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ABSTRACT 

There are important problems to overcome if solar energy or other renewable energy 

sources are to be used effectively on a global scale. Solar photons must not only be 

harvested and converted into a usable form, but they must also be efficiently stored so that 

energy is available for use on cloudy days and at night. In this work, both the energy 

conversion and energy storage problems are addressed. Specifically, two cobalt complexes 

were designed and their reactivity probed for applications in energy conversion and 

storage.  

The first chapter describes a cobalt complex that is the first example of a dimeric cobalt 

compound with two singly proton-bridged cobaloxime units linked by a central BO4
-
-

bridge. The compound was prepared from the well-known proton-bridged cobaloxime 

complex and trimethoxy boron under anhydrous conditions. Single crystals of the 

compound suitable for X-ray diffraction studies were obtained, and confirmed the structure 

of the dimer. Using electrochemical methods, the redox properties of the dimer were 

evaluated and it was found to be an electrocatalyst for proton reduction in acetonitrile. 

Because hydrogen gas is difficult to handle and store, the hydrogenation of CO2 and later 

dehydrogenation of the liquid product, formic acid, has been proposed as a hydrogen 

storage system. Thus, a second complex supported by a triphosphine ligand framework, 

described in Chapter 2, was used as a catalyst precursor for this key dehydrogenation step. 

The studies here demonstrate the efficacy of the complex as a precatalyst for the desired 

reaction, with good conversion of starting formic acid to CO2 and H2.  

In order to better understand the properties of the triphosphine cobalt complex, a synthetic 

procedure for substituting electron donating groups (e.g., methoxy groups) onto the ligand 

was investigated. A novel diphosphine cobalt(II) complex was obtained and its structure 

confirmed by X-ray crystallography. The redox properties of this compound were studied 

by cyclic voltammetry, and are compared with the parent triphosphine. 
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C h a p t e r  1  

HYDROGEN EVOLUTION WITH A NOVEL BO4
-
-BRIDGED COBALT 

GLYOXIME DIMER 

Introduction 

The world's growing population continues to demand more and more energy. These needs 

are met currently by fossil fuels; however, it is essential to find clean and sustainable 

alternatives due to the risks of anthropogenic climate change. Many energy technologies 

discussed today, including natural gas and nuclear fission power plants, wind turbines, and 

carbon capture facilities, to name a few, may provide relief from the overuse of fossil fuels 

like oil and coal. Nonetheless, the most promising long-term option appears to be solar 

energy, due to its abundance and exploitability. Given that the sun provides more energy to 

the earth in one hour than is consumed by humans in one year,
1
 its potential as an energy 

provider is remarkable, especially since solar energy represents a carbon-free energy 

source. 

Water splitting is an attractive approach for storing the energy of sunlight, solar photons, 

and converting them into stored chemical energy. Nature has been splitting water for 

billions of years in a process called photosynthesis, in which water undergoes a light-driven 

four-electron oxidation to dioxygen. The liberated protons and electrons can then be used to 

form hydrogen gas. Briefly, excitation of a chlorophyll molecule by light initiates electron 

transfer from Photosystem II to Photosystem I. Four electrons and four protons are used to 

reduce nicotinamide adenine dinucleotide phosphate (NADP
+
) to form NADPH, which is 

then used by plants as “fuel” for their cellular processes. To provide the electrons needed 

for NADPH production, H2O is oxidized at the manganese cluster of the oxygen-evolving 

complex (OEC).  
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Of the two half-reactions occurring in water splitting, as shown in Equations 1.1-1.3, the 

oxidation of water to oxygen is more energetically demanding than proton reduction.
2
  The 

OEC accomplishes this task by using a structurally complex cluster, consisting of four 

manganese (Mn) ions, a calcium (Ca
2+

) ion, and a chloride (Cl
–
) ion. Three of the 

manganese are arranged into a cuboid structure, while the fourth manganese ion is attached 

to the outside of the cuboid by a bridging oxide ion.
3
 While the Ca

2+
 cation can be replaced 

by some other metal Lewis acids, the OEC will not function if Mn is replaced by other 

first-row transition metals. The necessity for Mn seems to be based on the high rates of 

water exchange for Mn
2+

 and the ability of Mn to reach a wide range of oxidation states, 

especially Mn(III) and Mn (IV).
4
 The precise structure of the OEC is not known and 

continues to be  investigated,
5–7 

leading to difficulties in elucidating the exact mechanism 

employed for water oxidation. Nonetheless, two different proposals for O–O bond 

formation have emerged: oxidative coupling between bridging bis-µ-oxo ligands and 

nucleophilic attack of H2O or OH
–
 on a terminal oxo species.

3
  

 

Figure 1.1. A model device architecture for water splitting. The process of interest 

is electrochemical proton reduction (4e
-
 + 4H

+
 → 2H2) as shown on the lower, 

photocathode component. 
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Great progress has been made on the reductive side of water splitting, namely the hydrogen 

evolution reaction (HER) (Equation 1.2). Dihydrogen evolution is of particular interest 

because of hydrogen’s value as a clean and renewable fuel.
1,8–10 

In particular, hydrogen 

production by (photo)electrochemical proton reduction represents a viable pathway to clean 

fuel generation using renewable energy sources (Figure 1.1). Because many 

(photo)electrode materials are inherently poor catalysts for hydrogen production, the 

development of catalytic molecules and materials has received great attention in recent 

years.  

While platinum is the best catalyst for hydrogen evolution, the metal's scarcity and high 

cost limit its use. In order for platinum to be an effective resource for energy harvesting and 

conversion, it would have to be able to scale to the terawatt level: Proton-exchange 

membrane fuel cells (PEMFCs) would require some 300 tons of platinum for 1 TW of 

power, a statistic made all the more staggering given that society consumes roughly 16 TW 

of power globally.
11

 As a result, there has been great interest in catalysts that make use of 

earth abundant metals like nickel,
12–15 

cobalt,
16–19 

iron,
20

 and molybdenum
21

.  

In terms of heterogenous systems for hydrogen evolution, two promising systems have 

emerged: nickel-molybdenum and cobalt-phosphide. Progress on nickel-molybdenum (Ni-

Mo) alloys gained momentum in the 1980s when Ni-Mo cathodes were shown to be 

extremely active and stable, with overvoltages of about 60 mV over 11,000 hours of 

electrolysis.
22

 Previously, Ni-Mo alloys were applied directly to electrodes or substrates, 

but current work has lead to the development of methods for depositing Ni-Mo on silicon 

surfaces (photocathodes)
23

 and synthesizing unsupported Ni-Mo nanopowders.
24

 However, 

Ni-Mo is only stable under strongly alkaline conditions.  

Popczun, Roske and co-workers have overcome this problem with their report of cobalt 

phosphide (CoP) nanoparticles as an electrocatalyst for HER under acidic conditions with 

an overpotential  (-85 mV for a current density at -20mA cm
-2

) that compares well to the 

those of other HER eletrocatalysts.
25

 These include Ni2P,
26

 Mo2C on carbon nanotubes,
27

 

and MoS2,
28

 with overpotentials that range from -130 to -175 mV. While the CoP 
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nanoparticles system has about the same overpotential as Ni-Mo (-80 mV),
23

 the CoP 

system may be considered more advantageous due to its stability in strongly acidic 

conditions.  

Molecular catalysts can also be immobilized on electrode surfaces (Figure 1.2). Berben and 

Peters reported aryl-substituted tetraimine cobalt complexes, analogues of a 

Co(dmgBF2)2(MeCN)2 cobaloxime that readily adsorbed on a glassy carbon electrode.
29

 

Alternatively, Krawicz et al. functionalized a p-type gallium phosphide surface with 

polyvinylpyridine which subsequently could bind a cobaloxime catalyst for hydrogen 

evolution.
30

  Fontecave and Artero attached a cobaloxime to a carbon nanotube electrode 

using a diimine-dioxime ligand, although clear comparisons with the analogous soluble 

compound under the assayed conditions were not provided.
31

 Thus, it remains of interest to 

develop new synthetic routes for proton-reduction catalysts, since more complex ligand 

architectures can be used to tether catalysts to surfaces or to generate multimetallic species 

with novel reactivity.  

 

Figure 1.2. Selected examples of immobilized HER catalysts. 

