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Abstract

A fundamental question in neuroscience is how distributed networks of neurons
communicate and coordinate dynamically and specifically. Several models propose that
oscillating local networks can transiently couple to each other through phase-locked
firing. Coherent local field potentials (LFP) between synaptically connected regions is
often presented as evidence for such coupling. The physiological correlates of LFP
signals depend on many anatomical and physiological factors, however, and how the
underlying neural processes collectively generate features of different spatiotemporal
scales is poorly understood. High frequency oscillations in the hippocampus, including
gamma rhythms (30-100 Hz) that are organized by the theta oscillations (5-10 Hz) during
active exploration and REM sleep, as well as sharp wave-ripples (SWRs, 140-200 Hz)
during immobility or slow wave sleep, have each been associated with various aspects of
learning and memory. Deciphering their physiology and functional consequences is
crucial to understanding the operation of the hippocampal network.

We investigated the origins and coordination of high frequency LFPs in the
hippocampo-entorhinal network using both biophysical models and analyses of large-
scale recordings in behaving and sleeping rats. We found that the synchronization of
pyramidal cell spikes substantially shapes, or even dominates, the electrical signature of
SWRs in area CA1 of the hippocampus. The precise mechanisms coordinating this
synchrony are still unresolved, but they appear to also affect CA1 activity during theta
oscillations. The input to CA1, which often arrives in the form of gamma-frequency

waves of activity from area CA3 and layer 3 of entorhinal cortex (EC3), did not strongly
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influence the timing of CA1 pyramidal cells. Rather, our data are more consistent with
local network interactions governing pyramidal cells’ spike timing during the integration
of their inputs. Furthermore, the relative timing of input from EC3 and CA3 during the
theta cycle matched that found in previous work to engage mechanisms for synapse
modification and active dendritic processes. Our work demonstrates how local networks
interact with upstream inputs to generate a coordinated hippocampal output during

behavior and sleep, in the form of theta-gamma coupling and SWRs.
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Preface

Since Richard Caton first reported his measurements of electrical fluctuations in
the brains of dogs and primates, and especially after the significance of these phenomena
were emphasized by Hans Berger’s development of electroencephalography and
discovery of oscillatory patterns related to behavior, sensation, and epilepsy, brain
scientists have struggled to understand what these signals represent. Extracellular
electrical recordings of the brain (EEG outside the head, ECoG on the brain surface, LFP
within the brain) exhibit a hierarchy of oscillatory patterns, with various relationships to
behavior and cognitive states. These electrical signals are related to neural activity, and
neural networks (biological and theoretical) also support a plethora of oscillatory
dynamics. The relationship between the LFP and the network activity, however, are
variable, dependent on many factors, and often not straightforward (see, for example,
Chapters 3-5 of this thesis).

Though the biophysical foundations of how neural elements generate extracellular
electric signals are relatively well understood, and several heuristic principles were
developed for how these “microscopic” signals combine into measurable “macroscopic”
signals, no generally accepted rules could be established for precisely which processes
contribute to extracellular potentials, how much they contribute, and over which
spatiotemporal scales are they integrated. The primary reason is that the generation and
integration of extracellular potentials depends on the precise morphological and

physiological properties of the neuron population in the region, as well as their
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anatomical organization and temporal coordination, all of which vary within the brain and
depend on the global state of the network.

It seems then that, while general principles can be formulated, our understanding
of each electrical pattern in different brain structures must be separately dissected. The
aim of this thesis is to refine our understanding of how the contributions of LFP
generators depend on the spectral domain of interest, illustrate limitations of LFP analysis
for inferring details of network activity, and improve our methods for dissecting LFP
patterns. Furthermore, in the process of using hippocampal-entorhinal LFPs and unit
activity towards these ends, we gained a better understanding of how the networks of the
hippocampal formation operate and interact. (Or, more accurately, / gained a better
understanding of how seductively tractable their workings appear, but how exasperatingly
malleable they turn out to be. What I have learned, however, has aroused an intense
desire to delve deeper into how the hippocampus, and neural circuits in general, are
dynamically coordinated to drive our behavior, sustain our emotions, and enable our
cognition.)

As with nearly any route to a Ph.D., the goals at the outset and in the final stages
differed in their scope and theme. I initially hoped to develop a working model of LFPs,
which could then be used to estimate the contributions of various possible sources of
extracellular electric potentials. Furthermore, an accurate way to estimate extracellular
fields arising within a model network could be used to begin an investigation of the
“feedback problem”: how do the electric potentials and fields generated by activity within

a neuronal population affect the activity of the population? Might they increase or
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decrease synchrony, or provide a way for neurons to interact virtually instantaneously?
Previous work by my advisors and colleagues has shown this is possible, in principle, but
a working model would greatly enhance our ability to predict if and when it may happen
in practice.

During the course of my research, however, it became clear that answering this
question will require a combination of advanced skills in algorithm development and
optimization, clever methods of approximation and parallelization, in addition to
excellent intuition for the theory of electric fields and circuits. While it is a worthy goal,
my interests drifted toward the ways in which biological networks of neurons process,
encode, and recall information, and how they coordinate their activity to perform these
functions. The efforts described in this thesis to understand the network activity reflected
in hippocampal extracellular potentials served both my initial goal of elucidating the
biophysics underlying their generation and my present goal of understanding how
network activity in the hippocampus relates to its hypothesized roles in spatial navigation
and episodic memory.

My research additionally took a turn from primarily a modeling effort to one
focused on data analysis of experimental recordings. My initial plan was to model many
of the rich LFP dynamics exhibited by the rodent hippocampus while the animal is
navigating through its environment, some aspects of which are presented in Chapter 4.
These phenomena are quite complicated, however, arising from interactions between
regions and within local circuits that are not yet well understood. To simplify the problem

while maintaining a direct connection to experimental measurements, I shifted to first
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model a phenomenon with fewer components, the sharp wave-ripple complex of the
hippocampal area CA1. This work led to a better understanding of how high-frequency
features of LFPs can be generated by non-synaptic currents, and it illustrated a case in
which different kinds of network activity could give rise to similar signals in overlapping
spectral bands.

The goal in the second part of my thesis research then became to differentiate
these distinct processes and characterize how they related to activity in local and afferent
regions. This understanding will equip future experimental and theoretical efforts with
better frameworks and hypotheses from which to begin. For example, many theoreticians
are presently trying to understand how multiple distinct gamma oscillations may arise
within the same network. But the goals and relevance of such investigations are greatly
impacted by what the LFP recordings motivating the question reflect: (1) oscillations that
emerge from the local network, or (2) local activity entrained by afferent input, or (3)
purely synaptic input that does not substantially affect the spiking of the targeted neurons.
While I am very interested in the network and cellular mechanisms underlying the
emergence of network oscillations, questions about this are related but distinct from the
biophysics of LFP generation.

This thesis is structured in the following manner. There are three primary sections:
(1) an introduction, describing the biophysical foundations of the LFP and our modeling
techniques, as well as background on hippocampal LFP patterns; (2) our methods and
results modeling hippocampal LFPs; and (3) the analysis and interpretation of high-

frequency extracellular signals in the rat hippocampus. A concluding chapter summarizes



the main conclusions and places them in the context of today’s investigations into brain

networks, speculating on broader implications and outlining necessary future research.
The work presented here built on an immense amount of effort exerted by

numerous other individuals. The following list ascribes proper credit for work described

in the remaining chapters that was not performed by me.

® The pyramidal cell model used in Chapter 3, which formed the foundation for a large
portion of this thesis, was built by Carl Gold. It is described in detail in his Caltech
thesis from 2007, “Biophysics of extracellular action potentials.”

¢ The basket cell model used in Chapter 3 was built by Anja Norenberg, Hua Hu, Peter
Jonas, and their colleagues, and generously provided by Peter Jonas.

® The surgeries and experiments which produced all of the data analyzed in Chapters 4
and 5 were performed in the Buzsaki laboratory at Rutgers University and NYU. The
students and postdocs who led those experiments (and they were surely assisted by
others in the process) are Kenji Mizuseki, Sean Montgomery, Kamran Diba, Antal
Berenyi, John Long, and Andres Grosmark.

e The data preprocessing, spike sorting, and behavioral/sleep state annotation for the
largest portion of the data I analyzed were performed by Kenji Mizuseki. He
additionally continually provided assistance regarding its organization, results from
his own analysis, and ideas for new analysis.

e Data preprocessing and behavioral annotation for the additional data sets used here

were performed by Sean Montgomery, David Sullivan, and Antal Berenyi.
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The ICA source separation and portions of the analysis of its output were performed
by Antonio Fernandez-Ruiz.

Extensive critical comments and suggestions throughout the research projects, as well
as assistance with the composition and editing of Chapter 3 during its submission to
the Journal of Neuroscience, were provided by Costas Anastassiou.

The development of the NEURON software package, its continued maintenance and
improvement, as well as assistance above and beyond the call of duty in implementing
models, warrants acknowledgment of Michael Hines and Ted Carnevale.

A few Matlab routines used here, as well as data visualizers for inspection, were
written by alumni of the Buzsaki lab, including Michael Zugaro, Lynn Hazan, and
Kenneth Harris. All of the remaining analysis code was otherwise either written by me

or included in standard Matlab distributions.
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I. Introduction

1. Modeling neural extracellular potentials

1.1 Basic biophysical principles, assumptions, and approximations

From the surface, the brain looks like a soft but relatively smooth, solid mass of
tissue, not unlike many other organs in the body. The situation is not drastically different
when the brain is sliced and examined with a low power light microscope, except for the
appearance of some inhomogeneity and layering visible as changes in coloring. Once
individual cells are stained, hints of the complexity emerge, and higher-powered
microscopy (especially electron microscopy) reveals a dense and intricate “milieu” of
cells, membranes, and other organic scaffolding (Sykovéa & Nicholson 2008, Lichtman &
Denk 2011, Bock et al. 2011). Accurately modeling charge conduction would appear to
be non-trivial, yet experimental measurements of brain conductivity indicate that the
extracellular milieu can be treated as an ohmic conductor with surprising accuracy on the
frequency scales of interest to the neurophysiologist (Plonsey & Heppner 1967,
Logothetis et al. 2007).

Furthermore, only a subset of all the processes in this complex cellular network
need to be included in a model of the electrical recordings we wish to understand, i.e.,
those processes that involve substantial transmembrane ion currents on appropriate
timescales. For example, while glial cells are increasingly recognized as important
participants in neural function (Araque & Navarrete 2010, Han et al. 2013), their

membrane currents change on slower timescales than the neuronal processes that
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generate the electrical signals in the 1-2000 Hz frequency range that is typically studied
in the brain (Mitzdorf 1985, Konnerth & Orkand 1986, Roitbak et al. 1987). We
considered the additional possibility that presynaptic axon terminal currents may
contribute to extracellular signals in this range. Small diameter fibers, myelination, and
the resulting high input impedance and small current amplitudes, combined with variable
segment orientations, and multiphasic sink-source time courses, suggest little direct
contribution of presynaptic currents to cortical LFPs (but see Mitzdorf 1985). We did not
exhaustively explore all possible cases; for example, the final axon segments of axo-
axonic interneurons (chandelier cells) in CA1 are dense and oriented similarly along the
pyramidal cell axon initial segments. Our numerical simulations using reconstructed
basket cell axons (Section 3.3.3), however, were consistent with a minimal contribution
of their presynaptic axon currents. Moreover, recordings of extracellular potentials
elicited by single interneuron APs in slice experiments indicate that nearly all of the LFP
signal following a local interneuron spike is generated by GABAAa receptor-mediated
postsynaptic currents (Glickfeld et al. 2009).

Finally, an important assumption in modeling neuronal transmembrane currents is
the principle of charge conservation. To a good approximation, we usually may treat the
intracellular and extracellular potentials independently, because the transmembrane
resistance is much greater than the resistance of the extracellular space (Clark & Plonsey
1966). [ This assumption may need re-evaluation, however: when a neuron is operating in
the nonlinear regime near threshold, the extracellular field can significantly influence its

dynamics (Anastassiou et al. 2010, 2011).] The intracellular potentials and currents, and
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the resulting transmembrane current, are therefore typically calculated assuming a
uniform and constant extracellular potential. From the extracellular viewpoint,
transmembrane currents are sources and sinks of current. Conduction phase delays (or
charge propagation effects) are also negligible at neurophysiological timescales (i.e.,
slower than a few microseconds, or hundreds of kHz in frequency terms) (Plonsey &
Heppner 1967, Holt 1998). As a consequence, the intracellular and extracellular spaces
are considered to be electrically neutral. Any charge flowing into a neuron must be
balanced by an equal amount of charge flowing out. This charge conservation rule has
two main consequences for the topics of this thesis. (1) Individual neurons to be modeled
as electrical circuits with appropriate passive and active circuit elements linking fiber
segments to each other and to the extracellular space. (2) The total transmembrane
current for a single cell has no monopole moment, and so we often use our intuition about
electric multipoles when conceptualizing the contributions of neuronal elements to

extracellular potentials.

1.2 Background and motivation

In working out the biophysical origins of extracellular potentials, as well as
improved analysis techniques such as current source density (CSD) estimates, researchers
displayed impressive intuition and analytical skills that allowed them to develop a solid
foundation for understanding how neural activity is converted to measured voltages. The
biophysics of how transmembrane voltages lead to intracellular and transmembrane

current flow were developed in stages, from active membrane dynamics (Hodgkin &
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Huxley 1952), to core-conductor theory (Clark & Plonsey 1966), dendritic synaptic
integration (Rall 1967), extracellular current flow (Plonsey & Heppner 1967),
extracellular potentials from single cells (Rall 1962, Clark & Plonsey 1968) and excited
populations (Rall & Shepherd 1968, Nicholson & Llinas 1971), to continuous field
descriptions (Nicholson 1973). Several approximations (some of which were described in
the previous section) justified by the timescales, temporal coordination, and anatomical
symmetries inherent in many neural systems allow relatively simple mathematical
transformations to estimate the spatial distribution of physiological sources of recorded
electric potentials (Nicholson & Freeman 1975). These theories and models showed the
importance of electrical and morphological properties of neurons, as well as the
geometric arrangement and temporal coordination of the population.

Furthermore, such work also led to a number of basic principles, described and
justified most comprehensively in Mitzdorf (1985), which guided researchers intuition
regarding the origin and meaning of LFP signals to this day. This includes the rule of
thumb that LFPs best reflect excitatory postsynaptic currents (EPSCs) in the
neighborhood of the recording electrode. Mitzdorf (1985) based this conclusion of
quantitative comparison of the estimated contributions of various possible sources to
CSDs in the cortex. By considering the rough time course and geometry of individual
sources, as well as how they sum and cancel in idealized neurons and populations,
(Mitzdorf 1985) showed that EPSCs are best able to constructively combine into
macroscopic signals in typical natural neocortical scenarios. Despite showing that

somatic APs can combine effectively in some experimenter-evoked or epileptic
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conditions that result in hypersynchronous firing, as well as providing examples of
dendritic AP and inhibitory postsynaptic current (IPSC) signatures, (Mitzdorf 1985)
argued that these were exceptions rather than the rule.

In some sense, this thesis is about exceptions, refinements, and illustrative cases
that show, while this rule of thumb may be true much of the time, it cannot be relied upon
for inferring details of network activity. Further investigation should seek to illuminate
how typical physiological changes modify the archetypal models underlying the
framework developed by Mitzdorf and her predecessors. For instance, how do synaptic
barrages, such as those leading to the “high conductance state” of neurons in
unanesthetized intact animals (Destexhe et al. 2003), change the amplitude, distribution,
and time constants of the synaptic currents. On one hand, a depolarized membrane and
concurrent excitatory input will amplify inhibitory synaptic currents and their LFP
contributions. On the other hand, IPSC dipoles are likely to be more compact than those
associated with distal EPSCs, leading to different spatial profiles (see Section 3.3.4,
Figure 3.8) (Leski et al. 2013). And how are different network activity patterns
manifested in extracellular potentials? Mitzdorf’s conclusions were about the amplitude
of evoked and spontaneous CSDs, but the spectral content of such responses, or of more
sustained activity, was not considered. The different timescales of distinct processes
would lead to varying degrees of importance for different portions of the spectrum.

The next section outlines our basic approach toward building a detailed
biophysical model of several possible contributors in order to test their relative

importance in generating specific features of measured LFPs. This work illustrates how
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the coordination of activity across a neural population and the fundamental timescales of
the quantal processes at play can lead to different sources dominating the LFP in different
frequency bands. However, our population model was tailored to the dorsal hippocampal
area CA1, and some of our conclusions may not generalize well to other structures. To
complement (or better motivate) such detailed models, more general approaches can
prove extremely valuable (e.g., Lindén et al. 2011, Leski et al. 2013). An additional
worthwhile endeavor would be to develop parametric models of LFP/CSD contributions
for generic sources, which could be used to construct LFPs within circuit or population
models that are not biophysical representations in themselves. Such tools would facilitate
the translation of network activity into a simulated LFP, providing additional ways to
compare theory to experiment, greater flexibility in investigating the composition of
extracellular recordings, and more efficient ways to investigate the role of extracellular
fields as a feedback mechanism for coordinating network activity (Holt & Koch 1999,

Weiss & Faber 2010, Anastassiou et al. 2011).

1.3 Our biophysical techniques for modeling LFPs

Control over the basic biophysical and geometrical properties of the neuronal
constituents allows for broader study of field potentials in neuronal populations (see, for
example, Lindén et al. 2011). Neurons in the brain, especially pyramidal cells, have a
diverse array of ion channels distributed non-uniformly along their membranes that
impart them with important but complicated dynamics. Some questions about neuronal

function can be addressed by including only a subset of channels that are not perfectly
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distributed within the cell. The strength and spatial distribution of transmembrane
currents, however, is precisely what determines the extracellular potential generated by
neuronal activity. Moreover, the membrane conductance profile changes as a function of
synaptic or neuromodulator input, as well as various intracellular processes. Many of
these subtleties can be safely ignored in certain situations. For example, (Gold et al.
2006) showed that the currents in the soma and axon hillock dominated the extracellular
action potential (EAP) waveform (Mitzdorf 1985). The LFP, on the other hand, is thought
to be comprised of mostly subthreshold currents distributed throughout the dendritic
arbor, with this distribution playing a critical role in determining which signals are
effectively integrated into the signal (Mitzdorf 1985, Lindén et al. 2011). The ways in
which synaptically evoked currents are transformed and interact with each other is still
poorly understood (London & Hiusser 2005, Spruston 2008), and the precise distribution
of active currents within dendrites may be highly variable (Gold et al. 2006). These gaps
in our knowledge of dendritic electrophysiology present a challenge to a general
theoretical investigation of LFP, but we can still ask specific questions and make
qualitative judgments about the abilities of various cellular and network processes to
reliably generate detectable extracellular signatures.

With this in mind, the basic methods we employed for modeling single neuron
membrane currents, the resulting extracellular potential, and the summation of

contributions from many cells are described in the next two sections.
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1.3.1 Extracellular potentials from simulated neurons

Detailed biophysical models of individual neurons with elaborate morphologies
are increasingly common (Koch & Segev 1998, Markram 2012, Gerstner et al. 2012). To
facilitate rapid development and implementation of these models, specialized software
packages [e.g., NEURON (Carnevale & Hines 2006) and GENESIS (Bower & Beeman
2003)] have been developed to simulate electrical and ionic activity within single and
networked neurons. For compartmental model simulations (Figure 1.1, from Nicholson
1973), the software employs numerical integration algorithms to solve the cable equation,
with additional current injections and conductance changes at each cable element
determined by systems of kinetic equations modeling various ion channels. Because of
the large existing database of detailed neuron models available for NEURON (Hines et
al. 2004), as well as extensive experience using this simulator in the Koch laboratory, we
chose to adopt this environment for single cell transmembrane current simulations.

NEURON simulates neuronal activity by taking a user-specified neuron
morphology, breaking into isopotential compartments, which are connected to each other
and to the extracellular space via intracellular and transmembrane resistance and
capacitance, as well as active conductances, and numerically integrating the resulting
system of differential equations in order to track the time course of voltages and currents
for each compartment. The number of compartments must be high enough, and the
integration time step short enough, such that the dependent variables converge to a stable
unique solution for given initial conditions. For the choice of compartment number, a

good rule of thumb is to begin with the “d-lambda rule” (Carnevale & Hines 2006 pp.
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122-126), which uses a specified fraction of the AC length constant for each branch or
cable section. NEURON allows for a variable time step using the CVODE method
(Cohen & Hindmarsh 1996), which dynamically adjusts the time step in order to keep the
estimated local error below a user-specified maximum allowable absolute error. This
often works well to speed up simulations, but we used a fixed time step so that multiple
simulations (e.g., different trials, input configurations, and model cells) could be flexibly
combined into a composite LFP without the need to resample the results.

In addition to geometrical specifications and computational parameters, the
following attributes must be specified for a neuron model: (1) passive circuit properties
(e.g., axial intracellular resistance, membrane resistance and capacitance); (2) active
conductance dynamics for ion-specific and non-specific channels (e.g., Hodgin-Huxley
model of Na* and K* channels, Ca?*-dependent K* channels, etc.); (3) channel density in
each compartment for distributed mechanisms, or compartment locations for point
processes (synapses, current injection, etc.); (4) Ca?" diffusion and buffering
mechanisms; and (5) initial conditions. Once all of the relevant morphological,
biophysical, and computational parameters are set, the simulation runs with the variables
of interest saved, and transformations on their values performed, as specified by the user.
The precise neuron geometry does not matter for the single cell simulation (assuming the
extracellular space is treated as an isopotential reference), because the neuron is modeled
as a collections of circuit elements. The geometry comes into play once we use the

single-cell simulation results to calculate the resulting extracellular potentials.
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Carl Gold and Christof Koch, along with collaborators in the labs of Gyorgy
Buzsaki and Kevan Martin, used compartmental models to investigate details of the the
transformation from intracellular to extracellular currents, focusing primarily on the
generation of EAPs (Gold 2007). We used one version of the model (D151, parameter set
A) to recreate EAPs of a pyramidal cell from the CA1 region of the rat hippocampus
(Gold et al. 2006, 2007). The reconstructed neuron had the following basic dimensions:
soma surface area = 559 um?; total dendrite length = 10,155 pm; vertical (stratum oriens
to stratum lacunosum-moleculare) dendritic arbor height = 677 um. In addition to the
passive properties of the membrane (membrane resistance R, = 15 kQ cm?, membrane
capacitance C, = 1 puF cm?, intracellular resistivity R; = 70  cm), the model incorporated
12 types of ion channels, including Na*, K*, Ca?*, Ca?"-dependent K*, and dendritic
hyperpolarization-activated /,; currents. The model had a resting membrane potential at
the soma of -65 mV. We used 512 compartments and a 0.01 ms time step for our
simulations, which yielded stable and consistent transmembrane currents and satisfied
charge conservation requirements.

To excite the neurons, we inserted conductance-based synapses into individual
compartments scattered throughout the cell. Each synapse was modeled as a time-varying
conductance in series with a reversal potential Eye.syn, based on the primary ionic
transporter for the synapse type (e.g., Na* or Cl- for AMPA and GABAA synapses,
respectively). The time course of the conductance g after activation consisted of a fast
rise and slower decay, described by a double exponential formula: g(¢) = Go [exp(-t/Tdecay)

- exp(-t/trise)]. The current I, passing into the cell through this synaptic conductance at
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time ¢ is then given by lyu(t) = g(£)*(Viu(?) - Erevsyn), Where Vi, is the membrane potential
of the compartment at the synapse location. Measurement of the true synaptic current in
neurons is notoriously difficult because of the separation between a synapse and the patch
pipette, the effect of a cell’s input impedance (which is variable), and the fact that the
circuit has been modified by the patch, so we tested a range of values based on various
estimates for the decay time constant. The rise time is much faster and, consequently,
variation of its value plays a smaller role in the transformation from a train of synaptic
activation times to the time course of the conductance variation, so we fixed its value at
0.1 ms.

The membrane potential throughout the cell changes in response to this additional
synaptic conductance, and the current crossing the membrane at each compartment via
resistive, capacitive, and synaptic currents can be calculated for each step in the
simulation. One could treat the transmembrane current at each compartment as a point
source of current in the extracellular space. Relative to the potential infinitely far from a
point source at ry, the electric potential at a point » would then given by @(r,t) = pI(ro,t)/
4n(r-ro), where p is the resistivity of the extracellular space. We used a slightly more
accurate approximation and treated each compartment as a line source (see Section
3.2.1). We used a real, uniform, scalar value for the resistivity of extracellular space, i.e.,
we approximated the extracellular milieu as a purely resistive, homogeneous, and
isotropic volume conductor. A more detailed model would incorporate inhomogeneity
across layers, anisotropy created by fiber orientations, and imaginary components of the

impedance. Our assumption of ohmic behavior, however, appears to be adequate for the
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typical spectral range of LFP analysis (Plonsey & Heppner 1967, Logothetis et al. 2007,

Leski et al. 2013), but its accuracy is still a matter of debate (e.g., Bédard et al. 2010).

1.3.2  From compartments to cells to populations

The contributions to the extracellular potential from each compartment in each
cell sum linearly to give the total extracellular potential in the model population (see
Figure 3.1). To simulate extracellular potentials emanating from membrane currents in
pyramidal cells of the dorsal CA1 area of hippocampus, we chose soma locations
randomly from a cylindrical disk (excluding a small region near the recording site), with
the disk thickness chosen to capture the extent of the cell body layer. We included cells
15-500 um from the recording site and assessed the successive contributions of cells
within different distance ranges, though if correlations in membrane currents continue
indefinitely with distance, the total potential does not converge to a finite value (Lindén
et al. 2011). The extent of the population contributing to the extracellular signal is
therefore determined to a large degree by the extent of correlated membrane currents and
the temporal delays in these correlated fluctuations, as well as the extent of commonly
oriented current dipoles. This principle likely explains the large disparity in estimated
regions of integration for cortical LFP signals, from 200-300 pm to 2-3 mm (Juergens et
al. 1999, Katzner et al. 2009).

