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ABSTRACT

The dynamic mechanism of slope failure is studied both experimentally and
analytically to establish the spatial and temporal process of failure initiation and

propagation during collapse of a natural or man-made slope.

Model slopes, constructed of a brittle cemented sand material, are tested
to collapse in a geotechnical centrifuge and the dynamics of failure recorded by
motion picture film and mechanical detectors within the slope specimen. Shear
failure is observed to initiate at the toe and propagate rapidly to the crest in the

presence of crest tension cracking.

A finite difference approach is taken to numerically solve the plane strain
slope stability problem under gravity, based on unstable material behavior. Using
a Lagrangian differencing scheme in space and explicit integration in time with
dynamic relaxation, the numerical method finds the equilibrium state of the slope
as the large-time limit of a dynamic problem with artificial parameters. The
solution predicts localized shear failure zones which initiate at the slope toe and
propagate to the slope crest in the manner and geometry observed in the centrifuge
tests. In so doing, the finite difference algorithm also demonstrates an apparent

ability to predict shear failure mechanisms in solid continua in general.
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Chapter 1

INTRODUCTION

1.1 SLOPE FAILURE

The failure of earth structures such as natural slopes or man-made embank-
ments, excavations and dams is an age-old phenomenon which has inflicted heavy
loss of life and property on communities worldwide. The understanding of slope
failure, however, has generally been inadequate to prevent destruction in every
case, with the result that this soil mechanics problem remains incompletely re-

solved to the present day.

Slope failure, shown schematically in Figure 1.1 and photographically in Fig-
ure 1.2, typically involves formation of a curved failure surface through a slope of
cohesive soil, followed by relative sliding between the two created blocks of soil
along this surface. Bulging at the toe and tension cracking along the slope crest
are also commonly observed. Although soil which is highly sensitive or has pre-
ferred planes of weakness gives rise to slightly different modes of failure, it is the
“rotational” mode of Figure 1.1 which is the most common and thus the subject

of study here.

Historically, slope failure appears to have been first addressed by Collin in
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1846 [20] with studies of clay landslides in France, but it was not until the 1920’s
that Fellenius [28] developed a practical engineering solution to the problem dur-
ing construction of the Swedish railroads, when rotational embankment collapses
were prolific. The Fellenius method, however, and subsequent derivatives (see Sec-
tion 1.2.1), required many oversimplifying assumptions to make a mathematical
solution possible and hence could not model the phenomenon in sufficient detail to
permit an accurate prediction of the slope failure mechanism. Since the sequence
of events which constitute the mechanism of slope failure has never been clearly
understood, it was the aim of this study to conduct a series of experiments to
observe the initiation and propagation of a failure surface through a slope, and
to use these observations as the basis for development of an improved method of

slope stability analysis.

1.2 SLOPE STABILITY ANALYSIS

1.2.1 Available methods

All but a few of the methods which have traditionally been used to analyse the
stability of a slope under static gravity loading (e.g.,{11,14,17,28,45,46,60,95,106,
107]) give upper bound solutions based on the global principle of limit equilibrium.
Such methods start by assuming the profile of a two or three dimensional surface
through the slope (typically an inclined plane, circular arc or logarithmic spiral)

on which failure is postulated to occur. They proceed to compute the destabilizing
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and available resisting forces acting on this surface in an integrated or global sense,
and establish a factor of safety against failure as the ratio of available resisting
force to destabilizing force. The process is repeated for another assumed surface
until, by trial and error, the critical or correct failure surface is found with the
lowest factor of safety. There is, however, no guarantee that the correct failure
surface will be one of those assumed for trial, hence placing a heavy burden on
the engineering judgment of the analyst. Aside from this dilemma, these meth-
ods usually fail to represent the distribution of stresses along the failure surface
correctly, since equilibrium is satisfied in a global sense only. Given this kinetic
deficiency, and the initial kinematic assumption of a fully developed failure sur-
face, the limit equilibrium principle precludes capture of the local stress-strain
details considered important to any method of analysis which hopes to follow the

evolution (i.e., initiation and propagation) of slope failure.

Dynamic analysis is accommodated by the limit equilibrium approach in a
pseudo-static manner. The stability of a slope subjected to earthquake loading,
for example, is usually determined by the addition of a static lateral destabilizing
force, representing the peak horizontal acceleration of the earthquake, to an other-
wise normal staticv analysis (e.g., [82,84,85,94]). More complex earthquake anaiyses
(e.9.,6,18,66,82-85,93]) are based on the same principle but treat the earthquake
as a series of simple pulses or shocks. With the slope failure mass considered as a

rigid block on a plane frictional surface, these methods also permit an estimate of



—4 -
the earthquake-generated displacements of the failing slope mass.

An alternative approach to global slope stability analysis uses the calculus of
variations (e.g.,[9,75]) to find the critical failure surface, by minimizing a factor
of safety functional. For a homogeneous, isotropic slope, this surface is found to
be generated by a straight line or logarithmic spiral. Although there are several
drawbacks, including inability to capture the evolution of failure (typical of up-
pe'r bound limit equilibrium methods), difficulty of application to inhomogeneous
(e.g., layered) slopes, and evidence pointing to a defective functional [24], this “in-
verse” approach at least tackles slope failure in a fundamentally more realistic
manner, by asking the physics of the problem to naturally dictate the geometry of
the critical failure surface, rather than requiring the analyst to correctly assume

1t in advance.

The finite element method (e.g., [10,118]) has also been applied to both static
and dynamic slope stability analysis (e.g.,[19,54,97,105,111,115]) by obtaining a
lower bound stress-strain solution for the entire slope which satisfies equilibrium
at any local point. The local stress-strain details are hence free to dictate failure
surface initiation and propagation in a natural way. Without modification, how-
ever, the method has not permitted localization of deformation into sufficiently
narrow zones to predict the evolution or final profile of a distinct failure surface,
and it is only recently that special joint elements have been used to improve the

method’s slope failure performance [111].



-5
1.2.2 Possible alternative approaches

Although the slope failure problem presently remains resistant to analysis
by local stress-strain methods, the same methods have been applied with some
success to other solid mechanics problems and these are summarized below in the
context of their possible modification and application to the prediction of slope
failure. Some of the approaches discussed are investigated further in Chapters 6

and 7 in the quest for an improved method of slope stability analysis.

Localization of deformation into narrow zones has been a major issue in solid
mechanics for some time, and work by Rice, Rudnicki, Needleman, Asaro, and
Vardoulakis (e.g.,(7,53,62-64,72,77,79,81,112,114}), among others (e.g., [40,80]),
has contributed to a better understanding of the phenomenon. Prediction of the
formation of shear bands, however, has remained cast in a predominantly theo-
retical framework of mathematics, with few efforts to solve the many practical
problems to which localization of deformation applies. The problems which have
been addressed (e.g.,[2,53,58,62,72,73,112]) include metal tension and soil com-
pression tests, for which the finite element method has been coax.ed into predicting
shear band formation by element yielding. Prévqst and Hughes [73], for exam-
ple, achieved encouraging results by “seeding” their nonlinear material model of a
displacement-controlled compression specimen with a weak element, while Needle-
man et al. (e.g.,[53,72,112]) introduced a boundary imperfection to promote shear

band development in a tension specimen. The shear bands predicted by the latter



~-6 -

approach, however, and probably also by the former, required a special element
geometry and orientation and hence were highly mesh dependent. Shear band
formation has also been addressed within the theoretical framework of bifurcation
phenomena (e.g., [40,63,114}), but as yet, numerical solution of bifurcation prob-
lems seems to be confined to those of structural mechanics, fluid mechanics, and

reaction-diffusion processes (e.g.,[42,44,47,51,64,74]).

By treating a shear band as a crack, fracture mechanics (e.g.,[38]) offers a
completely different way of propagating a failure surface through a solid body. This
framework allows both linear (e.g.,[33,34]) and nonlinear (e.g., [25,43]) fracture to
be handled, with a variety of displacement and energy criteria available for crack
growth (e.g.,[27,37,43,99,116,117|), and analyses of such situations often make
use of a special tool called the J-integral (e.g.,[76,78]). To date, however, fracture
mechanics problems have been formulated almost exclusively in terms of a pre-
existing crack assumed to grow in a straight line with few efforts directed toward
predicting the trajectory of a growing crack (e.g.,[37,116,117|), and hence, with
metal fracture traditionally being the motivation for the study of crack propagation
under conditions of tension (Mode I) and anti-plane shear (Mode III), only a
small amount of work has been done on crack growth in clay (e.g., [69]) and rock
(e.g.,[5]), where conditions of shear (Mode II) predominate, to form a basis for

the study of slope failure as a fracture mechanics problem.

Although the finite element method remains the most common and successful
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numerical solution technique for solid mechanics problems in general, boundary
element methods (e.g.,[22]) may also be worthy of further investigation, especially
for linearly elastic fracture mechanics solutions which might be applied to modeling
the evolution of slope failure. In the same vein, a finite difference approximation
and solution to the dynamic field equations of continuum mechanics for a soil slope
might also successfully capture the initiation and propagation of the all-important

failure surface.

1.3 SLOPE FAILURE EXPERIMENTS

The present lack of a realistic and accurate method of slope stability analysis
is due not only to the difficulty experienced by stress-strain methods in accom-
modating and predicting localized deformation, but also to a general lack of un-
derstanding of the details of the slope failure mechanism itself. While toe bulging
and crest tension cracking are features which have commonly been observed im-
mediately prior to the collapse of real slopes, the point of initiation of the failure
surface and its subsequent propagation in space and time through the slope are
not clear and have not been investigated in detail due to the difficulty of their
capture. Since the development of any scientific theory or engineering analysis
should be based on a sound understanding of the physical principles governing the
problem at hand, there has been a clear need for a series of experiments to observe

the mechanism of slope failure directly.
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Direct observation of the failure of a real, full-scale slope would be the ideal
experiment, but is impractical for several reasons. For an existing full-scale slope,
or one specially constructed either by excavation or by building a suitably inclined
embankment, there would be inadequate control over failure (if and when it oc-
curred) and only one chance of recording the desired information, since the high
cost of such an experiment would prohibit its repetition. These problems can all be
overcome by conducting the failure experiments on model slopes in a geotechnical

centrifuge (e.g., [87]).

Although use of a centrifuge to study the slope stability problem is not a new
concept, previous experiments (e.g., [4,8,21,26,29-32,41,48,52,55-57,59,68,86,109))
have not specifically looked for the local or microscopic details of the slope failure
mechanism, as defined by the initiation and propagation in time and space of the
failure surface through the slope. Various mechanisms are possible (e.g.,[8,12,15,
17,49,71,102,103,109]) including evolution from slope toe to slope crest (supported
by the observation of toe bulging), crest to toe (supported by the observation of
crest tension cracking), or initiation deep within the slope mass followed by simul-
taneous propagation to the toe and crest. Due to the natural stress concentration
which occurs at the toe of a slope under gravity loading, the toe to crest hypothesis

is favored as postulated below in terms of the centrifuge environment.

The slope failure mechanism depicted in Figure 1.3 assumes failure to be a

progressive phenomenon originating at the slope toe as the centrifuge is started,
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and propagating slowly toward the slope crest with increasing gravitational accel-
eration. At a sufficiently high gravity level, the mass of soil between the failure
surface and slope face can no longer be supported by the intact material near the
slope crest and in the final stages the failure surface propagates rapidly to the
crest to allow subsequent slope collapse. Since the aim of the experimental part
of this study was to examine the above hypothesis, a series of centrifuge model
slopes was failed under increased gravitational acceleration, and the dynamics of
failure recorded with movie film and mechanical failure detectors. A model slope
material and geometry was specially chosen for these experiments to give a well-
defined failure surface, and still photographs of the slope specimen in flight were
taken at 5¢ increments during centrifuge spin-up to record the progressive nature

of failure, however it developed.

1.4 THESIS OUTLINE

The slope stability problem requires a better understanding of the mechanism
of failure by direct observation, and an improved method of analysis to predict it,
and thus the present study involved an experimental investigation of slope failure,

followed by an analytical effort to model the experimental results.

The mechanism of slope failure was directly observed in a series of geotech-
nical centrifuge tests, the equipment and instrumentation for which are presented

in Chapter 2. Since a special soil was used for these experiments, a series of tri-
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axial and unconfined compression tests was also conducted to identify this soil’s
engineering properties, and these results appear in Chapter 3. Chapters 4 and 5,
respectively, describe the procedure and present the results of the centrifuge slope
tests. Based on these experimental observations of slope failure, several attempts
were then made to develop an improved method of slope stability analysis, as de-
scribed in Chapter 6, before the successful approach of Chapter 7 was discovered.
This method is employed in Chapter 8 to represent the observed mechanism of
slope failure, and permitted the conclusions and recommendations of Chapter 9

to be made.
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Figure 1.3 Postulated centrifuge slope failure mechanism showing
propagation of failure surface from toe to crest with
increasing gravitational acceleration
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Chapter 2

CENTRIFUGE EQUIPMENT AND
INSTRUMENTATION

2.1 INTRODUCTION

The need for a centrifuge in experimental slope stability studies arises from
the nonlinear material behavior of soil and the gravity-induced nature of the soil
stresses. If a scale model of a prototype slope is to deform like the prototype
when the same soil is used, homologous points in the model and prototype must
experience the same stresses, and these conditions are best created in a centrifuge
by subjecting the 1/N scale model to a gravitational field of Ng, where N is
the lineal scale factor and g is Earth’s gravitational acceleration. These physical
considerations alone establish the scaling relations between prototype and model

parameters for the centrifuge environment and have been presented elsewhere

(e.g., [67]).

2.2 CENTRIFUGE

The centrifuge used to conduct the slope failure experiments is shown in Fig-

ure 2.1 and has been described elsewhere (e.g.,[89,91]). With the test container
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of Section 2.3 mounted on the end of the centrifuge arm, the maximum gravita-
tional acceleration which could be applied to a model slope was approximately
100g . Each slope failure test was run from within a control shed separated from
the centrifuge by a concrete wall and wire fence. Figure 2.2 shows the Zenith
120 computer and other electronic equipment for experiment control and data

acquisition housed within the shed.

2.3 TEST CONTAINER

The test container in which the centrifuge slope specimens were placed, was
- designed and built in 1982 for studying the response of centrifuge models to sim-
ulated earthquake motions. For reasons discussed in Section 4.2.1, this dynamic
loading capability was also essential to the slope failure experiments. The main
features of the soil container and dynamic loading system are shown in Figures 2.3
and 2.4, while the manner in which this apparatus allows any form of dynamic hor-
izontal motion, ranging from a single impulse to an entire simulated earthquake,

to be applied to the centrifuge model is described elsewhere (e.g.,[3])-

2.4 PHOTOGRAPHIC EQUIPMENT

2.4.1 Introduction

The centrifuge slope failure tests were recorded on 16 mm movie and 35 mm

still film with cameras and lighting mounted directly on the centrifuge arm near
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the central vertical axis, as shown in Figures 2.5 and 2.6. The lines of sight for
the 16 mm and 35 mm cameras were along the centrifuge arm to the 45° mirror
attached to the test container (see Figure 2.3). When in flight, the mirror directed
camera vision down onto the side of the slope specimen through the combination

glass and lucite front wall of the test container.

2.4.2 16 mm photography

A Wollensak Fastax (Model WF3) high speed camera was used to expose 16
mm movie films through either a 25 mm standard or 50 mm telephoto lens. Power
to the Fastax camera was provided by a Goose control unit (Model WEF-301), set
to 60 V for filming at 1600 frames per second, and 180 V for filming at 5000 frames

per second.

Lighting was provided by four General Electric DXC floodlamps until the
completion of slope test 11 (see Table 5.1), and by a General Electric No. 4556
aircraft landing lamp for subsequent tests. This change in lighting between tests
11 and 12 was in response to a need for more intense, directed light. The 500 W
floodlamps were connected to the 110 V supply of the centrifuge arm, while power
for the aircraft Ianding lamp came from three Globe 12 V, 4.5 amp.hr. “gel/cell”
batteries linked in series and mounted inside the arm. When permitted by closure
of a heavy duty, 24 V automotive starter motor relay, the fully charged 41 V of the
“gel/cell” battery package dropped to the required 28 V of the 1000 W aircraft

lamp while drawing 36 A of current. The relay used to complete the landing lamp
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circuit was mounted on the centrifuge arm and closed through the sliprings from

the control shed with two of the same “gel/cell” batteries connected in series.

FEastman (Kodak) Ektachrome 7250 Tungsten high speed video news film was
used in the 16 mm camera throughout the slope failure tests. This 400 ASA color
film was exposed through an aperture midway between f2.8 and f4 at 1600
frames per second with the four floodlamps, and through an aperture midway

between f4 and f5.6 at 5000 frames per second with the aircraft landing lamp.

2.4.3 35 mm photography

An Asahi Pentax MX camera with motor drive unit and 40-80 mm zoom lens
was used for in-flight 35 mm profile photographs of the slope specimen. Power
to the motor drive unit came through the sliprings from a 6 V supply in the
control shed, while relay closure of the motor drive contacts for frame exposure

and advance was controlled by the Zenith computer.

Lighting was provided by a Sunpak Auto 511 electronic flash unit connected
to the 110 V of the centrifuge arm for power, and to the Pentax camera for

synchronization.

