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Abstract

The ability to regulate gene expression is of central importance for the adaptability of living organ-

isms to changes in their internal and external environment. At the transcriptional level, binding of

transcription factors (TFs) in the vicinity of promoters can modulate the rate at which transcripts

are produced, and as such play an important role in gene regulation. TFs with regulatory action at

multiple promoters is the rule rather than the exception, with examples ranging from TFs like the

cAMP receptor protein (CRP) in E. coli that regulates hundreds of different genes, to situations

involving multiple copies of the same gene, such as on plasmids, or viral DNA. When the number of

TFs heavily exceeds the number of binding sites, TF binding to each promoter can be regarded as

independent. However, when the number of TF molecules is comparable to the number of binding

sites, TF titration will result in coupling (“entanglement”) between transcription of different genes.

The last few decades have seen rapid advances in our ability to quantitatively measure such effects,

which calls for biophysical models to explain these data. Here we develop a statistical mechanical

model which takes the TF titration effect into account and use it to predict both the level of gene

expression and the resulting correlation in transcription rates for a general set of promoters.

To test these predictions experimentally, we create genetic constructs with known TF copy

number, binding site affinities, and gene copy number; hence avoiding the need to use free fit

parameters. Our results clearly prove the TF titration effect and that the statistical mechanical

model can accurately predict the fold change in gene expression for the studied cases. We also

generalize these experimental efforts to cover systems with multiple different genes, using the method

of mRNA fluorescence in situ hybridization (FISH). Interestingly, we can use the TF titration affect

as a tool to measure the plasmid copy number at different points in the cell cycle, as well as the

plasmid copy number variance.

Finally, we investigate the strategies of transcriptional regulation used in a real organism by

analyzing the thousands of known regulatory interactions in E. coli. We introduce a “random pro-

moter architecture model” to identify overrepresented regulatory strategies, such as TF pairs which

coregulate the same genes more frequently than would be expected by chance, indicating a related bi-

ological function. Furthermore, we investigate whether promoter architecture has a systematic effect

on gene expression by linking the regulatory data of E. coli to genome-wide expression censuses.
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Chapter 1

Introduction

One of the defining features of living organisms is their ability to adapt to changes in their environ-

ment. In humans, examples are obvious: depending on the weather we dress differently, we behave

differently depending on our relationship to people around us, and we quickly pull away if one of our

hands touches a hot plate. Though less obvious, adaptation plays an equally important role across

all levels of the tree of life. Single celled organisms like bacteria can sense nutrient gradients through

receptors in their cell membranes and move towards regions where they are more likely to grow,

divide, and spread their genes [1]. Other bacteria hibernate and form spores [2] when the supply of

nutrients is low, hoping that better times will come eventually. Fundamentally, however, adaptation

in humans and bacteria are alike, in the sense that decisions are made at the levels of single cells.

The human body is nothing but an ecosystem of different cell types and microorganisms working

together. In fact, the majority of cells in the human body are not human but bacterial [3]. Any

action of a multicellular organism therefore originates from the actions of individual cells, and to

understand adaptation and decision making in detail, we need to understand how these mechanisms

operate at the single cell level.

The desire to understand life – how it started, how it evolved, how organisms function and

replicate – is probably as old as philosophical questions such as the origin of the universe and what

matter is made of. Modern science has been able to answer many questions, both in cosmology and

biology, that were previously thought to belong rather to religion or philosophy. When a person gets

the flu, we now know that it is caused by the infection of a microscopic virus which replicates inside

our bodies, rather than failing to sacrifice enough goats to the mountain gods. Perhaps upsetting to

some supernaturalists, the most successful picture of life we have is that we are simply made up of

a collection of particles which mindlessly obey the laws of physics. Air fills our lungs on a summer

day because the pressure outside of our body is greater than inside, and our heart beats because of

coordinated electrical stimulatory signals. For the heart, life is simple: it beats as long as it can,

then it stops.
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Figure 1.1: The central dogma of molecular biology establishes a connection between the DNA
nucleotide sequence and protein amino acid sequence, through the transcription of DNA into mRNA
by RNA polymerases (RNAP), and the translation of mRNA into proteins by ribosomes. (Adapted
from “Physical Biology of the Cell”, Garland Science, 2013.)