On a microscopic level, each synaptic event, and even each action potential, will
produce a unique pattern of currents and potentials within and around the cell. For

distances less than ~100 pwm, the extracellular potential from a synaptic input decays in an
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approximately monopolar fashion (i.e., as 1/r), because this is not yet in the far-field
regime where the membrane currents can be approximated as compact dipoles (Lindén et
al. 2010). With excitatory synaptic current decay time constants on the order of
milliseconds (Hestrin et al. 1990) and several hundred synaptic transmission events
occurring each millisecond in this distance range!, a volume-averaged current source
density could be appropriately used to calculate the resulting LFP power, similar to the
the framework used by Rall and Shepherd (1968) or Nicholson and Llinas (1971). In
practice, however, calculating the appropriate transformation for a given synapse
distribution and activation rate to the approximate time/frequency-dependent CSD
distribution would be more cumbersome than simply running brute force simulations, an
option which is readily available with today’s computers. We instead used “average”
membrane current distributions for stereotypical activation patterns (see Figure 3.8) and,
in the case of synaptic currents, population averaging techniques to speed up calculations

(see Section 3.2.3).

14 Comparing theory and experiment

Careful consideration and modeling of how the known neural elements could
generate experimentally recorded potentials has led to hypotheses and subsequent
experimental confirmation of several interesting features of their physiology and
connections, such as the presence of dendro-dendritic synapses in the Rabbit olfactory

bulb (Rall et al. 1966, Rall & Shepherd 1968) and active dendritic spike generation in

1 [3x103 cells/mm? (Boss et al., 1987)] * [0.04 mm stratum pyramidale thickness (Andersen et al., 2007)] *
[0.01m mm? disk radius] * [3x10* synapses/cell (Megias et al., 2001)] * [0.2 vesicle release (Murthy et al.,
1997)] *[0.2 to 0.5 Hz firing rate (Mizuseki et al., 2013)]
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cerebellar Purkinje cells (Llinds & Nicholson 1971, Nicholson & Llinas 1971). The latter
case, however, drew considerable controversy (Calvin 1969, Hellerstein 1969), and for
good reason. The models of Nicholson et al. were relatively simple by today’s standards,
but there were still multiple qualitatively distinct regimes in which the same set of free
parameters could be tuned in different ways to give similar results. As Calvin (1969)
stressed, finding one set of parameters that yields theoretical results in agreement with
experiments does not prove it is the unique and accurate solution, and the parameter
values are often justified in a biased (or even circular) manner.

It is important to independently validate the components of a model, and so we
sought to avoid inappropriate comparisons between our theoretical results and previous
reports from experimental recordings. The pyramidal cell model we used was developed
and tuned using a data set that was independent from the recordings we used for
comparison, and we felt confident it could be reasonably employed for quantitative
estimates of extracellular signatures of spiking neuron populations. The basket cell
model was not developed with this purpose in mind, however, but its EAP characteristics
were within the proper ranges (Henze et al. 2000, Bartho et al. 2004), exhibiting a larger
but narrower EAP compared to the pyramidal cell (Section 3.3.3, Figure 3.6).

Estimating synaptic contributions from these models, however, would be a
tenuous extrapolation. The Gold et al. (2006, 2007) model was not developed to
accurately emulate synaptic currents at all, the Norenberg et al. (2010) and Hu et al.
(2010) model was developed to test only specific characteristics of synaptic integration,

and no compartmental model has yet been shown to precisely capture both intracellular
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and extracellular signatures of synaptic input. Even if we had a reliable way to emulate
the spatiotemporal profile of membrane current in response to a unitary synapse, and
supposing the model would accurately adapt this response for different depolarization and
conductance states during ongoing synaptic barrages, the number, rate, and
spatiotemporal activation profile of synapses from different presynaptic populations is
not well specified at present. We would still be left with a high-dimensional space of free
parameters.

Luckily, a way to obtain quantitative estimates of the LFP contributions of some
subpopulations of synapses onto CA1 pyramidal cells was available, with the parameter
space being similarly constrained and reasonably well specified by experimental results.
We developed a phenomenological model of the “unitary field potentials’ (uFields)
generated by the postsynaptic currents evoked by single inhibitory interneuron spikes
(Figure 1.2, compiled from Glickfeld et al. 2009), based on measurements of these
uFields in CA1 and CA3 hippocampal slices (Glickfeld et al. 2009, Bazelot et al. 2010).
By specifying only the temporal firing rate functions for the CA1 pyramidal and basket
cell populations and their spatial arrangements, we could then compare the contributions
of each set of neurons to extracellular potentials in CA1 to each other and to in vivo
recordings. These simulations, the results and comparisons to experiments, and the

implications are presented in Chapter 4.
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Figure 1.1. An illustration of a cable model of a neural fiber. At neurophysiological

timescales, the Kirchoft’s laws hold. In the determination of intracellular and

transmembrane current flow, the extracellular space can be considered as isopotential.

Current flow through the membrane via ion channels is modeled by current injection and

time-dependent conductances distributed in the membrane. This allows the neural activity

to be simulated, and the results used to calculate extracellular variation of the potential.

For our purposes, we did not use this result to (iteratively) correct the intracellular

calculation [but see Anastassiou et al. (2010, 2011)]. From Nicholson (1973).
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Figure 1.2. In vitro recordings of unitary inhibitory field potentials (uFields), i.e., the
LFP contribution from single spikes of three different types of CA1 interneurons. A4,
Profile of uField of a perisomatically-targeting basket cell. Left, the average peak

amplitude and its sign. Right, example traces after single spikes, recorded at different
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depths relative to stratum pyramidale. Application of gabazine (bottom) abolished the
uField. B, C Same as A4 for a bistratified cell (B) and a tuft-targeting oriens-lacunosum-

moleculare (OLM) cell (C). Modified from Glickfeld et al. (2009).
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2. Extracellular potentials in the hippocampus

2.1 Hippocampal anatomy and function

Early neuroanatomists, as well as anyone who begins to slice and study
mammalian brains, could not help but be drawn to the hippocampus. It is one of the few
brain structures with features of its anatomy clearly visible to the naked eye, and this
clear organization also makes it attractive for neurophysiological studies. It has many of
the same cellular components of the neocortex, but fewer principal cell layers, most of
which are compact and comparatively uniform. The intrinsic and extrinsic synaptic
pathways are also well organized, again leading to robust spontaneous and evoked
activity during recording and stimulation. Because these inputs are layered along well-
aligned dendrites and are activated in temporally coordinated patterns during certain
behavioral states, the LFPs in the hippocampus can be large and distinctive. Finally, the
hippocampus plays a crucial role in learning and memory, and many prominent features
of its network activity are clearly related to these processes. For all of these reasons, it
has been the subject of intensive investigation for many decades, but many aspects of its
function continue to confound researchers.

Part of the difficulty linking its known roles in rodents to those found in humans
may be due to historical and experimental accidents: the dorsal portion in rodents is
relatively easy to access electrophysiologically, compared to the ventral portion, but the
homologous domain to the ventral rodent hippocampus (which is more involved in
emotional and contextual memory) appears to be enlarged and perhaps more important

for primate cognition. There are conceptual similarities between navigation in physical
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space and navigation in the broader mental space of episodic memory, however, so the
differences in hippocampal function between species may be smaller than they seem.
Even in rats, conflicting results still arise regarding the network dynamics of the dorsal
hippocampus, and some of this confusion may be due to incomplete and/or mistaken
assumptions regarding the physiological correlates of some of its electrical signals.

For a comprehensive overview of hippocampal anatomy and physiology, refer to
The Hippocampus Book by Andersen et al. (2007). On a gross scale, the rat hippocampal
formation is connected as a loop of 3-5 synapses, depending on which connections one
counts (Figure 2.1). The primary excitatory pathway from the rest of the brain to the
hippocampus proper (the dentate gyrus, areas CA1-CA3, and the subiculum) is through
the entorhinal cortex (EC), which sends projections from its superficial layers to the
dentate gyrus (DG), areas CA1-CA3, and the subiculum. Following Andersen et al.
(2007), the “hippocampal formation” term in this thesis refers to the EC, DG, CA1-CA3,
and the subiculum. Additional input arrives from various neocortical and subcortical
regions, but the precise roles of these connections has yet to be worked out, and these
inputs generate smaller current dipoles than the intrahippocampal afferents. Reciprocal
connections to the medial septal nucleus and the diagonal band of Broca are important in
coordinating and maintaining a circuit-wide, coherent, theta rhythm (described below). At
the coarsest level, however, the circuit can be described as follows. The EC acts as the
main conduit for signals coming to and from the hippocampus. Projection neurons in
layer 2 of EC (EC2) run send axons through the perforant path to the DG and CA3. EC

layer 3 (EC3) neurons project through the temporoammonic pathway (also called
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perforant path) to CA1. The mossy fibers of the DG project to CA3, and CA3 sends
axons through the Schaffer collateral pathway to CA1 and subiculum. The pyramidal
neurons in CA1 project forward to both the subiculum, and to the deep layers of EC
(ECS5). The subiculum sends its efferents to the pre- and parasubiculum and deep EC. At
no point in this loop are there substantial back-projections, except for some projections
from CA3c to DG, and only within EC and CA3 are major recurrent excitatory
connections present. An additional, parallel circuit involving CA2 has recently been
described: CA2 integrates EC2 and CA3 input and projects to deep CA1 pyramidal cells
(Chevaleyre & Siegelbaum 2010, Kohara et al. 2013).

Area CA1l, which is located most dorsally at the septal pole of the hippocampus
and is the easiest to reach and recognize with electrical probes, integrates two major
inputs: the Schaffer collateral input from CA3 onto basal dendrites in stratum oriens and
oblique apical dendrites in stratum radiatum, and the perforant path input from EC3
impinging on the distal apical tuft in stratum lacunosum-moleculare. CA1 has few
recurrent connections between its pyramidal cells, but a rich array of inhibitory
interneurons that receive both feedforward and feedback (from CA1 pyramidal neurons
and other interneurons) input. The various interneuron subtypes have a diverse set of
physiological properties and dynamics, receive input from distinct sources, and target
specific dendritic domains of pyramidal cells and other interneurons (see Figure 1.2)
(Freund & Buzséaki 1996, Klausberger & Somogyi 2008, Bezaire & Soltesz 2013). This

diversity and specificity has led to numerous hypotheses about their specialized
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functional roles in local network and dendritic computation (Klausberger & Somogyi

2008, Lovett-Barron et al. 2012, Royer et al. 2012, Lapray et al. 2012, Ledo et al. 2012).

2.2 Hippocampal LFPs

Much of our current knowledge of hippocampal physiology has come from
electrical recordings in the rodent hippocampus. Event-triggered averaging and multisite
simultaneous recordings have revealed various spatiotemporal features that have been
linked to various anatomical and physiological characteristics, several of which are
described below. Initial recordings were done using single-site wires or wire bundles, but
the current standard is to use either tetrode drive arrays (Nguyen et al. 2009) or silicon-
based electrode arrays (Vandecasteele et al. 2012). Tetrode multi-drives have the
advantage that each tetrode can be independently positioned into the pyramidal layer for
single unit detection and spike sorting (Quian Quiroga 2007). Silicon probes have a fixed
electrode geometry, which allows for the analysis of spatial structure in LFPs and the
application of CSD analysis, while maintaining a high density of recording sites for unit
clustering. All of the recordings described in this thesis were performed using silicon
probes implanted chronically in rats (Montgomery & Buzsaki 2007, Diba & Buzsaki
2007, Mizuseki et al. 2009, Patel et al. 2012, Berényi et al. 2014). With the advent and
continued development of high-speed optical reporters (Chemla & Chavane 2010, Chen
et al. 2013), it is now feasible to record activity rhythms at LFP frequency scales in many
more cells simultaneously, with the participating neurons being identifiable and

chronically observable over long periods of time.
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The following three sections describe the most commonly analyzed LFP patterns
in the rodent hippocampus, as well as background on what is known about the underlying
physiology. Chapters 3-5 describe our work to further dissect, understand, and model

their generation in the rat hippocampus.

2.2.1 Theta oscillations

One of the most distinctive and robust oscillations in the mammalian brain, with a
clear correspondence to behavior, is the 5-10 Hz theta rhythm of the rodent hippocampus
[see Buzsaki (2002) for a comprehensive review]. The LFP signature is instantly
recognizable (Figure 2.2), and theta power is strong and reliable enough to be used as an
approximate surrogate for tracking different classes of behavior. When a rat is awake, the
hippocampus becomes engaged in theta oscillations during times of active exploration/
navigation (especially during walking/running, but also during rearing) (Vanderwolf
1969). This oscillation entrains nearly all of the neurons in the hippocampus (especially
the septal and intermediate portions; Patel et al. 2012) and the entorhinal cortex
(especially the medial portion; Deshmukh et al. 2010), with each region becoming most
active at a different phase of the cycle, and the different cell types within a region also
prefer different phases (Mizuseki et al. 2009). Theta oscillations also emerge
intermittently during sleep, corresponding to epochs of rapid eye movement (REM)
sleep. Because the brain-wide LFPs and network activity look so similar to those during

waking behavior, this sleep stage has also been referred to as paradoxical sleep.
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One of the striking features of hippocampal theta is how well coordinated it is
across the entire hippocampal circuit. Each area/layer of the dorsal hippocampus is
coherent with the others and with the entorhinal cortex (Mitchell & Ranck 1980, Buzsaki
et al. 1986, Alonso & Garcia-Austt 1987, Montgomery et al. 2008; but see Kocsis et al.
1999), both within and across hemispheres (Kocsis et al. 1994). It has been well
established that theta in the hippocampal formation is coordinated by the medial septum
and the diagonal band of Broca (MSDBB), theta oscillations can be generated in isolated
portions of the circuit, owing to both network and cellular resonance at theta frequencies
(Konopacki et al. 1987, Leung & Yu 1998, Buzsaki 2002, Goutagny et al. 2009, Stark et
al. 2013). Multiple mechanisms are therefore at play, which can be dissociated with
pharmacology or deafferentation (Kramis et al. 1975, Soltesz & Deschénes 1993, Ylinen
et al. 1995a). Indeed, the hippocampal theta LFP in the behaving animal is composed of
multiple interacting theta dipoles (Leung 1984, Montgomery et al. 2008). Understanding
these interactions will almost certainly be necessary in order to fully explain the intricate
and state-dependent coordination of spiking throughout the network during theta
oscillations (O'Keefe & Recce 1993, Poe et al. 2000, Mizuseki et al. 2009, Lever et al.
2010, Mizuseki et al. 2011).

Though the theta rhythm is widely coordinated in the hippocampal-entorhinal-
MSDBB system, the ways in which hippocampal theta deviates from a monolithic signal
likely illustrate functional separations within the structure. In the longitudinal direction,
i.e., along the septotemporal axis of the hippocampus, theta phase delays are coordinated

such that the neural activity can be described as a traveling wave from the septal pole
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towards the temporal pole (Lubenov & Siapas 2009). The wave, however, does not
propagate consistently along the entire extent of this axis. Rather, the septal and
intermediate thirds are well coordinated, whereas the temporal third operates more
independently (Patel et al. 2012). This separation is consistent with anatomical, genetic,
functional, and other physiological differences between the septal and temporal regions
of the hippocampus (Moser et al. 1993, Jung et al. 1994, Hock & Bunsey 1998, Andersen
et al. 2007, Fanselow & Dong 2010, Royer et al. 2010, Dougherty et al. 2012, Schmidt et
al. 2013, Patel et al. 2013), and may also help to explain differences between theories of

hippocampal function in rodents and humans (O'Keefe & Nadel 1978, Squire 1992).

2.2.2  The sharp wave-ripple complex

In addition to theta oscillations, the other most distinctive electrophysiological
phenomenon in the hippocampus is the sharp wave-ripple (SWR) complex (Figure 2.3). It
is most recognizable within area CA1, though the effects reverberate through the rest of
the circuit. One of the characteristics of the theta state is an elevated inhibitory tone, and
upon release from this inhibition (e.g., when the rat stops running, or following a
transition from a DOWN to UP state during slow-wave sleep), the CA3 network, which
has many recurrent excitatory connections, generates large bursts of activity (Bragin et al.
1995, Sullivan et al. 2011, Viney et al. 2013). The resulting excitatory impulse to CAl,
the “sharp wave”, induces a 140-200 Hz oscillation, the “ripple”, within its pyramidal-

interneuron network (Buzséki et al. 1992, Ylinen et al. 1995b).
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The “sharp wave” in the CA1 LFP reflects a large, synchronous volley of
excitation coming from CA3 through the Schaffer collateral pathway. Though the burst of
excitation is thought to originate in the more densely connected CA3a and CA3b
subregions, the CA3c population displays a greater increase in firing, and these pyramidal
neurons project predominantly to stratum radiatum in CA1. This explains the large
dendritic current sink generating the large negative wave in radiatum and a smaller
positive wave in stratum pyramidale. The stratum radiatum LFP also exhibits a slower
positive phase following the sharp wave, which is paired with hyperpolarization of the
pyramidal cell somata (whether or not they spike), and so it may represent GABAg-
mediated inhibitory currents or depolarization-activated K* channels in the pyramidal
cells.

The fast ripple is not coherent with activity in CA3, but is widely coordinated
within CA1 (Figure 2.3; Chrobak & Buzsaki 1996, Csicsvari et al. 2000, Patel et al.
2013). The ripple power is strongest in the middle of stratum pyramidale (Mizuseki et al.
2011), and so it serves as an important physiological landmark during in vivo recording.
The mechanisms of the precise temporal synchrony in the CA1 network during ripples
are still debated. Much of the available evidence indicates that the basket cell population
in CAl is sufficient to coordinate spiking within the cell populations (Brunel & Wang
2003, Buhl et al. 2003, Buhl & Buzsaki 2005, Taxidis et al. 2011), but some studies have
indicated that gap junctions between pyramidal cell axons, or even the sparse excitatory
synaptic connections between pyramidal cells, also play an important role (Draguhn et al.

1998, Traub & Bibbig 2000, Maier et al. 2011). Regardless of the mechanisms of
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coordination, the other aspect of any LFP signal we wish to understand is the biophysical
origin of the currents that generate it. This is the question we chose to address using a
modeling approach that allowed us to simulate extracellular potentials from specified
population activity that was designed to mimic the measured statistics of spiking during
SWRs.

During SWRs, as many as 5% of the clustered putative pyramidal neurons fire
during a large 5-7 ms ripple wave, representing a 5-6 fold increase in firing rate from the
baseline average. These units, furthermore, show an increase in synchrony beyond that
expected for shared firing rate modulation (Csicsvari et al. 2000), and the spikes are
strongly modulated by the phase of the ripple oscillation (Buzséki et al. 1992, Ylinen et
al. 1995b, Csicsvari et al. 1999a). Overall, interneurons also exhibit large increases in
firing rate, though not as dramatic a change as the pyramidal population, as well as
phase-locked spikes, but these changes in activity are cell-type specific, with basket cells
and bistratified cells showing the greatest involvement (Klausberger et al. 2003, 2004,
Varga et al. 2012, Forro et al. 2013).

Because of the immense increase in firing and and the high degree of synchrony
during SWRs, they are suited to engage synaptic plasticity mechanisms in the
participating neurons (Hebb 1949, Bliss & Lomo 1973, Bi & Poo 2001). SWRs were
therefore hypothesized to play a role in memory consolidation during sleep (Buzsaki
1986, 1989). Since this role was proposed, several key features enabling it have been
found: (1) SWR-related increases in firing propagate out of the hippocampus to its

neocortical targets (Chrobak & Buzsaki 1996, Siapas & Wilson 1998, Logothetis et al.
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2012); (2) the SWR participants and their temporal firing order reflect previous
experience (Wilson & McNaughton 1994, Skaggs & McNaughton 1996, Ji & Wilson
2007, Peyrache et al. 2009, Davidson et al. 2009); (3) the disruption of SWRs during
sleep following training impairs learning (Girardeau et al. 2009). SWRs during the awake
state also appear to be important for learning, memory recall, working memory, and route
planning (Carr et al. 2011, Jadhav et al. 2012, Pfeiffer & Foster 2013). Because of their
apparent significance in learning, memory, and neural dynamics, an important goal is to
understand what physiological processes SWRs represent.

The ripple in the stratum pyramidale LFP was previously thought to reflect mostly
perisomatic IPSCs (Ylinen et al. 1995b), with some EAPs riding on top of this
synaptically generated signal (Buzsaki 1986). The SWR LFP seemed then, to be a
relatively simple and well-understood test case for a model of hippocampal LFP
generation. Chapter 3 explains how our model in fact showed that the population spiking
during SWRs in fact generates much more of the ripple power than we had expected, and
may play a role in lower-frequency oscillations, as well. Furthermore, it brings us back to
the question of the role of inhibitory synapses in enforcing such widespread synchronous

firing, which has yet to be satisfactorily answered.

2.2.3  Gamma oscillations
30-90 Hz gamma oscillations have been widely studied throughout many cortical
regions, having been implicated in sensory processing, attention, working memory, and

learning (Singer & Gray 1995, Engel et al. 2001, Fries 2009, Wang 2010, Colgin &
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Moser 2010, Lisman & Jensen 2013). Gamma oscillations usually reflect local activity
(Katzner et al. 2009), but coherent gamma between spatially separated regions is thought
to be important for communication and integration of neural codes (Engel et al. 2001,
Fries 2009). Gamma oscillations nearly always involve GABAergic interneurons
(Klausberger & Somogyi 2008), especially fast-spiking, perisomatically targeting ones,
such as parvalbumin-expressing (PV+) basket cells (Buzsaki & Wang 2012).

In addition to the essential role of inhibitory interneurons in coordinating gamma
oscillations, there is also evidence that inhibitory currents generate much of the gamma
LFP signal, at least in the portions of the circuit (e.g., DG and CA1) with few recurrent
excitatory connections. During carbachol-induced gamma in vitro, the application of
gabazine into CA1 to block local GABAA synaptic transmission abolished CA1 gamma
LFPs while leaving the CA3 gamma oscillation intact (Zemankovics et al. 2013).
Similarly, whole-cell patch clamp recordings of DG granule cells in vivo showed
inhibitory currents coherent with gamma LFPs, but very little gamma coherence between
excitatory currents and LFPs (Pernia-Andrade & Jonas 2013). (Theta LFPs, on the other
hand, were coherent with excitation, but weakly coherent with inhibition. This latter
result likely does not also hold in CA1, where interneurons are highly theta-modulated
(Fox & Ranck 1975).)

In the hippocampal formation, the typical amplitudes and frequencies of gamma
oscillations vary from region to region, and independent gamma rhythms can arise out of
the EC and CA3 (Bragin et al. 1995, Chrobak & Buzsaki 1998, Fisahn et al. 1998,

Csicsvari et al. 2003). Even within a single region, events at different gamma frequencies
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can occur (Csicsvari et al. 1999b, Middleton et al. 2008). The frequency differences
probably result from a combination of differences in connectivity (e.g., strong recurrent
connectivity in CA3; Li et al. 1994), the modulatory state and excitation-inhibition
balance (Atallah & Scanziani 2009), the timescales of integration in layer 2/3 pyramidal
and stellate cells and CA3 pyramidal cells (Jones 1994, Larkum et al. 2007, Pastoll et al.
2012, Makara & Magee 2013), and intrinsic cellular resonances (Traub et al. 1997,
Brunel & Wang 2003, Tiesinga & Sejnowski 2009, Mann & Mody 2010, Broicher et al.
2012, Moca et al. 2013). During theta oscillations, CA3 pyramidal cells receive strong
inhibition from GABAergic interneurons that are targeted by dentate granule cells
(Acsady et al. 1998, Mori et al. 2007), but gamma oscillations emerge much more
strongly and regularly from CA3 when this feedforward inhibition is removed (Bragin et
al. 1995).

With the CA1 network integrating input from CA3 and EC3, as well as its own
interneuron network, it is no wonder that its gamma-band spectral profile is more
heterogeneous than those in its afferent regions (Chapter 4; Colgin et al. 2009, Belluscio

et al. 2012).

2.2.4 Theta-gamma coupling

The hippocampal-entorhinal gamma rhythms do display temporal organization,
and are coupled to the theta cycle. The most obvious form of this coupling cross-
frequency coupling (CFC) is the modulation of gamma amplitude by theta phase (Bragin

et al. 1995, Chrobak & Buzsaki 1998, Colgin et al. 2009, Tort et al. 2009, Belluscio et al.
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2012, Pernia-Andrade & Jonas 2013). The dominant gamma frequency in the LFP also
varies with theta phase (Colgin et al. 2009, Belluscio et al. 2012), which we could call
phase-frequency coupling. Furthermore, phase-phase coupling has also been
demonstrated (Belluscio et al. 2012), which may be related to the frequency-frequency
coupling reported by (Bragin et al. 1995). Phase-amplitude coupling between theta and
gamma, at least, has been linked to learning-related performance increases (Tort et al.
2009), and similar CFC phenomena have been reported in the human hippocampus
(Mormann et al. 2005, Canolty et al. 2006, Axmacher et al. 2010). Indeed, theta-gamma
coupling, and CFC in general, appears to be fundamental to hippocampal function and
neural processing throughout the brain, as these rhythms likely serve complementary
roles in organizing cell assembly sequences and mediating synaptic plasticity (Canolty &
Knight 2010, Buzséki 2010, Lisman & Jensen 2013). We will return to the topic in depth

in Chapter 4 and the Conclusion.
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2.3  Figures for Chapter 2

Figure 2.1. A, Anatomical layout of the rodent hippocampus. Sub-panel B shoes the
laminar profile of the dentate gyrus (DG) and hippocampal CA1 and CA3 in a transverse
plane of the hippocampus (marked in sub-panel A). The longitudinal axis is typically

referred to by the septal-to-temporal (septum labeled in sub-panel D) orientation of the
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hippocampus, which is medial-to-lateral in sub-panel C, and dorsal-to-ventral in sub-
panel A. From Andersen et al. (1971). B, Extracellular population spike and synaptic
current responses to antidromic (crosses), Schaffer collateral (squares), and perforant path
(stars) stimulation, relative to depth in CA1. From Andersen et al. (1966). C, Modified

drawing by Ramon y Cajal (1911). From the Hippocampus article on Wikipedia.
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Figure 2.2. The coherent pattern of theta LFPs throughout a transverse plane (see Figure
2.1) in the dorsal hippocampus of a rat during running behavior. From Montgomery et al.