Kodak Panatomic-X black and white print film was used for the clarity and
high resolution afforded by its fine-grained emulsion. Each frame of this 32 ASA

film was exposed through an aperture of f11 for 1/60th of a second.
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2.5 SLOPE TEST SPECIMEN

2.5.1 Introduction

A typical, prepared slope specimen used for the centrifuge experiments is
shown in Figure 2.7. The specimen has a 60° slope to ensure passage of any failure
surface through the toe of the sample (e.g., [88,108]) and is constructed of a sand-
plaster of Paris mixture, the properties of which are described in Chapter 3. The
slope geometry, and material, were chosen to give a test specimen with repeatable
properties that was sufficiently unstable to fail with a distinct failure surface at a

convenient and approximately constant level of gravitational acceleration.

2.5.2 Lucite mold

The slope test specimen introduced above was prepared in a specially designed
lucite mold according to the procedure of Section 4.1, the lucite mold being shown
as built in Figures 2.8 and 2.9. The thickness of the lucite was 12 mm (15/32
in) throughout, and the separate pieces were assembled with 8-32 brass flathead

screws, except at the toe and crest joints which were permanently cemented.
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2.6 PENCIL LEAD TRANSDUCERS

2.6.1 Introduction

It became apparent after slope test 11 (see Table 5.1 and Section 5.1.3) that
a transducer to detect slope failure mechanically might overcome resolution prob-
lems of the movie film and independently establish the mechanism of slope failure.
With this goal in mind, brittle pencil lead transducers were devised for insertion

into the face of all subsequent slope test specimens.

The concept of the pencil lead transducers is that ordinary pencil leads break
in a brittle manner at low shear and bending loads, and also conduct electricity.
A pencil lead could therefore be used as a circuit breaker in an electrical circuit
containing a timing device and power supply. The timing device could be exter-
nally activated and would stop as soon as its power supply was cut by breakage
of the pencil lead. When applied to the detection of slope failure in a centrifuge
experiment, a Tow of pencil leads could be inserted into the face of the slope spec-
imen across the path to be taken by the failure surface, and, as failure propagated
through the specimen, creating a displacement discontinuity across the failure sur-
face, the pencil leads would break cleanly because of their brittle nature. Their
breakage sequence would establish where the slope failure surface originated and
how it propagated by comparison of the final times frozen on the simultaneously
started timing devices. Individual leads wired to timing circuits were inserted into

slope specimens in the configuration shown in Figure 2.10.
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2.6.2 Transducer construction

The pencil lead transducers were constructed as shown in Figures 2.11 and
2.12, with 0.9 mm diameter Pentel HB leads and 34 AWG Belden 8083 wire. The
first step was to drill a 10/1000 inch hole through one end of the lead, which later
became the “pile tip” when the transducer was driven into its pre-made hole in
the face of the slope specimen with a small hammer (see Section 4.1). Secondly,
the insulation near the end of a length of 34 AWG wire was removed by passing
it first through the flame of a cigarette lighter and then séveral times between a
fold of fine carborundum paper. This allowed the wire-to-lead connection shown
in Figure 2.12 to be made by passing the clean end of wire through the hole,
wrapping the main body of wire around the leader to form a spiral, and lastly
coating the connection with electrically conductive nickel print “glue.” A similar
spiral connection, but without hole and leader, was made at the other end of the

lead with the clean end of another length of 34 AWG wire and nickel print “glue.”

The pehcil lead transducer design described above was the end result of trials
with 0.5 mm and 0.7 mm diameter leads without tip holes, 40 AWG wire, and lead
insertion by driving into pre-made holes or directly into intact material. These
transducers were in general too fragile to cope with insertion by driving, and
without a tip hole the nickel print bond between wire spiral and lead was easily
broken, rendering the transducer inoperative by allowing the wire spiral to slide

the length of the lead during driving.
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2.7 PENCIL LEAD SUPPORT CIRCUITRY

In accordance with the original pencil leaﬂ concept of Section 2.6.1, each
transducer was the “breaker” in a circuit containing its own timing device. More
specifically, the pencil lead transducers inside the centrifuge slope specimen were
connected to the “bounce eliminator” box mounted on the test container (see
Figure 2.13) and described below, and from there via the sliprings to a circuit
board housed inside the Zenith 120 computer in the control shed. The pencil lead
timing devices were mounted on the TTL circuit board of Figure 2.14 in the form of
Intel 8253 digital counting chips. A schematic of the integrated circuits supporting
the pencil lead transducers and digital counters is presented in Figure 2.15, and
a brief description of their operation is given below. Of the twelve possible pencil
lead transducers able to be supported by this circuitry, a maximum of ten were

used in any centrifuge slope failure test (see Figure 2.10).

The “bounce eliminator” box of Figure 2.13 contains two Motorola MC 14490
contact bounce eliminator chips which output a clean digital signal in the event
that their mechanical (pencil lead transducer) inputs bounce during breakage as
thev failure surface propagates through the slope. In so doing, these CMOS chips
introduce a short time delay between input and output, which is the same for all
pencil leads and hence does not affect the relative time between breaking leads.
Once through the bounce eliminator chips, the pencil lead signals are transmitted

by the centrifuge sliprings to the integrated circuit board of Figure 2.14.
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The pencil lead signals coming into the circuit board pass between 10 k)
pull-up and 2 k1 pull-down resistors which prevent a slightly fluctuating voltage,
sometimes introduced by the sliprings, from being misinterpreted as a broken
lead. A broken lead signal will pass between the resistors, only if a pencil lead
transducer has completely broken and triggered the bounce eliminator box to
send the appropriate signal. Once past these resistors, the pencil lead signals are
inverted by LS 14 chips and simultaneously sent to LS 86 XOR gates, LS 08 AND
gates and the 8253 digital counters. The LS 86 XOR gates are the first of several
checkpoints before the pencil lead signals are permitted to trigger the 8253 digital

counters.

As mentioned briefly in the test procedure of Section 4.2.1, the computer reads
the status of the pencil leads during centrifuge spin-up and excludes from further
consideration any leads which break before dynamic loading of the slope specimen
by an impulse sent to the test container. The pencil lead status is read through
LS 244 buffers and broken leads excluded from the pending digital counting cycle
by sending a signal to the appropriate pins of the LS 86 XOR gates through LS
373 latches (see pins A to L on the LS 373 latches of Figure 2.15). Once this has
been done, an S 133 NAND gate hands control over to pin X on one of the LS
373 latches, which is the master control switch thrown just before the impulse is
sent to the test container. It allows the pencil lead signals to pass through the

LS 08 AND gates and enables the digital timers to begin counting simultaneously
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when the first subsequent pencil lead breaks. Thereafter, each digital counter
stops when its own pencil lead breaks, and holds its final count for later retrieval

by the computer program controlling the experiment.
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Figure 2.4 Plan view of centrifuge arm showing servo-valve
and actuating piston for dynamic loading
(test container in flight position)
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Figure 2.11 Stainless steel rod (left) and pencil lead transducer (right)
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Figure 2.12 Construction of pencil lead transducers
(exaggerated scale)
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Figure 2.15 Schematic of integrated circuits supporting pencil
lead transducers and digital counters

Fold out —
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Chapter 3

MODEL SOIL

3.1 INTRODUCTION

The centrifuge slope failure experiments required a model soil whose prop-
erties could be controlled to permit repeatable experiments. In particular, the
soil needed to be weakly cohesive so that a slope specimen made stable at 1g
would become unstable at a higher gravity level, and to be brittle in nature to
ensure slope failure with a distinct failure surface as opposed to failure by general

settlement or flow.

A natural soil satisfying these requirements would have been ideal, with im-
mediate extension to the understanding of prototype slope failures. To this end,
two types of natural soil were used for the early slope failure experiments, the
first being a silty sand from Seal Beach, California, and the second a New Hamp-
shire silt. Both soils derived their cohesion from appropriate contents of fines and
added water. The pore water distribution within the constructed slope specimens,
however, could not be adequately controlled to give repeatable and well-defined
slope failures at an approximately constant gravity level, and no further attempts

were made with these soils. Normally consolidated clay was also abandoned as a
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possible model soil, without being tested, on similar grounds of nonrepeatability,

and high deformability.

An artificial soil was then tried to see if the shortcomings of natural soil could
be overcome. Based on a series of centrifuge tests conducted on square pyramids
some years earlier [90], in which the pyramids were constructed of a sand-gypsum
mixture, it was hoped that a similar material, with plaster of Paris replacing
gypsum, would work well for the slope failure experiments. A material combining
by weight, 1 part plaster of Paris, 2.5 parts water and 60 parts silica 20 sand (see
Figure 3.1), was thus tested in the centrifuge and found to give repeatable and
well-defined slope failures at an approximately constant gravity level, as required.
The sand-plaster of Paris material, of approximate unit weight 93 pcf, was dry for
testing and avoided the problem of sensitivity to moisture content experienced with
the natural soils used initially. The mixing procedure and method of compaction
of the sand-plaster of Paris material for the construction of the slope specimen are

described in detail in Section 4.1.

3.2 LABORATORY TESTS

A series of triaxial (e.g., [13]) and unconfined compression tests was conducted
on the selected granular material to identify its engineering properties, and of par-
ticular importance were its stress-strain characteristics, Poisson’s ratio, cohesion

and friction angle.
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The triaxial tests (e.g.,[16]) were conducted on cylindrical material specimens
of approximately 38 mm diameter and 85 mm length. Confining pressures in the
range of the gravity-induced stresses experienced by the material in the centrifuge
experiments were applied to the samples by means of an adjustable vacuum, and
changes in sample volume were measured by the displacement of water surrounding
the specimen in the triaxial cell. Three tests were carried out at each of three
confining pressures: one-third vacuum (4.4 psi, 0.03 MPa), two-thirds vacuum (8.8
psi, 0.06 MPa), and full vacuum (13.3 psi, 0.09 MPa). The unconfined compression
tests were conducted as triaxial tests at atmospheric pressure. The unconfined
compression specimens were therefore still surrounded by water allowing volume
change to be measured, but giving a confining stress varying linearly with vertical
distance from the water surface. This level of confining pressure was negligible,
however, compared to the strength of the specimens. The displacement-controlled
loading rate for both the triaxial and unconfined compression tests was 0.1 inches

per minute (2.5 mm per min).

During a triaxial or unconfined compression test on a soil sample, axial load
and deformation are measured, as well as total volume change. The numerical con-
stitutive model defined in Section 7.4, however, is a relationship between the radii
of the Mohr’s circles of stress 7,, and strain €,, at any material point and hence
it is these quantities which must ultimately be determined from the laboratory

tests.
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Let 01, 03, and o3 be the principal stresses, €1, €2, and ez the principal
strains, and assume the principal stress and strain tensors to be coaxial. For an
axisymmetric cylindrical soil specimen in a triaxial or unconfined compression test,
the axial direction is principal and conventionally given the subscript “1”, while the
“2” and “3” directions are any two mutually orthogonal directions, also principal,
lying in a ciréular cross-sectional plane of the sample. Due to axial symmetry,

0y = 03, and due to assumed isotropy in a cross-sectional plane, €5 = €3.

From the axial load and deformation measured during a test, the axial stress
o1 and strain €; are computed, and the volume change of the sample gives the
volumetric strain or dilatation €, . If the stresses o7, 02, and o3, and strains ¢;
€2, and €3 are positive for compression, negative for tension, and ¢, is positive
for a volume increase, negative for a volume decrease, then the relationship for

volumetric strain becomes
—€y — €1 + €2+ €3 = €1 + 2¢3 (3.1)

from which €3 may be expressed as

€3 = _(6—“;—2) . (3.2)

The radius of the Mohr’s circle of strain is given by

€1 — €
€ = 12 2 (3.3)

and substituting for €3 from (3.2) yields

. .
e = (3e1 +€,) . (3.4)
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The radius of the Mohr’s circle of stress is given by
Ty = ——— - (3.5)

where o3 is the sample confining pressure.

An experimental determination of Poisson’s ratio v may also be made from

a triaxial or unconfined compression test according to the definition

1 v
u:~53:5(1+6—> , (3.6)

€1 €

where (3.2) has been used in the substitution for €3 .

3.3 SAND-PLASTER OF PARIS MATERIAL PROPERTIES

3.3.1 Unconfined compression test results

The results of a typical unconfined compression test on the sand-plaster of
Paris material are shown in Figures 3.2 to 3.4. Figure 3.2 is a continuous plot of
the initial part of the test, showing axial and shear stress versus axial and shear
strain, and providing higher resolution than the discrete, reduced data of Figures
3.3(a) and 3.4(a) for the same test. It should be noted that the first recorded
data point of Figures 3.3(a) and 3.4(a) fails to capture the peak of Figure 3.2, and
hence an estimate of the cohesion of the material is made as one-half the peak axial
stress of Figure 3.2, or 2 psi (14 kPa). Because of the material’s low cohesion and

very brittle nature, the soil skeleton begins to break down and the stress-strain



— 44 —

curve becomes nonlinear almost immediately after initial application of the load
and hence the values of Poisson’s ratio given in Figure 3.4(b) (computed from data
points already in the nonlinear range) are poor estimates of this material property.
Better estimates of v would require more detailed volume change readings on the

initial rising limb of the stress-strain curve of Figure 3.2 (at deviatoric stresses

below approximately 1 psi).

3.3.2 Triaxial test results

Typical results of the three triaxial tests conducted on the sand-plaster of
Paris material at each confining pressure of one-third, two-thirds, and full vac-
uum are shown in Figures 3.5 through 3.10, where Figures 3.5 and 3.6 are the
results for one-third vacuum, and the two-thirds and full vacuum results appear
in Figures 3.7 and 3.8, and 3.9 and 3.10 respectively. Note that the two-thirds
vacuum test (Figures 3.7 and 3.8) included three post-peak unloading-reloading
cycles to determine the sand-plaster of Paris material’s unloading characteristics

for incorporation into the numerical soil model of Section 7.4.

In all three sets of vacuum tests, the presence of confining pressure increased
the strain at which peak stress occurred and diminished the magnitude of the
post-peak reduction in strength compared to the unconfined compression tests
(see Section 3.3.1). Neither of these observations, however, validate the estimates
of Poisson’s ratio given in Figures 3.6(b), 3.8(b) and 3.10(b), and although v is

seen to lie in the range 0.2 to 0.45 at low strain, with a plausible average value of
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approximately 0.35, this is still an inaccurate estimate for the same reasons given
in Section 3.3.1, and highlights the inadequacy of the triaxial tests as conducted

for the measurement of Poisson’s ratio.

3.3.3 Idealized constitutive relation

The primary aim of the laboratory tests of Sections 3.3.1 and 3.3.2 was to
provide experimental values for the numerical soil model parameters of Section
7.4. In particular, test values were required for soil constants S; and Sy of (7.31)
and Poisson’s ratio v of (7.34). Poisson’s ratio was measured to lie in the range

0.2 to 0.45, as discussed in Section 3.3.2.

Estimates of S; and S, were obtained from Figure 3.2 and the 7,, versus
en curves of Figures 3.6(a), 3.8(a) and 3.10(a) where 7,, and ¢,, were computed
for each triaxial test data point from (3.5) and (3.4) respectively. S; represents
the shear modulus of the material at zero confining pressure (i.e., unconfined) and
was obtained by finding the slope of the chord joining the origin to the peak of
Figure 3.2, with the ordinate and abscissa of the peak expressed in terms of the
radii of the Mohr’s circles of stress 7,, and strain ¢,, , respectively. Here 7,
equals 2.05 psi, with ¢,, equal to 5.6 x 1074, éiving an estimate for Sy of 3660
psior 25 MPa. Since the stress-strain curve of Figure 3.2 climbs almost linearly to
its low strain peak, S; may be taken as the tangent shear modulus at the onset

of loading, even though it was technically computed as a secant modulus.
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Sq represents the variation of shear modulus with confining pressure and its
determination is described below. From Figures 3.6(a), 3.8(a), and 3.10(a), an
estimate of the tangent shear modulus of the material at the onset of loading at
each confining pressure was obtained by finding the slope of the chord joining the
origin to the first data point. This tangent shear modulus was plotted against its
confining pressure in Figure 3.11 for each of the three triaxial tests conducted at
each confining pressure (i.e., a total of 9 triaxial tests). Figure 3.11 shows that the
shear modulus varies significantly at each confining pressure and also shows the
estimate of S; plotted at zero confining pressure. A dashed line representative
of the data was then drawn by eye within the shear modulus bounds of Figure
3.11 to quantify the variation of shear modulus S with confining pressure p given
by (7.31). The slope of this line gives S, as 300 MPa/MPa while the ordinate

intercept gives S; as 20 MPa. Hence (7.31) becomes
S =20+ 300p MPa (3.7)

and it is this expression for S which is the basis of the results presented in Section

8.3.

In terms of the conventional shear modulus G, where G = S/2, (3.7) repre-

sents a variation of G with p given by
G =10+ 150p MPa , (3.8)

which may be compared with an alternative expression proposed by Seed and
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Idriss [96] for medium-dense sand of the form

wi=

G = 1000 K3 (0],,)% psf (3.9)

where o), is the mean principal effective stress (or confining pressure) in psf and
K, is a constant which depends on the sand’s relative density and strain level.

Replacing o], by p, the metric equivalent of (3.9) is
G=69K,\p MPa . (3.10)

For sands of all relative densities in the strain range 10~% to 103 (within which
the peak of Figure 3.2 falls), K, has a value of 20. The variations of shear modulus
with confining pressure given by (3.7), (3.8) and (3.10), with K, = 20, are plotted

for more direct comparison in Figure 3.11.

