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ABSTRACT

The dynamic mechanism of slope failure is studied both experimentally and
analytically to establish the spatial and temporal process of failure initiation and

propagation during collapse of a natural or man-made slope.

Model slopes, constructed of a brittle cemented sand material, are tested
to collapse in a geotechnical centrifuge and the dynamics of failure recorded by
motion picture film and mechanical detectors within the slope specimen. Shear
failure is observed to initiate at the toe and propagate rapidly to the crest in the

presence of crest tension cracking.

A finite difference approach is taken to numerically solve the plane strain
slope stability problem under gravity, based on unstable material behavior. Using
a Lagrangian differencing scheme in space and explicit integration in time with
dynamic relaxation, the numerical method finds the equilibrium state of the slope
as the large-time limit of a dynamic problem with artificial parameters. The
solution predicts localized shear failure zones which initiate at the slope toe and
propagate to the slope crest in the manner and geometry observed in the centrifuge
tests. In so doing, the finite difference algorithm also demonstrates an apparent

ability to predict shear failure mechanisms in solid continua in general.
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Chapter 1

INTRODUCTION

1.1 SLOPE FAILURE

The failure of earth structures such as natural slopes or man-made embank-
ments, excavations and dams is an age-old phenomenon which has inflicted heavy
loss of life and property on communities worldwide. The understanding of slope
failure, however, has generally been inadequate to prevent destruction in every
case, with the result that this soil mechanics problem remains incompletely re-

solved to the present day.

Slope failure, shown schematically in Figure 1.1 and photographically in Fig-
ure 1.2, typically involves formation of a curved failure surface through a slope of
cohesive soil, followed by relative sliding between the two created blocks of soil
along this surface. Bulging at the toe and tension cracking along the slope crest
are also commonly observed. Although soil which is highly sensitive or has pre-
ferred planes of weakness gives rise to slightly different modes of failure, it is the
“rotational” mode of Figure 1.1 which is the most common and thus the subject

of study here.

Historically, slope failure appears to have been first addressed by Collin in
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1846 [20] with studies of clay landslides in France, but it was not until the 1920’s
that Fellenius [28] developed a practical engineering solution to the problem dur-
ing construction of the Swedish railroads, when rotational embankment collapses
were prolific. The Fellenius method, however, and subsequent derivatives (see Sec-
tion 1.2.1), required many oversimplifying assumptions to make a mathematical
solution possible and hence could not model the phenomenon in sufficient detail to
permit an accurate prediction of the slope failure mechanism. Since the sequence
of events which constitute the mechanism of slope failure has never been clearly
understood, it was the aim of this study to conduct a series of experiments to
observe the initiation and propagation of a failure surface through a slope, and
to use these observations as the basis for development of an improved method of

slope stability analysis.

1.2 SLOPE STABILITY ANALYSIS

1.2.1 Available methods

All but a few of the methods which have traditionally been used to analyse the
stability of a slope under static gravity loading (e.g.,{11,14,17,28,45,46,60,95,106,
107]) give upper bound solutions based on the global principle of limit equilibrium.
Such methods start by assuming the profile of a two or three dimensional surface
through the slope (typically an inclined plane, circular arc or logarithmic spiral)

on which failure is postulated to occur. They proceed to compute the destabilizing
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and available resisting forces acting on this surface in an integrated or global sense,
and establish a factor of safety against failure as the ratio of available resisting
force to destabilizing force. The process is repeated for another assumed surface
until, by trial and error, the critical or correct failure surface is found with the
lowest factor of safety. There is, however, no guarantee that the correct failure
surface will be one of those assumed for trial, hence placing a heavy burden on
the engineering judgment of the analyst. Aside from this dilemma, these meth-
ods usually fail to represent the distribution of stresses along the failure surface
correctly, since equilibrium is satisfied in a global sense only. Given this kinetic
deficiency, and the initial kinematic assumption of a fully developed failure sur-
face, the limit equilibrium principle precludes capture of the local stress-strain
details considered important to any method of analysis which hopes to follow the

evolution (i.e., initiation and propagation) of slope failure.

Dynamic analysis is accommodated by the limit equilibrium approach in a
pseudo-static manner. The stability of a slope subjected to earthquake loading,
for example, is usually determined by the addition of a static lateral destabilizing
force, representing the peak horizontal acceleration of the earthquake, to an other-
wise normal staticv analysis (e.g., [82,84,85,94]). More complex earthquake anaiyses
(e.9.,6,18,66,82-85,93]) are based on the same principle but treat the earthquake
as a series of simple pulses or shocks. With the slope failure mass considered as a

rigid block on a plane frictional surface, these methods also permit an estimate of
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the earthquake-generated displacements of the failing slope mass.

An alternative approach to global slope stability analysis uses the calculus of
variations (e.g.,[9,75]) to find the critical failure surface, by minimizing a factor
of safety functional. For a homogeneous, isotropic slope, this surface is found to
be generated by a straight line or logarithmic spiral. Although there are several
drawbacks, including inability to capture the evolution of failure (typical of up-
pe'r bound limit equilibrium methods), difficulty of application to inhomogeneous
(e.g., layered) slopes, and evidence pointing to a defective functional [24], this “in-
verse” approach at least tackles slope failure in a fundamentally more realistic
manner, by asking the physics of the problem to naturally dictate the geometry of
the critical failure surface, rather than requiring the analyst to correctly assume

1t in advance.

