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ABSTRACT 

 Signal recognition particle (SRP) and signal recognition particle receptor (SR) are 

evolutionarily conserved GTPases that deliver secretory and membrane proteins to the protein-

conducting channel Sec61 complex in the lipid bilayer of the endoplasmic reticulum in 

eukaryotes or the SecYEG complex in the inner membrane of bacteria. Unlike the canonical Ras-

type GTPases, SRP and SR are activated via nucleotide-dependent heterodimerization. Upon 

formation of the SR•SRP targeting complex, SRP and SR undergo a series of discrete 

conformational changes that culminate in their reciprocal activation and hydrolysis of GTP. How 

the SR•SRP GTPase cycle is regulated and coupled to the delivery of the cargo protein to the 

protein-conducting channel at the target membrane is not well-understood. Here we examine the 

role of the lipid bilayer and SecYEG in regulation of the SRP-mediated protein targeting 

pathway and show that they serve as important biological cues that spatially control the targeting 

reaction.  

 In the first chapter, we show that anionic phospholipids of the inner membrane activate 

the bacterial SR, FtsY, and favor the late conformational states of the targeting complex 

conducive to efficient unloading of the cargo. The results of our studies suggest that the lipid 

bilayer acts as a spatial cue that weakens the interaction of the cargo protein with SRP and 

primes the complex for unloading its cargo onto SecYEG.  

 In the second chapter, we focus on the effect of SecYEG on the conformational states and 

activity of the targeting complex. While phospholipids prime the complex for unloading its 

cargo, they are insufficient to trigger hydrolysis of GTP and the release of the cargo from the 

complex. SecYEG modulates the conformation of the targeting complex and triggers the GTP 

hydrolysis from the complex, thus driving the targeting reaction to completion. The results of 
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this study suggest that SecYEG is not a passive recipient of the cargo protein; rather, it actively 

releases the cargo from the targeting complex. Together, anionic phospholipids and SecYEG 

serve distinct yet complementary roles. They spatially control the targeting reaction in a 

sequential manner, ensuring efficient delivery and unloading of the cargo protein.  

 In the third chapter, we reconstitute the transfer reaction in vitro and visualize it in real 

time. We show that the ribosome-nascent chain complex is transferred to SecYEG via a stepwise 

mechanism with gradual dissolution and formation of the contacts with SRP and SecYEG, 

respectively, explaining how the cargo is kept tethered to the membrane during the transfer and 

how its loss to the cytosol is avoided.  

 In the fourth chapter, we examine interaction of SecYEG with secretory and membrane 

proteins and attempt to address the role of a novel insertase YidC in this interaction. We show 

that detergent-solubilized SecYEG is capable of discriminating between the nascent chains of 

various lengths and engages a signal sequence in a well-defined conformation in the absence of 

accessory factors. Further, YidC alters the conformation of the signal peptide bound to SecYEG. 

The results described in this chapter show that YidC affects the SecYEG-nascent chain 

interaction at early stages of translocation/insertion and suggest a YidC-facilitated mechanism 

for lateral exit of transmembrane domains from SecYEG into the lipid bilayer.  
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INTRODUCTION AND SUMMARY 

 Proper and timely delivery of newly synthesized proteins from the cytosol to a correct 

subcellular compartment is essential for maintaining structural and functional integrity of the 

living cell. Nearly 30 percent of the proteome whose synthesis is initiated in the cytosol is 

delivered to the endoplasmic reticulum (ER) in eukaryotes or the inner membrane in bacteria 

(Shao, 2011; Pool, 2005). A large fraction of this subset of proteins in eukaryotes is further 

processed via a well-characterized secretory pathway and is either exported or integrated into the 

plasma membrane (Miller, 2013; Zanetti, 2012) (Figure 1A). A diverse set of disorders in 

humans is linked to functional anomalies in the secretory pathway, making various aspects of 

protein secretion an area of intense investigation (Wang, 2012).  

 
Figure 1. Main features of the 
secretory pathway. A. In 
eukaryotes, the secretory 
pathway begins with targeting of 
the translating ribosomes to the 
sites of translocation at ER. The 
protein is posttranslationally 
modified and trafficked via 
Golgi apparatus to the plasma 
membrane. B. In prokaryotes, 
ribosomes translating membrane 
proteins are cotranslationally 
targeted to the inner membrane 
(blue) of the cell. 
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 Cotranslational targeting of nascent proteins to the sites of translocation at ER constitutes 

the first essential step of the pathway; its proper execution thus largely affects subsequent steps 

in the pathway and determines successful secretion or integration of a nascent protein. One of the 
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lines of research in the Shan laboratory focuses on understanding how ribosome-nascent chain 

complexes (RNCs) are delivered to the target membrane in a timely and faithful fashion. 

 Although bacteria lack the secretory pathway characteristic of the eukaryotic cell, the 

targeting machinery that engages RNCs and the translocation machinery at the target membrane 

are highly conserved across the living world, allowing us to use E. coli as a model organism to 

study the molecular details of cotranslational protein targeting and its regulation (Figure 1B and 

2) (Akopian, 2013; Cross, 2009). 
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Figure 2.  Protein export in prokaryotes and eukaryotes. In prokaryotes and eukaryotes a significant subset of 
proteins is delivered from the cytosol cotranslationally to conserved sites of translocation in the lipid bilayer. In 
bacteria, the translocation machinery is represented by a heterotrimeric SecYEG complex that mediates translocation 
of secretory proteins across the lipid bilayer into the periplasmic space and integration of membrane proteins into the 
lipid bilayer. In eukaryotes, the protein-conducting channel is the heterotrimeric Sec61 complex embedded in the 
lipid bilayer of ER and composed of Sec61α, Sec61γ, and Sec61β subunits homologous to the bacterial SecY, SecE, 
and SecG, respectively. 

 

 Cotranslational protein targeting is mediated by conserved GTPases, Signal Recognition 

Particle (SRP) and its receptor, SR (Kudva, 2013; Akopian, 2013; Saraogi, 2013; Shan, 2009). A 

universally conserved heterotrimeric protein conducting channel at the target membrane, Sec61 

complex in eukaryotes and SecYEG in bacteria, is the site of destination of the cargo (Figure 2) 

(Cross, 2009; Driessen, 2008; van den Berg, 2004; Hanada, 1994; Gorlich, 1992; Brundage, 
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1990). While in eukaryotes the SRP-mediated protein targeting pathway handles both membrane 

and secretory proteins, in bacteria only the membrane proteome (~1000 proteins) and a small 

subset of secretory proteins are delivered to the SecYEG complex cotranslationally, with the 

majority of secretory, periplasmic, and outer membrane proteins (~ 400-500) being targeted to 

SecYEG posttranslationally via the SecB/SecA system (Chatzi, 2014; Kudva, 2013; Hartl, 1990; 

Lee, 1986).  

 
Figure 3.  Main steps of the cotranslational protein 
targeting pathway. In the cytosol, SRP engages a 
ribosome translating a secretory or membrane protein by 
binding the signal peptide and the large ribosomal 
subunit at the ribosomal tunnel exit site. The cargo-
loaded SRP is delivered to the target membrane via 
interaction of SRP with its receptor, FtsY in bacteria. 
The targeting SRP•FtsY complex unloads RNC onto the 
SecYEG translocon, and the ribosome continues to 
synthesize the nascent chain. In the case of a secretory 
protein, the polypeptide chain is translocated across the 
channel into the periplasmic space. If the nascent 
polypeptide is that of a membrane protein, 
transmembrane domains (TMDs) exit SecYEG via the 
lateral gate. The orange rectangle represents either a 
signal sequence or the first TMD of a secretory or 
membrane protein, respectively. 
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 Cotranslational protein targeting begins with recognition of the N-terminal signal 

sequence of a secretory protein or a signal anchor (transmembrane domain, or TM) of a 

membrane protein by SRP, which binds RNC by contacting both the nascent polypeptide chain 

and the large ribosomal subunit at the ribosomal tunnel exit site (Hainzl, 2011; Janda, 2010; 

Schaffitzel, 2006; Pool, 2005, 2002; Ullers, 2003; Walter, 1981; Walter, 1980). The cargo-

loaded SRP is then delivered to the target membrane by forming a complex with its receptor SR 

(Shan, 2004; Focia, 2004; Eitan, 2004; Luirink, 1994; Gilmore, 1982). The RNC is transferred 

from the targeting SR•SRP complex to the protein-conducting channel, and GTP hydrolysis 
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triggers dissociation of the complex, allowing SRP and SR to be recycled for another round of 

targeting (Connoly, 1994). As the polypeptide chain is elongated, it is either translocated across 

the membrane in the case of a secretory protein or integrated into the lipid bilayer in the case of a 

membrane protein. In the former case, the polypeptide chain passes through the aqueous pore of 

the translocon, while in the latter case TMs exit the translocon via its lateral gate (du Plessis, 

2009; Rapoport, 2007; van den Berg, 2004) (Figure 3).  

In bacteria, SRP is a ribonucleoprotein composed of a 48-kDa protein, Ffh (fifty four 

homologue), homologous to a 54-kDa subunit of SRP in eukaryotes, and 4.5S RNA (Poritz, 

1990). The latter has been shown to play an essential regulatory role in the SRP pathway by 

increasing the rate of association of SRP and SR and accelerating the rate of GTP hydrolysis 

from the complex (Voigts-Hoffman, 2013; Shen, 2012; Ataide, 2011; Bradshaw, 2009; Neher, 

2008; Peluso, 2001; Peluso, 2000). Ffh and FtsY are twin GTPases characterized by the presence 

of the conserved NG-domain, the main functional and structural component of the two proteins 

(Figure 4) (Egea, 2004; Focia, 2004; Eitan, 2004; Montoya 1997a, 1997b; Freyman, 1997).  The 

NG-domain is subdivided into the GTPase G-domain and the regulatory N-domain. The G-

domain shares homology with classical GTPases, such as Ras and EF-Tu. However, unlike Ras 

GTPases, both Ffh and FtsY contain a unique insertion box domain (IBD) with β-α-β-α 

composition, whose loops bear catalytic residues required for GTP hydrolysis.  The N-domain is 

represented by a bundle of four α-helices that pack against the G-domain. In addition to the NG-

domain, FtsY contains a highly acidic N-terminal A-domain important in its association with the 

membrane (Braig, 2009; Weiche, 2008; Parlitz, 2007; Angelini, 2006, 2005), while Ffh contains 

the C-terminal methionine-rich M-domain that binds 4.5S RNA and interacts with the signal 

sequence of the nascent polypeptide chain (Zopf, 1990). 
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Figure 4. Domain organization and 
structure of the conserved core of the 
SRP•FtsY complex.  Both Ffh and FtsY 
contain a structurally and functionally 
conserved core called the NG-domain, 
composed of the GTPase G-domain and the 
regulatory N-domain. Ffh contains an 
additional C-terminal methionine-rich M-
domain that binds a signal sequence and 
4.5S RNA, while FtsY has an acidic A-
domain implicated in its association with 
the target membrane. The GTP analogue 
GMPPCP is shown in stick notation in the 
composite active site of the complex (red).  
The crystal structure of the Ffh•FtsY 
complex from T. aquaticus is reproduced 
with Pymol from Egea, 2004. 

 

 

 

 

 

 

 

  

 FtsY and SRP represent a unique class of GTPases that differ from a classical Ras 

GTPase in several ways. They do not undergo a major conformational change upon binding 

GTP, and they associate with both GTP and GDP with equally low affinity (Shan, 2009, 2004; 

Peluso, 2001). No guanine-nucleotide exchange factors (GEFs) or GTPase activating proteins 

(GAPs) are required for binding and hydrolysis of GTP. Instead, the GTPases in FtsY and SRP 

are reciprocally activated as the two proteins form a heterodimer in a nucleotide-dependent 

manner (Figure 4). Other members of this novel class of GTPases include dynamins, FlhF, 

MinD, MnmE, septins, and Toc proteins (Saraogi, 2013).  

 A significant amount of time and effort in the Shan laboratory was devoted to 

understanding how the activity of the SRP•FtsY complex is regulated. The research revealed that 

the heterodimer undergoes a series of discrete conformational changes that effectively couple 

activation of the GTPases to efficient delivery and unloading of the cargo at the target membrane 

in a timely and faithful manner (Saraogi, 2013; Akopian, 2013; Zhang, 2010, 2009; Shan, 2009; ) 

(Figure 5). 
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Figure 5. Conformational states of the targeting complex. From the initial heterodimerization to the disassembly 
upon the hydrolysis of GTP, the SRP•FtsY complex undergoes a series of discrete conformational changes. The two 
GTPases first form a transient early intermediate held by electrostatic contacts between the N-domains. The early 
complex then rearranges to the closed conformational state in a GTP-dependent manner. Finally, repositioning of 
the catalytic loops of IBDs bring the catalytic residues of SRP and FtsY in close proximity to GTP, converting the 
complex to the activated state and priming it for GTP hydrolysis. The hydrolysis of GTP triggers disassembly of the 
complex. While GTP hydrolysis is required for recycling of the GTPases, it is not required for unloading of the 
cargo onto SecYEG, which may occur concurrently with the GTP hydrolysis or precede it. The figure was modified 
based on Zhang, 2009. T and D denote GTP and GDP, respectively. 

 FtsY and SRP by themselves exist in an open conformation possessing a poorly 

organized active site and characterized by low basal GTPase activity (Shan, 2009, 2003; Peluso, 

2001). Initial association of the two proteins results in formation of a highly labile (Kd ~ 4-8 μM) 

early intermediate held by electrostatic interactions between the charged surfaces of the N-

domains (Zhang, 2011, 2008; Estrozi, 2011). The formation of the early complex is nucleotide-

independent; however, subsequent conformational changes of the heterodimer occur only in the 

presence of GTP or a non-hydrolyzable GTP analogue. In the presence of GTP, the early 

complex is converted to the closed conformational state. This conformational change involves 

movement of the N-domains toward the center of the heterodimer and removal of the steric block 

imposed by the first helix of the N-domain of both Ffh and FtsY, αN1,  resulting in a complex 

with a much larger number of stabilizing contacts between the NG-domains (Neher, 2008; Shan, 
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2004; Egea, 2004). The two GTP molecules in the composite active site are oriented head-to-tail 

and form contacts between the ribose hydroxyl group and the γ-phosphate. A final 

conformational change, the repositioning of the catalytic loops of IBDs with respect to GTP, 

converts the closed complex to the activated state, in which the GTPases are primed for GTP 

hydrolysis. Upon GTP hydrolysis, critical contacts between the two GTP molecules in the 

composite active site are lost, contributing to the weakening of the affinity between the two 

proteins. The negative charge of free phosphates further destabilizes the heterodimer, leading to 

dissociation of the complex and freeing of the SRP and FtsY for another round of the GTPase 

cycle (Shan, 2007, 2004; Connoly, 1991).  

 The role of the conformational states of the targeting complex in regulation of the protein 

targeting reaction can only be understood if considered in the context of the biological cues in 

the pathway capable of modulating the conformation of the heterodimer. One such factor is the 

cargo protein. It has been demonstrated in the Shan laboratory that correct SRP substrates, RNCs 

bearing nascent chains with engineered highly hydrophobic signal sequences (1A9L, 2A8L, 

3A7L), dramatically alter the energy landscape of the conformational rearrangement of the 

complex (Zhang, 2009) (Figure 6). RNC stabilizes the early intermediate ~ 1000-fold by 

reorganizing the interacting GTPases and maximizing the number of contacts between them. The 

Kd of the early complex in the presence of a correct SRP substrate falls to approximately 40 nM. 

One consequence of such stabilizing effect of RNC on the SRP-FtsY interaction in the early 

complex is the proportionate stabilization of the RNC-SRP interaction. Calculations based on the 

known Kd values in the thermodynamic cycle of the early complex formation show that in this 

FtsY•SRP•RNC intermediate SRP binds RNC with affinity in the picomolar range, compared to 
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the nanomolar affinity in the SRP•RNC complex. The SRP is thus said to be in the cargo-binding 

mode in the early complex.  
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 Such tight interaction of SRP with RNC is beneficial at the early stages of targeting as it 

prolongs the lifetime of the SRP-RNC association and allows the early complex to reach the 

target membrane without premature loss of RNC to the cytosol. However, it poses a significant 

challenge for subsequent release of the cargo to the translocon. To weaken this interaction, the 

early complex rearranges to the closed conformational state in which the affinity of SRP for 

RNC becomes ~ 3 nM. In the closed complex, SRP is in the cargo-releasing mode. Importantly, 

while RNC overall increases the rate of the closed complex ~ 100-fold, it slows the 

early→closed rearrangement, thus making the handover to the translocation channel unfavorable 

(Zhang, 2009). Further, RNC inhibits the formation of the activated complex indicated by ~8-

fold reduction of the rate of GTP hydrolysis (Zhang, 2009). While GTP hydrolysis per se is not 
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Figure 6. Effect of RNC on the SRP pathway.  RNCs that are correct SRP substrates stabilize the early complex 
(1, red box) and increase the rate of formation of the stable complex (2). They also slow down the rearrangement 
of the early complex to the closed state (3). Further, the GTP hydrolysis from the targeting complex is inhibited in 
the presence of RNC (4). Overall, these effects, although increasing the lifetime of the SRP-RNC interaction and 
preventing premature disassembly of the targeting complex in the cytosol, pose a significant barrier for the 
subsequent handover of the cargo to the translocation machinery at the target membrane. 
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required for the transfer of RNC to SecYEG, formation of the activated complex is critical for 

the handover (Shan, 2007). Such effect of RNC is intriguing. By favoring the early and 

disfavoring the late conformational states, RNC increases the chances of the targeting complex 

of reaching the target membrane, but makes the subsequent handover unfavorable. The effects of 

RNC alone, therefore, are insufficient to explain the efficient and timely manner in which the 

targeting reaction takes place.  

 The solution to this seemingly puzzling observation may be in the role of other regulatory 

factors in the SRP pathway that perhaps counteract the effect of RNC in a spatially and 

temporally controlled manner. The analysis of the effect of RNC on the FtsY•SRP complex 

described above was carried out in the absence of other potential biological cues, the lipid bilayer 

of the target membrane and the protein-conducting channel (Zhang, 2010, 2009, 2008). To fully 

explore how the GTPase cycle of the targeting complex is coupled to the efficient delivery of the 

cargo protein to the translocation channel, we examined the role of the target membrane itself by 

separately analyzing the contribution of the phospholipid bilayer and SecYEG on the SRP-

mediated protein targeting pathway. 

 The first chapter of this thesis describes a thorough characterization of the effect of 

synthetic lipid vesicles, resembling the lipid composition of the E. coli inner membrane, on the 

SRP pathway. Earlier studies had shown that FtsY interacts with and is stimulated by anionic 

phospholipids (de Leeuw, 2000). However, for a long time, the physiological role of this 

interaction or its possible regulatory effects on cotranslational protein targeting remained 

unclear. Using a variety of biochemical and biophysical assays, we show that anionic 

phospholipids pre-organize FtsY into an active conformation, thus favoring the late 

conformational states of the targeting complex and facilitating the handover of RNC to SecYEG 
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(Lam, 2010).  Unlike the FtsY•SRP complex formed in the cytosol, the targeting complex 

formed at the membrane is not likely to be trapped in the early intermediate since the lipid 

bilayer favors the closed/activated conformation of FtsY. The results of our studies further 

suggest that the fraction of the closed complex that forms in the cytosol as a result of an 

unfavorable rearrangement from the early intermediate is partitioned to the membrane due to its 

higher affinity for the lipid bilayer. Therefore, regardless of the route via which the targeting 

complex is formed, at the membrane or in the cytosol, the phospholipid bilayer makes the 

targeting reaction more efficient.   

 The effect of phospholipids alone, however, is insufficient to explain the efficient 

handover of RNC to SecYEG. While phospholipids favor the late conformational states of the 

targeting complex priming it for unloading its cargo, they do not remove the inhibitory effect of 

RNC on GTP hydrolysis (Figure 6). As mentioned earlier, formation of the activated 

conformational state is critical for the handoff of RNC to the translocation channel and 

completion of the targeting reaction. In the second chapter, we test the hypothesis that the trigger 

activating the targeting complex is provided by the translocation channel itself. We show that 

SecYEG solubilized in detergent and devoid of lipids and other protein factors is capable of 

removing the inhibitory effect of RNC on activation of the targeting complex and driving the 

cotranslational targeting reaction to completion (Akopian, 2013; Shen, 2012). We further explain 

the mechanism whereby this effect of SecYEG is achieved and propose an on-pathway 

SecYEG•FtsY•SRP•RNC transfer intermediate (Akopian 2013; Shen, 2012). Combined with 

previous observations, the results described in this chapter allow us to provide a high-resolution 

molecular picture of how the three biological cues – RNC, phospholipids, and SecYEG – 

sequentially regulate cotranslational protein targeting by modulating the conformation and 

 10



 

activity of the targeting complex, resulting in highly efficient delivery and transfer of RNC to 

SecYEG (Figure 7).  

 Figure 7. Coordinated action of 
RNC, phospholipid bilayer, and 
SecYEG temporally and spatially 
regulates SRP-mediated protein 
targeting. The boxed numbers 
indicate when in the pathway the 
three biological cues exert their 
effect on the targeting complex. See 
text below for description of the 
figure. 
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 In the cytosol, RNC stabilizes the early complex and prevents its activation, prolonging 

its lifetime and thus increasing the time window for delivery of the complex to the target 

membrane without premature dissociation of the cargo (Figure 7, stage 1). The target membrane 

acts as a critical spatial cue that facilitates the rearrangement of the complex to the closed 

conformational state, weakening the affinity of SRP for RNC and priming the complex for 

unloading its cargo (Figure 7, stage 2). The final spatial cue is provided by SecYEG; it triggers 

the formation of the activated complex from which the handover of the cargo takes place (Figure 

7, stage 3). Thus, the coordinated action of RNC, phospholipids, and SecYEG on the targeting 

complex ensures both efficient binding and efficient release of the cargo in the SRP pathway.  

 The handover of RNC from the targeting to the translocation machinery at the inner 

membrane is the least-understood step in the cotranslational protein targeting pathway. SRP and 

SecYEG bind the translating ribosome in a mutually exclusive manner as both form contacts 

with the nascent chain and the L23 protein at the ribosomal tunnel exit site (Fraunfeld, 2011; 

Menetret, 2007, 2000; Plath, 1998). Thus, in order to be transferred to SecYEG, RNC must first 

be released from the targeting complex, raising a question as to how the loss of the cargo from 
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the target membrane is avoided. The third chapter focuses on the detailed molecular mechanism 

of the transfer step using RNCs site-specifically labeled with a fluorescent probe, coumarin 

(Saraogi, 2011). Using a combination of FRET probes on RNC and SRP, as well as 

environmental sensitivity of coumarin-labeled RNCs to detergent-solubilized SecYEG, we show 

that the handoff of RNC takes place in a stepwise manner, with gradual dissolution of the 

contacts with SRP and formation of the contacts with SecYEG (Saraogi, 2014). The results in 

this chapter explain how the cargo loss from the target membrane is minimized during the 

transfer reaction. In addition to providing the insight into the final step of the SRP-pathway, we 

for the first time follow the fluorescently-labeled RNC in the pathway from the formation of the 

SRP•RNC complex to the final transfer of RNC to SecYEG and generate a detailed molecular 

picture of the SRP pathway.  

 The result of the cargo handover to SecYEG is formation of a stable SecYEG•RNC 

complex in which SecYEG interacts both with the large ribosomal subunit and the signal peptide 

or a TM (Fraunfeld, 2011; Becker, 2009; Menetret, 2007, 2000; Cheng, 2005; Raden, 2000; 

Plath 1998; Beckmann 1997). The latter contact involves association of the hydrophobic signal 

peptide (in the case of a secretory protein) or a TM (in the case of a nascent membrane protein) 

with a so-called lateral gate of SecYEG constituted by two of its hydrophobic α-helices, TM2a 

and TM7, (Driessen, 2008; van den Berg, 2004; Plath, 1998). The lateral gate acts as an 

important checkpoint distinguishing proteins destined for secretion/membrane integration from 

cytosolic proteins (du Plessis, 2009; Driessen, 2008; Rapoport, 2007; van den Berg, 2004; 

Flower, 1994; Derman, 1993). The early stages of this interaction remain unclear. Further, the 

dynamic changes undergone by the signal peptide or a TM as the nascent chain is elongated 

during translation have not been explored. In the fourth chapter, we describe a system to examine 
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the role of the nascent chain length and the signal peptide identity in SecYEG-RNC interaction. 

We use a highly sensitive FRET assay between RNC and SecYEG to map the orientation of the 

signal peptide in SecYEG and explore how the conformation of the signal peptide varies with its 

identity and the length of the nascent chain.  The role that the nascent chain length plays in the 

affinity of RNC for SecYEG is also examined. The results of our studies suggest that SecYEG in 

detergent is capable of discriminating between RNCs bearing nascent chains of different lengths 

and can interact with a signal peptide in a well-defined Type II orientation. These studies, 

although preliminary, provide assays for exploring SecYEG-RNC interaction and lay the 

foundation for future investigation. 

 In vivo, SecYEG is a part of a holotranslocon complex that includes, among other 

membrane proteins, a novel insertase/foldase YidC (Schulze, 2014; Dalbey, 2014; Nouwen, 

2002). The role of YidC in membrane protein biogenesis is only now beginning to emerge. A 

growing body of evidence suggests that YidC may cooperate with SecYEG to ensure proper 

biogenesis of a nascent membrane protein (Dalbey, 2014; Wagner, 2008; Facey, 2007; Yi, 2004). 

The last part of the fourth chapter examines the effect of YidC on the conformation of the signal 

peptide in SecYEG with an attempt to find how early in SecYEG-RNC interaction the role of 

YidC becomes important, and what features of the signal peptide/TM determine YidC-

dependence. Taken together, the results described in this chapter provide insights into the early 

stages of translocation/membrane protein biogenesis and suggest further studies towards 

understanding SecYEG-signal peptide interaction and the role of YidC in it.  

 The chapter is concluded with a description of a cotranslational protein targeting assay 

involving SecYEG/YidC proteoliposomes. 
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Abstract 

 The Signal Recognition Particle (SRP) and SRP receptor comprise the major cellular 

machinery that mediates the co-translational targeting of proteins to cellular membranes. It 

remains unclear how the delivery of cargos to the target membrane is spatially coordinated. We 

show here that phospholipid binding drives important conformational rearrangements that 

activate the bacterial SRP receptor FtsY and the SRP•FtsY complex. This leads to accelerated 

SRP-FtsY complex assembly, and allows the SRP•FtsY complex to more efficiently unload 

cargo proteins. Likewise, formation of an active SRP•FtsY GTPase complex exposes FtsY’s 

lipid binding helix and enables stable membrane association of the targeting complex. Thus, 

membrane binding, complex assembly with SRP, and cargo unloading are inextricably linked to 

each other via conformational changes in FtsY. These allosteric communications allow the 

membrane delivery of cargo proteins to be efficiently coupled to their subsequent unloading and 

translocation, thus providing spatial coordination during protein targeting. 
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Introduction 

 Co-translational protein targeting by the Signal Recognition Particle (SRP) is an 

evolutionarily conserved and essential pathway that mediates the localization of many membrane 

and secretory proteins to the eukaryotic endoplasmic reticulum, or the bacterial plasma 

membrane (Cross, 2009; Walter, 1994). As in other important cellular pathways, protein 

targeting is a complex process that requires exquisite spatial and temporal coordination. 

Targeting begins when SRP recognizes its cargo, ribosome-nascent chain complexes (RNC) 

carrying signal sequences that specify the cellular destination of the cargo protein (Pool, 2002; 

Walter, 1981). Cargo loading on the SRP triggers efficient complex assembly between the SRP 

and SRP receptor (SR) (Bradshaw, 2009; Zhang, 2009), and membrane localization of SR allows 

the cargo to be delivered to the target membrane. There, the SRP switches to a cargo-releasing 

mode and unloads the RNC to the protein translocation machinery, where the nascent 

polypeptide is either integrated into the membrane or translocated across the membrane to enter 

the secretory pathway (Rapoport, 2007; Simon, 1991). 

 Protein targeting is controlled by GTP-regulated dimerization between the SRP and SR. 

Both proteins contain a GTPase G-domain and a helical N-domain (Freymann, 2000), which 

together form a structural and functional unit called the NG-domain that mediates the interaction 

between SRP and SR (Egea, 2004; Focia, 2004; Montoya, 1997a). Previous work showed that 

the SRP-SR interaction is a highly dynamic process involving at least three discrete 

conformational stages (Shan, 2009; Shan, 2004; Zhang, 2008). Both GTPases by themselves are 

in an open conformation that exhibits low basal GTPase activity and is suboptimal for binding 

one another. In this state, they quickly associate to form a transient early intermediate 

independently of GTP (Zhang, 2008). This intermediate is characterized by loose interactions 
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between the two GTPases, but binds RNC with high affinity (Zhang, 2009). To unload the cargo 

and complete protein targeting, the early intermediate needs to undergo a series of GTP-

dependent rearrangements to the more stable closed and activated conformations. Rearrangement 

to the closed complex involves readjustments at the N-G domain interface, so that the N-domains 

of both GTPases approach one another and form interface contacts that stabilize the heterodimer 

(Egea, 2004; Focia, 2004; Shan, 2004). A subsequent rearrangement of the catalytic loops 

positions multiple catalytic residues with respect to GTP, giving an activated complex that 

efficiently hydrolyzes GTP (Egea, 2004; Focia, 2004; Shan, 2004). Both of these rearrangements 

are essential for switching the SRP from a cargo-binding to a cargo-releasing mode, enabling the 

efficient unloading of cargo and initiation of protein translocation (Halic, 2006; Shan, 2007; 

Zhang, 2009). At the end of the targeting reaction, GTP hydrolysis from the activated complex 

drives the disassembly and recycling of SRP and SR (Connolly, 1991). 

Intriguingly, cargo stabilizes the SRP•SR GTPase complex in the early conformational 

stage and disfavors its rearrangement into the closed and activated complexes (Zhang, 2009). In 

the absence of the target membrane, this could allow the SRP•SR complex to retain its cargo and 

prevent premature GTP hydrolysis, thus avoiding abortive targeting reactions. However, as 

described above, to complete the targeting reaction, the effect from cargo needs to be overcome 

to allow the GTPase complex to rearrange to its subsequent conformational states. Interaction of 

the SR with the target membrane provides an attractive molecular trigger to induce these 

rearrangements, thus driving the cargo handover and GTPase recycling events during late stages 

of protein targeting.  

 Eukaryotic SR is a heterodimeric complex comprised of the α and β subunits.  SRα is a 

soluble protein, but it contains an X-domain that allows it to dimerize with SRβ, an integral 
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membrane protein, thus localizing the SRP receptor to the ER membrane (Schwartz, 2003). The 

bacterial SRP receptor is a single protein FtsY highly homologous to SRα, except that FtsY does 

not contain a transmembrane domain. Instead, FtsY is localized to the membrane through an N-

terminal A-domain. An amphiphilic α-helix at the junction of the A- and N-domains provides an 

important lipid-binding motif (Parlitz, 2007). This helix is formed primarily by residues at the N-

terminus of the N-domain (197–207), but α-helix formation requires Phe196 from the A-domain 

(Parlitz, 2007). Hence, a FtsY-NG+1 construct, in which only Phe196 from the A-domain was 

retained, exhibited lipid-binding activity (Parlitz, 2007) and could complement FtsY depletion in 

vivo (Eitan, 2004). Another amphiphilic helix at the N-terminus of the A-domain also contributes 

to lipid binding of FtsY (Weiche, 2008). Finally, FtsY also binds the SecYEG translocation 

machinery, which provides another membrane attachment for FtsY (Angelini, 2006; Angelini, 

2005). 

Although multiple membrane binding motifs have been identified, FtsY does not bind 

membrane as tightly as an integral membrane protein. In early cell fractionation studies, a 

substantial amount of FtsY was found in the cytosol (Luirink, 1994). A more recent microscopy 

study suggested that the amount of FtsY localized to the membrane is more substantial than 

previously suggested from fractionation studies, presumably because FtsY easily dissociated 

from the membrane during cell fractionation (Mircheva, 2009). In another fluorescence 

microscopy study in Bacillus subtilis, on the other hand, ~60% of FtsY was found in the cytosol 

(Rubio, 2005). Further, only a small fraction of FtsY associates with membranes in biochemical 

assays ((Parlitz, 2007) and results herein), suggesting that lipid binding of FtsY by itself is fairly 

weak. Together, these observations suggest that the association of FtsY with membrane is much 

more dynamic compared to that of integral membrane proteins.  
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 Despite the progress towards understanding how FtsY binds the membrane, the molecular 

mechanisms by which membranes regulate FtsY’s activity to ensure productive and efficient 

protein targeting remain to be elucidated. Many intriguing questions remain: How is the 

membrane localization of FtsY productively coupled to the protein targeting reaction? Can 

FtsY’s GTPase cycle and its GTP-dependent interaction cycle with the SRP be regulated by the 

membrane to spatially coordinate protein targeting? Conversely, can FtsY’s membrane binding 

activity be regulated by its unique GTPase cycles? Previous studies suggested that this could be 

the case. FtsY’s basal GTPase reaction was stimulated by liposomes (de Leeuw, 2000), and 

studies of both the E. coli and chloroplast FtsY detected a ~two-fold lipid-stimulation of the 

GTPase reaction when both SRP and FtsY are present (Bahari, 2007; Marty, 2009). 

Nevertheless, a complete and rigorous mechanistic dissection of the functional consequences of 

FtsY’s lipid binding on its conformational changes and its interactions with the SRP remains to 

be carried out, and the broader relationship between FtsY’s lipid binding and the protein 

targeting reaction remains to be addressed. 

 Here, we show that interaction with phospholipids regulates multiple biochemical 

activities of FtsY, and drives the rearrangement of FtsY and the SRP•FtsY complex to the 

activated conformation. Reciprocally, formation of a stable and active SRP•FtsY complex 

exposes FtsY’s lipid-binding motif and allows much stronger association with the membrane. 

These results demonstrate that the GTPase cycle of FtsY and the SRP•FtsY complex can be 

allosterically regulated in response to spatial cues such as membrane binding, and these allosteric 

regulations allow the targeting of cargo proteins to be efficiently coupled to their unloading and 

translocation.  
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Results 

Phospholipids stimulate the basal GTPase activity of FtsY 

 Previous work showed that liposomes derived from a phospholipid mixture composed of 

70% phosphatidylglycerol (PG) and 30% phosphatidylethanolamine (PE) stimulated the basal 

GTPase reaction of FtsY over 102-fold, whereas the NG-domain of FtsY (FtsY-NG) was 

stimulated to a much lesser extent (de Leeuw, 2000). These results were recapitulated in our 

experiments (Fig. 1A and supplementary Fig. 1). Further, quantitative analysis of the lipid 

concentration dependence of this stimulation provided additional insights. First, the lipid 

stimulation curve was cooperative, with a Hill coefficient of 2.9 (Fig. 1A, red), suggesting that 

the action of at least three lipid molecules is required for this stimulation, and that lipids induce 

conformational rearrangements in FtsY such that binding of the first lipid molecule enables 

stronger binding of additional lipid molecules. Second, the interaction of free FtsY with lipids is 

fairly weak, requiring a high concentration of liposomes (>3 mM) to reach saturation (Fig. 1A, 

red). Although the lipid concentrations in these experiments did not reflect the situation in vivo 

where the lipid distribution is heterogeneous, the apparent binding constants obtained from these 

analyses provided an operational measure of the ability of FtsY to bind phospholipids, allowing 

us to further probe the change in FtsY’s lipid binding ability as the reaction components are 

varied (see below). 

 

Phospholipids accelerate formation of the activated SRP•FtsY complex 

 Formation of a stable, GTP-dependent SRP•FtsY complex is slow because it requires 

extensive rearrangements of FtsY from the open to the closed and activated conformations 

(Shan, 2009; Shan, 2004). To test whether the interaction of FtsY with phospholipids helps 
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overcome this kinetic barrier, we used a well-established GTPase assay to measure the 

reciprocally stimulated GTPase reaction between SRP and FtsY. At sub-saturating FtsY 

concentrations, this assay measures the second-order reaction: GTP•SRP + FtsY•GTP → products, 

which is rate-limited by the formation of a stable and active GTP•SRP•FtsY•GTP complex (Peluso, 

2001). This provides a convenient way to test the effect of phospholipids on the rate of stable 

SRP-FtsY complex assembly. Despite the stimulation of FtsY’s basal GTPase activity by lipids, 

the basal GTPase rate was still significantly slower than that of the stimulated GTPase reaction 

(compare the Y-axis in Figs. 1A vs. 1B) and did not interfere with the analyses below. 