Estimates of the other required soil constants €,, , €y, , and 7, of the
numerical soil model of Section 7.4 (see Figure 7.4), assumed for simplicity to be
independent of confining pressure, are based on the stress-strain curve of Figure
3.2 for unconfined compression. ¢, is the radius of the Mohr’s circle of strain
corresponding to the peak of Figure 3.2, equal to 5.6 x 107, and rounded off to
1 x 1072 for the numerical soil model of Section 7.4. ¢,,, is the radius of the
Mohr’s circle of strain at which the residual shear strength 7, of the material is
reached, equal to 4 x 1072 from Figure 3.2 and for the numerical soil model. 7,
is the radius of the Mohr’s circle of stress corresponding to the residual stress of
Figure 3.2, and is equal to 40 percent of the peak shear stress (i.e., 0.4 51 €,,, or

8 x 1073 MPa in the numerical soil model).
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Assuming the shear modulus variation with confining pressure of (3.7), and
€r: to be a ﬁxed constant of 1 x 1073, independent of confining pressure (even
though constant €, is not a good assumption according to the triaxial test re-
sults), the equivalent friction angle ¢ of the numerical soil model can be deter-
mined, as described below. It is to be noted that this is not the usual friction

angle of the real sand-plaster of Paris material, as discussed in Section 3.4.

If 70 is the peak shear stress (i.e., the shear stress at which shear failure of

the material takes place) given by
> = Se€y: (3.11)

and the Mohr-Coulomb condition on the failure plane of a granular material has
the form

Tr =y + Oy tang (3.12)

where 7, is the shear stress to cause failure, ¢,, is the cohesion of the material and
oy is the normal stress acting on the failure plane, then (3.12) may be rewritten

as

Tr =y +ptang (3.13)

and, differentiating with respect to confining pressure p,

d
dT; =tan¢ . (3.14)
From (3.11), however,
dtp ds
. 2 (3.15)
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since €,,, is a constant, and from (7.31) and (3.7),

ds
= =85 =300 . :
= (3.16)

Combining (3.14), (3.15), and (3.16) gives
tan ¢ = Sq €, (3.17)
and substituting for .Sy from (3.16), with €, =1 x 107, yields

¢ = arctan0.3 = 16.7° . (3.18)

3.4 DISCUSSION

The sand-plaster of Paris material ultimately used for the centrifuge slope
failure experiments was only weakly cohesive and extremely brittle. As such, the
cohesion and skeletal structure of the material in the failure zone of the sample
broke down almost immediately upon application of the load during the labora-
tory tests. Once this breakdown had occurred, at very low strain (1073), the
sand-plaster of Paris material effectively became a cohesionless, coarse sand. It
was therefore considered more appropriate to determine the engineering proper-
ties of the intact material from its initial response to load application, rather than
from its behavior at higher strain levels. This was the reason for determining
the cohesion of the material from the almost immediate peak of Figure 3.2 dur-

ing a typical unconfined compression test, and for determining the variation of
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shear modulus with confining pressure, and hence friction angle, from the initial
response of the material during the triaxial tgsts. This procedure deviates from
the common practice of determining the friction angle from the envelope to the
Mohr’s circles corresponding to the peak stresses of triaxial tests conducted at
different confining pressures. The latter practice is valid for a clay-type soil which
retains its cohesion even at the large strain corresponding to peak stress, but not
for the brittle soil considered here. In the triaxial tests conducted on the sand-
plaster of Paris material at confining pressures of one-third, two-thirds, and full
vacuum, the strain level corresponding to peak stress is approximately 10 percent,
from which a conventional friction angle of approximately 35° is obtained. The
friction angle of 16.7° determined at a strain level between 10~% and 1073 is al-
most half this value and indicates that the frictional resistance of the sand-plaster
of Paris material is not fully mobilized at the strain level at which its cohesion

breaks down.
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Figure 3.3 Unconfined compression test results for

sand-plaster of Paris material
(a) Deviator stress versus axial strain
(b) Volume strain versus axial strain
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Figure 3.4 Unconfined compression test results for

sand-plaster of Paris material

(a) Shear stress (radius of Mohr’s stress circle) versus
shear strain (radius of Mohr’s strain circle)

(b) Poisson’s ratio versus axial strain
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Figure 3.5 One-third vacuum triaxial test results for

sand-plaster of Paris material
(a) Deviator stress versus axial strain
(b) Volume strain versus axial strain
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Figure 3.6 One-third vacuum triaxial test results for

sand-plaster of Paris material

(a) Shear stress (radius of Mohr’s stress circle) versus
shear strain (radius of Mohr’s strain circle)

(b) Poisson’s ratio versus axial strain
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Figure 3.7 Two-thirds vacuum triaxial test results for
sand-plaster of Paris material
(a) Deviator stress versus axial strain
(b) Volume strain versus axial strain
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Figure 3.8 Two-thirds vacuum triaxial test results for

sand-plaster of Paris material

(a) Shear stress (radius of Mohr’s stress circle) versus
shear strain (radius of Mohr’s strain circle)

(b) Poisson’s ratio versus axial strain
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sand-plaster of Paris material
(a) Deviator stress versus axial strain
(b) Volume strain versus axial strain
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Figure 3.10 Full vacuum triaxial test results for

sand-plaster of Paris material

(a) Shear stress (radius of Mohr’s stress circle) versus
shear strain (radius of Mohr’s strain circle)

(b) Poisson’s ratio versus axial strain



S (MPa)

SHEAR MODULUS,

60

50

- 61 —

CONFINING PRESSURE, p (psi)

4 6 8 10 12 4

S =20 + 300 p (MPa) T

+ 2
G=10+150p (MPa)

- -1
SEED & IDRISS

G=6.9K,/p (MPa) (Ky=20)

| ] } L i 1 ] 1 0
0.02 0.04 0.06 - 0.08 0.1

CONFINING PRESSURE, p (MPa)

Figure 3.11 Variation of shear modulus with confining pressure

from triaxial and unconfined compression test results

SHEAR MODULUS, S(ksi)



— 62 —

Chapter 4

EXPERIMENTAL PROCEDURE

4.1 SAMPLE PREPARATION

The slope specimen used in the centrifuge experiments of Sections 4.2 and
5.1 was constructed of approximately 34 pounds of the 60:1 sand-plaster of Paris
material whose properties are given in Chapter 3. A sufficient quantity of this
material was made from 4% batches each of 8 pounds silica 20 sand, 0.13 pounds
plaster of Paris and 182 ml (0.4 pounds) water. Each batch of ingredients was
combined and mixed in a kitchen mixer by pouring the dry sand into the empty
mixing bowl, setting the mixer running at its slowest speed, and gradually adding
the water to the dry sand. With the mixer still running, the plaster of Paris was
then slowly added to the moist sand, signifying the start of the plaster’s chemical
reaction. At this point, the mixer was briefly stopped to scrape any unblended
plaster of Paris from the beater and sides of the bowl, before being restarted.
As soon as the material had been mixed to a uniform consistency, the mixer was
stopped and the contents of the mixing bowl emptied into the lucite slope mold,
turned upside down as shown in Figure 4.1. Eight pound batches of sand were

used since this was the capacity of the kitchen mixer. It should also be noted that
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while it is usually desirable for better mixing in cooking to blend all dry ingredients
before adding liquids, this procedure was found unsatisfactory for the sand-plaster
of Paris material. The coarse sand grains were unable to trap the very fine plaster
of Paris in their void spaces and prevent the plaster from settling to the bottom
of the mixing bowl before addition of the water, and thus the plaster of Paris had

to be added to the moist sand instead.

Once in the lucite mold, each 8 pound batch of soil was compacted into a

layer between 1% and 2 inches thick (of approximate unit weight 93 pcf) with a

Ao

inch diameter aluminum rod. The fourth batch needed to be added in two halves,
with half the compactive effort applied to each, to avoid excessive spillage over
the sides of the mold during compaction. Approximately half of batch “4%” of
the soil was added to overfill the mold and any excess discarded as the compacted
slope specimen was levelled off with the open bottom of the mold (see Figure 4.2).
Holes for the pencil lead transducers were then made in the sample according to
the configuration shown in Figure 2.10 by inserting 1.6 mm diameter stainless steel
rods (see Figure 2.11) through pre-drilled holes in the face of the lucite mold. The
mold, complete with compacted slope specimen and stainless steel rods was then
put in a 130°F oven for approximately 12 hours to hasten and ensure complete

setting of the plaster of Paris within the moist sand (see Figure 4.3).

After removing the slope sample from the oven and allowing it to cool, the

entire mold was turned onto its side and the upward-facing side wall removed to
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expose the hardened sand-plaster of Paris material. A grid of orthogonal black
lines was then spray-painted onto the exposed side (see Figure 4.4), and the side
wall of the mold replaced. The slope specimen, with stainless steel rods still in
place (see Figure 4.5), was then transported from the basement soil mechanics

laboratory to the rooftop centrifuge room, fully supported in the lucite mold.

Once in the centrifuge room, a rubber pad and aluminum plate were placed
on the upward-facing bottom of the slope before inverting the entire specimen
and mold. This turned the slope sample right way up onto the rubber pad and
aluminum baseplate, allowing the stainless steel rods to be removed and the lucite
mold to be dismantled from around the sample, screw by screw from alternate
sides, beginning at the bottom of the specimen. Wire hook lifting handles were
then attached to each end of the aluminum baseplate (see Figure 4.6} and the free-
standing slope specimen was lifted and lowered into the rectangular test container
on the end of the centrifuge arm. After removing the lifting hooks, a check was
made to ensure that the grid-painted side of the specimen was in contact with the
combination glass and lucite front wall of the test container. A plate of tempered
glass was then inserted between the slope specimen and rear aluminum wall of the
test container to provide the same rear boundary condition to the slope sample bas
existed at the front wall. Any gaps between the slope specimen and the crest-end
or rear walls of the test container were filled and compacted with cohesionless

silica 20 sand, while the gap between the toe of the slope sample and the toe-end
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wall was bridged by a wooden block firmly wedged into place (see Figures 4.2 and
4.7). These measures were taken to ensure that plane strain conditions would be
met across the slope specimen, and that the slope sample would be subjected to
the same horizontal motions as those given to the test container by the servo-valve
and actuating piston. At this stage, the pencil lead transducers were lightly driven
into their pre-made holes with a small hammer. Three tie-rods were also inserted
and tightened between the tops of the front and rear walls of the test container,
to prevent flexing and maintain plane strain conditions across the slope specimen

during centrifuge flight (see Figure 4.7).

4.2 THE CENTRIFUGE SLOPE FAILURE EXPERIMENT

4.2.1 Test procedure

The configuration of the centrifuge arm for a typical slope failure test is
shown in Figures 4.8 and 4.9. Each slope failure test was controlled by the Zenith
computer through a program combining BASIC and assembly language routines,
and a test was ready to be run once the wires from the pencil lead transducers
had been connected to the bounce eliminator box. To begin a test, and for reasons
given in Section 5.1.1, the centrifuge was spun up to 42¢ (given by 200 rpm and a
centrifugal radius of 37 inches to the centroid of the slope sample) and photographs
were taken of the grid-painted side of the slope specimen at 5¢ increments by the

35 mm still camera mounted on the arm. During spin-up, the computer continually
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monitored the status of the pencil leads through an assembly language routine and
noted the time and slope location of any lead breakage. At 42¢, the computer
excluded any already broken leads from further consideration and readied the
digital counters for simultaneous counting, to be triggered by the first subsequent
lead to break. One more pre-failure photograph was taken by the 35 mm camera
before the aircraft landing lamp was turned on, the movie camera started and a
single impulse of approximately 15g peak acceleration directed horizontally from
slope crest to slope toe given to the test container by the servo-valve and actuating
piston. The ensuing slope failure was recorded on 16 mm movie film while the
sequence and timing of pencil lead breakage were stored in computer memory.
Horizontal acceleration and displacement of the test container were also recorded
during slope failure with appropriate transducers and a high speed analog-to-
digital converter. The aircraft landing lamp was then turned off, a post-failure
photograph taken by the 35 mm camera, and the centrifuge brought to rest to

complete the test.

Although the recording of a static slope failure on film would have been de-
sirable, the passage of a 100 ft roll of film through the high-speed movie camera,
even at its slowest framing rate, placed an impossible constraint on the time of
occurrence of a static failure. Hence the time of initiation of failure needed to be
controlled and this was best done by dynamically loading the slope specimen in

a gravity field in which it was marginally stable. A single horizontal impulse was
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considered the minimum dynamic perturbation to static gravitational loading.

4.2.2 Example results

The first slope failure experiment to include pencil lead transducers and 35
mm in-flight photographs was test 12 (see Table 5.1), and the results from this
test are presented below to illustrate the test procedure of Section 4.1. Those tests
yielding valuable information about the mechanism of slope failure, both prior and

subsequent to test 12, are presented and discussed in Section 5.1.

Figures 4.10 and 4.11 are, respectively, the pre-failure and post-failure pho-
tographs of slope sample 12, taken at 30g by the 35 mm camera mounted on the
centrifuge arm. Test 12 was conducted at 30¢ instead of 42¢ since minor dam-
age to the face of the slope specimen prior to test commencement was expected
to cause premature slope failure below 42g. Figure 4.12 shows the horizontal
impulse given to slope specimen 12, as well as the resulting horizontal accelera-
tion and displacement of the test container, and points out that the impulse of
15g peak acceleration and 0.1 seconds duration (see Figure 4.12(b)) given to the
model slope at 30¢g actually represents a short, intense prototype earthquake of
0.5g peak acceleration and 3 seconds duration. The vertical spike appearing in
Figure 4.12(a) and marked by an arrow is caused by the analog-to-digital converter
losing a binary digit during its rapid sampling and storing cycle. The high fre-
quency accelerations commencing at approximately 0.10 seconds in Figure 4.12(b)

and also marked by an arrow are believed to be caused by debris from the collaps-
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ing slope striking the accelerometer mounted near the bottom of the toe-end wall

of the test container, independently of the already noisy accelerometer signal.

Although Section 4.1 mentioned that the pencil lead transducers were lightly
driven into their pre-made holes in the face of the slope specimen with a small
hammer, this procedure was an improvement over the original method used for
test 12, in which a weak plaster of Paris solution (2 parts water to 1 part plaster)
was injected into each hole with a hypodermic syringe before lead insertion into
the slope face by a push of the hand. The intention of this procedure was to
cement each pencil lead to the surrounding slope material with a thin coating
of plaster of Paris. As shown in Figures 4.13 and 4.14, however, the injected
plaster of Paris solution effectively grouted the porous slope material around the
pencil leads, forming “columns” of disproportionately high shear strength which
prevented complete slope and pencil lead failure and forced partial collapse to take
place in the ungrouted material farther from the pencil leads. Figure 4.15 shows
the configuration of pencil leads for test 12 and the order of those which broke

during the partial slope collapse shown in Figures 4.11 and 4.13.

4.3 DATA REDUCTION

4.3.1 Film digitization

The 16 mm movie films taken at approximately 1600 frames per second dur-

ing centrifuge slope failure tests 10 and 11 were magnified by screen projection
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and inspected closely, both in forward and reverse motion, and frame by frame.
Propagation of the failure surface through each slope specimen, however, occurred
very rapidly — so rapidly in fact that the first of two consecutive frames of movie
film at the time of failure appeared to show no evidence of a failure surface which
was fully manifest in the second. Such direct film observation with the naked eye,
therefore, failed to determine beyond doubt the sequence of events constituting
the mechanism of slope failure and although the films suggested the mechanism of
Figure 5.34 (determined predominantly from tests 15 and 17), the evidence was
inconclusive. It was considered quite possible, however, that the failure surface
was indeed propagating across successive frames of the movie film even though
the naked eye could not apparently detect it before it was fully developed. A
high resolution method of film analysis was thus needed — one that would be
more consistent, systematic and reliable than the naked eye and would eliminate
as much subjective judgment as possible. Digitization appeared to be able to meet

these needs.

Film digitization, shown schematically in Figure 4.16, involves passing light
through a suitably-sized aperture placed directly over the frame of film under
consideration and méasuring the intensity of light reaching a photovoltaic cell
beneath the film. This cell produces a voltage pro.portional to the intensity of
light striking it and the range of voltages emitted as the aperture is moved over

the frame of film can be mapped onto a digital gray scale from 0 to 255 (the range
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of 8-bit binary numbers). The aperture size determines the spatial resolution of
the digitization and the frame of film is subdivided into z aperture lengths in
the horizontal direction and y aperture lengths in the vertical direction. As the
aperture is scanned across the film, the frame is digitized into a two-dimensional
array of 8-bit binary numbers, with y rows and z columns. To produce the results
presented below and in Section 5.2, the original gray scale of digitization (0 to 255)
was further mapped onto a reduced gray scale from 0 to 7, with 0 indicating white
and 7 representing black. Such a mapping generally reduces intensity resolution
but this was not visually apparent in any of the images digitized from the centrifuge

slope failure films.

The power of the digitization tecflnique lies not in its ability to reproduce an
analog frame of film in digital form, but in its capacity to allow subtraction of the
arrays representing two different frames to produce a difference image. If the two
frames are identical, their subtraction will yield zero or no difference. If, on the
other hand, there is a difference between the two frames, such as the appearance
of a displacement discontinuity across a propagating slope failure surface, the sub-
traction will be non-zero and might be detected at a lower displacement threshold
than that required by the naked eye. it should be noted that the difference scale
(-7 to 7) created by subtraction is also mapped onto the 0 to 7 gray scale for

presentation of the results.