Great progress has been made on developing homogeneous HER catalysts using a variety 

of earth-abundant transition metals (Figure 1.3). Dubois reported a series of monomeric 

nickel phosphine complexes that reduced dimethylformamide with extraordinary turnover 

frequencies as high as 106,000 s
-1

 in a solution of 1.2 M water in acetonitrile.
12
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Alternatively, a molybdenum-oxo complex with a pentadentate pyridine ligand was 

described as a precatalyst for hydrogen generation in water.
21

 Closely related are a set of 

cobalt compounds, also featuring the pentapyridine ligand, that generate hydrogen 

electrochemically with a mercury electrode in aqueous solutions, 
32, 33

 with a [Ru(bpy)3]
2+

 

photosensitizer in aqueous solutions,
34

 or under diffusion limited conditions in 

acetonitrile.
35

 In older work, Kӧlle and Grätzel demonstrated the photoreduction of protons 

on a TiO2 colloid using rhodium(III) catalysts that were reduced at a potential of -0.75 V 

vs. SCE.
36

 

 

Figure 1.3. Selected homogeneous HER catalysts. 

Cobalt glyoxime complexes have also been extensively studied in the context of hydrogen 

evolution (Figure 1.4). These complexes gained attention after Schrauzer's work with 

cobaloxime derivatives as mimics of vitamin B12.
37

 Soon after the first cobalt glyoximes,  

were isolated by Shrauzer and Holland, work began on the elucidation of their mechanistic 

importance in the evolution of hydrogen by Spiro
38

 and Espenson, who found 

Co
II
(dmgBF2)2(H2O)2 could reduce protons in aqueous conditions.

39
 In acetonitrile with 

acid sources, the BF2-bridged cobaloximes, Co
II
(dmgBF2)2(MeCN)2

16
 and 

Co
II
(dpgBF2)2(MeCN)2,

40
 were shown to reduce protons at -0.55 V vs. SCE and -0.28 V vs. 

SCE respectively. It was found that the potential at which hydrogen is evolved is 

correlated, unsurprisingly, with the electronic properties of the ligand. A compound with 
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weaker electron donating ligands will be more easily reduced and, hence, evolve hydrogen 

at a more positive potential.
18

  

  

Figure 1.4. Proton and difluoroborate-bridged cobaloximes.  

In addition to these mononuclear complexes, di-iron and nickel-iron hydrogenase mimics 

have garnered attention. In biological systems, hydrogenase enzymes containing iron 

(Figure 1.5) and nickel cofactors can produce dihydrogen from water at the thermodynamic 

potential with turnover frequencies as high as 9000 s
-1

 at 30 °C.
41,

 
42

  Thus, mimics are 

especially interesting because they imitate the natural structure of protein active sites.
43–46

 

However, the hydrogenases are unstable in aerobic environments and easily degraded by 

competing side chemical processes. It is generally thought that these mimics tend to 

function poorly since they are no longer surrounded by their natural protein environment.
9, 

47
 
 

  
Figure 1.5. Model of the active site of hydrogenase. 
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Development of multinuclear catalysts has also been of recent interest, as multiple sites 

may promote reactivity that is not accessible with a single site. Enhanced reactivity by 

dimeric complexes, in comparison to monomeric complexes, has also been demonstrated in 

several hydrogen evolving catalysts.  

In 1992, Collman et al. reported a series of ruthenium and osmium cofacial 

bisorganometallic diporphyrins that evolve hydrogen in the presence of acid.
48

 They 

attempted to make use of the cofacial orientation of the porphyrins to facilitate dinuclear H2 

elimination. Although catalysis was not as rapid as expected, electrochemistry on a 

mercury-pool electrode demonstrated that the cofacial bimetallic system was more stable 

than its monomeric analogue.
49

 

At Caltech, Peters and coworkers reported bimetallic analogues of various difluoroborate-

bridged cobaloximes (Figure 1.6) with the ability to reduce protons at low overpotentials. 

Electrochemical studies of these dicobalt compounds revealed two nicely separated 

Co(III/II) couples and also two resolved Co(II/I) couples, indicating stability of the mixed 

valence intermediates. The potentials of the redox events ranged from -0.30 to 0.18 V vs. 

SCE for the Co
II
Co

II
/Co

II
Co

I
 and Co

II
Co

I
/Co

I
Co

I
 couples and 1.07-1.35 V vs. SCE for the 

Co
II
Co

II
/Co

II
Co

III
 and Co

II
Co

III
/Co

III
Co

III
. It is also of note that these complexes exhibited 

IVCT bands consistent with a Class II-III mixed valence species according to the Robin-

Day classification system. This indicates that the cobalt centers are moderately to strongly 

coupled.
50

 

 

Figure 1.6. Dicobaloxime complex reported by Peters and coworkers. 
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Similarly, Valdez et al. published a dicobalt system with octamethylene-linked 

bis(glyoxime) ligands (Figure 1.7). In this system, hydrogen evolution was proposed to 

occur by the protonation of a reductively generated Co
II
-H. However, electrochemical 

studies revealed no enhancement of electrocatalytic hydrogen evolution rates over the 

mononuclear analogue.
51

  

Cobalt complexes bearing proton-bridged or BF2-bridged dimethyl or diphenyl glyoxime 

ligands were found many years ago to be suitable catalysts for reduction of protons to 

dihydrogen, but synthetic methods remain elusive for generating multinuclear compounds 

or structures amenable to immobilization on electrodes. We have been investigated a new 

synthetic pathway to enable such further derivatization of these complexes.  

Thus, we now report the preparation and characterization of a novel dimeric cobalt 

dimethylglyoxime complex that is bridged by BO4
-
. The complex was prepared by 

treatment of the doubly proton-bridged mononuclear glyoxime, first obtained by Schrauzer 

and Holland,
52

 with trimethoxy boron under anhydrous conditions, yielding the novel 

compound. Furthermore, we have characterized its electrochemical and catalytic properties 

for hydrogen evolution in acetonitrile.  

 

 

Figure 1.7. Dicobaloxime complex reported by Valdez et al. 
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Synthesis of a BO4
-
-Bridged Dimeric Cobaloxime Complex 

Synthesis of the dimeric cobaloxime was accomplished in two steps (Scheme 1.1). Starting 

from cobalt(II) chloride hexahydrate and dimethyl glyoxime, the green monomeric proton-

bridged cobaloxime, [Co
III

(dmgH)2(MeCN)Cl] (dmg=dimethylglyoximate), was obtained 

as described in the procedure by Grimes without the addition of pyridine.
53

 This complex is 

air stable and appears brown upon addition of pyridine. The pyridine cobaloxime adduct, 

Co
III

(dmgH)2(py)Cl (py=pyridine), exhibits a reversible Co
II/I

 couple at -0.98 V vs 

Ag/AgCl and an irreversible Co
III/II

 couple at -0.59 V vs Ag/AgCl.
54

  

Treatment of this proton-bridged glyoxime compound with trimethyl borate and 

tetramethylammonium chloride in MeCN gave a new BO4
-
-bridged dimer of singly H

+
-

bridged cobalt(III) glyoxime units. Recrystallization in acetonitrile with ethyl ether yields 

the species as brown crystals.  

 

 Scheme 1.1. Synthesis of the novel BO4
-
-bridged dimeric cobaloxime.  
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X-Ray Crystallography of the BO4
-
-Bridged Dimeric Cobaloxime 

Brown blade-like crystals of complex 2 submitted for X-ray crystallography revealed a 

triclinic crystal with two cobalt centers with pseudo-octahedral geometry and a bridging 

BO4
-
 moiety with a distorted tetrahedral geometry (Figure 1.8). Each cobalt center is 

coordinated by two essentially planar dimethylglyoxime ligands and two chlorides in the 

axial trans positions. The observed Co-N distances are each near 1.88 Å and those of the 

Co-Cl bond are near 2.23 Å. The Co-N distances are comparable to those of monomeric 

cobaloxime complexes, with bond lengths that are often near 1.89 Å.
18

 

 

 

Figure 1.8. Crystal structure of the BO4
-
-bridged dimeric cobaloxime. 
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The two cobaloxime units bridged by BO4
-
 form a Co-B-Co angle of 145.21⁰, with an 

observed Co-B distance of 3.211 Å and a Co-Co distance of 6.136 Å (see Tables A1 and 

A2). The metal-to-metal distance is likely too large to permit IVCT. Supporting this notion, 

IVCT bands were not observed in the expected 700-1000 nm region during 

spectroelectrochemical studies of the complex. The pyridazine-bridged dicobalt complexes 

reported by Peters and coworkers did observe IVCT bands from about 750-900 nm,
50

 but in 

their Co
III

-Co
III

 compound the cobalt centers were closer at 3.798 Å.  

