A Caltech Library Service

Self-Assembly of Brush Polymers


Sveinbjörnsson, Benjamín Ragnar (2014) Self-Assembly of Brush Polymers. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/Z9RR1W7W.


The unique structure and properties of brush polymers have led to increased interest in them within the scientific community. This thesis describes studies on the self-assembly of these brush polymers.

Chapter 2 describes a study on the rapid self-assembly of brush block copolymers into nanostructures with photonic bandgaps spanning the entire visible spectrum, from ultraviolet to near infrared. Linear relationships are observed between the peak wavelengths of reflection and polymer molecular weights. This work enables "bottom-up" fabrication of photonic crystals with application-tailored bandgaps, through synthetic control of the polymer molecular weight and the method of self-assembly.

Chapter 3 details the analysis of the self-assembly of symmetrical brush block copolymers in bulk and thin films. Highly ordered lamellae with domain spacing ranging from 20 to 240 nm are obtained by varying molecular weight of the backbone. The relationship between degree of polymerization and the domain spacing is reported, and evidence is provided for how rapidly the brush block copolymers self-assemble and achieve thermodynamic equilibrium.

Chapter 4 describes investigations into where morphology transitions take place as the volume fraction of each block is varied in asymmetrical brush block copolymers. Imaging techniques are used to observe a transition from lamellar to a cylindrical morphology as the volume fraction of one of the blocks exceeds 70%. It is also shown that the asymmetric brush block copolymers can be kinetically trapped into undulating lamellar structures by drop casting the samples.

Chapter 5 explores the capability of macromolecules to interdigitate into densely grafted molecular brush copolymers using stereocomplex formation as a driving force. The stereocomplex formation between complementary linear polymers and brush copolymers is demonstrated, while the stereocomplex formation between complementary brush copolymers is shown to be restricted.

Item Type:Thesis (Dissertation (Ph.D.))
Subject Keywords:Brush Polymers, Self-Assembly, ROMP
Degree Grantor:California Institute of Technology
Division:Chemistry and Chemical Engineering
Major Option:Chemistry
Thesis Availability:Public (worldwide access)
Research Advisor(s):
  • Grubbs, Robert H.
Thesis Committee:
  • Tirrell, David A. (chair)
  • Grubbs, Robert H.
  • Gray, Harry B.
  • Dougherty, Dennis A.
Defense Date:29 April 2014
Funding AgencyGrant Number
DOW-Resnick Bridge AwardUNSPECIFIED
Record Number:CaltechTHESIS:05202014-173643723
Persistent URL:
Related URLs:
URLURL TypeDescription 2 original paper: Rapid self-assembly of brush block copolymers to photonic crystals 3 original paper: Self-Assembly of Symmetric Brush Diblock Copolymers 3 original paper: On the Self-Assembly of Brush Block Copolymers in Thin Films 5 original paper: Stereocomplex Formation of Densely Grafted Brush Polymers
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:8251
Deposited By: Benjamin Sveinbjornsson
Deposited On:29 May 2014 21:23
Last Modified:04 Oct 2019 00:04

Thesis Files

PDF (Full thesis) - Final Version
See Usage Policy.

PDF (Chapter 1) - Final Version
See Usage Policy.

PDF (Chapter 2) - Final Version
See Usage Policy.

PDF (Chapter 3) - Final Version
See Usage Policy.

PDF (Chapter 4) - Final Version
See Usage Policy.

PDF (Chapter 5) - Final Version
See Usage Policy.

PDF (Appendix A) - Final Version
See Usage Policy.


Repository Staff Only: item control page