 Stable SRP-FtsY complex assembly was strongly stimulated by liposomes, with >100-

fold rate acceleration observed at saturating lipid concentrations (Fig. 1B, red). The lipid 

concentration dependence of this stimulation was complex, with an initial inhibition at lipid 

concentrations below 0.3 mM followed by a cooperative stimulation at higher lipid 

concentrations (Fig. 1B, red). The same initial inhibitory effect was also observed with FtsY-NG, 

but FtsY-NG did not undergo substantial lipid-induced stimulation of complex assembly (Fig. 

1B, black). SRP’s activity was not significantly stimulated by lipids either (supplementary Fig. 

2). Thus, this stimulation is specific to the interaction of lipids with the FtsY A-domain. To 

isolate this specific effect, we subtracted the liposome effects on the reaction of FtsY-NG from 

those of full-length FtsY (Fig. 1C, red). This yielded a highly cooperative lipid stimulation curve 

with a Hill coefficient of 4.4 (Fig. 1C, red), suggesting that the cooperative action of at least four 

lipid molecules is required to stimulate SRP-FtsY complex assembly. 

 An important lipid binding motif was identified at the junction between the A- and N-

domains of FtsY (Parlitz, 2007), but it was unclear whether the remainder of the A-domain 

contributes to lipid binding or stimulation. To address this question, we compared the ability of 
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liposomes to stimulate full-length FtsY and FtsY-NG+1, in which only the lipid-binding helix at 

the A-N domain junction was retained. Both the basal GTPase activity of FtsY-NG+1 and its 

complex formation with SRP were strongly stimulated by liposomes (Fig. 1A & B, green). The 

magnitude of the lipid-stimulation with FtsY-NG+1 was ~two-fold smaller than that with full-

length FtsY (Fig. 1A&B, green vs. red), but was still 50–100 fold compared to the rate in the 

absence of lipids. The lipid-stimulation curves for FtsY-NG+1 were also highly cooperative, 

giving Hill coefficients of 3.4 and 4.2 in the basal GTPase reaction and in complex assembly 

with SRP, respectively (Fig. 1A&B, green). Thus, the amphiphilic helix at the A-N domain 

junction provides the primary site for stimulation of FtsY by phospholipids, and the remainder of 

the A-domain modulates this effect by two-fold. These findings are consistent with the 

observation that expression of FtsY-NG+1 complements the defect of FtsY depletion in vivo 

(Eitan, 2004). Further in support of this notion, we performed in vitro protein targeting assays 

and found that FtsY-NG+1 was able to mediate efficient co-translational targeting of a model 

SRP substrate into membrane vesicles (Fig. 2). The efficiency of translocation was only 26% 

lower with FtsY-NG+1 than with full length FtsY (Fig. 2). 

 To provide direct evidence for a lipid-induced acceleration of complex assembly and to 

more accurately quantify the magnitude of this effect, we used a fluorescent probe, FtsY 

conjugated with acrylodan at residue C356, to directly measure SRP-FtsY complex formation. 

This probe monitors the final conformational stage of the SRP•FtsY complex, the activated state 

(Zhang, 2009). The presence of liposomes caused a large increase and a blue shift in the 

fluorescence emission spectrum of FtsY (Fig. 3A, open black vs. red circles), which was 

expected, as acrylodan is highly sensitive to changes in solvent polarity. In the presence of 

liposomes, formation of the SRP•FtsY complex in the presence of a GTP analogue, 5’-
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guanylylimido-diphosphate (GppNHp), reduced the fluorescence intensity ~30% and induced a 

red shift in the emission spectrum of this probe, producing a spectrum that overlaps with that of 

the SRP•FtsY complex in the absence of liposomes (Fig. 3A, closed red and black circles). Thus, 

in the absence of liposomes, the increase in fluorescence of acrylodan-labeled FtsY C356 was 

used to monitor complex formation (Fig. 3A, open vs. closed black circles, and Fig. 3B) whereas 

in the presence of liposomes, the decrease in fluorescence was used (Fig. 3A, open vs. closed red 

circles, and Fig. 3C). The rate constant for formation of the activated SRP•FtsY complex was 3.0 

× 106 M-1s-1 in the presence of liposomes, 160-fold faster than that in the absence of liposomes 

(Fig. 3D). This provides direct evidence that phospholipids substantially accelerate formation of 

a stable and active SRP•FtsY complex. 

 

Phospholipids stabilize the activated conformation of the SRP•FtsY complex 

 A possible mechanism to account for the stimulatory effects of phospholipids on FtsY’s 

basal GTPase activity and on the kinetics of SRP-FtsY complex assembly is that interaction with 

phospholipids pre-organizes FtsY into the closed and activated conformations, which allows 

some of the unfavorable rearrangements during assembly of a stable, active SRP•FtsY complex 

to be bypassed. If this were true, then phospholipids should preferentially stabilize formation of 

the closed/activated SRP•FtsY complex. In contrast, the early intermediate, in which most of the 

GTPase rearrangements in FtsY have not taken place (Fig. 6 below and S.S., manuscript in 

preparation), should not be affected. To test this hypothesis, we determined the effect of 

phospholipids on the equilibrium stability of the SRP•FtsY complex at various conformational 

stages. 
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 To measure the stability of the early intermediate, we used fluorescence energy transfer 

(FRET) between coumarin-labeled SRP C235 and BODIPY-fluorescein labeled FtsY C487. 

FRET allows us to detect early stages of complex formation before any conformational changes 

take place (Zhang, 2008). The early intermediate was isolated by leaving out GTP during 

complex assembly; this prevents its rearrangement to the subsequent conformational states and 

allows us to characterize its equilibrium properties.  As the early intermediate has a weak 

stability and does not accumulate significantly unless it is stabilized by the cargo (Zhang, 2008; 

Zhang, 2009), we measured the stability of the early intermediate in the presence of the RNC. 

The RNC•SRP•FtsY early intermediate exhibited equilibrium dissociation constants (Kd) of 68 

and 104 nM in the absence and presence of liposomes, respectively (Fig. 4A & D). Thus, 

phospholipids do not stabilize the early intermediate, but rather have a small destabilizing effect 

on this conformational state. 

 We also used FRET to measure the stability of the GTP-dependent closed and activated 

complexes, by carrying out complex assembly in the presence of GppNHp. This drives the 

rearrangement of the complex into these GTP-dependent conformational states, and the complex 

thus obtained and monitored by FRET is a mixture of the closed and activated conformations. In 

the absence of liposomes, the closed/activated complex had a Kd value of 68 nM, and this Kd 

value lowered to 7.2 nM in the presence of liposomes (Fig. 4B & D). To more specifically 

monitor the activated complex, we used acrylodan-labeled FtsY C356 (Fig. 4C). In the absence 

of liposomes, the activated complex had a Kd value of 145 nM (Fig. 4C, left), whereas in the 

presence of liposomes, the activated complex was much tighter, with an estimated Kd value of 4 

nM or lower (Fig. 4C, right, and Fig. 4D), at least 40-fold lower than that in the absence of 

liposomes. Together, these results provide direct evidence that phospholipids specifically 
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stabilize the closed and activated complexes and thus drive the rearrangement of the SRP•FtsY 

complex from the early intermediate to the subsequent, GTP-stabilized conformational states. 

 

FtsY binds more strongly to lipids when it forms an active complex with SRP 

 If phospholipids preferentially interact with FtsY in the closed/activated conformations, 

then formation of the SRP•FtsY complex in the presence of GTP, which drives FtsY into these 

conformations, would allow FtsY to bind phospholipids more strongly. To test this prediction, 

we measured FtsY-lipid binding using density gradient flotation (Fig. 5A). Free FtsY bound 

weakly to liposomes derived from E. coli lipids, with <2% FtsY co-fractionating with lipids to 

the top of the density gradient (Fig. 5A, left). In contrast, with the SRP•FtsY complex formed in 

the presence of GppNHp, the majority of both FtsY and the SRP protein Ffh co-fractionated with 

lipids to the top of the gradient (Fig. 5A, right). In contrast, with FtsY-NG that was not 

stimulated by lipids (Fig. 1), both the free protein and its complex with Ffh remained at the 

bottom fraction during centrifugation (Fig. 5B). These results, albeit qualitative in nature, 

directly demonstrated that FtsY binds more strongly to phospholipids when it forms the GTP-

dependent closed/activated complex with SRP. 

 To provide additional evidence for this model and to more quantitatively determine how 

much stronger FtsY binds phospholipids upon complex formation with SRP, we determined the 

effect of lipids on the stimulated GTPase reaction at saturating protein concentrations. Under 

these conditions, GTP hydrolysis from a stable, active GTP•SRP•FtsY•GTP complex (kcat) was 

monitored. Liposomes accelerated this reaction ~two-fold but have a negligible effect on the 

reaction of the complex formed by FtsY-NG (Fig. 5C), consistent with previous observations 

(Bahari, 2007). Importantly, the lipid concentration dependence of this stimulation provided a 
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means to measure the apparent affinity of lipids to the GTP•SRP•FtsY•GTP complex, as this 

complex was the predominant species in this reaction. Saturation could be reached at lipid 

concentrations above 65 µM for stimulation of the GTP•SRP•FtsY•GTP complex, at least 50-fold 

lower than that for free FtsY (cf. Fig. 5C vs. Fig. 1A), demonstrating that formation of an active 

SRP•FtsY complex strengthens the FtsY-lipid interaction by almost two orders of magnitude. 

 

GTP-dependent complex formation with SRP exposes the lipid binding helix of FtsY 

 To understand how the allosteric communications between FtsY and phospholipids 

occur, we probed the structural dynamics of the lipid binding helix at the A-N domain junction 

using electron paramagnetic resonance (EPR) spectroscopy. Individual residues in and adjacent 

to the lipid binding motif of FtsY-NG+1 (residues 195–209; Fig. 6A, coral), a FtsY construct 

strongly stimulated by phospholipids (Fig. 1), were replaced by cysteines for site-directed spin 

labeling with the nitroxide probe (1-oxyl-2,2,5,5,-tetramethyl-3-pyrroline-3-methyl) 

methanethiosulfonate (MTSSL). Only the sites where the nitroxide substitution did not 

substantially disrupt the activity of FtsY and its interaction with SRP were examined by EPR 

(supplementary Table 1). Information about the local mobility of the nitroxide probe at each 

position can be obtained from two features of the EPR spectra (Hubbell, 2003; Hubbell, 1996; 

Hustedt, 1999): (i) the line width of the central resonance (Fig. 6B, ΔH0) and (ii) the overall 

breadth of the spectra along the magnetic field axis, especially the intensity of hyperfine splitting 

that arises from highly immobile populations of spin probes relative to the mobile population 

(Fig. 6B, ‘im’ vs. ‘m’).   

 As exemplified by residue 206, in apo-FtsY, the nitroxide probe exhibited broad EPR 

spectra with a significant population of immobile molecules and widened central line width (Fig. 
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6B, black). The extremely low mobility of this probe indicates that residue 206 is engaged in 

strong tertiary interactions with the remainder of the FtsY molecule. No significant spectral 

change was observed when FtsY formed an early intermediate with SRP in the presence of GDP 

(Fig. 6B, red). In contrast, the nitroxide probe exhibited significantly higher mobility when FtsY 

formed the closed/activated complex with SRP in the presence of GppNHp, as indicated by 

substantial reductions in both the central linewidth and the fraction of immobile population (Fig. 

6B, green). The same pattern of nitroxide mobility changes was observed for other positions in 

the lipid binding helix (Fig. 6C & D, and supplementary Fig. 3). In apo-FtsY and in the early 

intermediate, there were significant position-dependent variations in nitroxide mobility (Fig. 6D, 

black and red), presumably reflecting periodic changes in the position of the probe along the 

solvent exposed vs. more buried surfaces of the helix. Despite these variations, the nitroxide 

probes at all of these positions underwent significant increases in mobility upon formation of the 

GTP-dependent complex (Fig. 6C & D, and supplementary Fig. 3). Together, these results 

demonstrate substantially reduced tertiary interactions and increased dynamics of FtsY’s lipid 

binding helix upon formation of the closed/activated SRP•FtsY complex, and suggest that 

rearrangement of the GTPase complex to these conformational states disrupts intramolecular 

interactions of the lipid binding helix with the remainder of FtsY and allows this helix to become 

more accessible.   

 

Anionic phospholipids specifically bind and stimulate FtsY 

 The stimulatory effects of lipids on FtsY’s various activities described above or 

previously (de Leeuw, 2000) were primarily obtained with liposomes containing 70% PG and 

30% PE. The inner membrane of E. coli is composed primarily of PE (~70%), with anionic 
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phospholipids PG and cardiolipin present at ~20% and ~5%, respectively. To determine whether 

FtsY has a preference for specific types of phospholipids, we tested the ability of various lipids 

to stimulate FtsY’s basal GTPase reaction and to accelerate stable SRP-FtsY complex assembly. 

These two activities provided a sensitive and reliable readout for whether FtsY is stimulated by 

specific types of lipids, and could be conveniently measured with the GTPase assay. Liposomes 

derived from total E. coli lipids stimulated FtsY less efficiently than PG/PE: a higher lipid 

concentration was required to begin observe a stimulation for both the basal GTPase activity of 

FtsY and its complex assembly with SRP, and both activities were stimulated less than eight-fold 

at the highest liposome concentrations tested (Fig. 7A & B). Even less stimulation was observed 

with liposomes lacking anionic phospholipids (70% PE and 30% PC, Fig. 7C & D). 

Interestingly, an initial inhibitory effect of lipids was also observed with the E. coli and PE/PC 

liposomes during SRP-FtsY complex assembly with both FtsY and FtsY-NG (Fig. 7B & D), 

suggesting that this inhibition results from a highly nonspecific interaction of lipids either with 

SRP or with the FtsY-NG domain.  

 In contrast, liposomes comprised of anionic phospholipids strongly stimulated both 

activities of FtsY. Within experimental error, liposomes composed solely of PG stimulated FtsY 

with the same efficiency as PG/PE liposomes (Fig. 7E & F), suggesting that the PG contained in 

the PG/PE liposomes was responsible for the stimulations observed in Figures 1–4. Cardiolipin, 

which contains an additional negatively charged head group compared to PG, stimulated FtsY 

even more efficiently (Fig 7G & H). Comparison of the lipid concentration dependences of the 

stimulation indicates that roughly the same magnitude of lipid stimulation could be obtained with 

both PG and cardiolipin at saturating lipids, but saturation could be reached with cardiolipin at 
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much lower concentrations (Fig. 7G & H). Thus, FtsY binds more strongly to cardiolipin than to 

PG, but once bound, these two lipids induce the same amount of stimulation for FtsY. 

 The reduced stimulation of FtsY by E. coli and PE/PC lipids could arise from a weaker 

binding of FtsY to these lipids than to PG and cardiolipin, or from the inability of these lipids to 

activate FtsY even when it is membrane-bound. To distinguish between these possibilities, we 

directly measured the binding of FtsY to phospholipids using surface plasmon resonance (SPR). 

FtsY with a C-terminal His6-tag was immobilized on CM5 biosensor chips coupled with anti-

His6 antibodies. Liposomes induced large changes in the surface plasmon resonance (Fig. 8A). 

The kinetics of lipid binding to or dissociation from FtsY was rapid but complex (Fig. 8A), as 

would be expected for a cooperative interaction. The resonance signals at 200 sec., when the 

binding reaction reaches a plateau, were used to monitor the equilibrium for FtsY-liposome 

binding. The values of Kd obtained from the SPR experiments were, in general, an order of 

magnitude lower than those observed from enzymatic assays, presumably due to differences 

between measurements in solution vs. those on a surface. Nevertheless, the following strongly 

suggest that SPR provides a reasonable comparison of the relative interactions of FtsY with 

different lipids: (i) In all cases, minimal or low lipid binding was observed with FtsY-NG (Figs. 

8B-D, black), suggesting that the ability of the FtsY A-domain to interact with lipids was 

faithfully recapitulated in SPR measurements; (ii) FtsY-NG+1 bound liposomes ~3-fold weaker 

than full-length FtsY (supplementary Fig. 4), consistent with the two-fold difference observed in 

solution studies, indicating that the lipid binding helix at the A-N domain junction of FtsY was 

primarily responsible for lipid binding in SPR experiments; (iii) The FtsY-lipid binding curves 

were cooperative and exhibited Hill coefficients of 3 – 4 (Fig. 8 and supplementary Fig. 4), also 

consistent with observations from solution studies. Thus, although the values of Kd obtained 
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from SPR measurements were lower than those in solution, SPR provided a reasonable and semi-

quantitative tool to compare the relative binding of FtsY to liposomes with different 

compositions. 

 FtsY bound to liposomes comprised of PE and PC weakly, with an apparent Kd value of 

0.51 mM (Fig. 8B), whereas it bound PG/PE liposomes ~8-fold stronger (apparent Kd ~ 0.069 

mM; Fig. 8C). Liposomes derived from E. coli phospholipids were bound by FtsY with an 

affinity intermediate between the anionic and PE/PC liposomes, presumably because they 

contain both types of phospholipids (Fig. 8D). The preference of FtsY to bind anionic 

phospholipids observed here was consistent with previous results using qualitative assays (de 

Leeuw, 2000). Nevertheless, these differences in binding affinity (~8-fold) were not sufficient to 

account for the ~100-fold higher activity of FtsY in the presence of PG/PE liposomes compared 

to PE/PC liposomes. These results suggest that anionic phospholipids not only bind FtsY more 

strongly, but are also more effective at stimulating the activities of FtsY after binding. Thus, the 

stimulatory effects of anionic phospholipids on FtsY are multimodal and can regulate bacterial 

protein targeting along different points in the reaction pathway. 
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Discussion 

 In this work, we demonstrate that multiple activities of the bacterial SRP receptor FtsY 

are allosterically regulated by its interaction with phospholipids, and vice versa. These include: 

(i) stimulation of FtsY’s basal GTPase reaction; (ii) acceleration of stable SRP-FtsY complex 

assembly; (iii) preferential stabilization of the closed and activated SRP•FtsY complexes; and 

(iv) strengthening of FtsY’s lipid binding affinity when it forms a stable SRP•FtsY complex. The 

simplest energetic model to explain these allosteric effects is that lipid binding shifts the 

conformational equilibrium of FtsY from the open to the closed/activated states (Fig. 9A). Pre-

organization of FtsY towards these states would help bypass the substantial conformational 

rearrangement during stable complex assembly and thus accelerate the rate of this process (Fig. 

7A, ΔG‡, black vs. red). Pre-organization of FtsY also explains the acceleration of FtsY’s basal 

GTPase activity and the specific stabilization of the SRP•FtsY complex in the closed/activated 

states (Fig. 9A, ΔG, black vs. red). Reciprocally, as phospholipids preferentially bind FtsY in the 

closed/activated conformation, FtsY will correspondingly bind phospholipids more strongly 

when it is driven into these conformational states upon GTP-dependent complex assembly with 

the SRP. 

 The ability of FtsY to be allosterically regulated by interaction with phospholipids 

suggests a simple and effective mechanism to spatially regulate protein targeting.  The 

population of free FtsY molecules that are localized to the membrane (Fig. 9B, step 1) would be 

pre-organized into the closed/activated conformations and thus more efficient at forming a 

stable, GTP-dependent SRP•FtsY complex (Fig. 9B, step 2). This is consistent with the result 

from a recent study that suggested that membrane-bound FtsY is more efficient at targeting 

cargo-bound SRP to the membrane (Mircheva, 2009), and provides a molecular basis to explain 
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this observation. On the other hand, the population of free FtsY molecules in the cytosol exist 

primarily in the open conformation, in which it quickly forms an early targeting intermediate 

with cargo-bound SRP (Fig. 9B, step 3), but the equilibrium for rearrangement of the 

cargo•SRP•FtsY complex to the closed and activated states is not favorable in the cytosol 

(Zhang, 2009). Nevertheless, the fraction of targeting complexes that is in these late 

conformational states has a much higher affinity for phospholipids, and thus would preferentially 

localize to the membrane (Fig. 9B, step 5). In either pathway, the membrane-bound 

cargo•SRP•FtsY complex would be driven to the closed/activated states, in which the interaction 

between the SRP and the cargo is weakened (Halic, 2006; Zhang, 2009) so that the cargo would 

be primed for release and transfer to the translocon (Fig. 9B, step 6). Consistent with this model 

are the observations that PG/PE liposomes could induce significant FtsY-mediated release of 

SRP from the nascent chain (Scotti, 1999), and that FtsY-NG, which is not allosterically 

regulated by phospholipids, was compromised at late stages of targeting (Bahari, 2007).  Thus 

the membrane targeting of the cargo can be efficiently coupled to its subsequent unloading and 

translocation through lipid-induced conformational changes in FtsY. 

 Although the activated state is significantly stabilized by phospholipids, phospholipids 

stimulate GTP hydrolysis from the SRP•FtsY complex by only two-fold. This effect, though 

reproducible from different laboratories (Bahari, 2007; Marty, 2009), is rather modest. 

Moreover, phospholipids did not significantly enhance GTP hydrolysis from the RNC•SRP•FtsY 

complex (Shan, unpublished results). Thus, phospholipids alone would not be able to completely 

reverse the inhibitory effect of cargo on the GTPase reaction of the SRP•FtsY complex (Zhang, 

2009). Possibly, complete activation of GTP hydrolysis would require additional interaction of 
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FtsY with the SecYEG translocation machinery, or occurs only after the cargo has been unloaded 

from the SRP (Fig. 9B, step 6 or 7).   

 The results here also suggest an attractive model in which the GTPase cycle of SRP and 

FtsY could regulate the membrane binding of FtsY. Free FtsY and the SRP•FtsY early 

intermediate have weak affinities for and fast dissociation rates from phospholipids (Fig. 9B, 

step 1). In contrast, the affinity of FtsY for phospholipids increases over 50-fold when it forms 

the GTP-dependent closed/activated complex with SRP, thus enabling more stable association of 

FtsY with the membrane (Fig. 9B, step 5). After the cargo is unloaded, GTP hydrolysis drives 

the disassembly of the SRP•FtsY complex. This allows FtsY to go back to the open 

conformation in which its membrane binding becomes more dynamic (Fig. 9B, step 7). 

Regulation of a protein’s membrane binding activity by nucleotide binding/hydrolysis cycles has 

also been observed for the ATPase MinD (Hu, 2002; Mileykovskaya, 2003). Intriguingly, 

although the eukaryotic SRP receptor is localized to the ER membrane through the 

transmembrane domain of SRβ, complex formation between the SRα and β subunits requires 

SRβ to be bound with GTP, suggesting that the GTPase cycle of SRβ could analogously regulate 

the association of SRα with the ER membrane (Schwartz, 2003). 

 What is the molecular mechanism by which phospholipid binding regulates 

conformational changes in FtsY? Previous work and the results here provided various pieces of 

clues that together suggest a cohesive model. Formation of a stable SRP•FtsY complex requires 

the removal of αN1, the first α-helix in the N-domains of Ffh and FtsY, which present steric 

blocks that would inhibit stable SRP-FtsY binding (Gawronski-Salerno, 2007; Neher, 2008; 

Shepotinovskaya, 2001). Here, we found that the lipid binding helix is highly restricted in 

motion and is most likely engaged in strong tertiary interactions in apo-FtsY and in the early 
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intermediate, but becomes substantially more mobile and exposed in the closed/activated 

complexes. We propose that movement of the αN1 helix during the open → closed 

rearrangement of FtsY exposes the lipid binding motif that immediately precedes the αN1 helix, 

thus leading to stronger lipid binding (Fig. 9C). Conversely, lipid binding to this motif would 

help promote movement of the αN1 helix, thus facilitating the rearrangement of FtsY into the 

closed/activated states and its GTP-dependent complex assembly with SRP (Fig. 9C). Consistent 

with this model are the observations that truncation of the αN1 helix led to the same phenotypes 

as those induced by lipid binding of FtsY: increase in FtsY’s basal GTPase activity, acceleration 

of stable complex assembly, and stabilization of the GTP-dependent SRP•FtsY complex (Neher, 

2008). The N-terminus of the FtsY N-domain became more protease-susceptible in the 

SRP•FtsY complex than in free FtsY (Neher, 2008), also supporting the model that the lipid 

binding motif of FtsY is more accessible in the SRP•FtsY complex. This lipid-induced 

conformational change of FtsY is also supported by the cooperative behavior of phospholipids 

observed in both the SPR measurements and biochemical assays. This cooperativity is consistent 

with a model in which binding of the first lipid molecule shifts the conformational equilibrium of 

FtsY and helps expose its lipid-binding helix, thus facilitating the binding of additional lipid 

molecules. 

 FtsY exhibits a strong preference for anionic phospholipids such as PG and cardiolipin 

((de Leeuw, 2000) and this work). This is consistent with the abundance of basic residues on the 

amphiphilic lipid-binding helix of FtsY, and suggests a critical role of anionic phospholipids in 

co-translational protein targeting. Anionic phospholipids have also been found to preferentially 

interact with and stimulate the ATPase MinD that regulates cell division (Mileykovskaya, 2003), 

the SecA ATPase that drives the post-translational translocation of proteins (Hendrick, 1991; 
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Lill, 1990), and the integration of membrane proteins in Sec-independent pathways (Ridder, 

2001). These biochemical observations are corroborated by in vivo experiments that showed that 

depletion of PG and cardiolipin in E. coli leads to severe defects in preprotein translocation, and 

that these defects can be rescued by restoring anionic phospholipids into membrane vesicles (de 

Vruje, 1988; Kusters, 1991). As PG and cardiolipin comprise a minor fraction of E. coli lipids, 

how do they stimulate protein function and targeting in vivo? Two speculative models could be 

envisioned. First, biophysical analyses showed that anionic phospholipids and PE are segregated 

in bacterial membrane with an extremely low extent of mixing, in contrast to model liposomes in 

which different phospholipids are well mixed (Fishov, 1999; Vanounou, 2003). It is possible that 

there are sites on E. coli membrane enriched in anionic phospholipids where FtsY could 

preferentially bind and be activated. Alternatively or in addition, the SecYEG machinery 

associates tightly with anionic phospholipids, cardiolipin and PG (Gold, 2010), which could 

provide sites for preferential FtsY binding and activation. Regardless of the molecular model, the 

results of this and previous work emphasize the crucial roles that anionic phospholipids play in 

the targeting and translocation of proteins across the bacterial inner membrane, and invite 

additional studies to delineate their precise distributions and mechanisms of action in vivo. 
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Materials and Methods 

Material.  Ffh, 4.5S RNA, FtsY and FtsY-NG were expressed and purified as described 

(Montoya, 1997b; Peluso, 2001). The expression plasmid for FtsY-NG+1 was based on pMal-

c2X (New England Biosciences), in which the PCR fragment encoding FtsY-NG+1 was inserted 

between the BamHI and SalI restriction sites. The factor Xa cleavage site in pMal-c2X was 

replaced with a thrombin cleavage site using the QuikChange protocol (Stratagene). The MBP-

fusion protein of FtsY-NG+1 was purified by affinity chromatography using Ni-NTA, digested 

with thrombin, MBP and uncleaved MBP-fusion proteins were removed using amylose resin 

(New England Biosciences), and FtsY-NG+1 was further purified by anion exchange 

chromatography over monoQ (GE Healthcare) using a linear gradient of 50 –300 mM NaCl. 

Large unilamellar vesicles were freshly prepared prior to each experiment by the extrusion 

method using 100 nm pore polycarbonate filters, as described previously (de Leeuw, 2000; 

Parlitz, 2007).  

GTPase assay. GTP hydrolysis reactions were carried out in SRP buffer (50 mM KHEPES 

pH7.5, 150 mM potassium acetate, 1.5 mM magnesium acetate, 0.01 % nikkol, and 2 mM DTT) 

and were followed and analyzed as described (Peluso, 2001). Prior to initiation of the reaction, 

the proteins were pre-incubated with liposomes for at least 10 min. Varying this incubation time 

did not affect the reaction rate constants, suggesting that equilibrium binding between FtsY and 

liposomes has been reached. Michaelis-Menten analysis of FtsY’s basal GTPase reaction was 

carried out using 0.5 µM FtsY and 2–100 µM GTP doped with γ-32P-GTP. The GTP 

concentration dependence of the observed rate constants (kobsd) was fit to Eq. 1, 

  kobsd = kcat × [GTP]

Km +[GTP]
      (1) 
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in which kcat is the rate constant at saturating GTP concentrations, and Km is the GTP 

concentration required to reach half-saturation. 

 The lipid concentration dependence of the basal GTPase reactions of FtsY were measured 

using 2 – 5 µM FtsY and 100 µM GTP doped with γ-32P-GTP. To measure SRP-FtsY complex 

assembly rates, stimulated GTPase reactions were carried out at sub-saturating protein 

concentrations (100 nM SRP, 100–200 nM FtsY) in the presence of saturating GTP (100 µM), so 

that the second-order reaction: GTP•SRP + FtsY•GTP → products was followed. To measure the 

effect of lipids on the GTPase rate of the GTP•SRP•FtsY•GTP complex, stimulated GTPase 

reactions were carried out at saturating FtsY concentrations (10–25 µM). Varying the 

concentration of FtsY in this range did not affect the observed rate constant, confirming that 

FtsY is saturating and that the first-order reaction: GTP•SRP•FtsY•GTP → products was followed. 

The lipid concentration dependences were fit to Eq 2, 

  kobsd = k0 ×
Kd

n

Kd
n +[lipid]

n
+ k1 × [lipid]

n

Kd
n +[lipid]

n
    (2) 

in which kobsd is the observed rate constant, k0 is the rate constant in the absence of lipids, k1 is 

the rate constant at saturating lipid concentrations, n is the Hill coefficient, and Kd is the apparent 

equilibrium dissociation constant for FtsY-lipid binding. Note that the values of Kd from this 

analysis are only ‘apparent’ and do not represent the true binding constants, because FtsY-lipid 

interaction is cooperative, i.e., binding of the first lipid molecule strengthens the subsequent 

binding of additional lipid molecules to FtsY. The apparent Kd value from this analysis 

represents an average of these different lipid binding affinities. For example, if four lipid 

molecules bind to FtsY with Kd values of Kd,1, Kd,2, Kd,3 and Kd,4, then apparent 

. Kd
4 = Kd ,1 ×Kd ,2 ×Kd ,3 ×Kd ,4
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Fluorescence measurements. Fluorescence measurements were carried out as described 

previously (Zhang, 2008; Zhang, 2009). When labeled SRP was used and the concentration of 

FtsY was varied, equilibrium titrations were fit to eq 3, 

 Fobsd = F1 ×
[SRP] +[FtsY] + Kd − ([SRP] +[FtsY] + Kd )

2 − 4 ×[SRP][FtsY]

2 ×[SRP]
 (3) 

in which Fobsd is the observed FRET value or fluorescence change at a particular FtsY 

concentration, F1 is the FRET value or fluorescence change at saturating FtsY concentrations, 

and Kd is the equilibrium dissociation constant of the complex being measured.  An analogous 

quadratic equation was used in cases where the fluorescence of labeled FtsY was monitored and 

the concentration of SRP was varied, except that the denominator in eq 3 becomes 2×[FtsY].  

 Observed rate constants for assembly of the activated SRP•FtsY complex (kobsd) were 

measured at varying SRP concentrations using a kintek stopped-flow apparatus. The SRP 

concentration dependence of kobsd was fit to eq 4, 

  kobsd  =  kon [SRP] + koff      (4) 

in which kon is the rate constant for complex assembly, and koff is the rate constant for complex 

disassembly. 

Co-translational protein targeting and translocation.  A previously established heterologous 

protein targeting assay, based on the ability of E. coli SRP and FtsY to mediate the targeting of 

preprolactin (pPL) to microsomal membrane (Powers, 1997; Shan, 2007), was used in this study. 

200 nM SRP and 4 equivalent of trypsin digested and salt washed microsomal membrane were 

used in the targeting reaction.   

Density gradient floatation. Lipid flotation assays were performed as previously described 

(Parlitz, 2007; Valent, 1998) with slight modifications. For free FtsY, 100 nmol protein was 

incubated with E. coli liposomes (10 mg/ml) in SRP buffer at 37°C for 30 minutes. For the 
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SRP•FtsY complex, 20 µM FtsY and Ffh were pre-incubated with 5.3 mM GppNHp for 2 hr at 

25 °C, and then incubated at 37°C for 30 minutes in the presence of 10 mg/ml liposomes. The 

protein-lipid mixture was overlaid with density gradients and ultracentrifuged as described 

(Parlitz, 2007; Valent, 1998). The gradient was collected in four fractions (600 µl, 400 µl, 400 

µl, 600 µl) from the top, TCA precipitated, and analyzed by SDS-PAGE.  

Site-directed spin labeling and EPR measurements 

 Spin-labeling reactions were carried out in 20 mM HEPES (pH 8.0), 300 mM NaCl, 

2mM EDTA. Reduced and degassed single cysteine mutants of FtsY-NG+1 were labeled with a 

3–5 fold molar excess of MTSSL (Toronto Research Chemicals) at room temperature in the dark 

for 2-3 hr. Excess MTSSL was removed by gel filtration, and the efficiency of spin-labeling (80–

100%) was determined by EPR using a TEMPO calibration curve (Bruker user manual). EPR 

spectra were acquired using a 9.4 GHz (X-band) Bruker EMX EPR spectrometer equipped with 

an ER 4119HS cavity at 20–23 °C. The concentrations of spin-labeled samples were 30–100 μM 

for apo-FtsY and ~30 μM for the early and closed/activated complexes. Forty per cent glycerol 

was present in all samples to remove motions arising from the global tumbling of protein. 32–64 

scans were accumulated and averaged using microwave power of 5 mW with modulation 

amplitude set at 1 G and magnetic field sweep width of 100 G. The central linewidth is the same 

from 0.2– 5 mW microwave power. Less than 2% background labeling was observed; 

background subtraction was therefore not necessary.   

Surface Plasmon Resonance. Anti-His monoclonal antibody was immobilized onto the surface 

of CM5 chips at levels ranged from 12000 to 23000 RU. Changing the surface density of the 

antibody within this range had no effect on FtsY/lipid interaction. All the results here were 

obtained with a single IgG-derivatized biosensor chip in SRP buffer. Two IgG-derivatized flow 
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cells were used: the sample cell contained immobilized FtsY or FtsY-NG (at a surface density of 

~250 RU), and the reference cell provided negative control whose changes in RU were 

subtracted from that of the sample cell. Liposomes at varying concentrations in SRP buffer were 

flowed in for 200–270 seconds at a rate of 30 µL/min. When equilibrium was reached, liposomes 

were allowed to dissociate for 60 seconds in SRP buffer. After each cycle of binding and 

dissociation, the surface was regenerated by 10 mM Glycine buffer (pH 2.5), and FtsY constructs 

were re-immobilized. To determine Kd, the RU values 5 seconds. before initiating dissociation of 

the liposomes were plotted against liposome concentration. The data were fit to Eq 5, 

  RUobsd = RU0 ×
Kd

n

Kd
n +[lipid]

n
+ RU1 × [lipid]

n

Kd
n +[lipid]

n
   (5) 

in which RUobsd is the observed resonance units, RU0 is the resonance signal in the absence of 

lipids, RU1 is the resonance signal at saturating liposome concentrations, Kd is the apparent 

equilibrium dissociation constant for FtsY-lipid binding, and n is the Hill coefficient. 
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Figures 

Figure 1 

 

 

Figure 1. Phospholipids stimulate FtsY’s basal GTPase activity and its complex assembly with 
SRP. (A) Effect of liposomes on the basal GTPase reaction of FtsY (red), FtsY-NG+1 (green) 
and FtsY-NG (black and inset). The data were fit to eq 2, and gave Hill coefficients of 2.9 and 
3.4 for FtsY and FtsY-NG+1, respectively, and an apparent Kd value of 2.0 and 2.2 mM for lipid 
binding to FtsY and FtsY-NG+1, respectively. (B) Effect of liposomes on the reaction: GTP•SRP 
+ FtsY•GTP → products for FtsY (red), FtsY-NG+1 (green), and FtsY-NG (black). (C) A-domain-
specific lipid stimulation of complex assembly with FtsY (red) and FtsY-NG+1 (green), after 
subtraction of the rate constants from FtsY-NG. The data were fit to eq 2, and gave Hill 
coefficients of 4.4 and 3.8 for FtsY and FtsY-NG+1, respectively.  
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Figure 2 

 

 
Figure 2. Role of the FtsY A-domain in preprotein targeting and translocation.  (A) SDS-PAGE 
analysis of the translocation efficiency of preprolactin (pPL) mediated by FtsY, FtsY-NG+1, and 
FtsY-NG. (B) Quantitation of the results in part A. 
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Figure 3 

 

Figure 3. Phospholipids accelerate formation of the activated SRP•FtsY complex. (A) 
Fluorescence emission spectra of acrylodan-labeled FtsY C356 in the presence (closed circles) or 
absence (open circles) of SRP (5 µM), with (red) or without (black) 2 mM liposome present. The 
scattering from buffer, SRP, and liposomes have been subtracted from the respective spectra. (B-
C) Time courses for complex assembly were measured in the presence of 200 nM acrylodan-
labeled FtsY C356 and 200 µM GMPPNP without (part B) or with (part C) 2 mM liposome 
present. The data were fit to single exponential functions to yield the observed rate constants at 
individual SRP concentrations. (D) Liposomes accelerate formation of the activated SRP•FtsY 
complex. Observed rate constants for complex formation were from parts B and C. GNP denotes 
GppNHp. The inset shows the data in the absence of liposomes on an expanded scale. Linear fits 
of the data to eq 4 gave association rate constants of kon = 3.0 × 106 and 1.8 × 104 M-1s-1 in the 
presence and absence of liposomes, respectively. Error bars are standard deviations (SDs) from 
three or more measurements. 
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Figure 4 
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Figure 4. FtsY preferentially stabilizes the SRP•FtsY complex in the closed and activated states. 
(A) Equilibrium titration of the early intermediate in the presence (red) and absence (black) of 2 
mM liposomes. Titrations used 100 nM coumarin-labeled SRP C235, 200 nM RNC, and 200 µM 
GDP. (B) Equilibrium titration of the closed/activated complex in the absence (left) and presence 
(right) of 2 mM liposomes. Titrations used 50 nM coumarin-labeled SRP C235 and 200 µM 
GppNHp. (C) Equilibrium titration of the activated SRP•FtsY complex in the absence (left) and 
presence (right) of 2 mM liposomes. Titrations used 100 and 40 nM acrylodan-labeled FtsY 
C356 in the absence and presence of liposomes, respectively, and 200 µM GppNHp. The data 
were fit to eq. 3, and the values of Kd are summarized in (D). Representative fluorescence 
measurements were shown in A-C, and the Kd values reported in D are averaged from three or 
more measurements. 
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Figure 5 

 

Figure 5. The stable SRP•FtsY complex binds more strongly to lipids than free FtsY.  (A–B) 
Density gradient flotation analysis of the binding of FtsY (left) and the SRP•FtsY complex 
(right) to E. coli liposomes for full-length FtsY (part A) and FtsY-NG (part B).  (C) Effect of 
liposomes on the reaction: GTP•SRP•FtsY•GTP → products with FtsY (red) and FtsY-NG (black). 
The data with FtsY was fit to eq 2, and gave a Hill coefficient of 4.8 and an apparent Kd value of 
39 µM for FtsY-lipid binding in the complex. Error bars are SDs from two measurements. 
 