A tetraethylammonium chloride counterion was observed to balance the -1 charge of the 

complex. If the counterion is omitted from consideration, C2 symmetry is observed in the 

complex due to the orientation of the two large macrocycles. The distorted tetrahedral 

boron center prevents the macrocycles from being coplanar or cofacial. They are best 

described as pseudo-orthogonal. These assignments are consistent with the spectroscopy 

(see below). 

Spectroscopic Studies of the BO4
-
-Bridged Dimer 

Nuclear magnetic resonance (NMR) spectroscopy of the brown crystals confirmed their 

purity and structure. The 
1
H NMR spectrum of complex 1 (see Figure A1) exhibited a 

triplet and quartet at 1.22 and 3.17 ppm, respectively, for the countercation 

tetraethylammonium. Two singlets with a 1:1 integration appear at 2.47 and 2.56 ppm as 

expected for the dimethylglyoxime methyl groups. Finally, a signal was found at 18.4 ppm, 

attributable to the two bridging protons of the complex. In the 
13

C NMR, six signals are 

observed as expected (see Figure A2), while in the 
11

B NMR there was a singlet at 7.41 

ppm (Figure 1.9). These signals provide strong evidence for the existence of the proposed 

structure. 
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Figure 1.9. 
11

B NMR of the BO4
-
-bridged dimeric cobaloxime. 

Mass spectra of complex 1 corresponded nicely to the proposed structure (Figure 1.10). 

The negative ion spectrum exhibited a parent peak at 727.1 m/z, corresponding to the 

complex (charged -1 overall) without the counter ion, [dimer-NEt4]. Peaks at 693.1 and 

657.0 m/z corresponded to the [dimer-NEt4-Cl] and [dimer-NEt4-2Cl-H] fragments 

respectively. A peak at 621.0 m/z was assigned to the [dimer-NEt4-3Cl-H] fragment.  

 

Figure 1.10. GCMS of the BO4
-
-bridged dimeric cobaloxime in the negative ion phase.  
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Electrochemical Studies of the BO4
-
-Bridged Dimeric Cobaloxime 

Cyclic voltammograms collected with complex 1 using a basal-plane graphite working 

electrode in 0.1 M NBu4PF6 in MeCN show an irreversible wave at E1/2 = –0.68 V vs Fc
+/0

 

which we assign to a quasi-reversible Co
III/II

 couple. At more negative potentials, two 

closely spaced, single-electron Co
II/I 

couples were observed near –1.2 and –1.3 V vs Fc
+/0 

(Figure 1.11).
 
This assignment is consistent with the bimetallic Peters system described 

above, which exhibited two one-electron events for each of the two paired Co
III/II

 and Co
II/I

 

couples. In comparison, the Co
III/III

/Co
III/II

 and Co
III/II

/Co
II/II

 couples of 1 are not resolved at 

all from each other. Although the Co
II
Co

II
/Co

II
Co

I
 and Co

II
Co

I
/Co

I
Co

I
 one electron couples 

are somewhat resolved, by about 100 mV, those reported by Peters have a larger separation 

of about 200 mV.
50

 

 

Figure 1.11. Cyclic voltammograms of the BO4
-
-bridged dimeric cobaloxime. 

Conditions are described in the main text. 

To better establish the number of electrons participating in the oxidation and reduction of 

complex 1, differential pulse voltammetry was carried out using the same electrode 

configuration as above (Figure 1.12). Two closely spaced, but clearly resolved, signals 

were observed for a sample of 5 mM of the dimer in a NBu4PF6 acetonitrile solution, 

implying that two unique processes were occurring during the oxidation sweep. A reductive 

sweep on a 10 mM solution of ferrocenium produced a clean single peak with an area 
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roughly equal to that of the complex's two peak areas. The 1:1 comparison implies that 

indeed there is an overall two-electron process occurring as the two metal centers in the 

complex are oxidized from Co
I
 to Co

II
. 

 

Figure 1.12. Differential pulse voltammogram of the BO4
-
-bridged dimeric 

cobaloxime (blue line) and ferrocene (black line). 

 

 

Figure 1.13. UV visible spectra of the BO4
-
-bridged dimeric cobaloxime at 2.23 

mM (left) and 0.0742 mM (right). 
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UV-visible spectrum of the BO4
-
-Bridged Dimeric Cobaloxime 

The UV visible spectrum of the dimer, at a concentration of 2.23 mM in acetonitrile, 

revealed two bands at 542 and 623 nm with extinction coefficients of 129 and 77 M
-1

 cm
-1

 

respectively. At a lower concentration of 0.0742 mM, an additional band with an extinction 

coefficient of 3044 M
-1

 cm
-1

 could be resolved at 387 nm.  

Proton-Reduction Electrocatalysis with the BO4
-
-Bridged Dimeric Cobaloxime 

In order to determine the ability of dimer 1 to catalyze the reduction of protons to 

hydrogen, cyclic voltammograms of the free dimer were compared to solutions of the 

dimer with increasing concentrations of an organic proton source. Specifically, we used a 

1:1 solution of protonated dimethylformamide ([DMF•H]
+
) and dimethylformamide 

(DMF). This buffered organic acid allows us to estimate the reversible, thermodynamic 

potential for the H
+
/H2 couple under these conditions; this value is -389 mV vs. Fc

+/0
.
55

 The 

data showing changes in the cyclic voltammograms upon acid addition are shown in the 

two panels of Figure 1.14. 

The cyclic voltammetry of 1 in the presence of increasing concentrations of acid shows 

onset of a catalytic response near the Co(II/I) potentials of the metal complex. This is 

consistent with prior work on cobaloxime-catalyzed proton reduction, which shows 

catalytic current at similar potentials with other strong organic acids. Notably, a plateauing 

catalytic current was not obtained upon variation of scan rate, although the negative 

potentials required for catalysis precluded use of very fast scan rates due to background 

response complications. Thus, turnover frequencies were not calculated from the 

voltammetry data. However, using the method of Appel, et al., we did estimate the 

potential for catalysis with dimer 1 to be -1.24 V with addition of 5 equivalents of acid. 

This corresponds to an overpotential (under these conditions) of -850 mV. However, use of 

a weaker acid would likely result in similar catalysis at lower overpotential values, an area 

of interest for future work. 
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Figure 1.14. Cyclic voltammetry showing proton reduction catalysis with dimer 1 

in the presence of a 1:1 [DMF•H]
+
:DMF. 

Conclusions 

In summary, a new BO4
-
-bridged dimeric cobalt dimethylglyoxime complex has been 

synthesized and fully characterized in the Co(III)/Co(III) oxidation state. The complex was 

synthesized by treatment of the proton-bridged mononuclear dimethylglyoxime with 

trimethoxy boron under anhydrous conditions. Furthermore, its electrochemical and 

catalytic properties have been probed for hydrogen evolution in acetonitrile, confirming 

that the dimeric complex can serve as an effective catalyst for proton reduction. 
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C h a p t e r  2  

COBALT-CATALYZED DEHYDROGENATION OF FORMIC ACID, A 

HYDROGEN-STORING CHEMICAL 

Introduction 

Despite the advancements made in the development of earth-abundant catalysts for 

hydrogen evolution, hydrogen's potential as a fuel on a large scale is limited by the 

challenge of hydrogen storage. Due to its poor energy density by volume relative to 

hydrocarbons, storage requires a larger tank. Energy density can be improved by 

pressurizing the tank, but this requires heavier tanks and significant energy for 

compression.
56

  

Some research has focused on the storage of hydrogen in materials like carbon-based 

compounds, organic polymers (covalent organic frameworks), zeolites, metal-organic 

frameworks, clathrates and metal hydrides. These have not yet proved to be the ultimate 

solution to the hydrogen-storage challenge.
57

  

An alternative is storing hydrogen in liquids with high hydrogen content. This route is 

becoming increasingly attractive because liquids can often be imagined to be transportable 

via existing infrastructure. In particular, formic acid is a promising liquid-storage medium, 

as its conversion into hydrogen and carbon dioxide is thermodynamically downhill (∆G°298 

= –32.9 kJ mol
–1

) (Eqn. 2.1).
58, 59

 The conversion of formic acid into H2O and CO, is also 

thermodynamically downhill, but less so than dehydrogenation (∆G°298 = –20.7 kJ mol
–1

