enables the use

of a box of turbulence containing a variable density fluid subject to periodic boundary conditions.

This simplication removes much of the complexity of the problem being studied, and results in the

computational domain depicted in Fig. 1.5.

1.2 Literature Review

This work develops the needed simulation tools and computational framework to examine the differ-

ences between buoyantly-driven turbulent mixing and isotropically-driven turbulent mixing. How-

ever, there has been considerable work carried out towards understanding buoyantly-driven turbulent

flows from a non-equilibrium, or decaying, perspective. In the current work, “non-equilibrium flows”

refer to transient, non-stationary flows. These are now briefly described. Generally, these experi-

mental and numerical studies have been performed in the context of a shear (mixing) layer. The

resulting analyses and conclusions derived have been focused primarily on the time rate of growth

of the thickness of the mixing layer and the calculation of various mixing metrics to quantify the

efficiency of buoyancy-induced fluid and scalar mixing [88, 90, 84, 28, 31, 106, 11]. An overview of

what is known about the structure of buoyant flows is now provided.

The large body of research available on variable density mixing follows the work of Sandoval [83],

who simulated the mixing of two incompressible fluids of differing densities under both buoyant

and non-buoyant conditions. Sandoval’s investigation into the fundamental differences between

buoyantly-driven flows, isotropically-driven variable density flows, and Boussinesq flows has since

been extended and augmented by others (e.g. [11, 18, 19, 28, 54, 55, 56, 57, 70]). The currently

known features of buoyant mixing are here summarized. Note that almost all of these studies, both

simulation and experimental, address variable density mixing from a non-equilibrium perspective.

It is known that the mixing between different density fluids is starkly different from the mixing

between fluids of commensurate densities, for which the Boussinesq approximation is valid [57].

Under a Rayleigh-Taylor unstable simulation configuration, it has been found that the probability
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density function (PDF) of the density field becomes skewed towards the less dense fluid as the mixing

process occurs. This asymmetric mixing rate suggests that the more dense fluid mixes at a slower rate

than the less dense fluid [55, 56, 57]. As a consequence of this, the penetration depth of larger density

fluids exceeds that of lower density fluids [28, 55]. This behavior has been found over a significant

range of Atwood numbers, which range from those within the Boussinesq limit to those significantly

outside of it. Thus, it is accepted that this mixing asymmetry is a robust feature of variable density

buoyant mixing, and it becomes more pronounced as the Atwood number is increased [55, 57].

Further, the effects of Schmidt number have been probed. It has been reported that the Schmidt

number (diffusion) has a pronounced effect on the energy dissipation rate. Specifically, diffusion

plays a prominent role in the rate at which the fluids being mixed transition from true variable

density mixing to a Boussinesq-type mixing state [54].

Distinct stages in the Rayleigh-Taylor unstable mixing process have been identified [19]. First,

there is a period of transient modal growth. Second, there is a transition to a weakly turbulent

state. Third, there is a mixing transition. Lastly, there is the transition and sustenance of strong

turbulence. The fourth and final stage has not been studied in detail, and primary focus has been

placed on understanding stages one through three. Based on this focus, much is known about the

transient mixing process leading up to the development of turbulence. Specifically, it has been found

that in these early stages, the dynamics are non-linear. The mixing rate of the two constituent

fluids being mixed experience a monotonically increasing mixing rate as the strength of gravity

(buoyancy) is increased [70]. But, there is not a monotonic increase in mixing rate when the

shear rate is increased. These findings are justified via a stability analysis, and it is determined

that shear-induced mixing and buoyant-induced variable density mixing are markedly different in

nature [70]. By employing various mixing metrics, buoyancy has been identified as a more efficient

mixing agent than shear, and shear has been identified as being an agent to reduce the mixing

rate [70]. This surprising finding is justified by the argument, based on an analysis of Kelvin-

Helmholtz and Rayleigh-Taylor instabilities, that shear reduces the amount of energy transferred

into vertical mixing [70].

It is also known that buoyant flows are anisotropic, and these flows are sustained by the conversion

of potential energy into kinetic energy via a mass flux [54]. The extent of anisotropy has been probed

using various metrics, but the most common metric is the Favre Reynolds stress anisotropy tensor,

bij . This tensor describes the relative amount of kinetic energy contained in the three velocity

component directions. Results over a broad range of Atwood numbers suggest that the normal stress

components of the velocity field are consistently anisotropic in the presence of buoyancy [57]. From

these types of analyses, it has been found that the extent of anisotropy is the most pronounced at the

smallest and largest flows scales, while the intermediate flow scales are subject to less anisotropy [56,

57]. This persistent anisotropy at the small scales has been argued by some to be a direct consequence
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of the cancellation between non-linear convective energy transfer and viscous dissipation, which

results in the presence of anisotropy due to the (unbalanced) buoyant energy production term [55, 56].

But, based on an analysis of only energy spectra and calculated length-scales, conflicting results have

been reported. Although calculated energy spectra confirm the anisotropy of buoyant turbulence,

some have found that the smallest scales of turbulence retain isotropic character despite the presence

of buoyancy [11]. These results have been used to argue that the anisotropic body force induced by

gravity is felt at the intermediate scales (the Taylor micro-scales), but that these effects are lost at

the smallest scales (the Kolmogorov scales) [11]. Also based on energy spectra, it has been found

that the energy spectrum component in the direction of gravity leads the evolution of the energy

spectra in the other two ordinate directions [19]. This is sensible, as, in buoyant flows, all energy is

injected via the gravity vector, which is only non-zero in a single direction. This results in a time

lag before which the energy injected can be distributed to the directions of the other two velocity

components.

Also, information about the alignment of the strain-rate tensor eigenframe and the density gra-

dient is available. It is established in the literature that the gradient of a passive scalar aligns itself

in the direction of the most compressive eigenvector of the strain-rate tensor. As the scalar field

and the density field are related, it is not unsurprising that this alignment tendency holds for the

density gradient. However, it has been noted that, as the Atwood number increases, the alignment

of the gradient of the higher density fluid with the strain-rate eigenframe becomes different than the

alignment of the gradient of the lower density fluid with the strain-rate eigenframe [57]. Arguments

to explain this have been based on the higher inertia found in the more dense fluid compared to the

less dense fluid; it is believed that the alignment of the gradient of the larger density fluid with the

most compressive eigenvector weakens (relative to the alignment of the gradient of the lower density

fluid) owing to the larger fluid inertia [57]. The heavier fluid, it is suggested, is more resistive of

deformation due to local strain. This results in a local turbulent structure that changes in response

to the local inertia of fluids being mixed [57]. Further, it is thought that this increase in fluid inertia

results in a reduction in the rate at which the heavier fluid is mixed [57].

Moreover, the self-similarity of buoyant mixing has been the subject of considerable study [11, 19,

56]. Studies have indicated that Rayleigh-Taylor unstable flows evolve towards a state of self-similar

mixing rather quickly (within only a few eddy turn-over times) after the mixing process begins [56].

Further, in this self-similar mixing regime, the growth rate of the mixing layer slows down [19]. It

has been found, also, that this state of self-similar mixing only manifests if the memory of initial

flow conditions are lost, the boundary conditions of the flow exert no effect on the mixing dynamics,

and the Reynolds number and diffusivity are sufficiently high to render viscous effects negligible [19].

Based on the overview provided above, significant insight into buoyant and variable density mix-

ing has been obtained from studies utilizing a non-equilibrium perspective. However, less attention
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has been directed towards the equilibrium, or statistically steady, problem. Specifically, only one

study addresses the equilibrium problem [18], and, accordingly, there is a gap in the current litera-

ture concerning the structure of buoyantly-generated turbulence versus the well-known structure of

isotropic turbulence, and the resulting mixing processes. This work is aimed towards closing this gap

by investigating key turbulent characteristics obtained under statistically stationary non-buoyant,

partially buoyant, and fully buoyant conditions. The characteristics of interest in the current work

include the extent of isotropy or anisotropy at the large, intermediate, and small scales, the location

(or distribution) of energy and scalar variance, the transfer mechanisms responsible for the energy

and scalar variance cascade, the way in which energy and scalar variance are dissipated, and the

location (or distribution) at which this occurs. In the literature, there are open questions as to

the extent that buoyancy-induced anisotropy is able to permeate into the smaller, more viscous

flow scales [11, 18, 56, 55]; the supply of turbulent kinetic energy from only one flow direction (the

direction of gravity) does induce deviations from purely isotropic physics, but the severity of these

and the depths to which they are able to penetrate are unknown. Following this, the validity of

the Kolmogorov hypotheses (i.e. local flow isotropy or the presence of an inertial subrange) when

density is variable [18, 56, 11] has not been proven. It is unknown how (and if) turbulent mixing

varies based on the source of turbulent kinetic energy (i.e. isotropic energy production vs. buoyant

energy production vs. shear-induced energy production). Moreover, structural features of interest

include the alignments of specific turbulent field variables (e.g., vorticity, strain rate eigenvectors,

scalar field gradients) and how such alignment characteristics may or may not be associated with

the mechanism of turbulent kinetic energy generation.

1.3 Outline

There are two primary objectives for this thesis work. The first objective is to present an efficient

computational methodology for the study of variable density turbulence. To accomplish this, it

is necessary to develop the needed simulation tools. Specifically, the forcing methods to sustain

statistical stationarity in the velocity and scalar fields must be designed, validated, analyzed, and

integrated. The second objective is to use the developed approach to study the differences between

buoyantly- and (isotropic) non-buoyantly-driven turbulent mixing via controlled parametric studies.

Per the first objective, the required velocity and scalar field forcing methods are addressed.

As this study is concerned with the differences between buoyant and non-buoyant turbulence, the

means by which the velocity field is kept at statistical stationarity are crucially important. Hence,

the velocity forcing methods used to generate stationary conditions must be highly accurate. A

buoyantly-forced velocity field simply requires a non-zero gravity vector and a variation in fluid

density; this is easily accomplished, and the results are physically meaningful. Forcing the velocity
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field non-buoyantly is not as straightforward. To produce a non-buoyant (isotropic) turbulent field,

an isotropic forcing method is required. There are many velocity field forcing methods available that

can generate isotropic turbulence [1, 59, 81, 96, 33, 87, 89, 17, 46, 108], but a detailed study of these

has not yet been performed in the literature. In order to ensure that the physics generated under

the action of velocity field forcing are as physically realistic as possible, such an analysis is required.

This allows for an informed choice of method to implement. This study is performed and reported

(Chapter 2). Following this, Lundgren’s linear forcing method is chosen, and slightly modified for

practical simulation purposes, to generate the desired non-buoyant (isotropic) velocity field physics

(Chapter 3).

The scalar field also must be forced. In the literature, there are two dominant scalar forcing

methods [105, 96]. These are the mean scalar gradient method and a low waveband spectral method.

The mean scalar gradient method is known to induce significant anisotropy in the scalar field in the

direction of the imposed mean gradient. As the ultimate goal of this work is to study buoyant mixing,

which is driven by a physically meaningful density gradient, having a purely (artificial) numerical

gradient influencing the scalar field dynamics is not ideal. Spectral forcing schemes are not subject

to this anisotropy, but they are less representative of physically attainable turbulent flows. Further,

the type of scalar field physics of concern when considering this type of buoyant mixing is more

analogous to one-time scalar variance injection or (isotropic) self-similar scalar variance decay. A

scalar field forcing method for this self-similar type of physics did not exist in the literature, so it

had to be developed. The newly created scalar field forcing method, linear scalar forcing, has been

tested and validated, and it generates the needed scalar field physics (Chapter 4).

Following the second objective, the numerical framework to study turbulence under buoyant and

isotropic (non-buoyant) conditions is integrated (Chapter 5). A chief advantage of this framework

is its ability to vary independently important non-dimensional parameters, including the Reynolds,

Schmidt, Richardson, and Atwood numbers, which other available frameworks cannot do. Following

its validation, the proposed geometry is applied to the study of variable density turbulent mixing

with and without the presence of gravity (Chapter 6).
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Chapter 2

Turbulent Mixing in the Velocity Field [13]

Without an energy source, a turbulent velocity field will decay. In Direct Numerical Simulation

(DNS) studies of incompressible homogeneous, isotropic turbulence (HIT), turbulent fields are main-

tained at a state of statistical stationarity by using various velocity field forcing methods. Velocity

forcing entails appending a source term to the governing momentum equations. There are several

different forcing methods in the literature for preventing energy decay [1, 33, 87, 89, 17, 58, 81].

By investigating the specifics of a forcing method (and its associated momentum source term), the

impacts that it has on the produced turbulence can be understood.

A turbulent velocity field can be forced either spectrally in wave-space or in real-space. Histori-

cally, simulation studies of forced isotropic turbulence have relied on spectral forcing methods, which

provide energy to the low wavenumber regions of the flow field by various means. Low wavenum-

ber energy injection is thought to be consistent with the concept of Richardson’s cascade of energy

to the progressively smaller scales. There are many variations on low waveband forcing, including

those that are purely random in nature (Alvelius’ method) [1], those that make use of stochastic

processes to promote isotropy [33], those that freeze the value of the Fourier coefficients of the ve-

locity field within a low waveshell band [87, 89], and others that artificially fix the energy content

between different low wavenumber shells to produce the desired spectral trends in the resulting

energy spectrum [17]. However, as a practical matter, spectral methods can be difficult to imple-

ment, as they require periodic boundary conditions, which are not always admitted in engineering

problems. Additionally, spectral schemes tend to be best suited for simulation studies concerning

homogeneous, isotropic turbulence with constant density flow fields. Recently, Lundgren [58, 81]

proposed a physical-space velocity field forcing method that can be integrated into non-spectral

codes and can accomodate non-periodic boundary conditions. This method was tested by Rosales

and Meneveau [81], and it was found to produce comparable turbulent metrics (e.g. energy spectra,

temporal statistics) when compared to existing spectral methods.

This chapter is based on the publication [13]: P.L. Carroll and G. Blanquart. “The effect of velocity field forcing
techniques on the Karman-Howarth equation.” Journal of Turbulence. 15(7):429-448, 2014.
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Although these methods are applied routinely in simulation studies to generate the same type

of turbulent physics (i.e. isotropic turbulence), the methods themselves are quite disparate. They

are derived from starkly differing assumptions and constraints. An in-depth analysis of the effect

of these assumptions on the predicted turbulent physics has yet to be performed. The objective of

this chapter is to perform such an analysis.

The effect of implementing a velocity field forcing method can be understood by examination of

the Karman-Howarth (KH) equation. As originally derived, the KH equation governs the decay of an

isotropic turbulent field [25]. As it is derived from the Navier-Stokes equations, to which velocity field

forcing methods append a source term, it will have correspondingly a source term appended to it.

In this study, the source terms appended to the Karman-Howarth equation by Lundgren’s physical-

space method and Alvelius’ stochastic spectral method are calculated and investigated. From these

source terms, the differences observed in the turbulent fields that the two velocity forcing methods

predict are justified.

It should be noted that the subject of this chapter finds context in existing experimental and

simulation studies [62, 2, 35] of decaying turbulence. These studies have focused on a corresponding

unforced expression of the Karman-Howarth equation, and primary attention has been paid to

the significance of the so-called non-stationary term; this term represents non-stationary effects

on the turbulent field as caused by the temporal decay of the longitudinal second-order structure

function (Bll). It has been noted [2] that the presence of the non-stationary term precludes the

calculated third-order structure function (Blll) from ever exceeding the asymptotic limit of − 4
5εr,

as Kolmogorov’s 4/5 law indicates [77], as the sign of the time derivative of Bll is negative [35].

When the results obtained from such studies [62, 2, 35] were compared to structure function

data calculated from numerically-forced (via low waveband spectral and linear methods) DNS,

which correspond to a forced Karman-Howarth equation, three observations were made. First,

the structure functions calculated from linearly-forced data sets more closely matched experimen-

tal data (decaying grid turbulence) than the low waveband, spectrally-forced structure function

data [62, 2, 35]. Second, for a given Taylor-Reynolds number, Reλ, the spectrally-forced structure

function data displayed a larger Blll magnitude across intermediate scales relative to the linearly-

forced and experimentally-obtained data. Third, the compensated, spectrally-forced third-order

structure function, Blll/(εr), was found to approach more rapidly (at lower Reλ) the asymptotic

limit of 4/5 than both experimentally-determined and linearly-forced data [2]. The disparities noted

between the three sets of structure function data are generally attributed to the differences between

the non-stationary term and the term corresponding to the forcing method-imposed source term. In

the case of forced turbulence, the non-stationary effects are non-existent, as the presence of the mo-

mentum (and Karman-Howarth) source term eliminates any temporal decay of Bll. These previous

studies did not provide causes for the differences observed between the sets of third-order structure



13

function data. The present work seeks to provide this explanation in way of selecting an appropri-

ate isotropic velocity field forcing method for implementation into the simulation framework to be

presented in Chapter 5.

The structure of this chapter is as follows. Section 2.1 introduces the momentum source terms

that Alvelius’ and Lundgren’s velocity forcing methods impose on the velocity field. The assump-

tions and restrictions on which these methods are based are explained, and their context relative to

other existing forcing schemes is defined. Section 2.2 states the turbulent structure that should be

expected under conditions of homogeneity and isotropy, and, then, compares this to the turbulent

physics obtained from implementing the two forcing methods. Section 2.3 details the derivation of the

(forced) Karman-Howarth equation when the two chosen velocity forcing methods are applied. Sec-

tion 2.4 discusses the qualitative and quantitative behavior of the imposed Karman-Howarth source

terms for large, intermediate, and small flow scales for both forcing methods. Lastly, Section 2.5

discusses the significance of the forcing method-imposed energy production spectrum in determining

the behavior of the Karman-Howarth source term. Note that the simulation code used to perform

the work contained in this chapter is detailed in Appendix 8.3, Appendix 8.4, Appendix 8.5, and

Appendix 8.6 at the end of this document.

2.1 The Role of Velocity Forcing Methods

2.1.1 Preventing Turbulence Decay and Sustaining Stationarity

In terms of Richardson’s energy cascade, energy is transfered from the large (inertial) scales to the

small (viscous) scales. Without a source of turbulent kinetic energy, the velocity field fluctuations

will decay, leading to the growth of the viscous scales and the loss of turbulent physics. In order to

sustain turbulent physics and to drive the velocity field to a state of statistical stationarity, source

(forcing) terms are applied to the momentum equations to serve as such turbulent kinetic energy

sources. These forced momentum equations take the form,

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂P

∂xi
+ ν

∂

∂xj

(
∂ui
∂xj

)
+ fi, (2.1)

where fi is the appended source term. Two available method classes for preventing turbulent velocity

field decay are narrow-band spectral forcing in wave-space and forcing in physical-space. The analysis

included in this chapter is concerned with two representative forcing methods, namely Alvelius’ low

waveband (spectral) forcing [1] and Lundgren’s linear (physical) forcing [58, 81].

A forcing method sustains a turbulent state by compensating for temporal losses in turbulent

kinetic energy, k. Multiplying Eq. 2.1 by ui, assuming incompressibility and homogeneity, and
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ensemble averaging (denoted by 〈·〉) yields the turbulent kinetic energy equation,

dk

dt
= −ε+ 〈uifi〉 −→

d〈u2〉
dt

= −2

3
ε+

2

3
〈uifi〉, (2.2)

where ε = 〈ν ∂ui

∂xj

∂ui

∂xj
〉, 〈u2〉 = 1

3 〈uiui〉, and k = 〈 12uiui〉. From Eq. 2.2, the impact of the momentum

source term is clear. At steady state, the momentum source term contribution, 〈uifi〉, compensates

for losses from viscous dissipation (ε = 〈uifi〉).

2.1.2 The Alvelius (Spectral) Velocity Field Forcing Method

Spectral velocity forcing techniques are attractive, as they allow for precise control over the location

of energy injection. This injection can be concentrated within a small number of modes lying within

a specified range of waveshells with magnitudes κlow ≤ |κ| ≤ κhigh; modes lying outside these

waveshells are not impacted by the forcing term. Alvelius’ spectral forcing scheme results in a

momentum equation with a form similar to Eq. 2.1. The forcing term, f̂i(κ), is solenoidal with a

Gaussian distribution about a forcing wavenumber κf = 3,

f̂i(κ) =

√
P1

2πκ2
√
cπ ∆t

exp

(
− (|κ| − κf )

2

2c

)
g(φ, θ, ψ). (2.3)

Here, the cubic computational domain has length 2π, g(φ, θ, ψ) is a function of random variables φ, θ,

and ψ used to promote a state of contrived isotropy, and κ = |κ| is the wavenumber corresponding the

wavevector κ. P1 controls the amplitude of the overall momentum source term, while c determines

the width of the Gaussian forcing spectrum. From the turbulent kinetic energy equation, it can be

shown that ε = P1 at stationarity [1]. Alvelius’ forcing method is discrete in nature, as indicated by

the presence of the time-step, ∆t, in the momentum source term. Note that the magnitude of the

time-step is determined by the numerical stability conditions of the Navier-Stokes solver employed,

which come primarily from the CFL (Courant-Friedrichs-Lewy) condition imposed. This momentum

forcing term is active only within a narrow band of waveshells with magnitudes 2 ≤ κ ≤ 4, and it is

defined to be locally mutually orthogonal to the wavevector and to the velocity Fourier vector.

Alvelius’ spectral forcing imposes strict constraints on the range of scales over which its momen-

tum source term is active and the magnitude it can take. It was derived from a discrete, statistical

perspective, and it is random in nature to promote isotropy. Additionally, the source term is de-

signed to have a negligible effect on the convective, diffusive, and pressure terms in the Navier-Stokes

equations when time-integrated. The time-scale imposed by the forcing term is separated from all

flow time-scales [1]. It, therefore, neither imposes a time-scale nor alters the ones present.
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2.1.3 The Lundgren (Linear) Velocity Field Forcing Method

More attractive from an implementation perspective is a physical-space forcing technique. Physical-

space techniques can be integrated into non-spectral codes and can support non-periodic boundary

conditions. Lundgren’s linear forcing method [58] injects energy into the velocity field in proportion

to the magnitude of the velocity field fluctuations, ui, and it is active over all flow scales. When

implemented, the source term appended to the momentum equation (Eq. 2.1) is fi = Qui, where Q

is a constant related to the velocity field eddy turn-over time, τ = (2Q)
−1

.

Lundgren’s linear forcing term, Qui, imposes few constraints on the turbulent field it sustains.

It is a broadband forcing method, and the magnitude of the momentum source term is modulated

by the velocity field itself; hence, the power inserted into the turbulent kinetic energy equation will

vary with each time-step. The only feature that it imposes on the flow [58, 81] is a time-scale via

the constant coefficient Q = (2τ)
−1

, where τ = k/ε.

2.1.4 “Spectrum” of Other Velocity Field Forcing Methods

Lundgren’s linear [58] and Alvelius’ spectral [1] forcing methods are representative of the other

available velocity field forcing methods used to generate isotropic turbulence. The most commonly-

used method in simulation studies of stationary, isotropic turbulence is that developed by Eswaran

and Pope [33], which imposes a momentum source term of the form,

f̂i(κ, t) =
(
δij −

κiκj
κ2

)
wj(κ, t). (2.4)

This forcing method relies on the summation of independent realizations of Uhlenbeck-Ornstein

stochastic diffusion processes, wj(κ, t), to create sufficient randomness for the development of an

isotropic field. This source term is correlated in time with an imposed time-scale, TL, which induces

a correlation between the velocity field and forcing term [33]. Siggia and Patterson [87] developed a

method in which the Fourier coefficients of the velocity field within the forcing waveband, 1 ≤ κ ≤ 2,

were frozen. This prevented the decay of the large scale physics and supported the development of

an energy cascade. Alternatively, Sullivan et al. [89] deterministically froze the kinetic energy within

the forcing waveshells at a constant value. This is accomplished by, at each time-step, scaling the

Fourier coefficients of the forcing term, âf (κ, t), by a scalar multiple, c, of the Fourier coefficients of

the velocity field, û(κ, t), to compensate for deviations from the prior time-step [89],

âf (κ, t) = cû(κ, t). (2.5)

Other forcing methods are tuned to ensure that the energy spectrum has a nominal dependence on

wavenumber, i.e. E(κ) ∝ κ−5/3 [17]. Generally, this is accomplished by fixing the ratio of energy
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content in the different low wavenumber waveshells to be consistent with the κ−5/3 dependence [17].

In summary, the parameter space spanned by existing forcing methodologies is multi-dimensional;

parameters between which forcing methods can vary include the flow variable with which the mo-

mentum forcing term is aligned (if any), the temporal correlation of the forcing term (if any), and

the span of wavespace over which it is active. The alternative spectral methods briefly highlighted

and Alvelius’ method all revolve around low wavenumber energy injection. The chief distinguishing

characteristic between them lies in the correlation of their respective forcing terms with differing

simulation parameters. Alternatively, Lundgren’s method is broadband, and it corresponds to a dis-

tinctly different class of forcing approach. Thus, the behaviors that other velocity forcing methods

would impose on the Karman-Howarth equation can be, at the very least, qualitatively represented

by those imposed by Alvelius’ spectral and Lundgren’s linear forcing techniques.

2.2 Canonical Isotropic Turbulence vs. Forcing-predicted

Turbulence

Under high Reynolds number conditions, there is scale separation between the energy containing

and dissipating scales. This separation creates an inertial subrange, across which the dynamics are

inviscid. Under such conditions, isotropic turbulence displays characteristic scalings. Within the

inertial subrange, these behaviors include an energy spectrum scaling, E(κ) ∝ κ−5/3; a vanishing

transfer spectrum, T (κ) = 0; and second- and third-order structure function scalings, Bll(r) =

CK (εr)
2/3

and Blll(r) = − 4
5εr. These metrics are calculated for both forcing methods and compared

to the canonical behaviors stated. The theoretical bases of these scaling arguments are provided in

Appendix 8.1.

2.2.1 Configuration Setup

To compare the turbulent fields predicted under Lundgren’s and Alvelius’ forcing methods, a sim-

ulation study was conducted. The turbulence is maintained at Reλ = 〈u2〉1/2λ/ν = 140 with a

spatial resolution of κmaxη ≥ 1.5 on a N3 = 5123 grid within a triply periodic cubic domain of

length 2π. The non-dimensional kinematic viscosity was 0.0075 and 0.0028 for linear and Alvelius

forcing, respectively. This Taylor-Reynolds number is of comparable magnitude to those that have

been experimentally attained (e.g. the experiments of Gagne [36] and Mydlarski [65]).

The code package used is NGA [26], which is a physical-space (non-spectral) code suitable for low

Mach number flows and uses a standard staggered grid. The staggering of the velocity components

results in superior effective wavenumber behavior under second-order discretization [26, 64]. The

velocity field is solved implicitly via a second-order finite-difference scheme that is discretely energy
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conserving in the velocity field. The combination of staggered variables and discrete energy conser-

vation renders the advantages of a higher order velocity solver negligible. The time advancement is

by a semi-implicit Crank-Nicolson method [26]. Further details on the simulation code can be found

is Appendix 8.3 - Appendix 8.6. In the results to be presented, data is averaged over no less than

five eddy turn-over times, τ . In Section 2.4, the Karman-Howarth equation source terms for the two

forcings will be compared directly and used to explain partially the results that follow.

2.2.2 Energy Spectra

First, the energy spectra for the turbulent fields produced by both forcing methods are calculated.

The results are displayed in Fig. 2.1 and Fig. 2.2, along with a slightly modified version of the model

spectrum put forth by Pope [77]. This model spectrum is,

E(κ) = Cε2/3κ−nfL(κL)fη(κη),

fη(κη) = exp

(
−β{

(
(κη)

4
+ c4η

)1/4

− cη}
)
,

fL(κL) =

 κL(
(κL)

2
+ cL

)1/2


11/3

, (2.6)

where C is a constant, L is a length-scale defined as L = k3/2/ε, and cη = 0.2, β = 4.7, and cL = 6.78

are constants determined by Reλ [77]. This model spectrum is used to determine the power-law

scaling of the energy spectrum, n, across the intermediate wavenumber region by performing a

least squares fit. The power-law scaling is a free parameter. The quality of the fit is confirmed by

computing the L2 norm of the fit (denoted by Emodel) relative to the calculated energy spectrum.

This norm is calculated by,

L2 = ||r||2 =

(
n∑
i=1

|Emodel(κ)− E(κ)|2
)1/2

.

Following this, the average square of the error is found to be less than 1% of the value of the total

turbulent kinetic energy in both cases.

Upon (least squares) curve-fitting the dissipative region of the DNS-obtained energy spectra, it

was determined that the Alvelius-produced spectrum displays very nearly a E(κ) ∝ κ−5/3 scaling

across this region (n = 5/3 in Eq. 2.6), while the linearly-forced spectrum displays the weaker scaling

of E(κ) ∝ κ−1.42 (n = 1.42 in Eq. 2.6). These power-law scalings are confirmed by compensating the

respective spectra, as depicted in Fig. 2.2; these compensated spectra both contain an approximately

horizontal (flat) region, which verifies the appropriateness of the determined energy spectrum scal-

ings. In the case of the linearly-forced data, the weaker wavenumber scaling found relative to −5/3 is
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consistent with experimentally-inferred spectrum scalings attained at comparable Reλ [65, 36, 62].

Specifically, following the work of Mydlarski and Warhaft [65], a power-law scaling of approximately

E(κ) ∝ κ−1.5 is expected for a Reλ ≈ 140.

To aid in interpretation of Fig. 2.1, two length-scales are included. Here, lEI is a characteristic

length for the energy-containing scales and lDI represents the characteristic length for dissipation

processes. Following Pope [77], these scales are determined as follows. The spherical waveshell at

which 90% of the total (cumulative) turbulent kinetic energy has been attained defines l−1
EI . Similarly,

the spherical waveshell in wavespace at which 10% of the total (cumulative) energy dissipation has

occurred defines l−1
DI . In theory, these scales bookend the region of the flow, l, over which an inertial

subrange may manifest (i.e. lDI < l < lEI). Per Fig. 2.1, there is no scale separation at this

moderate Reλ in either data set, as lEI < lDI .

As the Alvelius-generated spectrum exhibits a desired power-law trending (E(κ) ∝ κ−5/3), as do

most spectral forcing methods, spectral methods are generally the preferred methods in numerical

studies of turbulent physics. However, this tends to conflict with the lack of scale separation indicated

by the calculated lDI and lEI .

2.2.3 Transfer Spectra

The transfer spectra for the two forcing methods were calculated, and these spectra are depicted in

Fig. 2.3 and Fig. 2.4 with their dissipation spectra, D(κ) = 2νκ2E(κ). The scales lDI and lEI are

provided to suggest the vicinity in wavespace where an inertial subrange (if any) may be located.

The transfer spectra were calculated as,

T (κ, t) = −û∗iF
(
uj
∂ui
∂xj

)
. (2.7)

Under inviscid conditions, the transfer spectrum, T (κ, t), should have a value of zero within the

inertial subrange [79]. The implications of T (κ) = 0 can be understood by considering the spectral-

space version of the energy equation,

dE(κ)

dt
= P (κ) + T (κ)−D(κ), (2.8)

where E(κ), P (κ), and D(κ) are the energy, production, and dissipation spectra, respectively. For

statistically stationary forced turbulence, dE(κ)/dt = 0. In that case, T (κ) = 0 only if there is no

overlap between P (κ) and D(κ) across the inviscid scales. This observation, although obvious, has

implications for where a velocity forcing method should deposit energy in wavespace.

At this moderate Reλ = 140, finite Reynolds number effects are significant, and the behaviors

stated in the introduction to this section should not be obtained. From Fig. 2.3, inviscid scales are
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Figure 2.1: Comparison of forcing-generated energy spectra with a modified form of Pope’s model
spectrum [77] (Eq. 2.6). lEI and lDI represent the length-scales demarking the end (beginning) of
the energy-containing (dissipative) flow scales.
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Figure 2.2: Comparison of compensated forcing-generated energy spectra with a modified form of
Pope’s model spectrum [77] (Eq. 2.6). lEI and lDI represent the length-scales demarking the end
(beginning) of the energy-containing (dissipative) flow scales.
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Figure 2.3: Transfer spectra normalized by wavenumber and inverse dissipation rate. lEI and lDI
represent the length-scales demarking the end (beginning) of the energy-containing (dissipative)
flow scales. Note that the Kolmogorov scales for the linearly- and Alvelius-forced data sets are

η =
(
ν3/ε

)1/4
= 0.0058 and η = 0.0068, respectively.

not present under the linear forcing method, as the production and dissipation spectra overlap. This

is shown more clearly in Fig. 2.4. Alternatively, Fig. 2.3(a) (and Fig. 2.4(a)) suggests an apparent

scale separation between the production and dissipation spectra under Alvelius’ forcing method,

where the transfer spectrum is constant at almost zero (−3.5 < ln(κ/κη) < −2.5). This is roughly

the same range of scales over which the energy spectrum shows a κ−5/3 scaling (Fig. 2.1(a) and

Fig. 2.2(a)). This question as to where energy is injected is investigated further in Sections 2.4 and

2.5.
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2.2.4 Structure Functions

The second- and third-order longitudinal structure functions are evaluated for both data sets ac-

cording to the definition,

Bll(r, t) = 〈(ul(x+ rl, t)− ul(x, t))2〉,

Blll(r, t) = 〈(ul(x+ rl, t)− ul(x, t))3〉, (2.9)

where ul is the velocity component aligned in the direction of unit vector, l. The compensated

versions for the two cases are provided in Fig. 2.5. The similarity between linear and Alvelius

forcing method-produced Bll and Blll at the small scales (r < 20η) and the considerable divergence

elsewhere is clear. Following Fig. 2.3, there is no inviscid subrange at the moderate Reynolds number

considered in this study. Consistently, Fig 2.5(b) clearly shows that there is no 4/5 plateau in Blll.

Both forcing methods produce turbulent fields with compensated Blll(r) that are well below 4/5,

although the curve corresponding to Alvelius’ forcing method is of a greater magnitude.

The normalized second-order longitudinal structure functions should be interpreted based on the

presence (or lack) of a plateau across the intermediate scales (Bll/(εr)
2/3 = CK) and the absolute

value at which this plateau occurs. Experiments [82] have reported an approximate value of CK =

2.0, with some arguing [77] that this value can vary by ±15%. If there is a CK = 2.0±15% region in

the second-order structure function data, then, Kolmogorov’s 4/5 law should be present in the third-

order structure function. As a result, observation of Fig 2.5(a) raises concern. The compensated

Bll for linear forcing lacks a plateau near the CK = 2.0 benchmark, consistent with its lack of a

4/5 plateau in its compensated Blll. Alternatively, the compensated Bll for Alvelius forcing has a

region that falls within the CK = 2.0 ± 15% window over a short range of intermediate scales. As

Bll is related to E(κ)[77], this result is consistent with the observed −5/3 energy spectrum scaling.

However, these results are inconsistent with the absence of a 4/5 plateau for Blll(r). It should be

here noted that, irrespective of the forcing method employed, the Reynolds number is too low in

these cases to attain a physically meaningful self-similar energy spectrum scaling of κ−5/3 [79, 80].

Hence, the compensated structure functions should not be exhibiting their inviscid scaling behaviors.

It follows that the Alvelius spectral forcing method needs to be further investigated.

2.2.5 Summary of Observations

In summary, when analyzing the linearly-forced turbulent field, all turbulent metrics are self-

consistent and in qualitative agreement with experimentally-measured data [65] of decaying grid

turbulence under the same Reλ conditions. However, the turbulent statistics extracted from the

Alvelius-forced fields may be inconsistent. The third-order structure function, Blll(r), and the over-
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lap of the energy-containing and dissipative scales, lEI and lDI , suggest a lack of an inertial range,

while the transfer spectrum, T (κ), and second-order structure function, Bll(r), suggest its presence.

Following these observations, in the next sections, the specific forms of the Karman-Howarth source

terms, S(r), imposed by these two representative methods are expressed, and the behaviors of these

source terms are investigated.

2.3 Derivation of the Forced Karman-Howarth Equation

2.3.1 Overview of the Original (Unforced) Karman-Howarth Equation

The Karman-Howarth equation, published by Karman and Howarth in 1938 [25], describes the

evolution of the longitudinal velocity correlation function, f(r, t), under conditions of decaying,

isotropic turbulence. It is derived from the momentum and continuity equations using assumptions

of incompressibility, isotropy, and homogeneity. It can be expressed as,

∂
(
〈u2〉f

)
∂t

= 〈u2〉3/2
(
∂h

∂r
+

4

r
h

)
+ 2ν〈u2〉

(
∂2f

∂r2
+

4

r

∂f

∂r

)
, (2.10)

where 〈u2〉 is the velocity field variance and h is a scalar function of the two-point separation distance,

r, that is related to the longitudinal triple velocity correlation function, S111 = 〈u3〉(t)h(r, t); its full

derivation is provided in Appendix 8.2.

This expression was recast by Monin and Yaglom [63] in terms of the second- and third-order

longitudinal structure functions per Eq. 2.9. Structure functions describe the correlation of the

velocity differences between two different fluid points separated by a distance of magnitude r. Note

that the velocity component, ul, is in the direction of the unit vector, l. By applying the identity,

1

2
Bll(r, t) = 〈u2〉 (f(0, t)− f(r, t)) = 〈u2〉 (1− f(r, t)) , (2.11)

Monin and Yaglom obtained a structure function-based representation of the decay of turbulence

under isotropic conditions, which is given by,

d〈u2〉
dt
− 1

2

∂Bll(r, t)

∂t
=

1

6r4

∂
(
r4Blll(r, t)

)
∂r

− ν

r4

∂

∂r

(
r4 ∂Bll(r, t)

∂r

)
. (2.12)

This is the original version of the Karman-Howarth equation in structure function form.

2.3.2 General Form of the Forced Karman-Howarth Equation

In the context of forced turbulence, where energy decay is prevented, the Karman-Howarth (KH)

equation is altered by the presence of a momentum source term, leading to an augmented (forced)
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Karman-Howarth equation. Equation 2.1 can be written in symbolic form as,

∂ui
∂t

= Ti + fi, (2.13)

where all convective, viscous, and pressure terms are contained in Ti. The time derivative of the

correlation function can be calculated as,

∂Rii(r, t)

∂t
= 〈ui(x, t)Ti(x′, t) + ui(x

′, t)Ti(x, t)〉+ 〈ui(x, t)fi(x′, t) + ui(x
′, t)fi(x, t)〉, (2.14)

from which the time derivative of the longitudinal correlation function, ∂〈u
2〉f(r,t)
∂t , can be evaluated.