 

 56



 

Figure 6 
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Figure 6. Formation of the GTP-dependent SRP•FtsY complex exposes FtsY’s lipid binding 
helix. (A) Crystal structure of E. coli FtsY-NG+1 (PDB ID: 2QY9). The amphiphilic lipid-
binding helix at the A-N domain junction is highlighted in coral. (B) EPR spectra of the 
nitroxide spin probe at residue T206 of FtsY-NG+1 for apo-FtsY (black), the early intermediate 
formed in GDP (red), and the closed/activated complex formed in GppNHp (green). ΔH 
indicates the central line width, and ‘im’ and ‘m’ denote the population of immobile and mobile 
molecules, respectively. (C–D) Summary of the central linewidth (C) and fraction of mobile 
molecules (D) for nitroxide probes placed at different positions along FtsY’s lipid binding helix. 
Color coding is the same as in (B). Error bars are SDs from two or more measurements. 
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Figure 7 
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Figure 7. FtsY is specifically stimulated by anionic phospholipids. (A–B) Effects of E. coli 
liposomes on FtsY’s basal GTPase rate (A) and on SRP-FtsY complex assembly (B). (C–D) 
Effect of 7:3 PE/PC liposomes on FtsY’s basal GTPase reaction (C) and on SRP-FtsY complex 
assembly (D). (E–F) Effects of PG (circles) liposomes on FtsY’s basal GTPase rate (E) and on 
SRP-FtsY complex assembly (F).  (G–H) Effects of cardiolipin (solid circle) on FtsY’s basal 
GTPase rate (G) and on SRP-FtsY complex assembly (H). The dashed lines depict the data for 
PG/PE liposomes and were shown for comparison. Error bars are SDs from two or more 
measurements. 
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Figure 8 

 

 

Figure 8. FtsY binds specifically to anionic phospholipids. (A) SPR traces depicting resonance 
changes on FtsY-immobilized biosensor chips due to liposome binding. The numbers above each 
line denote the corresponding liposome concentration. (B-D) Equilibrium binding curves of FtsY 
(red) or FtsY-NG (black) to liposomes composed of 7:3 PE/PC (B), 7:3 PG/PE (C), and E. coli 
(D) lipids. The data were fit to eq 5 to obtain the apparent Kd values and hill co-efficients (h) for 
FtsY-lipid binding.  
 

 

 

 

 

 61



 

 

Figure 9 
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Figure 9. Phospholipids drive conformational changes of FtsY to regulate protein targeting. (A) 
Free energy profile depicting the effect of phospholipids in shifting the conformational 
equilibrium of FtsY from the open to the closed/activated states by ~100-fold (~2.8 kcal/mol). A 
standard state of 1 µM FtsY was used to calculate the free energy differences and activation 
energy for GTP-dependent SRP-FtsY complex formation. (B) Model for how lipid binding of 
FtsY is coupled to the SRP-FtsY interaction and protein targeting. Step 1, dynamic association of 
free FtsY with the phospholipid membrane. Step 2, membrane-bound FtsY is more efficient at 
forming a stable closed/activated SRP•FtsY complex. Step 3, cytosolic FtsY forms an early 
complex with cargo-loaded SRP. Step 4, the cargo•SRP•FtsY complex shifts between the early 
and closed conformations with an equilibrium of ~1. Step 5, the closed complex binds more 
strongly to the membrane than free FtsY. Step 6, the closed complex rearranges to the activated 
state, during which it completes the transfer of cargo to the translocon. Step 7, GTP hydrolysis 
drives complex disassembly, returning a fraction of FtsY molecules to the cytosol. (C) 
Movement of the αN1 helix (red) accompanies the open → closed rearrangement and membrane 
binding of FtsY. 
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Figure S1 

 

 

Figure S1. Phospholipids stimulate the basal GTP hydrolysis rate from the FtsY•GTP but does not 
affect GTP binding to FtsY. Michaelis-Menten analysis of the basal GTPase reaction of FtsY 
was performed in the presence (red) and absence (black) of 2 mM liposomes. The inset shows 
the data in the absence of liposomes on an expanded scale. The data were fit to Eq. 1 as 
described in Materials and methods, and the kcat and Km values are summarized at the bottom. 
As the chemical step is rate-limiting for the basal GTPase reaction of FtsY (Peluso et al., 2001), 
Km is equal to Kd, the equilibrium dissociation constant for FtsY binding to GTP, and kcat is equal 
to the rate of GTP hydrolysis from the FtsY•GTP complex. 
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Figure S2 

 

Figure S2. The GTPase activity of SRP was not affected by phospholipids. Basal GTPase 
reactions of SRP were performed under single turnover conditions using 2 μM SRP, as described 
previously (Peluso et al., 2001), in the presence of PG/PE (open circles), E. coli (closed circles), 
and PE/PC (triangles) liposomes. 
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Figure S3 

 

 
Figure S3. Mobility changes of nitroxide spin probes on the lipid binding helix of FtsY. (A) EPR 
spectra of nitroxide spin probes at residues 195-209 of FtsY-NG+1 for apo-FtsY (black), the 
early intermediate formed in GDP (red), and the closed/activated complex formed in GppNHp 
(green). The data are summarized in Fig. 6 (B and C). (B) EPR spectra of nitroxide spin probe at 
residue 229 (Fig. 6A, blue) in apo-FtsY and in its complexes with SRP (left). The middle and 
right panels summarize the central linewidth and fraction of mobile population, respectively, in 
the different conformational states of FtsY for this probe. The coclor notations are the same as in 
A. Error bars indicate SD. 
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Figure S4 

 

 

Figure S4. Binding of FtsY (red) or FtsY-NG+1 (green) to E. coli liposomes was determined by 
SPR. The data were fit to Eq. 5; they gave apparent Kd values of 0.28 and 0.78 mM, and Hill 
coefficients of 4.0 and 3.5 for lipid binding to FtsY and FtsY-NG+1, respectively. 
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Figure S5 

 

Figure S5. The presence of 0.01% Nikkol has a ≤30% effect on the lipid stimulation of FtsY. 
(A) The lipid concentration dependence of FtsY’s basal GTPase activity. (B) The stimulated 
GTPase activity. The data were fit to Eq. 2 as described in Materials and methods; they gave 
apparent lipid-binding constants (Kd,app) of 1.9 and 1.5 mM, and Hill coefficients of 2.8 and 2.0 
with and without Nikkol, respectively (A). The same analysis of the data in B gave Kd,app values 
of 0.66 and 0.62 mM and Hill coefficients of 3.6 and 3.9 with and without Nikkol, respectively. 
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Abstract 
 
 Signal recognition particle (SRP) and its receptor (SR) comprise a highly conserved 

cellular machinery that cotranslationally targets proteins to a protein-conducting channel, the 

bacterial SecYEG or eukaryotic Sec61p complex, at the target membrane. Whether SecYEG is a 

passive recipient of the translating ribosome or actively regulates this targeting machinery 

remains unclear.   Here, we show that SecYEG drives conformational changes in the cargo-

loaded SRP•SR targeting complex that activate it for GTP hydrolysis and for handover of the 

translating ribosome. These results provide the first evidence that SecYEG actively drives the 

efficient delivery and unloading of translating ribosomes at the target membrane.  
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Introduction 
 
 Correct cellular localization of proteins is essential for the proper functioning of all cells. 

A universally conserved protein-conducting channel, SecYEG in bacteria or Sec61p in 

eukaryotes, is the point of convergence of many post- and cotranslational protein targeting 

pathways and mediates the translocation or integration of newly synthesized proteins (du Plessis, 

2011; Cross, 2009; Driessen, 2008). In bacteria, the major post-translational pathway is mediated 

by the cytosolic chaperone SecB and the SecYEG-interacting ATPase SecA, which together 

deliver fully synthesized proteins to the periplasm (Driessen, 2008; Zhou, 2003; Hartl, 1990). 

The co-translational pathway is mediated by two GTPases, the SRP and SR, which target 

ribosome-nascent chain complexes (RNCs) to SecYEG (Cross, 2009; Walter, 1994; Walter, 

1981). 

 Extensive work on the Sec pathway showed that SecYEG and pre-proteins stimulate 

SecA’s ATPase activity and activate it to drive the translocation of pre-proteins into the 

periplasm (Duong, 2003; Karamonou, 2007; Kedrov, 2011; Deville, 2011; Gold, 2010; Dalal, 

2012). Whether SecYEG analogously regulates the activity of the SRP and SR to drive 

cotranslational protein targeting is not known. The SecY subunit of SecYEG forms a stable 

complex with the translating ribosome by interacting with both the ribosome exit site and the 

signal sequence of the nascent protein (Frauenfeld 2011; Cannon, 2005; van den Berg, 2004). It 

is unclear, however, whether SecYEG is a passive recipient that simply binds RNCs released 

from the SRP, or actively regulates the activity of the RNC•SRP•SR targeting complex. 

 The functional core of SRP is the SRP54 GTPase (Ffh in bacteria) bound to the 4.5S 

RNA (Poritz, 1990). The bacterial SR, FtsY, has a GTPase domain highly homologous to that in 

Ffh (Montoya, 1997a). During targeting, SRP and FtsY form a heterodimer in which both 
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proteins undergo a series of conformational changes, including the early, closed, and activated 

states, that culminate in reciprocal GTPase activation (Fig. 1A) (Egea, 2004; Zhang; 2009; Shan, 

2009, 2004). To ensure efficient and faithful delivery of cargo proteins to the target membrane, 

these GTPase rearrangements are actively regulated by the RNC (Zhang, 2009) and anionic 

phospholipids (Lam, 2010; Braig, 2011). RNC stabilizes the early intermediate but disfavors its 

rearrangement to the subsequent states.  This generates a highly stable early targeting complex in 

which the RNC is predicted to bind SRP with picomolar affinity, and GTP hydrolysis is delayed 

(Zhang, 2009).  Rearrangement of this complex to the closed/activated states, however, is 

required for the unloading of RNC (Shan, 2007; Zhang, 2009) and activating GTP hydrolysis.  In 

part, these rearrangements could be driven by anionic phospholipids, which stabilize the 

closed/activated states of FtsY (Lam, 2010). Membranes, however, are insufficient to drive the 

release of RNC (Song, 2000) or reverse the RNC-induced delay of GTP hydrolysis (Fig. S1). 

What provides the missing element that drives these late events during the targeting reaction is 

unknown.  

 Here we show that SecYEG drives late conformational changes of the targeting complex 

and re-activates GTP hydrolysis. Our results demonstrate an active role of SecYEG in 

cotranslational protein targeting and suggest a concerted mechanism for handover of the RNC 

from the targeting to the translocation machinery.  
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Results and Discussion 

SecYEG destabilizes the early targeting complex 
 
 We previously showed that RNCs stabilize the SRP•FtsY GTPase complex in the early 

conformational state, disfavor its rearrangement to subsequent conformations, and delay GTPase 

activation (Zhang, 2009, 2008). These allosteric regulations prevent abortive reactions and are 

beneficial at early stages of the pathway. However, they pose a barrier to the cargo unloading 

and GTPase activation events required at later stages of the pathway. To test whether SecYEG 

can help drive these late events, we purified SecYEG complexes (Fig S2A) and first showed that 

they are active for RNC binding (Fig. S2B). Furthermore, when reconstituted into synthetic lipid 

vesicles, SecYEG was active in SecA-dependent translocation of proOmpA (Fig. S2C) and 

capable of cotranslational translocation of a modified alkaline phosphatase containing an SRP-

dependent signal sequence derived from DsbA (DsbA-phoA) (Fig. S2D).  We focused on 

SecYEG solubilized in dodecyl-β-D-maltopyranoside (DDM) in this work, as DDM-solubilized 

SecYEG is fully functional in interacting with the RNC and translocating the nascent 

polypeptide (Mothes, 1998; and Fig. S2C & D) and activating the SecA ATPase (Duong, 2003; 

Gold, 2010; Deville, 2011). Further, since phospholipid membranes also exert stimulatory effects 

on the basal activity of FtsY and accelerate formation of the SRP•FtsY complex (Lam, 2010), the 

use of DDM-solubilized SecYEG allows us to distinguish its effects from those of phospholipids.  

 We asked whether and how SecYEG regulates the conformation of the SRP and FtsY 

GTPases in the RNC•SRP•FtsY targeting complex.  We first tested the early intermediate formed 

between SRP and FtsY, which is stabilized ~102-fold by RNCs bearing highly hydrophobic 

signal sequences such as 1A9L (Zhang, 2009). As this intermediate can form with or without 

GTP, but its subsequent rearrangement is strictly GTP-dependent, it can be isolated by leaving 
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out GTP analogues (Zhang, 2008; Fig. 1A). FRET between coumarin-labeled SRP Cys235 and 

BODIPY-FL-labeled FtsY Cys487 was used to monitor formation of this intermediate (Zhang, 

2008). Equilibrium titrations showed that SecYEG destabilized the RNC•SRP•FtsY early 

intermediate at least 15-fold, while DDM alone did not have any effect (Fig. 1B & F).  This 

destabilizing effect of SecYEG increases linearly with the concentration of SecYEG (Fig. 1C), 

indicating strong antagonism between SecYEG and the early targeting intermediate. Importantly, 

SecYEG also lowered the FRET end point of the early intermediate (Fig. 1B & F), suggesting 

that it alters the conformation of the GTPases in this intermediate.  

 We next asked whether SecYEG can modulate the subsequent closed and activated states 

in the GTPase complex (Fig. 1A).  To detect these states, we used an environmentally sensitive 

dye, acrylodan, conjugated to SRP Cys235. In the presence of a non-hydrolyzable GTP 

analogue, GppNHp, acrylodan at this position specifically changes fluorescence upon formation 

of the closed/activated complex (Zhang, 2009). Equilibrium titrations using this assay gave 

similar Kd values in the absence and presence of SecYEG (Fig. 1D & F). As the Kd value of this 

complex is over 20-fold below the concentration of SRP needed for reliable titrations, a possible 

effect of SecYEG on its stability might have escaped detection.  To more specifically monitor the 

activated complex, we used acrylodan-labeled FtsY Cys356, which specifically detects 

movements of catalytic loops required for GTPase activation (Zhang, 2009).  This assay revealed 

a 2–4 fold stabilization of the activated complex by SecYEG (Fig. 1E & F).  Together, these 

results demonstrate that SecYEG drives conformational changes of the targeting complex by 

destabilizing the early intermediate and favoring the activated complex.  

SecYEG re-activates GTP hydrolysis by the targeting complex 
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 If SecYEG drives GTPase rearrangements to the activated state, it would reverse the 

RNC-induced delay of GTPase activation and re-activate GTP hydrolysis by the targeting 

complex. To test this hypothesis, we determined the effect of SecYEG on the GTP hydrolysis 

rate of the SRP•FtsY complex (kcat). As observed previously, RNC1A9L delays GTPase activation, 

reducing the kcat value from 80 min-1 to 22 min-1. SecYEG restored more efficient GTP 

hydrolysis in the RNC•SRP•FtsY complex and increased the kcat value to 66 min-1, approaching 

that of the SRP•FtsY complex alone (Fig. 2A). This stimulatory effect of SecYEG was saturable, 

with an apparent Kd value of ~2 μM (Fig. 2B), which could represent the affinity of SecYEG for 

the targeting complex. The stimulation was not an artifact of the detergent, as DDM 

concentrations up to 0.22% did not affect GTP hydrolysis from the RNC•SRP•FtsY complex 

(Fig. 2C). In comparison, the concentration of DDM introduced along with SecYEG was below 

0.14%, as determined by a phenol-sulfuric acid reaction (Dubois, 1956).  Indeed, even 0.02% 

DDM had an inhibitory effect on the stimulated GTPase activity in the absence of RNC (Fig. 

2D), suggesting that the actual GTPase stimulation by SecYEG might be even greater than 

observed here.  

 As SecYEG was reported to interact with FtsY (Kuhn, 2011; Angelini, 2006), we asked if 

SecYEG affects the basal GTPase activity of FtsY or its stimulated GTPase reaction with SRP in 

the absence of RNC. No stimulation was observed in either case (Fig. 2E & F), indicating that 

SecYEG specifically exerts its stimulatory effect only when the SRP•FtsY complex is bound to 

the RNC.   

SecYEG associates with the targeting complex via interaction with the ribosome 

  How does SecYEG re-activate GTP hydrolysis from the targeting complex? In the 

simplest model, SecYEG removes the RNC from the SRP, regenerating the SRP•FtsY complex 
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that hydrolyzes GTP faster. Release of RNC from SRP onto the Sec61p translocon was 

previously observed in reconstituted targeting reactions using components of the eukaryotic SRP 

pathway (Fulga, 2001; Song, 2000; Jungnickel, 1995; Gorlich, 1993).  Alternatively, SecYEG 

forms a quaternary complex with RNC, SRP, and FtsY at steady state, in which GTP hydrolysis 

from the SRP•FtsY complex is activated. To distinguish between these possibilities, we analyzed 

the effect of SecYEG on the kinetics of formation of the closed SRP•FtsY complex. The most 

pronounced effect of the RNC is its ability to accelerate the assembly of this complex (Zhang, 

2009), which provides a robust diagnostic for whether the RNC is bound to the SRP (Fig. 3A, 

red and green).  If SecYEG did not remove the RNC from SRP, then the kinetics of closed 

complex formation in the presence of SecYEG would remain rapid. Consistent with this 

prediction, in the presence of SecYEG and RNC, the rate of closed complex assembly was 

similar to that with RNC-bound SRP and much faster than with free SRP (Fig. 3A). SecYEG 

itself does not affect complex assembly between SRP and FtsY (Fig. S3), indicating that it is not 

responsible for the fast assembly kinetics observed in Figure 3A. Further, in the presence of both 

SecYEG and RNC, the early → closed rearrangement of the SRP•FtsY complex occurred at the 

same rate, within error, as that with the RNC-loaded SRP and was significantly slower than with 

free SRP (Fig. 3B & C and Zhang, 2008).   

 Together, these results strongly suggest that restoration of efficient GTP hydrolysis by 

SecYEG was not simply due to the removal of RNC from the SRP.  Instead, the results suggest 

the formation of a quaternary RNC•SRP•FtsY•SecYEG complex in which the GTPase activity of 

SRP and FtsY was stimulated. The Kd value of 2 µM observed earlier (Fig. 2B) likely represents 

the dissociation constant of SecYEG from this complex.  We speculate that this quaternary 

complex is transient during protein targeting and translocation. It accumulated under our reaction 
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conditions either because the length of the nascent polypeptide used here (~85 residues) was 

optimized for interaction of the RNC with the SRP but is suboptimal for its transfer to SecYEG 

(Park, 2011; Mothes, 1998), or because phospholipid membranes or other components of the 

holotranslocon may be needed further to drive the efficient transfer of cargo.  Regardless of the 

specific model, the observation of a quaternary complex suggests that the handover of RNC from 

the SRP to SecYEG could occur through a concerted mechanism, in which both the SRP and 

SecYEG are associated with the RNC. 

 How does SecYEG associate with the targeting complex? A large body of work shows 

that highly conserved basic residues in the cytosolic loops of SecYEG, R255 and R256 in the C4 

loop and R357 in the C5 loop, serve as universal binding sites for cytosolic factors including the 

ribosome (Menetret, 2007), FtsY (Kuhn, 2011), and SecA (Kuhn, 2011; Alami, 2007). We 

therefore asked whether mutation of these residues abolishes the stimulatory effects of SecYEG.  

To this end, we purified SecYEG mutants containing charge reversal mutations either in C4 

(R255E/R256E), C5 (R357E), or both loops (mtSecYEG) (Fig. S1A). In agreement with 

previous reports (Menetret, 2007), mtSecYEG was defective in ribosome binding (Fig. S1B).  In 

contrast to wild-type SecYEG (wtSecYEG), none of the SecYEG mutants could restore efficient 

GTP hydrolysis from the targeting complex.  A small amount of rescue could be detected with 

the R255E/R256E and R357E mutants, likely due to the remaining arginine residue(s) in the 

other cytosolic loop (Fig. 4A & B). We further tested the ability of mtSecYEG to destabilize the 

early intermediate and found that, relative to wtSecYEG, this activity was significantly impaired 

(Fig. 4C & D). Thus, the conserved basic residues in the cytosolic loops of SecYEG are essential 

for its ability to drive conformational changes in the targeting complex and to reactivate GTP 

hydrolysis. These results also support the specificity of the stimulatory activities observed with 
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wtSecYEG and suggest that the action of its cytosolic loops occurs prior to RNC docking, when 

the targeting machinery first contacts SecYEG. 

 SecYEG could use its basic cytosolic loops to contact either the ribosome (Menetret, 

2007; Becker, 2009) or the A-domain of FtsY (Kuhn, 2011). To distinguish between these 

possibilities, we removed the N-terminal 196 residues comprising the A-domain of FtsY, 

generating mutant FtsY-NG (Parlitz, 2007). FtsY-NG could mediate the formation of the RNC-

stabilized early intermediate with SRP, with a Kd value similar to that formed by full-length FtsY 

(Fig. 4E & F). SecYEG destabilized the early intermediate formed by FtsY-NG to the same 

extent, within error, as that formed by full-length FtsY (Fig. 4E & F). This result is not 

unexpected, and is in agreement with the poor conservation of the A-domain in bacteria (Eitan, 

2004) and its dispensability in vivo (Parlitz, 2007; Eitan, 2004). Our results here indicate that the 

A-domain is not essential for the ability of SecYEG to drive conformational changes in the 

targeting complex. Instead, the basic cytosolic loops in SecYEG likely interact with the 

ribosomal protein L23 at the nascent polypeptide exit site (Menetret, 2007; Becker, 2009), thus 

exerting its stimulatory effects.  

 Collectively, the results here provide the first evidence that the SecYEG protein 

conducting channel actively modulates the conformation and activity of the targeting complex to 

drive completion of the cotranslational protein targeting reaction. Combined with previous work 

(Lam, 2010; Braig, 2011; Song, 2000; Gold,2010), these results suggest an attractive model in 

which SecYEG and anionic phospholipids serve overlapping functions in mediating the delivery 

of the targeting complex to sites of translocation at the target membrane. The targeting complex 

preferentially localizes to regions of the membrane enriched in anionic phospholipids 

(Vanounou, 2003; Fishov, 1999; Erez, 2010; Lam, 2010), with which SecYEG may also 
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preferentially associate (Gold, 2010; Campo, 2004; Shiomi, 2006). Although lipid interactions 

can induce rearrangements in FtsY to favor the closed/activated states (Lam, 2010), they are 

insufficient to overcome the stabilizing effect of RNC on the early complex (Lam, 2010) and 

reactivate the GTPase reaction of the RNC•SRP•FtsY targeting complex (Fig. S1). Association 

with SecYEG is required to overcome these ‘stalling’ effects of RNC and re-activate the 

GTPases.  Together, phospholipids and SecYEG drive the rearrangement of the targeting 

complex to the activated conformation, which enables the unloading of RNC from the SRP to 

SecYEG and activates GTP hydrolysis, thus completing the targeting cycle. As discussed above, 

SecYEG likely exerts these effects by forming a transient quaternary intermediate with the 

targeting complex, in which it interacts directly with the ribosome exit site and displaces the SRP 

GTPase from this site (Fig. 5B; Halic, 2006). As the early SRP•FtsY complex is stabilized by 

interaction with the SRP RNA tetraloop (Shen, 2010), which is optimal only when the SRP NG-

domain interacts with L23, displacement of the GTPase complex from the ribosome exit site 

would also explain the destabilizing effect of SecYEG on the early targeting complex. The fate 

of the signal sequence in the quaternary intermediate, what drives its transfer to SecYEG, and 

whether SecYEG interacts with FtsY’s GTPase domain (Kuhn, 2011; Angelini, 2005, 2006) 

during these events remain intriguing questions for future investigations. 
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Materials and Methods 

Materials. Full-length FtsY, FtsY-NG, Ffh, and 4.5S RNA were expressed and purified as 

described (Montoya, 1997b; Peluso, 2001). Single cysteine mutants of FtsY and Ffh were labeled 

with fluorescent dyes, N-(7-dimethylamino-4-methylcoumarin-3-yl) maleimide (DACM), the 

maleimide derivative of BODIPY-FL, or acrylodan (Invitrogen) as described (Zhang, 2009, 

2008). RNCs bearing a hydrophobic signal sequence 1A9L were prepared as previously 

described (Zhang 2009; Schaffitzel, 2007). For GTPase assays, RNCs were further purified by 

sucrose gradient fractionation to collect monosomes free of GTPase contaminants as described 

(Zhang, 2009). Liposomes were prepared from E. coli polar lipid extract (Avanti Polar Lipids, 

inc.) as described (Lam, 2010; de Leeuw, 2000). n-Dodecyl-β-D-maltopyranoside (DDM) solid 

was from Anatrace. 

4.5S RNA expression and purification. Expression and purification of 4.5S RNA was performed 

as described in Peluso, 2001. Briefly, DH5α cells transformed with pSN1 were grown in LB in 

the presence of 100 μg/ml and 1 mM IPTG for 10 h at 37°C. The cells were resuspended in 20 

mM KOAc (pH 4.7) / 1 mM EDTA and extracted with acid phenol:chloroform. RNA was 

precipitated with isopropanol, dissolved in water, and further purified using gel filtration 

(TSK3000SW BAT). 4.5S RNA was precipitated with isopropanol, air dried, and stored as a 

pellet in ethanol at -20°C. The RNA was dissolved in the assay buffer (50 mM KHEPES, pH 7.5, 

150 mM KOAc, 10 mM Mg(OAc)2, 2 mM DTT) and quantitated using absorbance at 260 nm (1 

A.U. = 40 μg/ml). 

Fluorescence labeling. Site-specific labeling of FtsY and Ffh with fluorescent dyes was 

performed as described in Zhang, 2008, 2009. Single cysteine mutants of FtsY or Ffh were 

dialyzed in labeling buffer (50 mM KHEPES, pH 7.0, 300 mM NaCL, and 2 mM 
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ethylenediaminetetraacetic acid) and treated with 2 mM TCEP for 2 h. The reduced protein was 

incubated with 5-fold molar excess of the maleimide derivative of DACM or BodipyFL for 4 h, 

or with a 30-fold molar excess of acrylodan for 16h. The reaction was quenched with DTT, and 

the dye was separated from the labeled protein by gel filtration using Sephadex G-25 (Sigma). 

Labeling efficiency was determined using the following absorption co-efficients: DACM, ε 383 = 

27, 000 M-1cm-1; BodipyFL, ε 504 = 79, 000 M-1cm-1; acrylodan, ε 391 = 20, 000 M-1cm-1. 

Preparation of RNC. RNCs were generated and purified as described (Zhang 2009, Schafitzel 

2007), using in vitro translation in a membrane-free extract from E. coli MRE600 cells. mRNA 

containing a truncated mature region of PhoA with 1A9L signal sequence and SecM stalling 

sequence was translated at 37°C for 25 min. Stalled RNCs were bound to a Strep-Tactin 

Sepharose column (IBA), eluted with desthiobiotin (Sigma), pelleted, and re-dissolved in the 

assay buffer. For GTPase assays, monosomes were purified using a 10-50% continuous sucrose 

gradient and untracentrifugation at 23 000 rpm 4°C for 15 h (SW-32, Beckman Coulter). The 

monosome fraction was pelleted at 55 000 rpm 4°C for 15 h (TLA 55, Beckman Coulter) and 

dissolved in assay buffer.  

Expression and Purification of SecYEG. SecYEG containing N-terminally His6-tagged SecY 

was expressed from plasmid pEK20 (du Plessis, 2009), a kind gift from Arnold Driessen. Triple 

charge reversal mutant of SecY (R255E, R256E, R357E) was generated based on pEK20 using 

the QuikChange mutagenesis protocol (Stratagene). SecYEG was expressed in BL21(DE3) cells 

and purified using previously described protocols (Dalal, 2010; van den Berg, 2004) with 

modifications. All steps were performed at 4 °C. Cells were lysed by sonication in KS300G 

buffer (50 mM KHEPES, pH 7.5, 300 mM NaCl, 10 % glycerol). After removal of intact cells 

(12,000 g, 20 min), membranes were collected by ultracentrifugation at 42,000 rpm for 45 min 
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(Ti45, Beckman Coulter), and extracted for 1 hour in KS100G buffer (50 mM KHEPES, pH 7.5, 

100 mM NaCl, 10% glycerol) containing 1% DDM per 10 mg/mL total protein.  The suspension 

was clarified by ultracentrifugation at 42,000 rpm for 32 min (Ti70, Beckman Coulter).  The 

supernatant was purified by cation exchange on SP-Sepharose Fast Flow resin (GE Healthcare; 

12 mL per 6 liters of cells) in KS100G/0.02% DDM, and eluted using a gradient of 100 – 1000 

mM NaCl. Elution fractions containing SecYEG were further purified by affinity 

chromatography on Ni-NTA Agarose (Qiagen; 2 mL of resin per 6 L of cells).  Protein was 

loaded and washed with KS300G/0.02% DDM/20 mM imidazole, and eluted with 

KS300G/0.02% DDM/300 mM imidazole. Purified SecYEG was dialyzed against 50 mM 

KHEPES, pH 7.5, 150 mM KOAc, 10% glycerol, 2 mM DTT, 0.02% DDM for 12 h. The 

concentration of SecYEG was determined using absorbance at 280 nm and the extinction 

coefficient of 71,000 M-1cm-1 (Kedrov, 2011). 

 Mutant SecYEG was purified by two rounds of immobilized metal affinity 

chromatography using Ni-Sepharose resin (GE Healthcare), using procedures similar to those 

described above except that 40 mM imidazole was used during binding and wash, and a 50 – 500 

mM imidazole gradient was used during elution. 

Fluorescence measurements. Fluorescence assays were performed as described (Zhang, 2009, 

2008; Lam, 2010). All measurements were carried out at room temperature in assay buffer (50 

mM KHEPES, pH 7.5, 150 mM KOAc, 10 mM Mg(OAc)2, 2 mM DTT, and 0.01% Nikkol) 

supplemented with 0.02% DDM when necessary. Stability of the early complex was determined 

using FRET between DACM-labeled SRP Cys235 and BODIPY-FL-labeled FtsY Cys487. 

Equilibrium titrations were carried out with 40 nM SRP, 110 nM RNC where applicable, 100 

µM GDP, with FtsY as a titrant. The data were fit to eq 1, 
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 Fobsd = F1 ×
[SRP]+[FtsY]+Kd − ([SRP]+[FtsY]+Kd )2 − 4 ×[SRP][FtsY]

2 ×[SRP]
 

(1) 

where Fobsd is the observed FRET, F1 is the maximum FRET value at saturating FtsY 

concentrations, and Kd is the equilibrium dissociation constant of the early complex. Scattering 

due to SecYEG was subtracted before calculating the FRET values. 

 The stability of the closed/activated complex was determined using acrylodan-labeled 

SRP Cys235, with FtsY as the titrant. The stability of the activated complex was determined 

using acrylodan-labeled FtsY Cys356, with SRP as the titrant. Reactions were supplemented 

with 0.02% DDM. The data were fit to a quadratic equation similar to eq 1. When fluorescent 

FtsY was used, the denominator in eq 1 was replaced with 2×[FtsY].  

 The assembly kinetics of the closed complex from free SRP and FtsY was determined in 

the presence of GppNHp using FRET between DACM-labeled SRP Cys235 and BODIPY-FL-

labeled FtsY Cys487, on a Fluorolog 3-22 (Jobin Yvon) as described (Zhang, 2009).  The rate 

constant for association of SRP and FtsY (kon) in the absence and presence of SecYEG was 

determined by measuring the observed rate of association (kobsd) at varying FtsY concentrations 

as described above. The FtsY concentration dependence of kobsd was fit to eq 2,  

   kobsd = kon[FtsY] + koff    (2) 

in which kon is the rate constant for complex assembly, and koff is the rate constant for complex 

disassembly. 

 The rate of early → closed rearrangement was determined by pre-forming the early 

complex with 50 nM acrylodan-labeled SRP C235, 100 nM RNC, 5 μM FtsY in the absence or 

presence of SecYEG. Rearrangement to the closed complex was initiated by addition of 200 µM 
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GppNHp and monitored as an increase in acrylodan fluorescence on a Kintek stopped-flow 

apparatus. The data were fit to eq 3,   

   Fobsd = F0 + (Fmax – F0)(1 – e-kt)   (3) 

in which F0 and Fmax are the initial and final fluorescence values, respectively, Fobsd is the 

observed fluorescence, and k is the rearrangement rate constant. 

GTPase assay. GTP hydrolysis reactions were carried out in assay buffer, and were performed 

and analyzed as described (Peluso, 2001). Stimulated GTP hydrolysis of SRP with FtsY was 

determined using 40 nM SRP, 100 nM RNC where applicable, and increasing concentrations of 

FtsY as indicated. Wherever applicable, 8–12 µM SecYEG was added last and incubated with 

the reaction mixture for 10 min before initiation of reaction. The data were fit to eq 4,  

   kobsd = kcat × [FtsY]
Km +[FtsY]

    (4) 

in which kobsd is the observed rate constant, kcat is the rate constant at saturating FtsY and Km is 

the concentration of FtsY required to reach the half-maximal rate.  

 Dose-dependent effects of SecYEG on GTP hydrolysis was measured using a pre-

incubated mixture of 40 nM SRP, 100 nM RNC, and 3 or 8 μM of FtsY, to which increasing 

concentration of SecYEG was added before initiation of reaction. The data were fit to an 

equation analogous to eq 4, except that [FtsY] is replaced with [SecYEG], kcat is replaced with 

kmax, and Km is replaced with Kd. 

Co-sedimentation assay. Interaction of SecYEG with RNC was determined using a co-

sedimentation assay as described (Menetret, 2007; Fraunfeld, 2011) with modifications. 200 nM 

RNC was incubated with 1 µM SecYEG in assay buffer supplemented with 0.05% DDM for 35 

min at room temperature. 35 µL of the solution were layered onto 200 µL of 30% sucrose 

solution in assay buffer supplemented with 0.05% DDM, and ultracentrifuged at 100,000 rpm for 
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12 min at 4 °C (TLA100, Beckman Coulter). The pellet was dissolved in SDS gel loading buffer 

and resolved on a 15% SDS gel.  