(2009).
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II. Modeling extracellular potentials of

the hippocampus

3. The spiking component of oscillatory extracellular

potentials in the rat hippocampus

3.1 Introduction

Oscillations in extracellular electrical recordings within neural tissue are thought
to reflect coordinated network activity, although their functional role and the physiology
underlying their emergence remain enigmatic (Buzséki 2006). The extracellular signal
contains ~40-500 pV spikes (~1 ms wide) from the action potentials (APs) of nearby
neurons (Gold et al. 2006), as well as slower features that are more widespread across the
cortex and range from tens to thousands of microvolts. The precise origins of the latter
components, collectively referred to as the local field potential (LFP), are still poorly
understood (Logothetis 2003, Buzséki et al. 2012, Einevoll et al. 2013), but postsynaptic
currents are typically presumed to be the dominant source of LFP fluctuations (Mitzdorf
1985). As a result, researchers often filter their recordings in an attempt to separate
synaptic input (~300 Hz) from spiking output (>500 Hz) of the neuronal population
around the electrode. Other contributors have been proposed (Buzsaki et al. 2012), but
experimental decomposition of LFPs is rarely feasible because transmembrane currents
over several hundred micrometers are integrated into the signals (Katzner et al. 2009,

Lindén et al. 2011).
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Observing the LFP and its relationship with neuronal firing is a common method
of identifying network oscillations. In general, as oscillation frequency increases, signal
power tends to decrease (Buzsaki & Draguhn 2004). An exception is found in the
100-200 Hz band in the rat hippocampus, in which power and frequency are positively
correlated for 90-150 Hz epsilon (often referred to as “fast gamma’) (Sullivan et al. 2011,
Belluscio et al. 2012) and 140-200 Hz sharp wave-ripple (SPW-R) oscillations (Csicsvari
et al. 1999b, Sullivan et al. 2011). There are two general aspects of such oscillatory
phenomena to be explained: the mechanisms for coordinating network activity and the
current sources generating the measured signal. Several of the former have been proposed
for SPW-Rs (Ylinen et al. 1995b, Traub & Bibbig 2000, Brunel & Wang 2003, Maier et
al. 2011), with the common theme that rippling in CA1 emerges as the network responds
to the excitatory impulse from CA3 that makes up the sharp wave (Buzsaki 1986).
Dramatic increases in the firing of pyramidal cells and some types of interneurons are
observed during SPW-Rs, with spikes phase-locked to the ripple field (Buzséki et al.
1992, Csicsvari et al. 1999a, Klausberger et al. 2003, 2004). Although nearby APs will
contribute features to ripple waveforms (Buzsaki 1986) (Reichinnek et al. 2010),
perisomatic inhibitory currents in pyramidal cells were thought to generate most of the
ripple signal (Ylinen et al. 1995b). However, several recent studies report evidence of
spike “contamination” of LFP oscillations (Ray et al. 2008c, Quilichini et al. 2010, Zanos
etal. 2011, Ray & Maunsell 2011a, Belluscio et al. 2012). Utilizing detailed biophysical
models of neuronal populations of the hippocampus, as well as previously reported in

vitro measurements of the LFP contributions from individual interneurons (Glickfeld et
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al. 2009, Bazelot et al. 2010), we show that spiking neuron populations can generate a

substantial proportion of the power above 100 Hz in the local extracellular field.

3.2 Methods
3.2.1 Neuron models

Neurons were compartmental models based on reconstructed cells from the rat
hippocampus and simulated in NEURON (Carnevale & Hines 2006). Pyramidal cells
throughout the population were based on a single neuron from rat CA1 that was patched,
stained, and reconstructed by Henze et al. (2000), and modeled by Gold et al. (2006,
2007) to recreate extracellular action potential (EAP) waveforms (cell D151a; available

for download at http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=84589).

The model neuron has the following basic dimensions: soma surface area, 559 um?; total
dendrite length, 10,155 um; vertical (stratum oriens to stratum lacunosum-moleculare)
dendritic arbor height, 677 pm. In addition to the passive properties of the membrane
(membrane resistance R, = 15 kQ m?; membrane capacitance C,, = 1 uF cm?;
intracellular resistivity R; = 70 ) cm), the model incorporates 12 types of ion channels,
including Na* , K*, Ca?*, Ca*"-dependent K*, and dendritic hyperpolarization-activated In
currents. The model had a resting membrane potential at the soma of -65 mV. A total of
512 compartments and a 0.01 ms time step were used for the simulations.

The dentate gyrus basket cell model of Norenberg et al. (2010) and Hu et al.
(2010) was adopted and modified for estimating the extracellular potentials generated by

AP currents in the CA1 interneuron population during fast oscillations. Its membrane


http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=84589
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incorporates nonuniform passive resistance, Iy currents, and Na* and K* channels that
confer the fast-spiking behavior typical of these interneurons (Wang & Buzsaki 1996).
The model includes an extensive unmyelinated axon, which was morphed to remain
within a flat disk around the CA1 pyramidal layer (see below). The model neuron has
soma surface area of 883 um?, total dendrite length of 3756 um, vertical (stratum oriens
to stratum lacunosum-moleculare) dendritic arbor height of 419 um, and total axon length
of 17,461 um. Its initial membrane properties (R soma = 6.4 KQ cm?; Ry prox. dend. = 6.4 kQ
cm?; R dist. dend. = 12.7 KQ ¢cm?; Ry axon = 325.4 kQ cm?; Cyy = 1.06 pF cm?; R = 137 Q
cm) were originally determined by fitting to in vitro measurements of basket cell
responses to current injection (Hu et al. 2010, Norenberg et al. 2010), resulting in axon
Rm values almost 2 orders of magnitude greater than the somatic Rm, and a low Na*
channel density in the distal axon (30 mS cm, compared with 200 mS c¢cm in the soma
and 600 mS cm? in the proximal axon). However, these parameter fits would have been
affected by the myelination that is present on portions of basket cell axons (Freund &
Buzsaki 1996). In an attempt to obtain an upper bound on the axon contribution to EAPs
by allowing strong AP propagation through the entire axonal arbor, we changed the axon
Rm to that of the soma, kept the high Na* channel density of the proximal axon, and we
set the Na* channel density in the distal axon to the somatic value. The model had a
resting membrane potential at the soma of -66.3 mV. Basket cell simulations were
performed using 2935 compartments and a 0.001 ms time step. The extensive axon and

fast channel kinetics necessitated a shorter time step than the pyramidal cell model.
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Synaptic inputs were modeled as transient conductance changes with a double
exponential time profile g(f) = Go [exp(-t/tdecay) - €Xp(-t/7rise)] in series with a reversal
potential Ejy,, which had a value of 0 mV for excitatory synapses (Jonas et al. 1993) and
-75 mV for inhibitory (Buhl et al. 1995). To isolate the AP currents, spikes were elicited
by randomly placed synapses on the dendrites (in a volley of 50 excitatory and 50
inhibitory synapses for the pyramidal cell, but only 15 excitatory synapses and no
inhibition for the basket cell) in 50 trials. Each trial was then repeated with a passive
soma and axon and the same synaptic input, which failed to elicit an AP. The membrane
currents of the “suppressed-AP” case were subtracted from those of the spiking case, and
the remaining membrane currents from 2 ms before to 5 ms after the somatic V,, passed
above -10 mV were saved and averaged across all trials to remove effects of the specific
synapse distribution. These “average AP currents,” cleansed of any direct synaptic
contributions, were then used to calculate the extracellular potentials within each spiking
population. We confirmed that suppressing APs in a spiking population (see above) and
adding in these average AP currents at the same times and locations as spikes in the fully
active population introduced negligible differences in the extracellular potentials.

In simulations of synaptically generated LFPs within pyramidal cell populations,
active ion channels were removed from the entire membrane to prevent spike generation
at any point in the cell. Synapses were then distributed randomly throughout certain
dendritic regions, with inhibitory synapses restricted to the soma and dendritic
compartments ~100 um from the soma, and excitatory synapses in the apical dendrites

100-350 um away from the soma, in the region of stratum radiatum Schaffer collateral
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input. The precise kinetics of synapse conductances are notoriously difficult to measure
due to cable filtering, but for fast excitatory (e.g., AMPA receptor-mediated) and
inhibitory (GABAA receptor-mediated) synapses, estimates for zise and taecqy (defined
above) range from 0.1-1 and 2-10 ms, respectively (Hestrin et al. 1990, Jonas et al. 1993,
Maccaferri et al. 2000, Glickfeld et al. 2009, Bazelot et al. 2010). We set zise to 0.1 ms
and tested 7decqy values from 1 to 7 ms. Two hundred excitatory and 200 inhibitory
synapses were activated every 50 ms, with individual peak synapse conductances of Go =

0.3 nS.

3.2.2  Calculating extracellular potentials

We approximated the extracellular medium as a uniform, isotropic, ohmic
conductor with resistivity o = 333 Q cm (Lopez-Aguado et al. 2001, Logothetis et al.
2007, Goto et al. 2010, Anastassiou et al. 2011; but see Bedard et al. 2010). The
extracellular potential, V., at a particular location within a population of cells is simply
the linear superposition of the contributions from all compartments of all cells (10°-10°
total in the population simulations), with the contribution of each compartment being
proportional to its net transmembrane current and inversely proportional to its distance
from the electrode (see Figure 3.1A). We treated compartments as line sources of current
(Holt & Koch 1999, Gold et al. 2006). Using Ohm’s law in a cylindrical coordinate

system,

_ P Vh2+7r2—h

V. =
° 4ml g\/s2—|—r2—s
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where / is transmembrane current (positive value indicates current exiting the
membrane), / is compartment length, 7 is the perpendicular distance from the electrode to
a line through the compartment, 4 is longitudinal distance along this line from the
electrode to one end of the compartment, and s =/ + /4 is longitudinal distance to the other
end of the compartment. These calculations were performed in MATLAB using the

results of the NEURON simulations.

3.2.2  Population activity

For the pyramidal cell population, we used a single morphology and one set of
membrane parameters, and likewise for the basket cell population. Cells were oriented
with the apical axis along the stratum oriens to stratum radiatum direction, with random
rotations about this axis, and somata were randomly placed within the cell body layers for
the respective cell types. The centers of pyramidal cell somata were located within a disk
40 pum thick and 1 mm in diameter at a density of 3 x 103 per cm? (Boss et al. 1987, Aika
et al. 1994) (9416 sites), and the basket cell soma centers were within an 80-pum-thick
disk (Freund & Buzsaki 1996) of the same diameter at a density of 7.5 x 103 per cm?,
resulting in 471 sites (5% of pyramidal cell number; 2.5% of the density) (Olbrich &
Braak 1985, Aika et al. 1994, Freund & Buzsaki 1996). This basket cell population
approximates interneurons known to be active during SPW-Rs (Klausberger et al. 2003,
2004). Cell bodies were excluded from a 15 um radius volume around the electrode

shank. Because the cell position refers to the location of the center of its soma, which had
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a maximum diameter of 11.5 pm for the pyramidal cell and 12 um for the basket cell,
soma surfaces could therefore approach within 9 um of the “virtual electrode.”

The dendritic arbor of each pyramidal neuron in the rat hippocampus {which
typically has a total of ~30,000 synaptic contacts; Megias:2001uh} constantly receives
input from numerous afferents, but independently simulating all 9416 neurons in our
population would have prohibited us from effectively exploring the large parameter space
available for the spatiotemporal patterns of synaptic input. Instead, similar to our
technique for constructing a population of spiking neurons, we simulated 50 passive
pyramidal neurons receiving similar synaptic input patterns (see Section 3.2.1). The
resulting membrane currents in each compartment were averaged across these 50 trials to
obtain the “average subthreshold cell,” which was then used to calculate the contribution
from constituent cells in the population. The contributions from all cells within 100 pm of
the electrode shank were calculated; outside of this radius, the potentials from 20% of the
cells were scaled up by a factor of 5 and added to the potentials from those of the inner
cells. This estimation method resulted in ~5% error when compared with tests in which
each cell was separately simulated and included in the calculation of the population
potentials, but reduced simulation time by nearly 2 orders of magnitude.

By using average subthreshold and AP currents in cells with synaptic currents
removed, we effectively decoupled spike and synapse currents within the population and
could estimate their contributions separately. When simulating AP-generated potentials
from rhythmically firing cell populations, the spiking neurons were randomly chosen

from the population, with an independent set each oscillation period. Spike times were
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pulled from a periodic probability density function (pdf) that consisted of repeating
Gaussians (exp[-#%/262]). Unless otherwise noted (see Figure 3.3), we set o to one-fifth of
the cycle period. This pdf was also used to generate synapse activation times for
simulations of synaptically generated LFPs (see Figure 3.10). Additional spiking from
cells that are poorly modulated within an oscillation does not impart substantial power at
frequencies ~500 Hz on average (see Figure 3.2, black curves, which are barely visible in

C because they remain below 2.2 x 107).

3.2.3 IPSCs from unitary field potentials

To estimate the contribution of IPSCs elicited by firing basket cells to LFPs, we
summed up the stratum pyramidale “unitary field potentials” (uFields) arising from
individual CA1 basket cells measured by Glickfeld et al. (2009). Spike times for basket
cells were pulled from the periodic Gaussian pdf described above, and a positive uField
was added at each “spike” to the total V. with the following characteristics: 15.8 pV
amplitude, linear rise with 1.2 ms 10-90% rise time, exponential decay with 6.6 ms time
constant (Glickfeld et al. 2009) (see Figure 3.10 A). Bazelot et al. (2010) measured
similar uFields from basket cells in CA3, and they found that the uFields could be
detected in stratum pyramidale across a total distance of ~1 mm on average, although
their amplitudes typically decreased by >50% within 250-300 pm from the locations at
which they were maximal. The same uField was therefore added for each basket cell
spike within a 500-pm-diameter disk around the electrode, regardless of the exact

location of the cell.



60

3.2.4 Experimental procedures

In vivo CA1 recordings from a male Long— Evans rat with a chronically
implanted multielectrode array were used for direct comparison with simulation results.
All experimental data presented here are from eight channels from one shank of a silicon
multi-electrode array within dorsal CA1 during one recording session, while the animal
slept in its home cage. Surgery, recording methods, and experimental procedures were

described by Montgomery et al. (2008).

3.2.5 Data analysis

Filters were implemented using bandpass Butterworth IIR filters, designed using
the MATLAB DSP Systems Toolbox, with >60 dB stopband attenuation. The filters were
applied in both the forward and reverse directions to remove phase distortions. For some
portions of the LFP analysis of in vivo recordings, electrode signals were downsampled
to 1250 Hz. Current source densities (CSDs) were calculated using the 1-D second spatial
derivative of the depth-recorded LFPs (Nicholson & Freeman 1975). In the sleep session
analyzed here, theta epochs were detected using the ratio of power in the theta band (5—
11 Hz) to delta band (1— 4 Hz) of the LFP (Mizuseki et al. 2009). Nontheta epochs during
sleep sessions were considered slow wave sleep (SWS). All data presented here are from
SWS.

To detect SPW-R events in in vivo recordings, we followed a procedure based on

Sullivan et al. (2011). In brief, the LFP signal was bandpass filtered from 140 to 210 Hz,
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rectified, smoothed with three-sample boxcar kernel, and z-score normalized. Portions of
the resulting signal were marked as candidate events if their amplitude was >2 SDs above
the mean. Event peaks were extracted by taking the maxima of the 140-210 Hz pyramidal
layer CSD and enforcing a minimum separation between event peaks of 50 ms. One
hundred millisecond segments of the wide-band LFP signal around these event peaks
were then analyzed further using the multitaper FFT in the MATLAB signal processing
toolbox. FFT power spectra were z-score normalized by the mean and SD of power at
each frequency in 20,000 randomly chosen 100 ms windows throughout the SWS epochs
during the recording session. Candidate events with spectral peaks >3 SD above the mean
that were between 140 and 210 Hz were classified as ripples.

The duration of ripple events and the frequency and amplitude of individual
waves within a single ripple vary in vivo, but the amplitude and frequency of our
simulated ripples are approximately constant. To perform a fair comparison, we also
estimated the instantaneous frequency and amplitude of individual troughs in the 50-210
Hz bandpass-filtered signal (the pass band was widened from the SPW-R detection
procedure above to prevent attenuation of ~100 Hz oscillations). The frequency of the
trough was defined as the inverse of the time interval between the peaks flanking it, and
its amplitude was defined as the absolute value of the trough minimum of the filtered
signal. Only troughs with flanking peaks that were within oscillatory events (defined as
intervals during which the 1.4 ms boxcar average of the absolute value of the 50-210 Hz
bandpass filtered signal remained above 1 SD and has at least one peak >2 SDs; Csicsvari

et al. 1999b) were included.
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Power spectra presented for simulated extracellular potentials were first
calculated using 100 ms time windows of the raw signal, and the spectra were then

averaged over 25 trials.

3.3  Results
3.3.1 Spiking contribution to the LFP

To reliably estimate the spike content of extracellular recordings using our
theoretical framework, it is necessary to simulate accurate spike waveforms. The model
by Gold et al. (2006, 2007) was developed for this purpose, emulating intracellular and
extracellular action potentials based on simultaneous in vivo intracellular and
extracellular recordings of rat CA1 pyramidal cell APs (Henze et al. 2000) based on
appropriate distribution of transmembrane currents. Figure 3.1 shows the spatial variation
of EAPs produced by the pyramidal cell model with membrane biophysics governed by
parameter set A of Gold et al. (2007). Before calculating the extracellular potential Ve,
subthreshold membrane currents were subtracted, and the remaining membrane currents
were averaged over 50 trials. To visualize EAP trends that were less dependent on details
of the dendritic morphology, each plotted waveform is an average of 25 EAPs on a ring
around the apical axis (Figure 3.1B, top to bottom), with the radius and vertical position
indicated by the starting point of each trace. The amplitudes of EAPs decrease with
distance from the soma (Figure 3.1C), and they widen (Figure 3.1D) due to both the
decreasing dominance of the strong Na™ currents at the soma and axon hillock (Gold et al.

2006), as well as intrinsic low-pass filtering of currents by the cell membrane, which
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leads to smaller current dipoles for high-frequency components (Mitzdorf 1985, Pettersen
& Einevoll 2008).

Using these average AP currents, we calculated the extracellular potentials due to
spiking within a population of pyramidal cells arranged to resemble those in the dorsal
CA1 region of the rat hippocampus (Figure 3.2A). We computed V. during firing that was
either random or synchronized by a rhythm of frequency f, with franging from 50 to 400
Hz (Figure 3.2B). In the rhythmic cases, spike times were modulated by a periodic
Gaussian pdf, with the SD of spike times in each group of APs given by a = 0.2/f.
Because fand o were inversely related, higher frequency rhythms more effectively
synchronized spiking within the population, resulting in more EAP overlap and greater
signal power. We quantified this trend using the averaged FFT of 100 ms segments of Ve
over 25 trials (Figure 3.2C). Oscillation power peaked between 150 and 200 Hz, and then
slowly decreased with further increases in frequency, because fewer APs occurred within
each period. In these simulations, 2, 4, or 6% of the population fired each 10 ms, which is
within the physiological range estimated for fast oscillations of the rat hippocampus
during SWS by Csicsvari et al. (1999a, 1999b, 2000).

The power—frequency relationship depends crucially on the relationship between
o and /- Our choice of the o = 0.2/f spread in each Gaussian-shaped packet of spikes in the
population results in an approximately sinusoidal shape of the spiking pdf with a nearly
full depth of modulation. Lower depths of modulation (e.g., ¢ = 0.3/f) may be treated as a
combination of a fully modulated set of events superimposed on a baseline of

unmodulated activity (i.e., random events with constant probability), and the effective
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“baseline” spikes add inconsistent power at frequencies <500 Hz that averages out over
multiple events (Figure 3.2 B, C, black traces). Firing phase histograms constructed from
many fast LFP oscillations recorded in vivo do not appear to show population bursts that
are substantially narrower than the period of oscillation in the normal hippocampus
(Ylinen et al. 1995b, Csicsvari et al. 1999b, Csicsvari et al. 2003, Colgin et al. 2009,
Sullivan et al. 2011). If tighter phase coupling was present, it led to increases in the
power at both the oscillation frequency as well as at its harmonics in our simulations. For
example, decreasing ¢ from 4 to 2 ms in the 50 Hz case approximately tripled the power
of the 50 Hz LFP oscillations, but also caused a peak at 100 Hz to emerge in the spectrum
that was around one-half the power of the 50 Hz component (Figure 3.3 A, B). Further
decreasing o to 1 ms caused the power of the 100 Hz harmonic to become greater than
the 50 Hz peak, due to a more prominent positive repolarization phase (Figure 3.3A).
Firing rates during normal oscillations near 50 Hz are not as high as during the faster
ripple oscillations, however, and the number of cells effectively modulated by medium to
slow gamma rhythms is substantially less than for epsilon frequency rhythms (Belluscio
et al. 2012). These considerations are instead most relevant during spike-and-wave
discharges and “fast ripples” of the epileptic state (Bragin et al. 1999, Blumenfeld 2005,
Foffani et al. 2007, Staley 2007).

If o is independent of f, then rthythms with frequencies less than ~0.2/c will have
substantial power in their harmonics, with the power of these harmonics determined by o.
This is illustrated for o = 3, 2, and 1 ms in Figure 3.3C. The average signal power during

rhythms faster than that which was most powerful for a given ¢ dropped off quickly in
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our scheme (we kept the average firing rate of the population constant while varying the
frequency of the rhythm that modulates spike timing), because faster rhythms have fewer
spikes clustered into each population burst. Additionally, once f went above ~0.2/a,
neighboring burst events overlapped and the depth of modulation of firing rapidly fell off.
The peak power was between 150 and 200 Hz in the o = 0.2/f case (Figure 3.2C) because
that range was where the optimal balance was achieved between synchrony and spike
count in each population burst.

When the pyramidal cell population was in an active state and the firing rhythm
was synchronized over several hundred micrometers, much of the field potential
amplitude could be attributed to cells too far away for their APs to be recognized as such
(Buzséki 2004). Figure 3.4 illustrates this with an eight-electrode shank in the center of a
I-mm-diameter population in which spike times are modulated by a 150 Hz rhythm. In
Figure 3.4A, the extracellular potentials are decomposed by cell distance from the
electrode in 50 um steps in an outside-in manner. That is, cells with somata in a particular
50-um-wide ring have their EAPs added to the signal generated by all the cells further
away. The firing of cells >100 um from the electrodes produced a smooth 150 Hz V. that
was at least one-half of the amplitude of most peaks in the cumulative potential, with
more proximal EAPs adding larger but narrower spikes on top of this signal at the
pyramidal layer, but adding little to the signal in the dendritic layers. In terms of
oscillatory power (Figure 3.4B), spikes from the few cells near the electrode created a
wideband spectrum, although with a consistent peak at 150 Hz (which is why this peak

dominates the 25 trial average spectrum in Figure 3.4B). The most power coming from an
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individual ring was for cells 50-100 um from the electrode; this range had the most
effective combination of spike count and EAP amplitude. On average, the signal
originating from cells 100-150 um away was as powerful as that from cells closer than 50
um (Figure 3.4B), and adding the contribution from all cells >100 pm to the signal from
cells <100 um increased the signal power fivefold (Figure 3.4C).

These results depended on a high degree of synchrony across space in the rhythm
driving the population firing. Substantial phase coherence of LFP oscillations is often
present over distances ~1 mm in both the transverse and longitudinal directions within
the CA1 pyramidal layer during SWRs occurring in SWS (Ylinen et al. 1995b, Sullivan
et al. 2011), with the amplitude and spatial coherence of the ripple positively correlated
(Csicsvari et al. 2000). Phase delays and decoherence within CA1 have been reported for
theta and gamma band oscillations (Bragin et al. 1995, Lubenov & Siapas 2009), but we
are not aware of detailed analyses of the spatial profile of fast oscillation phase synchrony
within CA1 stratum pyramidale during theta activity. If population synchrony is related to
oscillation frequency, with slower oscillations exhibiting a greater spread in spike timing,
then the temporal delays associated with activity propagating at a finite speed through the
hippocampus (Lubenov & Siapas 2009) will affect high-frequency rhythms more than
those at lower frequencies, because a given temporal delay in activity between two
locations will correspond to a larger phase delay for the faster oscillation. For example,
temporal delays of 10 pus/pum along one direction (e.g., if spiking activity is locked to the
local theta phase, which propagates along the septotemporal axis at approximately this

speed) (Lubenov & Siapas 2009) resulted in an average spectral power at the oscillation
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frequency that was approximately one-half of the power in the case with no delays for a
population undergoing 100 Hz oscillations, and the ratio was approximately one-quarter
for 200 Hz oscillations (Figure 3.5). Thus, there may be a close link between high-
frequency power and temporal coordination of firing across space, with a more
synchronized population able to generate stronger oscillations in the LFP (Csicsvari et al.

2000; Ray et al. 2008c).

3.3.2  Comparison with in vivo recordings

We analyzed recordings from linear electrode arrays in the rat hippocampus
during SWS (Montgomery et al. 2008). SWRs were detected in dorsal CA1 during SWS
epochs from a single sleep session, and events with a dominant ripple frequency between
140 and 160 Hz were extracted for comparison to V. within a simulated pyramidal cell
population exhibiting a 150 Hz firing rhythm (Figure 3.6). During in vivo SWR events,
APs in a large portion of pyramidal cells and some inhibitory interneuron types (e.g.,
basket cells and bistratified cells) (Klausberger et al. 2003, 2004, Varga et al. 2012, Forro
et al. 2013) are phase-locked to the field ripple, with pyramidal cell firing centered at the
ripple trough (recorded in stratum pyramidale) and interneurons lagging ~1-2 ms
(Sullivan et al. 2011). Of the oscillatory events that met our SWR detection criteria, 26
had dominant frequencies between 140 and 160 Hz. Averaging the wideband signal
during these events (Figure 3.6A) showed that, overall, they indeed occurred during
negative deflections in the stratum radiatum LFP, reflecting excitatory “sharp wave” input

from CA3 (Ylinen et al. 1995b). The oscillatory characteristics of this input were highly
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variable, however, in contrast to the consistent perisomatic ripple. Applying a bandpass
filter from 50 to 5000 Hz before averaging removed the slower SPW LFP deflection and
revealed weaker ripple-frequency oscillations in stratum radiatum with the opposite phase
of the stratum pyramidale potentials (Figure 3.6B), reflecting what are most likely
passive return currents in the dendrites from a perisomatic drive. We simulated similar
depth profiles for rhythmic population firing at the same frequencies as these 26 in vivo
ripples, then applied the same filter and averaged the resulting potentials (Figure 3.6D).
The amplitude and phase profiles of the simulated averages were very similar to those of
the in vivo recordings (Figure 3.6B), and individual in silico voltage traces were
characteristically similar to the in vivo ripples (Figure 3.6C). More quantitative
comparisons of these AP-generated potentials to both in vivo recordings and simulations

of synaptically generated LFPs are described below (see Figure 3.10).