The finite element method (e.g., [10,118]) has also been applied to both static
and dynamic slope stability analysis (e.g.,[19,54,97,105,111,115]) by obtaining a
lower bound stress-strain solution for the entire slope which satisfies equilibrium
at any local point. The local stress-strain details are hence free to dictate failure
surface initiation and propagation in a natural way. Without modification, how-
ever, the method has not permitted localization of deformation into sufficiently
narrow zones to predict the evolution or final profile of a distinct failure surface,
and it is only recently that special joint elements have been used to improve the

method’s slope failure performance [111].
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1.2.2 Possible alternative approaches

Although the slope failure problem presently remains resistant to analysis
by local stress-strain methods, the same methods have been applied with some
success to other solid mechanics problems and these are summarized below in the
context of their possible modification and application to the prediction of slope
failure. Some of the approaches discussed are investigated further in Chapters 6

and 7 in the quest for an improved method of slope stability analysis.

Localization of deformation into narrow zones has been a major issue in solid
mechanics for some time, and work by Rice, Rudnicki, Needleman, Asaro, and
Vardoulakis (e.g.,(7,53,62-64,72,77,79,81,112,114}), among others (e.g., [40,80]),
has contributed to a better understanding of the phenomenon. Prediction of the
formation of shear bands, however, has remained cast in a predominantly theo-
retical framework of mathematics, with few efforts to solve the many practical
problems to which localization of deformation applies. The problems which have
been addressed (e.g.,[2,53,58,62,72,73,112]) include metal tension and soil com-
pression tests, for which the finite element method has been coax.ed into predicting
shear band formation by element yielding. Prévqst and Hughes [73], for exam-
ple, achieved encouraging results by “seeding” their nonlinear material model of a
displacement-controlled compression specimen with a weak element, while Needle-
man et al. (e.g.,[53,72,112]) introduced a boundary imperfection to promote shear

band development in a tension specimen. The shear bands predicted by the latter
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approach, however, and probably also by the former, required a special element
geometry and orientation and hence were highly mesh dependent. Shear band
formation has also been addressed within the theoretical framework of bifurcation
phenomena (e.g., [40,63,114}), but as yet, numerical solution of bifurcation prob-
lems seems to be confined to those of structural mechanics, fluid mechanics, and

reaction-diffusion processes (e.g.,[42,44,47,51,64,74]).

By treating a shear band as a crack, fracture mechanics (e.g.,[38]) offers a
completely different way of propagating a failure surface through a solid body. This
framework allows both linear (e.g.,[33,34]) and nonlinear (e.g., [25,43]) fracture to
be handled, with a variety of displacement and energy criteria available for crack
growth (e.g.,[27,37,43,99,116,117|), and analyses of such situations often make
use of a special tool called the J-integral (e.g.,[76,78]). To date, however, fracture
mechanics problems have been formulated almost exclusively in terms of a pre-
existing crack assumed to grow in a straight line with few efforts directed toward
predicting the trajectory of a growing crack (e.g.,[37,116,117|), and hence, with
metal fracture traditionally being the motivation for the study of crack propagation
under conditions of tension (Mode I) and anti-plane shear (Mode III), only a
small amount of work has been done on crack growth in clay (e.g., [69]) and rock
(e.g.,[5]), where conditions of shear (Mode II) predominate, to form a basis for

the study of slope failure as a fracture mechanics problem.

Although the finite element method remains the most common and successful
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numerical solution technique for solid mechanics problems in general, boundary
element methods (e.g.,[22]) may also be worthy of further investigation, especially
for linearly elastic fracture mechanics solutions which might be applied to modeling
the evolution of slope failure. In the same vein, a finite difference approximation
and solution to the dynamic field equations of continuum mechanics for a soil slope
might also successfully capture the initiation and propagation of the all-important

failure surface.

1.3 SLOPE FAILURE EXPERIMENTS

The present lack of a realistic and accurate method of slope stability analysis
is due not only to the difficulty experienced by stress-strain methods in accom-
modating and predicting localized deformation, but also to a general lack of un-
derstanding of the details of the slope failure mechanism itself. While toe bulging
and crest tension cracking are features which have commonly been observed im-
mediately prior to the collapse of real slopes, the point of initiation of the failure
surface and its subsequent propagation in space and time through the slope are
not clear and have not been investigated in detail due to the difficulty of their
capture. Since the development of any scientific theory or engineering analysis
should be based on a sound understanding of the physical principles governing the
problem at hand, there has been a clear need for a series of experiments to observe

the mechanism of slope failure directly.
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Direct observation of the failure of a real, full-scale slope would be the ideal
experiment, but is impractical for several reasons. For an existing full-scale slope,
or one specially constructed either by excavation or by building a suitably inclined
embankment, there would be inadequate control over failure (if and when it oc-
curred) and only one chance of recording the desired information, since the high
cost of such an experiment would prohibit its repetition. These problems can all be
overcome by conducting the failure experiments on model slopes in a geotechnical

centrifuge (e.g., [87]).

Although use of a centrifuge to study the slope stability problem is not a new
concept, previous experiments (e.g., [4,8,21,26,29-32,41,48,52,55-57,59,68,86,109))
have not specifically looked for the local or microscopic details of the slope failure
mechanism, as defined by the initiation and propagation in time and space of the
failure surface through the slope. Various mechanisms are possible (e.g.,[8,12,15,
17,49,71,102,103,109]) including evolution from slope toe to slope crest (supported
by the observation of toe bulging), crest to toe (supported by the observation of
crest tension cracking), or initiation deep within the slope mass followed by simul-
taneous propagation to the toe and crest. Due to the natural stress concentration
which occurs at the toe of a slope under gravity loading, the toe to crest hypothesis

is favored as postulated below in terms of the centrifuge environment.