) 

(Eqn. 2.2).
60

. Use of carbon dioxide, an abundant and inexpensive C1 feedstock, is also of 

interest because it may be used to generate HCO2H.
55
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There has been progress in developing catalysts for the hydrogenation of carbon dioxide 

and the decomposition of formic acid using metal complexes with noble metals.
56,60–71

 

Kang et al. reported the insertion of carbon dioxide into five-coordinate iridium(III) 

dihydride complexes with PCP-pincer ligands.
64

 This is consistent with previous work 

performed by the Nozaki and Hazari labs, who reported similar iridium systems that 

reduced CO2 to formate under basic conditions (Figure 2.1).
65–67

 Alternatively, Strauss, 

Schriver, et al. investigated the capabilities of a rhodium(I) catalyst, Rh(C6H4PPh2)(PPh3)2, 

to decompose formic acid to produce CO2 and H2. Their proposed catalytic cycle involved 

oxidative addition of formic acid to the complex, followed by ß-hydride elimination to 

produce CO2 and an intermediate that goes on to release H2.
69

 Junge, Beller et al. 

investigated ruthenium-catalyzed H2 evolution from formic acid in the presence of various 

amines and halide additives. It was found that more basic amidines improved catalyst 

performance.
71

   

 

Figure 2.1. Selected noble metal catalysts that decompose formic acid. 

The development of complexes that reduce carbon dioxide and selectively evolve H2 from 

formic acid containing only earth-abundant metals are also known now.
72–79

 Shin, Parkin et 

al. reported a molybdenum complex, Cp*Mo(PMe3)2(CO)H - formed from carbonyl 

abstraction reactions between Cp*Mo(PMe3)3H and reagents like CO2, (CH2O)n, HCO2H, 

and MeOH - that catalyzes the dehydrogenation of formic acid.
72

 Work by Ludwig and 

Beller demonstrated that formic acid could be decomposed into hydrogen and carbon 

dioxide using triphenylphosphine
73

 and novel benzylphosphine iron catalysts that activate 
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via ortho-metalation upon irradiation with light.
74

 An iron(II) complex with a pincer ligand, 

studied by Langer, Milstein et al., was found to catalyze the hydrogenation of bicarbonate 

into sodium formate with a turnover frequency of 156 h
-1

;
76

 this was comparable to a study 

of an iron system conducted by Beller and Laurenczy, who calculated a turnover frequency 

of up to 30.5 h
-1

 in contrast.
75

  

Federsel and Beller also demonstrate hydrogenation of CO2 and bicarbonates with a cobalt 

dihydrogen complex.
78

 Most impressive however is the Laurenczy, Ludwig, Beller, and 

coworkers iron catalyst that dehydrogenated a solution of formic acid in propylene 

carbonate with no further additives with a turnover frequency of up to 9425 h
-1

 (Figure 

2.2).
79

 

This provided the inspiration for the work completed here - investigation of a hydrogen 

storage system based on formic acid using a cobalt catalyst. 

 

Figure 2.2. Selected earth abundant catalysts that dehydrogenate formic acid. 

 

Cobalt Triphosphine Systems 

The triphos ligand framework (triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane 

employed here allows for facile tuning of reduction potentials because the aryl groups can 

be functionlized with electron-withdrawing or electron-donating groups. In 1975, Sacconi 

published early work in this area involving a cobalt triphos amine complex.
80

 Other early 

work by Mealli included the synthesis and structural characterization of cobalt triphos 

complexes.
81

 More recently, in 1997, Heinze et al. reported a set of dimeric mixed valence 



 

 

20 

cobalt triphos compounds with a benzoic system bridging ligand.
82

 In addition to these 

examples, many more Co(triphos) species have been reported (Figure 2.3).
83

 The 

protonation of [(PP3)CoH]
84 

(PP3 = P(CH2CH2PPh2)3) led to the formation of a dihydride 

complex, [(PP3)Co(H)2][PF6].
85

 Although  [(triphos)Co
III

(H)2]
+
 species have been 

synthesized,
86, 87

 catalytic proton reduction has not been reported.  

 

 Figure 2.3. Selected triphos ligand catalysts. 

Previous work in the Gray group has focused on a series of cobalt complexes supported by 

the triphos ligand framework. Cobalt(II) iodide spontaneously reacts with phosphine, 

yielding a pink solid, Co(triphos)(I) (1).
88

 When this pink solid is abstracted with TlPF6 in 

in 5:1 THF:MeCN, a  cationic acetonitrile adduct, [Co(triphos)(MeCN)][PF6]] (2),  is 

generated as blue crystals. Complex 2 was found to react at room temperature with p-

toulenesulfonic acid monohydrate to generate a half equivalent of hydrogen and cobalt(II) 

(Scheme 2.1).
89

 In addition, CVs of 2 at a glassy carbon electrode in a 0.1 M acetonitrile 

solution of [nBu4N][PF6] revealed a reversible wave at E1/2 = –0.68 V vs Fc
+/0

 assigned to 

the Co
II/I

 couple, and an irreversible oxidation at +0.66 V vs Fc
+/0

, assigned to the Co
III/II

 

couple.
89

 

Mechanistic work using this cobalt(I) complex (2), revealed that protonation produces a 

diamagnetic Co
III
–H complex (3) that was characterized by 

1
H and 

31
P NMR spectroscopy. 

Complex 3 was found  to be a transient intermediate that  was readily reduced by Co
I
 to 

generate a reactive Co
II
-H intermediate.

89
 As such, we became interested in exploring the 

hydrogen evolution reaction of the cobalt system (2) in the presence of other acids, 

including formic acid.  
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Scheme 2.1. Syntheses of cobalt(I) species. 

Dehydrogenation of Formic Acid 

To determine that the catalyst was in fact decomposing formic acid, the generation of H2 

and CO2 were verified. First, the heating of formic acid (10 equivalents) and a solution of 

[Co(triphos)(MeCN)]
+
 (2), in CD3CN at 70 °C for four hours, led to the appearance of a 

singlet in the mixture's 
1
H NMR at  4.58 ppm, signifying the presence of hydrogen gas. 

When this experiment was repeated in a Schlenk flask at 70 °C and stirred for 12 hours, gas 

chromatography indicated that 9 equivalents of hydrogen had evolved. Note that for all 

measurements, the mixture was placed in an oil bath at the desired temperature and allowed 

to equilibrate for 10 minutes. A control experiment without catalyst showed a negligble 

amount of gas evolution during the equilibration time. The following kinetics plots show 

the evolution of gases following the 10-minute equilibration time. 

Second, in a separate experiment, a reaction mixture containing 10 equivalents of H
13

CO2H 

in a solution of 2 in CD3CN was heated for 2 hours at 70 °C. The presence of a singlet in 

13
C NMR spectrum of the reaction mixture at  125.9 ppm indicated the formation of 

13
CO2 
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(Figure 2.4). CO was not detected by 
13

C NMR or gas chromatography in the reaction 

mixture. 

 
Figure 2.4. 

13
C NMR spectrum of the reaction mixture containing 127 mM 

H
13

CO2H and 12.7 mM 1 in CD3CN. 

 

The dehydrogenation of formic acid was probed using gas chromatography analysis and an 

inverted burette for gas evolution measurements. In one experiments, addition of formic 

acid to a 1 mol% solution of 2 in acetonitrile produced hydrogen in a (91% yield after 

heating the reaction mixture at 70 °C for 16 hours. In a separate trial, after 18 hours at 70 

⁰C, the dehydrogenation of formic acid in the presence of 1 mol% of 2 went to 93% 

completion. An additional 100 equivalents of formic acid added, with respect to cobalt, 

added to the reaction resulted in a yield of 50% after 23 hours at 70 ⁰C. The analysis of the 

kinetics of the reaction showed the rate of gas evolution increased following a slow 

initiation period, or lag phase (Figure 2.5). After 1.5 hours, the reaction was found to have 

an apparent rate constant of 2.9(3) M s
-1

 at a catalyst concentration of 12.7 mM and a zero-

order dependence on formic acid. Rate constants were measured at 70, 80 and 90 ⁰C and 

the relative concentrations of 2 and HCO2H were 12.7 mM and 1.27 M respectively (Figure 

2.6). Activation parameters were calculated from an Eyring plot (see Figure B1), where 

ΔH
‡
=10(3) kcal mol

-1
 and ΔS

‡
=-49(9) eu.  
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Figure 2.5. Kinetics of HCO2H dehydrogenation in the presence of 1 mol% 1 in 

1.27 mM MeCN solution at 70 °C. 