Difference images derived from the movie films of slope tests 11 and 12 were
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the ultimate test of the digitization technique and these images are presented
and discussed in Section 5.2. For illustrative purposes, however, the results of
digitizing and subtracting Figures 4.10 and 4.11 are presented below. Figures 4.17
and 4.18 are the central areas of Figures 4.10 and 4.11 respectively, reproduced
from the digitization of both 35 mm negatives. Figure 4.19 is the difference image
formed by subtracting Figure 4.18 from 4.17. Since Figures 4.16 and 4.17 are
pre-failure and post-failure images of slope test 12, the relative displacements of
slope points between the two images are large and these are most clearly seen by
the appearance of the orthogonal grid lines in the sliding region of Figure 4.19, in
contrast to the absence of the clear grid in the bottom right-hand corner of Figure

4.19, where little or no movement of the soil occurred.

4.3.2 Pencil lead breakage

In parallel with film digitization, data from the pencil lead transducers were
also expected to clarify the sequence of events constituting the mechanism of slope
failure. After being readied for counting by the computer during a centrifuge
slope failure test, the digital counters connected to each unbroken pencil lead were
simultaneously triggered by the first subsequent pencil lead to break. Once this
occurred, an assembly language routine first read the time, and then sampled and
stored in computer memory the status of the leads 32000 times at approximately
14 ps intervals before reading the time again and stopping. Upon completion of

the slope failure test, another assembly language routine scanned this region of
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computer memory and retrieved the lead status and position within the 32000
samples of any change in lead status (indicating another broken lead). From these
reduced data, the sequence of pencil lead breakage and elapsed time between
breakages were computed. Higher resolution of the elapsed time between lead
failures than 14 us was obtained from the digital counters which counted in steps

of 0.5 pus with a cycle time of 32 us.
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Figure 4.8 Configuration of centrifuge arm in plan for
typical slope failure test (not to scale)
a = aircraft landing lamp relay
b =rotation axis and hydraulic union
¢ =35 mm still camera, d = 16 mm movie camera
e =flash unit, f = aircraft landing lamp
g = bounce eliminator box
(Hydraulic hoses, accumulators and
majority of wiring omitted)
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Figure 4.12 Slope test 12 results (centrifuge scale)
(a) Horizontal impulse given to servo-valve and

actuating piston

(Arrow indicates loss of random bit of data

by analog-to-digital converter)

(b) Measured horizontal acceleration of test container
(Arrow indicates debris from failing slope specimen

striking accelerometer)

(c) Measured horizontal displacement of test container
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Figure 4.13 Post-failure debris of slope test 12
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Figure 4.14 Plaster of Paris “columns” surrounding unbroken
pencil lead transducers of slope test 12
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Figure 4.15 Failure sequence of pencil lead transducers during

slope test 12. Leads are numbered in order of failure
with arrows indicating time interval between
breakage of successive leads. Unnumbered leads

did not break, and crosses mark leads

which broke during insertion (1.e. before test)



— 88 —

Light
source

: ' ; Aperture
(e.g. 20 um

by 20 um)

|
|
|
|
|
|
|
L

Al

|
Film fraome

(16 mm positive or 35mm
negative)

Photovoltaic
cell

Figure 4.16 Film digitization



— 80 —

Figure 4.17 Reproduction of central region of
Figure 4.10 from digitized data
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Figure 4.18 Reproduction of central region of
Figure 4.11 from digitized data
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Figure 4.19 Difference image formed by subtraction
of Figure 4.18 from Figure 4.17
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Chapter 5

EXPERIMENTAL RESULTS

5.1 CENTRIFUGE SLOPE FAILURE TESTS

5.1.1 Introduction and overview

A total of 18 slope specimens was tested in the centrifuge to determine the
mechanism of slope failure. The essential features of each test are summarized in
Table 5.1 and those tests yielding results of sufficient importance are discussed in
Sections 5.1.2 through 5.1.6. As with most experimental work, a number of trials
was required before repeatable‘ results could be obtained and tests 1 through 8
fell into this category. These tests will not be discussed here except to mention
that they established by trial and error a gravitational acceleration of 42¢ as the
approximate static failure level of the centrifuge specimens. At this gravity level,
the slope test samples were found to be on the verge of collapse and hence in a
suitable condition for the initiation of failure by impulsive or simulated earthquake
loading. Subsequent slope tests 9, 10 and 11 were then the first to shed light on the
dynamics of slope failure but produced sufficiently inconclusive results to require

a second series of more complex experiments for clarification.
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Slope tests 12 through 18 constituted the second series of centrifuge exper-
iments and employed pencil lead transducers, 35 mm in-flight photographs and
higher resolution movie filming in the attempt to clearly establish the slope failure
mechanism. As the first of the new series, test 12 was discussed in Section 4.2.2 as
an illustrative example of these improvements and the centrifuge test procedure.
However, it was not until after trials 13 and 14, which are nof discussed here but
corrected the pencil lead problems of test 12, that slope test 15 established the
initiation of shear failure at the slope toe, among other important observations
discussed in Section 5.1.4. These conclusions were supported by test 17 of Section
5.1.5, which also made the presence of crest tension cracking apparent, after the
failure of slope specimen 16 added no new information to the test 15 results. Slope
test 18 was a static failure experiment for reasons given in Section 5.1.6 and was

the final centrifuge test in this experimental study of slope failure.

5.1.2 Slope tests 9 and 10

Tests 9 and 10 both involved taking the slope specimen to 42¢g, befére induc-
ing failure by a simulated earthquaké instead of the single impulse described in
Section 4.2.1 and shown in Figure 4.12(a). Since slope tests 9 and 10 yielded the
same results, those of test 10 are representative and are presented below. Figure
5.1 shows the slope sample before flight and Figure 5.2 shows its post-failure state.
The earthquake signal supplied to the servo-valve and actuating piston is shown

in Figure 5.3(a), while the ensuing horizontal acceleration and displacement of the
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test container and slope specimen appear in Figures 5.3(b) and (c) respectively.
The vertical spikes appearing in these time histories and indicated by arrows are
caused by the occasional loss of random bits of data by the analog-to-digital con-

verter.

After inspection of Figure 5.2, it would probably be concluded that slope
specimens 9 and 10 developed simple wedge failure mechanisms along the inclined
plane separating the intact slope material below from the debris above. Such a
conclusion is demonstrated to be incorrect, however, on the basis of the movie
films taken of both slope failures. The movie films show earthquake failure to be a
progressive phenomenon beginning with an initial, shallow, static slip-circle type of
failure of the slope face, followed by propagation of the failure back into the slope
mass as blocks of material close to the face and crest slide away in subsequent
earthquake pulses and leave the remaining material unsupported and unstable.
This “chain reaction” continues until a ﬂétter slope is established — one that is
stable even under continued earthquake motions. It is this finally created slope
appearing in Figure 5.2 which leads the observer to the assumption of an incorrect

failure mechanism in the absence of information on the dynamics of the failure.

5.1.3 Slope test 11

Slope specimen 11 was the first to be failed by the single horizontal impulse
mentioned in Section 4.2.1. Figures 5.4 and 5.5 show the pre-failure and post-

failure states of the slope sample respectively, and Figure 5.6 gives the horizontal
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acceleration and displacement of the test container resulting from the impulsive

input.

Figure 5.5 suggests a slip-circle type failure mechanism for slope test 11 and
this was confirmed by the movie film taken of the failure. The more fundamental
question to be addressed by the movie film, however, was where did the failure
surface originate and how did it propagate through the specimen to give the final
profile of Figure 5.5 7 To this end, the movie film of slope test 11 suggested
the failure sequence of Figure 5.34 but could not confirm it due to inadequate
resolution. This prompted digitization of the film (as described in Section 4.3.1) to
give the results presented in Section 5.2.1, and further demanded a more complex
series of subsequent experiments. Slope test 12 (see Section 4.2.2) was the first of
the new series of higher resolution tests, using pencil lead transducers and a movie

film taken at approximately 5000 frames per second.

5.1.4 Slope test 15

Test 15 developed from test 12, with higher resolution photography and con-
tinued use of the pencil lead transducers. Although the pencil lead problems of
test 12 had been overcome, specimen 15 was similarly reluctant to fail and re-
quired three separate failure attempts. At the time, test 15 was considered just
another unsuccessful test, but later proved to yield some of the most definitive

observations of the initiation and propagation of slope failure.
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Figures 5.7 and 5.8 show slope specimen 15 after the first impulsive failure
attempt (slope test 15a) but before the second (test 15b). A casual glance at both
photographs indicates little, if any,. breakdown of the sample, and no slope collapse.
Closer inspection, however, shows that although the slope has not collapsed, the
failure surface has been initiated at the toe of the slope and has propagated almost
halfway to the slope crest as indicated by discontinuities in the orthogonal grid of
lines spray-painted onto the side of the specimen. Furthermore, no pencil leads

were broken after this first failure attempt.

Figure 5.9 shows slope sample 15 after the second impulsive failure attempt
(test 15b). Here the failure surface is seen to have propagated all the way to the
face of the slope in an approximately circular arc, but still without collapse or
breakage of any pencil leads. Neither of the movie films taken of tests 15a and 15b
added any new information to the mechanism of slope failure determined from the
still photographs of Figures 5.7, 5.8 and 5.9, and shown schematically in Figure

5.34.

Slope specimen 15 eventually collapsed as shown in Figure 5.10 after having
an increased static gravity field of 46¢g applied in test 15¢. No dynamic force was
given to the sample to initiate this collapse.

5.1.5 Slope test 17

Test 17 was the final attempt made to simultaneously record a slope failure
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with movie film and pencil lead transducers and hence the last test to induce
failure by a single horizontal impulse to the test container. Figure 5.11 shows
specimen 17 before commencement of the test and Figures 5.12 and 5.13 show the

slope sample after failure.

Figure 5.12 shows the same type of slope collapse as Figure 5.10 for slope test
15¢c. The movie film of slope test 17 also confirmed the observations of tests 15a
and 15b involving the development of an approximately circular failure surface
between the toe and face of the slope followed by the rotational collapse of the
enclosed mass of material to leave the crest block unsupported. The crest block
of specimen 17 did not subsequently collapse, however, even though Figure 5.13
shows it to be laterally unrestrained, since the pencil lead transducer inside the
block did not break and may have provided sufficient resistance to collapse. The
failure sequence of the pencil leads driven into the face of slope sample 17 is

presented in Section 5.3.

The movie film of slope test 17 also made the presence of crest tension cracking
in the failure of the centrifuge specimens apparent since the tension crack near the
crest in Figure 5.12 was seen to open with the failure impulse before collapse of

the slope specimen began at the toe.

5.1.6 Slope test 18

Failure of slope specimen 18 was statically induced by steadily increasing
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the gravity field until it collapsed under its own weight. The aim of this test
was to determine where different regions of the slope finally came to rest after
collapse, and whether the final slope profile and sequence of peﬁcil lead failures
was dependent on failure being statically or impulsively initiated. Figure 5.14
shows the three grids of orthogonal lines spray-painted in different colors on the
side of the slope specimen for marking the toe, midheight and crest regions of the
sample. Figure 5.15 shows specimen 18 prior to commencement of the test while
Figure 5.16 shows the slope sample after failure. Figure 5.17 shows the pencil lead
transducers inserted into the face of the slope specimen prior to testing and Figure

5.18 is a top view of the post-failure slope debris.

The final slope profile of Figure 5.16 is essentially the same as that of Figure
5.5 with the implication that static versus impulsive failure has little influence on
the final post-failure state. Figure 5.16 also shows that slope collapse involves the
black toe region sliding out from the slope first, followed by the green midheight
region falling on top of the toe debris, with the blue and yellow crest region then
coming to rest as the final, uppermost layer of the stratified debris. Plane strain
conditions are seen to be well maintained for test 18, as verified in Figure 5.18 by
the appearance of the crest of the slope specimen as a line of cracked blocks across
the top of the debris, normal to the front and rear walls of the test container.
The sequence of pencil lead failures for slope test 18 is presented, along with the

breakage sequence of other tests, in Section 5.3.
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5.2 FILM DIGITIZATION

5.2.1 Slope test 11

The 16 mm movie film taken as slope specimen 11 failed in the centrifuge was
digitized as described in Section 4.3.1 in an attempt to clearly define the mecha~
nism of slope failure. A total of 20 consecutive frames spanning the onset of failure
was analysed by this technique. Using the first of the 20 frames as a reference in
which slope failure had not yet been initiated, each of the 19 subsequent frames
was subtracted from the first and the resulting difference images generated. The
first indication of failure appeared after comparing difference images “1-6” and
“1-7”. Figures 5.19, 5.20 and 5.21 show frames 1, 6 and 7 respectively in their
original analog form, while Figures 5.22, 5.23 and 5.24 show the central areas of
the same respective frames reproduced from the digitized data. Figures 5.25 and
5.26 are respectively the difference images “1-6” and “1-7”. In Figure 5.26, a
vertical offset of the horizontal marking lines is apparent which is not present in
Figure 5.25. This observation prompted the subtraction of frame 7 from frame 6
to produce the difference image “6-7” of Figure 5.27. Close inspection of Figure
5.27 tends to indicate that the horizontal marking lines closer to the toe of the
slope (bottom left-hand corner) are vertically offset by a greater amount than the
lines nearer the crest (top right-hand corner). If so, this would imply that the toe
region has moved more than the rest of the slope mass and that slope collapse

starts, or at least takes place more rapidly, at the toe. Inadequate clarity and
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resolution of Figure 5.27 made these conclusions tentative, however, and higher
quality images were required before the mechanism of slope failure could be accu-
rately determined. Digitization of the films taken during slope test 12 was aimed

at producing clearer images.

5.2.2. Slope test 12

Both the 16 mm movie and 35 mm still films taken during test 12 were
digitized according to the procedure outlined in Section 4.3.1. Two 35 mm negative
frames were analysed, one of them taken before slope failure, the other after. The
digitization results of these two {rames were presented in Section 4.3.1. A total of
five 16 mm movie frames, not all of them consecutive, was digitized to determine
whether difference images of adequate resolution could indeed be generated. It
was not considered that the precise mechanism of slope failure could be established
from the somewhat unsatisfactory partial collapse of specimen 12. Figures 5.28
and 5.29 show two consecutive frames respectively in their original analog form
in which slope sample 12 has just begun to fail. Figures 5.30 and 5.31 show the
same respective frames reproduced from the digitized data, and Figure 5.32 is the
difference image generated by subtracting the latter of the two consecutive frames

from the former.

Inspection of Figure 5.32, and comparison with Figure 5.27, does indicate
improved clarity and resolution with the test 12 movie film compared to the test

11 digitized images. It was therefore hoped that digitization of the movie film
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taken of the next complete centrifuge slope failure and collapse would establish the
mechanism of failure beyond doubt. The next satisfactory film candidate, however,
was not taken until slope test 17. By this time, test 15 had already adequately
determined the sequence of events involved as the failure surface is initiated and

propagated through a slope, and further film digitization was unnecessary.

5.3 PENCIL LEAD BREAKAGE

Thev pencil lead failure sequences of slope tests 17 and 18 are presented in
Figure 5.33 as representative of the information provided by these transducers
as a slope specimen is failed impulsively and statically respectively. The failure
sequence of the pencil leads inserted into slope sample 12 was also presented as

an illustrative example in Figure 4.15 of Section 4.2.2.

Figure 5.33 shows the configuration, order of failure, and time interval be-
tween breakage of the pencil lead transducers driven into slope specimens 17 and
18, and, within each vertical column of leads, several observations can be made.
Firstly, lead failure takes place from toe to crest of the slope sample, leading to
the conclusion that slope collapse also begins at the toe and propagates toward
the crest. Secondly, the rate of collapse indicated by the time interval between
breakage of vertically sequential leads is seen to start off relatively slowly near
the toe, speed up dramatically on the way to midheight, then slow down slightly

above midheight before falling off again on the way to the crest. The shortest
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time interval (from Figure 5.33(b)) also indicates a maximum rupture velocity
of approximately 60 m/s, equal to about half the shear wave velocity for the
sand-plaster of Paris material of approximately 100 m/s. Comparison of the time
intervals between the two tests additionally shows that the static collapse of slope
18 occurs more rapidly than the impulsively induced collapse of slope 17. This is
to be expected, however, since the 70¢ gravity level of test 18 impérts a greater
vertical acceleration on the slope’s failure mass than the 46¢g of test 17 and it is
this vertical component of motion to which the pencil lead configuration is sen-
sitive (independent of any horizontal component from an impulse). Finally, and
regardless of the differing collapse rates, both tests exhibit the same order of pencil
lead failure within a vertical column of leads, and thus the order of slope collapse

is concluded to be indifferent to an impulsive or static initiation force.

5.4 SUMMARY AND CONCLUSIONS

The centrifuge slope tests described in Section 5.1 were collectively successful
in determining the sequence of events which take place when a slope fails and col-
lapses. This sequence of events, which constitute the mechanism of slope failure,
is shown scheratically in Figure 5.34. Of critical importance to the establishment
of the slope failure mechanism were the results of slope test 15, which primarily
showed that the failure surface originates at the slope toe, where it is initiated

by shear failure, before propagating toward the slope crest. However, propagation
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of the failure surface in an approximately circular arc to the face of the slope
before reaching the crest, as seen in tests 15 and 17 and suggested in other tests,
is beliéved to be caused by an inhomogeneous centrifuge specimen, even though
the same feature may be developed in full-scale failures in the field. This inhomo-
geneity is probably created during the compaction procedure of Section 4.1 where
the slope specimen is constructed upside down in the lucite mold, giving the crest
region greater strength from compaction against the rigid surfaces of the mold
and from greater total compactive effort as construction of the rest of the slope
specimen follows the crest region. Test 15 also pointed out that the displacement
discontinuity across the failure surface is extremely small (of the order of several
soil grain sizes) and insufficient to cause pencil lead breakage. This absence of
pencil lead failure, however, is due in part to the small but unavoidable clear-
ance between lead and slope material which must be closed before lead failure will

occur.