3.3.3 Interneuron AP contributions to field potentials

Some interneuron types, specifically basket and bistratified cells (Klausberger et
al. 2003, 2004), substantially increase their firing during SWRs, with spike times
modulated by the ripple. While these cells make up <5% of the cell population in CA1
(Olbrich & Braak 1985, Aika et al. 1994, Freund & Buzsaki 1996), their average firing
rates during SWRs can be three to four times greater (Csicsvari et al. 1999a, Csicsvari et
al. 2000). To estimate the contribution of their EAPs to SWRs and other fast oscillations,
we used the dentate gyrus basket cell model of Norenberg et al. (2010) and Hu et al.

(2010). While the model was not specifically tuned to reproduce basket cell EAPs, the
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qualitative features of the EAP shape and amplitude (Figure 3.7A) are similar to those
reported by Henze et al. (2000) for a CA1 basket cell that was 50-100 um from two
neighboring shanks of a multielectrode array. Their EAP amplitude is similar to
pyramidal cell EAPs, but the basket cell EAPs were significantly narrower (Figure 3.7B),
consistent with experimental observations (Bartho et al. 2004). A previous modeling
study saw little effect of axon fibers beyond the initial segment on EAPs (Gold et al.
2006), but that was for pyramidal cells with myelinated axons that project out of the local
region. The situation could plausibly be different with a dense arbor of unmyelinated
axon fibers and terminals, as with local interneurons. However, we saw only minor
effects on the average EAP profile (Figure 3.7B) for basket cells with and without an
extensive, active axon (see Materials and Methods).

We simulated V. signatures of spiking in a combined population of 471 basket
cells and 9416 pyramidal cells. The basket cell somata were positioned in a disk of the
same radius as the pyramidal cells (0.5 mm), but approximately twice as thick (100 um);
this population was intended to account for both the basket and bistratified cells that are
active during SWRs. We allowed 40% of the basket cells and 8% of the pyramidal cells
to fire each 10 ms. With the number of basket cells being 5% of the number of pyramidal
cells, but five times more active, the total number of basket cell APs was one-quarter the
total number of pyramidal cell APs. These values are similar to the activity levels
reported in (Csicsvari et al. 1999a, 2000) during SWRs, although they actually
overestimate the proportion of spikes estimated to originate from basket cells. Spike

times in both populations were again clustered in population bursts with ¢ = 0.2/f
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(Csicsvari et al. 1999a), and the preferred spike phase for basket cells was delayed by 90°
from pyramidal cell firing (Sullivan et al. 2011). The lower numbers of basket cell spikes
and their narrower width resulted in a substantially smaller contribution to the combined
population potentials than the pyramidal cell spikes. Figure 3.8, B and D, shows the case
of a 200 Hz rhythm, and the results for 50-400 Hz are summarized in Figure 3.8C. The
average power over 25 trials at the oscillation frequency of the extracellular potentials
generated by spiking basket cells was <5%, even at 400 Hz. The more visible increases in
power when this was added to the pyramid AP-generated potentials (Figure 3.8C) are due
to the (V'R x V,BC) product term contributing to the power measure when the (V.”7R +
2C) signal amplitude was squared.

Consistent with their small effect on average single cell EAPs, axons in the basket
cell population contributed little to the LFP oscillation. For the 200 Hz oscillations in
Figure 3.7, the root-mean-square error of the pyramidal layer V. with the truncated axon
(compared with the population with the full axon) was 2.7 1V, resulting in an average

power at 200 Hz that was ~8% less for the population with truncated axons.

3.3.4 Synaptic currents during fast oscillations

In the AP-generated extracellular potentials described above, the increase in
power with increasing frequency (up to ~150 Hz) is due to the narrow EAPs overlapping
more as the faster rhythms more effectively synchronize spikes. This is in contrast to the
behavior expected for signals generated by slower postsynaptic currents with similar

temporal synchrony. The postsynaptic conductance change resulting from synapse
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activation has a quick rise, but its decay is much slower than an AP, with exponential
decay time constants between 2 and 10 ms in hippocampal pyramidal cells (Hestrin et al.
1990, Jonas et al. 1993, Maccaferri et al. 2000). The slower this decay, the greater the
attenuation of the high-frequency component of the total synaptic current.

We explored the frequency dependence of V. in a population receiving layer-
specific oscillatory synaptic input (Figure 3.9A). The initiation times for the rhythmically
modulated synapses were determined by the same pdf as the APs in Figures 3.2, 3.4, 3.6,
and 3.8. The potentials shown are for synapses with zgecqy 0f 4 ms (Materials and
Methods), but similar results were obtained when 74ecqy Was varied from 1 to 7 ms (Figure
3.9 C, E, insets). In one scheme, constant excitation impinged on the apical Schaffer
collateral dendritic region along with rhythmic inhibition at perisomatic basket and
bistratified cell target domains (Sik et al. 1994, Megias et al. 2001) (Figure 3.9 B, C),
similar to the input pattern thought to be important for rippling LFPs in CA1 during
SWRs (Buzsaki et al. 1992, Csicsvari et al. 2000). Next, the opposite pattern was used
rhythmic apical excitation and constant perisomatic inhibition (Figure 3.9 D, E),
analogous to oscillating input from CA3 (or entorhinal cortex, although entorhinal input
is even more distal) (Andersen et al. 2007) during tonic inhibition. The ability of such
synaptic inputs to generate oscillatory signals at the rhythm frequency rapidly decreases
as the oscillation frequency increases, which is illustrated qualitatively in Figure 3.9, B
and D, and quantitatively in Figure 3.9, C and E. Also noteworthy are the differences in
the depth profile of the oscillating signals between the two schemes shown. Apical

excitation generated larger amplitude fluctuations in the extracellular potentials in the
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dendritic layers, with a distinct phase reversal just proximal to the somatic layer, similar
to gamma frequency LFPs in CA1 following lesions to the entorhinal cortex (Bragin et al.
1995). In contrast, thythmic perisomatic inhibition produced a relatively strong
oscillation in the pyramidal layer potential, but extended weakly into the dendritic layers.
There were two primary causes of this: (1) differences in the strength and geometry of the
current dipoles produced by synaptic input distributed around the soma versus apical
input, and (2) an inhibitory synapse reversal potential Eye.ins that is closer to the
subthreshold 7V, than the excitatory Ee,exe. When either (1) rhythmic excitation is instead
placed perisomatically with constant inhibition in the apical dendrites, or (2) Erey,in 1 set
to -130 mV (the same voltage difference from the -65 mV resting potential of the
membrane as the 0 mV Ejeexc), the dendritic layer V. did start to oscillate, but both
alternatives produced substantially weaker oscillations than the case of a strong apical

rhythmic drive (data not shown).

3.3.5 Combining APs and IPSCs

Our neuronal population simulation methods allow us to explore the effects of the
spatiotemporal distribution, reversal potentials, and kinetics of synaptic currents on
extracellular potentials. Unfortunately, the large number of parameters and the lack of
precise experimental validation of many of them make a reliable quantification of
synaptic contributions to fast LFPs impractical. To perform more trustworthy quantitative
comparisons between synaptically generated field potentials and both our simulated AP-

generated potentials and in vivo recordings, we took advantage of measurements reported
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by Glickfeld et al. (2009) and Bazelot et al. (2010). They performed intracellular and
extracellular recordings in hippocampal slices and characterized the extracellular uFields
following individual inhibitory interneurons APs. These deflections in the extracellular
potential presumably reflect the summed IPSCs elicited in the numerous neurons
contacted by the axons of the interneurons. The uFields were visible over several hundred
micrometers, but their amplitude decayed with distance, with amplitudes reduced by
>50% at electrodes 250-300 um from the site with the largest uField (Bazelot et al. 2010).
We therefore constructed an interneuron population with the same parameters as before,
but only included cells within 250 um of the electrode, to estimate the combined field
potentials when 30% of the population fired every 10 ms (Csicsvari et al. 2000). We
added the average CA1 basket cell stratum pyramidale uField (Figure 3.10A; 15.8 uV
amplitude, linear rise with 1.2 ms 10-90% rise time, exponential decay with 6.6 ms time
constant) (Glickfeld et al. 2009) to the total stratum pyramidale V. at the

time of each basket cell spike. Spike times were modulated by a periodic Gaussian pdf (o
= 0.2/f) at different frequencies f.

As in the simulations of compartmental models receiving synaptic input, the
amplitude of the oscillatory component of the resulting LFP decreased with increasing
frequency (Figure 3.10B). In this case, however, there were fewer critical parameters to
determine because we started with experimentally characterized basket cell uFields. We
therefore used these simulations to estimate the contributions of both IPSCs and
pyramidal cell AP currents to oscillations in the cumulative LFP and compared them to in

vivo ripples. The amplitude and frequency of the V. oscillation is not constant during
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SWRs, however, in contrast with the more consistent simulated potentials generated by
our simulations, so fixed time window FFT measurements of oscillation power would not
produce a fair comparison. We instead measured instantaneous frequencies and
amplitudes of individual waves within detected ripples and compared these with
simulated ripples. With 10% of the pyramidal cell population firing and 30% of the
basket cell population producing uFields each 10 ms (Csicsvari et al. 2000), the
waveform characteristics, ripple amplitudes, and frequency—amplitude relationship of in
vivo ripples with dominant frequencies between 140 and 160 Hz were very well
reproduced by the combined AP-generated and IPSC-generated ripples (Figure 3.10 C,
D). The contributions of the two components were similar over the 100-200 Hz frequency
range, with APs remaining similarly powerful (Figure 3.2), but IPSC-generated power
decreasing with increasing frequency. In these simulations, the basket cell firing rhythm
underlying the IPSC-generated ripples (i.e., the summed uFields) lagged the pyramidal
cell thythm by 90° (Sullivan et al. 2011). Experimental estimates of the average phase lag
are between 60 and 100° for gamma, epsilon, and ripple oscillations in CA1 (Csicsvari et
al. 2003, Sullivan et al. 2011). The combined ripple amplitudes were reduced by 10-13
and 40-47% for 0 and 180° phase lags, respectively, and the oscillation amplitude of each
component of the simulated LFPs was proportional to the size of the active population

(data not shown).
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3.4  Discussion

Given the observed relationship between spike synchrony and oscillation
frequency during hippocampal fast oscillations (Csicsvari et al. 1999b, Sullivan et al.
2011), the increase in oscillation power at frequencies >80 Hz is likely to involve more
substantial contributions from local AP currents to the measured LFP signal. The details
of our findings rest on accurate reproduction of the spatiotemporal profiles of AP
membrane currents, for which the CA1 pyramidal cell model of Gold et al. (2006, 2007)
was developed. The EAP amplitudes from our model (cell D151a) (Gold et al. 2007) are
on the low end of the spectrum reported by Henze et al. (2000). Our population model
may therefore underestimate stratum pyramidale signal amplitudes. Furthermore, the
model of Gold et al. was not designed to accurately recreate slower Ca?" spikes
(Kamondi et al. 1998), spike afterpotentials (afterhyperpolarization, or AHP, being the
most prominent) (Gustafsson & Wigstrom 1981, Storm 1987, 1989), and intrinsic
membrane oscillations (Leung 1991, 1998), all of which may affect LFPs.

While our simulations indicate that APs in basket cells, even with their dense
local constellation of axon terminals, contribute much less to slower components of the
extracellular potential than pyramidal cells, further experimental dissection or more
focused axon modeling are needed to demonstrate this more definitively.

Most of the simulations presented here have event timing modulated in an
approximately sinusoidal fashion, resulting from the 0.2/f width of each Gaussian-shaped
burst. The signal power contributed by AP currents depends on the relationship between

synchrony and rhythm frequency (Figure 3.3). We kept the o = 0.2/f relationship for spike
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synchronization consistent across frequencies because of the high degree of phasic
modulation of spikes within fast hippocampal oscillations (Csicsvari et al. 1999a, 1999b,
2000, Sullivan et al. 2011; but see Colgin et al. 2009). The neuronal networks of the brain
do often display an excitation—frequency—synchrony relationship in which stronger
excitatory driving force leads to faster oscillations (Whittington et al. 1995, Csicsvari et
al. 1999b, Sullivan et al. 2011), with inhibition being effective at gating spike times
(Whittington et al. 1995, Hasenstaub et al. 2005, Cardin et al. 2009).

The 100-200 Hz oscillations in the hippocampus during SWS exhibit a high
degree of phase coherence across CA1 (Ylinen et al. 1995b, Csicsvari et al. 2000,
Sullivan et al. 2011), as required for AP currents to contribute a substantial portion of the
LFP signal. If similar coherence characteristics of fast oscillations that occur during theta
states are found, it could indicate that these network patterns share common mechanisms
of generation, which would have implications for our understanding of how these
oscillations may assume their hypothesized role in interregional coupling in the behaving
animal (Colgin et al. 2009). More detailed analyses and perturbations of network activity
throughout the hippocampal— entorhinal circuit during these brain states are still needed
to better appreciate how these regions are interacting.

The contribution of fast spikes to slower LFP signals additionally relies upon a
large number of active, synchronous neurons. Our firing rates and synchrony parameters
were motivated by the estimates of Csicsvari and colleagues (1999a, 1999b, 2000), which
were based on units classified as putative pyramidal cells and interneurons, but how

representative such units are of the CA1 neuron population remains an open question.
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While a significant fraction of CA1 pyramidal cells may be inactive during exploration,
many of the “silent cells” are active during SWS (Thompson & Best 1989).

We found that summed synaptic and AP currents are both capable of generating
oscillatory extracellular potentials, and our results suggest that there is an opportunity for
a transition from synaptic to spike-related currents as the dominant current generator of
oscillatory potentials near 100-150 Hz. This is consistent with widespread experimental
observations of a high correlation between spiking activity and power in LFP bands faster
than 90 Hz, and with principal cell firing consistently centered on the oscillation trough
in the cell body layer (Csicsvari et al. 1999a, 1999b, 2000, Canolty et al. 2006, Ray et al.
2008a, Le Van Quyen et al. 2008, Ray et al. 2008b, Colgin et al. 2009, Le Van Quyen et
al. 2010, Bragin et al. 2011, Sullivan et al. 2011, Jackson et al. 2011, Ray & Maunsell
2011b, Belluscio et al. 2012). A specific LFP pattern near this transition point is the SPW-
R complex of the hippocampal CA1 region (Buzsaki et al. 1992). These events coincide
with dramatic increases in excitation and synchrony within the pyramidal cell population,
more so than the interneuron population (Csicsvari et al. 1999a), and our simulated AP-
generated ripples reproduce several features of the SPW-R waveform and depth profile.
A large AP component of ripple fields provides a parsimonious explanation of a number
of observations reported in the investigations by (Csicsvari et al. 1999a) (Csicsvari et al.
1999b, 2000): (1) a much stronger correlation between ripple amplitude and pyramidal
cell firing rates than interneuron firing rates (Csicsvari et al. 1999b); (2) the summed
activity of CA1 pyramidal cells better predicted ripple features than interneuron and CA3

pyramidal cell activity (Csicsvari et al. 1999a, 2000); (3) the discharge probability curve
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of pyramidal cells matched the ripple power curve much more precisely than the
discharge probabilities of the two classes of recorded interneurons (Csicsvari et al.
1999a); (4) ripple amplitude was correlated with the spatial coherence of pyramidal cell
firing, but not with the spatial coherence of interneuron firing (Csicsvari et al. 2000); (5)
oscillation amplitude was larger for higher frequencies (Csicsvari et al. 1999b).

These results do not resolve questions concerning the mechanisms of
synchronization, however. Indeed, they are consistent with any mechanism that properly
synchronizes pyramidal cell firing [e.g., thythmic inhibition (Ylinen et al. 1995b);
recurrent excitation (Maier et al. 2011); electrical synapses (Draguhn et al. 1998);
ephaptic coupling (Holt & Koch 1999, Anastassiou et al. 2011)]. Optogenetic and
pharmacogenetic manipulation of neuronal activity offers the possibility of testing these
mechanisms and our hypotheses in vivo by selectively silencing either pyramidal cells or
parvalbumin expressing interneurons in CA1, though the network response to SPW input
with either of these cell types inactivated is unknown. We have also not addressed the
shape of the SPW-R envelope. It presumably reflects the SPW synaptic excitation,
inhibitory synaptic currents, AP and AHP currents, active dendritic currents such as Ca”*
spikes, and passive return currents from all of these.

Network and field patterns at frequencies >80 Hz have been linked to several
aspects of cognition, learning, memory, and cross-regional coupling (Chrobak & Buzsaki
1996, Canolty et al. 2006, Jacobs & Kahana 2009, Colgin et al. 2009, Carr et al. 2011). At
the same time, several authors have noted the likelihood that filtered LFPs at these

frequencies are “contaminated” by local spiking activity (Zanos et al. 2011, Ray &
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Maunsell 2011a), and our results indicate that much of the spiking component cannot be
removed by subtraction of spikes from the nearby units (Zanos et al. 2011, Belluscio et
al. 2012). Thus, it is worth highlighting ways to mitigate this ambiguity in the source of
these signals. First, if AP currents dominate an oscillatory signal, the negative spikes
created by strong inward Na* currents at the soma during APs should appear at the
troughs of the signal in the cell body layer. If perisomatic inhibition is the primary current
generating the LFP, we might also expect cells receiving this inhibition to fire near the
troughs (i.e., the inhibitory current minima). However, time delays between minimal
inhibitory current and depolarization of the membrane past threshold may correspond to
significant phase difference at high frequencies. Indeed, in the network model of Taxidis
et al. (2011), pyramidal cell spikes during SPW-Rs occurred ~90° after the trough of
inhibitory synaptic current, and we have seen similar delays in preliminary simulations of
synaptically driven SPW-Rs with the model of Gold et al. (2007). Second, depth
recordings and current source density analyses (Nicholson & Freeman 1975, Pettersen et
al. 2006, Leski et al. 2011) can locate the signal source layers in laminated structures, and
the depth profiles of synaptic currents and AP currents can differ substantially (Figures
3.6 and 3.9). Passive return currents during processes with concentrated active driving
currents should cause a phase reversal somewhere along the somatodendritic axis;
knowledge of the location and spread of synaptic contacts along this axis should provide
clues about which processes are generating the field fluctuations. Third, phase synchrony

of rhythmic spiking over several hundred micrometers within the somatic layer is
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important for the summation of AP currents from many distant cells to generate a smooth
LFP oscillation waveform.

It may be that fast oscillations primarily reflect a highly excited network, with
local inhibitory interneurons synchronizing themselves and effectively gating principal
neuron firing within narrow time windows (Hasenstaub et al. 2005, Whittington et al.
2010). Complicating this picture, excitatory input from an afferent region undergoing fast
oscillations may also generate such fast LFP signals, as well as push the local network
into its own fast oscillation state. Simultaneous multisite recordings along the
somatodendritic axis and within the cell body layers of several connected brain regions

are therefore important for the dissection of network interactions during fast oscillations.
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3.5  Figures for Chapter 3

100 pv

normalized by
negative peak

100 um, 10 ms 0.1
Figure 3.1. Average extracellular action potential (EAP) of the pyramidal cell model. A4,
[lustration of V. calculation in a population through the superposition of contributions
from all compartments in all cells. Individual compartment contributions are primarily
determined by their transmembrane currents and distances from the electrode. B,
Location dependence of the EAP for the pyramidal cell model. The peak-to-peak voltage
range is indicated by the color of each trace. Subthreshold currents have been removed,
and each EAP waveform is an average over 25 points at a fixed radius from the apical
axis (the vertical direction here) to remove the dependence on the precise dendritic
geometry. EAPs are calculated at the location of the start of each trace. C, EAPs within
the cell body layer (B, dashed box) with voltages drawn to scale. EAP amplitude
decreases rapidly with distance. The largest EAP is calculated 20 um from the soma
center, and then at 50 um intervals. D, Same traces as in C, but normalized by the

negative peak.
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Figure 3.2. Extracellular signatures of phase-modulated spiking in a pyramidal cell
population. 4, [llustration of the model. The 9416 pyramidal cells were randomly
distributed with their soma centers in a 40-um-thick circular disk with 1 mm diameter. V.
values were calculated along a virtual electrode shank oriented along the central axes of
the disk. Layer abbreviations: o, Stratum oriens; p, stratum pyramidale; r, stratum
radiatum; Im, stratum lacunosum-moleculare. B, Extracellular potentials in stratum
pyramidale arising from AP currents in randomly and rhythmically spiking populations
with varying modulation frequency and three different average firing rates (2, 4, 6% per
10 ms). Histograms of APs are shown above the corresponding voltage traces. C,
Averaged FFT power spectra over 25 trials for V. in stratum pyramidale. Spectra are
shown for each case from B and for two additional frequencies (250 and 350 Hz). Note
that the unmodulated spiking spectra (grayscale in B) are not visible because the

maximum value in the most active case shown is 2.2 x 10~7. Power spectral densities
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(psds) throughout this manuscript were estimated using the multitaper method with a
time-bandwidth product of 4 and an 8192-point FFT (Percival & Walden 1993), so the

arbitrary psd units (a.u.) are consistent in all figures.
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Figure 3.3. Effect of additional synchrony at slower oscillation frequencies. A, Spike
histograms and the resulting stratum pyramidale extracellular potentials for three
different widths of the Gaussian-shaped bursts of spiking in the population [¢ = 1 ms
(red), 2 ms (green), 4 ms (blue)] during a 50 Hz rhythm. At low ¢ (high synchrony), the
extracellular potentials essentially consist of periodically reoccurring population spikes.
B, The 25 trial averages of the FFT spectra of the extracellular potentials in 4. Narrower
population bursts increase power at both the rhythm frequency and its harmonics, with

the power at the harmonics exceeding that at the rhythm frequency for very synchronous
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spiking. C, Average power spectra for 50 — 400 Hz rhythms in which the repeating
Gaussian-shaped population bursts have widths of ¢ = 3, 2, 1 ms, independent of the
oscillation. Six percent of the population fires each 10 ms with spike times modulated
within the periodic probability density function. Faster rhythms therefore have these

spikes separated into more bursts and, consequently, have fewer spikes per burst.
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Figure 3.4. EAPs from groups of distant neurons can contribute substantially to fast LFP
oscillations. 4, Extracellular potentials (right) along the stratum oriens—stratum radiatum
axis in a rhythmically bursting population with 6% of the population firing each 10 ms.
Spike bursts recur periodically at 150 Hz and have a Gaussian shape with ¢ = 1.3 ms (i.e.,
one-fifth of the oscillation period). The locations of neurons that spike during one 6.7 ms
period are indicated by triangles in a top-down view of the pyramidal layer (left), with
colors indicating the 50-pm-wide ring from which the spikes originate. V. traces are

colored correspondingly, with contributions from each ring of cells adding cumulatively
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from the outside in. Stacked histograms above the potential traces show spike times. B,
C, Averaged power spectra of the stratum pyramidale V. from each individual ring (B)
and for the inside-out cumulative potentials indicated by the colored disks (C). The insets
indicate the proportions of the total 150 Hz power generated by each ring- or disk-shaped
subpopulation (i.e., the peak values of the power spectra, normalized by the power at 150
Hz in the full population). Note that the contributions of the rings in B to the cumulative
spectra in C do not sum linearly because we are displaying spectral power, which is

proportional to the square of the amplitude.
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Figure 3.5. Effect of spatial synchrony on oscillatory potentials. Lef, Locations of CA1
pyramidal cell somata within a 1-mm- diameter disk. The triangles show the location of
cells spiking within a 5 ms interval (3% of the population). The temporal offsets of the
periodic probability density function that modulates spike timing are shifted in a position-

dependent manner along one dimension within the cell body layer, similar to the case in
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which activity propagates along one direction in CA1 (Lubenov & Siapas 2009). Right,
Average power spectra of Ve in stratum pyramidale over 25 trials with pyramidal neurons
undergoing rhythmic firing, as in Figure 3.2, with varying levels of spatial synchrony.
Color indicates the frequency of the firing rhythm, and line type indicates the time delay
per unit distance of the oscillating spike probability function. Solid lines, 0 pus/um (no

delays); dashed lines, 5 ps/um; dotted lines, 10 ps/pum.