 

 
Figure 2.6. Comparison of kinetics of HCO2H dehydrogenation 70, 80, and 90 °C.   
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The addition of 25.4 and 114.3 mM of triphos did not change the reaction kinetics (See 

B2). Furthermore, a comparison between reactions with 12.7 mM formate 

([nBu4N][HCO2]HCO2H) and no formate at 70 °C revealed similar rate constants (Figure 

2.7).  

 

Figure 2.7. Kinetics of formic acid dehydrogenation in the presence  

(blue) and absence (red) of 1 mol% [nBu4N][HCO2]HCO2H. The solution has 

12.7 mM of 1 in a 1.27 M solution of formic acid in MeCN heated to 70 °C. 

 

Proposed Mechanism of Formic Acid Dehydrogenation 

Cyclic voltammograms of 2 at a glassy carbon electrode in 1.3 mM formic acid showed 

enchanced current at -1.8 V vs Fc
+/0

. This potential corresponds to the formation of cobalt 

(0) or perhaps a cobalt(II)-hydride (in the presence of acid) at the electrode (Figure 2.8). 

The CV suggests that hydrogen is generated by the reaction of an electrochemically derived 

cobalt(II)-hydride and formic acid. In the proposed mechanism, a –hydride elimination 

transforms cobalt(II) formate, produced by the reaction of 2 and formic acid, to cobalt(II)-

hydride. Carbon dioxide is also released in this reaction (Scheme 2.2).  
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Figure 2.8. Cyclic voltammograms of 1 (0.6 mM) in acetonitrile solution 

containing 0.1 M [nBu4N][PF6] and ferrocene in the presence and absence of 

formic acid. Scan rate: 100 mV s
–1

; glassy carbon electrode.  

 

Scheme 2.2. Proposed mechanism for the dehydrogenation of formic acid. 
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A cobalt formate complex was isolated via the following procedure: the addition of 1 

equivalent of base, [nBu4N][HCO2]HCO2H, to a 1:1 acetonitrile:tetrahydrofuran solution 

of 2 resulted in an instantaneous color change of the mixture from blue to yellow. 

Recrystallization with diethyl ether yielded yellow crystals (Figure 2.9) that were shown by 

X-ray crystallography to be a cobalt(I) formate complex (4) (Eqn. 2.3). 

 

 The Co(1)–O(1) bond length is 1.9749(17) Å; and C–O distances in the formate anion are 

1.261(4) Å for O(1) and 1.224(5) Å for O(2). The Co(1)–O(2) distance is 2.977 Å (see 

Tables B1 and B2).  

 

Figure 2.9. Crystal structure of 4. Hydrogen atoms and solvent are not shown for clarity.  
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Kinetic Isotope Effect Studies 

Kinetic isotope effect studies were conducted to further investigate the mechanism of 

formic acid dehydrogenation in this system. A small KIE (1-3) would indicate a rate 

determining X-H bond breaking step,
90

 while  a KIE greater than 7 would imply a direct 

hydride transfer resulting from a difference in the geometry of the transition state.
91, 92

 The 

kinetic isotope effects for the reaction were measured by replacing formic acid with 

HCOD2D, DCO2H, and DCO2D (Figure 1.10). The KIEs for each were 1.2(3), 1.7(3), and 

2.5(3) respectively (Table 2.1). These values are similar to ones reported for the oxidation 

of several metal formate species that undergo –hydride elimination. Numerical 

simulations of the reaction kinetics are in agreement with a mechanism that involves an 

initiation period, followed by a fast zero-order decay.  

Table 2.1. Kinetic isotope effects. 

Acid KIE
 

HCO2D 1.2(3) 

DCO2H 1.7(3) 

DCO2D 2.5(3) 

  

 
Figure 2.10. Kinetics of the dehydrogenation of HCO2H and its deuterated variants. 
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Development and Synthesis of an Analogous Ligand Framework 

The triphos ligand framework employed allows for facile tuning of reduction potentials as 

aryl groups with electron-withdrawing or electron-donating groups can be introduced. After 

studying the unsubstituted system in the dehydrogenation of formic acid, it was of interest 

to begin the investigation of analogous ligand systems. The development and synthesis of 

the triphos ligand with the electron donor methoxy was studied (Figure 2.11). 

 

Figure 2.11. Proposed substituted cobalt species.  

The ligand framework necessary to form the electron-donating cobalt catalyst is not 

commercially available. Syntheses adapted from literature procedures were investigated to 

determine the synthetic pathways that yield the desired ligand with highest purity. These 

syntheses may be divided into two parts: formation of a diaryl phosphine 6 or 7 and 

formation of the tripodal ligand 8. 

Compound 6 was synthesized following the procedure reported by Narsireddy and 

Yamamoto (Scheme 2.3).
93

 A Grignard, formed through the reaction of 4-bromoanisole 

with Mg, reacts with Cl2PNEt2 to yield a phosphine amine in solution. The mixture was 

quenched with HCl and worked up in water/ethyl acetate to form the substituted phosphine 

oxide 5.  
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Scheme 2.3. Synthesis of R-phosphine ligand from inexpensive starting materials.  

Formation of the phosphine oxide 5 was verified by NMR studies. The 
1
H NMR spectrum 

displays a doublet, assigned to the PH group, at δ 8.19 ppm with a JPH coupling constant of 

480 Hz . The 
1
H NMR spectrum also shows resonances in the 7-8 ppm region, indicative of 

aryl protons, and a singlet at δ 4.05 ppm, assigned as the methoxy protons, OCH3.
 
The 

31
P{

1
H} NMR spectrum exhibits only a singlet at 19.2 ppm, confirming the purity of the 

phosphine oxide (see Figures B3 and B4). 

This phosphine oxide reacts with PCl3 (Method A) to give 6. The literature reported 

distillation under high vacuum for a related compound with a lower boiling point. 

However, this method was unsuccessful due to the higher boiling point of our diaryl chloro 

phosphine 6.  

An alternative route for the conversion from 5 to 7 was investigated, Method B (Scheme 

1.3). This method is more advantageous because it does not depend on the boiling point of 
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the diaryl phosphine 7, but instead relies on a series of extractions. The formation of 

species 7 was verified by NMR (see Figures B5 and B6).  

Two methods, reported in the literature, for the formation of the triphos-OMe ligand 8 from 

the diaryl phosphine 7 were investigated. In Method I (Scheme 2.4), 7 reacts with 1,1,1-

tris(chloromethyl)ethane in the presence of KO
t
Bu under reflux. In Method II (Scheme 

1.4), the reaction conditions include Ni(PPh3)2Cl2 and Et3N in DMF. Originally, both 

methods required purification by silica gel chromatography. However in both cases, use of 

silica gel led to decomposition of the product. In Method II, the resulting product was not 

purified through silica gel column chromatography, but passed through a short layer of 

silica gel. This alternative method led to product formation with 80% purity. Unfortunately, 

even the short silica column drastically reduced the amount of the desired product.  

 

Scheme 2.4. Adapted syntheses of the triphos ligand frame. Reagents and 

conditions: (Method I) KO
t
Bu, THF, reflux, 16 h; (Method II) Ni(PPh3)2Cl2 (2 

mol%), Et3N, DMF, 120 ⁰C, 12h.  

Purification of the ligand was not especially effective, so the products generated through 

Method I and II were analyzed by NMR to determine which pathway yielded 8 with the 

highest purity. While both methods worked, more pure 8 was obtained from Method I. The
 

1
H NMR spectrum of the mixtures from Method I showed peaks in the aromatic region, 7-8 

ppm, and peaks in the 3-4 ppm region, tentatively assigned as methoxy protons, OCH3. 

Since the 
31

P NMR spectrum of the unsubstituted ligand framework displayed a peak at 
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−25.2 ppm, it was expected the ligand would show a similar signal. The reaction mixture 

shows a signal in the 
31
P NMR spectrum at −29.5 ppm suggesting the formation of the 

desired ligand. 

Method I was investigated further to determine if more ideal conditions existed. Previously 

Method I had been carried out in THF under reflux, open to nitrogen flow. Two 

components of the reaction were altered: solvent system and temperature. Thus, Method I 

was carried out in both THF and DMSO in closed systems, sealed off from nitrogen flow. 