The slope failure mechanism depicted in Figure 1.3 assumes failure to be a

progressive phenomenon originating at the slope toe as the centrifuge is started,
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and propagating slowly toward the slope crest with increasing gravitational accel-
eration. At a sufficiently high gravity level, the mass of soil between the failure
surface and slope face can no longer be supported by the intact material near the
slope crest and in the final stages the failure surface propagates rapidly to the
crest to allow subsequent slope collapse. Since the aim of the experimental part
of this study was to examine the above hypothesis, a series of centrifuge model
slopes was failed under increased gravitational acceleration, and the dynamics of
failure recorded with movie film and mechanical failure detectors. A model slope
material and geometry was specially chosen for these experiments to give a well-
defined failure surface, and still photographs of the slope specimen in flight were
taken at 5¢ increments during centrifuge spin-up to record the progressive nature

of failure, however it developed.

1.4 THESIS OUTLINE

The slope stability problem requires a better understanding of the mechanism
of failure by direct observation, and an improved method of analysis to predict it,
and thus the present study involved an experimental investigation of slope failure,

followed by an analytical effort to model the experimental results.

The mechanism of slope failure was directly observed in a series of geotech-
nical centrifuge tests, the equipment and instrumentation for which are presented

in Chapter 2. Since a special soil was used for these experiments, a series of tri-
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axial and unconfined compression tests was also conducted to identify this soil’s
engineering properties, and these results appear in Chapter 3. Chapters 4 and 5,
respectively, describe the procedure and present the results of the centrifuge slope
tests. Based on these experimental observations of slope failure, several attempts
were then made to develop an improved method of slope stability analysis, as de-
scribed in Chapter 6, before the successful approach of Chapter 7 was discovered.
This method is employed in Chapter 8 to represent the observed mechanism of
slope failure, and permitted the conclusions and recommendations of Chapter 9

to be made.
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Figure 1.3 Postulated centrifuge slope failure mechanism showing
propagation of failure surface from toe to crest with
increasing gravitational acceleration
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Chapter 2

CENTRIFUGE EQUIPMENT AND
INSTRUMENTATION

2.1 INTRODUCTION

The need for a centrifuge in experimental slope stability studies arises from
the nonlinear material behavior of soil and the gravity-induced nature of the soil
stresses. If a scale model of a prototype slope is to deform like the prototype
when the same soil is used, homologous points in the model and prototype must
experience the same stresses, and these conditions are best created in a centrifuge
by subjecting the 1/N scale model to a gravitational field of Ng, where N is
the lineal scale factor and g is Earth’s gravitational acceleration. These physical
considerations alone establish the scaling relations between prototype and model

parameters for the centrifuge environment and have been presented elsewhere

(e.g., [67]).

2.2 CENTRIFUGE

The centrifuge used to conduct the slope failure experiments is shown in Fig-

ure 2.1 and has been described elsewhere (e.g.,[89,91]). With the test container
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of Section 2.3 mounted on the end of the centrifuge arm, the maximum gravita-
tional acceleration which could be applied to a model slope was approximately
100g . Each slope failure test was run from within a control shed separated from
the centrifuge by a concrete wall and wire fence. Figure 2.2 shows the Zenith
120 computer and other electronic equipment for experiment control and data

acquisition housed within the shed.

2.3 TEST CONTAINER

The test container in which the centrifuge slope specimens were placed, was
- designed and built in 1982 for studying the response of centrifuge models to sim-
ulated earthquake motions. For reasons discussed in Section 4.2.1, this dynamic
loading capability was also essential to the slope failure experiments. The main
features of the soil container and dynamic loading system are shown in Figures 2.3
and 2.4, while the manner in which this apparatus allows any form of dynamic hor-
izontal motion, ranging from a single impulse to an entire simulated earthquake,

to be applied to the centrifuge model is described elsewhere (e.g.,[3])-

2.4 PHOTOGRAPHIC EQUIPMENT

2.4.1 Introduction

The centrifuge slope failure tests were recorded on 16 mm movie and 35 mm

still film with cameras and lighting mounted directly on the centrifuge arm near
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the central vertical axis, as shown in Figures 2.5 and 2.6. The lines of sight for
the 16 mm and 35 mm cameras were along the centrifuge arm to the 45° mirror
attached to the test container (see Figure 2.3). When in flight, the mirror directed
camera vision down onto the side of the slope specimen through the combination

glass and lucite front wall of the test container.

2.4.2 16 mm photography

A Wollensak Fastax (Model WF3) high speed camera was used to expose 16
mm movie films through either a 25 mm standard or 50 mm telephoto lens. Power
to the Fastax camera was provided by a Goose control unit (Model WEF-301), set
to 60 V for filming at 1600 frames per second, and 180 V for filming at 5000 frames

per second.

Lighting was provided by four General Electric DXC floodlamps until the
completion of slope test 11 (see Table 5.1), and by a General Electric No. 4556
aircraft landing lamp for subsequent tests. This change in lighting between tests
11 and 12 was in response to a need for more intense, directed light. The 500 W
floodlamps were connected to the 110 V supply of the centrifuge arm, while power
for the aircraft Ianding lamp came from three Globe 12 V, 4.5 amp.hr. “gel/cell”
batteries linked in series and mounted inside the arm. When permitted by closure
of a heavy duty, 24 V automotive starter motor relay, the fully charged 41 V of the
“gel/cell” battery package dropped to the required 28 V of the 1000 W aircraft

lamp while drawing 36 A of current. The relay used to complete the landing lamp
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circuit was mounted on the centrifuge arm and closed through the sliprings from

the control shed with two of the same “gel/cell” batteries connected in series.