Recall the relation between these two derivatives,

∂Rii(r, t)

∂t
= 3

∂
(
〈u2〉f(r, t)

)
∂t

+ r
∂

∂r

(
∂
(
〈u2〉f(r, t)

)
∂t

)
. (2.15)

Lundgren [58] solved Eq. 2.15 for the needed time derivative via an integration-by-parts procedure,

yielding

∂
(
〈u2〉f(r, t)

)
∂t

=
1

r3

∫ r

0

r2 ∂Rii(r, t)

∂t
dr. (2.16)

Using Eq. 2.16, the first and second terms on the right hand-side of Eq. 2.14 lead to the unforced

KH equation (Eq. 2.10). The third and fourth terms on the right hand-side of Eq. 2.14, which will

be referred to as ∂R∗ii(r, t)/∂t, contain the contribution from the momentum source term, and result

in a source term addition to the KH equation. Under the condition of statistical stationarity, the

new, forced Karman-Howarth equation can be expressed as,

0 =
1

6r4

∂
(
r4Blll(r)

)
∂r

− ν

r4

∂

∂r

(
r4 ∂Bll(r)

∂r

)
+ S(r), (2.17)

with S(r) evaluated as,

S(r) =
1

r3

∫ r

0

r2 ∂R
∗
ii(r, t)

∂t
dr. (2.18)

Depending on the velocity field forcing method (momentum source term) implemented, different

turbulent physics may be produced, as the KH source term may vary. It is important, therefore, to

understand how different methods affect S(r). It is interesting to note the value of S(r = 0). Using

Eq. 2.2, it is found that S(r = 0) = 2
3ε regardless of the forcing method implemented.
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2.3.3 The Linear Forcing and the Resulting Karman-Howarth Equation

Following a process outlined by Lundgren [58] and the above discussion, S(r) is evaluated as,

S(r) =
1

r3

∫
r2〈uif ′i + u′ifi〉dr =

2Q

r3

∫ r

0

r2〈uiu′i〉dr =
2Q

r3

∫ r

0

r2Rii(r)dr, (2.19)

with fi = Qui and r = |r|. Further, Rii(r) can be written as [58, 77],

Rii(r) = 3〈u2〉 − 1

2r2

∂

∂r

(
r3Bll(r)

)
. (2.20)

Inserting Eq. 2.20 into Eq. 2.19 results in an expression which can be integrated to,

S(r) = 2Q〈u2〉 −QBll(r). (2.21)

Using 2Q〈u2〉 = 2
3ε and Eq. 2.21, the forced Karman-Howarth equation under the linear forcing

method is obtained,

0 =
1

6r4

∂
(
r4Blll(r)

)
∂r

− ν

r4

∂

∂r

(
r4 ∂Bll(r)

∂r

)
+

2

3
ε−QBll(r). (2.22)

2.3.4 The Alvelius Forcing and the Resulting Karman-Howarth Equation

The forced Karman-Howarth equation under Alvelius’ forcing method is obtained in a slightly dif-

ferent way due to its discretized implementation [1]. As a consequence of its stochastic and discrete

implementation, the velocity field is not differentiable in time. However, the expectation values of

the velocity field (used here) still remain differentiable in time.

The source term is derived from the following procedure. Following Alvelius [1], the Navier-Stokes

equations at two different fluid points can be discretized according to,

ui(x)n+1 = ui(x)n + ∆t (Ti(x)n + fi(x)n) ,

uj(x
′)n+1 = uj(x

′)n + ∆t (Tj(x
′)n + fj(x

′)n) , (2.23)

where T (x)n represents the transport terms (convective, diffusive, and pressure gradient). The time

derivative of the two-point velocity correlation tensor can be written discretely in time at successive

timesteps n and n+ 1,

∂Rij(r, t)

∂t
=
∂〈ui(x, t)u′j(x′, t)〉

∂t
= lim

∆t→0

∆Rij(r, t)

∆t

= lim
∆t→0

1

∆t

(
〈ui(x, t)uj(x′, t)〉

n+1 − 〈ui(x, t)uj(x′, t)〉
n
)
. (2.24)
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Upon substitution of Eq. 2.23 into Eq. 2.24, a discrete equation for ∂Rii(r, t)/∂t is obtained (Eq. 2.25),

which can be thought of as the discretized version of the (not yet volume integrated) forced Karman-

Howarth equation.

∆Rii(r, t)

∆t
= 〈ui(x)Ti(x

′) + ui(x
′)Ti(x)〉n + ∆t〈Ti(x)Ti(x

′)〉n + ∆t〈fi(x)fi(x
′)〉n

+ 〈ui(x)fi(x
′) + ui(x

′)fi(x)〉n + ∆t〈Ti(x)fi(x
′) + Ti(x

′)fi(x)〉n (2.25)

Accordingly, the left hand-side of Eq. 2.12 is related to ∆Rii(r, t)/∆t. Since this is forced (stationary

turbulence), this term will be necessarily zero.

As with the continuous case, the right hand-side of Eq. 2.12 corresponds to the first terms of

the right-hand side of Eq. 2.25 (〈ui(x)Ti(x
′) + ui(x

′)Ti(x)〉n). Thus, the Karman-Howarth source

term is contained in the remaining five terms. In the limit of ∆t → 0, the second and fifth terms

(∆t〈Ti(x)Ti(x
′)〉n and ∆t〈Ti(x)fi(x

′) + Ti(x
′)fi(x)〉n) vanish. Further, Alvelius’ forcing method

imposes mutual orthogonality between the velocity vector and the forcing term. Thus, the fourth

term (〈ui(x)fi(x
′) + ui(x

′)fi(x)〉n) vanishes. With these observations and the relation that fi ∝

∆t−1/2 [1], it can be concluded that the imposed Karman-Howarth source term is given by,

S(r) =
1

r3

∫ r

0

r2 lim
∆t→0

∆t〈fi(x)fi(x
′)〉n dr. (2.26)

The analysis to this point has relied on the real-space version, fi(x), of the momentum source

term’s spectral form, f̂i(κ). When Fourier-transformed, fi(x) and fi(x
′) from Eq. 2.3 admit the same

Fourier vector, f̂i(κ), as the shift between x and x′ corresponds to multiplication by exp (iκ · r). The

momentum source terms are, then, related by,

fi(x)n =
∑
κ

f̂i(κ)n exp (iκ · (x′ − r)) fi(x
′)n =

∑
κ

f̂∗i (κ)n exp (−iκ · x′). (2.27)

After ensemble averaging and using spatial homogeneity, it is obtained,

〈fi(x)nfi(x
′)n〉 =

∑
κ

f̂i(κ)nf̂∗i (κ)n exp (−iκ · r) =
∑
κ

|fi(κ)n|2 exp (−iκ · r). (2.28)

By performing a summation in wavespace over all forcing mode wavevectors and inverse Fourier-

transforming this waveshell-averaged source term, the discrete-space equivalent of Eq. 2.18 is at-

tained,

S(r) =
1

r3

∫ r

0

r2

〈F−1

∑
κ

|fi(κ)n|2
〉∆t

 dr, (2.29)
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and this is the source term appended to Eq. 2.17.

2.4 Behavior of the Karman-Howarth (KH) Source Terms

Calculated structure function data suggests that the velocity fields produced by these two forcing

methods are similar at the small, viscous scales and different at the intermediate and large scales.

In this section, analysis is conducted into their Karman-Howarth equation source terms to explain

this observation.

2.4.1 Source Terms

The source terms, S(r), that the two forcing methods append to the Karman-Howarth equation are

evaluated using Eq. 2.21 and Eq. 2.29, and the results are provided in Fig. 2.6. A discussion of the

source term behavior at small and large scales is contained in the following sub-sections. However,

a few macroscopic comments are made first. Figure 2.6 suggests that the two forcing methods affect

the turbulent field similarly at small scales (r/η < 5), but have significantly different effects at

intermediate and large scales (r/η > 5). A key feature of Fig. 2.6 is that, as r → 0, the source terms

assume a value of 2
3ε.

Outside of the small-scale region, the source terms deviate from 2
3ε. This is a direct result of their

form; both presented source terms take the form of autocorrelation functions, as stated in Eq. 2.21

and Eq. 2.29. The autocorrelation is between velocity components in the case of linear forcing and

between the momentum source terms in the case of Alvelius’ forcing. It is expected that there is

high velocity correlation at small displacements, which becomes weaker as separation increases. This

explains the decline of the linear forcing KH source term. With Alvelius’ forcing, there is a similar

initial decrease in magnitude, which is expected due to the finite bandwidth over which forcing is

active. The increase in correlation at large separation (r > 2) is due to the injection of energy at

these large scales.

Further insight can be obtained by considering the different terms of the statistically steady,

forced Karman-Howarth equation derived for each forcing (Eq. 2.17). Here, a balance exists between

the inertial, viscous, and source terms. Figure 2.7 displays each term as a function of separation

distance, r. From this perspective, three distinct regions can be identified. First, there is a small-

scale region (0 < r < 10η) that is dominated by viscosity and affected primarily by Bll(r). Second,

there is an intermediate region (10η < r < 0.5l0) that is influenced by both Bll(r) and Blll(r); here,

l0 = 〈u2〉3/2/ε is the integral length-scale of the velocity field, which, in the case of Lundgren’s linear

forcing at this Reλ is approximately 20% of the computational domain, and in the case of Alvelius’

forcing is approximately 25% of the computational domain. Third, there is a large-scale region

(r > 0.5l0) dominated by inertial processes and affected primarily by Blll(r). The role of Bll(r) and
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Figure 2.7: Behavior of the three terms in the stationary forced Karman-Howarth equation
(Eq. 2.17). One half of the computational domain is plotted, r = [0, π].

Blll(r) over these three regions is to compensate for S(r). This suggests that the structure functions

adjust to the dictates of the imposed source term. From a global perspective, S(r) impacts Bll and

Blll, which, in turn, influence E(κ) and T (κ).

2.4.2 Behavior in the Small (Viscous) Scales

At the small scales, the forced Karman-Howarth equation can be examined with a series expansion.

Assuming a generic velocity forcing method, the structure functions and KH source term can be
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Taylor-expanded for small arguments, r, as

Bll(r) =

∞∑
n=1

anr
2n = a1r

2 + a2r
4 + ...

Blll(r) =

∞∑
n=1

bnr
2n+1 = b1r

3 + b2r
5 + ...

S(r) =

∞∑
n=0

snr
2n = s1 + s2r

2 + s3r
4 + ... (2.30)

where the even or odd nature of the expressions is used. By definition (Eq. 2.9), expansions of Bll(r)

and Blll(r) are parabolic and cubic to leading order, respectively.

For both forcing methods, the initial term in the series expansion of the KH source term, s1,

can be specified from Eq. 2.2 and Eq. 2.21 as s1 = 2
3ε. Substituting this relation and the other

expansions into the stationary Karman-Howarth equation results, to leading order, in a balance

between the viscous and source terms; the inertial term, as expected, does not play a role. Upon

matching the leading order terms, the first coefficient for Bll(r) can be evaluated as a1 = 1
15ε/ν.

This result is valid for both the linear and the Alvelius forcing methods, as the a1 term corresponds

to the s1 term.

Under isotropic conditions, the dissipation rate is defined as ε = 15ν〈u2〉/λ2
g, where λg is the

transverse Taylor micro-scale. With this, the significance of a1 becomes clear. In terms of these

parameters, it can be written a1 = ε/15ν = 〈u2〉λ−2
g , which is the inverse time-scale (squared)

appropriate for small-scale physics. Further, the scaling for Bll(r) becomes,

Bll(r) = 〈u2〉 r
2

λ2
g

. (2.31)

This is sufficient to capture the behavior of Bll(r) in this small-scale limit (Fig. 2.8(a)). This

finding suggests that the small turbulent length-scales are not affected detrimentally by either forcing

technique. Instead, they only enforce the physically appropriate length- and time-scales.

2.4.3 Behavior at Intermediate (Pseudo-Inviscid) and Large (Inertial)

Scales

Across the intermediate and large flow scales, the source term behaviors differ starkly. To explain

this, the asymptotic trends of the source terms are examined.

2.4.3.1 Linearly-Forced Turbulent Field Results

When the series expansion of Bll(r) is inserted into S(r) (Eq. 2.21), and the appropriate polynomial

powers matched, it can be shown that s2 = −
(

1
3ε/〈u

2〉
)
a1 = −ε2/(45ν〈u2〉). At small scales, then,



33

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

ε
-2

/3
 x

 B
ll(

r)

r / η

Eq. 2.31
Linear

Alvelius

(a) Small scale behavior of Bll(r)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5

S
(r

) 
/ 

(2
/3

 ε
)

r

Linear
Alvelius

κ = κf = 3

(b) Role of forcing location in S(r) behavior

Figure 2.8: Behavior of second-order longitudinal structure function at small viscous scales and
the Karman-Howarth source term at intermediate scales. One half of the computational domain
(0 ≤ r ≤ π) is plotted. The legend entry termed κ = κf = 3 corresponds to the simulation with
injection at a single wavenumber.
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the source term can be expressed as,

S(r) =
2

3
ε− ε2

45ν〈u2〉
r2 +O(r4) =

2

3
ε

(
1− 1

2

r2

λ2
g

)
+O(r4). (2.32)

The Karman-Howarth source term, S(r), begins to decay at the transverse Taylor micro-scale, λg,

as indicated in Eq. 2.32. Then, in the limiting case of r →∞ (at infinite separation), the Karman-

Howarth source term vanishes, as suggested in Fig. 2.6 and Fig. 2.7(b). At large separation, the

velocities at u(x+ r, t) and u(x, t) become de-correlated from each other, which consequently sends

Bll(r) to a value of 2〈u2〉 and implies S(r →∞) = 2Q〈u2〉 −QBll(r →∞) = 0.

2.4.3.2 Alvelius-Forced Turbulent Field Results

As presented in the original paper [1], this low waveshell forcing method assumes a forcing wavenum-

ber of κf = 3 with forcing bound of κlow = 2 ≤ κ ≤ κhigh = 4. To better understand the effects

of this narrow waveband forcing, a limiting case is considered. The forcing waveband is contracted

to include only a single forcing wavenumber, κlow = 3 ≤ |κ| ≤ κhigh = 3, reducing the number of

forcing wavevectors, κ, to seventeen, and the resulting KH source term is calculated.

The KH source term for this contracted case is compared to the one obtained for the original

forcing band in Fig. 2.8(b), along with the linear forcing results. Clearly, changing the forcing band

has a strong effect on S(r). The main differences between the two spectral forcing curves are the

larger magnitude at the largest scales and the region that assumes negative values. This limiting

case underscores the dependence of the imposed Karman-Howarth source term on the chosen forcing

band outside of the viscosity-dominated, small scales. Additionally, it suggests that the decay of

S(r) is determined by κf .

Returning to the forced Karman-Howarth equation (Eq. 2.17), the impact of S(r) on Bll and

Blll can be discussed (Fig. 2.7). The viscous term is negligible across the intermediate and large

scales; the dominant terms are the inertial and source terms. As the inertial term compensates for

the source term contribution to Eq. 2.17, it must assume a virtually constant value solely because

of the nature of S(r). This constancy of the inertial term, which contains Blll(r), is similar to

the behavior suggested by Kolmogorov’s 4/5-law. The KH source term compels the inertial term

to assume a constant value, which is generally indicative of inviscid dynamics. The inertial term,

then, influences the development of the structure functions, and imparts in them behaviors that

appear to be inviscid. Although these behavioral traits may be consistent with typical measures

of inviscid character, in this instance, they are solely an artifact of the source term. This is a

partial justification for the observations made in previous studies [2, 35] of isotropic turbulence; in

such studies, the spectrally-forced DNS data consistently produced third-order structure functions

of larger magnitude than linearly-forced data at a given Reλ.
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There are two conclusions to be reached from this. First, where energy is injected (in wave- or

physical-space) matters, as it affects the form of the Karman-Howarth source term. If the Reynolds

number is sufficiently high to support physically meaningful separation between the production and

dissipation scales, then the forcing bounds imposed by spectral forcing methods may be consis-

tent with those experienced by real turbulent flows. However, if the Reynolds number is not high

enough, which is the case in many simulation studies of turbulence, the imposed spectral forcing

bounds may be inconsistent with those found in experimentally-attainable flows, which suggests that,

in such instances, the physical structures derived may not be independent of the forcing bounds im-

posed. Second, the behavior of the source term in the intermediate region is responsible for the

pseudo-inviscid characterstics produced by Alvelius’ forcing method. Tendencies that are associated

generally with inviscid behavior are imposed by Alvelius’ method on its resulting structure functions.

2.5 The KH Source Term and the Production Spectrum

Although the previous analysis has focused on only one low waveband spectral method, there are two

key traits that can be generalized to all methods. First, a distinction should be made between energy-

producing and energy-containing scales. In low waveband forcing methods [33, 87, 89, 17], energy

is only injected into a narrow band of waveshells; these waveshells do not correspond necessarily to

the scales in which energy is contained. A comparison of the production spectra and the associated

energy spectra for each forcing method is provided in Fig. 2.9. The production spectrum is defined

as the region in wavespace over which a spectral forcing term is active. In the case of Alvelius’

forcing method, this corresponds to 2 ≤ κ ≤ 4 where the energy injected has a Gaussian distribution

(Eq. 2.3). Alvelius showed [1] that the production spectrum for this method could be expressed as,

P (κ) =
1

2
∆t 〈f(κ)ni f(κ)ni 〉, (2.33)

while the production spectrum for linear forcing is given by,

P (κ) = 2QE(κ). (2.34)

With Alvelius’ forcing method (Fig. 2.9(a)), the energy-containing scales in E(κ) are of greater

spectral extent than the energy-producing scales in P (κ). This creates a separation between energy-

producing scales and dissipative scales, but not between energy-containing scales and dissipative

scales (Fig. 2.3(a)). Alternatively, with linear forcing, where the momentum source term is active

over all flow scales, energy-containing and energy-production scales are coincident (Fig. 2.9(b)).

These results imply that Alvelius’ method imposes a pseudo-scale separation within the turbulent

field, which is a consequence of the nature of low waveband energy injection. This is reflected in
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Figure 2.9: Comparison of energy and production spectra.

the production scale it imposes. The production scale, lPI ∝ κ−1
PI , is defined as the length-scale

corresponding to the waveshell in wavespace, κPI , at which 90% of total energy production by the

forcing method has been deposited. For Alvelius’ forcing method, κPI ≈ 3.3; this corresponds to

ln (κ/κη) ≈ −3.8 in Fig. 2.3(a). For linear forcing, lEI = lPI , whilst for Alvelius’ forcing, lEI 6= lPI .

Also, for Alvelius’ forcing, there is separation between the scales over which energy is injected and

those over which energy is dissipated, but not between those in which energy is contained versus

dissipated. Under insufficiently high Reλ conditions, this can create inconsistencies, as noted by

the different behaviors observed across the intermediate scales in the calculated transfer spectra

(Fig. 2.3). However, if the Reλ is high enough to induce actual scale separation between energy-

containing and dissipating scales, then the effects that such a low waveband forcing method may

have would be negligible.

Second, spectral schemes assume an energy production spectrum that is strictly zero outside

of a defined low wavenumber range (Fig. 2.9(a)). This artificial partition between the production
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and dissipation scales is responsible for the differences between the Karman-Howarth source terms

for linear (physical-space) and Alvelius (spectral-space) forcing methods (Fig. 2.6). In support of

this, the Alvelius spectral method was modified slightly, and two additional tests were performed

under the same turbulent conditions (Reλ = 140, ν = 0.0028). In these two cases, the production

spectrum was changed from the Gaussian forcing spectrum (Eq. 2.28 and Eq. 2.33) implemented

by Alvelius [1] to an energy spectrum model (Eq. 2.6) that was fit to the energy spectrum obtained

from the linearly-forced data. This accomplishes two tasks. First, it extends the region of overlap

between energy-producing and energy-containing scales. Second, it requires that the magnitude of

energy injected at a point in wavespace is in proportion to the energy said point contains.

In these additional cases, the largest forcing waveshell, κhigh, is progressively increased to include

more of the energy-containing wavenumbers, while the lowest forcing waveshell is held at κlow = 1.

These cases have forcing wavenumbers of 1 ≤ κ ≤ 25 and 1 ≤ κ ≤ 35, which correspond to the

locations by which 90% and 95% of total energy produced has been deposited, respectively. Note

that these wavenumber ranges constitute less than 1% of the total number of wavevectors supported

by the computational grid. The KH source terms are calculated for these two cases, and they

are compared to those found from the linear and the unmodified Alvelius forcing methods. The

comparison is provided in Fig. 2.10.

When the Alvelius spectral forcing scheme is modified such that the production scales (those

containing at least 90% of total energy produced) are made to match more closely the energy

containing scales, the differences between the source terms noted in Fig. 2.6 vanish. These results

confirm that it is the artifically-imposed separation between the energy-producing and dissipating

scales found in the spectral (Alvelius) forcing method that is responsible for the disparities betweeen

the Karman-Howarth source terms shown in Fig. 2.6.

The conclusion to be obtained from these observations is that where energy is produced in

wavespace, relative to where it is contained, matters, at least at moderate Reλ such as these. The

nature of forcing (i.e. spectral- v.s. physical-space) and the variables to (from) which the momentum

source terms are correlated (de-correlated) are largely unimportant. The critical feature is where

the energy is deposited in spectral space.

2.6 Summary and Conclusions

In summary, two representative velocity forcing methods, Lundgren’s linear and Alvelius’ spectral

forcing methods, were analyzed. The effects of implementing these two methods on the resulting

turbulent fields have been investigated in the context of the Karman-Howarth (KH) equation. The

source terms the methods append to the KH equation have been derived, and the character they

impose on structure function behavior has been discussed. Through the second-order structure
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function, their role in determining the energy spectrum was presented. Additionally, explanations

for the small-scale similarity of major turbulent statistics, including structure functions and source

terms, were offered. Outside of the small-scale region, the disparity in turbulent metrics predicted by

the two representative methods is attributed to their differing KH source terms, which are ultimately

dictated by their respective energy production spectra.

In conclusion, there are three findings of this work. First, at the small dissipative scales (i.e.

r/η < 10), forcing methods generate comparable turbulent fields, as evidenced by the coincidence of

linearly-forced and spectrally-forced Bll(r), Blll(r), and S(r). This result is due to the dominance

of viscosity in this range, which renders the specifics of any forcing method irrelevant and the value

of the method-imposed KH source term, S(r = 0), equal to 2
3ε.

Second, across the intermediate scales (i.e. 10 < r/η < 0.5l0/η), the differences noted between

the two forcing methods can be attributed to their KH source terms, as S(r) governs the behavior of

Bll and Blll via the inertial and viscous terms in the forced KH equation. Note that the upper bound

on this intermediate range of scales, r/η < 0.5l0/η, is dependent on the Reλ of the flow. Further,

Bll and Blll are related to E(κ) and T (κ); thus, S(r) is responsible for the turbulent structures

that develop under the action of these (or any) velocity field forcing methods. Consequently, for

Alvelius’ spectral forcing, Bll and Blll are larger in magnitude when compared to their linear forcing-

predicted versions. The resulting structure functions may suggest the presence of inviscid dynamics

when there are none. This explains the inconsistencies noted in the Alvelius-forced data, specifically

the spectral slope of the energy spectrum.

Third, of chief importance is the energy production spectrum, P (κ), assumed by the forcing

method implemented. This determines where in wavespace a forcing method injects its energy rel-

ative to the energy-containing scales. In regards to low waveband spectral forcing, the scales over

which energy is deposited relative to the energy-containing scales may be different. This creates an

artificial partition between the dissipating and production scales, despite overlap between the dissi-

pating and energy-containing scales. When a production spectrum similar to Lundgren’s imposed

spectrum is applied within the context of the Alvelius forcing method, the source terms (physical

vs. spectral) become consistent.

The implications of these findings are threefold. First, when implementing spectral methods,

care must be taken when defining the waveshells over which power will be injected to minimize the

effects of the numerical forcing technique. Second, the primary factor used in determining the merit

of a forcing method ought not be its recovery of an energy spectrum scaling (e.g. E(κ) ∝ κ−5/3),

but should be the character of its imposed energy production spectrum. This is not a physical-space

vs. wave-space issue, but an energy-producing vs. energy-containing scale issue. Lastly, in fairness,

if the Reλ is high enough, then these issues may not manifest strongly, as the region of meaningful

scale separation present would reduce the impact of the mismatch in the energy-containing and
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energy-producing scales.

In regards to choosing an isotropic velocity field forcing method for application in the new

simulation framework with which to study variable density flows, based on this chapter’s work,

Lundgren’s linear, physical-space method is selected in favor of the other available spectral schemes.

This is done for two reasons. First, Lundgren’s method can more easily handle the challenges

associated with a variable density fluid. Second, for the Reynolds numbers with which the later

variable density and buoyant work is to be concerned, the linear method is more consistent with

available experimental data. Thus, the physics generated will be more accurate and the conclusions

drawn from them will be more precise.
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Chapter 3

Forcing the Velocity Field: A Practical Modification [12]

Following Chapter 2, Lundgren’s linear forcing method is deemed more representative of real tur-

bulent flows than the other available spectral methods. Accordingly, it is this forcing method that is

to be used in the simulation framework to be presented in Chapter 5 and applied in Chapter 6. How-

ever, Lundgren’s method can produce highly oscillatory turbulent statistics, necessitating extended

simulation run times to ensure time invariant statistical metrics [59]. This is now addressed.

This problem of statistical oscillation is not specific to Lundgren’s method. It has been well

documented that most velocity field forcing methods produce turbulent quantities (i.e. turbulent

kinetic energy, dissipation rate) that can be subject to significant statistical variation [74]. The

literature provides several examples of forcing methods that have been designed to reduce such

temporal fluctuations. These efforts are varied and include artificially freezing the energy content in

the largest flow scales [87], fixing the ratio of energy content between subsequent waveshells [17, 108],

and imposing a model energy spectrum to which forcing is done in proportion [74]. This chapter

contains a proposed modification to Lundgren’s method that reduces the extent of oscillation in

relevant turbulent statistics and significantly reduces the length of simulation time needed to attain

statistical stationarity. These improvements result in more efficient simulations.

3.1 Justification for Proposed Modification

When implemented as proposed by Lundgren, the linearly-forced (incompressible) momentum equa-

tions take the form,

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂

∂xj

(
∂ui
∂xj

)
+Qui. (3.1)

This chapter is based on the publication [12]: P.L. Carroll and G. Blanquart. “A proposed modification to
Lundgren’s physical space velocity forcing method for isotropic turbulence.” Physics of Fluids. 25(10):105114, 2013.
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The forcing parameter, Q, controls the magnitude of the energy added to the velocity field. This pa-

rameter is controlled by the user, and it is sufficient (with the viscosity, ν, and a defined length-scale,

l) to completely prescribe all pertinent physical parameters [81], including the Reynolds number,

Reλ, the turbulent kinetic energy, k, the dissipation rate, ε, and the eddy turn-over time, τ . To

understand how this method is able to control the resulting turbulent field, consider the turbulent

kinetic energy equation derived from Eq. 3.1,

dk

dt
= −ε+ 2Qk, (3.2)

where, during the spatial (volume) averaging step, denoted as 〈 · 〉, incompressibility (∂ui/∂xi = 0)

and homogeneity (〈∇ · ( )〉 = 0) have been assumed, and the definitions k = 〈 12uiui〉 and ε =

〈2ν sijsij〉 were used for turbulent kinetic energy and dissipation rate, respectively. Applying the

condition of statistical stationarity, Eq. 3.2 reduces to simply a balance between the dissipation rate

and a scalar multiple of the turbulent kinetic energy,

0 = −ε+ 2Qk. (3.3)

From Eq. 3.3, the physical significance of the forcing parameter, Q, becomes clear; Q is simply the

inverse of twice the eddy turn-over time, τ , orQ = (2τ)
−1

, with τ = k/ε. Thus, the forcing parameter

provided by the user imposes the time-scale over which energy is injected into the turbulent velocity

field.

Rosales and Meneveau [81] found that this linear forcing technique generates a turbulent velocity

field that asymptotically approaches a unique solution. This asymptotic state is characterized by

an integral length-scale, which is approximately 20% of the computational domain. The integral

length-scale, l, can be expressed in terms of physical parameters as l = 〈u2〉3/2/ε, where 〈u2〉 is

the variance of the velocity field (i.e. k = 3
2 〈u

2〉). If such an asymptotic state exists, as defined

by Eq. 3.3, then, together with the definitions of the integral length-scale and the turbulent kinetic

energy provided, the asymptotic values for key turbulent metrics can be evaluated. For example,

the turbulent Reynolds number, Re, and its Taylor micro-scale counterpart, Reλ, can be written as,

Re =
l u

ν
=

3Q l2

ν
Reλ =

λgu

ν
=

(
45 Q l2

ν

)1/2

, (3.4)

and the characteristic velocity, u, mean turbulent kinetic energy, k0, and mean dissipation rate, ε0,

can be written as,

u = 3Al, k0 =
27

2
Q2l2, ε0 = 27 l2Q3. (3.5)
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Note that to obtain the Taylor micro-scale, λg, the relation for the dissipation rate under isotropic

conditions [77] was used, ε = 15 ν〈u2〉/λ2
g. Note further that there are two degrees of freedom

available to the user, namely the forcing parameter, Q, and the viscosity, ν.

However, it was noted by Rosales and Meneveau [81], as well as by Lundgren in the original

work [58], that the turbulent statistics generated under this method were sometimes subject to large

oscillations around the above average values. Additionally, these oscillations were found to increase

with increasing Reλ. To reduce the amplitude of these oscillations, this work proposes a slight

modification to Lundgren’s original momentum source term. This modification changes the original

source term from Qui to Q
(
k0
k

)
ui, resulting in forced (incompressible) momentum equations of the

form,

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂

∂xj

(
∂ui
∂xj

)
+Q

(
k0

k

)
ui, (3.6)

where k is the instantaneously calculated turbulent kinetic energy and k0 is the desired steady-

state turbulent kinetic energy (Eq. 3.5). Changing the source term in this manner is conceptually

consistent with implementing a relaxation term or a damping coefficient as implemented by Overholt

and Pope [74]. The velocity field is driven towards the desired turbulent kinetic energy value in a

more constrained fashion, thereby reducing the amplitude of its oscillations. Note that in the (long-

time) limit of k = k0, this term is equivalent to the original source term. Also, the turbulent

parameters under this modification are controlled in the same fashion. After specifying Reλ, the

value for Q required for a given ν can be calculated straightforwardly from Eq. 3.4, and the long-time

kinetic energy and dissipation rate can be determined from Eq. 3.5. The modification proposed does

mitigate the “localness” of Lundgren’s original method, as a globally-averaged quantity, k, is added

to the source term. However, the stability resulting from this modification, which is discussed later,

justifies this mitigation.

It is found that this modified source term does not significantly or detrimentally impact the gen-

erated turbulent fields; its sole effect is to reduce the oscillatory behavior of the turbulent statistics.

This can be verified both analytically and graphically via a comparison between the turbulent fields

produced under the action of the original and modified source terms. The analytical justification

for this claim is addressed first.

The turbulent kinetic energy equation corresponding to Eq. 3.6 is,

dk

dt
= −ε+Q

k0

k
〈u2
i 〉 = −ε+ 2Qk0, (3.7)

where incompressibility and homogeneity are assumed. At stationarity, it is obtained,

0 = −ε+ 2Qk0. (3.8)
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Note that the only difference between this equation and that of the original source term (Eq. 3.2

and Eq. 3.3) is that now, instead of the instantaneous turbulent kinetic energy being of importance,

only the long-time asymptotic (stationary) turbulent kinetic energy is important. This has the effect

of reducing the variation in the resulting dissipation rate, ε. Further, the physical meaning of the

forcing parameter Q is preserved under this proposed modification. It is still related to the eddy

turn-over time via Q = (2τ0)
−1

, where τ0 = k0/ε. This eddy turn-over time is equivalent to the τ

from the original source term once stationarity sets in, as k = k0 and ε = ε0.

It is of note that using this modified source term is more consistent with spectrally-based forcing

schemes. Spectral schemes generally inject a fixed, constant amount of energy into the computational

domain during each timestep. As the modified source term results in a term in the turbulent kinetic

energy equation that depends only on k0 and Q, both of which have constant, temporally unchanging

values, it is conceptually similar to the more widely-used spectral forcing schemes.

3.2 Simulation Study

In addition to analytical support for the claim that the modified source term has only the intended

effects of reducing unwanted oscillations in the calculated turbulent statistics, simulation-based

(practical/empirical) verification is now provided. A comparison between turbulent physics produced

by the modified and original source terms is performed for two Reλ cases: Reλ = 110 and Reλ = 140

on an N3 = 3843 grid and an N3 = 5123 grid, respectively. For the Reλ = 110 cases, the forcing

parameters are Q = 0.96 and ν = 0.005. For the Reλ = 140 cases, the forcing parameters are

Q = 1.40 and ν = 0.005. In all cases, the grid resolution is kept at κmaxη ≥ 1.5.

The initial velocity fields were Gaussianly distributed following the initialization procedure in

Eswaran and Pope [33]. In the plots to be referenced, the legend entries “Original” and “Modified”

denote the results obtained when implementing the original and modified source terms, respectively.

The “Original” and “Modified 1” data were subject to initial conditions of k(t = 0) = 0.014 and

ε(t = 0) = 7.3× 10−4 for both Reλ; “Modified 2” data had initial conditions of k(t = 0) = k0 = 17

and ε(t = 0) = 0.87 for Reλ = 110 and k(t = 0) = k0 = 36 and ε(t = 0) = 1.83 for Reλ = 140. As will

be shown in Figs. 3.1-3.6, the results appear to be independent of the initial conditions implemented.

The code package used to perform these simulations is NGA [26]. The code is physical (non-spectral),

suitable for low Mach number flows, and uses a standard staggered grid. The velocity field is solved

implicitly via a second-order accurate finite-difference scheme, and this scheme is discretely energy

conserving. The time advancement is accomplished by a semi-implicit Crank-Nicolson method.

Further details on the simulation code employed can be found in Appendix 8.3, Appendix 8.4, and

Appendix 8.6.

The first two statistics of interest are the time evolution of the turbulent kinetic energy and the
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dissipation rate, which are depicted in Fig. 3.1 and Fig. 3.2. As is apparent from the statistics for the

original source term, there is considerable variation in turbulent kinetic energy and dissipation rate

even after stationary conditions have set in (approximately t/τ ≥ 15 for Reλ = 110 and Reλ = 140).

As shown in Fig. 3.1(a) and Fig. 3.2(a), large jumps in calculated turbulent statistics are possible

when the original source term is used (e.g. t/τ ≥ 30), and these cannot be modulated. The modified

source term, as evidenced by both the Reλ = 110 and Reλ = 140 cases, produces markedly smoother

statistics, free from significant deviations from the asymptotic stationary values. It is important to

note, also, that statistical stationarity is obtained much more rapidly with the modified source term

(t/τ ≥ 4 for both Reλ) than with the original source term (t/τ ≥ 15 for both Reλ). Regardless,

however, both the original and the modified source terms produce equivalent eddy turn-over times,

as depicted in Fig. 3.3. This is significant, as it supports the earlier claim that only the variations

are being damped by the modified source term; the underlying physics are largely unchanged.

Since all relevant turbulent fields (e.g., the energy spectrum, E(κ), the dissipation spectrum,

D(κ), and the transfer spectrum, T (κ)) are related directly to the dissipation rate and turbulent

kinetic energy, the variation in these metrics correspondingly decreases. The practical ramifications

of this is quite significant, as fewer datasets are now required to obtain statistically stationary, time

invariant statistics. This translates into shorter simulations and a reduced computational burden.

As the key turbulent statistics indicate that the modified source term is having the intended effect

of reducing large amplitude oscillations without significantly altering any asymptotic behavior, the

spectra generated are presented now to verify that the spectral distribution of energy has not been

affected. The energy, dissipation, and transfer spectra for the six cases are provided in Fig. 3.4,

Fig. 3.5, and Fig. 3.6. In these three sets of spectra, the distribution in wavespace is unchanged;

the magnitudes of the curves, however, do vary slightly (as expected) between the turbulent fields

obtained with the original and modified source terms. This slight variation is most pronounced

in the dissipation spectra (Fig. 3.5), and these differences in magnitude can be attributed to the

oscillatory behavior of the turbulent fields obtained with the original source term. The critical

feature of Fig. 3.4, Fig. 3.5, and Fig. 3.6 is that the respective spectrum shapes are preserved when

implementing the modified source term.

3.3 Linear Perturbation (Stability) Analysis

The objective of applying a velocity field forcing method is to prevent the decay of the turbulent fluc-

tuations. While it is difficult (if not impossible) to prove convergence towards a unique statistically

stationary state irrespective of initial conditions, all numerical tests performed tend to suggest that

this is the case. However, it has been shown that the original form of the source term induces sig-

nificant oscillation in the long-time behavior of its produced turbulent statistics, while the modified
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Figure 3.1: Time evolution of turbulent kinetic energy. The (black) dashed line denotes the expected
stationary value, k0, calculated from Eq. 3.5.
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Figure 3.2: Time evolution of dissipation rate. The (black) dashed line denotes the expected sta-
tionary value, ε0, calculated from Eq. 3.5.
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Figure 3.3: Time evolution of eddy turn-over time. The (black) dashed line denotes the expected

stationary value, τ0, calculated from τ0 = (2Q)
−1

= k0/ε0.
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Figure 3.4: Energy spectra at statistical stationarity (averaged over a minimum of 10 τ). Here, η is
the Kolmogorov length-scale, defined as η = (ν3/ε)1/4.
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Figure 3.6: Transfer spectra at statistical stationarity (averaged over a minimum of 10 τ). The

transfer spectrum is defined as T (κ) = 〈−ûiF
(
uj

∂ui
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)
〉, a scalar function of the wavenumber.

Here, F (·) denotes the Fourier transform and û denotes the Fourier-transformed velocity field.
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source term does not. To better understand the reasons behind these oscillations, a straightforward,

perturbation-based analysis of the two relevant governing equations for the turbulent kinetic energy

and dissipation rate around the asymptotic values of k0 and ε0 is conducted. The pertinent turbulent

kinetic energy equations are Eq. 3.2 for the original source term and Eq. 3.7 for the modified source

term. These expressions involve the dissipation rate directly, necessitating an evolution equation for

this parameter also. Although an analytical transport equation for the dissipation rate is attainable

by manipulation of the momentum equations (Eq. 3.1 and Eq. 3.6), the resulting expressions are

not closed, a commonly-encountered problem in the study of turbulence. As an approximation, a

k − ε model evolution equation [99] is assumed, which can be written in a general form as,

∂ε

∂t
+ Uj

∂ε

∂xj
= Cε1

ε

k
τij
∂Ui
∂xj
− Cε2

ε2

k
+

∂

∂xj

(
(ν + νT /σε)

∂ε

∂xj

)
+ f, (3.9)

where Uj and νT denote mean velocity and turbulent eddy-viscosity; σε, Cε1, and Cε2 are positive

constants resulting from closure approximations; and f is a source term resulting from the velocity

field forcing method implemented. Under the present configuration (isotropic, triply periodic box

turbulence) and using the conditions of homogeneity and a zero mean velocity, this reduces to,

∂ε

∂t
= −Cε2

ε2

k
+ f, (3.10)

where f = 2Qε under the action of the original momentum source term and f = 2Qε (k0/k) under

the action of the proposed modified source term. This form of f (and Eq. 3.9) is obtained by taking

the following moment of the proper momentum equation (Eq. 3.1 or Eq. 3.6),

2ν 〈 ∂ui
∂xj

∂

∂xj
[N (ui)] 〉 = 0. (3.11)

Here, N (ui) represents the appropriate momentum equation (Eq. 3.1 or Eq. 3.6). It is important

to note that the above expression (Eq. 3.9) is only a model and may not describe adequately the

evolution of ε under all conditions.