As indicated above, slope test 17 confirmed many of the observations and
conclusions of test 15, but more importantly, accentuated the significance of crest
tension cracking in the development of slope failure. Crest tension cracks had
not been observed in the centrifuge slope failures prior to test 17, even though
Terzaghi’s gelatine experiments [110] and a subsequent finite element analysis of
a typical slope specimen under centrifuge test conditions (see Section 8.3) indi-

cated their presence. The observations of slope test 17 alone, however, could not
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establish the role of crest tension cracking in the evolution of slope failure, beyond

indicating its presence prior to shear failure at the slope toe.

The observations of slope test 15 further showed that failure surface propaga-
tion takes place before and without slope collapse, suggesting that a distinction be
made between the terms failure and collapse as they pertain to the slope stability
problem. This would allow a slope to be described as having failed once the failure
surface is established, and having collapsed once the blocks of material separated
by the failure surface slide past each other and come to rest. The important point
here is that a slope fails before it collapses, with failure hence being necessary for
collapse. For the brittle centrifuge slope material, failure here implies breakdown
of the plaster of Paris cementation while friction still holds, whereas both cohesion

and friction would continue to hold at failure in an overconsolidated clay.

This distinction between the terms failure and collapse helps explain why the
film digitization and pencil lead transducer results could not clearly define the
mechanism of slope failure — the difference images and pencil leads were actually
monitoring slope collapse, and not slope failure. With this hindsight, it seems
clear that the failure surface had already propagated through the slope specimen
before the difference images of test 11 (see Section 5.2.1) and pencil leads of tests

17 and 18 (see Section 5.3) responded to the collapsing sample.

The centrifuge experiments also lead to the important conclusion that slope

failure in a brittle material is not a progressive phenomenon as assumed in Figure
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1.3. Since the 35 mm in-flight photographs taken at 5¢ increments during the
centrifuge tests gave no indication of progressive failure whatsoever, slope failure in
a brittle material is concluded instead t;) occur at a well-defined loading threshold,
below which signs of failure are completely absent. This conclusion is qualified,
however, by the possibility that the displacement discontinuity across a growing
failure surface may be too small to be detected by the particular photographic
set-up used to record the slope failure tests. Furthermore, the progressive failure
mechanism of Figure 1.3 may still be realistic for a plastic slope material such as

overconsolidated clay.

Lastly, the results of the slope tests discussed in Section 5.1 collectively show
that the final configuration or profile of a collapsed slope is a function of the dura-
tion of dynamic loading used to initiate failure, and that observation of the final
profile (which is usually all that can be seen in the case of full-scale failures in the
field), can lead to an erroneous understanding of the failure mechanism involved.
These were the main conclusions of tests 9 and 10 in which the long duration
earthquake motions produced much flatter final slopes extending further into the
slope specimens than the shallow, slip-circle type profiles caused by impulsive fail-
ure in tests 11 and 17, and static failure in test 18. The close correspondence of
the results of tests 11, 17 and 18 also establishes the equivalence of impulsive and

static loading with respect to the final profile of the centrifuge slope collapses.



8 Approx. Vertical
z
- Unit Water Slope Slope
&
& Test Model Weight Content Slope Height Width
)
0 Date Sofl® (pef) (%) Angle {mm) (mm)
1 13 Aug 84 123 8.5 45° 150 175
2 15 Aug 84 Seal Beach 112 11 60° 150 175
3 18 Aug 84 silty sand 121 16 60° 150 175
4 21 Aug 84 118 14 60° 150 175
5 28 Aug 84 NH silt Unknown 14 60° 102 175
6 16 Oct 84 SPP 50:1 ~93 0 60° 150 174
7 18 Oct 84 SPP 60:1 ~93 0 60° 150 174
8 20 Oct 84 SPP 60:1 ~93 0 60° 150 174
9 21 Oct 84 SPP 60:1 ~93 0 60° 150 174
10 24 Oct 84 SPP 60:1 ~93 0 60° 150 174
11 29 Oct 84 SPP 60:1 ~93 0 60° 150 174
12 11 Dec 85 SPP 60:1 ~93 0 60° 150 170
13 2 Feb 86 SPP 60:1 ~93 0 60° 150 170
14 18 Feb 86 SPP 60:1 ~93 0 60° 150 170
15a | 28 Feb 86
15b 6 Mar 86 SPP 60:1 92 0 60° 150 170
15¢ | 14 Mar 86
16a | 19 Mar 86 SPP 60:1 93.6 0 60° 150 170
16b | 21 Mar 86
17 23 Mar 86 SPP 60:1 93.5 0 60° 150 170
18 28 Mar 86 SPP 60:1 93.4 1] 60° 150 170

a NH = New Hampshire
SPP= sand-plaster of Paris material (weight ratio of sand to plaster given)
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Table 5.1

Summary of centrifuge slope failure experiments

(Page 1 of 3)

Fold out —



8 Force Horiz.
Z
*5 Gravity Applied Movie 3% mm Accel.
3
g' Slope Pencil Level to Film In-Flight & Displ.
0
0 Markingsb Leads® (9) Sloped Taken?® Photos?’ |Recorded?”
1 None None 80 EQ No No No
2 None None 45-70 Static No No No
3 None None 90 EQ No No No
4 None None < 85 Static No No No
5 HFS None 100 EQ No No No
6 HBP None 90 EQ No No No
7 HBP None 55 Static No No No
8 HBP None 43 Static No No No
9 HBP None 42 EQ 1600 fps, S No No
10 HBP None 42 EQ 1600 fps, S No Yes
11 HBP None 42 Impulse 1600 fps, T No Yes
12 HVBP 0.5, 40 30 Impulse 5000 fps, T Yes Yes
13 HVBP 0.7, 34 85 Impulse No No No
14 HVBP 0.9, 34 42 Impulse No No No
15a HVBP 42 Impulse 5000 fps, T AB Yes
15b HVBP 0.9, 34 46 Impulse 5000 fps, T B42 Yes
15¢ HVBP 46 Static No No No
16a HVBP 0.9, 34 46 Impulse 5000 fps, T B42 Yes
16b HVBP 82 Static No B42 No
17 HVBP 0.9, 34 46 Impulse 5000 fps, T B42 Yes
18 DCO 0.9, 34 70 Static No B42 No
b HFS = horizontal lines of fine sand, HBP = horizontal lines of blue spray paint
HVBP = horizontal and vertical grid of black spray paint lines
DCO = different colored grids of orthogonal lines
¢ Lead diameter in mm, and AWG size of connection wire given (e.g., 0.9 mm, 34 AWG)
d EQ = gimulated earthquake, Static = gravitational acceleration only
e fps = frames per second, S = 25 mm standard lens, T = 50 mm telephoto lens
f AB = all blank, B42 = blank above 429
h  Indicates whether horizontal acceleration and displacement of test container and slope

gpecimen recorded (in response to dynamic loading)



8 Film Results
% Distinct Pencil Digitized Presented
2 Slope Failure Lead and and

@ Collapse? Surface? Breakage?® Analyzed?™ Discussed?™
1 No No N/A N/A No

2 Complete Yes N/A N/A No

3 Complete Yes N/A N/A No

4 Complete Yes N/A N/A No

5 Slumping No N/A N/A No

6 No Yes N/A N/A No

7 Complete Yes N/A N/A No

8 Complete Yes N/A N/A No

9 Complete Yes N/A No Yes: 5.1.2
10 Complete Yes N/A No Yes: 5.1.2
11 Complete Yes N/A Yes: 5.2.1 Yes: 5.1.3
12 Partial Yes Partial Yes: 4.3.1,5.2.2 Yes: 4.2.2
13 No No No N/A No
14 Complete Yes Complete N/A No
15a No Yes No No
15b No Yes No No Yes: 5.1.4
15¢ Partial Yes Partial N/A
162 No No No No No
16b Complete Yes Complete N/A Yes: 8.3
17 Partial Yes Complete No VYes: 5.1.5
18 Complete Yes Complete N/A Yes: 5.1.6

k N/A= not applicable
m Section numbers of film digitization and analysis given where applicable, N/A= not applicable
n  Section numbers of presentation and discussion of results given
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Summary of centrifuge slope failure experiments
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Table 5.1

Summary of centrifuge slope failure experiments
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Figure 5.3 Slope test 10 results (centrifuge scale)

(a) Simulated earthquake signal given to servo-valve
and actuating piston

(b) Measured horizontal acceleration of test container

(c) Measured horizontal displacement of test container

(Arrows indicate loss of random bits of data by

analog-to-digital converter)



- 112 -

1T ustirddds ado[s Jo mala ainjiej-o1J F'g 2InJ1 g

A S AT S

Tt o




- 113 -

11 uswdads ado

18 JO MolA sanjlej-150d

¢ ¢ 2an3diyg




(g)

ACCELERATION

DISPLACEMENT (in)

- 114 -

20 A
(a)
0 - —
_20 il | 1 /] J
(0] 0.05 0.10 0.15 0.20
TIME (sec)
0.2 A
(b)
Oll - o
o A 1 | }
(0] 0.05 0.10 0.15 0.20
TIME (sec)

Figure 5.6 Slope test 11 results (centrifuge scale)
(a) Measured horizontal acceleration of
test container for impulsive input
(b) Measured horizontal displacement of
test container for impulsive input
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Figure 5.9 Slope specimen 15 after second impulsive
failure attempt (centrifuge at rest)



- 118 -

g1 uaurdads

@QOMw JO MOl slnjie]-1s0{

0T1°¢ 2anI g




- 119 -

LT uowitoads ado[s Jo moata aunjrej-ord TI°¢ 8Judrg




- 120 -

L1 udwiioads adofs jo mala aanjiej~4s0

(A

.

¢ 2an3i g




- 121 -

Figure 5.13 Post-failure debris of slope test 17
(top view)
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gure 5.16  Post-failure view of slope specimen 18

b
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Figure 5.17 Pencil lead transducers inserted into face
of slope specimen 18 prior to testing
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Figure 5.18 Post-failure debris of slope test 18
(top view)
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Figure 5.22 Reproduction of central region of
Figure 5.19 from digitized data
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Figure 5.23 Reproduction of central region of
Figure 5.20 from digitized data
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Figure 5.24 Reproduction of central region of
Figure 5.21 from digitized data
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Figure 5.25 Difference image “1-6” of slope test 11
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Figure 5.26 Difference image “1-7" of slope test 11
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Figure 5.27 Difference image “6-7" of slope test 11
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Chapter 6

ATTEMPTS AT IMPROVED
SLOPE STABILITY ANALYSIS

6.1 INTRODUCTION AND OVERVIEW

A number of different and varied approaches was taken to developing an
improved method of plane strain slope stability analysis and they are briefly
presented in chronological order below. Throughout these attempts, complex,
material-specific constitutive models dependent on large deformation plasticity
(e.g.,17,53,72,112]) were excluded due to the similarity of failure modes (e.g., shear
band formation) in materials of quite different constitutive behavior (e.g., soil and
metal). This common feature of failure surface evolution in different materials was
considered sufficient evidence to suggest that the specific constitutive behavior of
a material is not the most important factor in the modeling of failure, and that a
more simplistic approach to the problem might be taken with a different empha-
sis. In this light, the following attempts at improved slope stability analysis were
essentially based on small deformation, linearly elastic material behavior (since
the centrifuge slope failures involved negligible soil deformations right through to

the completion of failure surface development) and modeled slope failure with a
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greater emphasis on geometrical considerations.

The first attempt was an analytical solution based_ on linear fracture me-
chanics which quickly led to use of the numerical finite element method with an
energy criterion for crack propagation, and a subsequent brief consideration of
the boundary element method. Without success at modeling slope failure as a
discontinuous phenomenon, the fracture mechanics approach was abandoned and
a second attempt with the finite element method made, based on the weak ele-
ment or smeared crack concept, also without satisfactory results. Finally, success
was achieved in the form of a finite difference technique, using a Lagrangian dif-
ferencing scheme in space and explicit integration in artificial time with dynamic
relaxation. The major finite element results are presented in Section 6.2. Those
derived from the energy-based crack propagation approach appear in Section 6.2.1,
while those founded on the weak element concept appear in Section 6.2.2. The

finite difference method is described in detail in Chapter 7.

The analytical solution was an attempt to treat slope failure as a discontinuous
phenomenon, by modeling the development of the failure surface as a propagating
crack within the framework of linearly elastic fracture mechanics. Here the aim
was to solve for the stress field near the crack tip so as to propagate the crack
according to the Mohr-Coulomb shear failure criterion of (3.12). In the fracture
mechanics setting, this criterion finds the plane on which the maximum ratio of

shear stress to normal stress acts (taking into account the cohesion of the material),
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and advances the crack in that plane. However, a closed form analytical solution
could not be found due to the complicated geometric boundary conditions of the

slope, and numerical solution with finite elements was subsequently employed.

Linearly elastic finite element analysis was applied to the plane strain slope
stability problem on the same fracture mechanics basis as the anélytical effort. An
accurate description of the infinite stresses at the crack tip, however, proportional
to 1/y/r for all conditions (where r is the radial distance from the crack tip),
requires a very fine mesh or “singular” elements. It was considered desirable to
avoid the necessity of either a fine mesh or singular elements, resulting in the stress-
based Mohr-Coulomb criterion being discarded in favor of an energy criterion. The
energy criterion required the crack to propagate in that direction which would
minimize the potential energy of the whole mesh, not just near the crack tip. In
other words, propagation would take place so as to maximize the total energy lost
per unit length of advancing crack. The failure surface geometry was represented
by internal element boundaries, with “double nodes” (i.e., two nodes at each nodal
location) along the selected boundaries. To prevent overlap of the mesh, stiff
normal springs were placed between the double nodes, and tangential springs were
introduced to simulate resistance to slip along the boundary. Propagation of the
failure surface was then represented by successive release of the tangential springs.
In practice, the direction of failure surface propagation was decided by moving the

crack tip in an arc of constant radius about the last released double node, and
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finding the direction which maximized the energy lost from the previous crack
position where the last released double node was the crack tip. This technique
was applied to a “Palmer and Rice” test problem [69], as well as to a finite element
representation of the centrifuge slope specimen (see Section 6.2.1). For the “Palmer
and Rice” geometry (see Figures 6.1 and 6.3), separate analyses were made with
both quadrilateral and triangular elements with similarly unsatisfactory results —
the change in potential energy of the entire mesh was very insensitive to even large
changes in the direction of crack advance. For the slope mesh representing the
centrifuge model (see Figure 6.2), where only linear quadrilateral elements were
used, the preferred crack extension direction was horizontal rather than upward
as required for a realistic representation of the observed slope failures. Although
ultimately unsuccessful, the finite element results of both problems are presented

in more detail in Section 6.2.1.

The possibility of using the same energy criterion in the close vicinity of the
crack tip, rather than over the entire mesh (which tends to smear or average the
energy changes near the crack tip over all elements) was then assessed. Considering
only the near vicinity of the crack tip implies that the free surface boundaries of the
slope (i.e., the toe, face, and crest) are located an infinite distance from the crack
tip where they can have little influence. However, these free surface boundaries
are ultimately responsible for the propagation and geometry of a slope’s failure

surface and on these grounds alone the near-tip energy idea was discarded. Since
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the energy concept did not prove successful, the Mohr-Coulomb failure criterion
based on near-tip stresses was reconsidered. It was accepted that an accurate
description of the crack tip stresses had to be obtained but the question arose:
Could this be done without finite elements, which require a very fine mesh and
yield mesh-dependent results 7 A possible answer lay in the use of boundary

elements (e.g., [22]).

The boundary element method has several advantages, provided the field
equations describing the domain of interest are linear — a condition which was
satisfied by the present idealization of the plane strain slope stability problem.
Firstly, boundary elements provide a better approximation to crack tip stresses
since singular solutions are the very basis of the method. Secondly, the size of the
problem can be reduced since only the boundary of the problem needs to be dis-
cretized, not the entire domain. Thirdly, the boundary element method is suited
to infinite domains and no artificial lateral or bottom boundaries need be intro-
duced, in contrast to the finite element method. However, the main disadvantage
of the boundary element method is the difficulty of solving real, inhomogeneous
(e.g., layered) problems. In these situations, the boundaries between layers of ho-
mogeneous material need to be discretized and the solutions for each layer matched
at the boundaries. An important objective of the slope stability analysis was to
solve real practical problems and on this basis alone, no further investigation of the

boundary element method was made. The finite element method was readopted
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and the fine mesh requirement accepted as a necessary evil.