Reconstitution of SecYEG into proteoliposomes. Purified SecYEG was reconstituted into E.coli 

liposomes as described (van der Does, 1998; Brundage, 1990; van der Does, 2003) with 

modifications. Before use, liposome suspension was activated in a bath sonicator until clear, and 

diluted with 0.5% Triton X-100 to 4 mg/mL. 200 μg of SecYEG (0.2 mg/ml in 10 mM TrisHCl, 

pH 8.0, 10% glycerol, 0.1% DDM, and 100 mM KCl) was mixed with 4 mg of liposomes and 

incubated for 30 min at 4 °C with gentle tumbling. 200 mg of Biobeads SM-2 (Bio-Rad 

Laboratories, Inc.), equilibrated in buffer A (50 mM TrisHCl, pH 8.0, 50 mM KCl, 1 mM DTT), 

was incubated with the SecYEG/liposome mixture with gentle stirring for 2 hours at 4 °C. The 

beads were removed by centrifugation at 500 g. The procedure was repeated with 200 mg of 

Biobeads and 4 hours of incubation in the second round, and 400 mg of Biobeads and overnight 

incubation in the third round. SecYEG proteoliposomes were collected by ultracentrifugation at 

100,000 rpm for 30 min (TLA 100.3, Beckman Coulter) and dissolved in buffer A containing 

10% glycerol. The concentration of SecYEG in proteoliposomes was determined using 

Coomassie staining on SDS-PAGE along with SecYEG standards of known concentration.  

Post-translational translocation. Activity of SecYEG reconstituted into proteoliposomes was 

determined by examining SecA-dependent translocation of 35S-labeled proOmpA and assayed 

using protection against proteinase K, as described (van der Does, 1998; Cunningham, 1989; van 

der Does, 2003). Briefly, in vitro translation of proOmpA was carried out in a wheat germ 

extract (Promega) in the presence of  S35-methionine at 26°C for 30 min and stopped by 

transferring to ice. Translocation of the substrate into SecYEG proteoliposomes was performed 

in the presence of SecA and ATP-regenerating system at 37°C for 15 minutes and stopped by 
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transferring the reaction to ice. Half of the reaction was treated with 0.02 mg/ml of proteinase K 

on ice for 15 min in the absence or presence of 1% Triton and quenched with 

phenylmethylsulfolyl fluoride (PMSF). Both reactions with and without PK treatment were 

precipitated with trichloroacetic acid (TCA), resolved on a denaturing gel, and quantified using 

autoradiography.  

Cotranslational translocation assay.  The coupled transcription/translation system used for 

cotranslational targeting assays was described previously (Saraogi, 2011). The signal sequence 

of PhoA was replaced with that of the SRP-dependent substrate DsbA and used as a model 

substrate. The coupled transcription/translation reaction containing 35S-Met was supplemented 

with 5 mM GTP, 1 μM SRP, 1 μM FtsY, and either E. coli derived inner membrane vesicles 

(IMVs) or SecYEG proteoliposomes and carried out at 37°C for 30 min. The final concentration 

of SecYEG in the reaction was 2.2 μM. The reactions were quenched on ice, treated with 0.9 

mg/mL of proteinase K for 15 min on ice in the absence or presence of 1% Triton and quenched 

with PMSF. The reaction was TCA precipitated and quantified as for the post-translational 

targeting reactions. 
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Figure 1. SecYEG destabilizes the early intermediate in the RNC•SRP•FtsY complex. (A) 
Conformational states of the SRP•SR complex during its GTPase cycle. Blue denotes SRP, green 
denotes SR, and T and D denote GTP and GDP, respectively. (B) Equilibrium titration of the 
early complex in the absence (green) and presence of 0.05% DDM (black) or 24 μM SecYEG 
(red). Representative data out of four replicates are shown. The data were fit to eq 1 in the 
Methods, and gave Kd values and FRET end points reported in (E). (C) Effect of SecYEG on the 
stability of the early complex. The Kd values of the early complex were determined as in (A) at 
indicated concentrations of SecYEG. The line is a linear fit to the data. (D) Equilibrium titration 
of the closed/activated complex was performed in the presence of 0.02% DDM (black) or 12 μM 
SecYEG (red), using 100 nM acrylodan-labeled SRP, 230 nM RNC, and 200 μM GppNHp. 
Representative data out of two replicates are shown. The data were fit to eq 1 in the Methods and 
gave Kd values reported in (F). (E) Equilibrium titration of the activated complex was performed 
in the presence of 0.01% DDM (black) or 10 μM SecYEG (red), using 50 nM acrylodan-labeled 
FtsY C356, 300 nM RNC, and 200 nM GppNHp. Representative data from two replicates are 
shown.  The data points of the two titrations overlapped at 0.2 µM SRP, which may render this 
data point for the –SecYEG titration less visible. The data were fit to eq 1 and gave Kd values 
reported in (F). (F) Summary of the Kd values and FRET end points from the experiments in 
panels A-D. The values are averages of 2–4 experiments ± standard deviation. 
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Figure 2. SecYEG re-activates GTP hydrolysis from the RNC•SRP•FtsY complex. (A) 
Stimulated GTP hydrolysis of SRP with FtsY in the absence (circles) and presence (squares) of 
RNC, and in the presence of both RNC and SecYEG (triangles). The data are the average of 
three experiments ± standard deviation. The data were fit to eq 4 in the Methods and gave kcat 
values of 80, 22 and 66 min-1 for the SRP•FtsY, RNC•SRP•FtsY, and RNC•SRP•FtsY•SecYEG 
complexes, respectively. (B, C) Effect of SecYEG (B) or DDM (C) on GTP hydrolysis from the 
RNC•SRP•FtsY complex. The data in (B) were fit to eq 4 in Methods and gave a Kd value of 2 
µM and a kmax value of 57 min-1. The data in (B) are the average of two experiments ± standard 
deviation. (D) DDM reduces GTP hydrolysis rate from the SRP•FtsY complex. kcat values were 
determined as in (A) in the absence and presence of 0.02% DDM. The data are the average of 
two experiments ± standard deviation. (E) SecYEG does not affect the basal GTPase activity of 
FtsY. Reactions were performed in the presence of 4 μM FtsY, 100 μM GTP, and indicated 
concentrations of SecYEG. The data are the average of two experiments ± standard deviation. 
(F) In the absence of RNC, SecYEG does not significantly affect GTP hydrolysis from the 
SRP•FtsY complex. The data are the average of two experiments ± standard deviation. The data 
were fit to eq 2 in the Methods, and gave kcat values of 60 and 51 min-1 in the absence (closed) 
and presence (open) of 12 μM SecYEG, respectively. 
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Figure 3. SecYEG forms a quaternary complex with RNC, SRP and FtsY. (A) Kinetics of 
closed complex assembly was measured in the absence (red) and presence of 100 nM RNC 
(green), and in the presence of 100 nM RNC and 7 µM SecYEG (blue). Reactions contained 40 
nM DACM-labeled SRP, 100 nM BODIPY-FL-labeled FtsY, and 200 µM GppNHp. 
Representative data from three replicates are shown.  (B) Kinetics of rearrangement of the 
RNC•SRP•FtsY complex from the early to the closed conformation, in the absence (black) and 
presence (red) of 12 µM SecYEG. Representative data from two replicates are shown.  Single 
exponential fits to the data gave the rearrangement rate constants of 0.403 ± 0.027 s-1 and 0.489 
± 0.008 s-1 with and without SecYEG, respectively. (C) Summary of the early → closed 
rearrangement rate constants. The value of 1.5 s-1 was obtained in the absence of SecYEG and 
RNC and is shown for comparison. 
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Figure 4. Mutations in basic cytosolic loops of SecYEG abolish its stimulatory effects. (A) 
Stimulated GTP hydrolysis between the RNC-bound SRP and FtsY in the absence (open circles) 
and presence (closed circles) of 12 μM mtSecYEG. The data were fit to eq 4. The dashed line is 
the data for wild type SecYEG from Figure 2A and is shown for comparison. Representative data 
from two replicates are shown. (B) Effect of SecYEG charge reversal mutants on GTP 
hydrolysis from the RNC•SRP•FtsY complex. Solid black, R255E/R256E/R357 (mtSecYEG); 
red, R357E; blue, R255E/R256E.  Representative data from two or more replicates are shown.   
The dashed line is the data for wild type SecYEG from Figure 2B and is shown for comparison.  
(C) Equilibrium titration of the early complex in the presence of 24 μM mtSecYEG (solid 
circles). Representative data from three replicates are shown.  The data were fit to eq 1 and gave 
a Kd value of 162 ± 4 nM. Titration in the presence of DDM (dotted) and wild type SecYEG 
(dashed) are from Figure 1 and are shown for comparison. (D) Effect of mtSecYEG on the 
stability of the early complex. Kd values were determined as described in (C). The data with wild 
type SecYEG (dashed line) from Figure 1B is shown for comparison. (E) Equilibrium titration of 
the early targeting complex formed by FtsY-NG in the presence of 0.05% DDM (black) or 24 
µM SecYEG (red). Representative data from two replicates are shown.  The data were fit to Eq 1 
in Methods, and Kd values are reported in (F).  (F) Summary of the effects of SecYEG on the 
stability of the early targeting complex formed with full-length FtsY and FtsY-NG. The values 
with full-length FtsY are from Figure 1 and are shown for comparison. Error bars denote 
standard deviation from 2-3 experiments.  
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Figure 5. SecYEG drives conformational changes in the RNC•SRP•FtsY complex. (A) Free 
energy profile for the FtsY-SRP interaction in the absence (black) and presence (red) of 
SecYEG. The red arrows denote the effect of SecYEG on the conformational states. Activation 
energies were calculated from the determined rate constants using ∆G‡ = –RTln[kh/(kBT)], where 
R = 1.987 cal•K-1•mol-1, h = 1.58 × 10-37 kcal•s, kB = 3.3 × 10-27 kcal•K-1, and T = 298 K. The 
relative free energies of the conformational states were calculated from the equilibrium stability 
of the complexes using ∆G = –RTlnK, where K is the equilibrium constant. A standard state of 1 
μM was used. T denotes GTP, D denotes GDP. (B) Model for the role of SecYEG in driving 
GTPase rearrangements in the targeting complex and completing cotranslational protein 
targeting, as described in the text. The M-domain of Ffh that binds the signal sequence is also 
shown. The SRP RNA is not depicted for clarity. ? denotes unanswered questions regarding the 
fate of the signal sequence and the interaction of SecYEG with FtsY in the putative quaternary 
intermediate.  
 

 99



 

 

 

Figure S1. Liposomes do not re-activate GTPase activity of the targeting complex in the 
presence of RNC. The effect of increasing lipid concentration on the  rate of GTP hydrolysis 
from the FtY•SRP complex was measured using 50 nM SRP, 10 μM FtsY, and saturating GTP in 
the absence (open circles) and presence of (solid circles) of 100 nM RNC1A9L. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 100



 

Figure S2 
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Figure S2. Purification and activity of SecYEG. (A) Wild-type (wt) and the triple charge 
reversal mutant (mt) SecYEG were expressed and purified as described in Methods and resolved 
on a 15% SDS gel. SecY- and SecE-His6 tagged constructs were used to ensure that the affinity 
tag does not contribute to ribosome binding. The first panel shows wtSecYEHis6G and 
mtSecYHis6EG resolved on a denaturing gel. In the second panel, both wtSecYEG and 
mtSecYEG are tagged at SecY. Charge reversal of basic residues slightly reduces the mobility of 
SecY. (B) Co-sedimentation assay examining the binding of wtSecYEG and mtSecYEG to RNC, 
performed as described in the Methods. L denotes the load before centrifugation, P denotes the 
pellet. (C) SecYEG-proteoliposomes mediate SecA-catalyzed translocation of proOmpA. The 
concentrations of SecYEG in proteoliposomes are indicated above the gel. K denotes proteinase 
K. ‘–‘ denotes equivalent amount of proOmpA prior to proteinase K treatment. Where indicated, 
1% Triton X-100 was added before treatment with proteinase K. Gels from two independent 
experiments are shown. (D) SecYEG proteoliposomes mediate SRP-dependent translocation of 
DsbA-PhoA substrate. Combined transcription/translation/translocation of DsbA-PhoA was 
carried out in the presence of either E. coli inner membrane vesicles (IMVs), SecYEG 
proteoliposomes (3.7 μM SecYEG), or empty liposomes. The reactions were treated with 
proteinase K in the absence and presence of 1% Triton to assess the extent of translocation. Five 
percent of the translation reaction were loaded as reference. Representative data from two 
replicate experiments are shown. 
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Figure S3. SecYEG does not affect SRP-FtsY complex assembly kinetics in the absence of 
RNC. Observed complex formation rate constants are determined as described in Methods.  
Linear fits of the data gave kon values of 3.85 × 104 M-1s-1 and 3.28 × 104 M-1s-1 in the absence 
and presence of SecYEG, respectively. 
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Abstract 

Efficient and accurate protein localization is essential to cells and requires protein-targeting 

machineries to both effectively capture the cargo in the cytosol and productively unload the 

cargo at the membrane. To understand how these challenges are met, we followed the interaction 

of translating ribosomes during their targeting by the signal recognition particle (SRP) using a 

site-specific fluorescent probe in the nascent protein. We show that initial recruitment of SRP 

receptor (SR) selectively enhances the affinity of SRP for correct cargos, thus committing SRP-

dependent substrates to the pathway. Real time measurement of cargo transfer from the targeting 

to translocation machinery reveals multiple factors that drive this event, including GTPase 

rearrangement in the SRP•SR complex, stepwise displacement of SRP from the ribosome and 

signal sequence by SecYEG, and elongation of the nascent polypeptide. Our results elucidate 

how active and sequential regulation of the SRP-cargo interaction drives efficient and faithful 

protein targeting.  
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Introduction 

To ensure proper biogenesis of proteins in the crowded cellular environment, cells have evolved 

sophisticated molecular machineries that are recruited to the polypeptide exit site of the ribosome 

early in translation (Kramer et al., 2009). An example is the universally conserved Signal 

Recognition Particle (SRP), which delivers ~30% of the proteome to the eukaryotic endoplasmic 

reticulum (ER) or the bacterial plasma membrane (Keenan et al., 2001). SRP recognizes the N-

terminal signal sequence of a protein as it emerges from the translating ribosome (Fig. 1A, 

Recognition). The ribosome nascent chain complex (RNC or cargo) is delivered to the target 

membrane via interactions of SRP with its receptor (SR) (Fig. 1A, Targeting). At the membrane, 

RNC is transferred to the Sec61p or SecYEG translocation machinery (Rapoport, 2007), where 

the nascent protein is either integrated into or translocated across the membrane (Cross et al., 

2009). GTP hydrolysis disassembles SRP and SR and recycles them for additional rounds of 

targeting (Fig. 1A, last step). 

Co-translational protein targeting involves a series of molecular events that present conflicting 

requirements for the targeting machinery. In the cytosol, SRP must efficiently select its 

substrates from ~100-fold excess of translating ribosomes. SRP does so by interacting with RNC 

via two domains in the universally conserved SRP54 protein (Ffh in bacteria) (Poritz et al., 

1990). The Ffh M-domain binds the signal sequence of the nascent protein (Hainzl et al., 2011; 

Janda et al., 2010; Keenan et al., 1998) while its N-domain interacts with L23 and L29 at the 

polypeptide exit site of the ribosome (Gu et al., 2003; Halic et al., 2006a; Pool et al., 2002; 

Schaffitzel et al., 2006). How this bidentate interaction enables effective and accurate substrate 

selection by SRP remains unclear.  
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Cargo-bound SRP is targeted to the membrane through the binding of its NG-domain, composed 

of the N-domain and a GTPase, G-domain, to a homologous NG-domain in the SRP receptor 

(FtsY in bacteria) (Egea et al., 2004; Focia et al., 2004). SRP and FtsY belong to a novel class of 

GTPases regulated by GTP-dependent dimerization (Gasper et al., 2009; Shan et al., 2009). 

Discrete conformational changes, from a transient ‘early’ intermediate upon initial FtsY binding, 

to a GTP-stabilized ‘closed’ complex and finally an ‘activated’ complex, occur in the SRP•SR 

dimer that culminate in their GTPase activation (Shan et al., 2004; Zhang et al., 2011; Zhang et 

al., 2009). These rearrangements are strongly regulated by the cargo, anionic phospholipids and 

the SecYEG translocon, and thus couple the recognition of cargo by SRP to its delivery to the 

membrane (Akopian et al., 2013; Braig et al., 2009; Lam et al., 2010; Stjepanovic et al., 2011; 

Zhang et al., 2009). For example, the cargo for SRP strongly stabilizes the otherwise labile early 

intermediate, and thus accelerates formation of the closed targeting complex (Zhang et al, 2009). 

Whether and how the SRP/SR GTPases reciprocally regulate the SRP-cargo interaction is poorly 

understood. This regulation would be particularly important at the target membrane, where SRP 

must switch from a ‘cargo-binding’ mode to a ‘cargo-releasing’ mode.  

Handover of the cargo to the SecYEG translocon remains one of the least understood aspects of 

the pathway. SecYEG binds the translating ribosome via its cytosolic loops c4 and c5 (Cheng et 

al., 2005; Menetret et al., 2007). A lateral gate formed by two transmembrane helices (TM2 and 

TM7) of SecY binds signal sequence (du Plessis et al., 2009; van den Berg et al., 2004). As both 

SRP and SecYEG bind RNC via L23 on the ribosome and the signal sequence, the transfer of 

RNC to SecYEG (Jungnickel and Rapoport, 1995; Song et al., 2000) would require RNC to first 

detach from SRP. How the loss of cargo during this handover is prevented remains unclear. 

Recent studies suggest that such abortive events are minimized by formation of a 
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RNC•SRP•SR•SecYEG quaternary intermediate (Akopian et al., 2013; Shen et al., 2012); 

however the precise molecular mechanism of cargo transfer is not understood. 

A major limitation in addressing these questions has been the lack of quantitative assays that 

directly and quantitatively report on the interaction of the translating ribosome with SRP and 

SecYEG. Recently, we developed an efficient method to site-specifically label the nascent 

protein on a translating ribosome using a fluorescent non-natural amino acid (Saraogi et al., 

2011). Close to 100% incorporation efficiency was achieved, yielding milligram quantities of 

purified fluorescent RNC (Saraogi et al., 2011). This allowed us, for the first time, to 

quantitatively measure the dynamic changes in the interaction of the translating ribosome with 

SRP and SecYEG at discrete stages of the targeting reaction, and generate a detailed molecular 

picture of the SRP pathway. We found that the targeting and translocation machineries actively 

regulate the conformation, energetics, and dynamics of the cargo-SRP interaction, thereby 

ensuring the efficient capture, delivery, and coordinated unloading of the cargo. 
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Results 

General experimental design 

To analyze the interaction of SRP with the nascent protein, we used Förster Resonance Energy 

Transfer (FRET) between a donor fluorophore on the nascent protein (Fig 1B, green star) and an 

acceptor fluorophore on SRP (Fig 1B, red star). We generated stalled RNCs of 85 residues with a 

fluorescent probe, 7-hydroxycoumaryl ethylglycine (Cm), incorporated at the signal sequence 

(Fig 1C, asterisk) (Saraogi et al., 2011). BODIPY-FL, a FRET acceptor for Cm, was introduced 

in the SRP M-domain at residue 421 (Fig. 1B, M-domain pair) or the SRP N-domain at residue 

11 (Fig. 1B, N-domain pair). Structural data (Halic et al., 2006a) suggests that both positions lie 

within < 30 Å of the signal sequence in the RNC•SRP complex, well within the estimated Förster 

radius of this dye-pair (Saraogi et al., 2011).  

Using both FRET pairs, we measured and compared the energetics, dynamics and conformation 

of SRP-RNC interactions at every stage of the SRP pathway, from the RNC•SRP complex to the 

early and closed RNC•SRP•SR targeting complexes. Finally, the transfer of cargo from the 

SRP•SR to SecYEG complex was measured using a combination of the FRET probes (Fig. 1B) 

and the increase in Cm fluorescence upon binding SecYEG, which reports on a functional 

interaction of the signal sequence with the translocon. 

As model SRP substrates we used two engineered signal sequences, 1A9L and 3A7L (Fig 1C), 

shown to direct efficient co-translational protein targeting (Doud et al., 1993; Zhang et al., 2010). 

To understand how SRP rejects borderline substrates, we used the alkaline phosphatase (phoA) 

signal sequence (Doud et al., 1993; Zhang et al., 2010), which is primarily targeted via the Sec 

pathway. A mutant signal sequence, in which two leucine residues in 3A7L are replaced by 

arginine, serves as a negative control (Fig. 1C, 3A5L2R).  
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Ribosomes bearing SRP substrates are selectively retained by SRP  

We first asked if SRP could effectively discriminate between signal sequences during cargo 

recognition (Fig 2A, boxed). Equilibrium titrations based on the M-domain FRET pair (Fig. 1B, 

left) showed that RNC3A7L bound to SRP with a dissociation constant (Kd) of 3 nM, whereas the 

binding of RNCPhoA was 7-fold weaker (Fig 2B). RNC3A5L2R did not induce a significant FRET 

signal, supporting specificity of the assay (Fig 2B, green and Fig S1A).  

To more accurately determine the binding affinity between RNC and SRP and to gain 

information into the dynamics of this interaction, we measured the association (kon) and 

dissociation (koff) rate constants for their binding. SRP bound to RNC3A7L with a kon value of 2.1 

x106 M-1s-1 (Fig 2C & F and Fig S1B), similar to that of the more hydrophobic RNC1A9L (Fig 1C; 

Fig 2C, dotted line & Fig 2F) (Saraogi et al., 2011). RNCPhoA bound SRP three-fold more rapidly 

(Fig 2C, F & Fig S1C). Nevertheless, SRP dissociated from RNCPhoA at a rate comparable to 

non-translating ribosomes (Fig 2D, E, F and Fig S1D). In contrast, the dissociation of RNC3A7L 

and RNC1A9L was 20- and 1000-fold slower, respectively (Fig 2D, F). These findings are 

consistent with a recent report (Holtkamp et al., 2012) (see Fig S1E and Discussion for a detailed 

explanation). Thus, SRP binds quickly to ribosomes with or without SRP substrates, but RNCs 

bearing strong signal sequences form kinetically more stable complexes with SRP and hence 

persist much longer.  

FtsY actively regulates the SRP-cargo interaction  

In the next step, RNC is targeted to the membrane via the SRP-SR interaction (Fig 3A, boxed), 

which proceeds through an early intermediate (Zhang et al., 2008). This intermediate is strongly 

stabilized by the RNC (Zhang et al., 2009), and its stability directly correlates with the rate of 

formation of the closed SRP•SR complex (Shen and Shan, 2010; Shen et al., 2011; Zhang et al., 
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2008; Zhang et al., 2010; Zhang et al., 2009) and with co-translational protein targeting (Zhang 

et al., 2008). As the early complex can form with or without GTP, but its subsequent 

rearrangements are strictly GTP-dependent (Zhang et al., 2008; Zhang et al., 2009), a 

homogenous early targeting complex can be isolated by incubating RNC, SRP and SR in the 

absence of GTP. We tested how the initial recruitment of SR modulates the dynamics and 

stability of the RNC-SRP interaction. Compared to free SRP, the SRP SR early complex bound 

to RNC3A7L 6-fold faster (Figs 3B & S2) and dissociated from it 10-fold slower (Fig 3C). 

Overall, the interaction of RNC3A7L with SRP was stabilized 80-fold upon formation of the early 

targeting complex, bringing the Kd value to the picomolar range (Fig 3F). In contrast, the 

corresponding stabilization for RNCPhoA was less than 4-fold (Fig 3B, C, & F). Thus, the initial 

recruitment of FtsY increases the specificity of SRP for correct substrates from 7-fold in the 

RNC•SRP complex to >100-fold in the early targeting complex (Fig 3F).  

While a strong SRP-RNC interaction is beneficial in the cytosol, it will render cargo release at 

the target membrane difficult. Notably, anionic phospholipids strongly stabilizes the closed 

SRP•SR complex and reciprocally, formation of the closed complex exposes a lipid binding 

helix of FtsY and allows the targeting complex to associate much more stably with the 

membrane (Braig et al., 2011; Lam et al., 2010; Stjepanovic et al., 2011). We therefore asked 

whether rearrangement of the RNC•SRP•SR complex from the early to the closed state (Fig 3A), 

which is coupled to stable membrane attachment of the targeting complex, could help overcome 

this barrier. Interestingly, in a closed targeting complex assembled using the non-hydrolyzable 

GTP analogue GppNHp, RNC-SRP association was 3–4 fold slower and their dissociation was 

10-fold faster compared to the early targeting complex (Fig 3D, E, F & Fig S2). Overall, the 

affinity of RNC3A7L for SRP was weakened 30-fold in the closed state (Fig 3F), suggesting that 
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the early → closed rearrangement primes the cargo for subsequent unloading. This regulation 

was not observed with RNCPhoA (Fig 3F). Collectively, the results in this section show that FtsY 

assists SRP in sensing distinct stages of targeting, and it does so only for the correct substrates. 

Molecular basis for FtsY-regulated SRP-RNC interaction  

To understand how FtsY alters the energetics of the SRP-RNC interaction, we examined the 

interaction of SRP with the ribosome and signal sequence. To probe the interaction of the signal 

sequence with the SRP M-domain, we measured maximal FRET efficiencies between Cm at 

3A7L signal sequence and BODIPY-FL at residues 415, 421, 425 or 429 along helix M4, which 

lines the signal sequence-binding groove (Fig 4A, red). The cysteine mutations and BODIPY 

labeling do not affect RNC-SRP binding (Fig S3A) or protein targeting (Fig S3B). Upon 

formation of the early targeting complex, the FRET efficiency between Cm at the signal 

sequence C-terminus and residues 425 and 429 in helix M4 increased (Fig 4B, pink vs dark red). 

A similar trend was observed with Cm at the signal sequence N-terminus (Fig S3C). The 

anisotropy of the dyes was low and comparable in all constructs, indicating no significant 

contribution of dye orientation to the observed FRET (Table S1), and the position of Cm on the 

signal sequence did not significantly affect RNC-SRP binding (Fig S3D). These results suggest 

that formation of the early targeting complex allow the signal sequence to pack more tightly 

against the signal peptide-binding groove.  

To probe the interaction of the Ffh N-domain with the ribosome, we looked for an Ffh mutant 

defective in ribosome binding. Based on the cryo-EM model of SRP bound to an RNC (Halic et 

al., 2006a), sequence conservation (Fig S4A), previous cross-linking (Gu et al., 2003; Ullers et 

al., 2003), and the electrostatic nature of the interaction of Ffh with acidic residues in L23 (del 

Alamo et al., 2011; Schaffitzel et al., 2006), we introduced charge reversal mutations at two 

 112



 

highly conserved basic residues of Ffh, R19 and R21 (Fig 4C, gold). Mutant SRP19/21E was 

defective in SRP-dependent targeting (Fig S4A, right panel), supporting the importance of these 

residues in SRP function.  

We measured the extent to which the SRP19/21E mutations weaken the binding between SRP 

and RNC3A7L (Fig S4B, C & Fig 4D). This provides an empirical measure for the energetic 

contribution of the ribosomal contacts with R19/21 at different stages of targeting. In the 

RNC•SRP complex, the SRP19/21E mutations weakened SRP-RNC binding 24-fold (Fig 4E, 

pink and Fig S4B, C). In the early complex, these mutations caused >300-fold defect (Fig 4E, 

dark red and Fig S4D, E), suggesting that the interaction of R19/21 with the ribosome becomes 

stronger. Together, these results show that tighter RNC-SRP binding in the early targeting 

complex arises from stronger interactions of both the signal sequence and the ribosome with the 

M- and N-domains of SRP, respectively. 

We then asked whether these contacts were reorganized in the closed targeting complex to result 

in weaker RNC-SRP interaction (Fig 3F). To test if the signal sequence rearranged in the M-

domain in the closed complex, we measured FRET efficiencies between Cm at the signal 

sequence and acceptor dyes in helix M4 of Ffh as described earlier (Fig 4A). The FRET 

efficiencies with residues 415, 421, and 425 were reduced upon the early → closed 

rearrangement (Fig 4B, green), suggesting re-positioning of the signal sequence in the M-

domain. 

To test whether the contact of SRP N-domain with the ribosome is altered in the closed targeting 

complex, we measured the effect of the SRP19/21E mutations on the RNC-SRP interaction. In 

the closed complex, these mutations caused only a 6-fold weaker binding (Fig 4E, green and Fig 

S4F, G). The actual mutational defect is likely smaller because even in the presence of GppNHp, 
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a significant fraction of the RNC•SRP•SR complex remains in the early state (Zhang et al., 2009) 

in which these mutations are highly destabilizing. The rescue of the SRP19/21E mutant in the 

closed targeting complex strongly suggests that the interaction of the SRP N-domain with the 

ribosome is substantially weakened at this stage.   

Recent studies show that at late stages of protein targeting, the SRP•SR NG-domain complex 

localizes to the distal end of the SRP RNA (Ataide et al., 2011; Shen et al., 2012). This large-

scale movement would vacate L23 at the ribosome exit site for interaction with SecYEG. We 

therefore asked if this movement had occurred in the closed targeting complex. To probe for the 

proximity of the N-domain to the signal sequence at the ribosome exit site, we used the N-

domain FRET pair (Figs. 1B & 4C). Consistent with structural data (Halic et al., 2006a), we 

observed efficient FRET (~ 0.5) in the RNC•SRP complex (Fig 4F, pink). The FRET value, 

albeit slightly lower, persisted in the closed targeting complex (Fig 4F, green). Thus, although 

previous work (Halic et al., 2006b; Pool et al., 2002) and our mutational analysis suggest that the 

SRP N-domain interacts weakly with the ribosome at this stage, the NG-domain complex 

remains in the vicinity of the nascent polypeptide exit site.  

Cm labeled signal sequence reports on RNC-SecYEG interaction 

At the membrane, SecYEG must engage RNC. To monitor these late events in targeting, we first 

tested whether the Cm dye can be used to detect the interaction of a signal sequence with 

SecYEG (Fig 5A). Indeed, addition of SecYEG, solubilized in 0.02% DDM (Akopian et al., 

2013; Dalal and Duong, 2010), induced ~2-fold increase in the fluorescence of Cm-labeled 

RNC3A7L (Fig 5B, green). Equilibrium titrations based on this fluorescence change showed that 

RNC3A7L bound tightly to wt-SecYEG (Kd = 3 ± 2 nM; Fig 5C), in agreement with previous 

reports (Wu et al., 2012). The following observations demonstrate the specificity of this assay. 
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First, a SecYEG c4/c5 mutant harboring charge reversal mutations (R255/256/357E) in two 

cytosolic loops critical for ribosome binding (Akopian et al., 2013; Cheng et al., 2005; Menetret 

et al., 2007) showed no detectable binding to RNC3A7L (Fig 5B and C, grey). Second, 

introduction of two arginines into the signal sequence (RNC3A5L2R or mt-RNC) weakened RNC-

SecYEG binding 46-fold (Fig 5C, light green), showing that the interaction is specific to a 

functional signal sequence. Third, when Cm-labeled RNC3A7L is bound to SecYEG labeled with 

BODIPY-FL at residue 180, efficient FRET was observed (Fig S5A). These results support the 

specificity of the Cm probe in detecting a functional RNC-SecYEG interaction. 

SecYEG effectively displaces the SRP•SR complex from RNC  

As SecYEG enhances Cm fluorescence upon RNC binding, whereas BODIPY-labeled SRP 

reduces Cm fluorescence due to FRET, this provides a sensitive assay to monitor the transfer of 

RNC from the targeting complex to SecYEG (Fig 6A, boxed). To test whether SecYEG can 

displace the SRP•SR complex from RNC in this minimal system, we added SecYEG to a pre-

formed closed targeting complex containing Cm-labeled signal sequence. The transfer reaction 

was carried out either with the N-domain FRET pair (Fig. 1B) to monitor displacement of the 

NG-domain complex from the ribosome exit site (Fig 6B, C), or with the M-domain FRET pair 

to monitor the transfer of the nascent chain from the signal sequence binding site (Fig 6D, E). In 

both cases, addition of SecYEG induced a similar dose-dependent increase in the fluorescence of 

Cm-labeled RNC (Fig 6B, C, magenta and Fig 6D, E; blue; see also Fig S5B). The SecYEG-

induced increase in Cm fluorescence far exceeded that expected from loss of FRET due to 

dissociation of the RNC•SRP complex (Fig 6B, D and Fig 6F, cf. blue or magenta vs. black), 

indicating engagement of the signal sequence with SecYEG (see next paragraph). The effect of 

SecYEG during the transfer reaction was saturable, with an EC50 value of 39 ± 26 nM (Fig 6E), 
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indicating that SecYEG efficiently displaces SRP from the RNC. The c4/c5 mutations abolished 

this reaction (Fig 6C and E, grey, and Fig S5B), indicating that functional cytosolic loops are 

required for the observed cargo transfer reaction. 

If complete transfer of RNC to SecYEG occurred, FRET between Cm-labeled signal sequence 

and SRP should be abolished. Hence, the Cm fluorescence after the transfer reaction would be 

the same for targeting complexes containing labeled or unlabeled SRP. When we repeated the 

transfer reaction using unlabeled SRP, this was indeed the case (Fig 6F, cf. blue and magenta vs. 

brown). The Cm fluorescence at the end of the transfer reaction is similar to that from direct 

addition of saturating SecYEG to RNC (Fig 5B and 6F; green), indicating that close to complete 

cargo transfer was achieved. These results demonstrate for the first time that detergent-

solubilized SecYEG can drive the transfer of cargo from SRP. 

Step-wise transfer of RNC from SRP to SecYEG  

To probe the mechanism of the molecular relay between SRP and SecYEG, we analyzed the 

kinetics of the transfer reaction monitored using either the M- or N-domain FRET pair (Fig. 1B). 

As the nascent protein continues to elongate during targeting, we examined the transfer reaction 

using RNCs with different nascent chain length. Several intriguing observations suggest that the 

transfer occurs in a stepwise mechanism. First, the SecYEG-driven release of the SRP N-domain 

from the RNC-85 was 3-fold faster than that of signal sequence release from the SRP M-domain 

(Fig 7A, magenta vs. blue and 7D). Second, when we repeated the transfer reaction with 

RNC3A7L containing 50 additional residues (RNC-135), the initial release of the SRP N-domain 

was 4-fold faster than that of signal sequence from the M-domain (Fig 7B-D). Significantly, the 

transfer reaction of RNC-135 monitored with the N-domain FRET pair exhibited bi-phasic 

kinetics with a pronounced burst, indicating at least two steps during this transfer (Fig. 7C). The 
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magnitude of rise in Cm fluorescence during the burst phase agrees well with the loss of FRET 

with the acceptor dye in the SRP N-domain (Fig. 7C), providing additional evidence that 

displacement of SRP N-domain from the ribosome precedes docking of the signal sequence into 

SecYEG.  

To explain the experimentally observed kinetics of the transfer reaction and to better understand 

its underlying mechanism, we carried out numerical simulations. In the simplest model (Fig 7E, 

model (i)), the binding of SecYEG first results in the displacement of the SRP N-domain from 

the ribosome. This generates a transfer intermediate, from which the signal sequence is 

transferred to SecYEG. To validate this model, we simulated the expected rise in Cm 

fluorescence based on the experimentally observed rate and equilibrium constants of the transfer 

reaction (for details, see Supplemental Methods). Simulations based on model (i) predict 

pronounced biphasic increase in Cm fluorescence during the transfer reaction with N-domain 

labeled SRP (Fig 7F, magenta). This is because assembly of SecYEG with the targeting complex 

to form the transfer complex would occur rapidly at saturating SecYEG concentrations. The 

resultant loss of FRET between the signal sequence and SRP N-domain would far precede the 

additional increase in Cm fluorescence caused by the slower docking of the signal sequence into 

SecYEG. Such biphasic kinetics was observed with RNC-135 (Fig 7C) but was barely detectable 

with RNC-85 (Fig 7A, magenta), suggesting that model (i) is insufficient to explain all the 

experimental data.   