The turbulent kinetic energy and dissipation rate are perturbed about their asymptotic (time-

invariant) mean values, k0 and ε0, according to k = k0 + k′ and ε = ε0 + ε′. These perturbed

expressions are inserted into Eq. 3.2, Eq. 3.7, and Eq. 3.10. For the original source term, the results

are,

(a) 0 = −ε0 + 2Qk0 (b)
dk′

dt
= −ε′ + 2Qk′

(c) 0 = −Cε2
ε0
τ0

+ 2Qε0 (d)
dε′

dt
=
Cε2
τ2
0

k′ + ε′
(

2Q− 2
Cε2
τ0

)
, (3.12)

where only terms that are at most first-order (linear) in the perturbed quantity have been kept. For
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the modified source term, the results are,

(a) 0 = −ε0 + 2Qk0 (b)
dk′

dt
= −ε′

(c) 0 = −Cε2
ε0
τ0

+ 2Qε0 (d)
dε′

dt
=

(
Cε2
τ2
0

− 2Q

τ0

)
k′ +

(
2Q− 2

Cε2
τ0

)
ε′. (3.13)

To obtain these linearized perturbation equations, the denominators of the dissipation rate equations

(Eq. 3.12 and Eq. 3.13) were Taylor-expanded for small k′. Under statistically stationary conditions

and, irrespective of the source term used (original or modified), it is recovered Q = ε0/(2 k0) =

1/(2 τ0). Additionally, it is found that a necessary (but not sufficient) condition for the existence

of an asymptotic state is that Cε2 = 1. (This result is independent of the form of the source term.)

This value for Cε2 differs from that of a standard k − ε model [50, 102], as it now corresponds

to a stationary, forced turbulent field, not a decaying one. As such, Eq. 3.10 with Cε2 = 1 may

not be used to describe the initial stages of the forced velocity field (prior to reaching statistical

stationarity), and it may not be used to prove convergence independent of the initial conditions (i.e.

k0 and ε0).

Using Eq. 3.12 and Eq. 3.13, the needed coupled turbulent kinetic energy-dissipation rate system

can be specified. For the original source term, this system takes the form in Eq. 3.14(a). For the

modified source term, this system takes the form in Eq. 3.14(b). For the modified forcing method

proposed to be stable, a necessary condition is that perturbations about the asymptotic values of

k0 and ε0 should temporally decrease; such behavior is indicated by the eigenvalues of the coupled

equation system.

(a)
d

dt

k′
ε′

 =
1

τ0

 1 −τ0

1
τ0

−1


k′
ε′

 (b)
d

dt

k′
ε′

 =
1

τ0

0 −τ0

0 −1


k′
ε′

 (3.14)

For the original momentum source term, the eigenvalues are found to be zero, λ1 = λ2 = 0.

Eigenvalues of zero are associated with marginal stability, implying that oscillations will neither be

compelled to grow nor to decay in time. There is no mechanism to dampen or reduce the amplitudes

of the fluctuating turbulent quantities. It is believed that this is the cause for the sensitivity and

oscillatory nature of the turbulent kinetic energy and dissipation rate statistics depicted in Fig. 3.1

and Fig. 3.2.

Alternatively, when the eigenvalues corresponding to the system for the modified source term

are calculated, one eigenvalue is found to be negative, λ1 = −1/τ0, and the other is found to be

zero, λ2 = 0. The negative eigenvalue suggests that variations in calculated turbulent quantities will

be driven towards progressively smaller amplitudes. This negative eigenvalue is responsible for the

improved long-time behavior of the pertinent turbulent field statistics, and justifies the proposed
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modification to Lundgren’s original source term.

3.4 Summary and Conclusions

In summary, although Lundgren’s original velocity field forcing technique can successfully drive a

turbulent field to and sustain it at the desired Reλ, the turbulent statistics are subject to con-

siderable and large oscillations in their long-time behavior. A practical implication of these large

amplitude fluctuations is that simulations must be conducted for a significantly longer period of

time in order to obtain time-invariant quantities. Through a linear perturbation analysis, the cause

for this undulating statistical behavior has been connected to the form of the momentum source

term appended to the Navier-Stokes equations and to the resulting stability characteristics of the

forced-turbulent kinetic energy-dissipation rate equation system. A modification to Lundgren’s mo-

mentum source term has been proposed, which is more consistent with existing spectral forcing

methods. Upon application of this modified source term, the temporal behavior of the turbulent

statistics was found to be improved, while the spectral characteristics of the velocity field produced

were preserved. Moreover, statistical stationarity was reached much earlier in the simulation when

the proposed modification was implemented. As DNS studies are computationally intensive from the

outset, this reduction in the time necessary to attain temporally-invariant turbulent physics when

using the proposed modified source term is of practical significance.
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Chapter 4

Turbulent Mixing in the Scalar Field [14]

Turbulent mixing in the velocity field is not the only type of mixing of concern in the current

work. The numerical framework to be proposed also endeavors to represent accurately turbulent

mixing in the scalar field. Accordingly, a new scalar field forcing method has been developed to

simulate the relevant scalar field physics in preparation for the later study of mixing in turbulent

buoyant mixing layers.

A passive scalar is a quantity in a flow that will convect and diffuse without impacting the evo-

lution of the velocity field. The mixing of these types of scalars in turbulent flow environments are

found in a broad range of fields, including combustion, atmospheric flow dynamics, and oceanog-

raphy. Direct Numerical Simulation (DNS) studies of scalar mixing often use numerically-forced

velocity and scalar fields to prevent the turbulent fluctuations from decaying. To ensure that results

obtained in such DNS studies are representative of the physics of scalar mixing, and not an artifact of

the numerical schemes, the forcing methods used must not alter the physics of the flow configuration

to be studied. The most commonly used method for sustaining turbulent fluctuations in a scalar

field is to supply scalar variance continuously via a spatially-uniform mean scalar gradient [105, 30].

Spectral schemes utilizing low waveband forcing [46] have been used also, and these supply scalar

variance over a narrow band of waveshells within the turbulent scalar field. These methods are both

equivalent to holding the scalar variance constant via continuous variance injection. This chapter

presents a new scalar forcing technique that instead uses one-time variance injection to prevent

variance decay. It is shown that this new scalar forcing methodology corresponds to a distinctly

different physics than the other two commonly used methods, and that it is more representative of

the mixing regime of ultimate interest.

There are many applications in which forcing proportional to a scalar gradient is physically

meaningful. In many oceanographic and atmospheric flows, there are gradients in species concen-

tration or temperature. In these instances, as long as the gradient of the scalar quantity of interest

This chapter is based on the publication [14]: P.L. Carroll, S. Verma, and G. Blanquart. “A novel forcing technique
to simulate turbulent mixing in a decaying scalar field.” Physics of Fluids. 25(9):095102, 2013.
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is uniform over distances longer than the largest characteristic length-scale of the turbulent flow,

implementing such a numerical forcing technique is entirely consistent with the physics of the flow

configuration [20, 21]. Applying a spatially uniform scalar gradient across the scalar field allows this

field to remain homogeneous and to reach a state of statistical stationarity [41, 29, 21]. Nevertheless,

the imposed mean scalar gradient introduces robust anisotropy into the scalar field, which can be

problematic for studies of scalar mixing under isotropic conditions. Low waveshell spectral forcing

techniques [46, 96, 16] eliminate this problem by implementing a perfectly isotropic forcing term.

However, these schemes are less physically representative of experimentally attainable flows.

The goal of this work is to develop and validate a new scalar field forcing technique that can

capture the physics of self-similar scalar field decay, which is an inherently different physics than

that captured by the two existing scalar forcing methods. As decay processes are isotropic, the

statistics of isotropy need to be respected. Further, such a self-similar scalar mixing state is the

regime that is most appropriate for turbulent buoyant mixing, the study of which is the ultimate

aim of this work. Accordingly, the objectives for this forcing are two-fold. First, the forcing must

be able to reproduce scalar mixing under the desired turbulent conditions. Second, the forcing must

preserve the statistics of isotropic turbulence across all scales of the flow. These requirements will

be considered in light of existing velocity forcing methods, which have been proven to be effective

means of preventing turbulent kinetic energy from decaying [58, 81].

Central to this work is the observation that turbulent mixing of scalars may not always occur in

an environment where the scalar field is subject to continuous energy injection; these scalars may

undergo turbulent mixing where there is only an initial source of scalar energy, followed by scalar

variance decay. This new proposed scheme aims to create a scalar field constrained to constant

scalar energy (or scalar variance), and it will be shown to be equivalent to creating a state of

“normalized decay.” Examples of situations for which this forcing would be appropriate can be

found in engineering applications, such as in heated grid turbulence experiments, and in natural

phenomena, such as sedimentation processes found in oceanographic flows. Note that these types of

flows are subject to buoyancy effects. This proposed forcing scheme, referred to as the linear scalar

forcing method throughout the remainder of this work, is validated against its ability to predict

the statistical characteristics and energy spectrum of a scalar field subject to temporal decay. The

forcing method is examined over a range of relatively low Taylor-Reynolds numbers and low to

moderately high Schmidt numbers.

The structure of this chapter is as follows. Section 4.1 provides a brief overview of passive scalar

transport. Section 4.2 presents the two most commonly implemented scalar forcing methods (mean

gradient and low waveband spectral) and introduces the linear scalar forcing method. The derivation

and motivation for the linear scalar forcing method is provided. Section 4.3 describes the connection

between the physics captured by scalar field forcing methods to those measured in experimentally



57

attainable geometries. Section 4.4 details the procedure and test cases used to validate the linear

scalar forcing method. Additionally, key single- and two-point scalar field metrics are shown and

used to support the physical fidelity of the proposed method. Section 4.5 investigates high Schmidt

number physics as generated by the mean gradient and the linear scalar forcing method. This is done

to highlight the distinctly different physics (continuous vs. one-time scalar variance injection) to

which the two methods correspond. Lastly, Section 4.6 provides a justification as to why the proposed

method is appropriate for turbulent and turbulent buoyant mixing studies. It is noted here that

the code implemented in the presented simulations is described in Appendices 8.3, Appendix 8.4,

and 8.6, and the scalar transport schemes implemented (HOUC5 and QUICK) are described in

Appendix 8.5.

4.1 Turbulent Scalar Transport and Yaglom’s Equation

4.1.1 Scaling Regions in the Scalar Energy Spectrum

Prior to delving into the specifics of scalar field forcing, an overview of a few of the most salient

features involved in passive scalar transport is given. Following Chapters 2 and 3, the spectral

content of a scalar field is analogous to that discussed for the velocity field. The kinetic energy in

the velocity field is distributed spectrally, and this spectral distribution is described by the energy

spectrum, E(κ). The integral of E(κ) in wavespace provides the turbulent kinetic energy, k =

1
2 〈uiui〉 =

∫ κ
0
E(κ) dκ. If the Reynolds number is high enough to support complete separation

between the energy producing and the energy dissipating scales, then there manifests a (self-similar)

inertial subrange across the so-called inviscid scales, 1/l0 � κ � 1/η. Here, l0 and η remain

the integral length-scale for the velocity field and the Kolmogorov scale (η =
(
ν3/ε

)1/4
). Within

this range, under suitably high Reynolds number conditions, the classic energy spectrum scaling is

obtained,

E(κ) ∝ ε2/3κ−5/3. (4.1)

Such spectrum scaling approaches to turbulence revolve around characterizing the dependence of

flow statistics on the range of scales present, while also incorporating the effects of multiple physical

processes acting over different scales in space and time [77]. A similar approach can be applied to

the scalar field to develop scalar energy spectrum scalings [91]. In the scalar field, the scalar energy

spectrum, EZ(κ), has a form that is dependent on the relative comparison of the size of the smallest

viscous scale (η) to the smallest diffusive scale (the Batchelor scale, ηB = ηSc−1/2). Note that this

still assumes that the Reynolds number is sufficiently high for an inertial subrange to form in the

velocity field. Thus, depending on the Schmidt number, Sc, of the flow, the behavior of the scalar
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energy spectrum across these inviscid scales varies.

Kolmogorov’s phenomenological theory of turbulence was first applied to passive scalar transport

by Obukhov [69] and Corrsin [21] for Sc ∼ O(1). This was accomplished by relating the time-scale,

τκ = κEZ(κ)/χ, of the scalar energy spectrum at a particular scale, 1/κ, to that of the velocity

field, τv =
(
ε1/3κ2/3

)−1
, at the same scale. If Sc ∼ O(1), then the range of scales present in the

scalar and velocity fields ought to be similar. Here, and throughout the remainder of this thesis,

χ = 〈2D|∇Z|2〉 is the scalar dissipation rate. When τκ is equated with τv, the energy spectrum

obtained is,

EZ(κ) = COCχε
−1/3κ−5/3. (4.2)

This is valid for the range of scales 1/L � κ � 1/ηB , and COC is the Obukhov-Corrsin constant.

This range of scales, across which neither viscosity nor diffusivity is important, is termed the inertial-

convective subrange.

Similar efforts have also been applied to derive scaling laws for the scalar energy spectrum

under high (Sc � 1) and low (Sc � 1) Schmidt number conditions. Under high Schmidt number

conditions, the Batchelor scale, ηB , is smaller than the Kolmogorov scale, η. In this instance, a

viscous-convective subrange may develop. In the viscous-convective subrange, κη � 1 and κηB � 1.

This implies that viscosity is important, but diffusivity is not yet important. Batchelor [7] derived

an expression for the scaling across such a region of the scalar energy spectrum by arguing that

the scalar field at these scales were subject to a strain-rate of τ−1
η = (ν/ε)

−1/2
. If this is equated

with the scalar energy time-scale τκ = κEZ(κ)/χ, then Batchelor’s classic energy spectrum scaling

is obtained,

EZ(κ) = CBχ (ν/ε)
1/2

κ−1. (4.3)

This is valid for the range of scales 1/η � κ� 1/ηB and CB is the so-called Batchelor constant. A

slight correction to this was later added by Kraichnan [49]; this correction allowed for the strain-rate

to fluctuate instead of being a constant, as assumed by Batchelor (τ−1
η = (ν/ε)

−1/2
). This scaling

will be revisited in Section 4.5, and the assumptions on which it is based are more thoroughly

discussed.

Under low Schmidt number conditions, an inertial-diffusive region of the scalar energy spectrum

may emerge. This region is described by κηB � 1 and κη � 1. Batchelor provided an energy

spectrum scaling for this span of diffusion dominated scales based on a balance between convection

and diffusion [42],

EZ(κ) =
1

3
CKχε

2/3D−3κ−17/3. (4.4)
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Figure 4.1: Figure modified from A First Course in Turbulence [91] (Fig. 8.11).

Gibson [42, 39] also offered a scaling argument for this class of scalar field physics based on consid-

erations focused around zones of weak or vanishing scalar gradients,

EZ(κ) = CGχD−1κ−3. (4.5)

As this regime of scalar field physics, Sc � 1, has not been subject to rigorous examination by

Direct Numerical Simulation (DNS) studies and it is difficult to experimentally probe, these two

scaling expressions are largely untested.

A sketch of these regions of the scalar energy spectrum is provided in Fig. 4.1. This sketch serves

to highlight the role of Sc in determining the span of scales present in the scalar field. This work

focuses only on the inertial-convective and viscous-diffusive subranges of the scalar energy spectrum,

as low Sc conditions are not considered. However, the included description of the inertial-diffusive

subrange is included for the sake of completeness.
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4.1.2 Yaglom’s Equation

In Chapter 2, the Karman-Howarth (KH) equation was derived. The KH equation described the

evolution of velocity correlation, f(r), in terms of structure functions Bll(r) and Blll(r). Recall

that r corresponded to the magnitude of the two-point separation between fluid points. Thus,

r = |r|. These structure functions were defined in terms of correlations of moments of velocity

field differences (Eq. 2.9). A similar type of evolution equation for the scalar field was derived by

Yaglom [4, 63, 101] in terms of the second-order moment of the scalar increment, 〈(∆Z)
2〉, and the

third-order mixed moment of the scalar increment with the longitudinal component of the velocity

increment, 〈∆ul (∆Z)
2〉. Here, ∆Z = Z(x+ r, t)− Z(x, t) and ∆ul = ul(x+ r, t)− ul(x, t).

Note that the averaging procedure, 〈·〉, as intially performed by Yaglom denoted time averaging.

In the current work, time averages can be replaced with volume averages. The current work is con-

cerned only with turbulent fields that reach a state of statistical stationarity. Under this condition,

ensemble averages are equivalent to averages over an infinite time. Similarly, since the configuration

in all presented data sets is homogeneous in space, ensemble averages are equivalent to averages over

an infinite volume. Thus, ensemble averages can be represented as volume averages over the triply

periodic domain.

Following the same procedure as outlined in Chapter 2 to derive the KH equation, Yaglom’s

equation can be obtained by manipulating the (incompressible) advection-diffusion equation at two

different fluid points. Using the notation Z = Z(x, t), Z ′ = Z(x+ r, t) = Z(x′, t), ui = ui(x, t), and

u′i = ui(x+ r, t) = ui(x
′, t), the relevant equations become,

∂Z

∂t
+ ui

∂Z

∂xi
=

∂

∂xi

(
D ∂Z
∂xi

)
(4.6)

∂Z ′

∂t
+ u′i

∂Z ′

∂x′i
=

∂

∂x′i

(
D∂Z

′

∂x′i

)
. (4.7)

By multiplying Eq. 4.6 by Z ′ and Eq. 4.7 by Z, and then adding the two resulting expressions, Ya-

glom’s equation is found [4, 22, 23, 72, 101, 63]. Note that in Eq. 4.6 and Eq. 4.7, Z is the fluctuating

scalar quantity, ui is the velocity component, and D is the molecular diffusivity. When these two

resulting expressions are summed, (ensemble) averaged, have the assumptions of homogeneity and

isotropy applied (such that ∆ul(r) = ∆ui(r)ri/r), and volume-integrated, it is obtained,

−2

3
χr − 1

r2

∫ r

0

y2 ∂

∂t
〈(∆Z)

2〉 dy = 〈∆ul (∆Z)
2〉 − 2D d

dr
〈(∆Z)

2〉. (4.8)

This equation has four terms each of which is now a function of the magnitude of the two-point

separation distance between fluid points, r = |r|. Beginning on the left-hand side, there are two

terms. The first term on the left-hand side is associated with the transfer of scalar variance at scale
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r. The second term on the left-hand side is a so-called non-stationary term. In the cases to be

considered in this study, this term is necessarily zero, as all scalar fields to be presented are forced

to a state of statistical stationarity. The right-hand side also has two terms. The first term on the

right-hand side is a turbulent advection term that is associated with the transfer of scalar variance

at scale r. The term on the far right is a diffusive term, which describes the transport of scalar

variance by diffusion [22, 23, 72, 42].

In Yaglom’s original derivation, the non-stationary term was neglected. Thus, Yaglom’s equation

describes the transfer of scalar variance (left-hand side) as having contributions from turbulent

advection and molecular diffusion (right-hand side),

−2

3
χr = 〈∆ul (∆Z)

2〉 − 2D d

dr
〈(∆Z)

2〉. (4.9)

Under conditions where the diffusivity of the scalar is not of importance, such as across ηB � r � lZ ,

where lZ is the integral scale of the passive scalar [42], Yaglom’s relation, or the two-thirds law, is

obtained,

〈∆ul (∆Z)
2〉 = −2

3
χr. (4.10)

It should be here noted that one of the necessary conditions for the realization of the two-thirds

law is the neglect of the diffusion term, and this is valid in both the inertial-convective and viscous-

convective subranges of the scalar field. One of these ranges will manifest if either the Reynolds

number is sufficiently high (Re ∼ O(104)) [79, 80] or the Schmidt number is large (Sc� O(1)).

It is not uncommon to calculate the mixed third-order correlation term, 〈∆ul (∆Z)
2〉, and χ, and

then to compensate their ratio by the separation distance, r, to determine how closely a given scalar

field approaches the two-thirds law [4]. However, it is not entirely agreed upon as to the rate at

which such an asymptotic behavior is approached (〈∆ul (∆Z)
2〉/ (χr) = −2/3), nor how the explicit

and implicit assumptions in Yaglom’s derivation affect its realization in real flow fields. It follows

from this that, for the current work, the asymptotic behaviors of the terms in Yaglom’s equation

are not investigated for any of the scalar field data to be presented. This is done for four reasons.

First, the Reynolds and Schmidt numbers included in this thesis are relatively low or moderate

(Reλ ≤ 140 and 1 < Sc < 256). For intermediate Reynolds numbers (100 < Reλ < 500) and

moderate Schmidt numbers, Yaglom’s (and Kolmogorov’s) equation are known to not be satisfied,

as both assume a sufficiently high Reλ to ensure scale separation and an inviscid subrange in the

scalar (and velocity) field [23, 65, 66]. Second, a span of Sc are examined. It has been suggested

that the asymptotic behavior of these mixed third-order and second-order moments has a Schmidt

number dependence [72]. These two points create uncertainty as to the asymptotic behaviors that

ought to be obtained for the terms in Yaglom’s equation. Third, the objective of this chapter is to
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develop, discuss, and validate a new scalar field forcing technique. Calculating the behavior of the

turbulent transport term and the diffusive transport term in Eq. 4.9 does not advance this objective.

However, an introduction and brief discussion of Yaglom’s equation is included here for completeness

and to draw a corollary with the work presented for the velocity field in Chapter 2. Lastly, although

the scalar forcing methods derived in this chapter focus on passive scalar quantities, an ultimate

end of this work is to study variable density scalar mixing. In this instance, the scalar is active. As

such, it is not known how (or if) Yaglom’s relation holds under these circumstances.

4.2 Scalar Field Forcing Methods

4.2.1 Mean Scalar Gradient Method

In simulation studies of turbulent passive scalar mixing, the mean scalar gradient forcing technique

superimposes a uniform mean gradient across the scalar field,

z = Z + Gixi, (4.11)

where the total scalar quantity, z, is broken down into a fluctuating part, Z, and a spatially-varying

mean part, Gixi. All simulations discussed in this chapter impose the mean gradient in a single

direction, G = [−1, 0, 0]. Such a forcing technique captures the formation of ramp-cliff structures

in, and the intermittency of, the scalar field, consistent with the findings of experimental studies of

passive scalar mixing, by virtue of the anisotropy it induces [94, 97]. This scalar forcing technique

is quite effective, and it was created to capture the scalar field behavior present in grid turbulence

experiments [21].

The transport equation for the fluctuating scalar in the presence of a mean gradient, assuming

incompressibility (∂ui/∂xi = 0), is given by,

∂Z

∂t
+ ui

∂Z

∂xi
=

∂

∂xi

(
D ∂Z
∂xi

)
− Giui, (4.12)

where D is the molecular diffusivity. The imposed mean scalar gradient term, G, acts as an infinite

reservoir for the scalar field. Whenever there are losses due to dissipation, the presence of a gra-

dient term will immediately “inject” into the scalar field a scalar quantity magnitude sufficient to

compensate. Thus, it provides for continuous scalar energy injection, sustaining the scalar field at a

statistically stationary state. Beginning with the forced advection-diffusion equation, Eq. 4.12, and

multiplying by the scalar fluctuation, Z, results in,

∂Z2

∂t
+
∂
(
uiZ

2
)

∂xi
=

∂

∂xi

(
D∂Z

2

∂xi

)
− 2D ∂Z

∂xi

∂Z

∂xi
− 2 Z (Giui) , (4.13)
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where incompressibility has been assumed. When Eq. 4.13 is averaged over a triply periodic, homo-

geneous domain (in which all work to be presented is conducted), only the time derivative, scalar

dissipation rate (χ = 〈2D | ∇Z |2〉), and the forcing term retain non-zero values. This leaves,

∂〈Z2〉
∂t

= −χ− 2 Gi〈uiZ〉 = −χ+ 2 〈uxZ〉. (4.14)

The angled brackets, 〈 · 〉, refer to volumetric averages. Equation 4.14 implies that if the scalar field

were to attain perfect isotropy (i.e. 〈uiZ〉 = 0), then the time-rate of change of scalar variance

would always be negative and equal to the scalar dissipation rate (χ), causing continuous scalar field

decay. It is the anisotropy, evident from the skewed probability density function (PDF) of the scalar

fluxes in Fig. 4.2, that prevents the variance of the scalar field from decaying.

Further, due to the anisotropy inherent in this forcing mechanism, it is used primarily for passive

scalars; the velocity field affects the scalar field, but the scalar field does not couple back to effect

the velocity field. With an active scalar, the coupling is two-way, with information being passed

between the turbulent velocity and scalar fields. The anisotropy that is methodically maintained in

the scalar field would have the opportunity to permeate into the velocity field. There may be physical

configurations in which such a coupling is consistent with the physics governing the problem, but

this may not always be the case.

4.2.2 Low Waveband (Spectral) Method

Spectral forcing techniques continuously provide energy into the scalar field over a range of tightly

constrained, low wavenumber shells (κlower ≤ κ ≤ κupper) [16, 96, 46]. The advection-diffusion

equation resulting from such a forcing scheme is given by,

∂Z

∂t
+ ui

∂Z

∂xi
=

∂

∂xi

(
D ∂Z
∂xi

)
+ F−1

x {f̂Z(κ)}, (4.15)

where F−1
x {·} denotes the inverse Fourier-transform of the forcing term in spectral space. The

spectral forcing implemented in this work has a forcing term with a Gaussian distribution centered

about a wavenumber of κ = 3 that is active only between the upper and lower bounds of κupper = 4

and κlower = 2. With such a forcing scheme, as with the mean gradient method, the scalar variance

is held fixed in time because losses from scalar dissipation are balanced by continuous injection of

scalar variance into the scalar field by the forcing term, 〈ZF−1
x {f̂Z(κ)}〉.

The primary, and only significant, difference between the mean gradient and spectral scalar forc-

ing methods is that a random spectral forcing is capable of producing perfectly isotropic scalar fluxes,

as illustrated in Fig. 4.3(a). The character of the scalar field produced under the action of the two

forcings are consistent. Both produce a scalar quantity that is approximately normally distributed
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(a) Spectral velocity forcing [1]
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(b) Linear velocity forcing [81]

Figure 4.2: PDF of scalar fluxes obtained using a mean scalar gradient forcing and two different
velocity forcing techniques [1, 81]. The σ variables refer to standard deviations. The simulation
code implemented is described in Appendix 8.3 and Appendix 8.4, and the HOUC5 scalar transport
scheme implemented is described in Appendix 8.5. The simulation parameters are N = 5123,
Reλ = 140, Sc = 1, and κmaxηB = 1.5.
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Figure 4.3: Statistical metrics of the scalar field produced via low waveband spectral (random)
forcing versus mean gradient forcing (MG) (N = 2563, Reλ = 55, Sc = 1, κmaxηB = 3.0). The
simulation code implemented is described in Appendix 8.3 and Appendix 8.4, and the HOUC5
scalar transport scheme implemented is described in Appendix 8.5.

about a mean of zero and a log-normally distributed scalar dissipation rate. Representative results

are provided in Fig. 4.3(b). Furthermore, as depicted in Fig. 4.4, a low waveband spectral forcing

scheme and the mean scalar gradient scheme give comparable scalar spectra over a range of Schmidt

numbers, Sc = ν/D. Here, ν represents the kinematic viscosity of the fluid. Representative low and

high Sc cases are included in support of this claim.

As the only chief difference in these two methods is the issue of isotropy in the scalar fluxes,

the rest of this chapter focuses primarily on the direct comparison of the proposed linear scalar

forcing method to the mean scalar gradient forcing method. This comparison is preferred, as the

mean scalar gradient is more widely applied in simulation studies of mixing, and the configuration

it represents is more readily attainable experimentally.
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(a) N = 2563, Reλ = 55, Sc = 1, κmaxηB = 3.0 (linear velocity
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(b) N = 3843, Reλ = 8, Sc = 256, κmaxηB = 1.5 (spectral
velocity forcing [1])

Figure 4.4: Comparison of scalar energy spectra obtained using the mean gradient (MG) and random
spectral forcing.
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4.2.3 Linear Scalar Method

As discussed in Chapter 2, there are two broadly-accepted ways of forcing the velocity field in nu-

merical studies, linearly [58, 81] and spectrally [1]. The present work draws on Lundgren’s linear

forcing scheme [81] as inspiration for the development of the linear scalar forcing technique. Accord-

ing to the linear forcing scheme, momentum is injected into the velocity field proportional to the

magnitude of the velocity fluctuations, and it assumes the form,

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂

∂xj

(
∂ui
∂xj

)
+Qui, (4.16)

where Q is a constant related to the energy dissipation rate and eddy turn-over time, τ , and incom-

pressibility is assumed.

Forcing linearly is equivalent to injecting energy at all scales of the flow, from the integral scales

to the dissipative scales. But, as the fluctuations are the largest at the integral scales, the energy

injection is biased preferentially towards these larger scales. The linear forcing scheme is found

to produce characteristics consistent with the requirements of homogeneous, isotropic turbulence,

namely equal-averaged Reynolds stresses and symmetrically distributed scalar fluxes with reflec-

tional symmetry [81]. More relevant to the present work, Lundgren’s linear forcing method can be

connected directly to the self-similar nature of decaying turbulence [58]. In this method, energy

injection can be thought of as a rescaling of the kinetic energy to a constant value. By perform-

ing a change of variables in space, time, and velocity on the forced and unforced (freely-decaying)

momentum equations, Lundgren found that the transformed, freely-decaying momentum equation

admitted terms that were similar in form to those present in the linearly-forced momentum equation.

From this finding, he concluded that the effect of the linear forcing technique is similar to that of

energy decay, which is inherently isotropic and self-similar. Thus, the self-similar decay of energy in

the velocity field is suggested to be analogous to the imposed isotropic forcing term, Qui [58].

4.2.3.1 Self-Similarity of Scalar Mixing

Following Lundgren’s work on linear velocity forcing, the objective of this work is to develop a

new forcing scheme that reproduces the physics of the self-similar decay of a scalar field. The self-

similar regime of scalar mixing manifests itself whenever there is one-time energy injection into a

scalar field. Following this energy injection, there is a short-lived transient period of decay which

eventually gives way to a self-similar flow regime. Self-similarity, in the context of a decaying scalar

field, is characterized by the collapse of freely decaying scalar spectra onto a single spectrum shape

after appropriate normalization. To demonstrate this aspect of self-similarity, a scalar field is forced

to statistical stationarity and then allowed to decay. Referring to Fig. 4.5(a), forcing in the scalar

field is removed at t/τ = 0, and the variance is allowed to decay. Here, τ is the eddy turn-over time,
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Figure 4.5: Decay of scalar variance and collapse of scalar energy spectra in the self-similar regime
(N = 5123, Reλ = 140, Sc = 1, κmaxηB = 1.5).

which is equal to the ratio of turbulent kinetic energy to the energy dissipation rate. It is clear from

Fig. 4.5(a) that the scalar field is losing variance without the forcing term active. Figure 4.5(b)

illustrates the behavior of the self-similar field; the three normalized scalar spectra in Fig. 4.5(b)

correspond to the three data points in Fig. 4.5(a) at 1, 2.7, and 6.5 τ after the scalar forcing was

removed. The coincidence of the spectra to one unchanging shape when normalized by their variances

indicates that this scalar field has entered the self-similar regime.

Considering the nature of self-similar decay, it can be argued that to model this type of scalar

mixing, a scalar forcing method based on scalar variance normalization is needed. These concepts of

variance normalization and self-similarity, in addition to Lundgren’s insight that an isotropic forcing

can be thought of in terms of sustained, normalized energy decay, serve as the foundation for the

development of the proposed linear scalar forcing method.
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4.2.3.2 Derivation of the Proposed Linear Scalar Forcing Term

As mentioned previously, the development of this new scalar forcing is motivated by the successful

implementation [81] of the linear velocity forcing of Lundgren [58] and the concepts of normalization

and self-similarity. Note that in the derivation to follow that, although the same variables are used to

denote scalar quantities (Z and z), these quantities do not have the same definitions that were used

in Sections 4.2.1 and 4.2.2. Following Lundgren’s linear velocity forcing, a normalization method is

needed to drive the scalar field (z) towards a constant energy, or variance, σ2
z = 〈z2〉 − 〈z〉2. After

initialization, all turbulent quantities begin to decay as they are convected and diffused through the

simulation domain. The proposed scalar forcing technique seeks to generate self-similar conditions

by implementing two steps. First, there is a rescaling step. Second, there is a step to drive the

scalar field to a specified, imposed variance value, α2. The absolute value of the rescaled scalar

field variance, α2, is inconsequential; the significant factor is solely that the scalar field variance is

constant in time.

Beginning with the rescaling step, the scalar field is rescaled according to,

Z = z

√
α2

σ2
z

, (4.17)

where Z is the normalized, forced scalar quantity, z is the unforced (non-normalized) scalar quan-

tity, and σ2
z is the variance of the non-normalized scalar field. Using the normalization defined,

the required form of the linearly-forced advection-diffusion equation can be determined readily by

consideration of the spatially-averaged variance equation (Eq. 4.14 without the mean gradient term),

∂σ2
z

∂t
= −χ, (4.18)

where it has been assumed that the mean of the decaying scalar quantity is zero, 〈z〉 = 0. By

differentiating Eq. 4.17 and substituting Eq. 4.18, the rate of change of the rescaled scalar quantity,

Z, can be written as,

∂Z

∂t
=

√
α2

σ2
z

∂z

∂t
+

1

2

χ(z)

σ2
z

Z, (4.19)

where χ(z) and σ2
z are functions of the decaying scalar (z), not the rescaled scalar (Z). Recall

that the advection-diffusion equation for any scalar quantity under incompressible conditions can be

expressed as,

∂z

∂t
=

∂

∂xi

(
D ∂z

∂xi

)
− ui

∂z

∂xi
. (4.20)
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Using this expression for ∂z
∂t , Eq. 4.19 becomes,

∂Z

∂t
=

1

2

χ(z)

σ2
z

Z +
α

σz

(
∂

∂xi

(
D ∂z

∂xi

)
− ui

∂z

∂xi

)
. (4.21)

Note that α2 and σ2
z are volume-averaged quantities and, therefore, are constant with respect to any

spatial derivative. In other words,

∇Z =
α

σz
∇z, (4.22)

and, further,

χ (Z) = χ (z)
α2

σ2
z

. (4.23)

Substituting these expressions into Eq. 4.21 results in an expression for the time-rate of change of

the rescaled scalar quantity (Z) in terms of Z only,

∂Z

∂t
=

∂

∂xi

(
D ∂Z
∂xi

)
− ui

∂Z

∂xi
+

1

2

χ(Z)

α2
Z. (4.24)

Although the above expression is mathematically consistent with the rescaling step, it was found

that the scalar field could become divergent, depending on its initial variance. It is the presence of

α2 in the denominator that is responsible for this behavior. This behavior can be understood by

examining the variance equation corresponding to Eq. 4.24. Upon volume-averaging, applying the

condition of homogeneity, and recalling the definition of χ, Eq. 4.25 is obtained,

∂〈Z2〉
∂t

=
∂σ2

Z

∂t
= χ(Z)

(
σ2
Z

α2
− 1

)
. (4.25)

By inspection of Eq. 4.25, if the variance value (σ2
Z) is less than (greater than) α2, then the time

derivative of scalar variance will attain a negative (positive) value, and the scalar variance will decay

away towards zero (grow indefinitely).

To avoid this problem, an approximation is made. As it is the long-time (statistically stationary)

scalar field behavior with which this study is interested, not the initial transient behavior, α2 was

replaced with the variance of the rescaled scalar field, σ2
Z . This is a justifiable approximation, as at

stationarity, the rescaled scalar field variance will approach α2. This is not the case in the initial

transient period, but it is true in the long-time limit (α2 = σ2
Z). Thus, Eq. 4.24 can be written as,

∂Z

∂t
=

∂

∂xi

(
D ∂Z
∂xi

)
− ui

∂Z

∂xi
+

1

2

χ(Z)

σ2
Z

Z, (4.26)

where the last term on the right hand-side is a scalar production term. With such an expression, the
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right hand-side of Eq. 4.25 now becomes zero, enabling the scalar field to attain a state of constant

variance.

If energy were discretely conserved in the scalar field, then the solution of the above equation

analytically would lead to a statistically stationary scalar field with a constant variance, as the newly

added production term would balance exactly all molecular dissipation. Assuming the scalar trans-

port scheme implemented in the numerical solver is perfectly energy conserving, this production

term is sufficient to produce a scalar field with a constant time-averaged variance. However, if the

transport scheme implemented is not energy conserving (e.g. a Weighted-Essentially Non-Oscillatory

(WENO) scheme [53], a High-Order Upstream Central (HOUC) scheme [68], or Quadratic Upstream

Interpolation for Convective Kinematics (QUICK) scheme [52]), then there are losses in scalar vari-

ance due to numerical diffusion. These losses can be easily compensated for via the addition of

a second term, which is active only when the effects of numerical diffusion manifest in the scalar

field. Note that the simulation code implemented in this work is discretely energy conserving in the

velocity field, but it is not discretely energy conserving in the scalar field [26].

The constraints in constructing this second term are threefold. First, it should take the form of

a relaxation term, being active only when the variance of the rescaled scalar field is not equal to α2.

This will have the effect of driving the variance to α2 and sustaining it at α2. Second, it needs to

be dimensionally consistent with Eq. 4.24 (or, equivalently, Eq. 4.26). Lastly, the additional term

should be linear with respect to the rescaled scalar quantity, such that it preserves the linearity of the

rescaled and unforced advection-diffusion equations. In light of these requirements, this additional

relaxation term is of the form,

1

τR

(√
α2

σ2
Z

− 1

)
Z, (4.27)

where τR is a relaxation time-scale. If σ2
Z = α2, then the term is inactive, as the variance of the

rescaled field is at its desired value; if σ2
Z 6= α2, then more (or less) variance is added to (or subtracted

from) the rescaled scalar field. The role of the relaxation time-scale is to prevent the relaxation term

from adjusting too strongly to changes in scalar variance. Using a time-scale associated with the

larger scale flow structures instead of a smaller time-scale on the order of viscous processes (where

losses in scalar variance actually occur) ensures that the scalar variance is adjusted sufficiently slowly

and smoothly to prevent transient behaviors from being introduced in the scalar field.

The final form of the scalar transport equation with the proposed linear scalar forcing technique

is obtained by combining Eq. 4.26 and Eq. 4.27,

∂Z

∂t
+ ui

∂Z

∂xi
=

∂

∂xi

(
D ∂Z
∂xi

)
+

[
1

τR

(√
α2

σ2
Z

− 1

)
+

1

2

χ(Z)

σ2
Z

]
Z. (4.28)



72

To reiterate, the proposed forcing function is composed of two terms. The relaxation term allows

the scalar field to evolve towards a specified variance, or average scalar energy, while the production

term balances exactly any losses from scalar dissipation. Note, however, that the relaxation term is

required only if the scalar transport scheme used is not energy conserving. If it is energy conserving,

then the relaxation term will be effectively inactive. This proposed linear scalar forcing scheme

has the advantage of being truly mathematically isotropic, imposing no preferred direction. It is

interesting to note that the production term is similar to the linear velocity field forcing term, Qui.

Analogous to Q, the linear factor, 1
2χ(Z)/σ2

Z , is the inverse of a time-scale. However, in this case,

it is the inverse of the scalar time-scale, τZ = σ2
Z/χ(Z).

4.3 Consistency of Mean Scalar Gradient and Linear Scalar

Forcing Methods with Physical Geometries

To place the concept of scalar field forcing on a more physical footing, the physical conditions to

which forcing proportional to a mean scalar gradient (Section 4.2.1) and forcing according to the

linear scalar method (Section 4.2.3) correspond are discussed. The mean scalar gradient method is

addressed first.