Since the initial finite element efforts with lingar fracture mechanics were un-
successful, a weak finite element or smeared crack approach similar to [73] was
taken to the modeling of slope failure. This implies broadening of the failure
surface representation to one element width compared to the initial discontinu-
ous type description where the failure surface was represented by the boundary
of zero thickness between elements. Such a representation of the failure surface
would be adequate provided the finite element mesh was fine enough. The weak el-
ement approach was implemented by increasing the gravity loads on the centrifuge
slope mesh until an element failed, at which time its modulus of elasticity £ was
reduced from its initial homogeneous value and the gravity loads subsequently
increased until another element in the mesh failed. Here, failure was defined to
occur when the principal shear stress reached a critical value, namely the cohesion
of the material. In this way, it was hoped that the calculation would predict a
sequence of element failures representing the failure surface geometry observed
in the centrifuge slope failure experiments. This did not develop, however, since
elements in the bottom right-hand corner and along the bottom boundary of the
mesh (see Figure 6.5, for example) generally dominated the failure pattern, for
both quadrilateral and triangular elements. Such yielding occurs for a mdterial
with uniform shear strength, because gravitational stresses increasing with depth

eventually cause a principal stress difference exceeding twice the shear strength
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through the effect of Poisson’s ratio. The material will thus yield below some
depth even under conditions of a flat surface and gravitational loading. In spite
of the general similarity of the failure patterns, there were important differences
between the two types of elements in terms of response and these are described in

more detail in Section 6.2.2.

Since the soil in the failure zone of a slope is failing predominantly in shear,
the reduction in £ (and consequently shear modulus G) was not considered to
be completely realistic since this also implied a reduction in the bulk modulus K
for a constant Poisson’s ratio v. It was thought that a reduction in shear modulus
alone, while maintaining a constant bulk modulus, would provide a better model
of what was really happening to the soil in the failure zone. Such a representation
implies an increasing Poisson’s ratio. This modified version of the failure model
was tested, with no improvement in the representation of slope failure, using a
combination of quadrilateral and triangular finite elements in a pattern which
was intended to assist in the development of an appropriate rupture zone without
dictating the details of its propagation. The concept was therefore studied no

further.

At this time, a special finite difference algorithm for solving boundary value
problems in plane finite, linear and nonlinear elastostatics [100] became available.
Originally applied to the numerical study of an anti-plane crack propagation prob-

lem, the algorithm was adapted to handle plane strain slope stability under gravity
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loading and found to give very satisfactory results. The finite difference approach
is described in Chapter 7 and the results generated by the method are presented

in Chapter 8.

6.2 FINITE ELEMENT RESULTS

6.2.1 The energy-based crack propagation approach

As outlined in Section 6.1, finite element analysis of slope failure as a fracture
mechanics problem was first applied to the “Palmer and Rice” geometry of Fig-
ure 6.1(a) with an energy-based criterion for crack propagation. However, while
Palmer and Rice [69] originally used this geometry to determine the magnitude
of applied loading required for further propagation of a pre-existing shear band of
given length in a straight line, the purpose here was to look for any tendency of the
growing shear band to develop a curved trajectory. In accordance with the regu-
lar rectangular mesh of Figure 6.1(b) then, the shear band or crack was initially
advanced in three different directions: horizontally (node C to node P), vertically
upward (node C to node R), and vertically downward (node C to node D). The
potential energy of the whole mesh in each of these configurations was computed
for body force loading applied at an inclination of 60° to the vertical, as shown in
Figure 6.1(a), for which horizontal crack extension possessed the minimum energy,
but only by a small margin over the vertically downward and vertically upward

extensions. The inclined body force loading was intended to promote crack prop-



- 151 —

agation away from straight line continuation of the existing crack — a tendency
that the advancing crack must exhibit if a curved failure surface is to be predicted

for the slope stability problem.

Since the horizontal crack extension was only a slightly lower minimum than
the other two cases, it appeared that such a tendency to develop a curved trajectory
might become more apparent by investigating the extension of a crack through a
mesh representing the slope tested in the centrifuge experiments (see Figure 6.2).
The “Palmer and Rice” test problem was therefore temporarily set aside to exam-
ine the propagation of three different failure surfaces through the slope mesh of
Figure 6.2(b). Each pre-assigned test failure surface was represented by a set of
“double node” pairs connected by stiff normal and tangential springs, as for the
initial test problem. Gravity loading was applied through a body force field di-
rected vertically downward. Failure surface “3” lost more energy as it propagated
through the mesh than did surfaces “1” and “2”, suggesting that its geometry
would be naturally favored over the other two. For each failure surface, however,
the propagation was dominated by a preference for continued horizontal crack ex-
tension and a resistance to any upward turn toward the crest of the slope. Indeed,
another failure surface with a longer horizontal section than surface “3” would be
favored over all three of those actually considered. This outcome was clearly not a
reasonable simulation of the observed centrifuge slope failures or full-scale slides,

which indicated geometries closer to failure surfaces “1” or “2” of Figure 6.2(b),



- 152 —

and the linear quadrilateral elements used in the discretization thus demonstrated
a preference for pure shear deformation. In retrospect, this preference is physically
reasonable on the basis of energy considerations,.which imply that elements sub-
jected to deformations other than pure shear will require more energy to deform,
making them stiffer and more resistant to such deformation. In order to model an
arbitrary, curved shear failure surface passing through a regular mesh of elements,
this situation cannot be avoided, for even if an element on the failure surface is
subjected to pure shear, its neighbors will generally not be and it is the greater
number of neighboring elements which will more dominantly influence the global

energy requirements of deformation of the mesh.

Returning to the “Palmer and Rice” configuration of Figure 6.1(a), an at-
tempt was made to clarify this apparent preference for horizontal extension of the
failure surface through the finite element mesh. Referring to Figure 6.1(b), crack
advance at various angles above the horizontal was investigated by moving the sin-
gle crack tip node P to an appropriate position relative to the double node C on
the crack surface immediately behind the tip. In particular, this was achieved by
moving node P toward node Q, consequently distorting the quadrilateral elements
connected to node P, and computing the total potential energy of the mesh for
each configuration. The minimum energy occurred for the crack inclined at 45°
to the horizontal, when node P was coincident with node Q. The same failure sur-

face configuration was alternatively obtained by moving node R to be coincident
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with node Q, and this too was the minimum energy state relative to intermediate
positions of node R between its initial position and that of node Q. However, the
energies of the system for the two alternative methods of generatiﬂg the 45° crack
extension did not match — a problem attributed to differences between the two
configurations involving the distortion of different quadrilateral elements and the
orientation of those elements to the applied body force loading. The fact that
the energy minimum occurred for a crack angle of exactly 45° for the inclined
body force loading was also alarming. This should have been expected in hind-
sight, however, since the vertical movement of node P toward node Q, and the
horizontal movement of node R toward node Q, both increase the length of crack
extension to a maximum at 45°, and a longer crack will release more energy than

a shorter one.

Neither the energy mismatch for the 45° crack, nor the varying crack length,
were acceptable results and an attempt was made to eliminate these problems by
replacing the quadrilateral elements with triangular elements, and investigating
the various angles of crack extension in a slightly different way. Specifically (see
Figure 6.3), node S was moved in an arc of constant radius from its initial position
of 45° relative to double node T, and the total mesh energy was computed for each
corresponding angle of crack advance. Crack extension at 55° above horizontal
was the energy minimum for body force loading inclined at 30° from the vertical,

while extension at 60° above horizontal yielded the minimum energy for body
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forces applied with a 60° inclination from the vertical. In both cases, however,
the change in mesh energy for a 5° change in the angle of crack extension was of
the order of 0.01 percent — too insensitive to be of practical use in the numerical

prediction of slope failure.

6.2.2 The weak element approach

After the unsuccessful efforts of Section 6.2.1 to model slope failure as a
discontinuous phenomenon, an attempt was made to model the process by suc-
cessively softening appropriate elements within a finite element mesh representing
the centrifuge slope specimens. The slope soil was modeled as a purely cohe-
sive, elastic-perfectly plastic material (represented diagrammatically in Figure 6.4
where 75 is the principal shear stress and s is the principal engineering shear
strain), and" trials were made separately with quadrilateral and triangular ele-

ments, followed by a combination of the two arranged in a “flow net” pattern.

First using quadrilateral elements, the homogeneous finite element mesh,
.shown in Figure 6.5, was subjected to increasing gravity loads until an element
yielded, as defined by the coincidence of its principal shear stress with the cohesion
of the material. All elements initially had the same material properties, unlike the
approach followed by Prévost and Hughes [73] who needed to artificially “seed”
their nominally symmetric meshes with a weak element. The first element to fail
was the element at the toe of the slope (see Figure 6.5(a)), which failed at 27g

due to the natural stress concentration at the toe of the unsymmetric mesh. The
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modulus of elasticity E of the “failed” toe element was reduced while increasing
the gravity loading until another element in the mesh failed. The reduction in
E was of such magnitudé as to maintain the principal shear stress in the failed
element constant at its yield level as strain increased, according to Figure 6.4. The
next element to fail was immediately to the right of the toe element (see Figure
6.5(b)), failing at 34g. E of both eiements was then reduced while continuing
to increase the gravity loads until 38¢ was reached, at which time the shaded
elements of Figure 6.5(c) had all reached failure level. The process of F reduction
and gravity load increase was repeated twice more to give the failure patterns of
Figure 6.5(d) and (e) at 40¢g and 41g respectively. None of the large body of
elements failing in the bottom right hand corner of the mesh had their moduli
of elasticity reduced, however, since they were clearly not part of a propagating

failure surface through the mesh.

These results suggested possible dependence of the failure patternbon the mesh
configuration and element type. To help validate or refute this claim, a sensitiv-
ity analysis was conducted on the simplified problem of displacement-controlled
plane strain compression (see Figure 6.6). A plane strain compression specimen of
elastic—perfectly plastic material was discretized, and analysed, first with quadri-
lateral elements, then with triangular elements oriented in two different patterns.
An intentional notch was made in one of the free surface boundaries of the mesh to

“seed” the problem. The aim of the analysis was to see how the different element
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types and orientations would affect the failure pattern, which, for a homogeneous
material, should be a 45° shear band intersecting the free surface boundary at
the notch. The results of the sensitivity analysis are presented in Figure 6.7 where
the shear band failure pattern is seen to be highly dependent on element type
and orientation. It is clear that different elements will produce different failure
patterns depending on how easily an element can assume a particular deformation

mode, given its orientation to the loading.

Regardless of the now-established dependence of failure pattern on element
type and orientation, the slope failure problem was remeshed using triangular in-
stead of quadrilateral elements, to see if a realistic failure pattern could still be
generated, without erroneous yielding of the body of elements in the bottom right
hand corner of the mesh. The results of this attempt are shown in Figure 6.8.
Here the process of E reduction of failed elements was simplified so that once
yielding occurred, F was immediately reduced by one-half for the element con-
cerned and not altered thereafter. Figure 6.8 shows that no improvement in failure
surface prediction was obtained with triangular over quadrilateral elements, and
further shows the failure pattern to be dependent on the orientation of individual

triangular elements with respect to the direction of gravity loading.

Another trial was made with a combination of quadrilateral and triangular
elements arranged in a “flow net” pattern for the slope (see Figure 6.9). This

mesh was designed so that a series of elements would approximately represent
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a potential failure surface with a width of one element, and hence most readily
allow successive element yielding in a realistic propagation sequence. The results
for this mesh are shown in Figure 6.9 with no improvement apparent over the
separate attempts with quadrilateral and triangular elements of Figures 6.5 and
6.8 respectively. As was done with the triangular element mesh, the modulus of
elasticity of a “flow net” element was reduced to 50 percent of its original value

upon failure and not modified subsequently.

Almost identical results were achieved with the “flow net” mesh, even when
element failure was implemented in a slightly different manner. Instead of reducing
E by one-half with v constant, £ and v were adjusted so as to reduce G by 50
percent while keeping K constant. Since the soil in the failure zone is believed to
lose much of its shear resistance but not its volumetric stiffness upon failure, this
was thought to be a more realistic representation of the change in an element’s
properties at yield. The finite element results, however, neither validated nor

refuted this hypothesis.

6.3 SUMMARY

The insensitivity of the discontinuous approach to slope failure prediction, as
modeled by the energy-based criterion of crack propagation (see Section 6.2.1),
and the mesh and element dependence of the weak finite element approach (see

Section 6.2.2), were both unacceptable “diseases” of the attempts to develop an
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improved method of slope stability analysis. Both appfoaches were consequently
abandoned in favor of the finite difference technique of Chapter 7. The absence
of these problems from the finite difference approach is evident from the results

presented in Chapter 8.
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Figure 6.1 Test problem for energy-based crack

propagation approach to slope failure
(a) Problem definition

(b) Quadrilateral finite element mesh
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Figure 6.2 Centrifuge slope failure problem
(a) Problem definition
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Figure 6.3 Triangular finite element mesh for test problem
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(a) (b)

(c) (d)

Figure 6.5 Development of “failure” with increasing gravity
throughout quadrilateral mesh of centrifuge slope specimen

(a) 27g (b) 34g (c) 38¢g (d) 40g (e) 41g
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(b)

Y
L

(c) //

Figure 6.7 Mesh and element dependent “failure” in
displacement-controlled bar compression specimen
(a) Square element mesh
(b) Triangular mesh with “right-hand” orientation
(c) Triangular mesh with “left-hand” orientation
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throughout triangular mesh of centrifuge slope specimen
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(a)

(b)

(c)

Figure 6.9 Development of “failure” with increasing gravity

throughout “flow net” mesh of centrifuge slope specimen
(a) 33g (b) 38¢ (c) 41g
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Chapter 7

THE FINITE DIFFERENCE METHOD
OF SLOPE STABILITY ANALYSIS

7.1 INTRODUCTION

After the unsuccessful attempts of Section 6.2 to force the finite element
method to model slope failure (with or without fracture mechanics assistance), a
finite difference program called CHIMP [100] was applied to the slope stability
problem and found able to capture the mechanism of slope failure observed in the

centrifuge experiments (see Section 8.3).

CHIMP (Caltech Homogeneous Isotropic Materials Program) was originally
developed by Silling [101] as a tool for exploring large deformations of both com-
pressible and incompressible elastic bodies, and employs an algorithm which corre-
sponds closely to the general theory of finite elasticity (e.g.,[35,36]). The code was
also designed to provide simultaneous local and global analysis of problems which
may contain singularities, such as those arising in fracture mechanics. CHIMP’s
forte, however, is the study of boundary value problems involving loss of elliptic-
ity, in which the underlying system of partial differential equations may change

from elliptic to parabolic or hyperbolic within some local region of the problem



- 169 -

(e.g., [50]). Such a change can occur, for example, during deformation of a certain

type of material whose shear stress-shear strain curve has a downward-sloping limb

(e-g., [1]).

For any given boundary value problem, CHIMP introduces an artificial time
variable into the field equations for the continuum and, for accuracy and effi-
ciency of solution, uses a Lagrangian differencing scheme in space, and explicit
integration in time with dynamic relaxation. All spatial derivatives are thus taken
with respect to a fixed reference configuration which is typically unstressed and
undeformed — an approach proven to be beneficial under conditions of large de-
formation. Dynamic relaxation (e.g.,[23,65,113]) is a technique which assumes
an equilibrium solution can be found by an evolutionary path as the large-time
limit of a damped dynamic problem. In addition to the time variable, this dy-
namic problem is artificial in the sense that fictitious masses are assigned to the
finite difference zones and non-physical damping selected, purely on the basis of
optimal stability and convergence of the numerical solution. In addition to the
advantageous evolutionary nature of the final equilibrium solution, CHIMP’s use

of explicit time integration also eliminates the need for matrix operations of any

kind.

CHIMP handles incompressible materials by an iterative pseudotemperature
method which adjusts the hydrostatic pressure in each finite difference zone so that

the net volume change tends to zero in the limit of large time. Since an incom-
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pressibility constraint Was not invoked in the analysis of slope stability presented
here, a more detailed explanation of the pseudotemperature approach is given
elsewhere by Silling [100]. Sections 7.2 and 7.3 below, which describe the main
features of CHIMP, are also based on Silling’s description of the finite difference

algorithm [100].

7.2 FIELD EQUATIONS

As is usual in the mathematical formulation of boundary value problems
(e.g.,[35,36,50]), consider some unstressed, undeformed reference configuration of
the region of interest R, and let x denote the location of any material particle in
the reference configuration. Also consider a deformation ¥ that maps each point
X € R to some point y € R* where R* denotes the deformed configuration
or image of R under y. CHIMP’s numerical method (see Section 7.3) is then
based on following this deformation in time through the Lagrangian version of the

dynamic local balance of linear momentum,

3%y (x)

Vix - o(x) + bo(x) = po(x) — 3

Vx€eER , teE]t, iz (7.1)

where o is the Piola stress tensor field, bo is the Piola body force vector field and
po is the mass density field (all in the reference configuration), and ¢ is the time
within some suitable interval [ty,t2]. Since time is introduced by CHIMP as an
artificial variable, it is appropriate to emphasize that most other methods of anal-

ysis quite legitimately determine the equilibrium solution to the given boundary
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value problem by solving the equation of equilibrium,
Vx-0(x) +bo(x) =0 Vx&R o, (7.2)

which is the Lagrangian version and may be compared with the more common

Eulerian version,

Vy-7(y) +b(y) =0 Vye R* (7.3)

where 7 is the familiar Cauchy stress tensor field and b is the Cauchy body force
vector field. In the Lagrangian versions above, however, the divergence operator
is taken with respect to the coordinates of the reference configuration, while the

Eulerian version uses the coordinates of the deformed configuration.

It should also be noted at this point that while these equations are quite gen-
eral, and appropriate for any three-dimensional boundary value problem, CHIMP

specializes them by considering only two-dimensional plane strain deformations.