FEastman (Kodak) Ektachrome 7250 Tungsten high speed video news film was
used in the 16 mm camera throughout the slope failure tests. This 400 ASA color
film was exposed through an aperture midway between f2.8 and f4 at 1600
frames per second with the four floodlamps, and through an aperture midway

between f4 and f5.6 at 5000 frames per second with the aircraft landing lamp.

2.4.3 35 mm photography

An Asahi Pentax MX camera with motor drive unit and 40-80 mm zoom lens
was used for in-flight 35 mm profile photographs of the slope specimen. Power
to the motor drive unit came through the sliprings from a 6 V supply in the
control shed, while relay closure of the motor drive contacts for frame exposure

and advance was controlled by the Zenith computer.

Lighting was provided by a Sunpak Auto 511 electronic flash unit connected
to the 110 V of the centrifuge arm for power, and to the Pentax camera for

synchronization.

Kodak Panatomic-X black and white print film was used for the clarity and
high resolution afforded by its fine-grained emulsion. Each frame of this 32 ASA

film was exposed through an aperture of f11 for 1/60th of a second.
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2.5 SLOPE TEST SPECIMEN

2.5.1 Introduction

A typical, prepared slope specimen used for the centrifuge experiments is
shown in Figure 2.7. The specimen has a 60° slope to ensure passage of any failure
surface through the toe of the sample (e.g., [88,108]) and is constructed of a sand-
plaster of Paris mixture, the properties of which are described in Chapter 3. The
slope geometry, and material, were chosen to give a test specimen with repeatable
properties that was sufficiently unstable to fail with a distinct failure surface at a

convenient and approximately constant level of gravitational acceleration.

2.5.2 Lucite mold

The slope test specimen introduced above was prepared in a specially designed
lucite mold according to the procedure of Section 4.1, the lucite mold being shown
as built in Figures 2.8 and 2.9. The thickness of the lucite was 12 mm (15/32
in) throughout, and the separate pieces were assembled with 8-32 brass flathead

screws, except at the toe and crest joints which were permanently cemented.
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2.6 PENCIL LEAD TRANSDUCERS

2.6.1 Introduction

It became apparent after slope test 11 (see Table 5.1 and Section 5.1.3) that
a transducer to detect slope failure mechanically might overcome resolution prob-
lems of the movie film and independently establish the mechanism of slope failure.
With this goal in mind, brittle pencil lead transducers were devised for insertion

into the face of all subsequent slope test specimens.

The concept of the pencil lead transducers is that ordinary pencil leads break
in a brittle manner at low shear and bending loads, and also conduct electricity.
A pencil lead could therefore be used as a circuit breaker in an electrical circuit
containing a timing device and power supply. The timing device could be exter-
nally activated and would stop as soon as its power supply was cut by breakage
of the pencil lead. When applied to the detection of slope failure in a centrifuge
experiment, a Tow of pencil leads could be inserted into the face of the slope spec-
imen across the path to be taken by the failure surface, and, as failure propagated
through the specimen, creating a displacement discontinuity across the failure sur-
face, the pencil leads would break cleanly because of their brittle nature. Their
breakage sequence would establish where the slope failure surface originated and
how it propagated by comparison of the final times frozen on the simultaneously
started timing devices. Individual leads wired to timing circuits were inserted into

slope specimens in the configuration shown in Figure 2.10.
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2.6.2 Transducer construction

The pencil lead transducers were constructed as shown in Figures 2.11 and
2.12, with 0.9 mm diameter Pentel HB leads and 34 AWG Belden 8083 wire. The
first step was to drill a 10/1000 inch hole through one end of the lead, which later
became the “pile tip” when the transducer was driven into its pre-made hole in
the face of the slope specimen with a small hammer (see Section 4.1). Secondly,
the insulation near the end of a length of 34 AWG wire was removed by passing
it first through the flame of a cigarette lighter and then séveral times between a
fold of fine carborundum paper. This allowed the wire-to-lead connection shown
in Figure 2.12 to be made by passing the clean end of wire through the hole,
wrapping the main body of wire around the leader to form a spiral, and lastly
coating the connection with electrically conductive nickel print “glue.” A similar
spiral connection, but without hole and leader, was made at the other end of the

lead with the clean end of another length of 34 AWG wire and nickel print “glue.”

The pehcil lead transducer design described above was the end result of trials
with 0.5 mm and 0.7 mm diameter leads without tip holes, 40 AWG wire, and lead
insertion by driving into pre-made holes or directly into intact material. These
transducers were in general too fragile to cope with insertion by driving, and
without a tip hole the nickel print bond between wire spiral and lead was easily
broken, rendering the transducer inoperative by allowing the wire spiral to slide

the length of the lead during driving.
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2.7 PENCIL LEAD SUPPORT CIRCUITRY

In accordance with the original pencil leaﬂ concept of Section 2.6.1, each
transducer was the “breaker” in a circuit containing its own timing device. More
specifically, the pencil lead transducers inside the centrifuge slope specimen were
connected to the “bounce eliminator” box mounted on the test container (see
Figure 2.13) and described below, and from there via the sliprings to a circuit
board housed inside the Zenith 120 computer in the control shed. The pencil lead
timing devices were mounted on the TTL circuit board of Figure 2.14 in the form of
Intel 8253 digital counting chips. A schematic of the integrated circuits supporting
the pencil lead transducers and digital counters is presented in Figure 2.15, and
a brief description of their operation is given below. Of the twelve possible pencil
lead transducers able to be supported by this circuitry, a maximum of ten were

used in any centrifuge slope failure test (see Figure 2.10).