The central dogma of molecular biology dictates how genetic information

is converted into functional proteins

A naturalistic perspective opens up the door to gaining understanding of life, including adaptation

and decision making, through systematic experimentation and hypothesis testing. The quest is,

however, a challenging one. Cells are tiny (typically 1− 10µm in size) membrane-bound bodies, and

probing their inner workings requires ingenious experiments. Still, an enormous amount of molecular

biology has been learned over the past century, and new important discoveries continue to be made.

The isolation of DNA was already accomplished by the late 19th century by Friedrich Miescher, but

at the time its crucial role to life was not yet understood. Over the next few decades the importance

of DNA was gradually recognized, culminating in 1953 with the discovery of the double helix model

of DNA by James Watson and Francis Crick [4], and the central dogma of molecular biology [Fig. 1.1]

by Crick a few years later [5]. By then it was appreciated that essentially all information about an

organism is stored in its DNA sequence, which gets passed along to its progeny. The DNA codes for

genes which can be transcribed into mRNA by RNA polymerase (RNAP), and further translated

into proteins by ribosomes. Proteins are the workhorses of the cell, providing all different kinds of

functionality, like motility, regulation, and transport. Proteins either function by themselves or in
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(A) (B)

Figure 1.2: (A) Cartoon of a bacterial flagellum which is composed of around twenty five different
proteins. (B) Protein structure of a human growth membrane receptor protein. (Adapted from
“Physical Biology of the Cell”, Garland Science, 2013.)

complexes with other proteins, for example in the flagella [Fig. 1.2(A)] or in membrane receptors

[Fig. 1.2(B)]. The biological role of a protein depends on its folding structure, which is determined by

the minimum free energy configuration of its amino acid sequence. This structure can often switch

between different conformations by interacting with a small molecule (e.g. a phosphate group),

which plays an important role in cellular decision making.

DNA sequencing makes it possible to read the genetic information in or-

ganisms of all types, but making sense of it all is harder

Even with the discovery of the DNA structure it took several decades before it became possible

to read (or sequence) the letters of life stored in the double helix. This changed with the advent

of Sanger sequencing in 1977 [6, 7] and polymerase chain reaction (PCR), a DNA amplification

technique, in 1983 [8]. These breakthroughs made it possible, in a practical manner, to sequence up

to hundreds of base pairs at a time. When sequencing of the first human genome was completed

in the early 2000s [9] it raised hopes that many serious diseases could soon be cured. However,

some of these wishes have not been realized. A major difficulty with analyzing DNA sequences

is the challenge of relating them to biological function. The millions of ’A’,’C’,’T’ and ’G’ letters

that a biologist is presented with after a large scale sequencing experiment are all written in the

same “font size”, and without important features highlighted. To use a computer science metaphor,

understanding the role of a particular DNA sequence is like figuring out how to set the desktop

background color on your computer by looking at the machine code of the operating system. While
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some genes are critical to the survival of the organism, other genes can be considered as “helper

genes”, useful only in particular contexts. The cell, however, has no “higher level” programming

language, that we are aware of, to distinguish critical features from the secondary. In addition, large

parts of the human genome consist of noncoding elements, including introns, retrotransposons [9],

or retrovirusess [10], which altogether make up some 98% of the genomic DNA [9]. Even sequences

which have no function at all will remain in the genome, as long as they do not cause an evolutionary

disadvantage for their host. In conclusion, the genome was not designed with comprehensibility in

mind, only evolutionary fitness.