7.3 NUMERICAL METHOD

7.3.1 Spatial differencing

CHIMP uses the Green’s theorem method (e.g., [39]) for spatial differencing,
performed with respect to the coordinates of the reference configuration R, where
the region of interest R is discretized into an M x N mesh of nodes, or grid points.
Nodes are indexed by pairs of integers (¢,7), ¢ =1,2,...,M; j=1,2,...,N,and

the quadrilateral region between each set of four adjacent nodes, called a zone (see
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Figure 7.1), is labeled by half-integer indices (7 + %,j + %) . Each node (7,5) also

has associated with it a fixed position vector x*7 in the reference configuration.

Certain quantities called node-centered variables can then be identified with
nodes, and others, called zone-centered variables, are identified with zones. Node-
centered variables include position, velocity, acceleration, stress gradient, body
force, and damping force, while zone-centered variables include stress tensor com-
ponents, deformation gradient tensor components (and strain tensor components),
and mass density. Both nodes and zones are also assigned an area, as described

below.

If a denotes a component in the plane of consideration (o = 1,2), then the
Green’s theorem differencing method leads to the following approximations for the

a component of Vi -0 at node (7,5) at time step n :

a o a o 8 o i;jan a i:j:n
Cual + On2 ~ Oal + On2 (7.4)
oz, Ozo 0z, Oz

where

,5,n
90a1 _ 1 [ kit
8:1;1 2147'.’-7‘ ol

(7.5a)



- 173 -

and

9002\ <1 [ iibgthe, igen ity
) = g et e

R L S
5

L N

0,;22’-7 Z’n(zzly]':l xl 17.7)+

RN G 1)}

and where A® is one-half the area of the shaded quadrilateral in Figure 7.2, given
by
o1 o L »
AV — Z{(I; 1,5 ﬁ$12+1;])($117]+1 331’] )_
(7.6)
i )
For a node lying on a boundary of the mesh, the areas and stress components of

the missing zones (i.e.,outside the boundary)-are set to zero in these difference

formulas.

The difference formulas (7.5a) and (7.5b) are derived by applying Green’s
theorem to the quadrilateral region D enclosed by the curve C of Figure 7.2

such that

/82:1 )[zpdzz and /a%2 %z/)dzl (7.7)

where ¢ is any sufficiently smooth field on D (in this case the components of

stress o).

The stress components 0,5 depend through the constitutive relation (see

Section 7.4) on the deformation gradient tensor components dy,/dzg (8 =1,2),
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whose components are evaluated by the following difference formulas:

Yo = ——— e (2 T = gy e yhainy
Jdzy 2 AitE.d s 2 g * *
(7.8a)
(x2+1,j+1 _ a:;’j)(yg;j“’" _ yé“’j’")}
i+ 5,0+ 5
2 N S (2Tt — T (T ) —
dxo 2A 50+ 3 ! ! * "
(7.8b)

(x§+1,1'+1 _ Zlfj)(y;,j—kl,n _ yi+1,j,n)}

. .
The difference formulas (7.8a) and (7.8b) are derived by an analogy to Green’s
theorem similar to that used for the stress gradient formulas (7.5a) and (7.5b), in
which the theorem is applied to a path around the edges of the zone (see Figure
7.1). The values of y, on each edge are supplied by the average value along the

edge, for example (y3? + y¥17)/2, and these average values have already been

substituted to give (7.8a) and (7.8b) as shown.

7.3.2 Dynamic relaxation and differencing in time

As mentioned in Section 7.1, dynamic relaxation models the equilibrium so-
lution to a static boundary value problem as the large-time limit of a damped
dynamic problem, which CHIMP solves by introducing an artificial time variable.
With time steps labeled by the index n (where n = 0 represents initial condi-
tions), the discretized version of (7.1) for node (¢,5) is multiplied through by A"’

and a mass-proportional viscous damping term introduced to give

% .7' n i)jan ’L.,]‘,TL — 7").7'971‘ — 7',.7 i]. n 7'.,.7. ) _7. n
fn Hinay ey =y =mg a4 EmgvhIr (7.9)
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Here the nodal force from internal stresses is given by

L. . aaal i;].:n aUQQ i;j;n
07— A% :
int {( 31:1 ) + ( 8332 ) ’ (7 10)

evaluated using the difference formulas (7.5a) and (7.5b), while the nodal force

from body forces is given by
£l = AVbg" (7.11)

applied to the node as a ramp function in time as shown in Figure 7.3. The
quantity fég;g represents the nodal force from a possible traction field applied at
the boundary and since a gravitationally loaded soil slope has no such traction

field, this term is null and will not be considered further. The nodal mass mé’j is

computed from the surrounding zone densities and areas by

y iv]. —
mo -

W=

{(4po) 5% & (Apo)iE + (Apo) 5373 1 (apo) it}

P

(7.12)
and ¢ is the damping coefficient for dynamic relaxation whose determination is

discussed further below.

Dividing (7.9) through by m%’ and swapping sides gives
0

. . . . i’J.’n
a'L;])n + gvl?«77n = '——“——‘tozt] , (7.13)
mey
into which the following central difference approximations for acceleration and

velocity may be substituted:

abin = (vhints _yhin—g) /pn (7.14)
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and
viin %(Vz',j,wé S ) I (7.15)
where
yidmtd (yimt! “yi,j,n)/hnﬂ% (7.16q)
and
R (yi,j,n _ yi,J',n—l)/hn‘% ) (7.16b)

In the above expressions, h™® and h™ % are the time steps, related by
n | P n+ 1
A" = E(h 2+ A"TZ) (7.17)

where A"z is computed from (7.24) below, and h"z represents A"z from
the previous time step. With these approximations, (7.13) becomes

vi,]’,n—l—% . Vi,j,n—% é fi,j,n

+ = i,j,n—f—% + Vi,j,n~% = —tOF - . 7.18
- < )= (7.18)
Multiplying through by A" and rearranging gives
i)jyn n
2 2 m’:]
0
and solving for vtz yields
o 1 L fiaj-5nhn
viints — {(1 — )V t‘)t—” (7.20)
+n mg

where n = ¢h™/2 and h™ is given by (7.17). In practice, CHIMP uses A"tz

instead of A™ in the expression for 1 so that

ghts
S

n (7.21)
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and the new position of node (z,7) is finally given by
yi)j;n"_l — yi’jyn _+_ Vi’j’n+%hn+% (7.22)

from (7.16a). Note that the difference representation (7.9), and consequently
(7.20) and (7.22), is an explicit differencing scheme, since y*?/»*! depends only

on quantities which are known for the time step n.

The numerical stability condition for the time integration method (7.9) can
be shown (e.g.,[113]) to be identical to that of the undamped explicit central

differencing method:

RV < 2/wmax (7.23)

where wmax is the highest natural angular frequency of the undamped mesh,
and may be conservatively estimated using the local speed of infinitesimal waves,
leading to

htE < nlkin{e/c}i%’ﬂé’n : (7.24)

Here € is the zone width, equal to the minimum of the lengths of the zone edges and
diagonals, and ¢ is the local speed in the reference configuration of whatever type
of infinitesimal wave moves fastest. Details of the calculation of ¢ are presented

in Appendix A.

For quickest approach to the equilibrium solution, the damping coeflicient
¢ is chosen to provide critical damping of the fundamental mode of the mesh,

and although various methods have been proposed for estimating this value of ¢



- 178 -

(e.g.,[70]), CHIMP chooses it by crudely estimating the fundamental frequency
of the grid from the approximate transit time for infinitesimal waves through the

entire width of the mesh. This leads to the estimate
¢~ — (7.25)

where ¢ is the area-average wave speed in the mesh and L is a characteristic

length.

On the assumption of a uniform wave speed throughout the mesh, the stability
condition (7.24) would determine the time step from the smallest zone size €, and
since € may vary over orders of magnitude through the mesh, (7.24) would severely
limit CHIMP’s efficiency. It is possible, however, to manipulate the local wave
speeds through the mass density pg, since ¢ is proportional to 1/\//)—0 for a given
constitutive relation and may consequently be set to any desired value by adjusting
the local density. CHIMP therefore finds a density distribution which makes the
stable time steps for all zones equal and, if necessary, will change this distribution
at intermediate stages of the solution to reflect sometimes large changes in local
wave speeds. Since the equilibrium equations (7.2) or (7.3) do not contain a mass
density term, these adjustments can be made arbitrarily, without affecting the
asymptotic solution to the artificially dynamic equation (7.1) for local balance of

linear momentum.
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7.3.3 Boundary conditions

CHIMP imposes position boundary conditions, of the form
v=Y on OR (7.26)
where Y is a given vector field and AR denotes the boundary of R, by setting
yoit =Y (xM ) (7.27)

for any node (z, ) on the position boundary, where " is the time at time step n.
In the case of a lubricated wall boundary, the motion of a node on the wall is
computed at each time step as though the wall were a free surface or zero-traction
boundary, with the displacement, velocity, and acceleration components normal

to the wall immediately reset to zero.

The manner in which CHIMP imposes non-zero traction boundary conditions
is discussed elsewhere [100] since the modeling of a gravitationally loaded soil slope

requires no such condition.

7.4 SOIL MODEL

7.4.1 Introduction

The original CHIMP code was used to study large deformations of both com-
pressible and incompressible materials and hence incorporated a constitutive re-

lation which allowed for finite strains. For the present analysis of slope stability,
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however, the constitutive model was limited to small strains of an inhomogeneous,
isotropic soil on the basis of experimental observations made during the centrifuge
slope failure tests. In particular, each centrifuge slope failure was characterized by
the development of a very narrow shear zone or failure surface which separated the
slope into two large blocks, with strains in the blocks being small and deformation
being almost entirely limited to the narrow shear zone between them. Further-
more, when the failure surface had propagated fully through the slope and the
two blocks were about to start sliding past each other, the strains even within the
narrow shear zone were still small. Since it is ohly the development of the failure
surface and its resulting geometry, and not the subsequent sliding of the separated
blocks which the CHIMP calculation models, the small strain assumption for the

slope soil is considered valid and realistic.

Inhomogeneity was introduced into the CHIMP soil model by specifying that
the soil stiffness increase linearly with conﬁning pressure and hence depth for
a slope under gravitational loading. This degree of complexity (and reality) was
added after homogeneous soil gave rise to yielding at the bottom right-hand corner
of the slope mesh (similar to the finite element results of Figure 6.5) and prevented
the analytical slope from developing a failure surface similar to those observed in
the centrifuge tests. Yielding of this nature is to be expected in a material of

uniform shear strength, for reasons already given in Section 6.1.

Inelastic strain unloading was also added to the CHIMP soil model to better
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describe real soil behavior and is described in more detail below.

7.4.2 Constitutive relation

The constitutive relation used by CHIMP to represent the slope soil may be
classified as a strain-space model, whereby the stresses are computed from the
strains. This is in contrast to stress-space models which éompute strains from
stresses, and typically require an incremental approach to handle nonlinear stress-
strain relations [61]. CHIMP requires no such incremental formulation, however,
since the strain-space model uniquely defines the stress for any given strain, except

for strain unloading which will be discussed later.

More specifically, CHIMP’s constitutive law for the slope material is given in
terms of a trilinear relationship between the radius of the Mohr’s circle of stress
Ty and the radius of the Mohr’s circle of strain ¢,, as shown in Figure 7.4, where
€m1 5 €ae and 7, are specified soil constants. In order to Be able to use this

strain-space relation, CHIMP finds ¢,, from the expression

o\ 2
€m = \/6%2 + (611 - 5) (7.28)

where e;; and ejs are the plane strain components of the familiar linearized

Lagrangian strain tensor, and @ is the dilatation or volumetric strain. To evaluate
(7.28), however, the strain components e,s must first be computed from the

deformation gradients yq,g of (7.8a) and (7.8b) according to the relation

1
€af = g(ya,ﬁ + Yg,a) ~ bap (7.29)
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where 6,5 is the Kronecker delta, and the dilatation 6 can then be found from
0 =eyy . (7.30)

It may also be noted in passing that the CHIMP “shear strain” ¢,, differs from the
principal engineering shear strain v, of Figure 6.5 used for the earlier attempts

at improved slope stability analysis.

The slope (i.e., shear stiffness or shear modulus) of limb A of the 7,, versus

€r curve of Figure 7.4 is defined by
S = Sl + SQP (731)

where p is the confining pressure, and S; and S, are specified soil constants.
Since p is normally defined in terms of stresses as

1

P= 30k (7.32)

and the stresses are still unknown at this stage of the calculation, an expression

for p must be found in terms of the already known strains.

To this end, the slope material is first assumed to be compressible with con-
stant Poisson’s ratio v. Hence the bulk modulus or volumetric stiffness X of the

soil is directly proportional to the shear modulus S such that
K=f_5= fu(Sl + S2p) ’ (7'33)

where f, is a constant given by

2(1+v)

fv= 31— 20) (7.34)
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and (7.31) has been used in the substitution for S. The confining pressure p is

also given by

p=—K0 (7.35)

where negative dilatation ¢ (i.e., compression) induces positive confining pressure

p. Combining (7.33) and (7.35), and solving for K gives

fz/Sl
= 7.36
1+ fl/520 ( )
which, when substituted into (7.35) yields
“fz/Slo
= 7.37
P 75,0 (7.37)

This is the required expression for the confining pressure p in terms of the known

strains, to be used in (7.31) to completely define the stress-strain relation of Figure

7.4.

Given €,, as computed in (7.28), CHIMP enters the stress-strain relation to
find the corresponding 7,, (e.g., point Q of Figure 7.4), and computes an effective

shear modulus S.g given by
.
Sep = —— = p* (7.38)

where p* is one of two modified Lamé constants. The other modified Lamé

constant A* is given by

N =K - Zu (7.39)
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where K and p* come from (7.36) and (7.38) respectively. Given A* and p*,

CHIMP then computes the components of the stress tensor from

Oap = XN bapeyy + 21" €ap
(7.40)
= A*&aﬁﬂ + Z;L*eaﬁ

where 6 is given by (7.30) and the e,p come from (7.29).

Inelastic strain unloading is handled by tracking the maximum ¢,, reached
in each zone. Should ¢, in a subsequent time step fall below this maximum,
unloading of the zone takes place along limb B of Figure 7.4 with slope S given
by (7.31). Reloading follows the same limb until the maximum ¢, (at which
unloading took place) is reached, and further loading follows the original trilinear

stress-strain curve.

7.5 SUMMARY OF SOLUTION CYCLE

For each time step, CHIMP steps through the finite-difference mesh finding
the new position of each node in succession, given the internal stress state and

applied loading.

Assume that CHIMP is computing the nodal positions for time step n and
has got to node (7,5) of the mesh. CHIMP now wishes to solve (7.9) at node
(7,7) . It starts by computing the total force on the node given by the right-hand
side of (7.9). The force from the internal stresses is given by (7.10) and evaluated

using the difference formulas (7.5a) and (7.5b). The force from the body force
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field is given by (7.11) and its magnitude is determined by the time at time step
n through the ramp function of Figure 7.3. The force from the traction field is
zero since there is no traction field for the slope-stability problem considered here
— all applied loading comes from body forces alone. With the total force on node
(¢,7) now computed, (7.9) is actually solved via (7.20). The nodal mass is given
by (7.12), h"™ comes from (7.17), and v®~ 3 is known from the previous time step.
Note that h"T= is computed from (7.24), and h"~3 is the previous time step’s
R"*3 . The new position of node (¢,7) is then given by (7.22). CHIMP next
finds the components of the deformation gradient tensor using (7.8a) and (7.8b),
and immediately computes the components of the Lagrangian strain tensor from
(7.29). The radius of the Mohr’s circle of strain is determined from (7.28) and
(7.30), which in turn gives the radius of the Mohr’s circle of stress through the
constitutive relation of Figure 7.4. Knowing the modified Lamé constants from
(7.38), (7.39) and (7.36), the components of the stress tensor can be found from

(7.40) and the cycle is complete.

CHIMP is then ready to move to the next node of the mesh and repeat the
cycle. After computing the new position of each node of the mesh for time step
n, CHIMP starts all over again and finds the new nodal positions for time step

n+1.
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Chapter 8

FINITE DIFFERENCE RESULTS

8.1 INTRODUCTION

The finite difference method described in Chapter 7 was used to solve two
independent plane strain boundary value problems. The first was a displacement-
controlled bar compression test, and the second a centrifuge slope failure experi-
ment. The bar compression results are presented in Section 8.2 while the centrifuge
slope stability analysis appears in Section 8.3. The bar compression problem was
simply a calibration test for the finite difference algorithm, to see if it could predict
localization of deformation into shear bands without “seeding” by weak zones or
boundary imperfections. The algorithm was then applied to the centrifuge slope
stability problem. The solutions for both problems were based on the soil model
represented in Figure 7.4, with inelastic strain unloading, although, in fact, these

solutions were indistinguishable from those using reversible unloading.

8.2 BAR COMPRESSION

The displacement-controlled compression of a homogeneous, isotropic bar be-

tween two rigid parallel plates is represented in Figure 8.1(a) where one quarter of
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the bar is modeled due to biaxial symmetry (see Figure 8.3). Figures 8.1(b) and
(c) give the details of the bar’s constitutive relation and displacement—control]ed
loading respectively. The finite difference results at successive stages of the solu-
tion are presented in Figure 8.2. The dot pattern of Figures 8.2(a) through (c)
shows where the strain level has exceeded yield (1 x 10~* in Figure 8.1(b)) and
hence where shear failure is occurring. The density of dots is directly propor-
tional to strain level so that the higher the strain, the greater the dot density.
Figures 8.2(d) through (e) show the exaggerated deformed finite difference mesh

corresponding to Figures 8.2(a) through (c) respectively.