The THF was heated to 100 ⁰C and the DMSO mixture to 150 ⁰C. The cleanest NMR 

spectra were obtained from the closed system that utilized DMSO.  

Preparation of a Cobalt Complex using the Analogous Ligand 

GCMS of the methoxy ligands obtained from Method I have not been consistent with the 

expected mass of the ligand framework. 8 is expected to have a mass of 804.23 m/z or 

826.23 m/z, if coordinated to sodium. However, major peaks have only been observed at 

862.07 m/z and 902.8 m/z. However, these results were only from ligands purified by silica 

gel chromatography and, hence, are believed to be a result of decomposition of the product 

on silica gel.  

Metallation reactions generated a metal complex using the ligands prepared from 

inexpensive starting materials and Methods I or II. The generated product was purified by 

recrystallization. Vapor diffusion of the complex in DCM with diethyl ether led to the 

formation of the best crystals. These crystals were suitable for X-ray crystallographic 

characterization. The structure obtained was surprising. 

By X-ray crystallography, species 9 was observed. This complex has one dissociated 

phosphine and two chlorine atoms in the organic ligand (Figure 2.12). Observation of 9 

could have been the result of a radical reaction. However, this seemed unlikely because it 

would have required the breaking of a P-C bond. More likely, the reaction of the trichloride 

and phosphine in Method I did not go to completion, leaving a phosphine unattached. In 

addition, it is suspected that use of DCM in recrystallization of the cobalt complex may 
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have interfered with the structure. For these two reasons, Method I was modified to make 

use of DMSO. 

Cyclic voltammograms of 9 using a glassy carbon electrode in 0.1 M THF solution of 

[nBu4N][PF6] showed a large irreversible reduction wave near −0.357 V, which we have 

assigned to a Co
II/I

 couple (Figure 2.13). This potential is ca. 350 mV more positive than 

the unsubstituted triphos complex 2. This potential is more consistent with a rather negative 

CoIII/II couple in comparison with the first chapter’s work. It is suspected that large peak 

at 1.0 V may be the oxidation of the ligand.  

 

Figure 2.12. Crystallographic structure of the cobalt triphos analog complex 9.  
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Figure 2.13. Cyclic voltammogram of the species 9 in THF. 

 

Conclusions 

In summary, formic acid can be selectively dehydrogenated in the presence of 1 mol% of a 

unsubstituted cobalt complex supported by a tri-phosphorus ligand framework, complex 1. 

The proposed mechanism involves the formation of a cobalt(III) hydride species via 

protonation of cobalt(I), followed by reduction of the nascent Co
III

-H to generate a highly 

reactive Co
II
–H. Protonation of Co

II
–H forms hydrogen and cobalt(II) formate, which upon 

–hydride elimination and carbon dioxide release regenerates Co
II
–H. 

An analogue of the cobalt complex used in the dehydrogenation studies was also 

developed. A ligand was designed for supporting cobalt in a triphosphine ligand framework 

further substituted with methoxy groups on the aryl groups. The necessary intermediate, a 

diaryl phosphine ligand, was synthesized and subsequently reacted with KO
t
Bu or 

Ni(PPh3)2Cl2 in order to form the desired triphos ligand. Cobalt (II) iodide was combined 

with one equivalent of the isolated material, yielding a cobalt (II) complex with two 

coordinated phosphine ligand. 
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A p p e n d i x  A  

CHAPTER 1 SUPPORTING INFORMATION 

Experimental Details 
 

General Considerations.  

All solvents were of commercial grade and dried over activated alumina using a Grubbs-

type solvent purification system prior to use. All chemicals were from major commercial 

suppliers and used without further purification. 
1
H and 

13
C NMR spectra were collected on 

300, 400, or 500 MHz Varian spectrometers and referenced to the residual protio-solvent 

signal in the case of 
1
H and 

13
C or the deuterium lock signal in the case of 

11
B. Chemical 

shifts (δ) are reported in units of ppm and coupling constants (J) are reported in Hz. 

Electrochemical measurements were made with a Gamry Reference 600 

potentiostat/galvanostat using a standard three-electrode configuration. For all experiments, 

the supporting electrolyte was 0.1 M tetrabutylammonium hexafluorophosphate (Fluka, 

electrochemical grade) in MeCN solvent. Voltammetry collected for solution-soluble redox 

couples was obtained at a basal-plane graphite working electrode electrode (surface area: 

0.09 cm
2
). A Pt wire served as the counter electrode, with a Ag/Ag

+
 reference calibrated 

with the ferrocene/ferrocenium couple as an external reference. Concentrations were 

typically 10
-3

 M.   

 

BO4
-
-bridged dimeric cobaloxime (1) 

A 3-necked 500 mL round bottom flask containing H-cobaloxime (1.0 g, 3.08 mmol) was 

fitted with a condenser, evacuated, and put under N2. Dry MeCN (250 mL) was cannula 

transferred into the setup. Trimethyl borate (1.72 mL, 15.4  mmol) was carefully syringed 

into the solution, followed by the addition of tetraethylammonium chloride (255 mg, 1.54 

mmol). The mixture immediately changed from green to brown. After refluxing for 3 h, the 

solution was concentrated and cooled. The addition of diethyl ether caused a silver gray 
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solid to precipitate, which was filtered off. Upon drying in air, the solid turns brown. The 

brown solid was washed in DCM and filtered again, yielding a dark brown solid (937 mg, 

mmol, 70% ). Upon recrystallization in MeCN/diethyl ether, a small broad peak at 20 ppm 

in the 
11

B NMR disappears. 
1
H NMR (400 MHz, MeCN-d3) δ 18.39 (s, 1H), 3.17 (q, J = 

7.2 Hz, 9H), 2.56 (s, 6H), 2.47 (s, 6H), 1.22 (t, J = 8.0 Hz, 13H). 
13

C NMR (101 MHz, 

MeCN-d3) δ 160.68 , 150.13 , 52.06 , 13.65 , 12.25 , 6.72 . 
11

B NMR (128 MHz, MeCN-d3) 

δ 7.41 . 

 

Figure A1. 
1
H NMR of the dimer. 

 

 

Figure A2. 
13

C{
1
H} NMR of the dimer. 
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Figure A3. GCMS of complex 1 in the negative ion phase. 
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X-ray Structural Data 

 

Table A1. Crystal data and structure refinement for the cobalt dimer 1. 

  

  

Chemical formula C26 H49 B Cl4 Co2 N10 O8 

Formula weight 900.22 

Crystallization solvent Acetonitrile, diethyl ether 

Crystal habit Blade 

Crystal size 0.59 x 0.27 x 0.07 mm
3
 

Crystal color Brown 

  

Data collection  

Type of diffractometer Bruker KAPPA APEXII 

Wavelength 0.71073 

Data collection temperature 100(2) K 

  

Crystal system Triclinic 

Space group P -1 

Cell dimensions  

 a = 12.5189(7) Å 

b = 12.7064(7) Å 

c = 13.0978(8) Å 

109.121(2) ⁰ 

 102.053(2) ⁰ 

 90.025(2) ⁰ 
Cell volume 1919.77(19) 

Z 2 

Density (calculated) 1.557 Mg/m
3
 

F(000) 932 

  

q range for data collection 1.668 to 43.747 ⁰ 
Index ranges -24h24   -24k24    -25l25 

Data collection scan type f  and ω scans 

Reflections collected  288113 

Absorption coefficient 1.201 

Max. and min. transmission 0.921 and 0.538 

  

Refinement  

Structure solution program XT-2014/1 (Sheldrick, 2012) 

Structure refinement program SHELXL-2014/2 (Sheldrick, 2014) 

Refinement method Full matrix least-squares on F
2
 

Data/restraints/parameters 29359 / 0 / 662 

Goodness of fit 1.284 

Final R indices[I > 2\s(I), 29359 

reflections] 

R1 = 0.0317, wR2 = 0.0716 

R indices (all data) R1 = 0.0533, wR2 = 0.0771 

Weighting scheme Calc 

 w=1/[σ
2
Fo

2
+(0.0300P)

2
] 

P=(Fo
2
+2Fc

2
)/3 

Max shift/error 0.004 

Average shift/error 0.000 

Largest diff. peak and hole 0.877 and -0.662 Å
3
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Table A2. Selected lengths (Å) and angles (⁰) for the cobalt dimer 1. 