The “bounce eliminator” box of Figure 2.13 contains two Motorola MC 14490
contact bounce eliminator chips which output a clean digital signal in the event
that their mechanical (pencil lead transducer) inputs bounce during breakage as
thev failure surface propagates through the slope. In so doing, these CMOS chips
introduce a short time delay between input and output, which is the same for all
pencil leads and hence does not affect the relative time between breaking leads.
Once through the bounce eliminator chips, the pencil lead signals are transmitted

by the centrifuge sliprings to the integrated circuit board of Figure 2.14.
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The pencil lead signals coming into the circuit board pass between 10 k)
pull-up and 2 k1 pull-down resistors which prevent a slightly fluctuating voltage,
sometimes introduced by the sliprings, from being misinterpreted as a broken
lead. A broken lead signal will pass between the resistors, only if a pencil lead
transducer has completely broken and triggered the bounce eliminator box to
send the appropriate signal. Once past these resistors, the pencil lead signals are
inverted by LS 14 chips and simultaneously sent to LS 86 XOR gates, LS 08 AND
gates and the 8253 digital counters. The LS 86 XOR gates are the first of several
checkpoints before the pencil lead signals are permitted to trigger the 8253 digital

counters.

As mentioned briefly in the test procedure of Section 4.2.1, the computer reads
the status of the pencil leads during centrifuge spin-up and excludes from further
consideration any leads which break before dynamic loading of the slope specimen
by an impulse sent to the test container. The pencil lead status is read through
LS 244 buffers and broken leads excluded from the pending digital counting cycle
by sending a signal to the appropriate pins of the LS 86 XOR gates through LS
373 latches (see pins A to L on the LS 373 latches of Figure 2.15). Once this has
been done, an S 133 NAND gate hands control over to pin X on one of the LS
373 latches, which is the master control switch thrown just before the impulse is
sent to the test container. It allows the pencil lead signals to pass through the

LS 08 AND gates and enables the digital timers to begin counting simultaneously
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when the first subsequent pencil lead breaks. Thereafter, each digital counter
stops when its own pencil lead breaks, and holds its final count for later retrieval

by the computer program controlling the experiment.
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Figure 2.4 Plan view of centrifuge arm showing servo-valve
and actuating piston for dynamic loading
(test container in flight position)
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Figure 2.11 Stainless steel rod (left) and pencil lead transducer (right)
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Figure 2.12 Construction of pencil lead transducers
(exaggerated scale)
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Figure 2.15 Schematic of integrated circuits supporting pencil
lead transducers and digital counters

Fold out —
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Chapter 3

MODEL SOIL

3.1 INTRODUCTION

The centrifuge slope failure experiments required a model soil whose prop-
erties could be controlled to permit repeatable experiments. In particular, the
soil needed to be weakly cohesive so that a slope specimen made stable at 1g
would become unstable at a higher gravity level, and to be brittle in nature to
ensure slope failure with a distinct failure surface as opposed to failure by general

settlement or flow.

A natural soil satisfying these requirements would have been ideal, with im-
mediate extension to the understanding of prototype slope failures. To this end,
two types of natural soil were used for the early slope failure experiments, the
first being a silty sand from Seal Beach, California, and the second a New Hamp-
shire silt. Both soils derived their cohesion from appropriate contents of fines and
added water. The pore water distribution within the constructed slope specimens,
however, could not be adequately controlled to give repeatable and well-defined
slope failures at an approximately constant gravity level, and no further attempts

were made with these soils. Normally consolidated clay was also abandoned as a
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possible model soil, without being tested, on similar grounds of nonrepeatability,

and high deformability.

An artificial soil was then tried to see if the shortcomings of natural soil could
be overcome. Based on a series of centrifuge tests conducted on square pyramids
some years earlier [90], in which the pyramids were constructed of a sand-gypsum
mixture, it was hoped that a similar material, with plaster of Paris replacing
gypsum, would work well for the slope failure experiments. A material combining
by weight, 1 part plaster of Paris, 2.5 parts water and 60 parts silica 20 sand (see
Figure 3.1), was thus tested in the centrifuge and found to give repeatable and
well-defined slope failures at an approximately constant gravity level, as required.
The sand-plaster of Paris material, of approximate unit weight 93 pcf, was dry for
testing and avoided the problem of sensitivity to moisture content experienced with
the natural soils used initially. The mixing procedure and method of compaction
of the sand-plaster of Paris material for the construction of the slope specimen are

described in detail in Section 4.1.

3.2 LABORATORY TESTS

A series of triaxial (e.g., [13]) and unconfined compression tests was conducted
on the selected granular material to identify its engineering properties, and of par-
ticular importance were its stress-strain characteristics, Poisson’s ratio, cohesion

and friction angle.
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The triaxial tests (e.g.,[16]) were conducted on cylindrical material specimens
of approximately 38 mm diameter and 85 mm length. Confining pressures in the
range of the gravity-induced stresses experienced by the material in the centrifuge
experiments were applied to the samples by means of an adjustable vacuum, and
changes in sample volume were measured by the displacement of water surrounding
the specimen in the triaxial cell. Three tests were carried out at each of three
confining pressures: one-third vacuum (4.4 psi, 0.03 MPa), two-thirds vacuum (8.8
psi, 0.06 MPa), and full vacuum (13.3 psi, 0.09 MPa). The unconfined compression
tests were conducted as triaxial tests at atmospheric pressure. The unconfined
compression specimens were therefore still surrounded by water allowing volume
change to be measured, but giving a confining stress varying linearly with vertical
distance from the water surface. This level of confining pressure was negligible,
however, compared to the strength of the specimens. The displacement-controlled
loading rate for both the triaxial and unconfined compression tests was 0.1 inches

per minute (2.5 mm per min).