The physical situation for which forcing proportional to a mean scalar gradient stands as a proxy

in simulation studies (e.g., [41, 73, 97, 98, 105]) is commonly found in decaying grid turbulence

experiments (e.g., [5, 44, 66, 94]). In these experimental studies, scalar field metrics (e.g., one-

dimensional spectra, scalar flux, scalar structure functions, scalar field statitics, etc.) are extracted.

Generally, the wind tunnel in which these studies are performed has a mean temperature gradient

placed across it, and the scalar of interest is the temperature. The mean temperature gradient is

usually small such that temperature can be treated still as a passive scalar quantity [5]. The presence

of the mean temperature gradient is sustained by heating the front and the back of the wind tunnel

differentially. This perpetuates the gradient throughout the experiment and supports temperature

fluctuations in the scalar field being convected. The mean scalar gradient forcing method was

originally developed to capture this kind of physical scenario [21].

The physical situation for which forcing according to the linear scalar method is appropriate is

slightly different. As discussed previously, when the linear scalar method is applied, it sustains the

physics of self-similar scalar field decay. This class of physics is attained experimentally by making

use of heated grids [3, 5, 24, 44, 95, 94, 107]. This involves differentially heating mandoline wires to

a specified temperature to serve as a source of scalar (temperature) variance. Instead of heating the

front and back ends of the wind tunnel, only the grid itself is heated. Then, as the fluid of interest

is forced through the heated grid, an initial “injection” of temperature (scalar) variance is applied

to the flow. After this, the scalar field is convected downstream, and it enters into a self-similar
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regime of (isotropic) scalar field decay, as the temperature fluctuations are not replenished. This is

the class of physics that the developed linear scalar forcing method is meant to capture [14].

4.4 Validation of the Linear Scalar Forcing Method

The validation of the proposed linear scalar forcing takes the following form. First, the temporal

behavior of the forcing is investigated to ensure the average scalar variance asymptotes indeed to

a constant value, independent of the initial conditions imposed. Second, the impact of varying

the magnitude of the relaxation time-scale is studied. Third, the relevant single-point metrics for

isotropy, such as variance and the three scalar fluxes, are calculated to ensure appropriate behav-

ior. Additionally, the distributions of scalar quantities with accepted analytical forms, such as the

distribution of the scalar dissipation rate (log-normal), are calculated and verified to be predicted

correctly. Lastly, two-point statistics (e.g., spectra) are considered. For each (Reλ,Sc) combination

included in this study, the spectra generated from the linear scalar forcing are compared to spectra

from the decay of a scalar field in the self-similar regime.

4.4.1 Simulation Study

The primary objective of this study is to evaluate the characteristics of the proposed linear scalar

forcing technique in homogeneous, isotropic turbulent flow over a range of Schmidt numbers. The ve-

locity field is linearly-forced [81] in cases 1-3 and cases 6-11 (Table 4.1), as discussed in Section 4.2.3,

and spectrally-forced [1] in cases 4-5 to maintain a suitable Reλ. The scalar field is forced with both

the proposed method (referred to as LS) and the mean scalar gradient method (referred to as MG)

to allow for comparison.

The specific simulation parameters and fluid properties (kinematic viscosity, ν, and molecular

diffusivity, D), are summarized in Table 4.1. The columns entitled κmaxη and κmaxηB quantify the

simulation resolution, where κmax corresponds to the maximum wavenumber accessible in the simu-

lation, η is the Kolmogorov length-scale, and ηB is the Batchelor length-scale defined as ηB = ηSc−
1
2 .

The Kolmogorov and Batchelor length-scales indicate the smallest characteristic length-scales for the

velocity and scalar fields, respectively. Convention mandates highly restrictive resolution require-

ments for both the velocity and scalar fields when performing DNS studies, or the physics of the

dynamically important small scales will not be captured fully. The accepted resolution limits for

the velocity and scalar fields are κmaxη ≥ 1.5 and κmaxηB ≥ 1.5, respectively [104], for spectral

codes. As the code package implemented in this work is non-spectral, the limits κmaxη ≥ 3.0 and

κmaxηB ≥ 3.0 are used to ensure accuracy in the presented test cases. One unfortunate result of

these resolution criteria is that simulation studies are restricted to moderate Schmidt numbers, as

high-Schmidt number simulations can become too computationally expensive to perform.
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To illustrate the robustness and validity of the proposed scalar forcing, a parametric study is

performed. The parameters methodically varied include the relaxation time-scale, τR, the scalar

transport scheme, the nature of the initial conditions, and the Schmidt number, Sc. As will become

evident in the following sections, the proposed linear scalar forcing is quite robust.

The simulations to be presented were conducted in a configuration of 3-D periodic turbulence

of size (2π)
3
. They were performed with the NGA code package [26]. The code is physical (non-

spectral) and uses a standard staggered grid. The velocity field is solved implicitly via a second-

order accurate finite-difference scheme, and this scheme is energy conserving. The scalar field is

solved implicitly via either the QUICK scalar transport scheme, which is a third-order upwinded

finite-volume scheme [52], or a fifth-order accurate upwinded scheme (HOUC5) [68]. The time

advancement is accomplished by a semi-implicit Crank-Nicolson method [26]. Further details are

provided in Appendices 8.3 - 8.6.

Table 4.1: Simulation parameters for the DNS study conducted. N is the number of grid points,
and D is the molecular diffusivity of the scalar quantity. The following is of note. For cases 3 and 4,
τR = 0.1. This is done to reduce computational burden for this (Reλ, Sc) combination. For cases 4
and 5, the velocity field is spectrally-forced [1]; all others are linearly-forced. For case 4, the QUICK
scalar transport scheme is used.

Variation of Schmidt Number with HOUC5 scheme (except case 4) and τR = 1 fixed

Case ID N3 Reλ κmaxη κmaxηB Sc D
1 2563 55 3.0 3.0 1 7.50× 10−3

2 2563 55 2.4 3.4 0.5 1.50× 10−2

3 10243 55 11.8 2.95 16 4.69× 10−4

4 10243 140 3.4 3.4 1 2.80× 10−3

5 7683 8 49 3.06 256 6.20× 10−4

Variation of Scalar Transport Scheme with τR = 1, Sc = 1, and Reλ = 55 fixed

Case ID N3 Reλ D κmaxηB Scalar Scheme
1 2563 55 7.50× 10−3 3.0 HOUC5
6 2563 55 7.50× 10−3 3.0 QUICK

Variation of Relaxation Timescale with HOUC5 scheme, Sc = 1, and Reλ = 55 fixed

Case ID N3 Reλ D κmaxηB τR
1 2563 55 7.50× 10−3 3.0 1
7 2563 55 7.50× 10−3 3.0 0.1
8 2563 55 7.50× 10−3 3.0 0.5

Variation of Initial Condition with HOUC5 scheme, τR = 1, Sc = 1, and Reλ = 55 fixed

Case ID N3 Reλ D κmaxηB Initial Condition
9 2563 55 7.50× 10−3 3.0 Gaussian
10 2563 55 7.50× 10−3 3.0 Random
11 2563 55 7.50× 10−3 3.0 Mean Scalar Gradient-Forced
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4.4.2 Time Evolution

To illustrate the effectiveness of the proposed scalar forcing at driving the scalar field towards a state

of constant variance, consider Fig. 4.6(a), which contains the evolution of variance of the scalar field

as a function of time for cases 1-3 in Table 4.1. Initially, the energy content of the scalar field is

negligible. As the forcing is applied, the field assumes a constant scalar variance value, as determined

by the value of α2 specified. For all simulations performed, α2 was set to unity. As can be verified

from Fig. 4.6(a), the energy content of the scalar field does relax towards the imposed constant

value.

However, depending on the quality of the scalar transport scheme used, the scalar variance may

not assume a value of precisely unity. This is illustrated in Fig. 4.6(b). The disparity can be

explained as follows. The third-order accurate QUICK scheme suffers from comparatively greater

numerical diffusion than the fifth-order accurate HOUC5 scheme. Both curves shown in Fig. 4.6(b)

are obtained using the same value of τR, which is not sufficient to overcome the effects of numerical

diffusion when the QUICK scheme is used for scalar transport. Upon decreasing the value of τR, the

steady state scalar variance obtained with the QUICK scheme increases towards the desired value.

Note that the highest Reλ = 140 case included in this study is run with the QUICK transport scheme

instead of the less dissipative HOUC5 scheme due to numerical stability issues. To compensate for

any losses from utilizing the QUICK scheme, this Reλ = 140 case is run at increased resolution,

κηB = 3.4.

These observations verify that both the production and relaxation terms are necessary for the

success of the proposed scalar forcing technique. The production term compensates for losses in

scalar variance from physical diffusion, and the relaxation term accomodates for errors in the scalar

transport scheme and determines the final, steady state variance value. Further evidence of the need

to compensate for discretization errors can be obtained by examining Fig. 4.7, which depicts the

temporal variance data obtained when the proposed linear scalar forcing is run with and without

the relaxation term active. Initially (t/τ ≤ 23), the relaxation term is active and the scalar variance

is driven to and sustained at the specified α2 = 1 value. Then, the relaxation term is removed from

the forcing (t/τ ≥ 23). The scalar variance is observed to remain constant for approximately 5 τ

before losses due to the imperfect nature of the HOUC5 scheme begin to manifest as a reduction

in variance. Assuming perfect energy conservation in the scalar transport scheme, the production

term would be sufficient to sustain the scalar field at the desired variance value. Unfortunately, no

scalar transport scheme is truly energy conserving; physical schemes induce discretization errors and

spectral schemes may induce dealiasing errors. As a result, the relaxation term is necessary, and

once at statistical stationarity, it is only needed to compensate for numerical errors.

Recall that the relaxation parameter, τR, is a free parameter that controls the overall stiffness
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of the forced scalar transport equation, Eq. 4.28. To show the effectiveness of the proposed scheme

at driving the scalar field towards stationarity, τR is varied, as indicated in cases 1, 7, and 8.

Figure 4.8(a) indicates the impact of the relaxation parameter on the performance of the proposed

forcing. A smaller value, τR = 0.1, results in a faster initial rise to the specified variance and serves

to weight the relaxation term preferentially in comparison to the production term.

Additionally, the behavior of this linear scalar forcing is independent of initial conditions. The

effect of the initial conditions is qualified by making use of three different initialization methods.

First, the initial scalar field is generated as Gaussian in space (case 9), following the scalar field

initialization technique of Eswaran and Pope [33]. Second, a completely random field is used to seed

the simulation, consisting of random numbers bounded from −1 to 1 (case 10). Lastly, the initial

scalar field is taken to be a statistically stationary field obtained from implementing the mean scalar

gradient forcing (case 11). The impact of these three different initial conditions on the behavior of

the proposed forcing technique is depicted in Fig. 4.8(b). The proposed forcing technique successfully

drives the scalar field to a constant variance regardless of its initial state.

In summary, the (potential) impact of the addition of the relaxation term in Eq. 4.28 on the

long-term behavior of the scalar field has been investigated by considering different relaxation time-

scales (Fig. 4.8(a)), different initial conditions (Fig. 4.8(b)), and different times (e.g. t/τ = 2 and

t/τ = 35 in Fig. 4.7). The statistics are found to be unchanged. As a result, it is believed that it is

appropriate to conclude that the relaxation term included in Eq. 4.28 only drives the scalar variance

to its desired value. It has no adverse effect on the long-term statistics of the scalar field.

The statistical character of the scalar field under the action of the linear scalar forcing is found,

also, to be favorable and approximately Gaussian, consistent with experimental findings. The skew-

ness and flatness were calculated for each case included in the study. The skewness data indicated

that the scalar field was symmetric about its mean (equally probable to have positive and negative

scalar values), a requirement for homogeneous, isotropic turbulence. Additionally, the flatness of

the scalar field was found to have a value of approximately three, consistent with that of a Gaussian

distribution.

4.4.3 Single Point Scalar Field Statistics

To remain consistent with the physics of scalar mixing in a decaying turbulent field, the scalar

statistics must be isotropic and symmetric. To determine if the proposed forcing is able to reproduce

these requirements, the probability density functions of the three scalar fluxes for each simulation are

calculated for cases 1-4. These cases correspond to moderate Reλ = 55 conditions over a range of low

to moderate Schmidt numbers (Sc = 0.5, 1, and 16), and one high Reλ = 140 condition at Sc = 1.

These scalar fluxes are averaged over multiple τ (eddy turn-over times) and two representative PDFs

are depicted in Fig. 4.9. As is apparent in Fig. 4.9, the scalar fluxes are symmetrically distributed
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Figure 4.9: PDF of scalar flux with the proposed linear scalar forcing for cases 1 and 3.

about a value of zero. Comparable distributions were found for all Reλ and Sc examined in this

study. This is in contrast to the strong anisotropy in the scalar fluxes obtained with the mean scalar

gradient forcing (Fig. 4.2).

The distribution of the scalar and scalar dissipation rate are calculated also. Under conditions of

isotropy and homogeneity, the distribution of a scalar quantity is expected to be close to Gaussian,

while that of the scalar dissipation rate is close to log-normal. The PDFs for these two quantities

are included in Fig. 4.10. As shown in Fig. 4.10(a), the approximately Gaussian distribution of the

scalar quantity, Z, is preserved with the proposed forcing. Additionally, Fig. 4.10(b) indicates that

the commonly-accepted log-normal distribution for the scalar dissipation rate, χ, is preserved under

the action of the linear scalar forcing.
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4.4.4 Two-Point Scalar Field Statistics

The final test is to ensure that the proposed scalar forcing reproduces adequately the scalar energy

spectrum in the self-similar regime (Fig. 4.11). Towards that end, a scalar field is forced via the

mean gradient forcing from t/τ = −15 until t/τ = 0, after which it is allowed to decay. It is clear

from Fig. 4.11(a) that after t/τ = 0, the scalar variance decays in the absence of any external forcing.

The analysis that follows focuses on the three data points depicted in Fig. 4.11(a), obtained 1, 4,

and 7 eddy turn-over times (τ) after the beginning of decay, with the mean scalar gradient forcing

term zeroed. The scalar spectra for these three data points are presented in Fig. 4.11(b), along with

the spectrum obtained when the field is forced with a mean gradient, just prior to decay (t/τ = 0).

These spectra are not normalized, and they clearly indicate that the energy content of the scalar

field is decreasing. However, the shape of the spectra are largely unchanged, suggesting a possible

self-similar behavior.

To verify that the scalar field had entered a self-similar state, the spectra at 1, 4, and 7 τ after

the onset of variance decay are suitably normalized by their variances, σ2
Z . The results are displayed

in Fig. 4.11(c). The collapse of the spectra to one consistent curve for two of the three data points

(t/τ = 4 and 7) confirms that the scalar field has entered into a self-similar regime. The scalar

dissipation spectra, defined as D(κ) = Dκ2E(κ), are presented in the inset to highlight this collapse.

As shown in the dissipation spectra comparison, the data at t/τ = 1 does not collapse on to the

same spectrum as the other two, indicating that this data point is located in the transient period

between statistical stationarity and self-similar behavior. The number of eddy turn-over times (τ)

of decay needed for the scalar field to enter into the self-similar regime varies with Reλ and Sc;

in all cases included in this study, it was verified that sufficient time had passed to allow for the

self-similar regime to develop fully.

To prove that the linear scalar forcing produces the physics of self-similar decay, the decaying

spectra that have entered the self-similar regime, such as those in Fig. 4.11(c), are compared to

the scalar spectrum obtained when a scalar field is forced via the linear scalar forcing method.

Representative results are depicted in Fig. 4.11(d). Collapse of the normalized decaying spectra

onto the spectrum predicted by the linear scalar forcing confirms that the proposed forcing does

reproduce accurately the physics of scalar mixing in the self-similar regime. For clarity, only one

of the three decaying spectra, at t/τ = 7, is used for the comparison to the linearly-forced scalar

spectrum. It should be stated, however, that the spectra at t/τ = 4 and 7 exhibit the same behavior.

The preceeding analysis focused on case 1 in Table 4.1, where the Schmidt number was unity.

To confirm that this behavior persisted for non-unity Sc and other Reλ, the same analysis was

conducted using cases 2-5. In all cases, the freely decaying spectra assumed the spectrum shape

predicted by the linear scalar forcing method. Taking as examples the two extreme Sc included
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in this study (Sc = 0.5 and Sc = 256), Fig. 4.12 details the self-similar collapse of freely-decaying

spectra onto the spectrum shape predicted by the linear scalar forcing. The extent of agreement

between the decaying and linearly-forced scalar spectra is highlighted in Fig. 4.12 (c) and (d), which

display the dissipation spectra for the two cases. As is apparent, the linear scalar forcing predicts

the appropriate spectrum of a decaying scalar. This behavior was observed for all cases included in

this study and persisted irrespective of the initial conditions implemented.

4.5 High Schmidt Number Characteristics

The mean gradient and linear scalar forcings are intended to capture two distinctly different scalar

field physics. This difference manifests in the structure of the scalar spectra that the two methods

predict. The stationary scalar spectra generated by the two techniques are provided in Fig. 4.12 for

the lowest and highest Schmidt numbers investigated (Sc = 0.5 and 256). Comparing these spectra,

it is clear that continuous energy injection (mean gradient forcing) and one-time energy injection

(linear scalar forcing) can predict different scalar field structures under certain conditions.

The simulation results for small Sc are considered first (Figs. 4.12 (a) and (c)). At Sc < 1, the

spectra predicted by the two forcing methods are comparable. However, at Sc � 1 (Fig. 4.12 (b)

and (d)), there are distinct differences in shape (the distribution of scalar variance in wavespace)

observable between the scalar spectra generated under mean gradient and linear scalar forcing. These

differences are more pronounced at larger Sc and can be considered in terms of Batchelor’s theory

[7] and experimentally-observed high-Schmidt number scalar behavior [61, 38, 48, 60].

Batchelor’s theory predicts that the scalar energy spectrum presents distinct regions in wavenum-

ber space with distinct scalings. The emergence of these regions is dependent on the Schmidt number

of the scalar [7]. For high-Schmidt number scalars (Sc � 1), there are two characteristic regions.

The first is the inertial-convective subrange, which manifests at scales larger than the Kolmogorov

scale. The second is the viscous-convective subrange, which is present for scales, l, bounded be-

tween the Kolmogorov and Batchelor scales, η � l � ηB . The scalar energy spectrum, EZ(κ),

in the inertial-convective and viscous-convective subranges is predicted, further, to scale according

to κ−5/3 for sufficiently high Reynolds numbers [21] and κ−1 irrespective of the Reynolds num-

ber, respectively, where κ is the wavenumber [7]. It is the scaling in the viscous-convective region

with which the present analysis is concerned. In contradiction to Batchelor’s prediction, several

experimental studies of high-Schmidt number turbulent scalars have not observed the κ−1 scaling

behavior [61, 38, 48, 60]. Some observed that a weaker scaling, possibly a log-normal scaling, across

the viscous-convective subrange may be more representative of experimental data [61].

Case 5 has a sufficiently high Schmidt number (Sc = 256) to allow for a comparison of the

scalar spectra produced by the linear scalar and mean gradient forcing methods to both Batchelor’s
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predictions and the summarized experimental results. As the Reynolds number is low (Reλ ≈ 8), it

is not expected to capture the κ−5/3 scaling across the inertial-convective subrange as predicted by

Obukhov [69] and Corrsin [21], but it is expected that the Schmidt number is high enough to capture

the correct behavior across the viscous-convective subrange. To compare the data presented to

Batchelor’s scaling prediction, the Kraichnan model spectrum (K-form) will be used. The Kraichnan

spectrum introduces into Batchelor’s proposed spectrum form a correction allowing for fluctuations

in strain-rate [49]. This model form is obtained strictly theoretically, and it is given by,

EZ(κ) = q〈χ〉
(ν
ε

)−1/2

κ−1
(

1 + κηB
√

6q
)

exp
(
−κηB

√
6q
)
, (4.29)

where q was determined by Qian to have a value of 2
√

5 for homogeneous, isotropic turbulence [78].

One of the assumptions made by both Batchelor and Kraichnan is that the scalar field is subject to

continuous scalar variance injection (infinite scalar reservoir). The presence of an infinite reservoir

of variance produces a scalar energy distribution that is distinct, and this is the distribution that

the mean scalar gradient forcing is meant to capture.

To emphasize the differences between the mean gradient and linear scalar forcing techniques,

they are compared to the K-form model spectrum. This model fit is obtained by calculating the

scalar dissipation rate, χ, in the two data sets, calculating the viscosity, ν, and the energy dissipation

rate, ε, present in the velocity field, which is the same for the two data sets, and then applying the

constant value q = 2
√

5 obtained by Qian. Figure 4.13(a) compares the statistically stationary

scalar spectrum predicted by the mean gradient forcing to Kraichnan’s model. As is apparent in

Fig. 4.13(a), the mean gradient spectrum agrees quite well with the K-form spectrum. Alternatively,

the linear forcing assumes one-time scalar variance injection, contrary to the explicit assumptions

of the K-form spectrum. Unsurprisingly, Fig. 4.13(b), which compares Kraichnan’s model to the

spectrum predicted by the linear scalar forcing, finds virtually no agreement. These results are made

more clear when the scalar energy spectra are compensated by the Batchelor scaling, κEZ(κ); these

compensated spectra are depicted in Fig. 4.13(c) and Fig. 4.13(d). The disagreement between the

mean gradient generated spectrum and the K-form spectrum in the viscous-diffusive subrange is

likely caused numerical losses, which has minimal effect on the viscous-convective subrange.

From Fig. 4.13, the scalar spectra from the two different scalar forcing techniques have different

scaling behaviors in the viscous-convective subrange. The mean scalar gradient forcing obeys the

κ−1 scaling, while the proposed scalar forcing does not. In fact, the linear scalar forcing implies a

scaling with wavenumber that is weaker than κ−1, possibly consistent with experimental findings.

The difference between the physics corresponding to the two scalar forcing techniques could provide

insight into the apparent disagreement between experimental results and theoretical analysis. The

presence of a constant, uniform mean scalar gradient is more consistent with the assumptions used in
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the derivation of Batchelor’s theoretical scaling, namely the assumption of an infinite scalar reservoir.

Alternatively, the self-similar nature of scalar mixing in decaying turbulence might be more consistent

with experimental observations, as they both are limited to having only a finite, initial scalar variance

distribution. Thus, the apparent disagreement between experiments and theory could be due only

to the conditions under which scalar mixing is considered, whether that be in a decaying, self-similar

(appropriate for experiments) or forced (appropriate for Batchelor’s predictions) scalar field.

4.6 Appropriateness of Linear Scalar Forcing Method for

Mixing Studies

It has been stated at various points throughout this chapter that the class of scalar field physics

which is more appropriate for the proposed buoyant mixing study is consistent with that of sustained

self-similar decay. This rather strong statement is now supported with two arguments.

First, although Batchelor theory [7] rigorously shows that within the viscous-convective subrange

there should be a scaling region behaving as EZ(κ) ∝ κ−1, experimental data has not always found

such a spectral scaling [61, 85, 43, 37, 40, 100]. In fact, data collected in turbulent jet experiments,

tidal current experiments, grid turbulence experiments, and atmospheric boundary layer experiments

all find the presence of a weaker wavenumber dependence across the viscous-convective subrange,

consistent with the scalar field behavior generated under the presented linear scalar forcing method.

It might be stated that the reason the presented simulation data does not capture a κ−1 region is

that the Schmidt number is not high enough. And, this is a fair point. However, the experiments

referenced here were performed with Schmidt numbers of O(103); this is certainly high enough to

see the presence of a κ−1 scaling range. From this, it can be stated that the physics produced

under the action of the mean scalar gradient forcing method may not be the most representative.

Recall that the mean gradient method generated scalar energy spectra with the Batchelor scaling,

κ−1. The proposed linear scalar forcing method, alternatively, predicts scalar energy spectra that

qualitatively agree with the analysis of experimental data obtained from a broad range of turbulent

flow configurations.

Second, the self-similar regime of scalar mixing manifests itself whenever there is one-time energy

injection into a scalar field. Single-shot scalar variance injection corresponds to there being an initial

scalar quantity distribution of some kind. This could be a distribution of species concentration or

temperature fluctuations, for example. What this work ultimately endeavors to examine is how

that buoyancy (and turbulence) are able to mix that specific scalar field distribution, Z. Therefore,

that distribution (i.e. the PDF(Z)) must be preserved in time. The distribution of any quantity is

described by its variance and its mean. The linear scalar forcing method lets both parameters be

controlled and held fixed. Hence, in the forced sense, the proposed linear scalar forcing method’s
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renormalization of scalar field variance at each time-step allows for precisely this type of scalar

mixing to be perpetuated.

4.7 Summary of Conclusions

The primary objective of this work was to develop a methodology for numerically simulating the

self-similar decay of a turbulent scalar field. The linear scalar forcing technique has been presented

and the statistics produced by its implementation have been shown to reproduce the characteristics

of homogeneous, isotropic turbulence. For the range of Schmidt numbers considered in this study,

the spectra predicted by the proposed scalar forcing are consistent with the sustained decay of a

turbulent scalar field. The proposed forcing is robust, performing well irrespective of the initial

conditions of the flow field.

The proposed scalar forcing is both novel and attractive relative to the most commonly-used

scalar forcings (mean scalar gradient and spectral). Spectral schemes require periodic boundaries,

are, in general, memory and computationally intensive, and impose constraints that are not easily

realizable in experiments. In comparison, the linear scalar forcing can accomodate non-periodic

boundary conditions, which are almost always needed when modeling engineering problems, and it

can be integrated easily into non-spectral (physical) codes. Compared to the mean gradient forcing,

the proposed linear scalar forcing will be slightly more memory intensive, as it requires storage and

calculation of the scalar field variance and scalar dissipation rate at each timestep. However, this is

not a significant increase.

Lastly, it has been suggested that the proposed linear scalar forcing may provide insight into

the nature of high-Schmidt number flows. Specifically, the disparity observed between the scalar

energy spectra generated by the well-established mean scalar gradient and the proposed linear scalar

forcing are reminiscent of the observed differences between theoretical predictions and experimental

results. These differences may be simply a consequence of the conditions under which scalar mixing is

studied. The implementation of a mean scalar gradient corresponds to a scalar field with continuous

energy injection, while the proposed linear scalar forcing simulates a sustained decay. Thus, as

presented, this methodology can be implemented to perform simulation studies of turbulent scalar

mixing.
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Chapter 5

Turbulent Buoyant Flows: A Simulation Framework

Chapters 2-4 have involved the development, validation, and testing of the components needed

to create the simulation framework described in Chapter 1. This chapter integrates these separate

pieces into one cohesive unit. This new framework, in which variable density turbulent mixing can

be studied, and the process through which it is validated are presented.

This chapter is organized as follows. Section 5.1 and Section 5.2 describe the numerical framework

developed, including the governing equations and the required restraints on the implemented forcing

methods. Section 5.3 discusses the means by which the relevant non-dimensional parameters can

be adjusted independently to provide desired Reynolds number (Re), Richardson number (Ri),

Schmidt number (Sc), and Atwood number (A) combinations. Section 5.4 discusses the resolution

requirements, transport schemes, and order of accuracy needed to satisfy the physical and numerical

constraints referenced in Section 5.2. Section 5.5 examines the results from three test cases generated

under the proposed simulation methodology. The three test cases correspond to forced simulations

of purely isotropic variable density turbulence, of purely buoyant variable density turbulence, and

of a variable density turbulent case subject to both isotropic and buoyant forcing. Canonical flow

features are calculated for the three cases as a means of validation. Lastly, Sections 5.6 and 5.7

provide top-level analysis of the data garnered under the proposed simulation framework within

the velocity (Section 5.6) and scalar fields (Section 5.7). This analysis is performed to confirm the

quality of the physics predicted by this simulation methodology under buoyant and non-buoyant

conditions.

5.1 Proposed Configuration

Chapter 1 provided an overview of the two existing simulation methods currently published in the

literature, namely the Rayleigh-Taylor unstable method and the shear layer method. A nuance of

This chapter is based on the publication: P.L. Carroll and G. Blanquart. “A new framework for simulating forced
variable density and buoyant turbulent flows.” Journal of Computational Physics. Submitted (2014).
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the shear layer configuration is now addressed prior to describing the configuration chosen for the

current work. In the shear layer geometry, the two fluids involved are stably stratified, and there is

a mean relative (shear) velocity between them. For such geometries, with both a mean shear and

non-zero gravity vector, there is a dynamical competition between the gravitational stability of the

density stratification and the mean shear [10, 27, 93]. This competition is expressed in terms of a

gradient Richardson number,

Rig = N2/

(
∂uh
∂z

)2

. (5.1)

In the gradient Richardson number definition, N2 = − (g/ρ0) (∂ρ/∂z) is related to the buoyant

frequency of the density stratification, ρ0 is the mean density of the stratified fluid system, g is

the magnitude of the gravity vector, uh are the components of the velocity field perpendicular to

the action of gravity (horizontal components), and z is the coordinate direction in the direction of

the gravity vector. When studying sheared, stably stratified buoyant flows, there is an important

length-scale that must be considered. This is the Ozmidov length-scale, LO, and it is defined as,

LO =

√
ε

N3
, (5.2)

where ε is the energy dissipation rate and N is the buoyant frequency [10, 27].

In (decaying) stably stratified fluid systems, the flow field evolves in three stages. Initially, the

fluid is stably stratified in the horizontal plane (x− y plane), which is perpendicular to the action of

gravity (z-direction), and there is no mean shear velocity. Then, a mean shear velocity is applied,

turbulence is generated, and is then modified by the density stratification. The buoyancy momentum

flux (in z) is minimal, having been generated by the mixing induced by the mean shear. This is

the initial stage. The second stage is marked by the formation of internal (gravity) waves, which

travel away from the mixing plane in the ±z directions. This leads to the creation of horizontal

layers (in the x − y plane) that expand into the non-turbulent regions of the stratified flow. The

vertical size (in z) of these layers when they first emerge is termed the Ozmidov length-scale. The

physical significance of the Ozmidov length-scale is that it indicates the vertical height below which

vertical overturning is possible and above which vertical overturning is inhibited by the strength of

the (stable) fluid stratification [10, 27, 93]. For l < LO, overturning is not strongly inhibited, but,

for l > LO, it is. The growth of these vertical layers to their maximum vertical height concludes

the second stage. Lastly, in the third stage, these layers collapse until they approach the (growing)

Kolmogorov scale, η =
(
ν3/ε

)1/4
. The final result of this process is that any generated internal

waves have left the turbulent region, the turbulence self-organizes into anisotropic vortices, and the

vertical velocity component virtually vanishes relative to the magnitude of the horizontal velocity
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components; the stably density gradient is able to return the flow to a stably stratified state. Thus,

overall, the mean shear is destabilizing, and drives the mixing process, while the density gradient

serves to try to stabilize and suppress the induced buoyancy effects [10, 27, 93].

The Ozmidov length-scale can also be interpreted as denoting the transition between stratified

and Kolmogorovian turbulence [10, 27, 93] in sheared, stably stratified flows; below this length-

scale, Kolmogorovian turbulence is found [10], despite the presence of a mean shear and a globally

stabilizing density gradient. This small-scale region of flow (l < LO) corresponds to the region with

which the current work is concerned, as the effects of the boundary conditions (i.e., the mean density

gradient) are no longer dynamically important. However, there are two important distinctions to

be made. First, the current work removes the effect of a shear velocity entirely from the problem,

as there is no non-zero applied mean shear, and mixing is driven only by isotropic turbulence or a

buoyancy-induced momentum flux. Second, buoyancy is made to be a source of energy production,

which is destabilizing.

Following the above discussion, the objective of this work is to develop a means by which the

mixing physics occuring in the inner region of a turbulent mixing layer can be interrograted, whether

it be stably or unstably stratified. Within this region, the small scale mixing features are of primary

concern. As this is the inner region of the mixing layer, it is believed that the boundary conditions

of the flow are unable to impact the small scale mixing dynamics [18]. Whether the flow be globally

stably stratified (sheared) or globally unstably (RTI) stratified, the proposed simulation geometry

is appropriate to study the smallest scales of turbulent mixing subject to density variations and

buoyancy forces.

Deep in the mixing layer, the small scale mixing features are quite fine, and, accordingly, are

not always accurately captured in large simulations or experiments of buoyancy- or shear-induced

mixing. To probe the nature of variable density mixing at these scales and in this mixing layer region,

statistically stationary conditions must be induced. This perpetuates the relevant mixing physics

such that detailed flow data can be collected. To study variable density mixing under statistically

stationary conditions, there are two approaches that could be taken. The first approach entails the

sustenance of a mean density gradient via a perpetually present unstable density stratification; this

approach was successfully accomplished by Chung and Pullin [18]. The second would require using

forcing methods; this latter approach has not be done, and it is the subject of this thesis work.

The first approach successfully sustains the process of variable density fluid mixing. The method

advanced by Chung [18], maintains an unstable stratification of a dense fluid atop a less dense fluid

by imposing a fringe method [8, 67]. Two fringe regions are located at the top and bottom faces

(separated by a vertical distance Lz) of a rectangular, periodic computational domain. The fringe

region on the upper face continuously adds high density fluid at the same rate as fluid is removed

via the fringe at the lower face, which is mass conservative and promotes the development of a
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stationary state of mixing.

Chung’s fringe-based method was used to study the characteristics of turbulence during the

mixing of an active scalar by two incompressible fluids under two high Atwood number conditions

(A = 0.25 and 0.75 as defined in Eq. 5.26) in the presence of gravity; no energy production mechanism

other than gravity acting on a persistent mean density gradient was present. The findings from

this study were threefold. First, the appropriate scales for small scale buoyant mixing remain the

Kolmogorov (viscous) scales. When the energy spectra for these non-Boussinesq buoyantly-driven

cases were calcuated, they collapsed to a single curve once normalized by their Kolmogorov scales (κη

vs. ε−1/4ν−5/4E(κ)). Second, the asymmetrical nature of variable density mixing in high Atwood

number flows was confirmed. When the probability density functions (PDF) of the density field

were calculated, they were found to be slightly skewed towards the lighter fluid side. This suggested

that the lower density fluid mixed at a faster rate than the denser fluid, which is consistent with

other studies [28, 55, 56, 57]. Third, the large and small scales are suggested to be anisotropic,

while the intermediate scales tend to be more isotropic when compared. This was supported by the

calculation of one-dimensional energy spectra, which indicated that, at the large and small scales,

significantly more energy was concentrated in the direction in which gravity was applied.

The other approach, which is the one taken by this work, adopts a forced configuration to sustain

the mixing process. Although it is designed to capture the same region of mixing as Chung’s method,

that located deep inside of a turbulent mixing layer, the proposed method has the added capability

of being able to vary independently the four non-dimensional parameters of importance in (buoyant)

variable density mixing processes. Chung’s method imposes a link between the Reynolds number

and the Richardson number; one determines the other. The methodology presented in this chapter

offers a means by which these two can be decoupled.

Accordingly, this chapter proposes a new simulation method for the study of variable density

turbulent mixing which relies on numerical forcing. Focus is still placed on the small scales, and

the region probed is still that located in the inner region of a turbulent mixing layer. This region is

sufficiently far from the boundary conditions of the flow (regions of pure fluid density or pure scalar)

such that its dynamics can be considered to be independent of them. Two simplifications follow

from this. First, there is no mean density gradient acting across the region of interest, making the

physics in this volume independent of the physical boundary conditions of the mixing layer. Second,

if the effects of the physical boundaries cannot be felt, then mixing can be represented by triply

periodic, homogeneous (box) turbulence containing a variable density fluid.
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5.2 Governing Equations

5.2.1 Mathematical and Numerical Framework

To create stationary, variable density box turbulence with a constant turbulent kinetic energy and

scalar variance, the turbulent fluctuations must not decay. This is accomplished by using velocity

field forcing methods (Chapters 2 and 3) to generate variable density isotropic turbulence and scalar

field (Chapter 4) forcing methods. Forcing methods add a source term to the governing momentum

and scalar transport equations. The (forced) governing equations needed to describe variable density

mixing are the mass conservation (Eq. 5.3), momentum (Eq. 5.4), and scalar transport (Eq. 5.5)

equations, which can be written as,

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (5.3)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+ (ρ− 〈ρ〉) gi + fui , (5.4)

∂ρZ

∂t
+
∂ρZuj
∂xj

=
∂

∂xj

(
ρD ∂Z

∂xj

)
+ fZ . (5.5)

Here, ρ represents the density, ui represents the i-component of velocity, Z is the scalar parameter,

D is the molecular diffusivity, ν is the kinematic viscosity, µ = νρ is the dynamic viscosity, gi is the

i-component of the gravity vector, p is pressure, and τij is the deviatoric contribution to the stress

tensor. The kinematic viscosity, ν, is always held fixed; any changes in the density correspond to

a change in the dynamic viscosity. The momentum and scalar transport equations are forced via

the addition of source terms, demarked by fui and fz, respectively, to prevent the decay of both

turbulent kinetic energy and scalar variance. At this point, the specific form of the source terms

is not relevant. The different forcing methods are discussed in Section 5.2.3. Irrespective of the

forcing scheme implemented, they serve to drive the velocity and scalar fields to statistically steady

conditions, after which all the physical parameters will assume fixed distributions that are preserved

in time.

A constitutive relation (equation of state) is introduced between the scalar field, Z, and the den-

sity field, ρ, such that the density is defined at every point in the domain based on the corresponding

fluctuating scalar value (Z) at that point. This constitutive relation takes the form,

ρ =
1

aZ + b
, (5.6)
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where a and b are constants that determine the variability of the density field that is calculated.

This expression can be thought of as representing the mixing of two fluids with either different

temperatures or different molecular weights. Note that in the implementation of this equation of

state, it is infrequently required to “clip” the scalar values before calculating the density. This is

necessary for rare events in which the scalar is large and negative in value (Z � 0). These extremely

rare events can lead to negative density values if not so addressed. The scalar field, Z, is initialized

following the procedure developed by Eswaran [33] and, then, sustained under the action of the

applied forcing term.

5.2.2 Necessary Restrictions on Forcing Methods

Without assuming a specific velocity or scalar field forcing, the five key constraints required in

the proposed configuration can be derived. These constraints can be obtained by considering the

implications of statistically stationary turbulent velocity and scalar fields. Following a Reynolds

decomposition approach, all variables are decomposed into the sum of a mean ensemble average,

〈 · 〉, and a fluctuating component, (·)′, according to ρ = 〈ρ〉+ ρ′, ui = 〈ui〉+ u′i, and Z = 〈Z〉+Z ′.

The distinction between ensemble averaging and volume-averaging should be made here. The

proposed configuration reaches a state of statistical stationarity. Under this condition, ensemble

averages are (theoretically) equivalent to averages over an infinite time. Similarly, since the config-

uration is homogeneous in space, ensemble averages are equivalent also to averages over an infinite

volume. Thus, ensemble averages can be represented as volume averages over the triply periodic

domain.