Although many important lessons in molecular biology have been learned over the last century,

such as the central dogma, many questions still remain to be answered. For example, once a

functional DNA sequence has been identified, how can it be altered, or how can its behavior be

predicted from just looking at the sequence? By mutating the promoter region of a gene one can

alter the regulation of a gene, or by mutating the coding sequence one can replace amino acids

in the expressed protein to change its function. To connect, at the single base pair level, these

modifications in DNA sequence to biological function is a challenging task, which can only be

addressed with high resolution experiments together with quantitative biophysical models. With a

detailed understanding of how to connect DNA sequence and function, one could create synthetic

biological circuits with any desired properties, or modify the behavior of an existing circuit in an

advantageous way. Such abilities could potentially have large impact on other fields, for example

medicine, where broken genetic circuits are a common source of disease.

Model organisms are the harmonic oscillators of molecular biology

Using simple toy models as a starting point to attack new and more complex problems has been a

favorite approach among physicists for centuries, including the ever so useful harmonic oscillator or

the hydrogen atom. Similar ideas have in biology led many researchers to focus their attention on

a mere handful of different model organisms including Escherichia coli (E. coli), Bacillus subtilis,

Saccharomyces cerevisiae (yeast), Caenorhabditis elegans, and humans; this despite the plethora

of possible organisms to chose from. A model organism is chosen sometimes because of practical

reasons, perhaps being easy to isolate and grow (e.g. Escherichia coli), or because it has unusual

and interesting properties worth studying. The large amount of effort put into understanding these

model organisms makes them even more appealing for other researchers to use, as many of the

necessary tools and protocols (for example cloning techniques) have already been developed. Unlike

the harmonic oscillator or the hydrogen atom, model organisms are not necessarily “simpler” than

other organisms, which gives hope that the lessons learned in these species will also prove valuable

when turning to other organisms. Perhaps the largest divide among model organisms falls between

prokaryotes (e.g. bacteria) and eukaryotes. In terms of cell structure the prokaryotes are more
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simplistic, lacking a nucleus or other membrane-bound organelles. Another major difference between

the two groups is that transcription in procaryotes requires no preinitiation complex assembly, no

mRNA export and no post-transcriptional modification [11]. For these reasons, prokaryotes like

Escherichia coli are popular among quantitative biologists for studying gene regulation. In the

remainder of this thesis we will only cover gene regulation in procaryotes, again with the unspoken

hope that our efforts can later also become valuable in the study of eukaryotes.

1.1 Gene regulation: an overview

The amount produced of a protein of a certain kind depends on the rate at which the gene is being

transcribed to mRNA and then translated into proteins. A large number of proteins leads to high

activity of the corresponding biological function. For example, if a large number of flagella class

proteins are produced, the motility of the cell will increase, independently of if this is the best

strategy or not for the cell under the given conditions. Proteins simply obey the laws of physics,

ignorant of what their actions will lead to.

The basal transcriptional and translational machinery permits a generous range of gene expres-

sion. Even for an unregulated gene, the expression can vary by at least three orders of magnitude

[12], ranging from around 10 protein copies per cell up 10,000 in E. coli [13, 14]. While some pro-

teins will always be in great demand, like ribosomal proteins, others are only needed in specific

contexts. The constitutive, or unregulated, expression of genes cannot, however, be the full story.

To respond to changes in their external or internal environment organisms must be able to activate

or repress expression of genes at given times. Without this ability, they would produce the same

configuration of proteins, at the same rates, at all times, independent of their surroundings. Nature

would likely deem such an organism unfit. Already by the early 1900s it was known, from work by

Duclaux [15], Dienert [16] and others, that certain metabolic enzymes in yeast are only expressed in

conditions where they are actually needed – the first evidence of gene regulation before genes had

even been discovered! A modern explanation for this observation was provided sixty years later with

the seminal study of the lac operon by Jacob and Monod [17]. They were able to show that a DNA

binding protein, the Lac repressor, in E. coli can turn off the production of enzymes responsible for

the uptake and digestion of lactose when this sugar (or glucose, the favored energy source) is not

present. The results of Jacob and Monod provided the key insight that there is not only a causal

link from genes to proteins, but also from proteins to genes.