    

    

Co(1)-Co(2) 6.316(2) Co(2)-N(8)-C(14) 116.50(5) 

Co(1)-Cl(1) 2.2314(4) Cl(1)-Co(1)-Cl(2) 176.42(2) 

Co(1)-Cl(2) 2.2343(4) Cl(1)-Co(1)-N(1) 89.44(2) 

Co(1)-N(1) 1.8867(7) Cl(1)-Co(1)-N(2) 89.42(2) 

Co(1)-N(2) 1.8856(6) Cl(1)-Co(1)-N(3) 88.36(2) 

Co(1)-N(3) 1.8903(6) Cl(1)-Co(1)-N(4) 90.67(2) 

Co(1)-N(4) 1.8831(7) Cl(2)-Co(1)-N(1) 88.24(2) 

Co(2)-Cl(1) 2.2258(3) Cl(2)-Co(1)-N(2) 92.93(2) 

Co(2)-Cl(2) 2.2352(3) Cl(2)-Co(1)-N(3) 89.32(2) 

Co(2)-N(1) 1.8770(7) Cl(2)-Co(1)-N(4) 91.70(2) 

Co(2)-N(2) 1.8878(7) N(1)-Co(1)-N(2) 81.62(3) 

Co(2)-N(3) 1.8832(7) N(1)-Co(1)-N(3) 98.89(3) 

Co(2)-N(4) 1.8829(8) N(1)-Co(1)-N(4) 178.94(3) 

O(1)-N(1) 1.3343(8) N(2)-Co(1)-N(3) 177.72(3) 

O(2)-N(2) 1.3673(7) N(2)-Co(1)-N(4) 97.32(3) 

O(3)-N(3) 1.3264(8) N(3)-Co(1)-N(4) 82.17(3) 

O(4)-N(4) 1.3662(7) Cl(3)-Co(2)-Cl(4) 178.15(2) 

O(5)-N(4) 1.3648(8) Cl(3)-Co(2)-N(5) 92.64(2) 

O(6)-N(6) 1.327(1) Cl(3)-Co(2)-N(6) 88.53(2) 

O(7)-N(7) 1.3629(9) Cl(3)-Co(2)-N(7) 93.27(2) 

O(8)-N(8) 1.3384(9) Cl(3)-Co(2)-N(8) 88.92(2) 

B(1)-O(2) 1.470(1) Cl(4)-Co(2)-N(5) 88.32(2) 

B(1)-O(4) 1.4870(8) Cl(4)-Co(2)-N(6) 90.04(2) 

B(1)-O(5) 1.4747(8) Cl(4)-Co(2)-N(7) 88.16(2) 

B(1)-O(7) 1.477(1) Cl(4)-Co(2)-N(8) 90.14(2) 

  N(5)-Co(2)-N(6) 82.15(3) 

Co(1)-B(1)-Co(2) 145.21(1) N(5)-Co(2)-N(7) 97.48(3) 

Co(1)-N(1)-O(1) 122.00(5) N(5)-Co(2)-N(8) 178.31(3) 

Co(1)-N(2)-O(2) 124.51(5) N(6)-Co(2)-N(7) 178.17(3) 

Co(1)-N(3)-O(3) 122.06(5) N(6)-Co(2)-N(8) 98.55(3) 

Co(1)-N(4)-O(4) 125.11(5) N(7)-Co(2)-N(8) 81.78(3) 

Co(2)-N(5)-O(5) 125.04(4) N(2)-O(2)-B(1) 117.22(5) 

Co(2)-N(6)-O(6) 122.34(5) N(4)-O(4)-B(1) 118.64(5) 

Co(2)-N(7)-O(7) 124.43(5) N(5)-O(5)-B(1) 117.89(5) 

Co(2)-N(8)-O(8) 122.22(5) N(7)-O(7)-B(1) 118.08(5) 

Co(1)-N(1)-C(1) 116.46(5) O(2)-B(1)-O(4) 117.76(6) 

Co(1)-N(2)-C(2) 116.83(5) O(2)-B(1)-O(5) 100.01(5) 

Co(1)-N(3)-C(5) 115.80(5) O(2)-B(1)-O(7) 104.22(5) 

Co(1)-N(4)-C(6) 116.15(5) O(4)-B(1)-O(5) 104.07(5) 

Co(2)-N(5)-C(9) 116.39(5) O(4)-B(1)-O(7) 113.11(6) 

Co(2)-N(6)-C(10) 115.86(5) O(5)-B(1)-O(7) 117.54(6) 

Co(2)-N(7)-C(13) 116.34(5) O(1)-N(1)-C(1) 121.53(7) 
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A p p e n d i x  B  

CHAPTER 2 SUPPORTING INFORMATION 

Experimental Details 
 

General Considerations.  

All manipulations of air and moisture sensitive materials were conducted under a nitrogen 

atmosphere in a Vacuum Atmospheres glovebox or on a dual manifold Schlenk line. The 

glassware, including NMR tubes, were oven-dried before use. Diethylether, 

tetrahydrofuran, dichloromethane, and acetonitrile were degassed and passed through 

activated alumina columns. These solvents and deuterated solvents, purchased from 

Cambridge Isotope Laboratories, Inc., were stored over 4 Å Linde-type molecular sieves 

before use. 
1
H spectra were acquired at room temperature, unless otherwise noted, through 

the use of  Varian spectrometers and referenced to the residual 
1
H resonances of the 

deuterated solvent (
1
H: CD2Cl2, δ 5.32  CD3CN, δ 1.94). They are reported as parts per 

million relative to tetramethylsilane. Formic acid was dried over CaCl2 for 24 hours, 

followed by vacuum distillation. Compounds 1,
89

 2,
89

 and [nBu4N][HCO2]HCO2H
77

 were 

prepared according to literature procedures. 

Co(triphos)(HCO2) (4) 

A THF solution (0.3 mL) of  [nBu4N][HCO2]HCO2H (30.3 mg, 0.0908 mmole) was 

added to a MeCN solution of [Co(triphos)(MeCN)][PF6] (79 mg, 0.0908 mmole) in a 1 

dram vial equipped with a magnetic stir bar. The color of the reaction mixture changed 

immediately from blue to yellow. The mixture was stirred at RT for 10 minutes. Vapor 

diffusion from diethyl ether at RT yielded yellow crystals (60 mg, 91%). Anal. Calcd for 

C42H40CoO2P3: C, 62.23; H 5.53. Found: C, 61.96; H, 5.36. X-ray quality crystals were 

obtained by vapor diffusion of Et2O over an MeCN solution of 3 at RT. 
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Cyclic voltammetry experiments 

Electrochemical measurements were recorded under a nitrogen glovebox at 25 ⁰C with a 

Pine Instruments WaveNow potentiostat. Electrochemical analyses were carried out in a 

three electrode cell consisting of a glassy carbon working electrode (surface area = 0.07 

cm
2
), a platinum wire counter electrode, and a silver wire reference electrode. For all 

measurements, the electrolyte solution was 0.1 M [nBu4N][PF6]. The 

ferrocene/ferrocenium couple was used to calibrate the reference electrode.  

General information for kinetics experiments 

In a nitrogen atmosphere glovebox, 4.0 mL of a 12.7 mM acetonitrile solution of 1 was 

transferred to a three neck round bottom flask equipped with a magnetic stir bar and a 

reflux condenser. Under a continuous flow of argon, 0.2 mL of formic acid (5.32 mmole, 

1.27 M) was added to the reaction mixture. The mixture was placed in an oil bath at the 

desired temperature and allowed to equilibrate for 10 minutes. The volume of gases 

evolved was measured with an inverted burette and recorded over time.  

Additional Figures 

 

 
Figure B1. Eyring plot. 



 

 

46 

 

Figure B2. Dependence of the kinetics of dehydrogenation using triphos. 

 
 

Figure B2. 
1
H NMR spectra of the purified methoxy phosphine 5.  
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Figure B3. 
31

P NMR spectra of the purified methoxy phosphine 5.  

 

 

 

Figure B4. 
1
H NMR spectra of the triphos-OMe ligand 7. 
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Figure B5. 
31

P NMR spectra of the triphos-OMe ligand 7. 