A 26-event avg. of raw in vivo SPW-R recordings B 26-event avg. of 50-5000Hz filtered in vivo SPW-R recordings
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Figure 3.6. Simulated AP-generated ripples are characteristically similar to in vivo

ripples. A4, Ripple-triggered average of wideband in vivo depth recordings (100 pm
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electrode spacing) during 26 SPW-Rs with a dominant frequency between 140 and 160
Hz. Note the large variability in the SPW field potentials in the apical dendritic region,
consistent with the ripple oscillation being generated locally, rather than driven by a
coherent CA3 oscillation (Csicsvari et al. 2000). B, Fifty to 5000 Hz bandpass filter
applied before averaging the ripple events in A. The ripple is strongest in the pyramidal
layer (Ylinen et al. 1995b), with a phase reversal 150-200 pm below (in stratum
radiatum). The dashed vertical lines are visual aids for phase alignment. C, Comparison
of single representative stratum pyramidale voltage traces for simulated ripples consisting
only of EAPs from a pyramidal cell population in which 5% (blue), 7.5% (green), or 10%
(red) of the cells fire each 10 ms (spike histograms shown above voltage traces) and
filtered in vivo ripple events (black). The firing probabilities are modulated by the same
probability function as in Figures 5.2 and 5.4. D, The 26 trial average of simulated EAP-
generated ripples with frequencies set to the dominant frequencies measured during the in

vivo ripple events of 4 and B.
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Figure 3.7. Spatiotemporal characteristics of basket cell EAPs. A, Location dependence



of EAPs for the single basket cell model with peak-to-peak voltage range indicated by the
color of each trace. As in Figure 3.1, subthreshold currents have been removed, and each
trace is an average over 25 points at a fixed radius around the vertical dendritic axis. B,
EAP amplitude and width versus distance for the cell models: blue, pyramidal cell
(PYR); purple, basket cell (BC); orange, basket cell with axon truncated at 68 um. The
amplitude of the negative (solid lines) and positive (dashed lines) peaks correspond to the

left axis, and the width of the negative phase (dotted lines) corresponds to the right axis.
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Figure 3.8. Basket cell EAPs contributed little to simulated ripple LFPs. 4, Locations of
pyramidal cell (PYR) and basket cell (BC) somata within stratum pyramidale in a 1-mm-

diameter simulated population. The small circles represent subthreshold cells, and the
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larger triangles and diamonds represent cells spiking within one 5 ms period. B, Spiking
histograms and extracellular potentials from populations of pyramidal cells (red) and
basket cells (blue) during 200 Hz rhythmic spiking with all synaptic driving currents
removed, as well as the extracellular potential when both signals are combined (black).
Here, basket cells are less numerous (5% of pyramids) but have five times higher average
firing rates than pyramidal cells. Peak basket cell firing lags that of pyramidal cells by
90° (1.25 ms at 200 Hz) (Sullivan et al. 2011). C, Spectral peaks of 25-trial-average FFTs
of stratum pyramidale potentials from the separate (color) and combined (black)

populations during rhythms from 50 to 400 Hz. D, Mean = SD for the potentials in B over

25 trials.
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Figure 3.9. Simulation of extracellular potentials from synaptic input oscillations in a
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passive pyramidal cell population. A, 200 apical excitatory and 200 perisomatic
inhibitory synapses are triggered each 50 ms, with the initiation times for one type (B, C,
inhibitory; D, E, excitatory) modulated within a periodic Gaussian probability density
function for f'= 50 — 400 Hz in 50 Hz steps with SDs ¢ = 0.2/f, similar to the firing
profiles in the rhythmically spiking population simulations. Synapses of the opposing

type are activated with a constant probability. Both synapse types have 7,,.,,= 4 ms. B, D,

Example V. traces for the 50, 100, and 200 Hz cases. C, E, Power spectra of stratum
pyramidale V.. Insets show the peak power values on a log scale for each oscillation

frequency with 7., of the oscillating synapses varied from 1 to 7 ms.
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Figure 3.10. APs and IPSCs contribute similar amounts of power to 100 —200 Hz SPW-R
LFPs. A4, uField in stratum pyramidale from a single basket cell (BC) spike, modeled
after uFields measured by Glickfeld et al. (2009) and Bazelot et al. (2010). B, Cumulative
LFPs in a rhythmically firing basket cell population when the uField in A4 is added at the
time of each spike for basket cells within 250 um of the electrode contribute uFields;

30% of the population spikes each 10 ms. Histograms above the LFP curves indicate
spike times. C, Comparison of simulated LFPs from pyramidal cell EAPs (red) during a
150 Hz population rhythm with 10% spiking each 10 ms (as in Figure 3.6), basket cell

uFields (blue), the two combined (magenta) with the basket cell spiking rhythm lagging
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the pyramidal cell rhythm by 90° (Sullivan et al. 2011), and a 50 —5000 Hz bandpass
filtered SPW-R recorded in vivo (black). The histogram shows all events occurring in
cells within 250 um from the electrode; the potentials include pyramidal cell EAPs from
all cells within 500 um and basket cell uFields from all cells within 250 pm of the
electrode. D, Comparison of amplitudes for in vivo and simulated ripples. The gray dots
show instantaneous amplitudes and frequencies of individual troughs within in vivo fast
oscillation events between 50 and 210 Hz, the black line marks the mean (£SD) trough
amplitudes in 10 Hz bins of these in vivo ripple waves, and colored lines (same colors as
in () indicate mean (+SD) trough amplitudes during simulated ripples in populations

oscillating at 100, 150, and 200 Hz.
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II1. Analyzing and interpreting multisite

intracranial electrical recordings

4. High frequency signals, oscillations, and

interactions in the hippocampal-entorhinal circuit

4.1 Introduction
4.1.1 Cross-frequency coupling and gamma coherence

Brain networks support a variety of oscillatory activity patterns over a wide range
of time, frequency, and distance scales (Buzsaki 2006). Oscillations have been
hypothesized to serve several computational purposes, such as clocking (Laurent 1996,
Freund & Katona 2007, Moore et al. 2013), gating (Jensen & Mazaheri 2010),
segmentation (Hasselmo et al. 2002, Buzsaki 2010), synchronization (Laurent 1996,
Engel et al. 2001, Steriade 2006), desynchronization (Mizuseki & Buzsaki 2014), state
maintenance (Jensen & Lisman 2005), among others. In addition, multiple oscillations,
likely serving different functional roles, may co-occur and interact (Steriade 2006, Jensen
& Colgin 2007). One of these forms of interaction, phase-amplitude cross-frequency
coupling, is readily observed in hippocampal LFPs during theta oscillations (Bragin et al.
1995, Canolty et al. 2006, Colgin et al. 2009, Belluscio et al. 2012). The modulation of
gamma power by theta phase in CA3, for instance, has been shown to increase in the

rodent hippocampus during learning (Tort et al. 2009).
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Differences in the theta modulation and interregional coherence of sub-bands of
the broad the gamma frequency range, has led some authors to hypothesize a role for
gamma oscillations in routing information flow through different parts of the
hippocampal network. In support of this, Colgin et al. (2009) reported higher coherence
in the fast gamma band (65-140 Hz) than the slow gamma band (25-50 Hz) between CA1
and layer 3 of the entorhinal cortex (EC3), with the opposite relationship between CA 1
and CA3. High power events in the fast gamma band tended to occur near the trough of
the CAL1 stratum pyramidale theta wave, whereas the slow gamma events occurred earlier
in the cycle, on the descending phase near the theta peak. Previous work has suggested
that long-term potentiation (LTP) and depression (LTD) occurs on different theta phases
(Pavlides et al. 1988, Orr et al. 2001, Hyman et al. 2003), inspiring models in which
different theta phases serve differential encoding and retrieval roles (Hasselmo et al.
2002). Colgin et al. interpreted their data in this light, proposing that fast gamma events
reflect encoding events coupled to EC3, and that slow gamma events herald memory
recall initiated by CA3. Such a role for fast gamma oscillations is at odds, however, with
several other findings regarding dendritic activation, synaptic plasticity, and the temporal
ordering of input to CA1.

Specifically, the theta phase of maximal dendritic excitation arriving from EC3 is
at the theta peak in CA1 stratum pyramidale (corresponding to the trough and a current
sink in stratum lacunosum-moleculare, the site of the EC3-CA1 perforant path synapses)
(Andersen et al. 1966, Holsheimer et al. 1982, Buzséki et al. 1986, Brankack et al. 1993,

Kamondi, Acsady, Wang, et al. 1998), which is separated from both maximal CA1
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spiking (Fox et al. 1986, Mizuseki et al. 2009) and the strongest fast gamma power
(Colgin et al. 2009, Belluscio et al. 2012) by around half a theta cycle (though note the
asymmetry of the cycle; Leung 1984, Belluscio et al. 2012). A more complex profile of
gamma band activity during theta oscillations was shown by Belluscio et al. (2012), and
it was the medium gamma (60-90 Hz) signal that arrived at the proper phase and
frequency (Chrobak & Buzsédki 1998) to correspond to entorhinal input. Furthermore,
several studies have found that entorhinal input to CA1 has a weak and slow effect at the
soma (Levy et al. 1995, Remondes & Schuman 2002, Jarsky et al. 2005), making it
difficult to see how coherent fast oscillations would arise or be advantageous.

Chapter 3 showed that substantial amounts of power near 100 Hz can be
generated by spikes in a population undergoing rhythmic changes in excitability around
that frequency, and this band is generally susceptible to spectral contamination from
spike waveforms (Zanos et al. 2011, Ray & Maunsell 2011a, Belluscio et al. 2012). In
addition to the EC3 input, CA3 and CA1 can both generate intrinsic gamma oscillations
in this band (Csicsvari et al. 1999b, Sullivan et al. 2011), meaning that afferent excitatory
input, local inhibitory currents (but see Waldert et al. 2013), and local spiking activity all
overlap in this spectral band. At low frequencies (<60 Hz), LFPs appear to reflect mostly
synaptic currents, which can entrain neuron firing. At high frequencies (>150 Hz), LFPs
are more indicative of local spiking activity. But the relationships, especially in this mid-
frequency range, between the LFP and input (afferent synapses), local processing
(synapses, membrane oscillations, dendritic spikes, etc.), and output (action potentials)

are not well understood. Studies that pool LFP events within the medium/fast gamma and
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epsilon frequency bands, and especially those that do not characterize the spatial structure
of the LFP (e.g., when tetrodes or single wires are used), may therefore be combining
multiple distinct processes into a single class of phenomena, obscuring the functional
significance of each process.

An understanding of the neural dynamics within the hippocampal-entorhinal
circuit is integral to understanding spatial coding and memory in the brain (Hartley et al.
2014), and so it is important to decipher the physiological correlates of the LFP signals
measured in those regions. We sought to develop ways to detect, distinguish, identify, and
characterize activities that contribute to the gamma/epsilon band in recordings from the
dorsal hippocampus and medial entorhinal cortex in sleeping and behaving rats. We
interpret our results in the context of the rodent hippocampal-entorhinal network, but

many of the techniques and conclusions are applicable to other systems, as well.

4.1.2  Stepping back: what is a neural oscillation, anyway?

There are many well-studied examples of network oscillations in nature (Engel et
al. 2001, Buzsaki 2006, Marder & Bucher 2007, Wang 2010, Vanrullen & Dubois 2011,
Buzséki et al. 2013), but considerable controversy still exists over the functional roles
and importance of oscillations in brain networks. The first issue that needs clarification is
precisely how one defines the term oscillation. What characteristics and dynamics must a
system possess in order to be considered an oscillating system? In the case of the brain,
which part(s) of the system are we referring to? In physics, an oscillating system is one in

which energy is periodically transferred or converted between different components (e.g.,
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between kinetic and potential energy in a pendulum). In neural populations, we generally
conceive of oscillations as rhythmic changes in excitability, but we must decide if this
refers to the excitability of an individual neuron’s membrane, its spiking activity, or the
spiking activity of the population as a whole. It is also plausible that the measured
variable, such as the LFP, could exhibit periodic fluctuations due to variation in synaptic
currents in the distal dendrites, but these fluctuations might not propagate to the soma. In
this case the neurons near the recording site would not actually be oscillating
individually, though, as a whole, they or an afferent population could be.

Detecting an oscillation is often not straightforward. LFPs are generated by a
complicated mixture of sources subject to numerous biophysical filters in the conversion
of neuronal activity to measured voltage (Einevoll et al. 2013), and they can be poor
indicators of local spiking (Mitzdorf 1985). It is important to assess whether spiking
activity is rhythmically modulated by the oscillating variable, as well as confirm that the
source is local (e.g., using appropriate current source density analysis to exclude volume
conducted currents as the cause of an LFP signal). Spectral leakage from broadband
changes in power associated with spiking (Manning et al. 2009, Ray & Maunsell 2011a)
or harmonics of lower frequencies (Leung et al. 1982, Buzsaki et al. 1983, Montgomery
et al. 2008) can lead to spurious power increases and phase locking of spikes . Ideally, we
could do away with using the LFP altogether and measure spikes and membrane
potentials across the population directly (Quian Quiroga & Panzeri 2009). While
recording technologies are approaching this point (Buzsaki 2004, Ahrens et al. 2013,

Chen et al. 2013), it is still rare to obtain sufficient simultaneous unit count, recording
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duration, and temporal resolution to confidently assess the presence or absence of
transient oscillatory dynamics using spikes alone (Muresan et al. 2008).

We recorded in CA1 and CA3 of the hippocampus and layers 2-5 of the
dorsocaudal medial EC, then applied a combination of methods across a wide range of
frequencies, including independent component analysis (ICA) and cross-frequency
coupling (CFC) measures in the LFP, spike-field coherence, and spike train correlations.
Consistent with previous reports, we found that gamma power in the LFP of each region
was modulated by the theta rhythm, with multiple distinct frequency bands in CA1
stratum pyramidale emerging at different phases of the theta cycle. The gamma sub-bands
corresponded to the activation of different neuron populations throughout the circuit,
reflecting both afferent synaptic input and local processes. Single units detected in each
region were phase-locked to the LFP gamma patterns in different ways. Interneurons in
CAL displayed a heterogeneous spike-field coherence profile, with subpopulations
preferring different gamma sub-bands of the LFP. CA1 pyramidal cells, however, were
modulated poorly or not at all by the phase of afferent gamma rhythms. When compared
to LFPs in their own region (i.e., at another site in stratum pyramidale 400 um away),
they were most strongly modulated high frequencies (140-160 Hz) in a way that was not
explainable by simple spike contamination. The medium-fast gamma coherence (weak,
but significant) between the CA1 LFP and LFPs recorded from its afferent regions
therefore did not indicate that the principal cell populations were coupled at gamma

frequencies. The timing of EC3-CA1 interactions was instead more consistent with
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models of hippocampal function that exploit longer timescale mechanisms for dendritic

activation, synaptic modification, and coordination of entorhinal and CA3 input.

4.2 Methods
4.2.1 Descriptions of the data sets

We analyzed recordings from electrodes implanted chronically in the right dorsal
hippocampus and dorsocaudal medial entorhinal cortex (EC) of behaving and sleeping
rats (male Long-Evans, 250-400 g). Three animals had one 4-shank probe in EC and one
4- or 8-shank probe in hippocampus, oriented along the septotemporal axis (Mizuseki et
al. 2009). Shanks were separated by 200 um, and each shank had 8 staggered contacts
with 20 um vertical spacing. Three animals had one probe in CA1 and one in CA3, both
in the left hemisphere (Diba & Buzsaki 2007, 2008). One animal had a 256-site array (8
shanks separated by 300 um, 32 sites per shank, linearly arranged with 50 um spacing)
implanted the transverse plane of the right dorsal hippocampus (Berényi et al. 2014). In
all cases, two stainless steel screws in the skull above the cerebellum were used as
indifferent and ground electrodes during recordings.

Data were recorded during sleep or behavior at either 32.552 kHz or 20 kHz. For
LFP analysis, data were downsampled to 1252 Hz or 1250 Hz, respectively. For unit
analysis, signals were high-pass filtered (>0.8 kHz) for offline spike detection and
sorting. Behavioral tasks included running on a linear track for water reward, retrieving
water or food on large and small square platforms, rewarded wheel-running, and delayed

alternation between arms on a T-maze for reward (Diba & Buzsaki 2007, Pastalkova et al.
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2008, Mizuseki et al. 2009, Berényi et al. 2014). Recordings were also made during rest/
sleep in the home cage preceding and following behavioral trials.

Spikes were detected and clustered semiautomatically from the digitally high-pass
filtered signal (0.8—5 kHz) and automatically sorted using KlustaKwik (Harris et al.
2000), followed by manual adjustment of the clusters using the Klusters software
package (Hazan et al. 2006). Putative pyramidal cells and interneurons were separated on
the basis of their autocorrelograms, waveforms, and mean firing rates (Bartho et al. 2004,
Mizuseki et al. 2009). EC layers were identified by the reversal of ripple-triggered sharp
waves (Chrobak & Buzsaki 1996) and reversal of theta waves (Alonso & Garcia-Austt
1987, Chrobak & Buzsaki 1998, Hafting et al. 2008), assisted by histological verification
of the recording tracks (Mizuseki et al. 2009).

Theta periods were detected automatically using the ratio of the LFP power in
theta band (5- 11 Hz) to the power of nearby bands (1-4 Hz, 12-14 Hz), followed by
manual adjustment with the aid of visual inspection of whitened power spectra. Theta
epochs during walking/running were classified as RUN, and those during sleep were

classified as REM, with non-REM sleep periods classified as slow-wave sleep (SWS).

4.2.2 Independent Component Analysis

The analysis of in vivo hippocampal LFPs with independent component analysis
(ICA) has been described and validated by Makarov et al. (2010) and Fernandez-Ruiz et
al. (2012). We used the infomax algorithm initially proposed by Bell and Sejnowski

(1995) and implemented in the EEGLAB Matlab toolbox (Delorme & Makeig 2004). The
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routine returns the activations s,(¢) and the spatial weights V;, of the same number of
components (‘generators’) as input channels (32 in our case). In the case of hippocampal
LFPs, only a few generators have significant amplitude and distinct spatial distributions
in the hippocampus (Korovaichuk et al. 2010). Once LFP generators have been extracted
from the raw LFPs, they can be analyzed as if they alone were active (Fernandez-Ruiz &

Herreras 2013).

4.2.3 Theta phase estimation

Unless otherwise noted, we used the middle of the CA1 pyramidal layer
(determined using ripple power; Mizuseki et al. 2011) as the theta reference. When
multiple CA1 stratum pyramidale sites were present, we took the angular mean of their
individual phases. 0 and 360 degrees refer to the waveform peaks, 180 degrees to the
troughs. To determine the theta phase, two separate methods were employed: (1) the
phase of the analytic signal given by the Hilbert transform of the theta bandpass-filtered
(4-12 Hz) LFP; (2) the linearly interpolated phase between maxima and minima in each
theta cycle of the 1-60 Hz bandpass filtered LFP (Belluscio et al. 2012). The intervals in
which to detect extrema were determined using zero-crossings of the narrowband-filtered

(4-10 Hz) signal.

4.2.4 Spectral analysis
To assess spectral events at a high resolution in time and frequency, we calculated

the complex wavelet transform (CWT) of the LFP with the Wavelet Toolbox in Matlab.
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We used complex Morlet wavelets with 9 waves of decreasing amplitude from the central
peak, the fourth from the center being ~4% of the central peak’s height (‘cmor5-1’ in
Matlab). These were scaled in a logarithmically spaced manner from 20-240 Hz in 28
steps. The CWT gives an amplitude and phase measure for each wavelet scale at all time
points in the data, obtained by convolving the real and imaginary parts (which are out of
phase by 90 degrees) of the wavelets with the data vectors.

The theta modulation of the LFP spectrum was calculated by binning time points
into theta phase intervals (see Section 4.2.3) and taking the mean amplitude of the CWT
at each frequency for each phase bin. To compare changes across frequencies, CWT
amplitudes were normalized by the mean and standard deviation (z-score) at each
frequency for the epochs of interest. The modulation index (MI) between the CWT
amplitude and theta phase was assessed using the weighted circular mean of the
amplitude distribution across phases (Canolty et al. 2006). Significance was assessed
with the distribution of MI values for a set of surrogate amplitude and phase vectors that
were shifted with respect to each other by randomly chosen temporal offsets (Canolty et
al. 2000).

The phase-locking of unit spikes to LFP features at each frequency was measured
using CWTs at the time of each spike. Two methods were tested, both of which produced
similar results. (1) If the CWT amplitudes were ignored, the modulation indices for each
frequency were calculated using the length of the mean phase vector, and significance
was estimated using the Rayleigh test for non-uniformity (Berens 2009). (2) The CWT

amplitudes could be incorporated as weights in calculating the mean phase vector. This
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has the desirable property that times of higher power at a given frequency count more
towards the modulation index. In this case, however, the Rayleigh test is no longer
appropriate for estimating significance. We instead compared the MI to the distribution of
MI values of surrogate spike phases following random temporal shifting of the spike
trains relative to the CWTs. [This surrogate testing was very computationally intensive,
and a more efficient alternative would instead be to implement Moore’s modification of
the Rayleigh test (Moore 1980).]

Single units may “prefer” a particular frequency of the LFP, but fail to fire in a
phase-locked manner in relation to it. We therefore also calculated the mean z-scored
CWT amplitudes for the spike times of each unit. The strength and significance of the
relationships between spikes and power at each frequency would be best assessed through
surrogate analysis, but we have not yet run these calculations.

Average LFP power and coherence spectra were calculated with Welch’s power
spectral density method (the pwelch() and mscohere() functions in the Matlab Signal
Processing Toolbox). We used a 4096-point FFT, applied to up to 10 minutes of data in
the epochs of interest (or as much as was available if less than 10 minutes of this state
occurred during the recording). To estimate significance thresholds for coherence, the
same calculations were performed 200 additional times after randomly shifting (by 1 to

30 seconds) one of the LFP data vectors (in a circular fashion) with respect to the other.



104

4.2.5 Cross- and Auto-correlations

The cross-correlogram (CCQ) of a pair of single units was calculated by placing
spikes into 0.8 ms bins (the LFP sampling rate) and convolving the resulting spike count
vectors, up to a maximum time lag of 500 ms. To obtain the multiunit CCG (mCCQG) for a
given population of single units or between two different populations, we used the
following procedure. First, the unnormalized CCG between each pair of units in a
recording was computed. Then, for each category of unit pair (detection region and
putative cell type, i.e., pyramidal or interneuron), the CCGs were summed with a
consistent pre and post ordering. In the case of unit pairs of the same category, only pairs
from different sites were included (because an artificial dip at zero lag was introduced by
the inability to detect multiple spikes at the same time and location), and each pair was
included only once. By summing the unnormalized single unit CCGs, units with more
spikes have greater influence over the multiunit CCG. On the other hand, summing
normalized single unit CCGs (Csicsvari et al. 2003) amplifies noise from low-firing units.
The best method may be to sum normalized pairs that exceed a spike count threshold, but
we have not yet explored the optimal threshold. The results presented here are for

summed unnormalized CCGs.

4.3 Results
4.3.1 Cross-frequency coupling: theta-modulation of fast oscillations
The occurrence and/or amplitude, as well as the frequency, of gamma oscillations

in the hippocampus were biased by the phase of the concurrent theta oscillation (Bragin
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et al. 1995, Chrobak & Buzsaki 1998, Colgin et al. 2009, Belluscio et al. 2012). After
calculating time-resolved wavelet-based spectra of LFP recordings (Section 4.2.4), we
measured how the power in each frequency band depended on the theta phase estimated
from the CAL1 stratum pyramidale LFP (Section 4.2.3). In CA1, slow gamma (25-50 Hz)
power was concentrated at the descending phase of theta, medium gamma (60-100 Hz) at
the peak of theta, and epsilon (100+ Hz, also often called “fast” or “high” gamma) at the
trough of theta (Figure 4.1). Some previous studies have proposed potential sources and
functions of these sub-bands (Colgin et al. 2009, Ray & Maunsell 2011a, Belluscio et al.
2012, Scheffer-Teixeira et al. 2013), and we sought to further decipher their origins and
their coordination within the hippocampal-entorhinal circuit.

Most of the excitatory synaptic input to CA 1, which impinges on the pyramidal
cell dendrites (Megias et al. 2001) and generates the strongest current dipoles generating
extracellular potentials (Buzsaki et al. 1986), arrives from CA3 and layer 3 of the
entorhinal cortex (EC3) (Andersen et al. 2007). The EC3 network was most active near
the theta peak (Figure 4.2; Mizuseki et al. 2009), which was also the phase at which most
of its gamma power is concentrated (Figure 4.1). EC3 gamma oscillations are in the
medium-fast frequency range (Figure 4.1; Chrobak & Buzsaki 1998). EC3 is therefore
the most likely cause of the medium gamma power in CA1 at the theta peak. CA3
exhibits slow gamma oscillations (Figure 4.1; Bragin et al. 1995), and most of its spiking
activity occurred on the descending phase of CA1 theta (Figure 4.2; Mizuseki et al.
2009), which makes it the best candidate for causing the slow gamma power in CA1 at

this theta phase. The high-frequency power (>90 Hz) near the theta trough coincided with
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the highest rate of firing across the pyramidal cell population. This band most likely
reflects some combination of broadband spectral leakage of spikes into the gamma range
(Zanos et al. 2011, Ray & Maunsell 2011a, Belluscio et al. 2012), coordinated IPSCs
within the highly active CA1 network (CA1 interneurons also fire a great deal at this
phase), and coordination of the pyramidal cell spikes (Schomburg et al. 2012).

These conclusions are further supported by the network activity changes from
awake theta (RUN) to the theta oscillations during REM sleep. REM sleep has also been
called “paradoxical” sleep because of the very similar electroencephalographic
characteristics during the two states (Jouvet 1967). The hippocampal formation exhibits
robust theta oscillations during both states, but important differences do surface in
detailed characterizations of network activity (Montgomery et al. 2008, Mizuseki et al.
2011). Compared to RUN, except during brief bouts of “phasic REM” (Montgomery et
al. 2008), the CA3 pyramidal cells had lower firing rates during REM, whereas the
entorhinal population, including pyramidal cells in EC3, was more active (Figure 4.3;
Mizuseki & Buzsaki 2013). There was also less powerful slow gamma in CA3 and more
powerful medium-fast gamma in EC3 (Figure 4.1). The CA1 interneurons (limited here
to those near the pyramidal layer), many of which receive powerful input from CA3
(Gulyas et al. 1999), were less active (Mizuseki & Buzséaki 2013). As a consequence of
these changes, the CA1 pyramidal population as a whole maintained similar firing rates,
but many of them shifted their firing to the peak of the CA1 theta LFP (Mizuseki et al.

2011), coinciding with the arrival of the strongest EC3 input.
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Along with these changes in the afferent and local spiking activity (Figure 4.3),
the descending-phase slow gamma was dramatically reduced during REM compared to
RUN (Figure 4.1). Following local CA1 spikes, epsilon power became biphasic,
increasing at both the theta peak and theta trough (Figure 4.1). Finally, medium gamma
power showed a stronger increase at the theta peak during REM compared to RUN,
which likely corresponded to both stronger medium-fast gamma input from EC3 and

broadband power increases accompanying the greater firing rates at this phase.