During a triaxial or unconfined compression test on a soil sample, axial load
and deformation are measured, as well as total volume change. The numerical con-
stitutive model defined in Section 7.4, however, is a relationship between the radii
of the Mohr’s circles of stress 7,, and strain €,, at any material point and hence
it is these quantities which must ultimately be determined from the laboratory

tests.
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Let 01, 03, and o3 be the principal stresses, €1, €2, and ez the principal
strains, and assume the principal stress and strain tensors to be coaxial. For an
axisymmetric cylindrical soil specimen in a triaxial or unconfined compression test,
the axial direction is principal and conventionally given the subscript “1”, while the
“2” and “3” directions are any two mutually orthogonal directions, also principal,
lying in a ciréular cross-sectional plane of the sample. Due to axial symmetry,

0y = 03, and due to assumed isotropy in a cross-sectional plane, €5 = €3.

From the axial load and deformation measured during a test, the axial stress
o1 and strain €; are computed, and the volume change of the sample gives the
volumetric strain or dilatation €, . If the stresses o7, 02, and o3, and strains ¢;
€2, and €3 are positive for compression, negative for tension, and ¢, is positive
for a volume increase, negative for a volume decrease, then the relationship for

volumetric strain becomes
—€y — €1 + €2+ €3 = €1 + 2¢3 (3.1)

from which €3 may be expressed as

€3 = _(6—“;—2) . (3.2)

The radius of the Mohr’s circle of strain is given by

€1 — €
€ = 12 2 (3.3)

and substituting for €3 from (3.2) yields

. .
e = (3e1 +€,) . (3.4)
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The radius of the Mohr’s circle of stress is given by
Ty = ——— - (3.5)

where o3 is the sample confining pressure.

An experimental determination of Poisson’s ratio v may also be made from

a triaxial or unconfined compression test according to the definition

1 v
u:~53:5(1+6—> , (3.6)

€1 €

where (3.2) has been used in the substitution for €3 .

3.3 SAND-PLASTER OF PARIS MATERIAL PROPERTIES

3.3.1 Unconfined compression test results

The results of a typical unconfined compression test on the sand-plaster of
Paris material are shown in Figures 3.2 to 3.4. Figure 3.2 is a continuous plot of
the initial part of the test, showing axial and shear stress versus axial and shear
strain, and providing higher resolution than the discrete, reduced data of Figures
3.3(a) and 3.4(a) for the same test. It should be noted that the first recorded
data point of Figures 3.3(a) and 3.4(a) fails to capture the peak of Figure 3.2, and
hence an estimate of the cohesion of the material is made as one-half the peak axial
stress of Figure 3.2, or 2 psi (14 kPa). Because of the material’s low cohesion and

very brittle nature, the soil skeleton begins to break down and the stress-strain
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curve becomes nonlinear almost immediately after initial application of the load
and hence the values of Poisson’s ratio given in Figure 3.4(b) (computed from data
points already in the nonlinear range) are poor estimates of this material property.
Better estimates of v would require more detailed volume change readings on the

initial rising limb of the stress-strain curve of Figure 3.2 (at deviatoric stresses

below approximately 1 psi).

3.3.2 Triaxial test results

Typical results of the three triaxial tests conducted on the sand-plaster of
Paris material at each confining pressure of one-third, two-thirds, and full vac-
uum are shown in Figures 3.5 through 3.10, where Figures 3.5 and 3.6 are the
results for one-third vacuum, and the two-thirds and full vacuum results appear
in Figures 3.7 and 3.8, and 3.9 and 3.10 respectively. Note that the two-thirds
vacuum test (Figures 3.7 and 3.8) included three post-peak unloading-reloading
cycles to determine the sand-plaster of Paris material’s unloading characteristics

for incorporation into the numerical soil model of Section 7.4.

In all three sets of vacuum tests, the presence of confining pressure increased
the strain at which peak stress occurred and diminished the magnitude of the
post-peak reduction in strength compared to the unconfined compression tests
(see Section 3.3.1). Neither of these observations, however, validate the estimates
of Poisson’s ratio given in Figures 3.6(b), 3.8(b) and 3.10(b), and although v is

seen to lie in the range 0.2 to 0.45 at low strain, with a plausible average value of
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approximately 0.35, this is still an inaccurate estimate for the same reasons given
in Section 3.3.1, and highlights the inadequacy of the triaxial tests as conducted

for the measurement of Poisson’s ratio.

3.3.3 Idealized constitutive relation

The primary aim of the laboratory tests of Sections 3.3.1 and 3.3.2 was to
provide experimental values for the numerical soil model parameters of Section
7.4. In particular, test values were required for soil constants S; and Sy of (7.31)
and Poisson’s ratio v of (7.34). Poisson’s ratio was measured to lie in the range

0.2 to 0.45, as discussed in Section 3.3.2.