The absence of a burst expected for formation of the transfer complex indicates that such a 

complex is transient during the transfer reaction, and cannot be formed simply by bi-molecular 

association between SecYEG and the targeting complex. We therefore considered the possibility 

that formation of transfer complex with RNC-85 is preceded by and in unfavorable equilibrium 
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with an initial encounter complex, in which the SRP N-domain is not yet removed from the 

ribosome (Fig 7E, model (ii)). Kinetic simulations based on this model showed that indeed, as 

the equilibrium to form the transfer complex from the encounter complex (Fig 7E, K4 = k4/k-4) 

was made less favorable (Fig 7G, red arrow), the burst associated with release of the N-domain 

labeled SRP from RNC was progressively removed. At values of K4 ≤ 0.2, the burst expected for 

removal of the SRP N-domain from RNC was barely detectable, and the simulated results 

closely matched experimental data with RNC-85. A more favorable equilibrium to form the 

transfer complex (K4 ~ 5) generated curves that better matched the results obtained with RNC-

135 (Fig 7G). These simulations strongly suggest that formation of the productive transfer 

complex required for efficient cargo transfer is more favorable with RNC-135, whereas the 

shorter nascent chain in RNC-85 does not provide a strong cue for fast removal of the N-domain 

(Park and Rapoport, 2011). In agreement with this, an overall faster rate of cargo transfer was 

observed with RNC-135 than RNC-85 (Fig. 7D). The slow kinetics of RNC-85 transfer to 

SecYEG could also be explained, in part, by the unfavorable equilibrium to generate the transfer 

complex. 
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Discussion 

Proper localization of membrane and secretory proteins requires the efficient and accurate 

execution of a series of molecular events including capture of the cargo protein, its delivery to 

the membrane, and its productive handover from the targeting to the translocation machinery 

(Saraogi and Shan, 2011). Here, we address the molecular mechanisms underlying these events 

in the SRP pathway, which has served as a paradigm for understanding the molecular basis of 

protein localization. For the first time, non-natural amino acid technology has allowed us to 

study, at an unprecedented resolution, the dynamic interaction of the translating ribosome with 

SRP as it enters, progresses along, and finally exits the SRP pathway.  

How does SRP identify the correct substrates in the crowded cytosol, given a 10 – 100 fold 

excess of ribosomes that bind to SRP with substantial affinity (80-100 nM) (Bornemann et al., 

2008; Flanagan et al., 2003; Zhang et al., 2010)? Our results show that SRP binds quickly to 

ribosomes with or without an SRP signal sequence (Fig 8, step 1), but the kinetic stability of the 

RNC•SRP complex increases significantly with stronger signal sequences. A recent paper 

(Holtkamp et al., 2012) reached similar conclusions using FRET between L23 and the SRP M-

domain. Triphasic RNC-SRP binding kinetics was observed in Holtkamp et al., which could 

arise from multiple factors. The fluorescent probes placed on L23 likely reported on transient 

SRP-ribosome interactions prior to signal sequence docking into the M-domain. In contrast, our 

assay specifically reports on the engagement of the signal sequence with the SRP M-domain 

when a stable RNC•SRP complex is formed. The specificity of the probe allowed us to obtain 

more straightforward kinetic data in most cases (see Materials and Methods).  

Holtkamp et al. further postulate that the SRP rapidly ‘scans’ translating ribosomes for the 

presence of signal sequences, based on rapid RNC-SRP binding and dissociation rate constants. 
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However, the reported ‘rapid’ binding (k1 ~ 108 M-1s-1) refers to the formation of a highly labile 

intermediate that forms independently of the signal sequence. Formation of the final RNC•SRP 

complex, in which the correct and incorrect RNCs are distinguished, requires this intermediate to 

undergo two additional slow rearrangements and hence proceeds at much slower rates. Holtkamp 

et al. also reported rapid ‘koff ’ values because, rather than treating SRP dissociation as a 

sequential process as proposed in the same paper, their ‘koff’ values were obtained from 

averaging the rate constants of three steps during dissociation. Hence, the rapid dissociation rate 

from <10% of highly labile complexes dominated the calculation. This led to overall ‘koff’ values 

for a sequential reaction that are much faster than sub-steps in the reaction sequence, which is 

physically impossible. A kinetic simulation based solely on the 3-step model and individual rate 

constants reported by Holtkamp et al. predicts that SRP dissociates from the final stable 

RNC•SRP complex at a rate constant of 0.0058 s-1 for RNCs bearing a model SRP substrate Lep, 

and 0.36 s-1 from the 70S ribosome (Fig S1E). These values are in good agreement with our 

measurements (Fig 2F). Thus, although it remains possible that SRP rapidly ‘scans’ translating 

ribosomes, such a mechanism would have to be enabled by additional components in vivo, rather 

than by the intrinsic property of SRP-RNC interaction. 

Indeed, our results indicate that the intrinsic difference in binding between an SRP-dependent 

substrate, 3A7L, and a Sec-dependent substrate, phoA, is fairly modest, only 7-fold. Importantly, 

the interaction of SRP with RNC3A7L is strongly enhanced upon initial recruitment of FtsY to 

form the early targeting complex (Fig 8, step 2), whereas that with RNCphoA is marginally 

affected. This stabilization was predicted by Zhang et al. from a thermodynamic analysis of the 

SRP-SR GTPase cycle (Zhang et al., 2009). Our data fulfill this prediction and provide direct 

evidence that the SRP/SR GTPases regulate the cargoSRP interaction. Further, we show that this 
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stabilization arises from stronger interactions of both the SRP M- and N-domains with the signal 

sequence and the ribosome, respectively. This gives the early targeting complex, in which the 

lipid binding helix of FtsY is not yet exposed (Lam et al., 2010), an extended time window to 

search for the membrane. The residence time of SRP on RNCs bearing correct signal sequences 

is 3000–5000 seconds, much longer than the 3–5 seconds time window estimated for the SRP to 

complete targeting (Zhang et al., 2010). Thus, once a correct cargo binds SRP, it likely 

undergoes subsequent steps in the pathway without dissociating from it. In contrast, the early 

targeting complex formed by incorrect cargos, in which neither the RNC-SRP interaction (this 

work) nor the SRP-FtsY interaction (Zhang et al., 2009) is stabilized, is more likely to 

disassemble prematurely in the cytosol. These results demonstrate that formation of the 

RNC•SRP•FtsY early targeting complex is a major commitment step at which the correct 

substrates selectively enter the SRP pathway. 

However, a strong interaction between SRP and RNC poses a challenge to its subsequent release 

at the membrane. How is this barrier overcome? Notably, anionic phospholipids drive the 

rearrangement of the GTPases from the early to the closed conformation, which associates with 

the membrane more stably (Braig et al., 2011; Lam et al., 2010). Here, we demonstrate that this 

conformational switch (Fig 8, step 3) also weakens the affinity of SRP for its cargo 30-fold, thus 

coupling the membrane localization of the targeting complex to the release of cargo. The 

reduction in binding affinity arises from substantially weaker interaction of the SRP N-domain 

with the ribosome and possibly a repositioning of the signal sequence in the M-domain. These 

results agree with earlier studies of eukaryotic SRP, which showed loss of electron density of the 

SRP NG-domain (Halic et al., 2006b) and loss of SRP-L23a crosslink (Pool et al., 2002) upon 

assembly of a stable GTP-dependent complex between RNC, SRP and SR.  
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Nevertheless, in the closed targeting complex, the SRP NG-domain remains adjacent to the 

ribosome exit site, and the signal sequence is still bound to the M-domain, indicating that the 

GTPase rearrangements are insufficient to drive the complete release of cargo. The targeting 

cycle is completed by SecYEG, which displaces the SRP•SR complex from the RNC to drive 

cargo unloading. Two recent studies show that SecYEG induces relocalization of the SRP•SR 

NG domains away from the ribosome exit site, to the distal end on SRP RNA, where GTP 

hydrolysis can be activated (Shen et al, 2012; Akopian et al, 2013). Under these conditions, the 

RNC remain attached to the SRP•SR complex. In this work, we observed that detachment of the 

SRP N-domain from the ribosome is faster and precedes the release of signal sequence from the 

SRP M-domain and signal sequence docking into SecYEG.  Collectively, these data suggest a 

highly coordinated, step-wise mechanism of cargo transfer (Fig 8): after initial encounter with 

the targeting complex (step 4, encounter complex), SecYEG first displaces the SRP NG-domain 

from the ribosome exit site via interaction of its cytosolic loops with L23 (step 5, transfer 

complex). This is followed by transfer of the signal sequence from the SRP M-domain to 

SecYEG (step 6). The step-wise transfer prevents abortive loss of RNC from the membrane. 

During the transfer process, the SRP•SR NG-domain complex relocalizes to the distal site of the 

SRP RNA, where GTP hydrolysis is activated (Ataide et al., 2011; Shen et al., 2012) to reset the 

targeting cycle (Fig 8, step 6). 

The RNC transfer reactions observed here proceed with a halftime (t1/2 = ln2/k) of 70 – 140 

seconds. This is slower than those expected physiologically, but is not unexpected for a reaction 

reconstituted with minimal components and suggests that additional in vivo factors could 

allosterically regulate SRP, SR, or SecYEG to accelerate transfer. Quantitative analysis of cargo 

transfer coupled with kinetic simulations in this minimal system helps define the rate-limiting 
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barriers that can be facilitated by these additional factors. A major barrier arises from an 

unfavorable equilibrium to form the transfer complex (Fig 8, step 5). This is consistent with 

observations in single molecule experiments, in which only ~30% of the SRP•SR NG-domain 

complex relocalizes to the SRP RNA distal site in the presence of RNC-85 and SecYEG (Shen et 

al., 2012). Indeed, elongation of the nascent polypeptide facilitates the transfer reaction, and this 

stimulation appears to arise from more facile release of the NG-domain from the ribosome to 

form the transfer complex. A low probability of signal sequence docking into SecYEG (Fig 8, 

step 6), which requires opening of the lateral gate, could present an additional barrier. We 

speculate that under physiological conditions, both formation of the transfer complex and gate 

opening in SecYEG could be stimulated by additional factors, including anionic phospholipid 

membranes and other components of the holo-translocon (Duong and Wickner, 1997). 

In summary, we show that the SRP/SR GTPase cycle and the SecYEG translocon actively 

regulate the conformation, energetics and dynamics of the SRP-cargo interaction, giving rise to 

highly coordinated assembly, commitment, and disassembly of the targeting complex. The 

challenges faced by SRP are general to targeting machineries. Hence, the active regulation of 

cargo interactions and the stepwise mechanism of cargo transfer observed here could represent 

general phenomena in protein targeting pathways. The bidentate nature of RNC’s interactions 

with SRP and SecYEG plays a key role in this regulatory mechanism since the individual 

contacts can be sequentially formed, dissolved and exchanged, thus ensuring productive ‘relay’ 

between upstream and downstream factors in the pathway. In addition to SRP and SecYEG, 

numerous other cellular machineries contact the ribosome exit site (e.g. chaperones, maturation 

and quality control enzymes etc), many of which recognize both the ribosome and sequence 

motifs on the nascent protein. These multi-dentate interactions may provide an effective handling 
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of the translating ribosome during the biogenesis of nascent proteins. The use of fluorescently-

labeled RNCs will be a powerful tool for a detailed molecular understanding of the multiplicity 

of fates that await the nascent protein as it exits the ribosome (Kramer et al., 2009). 

 124



 

Materials and Methods 

Materials: Ribosome nascent chain complexes labeled with L-(7-hydroxycoumarin-4-

yl)ethylglycine were generated as described before (Saraogi et al., 2011). E. coli SRP (Ffh and 

4.5S RNA component) and full-length FtsY were expressed and purified according to published 

protocol (Peluso et al., 2001). Ffh mutants were constructed using the QuikChange mutagenesis 

procedure (Stratagene) and were expressed and purified using the same protocol as the wild-type 

protein. The SRP mutants were tested for their ability to translocate preprolactin in a 

heterologous protein translocation assay as described (Shan et al., 2007). Single cysteine mutants 

of Ffh were labeled using the fluorescent dye BODIPY-Fluorescein-N-(2-aminoethyl)-maleimide 

(BODIPY-FL, Invitrogen) as described previously (Zhang et al., 2008; Zhang et al., 2009). 70S 

ribosomes were purified from E. coli MRE600 cells using published protocol (Moazed and 

Noller, 1989; Zhang et al., 2009). SecYEG was purified as described (Akopian et al., 2013). For 

SecYEG labeling, a unique cysteine residue was introduced at position 180 of cysteine-less 

SecYEG and labeled according to published protocol with modifications (Kedrov et al., 2011). 

Briefly, SecYEG purified via Ni-NTA agarose was rebound to Ni-NTA agarose and labeled on 

beads with BODIPY-FL. The labeled protein was dialyzed in the assay buffer and quantified 

using absorbance at 280 nm. 

Fluorescence measurements: All steady-state fluorescence measurements were carried out at 

25°C in assay buffer (50 mM KHEPES, pH 7.5, 150 mM KOAc, 10 mM Mg(OAc)2, 2 mM 

DTT, 10% glycerol; supplemented with 0.02% DDM in assays with SecYEG) on a Fluorolog-3-

22 spectrofluorometer (Horiba Jobin Yvon, Edison, NJ). Fast reactions were measured on a 

Kintek stopped flow apparatus at 25°C. FRET experiments were carried out using an excitation 

wavelength of 360 nm and an emission wavelength of 453 nm. All FRET measurements were 
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performed with RNCs labeled 2 residues downstream of the signal sequence. FRET efficiency 

(E) was calculated according to Eq S1: 

E =1−
FDA

FD

        [S1]           

in which FDA and FD are the fluorescence intensities of the donor measured in the presence and 

absence of the acceptor, respectively. Background fluorescence due to light scattering was 

subtracted from the fluorescence spectra.  The details of the kinetic and equilibrium 

measurements are described in Supplemental Methods. 

Online Supplemental Material 

Supplemental Methods describes the details of kinetic and equilibrium measurements and kinetic 

simulations. Figs S1 show additional data for RNC binding and dissociation from SRP. Fig S2 

shows the time courses for RNC binding to the SRP•SR early and closed complexes. Fig S3 

shows signal sequence binding to the SRP M-domain. Fig S4 describes the SRP 19/21E mutant. 

Fig S5 shows the interaction of the Cm probe with SecYEG. Table S1 lists the anisotropy of the 

Cm and BODIPY-FL fluorophores.  

Online Supplemental Methods 

Equilibrium titrations: The equilibrium binding affinity of RNCs for SRP was measured as 

described (Saraogi et al., 2011). Briefly, aliquots of SRP labeled with BODIPY-FL were added 

to 20 nM of Cm-labeled RNC and the decrease in donor fluorescence was noted. The FRET 

values obtained from Eq S1 were plotted against SRP concentration and the data were fit to Eq 

S2: 

E = Emax
Kd + [RNC]+ [SRP]− (Kd + [SRP]+ [RNC])2 − 4[SRP][RNC]

2[RNC]
 [S2]  
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in which Emax is the FRET efficiency at saturating SRP concentration, and Kd is the dissociation 

constant of the RNC•SRP complex.  

Association rate constants: Rate constants for RNC-SRP binding were measured on a Kintek 

stopped-flow apparatus at 25°C. The observed rate constants for formation of the RNC•SRP 

complex (kobsd) at different stages of targeting were measured by mixing 40-50 nM Cm-labeled 

RNC with varying concentrations of BODIPY-FL labeled SRP or a preformed early/closed 

complex. Unlabeled full-length FtsY and 100 μM GDP or GppNHp were used to form the 

required complexes. The time course for change in donor fluorescence was fit to Eq S3, 

         [S3] Fobsd = F0 -ΔF1(1-e-kobsdt ) -klint

in which kobsd is the observed rate constant, Fobsd is the observed fluorescence, F0 is the initial 

fluorescence, ΔF1 is the amplitude of fluorescence change, and klin represents a very slow linear 

term that was required to obtain the best fitting. As the significance of this term was not 

apparent, and its contribution to the fitting was very small, we did not pursue this further.   

The dependence of kobsd on SRP concentration was fit to Eq S4,  

 kobsd = kon[SRP]+ koff          [S4] 

in which kon and koff are the association and dissociation rate constants, respectively, for the 

RNC•SRP complex. As koff values obtained from this fit may not be very accurate, these were 

measured directly as described below.  

Dissociation rate constants: The rate of dissociation of RNCs from SRP, early or closed 

targeting complex was measured independently by a pulse-chase experiment. Cm-labeled RNC 

(20 nM) and BODIPY-FL labeled SRP (40 nM), early or closed complexes were incubated for 

15 min to form the respective targeting complexes. The solution was then mixed with an equal 

volume of 1.5 – 2 μM unlabeled SRP to initiate irreversible dissociation of the complex. The 
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time course for change in donor fluorescence was fit to a single (Eq S5a) or double exponential 

(Eq S5b), in which Fobsd is the observed fluorescence, F0 is the initial fluorescence, ΔF1 and ΔF2 

are the amplitudes of fluorescence changes, and k1 and k2 are the dissociation rate constants.  

         [S5a] 

      [S5b] 

Eq. S5b was needed for analysis of the dissociation kinetics of RNCphoA from SRP, during which 

we observed two kinetic phases that differed by ~5-fold in rate constants (Fig 2F and Fig S1D). 

This phenomenon could arise from different populations of RNCphoA-SRP complexes in which 

SRP is bound in distinct conformations, or from multi-step dissociation of SRP from the RNC 

that becomes more apparent with RNCphoA. Although this biphasic kinetics with RNCphoA 

persists as the targeting reaction progresses, the two phases responded similarly to FtsY (Fig 3F). 

Therefore, only the rate constants from the faster dissociating phase are reported in the main text. 

To determine the dissociation rate constant of SRP from 70S ribosomes, a pre-incubated solution 

of 100 nM BODIPY-labeled SRP and 500 nM 70S ribosomes was chased with 120 nM or 300 

nM Cm-labeled RNC1A9L. Under these conditions, RNC1A9L-SRP association is much faster than 

SRP•ribosome complex dissociation. Thus, the appearance of the FRET signal is rate-limited by, 

and reflects the dissociation rate of, the SRP-ribosome complex. The reaction time course was fit 

to Eq S5b to obtain the dissociation rate constants.   

Equilibrium measurements with SecYEG: The binding of SecYEG (wt or mutant) to Cm-

labeled RNC was measured by titrating aliquots of SecYEG into 20 nM Cm-labeled RNC. A 

parallel titration of SecYEG into buffer was used to correct for light scattering from SecYEG. 

The fluorescence values obtained were plotted against SecYEG concentration, and the data were 

fit to Eq S6 to obtain the respective Kd values.  
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 F = F0 +ΔF ×
Kd +[RNC]+[YEG]− (Kd +[YEG]+[RNC])2 − 4[YEG][RNC]

2[RNC]
  [S6] 

in which F is the observed fluorescence at a given SecYEG concentration, F0 is the fluorescence 

of RNC in the absence of SecYEG, ΔF is the maximum change in fluorescence at saturating 

SecYEG concentration, and Kd is the dissociation constant for SecYEG-RNC binding.  

RNC-SecYEG FRET: A unique cysteine residue introduced into cysteine-less SecYEG at 

position 180 was labeled with BODIPY-FL. For the FRET assay, 30 nM labeled SecYEG was 

incubated with 40 nM Cm-labeled RNC. Since addition of SecYEG (labeled or unlabeled) 

induces a strong environmental sensitivity in Cm fluorescence, unlabeled SecYEG was added to 

RNC to obtain the donor only signal and allow us to quantify FRET.  

Kinetics of transfer reaction: To measure the equilibrium of the transfer reaction, SecYEG (wt 

or mutant) was titrated into a complex preincubated with 20 nM Cm-labeled RNC, 40 nM 

BODIPY-FL labeled SRP, 500 nM FtsY, and 100 μM GppNHp. The increase in fluorescence 

was plotted against SecYEG concentration and fit to Eq S6, in which Kd was replaced by EC50 

and denotes the amount of SecYEG needed for 50% transfer of RNC to SecYEG. 

To measure the rate of transfer of RNC from the SRP•FtsY complex to SecYEG, a closed 

targeting complex was preformed using 20 nM Cm-labeled RNC, 40 nM BODIPY-FL labeled 

SRP, 500 nM FtsY, 100 μM GppNHp. RNC transfer was initiated by addition of 1 μM SecYEG. 

The increase in fluorescence over time was fit to Eq S5a or b to give the observed rate constant 

(kobs).  

Kinetic Simulations: The software Berkeley Madonna was used to perform kinetic simulations. 

For the SecYEG driven release of RNC from the closed targeting complex (Fig 7F, G) according 

to model (i), the following reactions were used: 
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+  SecYEG RNC  SRP  SR  SecYEG

RNC  SecYEG

RNC  SRP  SR

RNC  SRP  SR  SecYEG +  SRP  SR

[S7a]

[S7b]

[S7c]

k1

k-1
k2

k-2

RNC + SRP  SR RNC  SRP  SR
k5

k-5  

For transfer reaction with acceptor in the SRP M domain, the change in Cm fluorescence was 

determined by the following equation: 

F(M) = 50[RNC] + 25[RNC SRP SR] + 25[RNC SRP SR SecYEG] + 90 [RNC SecYEG]  

For transfer reaction with acceptor in the SRP N domain, the change in Cm fluorescence was 

determined by the following equation:  

F(N) = 50[RNC] + 30[RNC SRP SR] + 60[RNC SRP SR SecYEG] + 90 [RNC SecYEG]  

Each of the coefficients indicates the relative fluorescence contribution of the corresponding 

species during the transfer reaction (Fig 6F).  

For model (ii), the following reactions were used: (* represents encounter complex) 

RNC + SRP  SR

+  SecYEG RNC  SRP  SR  SecYEG*

RNC  SecYEG

RNC  SRP  SR

RNC  SRP  SR

RNC  SRP  SR  SecYEG +  SRP  SR

RNC  SRP  SR  SecYEG* RNC  SRP  SR  SecYEG

[S8a]

[S8b]

[S8c]

[S8d]
k5

k-5

k3

k-3
k4

k-4
k2

k-2

 

For transfer reaction with acceptor in the SRP M domain, the change in Cm fluorescence was 

determined by the following equation: 

F(M) = 50[RNC] + 25[RNC SRP SR] + 25[RNC SRP SR SecYEG*]+ 25 

[RNC SRP SR SecYEG] + 90[RNC SecYEG]  
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For transfer reaction with acceptor in the SRP N domain, the change in Cm fluorescence was 

determined by the following equation: 

F(N) = 50[RNC] + 30[RNC SRP SR] + 30[RNC SRP SR SecYEG*] + 60 

[RNC SRP SR SecYEG] + 90[RNC SecYEG]  

For model (ii), multiple curves were generated for the SRP N-domain by constraining the 

equilibrium between the transfer complex and encounter complex (K4=k4/k-4) to values ranging 

from 25 to 0.1.  

The concentrations used for the simulations were: 20 nM RNC3A7L pre-incubated with 40 nM 

SRP SR closed complex, and 1 μM SecYEG. The following information was used to constrain 

values of rate constants: 

k5 = 3.4 μM-1s-1; k-5 = 0.003 s-1; k2 = 0.005 s-1; K4=k4/k-4 = 25, 5, 1, 0.2, 0.1 

k−1

k1

×
k−2

k2

= 0.039 μM (EC50 of transfer under these conditions) 

To generate the curves in Fig 7F and G, the following values of the rate constants were used: k1 = 

1.2 μM-1s-1; k-1 = 0.363 s-1; k3 = 1 μM-1s-1; k-3 = 0.08 s-1; k-2 = 0.0006 s-1. 

For simulation of the dissociation rate constant of a stable RNC•SRP or ribosome•SRP complex 

according to the three-step model of Holtkamp et al (Holtkamp et al., 2012), the following 

equations (Eq S9a-f) were used, in which R denotes the RNC or ribosome, I1 and I2 denote the 

intermediates described by Holtkamp et al, chase refers to the unlabeled SRP used to trap 

dissociated ‘R’ in the measurement of koff values, and I1chase and I2chase refer to the 

corresponding intermediates formed between ‘R’ and the chase molecules. 
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Assuming that our fluorescence assay reports specifically on the final stable complex (R•SRP), 

the normalized fluorescence change is denoted as 1x [R•SRP]. The values of k1, k-1, k2, k-2, k3 and 

k-3 were those reported by (Holtkamp et al., 2012). The initial concentrations of each species 

were calculated based on the experimental conditions used by Holtkamp et al (0.05 µM R, 0.1 

µM SRP, 2 µM chase) and the equilibrium constants reported in the same article. As expected 

for exponential functions, varying the initial concentration of R•SRP or the fluorescence value 

assigned to it does not affect the simulated time course and the resulting koff values. 
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Figures 

 

Figure 1. Co-translational protein targeting by SRP. (A) The targeting of ribosomes carrying 
SRP signal sequences (magenta) to the membrane requires three sequential steps: cargo 
recognition by SRP, cargo targeting to the membrane via interaction of SRP with SR, and cargo 
transfer to the SecYEG translocon. Ffh is in blue, FtsY is in green, and the SRP RNA is in pink. 
‘T’ and ‘D’ denote GTP and GDP, respectively. (B) Scheme of the FRET probes used. The 
nascent chain was labeled with a donor dye (green star) at the signal sequence. SRP was labeled 
with an acceptor dye (red star) in the M- or N-domain. (C) The signal sequences of substrates 
used in this study. The position of the donor dye is denoted with an asterisk.  
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Figure 2. Ribosomes bearing SRP substrates are selectively retained by SRP. (A) Highlight 
of the cargo recognition step (box) measured in this figure and the FRET probes used. (B) 
Equilibrium titration for SRP binding to RNC3A7L (red) and RNCPhoA (blue). The data were fit to 
Eq. S2, and obtained Kd values are summarized in Fig. 2F in parentheses. The FRET signal with 
RNC3A5L2R (light green) was too small to be quantified (See also Fig S1A). (C) Observed rate 
constants (kobsd) for RNC-SRP association plotted against SRP concentration. Values of kon were 
obtained from fit of the data to Eq. S4 and summarized in Fig 2F. The data for RNC1A9L (dotted 
line) is from Saraogi et al. 2011 and shown for comparison. See Fig S1B, C for representative 
time courses. (D) Rate constants of SRP dissociation from RNC. The data were fit to Eq S5a for 
RNC1A9L and RNC3A7L, and Eq S5b for RNCPhoA (see Fig S1D). The koff values are summarized 
in Fig 2F. (E) Kinetics of SRP dissociation from the 70S ribosome. These data were fit to Eq S5b 
and koff values arereported in Fig 2F. (F) Summary of the rate constants obtained in (C)-(E). The 
Kd values were calculated from measured rate constants using Kd = koff/kon, or from equilibrium 
titrations (values in parentheses). For RNCPhoA, the measured Kd was the same, within error, as 
the weighted average of the Kd values for the two kinetic phases (indicated by superscripts a and 
b). See Supplemental Methods and Fig S1D for a discussion of the biphasic behavior of 
RNCPhoA. The kon value for SRP-70S ribosome association was calculated from kon = koff/Kd 
(Zhang et al., 2010). Error bars are depicted but may not be visible in panels (B) and (C). Values 
are averages of 2-3 experiments ± SD. 
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Figure 3. FtsY actively regulates the interaction of SRP with its substrates. (A) Highlight of 
the targeting step (box) measured in this figure and the FRET probes used.  (B, D) Kinetics of 
RNC binding to the SRP•FtsY early complex (panel B) or closed complex (panel D) with 
RNC3A7L (red) and RNCPhoA (blue). The data were fit to Eq S4, and the kon values obtained are 
summarized in Fig 3F. See Fig S2 for representative time courses. The dotted lines indicate the 
corresponding binding kinetics in the absence of FtsY (from Fig 2C) and are shown for 
comparison. (C, E) Kinetics of RNC dissociation from the early (C) or closed (E) targeting 
complex. The data were fit to Eq S5a or Eq S5b, and the obtained koff values are summarized in 
Fig 3F. (F) Summary of the RNC-SRP binding affinity at different stages of the targeting 
pathway. The values for SRP only are from Fig 2F and are shown for comparison. Kd values 
were calculated from Kd = koff/kon. The two kinetic phases for RNCPhoA are indicated by 
superscripts a and b. Values are averages of 2-3 experiments ± SD. 
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Figure 4. Molecular basis for FtsY-induced changes in SRP-RNC binding affinity. (A) 
Crystal structure of a signal sequence (magenta) bound to the M. jannaschii Ffh M-domain 
(blue) (PDB ID: 3NDB (Hainzl et al., 2011)). The donor dye at the signal sequence N- and C-
terminus are in green and orange, respectively. The acceptor dyes on Ffh helix M4 are in red. 
Residue numbering is for homologous residues in E. coli Ffh. (B) FRET efficiency between Cm 
at the signal sequence C-terminus and BODIPY-FL at indicated residues in SRP helix M4 in the 
RNC•SRP complex (pink) and the early (dark red) and closed (green) targeting complexes. Inset 
shows a cartoon of the FRET pair used for this experiment. (C) Crystal structure of Ffh (blue) 
modeled into the cryo-EM density (PDB ID: 2J28 (Halic et al., 2006a)) for the SRP•RNC 
complex. The signal sequence is in magenta. Conserved residues 19 and 21 in the Ffh N-domain 
are shown in gold. Red denotes the FRET acceptor labeled at C11 in the N-domain. For clarity, 
the ribosome, which sits directly above R19 and R21, is not shown. (D) A summary of the 
kinetic parameters for SRP19/21E mutant binding to RNC3A7L at various stages of targeting (see 
Fig S4B-G for time courses). (E) The defect displayed by mutant SRP19/21E in binding 
RNC3A7L at different stages of targeting. The ratios of the rate or equilibrium constants for 
RNC3A7L binding to SRP19/21E relative to wild-type SRP are plotted. The dotted line indicates 
the expected ratio of 1 if the mutant displays no defect (see Fig 4D and Fig S4). (F) Maximal 
FRET efficiency between Cm-labeled RNC3A7L and BODIPY-labeled SRP C11 (panel C) during 
the targeting cycle. Inset shows a cartoon of the FRET pair used for this experiment. Molecular 
graphics were generated using UCSF Chimera (Pettersen et al., 2004). Values in (B) are averages 
of 4 experiments ± SEM. Values in (D) are averages of 2-3 experiments ± SD. 
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Figure 5. Cm-labeled signal sequence reports on RNC binding to SecYEG. (A) A scheme of 
RNC binding to SecYEG. The green star denotes the Cm dye. (B) Fluorescence spectra of 20 nM 
Cm-labeled RNC3A7L in the absence (black) and presence of 300 nM wild-type (green) or c4/c5 
mutant SecYEG (grey). (C) Equilibrium titration of 20 nM RNC3A7L with wt-SecYEG (green) or 
c4/c5 mutant SecYEG (grey) and of 30 nM RNC3A5L2R (mt-RNC) with wt-SecYEG (light green). 
The data were fit to Eq S6 and gave Kd values of 3 ± 2 nM (average ± SD, with n = 20) and 140 
nM with RNC and mt-RNC, respectively. 
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Figure 6. SecYEG effectively unloads cargo from the closed targeting complex. (A) 
Highlight of the cargo transfer step in the targeting pathway. (B) Fluorescence spectra of Cm-
labeled RNC3A7L by itself (black), in the closed targeting complex with SRP labeled with 
BODIPY-FL at C11 (N-domain) (red), and upon addition of SecYEG to the closed targeting 
complex (pink). Inset shows a cartoon of the FRET pair used for this experiment. (C) Titration of 
wildtype (pink) or mutant (grey) SecYEG into the closed targeting complex formed with 
BODIPY-labeled SRP (C11) (also see Fig S5B). (D) As in B, except that the M-domain FRET 
pair (inset and Fig. 1B) was used. (E) As in C, except that the M-domain FRET pair was used. 
The data were fit to Eq S6 to give an EC50 for transfer of 39 ± 26 nM. (F) Summary of the 
changes in fluorescence end points upon addition of saturating SecYEG to the closed targeting 
complex, formed with unlabeled SRP (brown) or with SRP labeled at the M- (blue) or N- 
(magenta) domain. The fluorescence signal upon direct addition of RNC to SecYEG is in green. 
All experiments were performed with 20 nM RNC3A7L labeled with Cm at the C-terminus of the 
signal sequence, 40 nM SRP, 500 nM FtsY, and 100 μM GppNHp. All fluorescence values are 
normalized relative to that of RNC (black). Values are averages of >3 experiments ± SD. 
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Figure 7. Kinetics of cargo transfer to SecYEG. (A) Kinetics of transfer of RNC3A7L-85 upon 
addition of 1μM SecYEG to the closed targeting complex formed by SRP labeled with BODIPY-
FL at the M- (blue) or N-domain (pink). The data were fit to Eq S5a to obtain the observed rate 
constants listed in D. (B) Kinetics of transfer of RNC3A7L-135 upon addition of SecYEG to the 
closed targeting complex formed by SRP labeled with BODIPY-FL at the M-domain (purple). 
Data for RNC3A7L-85 (blue) is shown for comparison. (C) As in B, except that the closed 
targeting complex was formed fby SRP labeled with BODIPY-FL at the N-domain (magenta). 
(D) Summary of the observed rate constants for RNC transfer from (A)-(C). (E) Alternative 
models for transfer of signal sequence from SRP to SecYEG. (F) Simulated kinetic behavior of 
the transfer reaction according to model (i), monitored using FRET acceptor labeled at the SRP 
M- (blue) or N- (pink) domain. (G) Simulated kinetic behavior of the transfer reaction according 
to model (ii) as the equilibrium to form the transfer complex was progressively less favorable 
(top to bottom). The value of K4 = k4/k-4 was set to 25, 5, 1, 0.2, 0.1 respectively. For clarity, only 
results with the SRP N-domain are shown (see Supplemental Methods for details). Values are 
averages of 2-3 experiments ± SD. 
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Figure 8. A model for highly coordinated delivery of RNC from the cytosol to the 
translocon, driven sequentially by the SRP/SR GTPases and SecYEG at different stages of 
the targeting cycle. See text for description of the model. Color notations are the same as in 
Figure 1A. The question mark indicates the unknown nature and structure of the encounter 
complex. 
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Figure S1 
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Figure S1. Equilibrium and dynamics of RNCs binding to SRP. (A) Change in donor 
fluorescence when 25 nM Cm-labeled wt-RNC (RNC3A7L) or mt-RNC (RNC3A5L2R containing 
two arginines into the signal sequence) was treated with 50 nM or 424 nM respectively of 
BODIPY-FL labeled SRP 421. (B) Time courses for association of RNC3A7L with 300, 450 and 
600 nM SRP. (C) Time courses for association of RNCphoA with 600, 900 and 1200 nM SRP. For 
B and C, the observed rate constants obtained from Eq S3 were used to generate Fig 2C. (D) A 
magnification of the plot for dissociation of RNCphoA from SRP (Fig 2D) showing the biphasic 
behavior of RNCphoA. The time course for phoA was fit to a double exponential (Eq S5b) to give 
dissociation rate constants of 0.25 ± 0.023 s-1 and 0.053 ± 0.006 s-1. The amplitudes for the two 
phases were 40% and 60%, respectively. Although the biphasic nature of SRP RNCphoA 
dissociation persisted as the targeting reaction progressed, the two phases responded similarly to 
FtsY. Therefore, only the rate constants from the faster-dissociating phase are plotted in the main 
text. Inset shows the complete plot for SRP RNC1A9L dissociation (Fig 2D). (E) Kinetic 
simulations of SRP dissociation from (i) Lep50 and (ii) non-translating ribosomes based on the 
3-step model and individual rate constants reported by Holtkamp et al. (Holtkamp et al., 2012). 
These simulations show that SRP dissociates from the final, stable RNC•SRP complex at a rate 
constant (koff) of 0.0058 s-1 for RNC bearing a model SRP substrate Lep, and at a koff value of 
0.36 s-1 from the 70S ribosome. See Materials and Methods for details. 
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Figure S2 

 
 

 

Figure S2. Kinetics of RNC binding to early and closed complexes. Representative curves 
showing the time courses for association of RNCs with the SRP SR early (A-B) or closed 
complex (C-D) for RNC3A7L (A, C) and RNCphoA (B, D). The observed rate constants obtained 
from Eq S3 were used to generate Figs 3B and 3D. 
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Figure S3 

 
 

Figure S3. Signal sequence binding to the SRP M-domain. (A) A summary of the binding 
dissociation constants obtained for BODIPY-FL-labeled single cysteine mutants of SRP at 
residues 415, 421, 425 and 429 in the SRP M-domain binding to fluorescently labeled RNC3A7L. 
(B) The activity of BODIPY-FL-labeled single cysteine mutants of SRP was tested in a protein 
translocation assay (Shan et al., 2007). (C) Maximal FRET efficiency between Cm at the N-
terminus of signal sequence and BODIPY-FL at indicated residues in SRP helix M4 upon RNC 
binding to SRP (pink), and the early (dark red) and closed (green) targeting complexes. Inset 
shows a cartoon of the FRET pair used for this experiment. For clarity, only a part of the 
ribosome is shown. The location of the donor fluorophore at the N-terminus of the signal 
sequence is shown with an asterisk (top). (D) The binding affinity of SRP, labeled with 
BODIPY-FL at residue 421, for RNC3A7L labeled with Cm at either the C- or N-terminus of the 
signal sequence. The data were fit to Eq. S2 and gave Kd values of 3.7 and 8.4 nM for RNC3A7L 
labeled at the C- and the N-terminus, respectively. 
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Figure S4 

 
 

Figure S4. Sequence information and kinetic data for SRP 19/21E mutant. (A) Sequence 
alignment of Ffh homologues with the two conserved basic residues highlighted. Numbering is 
for E. coli Ffh. The right panel shows the activity of the SRP 19/21E mutant in a protein 
translocation assay (Shan et al., 2007). (B-G) Kinetic measurements for SRP19/21E association 
with (B, D, F) and dissociation from RNC3A7L (C, E, G) at different stages of the targeting 
pathway. (B), (C) SRP only; (D), (E) Early and (F), (G) Closed targeting complex. The data for 
wild-type SRP (dashed lines) are shown for comparison. The rate constants obtained from these 
data are tabulated in Fig 4D. 
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Figure S5 

 
 

Figure S5. Cm probe incorporated into the signal sequence reports on RNC-SecYEG 
binding. (A) FRET between Cm–labeled RNC and BODIPY-labeled SecYEG. 30 nM SecYEG 
labeled with BODIPY-FL at residue 180 was added to 40 nM RNC3A7L labeled with Cm at the 
C-terminus. (B) Titration of the closed targeting complex with SecYEG. Wt-SecYEG (i) or c4/c5 
mtSecYEG (ii) was titrated into the closed targeting complex containing 20 nM RNC3A7L labeled 
with Cm at the C-terminus, 40 nM SRP labeled with BODIPY-FL at position 11 (N-domain), 
500 nM FtsY, 100 μM GppNHp. The fluorescence peak at each concentration was plotted 
against [SecYEG] to generate Fig 6C. In A and B, the schematic shows the binding reaction 
monitored and the
corresponding FRET pair used in the experiment. 
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Table S1. Anisotropy measurements for 7-hydroxycoumaryl ethylglycine (Cm) and BODIPY-
FL fluorophores. 
 