Genetic feedback regulation allows sophisticated dynamical behavior

The ability of proteins to control gene expression opens up the possibility for feedback regulation,

which can lead to interesting dynamics in expression patterns, including bistability [18] or oscillatory
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behavior [19]. As an example, consider a protein A with concentration cA which activates its own

transcription according to the Hill function

dcA
dt

= β0 + βA
(cA/Kd)

2

1 + (cA/Kd)2
− γcA. (1.1)

Here Kd specifies the dissociation constant of A to the promoter, and γ is the protein degradation

rate. When two activators cooperatively bind to the promoter, as is indicated by the quadratic

dependence of cA in the Hill function, the transcription rate is enhanced from the basal level of β0

to βA. When the probability is small that two activators bind to the promoter, (cA/Kd)
2 � 1, we

can approximate Eq. (1.1) by

dcA
dt
≈ β0 + βA(cA/Kd)

2 − γcA. (1.2)

This self activating system is bistable, as there are two steady state solutions c±A to Eq. (1.1). To

find these we set the left hand derivative equal to 0 and solve for c±A (valid when
(
γKd

2βA

)2

> β0

βA
)

c±A
Kd

=
γKd

2βA
±

√(
γKd

2βA

)2

−
(
β0

βA

)
. (1.3)

This example involves only a single gene, but with a higher number of genes there are an endless

number of ways to connect them, and the dynamical response gets rapidly more complex. In general,

with F number of DNA binding proteins, or TFs (TFs), and G independently transcribed genes there

are in theory 2FG number of ways to connect them into a genetic network. To realize this we first

notice that each gene is regulated by a subset of the F TFs, and that there are in total 2F possible

subsets to choose. By assuming that we can make this choice independently for every gene, the

multiplication rule of combinatorics tells us that there are (2F )G = 2FG possible networks. Using

some representative input for procaryotes, F = 200 and G = 5000, one would get around 10300,000

possible networks. In Fig. 1.3 we show the currently best known protein-protein interaction network

in yeast [20]. Even for such a relatively simple organism, the genetic network is extraordinary

complicated and nearly impossible to overview. It is an impressive fact that this machinery works

at all. Gene expression is an inherently stochastic process [21, 22, 23], with long delays between

transcription initiation to the finally matured protein. In E. coli, some decisions the bacteria make

will only affect its daughters or granddaughters [24]. From the standard theory of control and

dynamical systems, such systems would be very hard to control.
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Figure 1.3: The yeast protein-protein interaction network. Each dot represents a single protein, and
each line a genetic or biochemical interaction. (Adapted from H. Jeong et al., Nature 411:41, 2001.)

TFs affect how RNAP interacts with the promoter

TFs can enhance or repress the transcription rate of a gene by binding to a (more or less) conserved

nucleotide sequence in the promoter region. To repress a gene, TFs commonly bind at positions

which overlap the RNAP binding site [Fig. 1.4(D)], hence preventing it from accessing the promoter

and initiate transcription of the gene. An example is the Lac repressor mentioned above, which

represses transcription of the lac operon [27]. To activate a gene, TFs can instead bind upstream

of the promoter and form a stabilizing complex with RNAP [Fig 1.4(C)], or alternatively mediate

other steps in the transcription initiation process, such as open complex formation [28, 29] [Fig. 1.5]

or promoter escape. Apart from interacting with RNAP, TFs can also interact with each other

to cooperatively [30, 31, 32] regulate the expression of a gene [Fig. 1.4(F)]. Typically cooperativity

leads to a sharper regulatory response as a function of TF concentration. As an example, the cI2

activator binds two different sites [26] Fig. 1.4(F), such that one activator stabilizes not only RNAP

binding to the promoter, but also the binding of yet another cI2 activator in its vicinity. A different

method of achieving a sharper regulatory response is for a TF to simultaneously bind two different

binding sites by bending the intermediate DNA sequence into a loop [33, 34, 35] [Fig. 1.4(E)]. In

this case each binding site essentially works as a “fishing hook” for the other, hence increasing the

local concentration of the repressor around the promoter. Again, we can use the Lac repressor as
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(A) Inactive promoter.