4.3.2 CSD and ICA decomposition of LFP generators

The origins of these gamma-band LFP signals were further elucidated by
techniques designed to extract source information from linear array recordings. We
employed independent component analysis (ICA) to separate LFP components generated
by distinct synaptic pathways. ICA is a technique for blind source separation (Comon
1994) and is well-suited for application to LFPs (Makarov et al. 2010, Fernandez-Ruiz &
Herreras 2013). It is a method of dimensionality reduction that seeks maximally
independent components, a more relevant goal in the context of neurophysiology than
that of other techniques such as principal component analysis (PCA). The most common
ICA algorithms operate by maximizing the joint entropy of the components (Bell &
Sejnowski 1995), which is equivalent to minimizing their mutual information. If the
resulting components are to correspond to physically meaningful sources, the sources
must satisfy the following conditions. (1) For the most part, distinct sources must be

activated independently. The technique can deal with some degree of correlated activity,
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but this may result in some degree of cross-contamination (Makarova et al. 2011). (2) The
spatial profiles should differ between sources, and (3) they remain constant throughout
the record. The depth profile of hippocampal LFPs satisfies these criteria relatively well,
given the well aligned pyramidal cells and the laminar structure of synaptic projections
from afferent regions. (4) The sources should be non-Gaussian in their activations (Bell
& Sejnowski 1995), which happens to be a signature feature of brain dynamics (Mizuseki
& Buzséaki 2013).

We applied ICA to LFPs recorded from large silicon multielectrode array
implanted in the hippocampus of behaving and sleeping rats. The algorithm takes a time
series of data with dimension equal to the number of channels, and returns a time series
of the same dimensionality, but rotated such at each dimension represents a different
‘independent component’. In the context of LFPs, we refer to the components as
generators (Makarov et al. 2010). The inverse of the mixing matrix that transforms the
LFP data into the generators gives the channel weights of the generators, which
correspond to their spatial profiles. We can estimate the relative contribution of each
generator to the original (total) LFP data by comparing their back-projected variances.
(The largest variance components produced by ICA often have low variances compared
to the first few PCA components, as the purpose of ICA is to maximize the independence
of components rather than their explained variance.)

The results shown here are for an 8-shank probe with 32 sites per shank, with
shanks oriented vertically and covering a transverse section of the dorsal hippocampus

(as in Figure 2.3, top panel). Theta oscillations dominate LFP power and are coherent
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across the hippocampal formation, but gamma band currents are much more local and
independent (Montgomery et al. 2008, Sabolek et al. 2009). By high-pass filtering above
30 Hz (i.e., above theta and its first few harmonics), we were able to extract stable and
consistent generators across multiple shanks that were broadly similar to previously
characterized generators that correspond to distinct synaptic sources (Makarov et al.
2010, Fernandez-Ruiz et al. 2012). Their spatial profiles matched that expected of the
synaptic currents elicited by activation of stratum radiatum (RAD), stratum lacunosum-
moleculare (SLM), and perisomatic (SOM) synapses (Figure 4.4 A-C). Generators of the
same type extracted from different shanks exhibited much greater gamma band (30-100
Hz) coherence than generators of different types, whether from the same or different
shanks (Figure 4.4D), and this coherence between like generators decayed monotonically
with the separation between them (Figure 4.4E). (Note, however, that low cross-generator
coherence is, to a large degree, enforced by the ICA algorithm.)

We next analyzed the power spectra and CFC of each ICA-derived generator’s
activity. As expected, the RAD generators, which exhibited strong modulation of slow
gamma by ongoing theta oscillations, with maximal slow gamma power on the
descending phase of CA1 stratum pyramidale theta. Gamma power in the SLM
generators was best modulated around 90-100 Hz, with the maximum occurring at the
theta peak. The SOM picture was less clear, and this generator did not serve to complete a
tripartite explanation of the CA1 gamma bands. It instead behaved similarly to the RAD
generator, showing strong gamma modulation that was maximal during the descending

phase of theta during both RUN and REM (Figure 4.5). As evidenced by the pyramidale
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layer LFPs, a great deal of signal mixing occurs in the perisomatic region. The higher
power of lower frequencies, as well as temporal correlations of feedforward excitation
and inhibition from CA3 (Sections 4.3.4 and 4.3.5; Zemankovics et al. 2013), may
prevent ICA from cleanly separating the gamma sub-bands into exactly three distinct

generators (Makarova et al. 2011).

4.3.3 LFP coherence

Rather than attempting to decompose the LFP in one region into its localized
sources (the goal of CSD and ICA techniques), a different approach is to measure
interactions between LFPs (this section) and units (the following two sections). For RUN,
REM, and SWS epochs, we calculated the average Fourier coherence spectra between
LFPs recorded in different regions, as well as for surrogate data with random temporal
shifts between the compared vectors. Low frequencies were likely affected more by
volume conduction, and additional broadband, high-frequency coherence was present
during RUN epochs, reflecting some amount of muscle-related signal contamination,
which we did not attempt to remove from the data (see Chapter 5). Some channels also
contained 60 Hz line noise (and/or its third harmonic at 180 Hz; dashed vertical lines in
Figure 6).

All channel pairs had significant theta coherence, so we show only frequencies
>20 Hz. To a large degree, however, the coherence reflected previous findings and known
anatomical connectivity (Figure 4.6). CA1 LFPs were highly coherent with other CA1

sites, with increases from 100-200 Hz during SWS due to sharp wave-ripples (SWRs)
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(Buzséki et al. 1992). Slow gamma dominated CA1-CA3 coherence, though it decreased
from RUN and REM, matching changes in CA3 firing between these states (Figure 4.3).
CA1-CA3 coherence from 70-100 Hz was higher during SWS due to fast gamma bursts
in CA3 (Csicsvari et al. 1999b). Some slow gamma coherence between CA1 and EC3, as
well as ECS5 but not EC2, was present during RUN, reflecting the connectivity of these
layers with CA1. CA1-EC3 gamma coherence increased during REM, including a peak
around 100 Hz. Weak, but significant, coherence between CA1 and EC2 also arose
during REM, likely due to coherence and/or volume conduction between EC2 and EC3.
Significant ripple-band coherence between CA1 and ECS appeared during SWS.

In addition to average coherence during RUN or REM epochs, we sought to
detect how the coherence depended on the phase of the theta cycle. Using the continuous
wavelet transform to calculate the instantaneous phase at each frequency, we calculated
the mean wavelet coherence between LFPs at different sites in each theta phase bin.
Because the wavelet phase estimation for a given frequency will be affected by the
amplitude of that frequency component compared to others at the same time, we did
expect to see some modulation in coherence result from the power modulation (Figure
4.1). Aside from this caveat (as well as some 60 Hz line noise), the gamma coherence
between CA1 and another CA1 site, a CA3 site, and an EC3 site did depend on theta
phase (Figure 4.7). Slow gamma coherence between CA1 and CA3 was highest during
the descending theta phase of RUN theta, but remained lower and was less modulated
during REM. In addition, some medium/fast gamma coherence appeared near the theta

trough, around the time of the most overlap between CA1 and CA3 firing increases
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(Figure 4.2). Entorhinal coherence values were quite low, but the medium/fast gamma

coherence that did emerge occurred near the peak of REM theta, which is when it is most
powerful in EC3. This was also the phase of the strongest medium/fast gamma coherence
between CA1 sites during REM, perhaps reflecting this common input source, as opposed

to more local inhibition and spiking.

4.3.4  Unit correlation and coherence with LFP spectral features

The LFP is a complicated mixture of currents from a variety of sources, with
synaptic currents predominating at low frequencies, and so it is not necessarily a good
indicator of how the local network is coordinated. We wished to more directly gauge how
well these LFP signals reflected afferent and local spiking activity, and conversely, how
well the oscillating synaptic currents reflected in the LFPs entrained spikes in CA1.
Previous studies have reported varying degrees of network phase-locking to different
spectral bands. The frequency intervals chosen for these bands, however, usually arise
from a combination of tradition and somewhat subjectively defined deviations from the
expected power spectrum of the LFP (i.e., a monotonic and smooth decay as frequency
increases). We therefore measured the phasic modulation of each unit’s spikes by the
instantaneous LFP phase estimates across a wide range of frequencies, without
preselecting particular frequency bands or power thresholds. This produced a measure of
the frequency scales at which features of the LFP contained information about the timing

of single unit spikes.
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To measure power and phase across a broad range of frequencies throughout the
recording, we calculated the continuous wavelet transform (CWT) of the LFPs using
complex Morlet wavelets scaled logarithmically from 20-240 Hz (see Section 4.2.4). This
allowed us to estimate the instantaneous power and phase at the times of single unit
spikes, and deviations from uniform phase distributions could then be quantified. We
found that putative CA1 pyramidal cell spikes were moderately phase-modulated by slow
gamma fluctuations in CA1 stratum pyramidale LFPs recorded 0.4 mm from the unit
detection site. These units were poorly modulated by medium gamma LFP features, and
were best locked to LFP fluctuations at 140-150 Hz (Figure 4.8). However, while this
frequency lies within the ripple band, clear signs of sustained oscillations were not
present in the unit spike trains (Section 4.3.5), in contrast to during SWS, when SWRs
are frequent (Figure 4.14).

The conspicuously low phase modulation of CA1 pyramidal cell spikes by slow-
medium gamma stands in contrast to broad phase-locking of CA1 interneurons (Figure
4.9), as well as the modulation of both principal cells and interneurons in CA3 and EC3
by gamma frequency LFPs recorded within their own respective regions (Figure 4.8 and
4.9). Substantial subgroups of these neuron populations exhibited frequency preferences
in the slow, medium, and fast gamma bands, corresponding to similar portions of the
LFP power spectra that were coupled to theta phase (Figure 4.1). Specifically, most of the
significantly modulated CA3 pyramidal cells preferred slow gamma frequencies recorded
from CA3 stratum pyramidale, whereas EC3 pyramidal cells preferred fast gamma

frequencies between 100-130 Hz. In general, the interneuron populations were more
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broadly tuned than pyramidal cells, with some subpopulations preferring frequencies to
which few pyramidal cells were locked (e.g., CA1 interneurons preferring 70-100 Hz
fluctuations in CA1 stratum pyramidale).

A recurring problem in neuroscience is to understand which neural activities are
reflected in LFP recordings, which are generated by a complicated and variable mix of
membrane currents in the vicinity of the electrode (Buzséki et al. 2012). At frequencies
above ~80 Hz, spikes begin to impart significant power to the LFP recording (Ray &
Maunsell 2011a, Belluscio et al. 2012, Waldert et al. 2013), especially when their timing
is coordinated (Schomburg et al. 2012). By inspecting the phase locking of neurons to
LFPs across regions, we found some explanations, as well as new puzzles. For example,
EC3 and CA3 units were better locked to CA1 medium gamma frequencies than CA1
pyramidal cells, indicating that these neuron populations, which project to region CA1,
are more directly responsible for CA1 LFPs in this frequency band. CA3 pyramidal cells,
however, locked poorly to slow gamma phase in CA1 stratum pyramidale, despite
prominent CA3 network oscillations in this frequency band (Figures 4.1 and 4.6;
Csicsvari et al., 2003). Most of the CA3 to CA1 projections run through the Schaffer
collateral pathway and terminate in CA1 stratum radiatum (Li et al. 1994). When
compared to LFPs located closer to these projections (i.e., within stratum radiatum, but
still close to the pyramidal layer because of small vertical span of the probe), CA3
pyramidal cells were better modulated by the slow gamma phase (Figure 4.10). CA1
pyramidal cells were also better modulated by radiatum slow gamma than in stratum

pyramidale. As it turned out, slow gamma oscillations in stratum radiatum LFPs did not
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consistently transfer to stratum pyramidale (Montgomery et al. 2008), which helps to
explain the poor phase locking of units to this band in stratum pyramidale. However, the
large reduction in phase modulation for CA3 units and the appearance of an 80 Hz
frequency preference for many of these units, which represents a low point in the phase
locking of CA3 units to their own LFPs, still presented a conundrum. One possible
explanation is the correlated firing the CA1 interneurons which also lock to this 80 Hz
band (Figure 4.10). This subpopulation of putative interneurons was more likely to
exhibit monosynaptic timescale increases in firing following spikes of at least one of the
CA3 pyramidal units (23% of pairs significant vs. 17% of all pairs; p <0.01 after
shuftling pair identities). CA3 units that locked to 80 Hz in CA1 were also more likely to
‘monosynaptically’ excite (direct monosynaptic connections cannot be confirmed with
these recordings) CA1 interneurons (32% significant pairs vs. 17%, p <0.001), and
putative monosynaptic connections were more likely between the CA3 pyramidal units
and CA1 interneurons when both preferred 70-100 Hz frequencies in CA1 stratum
pyramidale than when either of them did (38% vs. 24%, p < 0.05). Therefore, these
driven interneurons may add a second wave to the LFP with their IPSCs, which would
ride on top of the EPSCs evoked by the CA3 input. Spike train cross-correlograms
(Section 4.3.5) also showed 80 Hz rhythmicity for CA3 units, and the coherence analysis
of Section 4.3.3 indicated the presence of 80 Hz coupling between CA3 and CAL. It
could also be that the CA1 interneurons amplify these medium gamma frequencies in the

perisomatic LFP more than slow gamma.
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In support of the CA1 interneurons causing this discrepancy, the CA1 and CA3
subpopulations that locked to 80 Hz in CA1 stratum pyramidale were instead better
modulated by slow gamma in CA1 stratum radiatum and CA3 stratum pyramidale
(Figures 4.10 and 4.11). Furthermore, the 70-100 Hz frequency preferences disappeared
during REM sleep (Figures 4.9, 4.10, and 4.11), when the CA3 network becomes less
excited and drives fewer CA1 interneuron spikes (Figures 4.3, 4.11, and 4.19). Spike
cross-correlations within the CA3 network do also show side peaks 12-13 ms from the
central peak of synchronous spikes (Figure 4.14 and 4.15, Section 4.3.5), which precisely
fits 80 Hz. So one alternative explanation may be that these units often oscillate at 80 Hz,
but this 80 Hz is neither reflected in the CA3 pyramidal layer, nor in CA1 stratum
radiatum, where the synaptic currents are widely dispersed and subject to cable filtering.

The paucity of recurrent excitatory synapses within CA1 means that LFPs there
contain less information about local pyramidal cell activity than might be expected in
CA3 or neocortical areas with greater recurrent connectivity. Consistent with this,
putative principal cells in CA3 and EC3 preferred frequencies that overlap with the
spectral bands that are theta-modulated (Figures 4.1 and 4.8). The CA1 interneuron
network presented a different picture. We found a wider array of frequency preferences
and tuning widths within the interneuron population, which as a whole seemed able to
respond with greater fidelity to synaptic input patterns. Subpopulations were
preferentially modulated by each frequency band (slow and medium gamma, as well as
epsilon; Figure 4.9), and a unit’s frequency preference often served as an indicator of its

theta phase preference (Figure 4.14). Few units, however, preferred the theta phases
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during which EC3 input was maximum, though many of the putative interneurons still
fired during this phase and were significantly modulated by EC3 LFPs (Figures 4.2 and
4.11).

These results extended to multiunit activity. When the phase distribution for all
CA1 pyramidal cell spikes during RUN states, pooled across units, sessions, and animals,
was analyzed for non-uniformity, the most significant deviation for CA1 LFPs was at
~150 Hz. Substantial slow gamma modulation was present, with a dip from 45-55 Hz,
and a small peak near 70 Hz. Compared to CA3 LFP phases, modulation was much
weaker at all frequencies, and dropped below significance at 60 Hz. In comparison to
EC3 LFPs, the best modulation was for 35 Hz, with a smaller peak around 55 Hz.
Modulation strength dropped rapidly beyond that, falling below the significance
threshold (for ~6 million spikes) above 95 Hz.

The above measurements of phase modulation disregarded the power in the
wavelet transform at the spike times. We also ran calculations that incorporated power
into the modulation index (the power serving as a weight for each phase angle), in
addition to calculations on surrogate data sets to assess significance. The results were

qualitatively the same.

4.3.5 Detectability of gamma oscillations in spike trains
The most consistent characteristic of LFPs is that they are confusing. The
application of complicated transformations in an attempt to extract information from

them can introduce distortions that are easily misinterpreted. Spike train analysis, on the
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other hand, while having its own set of caveats, at least deals with discrete events that
have a simpler and more concrete biophysical correlate. Finding spectrotemporal
structure in spike trains similar to that presented above with spikes and LFPs would put
these phenomena on firmer footing and facilitate their interpretation. Electrophysiological
analysis of high frequency dynamics, interactions, and synchrony can be hampered by the
technical difficulty of detecting and properly clustering overlapped spikes (Lewicki
1998). Despite this limitation, we sought to detect short timescale interactions and
oscillatory behavior in the single unit spikes in our data set using spike train cross-
correlograms (CCGs). The spike train CCGs, combined with a large number of suitably
jittered surrogates for detecting significant deviations from chance (Perkel et al. 1967,
Stark & Abeles 2009, Amarasingham et al. 2012), can reveal direct interactions or
temporal coordination of the detected units (or whichever temporal variables are
compared). The CCG for a pair of single units (i.e., putative spiking neurons) is
calculated by binning their spike trains and convolving the resulting vectors up to a
maximum time lag. Applying the same procedure for one unit to itself gives the
autocorrelogram (ACG), which measures bursting and oscillatory behavior of the unit.
Analysis of ACGs has been proposed as an alternative for characterizing network
oscillations, if suitable tricks are employed to account for the broadband spectral artifacts
introduced by the central (zero time lag) peak in the ACG (proportional to the unit’s
firing rate, and typically set to zero when visualizing the ACG) (Muresan et al. 2008). For
low-frequency oscillations, the central peak/zero can be adequately removed to assess

oscillatory dynamics using the spectral properties of the residual ACG (Muresan et al.
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2008). At high-frequencies, however, the proposed methods for the removal and
smoothing of the massive and abrupt fluctuation introduced by the central peak/trough
become unreliable and/or subjective. In addition, individual neurons have a limited
ability to follow a high frequency oscillation with their spikes, with fast, repetitive
spiking being governed by the burst dynamics of the membrane (Izhikevich 2000).

To assess whether spiking across the population was modulated rhythmically, and
to detect short timescale interactions between neuron populations, we constructed
multiunit CCGs (mCCGs) from single unit CCGs. The mCCG avoids several problems:
(1) the zero-lag artifacts associated with ACGs; (2) zero-lag artifacts that result from the
inability to detect simultaneous spikes at a single site; and (3) the symmetry inherent in
ACGs, which adds artificial periodicity. The mCCG for two different populations of
neurons (e.g., different cell types and/or anatomical regions) has a well defined
directionality in time. The mCCG for a particular class of cells with itself does not, but
the mCCG we use is still not symmetric, as we did not double-count unit pairs. This
avoids the artificially enhanced rhythmicity in a two-sided ACG, which makes spike
doublets appear on both sides of the central peak.

We calculated mCCGs for all well isolated pyramidal cells and interneurons in
CAl, CA3, and EC3. Statistical analysis with randomly jittered surrogate spike trains
have yet to be performed, so quantifications of significance are presently unavailable, but
the qualitative results are quite informative. In addition to clear theta rhythmicity, the
most striking features are the sharp peaks at zero time lag (+0.4 ms) for both pyramidal

cells and interneurons in each region, but especially in the hippocampus (Figures 4.14
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and 4.15). Synchronous firing between neurons of the same class (not counting SWRs),
including pairs shown to not be connected by gap junctions, has been reported before
(Csicsvari et al. 1999a, Csicsvari et al. 2003, Hu et al. 2011), but the mechanisms and
function of these events are not yet understood. In each region, pyramidal cells showed
strong excitatory coupling to interneurons in their own region, with pyramidal spikes
followed by a sharp increase in interneuron spiking within a few milliseconds (Csicsvari
et al. 1998). CA1 and EC3 interneurons, in turn, inhibited CA1 and EC3 pyramidal cells,
respectively (Pouille & Scanziani 2001). Such inhibition was less apparent in the CA3
pyramidal-interneuron mCCG (Figure 4.16), probably because strong recurrent excitation
within CA3 results in more synchronous firing of both cell types there. CA1 interneurons
also showed a prominent increase in firing roughly 5 ms before pyramidal cells spikes. It
is possible that this inhibition serves as a mechanism to induced synchronous pyramidal
cell firing, by way of postinhibitory rebound spiking (Kandel & Spencer 1961, Buhl et al.
1995). EC3 pyramidal-interneuron mCCGs did not display such a strong peak, and such
firing is present in CA3, it was masked by the more synchronous firing just mentioned.
The phase locking analysis of Section 4.3.4 implied that CA1 pyramidal cells time
their spikes in relation to LFP features around 140-160 Hz. Such temporal coordination is
evident during SWRs (Buzséki et al. 1992, Csicsvari et al. 1999a), but it is unclear
whether similar mechanisms operate during theta oscillations (Csicsvari et al. 1999a, Ray
& Maunsell 2011a, Buzsaki & Silva 2012, Buzséki & Wang 2012). A crucial test of
whether such high-frequency power and/or phase locking reflects true coordinated and/or

rhythmic firing is the detection of similar phasic firing in the spikes of the population.
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The CA1 pyramidal mCCGs did, in fact, show such coordination during RUN and REM,
with side peaks at 5-7 ms. This high frequency rhythmicity was far weaker than during
SWRs, but, importantly, it survived when we excluded spikes within bursts (ISIs < 10
ms; lighter lines, Figure 4.14). Furthermore, these 6 ms side peaks were unique to CA1
pyramidal cells, with side troughs and side peaks of other cell types having different sizes
and delays. During RUN (and more strongly during SWS), but not REM, CA3 pyramidal
cells had side peaks corresponding to ~80 Hz. During REM, but less clearly during RUN,
EC3 pyramidal cells and interneurons showed ~130 Hz rhythmicity.

Interregional mCCGs largely reflected the average theta phase distributions of
firing, as well as known monosynaptic pathways or correlations due to strong common
input, but we will point out several notable features. First is the weakness or absence of
monosynaptic excitation onto CA1 pyramidal cells from CA3 and EC3 (Sayer et al. 1989,
Levy et al. 1995, Csicsvari et al. 2003, Golding et al. 2005, Jarsky et al. 2005, Fernandez-
Ruiz et al. 2012, Zemankovics et al. 2013). As can be seen from the theta phase
relationships (Figure 4.2), CA1 pyramidal activity did increase following CA3 pyramidal
activity, on average. The mCCG shows a robust increase that was precise enough to
imply a monosynaptic excitatory pathway between the populations (Figure 4.17). The
EC3-CA1 mCCG, however, failed to show a clear excitatory effect of EC3 spikes on
CAL1 pyramidal spiking. Instead, CA1 pyramidal cell activity peaked before EC3
pyramidal cells (Figure 4.2), though a slight bump may be riding top of the overall decay

in CA1 activity (Figure 4.18).
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The weak response of CA1 pyramidal cells to CA3 input was likely due to a
combination of the synapses themselves being weak (Sayer et al. 1989), as well as strong
feedforward inhibition that compensated for it (Buzsaki 1984, Gulyas et al. 1993,
Csicsvari et al. 1998, Pouille & Scanziani 2001, Atallah & Scanziani 2009, Zemankovics
et al. 2013, Graupner & Reyes 2013). Indeed, the CA1 interneurons we detected were, as
a whole, strongly excited at monosynaptic latencies by CA3 pyramidal cells (Figure
4.19). Monosynaptic excitation of CA1 interneurons by EC3 pyramidal cells, however,
was not apparent in the mCCGs (Figure 4.17), though this may be due to a smaller
number of interneurons with substantially greater firing rates limiting the sensitivity of
our analysis.

Finally, CA1 pyramidal cells project many of their axons to the deep layers of EC
(Cenquizca & Swanson 2007), and hippocampal SWRs have been shown to propagate to
downstream neocortical structures (Chrobak & Buzsaki 1996, Siapas & Wilson 1998,
Wierzynski et al. 2009, Peyrache et al. 2009, Mizuseki et al. 2009). Our mCCGs
confirmed the direct excitation of EC5 units, especially interneurons, by CA1 pyramidal
cells, as well as the entrainment of the EC5 population by SWRs (Figures 4.18 and 4.19).
Additionally, despite a lack of innervation of layer 3 in medial EC by CA1 pyramidal cell
axons (Cenquizca & Swanson 2007), CA1 SWRs did entrain EC3 interneurons (Figure
4.19). This led to a small dip, with a slight rhythmicity, in what was otherwise a broad
increase in EC3 pyramidal cell firing during SWRs (the increase likely being related to
the DOWN-UP state transitions that correlate with SWR events; Siapas & Wilson 1998,

Battaglia et al. 2004, Sullivan et al. 2011). No short timescale interactions appeared for
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EC2 units beyond the broad peri-ripple increase in firing. During RUN and REM, a small
wave of extra firing in EC3 interneurons and a possible inhibition response in pyramidal

cells can be seen (Figures 4.18 and 4.19).

4.4  Discussion

In our analysis of the temporal organization of network activity in the
hippocampal circuit, we report the following principal findings. (1) During theta
oscillations, LFPs recorded within the CA1 pyramidal layer had spectral structure in
which various portions of the broad ‘gamma’ band are organized within the theta cycle in
a state-dependent manner (Montgomery & Buzsaki 2007, Montgomery et al. 2008, Tort
et al. 2008, Montgomery et al. 2009, Colgin et al. 2009, Tort et al. 2009, Belluscio et al.
2012). (2) Up to around 100-140Hz, LFP fluctuations in CA1 could be generated by
synaptic input from afferent regions (Ray & Maunsell 2011a, Schomburg et al. 2012). (3)
The CA1 interneuron population was more broadly and heterogeneously entrained by
local and afferent LFP fluctuations (Buzsaki 1984, Atallah & Scanziani 2009). (4) CAl
pyramidal cells, in general, were poor followers of fast features and rhythms (>30 Hz) of
excitatory input, especially those above 80 Hz. (5) Even on slower timescales, our
analysis of both spiking activity and the activation of synaptic current generators in the
LFP suggests that the CA1 network is a slow integrator of its input, with maximal spiking
occurring late in the theta cycle compared to the input from EC that presumably starts the
cycle (Mizuseki et al. 2009). The implications of these results run along two lines: (1)

uncovering the physiological correlates of LFP signals, and (2) understanding the
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operation and function of the hippocampal circuit. With the techniques available to date,
we need to address the first problem in order to solve the latter one (though the necessity
of doing so is starting to be alleviated with the increasing ability to record from larger

numbers of single cells electrically, as well as optically).

4.4.1 The relationship of gamma band signals to spiking

Taken individually, the five main results outlined above have each been
commented on before. Taken together, they suggest a picture in which gamma
oscillations in CA1 may serve a different purpose than in many other neural networks.
Why does CA1 exhibit such poor locking to gamma frequencies and such strong locking
to ripple frequencies? Is this a robust property of CA1 network activity, or a consequence
of our recordings and analyses?