Dye Anisotropy 

Cm 0.019 

Cm-RNC (C-terminus) 0.139 

Cm-RNC (N- terminus) 0.123 

BODIPY-FL 0.011 

SRP 415 BODIPY-FL 0.232 

SRP 421 BODIPY-FL 0.171 

SRP 425 BODIPY-FL 0.205 

SRP 429 BODIPY-FL 0.204 
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Towards Understanding the Mode of SecYEG-Nascent 

Polypeptide Chain Interaction 
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Abstract 

 Translating ribosomes targeted to the sites of translocation at the endoplasmic reticulum 

or the bacterial inner membrane by the SR•SRP targeting complex are unloaded onto a 

conserved protein-conducting channel, Sec61 complex in eukaryotes and SecYEG in bacteria. In 

both cases, the ribosome-nascent chain complex (RNC) interacts in a bidentate manner with the 

channel: the cytosolic loops of SecYEG contact the ribosome at the ribosomal channel exit site, 

while the lateral gate accommodates the signal peptide. As the ribosome continues to synthesize 

the nascent chain, the trasmembrane domains (TMs) of a membrane protein exit SecYEG into 

the lipid bilayer, while the polypeptide chain of a secretory protein is translocated through the 

pore of the channel into the periplasmic space. Despite considerable progress in our 

understanding of protein translocation across the lipid bilayer and biogenesis of membrane 

proteins, little is known about the dynamics of the signal peptide-SecYEG interaction at early 

stages of these processes. Further, the role of the accessory components of the SecYEG complex, 

such as the abundant insertase YidC, in this interaction remains unclear. Here, we use a FRET 

assay to map the orientation of a signal peptide inside SecYEG as it interacts with RNC.  We 

used a signal peptide mimic, an engineered 3A7L sequence, appended to the mature region of 

PhoA, and the only TM of FtsQ. We monitored their interaction with SecYEG while increasing 

the length of the mature region to mimic an elongating nascent chain. Although additional 

experiments are necessary to draw definite conclusions, the results of our study suggest that 

3A7L and the TM of FtsQ bind SecYEG with different orientations. Interestingly, as the length 

of the nascent chain increases, the binding affinity of RNC for SecYEG first weakens and then 

tightens for both nascent chains. YidC affects both the conformation of the SecYEG-nascent 

chain complex and its stability. Collectively, the results of this study suggest that SecYEG in 
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DDM is capable of discriminating between the types of signal sequences and can sense the 

length of the nascent chain. Further, we propose that one of the roles of YidC may be to facilitate 

the exit of TMs from SecYEG. The biophysical assays described in this chapter set the stage for 

further characterization of SecYEG-RNC interaction in an in vitro system and promise to shed 

light on molecular details of the membrane protein biogenesis. 
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Introduction 

 Docking of a translating ribosome onto a protein-conducting channel, or translocon, at 

the target membrane is the final step in the cotranslational protein targeting pathway. Both in 

prokaryotes and eukaryotes, translocon is a heterotrimeric integral membrane protein that is an 

essential constituent of a multi-component complex involving accessory membrane proteins 

(Veenendaal, 2004; Kudva, 2013). The first crystal structure of the translocon from an archaeon 

M. jannaschii, SecYEβ, solved at 3.2 Å resolution was a significant breakthrough in the field of 

cellular protein export.  The structure showed that the main subunit of the translocon, SecY, 

consists of ten transmembrane domains (TMs), forming a characteristic clamshell structure with 

TMs 1-5 composing one half and TMs 6-10 the second half of the “clam” (van den Berg, 2004). 

TMs 5 and 6 are connected by a short loop that acts as a hinge, linking the two halves of SecY. 

On the side opposite to the hinge, TMs 2b and 7 constitute the so-called lateral gate that is closed 

in the idle state of the translocon and is open in the translocation state (Fraunfeld, 2011; Egea, 

2010; du Plessis, 2009). The gate functions as an exit site for TMs of the nascent membrane 

protein partitioning into the lipid bilayer.  

 The pore of SecY has an hourglass shape consisting of aqueous cytoplasmic and 

periplasmic funnels separated in the center by a constriction, the so-called pore ring, ~ 5-8 Å in 

diameter composed of six hydrophobic residues. The pore ring was proposed to form a gasket 

around the translocating nascent chain, preventing the leakage of small molecules and ions 

across the lipid bilayer (Park, 2011). In the idle state, a short helix 2a, called the plug domain, 

forms hydrophobic contacts with the lateral gate and seals the channel at the periplasmic side (Li, 

2007). The plug domain was proposed to move away from the center of the channel, allowing the 

helices of the lateral gate to part and opening the passage through the pore. The extent of the 
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translocation of the plug domain in the open state of the translocon is still a matter of debate 

(Lycklama A Nijeholt, 2010; van den Berg, 2004).  

 Another interesting feature of the SecY subunit is the set of prominent cytosolic loops 

connecting TM6 to TM7 and TM8 to TM9 (Fraunfeld, 2011; Zimmer, 2008; van den Berg, 

2004). These loops protrude approximately 20Å into the cytosol and contain conserved basic 

residues that interact with cytosolic factors such as the ribosome, FtsY, and SecA (Kuhn, 2011; 

Zimmer, 2008; Menetret 2007). The SecE subunit functions as a molecular hinge that clamps 

SecY on the side opposite to the lateral gate and is composed of two helices one of which lies on 

the cytosolic face of the lipid bilayer. The Secβ consists of one TM. 

 Sequence alignment of archaeal, bacterial, and eukaryotic translocons shows that the 

pore-forming subunits of translocons across the species share 50% sequence identity (van den 

Berg, 2004). The X-ray crystal structures and cryo-EM reconstructions of bacterial and 

eukaryotic translocons reveal great structural similarity to the archaeal SecYEβ. The E. coli 

translocon SecYEG differs from both archaeal and eukaryotic translocons by the number of 

TMs. While the SecY subunit is almost identical to that of SecYEβ, the E subunit consists of 

four α-helices instead of two, and the G subunit is composed of two TMs instead of one. Two of 

the four helices of SecE are non-essential and are not part of the helix bundle of SecYEG 

(Fraunfeld, 2011), with the two remaining helices forming a molecular clamp around SecY. 

While SecG is non-essential (Brundage, 1990), it was proposed to play a role in SecA-dependent 

translocation of precursor proteins across the lipid bilayer (Moser, 2013). The mammalian 

homolog of the translocon, Sec61p complex (Gorlich, 1993, 1992) resembles the archaeal 

SecYEβ and consists of three subunits Sec61α, Sec61γ, and Sec61β (Becker, 2009; Veenendaal, 

2004; Beckmann, 2001).  
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 A large body of evidence including both function and structural studies shows that 

SecYEG interacts with a translating ribosome in a bidentate manner. Prominent cytosolic loops 

of the SecY subunit contact the ribosomal proteins L23 and L29 at the ribosomal tunnel exit site 

(Menetret, 2007; Cheng, 2005), while the lateral gate of a translocon accommodates the signal 

peptide (van den Berg, 2004; Plath, 1998; Mothes, 1998; Jungnickel, 1995). Early crosslinking 

studies involving posttranslational substrates preproalpha factor, preprolactin, and proOmpA 

collectively defined the SecY subunit as the channel for translocating nascent chain and the 

lateral gate as the binding site for a signal peptide (Canon, 2005; Plath, 1998; Crowley, 1994; 

Joly, 1993). A number of cryo-EM structures of a translating ribosome bound to the translocon 

from prokaryotic and eukaryotic systems followed, defining the path of the nascent chain in the 

ribosome-translocon complex (Fraunfeld, 2011; Becker, 2009). Recently, the translocon-RNC 

complexes were formed in vivo as translocation intermediates, using either ER microsomes or 

intact E. coli cells, trapping the signal peptide or TM of the nascent membrane protein bound to 

the lateral gate. These intermediates were visualized using cryo-EM, showing conclusively the 

nascent chain bound to SecYEG (Gogala, 2014; Park, 2014). 

 The crosslinking studies and the structural data support and explain the earlier suggestion 

that SecYEG may be functioning as a checkpoint capable of distinguishing between the nascent 

proteins destined for export/incorporation into the lipid bilayer and cytosolic proteins devoid of 

signal sequences. The notion originated from genetic screens that isolated mutations (prl for 

protein localizations), allowing for correct localization of proteins with defective or even missing 

signal sequences (van der Wolk, 1998; Flower, 1994; Derman, 1993; Osborne, 1993; Emr, 

1981).  In particular, prlA mutations in the SecY gene produce a superactive translocon that no 

longer requires a signal peptide to mediate translocation of a precursor protein (Fekkes, 1998; 
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Derman, 1993). Significantly, most of the prlA mutations localize to the pore region, the lateral 

gate region, and the plug domain of SecY, likely destabilizing hydrophobic contacts between 

these structures (Li, 2007; van der Berg, 2004). Weakening of this hydrophobic cluster in prlA 

mutants would obviate the need for a hydrophobic signal sequence required to open the channel.

 One of the most interesting questions of the SecYEG-nascent chain interaction is the 

mechanism whereby the correct topology of the signal peptide inside the SecY subunit is 

established during protein translocation and the orientation of transmembrane domains at early 

stages of the membrane protein biogenesis. While earlier functional and structural studies 

showed that the nascent chain interacts with SecY (Plath, 1998; Mothes, 1998; Jungnickel, 1995) 

and likely adopts a looped conformation with the N-terminus pointing towards the cytosol (Park, 

2014, 2011; Shaw, 1988), they provide little information as to the dynamics of the SecYEG-

nascent chain interaction. At best, these studies either observed the protein already integrated 

into the lipid bilayer (Kocik, 2012; Shaw, 1988) or were based on low resolution structural data 

(Park, 2014) or crosslinking assays, correlating the length of the nascent chain with the intensity 

of the crosslinked translocon-nascent chain product (Park, 2011).  

 A relatively recent study attempted to monitor Sec61p-nascent chain interaction in ER 

microsomes, using RNCs with progressively longer nascent chains containing TM1 of aquaporin 

4 (Devaraneni, 2011). Using a variety of elegant biochemical and biophysical assays, the authors 

showed that the TM inserts head first, but flips the orientation to type II topology at the nascent 

chain length of approximately 125 aa, resulting in a translocated C-terminal mature region. 

Another study attempted to monitor the force exerted by SecYEG as it interacts with an 

elongating nascent chain in vivo (Ismail, 2012). The pulling force was observed at two distinct 

lengths of the nascent chain, indicating conformational changes undergone by the TM as it 
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interacts with SecYEG. While all of these studies contribute invaluable information as to the 

translocon-nascent polypeptide interaction, they do not attempt to map the orientation of the 

signal peptide of the elongating nascent chain inside the SecY subunit with high resolution. 

Further, whether detergent-solubilized SecYEG in the absence of accessory factors is capable of 

sensing an increasing length of the nascent chain and binds the signal peptide in different 

orientation depending on the length of the polypeptide chain remains an open question. Here, we 

use a FRET assay between BODIPY-FL-labeled SecYEG and the RNCs site-specifically labeled 

with coumarin at the signal sequence/TM to observe the conformational changes undergone by 

the signal peptide as SecYEG binds RNCs with progressively longer nascent chains. Our studies 

show that the nascent chain binds detergent-solubilized SecYEG in a loop conformation with the 

signal peptide adopting type II topology and suggest that SecYEG alone may be sufficient to 

correctly bind the signal peptide. Further, we observed the dependence of the binding affinity of 

SecYEG for RNC on the length of the nascent chain, suggesting that in vivo SecYEG may sense 

the length of the nascent chain and modulate the affinity of the translating ribosome for the target 

membrane. The physiological significance of the differential affinity of SecYEG for nascent 

chains of varying length is currently not clear and requires additional assays. It may constitute an 

important part of the mechanism regulating membrane protein biogenesis. 

 In vivo, SecYEG exists as a complex called holotranslocon, which consists of several 

membrane proteins, including SecDF, YajC, and YidC (Schulze, 2014; Dalbey, 2014; Nouwen, 

2002; Scotti, 1999; Duong, 1997). The latter is a member of the YidC-Oxa1-Alb3 family and 

was shown to be essential for cell growth, with deletion causing global changes in cell 

physiology (Kiefer, 2007). It is present in a bacterial inner membrane in a 5-fold molar excess 

over SecYEG (Drew, 2003; Urbanus, 2001) and is thought to play an important role in 
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membrane protein biogenesis acting as an insertase/foldase (Dalbey, 2004; Houben, 2002; 

Urbanus, 2001; van der Laan, 2001; Houben, 2000). A number of substrates have been identified 

that require YidC for insertion, including F0c subunit of ATP synthase (van Bloois, 2004; Yi, 

2004; van der Laan, 2004), M13 bacteriophage procoat protein (Stiegler, 2011; Samuelson 

2001), pf3 bacteriophage coat protein (Ernst, 2011), MscL (Facey, 2007), and the subunit a of 

cytochrome oxidase a (du Plessis, 2006). YidC also increases efficiency of integration of 

SecYEG-dependent substrates MalF and MalFGK (Wagner, 2008), subunits a and b of F1F0 ATP 

synthase (Yi, 2004) and was shown to interact with Lep (Houben, 2002; Houben, 2000) and FtsQ 

(Urbanus, 2001). An intriguing recent study showed that SRP substrates can be targeted to either 

SecYEG or YidC, with the analyzed substrates including TatC, MtlA, and YidC devoid of the 

periplasmic loop (Welte, 2012). A growing list of substrates whose biogenesis either requires or 

is facilitated by YidC raises a question at to the precise role of YidC as a part of the membrane 

protein biogenesis machinery. It appears that substrates that have unbalanced charge distribution 

in transmembrane domains and do not follow the “positive inside” rule, have TMs with reduced 

degree of hydrophobicity, or have a prevalence of negative charge in the regions flanking the 

TMs exhibit higher YidC-dependence (Zhu, 2013; Gray, 2011; Price, 2010). The precise features 

of a membrane protein that define it as a YidC substrate, however, are yet to be determined. 

Further, at present, it remains unclear whether or not YidC acts as an independent insertase 

capable of receiving the cargo protein from the targeting complex or functions in conjunction 

with SecYEG to facilitate biogenesis of membrane proteins.  

  Topological analysis of bacterial YidC revealed that this 548 aa long membrane protein 

is composed of six transmembrane domains with a large 330 aa long periplasmic loop connecting 

TM1 to TM2 (Saaf, 1998). Apart from the X-ray structure of the non-essential periplasmic 
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domain solved at 1.8Å resolution (Ravaud, 2008), no high resolution structural data exist. 

Structural information regarding the E. coli YidC is currently limited to a low resolution cryo-

EM model of dimeric YidC alone (Lotz, 2008) or in complex with RNCs bearing F0c nascent 

chains (Kohler, 2009). A monomeric YidC-ribosome complex at 8.6 Å resolution was also 

solved by cryo-EM, revealing the long C-terminal tail of YidC from R. baltica and O. alexandrii 

interacting with the ribosomal protein L29 (Seitl, 2014). Interestingly, the long C-terminal tail is 

absent in the E. coli YidC and is composed of 13 amino acids with prevalence of basic residues 

(Saaf, 1998). A recent fluorescence cross correlation study showed that the E. coli YidC interacts 

only with programmed ribosomes and does so in a monomeric state (Kedrov, 2013). Recently the 

crystal structure of YidC from Bacillus halodurans was solved at 2.4 Å resolution (Kumazaki, 

2014). The structure revealed a novel fold that can be likened to a curved closed palm of the 

hand, in which the five membrane spanning helices form a hydrophilic groove in the lipid bilayer 

open towards the cytoplasm and the lipids and closed at the periplasmic side. A conserved 

arginine residue is situated in the center of the hydrophilic groove and was shown to be essential 

for efficient insertion of membrane proteins containing acidic residues in their N-termini. The 

structural data combined with functional assays allowed the authors to propose a model for how 

YidC facilitates membrane protein insertion. The hydrophilic surface of YidC with the charged 

arginine residue allows the extracellular domains containing negative charge to be translocated 

across the low-dielectric environment of the lipid bilayer. It is important to note, however, that 

the model is based on the functional assays examining insertion activity of the Bacillus subtilis 

YidC (SpoIIIJ) using single-spanning membrane proteins Pf3 and MifM. Similar assays were not 

performed with the E. coli YidC. Furthermore, mutations in the hydrophilic groove of the E. coli 

YidC did not impair the insertion of a double-spanning membrane protein M13 procoat, 
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suggesting that, in addition to the hydrophilic groove of YidC, other determinants  of this 

insertase are important in insertion of membrane proteins. 

 The importance of YidC in biogenesis of membrane proteins emerged relatively recently 

and, despite the enormous progress in our understanding of its physiological role, many 

questions regarding its functions in the cell currently remain open. Biophysical assays to dissect 

the mechanism of the YidC activity are limited in part by the lack of structural information, and 

in part by the lack of a defined set of bona fide YidC substrates. The complex nature of the E. 

coli translocation machinery involving several components with two major pathways – co- and 

posttranslational – handling many substrates with overlapping requirements complicates the 

issue (Wu, 2012; Koch, 2000; Neumann-Haefelin, 2000; Qi, 1999; Saaf, 1995). Does YidC act 

independently or in conjunction with SecYEG? Does it act solely as a foldase assisting SecYEG? 

Does it function as a recipient of a translating ribosome? If yes, what determines targeting of the 

translating ribosomes to YidC rather than SecYEG? Is the targeting reaction promiscuous and 

substrate independent as suggested earlier (Welte, 2012)? If YidC assists SecYEG in biogenesis 

of membrane proteins, at what stage of the RNC-SecYEG interaction does it begin to exert its 

effect? A collective effort from multiple laboratories over the course of many years is required to 

address these questions. Here, we asked whether YidC affects SecYEG-RNC interaction in a 

system consisting of detergent-solubilized components. We show that YidC weakens affinity of 

RNC for SecYEG and changes the conformation of the signal anchor bound to SecYEG.  

Importantly, it does so at early stages of the interaction, suggesting its involvement in membrane 

protein biogenesis at early stages of the process. We propose that YidC modulates the SecYEG-

RNC interaction and facilitates the exit of transmembrane domains into the lipid bilayer. 

Results and Discussion 
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Determination of orientation of the 3A7L signal sequence in SecYEG  

 To examine the orientation of the signal peptide inside the tranlocation channel at early 

stages of translocation, we used FRET between BODIPY-FL-labeled SecYEG and RNCs 

containing coumarin-labeled signal peptides. We reasoned that judicial placement of the acceptor 

dye (BODIPY-FL) on various sites of the SecY subunit constituting the pore of the translocation 

channel and site-specific derivatization of the signal peptide with the donor dye (coumarin) 

either at its N- or C-terminus would allow us to map the intercalation mode of the signal peptide 

in the lateral gate of SecY. This approach would also allow us to examine the topological 

changes undergone by the signal peptide inside the translocon as it interacts with RNCs bearing 

progressively longer nascent chains. Taking the Forster radius of 45Å for the BODIPY-FL-

coumarin FRET pair, modeling performed by the group of Tom Miller based on the cryo-EM 

reconstruction of the E. coli SecYEG has shown that two positions of the acceptor probe on the 

cytoplasmic site of SecY in combination with two positions on the periplasmic site would allow 

us to determine the topology of the signal peptide with 95% confidence, provided that the 

topology is either Type I or Type II. Various combinations of the acceptor and donor dye 

positions on the translocon and the signal peptide, respectively, would result either in low or high 

FRET values, which can be directly translated to distances (Figure 1A). We used stalled RNCs 

bearing PhoA nascent chains of increasing length with an engineered 3A7L signal peptide 

(Figure 1B) (see Materials and methods for detailed description of the RNCs). The fluorescent 

amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine was site-specifically introduced either at the 

N- or C-terminus of the signal peptide, using amber technology (Saraogi, 2011). Single-cysteine 

mutants of SecYEG were labeled with BODIPY-FL-maleimide using thiol chemistry as 

described in Materials and methods. Two cytoplasmic and two periplasmic locations of the 
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acceptor probe were chosen on SecY and determined by modeling to be sufficient for mapping 

the signal sequence orientation (Figure 3A).  

 Multiple lines of evidence from structural and function studies showed that SecYEG 

interacts with RNCs in detergent with high affinity (Akopian, 2013; Becker, 2009; Beckmann, 

2001; Mothes, 1998). This interaction is not an artifact observed in detergent, as it is abolished if 

critical residues in the cytosolic loops of SecY are mutated (Akopian, 2013; Menetret, 2007). 

Replacement of two leucine residues with arginines in 3A7L dramatically weakens SecYEG-

RNC interaction, suggesting that the 3A7L signal peptide is likely intercalated into the lateral 

gate of SecY, and reducing the hydrophobic character of the sequence interferes with productive 

binding (Saraogi, 2014). Also, RNCs bearing different signal peptides interacted with SecYEG 

with markedly different affinities, suggesting that the signal peptide identity is an important 

factor in RNC-SecYEG interaction and is thus likely to be engaged by the translocon in a 

physiologically relevant manner (Figure 7D) (unpublished observations). Independently, 

engagement of the signal peptide by SecYEG was confirmed using a protease protection assay 

with radioactively labeled RNC1A9L chains (Figure 13) (unpublished observations). A significant 

fraction of RNCs were protected from digestion by proteinase K in the presence of detergent-

solubilized SecYEG. Further, wild-type SecYEG in DDM, and not the cytosolic loop mutant, 

was shown to specifically destabilize the early complex in the SRP pathway, stabilize the 

activated state of the complex, and remove the stalling effect of RNC on hydrolysis of GTP from 

the complex (Akopian, 2013; Shen, 2012). It was also shown to be sufficient for in vitro 

reconstitution of the RNC transfer reaction from the targeting complex (Saraogi, 2014). Taken 

together, multiple lines of evidence show that detergent-solubilized SecYEG interacts with 

RNCs in a physiologically relevant manner and is thus suitable for examining the intercalation 
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mode of the signal peptide. We therefore used this minimal system to ask if the topology of the 

signal peptide inside the channel changes as the length of the nascent chain increases and if 

SecYEG in detergent in the absence of other components is capable of establishing correct Type 

II topology of the model secretory protein signal peptide, 3A7L. 

 Upon interaction of SecYEG with RNCs site-specifically labeled with coumarin, a 

significant increase in fluorescence of coumarin is observed (Figure 2A) (see also Chapter 3, 

Figure 5). This increase in fluorescence due to environmental sensitivity of coumarin masks the 

decrease in the coumarin fluorescence due to FRET (Figure 2B). We therefore used fluorescence 

of coumarin in the presence of the dye-free SecYEG as the fluorescence of the donor only 

(D*+A) and fluorescence of coumarin in the presence of BODIPY-FL-labeled SecYEG as the 

fluorescence of the donor in the presence of the acceptor (D*+A*) (Figure 3A). FRET was 

calculated using the equation described in Figures 2 and 3.  

 FRET values obtained with N-terminally labeled RNCs were significantly higher when 

SecYEG with the acceptor dye on the cytosolic face was used (SecYEG180 and SecYEG344) 

compared to the FRET values obtained with SecYEG labeled at the periplasmic face 

(SecYEG211 and SecYEG295) (Figure 3B). This indicates that the donor fluorophore is closer to 

the cytoplasmic face of SecYEG when N-terminally labeled RNCs are used. Significantly, the 

trend was observed as the nascent chain was lengthened from 85 to 135 amino acids. 

Furthermore, slightly higher FRET values were observed with longer nascent chains (compare 

85 aa to 135 aa in Figure 3B), suggesting that the signal peptide of the longest nascent acquires a 

slightly different orientation likely dictated by the length of the nascent chain. Interestingly, no 

distinct differences in FRET values were observed between the cytosolically and periplasmically 

labeled SecYEG when C-terminally labeled RNC was used (Figure 3C). Such seemingly 
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contradictory results can be readily explained if the length of the signal peptide is taken into 

account. 3A7L spans only half of the translocon height. Thus, upon intercalation of 3A7L into 

the lateral gate, its C-terminus is expected to be positioned somewhere in the center of the 

channel, with the donor probe equidistant from the acceptor probes on the cytosolic and 

periplasmic face (Figure 4).  

 Analysis of the FRET values and molecular modeling suggest that the nascent chain 

interacts with SecYEG in a loop conformation such that the signal peptide acquires Type II 

topology with its N-terminus pointing toward the cytosolic face of SecYEG (Figure 4). Such 

conformation was observed in other studies. In particular, orientation of 3A7L observed in our 

studies is similar to that seen in a recently obtained cryo-EM structure of the RNC-SecYEG 

trapped in vivo as translocation intermediates (Park, 2014). To the best of our knowledge, the 

results of our studies show for the first time that SecYEG alone without additional components 

can establish correct initial topology of the secretory protein signal peptide. Elongation of the 

nascent chain bound to SecYEG in Type II topology would result in translocation of the 

substrate into the periplasmic space and exposure of the leader peptidase cleavage site at the C-

terminal end of the signal peptide, resulting in its removal with subsequent release of the mature 

region into the periplasm. 

 One of the surprising aspects of our results is the lack of dependence of the signal peptide 

conformation in SecYEG on the length of the nascent chains. Lengthening the nascent chain by 

50 amino acids (85 to 135) did not significantly change the conformation. A previous 

crosslinking study examined formation of RNC-SecYEG complexes in intact E. coli cells using 

cysteine crosslinking (Park, 2011). RNCs bearing nascent chains of various lengths with the 

DsbA signal peptide at the N-terminus were crosslinked to SecYEG in vivo by forming a 
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disulfide bridge between Cys19 at the C-terminus of the DsbA signal peptide and Cys68 on the 

plug domain of SecY in the presence of copper phenanthroline. A sharp reduction in the amount 

of the crosslinked complex was observed when the nascent chain length was reduced from 100 to 

90 aa, and no crosslinking occurred with RNCs bearing 80 aa long nascent chains, suggesting 

that at these lengths the nascent chain is too short to acquire a looped configuration and position 

Cys19 close to the plug domain. In light of these observations, our FRET results are intriguing. 

However, one caveat of the crosslinking studies is that the two cysteine residues must be within 

~ 2Å to form the disulfide bond. Poor crosslinking efficiency or no crosslinking does not suggest 

that the nascent chain of a particular length can no longer acquire the loop configuration. The 

direct inference is only that the two cysteines are not within the disulfide bond distance from 

each other. Our results show that the Type II topology is acquired early in translocation when the 

nascent chain is only 85 aa long. In the future, it would be interesting to examine the topology of 

the signal peptide with even shorter nascent chains. It is likely that at the nascent chain length 

shorter than 85 aa, the signal peptide is inserted into the channel in Type I topology and 

subsequently flips the orientation as the nascent chain is elongated. This was observed with a 

model membrane protein in a relatively recent study (Devaraneni, 2011). 

Determination of orientation of the FtsQ transmembrane domain in SecYEG 

 FtsQ is a bitopic membrane protein that acquires type II topology in the inner membrane 

with short N-terminal extension in the cytosol and a large periplasmic loop (Figure 5A) (Carson, 

1991). We used the FRET assay between RNCFtsQ and SecYEG to ask whether, and if so, at what 

stage the type II topology of the signal anchor (transmembrane domain) of FtsQ is acquired 

during SecYEG-RNCFtsQ interaction.  We prepared RNCs bearing FtsQ nascent chains of 

increasing length site-specifically labeled with coumarin either at the N- or C-terminus of the 
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signal anchor. The nascent chain length was varied from 90 aa to 155 aa to mimic the elongating 

nascent chain (Figure 5B-C) (see Materials and methods for a detailed description of RNCFtsQ). 

Considering that the signal anchor of FtsQ is significantly longer than the 3A7L signal peptide, 

we expected to see a more pronounced difference in the FRET values with cytosolically vs. 

periplasmically labeled SecYEG.  Surprisingly, no significant difference in FRET values was 

observed, making the determination of the intercalation mode impossible (Figure 6A and B). 

Several scenarios can explain the observed FRET values. First, it is conceivable that no one 

definitive intercalation mode of the FtsQ signal anchor exists; instead, a highly heterogeneous 

population of intercalation modes results in averaging of the FRET values in ensemble 

measurements. Perhaps, the translocon alone is insufficient to bind the signal anchor in one 

defined orientation and the correct topology is established with the aid of other factors, such as 

YidC (Urbanus, 2001). Second, the observed FRET values can be explained if the signal anchor 

breaks into two α-helical segments of approximately the same size, resulting in close proximity 

of the N- and C-termini. That would position the donor dye in the same region in SecYEG 

regardless of whether it is at the N- or C-terminus of the signal anchor (Figure 6C). The presence 

of glycine and serine in the approximate center of the TM suggests that the sequence may exist 

as two short α-helices. Third, the signal anchor may simply nonspecifically associate with 

SecYEG in a conformation that is not observed in vivo. Such possibility is not unlikely 

considering that highly purified SecYEG is used and may suggest the requirement for accessory 

factors. We are currently testing these possibilities. Our approach involves replacement of the 

helix-breaking GS with alanine residues with an attempt to confer rigidity to the FtsQ TM. In a 

different approach, we are reassigning the amber codon to move either the N- or C-terminal 

probe towards the center of the signal anchor. If the signal anchor is indeed broken leading to 
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spatial proximity of the N- and C-terminus, then moving one of the probes towards the center of 

the helix would result in greater spatial separation of the probes and change in FRET values. 

Dependence of the avidity of RNC-SecYEG interaction on the length of the nascent chain 

 One of the interesting questions in the translocation field is how the synthesis of the 

nascent polypeptide chain affects the affinity of the translating ribosome for SecYEG. Attempts 

to address this question showed that SecYEG exerts a pulling force on the nascent chain, with 

the strength of the force directly dependent on the length of the polypeptide chain (Ismail, 2012). 

Such studies, although valuable, were performed in intact cells and thus examined the 

phenomenon in a complete system. To the best of our knowledge, no high resolution studies 

exist asking the question in a purified system. We asked if detergent-solubilized SecYEG in the 

absence of the lipid bilayer or accessory protein factors is capable of discriminating between the 

nascent chains of different lengths.  

 To determine the binding affinity of RNCs to SecYEG, we used a well-established 

binding assay based on the environmental sensitivity of the coumarin probe to SecYEG when 

derivatized at the signal peptide. The increase in the coumarin fluorescence in the presence of 

unlabeled SecYEG is robust and saturable, allowing us to perform equilibrium titration and 

derive dissociation constants from the fits to the data (see Materials and methods) (Figure 7A 

and B). We observed weakening and tightening of the affinity of RNC for SecYEG as the length 

of the nascent chain increased. Interestingly, the trend was observed with both 3A7L signal 

peptide and the FtsQ TM (Figures 7C and E), suggesting that the length of the nascent chain 

plays an important role in modulating the avidity of the SecYEG-RNC interaction. Taking into 

account the 24 aa long N-terminal extension preceding the signal anchor of FtsQ, the weakest 

binding with RNCFtsQ was observed at the nascent chain length of 86 aa counted from the 
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peptidyl transferase center (PTC) to the N-terminus of the signal anchor, while the weakest 

binding with RNC3A7L was observed with 105 aa long nascent chains. At present, the reason for 

this difference remains unclear. Most likely the nature of the signal peptide and its mode of 

interaction with SecYEG at least in part determine the length of the nascent chain at which the 

interaction is weak. Studies are underway to explore this phenomenon. 

 Weakening of the binding affinity of RNCFtsQ for SecYEG upon increasing the length of 

the nascent chain from 90 to 110 aa is in agreement with a crosslinking study carried out by Joen 

Luirink and colleagues (Urbanus, 2001). The authors crosslinked RNCFtsQ with various nascent 

chain lengths to IMVs and observed gradual decrease in efficiency of crosslinking to SecYEG as 

the nascent chain length was increased from 77 to 87, 97, and 108 aa. The crosslinking efficiency 

was very low with the 108aa nascent chain and significant with the 87 aa one, paralleling our 

results with binding affinity (Figure 7E). It would be interesting to see if, in accordance with our 

thermodynamics data, the efficiency of crosslinking increases as the nascent chain is lengthened. 

 In a recent study, von Heijne and coworkers investigated interaction of SecYEG with 

RNCs in vivo (Ismail, 2012). They examined the pulling force exerted by SecYEG on stalled 

nascent chains in intact E. coli cells. The authors engineered stalled RNCs containing the Lep 

nascent chain with one additional artificial transmembrane domain located at a certain distance 

from PTC. Full-length product would only be observed if the pulling force exerted by SecYEG 

on stalled RNCs is sufficient to remove the block on translation imposed by the arrest peptide. 

The pulling force was observed with 72 and 82 aa long nascent chains, with the first 

corresponding to the interaction of the TM with SecYEG and the second caused by the exist of 

the TM from the translocon into the lipid bilayer. The difference in the experimental set-up, 

nature of the substrate, and lengths of the nascent chains used in our and their studies prevent 
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direct comparison of the results. It is not far fetched to suggest, however, that the tight binding 

observed in our study may correspond to the pulling force exerted by SecYEG on the nascent 

chain. It is conceivable that as the nascent chain elongates the avidity of its interaction with 

SecYEG cycles between relatively weak and relatively tight due to changes in the signal peptide 

orientation and/or the accumulation of the polypeptide in the ribosome translocon junction. 

Performing these studies with the expanded repertoire of the nascent chain lengths may address 

this question in the future.  

 Our results here show that SecYEG in DDM without any accessory factors is capable of 

discriminating between the nascent chains of different lengths. This suggests an attractive 

hypothesis that in vivo SecYEG senses the length of the nascent chain and at some point loosens 

its grip on it, facilitating protein translocation across the lipid bilayer or biogenesis of membrane 

proteins. 