RNAP

(B) Active promoter.

adhesive
interaction

activator

(C) Transcriptional activa-
tion.

repressor

(D) Repression. (E) Repression by loop-
ing.

(F) Cooperative activation.

Figure 1.4: Different ways TFs can enhance or repress transcription of a gene [25, 26]. (A) Promoter
with binding sites for an activator, a repressor, and an RNAP. (B) Promoter transcribed by RNAP.
(C) An activator stabilizes the binding of RNAP to the promoter, increasing the transcription
rate of the gene. (D) A repressor binds to a site which sterically excludes RNAP from accessing the
promoter, hence preventing transcription of the gene. (E) A repressor simultaneously binds two sites
by forming a DNA loop of the intermediate sequence. (F) Two activators cooperatively stabilizes the
binding of RNAP to the promoter. Stronger cooperativity leads to a sharper regulatory response.
((A)-(E) adapted from “Physical Biology of the Cell”, Garland Science, 2013, (F) adapted from
Bintu et al., Curr. Opin. Genet. Dev., 2005.)

an example, which can form DNA loops between the O1, O2 or O3 binding sites.

DNA sequence determines RNAP and TF binding affinity

Like everything in a cell, the transcription and translation rates are determined by the DNA se-

quence. RNAP recognizes two upstream sequence elements located 35 bp and 10 bp upstream of the

transcription start site and binds these to form a closed complex [Fig. 1.5]. The more closely the two

recognition sequences match the (σ70) consensus sequences TTGACA (-35 bp) and TATAAT (-10

bp), the more strongly RNAP binds to the promoter [36]. After closed complex formation, a series

of steps lead to the melting of the DNA helix (open complex formation) and promoter escape, which

indicates the starting point of mRNA synthesis [37, 38, 39]. Just like closed complex formation, the

rate of these steps depends on the DNA sequence of the promoter. Finding a fully generalized model

that describes all different steps of transcription initiation, and accurately predicts the transcription

rate for any promoter sequence is a difficult but important unsolved problem in biophysics. How-

ever, under some restricting circumstances a fully generalized model is not necessary. An important

example is when closed complex formation is the rate limiting step of transcription initiation, in

which case the other rates effectively “drop out”, and gene expression scales linearly with the RNAP

binding affinity to the promoter [40]. This assumption, called the occupancy hypothesis, will be

frequently used throughout this work. Mapping DNA sequence to RNAP binding affinity is still,
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Figure 1.5: Transcription initiation described by a (simplified) two step process, initiated by the
binding of RNAP to the promoter of a gene (with binding constant KB), and the subsequent
melting of the two DNA strands into an open complex formation. (Adapted from “The Bacterial
Chromosome”, ASM Press, 2005.)

however, a challenging problem. A commonly used approximation to model the affinity of RNAP,

or TFs, to DNA is to assume that each base pair in a binding sequence S contributes independently

to the total binding energy E(S)

E(S) =

L∑
i=1

∑
j=A,C,T,G

Mi,jSj,i = Tr(MS). (1.4)

Here SA/C/T/G,i = 1 if the identity of the base at nucleotide position i in the sequence is given by

A/C/T/G and otherwise SA/C/T/G,i = 0, Mi,A/C/T/G represents the energy contribution at position

i for base A/C/G/T respectively, and L is the length (in base pairs) of the binding sequence S. The

energy matrix M can be determined from studying a large set of mutated promoters, and relating

the identity of a base pair at a specific position to the resulting gene expression [41, 12, 36, 42, 43].