 

 

X-Ray Structure Determination 

 

Low-temperature diffraction data (and scans) were collected on a Bruker Kappa four-circle 

diffractometer coupled to a Bruker APEX II CCD detector with graphite 

monochromatedMo K radiation (=0.71073 Å) for the structure of compound 4 was solved 

by direct methods using SHELXS and refined against F
2
 on all data by full-matrix least 

squares with SHELXL-2013 using established refinement techniques. All non-hydrogen 

atoms were refined anisotropically. All hydrogen atoms were included into the model at 

geometrically calculated positions and refined using a riding model. The isotropic 

displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the 

atoms they are linked to (1.5 times for methyl groups). All disordered atoms were refined 

with the help of similarity restraints as well as rigid bond restraints on the anisotropic 

displacement parameters.  

 

The cobalt formate, complex 4, in the orthorhombic space group Pna21 with one molecule 

in the asymmetric unit. The formate ligand is disordered with a partially occupied chloride. 

This leads to a non-integral number of atoms in the unit cell.   
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Table B1. Crystal data and structure refinement for the cobalt formate complex 4. 

  

  

Chemical formula C41.90 H39.90 Cl10.11 Co O1.79 P3 

Formula weight 727.57 

Crystallization solvent Acetonitrile, diethyl ether 

Crystal size 0.200 x 0.200 x 0.200 mm
3
 

Crystal color Yellow 

  

Data collection  

Type of diffractometer Bruker KAPPA APEXII 

Wavelength 0.71073 Å 

Data collection temperature 100(2) K 

  

Crystal system Orthorhombic 

Space group P n a 21 

  

 a = 20.7208(11) Å 

b = 10.0143(4) Å 

c = 16.9376(9) Å 

90 ⁰ 

 90 ⁰ 

90 ⁰ 
Cell volume 3514.6(3) 

Z 4 

Density (calculated) 1.375 Mg/m
3
 

F(000) 1517 

  

q range for data collection 1.966 to 36.339 ⁰ 
Index ranges -34h31   -16k16    -28l28 

Data collection scan type f  and ω scans 

Reflections collected  86161 

Absorption coefficient 0.669 mm
-1

 

Max. and min. transmission 0.749 and 0.657 

  

Refinement  

Structure solution program XT-2014/1 (Sheldrick, 2012) 

Structure refinement program SHELXL-2014/2 (Sheldrick, 2014) 

Refinement method Full matrix least-squares on F
2
 

Data/restraints/parameters 16896/ 49 / 444 

Goodness of fit 1.039 

Final R indices[I > 2\s(I), 29359 

reflections] 

R1 = 0.0311, wR2 = 0.0737 

R indices (all data) R1 = 0.0369, wR2 = 0.0763 

Absolute structure parameter 0.001(4) 

Largest diff. peak and hole 0.621 and -0.353 Å
3
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Table B2. Selected bond lengths (Å) and angles (⁰) for cobalt formate complex 4.  

    

    

Co(1)-O(1) 1.9749(17) O(1)-C(6)-O(2) 127.3(4) 

Co(1)-P(1) 2.2274(4) C(6)-O(1)-Co(1) 115.8(2) 

Co(1)-P(2) 2.2331(4) O(1)-Co(1)-P(1) 123.23(5) 

Co(1)-P(2) 2.2383(4) O(1)-Co(1)-P(2) 137.81(5) 

Co(1)-Cl(1A) 2.380(7) O(1)-Co(1)-P(3) 108.36(7) 

O(1)-C(6) 1.261(4) P(1)-Co(1)-P(2) 92.609(16) 

C(6)-O(2) 1.224(5) P(2)-Co(1)-P(3) 90.325(16) 

C(6)-H(6) 0.9500 P(3)-Co(1)-P(1) 91.487(15) 

C(1)-C(5) 1.535(2) Co(1)-P(1)-C(2) 110.24(5) 

C(1)-C(4) 1.545(2) Co(1)-P(2)-C(3) 108.67(5) 

C(1)-C(3) 1.553(2) Co(1)-P(3)-C(4) 110.94(5) 

C(1)-C(2) 1.555(2) P(1)-C(2)-C(1) 114.56(11) 

C(2)-P(1) 1.8473(16) P(2)-C(3)-C(1) 116.23(10) 

C(3)-P(2) 1.8501(15) P(3)-C(4)-C(1) 114.85(10) 

C(4)-P(3) 1.8467(16) C(2)-C(1)-C(5) 107.50(11) 

P(1)-C(11) 1.8260(15) C(3)-C(1)-C(5) 106.27(12) 

P(1)-C(21) 1.8354(16) C(4)-C(1)-C(5) 107.45(13) 

P(2)-C(31) 1.8350(16) C(11)-P(1)-C(21) 98.68(7) 

P(2)-C(41) 1.8415(15) C(31)-P(2)-C(41) 100.33(7) 

P(3)-C(51) 1.8257(16) C(51)-P(3)-C(61) 99.18(7) 

P(3)-C(61) 1.8339(15)   
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Table B3. Crystal data and structure refinement for analog complex 9. 
  

  

Chemical formula C46 H50 Cl2 Co I2 O6 P3 

Formula weight 1175.46 

Crystallization solvent Acetonitrile, diethyl ether 

Crystal habit Needles 

Crystal color Green 

  

Data collection  

Type of diffractometer Bruker KAPPA APEXII 

Wavelength 0.71073 

Data collection temperature -173(2) K 

  

Space group Pbca 

Cell dimensions  

 a = 20.5156(9) Å 

b = 18.4374(9) Å 

c = 24.9250(13) Å 

90 ⁰ 

 90 ⁰ 

 90 ⁰ 
Cell volume 9427.99 

Z 8 

Density (calculated) 1.608 Mg/m
3
 

F(000) 4560 

  

Index ranges -34h234   -30k31    -41l41 

Data collection scan type f  and ω scans 

Reflections collected  252534 

  

Refinement  

Structure solution program XT-2014/1 (Sheldrick, 2012) 

Structure refinement program SHELXL-2014/2 (Sheldrick, 2014) 

Refinement method Full matrix least-squares on F
2
 

Data/restraints/parameters 23890 / 0 / 569 

Goodness of fit 2.069 

Final R indices[I > 4/s(I), 13797 

reflections] 

R1 = 0.0491, wR2 = 0.0696 

R indices (all data) R1 = 0.1011, wR2 = 0.0702 

Weighting scheme Calc 

 w=1/[σ
2
Fo

2
] 

Max shift/error 0.020 

Average shift/error 0.045 

Largest diff. peak and hole 2.33 and -1.53 Å
3
 

  

Note that these distances are chosen to give the best fit to the X-ray data 

 and so avoid the introduction of systematic error. The true internuclear 

 distances are longer and do not vary with temperature! The apparent 

 variation with temperature is caused by libration. 
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Table B4. Selected bond lengths (Å) and angles (⁰) for analog complex 9. 
    

    

Co(1)-I(1) 2.5976(1) I(1)-Co(1)-I(2) 128.33 

Co(1)-I(2) 2.6559(1) I(1)-Co(1)-P(1) 87.67 

Co(1)-P(1) 2.2381(1) I(1)-Co(1)-P(2) 130.88 

Co(1)-P(2) 2.2235(1) I(1)-Co(1)-P(3) 91.64 

Co(1)-P(3) 2.2493(1) I(2)-Co(1)-P(1) 85.53 

P(2)-C(3) 1.8445(1) I(2)-Co(1)-P(2) 100.69 

P(3)-C(4) 1.8442(1) I(2)-Co(1)-P(3) 89.98 

C(1)-C(2) 1.5311(1) P(1)-Co(1)-P(2) 93.89 

C(1)-C(3) 1.5342(1) P(2)-Co(1)-P(3) 91.32 

C(1)-C(4) 1.5320(1) P(3)-Co(1)-P(1) 173.67 

C(1)-C(5) 1.5505(1) Co(1)-P(2)-C(3) 114.96 

C(2)-Cl(2) 1.7149(1) Co(1)-P(3)-C(4) 114.12 

C(5)-Cl(1) 1.6852(1) P(2)-C(3)-C(1) 123.56 

P(1)-C(11) 1.8266(1) P(3)-C(4)-C(1) 118.81 

P(1)-C(21) 1.8140(1) C(2)-C(1)-C(5) 108.75 

P(2)-C(31) 1.8361(1) C(3)-C(1)-C(4) 111.74 

P(2)-C(41) 1.8237(1) C(3)-C(1)-C(5) 103.49 

P(3)-C(51) 1.8278(1) C(4)-C(1)-C(5) 107.16 

P(3)-C(61) 1.8260(1) C(11)-P(1)-C(21) 102.44 

  C(31)-P(2)-C(41) 103.13 

  C(51)-P(3)-C(61) 101.59 
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