 To make sure that tight binding of RNCs to SecYEG is not an artifact of having SecYEG 

in detergent, we reconstituted SecYEG in lipid patches called nanodiscs (Figure 8). Nanodiscs 

are an attractive and widely-used system in which functional studies with membrane proteins are 

performed (Dalal, 2012; Gluck, 2011; Alami, 2007; Boldog, 2007; Nath, 2007). The nanodisc 

technology developed by the laboratory of Stephen Sligar involves incorporating a membrane 

protein of interest in a patch of phospholipids approximately 5 nm tall and 13 nm in diameter 

surrounded by a membrane scaffold protein, a derivative of apolipoprotein A (Denisov, 2004; 

Bayburt, 2002;). The technology allows one to obtain a monodisperse solution of a membrane 

protein in its native environment with tunable phospholipids composition. We expressed and 

purified membrane scaffold proteins, MSP1D1 and MSP1E3D1 (Figure 9A) and reconstituted 

SecYEG in nanodiscs using either E. coli lipids or phosphatidylglycerol (PG) according to the 
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previously-described method (Dalal, 2010). Successful assembly of the nanodiscs was confirmed 

by gel filtration chromatography (Figure 9B), native (Figure 9C) and denaturing gels (Figure 9D) 

(see Materials and methods for detailed description of the reconstitution of SecYEG in 

nanodiscs). Further, we checked binding of MSP1D1/PG/SecYEG nanodiscs to RNC using a 

well-established cosedimentation assay (Figure 9E) (see Materials and methods for detailed 

description of the assay). Empty nanodiscs did not cosediment with RNC1A9L, while SecYEG 

nanodiscs were detected in the pellet, indicating that SecYEG specifically bound RNC.  

 We then examined binding of RNC3A7L bearing nascent chains of increasing length to 

MSP1D1/PG/SecYEG nanodiscs. The extent of the signal change in the coumarin fluorescence 

due to environmental sensitivity was significantly lower compared to that observed with 

SecYEG in DDM (Figure 10A), probably reflecting the different environment of SecYEG and 

thus that of the signal peptide bound to the lateral gate region. Fitting of the titration data yielded 

dissociation constant similar to those obtained with SecYEG in detergent (Figure 10B). 

Significantly, like with SecYEG in DDM, weaker binding was observed with the nascent chain 

105 aa long, suggesting that, at least with respect to thermodynamics, SecYEG in nanodiscs 

behaves similarly to SecYEG in DDM.  

Effect of YidC on SecYEG-RNC interaction 

 In vivo, SecYEG does not function in isolation; it is a part of a holotranslocon complex 

that includes SecDF, YajC, and YidC (Schulze, 2014; Dalbey, 2014; Beck, 2001). The latter 

recently emerged as an important membrane foldase/insertase that handles a growing list of 

substrates independently or in cooperation with SecYEG. To begin to understand the role of 

YidC, we decided to examine its effect on SecYEG-RNC interaction in vitro. We purified YidC 

to homogeneity and solubilized it in DDM (Figure 11). Unlike SecYEG, YidC in DDM did not 
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produce a change in fluorescence of coumarin when incubated with either RNC3A7L or RNCFtsQ 

(data not shown). We then titrated RNCFtsQ bearing a 90 aa long nascent chain with SecYEG in 

the presence of increasing concentrations of YidC (Figure 12A). Significantly, YidC changed 

both the Kd value and the fluorescence end point in a concentration-dependent saturable manner 

(Figure 12A and B), indicating that it forms a ternary YidC•SecYEG•RNC complex in which it 

lowers the affinity of RNC for SecYEG (higher Kd) and changes the conformation of the TM 

(lower titration end point). If YidC acted simply as a competitor of SecYEG for binding RNC, 

only the Kd value would be affected with the titration end point, finally reaching the same 

saturation value as in the absence of YidC. These results allow us to draw a thermodynamic 

cycle of the ternary YidC•SecYEG•RNC formation (Figure 12C). It is apparent from the cycle 

and the known Kd values (Kd1 and Kd4) that YidC associates with SeYEG (Kd3) with ~ 8-fold 

higher affinity compared to its affinity for the SecYEG•RNC complex (Kd4). These results are in 

agreement with the recent SecYEG-YidC crosslinking study conducted by Hans Georg Koch and 

colleagues (Sachelaru, 2013). The authors showed that YidC contacts the lateral gate of 

SecYEG, and that in the presence of ribosomes and RNCs, the SecYEG-YidC crosslinking 

pattern changes, indicating conformational rearrangement of the SecYEG-YidC interface. Here, 

we show that in addition to affecting the SecYEG-YidC interaction interface, RNCs also weaken 

the affinity of YidC for SecYEG. This could be a direct consequence of the reduction of the 

number of contacts between SecYEG and YidC in the presence of RNC as YidC is in part 

displaced from the lateral gate. Combined with previous observations, our data suggest that YidC 

may facilitate the exit of transmembrane domains from SecYEG. It may also promote correct 

topology of membrane proteins. Weakening of the RNC-SecYEG interaction by YidC may 

lower the energy barrier of sampling various conformations by TMs on the pathway towards 
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establishing the correct final topology. At this point, this is only an attractive hypothesis, which 

requires rigorous testing. Significantly, the effects of YidC can be reproduced in a minimal 

system with detergent-solubilized components. The effect of YidC on the conformation of the 

nascent chain bound to SecYEG was observed not only with FtsQ, but also with 3A7L peptide 

(data not shown), suggesting that YidC may act as a general membrane chaperone. Future studies 

in detergent, as well as in native environment, are necessary to further explore this topic. 

Developing an in vitro cotranslational protein targeting assay 

 Although in vitro assays with detergent-solubilized SecYEG offer invaluable mechanistic 

information as to the role of SecYEG in the SRP-mediated targeting pathway, they do not report 

on the ultimate function of SecYEG, its ability to mediate efficient insertion of a cotranslational 

substrate into the lipid bilayer. Ideally, any new finding with detergent-solubilized SecYEG 

should be validated with SecYEG in the native environment. A robust in vitro cotranslational 

targeting assay involving purified SecYEG reconstituted in lipid vesicles would allow one to link 

the observations in detergent to those in the lipid bilayer, examine the requirements for co- vs. 

posttranslational pathways, and test the effect of SecYEG mutants in substrate 

insertion/translocation. To the best of our knowledge, no robust cotranslational targeting assay 

involving the prokaryotic protein targeting/translocation machinery with a well-characterized set 

of substrates exists (Schulze, 2014; Houben, 2000;). In contrast, relatively robust assays 

examining SecA-dependent translocation have been established (van der Does, 2003; Hanada, 

1994; Akimuru, 1991; Brundage, 1990). Moreover, efficient cotranslational targeting has been 

observed with the eukaryotic system, using both intact ER microsomes and the Sec61 complex 

reconstituted in proteoliposomes (Bernstein, 2001; Gorlich, 1992; Nicchitta, 1990).  
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 We sought to develop a cotranslational protein targeting assay using the prokaryotic 

protein targeting/translocation machinery in a coupled transcription/translation/integration 

system supplemented with 35S-methionine (Figure 14). The system combines the previously-

developed system for coupled transcription/translation (Saraogi, 2011) with desired formulation 

of lipid vesicles. The reaction is initiated by adding a plasmid encoding the substrate of interest 

and incubated for 30 min at 37°C.  As the DNA is transcribed, ribosomes assemble on the 

message and are targeted to the sites of translocation on the lipid vesicles. Upon completion of 

the reaction, protease protection can be used to check for insertion/translocation of the 35S-

labeled substrate (see detailed description of the assay in Materials and methods). This approach 

has been widely used in the field of protein targeting (Schulze, 2014; Welte, 2012; Houben, 

2000). 

 Leader peptidase (Lep) is a polytopic membrane protein with a large C-terminal 

periplasmic segment and a short cytosolic loop connecting the two transmembrane domains 

(Wolfe, 1983) (Figure 15A). The substrate was previously used in co-translational targeting to E. 

coli inverted membrane vesicles (IMVs), and its integration into the lipid bilayer was checked by 

treating IMVs with proteinase K (Houben, 2000). If productive insertion of Lep is achieved, 

proteinase K digests only the P1 loop, producing two fragments. The H2-P2 protected fragment 

can be detected on a gel as a lower molecular weight band relative to Lep (Figure 15B). Absence 

of the fragment indicates complete digestion and thus no insertion. Luirink and colleagues 

reported 12% integration of Lep into IMVs (Houben, 2000). Using our cell free extract and 

IMVs with overexpressed levels of SecYEG, we obtained 11% efficiency of integration (Figure 

15C). At present, it is unclear why the efficiency of cotranslational insertion of Lep is low. It is 

not unlikely that the cotranslational insertion machinery at least partly loses activity during inner 
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membrane breakage and IMV formation. Further, concentration of the targeting factors relative 

to the abundance of the translocation machinery is likely to change as the cells are lysed and the 

inner membrane is resealed. Also, the effect of the change in the lipid vesicle curvature on 

insertion cannot be excluded. 

 We then examined the efficiency of cotranslational insertion of Lep into proteoliposomes 

composed of the E. coli total lipid extract. SecYEG, YidC, or SecYEG/YidC proteoliposomes 

were prepared according to the established protocol (van der Does, 2003), and the presence of 

the proteins in the isolated lipid vesicles was checked by resolving an aliquot on a denaturing gel 

(Figure 16A). Stoichiometric amounts of SeYEG and YidC were incorporated. IMVs and urea-

washed IMVs were included in the reaction as positive controls. The efficiency of insertion was 

highest with IMVs (~ 20%) and lower with urea-washed vesicles (~ 12%) (Figure 16B and C). 

This is not surprising since the peripherally associated proteins that may aid in insertion are 

removed by urea from the lipid bilayer. The efficiency of translocation was lower with synthetic 

vesicles: ~7%, 5%, and 1% with SecYEG/YidC, SecYEG, and YidC proteoliposomes, 

respectively. Importantly, almost no insertion was observed with empty lipid vesicles, indicating 

specificity of the reaction. Also noteworthy, is the observation that the efficiency of insertion 

was higher with SecYEG/YidC proteoliposomes compared to SecYEG proteoliposomes and very 

low with YidC proteoliposomes. YidC has emerged as the membrane protein foldase/insertase 

that is thought to assist SecYEG in membrane protein biogenesis (Dalbey, 2014). The results of 

our insertion assay suggest that cotranslational insertion of Lep requires SecYEG and may be 

assisted by YidC. This is in agreement with the observation that the nascent chain of Lep is in 

vicinity of YidC (Houben, 2000). Further studies are required to explore the role of YidC in 

cotranslational insertion of Lep. The effect of SecYEG and YidC in proteoliposomes can simply 
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be additive rather than cooperative. It would be informative to check if SecYEG and YidC form 

complexes in the lipid bilayer.  Our studies of the effect of detergent-solubilized YidC on the 

SecYEG-RNC interaction suggest that they interact in detergent. SecYEG-RNC interaction was 

also observed in the lipid environment (Sachelaru, 2013), suggesting that the complexes are 

formed in our proteoliposomes. Labeling SecYEG and YidC with distinct fluorescent probes and 

performing colocalization experiments would be a direct way to observe and quantify SecYEG-

YidC complexes in the lipid environment. 

 Why is the efficiency of insertion lower in synthetic proteoliposomes compared to the 

native vesicles? There are many equally plausible explanations. First, it is not unlikely that the 

amount of the translated substrate far exceeds the available translocation sites, resulting in 

jamming of SecYEG units and accumulation of Lep outside the vesicles. This possibility can be 

tested by lowering the amount of the plasmid and increasing the amount of proteoliposomes in 

the reaction. Second, SecYEG may lose activity in synthetic vesicles composed of total E. coli 

lipids. It is known that in vivo SecYEG is activated by anionic lipids (Gold, 2010), which are 

segregated into microdomains in the bacterial inner membrane (Barak, 2008; Vanounou, 2003; 

Fishov, 1999). The absence of such microdomains in proteoliposomes may adversely affect the 

activity of SecYEG. Increasing the concentration of PG and cardiolipin in the synthetic vesicles 

may lead to higher efficiency of insertion. Third, the lipid bilayer in synthetic vesicles may not 

have correct curvature in which the translocation machinery exhibits high activity. Activation of 

the proteoliposomes before the assay to break the multilamelar structure may also result in 

formation of small vesicles with high curvature in which the altered lateral pressure on the 

translocation machinery prevents efficient insertion. It would be informative to reconstitute 

SecYEG into giant unilamelar vesicles to exclude the effect of curvature (Kedrov, 2011). Four, 
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SecYEG reconstituted in proteoliposomes may lose activity due to altered conformation, collapse 

of the cytosolic loops, or jamming of the lateral gate with lipids. A recent study reports increased 

post-translational translocation capacity of synthetic proteoliposomes when SecYEG was 

reconstituted in the presence of SecA (Mao, 2013). Perhaps, SecA acts as a chaperone for proper 

integration of SecYEG into the lipid bilayer. It would be interesting to see if this approach also 

improves cotranslational insertion of Lep. Five, SecYEG may require other components of the 

holotranslocon complex, SecDF and YajC to mediate efficient cotranslational insertion of Lep. A 

recent study reports purification of holotranslocon and its reconstitution in proteoliposomes 

(Schulze, 2014). Cotranslational substrate CyoA was inserted into SecYEG proteoliposomes 

with only 1% efficiency and with 4% efficiency into holotranslocon proteoliposomes. This 

improvement of the efficiency of insertion, albeit very modest, suggests that the components of 

the holotranslocon assist SecYEG in the insertion process. It would be interesting to see if the 

insertion efficiency of Lep is also improved. Six, Lep may require proton motive force for 

efficient insertion. Arnold Driessen and colleagues showed that a transmembrane electrical 

potential (ΔΨ) is required for efficient insertion of FtsQ into IMVs (van der Laan, 2004). When 

IMVs prepared from E. coli strains defective in F1F0 ATPase were used or when the inophores 

valinomycin and nigerin were added to inhibit the ATPase, the insertion of FtsQ was blocked. 

Further, immunodepletion of SecA from the lysate abolished the insertion and the presence of 

ΔΨ could only mediate insertion if SecA was present. It was earlier shown that SecA is required 

for insertion of membrane proteins containing large periplasmic domains (Deitermann, 2005; 

Saaf, 1995). Like FtsQ, Lep contains a long periplasmic segment (Figure 15A) and may thus 

require both SecA and ΔΨ for efficient insertion. Generating ΔΨ in proteoliposomes and adding 

exogenous SecA to the lysate is a straightforward way to test this possibility. Shortening the 
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periplasmic domain of Lep, and thus partly obviating the need for SecA and ΔΨ, may also 

improve the efficiency of insertion. A painstakingly systematic and rigorous approach towards 

understanding the role of various factors in cotranslational targeting of membrane proteins is 

required for developing an efficient cotranslational targeting assay in vitro.  
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Materials and methods 

Expression and purification of SecYEG  

 The plasmid pEK20 plasmid (pSOS334) encoding cysteineless SecYEG was a kind gift 

from Arnold Driessen. Expression and purification of SecYEG were performed based on the 

previously-established protocol with modifications (Dalal, 2010). 

 1) Transform BL21(DE3) cells with pSOS334 plasmid encoding His6-SecYEG (SecY N-

terminally His6-tagged). Add 2 μL of 30 ng/uL plasmid to 50 μL of the cell suspension. Mix by 

swirling on ice and allow to stand on ice for 30 min. Heat shock at 42°C for 45 seconds and 

allow to stand on ice for 2 min. Add 300 μL of  LB, shake at 37°C for 1 hour. Plate the entire 

volume on amp plates.  

 2) Inoculate 40 mL of LB (containing 100 μg/mL of ampicillin) with a single colony and 

use it to make 3 100-fold serial dilutions. Grow cells ON. 

 3) Inoculate large culture (25g of LB powder per 1L of ddH2O + 2 ml of 100 mg/ml Amp 

stock) (2L/6L-flask) with 8 mL of the ON culture at OD ~ 0.5. Grow at 37°C by shaking at 200 

rpm. Induce at O.D. ~ 0.5 by adding 1 ml of 1 M IPTG (0.5 mM final). Continue to grow for 2 

hours. 

 4) Place the flasks at 4°C when ready to pellet the cells. Harvest by centrifugation at 4°C, 

6,000 rpm for 15 min, deceleration: slow. Use 4 1L-bottles in a JLA-9.1 rotor and harvest 

repeatedly in the same bottles.  

 Resuspend the total pellet mass in 35 mL of KS300G (50 mM KHEPES (pH 7.5), 300 

mM NaCl, 10% Glycerol) at 4°C on ice. Add 2 pulverized protease inhibitor cocktail pills. Mix 

well. Distribute into 50-mL Falcon tubes (15 ml per tube) and freeze thoroughly in liquid 

nitrogen. Store the cells for up to a week at - 80°C. 
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 5) Thaw the cell suspension in RT water bath. Once thawed, transfer the suspension to 

ice. Break the cells by sonication (around 45 ml each time), using 7 30s-cycles at duty cycle 50% 

and output 8 in a plastic beaker. NOTE: keep the suspension cool. Make sure the beaker is 

surrounded with ice. After each cycle, pour the contents into a 200-ml stainless steel beaker in 

ice-water bath, and swirl gently to cool. Cool for ~ 5 min after each cycle. Centrifuge the 

suspension of lysed cells at 12,000 g for 20 min in a JA-20 rotor. Decant the supernatant and the 

viscous material above the compact pellet into Ti 45 rotor centrifuge tubes.  

 6) Add KS50G buffer to the cell lysate to fill the ultracentrifuge tubes completely. The 

tubes will deform during centrifugation if half-filled. Centrifuge at 42,000 rpm in Ti 45 rotor for 

55 min. Discard the supernatant. Resuspend the membrane pellet in 10 ml of KS50G (50 mM 

KHEPES (pH 7.5), 50 mM NaCl, 10% Glycerol). Homogenize the suspension in a 15-ml dounce 

homogenizer. Determine the concentration of protein using Bradford assay (OD 595) based on a 

BSA standard curve. To prepare a sample for Bradford assay, dilute the membrane suspension 

10-fold in KS50G and add 5 μL of the dilution to 1 mL of 1X Bradford reagent. A reading of 

0.40 corresponds to 13.4 mg/ml of total protein. Add 10% DDM to the membrane suspension so 

that the final solution contains 1% of the detergent and 10 mg of protein per ml of solution. Add 

enough KS50G to reach the final volume. Tumble the suspension gently at 4°C for 1 hour. 

 Centrifuge the homogenate for 45 min at 42,000 rpm in a Ti 45 rotor to pellet intact 

membranes. Fill the tube completely with KS50G/0.02% DDM. 7) Wash 12 mL of SP Sepharose 

resin with 400 mL of ddH2O using a peristaltic pump (rate: 7). This step may be performed at 

RT. Wash the resin with KS50G/0.02% DDM at 4°C in a cold room. (Note: washing and 

equilibrating the resin takes a few hours; start it before thawing the cells.) Pass the supernatant 
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(60 mL) through the resin using the peristaltic pump (rate: 3). Reload the FT. Wash the resin 

with 125 mL (~ 10 CV’s) of KS50G/0.02% DDM at the pump rate 6.00. 

 Elute with increasing concentration of NaCl using a gradient mixer. Light solution: 

KS50G/0.02% DDM. Heavy solution: KS1000G/0.02% DDM. Collect 30 fractions (round 

fraction collector set to 3.00). The pump rate 6.00. Run every 3rd fraction on a 15% (or 12.5%) 

SDS-PAGE to check for presence of SecYEG (10 μL of each fraction). Save the fractions that 

contain a significant amount of SecYEG with a minimal amount of contaminants. Flash freeze 

the solution containing SecYEG in 10 ml aliquots in 50-ml Falcon tubes. 

 8) Wash 2 mL of Ni-NTA agarose resin (NOTE: use regenerated resin for best results; 

fresh resin binds contaminants non-specifically and dramatically reduces purity) as follows. 

Transfer the resin into a 50 mL-Falcon tube, fill the tube with ddH2O, mix well, spin at 3000 rpm 

for 2 min with the deceleration set at 1. Decant the liquid. Repeat the wash two more times. 

Equilibrate the washed resin with KS300G/0.02% DDM/20 mM Imidazole in the same manner 

that it was washed with water. (Note: prepare 5 mL of 4 M stock Imidazole solution in water and 

pH with concentrated HCl to pH 7.4. Store at 4°C.) Add enough 4M Imidazole to the combined 

SecYEG fractions to have 20 mM final Imidazole concentration. Mix the SecYEG fractions with 

the resin and stir gently for 1.5 hours at 4°C. Spin for 5 min at 3,000 rpm with the deceleration 

set at 1. Save the flow through (FT). Add 20 mL of KS300G/0.02% DDM/20 mM Imidazole to 

the resin and stir gently for 15 min. Spin as above and save the wash (W). Mix the resin with 7 

ml of KS300G/0.02% DDM/20 mM Imidazole and transfer to a Poly-Prep chromatography 

column (0.8 x 4 cm) (Bio-Rad). Allow the resin to settle and combine the second wash with the 

first one. Elute SecYEG in 5 1-mL fractions using KS300G/0.02% DDM/300 mM Imidazole as 

follows. Add 1 ml of the elution buffer to the resin containing no buffer and collect the entire 1 
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ml by gravity (E1). Repeat four more times (E2-E5). Run FT, W, and E1-E5 on a 15% SDS-

PAGE (10 μL of each fraction). Combine the fractions containing a significant amount of pure 

SecYEG (usually fractions #2 and #3).  

 Dialyze against 1L of 50 mM KHEPES (pH 7.5), 150 mM KOAC, 10 mM Mg(OAc)2, 

20% Glycerol, 0.02% DDM, 2 mM DTT ON using a 10,000 MW cut-off dialysis tubing for 2 

hours. Repeat the dialysis against 1L of buffer for 4 hours. Dialysis is performed at 4°C with 

gentle stirring.  

 Determine the concentration of SecYEG using OD 280 (nanodrop 1 AU = 1 mg/ml). 

Concentrate to approximately 55 μM SecY2E2G2 using a 50,000 MW cut-off Amicon filter at 

2500 rcf. (Usually, 2 mL of the dyalysed solution to 0.5 ml). Mix well, determine concentration. 

Note: do not exceed 80 μM final concentration. Freeze 30 μL aliquots in liquid nitrogen. Store 

the aliquots at - 80°C. 

Expression and purification of SecYEG single Cys mutant for labeling   

 Single cysteine residues were introduced into a cysteineless SecYEG sequence (pEK20 

plasmid, pSOS334) at specific locations using site-directed mutagenesis (Stratagene), and the 

mutations were confirmed by sequencing. Expression and purification of single cysteine 

SecYEG mutants was performed based on the previous protocol with modifications (Dalal, 

2010). 

 1) Transform BL21(DE3) cells with pSOS334 plasmid-derived plasmid encoding a single 

cysteine His6-SecYEG mutant (SecY N-terminally His6-tagged). Add 2 μL of 30 ng/μL plasmid 

to 50 μL of the cell suspension. Mix by swirling on ice and allow to stand on ice for 30 min. 

Heat shock at 42°C for 45 seconds and allow to stand on ice for 2 min. Add 300 μL of  LB, 

shake at 37°C for 1 hour. Plate the entire volume on amp plates. 
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 2) Inoculate 40 mL of LB (containing 100 μg/mL of ampicillin) with a single colony and 

use it to make 3 100-fold serial dilutions. Grow cells ON. 

 3) Inoculate large culture (25g of LB powder per 1L of ddH2O + 2 ml of 100 mg/ml Amp 

stock) (2L/6L-flask) with 8 mL of the ON culture at OD ~ 0.5. Grow at 37°C by shaking at 200 

rpm. Induce at O.D. ~ 0.5 by adding 1 ml of 1 M IPTG (0.5 mM final). Continue to grow for 2 

hours. 

 4) Place the flasks at 4°C when ready to pellet the cells. Harvest by centrifugation at 4°C, 

6,000 rpm for 15 min, deceleration: slow. Use 4 1L-bottles in a JLA-9.1 rotor and harvest 

repeatedly in the same bottles. Resuspend the total pellet mass in 35 mL of KS300G20 (50 mM 

KHEPES (pH 7.5), 300 mM NaCl, 20% Glycerol) at 4°C on ice. Add 2 pulverized protease 

inhibitor cocktail pills. Mix well. Distribute into 50-mL Falcon tubes (15 ml per tube) and freeze 

thoroughly in liquid nitrogen. Store the cells for up to a week at - 80°C. 

 5) Thaw the cell suspension in RT water bath. Once thawed, transfer the suspension to 

ice. Break the cells by sonication (around 45 ml each time), using 7 30s-cycles at duty cycle 50% 

and output 8 in a plastic beaker. NOTE: keep the suspension cool. Make sure the beaker is 

surrounded with ice. After each cycle, pour the contents into a 200-ml stainless steel beaker in 

ice-water bath and swirl gently to cool. Cool for ~ 5 min after each cycle. Centrifuge the 

suspension of lysed cells at 12,000 g for 20 min in a JA-20 rotor. Decant the supernatant and the 

viscous material above the compact pellet into Ti 45 rotor centrifuge tubes.  

 6) Add KS300G20 buffer to the cell lysate to fill the ultracentrifuge tubes completely. 

The tubes will deform during centrifugation if half-filled. Centrifuge at 42,000 rpm in Ti 45 rotor 

for 55 min. Discard the supernatant. Resuspend the membrane pellet in 10 ml of KS300G20 (50 

mM KHEPES (pH 7.5), 50 mM NaCl, 20% Glycerol). Homogenize the suspension in a 15-ml 
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dounce homogenizer. Determine the concentration of protein using Bradford assay (OD 595) 

based on a BSA standard curve. To prepare a sample for Bradford assay, dilute the membrane 

suspension 10-fold in KS300G20 and add 5 μL of the dilution to 1 mL of 1X Bradford reagent. 

A reading of 0.40 corresponds to 13.4 mg/ml of total protein. Add 10% DDM to the membrane 

suspension so that the final solution contains 1% of the detergent and 10 mg of protein per ml of 

solution. Add enough KS300G20 to reach the final volume. Tumble the suspension gently at 4°C 

for 1 hour. Centrifuge the homogenate for 45 min at 42,000 rpm in a Ti 45 rotor to pellet intact 

membranes. Fill the tube completely with KS300G20/0.02% DDM. 7) Wash 2 mL of Ni-NTA 

agarose resin (NOTE: use regenerated resin for best results; fresh resin binds contaminants non-

specifically and dramatically reduces purity) as follows. Transfer the resin into a 50 mL-Falcon 

tube, fill the tube with ddH2O, mix well, spin at 3000 rpm for 2 min with the deceleration set at 

1. Decant the liquid. Repeat the wash two more times. 

 Equilibrate the washed resin with KS300G20/0.02% DDM/20 mM Imidazole in the same 

manner it was washed with water. (Note: prepare 5 mL of 4 M stock Imidazole solution in water 

and pH with concentrated HCl to pH 7.4. Store at 4°C). Add enough 4M Imidazole to the 

combined SecYEG fractions to have 20 mM final Imidazole concentration. Mix the SecYEG 

fractions with the resin, and stir gently for 1.5 hours at 4°C. Spin for 5 min at 3,000 rpm with the 

deceleration set at 1. Save the flow through (FT). Add 20 mL of KS300G/0.02% DDM/20 mM 

Imidazole to the resin and stir gently for 15 min. Spin as above and save the wash (W). Mix the 

resin with 7 ml of KS300G/0.02% DDM/20 mM Imidazole and transfer to a Poly-Prep 

chromatography column (0.8 x 4 cm) (Bio-Rad). Allow the resin to settle and combine the 

second wash with the first one. Elute SecYEG in 5 1-mL fractions using KS300G20/0.02% 

DDM/300 mM Imidazole as follows. Add 1 ml of the elution buffer to the resin containing no 
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buffer and collect the entire 1 ml by gravity (E1). Repeat four more times (E2-E5). Run FT, W, 

and E1-E5 on a 15% SDS-PAGE (10 μL of each fraction). Combine the fractions containing 

significant amount of pure SecYEG (usually fractions #2 and #3). Determine the concentration 

of SecYEG using OD 280 (nanodrop 1 AU = 1 mg/mL). Freeze 0.7 mL aliquots at 2 to 3 mg/ml 

in liquid nitrogen. Store the aliquots at - 80°C. 

Labeling SecYEG with BODIPY-FL 

 Labeling of single cysteine SecYEG mutants with BODIPY-FL was performed based on 

the established protocol with modifications (Kedrov, 2011). 

 1) Start with SecYEG single cysteine mutant purified via Ni-NTA and contained in 50 

mM KHEPES pH 7.5, 300 mM NaCl, 0.02% DDM, 300 mM Imidazole (from elution).  

 2)  Incubate approximately 800 μL of 2.3-3 mg/ml of protein solution with 2 mM DTT 

for 20 min with gentle tumbling on a rotary shaker at 4°C. 

 3) Remove both imidazole and DTT by dialyzing against approximately 700 mL of 

buffer A (50 mM KHEPES, pH 7.5, 150 mM NaCl, 10% Glycerol, 0.02% DDM) three times, 40 

min each time. 

 4) Wash 800 μL of Ni-NTA resin with ddH2O and equilibrate with buffer B (50 mM 

KHEPES pH 7.5, 150 mM NaCl, 10 % Glycerol, 0.02% DDM, and 10 mM Imidazole). Washing 

and equilibration are performed as follows. Fill the 15 mL Falcon tube containing the resin with 

water, swirl to mix, and spin down the resin at 3500 rpm, 5 min, deceleration 1, 4°C. Repeat the 

washing step twice. Equilibrate in the same manner three times. Decant the buffer and store the 

resin in ice. 

 4) Add the dialyzed protein solution to the equilibrated resin and adjust the volume to 12 

ml in a 15 mL Falcon tube with buffer B. Tumble gently on a rotary shaker for 1.5 h at 4°C. 
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 5) Spin down the SecYEG-bound resin at 3000 rpm, 4°C, 5 min, deceleration 1, and 

collect the flow through. 

 6) Wash the resin with 2 mL of buffer C (50 mM KHEPES, pH 7.0, 150 mM NaCl, 20 % 

Glycerol, 0.02 % DDM, 200 μM TCEP) as follows. Add the buffer to the spun-down resin and 

pipette gently. Spin as above and collect the wash. Repeat the washing step. 

 7) Transfer the washed resin to a 2 ml eppendorf tube by resuspending in buffer C. 

Adjust the volume of the suspension to 2 ml.  

 8) Add approximately 15-fold molar excess of BODIPY-FL-maleimide (4 μL of 100 mM 

stock), wrap the tube in foil, and tumble gently at 4°C for 3 h. 

 9) Transfer the suspension to a 15 mL Falcon tube. Rinse the eppendorf tube with buffer 

B and transfer the solution to the Falcon tube. Fill the tube with buffer B to the 12-ml mark, swirl 

gently to mix the resin with the buffer, and spin down the resin at 3000 rpm, 4°C, for 5 min. 

Collect the supernatant.  

 10) Add 12 ml of buffer B to the resin, tumble gently for 10 min at 4°C in the dark, spin 

down the resin and save the wash. Repeat the washing step twice. Remove as much of the 

supernatant as possible during the last washing step since it contains the dye. Occasionally, the 

dye forms an orange ring at the top of the solution, which can be removed using a pipette. 

 11) Transfer the resin to a Polyprep BioSpin column by resuspending in buffer B. Rinse 

the Falcon tube with a few mL of the buffer. Allow the resin to settle in the column and the 

buffer to drain by gravity. Wash the resin with a few mL of the buffer.  

 12) After the buffer is drained by gravity leaving a meniscus, close the column and add 1 

ml of buffer D (50 mM KHEPES, pH 7.5, 150 mM NaCl, 10 % glycerol, 0.02 % DDM, 600 mM 

Imidazole) to elute the protein. Incubate for 10 min and collect the eluate by gravity. After most 
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of the eluate is collected, spin for a few seconds at several hundred rpm to collect the rest of the 

buffer. Only very low g force is required to collect the rest of the eluate. 

 13) Dialyze the labeled protein solution against 1L of buffer E (50 mM KHEPES, pH 7.5, 

150 mM KOAc, 2 mM DTT, 10 % Glycerol, 0.02 % DDM) for 2 hours. Repeat the dialysis 

against fresh buffer for 2 hours. 

 14) Determine the concentration of the protein. Concentrate using a 50,000 MWCO 

concentrator to approximately 50 μM. Flash freeze 20 to 40 μL aliquots in liquid nitrogen. Store 

at - 80°C. 

Expression and purification of membrane scaffold proteins 

 Below are the amino acid sequences of the membrane scaffold proteins used in 

reconstitution of SecYEG in nanodiscs. The sequences were obtained from the laboratory page 

of Stephen G. Sligar: http://sligarlab.life.uiuc.edu/nanodisc/sequences.html. The helices are color coded. 

 
MSP1D1 211 aa 
 
GHHHHHHHDYDIPTTENLYFQGSTFSKLREQLGPVTQEFWDNLEKETEGLRQEM 
SKDLEEVKAKVQPYLDDFQKKWQEEMELYRQKVEPLRAELQEGARQKLHELQE 
KLSPLGEEMRDRARAHVDALRTHLAPYSDELRQRLAARLEALKENGGARLAEY 
HAKATEHLSTLSEKAKPALEDLRQGLLPVLESFKVSFLSALEEYTKKLNTQ   
 
MSP1E3D1 278 aa 
 
MGHHHHHHHDYDIPTTENLYFQGSTFSKLREQLGPVTQEFWDNLEKETEGLRQE 
MSKDLEEVKAKVQPYLDDFQKKWQEEMELYRQKVEPLRAELQEGARQKLHEL 
QEKLSPLGEEMRDRARAHVDALRTHLAPYLDDFQKKWQEEMELYRQKVEPLRA 
ELQEGARQKLHELQEKLSPLGEEMRDRARAHVDALRTHLAPYSDELRQRLAAR 
LEALKENGGARLAEYHAKATEHLSTLSEKAKPALEDLRQGLLPVLESFKVSFLSA 
LEEYTKKLNTQ    
 

 Expression and purification of MSP1D1 and MSP1E3D1 was performed according to the 

protocol kindly provided by the laboratory of Stephen G. Sligar at the University of Illinois at 

Urbana-Champaign with modifications (Bayburt, 2002). Plasmids encoding MSP1D1 and 
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MSP1E3D1 were purchased from Addgene (pMSP1D1: plasmid 20061, pET28a vector; 

kanamycin resistance; MSP1E3D1: plasmid 20066, pET28a vector, kanamycin resistance).  

 1) Transform BL21(DE3) cells with pMSP1D1 or pMSP1E3D1. 

 2) Inoculate 15 ml of LB (25g of LB powder per 1 L of ddH2O) with a single colony and 

serially dilute 100-fold for a total of 5 15-ml cultures containing 100 μg/mL of kanamycin. 

Incubate the cultures with shaking overnight at 37°C.  

 3) Inoculate 2 liters of LB containing 100 μg/ml of kanamycin with 10 ml of the 

overnight culture at O.D of ~ 0.6. Incubate with shaking at 37°C. Induce at O.D. of 0.6 with 1 

mM IPTG and in 30 minutes cool the culture to room temperature in 4°C water bath. Continue 

shaking at 28°C for 4 hours. Harvest the cells and freeze the wet cell mass in liquid nitrogen. 

Store the cell pellet at - 80°C.  

 4) Resuspend the cell mass from two liters of culture for either MSP1D1 or MSP1E3D1 

in 25 mL of potassium phosphate buffer (23.1 g of KH2PO4 and 125.4 K2HPO4 per liter of 

solution) containing 20 mM Imidazole, 1% Triton X100, 1 mM PMSF, and two pulverized 

protease inhibitor cocktail pills (Complete, EDTA-free, Roche). Sonicate using 30 second cycles 

for a total of 3 minutes to lyse the cells (output: 8; % cycle duty 50). 

 5) Clear the lysate by centrifugation at 19,000 g for 25 min. 

 6) Load the lysate onto 3 mL of Ni-Sepharose High Performance resin equilibrated with 

30 mL of the above potassium phosphate buffer containing 20 mM Imidazole.  

 7) Wash the loaded resin with 30 mL of 40 mM Tris•HCl (pH 8.0)/300 mM NaCl/1% 

Triton. 

 8) Wash the resin with 30 mL of 40 mM Tris•HCl (pH 8.0)/300 mM NaCl/50 mM 

Cholate/20 mM Imidazole. 
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 9) Wash the resin with 30 mL of 40 mM Tris•HCl (pH 8.0)/300 mM NaCl/20 mM 

Cholate/50 mM Imidazole. 

 10) Elute the protein with 50 mM to 500 mM Imidazole gradient in 40 mM Tris•HCl (pH 

8.0)/300 mM NaCl/10 mM Cholate.  

 11) Combine fraction containing the protein and dialyze against 20 mM Tris•HCL/100 

mM NaCl/0.5 mM EDTA pH 7.4 overnight with several changes. 

 12) Concentrate the protein using 10,000 MWCO concentrators. 

 13) Determine the protein concentration using absorbance at 280 nm and the following 

extinction coefficients: MSP1D1 ε = 21430 M-cm-, MSP1E3D1 ε = 29910 M-cm-. 

 14) Flash freeze 50 μL aliquots and store at - 80°C. 

Reconstitution of SecYEG in nanodiscs 

 Reconstitution of SecYEG in nanodiscs was performed according to the protocol 

provided by the laboratory of Franck Duong at the University of British Columbia without 

modifications (Dalal, 2010). 