Estimates of S; and S, were obtained from Figure 3.2 and the 7,, versus
en curves of Figures 3.6(a), 3.8(a) and 3.10(a) where 7,, and ¢,, were computed
for each triaxial test data point from (3.5) and (3.4) respectively. S; represents
the shear modulus of the material at zero confining pressure (i.e., unconfined) and
was obtained by finding the slope of the chord joining the origin to the peak of
Figure 3.2, with the ordinate and abscissa of the peak expressed in terms of the
radii of the Mohr’s circles of stress 7,, and strain ¢,, , respectively. Here 7,
equals 2.05 psi, with ¢,, equal to 5.6 x 1074, éiving an estimate for Sy of 3660
psior 25 MPa. Since the stress-strain curve of Figure 3.2 climbs almost linearly to
its low strain peak, S; may be taken as the tangent shear modulus at the onset

of loading, even though it was technically computed as a secant modulus.
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Sq represents the variation of shear modulus with confining pressure and its
determination is described below. From Figures 3.6(a), 3.8(a), and 3.10(a), an
estimate of the tangent shear modulus of the material at the onset of loading at
each confining pressure was obtained by finding the slope of the chord joining the
origin to the first data point. This tangent shear modulus was plotted against its
confining pressure in Figure 3.11 for each of the three triaxial tests conducted at
each confining pressure (i.e., a total of 9 triaxial tests). Figure 3.11 shows that the
shear modulus varies significantly at each confining pressure and also shows the
estimate of S; plotted at zero confining pressure. A dashed line representative
of the data was then drawn by eye within the shear modulus bounds of Figure
3.11 to quantify the variation of shear modulus S with confining pressure p given
by (7.31). The slope of this line gives S, as 300 MPa/MPa while the ordinate

intercept gives S; as 20 MPa. Hence (7.31) becomes
S =20+ 300p MPa (3.7)

and it is this expression for S which is the basis of the results presented in Section

8.3.

In terms of the conventional shear modulus G, where G = S/2, (3.7) repre-

sents a variation of G with p given by
G =10+ 150p MPa , (3.8)

which may be compared with an alternative expression proposed by Seed and
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Idriss [96] for medium-dense sand of the form

wi=

G = 1000 K3 (0],,)% psf (3.9)

where o), is the mean principal effective stress (or confining pressure) in psf and
K, is a constant which depends on the sand’s relative density and strain level.

Replacing o], by p, the metric equivalent of (3.9) is
G=69K,\p MPa . (3.10)

For sands of all relative densities in the strain range 10~% to 103 (within which
the peak of Figure 3.2 falls), K, has a value of 20. The variations of shear modulus
with confining pressure given by (3.7), (3.8) and (3.10), with K, = 20, are plotted

for more direct comparison in Figure 3.11.

Estimates of the other required soil constants €,, , €y, , and 7, of the
numerical soil model of Section 7.4 (see Figure 7.4), assumed for simplicity to be
independent of confining pressure, are based on the stress-strain curve of Figure
3.2 for unconfined compression. ¢, is the radius of the Mohr’s circle of strain
corresponding to the peak of Figure 3.2, equal to 5.6 x 107, and rounded off to
1 x 1072 for the numerical soil model of Section 7.4. ¢,,, is the radius of the
Mohr’s circle of strain at which the residual shear strength 7, of the material is
reached, equal to 4 x 1072 from Figure 3.2 and for the numerical soil model. 7,
is the radius of the Mohr’s circle of stress corresponding to the residual stress of
Figure 3.2, and is equal to 40 percent of the peak shear stress (i.e., 0.4 51 €,,, or

8 x 1073 MPa in the numerical soil model).
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Assuming the shear modulus variation with confining pressure of (3.7), and
€r: to be a ﬁxed constant of 1 x 1073, independent of confining pressure (even
though constant €, is not a good assumption according to the triaxial test re-
sults), the equivalent friction angle ¢ of the numerical soil model can be deter-
mined, as described below. It is to be noted that this is not the usual friction

angle of the real sand-plaster of Paris material, as discussed in Section 3.4.

If 70 is the peak shear stress (i.e., the shear stress at which shear failure of

the material takes place) given by
> = Se€y: (3.11)

and the Mohr-Coulomb condition on the failure plane of a granular material has
the form

Tr =y + Oy tang (3.12)

where 7, is the shear stress to cause failure, ¢,, is the cohesion of the material and
oy is the normal stress acting on the failure plane, then (3.12) may be rewritten

as

Tr =y +ptang (3.13)

and, differentiating with respect to confining pressure p,

d
dT; =tan¢ . (3.14)
From (3.11), however,
dtp ds
. 2 (3.15)
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since €,,, is a constant, and from (7.31) and (3.7),

ds
= =85 =300 . :
= (3.16)

Combining (3.14), (3.15), and (3.16) gives
tan ¢ = Sq €, (3.17)
and substituting for .Sy from (3.16), with €, =1 x 107, yields

¢ = arctan0.3 = 16.7° . (3.18)

3.4 DISCUSSION

The sand-plaster of Paris material ultimately used for the centrifuge slope
failure experiments was only weakly cohesive and extremely brittle. As such, the
cohesion and skeletal structure of the material in the failure zone of the sample
broke down almost immediately upon application of the load during the labora-
tory tests. Once this breakdown had occurred, at very low strain (1073), the
sand-plaster of Paris material effectively became a cohesionless, coarse sand. It
was therefore considered more appropriate to determine the engineering proper-
ties of the intact material from its initial response to load application, rather than
from its behavior at higher strain levels. This was the reason for determining
the cohesion of the material from the almost immediate peak of Figure 3.2 dur-

ing a typical unconfined compression test, and for determining the variation of
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shear modulus with confining pressure, and hence friction angle, from the initial
response of the material during the triaxial tgsts. This procedure deviates from
the common practice of determining the friction angle from the envelope to the
Mohr’s circles corresponding to the peak stresses of triaxial tests conducted at
different confining pressures. The latter practice is valid for a clay-type soil which
retains its cohesion even at the large strain corresponding to peak stress, but not
for the brittle soil considered here. In the triaxial tests conducted on the sand-
plaster of Paris material at confining pressures of one-third, two-thirds, and full
vacuum, the strain level corresponding to peak stress is approximately 10 percent,
from which a conventional friction angle of approximately 35° is obtained. The
friction angle of 16.7° determined at a strain level between 10~% and 1073 is al-
most half this value and indicates that the frictional resistance of the sand-plaster
of Paris material is not fully mobilized at the strain level at which its cohesion

breaks down.
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Figure 3.3 Unconfined compression test results for

sand-plaster of Paris material
(a) Deviator stress versus axial strain
(b) Volume strain versus axial strain
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Figure 3.4 Unconfined compression test results for

sand-plaster of Paris material

(a) Shear stress (radius of Mohr’s stress circle) versus
shear strain (radius of Mohr’s strain circle)