Statistical stationarity implies,

∂〈ρ〉
∂t

= 0,

∂〈ρui〉
∂t

= 0,

∂〈ρZ〉
∂t

= 0. (5.7)

Physically, these correspond to a constancy in ensemble-averaged density, 〈ρ〉, momentum, 〈ρui〉,

and scalar concentration, 〈ρZ〉. Returning to the forced-momentum and forced-scalar transport

equations (Eq. 5.4 and Eq. 5.5), when ensemble-averaged, these equations reduce to,

(a)
∂〈ρui〉
∂t

= 〈fui
〉+ 〈ρ′gi〉 (b)

∂〈ρZ〉
∂t

= 〈fZ〉. (5.8)

Here, the condition of homogeneity, under which the ensemble average of terms written as divergences

vanish, has been applied. The requirement of constant momentum and scalar concentration (Eq. 5.7)
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implies three further constraints on the governing equations. First, from Eq. 5.8(a),

〈fui
〉 = 0, (5.9)

〈ρ′g〉 = 0, (5.10)

are obtained. A net zero buoyant force and a zero-averaged momentum source term prevent the

linear growth of 〈ρui〉 in time. Second, from Eq. 5.8(b),

〈fZ〉 = 0, (5.11)

is obtained; this is necessary to respect the constancy of the scalar concentration, 〈ρZ〉. Lastly, and

without loss of generality, the constant average values of momentum and scalar concentration are

chosen to be zero for the sake of simplicity,

〈ρui〉 = 0, (5.12)

〈ρZ〉 = 〈ρZ〉t=0 = 0. (5.13)

Accordingly, Eq. 5.9 - Eq. 5.13 constitute the applied contraints on the system of (forced) governing

equations.

5.2.3 Forcing Methodologies and Proposed Source Terms

The forcing techniques implemented in this work are the linear velocity forcing method discussed in

Chapters 2 and 3, the mean scalar gradient forcing method described in Chapter 4, and the linear

scalar forcing method derived in Chapter 4.

5.2.3.1 Velocity Field Forcing

The linear velocity field forcing method imposes a momentum source term of the form,

fui = Q
k0

k
ρui, (5.14)

where Q is a constant forcing coefficient related to the time-scale of the large-scale turbulent struc-

tures, and k0 and k = 〈 12ρuiui〉 are the (desired) long-time steady-state and instantaneous turbulent

kinetic energy values, respectively. With the above momentum source term, Eq. 5.9 is verified due

to Eq. 5.12. It follows that the forced momentum equations become,

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+Q
k0

k
ρui + ρ′gi. (5.15)
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This is the momentum equation that must be implemented under the proposed geometry to study

variable density turbulence.

5.2.3.2 Scalar Field Forcing

The most commonly-used scalar field forcing method involves applying a constant, mean spatial

gradient across the scalar field. Under such a mean gradient forcing method, the scalar forcing term

becomes,

fZ = Giρui, (5.16)

where G is generally taken to have one non-zero component; G is defined here as [−1, 0, 0]. For the

current work, the mean momentum is selected to be zero (Eq. 5.12), such that the needed form of

the forced scalar transport equation is,

∂ρZ

∂t
+
∂ρZuj
∂xj

=
∂

∂xj

(
ρD ∂Z

∂xj

)
+ Giρui. (5.17)

This is the advection-diffusion equation that must be implemented under the proposed geometry if

forcing is done in proportion to a mean scalar gradient and the density is variable.

Although the mean scalar gradient forcing method is quite robust and reliable as discussed in

Chapter 4, it is anisotropic due to its imposed scalar gradient. As one of the motivating interests for

the development of this new framework is to study buoyant flows, this may not be an ideal forcing

method. The imposition of an arbitrary (i.e. not physically-relevant) mean gradient may not be

desirable. This is illustrated in Fig. 5.1, where forced variable density (non-buoyant) turbulence

is considered. The averages of the velocity field components conditioned on the density field are

plotted. The velocity field is maintained at stationarity via the isotropic linear velocity forcing

method discussed in Section 5.2.3.1 and initially presented in Chapters 2 and 3. As shown in

Fig. 5.1(a), the imposition of a mean gradient when considering an active scalar (variable density)

can alter detrimentally the velocity field dynamics by imposing a non-negligible correlation between

the u velocity component and G (recall G is in the x-direction). Under purely isotropic conditions,

whether the scalar is passive or active, the velocity field components ought to have zero-averaged

conditional means, which is not the case when the mean gradient method is used.

In light of this, an alternate scalar field forcing method is selected. The linear scalar forcing

method [14], which is an isotropic forcing method, suggests a scalar source term of the form,

fZ =

(
1

τI

(
α

σZ
− 1

)
+

χ

2σ2
Z

)
ρZ, (5.18)

where τI is an inertial timescale, α2 is the long-time steady-state variance to which the scalar field
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(b) LSF forcing method.

Figure 5.1: Conditional average of the three velocity field components on the density field when the
velocity field is forced isotropically and the scalar field is forced by either the mean scalar gradient
method (MSG) or the linear scalar forcing method (LSF). Simulation parameters are N3 = 2563,
Sc = 1, ε ≈ 2, and σ2

Z ≈ 1.
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evolves (specified a priori by the user), σ2
Z = 〈ρZ2〉−〈√ρZ〉2 is the variance of the density-weighted

scalar field, and χ = 〈2ρD|∇Z|2〉 is the scalar dissipation rate. Following from Eq. 5.13, this is the

source term that must be applied to the advection-diffusion equation (Eq. 5.5),

∂ρZ

∂t
+
∂ρZuj
∂xj

=
∂

∂xj

(
ρD ∂Z

∂xj

)
+

(
1

τI

(
α

σZ
− 1

)
+

χ

2σ2
Z

)
ρZ. (5.19)

This ensures that the ensemble-averaged scalar field source term is zero, and it prevents the decay of

the scalar field variance. Further, from examination of Fig. 5.1(b), the linear scalar forcing does not

suffer the unphysical coupling between the velocity and (active) scalar field. Under an isotropically-

forced velocity field, the conditional means of the three velocity components and the density fields

are, indeed, of zero average. Note that the non-zero conditional average values for the lowest and

highest density deviations shown in Fig. 5.1(b) can be attributed to the (low) frequency at which

these large deviations occur. As these large deviations are infrequent, the statistics there are not

meaningful.

5.2.4 Effect of Forcing Methods on Global Quantities

Until now, it has only been asserted that appending such forcing terms induces a statistically station-

ary turbulent field. This is now supported more rigorously. The turbulent kinetic energy equation

can be obtained by multiplying Eq. 5.15 by ui. After some manipulation and using mass conservation

(Eq. 5.3), it is obtained,

∂ 1
2ρu

2
i

∂t
+
∂ 1

2ρu
2
iuj

∂xj
= −∂pui

∂xi
+ p

∂ui
∂xi

+
∂τijui
∂xj

− τij
∂ui
∂xj

+Q
k0

k
ρu2

i + ρ′giui. (5.20)

After (ensemble) domain-averaging, applying the definitions of kinetic energy, k = 〈 12ρuiui〉, and

dissipation, ε = 〈2νSijSij〉 = 〈2νSij ∂ui

∂xj
〉, and imposing a Newtonian-form for the deviatoric stress

tensor, τij = 2µSij , the following emerges,

∂k

∂t
+ 〈

∂ 1
2ρu

2
iuj

∂xj
〉 = 〈−∂pui

∂xi
〉+ 〈p∂ui

∂xi
〉+ 〈∂τijui

∂xj
〉 − ε̃+ 2Qk0 + 〈ρ′giui〉, (5.21)

where ε̃ = 〈2µSij ∂ui

∂xj
〉. For the present purposes, it can be written ε̃ ≈ ε. When homogeneity is

applied (〈∇ (·)〉 = 0), the energy equation reduces further to,

∂k

∂t
= 〈p∂ui

∂xi
〉 − ε+ 2Qk0 + 〈ρ′giui〉. (5.22)

This expression states that the time rate of change of kinetic energy is a balance between the pres-

sure dilatation, energy dissipation, and energy production from isotropic and anisotropic (buoyant)

sources. A steady state manifests when dissipation grows sufficiently to counter the other three
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contributing terms. In all numerical tests performed, the pressure dilatation term was found to be

small. Therefore, at steady state, it can be written,

ε = 2Qk0 + 〈ρ′giui〉. (5.23)

By adjusting the values of Q and g, the proposed equations can model all flows from fully isotropic

(g = 0) to purely buoyant (Q = 0) turbulent conditions.

The scalar transport equation can be analyzed similarly. Recall Eq. 5.5, the scalar transport

equation for the fluctuating scalar quantity, Z, where the source terms assume the form of Eq. 5.16

for mean scalar gradient forcing and Eq. 5.18 for linear scalar forcing. When Eq. 5.5 is multiplied

by the fluctuating scalar quantity, Z, and (ensemble) spatially-averaged, evolution equations for the

density-weighted scalar field variance, σ2
Z , emerge,

(a)
∂σ2

Z

∂t
= −χ− 2〈GiρuiZ〉, (b)

∂σ2
Z

∂t
= 2

σ2
Z

τI

(
α

σZ
− 1

)
. (5.24)

Note that it is assumed for the purposes of this discussion that 〈√ρZ〉2 = 0 in Eq. 5.24. Equa-

tion 5.24(a) corresponds to the mean scalar gradient forcing and Eq. 5.24(b) corresponds to the

linear scalar forcing. In the case of mean scalar gradient forcing, the mean gradient serves to produce

scalar variance by its interaction with the scalar flux. This production is sufficient to compensate for

the scalar dissipation rate, χ. This leads to the creation of a scalar field with a temporally constant

variance. A similar compensation occurs when imposing the linear scalar forcing method; the linear

scalar forcing will drive the scalar field to a specified variance value. When the standard deviation

of the scalar field reaches this value (α = σZ), the right hand-side of Eq. 5.24(b) vanishes, and the

scalar field is held at a fixed variance value, inducing a statistically stationary state.

5.3 Relevant Non-Dimensional Parameters

5.3.1 Definitions

In studies of variable density mixing of incompressible fluids, the three dimensionless groups of

primary importance are the Reynolds, Atwood, and Richardson numbers. The Reynolds number,

Re, is informative of the relative importance of viscosity and inertia in the flow, and it is defined as,

Re =
ulv
ν
, (5.25)

where lv and u are taken to be representative length-scales and velocity scales, respectively. The

Atwood number, A, is informative of the extent of density variation present in the mixing fluids,
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and it is defined traditionally as,

A =
ρ2 − ρ1

ρ2 + ρ1
, (5.26)

where ρ1 and ρ2 are the densities of the two incompressible (pure) fluids being mixed. The larger

the difference in the densities of the pure fluids, the larger the Atwood number. The Richardson

number, Ri, indicates the relative strength of buoyancy and momentum forces. It can be defined as,

Ri =
Aglρ
u2

, (5.27)

where g is gravity, lρ is a representative length-scale of the distance over which density varies. If

Ri = 0, then the mixing is momentum-driven; if Ri 6= 0, the mixing is subject to buoyancy effects.

In the present work, an alternative definition of the Atwood number is used,

A =
σρ
〈ρ〉

, (5.28)

where σρ is the standard deviation of the density field and 〈ρ〉 is the mean density. The standard

deviation of the density is informative of the spread in density values throughout the domain, as

there are not any regions of pure fluid at ρ1 or ρ2 in the proposed geometry. This definition is

adopted in place of using the minimum and maximum density values in the domain, as is done in

Eq. 5.26. There is also an important dimensionless group used to describe scalar field dynamics.

This final non-dimensional group is the Schmidt number,

Sc =
ν

D
, (5.29)

which is indicative the relative strength of viscous diffusion versus that from the molecular diffusivity

of the scalar quantity itself (i.e. temperature or species concentration).

5.3.2 Non-Dimensional Governing Equations

The dominance of the different physical processes occurring within a turbulent velocity and scalar

field can be understood by non-dimensionalizing the momentum (Eq. 5.15) and scalar transport

(Eq. 5.19) equations. The characteristic scales to be used to non-dimensionalize the pertinent vari-

ables are defined to be,

ρ̂ = ρ/ρc ûi = ui/uic p̂ = p/pc x̂i = xi/lic ĝi = gi/gic

t̂ = t/τc = tuic/lic µ̂ = µ/µ0 D̂ = D/D0 Ẑ = Z/φ (5.30)
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where (̂·) variables are unitless and of order one and (·)c or (·)0 variables are characteristic scales.

When applied to the (forced) momentum equation, it is obtained,

∂ρ̂ûi

∂t̂
+
∂ρ̂ûiûj
∂x̂j

= − ∂p̂

∂x̂i
+

1

Re

∂

∂x̂j

{
µ̂

(
∂ûi
∂x̂j

+
∂ûj
∂x̂i

)}
+

τc
2τv

k0

k
ρ̂ûi +

Ri

A
(ρ̂ĝi − 〈ρ̂〉ĝi) , (5.31)

where the definitions provided in Section 5.3.1 have been used. To get this expression, three things

have been assumed. First, it is assumed that the correct pressure scaling is an inertial one such

that pc ∼ ρcu
2
c . Second, it has been assumed that the characteristic scales for the u, v, and w

components of velocity are equivalent such that uic = uc in all cases. Following this, it assumed

that lic = lc. While this is not generally true, for the purposes of scaling, the approximations are

reasonable. Third, the magnitude of the linear forcing term, Q, has been written in terms of the

eddy turn-over time of the velocity field, Q = (2τv)
−1. Here, τv = k/ε represents the eddy-turnover

time. Note that the time-scale ratio on the right-hand side, τc/τv, is of order one.

The left-hand side of Eq. 5.31 is of order one, and the right-hand side clarifies the effect of varying

any of the three non-dimensional parameters. If the Reynolds is increased, the viscous diffusion term

is reduced in magnitude, and the inertial terms become increasingly dominant. If the ratio of the

Richardson number to the Atwood number is increased, the magnitude of the buoyant term becomes

larger; whereas, if the ratio is decreased, the Boussinesq limit is obtained, where the importance of

gravity on the velocity field dynamics becomes negligibly small.

The same procedure can be applied to the scalar transport equation. By using the defined char-

acteristic scales, the advection-diffusion equation under the linear scalar forcing method becomes,

∂ρ̂Ẑ

∂t̂
+
∂ρ̂ûjẐ

∂x̂j
=

1

ReSc

∂

∂x̂j

(
ρ̂D̂ ∂Ẑ

∂x̂j

)
+

τc
2τZ

ρ̂Ẑ, (5.32)

where the final term, the forcing term, has been written in terms of a scalar time scale (τZ = σ2
Z/χ).

As before, it is assumed here that lic = lc and uic = uc. From this expression, increasing either the

Reynolds or Schmidt numbers has the effect of reducing the relative importance of scalar diffusion;

conversely, decreasing either parameter increases the importance of scalar diffusion. As with the

momentum equation, the effect of the scalar forcing term is to impose a time scale on the problem,

which will vary in value depending on the Schmidt number. The time-scale ratio, τc/τZ , in the

scalar field is of order one, as was seen in the velocity field in the momentum equation (Eq. 5.31).

5.3.3 Range of Attainable Atwood Numbers

A representative table of Atwood numbers attainable by implementing the equation of state discussed

in Section 5.2.1 (Eq. 5.6) under the new definition proposed (Eq. 5.28) is provided in Table 5.1. From

dimensional analysis, the Atwood number is proportional to the ratio of the parameters a and b and
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Table 5.1: The effect of varying equation of state parameters on the Atwood number. These are
representative values with Reλ = 30 and Sc = 1. The integral length-scale of the density field, lρ, is
defined in Section 5.3.4, and it should be compared to the simulation box size (2π in this case).

No. a b A lρ
1 0.050 1.000 0.068 1.80
2 0.075 1.000 0.115 1.62
3 0.100 1.000 0.140 1.50
4 0.125 1.000 0.161 1.42
5 0.150 1.000 0.250 1.22

the standard deviation of the scalar field. Thus, it can be written,

A ∝ a

b2
σZ . (5.33)

From the numerical tests performed, it is found that the proportionality constant is slightly larger

than unity. The variance of the stationary scalar field (σ2
Z) can be set by altering α in the case of

linear scalar forcing (Eq. 5.18) or by changing the magnitude of the imposed scalar gradient, Gi,

when using the mean scalar gradient forcing method (Eq. 5.16). For simplicity, and without losss

of generality, the coefficient b is set to unity for all simulations. Under this condition, and using the

fact that the mixture fraction is reasonably well represented by a Gaussian (see Section 5.5.2), the

average density in the domain is approximately equal to unity, 〈ρ〉 ∼ 1.

As the present definition of the Atwood number relies on local density values, and not those of

the two fluid reservoirs significantly removed from the mixing region, the span of attainable Atwood

numbers should not be compared to those reported in other studies (e.g., [54, 55, 56]). Some of

these studies report Atwood numbers as high as 0.75 (as calculated according to Eq. 5.26). In fact,

the lower magnitude Atwood numbers calculated in the current work (from Eq. 5.28) are indicative

of larger density differences in the mixing region, as they are based only on local values. Flows

with comparably large variations in density in the mixing region are found in physically meaningful

atmospheric and oceanographic flows. An advantage of this method of incorporating variations

in density is that the present framework can support Atwood numbers that are larger than the

Boussinesq limit (A < 0.05 per the definition in Eq. 5.26). The presence of these large attainable

density ratios (Table 5.1) suggests that strongly buoyant flows can be interrogated.
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5.3.4 Relevant Characteristic Length and Velocity Scales

The length-scale chosen for the Richardson number is the integral scale for the density field, lρ,

which is defined via the two-point correlation function to be,

lρ =
1

σ2
ρ

∫ ∞
0

〈ρ′(y)ρ′(y + êyr)〉 dr, (5.34)

where σ2
ρ is the variance of the density field, r is the separation distance between two fluid points

along the direction êy, and y is the coordinate direction aligned with the direction of gravity. As

gravity acts on density differences, the distance over which the density fluctuations are correlated

with one another along its direction of action is the physically relevant dimension. This length-scale

is taken to be representative, and it is a reasonable metric to use to quantify the strength of buoyant

forces in the numerator of Ri.

The length-scale for the Reynolds number is the integral length-scale for the velocity field. For the

current purposes, the only physically representative velocity component to use in the determination

of the integral length-scale is the velocity component in the direction of the gravity vector. In a purely

buoyant flow (i.e. Q = 0), all energy production is concentrated into the velocity component aligned

with gravity (Eq. 5.22). There is no energy injected into velocity components that are orthogonal

to the gravity vector, making them necessarily and perpetually smaller in magnitude. Thus, the

integral length-scale of the v velocity component is more suggestive of the strength of buoyancy-

induced turbulent kinetic energy. In the other extreme of isotropic energy production (i.e. g = 0),

the magnitude and the nature of all three velocity components ought to be statistically equivalent.

Thus, using the velocity component in the direction that would be aligned with the gravity vector, if

it were non-zero, to calculate the integral length-scale in this scenario is still physically appropriate.

In summary, the characteristic velocity length-scale is defined as,

lv =
1

σ2
V

∫ ∞
0

〈v′(y)v′(y + êyr)〉 dr, (5.35)

where σ2
V is variance of the v component of velocity, the gravity vector is in the y-direction, and

v′ = v − 〈v〉.

A velocity scale is needed also to quantify the Ri and Re numbers. For the current purpose, and

for the same reasons discussed above, the standard deviation of the v component of velocity is used,

u2 = σ2
V = 〈v2〉 − 〈v〉2. Under these conditions, the Richardson number can be expressed as,

Ri =
Aglρ
σ2
V

. (5.36)
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The same velocity scale is used to define the Reynolds number,

Re =
σV lv
ν

. (5.37)

5.3.5 Controlling the Reynolds and Richardson Numbers

One of the most attractive features of the proposed simulation configuration is the ability to vary

independently the Ri and Re numbers. This allows for the influences of convective mixing (Re)

and buoyancy (Ri) to be isolated and examined systematically. All four dimensionless parameters

(Sc = ν/D, A, Ri, and Re) can be manipulated to give a desired combination in parameter space.

The Atwood number, which is the parameter that should generally be held fixed at a specified value

to study variable density flows, is determined by adjusting a, b, and the scalar field variance. The

Schmidt number can be changed to any desired value by changing the diffusion coefficient (D) or the

kinematic viscosity. Specifying Q in the momentum equation (Eq. 5.14) with ν from the Sc number

fixes the Reynolds number (Eq. 5.37). Then, any change in the desired of Ri induced by changing

Re can be offset by adjusting g in Eq. 5.36.

Scaling arguments are useful also in illustrating how the Re and Ri numbers can be varied

independent of each other. A length-scale for the large (energy production) scales can be defined

as L = k2/3/ε. Using this definition, the turbulent kinetic energy can be expressed as k = (Lε)
2/3

.

Scaling arguments for the Re and Ri numbers follow,

Re =
σV lv
ν
∝
√
kL

ν
∝ L4/3ε1/3

ν
, (5.38)

Ri =
Aglρ
σ2
V

∝ AgL

k
∝ AgL1/3

ε2/3
. (5.39)

Here, it has been assumed that the relevant length-scales for velocity (lv) and density (lρ) are

proportional to L. This assumption has been confirmed by the numerical tests performed, but the

proportionality constant is different for lv and lρ. For the present purposes, this is inconsequential.

Equations 5.38 and 5.39 depict that Re and Ri are linked by the dissipation rate and the length

scale. The amount of energy present in the computational domain fixes ε, which, together with

the Schmidt number (ν), determines the Reynolds number. The Richardson number is similarly

influenced by ε and L, but there is one additional free parameter, the magnitude of gravity (g), that

can be adjusted to yield the desired Ri value.

5.4 Resolution Requirements and Numerical Schemes

To validate the proposed framework, it is necessary to identify the operating parameters required

to generate accurate physics under the proposed simulation methodology. To ensure that the five
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constraints discussed in Section 5.2.2 are satisfied when simulations are performed in the proposed

configuration, certain numerical and resolution requirements must be specified. A simulation study is

performed in which the grid resolution, order of accuracy in the velocity solver, and scalar transport

scheme are varied to identify these constraints. This study includes test cases subject to isotropic

forcing only (cases 1, 3, 5, and 7) and for those that are subject to buoyant forcing only (cases 2,

4, 6, and 8). For the purposes of plotting, the purely isotropically-forced data sets are denoted as

“case A” and the purely buoyantly-forced data sets are denoted as “case B.” Tables 5.2-5.4 contain

all the pertinent simulation details.

The code package used in this study is NGA [26]. The code is physical (non-spectral), suitable

for low Mach number flows, and uses a standard staggered grid. The velocity field is solved implicitly

via a second- or fourth-order accurate finite-difference scheme, and this scheme is discretely energy

conserving. The scalar field is solved implicitly via either the QUICK scalar transport scheme,

which is a third-order upwinded finite-volume scheme [52], or a fifth-order accurate upwinded scheme

(HOUC5)[68]. The time advancement is by a semi-implicit Crank-Nicolson method [26]. Additional

details on the simulation code are provided in Appendix 8.3, Appendix 8.4, Appendix 8.5, and

Appendix 8.6 at the end of this document.

5.4.1 Grid Resolution Requirements

In order to capture the dynamically important scales and to prevent drift in the momentum, 〈ρui〉,

and scalar concentration, 〈ρZ〉, values, the computational grid must be sufficiently resolved. To

quantify the resolution needed, the results from the cases in Table 5.2 are examined. The results are

contained in Fig. 5.2(a) and Fig. 5.2(b). Two of the crucial constraints for this configuration are the

prevention of drift in scalar concentration, 〈ρZ〉 ≈ 〈ρZ〉t=0, and of drift in momentum, 〈ρui〉 = 0.

Beginning with the isotropically-driven turbulent field, the scalar concentration is held at its initial

value with a resolution of κη ≥ 1.5. The grid resolution requirement in the velocity field is similar,

with sufficiently minimal momentum drift attained with κη = 1.5. The story is similar with the

buoyant cases examined. Thus, the preferrable overall grid resolution is κη ≥ 1.5.

5.4.2 Order of Accuracy Requirements

The NGA package implemented allows for velocity solvers of arbitrarily high order. To determine

the order of accuracy needed to satisfy the constraint for momentum, the velocity solver is run with

second- and fourth-order accuracy for the cases in Table 5.3. The results are shown in Fig. 5.3(a) and

Fig. 5.3(b). Clearly, increasing the order of accuracy employed has minimal effect on the resulting

scalar concentration and momentum drift. Thus, second-order accuracy in the velocity solver is

sufficient for the proposed configuration.
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Table 5.2: Grid resolution effects for isotropically- and buoyantly-driven turbulent flows (ν = 0.005,
A = 0.13, Sc = 1). The HOUC 5 scalar transport scheme is used.

No. ε Re (Eq. 5.37) g Ri (Eq. 5.36) N3 κmaxη κmaxηB Order
1 1.88 780 0 0 1923 1.5 1.5 2nd

2 1.94 2070 12 0.61 1923 1.5 1.5 2nd

3 2.15 480 0 0 3843 3.0 3.0 2nd

4 2.82 2860 12 0.54 3843 2.7 2.7 2nd

Table 5.3: Order of accuracy effects in the velocity solver for isotropically- and buoyantly-driven
turbulent flows (ν = 0.005, A = 0.13, Sc = 1). The HOUC 5 scalar transport scheme is used.

No. ε Re (Eq. 5.37) g Ri (Eq. 5.36) N3 κmaxη κmaxηB Order
1 1.88 780 0 0 1923 1.5 1.5 2nd

2 1.94 2070 12 0.61 1923 1.5 1.5 2nd

5 1.96 600 0 0 2563 2.0 2.0 4th

6 1.91 1700 12 0.64 2563 2.0 2.0 4th

5.4.3 Transport Scheme Requirements

Scalar transport schemes can be dissipative, resulting in the smoothing of fine scalar field features

and the loss of important scalar field physics during advection. To determine the sensitivity of the

proposed simulation configuration to the scalar transport scheme used, the scalar field is advected

with two upwinded schemes. A fifth-order scheme (HOUC) is used and compared to a third-order

finite-volume scheme (QUICK). The results of this comparison (Table 5.4) are depicted in Fig. 5.4(a)

and Fig. 5.4(b). It is clear that either scheme produces acceptably small variation in the domain-

averaged scalar concentration. Hence, either method is allowable. The details pertinent to these

two transport schemes are included in Appendix 8.5.

5.5 Characteristics of Turbulent Buoyant Flows

The previous sections have defined the simulation geometry, presented the governing equations and

associated constraints on the forcing methods applied, and defined the pertinent non-dimensional

Table 5.4: Effects of varying the scalar transport scheme for isotropically- and buoyantly-driven
turbulent flows (ν = 0.005, A = 0.13, Sc = 1). The velocity solver is second-order.

No. ε Re (Eq. 5.37) g Ri (Eq. 5.36) N3 κmax κmaxηB Scheme
1 1.88 780 0 0 1923 1.5 1.5 HOUC 5
2 1.94 2070 12 0.61 1923 1.5 1.5 HOUC 5
7 2.06 390 0 0 2563 2.0 2.0 QUICK
8 2.25 2790 12 0.64 2563 2.0 2.0 QUICK
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Figure 5.2: Grid resolution requirements under purely isotropic (A) and purely buoyant (B) condi-
tions. Percent (%) drift is defined as (〈ρZ〉 − 〈ρZ〉t=0)/〈ρZ〉t=0 ∗ 100.
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Figure 5.3: Order of accuracy requirements under purely isotropic (A) and purely buoyant (B)
conditions. Percent (%) drift is defined as (〈ρZ〉 − 〈ρZ〉t=0)/〈ρZ〉t=0 ∗ 100.
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Figure 5.4: Impact of scalar transport scheme on the temporal drift of scalar concentration, 〈ρZ〉.
Percent (%) drift is defined as (〈ρZ〉 − 〈ρZ〉t=0)/〈ρZ〉t=0 ∗ 100.
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Table 5.5: Isotropically- and buoyantly-driven turbulent flows under the proposed configuration for
unity Schmidt number conditions. The scalar transport scheme is HOUC5.

No. ε Re (Eq. 5.37) |g| Ri (Eq. 5.36) N3 κmaxη κmaxηB Order
A 2.02 480 0 0 2563 2.0 2.0 2nd

B 2.03 2290 12 0.48 2563 2.0 2.0 2nd

C 1.95 1205 9 0.50 2563 2.0 2.0 2nd

numbers needed to characterize turbulent buoyant flows. In Sections 5.5.1 - 5.5.3, the test cases

(shown in Table 5.5) used to evaluate the proposed simulation method are presented, and some

results provided. From the data garnered, statistical metrics are calculated in way of validation of

the presented framework. Specifically, the results are compared to canonical turbulent or accepted

buoyant behaviors, and consistency between them is verified.

5.5.1 Presentation of Numerical Tests

The results obtained from the proposed numerical framework are examined and discussed for three

cases; case A is subject to purely isotropic forcing (g = [0, 0, 0] and Q = 0.382 in Eq. 5.15), case B is

subject to only buoyant forcing (g = [0,−12, 0] and Q = 0 in Eq. 5.15), and case C is subject to both

isotropic and buoyant energy production (g = [0,−9, 0] and Q = 0.287 in Eq. 5.15). Cases A, B,

and C have an Atwood number of 0.13. This relatively high Atwood number was chosen such that

the differences between isotropically-driven and buoyantly-driven flow, if any, would be maximized

and more clearly identifiable. The scalar forcing method used in all three cases is the linear scalar

method with α = 1 and τI = 0.1. These three cases are described in Table 5.5. Note that the total

energy dissipation rate, ε, is held approximately fixed across cases A, B, and C. This constancy is

useful for comparison purposes, as it ensures that the Kolmogorov length-scales are uniform across

the three cases.

This validation process includes reproducing a few canonical features of isotropic turbulence

for the purely isotropically-forced case (case A). For the sake of comparison, and to highlight any

disparities, these features are calculated also for fully buoyant conditions (case B) and partially

buoyant conditions (case C).

In the case of isotropic (non-buoyant) turbulence, the turbulent kinetic energy is produced from

the momentum source term, fui . When this is multiplied by ui and appropriately averaged as

done in Eq. 5.22, a constant magnitude of power is injected into the computational domain, 2Qk0.

When written in terms of a spectral-space representation, an energy production spectrum of the

form P (κ) = 2QE(κ) arises, where E(κ) is the three-dimensional energy spectrum. This energy

production spectrum is shown in Fig. 5.5. Alternatively, buoyant flows provide power in proportion

to the density difference and the strength of gravity according to P (κ) = −v̂∗Fκ

(
ρ′

ρ g
)

; here Fκ(·)
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Figure 5.5: Energy production spectra for the isotropically- and buoyantly-driven turbulent flows in
Table 5.5 (ε ≈ 2, Sc = 1, κη = 2.0).

denotes the Fourier transform, and û∗i denotes the complex conjugate of the Fourier coefficient for

the i-th component of velocity, u. It should be noted that in case C, approximately half of the

energy production comes from buoyancy and the other half is from isotropic forcing, such that

P (κ) = 2QE(κ)− v̂∗Fκ

(
ρ′

ρ g
)

. The energy production spectra for cases B and C are shown also in

Fig. 5.5.

5.5.2 Scalar and Density Field Distributions

The current methodology links the scalar field and the density field through the use of an equation

of state (Eq. 5.6). To ensure that this coupling is not adversely affecting the evolution of the two

fields, the steady state distributions they assume are calculated and briefly discussed.

It is generally accepted that a scalar field subject to isotropic turbulent conditions (mixing)

has a nearly Gaussian probability density function (PDF) [41, 96, 103, 18]. To confirm that this

distribution is preserved in the implemented framework, the PDFs of the scalar fields in cases A, B,

and C are calculated (Fig. 5.6(a)). As indicated in Fig. 5.6(a), the scalar fields in all three cases are

approximately Gaussian in distribution.

The density field can be discussed also. As the Gaussianly-distributed scalar field is used to

determine the density field (per Eq. 5.6), a theoretical PDF for the density can be obtained in terms

of the PDF of the scalar field. This theoretical density field distribution is compared to the density

field PDFs calculated for cases A, B, and C; the results are shown in Fig. 5.6(b). As with the scalar

fields, the density fields are approximately Gaussian.



110

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-4 -2  0  2  4

σ
Z
 P

D
F

 (
Z

)

(Z - <Z>)/ σZ

Gaussian
case A
case B
case C

(a) Scalar field distribution.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-4 -3 -2 -1  0  1  2  3  4

σ
ρ
 P

D
F

 (
ρ
)

(ρ - <ρ>)/ σ
ρ

Gaussian
case A
case B
case C

(b) Density field distribution.
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5.5.3 Universality and (An)isotropy: Characteristic Length-scales

There is some conflict in the literature as to the isotropic, or anisotropic, nature of buoyant flows.

There are studies which find evidence that the intermediate scales are more isotropic than the

smallest viscous scales [18, 56], and there are others which find evidence for the inverse [11]. In

light of this, the isotropic nature of the flows generated under the proposed numerical framework is

investigated for cases A, B, and C. The presence of isotropy in these turbulent fields can be qualified

via a calculation of the characteristic length-scales of the flow and a calculation of energy content

in the three ordinate directions.

Two characteristic length-scales of importance in turbulent flows are the Kolmogorov scale and

the Taylor micro-scale. The Kolmogorov scale, η, is the smallest dynamically significant flow scale,

and it is representative of the length-scale at which viscous dissipation of kinetic energy in the

fluid becomes important. The Taylor micro-scale, λ, is the smallest of the flow scales associated

with large-scale energy production; it can be used to represent the intermediate flow scales. In

order to quantify the extent of isotropy or anisotropy at the different flow scales, directional Taylor

micro-scales and Kolmogorov scales are calculated according to,

ηi =
(
ν3/εi

)1/4
εi = 15ν〈 (∂ui/∂xi)

2〉, (5.40)

and

λi =

(
σ2
i

〈(∂ui/∂xi)2〉

)1/2

, (5.41)

where εi is the energy dissipation rate in each of the three ordinate directions (no implicit summation

on repeated indices). These are the same definitions used in similar studies, such as those by Cabot

and Cook [11]. In way of providing context, εi so defined is related to the three diagonal elements

in the (un-averaged) energy dissipation rate tensor, ε = ν ∂ui

∂xj

(
∂ui

∂xj
+

∂uj

∂xi

)
. Other metrics that

indicate the extent of isotropy at the largest flow scales are the variances of the three components

of the velocity field, u, v, and w, and these are defined as,

σ2
i = 〈u2

i 〉 − 〈ui〉
2
. (5.42)

If the variances of these are approximately the same, it indicates that the largest flow scales are

relatively isotropic.

To answer the question as to the extent of scale isotropy under buoyant versus non-buoyant

(isotropic) conditions, the three directional Kolmogorov and Taylor micro-scales and the three ve-

locity component variances are calculated. The results for cases A, B, and C are provided in
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Table 5.6: Directional Kolmogorov and Taylor micro-scales (Eq. 5.40 and Eq. 5.41) and velocity
field variances (Eq. 5.42).

case A case B case C
isotropic buoyant mix

ηx ηy ηz ηx ηy ηz ηx ηy ηz
0.013 0.013 0.016 0.014 0.013 0.015 0.014 0.013 0.014
λx λy λz λx λy λz λx λy λz

0.032 0.030 0.036 0.034 0.101 0.036 0.037 0.063 0.036
σ2
u σ2

v σ2
w σ2

u σ2
v σ2

w σ2
u σ2

v σ2
w

1.75 1.63 1.98 1.76 6.81 1.85 1.69 3.26 1.62

Table 5.6. The Kolmogorov scales for the non-buoyant data indicate that the scale at which dis-

sipation becomes important is the same for the three velocity component directions. Additionally,

the variances suggest an approximately equal distribution of energy at the largest scales, and the

intermediate scales indicate isotropy (λx ≈ λy ≈ λz).

The fully and partially buoyant data (cases B and C) agree, to an extent, with this non-buoyant

data; the Kolmogorov scales suggest that dissipation becomes important at equivalent points despite

the presence of anisotropic buoyancy effects. This finding of isotropic Kolmogorov scales is consistent

with previous studies [11] and with energy cascade concept, which states that, as energy is transferred

downwards towards increasingly smaller scales, it loses dependence on large scale flow features. The

Taylor micro-scales and the velocity field variances for cases B and C are clearly anisotropic, as

expected from Eq. 5.42 where σ2
U ≈ σ2

W 6= σ2
V . With buoyant energy production being inherently

anisotropic, this is not an unexpected result.

In summary, the results obtained under the proposed framework are consistent with previous DNS

studies [19, 18, 11]. The current framework preserves appropriate quantity distributions and recovers

expected (an)isotropic behaviors. Additionally, it allows for the relative magnitude of buoyant and

isotropic (non-buoyant) energy production to be varied to facilitate effective parametric studies of

physically meaningful flows. Further, the computational cost incurred when using the presented

framework is significantly less than that required by other simulation configurations. Thus, as

presented, it can be used to perform efficient simulation studies of turbulent buoyant flows and the

associated mixing.

5.6 Velocity Field Physics

Section 5.5 established that the framework, as implemented, produces low-order turbulent metrics

that are consistent with other studies. Although this is an important step in showing the validity of

the proposed simulation framework, it is not enough to prove its utility. Thus, the physics that are

predicted under the proposed framework for the three test cases listed in Table 5.5 are now briefly
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discussed. This is done in way of showing that the simulation framework produces accurate data.

Attention is directed towards identifying the location of any anisotropy in the generated turbulent

fields and the extent to which such anisotropy is able to permeate into said turbulent fields.

5.6.1 Single Point Statistics

The largest physical scales, or the smallest wavenumber scales, are first examined. For the present

purposes, attention is restricted to only cases A and B, as they represent the two extremes of

turbulent buoyant flows. Beginning with purely buoyant energy production (case B), all energy

is injected in a single direction (the direction of non-zero gravity), which, in this case, is the y-

direction. Accordingly, there is an increased amount of energy associated with that direction (the v

velocity component direction) relative to the other two (the u and w velocity component directions).

To identify the extent to which this anisotropy is able to permeate into the intermediate scales,

the conditional average of each of the three velocity components on the density field is calculated.

This is done, then, also, with the isotropically-produced turbulent data to serve as a baseline for

comparison. The results of this conditional averaging are provided in Fig. 5.7.

Under perfectly isotropic conditions, the velocity field should have no dependence on the value

of the density, resulting in a conditional average that is zero for all values of density. In the case

of the isotropic forcing (case A), this is what is found in Fig. 5.7(a), with the conditional average

of the velocity fields virtually vanishing. The behaviors for ρ − 〈ρ〉 ≤ −0.4 and ρ − 〈ρ〉 ≥ 0.5 can

be attributed to the limited frequency of such large deviations from the mean density; thus, the

averages that are obtained are not truly significant. Irrespective of this, the data suggest that the

three components of velocity are isotropic and have no significant dependence on the value of the

density field when subject to isotropic forcing.