Preparation of lipids 

 Dissolve E. coli lipids or pure phosphatidylglycerol (PG) in chloroform. Transfer 1000 

nanomoles of chloroform-solubilized lipids to 1.5 mL screwcap microtubes and evaporate 

chloroform under a gentle stream of nitrogen or argon. Dry the lipid under vacuum overnight and 

store the lipids at or below -20°C. 

Reconstitution of SecYEG in nanodiscs using MSP1D1 

 Resuspend 1 micromole of dried lipid in 200 μL of TS50 buffer (50 mM Tris HCl pH 

7.9/ 50 mM NaCl) and 10 μL of 10% DDM (to ensure initial solubilization of the lipids). Mix 

and sonicate briefly to dissolve the lipids. 
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In a 1.5 ml eppendorf tube, combine: 

25 μL of 1% DDM in dd water 

8 μL of the above lipid solution 

12 μL of 15 mg/ml MSP1 

172 μL of TS300G (50 mM Tris HCl pH 7.9/ 300 mM NaCl/ 10% glycerol) 

83 μl of 1.8 mg/ml SecYEG 

85 μL of BioBeads in TS50  

Molar ratio of SecYEG:MSP1D1:Lipid = 1:4:40 

Note: depending on the concentration of the starting reagents, adjust the volumes used to have 

the same molar ratio. 

 Incubate the mixture with gentle rocking at 4°C ON. 

 Transfer the mixture into a buffer-exchange column and spin at 1000 rpm to remove the 

BioBeads. 

 Ultracentrifuge in TLA 120.1 rotor at 70,000 rpm for 25 min to remove aggregates. 

 Transfer the supernatant to an eppendorf tube and mix gently. Store in ice. 

Resolve 10 μL on a native gel. 

Reconstitution of SecYEG in nanodiscs using MSP1E3D1 

 Resuspend 1 micromole of dried lipid in 200 μL of TS50 buffer (50 mM Tris HCl pH 

7.9/ 50 mM NaCl) and 10 μL of 10% DDM (to ensure initial solubilization of the lipids). Mix 

and sonicate briefly to dissolve the lipids. 

In a 1.5 ml eppendorf tube combine: 

25 μL of 1% DDM in dd water 

8 μL of the above lipid solution 
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20.4 μL of 9.19 mg/ml of MSP1E3D1 solution 

163.6 μL of TS300G (50 mM Tris HCl pH 7.9/ 300 mM NaCl/ 10% glycerol) 

67 μl of 2.25 mg/ml SecYEG 

85 μL of BioBeads in TS50  

Molar ratio of SecYEG:MSP1E3D1:Lipid = 1:2.75:20 

 Incubate the mixture in 1.5 ml eppendorf tubes overnight at 4° on an orbital shaker with 

gentle tumbling. Note: 5 hour incubation is sufficient. 

 Transfer the mixture to a buffer exchange column (used as a filter) without transferring 

Biobeads. Spin at 1000 rpm for 1 min to remove any transferred biobeads and contaminant 

particles. 

 Determine concentration using Bradford assay. 

 Concentrate nanodiscs to 1.2 mg/mL, using Amicon 50,000 MW cut-off filter rinsed with 

TS300G. Spin at 2500 rcf at 4°C. 

 Remove aggregates and liposomes by centrifugation in TLA 100.2 rotor at 70, 000 rpm, 

4°C, 25 min. (Note: a tiny crescent-shaped pellet is observed. Protein concentration should not 

change since mainly empty liposomes are pelleted). 

 Determine the concentration using absorbance at 280. Convert to molarity using the MW 

of the species and the corresponding extinction coefficients. 

 Flash freeze aliquots of nanodiscs in liquid nitrogen and store at -80°C. 

Expression and purification of YidC 

 E. coli YidC coding sequence was amplified using pET33 plasmid containing GFP-YidC 

fusion as a template (kindly provided by the laboratory of Bil Clemons at Caltech). The 

amplified sequence was used to replace the SecYEG sequence in the pEK20 plasmid (a gift from 
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Arnold Driessen). The promoter and other flanking sequences in pEK20 were left intact. 

Expression and purification of YidC was performed based on the protocol used for expression 

and purification of SecYEG with modification. 

 1) Transform BL21(DE3) cells with the pEK20/YidC plasmid. 

 2) Inoculate 40 ml of LB containing 100 mg/ml of ampicillin with a single colony and 

shake overnight at 37°C. 

 3) Inoculate 1 L of LB (25 g of powder per 1 L of ddH2O) with overnight culture at O.D. 

of ~ 0.3. Shake at 37°C until O.D. of 0.6. Induce with 1 mM IPTG and continue to shake for 2 

hours. The final O.D. is ~ 0.95.  

 4) For expression analysis, collect cells from 1 mL of culture and resuspend the pellet in 

30 μL of 1X BugBuster. Add 3 μL of Benzonase and incubate for 15 min at 37°C. Add 40 μL of 

2X Laemmli Sample buffer. Load 20 μL onto 15% denaturing gel along with the pre-induction 

sample.  

 5) Collect the cells as described in purification of SecYEG and resuspend the total cell 

mass in 30 mL of KS300G buffer containing one pulverized protease inhibitor pill (Complete, 

EDTA-free, Roche). 

 6) Lyse the cells by sonicating at 50% duty of the cycle and output 8 on ice. Perform 5 1-

min cycles. Cool the cell suspension between the cycles in ice water bath.  

 7) Clear the lysate as described in purification of SecYEG. 

 8) Centrifuge the supernatant to collect the membrane fraction as described in 

purification of SecYEG.  

 9) Resuspend the pellet in 20 mL of KS300G using dounce homogenizer, add 2 mL of 

10% DDM, and tumble gently at 4°C for 1 hour.  

 199



 

 10) Remove the intact membranes after extraction as described in purification of 

SecYEG. 

 11) Perform batch purification using Ni-NTA agarose as described in purification of 

SecYEG single Cys mutants. To maximize purity, use 250 μL of the resin. Significant loses of 

YidC, however, occur with this volume of the resin.  

 12) Dialyze YidC against 1L of 50 mM KHEPES pH 7.5/150 mM potassium acetate/10% 

glycerol/0.025% DDM/2 mM DTT. 

 13) Quantitate YidC using absorbance at 280 nm and ε = 96, 000 M-cm-. 

Reconstitution of SecYEG and YidC in proteoliposomes 

 Reconstitution of SecYEG and YidC in proteoliposomes was performed according to the 

protocol provided by the laboratory of Arnold Driessen at the University of Groningen (van der 

Does, 2003). The procedure involves gradual removal of DDM from the mixture of lipids and 

SecYEG using adsorbent material. Seventy μL of 52 μM SecYEG were diluted to 1 mL with the 

buffer containing 10 mM Tris (pH 8.0), 10 % glycerol, 0.1% DDM, and 100 mM KCl. Two 

hundred μL of 20 mg/ml E.coli liposomes were activated in a bath sonicator until the solution 

was clear and diluted with 0.5% Triton X-100 to 4 mg/ml. SecYEG was mixed with the 

liposomes, and the mixture was incubated for 30 min at 4°C with gentle tumbling. Two hundred 

mg of Biobeads SM-2 adsorbent material (Bio-Rad Laboratories, Inc.) were washed twice with 5 

ml of methanol, twice with 5 ml of double-deionized water, and three times with buffer A 

containing 50 mM Tris (pH 8.0), 50 mM KCl, and 1 mM DTT, mixed with the 

SecYEG/liposome mixture, and stirred gently for 2 hours at 4°C. The beads were sedimented by 

centrifugation at 500 g, the supernatant was mixed with 200 mg of washed Biobeads, and stirred 

gently at 4°C for 4 hours. The supernatant was incubated one more time with 400 mg of the 

 200



 

beads overnight, and the SecYEG proteoliposomes were pelleted by centrifugation in a TLA 

100.3 rotor at 100,000 rpm for 30 min. The pellet was dissolved in 300 μL of the buffer A 

containing 10% glycerol using a dounce homogenizer. Concentration of SecYEG in 

proteoliposomes was determined by resolving an aliquot of the preparation on a denaturing gel 

along with the SecYEG standard of known concentration. Small aliquots of proteoliposomes 

were frozen in liquid nitrogen and stored at -80°C. 

 Reconstitution of YidC in proteoliposomes was performed exactly as reconstitution of 

SecYEG. Fifty μL of 56 μM YidC were diluted to 1 ml in the buffer containing 10 mM Tris (pH 

8.0), 10 % glycerol, 0.1% DDM, and 100 mM KCl.  Coreconstitution of SecYEG and YidC was 

performed according to the above protocol. Seventy μL of 52 μM SecYEG and 50 μL of 56 μM 

YidC were diluted to 1 mL in mM Tris (pH 8.0), 10 % glycerol, 0.1% DDM, and 100 mM KCl.  

 Concentration of the protein in the proteoliposome preparation was determined by 

diluting an aliquot in 2% SDS and measuring the concentration using absorbance at 280 nm. 

Quantitation was also performed by resolving an aliquot of proteoliposomes on a denaturing gel 

along with SecYEG standards of known concentration. 

Native gels 

 The procedure for making and running native gels was kindly provided by the laboratory 

of Franck Duong at the University of British Columbia and performed without modifications. 

Reagents and buffers 
 
 Anode buffer: Tris/Glycine pH 8.8 at 4°C (3g of Tris and 14g of Glycine per 1L of 

solution). Note. Do not pH this solution. The pH should be correct at 4°C. 
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 Cathode buffer: Tris/Glycine pH 8.8 at 4°C (3g of Tris and 14g of Glycine per 1L of 

solution) / 0.015% Coomassie Brilliant Blue G 250 (in case of BN-PAGE). Exclude Coomassie 

Brilliant Blue G 250 from the cathode buffer in case of CN-PAGE. 

 1.5M Tris-HCl pH 8.8 

 Coomassie Brilliant Blue G 250 (C.I. 42655) from Serva. 

 2% solution of ultrapure bis-acrylamide in deionized water from BioShop 

 40% solution of ultrapure acrylamide in deionized water from BioShop 

Making native gels 

 For 4-12% gradient native gel first prepare 12% and 4% acrylamide/bisacrylamide 
solutions as follows: 

 
    12% (mL)    4% (mL) 
 
Acrylamide 40%  14.6     4.9 
 
Bis-acrylamide 2% 8     2.7 
 
1.5M Tris-HCl pH 8.8 12.5     12.5 
 
Glycerol   10     ----- 
 
ddH2O   4.9     29.9 
 
Total   50     50 

  
APS 10%   58 μL     145 μL  
 
TEMED   5.8 μL     14.5 μL  

 
 Mix the solutions thoroughly. 

 For six 8 cm x 10 cm gels, pour 27.5 ml of 12% and 4% solutions into the heavy and light 

chamber of a gradient former, respectively. Both chambers are equipped with magnetic stir bars. 
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 Deliver the solutions using a peristaltic pump over the course of ten minutes. Note: a 

slow rate of delivery is crucial to forming a smooth gradient. The procedure is done at room 

temperature. 

 Insert the combs and allow the solution to solidify. (Note: there is no stacking gel). Wrap 

the gels in wet paper towel and store them at 4°C without removing the combs. 

BN-PAGE 
 
 Fill the cathode chamber with the cathode buffer containing 0.015% Comassie Brilliant 

Blue G250. 

 Add the anode buffer to the anode chamber so that the electrodes are fully immersed in 

the buffer. 

Make sure there are no air bubbles in the wells and that they are filled with the cathode buffer. 

Load 10 μL of the sample onto each well.  

 Perform electrophoresis at room temperature and constant current of 20 mAmp for 55 

minutes. (Note: all electrophoresis buffers are at 4°C.) 

 Destain the gel in destain solution (1.6L of ethanol, 0.8L of acetic acid, and 5.6L of 

deionized water). Change the destain solution once after 2 hours of destaining and destain 

overnight or as desired for best contrast. Transfer the destained gel in water. 

RNC3A7L constructs 

 Below is the sequence of RNC3A7L containing a 135 aa long nascent chain with the amber 

codon at the C-terminus. The color coding is described below the sequence. In N-terminally 

labeled RNCs, the glutamine residue at the N-terminus of the signal peptide was replaced with 

the amber codon. 

M A S W S H P Q F E K G A M T G W S H P Q F E K R S A G S W S H P Q F E K L Q L V P R G S M K Q S T L A 
L L L L L A L A T Stop V T K A R T P E M P V L E N R A A Q G D I T A P G G A R R L T G D Q T A A L R D S L 
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S D K P A K N I I L L I G D G M G D S E I T A A R N Y A E G A G G F F K G I D A L D I S E K G Y R I D Y A H F T 
P Q A K F S T P V W I S Q A Q G I R A G P 
 

Triple Strep-tag (underlined)  
Thrombin cleavage site 

 Signal anchor is in bold; with the gray color coded SecM, this construct constitutes RNC 65aa, 
boxed STOP is the location of the amber codon 

 
RNCFtsQ 85 aa 

 RNCFtsQ 105 aa 
RNCFtsQ 135 aa 

 SecM stalling sequence, underlined region is inside the ribosomal tunnel 

 

 RNC3A7L 65 aa construct contains a 22 aa sequence upstream of the thrombin cleavage 

site inserted to increase the distance between the ribosomal surface and the Strep-tag for efficient 

binding to the resin (color coded cyan below) 

M A S W S H P Q F E K G A M T G W S H P Q F E K R S A G S W S H P Q F E K T P V T K A R T P E M P V L E 
N R A A Q G D L Q L V P R G S M K Q S T L A L L L L L A L A T Stop V T K A R T P E M P V L E N R A A Q G D 
I T A P G G A R R L T G D Q T A A L R D S L S D K P A K N I I L L I G D G M G D S E I T A A R N Y A E G A G G 
F F K G I D A L D I S E K G Y R I D Y A H F T P Q A K F S T P V W I S Q A Q G I R A G P 
 

 RNCs site-specifically labeled with coumarin were prepared according to the established 

protocol (Saraogi, 2011). RNCs were purified using the Strep-Tactin Sepharose resin as 

described and eluted in 10 ml of Solution I (50 mM KHEPES pH 7.5, 100 mM potassium 

acetate, and 25 mM magnesium acetate) containing 2 mg/ml of desthiobiotin. To remove the 

Strep-tag, 150 μL of 1unit/μL Thrombin in 1X PBS was added to the elution and incubated at 

room temperature for 4.5 hours. The solution was subsequently spun in at 38 000 rpm for 4 hours 

in Ti70 to pellet RNC. The pellet was dissolved in SRP buffer, RNC was quantitated as 

described, and 25 μL aliquots were frozen in liquid nitrogen. RNC was stored at -80°C. 

RNCFtsQ constructs 
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 Below is the sequence of RNCFtsQ containing a 155 aa long nascent chain with the amber 

codon at the N-terminus. The color coding is described below the sequence. In C-terminally 

labeled RNCs, the tryptophan residue at the C-terminus was replaced with the amber codon. 

 
M A S W S H P Q F E K G A M T G W S H P Q F E K R S A G S W S H P Q F E K L Q L V P R G S M G Q A A L N 
T R N S E E E V S S R R N N G T R L Stop G I L F L L T V L T T V L V S G W V V L G W M E D A Q R L P L S K 
L V L T G E R H Y T R N D D I R Q S I L A L G E P G T F M T Q D V N I I Q T Q I E Q R L P W I K Q V S V R K Q 
W P D E L S E K G Y R I D Y A H F T P Q A K F S T P V W I S Q A Q G I R A G P  
 

  
Triple Strep-tag 
Thrombin cleavage site 

  Signal anchor is in bold; with the gray color coded SecM, this construct constitutes FtsQ 90aa, 
boxed STOP is the location of the amber codon 

 RNCFtsQ 110 aa 
RNCFtsQ 125 aa  
RNCFtsQ 140 aa 
RNCFtsQ 155 aa  
SecM stalling sequence, underlined region is inside the ribosomal tunnel 

 

 Preparation, purification, and thrombin treatment of RNCs bearing FtsQ nascent chains 

was performed exactly as with RNC3A7L. 

FRET assay with SecYEG and RNC 

 All FRET measurements were performed on a Horiba Jobin Yvon fluorolog in the 

modified SRP buffer (50 mM KHEPES pH 7.5/150 mM potassium acetate/10 mM magnesium 

acetate/10 % glycerol/0.3 mg/mL BSA/ 2 mM DTT/0.02% DDM). The concentration of RNC 

was kept at 20 nM. The final concentration of unlabeled and labeled SecYEG was from 200 to 

600 nM and always saturating. FRET was calculated by taking the emission signal of coumarin 

in the presence of unlabeled SecYEG as the emission of the donor fluorophore in the absence of 

acceptor and the emission signal of coumarin in the presence of BODIPY-Fl-labeled SecYEG as 

the emission of the donor in the presence of the acceptor. FRET was calculated as described in 

Figures 2 and 3. 
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Equilibrium titration of RNC with SecYEG 

 Titrations were performed on a Horiba Jobin Yvon fluorolog in the modified SRP buffer. 

Twenty nM coumarin-labeled RNC was titrated with unlabeled SecYEG, and the increase in the 

emission of coumarin due to environmental sensitivity to SecYEG was monitored. Emission for 

each concentration of SecYEG was averaged around the peak emission value (typically from 440 

nm to 460 nm), and the change in fluorescence was calculated using the emission of the 

coumarin-labeled RNC in the absence of SecYEG. The change in fluorescence was plotted 

against the concentration of SecYEG, and the data were fitted to the quadratic equation below:  

 

Fobsd =
2×[RNC]

×F1

[RNC] [SecYEG]+ +Kd -{ [RNC] [SecYEG]( + +Kd )2- 4[RNC][SecYEG]}
1/2

Fobsd =
2×[RNC]

×F1

[RNC] [SecYEG]+ +Kd -{ [RNC] [SecYEG]( + +Kd )2- 4[RNC][SecYEG]}
1/2

(1)  

 

Cosedimentation assay with RNC and SecYEG nanodiscs 

 Assessment of binding of RNC to SecYEG nanodics was performed using a published 

cosedimentation assay with modifications (Fraunfeld, 2011; Menetret, 2007). Briefly, 200 nM 

RNC1A9L were incubated with 1 μM of SecYEG nanodiscs (MSP1D1/PG/SecYEG) or empty 

discs (MSP1D1/PG) in a 50 μL reaction volume for 35 minutes at room temperature in SRP 

buffer supplemented with 10% glycerol. Fifteen μL were removed and mixed with 15 μL of 2X 

Laemmli Sample buffer (L, see figure 9E), while 35 μL of the mixture were layered onto 200 μL 

of 30% sucrose solution in SRP buffer. The tubes were spun in TLA 100 rotor for 12 minutes at 

100,000 rpm, 4°C. The supernatant was aspirated, the pellet was dissolved in 15 μL of 1% SDS, 

and 15 μL of 2X Laemmli Sample buffer were added to the solution (P, see figure 9E). The 

samples were resolved on a 15% denaturing gel. 

Protease protection assay 
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 Binding of the nascent chain to SecYEG was assessed using a protease protection assay. 

RNC1A9L containing 85 aa long nascent chain were prepared according to the published 

protocol in the translation mixture containing 35S-methionine instead of cold methionine. 

Radioactively-labeled RNCs were sedimented through 30% sucrose cushion as follows.  186 μL 

of translation mixture were layered onto 2.2 mL of the sucrose cushion in SRP buffer and spun in 

TLA 100.3 rotor at 90,000 rpm for 3 hours. The pellet was dissolved in 100 μL of SRP buffer 

supplemented with 10% glycerol. The RNC was quantitated as described.  

 Twenty μL of 1 μM 35S-RNC/ribosomes were diluted to 100 μL and distributed among 8 

tubes (12 μL per tube). Five μL of 19 μM SecYEG/DDM, empty liposomes, 18 μM SecYEG 

proteoliposomes, or SRP buffer were mixed with RNC, the reactions were incubated either at 

25°C or 37°C, and transferred to ice. Proteinase treatment was performed by adding 17 μL of 

0.01 mg/mL proteinase K to each reaction and incubating on ice for 15 min. The reactions were 

quenched with 200 μL 5 mM PMSF in 20 mM KHEPES pH 7.5, and the protein was precipitated 

by adding 70 μL of 100% TCA. The samples were incubated on ice for 30 min. After 

centrifugation at 14,000 rpm for 40 min and washing with cold acetone, the pellets were 

dissolved in 60 μL of 2X Laemmli Sample buffer with vortexing and sonication. Seventeen μL 

were loaded onto a 15% denaturing gel. The gel was dried and visualized by autoradiography. 

Cotranslational protein targeting assay 

 The chloramphenicol transferase coding sequence in CATAmb109Y plasmid was 

replaced with the E. coli Leader peptidase (Lep) sequence amplified from pDUET-cpSRP-Lep 

plasmid.   

 Cotranslational protein targeting of Lep was performed by combining coupled 

transcription/translation with translocation of the translated substrate into lipid vesicles. The 
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coupled transcription/translation system was used here as described in Saraogi et al., 2011 with 

the following modifications. The extract was cleared by centrifugation at 42,000 rpm, 4°C for 20 

min in TLA 120-1 to remove the membrane. Cold methionine was replaced with 35S-methionine, 

with the final concentration of radioactive methionine (316 nM) much lower than the 

concentration of the other amino acids (2 mM). Anti-ssrA oligo was excluded from the reaction.  

 For the targeting assay, the system was supplemented with lipid vesicles and the reaction 

was initiated with 65 μg/mL of Lep plasmid. The final concentration of SecYEG 

proteoliposomes and YidC proteoliposomes in the reaction were 3.2 μM and 2.9 μM, 

respectively. The reactions were incubated at 37°C for 30 minutes and cooled by transferring to 

ice. Triton X100 was added to select reactions for the final concentration of 1%, and 10 μL of the 

reaction were removed for treatment with proteinase K. Two μL of 2 mg/mL of proteinase K 

were added to the aliquot, the reaction was incubated on ice for 15 min, and quenched with 200 

μL of 7 mM PMSF in 20 mM KHEPES pH 7.5. The protein was precipitated by adding 65 μL of 

100% TCA. For – K samples, the protein was TCA precipitated from another 10 μL aliquot of 

the same targeting reaction by adding 200 μL of 20 mM KHEPES pH 7.5 and 65 μL of 100% 

TCA. The mixtures were incubated on ice for 40 min, centrifuged at 14,000 rpm, 4°C for 30 min, 

washed with cold acetone, air dried, and dissolved in 70 μL of 2X Laemmli Sample buffer with 

vortexing and sonication. Twenty μL were loaded onto 12.5% denaturing gel.  

 The gel was visualized by autoradiography, and the intensity of the bands was quantified 

using the ImageQuant software. The extent of insertion was calculated by comparing the 

intensity of the protected P2-H2 fragment (+K) to the intensity of the full-length Lep band (–K) 

using equation (2), where the factor of 1.33 accounts for the difference in the methionine content 

in H2-P2 vs. Lep and bckg is the background intensity of the gel. 
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% Insertion = 
(H2-P2 x 1.33) - bckg

Lep - bckg
x 100%% Insertion = 

(H2-P2 x 1.33) - bckg

Lep - bckg
x 100%

 

 
(2) 
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Figure 1. Experimental approach to map the signal peptide-SecYEG interaction. A. 
Schematic diagram of type II orientation of the signal peptide inside SecYEG. This is one of the 
possible intercalation modes and is shown to demonstrate the reasoning behind the FRET 
mapping assay. The donor (green) and acceptor (red) dyes positioned at different sites on the 
signal peptide and SecYEG, respectively, are expected to yield distinct FRET efficiency values 
and thus determine the orientation of the signal peptide. The orange rectangle depicts the signal 
peptide. “Low” and “high” refer to expected FRET efficiencies for each set of labeled species 
and configuration. B. The nascent chain constructs used in the FRET mapping experiment are 
schematically depicted. The numbers on the right indicate the length of the nascent chains. The 
green bar shows the location of the donor dye at the N- or C-terminus of the signal peptide. C. 
X-ray crystal structure of SecYEβ from M. jannaschii showing the location of the acceptor dye. 
The numbering corresponds to the amino acid residues of the E. coli SecYEG. On the right, 
SecYEG is represented as a cylinder to emphasize the spatial distribution of the labeled residues. 
See Materials and methods for detailed description of the constructs used in preparation of the 
RNCs and the procedure of SecYEG labeling. 
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Figure 2 

 

 

Figure 2. Fluorescence signal upon addition of unlabeled or acceptor-labeled SecYEG to 
the donor-labeled RNC. A. Upon addition of unlabeled SecYEG to the coumarin-labeled RNC 
(green, D*) a dramatic increase in coumarin fluorescence is observed (red, D*+A) due to the 
environmental sensitivity of the dye to SecYEG. B. No apparent change in the fluorescence of 
coumarin is observed when BodipyFL-labeled SecYEG is added to the solution of coumarin-
labeled RNC since the increase in fluorescence due to the environmental sensitivity of coumarin 
is cancelled by the decrease of the signal due to FRET. RNCs containing 85 aa long nascent 
chains with 1A9L signal sequence were used in this experiment. Note the increase in the 
acceptor channel due to FRET (B). Forty nM RNC and 47 nM SecYEG were mixed in the SRP 
buffer supplemented with 10% glycerol and 0.02% DDM. SecYEG used in this experiment was 
tagged at the N-terminus of SecE with a His6 tag. The formula at the bottom of the figure was 
used to calculate FRET efficiency. 
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Figure 3 

 

 

Figure 3. FRET between coumarin-labeled RNC3A7L and BodipyFL-labeled SecYEG. A. 
Representative emission spectra of coumarin-labeled RNC3A7L bearing a nascent chain 135 aa 
long upon addition of unlabeled (D*+A) and BODIPY-FL labeled (D*+A*) SecYEG. Twenty 
nM RNC and 315 nM SecYEG were used. The formula on the right of the panel was used to 
calculate FRET efficiency. The numbers on the right show FRET efficiency values observed 
with SecYEG labeled at corresponding residues. B. FRET efficiencies observed upon binding of 
N-terminally coumarin-labeled RNC of variable nascent chain length to BodipyFL-labeled 
SecYEG. Numbers inside the panel indicate the length of the nascent chains. FRET efficiencies 
were calculated as described in A. C. As in B, only C-terminally labeled RNCs were used. 
Twenty nanomolar RNC and at least two different concentrations of SecYEG were to saturate 
RNC. The final SecYEG concentration was from 250 to 600 nM in different experiments. Every 
FRET measurement was performed under saturating concentration of SecYEG. 
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Figure 4 
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Figure 4. A model for Type II orientation of the 3A7L signal peptide inside SecYEG. The 
red star is the acceptor fluorophore on SecYEG. Both the cytoplasmic and periplasmic location 
of the probe are shown on the same SecYEG unit to explain the observed FRET values with N- 
and C-terminally labeled signal peptide (green star). See discussion for how the FRET data led to 
this model. 
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Figure 5 

 
 
Figure 5. FtsQ constructs used in mapping orientation of the FtsQ TM upon binding 
SecYEG. A. Topology of the membrane protein FtsQ in the lipid bilayer. The orange rectangle 
represents the transmembrane domain (signal anchor) of FtsQ. The numbers show the size of 
each region of the protein. B. Pictoral representation of a stalled RNC bearing the FtsQ nascent 
chain (left) and location of coumarin on the N- or C-terminus of the signal anchor of FtsQ 
(right). C. FtsQ constructs of increasing length used in the FRET mapping assay. The number on 
the right of each construct indicates the length of the nascent chain. Below is the schematic 
representation of stalled RNCs containing the shortest (90 aa) and the longest (155 aa) nascent 
chains shown for comparison. See Materials and methods for detailed description of the 
constructs used in preparation of the RNCs. 
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Figure 6 

 

 

Figure 6. FRET efficiency values observed upon interaction of coumarin-labeled RNCFtsQ 
with BodipyFL-labeled SecYEG. A. Twenty nM RNCFtsQ with coumarin at the N-terminus of 
the signal anchor (see Figure 4B) were incubated with at least 10-fold molar excess of 
BodipyFL-labeled SecYEG in the SRP buffer supplemented with 10% glycerol and 0.02% 
DDM. FRET efficiencies were calculated as described in Figure 3. B. As in A, only N-
terminally-labeled RNCs were used. C. Schematics of the expected intercalation mode of the 
FtsQ signal anchor into the lateral gate of SecYEG (left) and the likely orientation involving a 
break in the signal anchor helix (right) to explain the observed FRET data (see text for 
discussion). 
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Figure 7 

 

Figure 7.  Equilibrium titration of RNC3A7L bearing 85 aa long nascent chains with 
SecYEG. A. Emission spectra of 20 nM C-terminally coumarin-labeled RNC were collected in 
the absence or in the presence of increasing concentration of unlabeled SecYEG (see the 
indicated concentrations). B. Fluorescence change was plotted against the concentration of 
SecYEG and the data were fitted to a quadratic equation described in Materials and methods. C. 
Dissociation constants obtained upon titration of RNC3A7L bearing the nascent chain of 
increasing length (L aa) (65 to 135 aa) with SecYEG. D. RNCs bearing the nascent chain 85 aa 
long and containing different signal peptides (sp 85) were titrated with SecYEG to obtain the 
tabulated dissociation constants. E. RNCFtsQ bearing the nascent chain of increasing length (90 
to 155 aa) was titrated with SecYEG to obtain the tabulated dissociation constants. The data to 
obtain the Kd values in C, D, and E were treated as described in panels A and B. 
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Figure 8 

 

Figure 8.  Schematics of reconstitution of detergent-solubilized SecYEG in nanodiscs.  
Using the membrane scaffold protein of a defined size allows control of the polydispersity of the 
SecYEG-Nd solution. A monodisperse solution of nanodiscs containing monomers of SecYEG 
can be formed with MSP1D1, while a larger scaffold protein MSP1E3D1 affords a 
stoichiometric mixture of monomers and dimers. See the Materials and methods section for a 
detailed description of the reconstitution procedure.  
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Figure 9 
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Figure 9.  Reconstitution of SecYEG in nanodiscs. A. Coomassie-stained denaturing gel 
showing purified MSP1D1 and MSP1E3D1 (labeled). B. Elution profile of SecYEG nanodiscs 
resolved on a Superdex 200 10/300 gel filtration column. Fractions were collected and run on a 
denaturing gel. SecY, MSP1D1, and SecE/G bands are labeled. C. Blue-native gel to visualize 
intact SecYEG nanodiscs. SecYEG reconstituted nanodiscs was resolved on a non-denaturing gel 
in the presence of Brilliant Blue G250. The gel was destained and photographed using Bio-Rad 
gel documentation system. The reconstitution reactions loaded onto lanes 1 through 4 are 
described below the gel. D. Coomassie-stained denaturing gel showing the components of 
SecYEG-nanodiscs. The reactions loaded onto lanes 1 through 4 are described below the gel. E. 
Binding of RNC to SecYEG nanodiscs. RNC1A9L was incubated either with SecYEG nanodiscs 
or empty discs. The RNCs were pelleted through sucrose cushion. The pellet was resuspended in 
2X Laemmli sample buffer and resolved on a denaturing gel (P) along with the sample before 
centrifugation (L). The samples subjected to centrifugation are described below the gel. The gels 
were photographed using Bio-Rad gel documentation system. See Materials and methods for a 
detailed description of reconstitution of SecYEG in nanodiscs and the cosedimentation assay. 
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Figure 10 

 

Figure 10. Binding of SecYEG nanodiscs to RNC3A7L. A. Maximum fluorescence change due 
to environmental sensitivity of coumarin upon incubating RNC3A7L labeled with coumarin at the 
C-terminus of the signal sequence with SecYEG reconstituted in nanodiscs. B. The Kd values 
were obtained as described in Figure 6.  
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Figure 11 

 

Figure 11. Expression and purification of YidC. A. Coomassie-stained denaturing gel showing 
expressioin of YidC. The arrow shows the location of the YidC band (3rd lane) from the induced 
sample missing in the 2nd lane (non-induced sample). See Materials and methods for detailed 
description of the expression vector as well as expression procedure and analysis of expression. 
B. Coomassie-stained denaturing gel showing affinity purification of YidC using Ni-NTA 
agarose resin. See Materials and methods for detailed description of the purification procedure. 
FT, flow through; W, wash; E, elution. The numbers on the left of each gel indicate molecular 
weight in kDa. The gels were photographed using iPhone 4 camera. 
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Figure 12 

 

 
Figure 12. Effect of detergent-solubilized YidC on RNC-SecYEG interaction. A. Twenty nM 
N-terminally coumarin-labeled RNCFtsQ containing a 90 aa long nascent chain was titrated with 
SecYEG in the presence of increasing concentration of YidC (indicated). Emission fluorescence 
of coumarin was plotted against the concentration of SecYEG, and the data were fit to a 
quadratic equation described in the Materials and methods. B. The dissociation constant values 
in A were converted to binding constants (1/Kd) and plotted against the concentration of YidC. 
C. A thermodynamic cycle of the ternary YidC•SecYEG•RNC complex formation. SecYEG 
binds RNC with 8-fold weaker affinity when in complex with YidC. 
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Figure 13 

 

 
Figure 13. Assessment of the nascent chain insertion into SecYEG upon binding of 35S-
labeled RNC1A9L to detergent-solubilized SecYEG or SecYEG in proteoliposomes. A. 35S-
labeled RNC1A9L were treated with increasing concentration of proteinase K for 15 minutes on 
ice. The samples were quenched with PMSF, precipitated using trichloroacetic acid (TCA), 
dissolved in 2X Laemmli buffer, and resolved on 18% acrylamide denaturing gel. The gel was 
analyzed using autoradiography. B. S35-RNC1A9L was incubated was incubated either with 
detergent-solubilized SecYEG, empty liposomes, SecYEG proteoliposomes, or buffer at 25 or 
37°C for 30 minutes. The mixtures were treated with 0.005 mg/ml proteinase K for 15 minutes 
on ice, and the reactions were analyzed as described in panel A. The samples were loaded onto 
15% denaturing gel. 30% of TCA-precipitated RNC were loaded onto the reference lane (Ref.). 
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Figure 14 

 

Figure 14. Shematics of an in vitro cotranslational protein targeting assay. SecYEG 
proteoliposomes were mixed with the plasmid encoding the substrate of interest and the cell free 
extract. The samples were supplemented with T7 RNA polymerase and incubated at 37°C for 30 
min. As DNA is transcribed into mRNA, the components are assembled into complexes depicted 
on the right. The substrate is translated into the lipid vesicle. The extent of translocation or 
insertion is assessed by treating the reactions with proteinase K. See Materials and methods for 
detailed description of the assay. 
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Figure 15 

 

Figure 15. Cotranslational insertion of leader peptidase into E. coli inner membrane 
vesicles (IMVs) containing overexpressed levels of SecYEG. A. Schematics of Lep inserted 
into a lipid vesicle. The exposed loop P1 contains proteinase K sites. B. Treatment of Lep 
inserted into a lipid vesicle with proteinase K results in appearance of the protected H2-P2 
fragment with MW of ~ 35 kDa indicative of productive insertion of Lep. C. IMVs with 
overexpressed SecYEG levels were incubated with cell free extract and the plasmid encoding 
Lep in the presence of T7 RNA polymerase for 30 min at 37°C. The samples were split into two 
aliquots, and one of the aliquots was treated with proteinase K in the absence or presence of 
Triton X100.  The reaction was quenched with PMSF, and the protein was precipitated with 
TCA. The pellet was dissolved in 2X Laemmli sample buffer, and equal amounts of the samples 
were resolved on a 15% denaturing gel. The gel was visualized by autoradiography. 
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Figure 16 

 

 
Figure 16. Cotranslational targeting assay with YidC and SecYEG proteoliposomes. A. 
Proteoliposomes containing either SecYEG, YidC, or both SecYEG and YidC were solubilized 
in 2% SDS and mixed with 2X Laemmli Sample buffer. Equal volumes were resolved on a 15% 
denaturing gel. The numbers on the left of the gel indicate MW in kDa. See Materials and 
methods for description of the detailed procedure of reconstitution of SecYEG and YidC in 
proteoliposomes. B. Cotranslational protein targeting assay performed with liposomes (empty), 
SecYEG proteoliposomes, SecYEG/YidC proteoliposomes, urea-washed IMVs, and IMVs. + 
and – indicate whether the solution was or was not treated with proteinase K, respectively. The 
assay was performed as described in Figure 14. C. Quantitation of the insertion efficiency. 
Percent insertion was calculated by comparing the intensity of the P2-H2 protected fragment to 
the intensity of the full-length Lep in the – proteinase K sample. See Materials and methods for a 
detailed description of the assay.   
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