In vivo studies of hippocampal gamma oscillations have consistently reported low
proportions of CA1 pyramidal cells modulated at slow gamma frequencies. Some
examples are collected in Table 4.1. Similar proportions of phase-modulated units were
found using our methods (Table 4.2) [except for substantially greater slow gamma
coupling between EC3 and CA1 compared to that reported by Colgin et al. (2009)].
Controversy exists, however, over how much of the significantly greater phase-locking of
pyramidal cells in CA1 to “fast gamma” signals is simply a consequence of spectral
leakage from broadband power of spikes into the gamma band (Manning et al. 2009,
Zanos et al. 2011, Ray & Maunsell 2011a, Belluscio et al. 2012, Scheffer-Teixeira et al.

2013). Our spike-field coherence measurements, however, used LFPs recorded 400 um
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from the spike detection site, and the phase locking was band-limited. We also know, that
CA1 possesses the capability to strongly oscillate at the very frequencies to which we
find the strongest phase locking, in the form of SWRs. Does this 150 Hz locking reflect
oscillations at that frequency during theta states?

Our unit-unit cross-correlation results argue that tight synchrony and true ripple-
frequency coordination of spikes, beyond simple pyramid-interneuron spike pairs, do
occur. In addition, the dominance of 140-160 Hz locking was unique to CA1. A
possibility that we have not excluded is that miniature SWR-like events do occur in CA3-
CA1 during momentary release from theta mechanisms. It could be that some
combination of all these possibilities (indirect spike contamination from synchronized
action potentials, correlated IPSCs from pyramidal-interneuron connections, coordinated
burst firing, fast network oscillations, and aberrant SWRs) could all be contributing to
this result. In any case, the SWR appears to be a truly special phenomenon in the brain,
and it is seems likely that the CA1 network and physiology is precisely configured in
order to generate it. The 150 Hz locking may simply be a reflection of those features, the

details of which are still unclear, that endow CA1 with this ability.

4.4.2 Gamma LFPs and oscillations in CAl

In vitro models of gamma oscillations use cholinergic or metabotropic glutamate
agonists to induce network oscillations in hippocampal slices (Whittington et al. 1995,
Fisahn et al. 1998). These oscillations are typically 30-50 Hz, emerge from CA3, and

require perisomatic inhibition (Hajos & Paulsen 2009, Whittington et al. 2010). A larger
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portion of CA1 pyramidal cells are entrained by the gamma emanating from CA3 in these
models (Zemankovics et al. 2013). The primary reason for this is likely the fact that there
are substantially fewer interfering mechanisms at play. But the relatively low frequency
of these rhythms is also probably a major factor. A key finding from in vitro studies
relevant to the results presented here is the importance of recruiting perisomatic-targeting
interneurons for entraining CA1 pyramidal cells. Importantly, Zemankovics et al. (2013)
showed that without GABAAa-receptors in CAl, the strong gamma arriving from CA3
failed to generate substantial gamma power in stratum pyramidale, pyramidal cell
modulation was significantly reduced, and, most importantly, pyramidal cells switched
their preferred phase. When inhibition was operational, the CA3 input caused CA1
interneurons to suppress pyramidal cell firing during the excitatory phase, which instead
fired just before then, i.e., at the phases when they were least inhibited. Complicating
these findings, Pietersen et al. (2013) showed that CA1 mini slices can, in fact, generate
its own slow-medium gamma (at around ~50 Hz), but that the stronger gamma emanating
from CA3 suppresses these local gamma-generation machanisms.

The weak stratum pyramidale LFP oscillation in the presence of gabazine and the
weak modulation of spiking imply that the somatic membrane potential does not oscillate
coherently with the CA3 input without concurrent perisomatic inhibition. This hypothesis
is supported by other in vitro experiments that measured somatic membrane potential in
response to gamma frequency input to the dendrites. These studies, using both synaptic
stimulation and current injection, showed that the cable filtering dramatically attenuates

gamma frequency input, converting transient gamma input into a slower, theta-timescale
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wave (Remondes & Schuman 2002, Golding et al. 2005, Vaidya & Johnston 2013).
Additionally, the dendritic input typically either fails to elicit pyramidal cell action
potentials (Sayer et al. 1989, Levy et al. 1995), perhaps due partially to feedforward
inhibition (Ang et al. 2005), or does so by way of a slow dendritic spike, which may
require properly timed input from both EC3 and CA3 (Jarsky et al. 2005, Takahashi et al.
2009).

Dendrite-targeting interneurons may have a similarly imprecise effect on timing
spikes, serving more to shunt current, regulate excitation, synaptic plasticity, etc., rather
than to synchronize (Koch et al. 1983, Miles et al. 1996, Buzséki et al. 1996, Lovett-
Barron et al. 2012, Royer et al. 2012, Gidon & Segev 2012, Ledo et al. 2012, Basu et al.
2013). LFPs in dendrites are generated by synaptic currents, and so reflect modulation of
the membrane potential. The cable properties of the dendrites, however, will affect the
transformation between the current generating the LFP and the membrane voltage from
the synapse site to the electrotonically distant soma. Fast impulses of current lead to
slower membrane voltage responses, and these effects are amplified with distance from
the site of the current pulse.

So some combination of filtered currents, rhythmically entrained perisomatic
IPSCs, and volume conduction generate the measured gamma-frequency LFPs in stratum
pyramidale. Moreover, in CA1 this happens for gamma-oscillating input from two
separate sources. It may be no wonder then, that the somatic membranes and the spiking
output of pyramidal cells do not precisely follow the interfering signals that are contained

in the CA1 stratum pyramidale LFP. Methods for LFP decomposition, such as ICA and
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CSD, may help in assessing the oscillatory state of the local network, but these
techniques are nontrivial and introduce their own set of difficulties.

The key to synchronizing with CA1, then, if this was the purpose of oscillatory
input, would appear to be the perisomatic-targeting interneurons (Destexhe 2010). In
CA1, basket cells and axo-axonic (chandelier) cells are contacted by EC3 synapses (Kiss
et al. 1996). Our spike correlations, however, showed no appreciable effect of EC3 spikes
in CAl interneurons, though pooling spikes across units, lower number of axo-axonic
cells, and the proximity of most of our probes to the pyramidale layer all limit our ability
to detect these interactions. Still, the absence of any strong signatures of EC3 input
coordinating gamma-band activity in CA1 suggests that it serves other roles. Perhaps the
fast oscillations in EC serve the purpose of synchronizing its own output in a patterned
way on the dendrites of its targets (Takahashi et al. 2012, Makara & Magee 2013, Menon
et al. 2013). The modulation of general dendritic excitation, nonlinear dendritic events,
and synaptic plasticity, in combination with input from CA3 (Remondes & Schuman
2002, Jarsky et al. 2005, Takahashi & Magee 2009, Miiller et al. 2012, Basu et al. 2013,
Vaidya & Johnston 2013), seem to be more promising ways for the entorhinal cortex to

shape hippocampal connections and influence its output.
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Table 4.1 Previously reported values for hippocampal gamma phase-locking in vivo.

Study freq. % units signifi. other notes
(Hz) signif. thresh.
Csicsvari et al. 2003 30-80 CAlp: p<0.05
43% (local)
13% (distal)
CAli: >80%
(local &
distal)
Tukker et al. 2007 30-80 CAlp: 47% p <0.05 | LFP recorded on different
shank
Senior et al. 2008 30-80 CAlp: p<0.01
32% (RUN)
4% (REM)
Colgin et al. 2009 25-50 CAlp: 25% p <0.05 | phase-locking to CA1 LFP
CA3p: 53% recorded on different electrode
EC3p: 0%
65-140 | CAlp: 36% p<0.05 | phase-locking to CA1 LFP
CA3p: 32% recorded on different electrode
EC3p: 44%
Mizuseki et al. 2011 30-80 CAlp: p<0.01 | (data set overlaps with the one
27% (RUN) analyzed for our analysis)
10% (REM)
Belluscio et al. 2012 30-50 CAlp: 18% NR (data set overlaps with the one
CAli: 89% analyzed for our analysis)
30-90 CAlp: 22% NR (data set overlaps with the one
CA1li: 90% analyzed for our analysis)
90-150 | CAlp: 75% NR (data set overlaps with the one
CAli: 94% analyzed for our analysis)




Table 4.2 Our results for hippocampal gamma phase-locking in vivo.
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Comparison freq.(Hz) % units signif. Notes
CAlp- CA1LFP 30-50 RUN: 31%, REM: 8% % with at least one
significantly (p < 0.01)
60-90 RUN: 22%, REM: 11% modulated frequency in
specified band.
. . o0
100-200 RUN: 51%, REM: 42% LFP site 400 um from unit
detection site.
CA3p - CAIl LFP 30-50 RUN: 17%, REM: 3%
60-90 RUN: 32%, REM: 1%
100-200 RUN: 28%, REM: 5%
EC3p - CA1 LFP 30-50 RUN: 23%, REM: 22%
60-90 RUN: 26%, REM: 22%
100-200 RUN: 24%, REM: 25%
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4.5  Figures for Chapter 4
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Figure 4.1. Theta oscillations modulated power in the gamma band and above in a state-
dependent manner for CA1. Both CA3 and EC3 maintained similar theta-gamma profiles
during RUN and REM, but the differential change in activity level of the two regions
(Figure 4.3) resulted in a reorganization of CA1 activity within the theta cycle (Figure
4.2). Hot and cold colors indicate mean wavelet power at each frequency for times in
each theta phase bin. Theta phase was measured from the angular mean of the CA1

stratum pyramidale sites available that session.
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Figure 4.2. Firing rate modulation for each significantly modulated unit (p < 0.01,
Rayleigh test) in CA1, CA3, and EC3 is shown as a color-coded line in the heat plots
(ordered by preferred phase). Black lines above color plots show histogram of theta
phases for all spikes, blue lines show the distribution of preferred phases for all
significantly modulated units (scaled by 0.5 for visualization). EC3 theta (which is in
phase with CA1 stratum pyramidale theta; Mizuseki et al., 2009) was more often
available as a reference, was less sensitive to position than CA1 theta. (EC3 has larger
amplitude theta, and CA1 theta phase is sensitive to the exact position of the electrode

relative to the middle of the pyramidal layer; Lubenov and Siapas, 2009).
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Figure 4.3. Mean +/- sem of firing rate changes for single units recorded during both

RUN and REM.
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Figure 4.4. ICA-extracted generators correspond to anatomical synaptic pathways. A4,
SWR and theta LFP and CSD profiles along one shank the recording. The schematic on
the left illustrates the approximate anatomical position of each electrode relative to the

principal cells in CA1 and the dentate gyrus (DG). B, The voltage loadings and
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corresponding CSDs for the three main CA1 synaptic generators extracted by ICA
decomposition of one shank’s LFPs during a concatenated segments of awake and sleep
recordings. C, Maps of the LFP generators (and their CSDs) of the CA1 generators. Each
generator was extracted by application of ICA to the individual shanks, and the two
dimensional maps were constructed by linearly interpolating between electrodes. D, The
coherence matrix (as measured by the the phase locking value of the 30-100 Hz
bandpass-filtered activations) between pairs of generators from each shank. Note the high
coherence between like generators on different shanks. This is in contrast to the low
coherence from different generators on the same shank, though this low cross-generator
coherence is, to large degree, enforced by the ICA algorithm. E, The coherence between

like generators on different shanks decreased monotonically with separation distance.
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Figure 4.5. Theta-gamma properties of the ICA generators. A, The wavelet spectra of
each component were theta-modulated during RUN and REM. Coloring indicates the z-
score normalized changes in power at each frequency. B, Group data (across shanks and
animals) indicating the maximally modulated frequencies (mean + s.e.m.) of each
generator and the LFP in the afferent regions (EC3 and CA3 stratum pyramidale). C,
Changes (as measured by the ratio; mean + s.e.m.) in the modulation indices (at the

maximally modulated frequencies) between RUN and REM for the generators and LFPs
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in B. D, The strength of each generator (mean =+ s.e.m.) during RUN and REM epochs, as

measured by the proportion of total signal variance explained by each. Asterisks denote

significance: **, p < 0.01; *** p <0.001.
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surrogate data sets with LFPs of different channels randomly shifted with respect to each
other. CA1-CA1 coherence is given for each of the two animals (light and dark traces).
Dotted vertical lines mark 60 and 180 Hz, the first and third harmonic of the power line

frequency, which were present in a subset of channels in the recordings.
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Figure 4.7. Wavelet coherence spectra between CA1 and its afferent regions for time
points in each of 32 theta phase bins during RUN and REM. One of the CA1 channels in
the CA1-EC recording had 60 Hz line noise, which made 60 Hz less (arrowhead)

coherent than surrounding frequencies.
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Figure 4.8. Unit-LFP phase locking for putative pyramidal cells in CA1, CA3, and EC3,
compared to wavelet phases of the LFP on a different shank in the same region. Unit-
LFP site separation was 400 um for CA1 and CA3, 200 um for EC3. A4, Color plot
(bottom) shows the normalized modulation strengths (to the maximum value) versus
frequency for each CA1 unit that was significantly modulated (p < 0.01) by the CA1
stratum pyramidle LFP for at least one frequency. 1539 units shown, 64% of all
pyramidal units. The line and bar plots (top) summarize the group results. Lines indicate
the fraction of the population significantly modulated at each frequency (a single unit can
be significantly modulated at multiple frequencies). Bars indicate the fraction of
significantly modulated units that preferred each frequency (adding up to 100%).
Numbers next to RUN and REM indicate the number of units that were significantly

modulated by any frequency (from 20-240 Hz) during each state, and the percentage of
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the total population this accounted for. B, Same as 4, but for CA3 unit modulation by

CA3 stratum pyramidale LFPs. C, Same as 4, but for EC3 unit modulation by EC3 LFPs.
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Figure 4.9. Same layout as Figure 4.8, but for putative interneurons.
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Figure 4.10. Unit-LFP phase locking for putative pyramidal cells in CA1, CA3, and EC3,
compared to wavelet phases of LFPs in different regions/layers. Same layout as group
data plots in Figure 4.8. 4, CA3 pyramidal unit modulation by CA1 stratum pyramidale
LFP phase. B, CA1 pyramidal unit modulation by CA3 stratum pyramidale LFP phase. C,
EC3 pyramidal unit modulation by CA1 stratum pyramidale LFP phase. D, CA1
pyramidal unit modulation by EC3 LFP phase. E, CA1 pyramidal unit modulation by
CA1 stratum radiatum LFP phase (~400 um away). F;, CA3 pyramidal unit modulation by

CA1 stratum radiatum LFP phase.
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Figure 4.11. Same layout as Figure 4.10, but for putative interneurons.
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in phase preferences between RUN (4) and REM (B) for 50-100 Hz frequencies, perhaps

indicating the increased relative contribution of spike waveforms to the gamma LFP

(Schomburg et al. 2012, Waldert et al. 2013) without strong gamma input from CA3. C,

Fraction of pyramidal units during RUN (red) and REM (blue) that were significantly

modulated in each frequency band.
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CAlpyr = CAlpyr CA3pyr = CA3pyr EC3pyr = EC3pyr
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Figure 4.14. Some spike phase-locking features can be seen in mCCGs (i.e., pooled
CCGs across particular cell pair categories; Section 4.2.5). During RUN, REM, and
SWS, the mCCGs for pyramidal-pyramidal unit pairs within the same region (from
different shanks) show strong theta and SWR characteristics. During both RUN and
REM, CA1 pyramidal unit mCCGs showed side-peaks at 5-6 ms, whether or not burst
spikes, liberally defined here as groups of 2 or more spikes with ISIs <10 ms, were
included. (Note, however, that bursts could still be present through the misclassification

of burst spikes during clustering; Harris et al. 2000.) CA3 pyramidal units showed side-
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peaks during RUN at ~12 ms, and EC3 pyramidal units had some during REM at 8-10

ms.

CAtlint = CAflint CA3int = CA3int EC3int = ECS3int
SWS
REM
RUN

—-250 ms i +250 ms —-250 ms +250 ms —250 ms +250 ms

+50 ms -50 ms

A\ all spikes
A 1S1>10 ms

Figure 4.15. Same as in Figure 4.14, but for interneurons. Here the first side-peaks could
potentially be consequences of the 10 ms ISI spike-exclusion rule. Despite this however,
CA1 interneurons during RUN the ‘burst’ exclusion actually reveals second side-peaks.
This hints at a possible reason for the poor gamma entrainment of CA1 pyramidal cells:
even individual interneurons may fire ‘doublets’ (i.e., spike twice within a single gamma

wave) (Traub et al. 1996; but see Penttonen et al. 1998), both affecting the measured LFP
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phase and destabilizing the phase-locking of pyramidal cells. As in EC3 pyramidal cells,

EC3 interneurons exhibit stronger fast gamma oscillations during REM than RUN.

CAl1pyr = CAflint CA3pyr = CA3int EC3pyr = EC3int

SWS
REM
RUN

+250 ms +250 ms : +250 ms

+50 ms -50 ms

A\ all spikes
A0 1S1>10 ms

Figure 4.16. Same as in 4.14, but for pyramidal-interneuron unit pairs within the same

region (but at different shanks). In CA1, increases in interneuron firing precede, coincide
with, and follow pyramidal unit spikes. CA3 also shows strong synchronous firing,
whereas EC3 pyramidal-interneuron pairs display a more classical inhibition-excitation

profile (Moore et al. 1970).
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Figure 4.17. Same as in 4.14, but for CA3 pyramidal units to CA1 pyramidal and
interneuron units, and for EC3 pyramidal units to CA1 interneurons. Monosynaptic
excitation from CA3 is weak but visible for CA1 pyramidal units. It is much more
distinct (especially during RUN) for CA1 interneurons. Monosynaptic excitation of CA1
interneurons by EC3 pyramidal units is not apparent in these mCCGs, though such
connections are known to exist (Kiss et al. 1996, Gulyas et al. 1999), and evidence of

feedforward inhibition from EC3 has been reported (Ang et al. 2005).
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Figure 4.18. Same as in Figure 4.14, but for CA1 pyramidal to EC pyramidal units.

Monosynaptic interactions between are not convincingly apparent, in either direction,

except potentially for CA1-to-ECS5, though the ripple-frequency ECS pyramidal unit

modulation during SWS may also be mediated by the strongly entrained EC5

interneurons (Figure 4.19). A mild dip (perhaps with some ripple-frequency rhythmicity)

of EC3 pyramidal units from their otherwise elevated firing during ripples is also visible.
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Figure 4.19. Same as in Figure 4.14, but for CA1 pyramidal units to EC interneurons.
Monosynaptic excitation of ECS5 interneurons is apparent, and EC3 interneurons are

mildly entrained during ripples.
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S. EMG leakage into intracranial recordings

5.1 Introduction

A number of recent studies have shown that high frequency LFP and ECoG
signals can be informative about neural processing (Ray et al. 2008a, Jacobs & Kahana
2009, Gaona et al. 2011), though the mechanisms underlying these signals and what they
reflect is still being debated (Chapter 4; Colgin et al. 2009, Miller 2010, Ray & Maunsell
2011a, Jackson et al. 2011, Belluscio et al. 2012, Buzsédki & Silva 2012, Schomburg et al.
2012, Scheffer-Teixeira et al. 2013). It has become clear that localized spikes can
generate substantial power in the high gamma and epsilon bands (Zanos et al. 2011, Ray
& Maunsell 2011a, Belluscio et al. 2012, Schefter-Teixeira et al. 2013), yet true fast
oscillations do exist (Buzsaki & Silva 2012), and specific functional roles for this band in
network communication have been hypothesized based on the appearance of coherent
signals in distant hippocampal-neocortical regions (Colgin et al. 2009, Colgin & Moser
2010, Scheftziik et al. 2011). We have seen in several of our own recordings, however,
signs that many features that would normally be included in an analysis of high frequency
LFPs is actually more characteristic of muscle contamination, i.e., electromyographic
(EMG) signals.

Electrophysiologists are already well aware that movement-related activity can
contaminate neural recordings (O'Donnell et al. 1974, Matsuo et al. 1975, Goncharova et
al. 2003, Muthukumaraswamy 2013). Indeed, oculo-motor artifact identification or
removal is common practice in electroencephalography measurements (Gao et al. 2010,

Muthukumaraswamy 2013), and large amplitude, high frequency, broadband, and
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spatially widespread signals regularly appear when an implanted rodent is chewing
(Sasaki et al. 1983). Apart from these seemingly discrete events, however, the signal is
assumed to reflect predominantly electrical activity in nearby brain structures. The
problem arises when investigators include high frequency parts of the spectrum in their
analysis. Extracellular recordings generally exhibit a 1/f decay in spectral density
(Freeman et al. 2000), and myoelectric potentials are broadband, extending down to ~10
Hz (O'Donnell et al. 1974, Goncharova et al. 2003).

Here we characterize the putative EMG signal component in multisite recordings
in rats, which is relatively low amplitude and tonic, and we present data linking it to
muscle activity. We also suggest ways to mitigate this contamination so that true neural
signals may be more reliably isolated. The identification and, ideally, the removal of such

external signal components is important for the analysis and interpretation of neural data.

5.1 Methods
5.1.1 Surgery, behavioral testing, and recording

Recordings were performed in male Long-Evans rats (250-400 g) implanted with
silicon-based multielectrode arrays during waking behavior and sleep. Behavioral tasks
included running on a linear track and a hippocampus-dependent delayed spatial
alternation task (Montgomery & Buzsaki 2007). Animals with three recording
configurations were analyzed: (i) a 96-site probe with 8 shanks, separated by 200 pm,
each with 16 contacts spaced at 100 um, oriented in a transverse plane of the dorsal

hippocampus in the right hemisphere (Montgomery & Buzsaki 2007); (ii) one 4-shank
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silicon probe in the right dorsocaudal medial entorhinal cortex for recording up to three
layers simultaneously, and a 4- or 8-shank probe (300 um between shanks, 20 um contact
spacing) in the right dorsal hippocampus oriented along the septotemporal direction to
record from within or near a single layer (CA1, CA3, or DG) at most sites (Mizuseki et
al. 2009); (iii) bilateral implantation of two 8-shank probes (20x300 pum spacing) into the
dorsal hippocampi along the septotemporal direction, with all sites in or near the CA1
pyramidal layer. In all animals, two stainless steel screws in the skull above the
cerebellum served as the ground and voltage reference .

During the recording sessions, neurophysiological signals were amplified,
bandpass-filtered (1 Hz - 5 kHz), and acquired continuously at 20 kHz. After recording,

local field potential (LFP) was down-sampled to 1250 Hz for additional analysis.

5.1.2 Data analysis

Behavioral and sleep states were detected based on experimenter notes, video
tracking, and LFP patterns. RUN epochs included locomotion during behavioral tasks,
with periods of immobility (<5 cm/s) and consummatory behaviors excluded from the
analysis. During sleep recordings, REM periods were detected using the ratio of power in
the theta band (4-12 Hz) to power in the surrounding bands (1-4 Hz, 12-30 Hz) in the
hippocampus (Csicsvari et al. 1999a, Montgomery et al. 2008), or a similar measure in
layer 3 of the entorhinal cortex (EC3) (Mizuseki et al. 2009).

Theta power and phase were measured using the Hilbert transform of the theta

band-filtered (5-10 Hz) LFP. Power and coherence spectra were calculated using
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continuous wavelet transforms with complex Morlet wavelets and Hilbert transforms on
narrow-band-filtered data (Le Van Quyen et al. 2001). Filters were designed for at least
60 dB stopband attenuation using the Matlab DSP Systems Toolbox.

Current source densities (CSD) were estimated using the second spatial derivative
of the LFP on consecutive channels (Nicholson & Freeman 1975, Mitzdorf 1985). Bad
channels (e.g., dead channels, excessive noise, crosstalk) and sites adjacent to bad
channels were excluded from the analysis. Independent component analysis (ICA) was
performed using the runica() function from the EEGLAB toolbox (Delorme & Makeig
2004), which is a Matlab implementation of the infomax ICA decomposition algorithm

(Bell & Sejnowski 1995, Makeig et al. 1997).

5.2  Results
5.2.1 Detection and characterization of muscle-related signal components when EMG
recordings are unavailable

Over long timescales, the power spectral density of in vivo LFP recordings decays
inversely with frequency (Freeman et al. 2000). In many of the recordings we analyzed,
however, the power spectrum plateaued above 100 Hz during locomotion (RUN)),
resulting substantially more power than during rapid eye movement (REM) sleep and
slow-wave sleep (SWS). This difference in spectral power density could not be explained
by differences in spiking activity, because average firing rates in CA1 were similar
between REM and RUN, and higher during SWS compared to RUN (Figure 5.1B, D).

Firing rates increased from RUN to REM for principal cells in layer 3 of the entorhinal



154

cortex (EC3) (Figure 5.1D), which projects to CA1 stratum lacunosum-moleculare
(Andersen et al. 2007), in contrast to the substantially greater high-frequency power in
both stratum lacunosum-moleculare and EC3 during RUN (Figure 5.1A).

The additional high-frequency power was not only present on all channels, but
was, to a large degree, modulated synchronously across all of them. Figure 5.2 shows
power correlations and phase synchrony between signal components at many different
frequencies from pairs of recording sites through a transverse plane of the right dorsal
hippocampus. Most of the pairs exhibit theta-frequency coupling, but spectral
comodulation and coherence should be more localized at higher frequencies and
dependent on either direct synaptic connections or spatial proximity (for volume
conduction) (Lindén et al. 2011, Leski et al. 2013). During RUN, however, all of the site
pairs were strongly comodulated at frequencies greater than 100 Hz (Figure 5.2B). Even
more striking, these high-frequency signal components were coherent and synchronous
across channels. Figure 5.2C shows the correlation coefficients for each frequency of the
product of power in a channel pair and the phase difference between the channels.
Regions without direct connections or common input (or volume conduction) would be
expected to have uncorrelated phases, and more strongly connected regions may be
coherent, but will usually have a nonzero phase difference, depending on the connection
directionality, signal delay, the physiology within each structure, the geometry of the
neurons and the recording location, etc. Such variation in phase relationships were

evident during REM sleep and at low frequencies during RUN, but all sites became
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uniformly synchronized across a broad range of frequencies once both sites have high
power above 100 Hz.