Alternatively, under only buoyant conditions (case B), this is clearly not the case. Figure 5.7(b)

suggests that the fluid parcels with a density less than the mean (ρ−〈ρ〉 ≤ 0) rise and those with one

larger than the mean (ρ−〈ρ〉 ≥ 0) fall, as expected. Note that the conditional averages of the u and

w components on density are unaffected and appear to behave similarly to the isotropic case shown

in Fig. 5.7(a). To identify how far these anisotropic effects are able to penetrate into the velocity

field, the v component of velocity is filtered. The v component is split into two parts, one which

contains the contributions to v from the smallest wavenumbers (κL < 40) and one which contains

the contributions from the larger wavenumbers (κL > 40). Here, L = k3/2/ε is the characteristic

length for large-scale motion, with k and ε being the turbulent kinetic energy and energy dissipation

rate, respectively; L is found to be approximately 80% of the domain. For the current work, this

corresponds to removing the lowest eight modes, which are responsible for approximately 85% of

the total energy produced (Fig. 5.5). After this filtering operation, the conditional averaging is

performed again. As is clear from Fig. 5.7(c), the anisotropy seen in Fig. 5.7(b) is confined to the
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smallest wavenumber contributions. When these low wavenumber contributions are removed, the

velocity field assumes an isotropic nature, similar to that calculated for the isotropically-forced case

(case A).

From these observations, it can be stated that there is no significant permeation of anisotropy

into the velocity field; when the lowest wavenumber contributions are removed, the pronounced

anisotropic behavior vanishes. From a structural sense, once these low wavenumber features are

removed from the entirety of the velocity field data, the buoyantly-driven data and the isotropically-

driven turbulent data become quite similar.

5.6.2 Two-Point Statistics

One of the motivating objectives of this work is to study the extent of scale isotropy in turbulent

buoyant flows. Specifically, it is of interest to identify where in the turbulent fields anisotropy

manifests. The conditional averages of the velocity field components indicate that the anisotropy is

confined to only the largest flow scales. A more systematic metric that can be used to examine scale

isotropy is the energy spectrum. Consequently, the energy spectra for the limiting cases in Table 5.5

are calculated (Fig. 5.8(a) and Fig. 5.9(a)), and these energy spectra are averaged over nine eddy

turn-over times. The three-dimensional energy spectra are compared, then, against a model fit [77],

which takes the form,

E(κ) = Cε2/3κ−nfL(κL)fη(κη)

fη(κη) = exp

(
−β{

(
(κη)

4
+ c4η

)1/4

− cη}
)

fL(κL) =

 κL(
(κL)

2
+ cL

)1/2


11/3

, (5.43)

where C is a constant, L is the integral length-scale defined as L = k3/2/ε, and cη, β, and cL are

constants determined by the Reynolds number. This model spectrum is fit to the presented DNS

data via a least squares method. Again, as in Chapter 2, the quality of the fit is confirmed by

calculating the L2 norm of the error according to,

L2 = ||r||2 =

(
n∑
i=1

|Emodel(κ)− E(κ)|2
)1/2

.

Emodel is the spectrum obtained from the fit and E(κ) is the DNS data. It is found that the average

square of the error is found to be less than 1% of the value of the total turbulent kinetic energy in

both cases. This spectrum can be used also to quantify the spectral scaling present in the energy

spectrum. Although not pivotal for the current work, the model fits to the present data correspond
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Figure 5.7: Conditional average of the velocity components on the density field for cases A and B.
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to E(κ) ∝ κ−1.4.

As Pope’s model spectrum is derived to match isotropic turbulent data (only case A in the present

study), the agreement between the model fit and the buoyant (case B) data is surprisingly good;

in both cases, the model spectrum is able to match the contours of the three-dimensional energy

spectrum within the dissipation region and some region outside of it. From this perspective, there is

no apparent presence of anisotropy. But, as the three-dimensional energy spectrum is the average of

the contribution of nine different components, it is possible that any anisotropies are being masked.

To determine if this is the case, the one-dimensional energy spectra are calculated.

The one-dimensional energy spectra are indicative of the distribution of turbulent kinetic energy

among the three velocity components, and they are calculated according to,

Eij(κm) =
1

π

∫ ∞
−∞

Rij(êmrm) exp (−iκmrm) drm, (5.44)

where Rij = 〈ui(x)uj(x+ r)〉 is the velocity correlation tensor. The one-dimensional energy spectra

for the limiting cases are provided in Fig. 5.8(b) and Fig. 5.9(b), and they represent the average

over nine eddy turn-over times. To emphasize the anisotropies in energy content that may (or may

not) be present, and following Chung and Pullin [18], the one-dimensional spectra are normalized

further by the total amount of energy present in all three directions according to,

Eii(κi)
† =

Eii(κi)∑i=3
i=1Eii(κi)

− 1

3
. (5.45)

These normalized one-dimensional energy spectra are depicted in Fig. 5.8(c) and Fig. 5.9(c). The

normalized quantities are used, as they emphasize the differences between the spectra in the three

ordinate directions. Under isotropic conditions, Eii(κi)
† ought to be zero across all wavenumbers,

indicating that energy is evenly distributed in the u, v, and w component directions.

Beginning with the non-buoyant case in Fig. 5.8(b) and Fig. 5.8(c), true isotropy is suggested

for all flow scales, κ. As Fig. 5.8(c) indicates, the normalized values are approximately zero across

all wavenumbers, suggesting an almost perfectly even distribution of energy at all scales of the flow.

Thus, the isotropically-forced turbulent case under the proposed simulation framework does have an

isotropic distribution of energy.

The purely buoyant case, however, behaves differently. Figure 5.9(b) and Fig. 5.9(c) display

the one-dimensional energy spectra under buoyant conditions. As is clear from Fig. 5.9(c), the low

wavenumber region (κη ≤ 0.05) has a significantly anisotropic distribution of energy, consistent

with the conditional averages calculated in the preceeding section. The intermediate scales suggest

only a weakly anisotropic distribution of kinetic energy, while the small scales suggest a significantly

anisotropic energy distribution. Note that these findings are consistent with other published data [11,
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19, 55, 56, 57].

5.6.3 Physical-Space Behaviors

To provide a more physically-intuitive explanation of the differences in buoyant (case B in Table 5.5)

and non-buoyant (case A in Table 5.5) flows, countour plots of the velocity, density, and vorticity

fields are provided. These depictions contain instantaneous realizations of the relevant quantity

at one instant in time. The presented realizations are representative of the overall, time-averaged

nature of the flow fields.

5.6.3.1 Velocity Contours

The velocity contours of the u and w velocity components are first considered. In the case of

non-buoyant (isotropic) turbulence (case A), all three components of velocity are subject to energy

injection. Further, there is no difference between the x-, y-, and z-directions under isotropic condi-

tions. Hence, the u and w component field ought to be statistically similar, with no distinguishingly

different behaviors between them. This is precisely what is suggested by Fig. 5.10. The dispersion of

large positive (white), intermediate (gray), and large negative (black) velocity magnitudes indicate a

lack of coherent structure, and an effective uniformity or equivalence between these two components

of the velocity field.

The buoyant results are largely similar. In this study, the gravity vector is aligned in the direction

of the v velocity component. Energy production is, therefore, concentrated into the v component

direction, while the u and w component directions have energy transferred into them. As the u and

w components appear identical from the perspective of the v component, the energy transfer into u

and w is statistically the same. Accordingly, the u and w fields are statistically equivalent, as shown

in Fig. 5.11, and there is a lack of any coherent structure.

5.6.3.2 Density Contours

Based on the conditional averaging of the velocity field components and the density field, it was

stated that the v component and the density field, ρ, are correlated under buoyant conditions and

decorrelated under non-buoyant conditions (Fig. 5.7). The basis of this was the strong dependence

of the sign of the v velocity component on the value of the density. If the density assumed a value

less than the mean (ρ < ρ̄), then the fluid rose (v > 0); if the density (ρ > ρ̄) exceeded that of

the mean, it fell (v < 0). However, irrespective of the density field value, the u and w components

were unaffected; their orientation (sign) was independent of the value of the density field. This

independence of velocity field orientation is the mark of decorrelation. These tendencies are best

reflected in contour plots of the v and ρ fields under non-buoyant and buoyant conditions.
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Figure 5.8: Normalized three-dimensional (Eq. 5.43) and one-dimensional energy spectra (Eq. 5.44
and Eq. 5.45) under purely isotropic conditions (Table 5.5).
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Figure 5.9: Normalized three-dimensional (Eq. 5.43) and one-dimensional energy spectra (Eq. 5.44
and Eq. 5.45) under purely buoyant conditions (Table 5.5).
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(a) u velocity component. (b) w velocity component.

Figure 5.10: Contour plots of the u and w velocity components under non-buoyant conditions
(Table 5.5). The velocity magnitudes are colored with values between -2.5 (black), 0.00 (gray), and
+2.5 (white).

(a) u velocity component. (b) w velocity component.

Figure 5.11: Contour plots of the u and w velocity components under buoyant conditions (Table 5.5).
The velocity magnitudes are colored with values between -2.5 (black), 0.00 (gray), and +2.5 (white).



121

(a) v velocity component. (b) ρ field.

Figure 5.12: Contour plots of the v velocity component and ρ field under non-buoyant conditions
(Table 5.5). The velocity magnitudes are colored with values between −2.5 (black), 0.00 (gray), and
+2.5 (white). The density field values are colored by 0.8 (black), 1.0 (gray), and 1.2 (white).

Beginning with the non-buoyant data, the form of energy production is isotropic. This imparts

an equivalence between the u, v, and w components, which is reflected in Fig. 5.12(a). Further, the

independence of the velocity component orientation (i.e., v > 0 vs. v < 0) is reflected in the density

contour (Fig. 5.12(b)).

A distinctly different behavior is noted in the buoyant data. The sense of the v component of

the velocity field is dependent on the value of the fluid density. This is clearly shown in Fig. 5.13,

which contains the contour plots of the v and ρ fields. A low density value is colored to be black,

an intermediate density value is colored to be gray, and a high density value is colored to be white.

Similarly, a negative v value is colored black, a zero v value is colored gray, and a positive v value

is colored white. Whenever there are patches of high density fluid (ρ > ρ̄) in Fig. 5.13(b), there are

corresponding patches of negative v values in Fig. 5.13(a). Alternatively, whenever there are patches

of low density fluid (ρ < ρ̄) in Fig. 5.13(b), there are corresponding patches of positive v values in

Fig. 5.13(a).

5.6.3.3 Vorticity Contours

For completeness, the contours of the vorticity field are calculated also and presented in Fig. 5.14.

The vorticity fields are determined according to,

ω = ∇× u = î

(
∂w

∂y
− ∂v

∂z

)
+ ĵ

(
∂u

∂z
− ∂w

∂x

)
+ k̂

(
∂v

∂x
− ∂u

∂y

)
. (5.46)
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(a) v velocity component. (b) ρ field.

Figure 5.13: Contour plots of the v velocity component and ρ field under buoyant conditions (Ta-
ble 5.5). The velocity magnitudes are colored with values between −2.5 (black), 0.00 (gray), and
+2.5 (white). The density field values are colored by 0.8 (black), 1.0 (gray), and 1.2 (white).

The two-dimensional realizations depicted correspond to the magnitude of the vorticity field on

the x − y plane cut at the midplane of z. The contour plots are colored such that a low vorticity

magnitude is black, an intermediate value is gray, and a high value is white. Although no conclusive

inferences can be drawn from these two figures, they do suggest that the presence of buoyancy (g 6= 0)

reduces the frequency of large magnitude vorticity occurrences relative to non-buoyant flows.

5.6.4 Summary

In summary, the analysis performed suggests that the implemented simulation framework is able to

accurately reproduce key isotropic turbulent metrics. The one-dimensional and three-dimensional

energy spectra under isotropic forcing conditions (case A) are found to be, indeed, isotropic. This

is confirmed by agreement with Pope’s model spectrum (Fig. 5.8(a)) and an approximately equal

distribution of velocity variance (Fig. 5.8(c)) over all pertinent flow scales. In the other extreme,

where the velocity field is fed by only buoyancy forces (case B), the deviations from isotropic behavior

are both reasonable and expected. The one-dimensional energy spectra and the Taylor micro-scales

indicate anisotropy, as expected since energy is provided to the velocity field by gravity, g, which is

directional. Similarly, when the ratio of buoyant energy production to isotropic energy production is

reduced (case C), the magnitude of the observed anisotropy correspondingly decreases. Also, gravity

can be thought of as a long-wave forcing. It is, then, reasonable that, once the largest flow scales

are removed (Fig 5.7(c)), the anisotropy that it induces vanishes. From these observations, it can

be stated that the data predicted by the proposed methodology is both reasonable and accurate.
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(a) Non-buoyant ω field. (b) Buoyant ω field.

Figure 5.14: Contour plots of the vorticity field under non-buoyant and buoyant conditions (Ta-
ble 5.5). The vorticity magnitudes are colored with values between 0.025 (black), 17.5 (gray), and
35 (white).

Table 5.7: Isotropically- and buoyantly-driven turbulent flows under the proposed configuration at
a non-unity Schmidt number (At = 0.13).

No. ε ν χ D Sc Q |g| N3 κmaxη κmaxηB
D 2.18 0.005 1.05 3.125×10−4 16 0.382 0 7683 5.94 1.5
E 2.16 0.005 1.07 3.125×10−4 16 0 12 7683 5.96 1.5

5.7 Scalar Field Physics

The previous sections (Section 5.5 and Section 5.6) have suggested that the relevant non-dimensional

parameters of importance for the velocity field, Re, Ri, and A, can be varied with respect to one

another. Additionally, Section 5.5.2 showed the probability density functions (PDFs) are properly

reproduced for both buoyant and non-buoyant conditions in the scalar and density fields. This

section now shows that the final non-dimensional number, the Schmidt number, can be independently

adjusted in the scalar field whilst holding all other parameters (A, Re, Ri) fixed. Two additional

test cases are performed. The details of these two cases, one of which is subject to purely isotropic

forcing in the velocity field (case D) and the other of which is subject to purely buoyant forcing in

the velocity field (case E), are provided in Table 5.7. Note that these data were performed at the

same Atwood number and energy dissipation rate as cases A-C (A = 0.13 and ε ≈ 2.0) to facilitate

a comparison, and the strength of buoyant (cases B and E) and isotropic (cases A and D) forcing is

the same, with Q = 0.382 and g = 12.

To prove that the Sc = 16 claimed in Table 5.7 is reflected indeed in the scalar field simulated,
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the scalar energy spectra for cases A, B, D, and E are studied (Fig. 5.16). Note that Fig. 5.16 is

normalized by the scalar dissipation rate, χ, to make the curves collapse. However, to first confirm

that the velocity fields for these non-unity Schmidt number cases are equivalent to the unity Schmidt

number cases, as claimed above, the energy and dissipation spectra are provided in Fig. 5.15. As

is clear from Fig. 5.15, the velocity fields across the four cases are comparable. Thus, these four

simulation data sets do represent two pairs of turbulent cases that have equivalent velocity fields

(i.e., Re, Ri, and A); only the scalar fields are subject to different conditions, i.e., the Schmidt

number imposed.

To determine the effective scalar diffusivity, D, present in the scalar fields, the scalar dissipation

spectra and the scalar dissipation rate, χ, are needed. Recall the definition of the scalar dissipation

spectrum,

DZ(κ) = 2Dκ2EZ(κ), (5.47)

that of the scalar dissipation rate,

χ = 〈2ρD|∇Z|2〉, (5.48)

and the relationship between them,

χ =

∫ κ=∞

0

DZ(κ) dκ. (5.49)

Hence, by determining the area under the curve of the scalar dissipation spectrum and calculating

the scalar dissipation rate, the (effective) value of D can be obtained according to,

D =
1

2

χ∫ κ=∞
0

κ2EZ(κ) dκ
. (5.50)

When this calculation is performed, the values for D obtained are: D = 2.94 × 10−4 (case D) and

D = 2.93×10−4 (case E), which, with a kinematic viscosity of ν = 0.005, give Sc ≈ 17 for both. The

Sc number calculated is not exactly the value reported in Table 5.7 (Sc = 16), but the difference

is small, and the point is made nevertheless. The same analysis can be done for cases A and B to

confirm that the Sc is different under the same Re, Ri, and A conditions. When the calculations are

performed, it is found that D = 0.005, making the Sc = 1, as reported in Table 5.5. This analysis

confirms that the proposed configuration can be used to independently vary the Schmidt number

under isotropic or buoyant conditions at a specified density ratio (Atwood number).



125

1
0

-1
2

1
0

-1
0

1
0

-8

1
0

-6

1
0

-4

1
0

-2

1
0

0

1
0

2  0
.0

1
 0

.1
 1

 1
0

E(κ)

κ
η

c
a
s
e
 A

c
a
s
e
 B

c
a
s
e
 D

c
a
s
e
 E

(a
)

E
n

er
g
y

sp
ec

tr
u

m
,
E

(κ
).

 0

 0
.2

 0
.4

 0
.6

 0
.8 1  0

.0
1

 0
.1

 1
 1

0

10 x D(κ)

κ
η

c
a
s
e
 A

c
a
s
e
 B

c
a
s
e
 D

c
a
s
e
 E

(b
)

D
is

si
p

a
ti

o
n

sp
ec

tr
u

m
,
D

(κ
).

F
ig

u
re

5.
15

:
E

n
er

gy
an

d
d

is
si

p
at

io
n

sp
ec

tr
a

u
n

d
er

n
o
n

-b
u

oy
a
n
t

(c
a
se

s
A

a
n

d
D

)
a
n

d
b

u
oy

a
n
t

(c
a
se

s
B

a
n

d
E

)
co

n
d
it

io
n

s
w

it
h

a
n

a
p

p
ro

x
im

a
te

ly
co

n
st

an
t

en
er

gy
d

is
si

p
at

io
n

ra
te

,
ε,

an
d

an
A

tw
o
o
d

n
u

m
b

er
o
f

0
.1

3
.

 0 1 2 3  0
.0

1
 0

.1
 1

κ
2
 x EZ(κ) / χ

κ
η

c
a
s
e
 A

c
a
s
e
 B

(a
)

S
ca

la
r

d
is

si
p

a
ti

o
n

sp
ec

tr
u

m
,
D
Z

(κ
)/

(2
D
χ

),
a
t
S
c

=
1
.

 0 3 6 9

 1
2

 1
5  0

.0
1

 0
.1

 1
 1

0
κ

2
 x EZ(κ) / χ

κ
η

c
a
s
e
 D

c
a
s
e
 E

(b
)

S
ca

la
r

d
is

si
p

a
ti

o
n

sp
ec

tr
u

m
,
D
Z

(κ
)/

(2
D
χ

),
a
t
S
c
6=

1
.

F
ig

u
re

5.
16

:
S

ca
la

r
d

is
si

p
at

io
n

sp
ec

tr
a

fo
r

ca
se

s
A

,
B

,
D

,
a
n

d
E

.
T

h
es

e
sp

ec
tr

a
re

su
lt

fr
o
m

co
n

d
it

io
n

s
w

it
h

a
n

a
p

p
ro

x
im

a
te

ly
co

n
st

a
n
t

en
er

g
y

d
is

si
p

at
io

n
ra

te
,
ε,

an
d

an
A

tw
o
o
d

n
u

m
b

er
of

0
.1

3
.



126

5.8 Summary and Conclusions

In summary, a new computational framework for the study of turbulent buoyant flows has been

presented. It enables the physics of variable density turbulent mixing to be sustained in time at

a statistically stationary state, and it allows for the four important non-dimensional parameters,

namely the Reynolds, Richardson, Atwood, and Schmidt numbers, to be independently varied. This

simulation framework relies on the adaptation of well-known, accepted velocity and scalar field

forcing methods used in numerical simulation studies of homogeneous, isotropic turbulence. The

relevant governing equations have been provided, and the constraints applied to the forcing terms

have been justified.

As a consequence of this forced methodology, the proposed framework is computationally effi-

cient. The physical scenario to which it corresponds is that of the region of scalar mixing located

sufficiently deep inside of a mixing layer such that the boundary conditions (or mean flow parame-

ters) are no longer felt by (or even affect) the mixing physics. This enables the full span of turbulent

buoyant flows to be systematically studied and interrogated. As a means of validation, the needed

numerical operating parameters have been identified (e.g. grid resolution, solver order, and trans-

port scheme quality), and canonical turbulent metrics predicted under the proposed framework have

been investigated (e.g. single- and two-point statistics and isotropy).

Three test cases have been considered from purely isotropic to purely buoyant, and key canonical

turbulent characteristics were calculated. The purely isotropically-forced case (case A) displayed

isotropic Kolmogorov scales, and the velocity components were independent of the density field

when conditionally-averaged, as expected. This isotropically-forced data also had almost perfectly

isotropic distribution of energy content across all flow scales. The purely buoyantly-forced case (case

B) displayed isotropic Kolmogorov scales, but its velocity component in the direction of the gravity

vector (v) is anisotropic. This anisotropy is found to have only shallow penetration into the velocity

field, and its effects are limited to only small wavenumbers (κL < 40). The total kinetic energy

is found to be anisotropically distributed; this is attributed to the single direction in which energy

is injected (the non-zero direction of g). Additionally, the partially buoyant case (case C) displays

behaviors bounded by the purely isotropic and buoyant data, as expected.
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Chapter 6

Turbulent Buoyant Flows: A Simulation Study

This chapter illustrates the application of the proposed geometry to the study of variable density,

turbulent buoyant mixing. In the sections that follow, the Reynolds, Atwood, and Richardson

numbers are varied whilst holding the Schmidt number fixed at Sc = 1. This is done, as primary

focus of this final substantative chapter is on the physics present in the velocity and scalar fields

when energy production is provided by non-buoyant sources, buoyant sources, or a combination of

the two.

The parameter space spanned by the current study finds context in existing, published data.

Beginning with scalar diffusivity, the range of Schmidt numbers examined in similar studies is a

narrow one. Typically, variable density studies have been limited to low Schmidt number conditions.

Commonly reported Schmidt number values include Sc = 0.1 − 0.5 [55, 57], 0.7 [70], and 1.0 −

2.0 [55, 56]. The preference for low Schmidt numbers is largely due to two considerations. First, the

Schmidt number of air is roughly 0.7. Second, resolution requirements limit the Schmidt number

to small values when the Reynolds number is high. The Sc = 1 condition in this work is consistent

with these ranges. The density ratios examined in the current work are also comparable to density

ratios used in previous studies. A rather broad range of Atwood numbers, defined per Eq. 5.26,

has been reported in the literature. Simulation and experimental studies have examined the physics

of variable density mixing under A = 0.05 [55, 57], 0.25 [55], 0.5 [18, 70, 55, 56, 57], and 0.75 [18]

conditions. It will be shown later in this chapter that the two Atwood numbers considered in this

work are approximately equivalent to the A = 0.25 and A = 0.5 conditions described in previous

studies.

The analysis performed and the discussions to follow are concerned with fourteen test cases. Test

cases 1-6 (Table 6.1) correspond to non-buoyant turbulent fields at three Atwood numbers (A = 0,

0.06, and 0.12) and at two energy dissipation rates (ε = 〈2νSijSij〉 ≈ 2 and 90); the velocity field

is subject to energy injection from only isotropic forcing. Test cases 7-14 (Table 6.2) are subject to

buoyancy forces, and these span two Atwood number conditions at the same two dissipation rates.

The data are partitioned into four groups of three, with each group of three having a fixed A, a
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Table 6.1: Variable density non-buoyant cases.

Non-buoyant (Ri = 0)
Case N3 ε Reλ Re (Eq. 5.37) A Sc ν κη κηB

1 5123 94.6 140 1275 0 1 0.005 1.5 1.5
2 5123 90.5 140 3443 0.06 1 0.005 1.6 1.6
3 5123 91.0 140 2012 0.12 1 0.005 1.6 1.6
4 2563 2.03 70 617 0 1 0.005 2.0 2.0
5 2563 2.05 70 450 0.06 1 0.005 2.0 2.0
6 2563 2.02 70 478 0.12 1 0.005 2.0 2.0

Table 6.2: Variable density and variable density buoyant cases.

Case N3 ε Re Q Ri At Sc ν κη κηB
2 5123 90.5 3443 1.4 0 0.06 1 0.005 1.6 1.6
7 5123 76.6 4507 1.1 0.52 0.06 1 0.005 1.6 1.6
8 5123 88.4 7876 0 0.55 0.06 1 0.005 1.6 1.6
3 5123 91.0 2012 1.4 0 0.12 1 0.005 1.6 1.6
9 5123 89.1 5230 1.05 0.53 0.12 1 0.005 1.6 1.6
10 5123 81.7 7050 0 0.58 0.12 1 0.005 1.6 1.6
5 2563 2.05 450 0.382 0 0.06 1 0.005 2.0 2.0
11 2563 2.15 1516 0.287 0.50 0.06 1 0.005 2.0 2.0
12 2563 2.05 2236 0 0.60 0.06 1 0.005 2.0 2.0
6 2563 2.02 478 0.382 0 0.12 1 0.005 2.0 2.0
13 2563 1.95 1188 0.287 0.50 0.12 1 0.005 2.0 2.0
14 2563 2.03 2286 0 0.54 0.12 1 0.005 2.0 2.0

fixed ε, and a varied Ri. By imposing that ε be constant (at ≈ 2 or ≈ 90), the Kolmogorov scales,

η =
(
ν3/ε

)1/4
, are held fixed across the ε ≈ 90 data sets at η = 0.0060 and across the ε ≈ 2 data

sets at η = 0.0156 for all fourteen test cases. This is done to facilitate a fair comparison between

the two pairs of data (at high and low ε conditions).

The structure of this chapter is the following. In Section 6.1, the effects of changing the Reynolds

number (or, equivalently, changing the energy dissipation rate, ε) on the turbulent field under

constant density conditions are presented. In Section 6.2, the effects that variable density have on

non-buoyant turbulence are investigated. Additionally, variable density effects in the scalar field are

examined. In Section 6.3, buoyancy is introduced to the variable density turbulent fields. From this,

the effects that buoyant forces have on turbulence structure and statistics at two Atwood number

conditions are interrogated. This discussion also investigates the impact of changing the Atwood,

Richardson, and Reynolds number on the scalar field; of specific interest is the way in which the

scalar field reacts to accomodate the changing nature of the velocity field. The simulation code used

to perform all the simulations contained in this chapter is detailed in Appendix 8.3, Appendix 8.4,

Appendix 8.5, and Appendix 8.6.



129

6.1 Reynolds Number Effects

To provide a baseline against which non-buoyant and buoyant variable density turbulence data

can be compared, the behavior for constant density, isotropically-forced turbulence is first briefly

highlighted. The analysis that follows is drawn from the data corresponding to cases 1 and 4

in Table 6.1. These two cases have different energy dissipation rates (or, equivalently, different

Reynolds numbers), but all other parameters are the same between them.

Two commonly reported second-order metrics, the energy spectra, E(κ) = 1
2 |ûi|

2, and dissipation

spectra, D(κ) = 2νκ2E(κ), are first presented. Figure 6.1 depicts these spectra. Beginning with

the dissipation spectrum, recall that the area under D(κ) is equal to the energy dissipation rate;

hence, Fig. 6.1(a) confirms that these two cases have two different values of ε. Turning attention

to the energy spectrum, a few macroscopic comments can be made. Under sufficiently high Re

conditions, i.e. where there is meaningful scale separation, E(κ) should display a spectral scaling

of κ−5/3 across an intermediate range of (inviscid) wavenumber scales. This scaling is provided in

Fig. 6.1(b) along with the energy spectra for cases 1 and 4. Clearly, such a spectral scaling region is

not found in either set of data; however, this is expected. Qian [79, 80] and others have suggested

that such a scaling range is not to be until Re ∼ O(104). Thus, it should be expected, in all other

test cases (1− 17) to be examined, that there are non-negligible finite Reynolds number effects, and

the canonical turbulent behaviors outlined in Section 2.2 will not be realized.

As discussed in Chapter 2, the energy spectrum scaling can be explained by considering κEI , κPI ,

and κDI , which were initially introduced in Section 2.2. Recall that κEI is the waveshell in wavespace

(starting at κ = 0) at which 90% of the total kinetic energy is obtained. Similarly, κDI characterizes

the waveshell in wavespace at which 10% of the total dissipation has occurred (starting from κ = 0).

Lastly, κPI indicates the waveshell in wavespace at which 90% of the energy produced has been

deposited. These scales are included in Table 6.3 for cases 1 and 4. Consistent with the lack of a

κ−5/3 scaling range, these wavenumbers suggest that there is no scale separation at these Reλ values.

The primary point to be made is that the wavenumber at which dissipation becomes important (κDI)

occurs before the energy production scales become unimportant (κEI); this constitutes overlap. It it

noted that the overlap is more extensive in the lower Reλ case (κEI/κDI = 2.33) versus the higher

Reλ case (κEI/κDI = 1.56), as is reasonable. The extent of scale overlap present in these flows can

be quantified further using the cumulative dissipation, cumulative energy, and cumulative power
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Figure 6.1: Energy and dissipation spectra at different Reynolds numbers under constant density
(A = 0) conditions (cases 1 and 4 in Table 6.1). Note the dissipation spectrum for the Reλ = 70
case has been multiplied by 20 for purposes of plotting and comparison.
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Table 6.3: Pertinent characteristic length-scales.

case ID ε κDI κEI κPI κEI/κDI
case 1 90 16 25 25 1.56
case 4 2 6 14 14 2.33

spectra. These cumulative spectra are defined as,

Dcum(κ) =

κ∑
0

2νκ2E(κ), (6.1)

Ecum(κ) =

κ∑
0

E(κ), (6.2)

Pcum(κ) =

κ∑
0

2QE(κ), (6.3)

and they are normalized by the total dissipation, energy, and power, as appropriate, when plotted

in Fig. 6.2. Figure 6.2 is informative, as it shows that, although the dissipation is lagging the

energy production, as it should be, the lag is not sufficient to support inviscid dynamics and the

establishment of an inertial subrange. Note that the curves for Ecum(κ) and Pcum(κ) are coincident.

Up to this point, the discussion of cases 1 and 4 has focused on the lack of an inertial range and

the associated inviscid dynamics. However, the increase in ε from ≈ 2 to ≈ 90 is not unimportant.

To highlight the effect of the Reynolds number on the resulting turbulence, it is useful to consider

the turbulent kinetic energy equation in spectral space,

dE(κ)

dt
= T (κ) + P (κ)−D(κ) +R(κ), (6.4)

in which there are five constituent terms. The term dE(κ)
dt represents the time-rate of change of

energy inside the computational domain, or the power decay rate. The transfer spectrum, T (κ), is

defined as,

T (κ) = −û∗iF
(
uj
∂ui
∂xj

)
, (6.5)

where F denotes the Fourier transform operator, û denotes the Fourier coefficient of the velocity

component u, and (·)∗ denotes a complex conjugate. The final term, R(κ), contains any other

effects that are not included in the other four terms; this contains, for example, the effects of

pressure gradients.

Of particular interest is the transfer spectrum, as it corresponds physically to the transfer of

energy from the larger turbulent eddies to all turbulent eddies of a smaller size. To isolate the

features of the transfer spectrum, which is plotted in Fig 6.3(a), it can be broken down into the sum
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Figure 6.2: Cumulative dissipation, energy, and power spectra under constant density conditions
(cases 1 and 4 in Table 6.1).



133

of three contributing terms,

T (κ) = Tx + Ty + Tz. (6.6)

These correspond to the transfer of energy along the direction of the u velocity component (Tx), the

v velocity component (Ty), and the w velocity component (Tz). These three transfer spectra are

defined as,

Tx = −û∗F
(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
,

Ty = −v̂∗F
(
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
,

Tz = −ŵ∗F
(
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
, (6.7)

and they are plotted, under constant density conditions, in Fig. 6.3(b) and Fig. 6.3(c).

It was established previously that these flow fields suffer from scale overlap, and this is reflected

in Fig 6.3(a), as there is no region, for either Reλ, across which T (κ) assumes a value of zero (a

requirement for inviscid dynamics). Irrespective of that, there are qualitative differences that can

be gleaned from transfer spectra. The negative regions in Fig. 6.3(a) correspond to regions over

which energy is produced; the positive regions represent those over which it is dissipated. The

higher Reynolds number case transitions from negative to positive (producing to dissipating) earlier

in wavespace compared to the low Reynolds number case. This implies that energy production

penetrates further into the smaller flow scales (larger κη) when the Reynolds number is lower.

Further, the three constituent transfer spectra, Tx, Ty, and Tz, indicate that the energy transfer is

isotropic; at all flow scales, the three spectra are effectively equivalent.

Additionally, structure functions can be informative of Reynolds number effects. Recall the

definition of the second- and third-order structure functions,

Bll(r, t) = 〈(ul(x+ rl, t)− ul(x, t))2〉, (6.8)

Blll(r, t) = 〈(ul(x+ rl, t)− ul(x, t))3〉, (6.9)

where ul is the velocity component aligned with unit vector, l, and r is the magnitude of the two-point

separation between fluid points. These functions are known to display asymptotic behaviors under

sufficiently high Reynolds number conditions. The third-order structure function tends towards 4/5

across an intermediate range of scales when properly normalized (−Blll/ (εr) = 4/5 [77, 58]). The

second-order structure function tends towards a constant value of approximately 2.0 across such an

intermediate range when suitably normalized (Bll/ (εr)
2/3 ≈ 2.0 [77, 58]). Further, it is known that

these asymptotic values are slowly approached with increasing Reynolds number [59, 58].
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Figure 6.3: Transfer spectra at different Reynolds numbers under constant density (A = 0) conditions
(cases 1 and 4 in Table 6.1).
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Figure 6.4: Second- and third-order longitudinal structure functions at different Reynolds numbers
under constant density (A = 0) conditions (cases 1 and 4 in Table 6.1).

Returning to the two cases of present concern, cases 1 and 4, the second- and third-order struc-

ture functions are calculated and depicted in Fig. 6.4. Clearly in neither case are the asymptotic

behaviors observed; the normalized third-order structure function is far from a constant value at 4/5

at any r separation, and the normalized second-order structure function lacks a constant region with

magnitude near 2.0. What is observable, however, is the slow approach towards these asymptotic

limits, with the structure function values in the Reλ = 140 case consistently, and not insignificantly,

larger in magnitude than its Reλ = 70 counterparts.

The objective of this section was to establish the baseline behaviors of isotropic turbulence under

constant density conditions at the two energy dissipation rates used in this study. Specifically,

the findings are as follows. First, there is scale overlap for both the high and low ε cases. This

precludes the presence of a κ−5/3 scaling range from being obtained in the energy spectrum. Second,

the transfer spectrum confirms the isotropic nature of energy transfer to the velocity fields, as
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Tx = Ty = Tz. Third, the structure functions have compensated magnitudes that are below those

obtained in an inviscid limit.

6.2 Atwood Number Effects (Variable Density)

With the nature of constant density turbulence investigated and described (Section 6.1), variable

density (non-buoyant) turbulence is investigated. The analysis that follows is aimed at determining

if variable density effects are significant enough to effect key turbulent metrics. The simulations of

concern here are cases 1-6 in Table 6.1.

These 6 cases have Atwood numbers of 0, 0.06, and 0.12, as defined in Eq. 5.28. As the definition

of Atwood number used in this work is not that which is commonly implemented in variable density

turbulent studies, it is necessary to qualify how these three values stand up against the traditional

measure. Recall that, traditionally, the Atwood number is defined as,

Atr =
ρ2 − ρ1

ρ2 + ρ1
, (6.10)

with ρ2 and ρ1 representing the highest and the lowest density values. This metric is calculated

normally in the context of a mixing layer or a Rayleigh-Taylor instability, where there are pure fluid

reservoirs with a larger density (ρ2) and a lower density (ρ1). Since the framework implemented

in this work does not include regions of pure fluid in the simulation geometry, a direct comparison

between the reported Atwood number (A) and those values found in the literature is not possible.

However, to enable an approximate comparison, the following is done. The data generated under

the simulation framework presented in Chapter 5 are examined. For each discrete data file, which

are separated by approximately one eddy turn-over time each, the minimum and maximum density

values are found. It is assumed that these are the density values that would correspond to the pure

fluid reservoirs, had they been included in the simulation geometry. Then, the traditional Atwood

number definition (Eq. 6.10) is applied with ρ2 = ρmax and ρ1 = ρmin. These discrete Atwood

number values are averaged over all available data sets. Admittedly, this is not a perfect comparison,

but it does provide a general idea as to the extent of density variation present in these simulations

in terms of the commonly-used Atwood number definition. This process indicates that the reported

A = 0.06 using this work’s preferred definition (Eq. 5.28) corresponds to that of Atr ≈ 0.25 under

Eq. 6.10. Further, A = 0.12, as defined in Eq. 5.28, is loosely equivalent to Atr ≈ 0.5 under Eq. 6.10.

The point to be made here is simply that the simulations to be presented contain significant and

strong variations in density and are well outside of the Boussinesq limit. Accordingly, any effects

that a non-constant density have on the resulting turbulent fluid mechanics ought to be apparent.

To provide some context as to the physical scenario to which an Atr ≈ 0.5, Atr ≈ 0.25 or
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Atr ≈ 0.0 corresponds, a few examples are provided. An Atr ≈ 0.25 represents the mixing of air

(ρ = 1.2754 kg/m3) and ammonia (NH3 with ρ = 0.769 kg/m3), helium (He with ρ = 0.179 kg/m3)

and hydrogen (H2 with ρ = 0.090 kg/m3), air and methane (CH4 with ρ = 0.717 kg/m3), or air

and water vapor (H2O with ρ = 0.804 kg/m3), for example. All properties listed are assuming

standard temperature and pressure, which is at 0 degrees Celsius and one atmosphere of pressure.

An Atr ≈ 0.5 represents a mixture of methane and carbon dioxide (CO2 with ρ = 1.977 kg/m3)

or methane and ozone (O3 with ρ = 2.14 kg/m3), where the thermodynamic properties are at

standard temperature and pressure. Lastly, an Atr ≈ 0 simply describes the mixing of two fluids

with approximately the same density, such as sea water (ρ = 1025 kg/m3) mixing with fresh water

(ρ = 998 kg/m3). These density values assume one atmosphere of pressure at 20 degrees Celsius,

and result in Atr ≈ 0.01.

6.2.1 Energy, Dissipation, and Transfer Spectra

To interrogate the effect of variations of density on turbulence, the energy and dissipation spectra

are first calculated. These are depicted in Fig. 6.5 for the lower ε cases and Fig. 6.6 for the higher ε

cases. It should be noted here that these spectra are defined according to,

E(κ) =
1

2
|ûi|2, (6.11)

and

D(κ) = νκ2|ûi|2 = 2νκ2E(κ). (6.12)

Recall that the dynamic viscosity (µ) changes with the fluid density, but the kinematic viscosity

(ν = µ/ρ) is fixed at a constant value (from Chapter 5). Although these formulations do not

explicitly contain the density, the velocity field is affected by the presence of variations in density.

Thus, these spectra, so defined, should indicate any impacts due to density. As is apparent in

Fig. 6.5 and Fig. 6.6, there do not appear to be any differences between the two turbulent cases at

the three Atwood numbers included. Note that these six test cases correspond to variable density,

non-buoyant turbulent cases where isotropic forcing is applied to the velocity field.

The energy and dissipation spectra are the most commonly reported spectra in turbulence studies;

the transfer spectrum is less frequently calculated. Nevertheless, the transfer spectrum is useful, as

it suggests the way in which energy “cascades” into the progressively smaller scales. To determine if

varying the density has any effect on this process, the transfer spectra are plotted for cases 1 through

6. The full transfer spectrum, which is defined as Eq. 6.5, and its three constituent transfer spectra,

which are defined as Eq. 6.7, are plotted in Fig. 6.7 for the lower ε cases and in Fig. 6.8 for the
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higher ε cases. These spectra suggest that in neither case, high nor low ε, are there any discernible

differences in the transfer spectra despite the significant differences present in the density fields

involved. Also, these spectra confirm the isotropic nature of energy transfer when subjected to the

imposed isotropic velocity forcing despite the presence of density variations; Tx = Ty = Tz for the

two sets of data presented.