Figure 8.2 shows how shear failure first occurs at the outside corner of the
specimen, where the rigid end plate meets the free surface boundary. From there,
failure propagates in a straight line across the specimen to the opposite free sur-
face boundary, as shown in Figure 8.3 where the quarter specimen of Figure 8.2
has been used to infer the development of shear bands throughout the entire bar
compression specimen. This same sequence and geometry of shear band develop-
ment is observed in bar compression experiments on soils and metals. The finite
difference algorithm thus demonstrates an ability to predict localization of shear
deformation without “seeding” by artificial weak zones or boundary imperfections,
and in a manner independent of the orientation of zones within the mesh. These
conclusions are supported and reinforced by the centrifuge slope stability results

of Section 8.3.
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8.3 CENTRIFUGE SLOPE STABILITY

The centrifuge slope stability problem posed to the finite difference method is
summarized in Figure 8.4, where the dimensions and geometry of the slope mesh of
Figure 8.4(a) approximate those of the centrifuge slope specimens (see Figure 2.9),
except for the omission of approximately 140 mm of material from the crest end of
the real centrifuge specimen to reduce the size of the finite difference mesh. Figure
8.4(b) is the idealized, but experimentally based constitutive relation of Sections
3.3.3 and 7.4, representing the real centrifuge slope material. Figure 8.4(c) gives
the details of the applied body force loading, where the ramp time and body force
magnitude are chosen by a combination of judgment and trial and error to ensure
computational stability and material failure in the numerical solution. The goal
of the slope stability analysis was to examine the sequence and geometry of failure
in the numerical solution to compare with that observed in the centrifuge slope
tests, and, in the results which follow, it is to be noted that the elapsed time (in
seconds) given for a particular stage of the numerical solution, is artificial and for

comparison with the ramp time of body force loading only.

Figure 8.5 presents the sequence of finite difference results for the problem
posed in Figure 8.4, where the solutions shown in Figures 8.5(a), (b) and (c) all
occur at times greater than the ramp time of Figure 8.4(c). The sequence clearly
shows how failure develops at the toe of the slope (Figure 8.5(a)) and propagates

to the crest in a narrow shear zone (Figures 8.5(b) and (c)), as generally observed
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in the centrifuge experiments. The failure sequence of Figure 8.5, however, is not
identical to the experimentally observed sequence of Figure 5.34, even though the
final geometry represented by the dot pattern of Figure 8.5(c) is a good fit to the
post-failure profile of slope test 16b (reproduced in Figure 8.6(b)). In particular,
the failure surface of Figure 8.5 shows no tendencyrto propagate toward the slope
face before heading for the slope crest. As discussed in Section 5.4, the observed
intersection of the failure surface with the slope face during the centrifuge tests
may have been caused by an inhomogeneous slope specimen with high crest block
strength, in which case the absence of slope face intersection by the failure surface
of Figure 8.5 is appropriate. If, however, the slope failure mechanism of Figure 5.34
is correct in every detail, then the finite difference results have not recorded the
true failure sequence, and cannot be expected to do so on the following grounds.
As the propagating failure surface turns toward the slope face from the point
where the two are parallel, the deformation at the leading edge of the failure
surface changes from predominantly shear to one of predominantly tension as the
now free toe region begins to pull away from the slope mass further up the face
under gravity. Since the soil model of the finite difference method contains only
a shear failure criterion and no provision for tensile failure, the numerical results
will not be sensitive to this change in the nature of deformation as the failure

surface propagates toward the slope face.

The 612¢ loading of Figure 8.4(c), which generated the results of Figure 8.5,
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is also an order of magnitude greater than that required to fail any of the slope
specimens tested in the centrifuge. As discussed later in this section, however,
the numerical slope model shown in Figure 8.4(a) will still fail under a reduced
gravity load of 320¢, and, with finer finite difference meshes, the failure load can

be further reduced to a lower limit of between 100g and 150g .

A more direct comparison of slope failure analysis and experiment is presented
in Figure 8.6. Figure 8.6(a) is a reproduction of Figure 8.5(c) with the addition
of the critical circular failure surfaces of a traditional Taylor analysis [107] for soil
friction angles of ¢ = 16.7° and ¢ = 35° [92]. Figure 8.6(b) is the failure surface
geometry observed after the slope collapse of centrifuge test 16b. Slope failure is
estimated to occur at 57¢ for the ¢ = 16.7° Taylor circle and at 128g for the
¢ = 35° Taylor circle. Slope specimen 16 actually collapsed at 82¢ in centrifuge

test 16b (see Table 5.1).

As previously discussed, the finite difference dot pattern of Figure 8.6(a) is a
good fit to the final experimental profile of Figure 8.6(b) although the body force
loading of the finite difference solution is an order of magnitude greater than that
required for gctual slope failure. The ¢ = 35° Taylor circle is similarly a reason-
able approximation to the failure surface of Figure 8.6(b) but also overestimates
the gravity load necessary for failure. Describing the centrifuge slope material as
having a friction angle of 35°, however, is considered inappropriate, as discussed

in Section 3.4. The ¢ = 16.7° Taylor circle is based on a better soil description
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and best predicts the failure gravity level, but its geometry is a poor approxi-
mation to the observed failure surface profile. In contrast to the finite difference
results, and as discussed in Section 1.2.1, the Taylor limit equilibrium circles do
not yield any information on the sequence of events constituting the mechanism

of slope failure.

A number of slope stability analyses was made with the finite difference algo-
rithm by varying the constitutive and loading parameters of the centrifuge slope
model of Figure 8.4. The variation of shear modulus with confining pressure, how-
ever, given by S = 20+ 300p MPa and representing a cohesive granular soil with
a friction angle of ¢ = 16.7° as discussed in Section 3.3.3, remained unchanged.
The sensitivity of the finite difference model to some of these stress-strain and

body force variations can be seen in the results below.

To investigate the effect of increasing the rate of post-yield strain weakening
on the predicted failure surface, €,,, of Figure 8.4(b) was reduced to 2x1073 from
4 x 1072 to produce the results of Figure 8.7. The other numerical parameters
given in Figure 8.4 were not altered. Comparison of Figure 8.7 with Figure 8.5
shows the two failure sequences to be almost identical although Figure 8.7 shows
a slightly better defined failure surface after fewer computational time steps. The
final geometry of Figure 8.7(c) is also more vertical near the slope crest than
Figure 8.5(¢c) and hence an even better fit to the experimental post-failure profile

of Figure 8.6(b).
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The sensitivity of the finite difference model to the magnitude of body force
loading was then determined by reducing the gravity level of Figure 8.4(c) from
612g to 340g, 320g and 300g, with only the 340¢ analysis being illustrated
here. The 340g results for the constitutive relation of Figure 8.4(b) (with ey, =
2 X 10_3) are presented in Figure 8.8, where significantly greater computational
effort than that for the results of Figure 8.5 is required to capture the propagation
of a shallower failure surface through the slope mesh. With further reduction to
320g (not illustrated), 4500 time steps (2529 seconds) were required to generate
a dot pattern almost identical to Figure 8.8(c), and at 300g, failure could not
be propagated away from the toe of the slope, even after 3500 time steps (2041
seconds). Hence the gravity loading threshold for failure of the centrifuge slope
model of Figure 8.4(a) by the finite difference method is a well-defined one at
approximately 320g¢ , below which the failure surface will n(;t propagate. Although
a body force of 320g is still half an order of magnitude greater than that required
for slope failure in any of the centrifuge experiments, it does provide analytical
evidence to refute the gradually progressive nature of the slope failure mechanism
postulated in Figure 1.3 and explain the absence of such progressive failure from
the 35 mm in-flight photos taken at 5¢ increments during the centrifuge tests (see

Section 5.4).

Finite difference meshes coarser and finer than Figure 8.4(a) were also studied

briefly, and were found to strongly affect the gravity loading threshold for failure,
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as summarized in Table 8.1. These results suggest a lower limit on the failure load
of between 100¢g and 150¢g as the ﬁnitg difference mesh is made extremely fine.
This final discrepancy of approximately 50g between analysis and experiment is
attributed to tension cracks in the centrifuge specimens, which extend from the
horizontal surface behind the slope crest to deep within the slope mass, and allow
centrifuge slope failure to take place at gravity loads well below those predicted
by the finite difference method. These tension cracks are seen to be present in
the impulsively failed slope specimens, where they may be accentuated by the
dynamics of collapse (e.g.,slope test 17 of Section 5.1.5), but are also believed
to be present in the slope specimens which collapse under static loading alone,
even though they cannot be seen under these conditions. As the centrifuge spins
up to the gravity level at which slope collapse occurs naturally or is impulsively
induced, the tension cracks form within the specimen because a rigid vertical
boundary condition is inadequately maintained behind the crest of the slope by the
cohesionless sand compacted into the gap between the cemented slope specimen
and the aluminum wall of the test container. This explanation is based on a
two-dimensional, linearly elastic finite element analysis of the centrifuge slope
specimen, with a free vertical boundary behind the slope crest, which indicates
the occurrence of tension to a depth of approximately two-thirds of the slope height

below the crest surface.

Since the triaxial test results of Section 3.3.2 on the centrifuge slope material
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showed wide variation in Poisson’s ratio, the effect of v on the mechanism of slope
failure was also investigated with the finite difference al_gorithm and illustrative
results are presented in Figures 8.9 and 8.10. In contrast to Figures 8.5, 8.7 and
8.8, in which v = 0.45, Figures 8.9 and 8.10 were generated with v = 0.3,
€xs = 2 x 1072 (Figure 8.4(b)), and a body force equivalent to 340g. The
sequence of Figure 8.9 shows a very different failure mechanism from that seen
in the centrifuge experiments. Although the centrifuge slope failures seem best
modeled with v = 0.45, the mechanism of Figure 8.9 may be realistic for a
v = 0.3 material. Indeed, the exaggerated deformed finite difference mesh of
Figure 8.10(b), which corresponds to the dot pattern of Figure 8.9(c), shows clear

evidence of the toe bulging often observed in full-scale slope failures.

Although the advantage of the finite difference method, as described in Chap-
ter 7, is its ability to handle the unstable material behavior of Figures 7.4 and
8.4(b) without numerical instability, it seemed appropriate to determine the effect
of an elastic—perfectly plastic constitutive relation on the slope failure mechanism,
using the same finite difference code, since soil is often represented by such a stress-
strain law in mathematical models. With v = 0.3, body force loading of 340g,
and the soil model of Figure 8.11(a), the finite difference algorithm then gave ri‘se
to the shear distribution of Figure 8.11(b). The dot pattern of Figure 8.11(b) is
very similar to the general spreading of failure in finite element solutions, described

in Section 6.2.2 and exhibited by other finite element results (e.g., [54,105]). Such
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absence of localized deformation appears to be the direct consequence of a stable
elastic—perfectly plastic constitutive relation since the unstable material behavior

of Figure 8.4(b) leads to highly localized zones of shear failure.
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Figure 8.5 Centrifuge slope stability results
for parameters of Figure 8.4
(a) 600 time steps (293 seconds)
(b) 900 time steps (470 seconds)
(c) 1200 time steps (639 seconds)
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Figure 8.7 Centrifuge slope stability results for v = 0.45,
€vo = 2 X 1072 and 612¢ body force
(a) 600 time steps (293 seconds)
(b) 800 time steps (410 seconds)
(c) 1000 time steps (510 seconds)
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Figure 8.8 Centrifuge slope stability results for v = 0.45,
€xm> =2 X 1072 and 340¢g body force
(a) 2000 time steps (1136 seconds)
(b) 2500 time steps (1409 seconds)
(c) 3000 time steps (1625 seconds)
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Mesh size Mesh size Approximate minimum
in nodes in zones gravity load
tXJ for failure
16 X 6 15 x5 480¢g
31 x 11 30 x 10 320¢g
61 x 21 60 x 20 220g — 250¢
151 x 51 150 x 50 1509 - 200¢g

Table 8.1 Reduction in slope failure load with increasing
fineness of finite difference mesh
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Figure 8.9 Centrifuge slope stability results for v = 0.3,
€xv> =2 X% 1072 and 340¢g body force
(a) 400 time steps (198 seconds)
(b) 500 time steps (245 seconds)
(c) 600 time steps (287 seconds)
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Figure 8.10 Centrifuge slope stability results for v = 0.3,
€m2 =2 X 1072 and 340g body force
(a) Undeformed finite difference mesh
- (initial conditions)
(b) Exaggerated deformed finite difference
mesh corresponding to Figure 8.9(c)
(600 time steps, 287 seconds)
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Figure 8.11 Centrifuge slope stability results for
elastic-perfectly plastic constitutive relation
(v = 0.3, 340g body force)
(a) Constitutive relation
(b) Distribution of shear strain exceeding
yield (1 x 1073) after 600 time steps
(315 seconds)
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Chapter 9

CONCLUSIONS AND
RECOMMENDATIONS

9.1 CONCLUSIONS

A series of two-dimensional model slope tests has been conducted in a geotech-
nical centrifuge to determine the mechanism of slope failure and subsequent slope
collapse by direct observation. These experiments have shown that shear failure
is initiated at the slope toe and propagated rapidly to the slope crest as a dis-
placement discontinuity across a sharply defined, curved failure surface. Slope
collapse may then occur by relative sliding between the two blocks of essentially
undeformed material separated by the failure surface, with collapse being similarly
observed to start at the toe and proceed as a “chain reaction” to the crest. It is
also concluded that in spite of the very brittle nature of the model slope material,
which made it rather dissimilar to real soil, the centrifuge slope failures exhibited
the same distinct failure surface and final collapse profile as seen in full-scale fail-
ures in the field (e.g.,[98,104]), and thus the centrifuge tests were a valid means

of studying the initiation and propagation of failure in prototype slopes.

In parallel with the centrifuge experiments, a finite difference method of anal-
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ysis has been applied to the slope stability problem and found capable of represent-
ing the observed mechanism of failure by localization of shear deformation. Both
the centrifuge model tests and finite difference results establish that slope failure
in a brittle material occurs at a well-defined loading threshold, below which failure
will not propagate. Progressive failure may still, however, be a valid description

of the failure mechanism in a slope of plastic soil such as overconsolidated clay.

Of possibly greater importance, however, is the apparent capacity of this finite
difference algorithm to predict shear failure mechanisms in the solid continua of
many different fields of study (e.g., foundation engineering, structural engineering,

material science, seismology).

9.2 RECOMMENDATIONS

The experimental and analytical results of this research have contributed to
a better understanding of slope failure but have also uncovered a need for further
study. In particular, continuation of the centrifuge experiments is warranted, with
different slope angles and materials (e.g., overconsolidated clay), to determine the
effect of these parameters on the mechanism of failure, and to resolve uncertainties
in the nonuniformity of the slope specimen, brittle versus ductile soil behavior,
and the role of crest tension cracking in the initiation and propagation of failure

through the slope.

With regard to analytical estimation of slope failure, the finite difference algo-
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rithm would benefit from inclusion of a tension failure criterion, improvements to
the constitutive model to more closely represent real soil behavior, and modifica-
tion of the dynamic relaxation procedure to permit real dynamic (e.g., earthquake)
analysis. A more detailed study of the effect of mesh fineness on failure load is

also recommended.

Continuation of both the centrifuge experiments and finite difference analyses
should also be used to further investigate the prototype performance of natural
slopes, and man-made embankments, excavations and dams. The real effects of
inhomogeneity, anisotropy, construction stress, pore water pressure and flow, and
time (including aging and creep), are all likely to influence the mechanism, as
well as the load and deformation conditions, under which failure and collapse of

full-scale slopes will occur.
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Appendix A

COMPUTATION OF
DILATATIONAL WAVE SPEED

- The sound speed ¢y for dilatational waves in the z{- direction is given b
\\\P 1 1 g y
1 do
I P At (A.1)

 po Oery

sectively, the plane strain components of the Piola
tensors, and po is the mass density in the reference

(A.1), the constitutive relation (7.40) in the form

= —p(0)6ap + 25(8) (eaﬁ = géaﬁ> (A2)

1y = —p(0) +25(0) (m - g) | (4.3)

Differentiating (A.3) with respect to e;; gives

b0y, dp 99 1 99 ds 0
-2 25(0) (1 2+ 2% (e =) A4
ders b der; 25 ( 33611) LT <e” 3> (4.4)

But 00/de1y = 1 from (7.30) so that differentiation of (7.37) with respect to ¢

gives

dp  —fu5 n J28:5,0
d0 1+ f,S20  (1+ f,5:6)2
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using (7.36). Applying the chain rule to evaluate dS/df yields

ds _ ds dp
dé  dp do
Iy (A.6)
=S K |—1 _JvP2¥
2 |: * 1+fVS20}

on the basis of (7.31) and (A.5). Combining (A.4), (A.5) and (A.6),

ad »So0 45(0 So0 0
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R O || T s

(A.7)
which holds for § assumed to be non-positive (see (7.35)). Only the largest wave
speed in any direction is of interest, and therefore, from the Mohr’s circle of strain

of Figure A.1, the most negative of the principal strains e, is used for e;;, where

€ = — — € (A.8)

and €, is the radius of the Mohr’s circle of strain given by (7.28). The strain

term in parentheses in (A.7) then becomes
6
€11 — 7 = €x — T = T — €pg (Ag)
3
which, in conjunction with (A.1) and the remaining terms of (A.7), yields

i LI REE T CR | REE s R o MR

for the dilatational wave speed, where the subscript “1” on ¢; has simply been

dropped.
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