The above correlational measures suggest the presence of an external, high-
frequency contaminating source in the LFP signal, but they do not indicate when the
contaminating events occurred. For a time- and frequency-resolved estimate of the
intrusion of this synchronous component, we took the Pearson correlation coefficient »
for 100 ms segments of two channels’ signals at each time point, first filtering the signals
in different frequency bands, and averaged this across many different channel pairs (red
squares in Figure 5.2A) from the electrode array. The distributions of these channel pair-
averaged r values for different frequency bands during RUN, REM, and SWS epochs are
shown in Figure 5.2D. The r values of traditional LFP bands (theta, beta, gamma) stayed
relatively low and were similarly distributed in all brain states. The higher frequency
signals, however, diverged during RUN to become consistently much more synchronous.
The r values remained low and were similarly distributed for all frequencies during REM
and SWS.

Similar high-frequency signal components were found in three other animals with
the same probe and recording system. Other data sets and/or recording setups displayed
less of this contaminating signal, though it is rarely completely absent. For instance, in
several simultaneous hippocampal-entorhinal recordings from our lab, the suspicious
high-frequency power was more limited to the EC probe (Figures 5.1C and 5.3), perhaps
because it is closer to muscles, or perhaps for technical reasons related to the

characteristics or connections of that probe. The power covariations and synchrony
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between sites were less prominent, though still apparent in the power and coherence
spectra. The mean r value distribution differences between RUN and sleep was also
smaller than in the large array recordings (compare Figures 5.2D and 5.4), though we
would expect the » values for these recordings to be different because the electrode sites
were all near cell body layers. In general, variations in recording configurations,
behavioral tasks, and animals will all produce different recording characteristics, and we
would like a more direct way to determine a link between this signal contamination to

behavior.

5.2.2 Comparison of EMG recordings to intracranial recordings

We next implanted an EMG electrode in neck muscles of a rat with bilateral
silicon probes in the hippocampus, and recorded during home-cage sleep and as the
animal learned to run along a linear track for water reward. As in the entorhinal-
hippocampal preparation described above, the probes had 8 shanks separated by 300 pm,
with 8 contacts per probe spanning 140 pm vertically. Consequently, the recordings did
not extend across multiple somatic-dendritic layers, so large phase changes and sink-
source reversals that may be absent. Because electromyographic contamination would
likely have multiple muscle sources, we could not expect clearly coherent signals
between the intracranial and EMG probes, but this recording still allowed for a much
more direct comparison of the intracranial signal to muscle activity.

Physiological high-frequency signals generated within the brain should be

relatively local, rather than highly coherent across many shanks. Despite this, we again
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found that substantial portions of the recording had high frequency components that were
synchronous across all channels, even across hemispheres, especially during waking
behavior. The strength of this component, as measured by the sliding-window
correlations between the high-frequency signals (Section 5.2.1), was much more strongly
correlated to EMG activity (measured by the 100-point-smoothed amplitude of the time
derivative of EMG voltage, which we label AEMG/At) than the animal’s running speed (»
= 0.64, p < 104, Figure 5.5). Both cross-channel correlations and the EMG activity were
also weakly theta-modulated (Figure 5.6) (Ledberg & Robbe 2011). Spectral power and
average coherence between channels at high frequencies (>100 Hz) were also well
correlated to AEMG/At (Figure 5.7). The correlation coefficient was higher for high-
frequency power than for coherence, perhaps because any EMG contamination was

strongly coherent, and more power did not make it proportionally more coherent.

5.2.3 Removal of EMG-related signal components

If pervasive artifactual signal components contaminate the upper spectral bands of
LFPs, how can we properly detect true neural oscillations at high frequencies? With
silicon electrode arrays that have a fixed geometry, we can use current source density
(CSD) analysis, a common technique for estimating local membrane currents (Nicholson
& Freeman 1975, Mitzdorf 1985, Pettersen et al. 2006, Montgomery et al. 2009, Leski et
al. 2011). In theory, the CSD provides a more reliable measure of coherence, because it
removes volume conducted currents that can often contaminate LFP recordings (Sirota et

al. 2008, Montgomery et al. 2009, Fernandez-Ruiz et al. 2013). Applying CSD to the
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large array hippocampal recordings (Figure 5.2) removed the major spectral differences
between waking and sleeping states (Figure 5.8). Traditional CSD estimates are not
perfect, however. They are inaccurate if: (i) the distance separating electrodes along the
dimension of the CSD calculation is not fixed or uniform, or it is too large to obtain
adequate spatial resolution; (ii) electrode impedances are inconsistent; (iii) the neural
tissue and membrane currents are not approximately laminar in the recorded region
(Nicholson & Freeman 1975). In general, the CSD is much more sensitive to recording
anomalies and fluctuations in the distribution of current sources surrounding the
electrodes, which results in substantially lower average coherence and correlations
between sites (Figure 5.8 and 5.9C). It may be argued that this is a feature, giving more
conservative estimates, but the results can be frustratingly obscure and/or inconsistent.

Most laboratories use wire bundles and tetrodes for neural recordings, making
CSD estimation impractical. If the EMG component is synchronous on all channels, then
perhaps simply re-referencing the recording to a local electrode will do the trick. In the
hippocampus, the alveus is a relatively quiet site compared to the somatic and dendritic
layers. Indeed, re-referencing our hippocampal recordings to the quietest electrode in the
alveus did remove the EMG-related signal. But volume conducted LFPs or signals from
passing axons will be introduced into the data, however, and re-referencing caused
substantial amounts of spurious correlation and coherence throughout the gamma bands
and higher (Figure 5.9B).

Another promising technique is independent component analysis (ICA) of LFPs

from multielectrode arrays (Bell & Sejnowski 1995, Delorme & Makeig 2004, Makarov
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et al. 2010, Fernandez-Ruiz et al. 2012). This technique can identify and separate signal
sources that are independently activated (though not necessarily uncorrelated) and have
different spatial profiles, which is often the case for neural processes. If the spatial
structure of a specific source is known, it may allow for the identification and
characterization, and perhaps subtraction, of that component (Muthukumaraswamy
2013). We applied a common ICA algorithm (Makeig et al. 1997) to the wideband LFP
signal over the entire electrode array shown in Figure 5.2. The fourth strongest
component (as measured by the proportion of signal variance it accounts for) was
uniquely spatially uniform and, consistent with our previous results, showed much
stronger activity at high frequencies during RUN compared to either sleep state (Figure
5.10). Interestingly, below 5 Hz, this component had its highest power during SWS, most
likely reflecting volume conduction of the slow oscillation from neocortex. In principle,
and as is common practice in many EEG applications, one could apply ICA, remove this
contaminating component from the signal, and proceed to analyze the remaining data.
Alternatively, one can just analyze the other components. Unfortunately, without a high-
density array of electrodes with a straightforward and rigid geometry, as well as some
prior knowledge of the anatomy and physiology of the structure in which the probes are
embedded, interpretation of the components can be very difficult (Fernandez-Ruiz &

Herreras 2013).
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5.4  Discussion

Unsurprising to anyone who has recorded electrophysiological signals from
awake, behaving animals (including humans), we have demonstrated that artifacts due to
muscle activity are present in our data. What is surprising is the constancy with which an
apparently muscle-related signal was present during waking behavior in several animals.
Key features of this EMG component are: (1) broadband spectral power; (2) synchrony
across large distances; (3) a close correspondence to activity in neck muscles. Our
voltage references in each animal were skull screws located above the cerebellums. A
better reference site, for the prevention of EMG contamination at least, may be
somewhere deeper in the brain, such as the corpus callosum.

These results further illustrate the danger inherent in using LFPs to investigate
high-frequency neural dynamics and communication. Above the traditional gamma band
(30-80 Hz), the signal to noise ratio (SNR) becomes rather low, especially during waking
behavior. Single unit analysis has a well-developed set of methods and criteria for
extracting physiologically meaningful events (Lewicki 1998, Harris et al. 2000, Bartho et
al. 2004, Schmitzer-Torbert et al. 2005, Quian Quiroga 2007, Hill et al. 2011). High-
frequency oscillations can clearly be significant in the brain, perhaps during both normal
or pathological events, (e.g., Buzséki et al. 1992, Grenier et al. 2001, Staba et al. 2002,
Barth 2003), and it is important to better understand their mechanisms of generation and
their consequences. In this low SNR regime, however, pitfalls of recordings, analysis, and

interpretation can arise (Bénar et al. 2010, Zanos et al. 2011, Muthukumaraswamy 2013).
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We assume that the presence of low amplitude EMG contamination in intracranial
recordings is not unique to our laboratory. While we do not presume to discount the main
conclusions of previous studies, we wish to furnish a few examples in which EMG
contamination does provide a simple explanation for some aspects of published results
from our lab and others. First, Belluscio et al. (2012) showed depth profiles of each kind
of gamma sub-band event, in addition to the sharp wave-ripple profile (Ylinen et al.
1995b). While it is possible for a local current source/sink distribution to generate non-
reversing extracellular potentials (Mitzdorf 1985), most hippocampal LFP patterns do
show phase changes and reversals along the somatodendritic axis (Ylinen et al. 1995b,
Schomburg et al. 2012), which also occurs in the ripples and slow-medium gamma LFPs
in (Belluscio et al. 2012). The triggered average of 90-150 Hz epsilon (fast gamma)
events in (Belluscio et al. 2012), however, show nearly perfect phase synchrony along the
entire depth of the recording (Figure 4). This is precisely what we would expect if many
of the detected events, which are indeed detected during RUN in this case, are in fact
volume-conducted EMG signals. Furthermore, in both that study and one of neocortical
fast gamma signals in another laboratory (Scheffziik et al. 2011), the modulation of high
frequency power by theta oscillations is greater during REM sleep than during running
behavior. In the case of the hippocampal network investigated by Belluscio et al. (2012),
this stands in contrast to the spiking activity within CA1, which they report is more theta
modulated during RUN (Figure 2) [see also Section 4.3.1 and Mizuseki et al. (2011)]. So
while the fast gamma activity during REM analyzed by Scheftzuk et al. (2011) and

Belluscio et al. (2012) is legitimate, the degree of theta-coupling during REM compared
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to RUN may in fact be biased by the presence of relatively tonic EMG contamination of
this spectral band. Finally, the fast gamma (60-140 Hz) coherence between hippocampal
CA1 and layer 3 of entorhinal cortex (EC3) reported by Colgin et al. (2009) is flat within
this entire band [Figure 3 of Colgin et al. (2009)]. They do not show whether or not this
coherence continues at the same level, or if it even increases, at higher frequencies than
this. The CA1-EC3 coherence furthermore reflects synchronous voltage fluctuations in
the two regions [Figure 2 of Colgin et al. (2009)]. Moreover, similar fast gamma
coherence between CA1 and CA3 was found in at least one animal [Supplementary
Figure 9 of Colgin et al. (2009)] and between CA3 and EC2 in three animals
(Supplementary Figure 13 of Colgin et al.(2009)].

It will be important to gain a better understanding of how different recording
configurations, from electrode design and placement to amplifier hardware, affect
different parts of the spectrum, and to optimize these factors for the purposes of the study.
Postprocessing techniques, such as ICA and CSD analysis, for the identification and
removal of noise and artifacts may prove useful. But optimization of all these factors, and
using electrodes (e.g., silicon probes) that enable straightforward application of ICA and
CSD techniques, may be impractical for many studies. Using high-frequency
extracellular features in addition to well isolated spikes therefore requires extensive
validation. As we improve our ability to record from larger numbers of cells
simultaneously, fine temporal coordination of neural activity will likely be better

investigated with single units, recorded either electrophysiologically or optically.
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Though we have focused here on EMG contamination of intracranial recordings,
many of the concepts and methods for detection and removal that we suggested are also
generally relevant for any volume-conducted signal component. Indeed, volume
conduction of neural current is the basis of extracellular and extracranial electrical
recording to begin with, and it was the motivation for developing CSD methods. As in
much of modern science, from neurophysiology to gravitational wave interferometry, the
fundamental challenge is to identify, isolate, and understand which aspects of the
phenomena we measure are relevant and what physical processes underlie them. Only

then can we use these quantifications to test our hypotheses and build a reliable theory.
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5.5  Figures for Chapter 5
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Figure 5.1. Increases in high frequency power during locomotion cannot be explained by
and single unit firing rates. A, Power spectral densities (PSD) of LFPs recorded at three
sites of a rectangular electrode array spanning CA1 to CA3 and DG of dorsal
hippocampus in rat sm9601. Slow-wave sleep (SWS) exhibits a hump in the ripple band
(120-200 Hz), but power above 100 Hz is substantially greater in all layers during RUN.
B, Average firing rates of single units classified as pyramidal neurons (pyr) and
interneurons (int) in CA1 and CA3 during RUN and REM for the same recording
sessions as in A. C, PSDs in CA1 and layers 3 and 5 of entorhinal cortex (EC3 and ECS,
respectively) recorded from rat ec016. The locomotion-related high frequency component
appears to be largely absent from this CA1 site, but is present in the entorhinal cortex. D,

Average single unit firing rates in CA1 and EC3 during the same sessions.
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Figure 5.2. Multilayer electrode arrays can be used to estimate the frequency- and time-
resolved contamination of intracranial recording by external sources. A, Schematic of the
electrode locations within the dorsal hippocampus of rat sm9601. Red squares, channels
used to calculate the mean correlations between channel pairs in sliding windows (panel
D), which we used to estimate the instantaneous strength of the EMG signal component
(Figure 5.5). B, Power-power correlation coefficients between wavelet powers at each
frequency for several channel pairs (sites labeled in 4), shown during RUN and REM. C,

Power-synchrony correlation coefficients during RUN and REM for the same channel
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pairs as in B. D, The pair-averaged, sliding-window correlation coefficient distributions
of all time points during RUN, REM, and SWS, calculated after bandpass filtering the

raw LFP in the indicated frequency ranges.
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Figure 5.3. EMG contamination is less pervasive in some recordings. In several
simultaneous CA1-EC recordings (rat ec016, Mizuseki et al. 2009), the EMG-component

is less powerful, especially in the hippocampal probe. It is not absent, however, as
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increases in high-frequency power (Figure 5.1), power-power correlations (4), power-
synchrony correlations (B), and coherence (C). Again, the extra power and coherence is

primarily above ~100 Hz.
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Figure 5.4. Channel correlation values depend on recording configuration, but still
exhibit qualitative differences between waking and sleep. Distribution of mean correlation
coefficient (r) values between channel pairs for 8 hippocampal (CA1) and 8 entorhinal
channels (layers 3-5). Correlations were calculated over a sliding 50 ms window for

bandpass filtered LFPs across a wide range of frequency bands. The distributions of high-
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frequency r values from rat sm9601 (Figure 5.2) are included for comparison (dashed

line).
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Figure 5.5. Relationship of EMG to running and correlated high-frequency signal

components. A, Temporal distributions of sliding-window mean r values between 26

channel pairs (8 channels, 4 from each hemisphere) for bandpass-filtered LFPs during

sleep and a linear track training session. B, Distribution of LED speed (units not yet

converted to true speed) during the behavioral session. The distribution is bimodal, with

many times of little head motion, periods of locomotion, and small bouts of higher speed

head movements. C, Distribution of neck EMG activity, as measured by the smoothed

amplitude (100-point running average of the absolute value) of the EMG derivative

(AEMG/At). Inset, Counts shown on a log scale, and including all AEMG/At values. D,
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Relationship between speed and AEMG/At, shown using percentile rankings of speed and
AEMG/At at each time point. The correlation coefficient between the actual speed and
AEMG/At values is low, though highly significant (= 0.012, p < 10-%), but this value is
less meaningful than the distribution shown here. E, Relationship between percentile
rankings of speed and mean high-frequency (200-600 Hz) channel-pair correlations (r =
-0.20, p < 10%). F, Relationship between percentile rankings of AEMG/At and mean high-

frequency channel-pair correlations (r = 0.64, p < 104).
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Figure 5.6. Theta modulation of EMG signal. Mean = s.d. of AEMG/At, mean high-
frequency channel-pair correlations, and speed, binned by theta phase. Neck muscle
activity is theta-phase-modulated (Ledberg & Robbe 2011), and the EMG correlation
with synchronous high-frequency signal components (Figure 5.5F) results in similar

modulation of the mean r value. Horizontal LED motion (speed) is not theta modulated.
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Figure 5.7. Activity in neck muscles correlates with increased high frequency synchrony
in intracranial recordings, even across hemispheres. A, Broadband, high-frequency
power in distal channels of both hemispheres (RH, right hemisphere; LF, left hemisphere)
is greater for larger values of AEMG/At. B, Cross-channel coherence, averaged over the
pairs in A also increases at high-frequencies for increasing AEMG/At. Higher coherence
at theta frequencies (the bottom row in the plot is centered at 5 Hz) is related to EMG
increasing during many periods of locomotion or exploration (e.g., rearing behaviors are
accompanied by theta; Vanderwolf 1969). C, The correlation coefficients between
AEMG/At and both power (on individual channels) and coherence (between channel

pairs) increase with frequency.
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Figure 5.8. Taking the CSD removes the common EMG component, but is susceptible to

other measurement artifacts. A, Average power spectra over each brain state show no

significant difference at high frequencies. A problem is already apparent, however,

because of the lack of a ripple-frequency bump in the SWS spectrum. B, The

distributions of mean r values for the 100-600 Hz bandpass-filtered signal in each state

are clustered around the same mean value. C, Power and coherence comodugrams during

RUN no longer show ubiquitous coupling at high frequencies (compare with Figure

5.2B). Theta and gamma coherence is also dramatically reduced.
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Figure 5.9. Local referencing removes the EMG component but introduces spurious

coherence and correlations. Power comodulograms (left) and coherence spectra (right)

between sites using the original LFPs (4), LFPs re-referenced to the alveus (just above

the CAla site) (B), and CSDs (C). The re-referenced LFPs no longer have the broadband

EMG contamination, but instead pick up additional correlations and coherence

throughout the gamma bands (in both RUN and REM). Applying the CSD formula also
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removed EMG contamination, but the resulting CSDs likely have artificially low degrees

of coherence and correlation between sites.
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Figure 5.10. ICA can separate EMG from local sources. The 12 strongest independent
components extracted from the broadband LFPs over the entire electrode array by an
independent component analysis (ICA) algorithm (Makeig et al. 1997). A component’s
strength is defined as the proportion of the total variance o2 in the original data that it
accounts for. The static spatial loading over the electrode array for each component is
shown in the blue-red colormaps (blue = negative, red = positive; note, however, that the
spatial loadings extracted by ICA can vary by a sign, in conjunction with the sign of the
activation time series), alongside its normalized power spectra in each brain state.
Normalization involves dividing the mean power at each frequency for a given
component by the average power at that frequency for all channels in the original data.

The fourth strongest component here (IC4) has a nearly uniform spatial profile, and is
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substantially more powerful during RUN than during sleep for all frequencies greater

than ~100 Hz.
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IV. General discussion of broader
implications

6. What high frequency signals may teach us about

hippocampal physiology

Gamma oscillations have been observed in many brain regions, arise in slices
with pharmacological excitation, and emerge in numerous network models. Persuasive
evidence has been found that gamma coherence within sensory systems is important for
integrating and attending to sensory stimuli (Fries 2009). In the hippocampus, gamma-
band coherence has been shown to depend on behavior (Montgomery & Buzsaki 2007)
and development (Shinohara et al. 2013). Yet, the hippocampus also exhibits a tendency
towards self-organized internal dynamics (Pastalkova et al. 2008, Mizuseki et al. 2009). It
receives sensory, contextual, and location-dependent information (Andersen et al. 2007,
Moser et al. 2008, Eichenbaum et al. 2012, Krupic et al. 2012), and sends out a
temporally compressed representation of location, heading, and context (O'Keefe &
Recce 1993, Skaggs et al. 1996, Frank et al. 2000, Harris et al. 2002, Dragoi & Buzsaki
2006, Huxter et al. 2008, Manns & Eichenbaum 2009, Pfeiffer & Foster 2013,
Komorowski et al. 2013, Kelemen & Fenton 2013). Our current understanding of spatial
representation in the brain has the entorhinal cortex providing the hippocampus with a
coordinate system and heading information (Hafting et al. 2005, Sargolini et al. 2006,

Solstad et al. 2008, Krupic et al. 2012). This information is then used by the hippocampus
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to refine the animal’s estimate of its position, and tie objects, locations, and contexts into
episodic and semantic memories (Eichenbaum et al. 2012, Buzsaki & Moser 2013,
Kelemen & Fenton 2013). Place-specific firing is observed in both CA3 and CA1 (Muller
et al. 1987, Barnes et al. 1990, Lee et al. 2004, Mizuseki et al. 2012), but CA3 input is
not required for the formation of a place code in CA1 (Brun 2002, Leutgeb et al. 2004,
Nakashiba et al. 2008). Instead, the highly recurrent network of CA3 thought to be
critical for the associative role (memory recall) often ascribed to the hippocampus (Marr
1971, Hasselmo et al. 2002, Leutgeb & Leutgeb 2007).

In this conceptual model, then, we might expect intermittent events of strong CA3
input (CA3 pyramidal cells are more sparsely activated and more bursty, compared to
CA1 pyramidal cells; Barnes et al. 1990, Leutgeb et al. 2004, Mizuseki et al. 2012), in
which several activated cell assemblies initiate memory recall processes. Such an event
might appear in CA1 as a strong increase in slow gamma power. In contrast, the more
tonic EC3 input (Barnes et al. 1990) providing spatial reference information to CA1
seems less likely to take the form of events with especially strong fast gamma power or
coupling. Rather, fast gamma/epsilon power is a good indicator of local network
activation (Ray & Maunsell 2011a), and increases in these bands lines up in phase with
most CA1 pyramidal cell spikes and out of phase with EC3 pyramidal cell spikes
(Figures 4.1 and 4.2). Both EC3 and CA3 input to CA1 are important for spatial learning
(Brun 2002, Remondes & Schuman 2004, Brun et al. 2008, Nakashiba et al. 2008, 2009,
Suh et al. 2011), and somatic depolarization and various plasticity mechanisms are best

engaged by cooperative activation of the two inputs (Remondes & Schuman 2002, Ang et
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al. 2005, Jarsky et al. 2005, Takahashi & Magee 2009, Basu et al. 2013). These dendritic
activation mechanisms are also slower, allowing for the diverse local interneuron
population to shape the pyramidal cell response by modulating the strength and spread of
depolarization (Koch et al. 1983, Miles et al. 1996, Buzséki et al. 1996, Ang et al. 2005,
Hao et al. 2009, Lovett-Barron et al. 2012, Gidon & Segev 2012), as well as the timing of
somatic action potentials (Pouille & Scanziani 2001, Destexhe 2010, Renart et al. 2010,
Losonczy et al. 2010, Royer et al. 2012).

Cell assemblies in the hippocampus have been shown to group their spikes into
gamma-wave timescales, i.e., within 15-20 ms (Harris et al. 2003). Why then did we find
such poor phase locking with gamma LFPs? First, assuming that the 15-20 ms assembly
timescale represents the portion of the gamma cycle with increased excitability, this does
corresponds to the slow gamma frequencies to which we did find phase-locking (Figure
8). The precise timing of pyramidal cells within each gamma cycle and the phase
relationship with the LFP waves may be variable and dependent on the co-active
pyramidal cells and interneurons, thereby reducing their modulation indices. In support of
this hypothesis, even during in vitro gamma oscillations, which have fewer interfering
LFP contributions, pyramidal cells in CA1 are subject to competition between excitation
and inhibition, resulting in weak phase-locking of spikes (Zemankovics et al. 2013,
Pietersen et al. 2013).

In general, LFPs typically reflect input at low frequencies, output at high
frequencies, and a complicated combination in the middle. CA1 appears to lack circuit

and cellular resonance properties that would allow it to respond coherently to medium/
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fast gamma input (Pouille & Scanziani 2001, Vaidya & Johnston 2013), which may be by
design. Its most important roles appear to be: (1) to integrate spatial, contextual, and
internally generated input from EC3, CA3, and its other cortical and subcortical afferents;
and (2) to transfer and consolidate memories into the neocortex with strong, synchronous,
tetanus-like bursts in the form of sharp wave-ripples (SWR). The first role is best
achieved if the network can listen to its afferents’ inputs, allow them to interact and
subject them to local computations in the pyramidal cell dendrites with the aid of feed-
forward and feedback inhibition, and resist operating in an entrained or exclusive fashion
with respect to these afferents. Having the inputs multiplexed in time and frequency,
avoiding network properties that resonate with either input, and employing integration
mechanisms that are either slower or tuned for the proper delays are all consistent with
this function. For the second role, CA1 responds to large, internally generated population
bursts from CA3 by synchronizing its output into a series of “mini population
spikes” (Buzséki 1986) that have a strong effect on their targets (Chrobak & Buzséaki
1996, Wierzynski et al. 2009, Peyrache et al. 2009). Mechanisms resulting in
synchronized bursting of pyramidal cells (Figure 14) would facilitate this role. The fact
that these spikes can collectively generate large, high-frequency LFP signatures (Chapter
3) allows for an easy way to recognize the CA1 pyramidal layer (Mizuseki et al. 2011,
Berényi et al. 2014), as well as to detect significant memory-related events (Logothetis et
al. 2012).

Moving forward, while gamma-band spectral profiles of CA1 LFPs may offer

useful indicators of the occurrence of strong CA3 input, they can be sensitive to
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the location of the electrodes, the characteristics of the recording circuit (e.g.,
electrical noise, EMG contamination), and spectral contamination across bands or
by broadband events (e.g., spikes, chewing artifacts). More effective approaches
will likely be to apply PCA or ICA decomposition (Delorme & Makeig 2004,
Fernandez-Ruiz & Herreras 2013, Lopes-dos-Santos et al. 2013), Bayesian
decoders (Davidson et al. 2009, Kloosterman et al. 2014), support vector machine
classifiers (Horikawa et al. 2013), or other techniques in a similar vein, to large-
scale neural recordings to reduce the dimensionality of the data in a more
meaningful manner. The analyses of neural population dynamics and interactions
within the hippocampus, between the hippocampus and its afferents, and between
CA1 and its efferents are sure to yield tremendous insights into the mechanisms
of cell assembly coordination, the modification of neural circuits, the formation of

long-term memories, and the role of the hippocampus in memory recall.
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