6.2.2 Scalar Field Spectra

The final spectra that will be presented for these six non-buoyant cases are the scalar energy, EZ(κ),

and scalar dissipation, DZ(κ), spectra. These are defined as,

EZ(κ) =
1

2
|Ẑ|2, (6.13)

and

DZ(κ) = Dκ2|Ẑ|2 = 2Dκ2EZ(κ), (6.14)

with D being the diffusivity of the scalar species. These spectra are plotted in Fig. 6.9 and Fig. 6.10.

The scalar dissipation spectra are normalized by the scalar dissipation rate, χ = 〈2ρD|∇Z|2〉, and

the scalar energy spectra are normalized by the variance of the scalar field, σ2
Z = 〈ρZ2〉 − 〈√ρZ〉2,

to make the curves collapse. The angled brackets, 〈·〉, denote (volume) ensemble averaging. As

seen with the energy and dissipation spectra in the velocity field, the effects of variable density are

virtually non-existent for all six cases. Since the scalar field and the density field are coupled by the

imposed equation of state Eq. 5.6, these scalar field metrics ought to show any changes induced by

density variations, despite the lack of density in the formulations used (Eq. 6.13 and Eq. 6.14).

6.2.3 Alignment

With the spectra behavior of these six non-buoyant, variable density flows qualitatively exam-

ined, statistical metrics are investigated, specifically alignment characteristics. Under homogeneous,

isotropic conditions for an incompressible fluid (i.e. constant density), the vorticity field, ω = ∇×u,

the gradient of the scalar field, ∇Z, and the eigenvectors (α̂, β̂, and γ̂) of the velocity field strain rate

tensor, Sij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, exhibit known and specific relative alignments [6]. In this notation,

the most extensive (positive) strain-rate tensor eigenvalue is α and its associated eigenvector is α̂.

The most compressive (negative) eigenvalue is γ with eigenvector γ̂. The intermediate strain-rate

tensor eigenvalue, β, with eigenvector β̂ can be either extensive or compressive; it will assume the

sense needed to satisfy continuity. In constant density flows, ∇ · ui = 0 implies that α+ β + γ = 0;

however, when the density is variable, α+ β + γ 6= 0.
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The literature and analytical studies [6] suggest the following alignments are favored in constant

density, isotropic turbulent flows. The β strain-rate eigenvector, β̂, tends to align with the vorticity,

ω, while there is strong anti-alignment between ω and γ̂. The extensive eigenvector, α̂, is largely

independent of the vorticity field, and it is equally likely to be aligned in any orientation relative

to ω. Similarly, the scalar gradient vector, ∇Z, aligns preferentially with certain components of the

strain-rate tensor. The scalar gradient generally aligns in the same direction as the most compressive

eigenvector, γ̂. Also, ∇Z tends towards anti-alignment with β̂, and it has no preferential alignment

with respect to α̂, as seen in the vorticity field.

Although these alignments are known under constant density conditions, it is not known if they

are respected by variable density flows with or without buoyancy forces. To investigate this, the

dot products of the three principle strain-rate eigenvectors and the vorticity and scalar gradient

fields are taken, and the probability density functions (PDFs) are calculated. These are depicted in

Fig. 6.11, Fig. 6.12, Fig. 6.13, and Fig. 6.14, for the high and low ε cases under constant density

(A = 0) and variable density conditions (A = 0.06 and 0.12).

From Fig. 6.11 - Fig. 6.14, irrespective of the value of ε or A, the alignment PDFs for all six cases

tell the same story. The alignments expected for incompressible flow are recovered in each instance

(A = 0, 0.06, and 0.12) for both the vorticity and scalar fields. Figure 6.11 and Fig. 6.12 suggest that

the vorticity field is insensitive to α̂, is aligned with β̂, and is anti-aligned with γ̂. From Fig. 6.13 and

Fig. 6.14, it is clear that the scalar gradient vectors align most directly with γ̂, are anti-aligned with

β̂, and have limited dependence on α̂. Such alignment is interesting, as the scalar, Z, is not a passive

scalar; it influences the flow field through the density via the equation of state (Eq. 5.6) in these

non-buoyant simulations. Thus, the analytically-derived and experimentally-measured alignment

features are reproduced under variable density, turbulent conditions, with ω preferentially orienting

in the β̂ direction and ∇Z aligning in the γ̂ direction.

6.2.4 Structure Functions

The final metric to calculate for these non-buoyant turbulent cases are the longitudinal second-

and third-order structure functions, Bll(r) and Blll(r). To determine if the variations in density

are having an effect on the velocity field in some way that is not captured in the alignment PDFs

or in the calculated spectra, these two structure functions are determined for the six non-buoyant

data sets. The results are shown in Fig. 6.15 for the lower ε cases and Fig. 6.16 for the higher ε

cases, where the curves have been properly normalized. These data suggest that the variation of

density has no effect on the structure of the velocity field, as the correlation of velocity differences

throughout the domain are unaffected by the strength of the Atwood number. Note that the very

slight differences at large separation distances are due to the finite number of independent data files

used to compute the statistically averaged quantities.
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6.3 Richardson Number Effects

The previous two sections have discussed the effects of Reynolds number and Atwood number on

canonical metrics of non-buoyant, variable density turbulent flows. Now, it is of interest to study

how the addition of buoyancy impacts turbulent structure. This is done in two parts. First, in

Section 6.3.1, comparisons are done between the non-buoyant cases already presented (cases 1 and

4) and their fully buoyant counterparts (cases 8, 10, 12, and 14). Recall that these cases share

the same energy dissipation rate (either ε ≈ 2 or ε ≈ 90) and all physical properties; the only

difference between the cases is their source of turbulent kinetic energy. For cases 1 and 4, the

source is an isotropic forcing term (Eq. 5.14); for cases 8, 10, 12, and 14, the source is gravity

(with a magnitude adjusted to ensure the proper equivalent energy dissipation rate) at two different

Atwood numbers. These buoyant cases have an approximately fixed Richardson number between

them of Ri ≈ 0.57. This is done, as such a comparison between the extreme cases (fully buoyant at

Ri 6= 0 vs. non-buoyant at Ri = 0) should accentuate any differences between the turbulent fields.

Then, in Section 6.3.2, the effect of varying the ratio of buoyant energy production to total energy

production from zero to one is studied.

6.3.1 Non-buoyant vs. Fully Buoyant Conditions

6.3.1.1 Energy and Dissipation Spectra

Once again, the first metrics examined are the energy and dissipation spectra. The comparison

between the non-buoyant data and fully buoyant data at A = 0.06 and A = 0.12 are shown in

Fig. 6.17 and Fig. 6.18. Both pairs of spectra suggest that the differences of note are located only at

the largest flow scales (small κ). The disparities at the smaller scales are negligible (large κ). This is

confirmed when the buoyant velocity fields are filtered in the same way as in Section 5.6.1. The lowest

wavenumber contributions to the velocity field are removed, and the spectra are calculated using

these filtered velocity fields. Note that only the v velocity component is subject to filtering. The

dissipation spectra of the high-pass filtered velocity field are shown in Figs. 6.17(c) and Figs. 6.18(c).

From these, the deviations noted at the large scales in Fig 6.17(a), Fig. 6.17(b), Fig. 6.18(a), and

Fig. 6.18(b) can be attributed to contributions from a small number of low wavenumber modes

(κ < 8). When the contributions from these modes are removed, the spectrum behaviors become

more consistent. It is of note that the small scale (large κ) agreement between the buoyant and

non-buoyant spectra is quite robust for all Atwood numbers examined. This further confirms the

discussion in Section 5.6, which stated that, once a small number of small wavenumber modes were

removed from the turbulence, the non-buoyant and buoyant data became effectively equivalent.
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6.3.1.2 Transfer Spectra

The previous discussion suggests that the distribution of energy content and energy dissipation

is largely unchanged irrespective of the source of energy production (buoyant vs. non-buoyant

isotropic). To gain a deeper understanding of this, the transfer spectra from these six cases are

presented. As in Section 6.1 and Section 6.2, the transfer spectrum, T (κ), and its three terms,

Tx, Ty, and Tz, are plotted. The transfer spectra are calculated according to Eq. 6.5 and the

constituents according to Eq. 6.7. These transfer spectra are depicted in Fig. 6.19 and Fig. 6.20,

and they show that there is a difference in the way buoyant and non-buoyant flows transfer energy

to the increasingly smaller scales. In Fig. 6.19(a) and Fig. 6.20(a), the buoyant cases clearly exhibit

a different behavior than the non-buoyant, constant density data (A = 0). For both the high and

low energy dissipation rate data, the energy transfer for the buoyant cases is of greater magnitude

at smaller wavenumbers, and it has an almost linear (on the log scale x-axis) trend upwards until

the peak of dissipation is reached (at approximately κη ≈ 0.4 for both cases). The non-buoyant,

constant density data sets, however, display constant transfer until κη ≈ 0.1, only after which does

it begin a linear climb towards the peak of the dissipation spectrum.

This can be investigated further by considering the transfer spectra in the u, v, and w component

directions (Fig. 6.19 and Fig. 6.20). For both the high and low ε data, there are stark differences in

the directional transfer spectra; Tx and Tz for the buoyant cases are effectively equivalent, in both

qualitative and quantitative measures, to their non-buoyant counterparts (Fig. 6.7 and Fig. 6.8).

However, Ty is larger in magnitude and has a different qualitative behavior with wavenumber. Al-

together, this is not unexpected; if all energy is injected into only one direction via the v velocity

component (the “y” direction), then it is reasonable that the transfer ought to be largest in this di-

rection. The manifestation of this larger transfer magnitude is the presence of small-scale anisotropy,

as energy is being removed from the “y” direction and moved into the “x” and “z” directions (see

insets in Fig. 6.19 and Fig. 6.20).

6.3.1.3 Structure Functions

The longitudinal second- and third-order structure functions are now revisited for the four fully

buoyant cases (8, 10, 12, and 14) listed in Table 6.2. In Section 2.3, the Karman-Howarth equation

was presented and dicussed. Specifically, the relationship of structure functions to its constituent

terms was developed. The third-order structure function was related to the inertial term, and, hence,

is associated with the transfer of energy from large to small scales (i.e. T (κ)). The second-order

structure function, alternatively, was related to viscous effects, associating it with the dissipation

spectrum, which, in turn, is proportional to the energy content of a turbulent field (i.e. E(κ)). It

was found in the prior section that the transfer spectra did differ under buoyant and non-buoyant
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conditions. Thus, structure function data may shed light on the differences between buoyant and

non-buoyant energy transfer.

The structure functions are calculated as defined in Eq. 6.8 and Eq. 6.9, and they are provided

in Fig. 6.21 and Fig. 6.22. These figures suggest that the buoyant velocity fields, for the same

energy dissipation rate and Richardson number, exhibit a higher effective Reynolds number than

the constant density (A = 0) velocity data. By this, it is meant that the magnitudes of the nor-

malized structure functions approach more closely the asymptotic limits of Bll/ (εr)
2/3

= 2.0 and

Blll(r)/ (εr) = −0.8 for the same value of ε.

6.3.1.4 Scalar Field Spectra

Since the energy and dissipation spectra differ under non-buoyant and fully buoyant conditions, it

is of interest to determine if (and how) these differences are able to manifest in the scalar field. As

the simulations of concern contain an active scalar (variable density), there is a possibility that the

anisotropy found in the velocity field could penetrate into the scalar field. This is best illustrated

by returning to the advection-diffusion (scalar transport) equation,

∂ρZ

∂t
+

∂

∂xj
(ρujZ) =

∂

∂xj

(
ρD ∂Z

∂xj

)
+ fZ . (6.15)

Turbulence cannot be induced in the scalar field independent of the velocity field; the two are coupled

via the scalar flux term, ∂
∂xj

(ρujZ). It is only through the scalar flux that the scalar field can be

driven to a turbulent state. Thus, if there is any anisotropy, or any statistical feature present in

the velocity field, such anisotropy may penetrate into the scalar field. To investigate this briefly,

key statistical metrics are calculated for both the isotropic (non-buoyant) and buoyant scalar fields.

These metrics include the scalar energy spectra (Fig. 6.23(a) and Fig. 6.24(a)), the scalar dissipation

spectra (Fig. 6.23(b) and Fig. 6.24(b)), and the scalar transfer spectra (Fig. 6.23(c) and Fig. 6.24(c)).

The striking feature of these resulting spectra is that there is no discernible difference between

the buoyant and isotropic scalar fields; there is an almost perfect collapse of the data. From this, it

appears that the scalar flux term is not able to transfer into the scalar field the significant anisotropy

observed in the buoyantly-driven velocity field. Out of this it can be stated, at least for these energy

dissipation rates (ε), anisotropy in the velocity field is unable to manifest in the scalar field, and

isotropically-produced turbulent scalar fields and buoyantly-produced turbulent scalar fields are

structurally similar. These results are quite remarkable, as the anisotropy in the velocity fields is

due to the combined effect of gravity and a non-uniform density field, and this non-uniform density

field is controlled entirely by the scalar field via the imposed equation of state (Eq. 5.6).
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Table 6.4: Variable density turbulent cases subject to both isotropic and buoyant energy production.

Case ε A Piso Pbuoy Ptotal Pbuoy/Ptotal % Pbuoy
7 76.6 0.06 50.89 38.27 89.16 0.429 43 %
9 89.1 0.12 44.26 53.96 98.22 0.549 55 %
11 2.15 0.06 0.904 1.229 2.133 0.576 58 %
13 1.95 0.12 0.904 0.984 1.888 0.521 52 %

6.3.1.5 Alignment

The discussions up to this point have found differences between the buoyant and non-buoyant tur-

bulent fields in only four metrics: the conditional average of the v velocity component on the density

field (Section 5.6.1), the energy and dissipation spectra (Section 5.6.2 and Section 6.3.1.1), the trans-

fer spectra via Ty (Section 6.3.1.2), and the curving of structure functions (Section 6.3.1.3). It is

now of interest to determine if these flows, which have significant buoyancy forces acting on them,

have alignment tendencies that are changed from the purely isotropic results stated in Section 6.2.3.

Recall that these results have Atwood numbers of 0.06 and 0.12, which are relatively high since they

are defined based on local density values. The alignments for the four buoyant cases are provided in

Fig. 6.25, Fig. 6.26, Fig. 6.27, and Fig. 6.28 along with those for the non-buoyant, constant density

cases (A = 0). As there do not appear to be any significant differences between them for either the

high or low dissipation rate groupings, this suggests that the strain-rate tensor, vorticity field, and

scalar gradient assume a similar relative orientation with respect to each other irrespective of the

source of the turbulent kinetic energy (i.e. isotropic production vs. buoyant production). These

results were not necessarily expected, as the velocity field is not divergence free (∂ui/∂xi 6= 0);

hence, the sum of the three eigenvalues of the strain-rate tensor is no longer zero.

6.3.2 Non-buoyant vs. Partially Buoyant vs. Fully Buoyant Conditions

It has been established that fully buoyant and non-buoyant flows do display differences in some

turbulent metrics. Specifically, the structure functions and one component of the transfer spectrum

behave differently. To investigate this observation, the final four simulations in Table 6.2 are exam-

ined (cases 7, 9, 11, and 13). These cases differ from the others in that they are subject to turbulent

energy production from both isotropic forcing and buoyancy per Eq. 5.22. It is the objective of this

discussion to comment on the extent of buoyant production necessary to trigger the behaviors noted

in Fig. 6.19, Fig. 6.20, Fig. 6.21, and Fig. 6.22 versus those found in non-buoyant flows (Fig. 6.7,

Fig. 6.8, Fig. 6.15, Fig. 6.16).
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6.3.2.1 Energy Transfer and Structure Functions

These final four simulations are defined such that approximately half of the turbulent kinetic energy

provided to the velocity field comes from buoyant production and half from isotropic forcing. The

power provided by each mechanism is included in Table 6.4; the right most column confirms that

buoyant production accounts for approximately half of the total power necessary to maintain the

turbulent fields at stationarity. Recall the energy production from these two sources can be expressed,

per Eq. 3.5 and Eq. 5.22, as,

Pbuoy = 〈ρ′giui〉, Piso = 2Qk0 = 27Q3l2. (6.16)

The Ty component of the transfer spectrum is calculated for each of these four cases. The effect

of increasing the percent of energy production from 0% (non-buoyant) to 100% (full buoyant) is

easily observable in Fig. 6.29 for the lower energy dissipation rate cases and Fig. 6.30 for the higher

dissipation rate cases. Clearly, even under partially buoyant conditions (cases 7, 9, 11, 13), there

is persistent anisotropy in the transfer spectrum, with the magnitude of transfer in the direction of

gravity greatly exceeding that in the other two directions for both Atwood numbers considered. This

suggests that any buoyant energy production may have the potential to trigger the energy transfer

characteristics found in fully buoyant spectral metrics.

Next, the second-order longitudinal structure functions are calculated. Note that the third-order

structure function is not included, as it is related to energy transfer and contains similar information

to Ty. The effects of incrementally increasing the ratio of buoyant energy production to total energy

production are less clear cut than found in Ty. Figure 6.31 and Fig. 6.32 depict the second-order

structure function at Pbuoy/Ptotal = 0, ≈ 0.5, and 1. Although at the higher Atwood conditions,

shown in Fig. 6.31(b) and Fig. 6.32(b), it is suggested that a partially-buoyantly forced velocity field

will tend to behave more like its fully-buoyantly forced counterpart, the lower Atwood data is more

ambiguous. In fact, Fig. 6.31(a) and Fig. 6.32(a) suggest that the partially-buoyant fields behave

most similarly to the non-buoyantly forced cases. This suggests that there may be a critical Atwood

number at which buoyant effects become noticeably apparent in physical space metrics.

6.3.2.2 Effects on the Scalar Field

With the effect of varying Pbuoy/Ptotal from zero to one investigated in the velocity field, the scalar

field is examined. Once again it is found that, despite the presence of buoyancy in the velocity field

at any relative magnitude, the scalar fields are effectively unchanged. The spectral metrics behave

consistently irrespective of the mechanism of turbulent kinetic energy production, and this scalar

field intransigence is shown in the calculated scalar transfer spectra (Fig. 6.33 and Fig. 6.34).
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6.4 Summary

In summary, the simulation framework developed has been applied to the study of the inner region of

a turbulent mixing layer under purely isotropic, purely buoyant, and partially buoyant conditions.

Three different Atwood numbers have been investigated, corresponding to one constant density

case and two variable density cases. Two energy dissipation rates were imposed on the velocity

fields, creating two sets of data, each of which had a consistent Kolmogorov scale for all simulations

performed.

The baseline behaviors for constant density turbulent mixing were described for the two energy

dissipation rate cases. These behaviors established that there was neither an inertial subrange nor

inviscid dynamics. Further, the extent of scale overlap for both cases was explicitly quantified.

Despite the lack of scale separation, the two constant density cases provided evidence of the effect

of dissipation rate (or, Reynolds number) on several key turbulent metrics. First, these baseline

data sets showed the slow approach of structure function data towards their analytically-derived

asymptotic limits. Second, the behavior of a transfer spectrum under purely isotropic conditions

was established (Tx = Ty = Tz). Third, the spectrum shapes for the energy and dissipation spectra

were qualitatively determined.

Following this, variability in density was then added to the turbulent field to comment on the

accuracy of the commonly-made assumption in modeling that density effects on the dynamics deep

in a mixing layer are minimal. To qualify the magnitude of density variations present in the two non-

zero Atwood number cases contained in this study, the values to which these Atwood numbers would

approximately correspond under the classic definition were reported. Although this comparison is

not exact, it served to confirm that these Atwood numbers represent significant variations in density

such that any effects due to changes in the density field ought to be perceptible. Following the

calculation of energy, dissipation, and transfer spectra, it is found that the velocity fields under

constant and variable density conditions are effectively equivalent and isotropic (Tx = Ty = Tz).

Further, the alignment of the scalar gradient and the vorticity field with the eigenvectors of the

strain-rate tensor were calculated, and they were found to be consistent with their constant density

versions. The effects of variations in density were also examined for the (now) active scalar field. It

was found that all scalar field spectra for the variable density cases were equivalent to their constant

density versions.

With the effects of density on the velocity field clarified, buoyancy was added to the simulations to

determine how and if buoyancy is able to alter the structure of turbulence. For these purely buoyant

cases, two Atwood numbers were considered at a single Richardson number. It was found by high-

pass filtering the velocity field component aligned in the direction of gravity (the v component)

that all buoyancy effects were concentrated into a small number of low wavenumber modes. When
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these modes were removed, the energy and dissipation spectra approached those obtained under non-

buoyant conditions. Then, to determine if buoyancy altered the way in which energy was transferred,

the three components of the transfer spectrum were calculated. From these, it was found that

the component of transfer in the direction of gravity was of larger magnitude than the other two

components across all flow scales. Thus, the action of buoyancy introduces significant anisotropy

into the velocity field, and it is reflected in the energy transfer process. Further, when the structure

functions were calculated under these buoyant conditions, they suggested that buoyantly-forced data

behaves as if at a higher effective Reynolds number compared to a non-buoyantly-forced equivalent

case. The magnitude of the normalized structure functions, for the same energy dissipation rate,

approached the asymptotic limits faster than the non-buoyant data. Despite these differences,

there were no discernible disparities in the alignment tendencies of the scalar gradient, vorticity

field, or strain-rate tensor eigenvectors under buoyant conditions when compared to those under

non-buoyant or incompressible conditions. Also, the scalar field was unaffected by the significant

anisotropy present in the velocity field, as all scalar field metrics calculated were equivalent to their

non-buoyant versions.

Lastly, the point at which the behaviors associated with purely buoyant energy production began

to manifest was examined. This included varying the percent of buoyant energy production in the

total energy production from 0% to approximately 50% to 100%. It was found that when buoyant

energy production makes up even only half of the total energy added to the turbulent field, the

transfer spectra display the same significant anisotropic tendencies noted in the fully buoyant cases.

This was found for both Atwood numbers. However, when physical-space metrics were considered,

specifically the second-order structure functions, this became less unambiguous; the partially buoyant

low Atwood number data agreed more with the non-buoyant structure function data, while the

partially buoyant higher Atwood number data agreed more closely with the fully buoyant data.

However, irrespective of this, the scalar field was unaffected by the presence of buoyancy in any

relative amount, and all scalar field metrics indicated insensitivity to the source of turbulent kinetic

energy in the velocity field.

6.5 Conclusions

Although the objectives of this work were to create a simulation method in which to study mixing

under buoyant conditions and then to describe more fully the physics of buoyant mixing, there

are important conclusions that can be drawn for Large-Eddy Simulation (LES) modeling. LES

studies reduce the computational cost of simulations of turbulent flows by resolving only a portion

of the large-scale flow physics and, then, employing models to represent the physics occurring at the

smaller, dynamically important, unresolved flow scales. In an LES simulation, the momentum and



163

advection-diffusion equations, assumed for discussion purposes to describe an incompressible fluid

and a passive scalar,

∂ui
∂t

+
∂ujui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂

∂xj

(
∂ui
∂xj

)
∂Z

∂t
+
∂ujZ

∂xj
=

∂

∂xj

(
D ∂Z
∂xj

)
, (6.17)

are filtered,

∂ũi
∂t

+
∂ũj ũi
∂xj

= −1

ρ

∂p̃

∂xi
+ ν

∂

∂xj

(
∂ũi
∂xj

)
−
∂τRij
∂xj

∂Z̃

∂t
+
∂ũjZ̃

∂xj
=

∂

∂xj

(
D ∂Z̃
∂xj

)
− ∂τZj

∂xj
. (6.18)

The LES resolves the filtered velocity field features, ũi, and the filtered scalar field features, Z̃, for all

flow scales larger than the filter cut-off (the super-filter scales). In spectral space, this corresponds

to resolving the low wavenumber flow (mixing) features. The flow features smaller than this cut-off,

however, are not solved; instead, models are implemented to describe the dynamics at these sub-filter

scales. These modeling terms are termed sub-filter models (or, sub-grid scale (SGS) models), and

they correspond to,

τRij = ũiuj − ũiũj

τZj = ũjZ − ũjZ̃, (6.19)

in the above filtered equations. These modeling terms are generally termed the (SGS) residual stress

tensor, τRij , and the (SFF) sub-filter scale scalar flux vector, τZj . Since Direct Numerical Simulation

(DNS) studies of turbulent buoyant flows can become quite computationally expensive, especially

under high Schmidt number and Reynolds number conditions, it is common to apply LES models

to enable the simulation of these highly turbulent cases. It is currently not known whether the

models that have been developed to represent Eq. 6.19 are valid for buoyant conditions. The results

contained in the previous chapters of this work offer some insight into this uncertainty.

6.5.1 SGS Modeling in the Velocity Field

It is general LES practice to place the filter width at the waveshell in wavespace such that 80% of

the turbulent kinetic energy is resolved (located in the inertial subrange) [77]. The smaller scales

are represented by various SGS models, the primary function of which is to provide a means by

which the sub-grid scales can dissipate the energy from the super-grid scales. For example, the

Smagorinsky model imposes a residual viscosity on the small scales, νr, to ensure that they dissipate



164

turbulent kinetic energy. The published SGS models for τRij = ũiuj− ũiũj are derived, in most cases,

under an assumption of isotropy at these dissipative scales. It is of interest here to comment on

the validity of using these existing models when doing LES studies of buoyant flows. Note that this

work does not endorse any particular SGS model.

From this work, specifically the results from Section 5.6.1 and the current chapter, it seems that

the application of SGS models in their current form to turbulent buoyant flows should be valid.

This statement is based on the following findings. In Section 5.6.1, it was shown (and depicted in

Fig. 5.7) that all the anisotropy introduced by buoyancy is confined to only a few low wavenumber

modes. This work finds that once contributions from κL < 40 are removed from the v component

of the velocity field (which corresponds to the eight lowest wavenumbers, κ < 8), the differences

between the filtered, buoyant field and an isotropic, variable density velocity field become negligible.

Further, it is identified that these modes that are filtered out are responsible for 85% of the total

turbulent kinetic energy present in the domain, comparable to what current LES practice suggests

is necessary to accurately reproduce large scale flow features; below this point, all physics are found

to be isotropic, allowing for the use of existing SGS models in their modeling.

This is further supported by the dissipation spectra calculated under buoyant conditions and then

compared to non-buoyant conditions. In all instances, the small scales were coincident. Thus, the

energy dissipation, ε, at these small scales is the same between buoyant and non-buoyant conditions.

Therefore, the same methodologies used presently to impose an energy dissipation at the sub-grid

scales can be used. The dissipation argument speaks to the magnitude of energy that must be

dissipated, but there are also directionality concerns that must be addressed (recall τRij is a tensor).

However, the analysis in the second half of the current chapter suggests that buoyant flows and

non-buoyant flows will display the same alignment tendencies. For all physical fields calculated,

including the vorticity field, scalar gradient field, and eigenvectors of the strain field, the alignment

characteristics were unchanged under buoyant conditions. Thus, as written and currently used, SGS

modeling approaches, which are designed to capture isotropic small-scale physics, may be applied

to buoyant LES studies.

6.5.2 SFF Modeling in the Scalar Field

With modeling in the velocity field addressed, modeling in the scalar field is now discussed. The

SFF vector, τZj = ũjZ − ũjZ̃, captures the effects of non-linear interactions between the resolved

(super-filter) and the unresolved (sub-filter) scales. SFF models currently published in the literature

were derived for application to isotropic turbulence. It is the conclusion of this chapter’s work that

these modeling terms can be used, as they were originally written, for the study of scalar mixing

under buoyant conditions. This is justified by the following arguments.

As it is a vector, the SFF term can be fully described by a magnitude and a direction. Beginning
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with the directional component in the description of τZj , the alignment PDFs presented in the

current chapter show that, independent of the source of turbulent kinetic energy (buoyant energy

production or isotropic energy production), the alignment of the scalar gradient vector with the

strain-rate eigenframe is the same. This held under constant density conditions, variable density

non-buoyant conditions, and fully buoyant conditions. Hence, the alignment in the scalar field is

insensitive to the source of energy production. Thus, the directional traits imposed by SFF terms

used in the study of isotropic turbulence are also appropriate for buoyant scalar mixing. The next

component is the magnitude of the SFF vector. The magnitude of the SFF is important, as it

determines the amount of scalar dissipation that occurs at the sub-filter scales, χτ . This sub-filter

dissipation is defined as,

χτ = −τZj
∂Z

∂xj
.

The buoyant scalar energy spectra, scalar dissipation spectra, and scalar transport spectra were

identical between the non-buoyant and buoyant cases. Since the scalar energy dissipation rate, χ, is

related to the integral of the scalar energy dissipation spectrum, then, following the results of this

work, the dissipation that must be provided by the SFF term is the same between the buoyant and

non-buoyant (isotopic) cases. Hence, the magnitude of the SFF vector ought to be the same for

buoyant scalar mixing as it is for isotropic scalar mixing. This implies that, as originally written,

published SFF vector modeling approaches can be used in LES studies of buoyant flows.



166

Chapter 7

Comprehensive Summary and Conclusions

In summary, this thesis work contained five pieces. The first three parts were concerned with creating

and validating the necessary numerical tools for the velocity and scalar fields such that the physics

deep inside a turbulent mixing layer under buoyant and non-buoyant conditions could be accurately

and reliably predicted. Fourth, following the development of these tools, the velocity and scalar

field methods were integrated into one simulation methodology optimized for the study of buoyant

and non-buoyant turbulent mixing. Then, lastly, the fifth piece constituted the application of the

previously validated simulation framework to the study of turbulent buoyant flows.

In the initial piece (Chapter 2), the two classes of velocity field forcing methods were presented

and described. These included the many published spectral-space methods and a singular published

physical-space method. To determine the accuracy of the turbulence predicted under their action,

one representative method from each of the two classes was selected. These representative methods

were Alvelius’ stochastic spectral method and Lundgren’s linear method. The source terms that these

two methods appended to the governing momentum equations were discussed and the corresponding

source terms they appended to the Karman-Howarth equation were thoroughly analyzed. It was

found that these two methods, and, hence, all methods since these are representative, produce similar

turbulent physics for the small, dissipative scales. Outside of this range, however, the physics that

they predict vary non-negligibly. The cause for these differences outside of the small-scale region

was identified as being caused directly by the behaviors of their method-specific, imposed Karman-

Howarth source terms.

The major findings of Chapter 2 were threefold. First, at the small-scales (r/η < 10), the

dominance of viscosity renders the specifics of any forcing method irrelevant, and the correct tur-

bulent behaviors will be captured irrespective of the velocity field forcing method used. Second,

across an intermediate range of scales, 10 < r/η < 0.5l0/η, the differences in the predicted turbu-

lent physics can be directly attributed to the nature of the imposed Karman-Howarth source term.

The Karman-Howarth source term governs the behavior of the second- and third-order longitudi-

nal structure function via the viscous and inertial terms in the forced Karman-Howarth equation.
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For Alvelius’ case, this results in structure functions which are suggestive of inviscid dynamics at

Reynolds numbers that are significantly too low. Thus, the behaviors obtained under this forcing

method across these intermediate scales are more reflective of a numerical artifact than of actual

physically relevant dynamics. Lundgren’s linear forcing does not suffer from this feature. Third,

the importance of the energy production spectrum is reaffirmed. If a method imposes an artificial

separation between the energy-producing and energy-containing scales, then there is a risk that un-

physical behaviors may occur. This is one of the primary shortcomings of Alvelius’ forcing scheme,

and, to some extent, of all other spectral forcing schemes.

Following this analysis, Lundgren’s linear velocity field forcing method was judged as being the

more physically based, and it was used in all subsequent simulations conducted. However, this

method was known to create turbulent velocity fields with long-time turbulent statistics that could

be subject to significant oscillation. This resulted in the need for longer simulation run times

to attain time-invariant conditions (i.e. statistical stationarity) in relevant statistics. To address

this, a pratical modification was made to this forcing method, and it was presented and discussed

in Chapter 3. The modification was shown to reduce significantly oscillations in key turbulent

quantities, which allows for more efficient simulations without sacrificing accuracy or altering the

underlying turbulent physics.

With the needed velocity field forcing methods understood and validated, the scalar field was

next addressed in Chapter 4. This piece addressed the need for an isotropic scalar field forcing

method such that forced buoyant mixing could be studied more efficiently. Available scalar field

forcing methods in the literature were either anisotropic in nature or were appropriate for a different

class of scalar field physics (continuous scalar variance injection), or both. Thus, a new, isotropic

scalar field forcing method was developed specifically to represent one-time scalar variance injection,

which was more physically consistent with the class of scalar field mixing encountered in buoyantly-

driven turbulent mixing deep inside of a mixing layer (self-similar decay). This forcing technique

was termed linear scalar forcing, and it was validated based on its ability to predict the needed

scalar field mixing physics.

With the velocity and scalar field forcing methods assessed and fully understood, the numerical

framework to study turbulence under buoyant and isotropic (non-buoyant) conditions was integrated,

and the relevant equations and forcing method constraints were presented (Chapter 5). The chief

advantages of this framework were twofold. First, by focusing on a region of turbulent mixing deep

inside of a mixing layer, the effect that buoyancy had on the small-scale structure of turbulence could

be probed in a computationally efficient way. Second, the four important non-dimensional param-

eters, including the Reynolds, Schmidt, Richardson, and Atwood numbers, could be independently

varied. Other available frameworks cannot do this. This feature allows for the effects that each

of the four parameters have on the mixing process to be isolated and probed under the developed
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simulation methodology.

The framework was validated by considering three test cases corresponding to fully isotropic, fully

buoyant, and partially buoyant energy production, and reproducing key turbulent characteristics

obtained from other simulations of buoyant flows in the published literature. It was found that the

smallest flow scales, the Kolmogorov scales, were isotropic with and without the presence of gravity.

The fully buoyant case suggested that, although buoyancy did introduce significant anisotropy into

the velocity field, this anisotropy had only shallow penetration. When the lowest wavenumber

modes (largest length scales) were filtered out of the velocity field, the effects of buoyancy virtually

vanished, leaving velocity fields that resembled quite closely their non-buoyant, isotropically-forced

counterparts.

Following the validation of this new framework in which to study forced, variable density turbu-

lent mixing inside of a mixing layer, a simulation study was performed in Chapter 6. This numerical

framework was used to investigate buoyant and isotropic turbulent mixing over a range of Richard-

son, Reynolds, and Atwood numbers. The nature of turbulent structure was interrogated under

both conditions, and the associated energy spectra, transfer spectra, dissipation spectra, relevant

velocity and scalar field structure functions, and alignment characteristics of pertinent parameters

(e.g., strain rate, scalar gradient, vorticity) were calculated. From these results, further insight was

gained into the differences and similarities in buoyantly and isotropically-driven turbulent mixing in

both the velocity and scalar fields.

Specifically, it was found that buoyant effects are found primarily in the velocity field’s trans-

fer spectra, energy spectra, and second- and third-order longitudinal structure functions; the other

metrics are largely unimpacted. Beginning with buoyancy effects on energy transfer, the transfer

spectrum was decomposed into three terms, one associated with energy transfer in the same direction

as one of the three velocity field components. Under non-buoyant and constant density conditions,

these three transfer spectra are isotropic. Under buoyant conditions, however, it was found that the

transfer spectrum in the direction of gravity is of significantly larger magnitude than the other two

spectra. This was attributed to the single direction through which energy is provided to the velocity

field under buoyant conditions. Further, this is a robust feature; for all Atwood numbers examined

and, even when only half of the total supplied turbulent kinetic energy came from buoyancy, the en-

ergy transfer spectrum aligned in the direction of the gravity vector displayed pronounced anisotropy.

As noted in Chapter 5, however, these anisotropic effects were significantly mitigated in the energy

and dissipation spectra following the application of a low wavenumber filter to the v component

of the velocity field (the component in the direction of gravity). This supports the work from the

previous Chapter 5, which claimed that the penetration of the buoyantly-produced anisotropy in the

energy spectrum is not significantly deep. Lastly, the structure function data provided an interesting

find when comparing the buoyant and non-buoyant turbulent fields. For the same energy dissipation
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rate, the buoyant structure functions appeared as if they had a higher effective Reynolds number

compared to their equivalent non-buoyant versions. The buoyant structure function data produced

(properly normalized) structure functions that more rapidly approached their inviscid asymptotic

limits for the same energy dissipation rate.

The alignment characteristics between the vorticity field, scalar gradient, and eigenvectors of the

strain-rate tensor were found to be insensitive to variations in density or the action of buoyancy;

for all test cases included in this study, the alignment PDFs between these three parameters were

unchanged from the incompressible, constant density findings. Further, the scalar field dynamics

were found to be quite intransigent to changes in the velocity field; the scalar energy spectra, scalar

dissipation spectra, and scalar transfer spectra were equivalent under constant density, non-buoyant

variable density, and buoyant conditions. Thus, it was concluded that the turbulent structure in the

velocity field is indeed dependent on the mechanism of turbulent kinetic energy production, but the

scalar field structure shares no such dependency.

In conclusion, following from this research, there are four key findings. First, a more thorough

understanding of how velocity field forcing methods work is gained. The effects that a forcing

method-imposed source term have on the generated turbulent fields are explained and connected

to the implicit and explicit assumptions of the implemented velocity field forcing method. Second,

a possible explanation for the differences noted between experimental results of homogeneous grid

turbulence and forced box turbulence is provided. This explanation comes from the effect that the

momentum source term has on the Karman-Howarth equation and the distinction between energy-

containing and energy-producing scales (i.e. the energy production spectrum). Third, a possible

explanation for the differences noted between theoretical scaling arguments, data from decaying

grid turbulence experiments, and forced high Schmidt number simulation studies in the viscous-

convective subrange of the scalar energy spectrum is offered. This explanation is the distinction

between continuous scalar variance injection, which was implicitly assumed by both Batchelor [7]

and Kraichnan [49] via their assumption of a reservoir of infinite scalar variance, and one-time

scalar variance injection. The two most commonly-implemented scalar field forcing methods, mean

scalar gradient and low waveband spectral forcing, both assume an infinite reservoir of variance,

and, consequently, both agree with Batchelor’s theoretical scaling argument. Conversely, linear

scalar-forced simulation data and data from decaying grid turbulence experiments tend to agree,

both of which are subject to one-time variance injection. Fourth, an improved understanding of the

differences and similarities in buoyantly- and (non-buoyant) isotropically-driven turbulent mixing

in the velocity and scalar fields is gained. Also, the way in which these differences and similarities

change with varying Atwood, Richardson, and Reynolds numbers is clarified.
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Chapter 8

Appendices

8.1 Appendix I: Isotropic Turbulent Physics: Expected The-

oretical Scaling Laws

Second-Order Structure Function

Per Kolmogorov’s first similarity hypothesis [77], at the small scales, the dissipation rate, ε, and the

kinematic viscosity, ν, are sufficient to describe Bll(r) (Eq. 2.9), and the group (εr)
2/3

can be used

to non-dimensionalize it. Accordingly, within the dissipation range, it can be written,

Bll(r) = (εr)
2/3

B̂ll(r/η), (8.1)

where B̂ll is a dimensionless function and η =
(
ν3

ε

)1/4

is the Kolmogorov length-scale. In the

inertial subrange, the physics must become inviscid (Kolmogorov’s second similarity hypothesis [77]),

implying that B̂ll(r/η) must assume a constant value, such that,

Bll(r) = CK (εr)
2/3

. (8.2)

This scaling behavior was derived also by Lundgren via a matched asymptotic-based analysis of the

Karman-Howarth equation [59].