(b) Poisson’s ratio versus axial strain
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Figure 3.5 One-third vacuum triaxial test results for

sand-plaster of Paris material
(a) Deviator stress versus axial strain
(b) Volume strain versus axial strain
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Figure 3.6 One-third vacuum triaxial test results for

sand-plaster of Paris material

(a) Shear stress (radius of Mohr’s stress circle) versus
shear strain (radius of Mohr’s strain circle)

(b) Poisson’s ratio versus axial strain
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Figure 3.7 Two-thirds vacuum triaxial test results for
sand-plaster of Paris material
(a) Deviator stress versus axial strain
(b) Volume strain versus axial strain
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Figure 3.8 Two-thirds vacuum triaxial test results for

sand-plaster of Paris material

(a) Shear stress (radius of Mohr’s stress circle) versus
shear strain (radius of Mohr’s strain circle)

(b) Poisson’s ratio versus axial strain
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Figure 3.9 Full vacuum triaxial test results for

sand-plaster of Paris material
(a) Deviator stress versus axial strain
(b) Volume strain versus axial strain
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Figure 3.10 Full vacuum triaxial test results for

sand-plaster of Paris material

(a) Shear stress (radius of Mohr’s stress circle) versus
shear strain (radius of Mohr’s strain circle)

(b) Poisson’s ratio versus axial strain
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Chapter 4

EXPERIMENTAL PROCEDURE

4.1 SAMPLE PREPARATION

The slope specimen used in the centrifuge experiments of Sections 4.2 and
5.1 was constructed of approximately 34 pounds of the 60:1 sand-plaster of Paris
material whose properties are given in Chapter 3. A sufficient quantity of this
material was made from 4% batches each of 8 pounds silica 20 sand, 0.13 pounds
plaster of Paris and 182 ml (0.4 pounds) water. Each batch of ingredients was
combined and mixed in a kitchen mixer by pouring the dry sand into the empty
mixing bowl, setting the mixer running at its slowest speed, and gradually adding
the water to the dry sand. With the mixer still running, the plaster of Paris was
then slowly added to the moist sand, signifying the start of the plaster’s chemical
reaction. At this point, the mixer was briefly stopped to scrape any unblended
plaster of Paris from the beater and sides of the bowl, before being restarted.
As soon as the material had been mixed to a uniform consistency, the mixer was
stopped and the contents of the mixing bowl emptied into the lucite slope mold,
turned upside down as shown in Figure 4.1. Eight pound batches of sand were

used since this was the capacity of the kitchen mixer. It should also be noted that
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while it is usually desirable for better mixing in cooking to blend all dry ingredients
before adding liquids, this procedure was found unsatisfactory for the sand-plaster
of Paris material. The coarse sand grains were unable to trap the very fine plaster
of Paris in their void spaces and prevent the plaster from settling to the bottom
of the mixing bowl before addition of the water, and thus the plaster of Paris had

to be added to the moist sand instead.

Once in the lucite mold, each 8 pound batch of soil was compacted into a

layer between 1% and 2 inches thick (of approximate unit weight 93 pcf) with a

Ao

inch diameter aluminum rod. The fourth batch needed to be added in two halves,
with half the compactive effort applied to each, to avoid excessive spillage over
the sides of the mold during compaction. Approximately half of batch “4%” of
the soil was added to overfill the mold and any excess discarded as the compacted
slope specimen was levelled off with the open bottom of the mold (see Figure 4.2).
Holes for the pencil lead transducers were then made in the sample according to
the configuration shown in Figure 2.10 by inserting 1.6 mm diameter stainless steel
rods (see Figure 2.11) through pre-drilled holes in the face of the lucite mold. The
mold, complete with compacted slope specimen and stainless steel rods was then
put in a 130°F oven for approximately 12 hours to hasten and ensure complete

setting of the plaster of Paris within the moist sand (see Figure 4.3).

After removing the slope sample from the oven and allowing it to cool, the

entire mold was turned onto its side and the upward-facing side wall removed to
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expose the hardened sand-plaster of Paris material. A grid of orthogonal black
lines was then spray-painted onto the exposed side (see Figure 4.4), and the side
wall of the mold replaced. The slope specimen, with stainless steel rods still in
place (see Figure 4.5), was then transported from the basement soil mechanics

laboratory to the rooftop centrifuge room, fully supported in the lucite mold.

Once in the centrifuge room, a rubber pad and aluminum plate were placed
on the upward-facing bottom of the slope before inverting the entire specimen
and mold. This turned the slope sample right way up onto the rubber pad and
aluminum baseplate, allowing the stainless steel rods to be removed and the lucite
mold to be dismantled from around the sample, screw by screw from alternate
sides, beginning at the bottom of the specimen. Wire hook lifting handles were
then attached to each end of the aluminum baseplate (see Figure 4.6} and the free-
standing slope specimen was lifted and lowered into the rectangular test container
on the end of the centrifuge arm. After removing the lifting hooks, a check was
made to ensure that the grid-painted side of the specimen was in contact with the
combination glass and lucite front wall of the test container. A plate of tempered
glass was then inserted between the slope specimen and rear aluminum wall of the
test container to provide t