Third-Order Structure Function

A similar scaling can be obtained for the third-order longitudinal structure function (Eq. 2.9). Blll(r)

can be non-dimensionalized by the dimensional group, εr, and written in terms of a non-dimensional

function, B̂lll, according to,

Blll(r) = (εr) B̂lll(r/η). (8.3)



171

Within the inertial subrange, B̂lll(r/η) must tend to a constant value. From the original KH equation

(Eq. 2.12), Kolmogorov proved this constant to be B̂lll(r/η) = −4/5. He obtained this “4/5-law”

by arguing that, in locally isotropic turbulence, the time derivative term of Bll(r) is negligible and

the viscous term is inactive [77]. Solving Eq. 2.12 subject to these simplifications yields,

Blll(r) = −4

5
εr. (8.4)

Energy Spectrum

Additionally, with a sufficiently high Reλ, it is expected that the energy spectrum exhibits a power-

law dependence on wavenumber, E(κ) ∝ κ−5/3, across the inertial range of scales. The scaling

coefficient, n = −5/3, assumes the presence of inviscid dynamics and the theoretical scaling for

Bll(r) given in Eq. 8.2.

The justification for the −5/3 power-law comes from analysis of the velocity-spectrum tensor

(Φij(κ)), the two-point velocity correlation tensor (Rij(r)), and the second-order longitudinal struc-

ture function (Bll(r)). The energy spectrum is a scalar function derived from the velocity spectrum

tensor [77] as,

E(κ) =

∮
1

2
Φii(κ) dS(κ) = 2πκ2Φii(κ), (8.5)

where the integration is over a sphere of radius κ. The velocity-spectrum tensor,

Φij(κ) =
1

(2π)3

∫∫∫
Rij(r) exp (−iκ · r) dr, (8.6)

indicates the contribution from each Fourier mode, exp (iκ · r), to the Reynolds stress, 〈uiuj〉. Under

the condition of homogeneity, Rij(r) = 〈uiu′j〉 and Φij(κ) form a Fourier-transform pair [77]. Writing

Rii in terms of Bll results in,

Φii(κ) =
1

(2π)3

∫∫∫ (
3〈u2〉 − 1

2r2

∂

∂r

(
r3Bll

))
exp (−iκ · r) dr, (8.7)

which can be integrated over a spherical volume, with application of κ · r = |κ||r| cos(θ) and use of

an integration by parts procedure, to yield,

Φii(κ) =
1

(2π)2

∫ ∞
0

(
r2Bll(r) cos (κr)−

( r
κ

)
Bll(r) sin (κr)

)
dr. (8.8)

The energy spectrum and velocity-spectrum tensor are connected via E(κ) = 2πκ2Φii(κ), admitting
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an equation for the energy spectrum,

E(κ) =
1

2π

∫ ∞
0

(
κ2r2Bll(r) cos (κr)− κrBll(r) sin (κr)

)
dr. (8.9)

Introducing a change of variables, α = κr, and using Bll (and its non-dimensional counterpart, B̂ll,

from Eq. 8.1), an expression for E(κ) emerges as,

E(κ) =
1

2π
ε2/3κ−5/3

∫ ∞
0

B̂ll

(
α

κη

)(
α8/3 cos (α)− α5/3 sin (α)

)
dα. (8.10)

In the inertial subrange, B̂ll(r/η) should be constant. If it is, the energy spectrum will scale as

E(κ) ∝ κ−5/3. However, if B̂ll(r/η) is not constant, this term, which has wavenumber dependence,

will contribute to the energy spectrum calculation, modifying the power-law dependence of E(κ).

Finite Reynolds Number (Reλ) Effect

The finite-Reλ effect describes the situation when there is insufficient separation between the integral

and viscous scales, resulting in the permeation of large-scale anisotropy into the intermediate and

small, viscous scales [79]. How quickly the effects of finite-Reλ vanish as the Reλ is increased is not

precisely known, but it has been suggested that the effects may decay slowly [80]. For instance, it

has been argued that finite-Reλ effects cannot be neglected truly until Reλ = O(104) [79].

8.2 Appendix II: The (Unforced) Karman-Howarth Equa-

tion

The Karman-Howarth equation describes the decay of an isotropic turbulent field. It is derived

from the momentum and continuity equations using assumptions of incompressibility, isotropy, and

homogeneity. The derivation procedure, which will be briefly summarized here, begins with the

Navier-Stokes equations (Eqs. 8.11 and 8.12) written at two different points separated by a vector

distance r,

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂

∂xj

(
∂ui
∂xj

)
, (8.11)

∂u′k
∂t

+ u′j
∂u′k
∂x′j

= −1

ρ

∂p′

∂x′k
+ ν

∂

∂x′j

(
∂u′k
∂x′j

)
. (8.12)
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The two points are related through x′ = x+ r and u(x+ r, t) = u′(x′, t). By multiplying Eq. 8.11 by

u′k, multiplying Eq. 8.12 by ui, adding the resulting two expressions, and then ensemble averaging

(denoted by 〈 · 〉), an equation for Rik(r, t), the two-point velocity correlation tensor, is obtained,

∂Rik(r, t)

∂t
=

∂

∂rj

(
〈uiuju′k〉 − 〈uiu′ku′j〉

)
+ 2ν

∂

∂rj

(
∂Rik(r, t)

∂rj

)
. (8.13)

Note that the two-point velocity correlation tensor is defined as Rik(r, t) = 〈ui(x, t)u′k(x′, t)〉, and

the pressure gradients vanish under the conditions of homogeneity and isotropy when averaged.

A consequence of the assumption of statistical isotropy is that Rik(r, t) must be isotropic also.

Therefore, it can be expressed in terms of two scalar functions, f(r) and g(r), which depend only

on the separation distance, r = |r|, according to,

Rik(r, t) = 〈u2〉(t)
(
g(r, t)δik + (f(r, t)− g(r, t))

rirk
r2

)
. (8.14)

These two functions are the longitudinal and transverse velocity correlation functions, respectively.

Using continuity (∂Rik(r, t)/∂rk = 0), a relation between these two scalar functions is found,

g(r, t) = f(r, t) +
1

2
r
∂f(r, t)

∂r
, (8.15)

which enables the definition of Rik(r, t) with the longitudinal correlation function,

Rik(r, t) = 〈u2〉(t)
(
f(r, t)δik +

1

2

∂f

∂r

(
rδik −

rirk
r

))
. (8.16)

Similarly, the triple velocity correlation functions (Sijk = 〈uiuju′k〉, Skji = −〈uiu′ku′j〉), can be

expressed in terms of three scalar functions, A(r, t), B(r, t), and C(r, t),

(〈u2〉(t))−3/2Sijk(r, t) = A(r, t)
rirjrk
r3

+B(r, t)
δijrk
r

+ C(r, t)

(
δjkri
r

+
δkirj
r

)
. (8.17)

It is convenient to express the longitudinal triple correlation function as,

S111 = 〈u2
1(x, t)u1(x+ e1r, t)〉 = 〈u3〉(t)h(r, t), (8.18)

where h(r, t) is a scalar function of r. After the application of continuity (∂Sijk/∂rk = 0) and

considerable algebra, the triple velocity correlation function, Sijk(r, t), can be expressed in terms of

only h(r, t),

2〈u2〉−3/2
Sijk(r, t) =

rirjrk
r3

(
h− r ∂h

∂r

)
− hδij

rk
r

+

(
h+

1

2
r
∂h

∂r

)(
δjk

ri
r

+ δki
rj
r

)
. (8.19)
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Upon substitution of Eq. 8.19 and Eq. 8.16 into Eq. 8.13, separating terms into δik and rirk/r
2

components, the original Karman-Howarth equation [25], is obtained,

∂
(
〈u2〉f

)
∂t

= 〈u2〉3/2
(
∂h

∂r
+

4

r
h

)
+ 2ν〈u2〉

(
∂2f

∂r2
+

4

r

∂f

∂r

)
. (8.20)

This equation describes mathematically the decay of an isotropic turbulent field. Although this is

a deterministic equation, its dependency on two unknown functions, f(r, t), and h(r, t), makes it an

unclosed evolution equation. It cannot be solved analytically without knowing a priori either f(r, t)

or h(r, t).

8.3 Appendix III: Description of Simulation Code (NGA)

NGA is an extension of the high order conservative finite difference scheme initially developed

by Morinishi et al [64]. It allows for three-dimensional, variable density turbulent flows to be

simulated in complex geometries, which can be either cylindrical or cartesian, on uniform or non-

uniform meshes [26]. It is discretely conservative of mass, momentum, and kinetic energy, and it can

provide an arbitrarily high order of accuracy. NGA makes use of staggered variables to improve its

performance. All scalar quantities, such as the density (ρ) and the scalar (Z), are stored at the cell

(volume) centers; the velocity components (u, v, and w) are stored at the faces of the cell volumes.

In all simulation data presented in the main body of this thesis document, the meshes were strictly

uniform. An overview of NGA, including the governing equations being solved and the schemes by

which they are solved, is here provided in support of the simulation data presented in this thesis.

8.3.1 Governing Equations

NGA solves the variable density, low Mach number Navier-Stokes equations [26]. These include

expressions of mass conservation,

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (8.21)

and momentum conservation,

∂ρui
∂t

+
∂

∂xj
(ρuiuj) = − ∂p

∂xi
+
∂σij
∂xj

. (8.22)

Here, p is the pressure, ui is one of the three-components of the velocity field, ρ is the density, and

σij is the deviatoric stress tensor. The deviatoric stress tensor is defined as,

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ
∂uk
∂xk

δij , (8.23)
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where δij is the Kronecker delta and µ is the dynamic viscosity. It is common to obtain the density

through an imposed model equation [9]. In the simulations contained in this work, the density is

written as a function of the conserved scalar quantity, Z, per Eq. 5.6, and this approach is used

to represent the mixing process. The conserved scalar quantity is calculated from the transport

equation,

∂ρZ

∂t
+

∂

∂xj
(ρujZ) =

∂

∂xj

(
ρD ∂Z

∂xj

)
, (8.24)

where D is the scalar diffusivity. In this appendix, the density field will be related to the scalar field

via the generic model equation ρ = ρ̂(Z).

It is here noted that the boundary conditions for all equations under the simulation configuration

implemented in this work are triply periodic. The iterative procedure to solve this equation system

is described with the implemented second-order semi-implicit Crank-Nicolson (a time-advancement)

scheme in Appendix 8.4, which is both stable and accurate [26, 76, 86].

It should be noted that these equations (Eq. 8.22 and Eq. 8.24) are unforced; they do not include

momentum or scalar field source terms. The equations implemented in the main body of this thesis

document are subject to numerical forcing from both buoyant and isotropic sources in the case of

the momentum equation and from isotropic sources in the case of the scalar equation. However, the

forced equations (Eq. 5.4 and Eq. 5.5) are solved in the same fashion as these unforced versions.

8.3.2 Variable-density Conservative Finite Difference Scheme

The coordinate system with which the current work is concerned is a standard cartesian one. Ac-

cordingly, physical space can be represented as x = (x, y, z). In NGA, physical space is mapped

to a uniform computational grid of unity spacing. The grid spacing is written as ξ = (ξ1, ξ2, ξ3).

Here, ξ1 is the spacing increment in the x-direction, ξ2 is the spacing increment in the y-direction,

and ξ3 is the spacing increment in the z-direction. After applying this mapping, scaling factors

associated with this transformation from a physical space representation to a computational space

representation can be expressed as,

h1 =
dx

dξ1
h2 =

dy

dξ2
h3 =

dz

dξ3
. (8.25)

The Jacobian of this transformation can be written, correspondingly, as

J = h1h2h3. (8.26)
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8.3.2.1 Convective Treatment

With the coordinate system defined, (discrete) operators representative of those implemented in the

code can be introduced. A second-order interpolation operator of stencil size n in the ξi direction

acting on variable φ is expressed as φ̄n,ξi(ξ). The interpolation operator in the ξ1 direction,

φ̄n,ξ1(ξ1, ξ2, ξ3) =
φ(ξ1 + n/2, ξ2, ξ3) + φ(ξ1 − n/2, ξ2, ξ3)

2
, (8.27)

is provided as an example. Operators in the ξ2 and ξ3 directions are analogous. A second-order (dis-

crete) differentiation operator of stencil size n in the ξi direction acting on variable φ is represented

as δnφ
δnξi

(ξ). As an example, the differentiation operator in the ξ1 direction is written as,

δnφ

δnξ1
(ξ1, ξ2, ξ3) =

φ(ξ1 + n/2, ξ2, ξ3)− φ(ξ1 − n/2, ξ2, ξ3)

n
. (8.28)

Differentiation operators in the ξ2 and ξ3 directions are analogous. NGA is capable of providing an

arbitrarily high order of accuracy, and, therefore, employs discrete operators of arbitrarily high order.

To construct nth order accurate discrete operators, interpolation weights, αl, are first calculated via,

n/2∑
l=1

(2l − 1)
2(i−1)

αl = δil for i ∈ [1, n/2]. (8.29)

Following this, the nth order interpolation operator in the ξi direction can be expressed as,

φ̄nth,ξi =

n/2∑
l=1

αlφ̄
(2l−1)ξi , (8.30)

and the nth order differentiation operator in the ξi direction can be expressed as,

δnthφ

δnthξi
=

n/2∑
l=1

αl
δ2l−1φ

δ2l−1ξi
. (8.31)

By using these staggered operators, superior effective wavenumber behavior is attained. Further, by

increasing the order of the operators, this behavior improves [26]. Additionally, by using centered

or staggered operators, the effect of dissipative errors is reduced [26].

Using the defined operators, the governing equations can be discretized. In the momentum
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equation, Eq. 8.22, the divergence terms are represented by,

∂

∂x
(ρuiu) −→

3∑
i=1

 1

J̄1,ξ1

n/2∑
l=1

αl
δ2l−1

δ2l−1ξi

(
Jρui
hi

)nth,ξ1
ū(2l−1),ξi

 , (8.32)

∂

∂y
(ρuiv) −→

3∑
i=1

 1

J̄1,ξ2

n/2∑
l=1

αl
δ2l−1

δ2l−1ξi

(
Jρui
hi

)nth,ξ2
v̄(2l−1),ξi

 , (8.33)

∂

∂z
(ρuiw) −→

3∑
i=1

 1

J̄1,ξ3

n/2∑
l=1

αl
δ2l−1

δ2l−1ξi

(
Jρui
hi

)nth,ξ3
w̄(2l−1),ξi

 , (8.34)

where the appropriate operators have been applied. The pressure gradient term is also expressed

according to,

∂p

∂xi
−→ J

J̄1,ξi

1

hi

(
δnthp

δnthξi

)
. (8.35)

In the mass conservation equation, Eq. 8.21, the divergence term is written as,

∂

∂xj
(ρuj) −→

3∑
i=1

{
1

J

δnth
δnthξi

(
Jρui
hi

)}
. (8.36)

The inverse of the Jacobian in the previous relations, 1/J̄1,ξi , is expressed via second-order inter-

polation, as initially suggested by Morinishi et al [64]. The scalar transport equation, Eq. 8.24, is

treated by implementing one of two transport schemes. These are the HOUC and QUICK schemes

that are discussed in Appendix 8.5.

A comment needs to be made here about the relationship between the three components of the

velocity field, ui, and the momentum vector, gi = ρui. As NGA staggers the variables in space, the

velocity components are located at a different position as the density values. To account for this,

the ith component of the momentum vector is expressed as,

gi = ρ̄2nd,xiui, (8.37)

where the operator acting on the density field is a second-order interpolation operator in physical

space. The density field is limited to second-order interpolation such that it is total variation

diminishing (TVD). Imposing a state of TVD prevents the density field from becoming unbounded,

and ensures the simulations remain realizable. It should be stated that the density interpolation is

limited to second-order irrespective of the order of the rest of the scheme. It was found that such a

limitation had little effect on the quality of the results obtained [26].
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8.3.2.2 The Pressure Field

In a low Mach number formulation of the Navier-Stokes equations, the pressure field, p, is solved for

via a Poisson equation. To ensure that the Poisson equation solved for p (analytically expressed as

∇2p = 0) has a solution, mass must be conserved in a global sense such that,

∆ (δp) =
1

∆t

(
3∑
i=1

1

J

δnth
δnthξi

(
Jgi
hi

))
= 0. (8.38)

Here, the middle term represents continuity and the left most term represents the discrete version

of the Poisson equation for pressure. Therefore, the following must be satisfied,

∑
x,y,z

J

3∑
i=1

1

J

δnth
δnthξi

(
Jgi
hi

)
= 0. (8.39)

As long as Eq. 8.39 is satisfied, then the pressure field can be obtained from Eq. 8.38.

8.3.2.3 Viscous Treatment

As viscous terms are dissipative by nature, they are inherently more stable than the convective terms

that were addressed previously. The operators that are necessary to discretize the viscous terms are

different than those presented for the discretization of the convective terms, and these new operators

are based on a local Lagrange polynomial representation of the quantity to which they are applied.

To develop an nth order accurate interpolation and differentiation operator for a quantity φ at a

location x in the direction of xi, an (n− 1)th order Lagrange polynomial is needed. This (n− 1)th

order Lagrange polynomial is fit through the n data points that are present in the stencil. As this

fitting operation is centered about the point being evaluated, the interpolation or differentiation

of the quantity φ is calculated from an equal number of points on either side of the point being

evaluated. The new interpolation operator can be written as,

φ̄nth,xi = P (x), (8.40)

while the new differentiation operator can be written as,

δnthφ

δnthxi
= P ′(x), (8.41)

where P (x) and P ′(x) are the Lagrange polynomial expression and the derivative of the Lagrange

polynomial expression. Using this approach, the viscous terms in the Navier-Stokes equations can

be written in terms of these viscous operators. First, the divergence of the velocity field vector
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becomes,

∂ui
∂xi
−→ δnthu

δnthx
+
δnthv

δnthy
+
δnthw

δnthz
, (8.42)

which is termed Adiv in the deviatoric stress tensor relations to follow. The deviatoric stress tensor

is expressed as,

∂σi1
∂x
−→ δnth

δnthx

{
2µ

(
δnthu

δnthx
− 1

3
Adiv

)}
+

δnth
δnthy

{
µ̄2nd,x

2nd,y
(
δnthu

δnthy
+
δnthv

δnthx

)}
+

δnth
δnthz

{
µ̄2nd,x

2nd,z
(
δnthu

δnthz
+
δnthw

δnthx

)}
, (8.43)

∂σi2
∂y
−→ δnth

δnthx

{
µ̄2nd,x

2nd,y
(
δnthv

δnthx
+
δnthu

δnthy

)}
+

δnth
δnthy

{
2µ

(
δnthv

δnthy
− 1

3
Adiv

)}
+

δnth
δnthz

{
µ̄2nd,y

2nd,z
(
δnthv

δnthz
+
δnthw

δnthy

)}
, (8.44)

and

∂σi3
∂z
−→ δnth

δnthx

{
µ̄2nd,x

2nd,z
(
δnthw

δnthx
+
δnthu

δnthz

)}
+

δnth
δnthy

{
µ̄2nd,y

2nd,z
(
δnthw

δnthy
+
δnthv

δnthz

)}
+

δnth
δnthz

{
2µ

(
δnthw

δnthz
− 1

3
Adiv

)}
. (8.45)

8.3.2.4 Scalar Treatment

Similar to the momentum equation (Eq. 8.22), differential operators for the terms in the scalar

transport equation (Eq. 8.24) can be obtained. The differential operator for the advection term is

defined to be,

∂

∂xj
(ρujZ) −→

3∑
i=1

{
1

J

δnth
δnthξi

(
J

hi
ρuiZ̄

ξi
)}

. (8.46)

Here, Z̄
ξi

represents the interpolation of a scalar quantity, Z, from its position of storage at the cell

center to the cell face in the ξi direction. The diffusion term can be discretized similarly according

to,

∂

∂xj

(
ρD ∂Z

∂xi

)
−→

3∑
i=1

{
1

J

δnth
δnthξi

(
J

hi
ρ̄
ξiD̄

ξi
Z ′
)}

, (8.47)

where the primed variable, Z ′, denotes the gradient of the scalar quantity, Z, at the cell face, and ρ̄
ξi

and D̄
ξi

denote the interpolation of the density and scalar diffusivity to the cell faces. The means by
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which these quantities are interpolated to the cell face depends on the transport scheme employed.

The operator varies with the method implemented. The specific form that this interpolation operator

takes is described in Appendix 8.5 for the two scalar transport schemes used in this thesis work,

namely the QUICK scheme [52] and the HOUC5 scheme [68].

8.4 Appendix IV: Time Integration

Lastly, with the convective and viscous operators expressed, the time integration can be performed.

The Navier-Stokes equations are time-advanced via a second-order, semi-implicit Crank-Nicolson

method [76]. This method makes use of a fractional step approach [47], and it uses staggering in

time between the momentum, scalar, and density fields. The scalar field is first solved. Then, the

density field is updated through the imposed model relation (ρ = ρ̂(Z)). After this, the momentum

equations are advanced in time. Finally, the pressure field is addressed by solving a Poisson equation

for the pressure to enforce continuity, as previously discussed [26]. This six-part iterative, time

integration process is described below, where a uniform time step, ∆t, is employed. There are a

total of M sub-iterations assumed. The scalar quantities are first adressed in the algorithm; the

density, scalar, and pressure fields are advanced from time tn+1/2 to time tn+3/2. Then, the velocity

field is advanced from time tn to time tn+1.

First, assuming the previous time step has converged, these converged solutions are ρn+1/2 for

the density field, pn+1/2 for the pressure field, un for the velocity component fields, and Zn+1/2 for

the scalar fields. These values are used as the initial values in the iterative steps to come,

ρ
n+3/2
0 = ρn+1/2 p

n+3/2
0 = pn+1/2 un+1

0 = un Z
n+3/2
0 = Zn+1/2, (8.48)

where the superscript denotes the time and the subscript denotes the sub-iteration level, k ∈ [0,M ].

Second, the scalar field is treated. When the semi-implicit Crank-Nicolson scheme is applied to the

scalar transport equation (Eq. 8.24), it is obtained,

Z∗k =
Zn+1/2 + Z

n+3/2
k−1

2
,

ρ
n+3/2
k−1 Z

n+3/2
k = ρn+1/2Zn+1/2 + ∆t ·

(
[Cn+1
k +Dn+1

k ] · Z∗k
)

+

∆t

2

(
∂C

∂Z
+
∂D

∂Z

)n+1

k

·
(
Z
n+3/2
k − Zn+3/2

k−1

)
. (8.49)

In this notation, and for compactness, the differentiation/interpolation operators in the convective

and diffusive terms are denoted ∂C/∂Z and ∂D/∂Z. Third, the density field is advanced from the
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imposed equation of state,

ρ
n+3/2
k =

1

aZ
n+3/2
k + b

. (8.50)

Fourth, the momentum equation is advanced according to,

u∗k =
un + un+1

k−1

2
, (8.51)

ρn+1/2 + ρ
n+3/2
k

2
u†k =

ρn−1/2 + ρn+1/2

2
un + ∆t ·

(
[C

n+1/2
k +D

n+1/2
k ] · u∗k +∇pn+3/2

k−1

)
+

∆t

2

(
∂C

∂u
+
∂D

∂u

)n+1/2

k

·
(
u†k − u

n+1
k−1

)
, (8.52)

where u†k is an intermediate velocity that is the solution to the above momentum equation. Again,

for compactness, the differentiation/interpolation operators in the convective and diffusive terms

are denoted ∂C/∂u and ∂D/∂u. Fifth, the Poisson equation for the pressure field is solved. This

calculates the hydrodynamic pressure to be,

∇2
(
δp
n+3/2
k

)
=

1

∆t

(
∇ ·

{
ρn+1/2 + ρ

n+3/2
k

2
u†k

}
+
ρ
n+3/2
k − ρn+1/2

∆t

)
. (8.53)

The velocity field is then updated accordingly by projecting it onto a divergence free grid,

un+1
k = u†k −

2∆t

ρn+1/2 + ρ
n+3/2
k

· ∇
(
δp
n+3/2
k

)
. (8.54)

A converged solution is obtained following M sub-iterations. Once the sub-iterations are converged,

then, lastly, the calculated (time-advanced) field values are updated and stored,

ρn+3/2 = ρ
n+3/2
M pn+3/2 = p

n+3/2
M un+1 = un+1

M Zn+3/2 = Z
n+3/2
M . (8.55)

Following this process, the next time step is addressed, and the process begins again.

8.5 Appendix V: Description of Scalar Transport Schemes

For illustrative purposes, the two scalar transport schemes to be presented are applied in only one

dimension (the x-direction). Here, the subscripts denote the scalar field variable value to the right

(i+ 1) or to the left (i− 1) of the central node. The central node has index i. Recall that the grid

is staggered, so the momentum fluxes, ρu, are stored at the cell faces; the cell faces have indices
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i+ 1/2 and i− 1/2. From this it follows that the finite-volume algorithm implemented by NGA can

be written as,

∂ (ρZ)i,j,k
∂t

+
(ρuZ)i+1/2,j,k − (ρuZ)i−1/2,j,k

∆x
=

(
ρD ∂Z

∂x

)
i+1/2,j,k

−
(
ρD ∂Z

∂x

)
i−1/2,j,k

∆x
. (8.56)

The values of the momentum fluxes at the cell faces are known ((ρu)i+1/2 and (ρu)i−1/2), but the

scalar field values are known only at the cell centers. To determine the value of the scalar at the cell

face, the cell-centered value is interpolated from its storage position at i, i + 1, or i − 1 to the cell

wall at i+ 1/2 or i− 1/2,

(ρuZ)i−1/2,j,k = (ρu)i−1/2,j,k Z̄i−1/2,j,k

(ρuZ)i+1/2,j,k = (ρu)i+1/2,j,k Z̄i+1/2,j,k, (8.57)

where the operation Z̄i+1/2,j,k determines the value of the scalar at the cell face from the value at

the cell center by use of polynomial fitting. The form of this interpolation operation (polynomial

expression) is specific to the scalar transport scheme. The two used in this work are presented in

the next sub-sections.

8.5.1 Quadratic Upstream Interpolation for Convective Kinematics

(QUICK) Scheme

The QUICK scheme was developed to provide a means by which the accuracy offered by central

differencing convective schemes and the stability offered by upstream differencing convective schemes

could be combined. It makes use of an asymmetrically placed interpolation scheme, as this allows

for upstream shifting [52]. Its development is based on a conservative control-volume approach.

It writes the values of computational cell walls as a quadratic interpolation. In each coordinate

direction and for each computational node, this interpolation uses the two adjacent nodes and the

next upstream node. The ultimate result of this is a convective differencing scheme that has better

accuracy than central differencing schemes on their own, while also obtaining the stable convective

nature of upstream-weighted schemes [52]. The QUICK scheme is third-order accurate (with respect

to spatial grid size, O(∆x3)) and offers superior stability characteristics owing to its hybrid approach.

The QUICK scheme imposes the following interpolation polynomial to the cell-centered scalar

values,

Z̄i−1/2,j,k = −1

6
Zi−2 +

5

6
Zi−1 +

1

3
Zi

Z̄i+1/2,j,k =
1

3
Zi−1 +

5

6
Zi −

1

6
Zi+1, (8.58)
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which allows for the flux terms,

(ρuZ)i−1/2,j,k = (ρu)i−1/2,j,k Z̄i−1/2,j,k

(ρuZ)i+1/2,j,k = (ρu)i+1/2,j,k Z̄i+1/2,j,k, (8.59)

to be calculated.

The diffusion terms are treated similarly, although the scalar gradient term is evaluated at the

cell face according to,

(
∂Z

∂z

)
i+1/2,j,k

=
Zi+1,j,k − Zi,j,k

∆x(
∂Z

∂z

)
i−1/2,j,k

=
Zi,j,k − Zi−1,j,k

∆x
. (8.60)

The interpolation polynomials are also used to calculate the density, ρ, and the scalar diffusivity,

D, at the cell face (recall these scalar field variables are stored at the cell centers). This (QUICK)

interpolation can be written as,

ρ̄i−1/2,j,k = −1

6
ρi−2 +

5

6
ρi−1 +

1

3
ρi

ρ̄i+1/2,j,k =
1

3
ρi−1 +

5

6
ρi −

1

6
ρi+1, (8.61)

and

D̄i−1/2,j,k = −1

6
Di−2 +

5

6
Di−1 +

1

3
Di

D̄i+1/2,j,k =
1

3
Di−1 +

5

6
Di −

1

6
Di+1. (8.62)

Once the relevant components of the diffusive term have been calculated at the cell faces, then the

scalar equation (Eq. 8.56) can be time advanced.

8.5.2 High-Order Upstream Central (HOUC) Schemes

HOUC schemes are an extension of QUICK schemes, and they are commonly implemented to advect

scalar species. They are subject to extremely low numerical dissipation [26], and they can be made

to be of very high order in terms of accuracy [68]. (QUICK schemes are at best third-order accurate.)

Further, they are known to capture sharp gradients and other fine scalar field features [68].

Focusing on the HOUC5 scheme used for the current work, the needed interpolation polynomials
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are specified as,

Z̄i+1/2,j,k = − 6

120
Zi−1,j,k +

54

120
Zi,j,k +

94

120
Zi+1,j,k −

26

120
Zi+2,j,k +

4

120
Zi+3,j,k

Z̄i−1/2,j,k = − 6

120
Zi−2,j,k +

54

120
Zi−1,j,k +

94

120
Zi,j,k −

26

120
Zi+1,j,k +

4

120
Zi+2,j,k. (8.63)

Note that these polynomial coefficients assume a uniform grid mesh.

To transport the scalar quantity, Z, according to this HOUC scheme, the same process as de-

scribed for the QUICK scheme is performed. The scalar quantity is interpolated from the cell centers

to the cell faces such that the scalar flux term can be calculated from Eq. 8.63,

(ρuZ)i−1/2,j,k = (ρu)i−1/2,j,k Z̄i−1/2,j,k

(ρuZ)i+1/2,j,k = (ρu)i+1/2,j,k Z̄i+1/2,j,k, (8.64)

The scalar gradient is calculated using two adjacent scalar values at cell centers according to,

(
∂Z

∂z

)
i+1/2,j,k

=
Zi+1,j,k − Zi,j,k

∆x(
∂Z

∂z

)
i−1/2,j,k

=
Zi,j,k − Zi−1,j,k

∆x
. (8.65)

Lastly, the density and scalar diffusivity are interpolated to the cell faces, which results in,

ρ̄i+1/2,j,k = − 6

120
ρi−1,j,k +

54

120
ρi,j,k +

94

120
ρi+1,j,k −

26

120
ρi+2,j,k +

4

120
ρi+3,j,k

ρ̄i−1/2,j,k = − 6

120
ρi−2,j,k +

54

120
ρi−1,j,k +

94

120
ρi,j,k −

26

120
ρi+1,j,k +

4

120
ρi+2,j,k. (8.66)

and

D̄i+1/2,j,k = − 6

120
Di−1,j,k +

54

120
Di,j,k +

94

120
Di+1,j,k −

26

120
Di+2,j,k +

4

120
Di+3,j,k

D̄i−1/2,j,k = − 6

120
Di−2,j,k +

54

120
Di−1,j,k +

94

120
Di,j,k −

26

120
Di+1,j,k +

4

120
Di+2,j,k. (8.67)

Once this is done, the solution can be time advanced.

8.6 Appendix VI: Initialization Procedure

The simulation data presented in this thesis contained six field variables, including the three com-

ponents of the velocity field, one scalar field quantity, the density field, and the pressure field. The

initialization procedures for each of these field variables involved in the scalar mixing process are

described here.
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8.6.1 Velocity Field

The velocity field is initialized in a method that follows Eswaran and Pope [33]. This method imposes

on the velocity field an initial energy distribution as developed by Passot and Pouquet [75]. The

Passot-Pouquet energy spectrum is defined as,

E(κ) = A

(
κ

κe

)4

exp

(
−2

(
κ

κe

)2
)
, (8.68)

where A is the amplitude of the energy spectrum, κ is the wavenumber of a given wavevector, κ, and

κe is the wavenumber about which the energy is initially clustered. Generally, and in the current

work, κe = 2. This is done such that the energy content is concentrated primarily in the largest scale

flow features, with limited energy content at the smaller, viscous scales [75]. The energy spectrum

amplitude, A, is defined to be,

A = 16
u2
t

κe

√
2

π
, (8.69)

where ut is the user-specified magnitude of turbulent fluctuations. In the current work, ut = 0.1.

Following the application of the user-specified turbulent conditions (ut, κe), the spectral distribu-

tion of energy content at each wavevector, κ = [κx, κy, κz], in the domain is calculated. κx, κy, and

κz are the wavevector components in the x, y, and z ordinate directions, respectively. This defines

the energy content at each grid point. First, the wavevector to which each grid point corresponds is

calculated. Then, the energy spectrum at that wavevector is calculated according to Eq. 8.68. With

the energy spectrum known at each grid point, the Fourier coefficients for the velocity field can be

calculated. There are two coefficients that are needed, and they are obtained via,

a(κ)i,j,k =
(√

2π/L
)3
√
E(κ)i,j,k
2πκ2

i,j,k

exp (I θ1) cos (ψ) ,

b(κ)i,j,k =
(√

2π/L
)3
√
E(κ)i,j,k
2πκ2

i,j,k

exp (I θ2) sin (ψ) , (8.70)

where I =
√
−1. The extent of the (periodic) computational box is represented by L. In all

simulations performed in this work, L = 2π. The variables θ1, θ2, ψ represent random numbers

bounded between −π and π (θ1, θ2, ψ ∈ [−π, π]). The use of random numbers promotes isotropy

in the velocity field imposed.

With the two coefficients at all points in the simulation domain, the three-dimensional velocity

field can be computed from the Fourier coefficients. The velocity field components are orthogonal
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to one another, and, accordingly, they are obtained from a and b as written,

û(κ)i,j,k =
a(κ)i,j,k (κi,j,k) (κy)i,j,k + b(κ)i,j,k (κx)i,j,k (κz)i,j,k

(κi,j,k)
√(

κ2
x + κ2

y

)
i,j,k

, (8.71)

v̂(κ)i,j,k =
b(κ)i,j,k (κy)i,j,k (κz)i,j,k − a(κ)i,j,k (κx)i,j,k (κi,j,k)

(κi,j,k)
√(

κ2
x + κ2

y

)
i,j,k

, (8.72)

ŵ(κ)i,j,k =
−b(κ)i,j,k

√(
κ2
x + κ2

y

)
i,j,k

κi,j,k
. (8.73)

These expressions define the Fourier coefficients at all points in the domain, but, owing to the fact

that the velocity components must be real quantities, a few modifications still need to be made.

These components of û(κ), v̂(κ), and ŵ(κ) are defined as,

û(1, j, k) = û∗(1, N + 2− j,N + 2− k) for k ∈ [2, N ], j ∈ [N/2 + 1, N ], (8.74)

û(1, 1, k) = û∗(1, 1, N + 2− k) for k ∈ [N/2 + 1, N ]. (8.75)

Note that N is the number of grid points in one direction along the grid. In these expressions, (∗)

denotes the complex conjugation of the variable specified and j and k correspond to indices in the

three-dimensional computational domain. Although only the û component is depicted here, the same

operations are needed for the v̂ and ŵ components. Once this is done, to obtain the initial velocity

field components in physical space, all that is required is to take the inverse Fourier transform of

the spectral terms û(κ), v̂(κ), and ŵ(κ) to express u(x), v(x), and w(x),

u(x, t = 0) =
∑
κ

û(κ) exp (I κ · x) ,

v(x, t = 0) =
∑
κ

v̂(κ) exp (I κ · x) ,

w(x, t = 0) =
∑
κ

ŵ(κ) exp (I κ · x) . (8.76)

8.6.2 Scalar Field

The scalar field is initialized in a similar fashion as the velocity field; by this, it is meant that a

scalar energy spectrum is imposed via a defined distribution and then the physical space scalar field

values are obtained from the defined spectral form. The details of this scalar field initialization are

described below. The process implemented is based on that developed by Eswaran and Pope [32].

The Fourier coefficients of the scalar field, Ẑ, are obtained from the imposed distribution,

Ẑ(κ) =

√
fφ(κ)

4πκ2
exp (2πI θ(κ)) . (8.77)
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In this distribution, θ(κ) is a random number bounded between zero and one and fφ is a top hat

function defined according to,

fφ(κ) =

 1 if κs − 1/2 < κ & κ < κs + 1/2,

0 otherwise.
(8.78)

Here, κ =
√
κ2
x + κ2

y + κ2
z and, for the simulations contained in this work, κs = 1. As with the

velocity field, the scalar field quantities must be real. To ensure this, it is applied,

Ẑ(1, j, k) = Ẑ∗(1, N + 2− j,N + 2− k) for k ∈ [2, N ], j ∈ [N/2 + 1, N ], (8.79)

Ẑ(1, 1, k) = Ẑ∗(1, 1, N + 2− k) for k ∈ [N/2 + 1, N ], (8.80)

where Ẑ∗ denotes complex conjugation, N is the number of grid points in one direction along the

computational domain, and N/2+1 is the maximum possible wavenumber supported by such a grid

size. The scalar field is then inverse Fourier-transformed, bringing it into physical space coordinates.

Then, a double-delta function distribution is applied to scalar field by imposing,

Z(x) =

 1 if Z(x) > 0,

0 if Z(x) ≤ 0.
(8.81)

Imposing such a double-delta function on the scalar field introduces significant grid point-to-grid

point variation in scalar field value. This can result in the high wavenumber scalar field components

being poorly resolved. To address this, a smoothing function is applied to the scalar field. To

perform the smoothing step, the scalar field is Fourier-transformed back into spectral space. In

spectral space, the Fourier amplitudes, Ẑ(κ), are multiplied by a filtering function, F (κ), which is

defined as,

F (κ) =

 1 if κ ≤ κc,

(κc/κ)
2

if κ > κc.
(8.82)

Here, κc denotes the filter cut-off wavenumber; in all simulation performed, κc = 2. Recall that

κ is the magnitude (wavenumber) of wavevector κ. Implementing this filter function removes a

significant portion of the poorly resolved, high wavenumber features of the scalar field. Following

this, Eq. 8.79 and Eq. 8.80 are again applied, and then the scalar field is inverse Fourier-transformed

back into the physical space,

Z(x, t = 0) =
∑
κ

Ẑ(κ) exp (I κ · x) . (8.83)



188

This is the initial scalar field used to seed all performed simulations contained in this work, unless

otherwise stated.

8.6.3 Density and Pressure Fields

The density field was initialized in the same way as the scalar field [32]. The pressure field, owing to

its treatment described in Appendix 8.3, is initialized as having everywhere in the domain a constant

value. As only the pressure gradient is of consequence, the constant value can be set to any value.

In this case, and for simplicity, it is set to an initial value of zero. As the time integration scheme

advances, the needed pressure field value to satisfy mass conservation at every discrete time step is

determined.
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