There are many different types of gene regulation

Apart from transcriptional regulation there are several other mechanisms to regulate a gene, tar-

geting different stages in the transcription, translation or protein maturation chain, as well as the

decay processes of mRNA or proteins. As each transcribed mRNA gets translated by ribosomes

into proteins, the number of proteins produced per mRNA (the burst size) can vary significantly

depending on how effectively ribosomes can access the ribosomal binding sequence (RBS) on the

mRNA. Just like the binding of RNAP to a promoter can be regulated by TFs, also the binding of

ribosomes can be regulated. One common method to achieve translational regulation in prokaryotes

is through the interference of an antisense RNA, that can complementarily base pair with an mRNA

and inhibit its translation [44]. In eukaryotes a similar strategy goes under the name of RNAi [45].

These methods might not only prevent ribosomes from binding the mRNA, but also initiate mRNA

degradation.

Naively, RNA interference seems like an energetically costly regulatory strategy, as the cell
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spends resources to produce mRNAs which never get translated. However, there can be other

merits associated with RNAi, which makes it a key regulatory strategy in the immune response

against viruses [46].

Understanding the precise role of all different regulatory strategies, and how they are orchestrated

in a cell, is currently an active area of research. However, in this thesis we limit ourselves to the

study of transcriptional regulation only.

1.2 Quantitative modeling of transcriptional regulation

Decision making in cells is implemented through the activation or repression of genes related to

a particular biological action. The ability of RNAP to access and transcribe a promoter, perhaps

with the influence of TFs, underlies the decision of whether a gene is turned on or off; hence

any quantitative model of transcriptional regulation must address how RNAP interacts with the

promoter, depending on TF concentration. Transcriptional regulation models typically fall into one

or other of two categories: thermodynamic models [47, 48, 25] or stochastic models [49, 23], and we

will illustrate the differences between these two models by considering two specific examples below.

Thermodynamic models are useful in situations where time dependence is not a key factor, such

as predicting the average gene expression for a given concentration of TFs. These models generalize

well, as we will show in Chapter 2, when we move from simple to more complicated systems that

involve many different kinds of TFs that regulate many different targets. Thermodynamic models

should, however, be used with care. The (quasi)equilibrium approximation rests on the assumption

that TFs homogenize throughout the cell at a much faster rate than they are being produced.

Moreover, the equilibrium approximation demands that the complicated process of transcription

initiation can be effectively summarized by a single RNAP binding constant. A more thorough

discussion about the underlying assumption of the thermodynamic model is presented in Chapter 2.

Stochastic models are more general than thermodynamic models and can, for example, be used

to study the dynamical behavior of a genetic circuit over an extended period of time [50]. They also

allow the study of variability (or noise) in mRNA or protein production [51, 52], which is believed

to play an important role in both prokaryotic [21] and eukaryotic [53] decision making processes. A

difficulty with stochastic models is that they require a large number of input rate parameters, such

as binding and unbinding rates of TFs, most of which, in general, are unknown. Solving a large

system of rate equations analytically can be very challenging, therefore stochastic simulations [54]

are commonly used to analyze these systems numerically.
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1.2.1 Statistical mechanical model of an unregulated promoter

Life is inherently an out of equilibrium process which, using the words of Erwin Schrödinger, “feeds

on negative entropy” [55]. With every single action, an organism leaves the universe in a slightly

more disordered state. Yet, the idea of thermodynamic equilibrium has played a profound role

in the field of biological physics. Using statistical mechanics, scientists have successfully modeled

the binding of ligands to biological receptors [56], the shape of cell membranes [57], among other

examples. One reason that an equilibrium model can be successfully employed in certain biological

systems, stems from the fact that a process of interest might occur at a much shorter timescale

compared to the nonequilibrium “drift”. This approximation makes available to us a large set of

theoretical tools developed in field of statistical mechanics over the last century and a half.

To introduce the thermodynamic model in the context of transcriptional regulation, we consider

the simplest possible example, that of an unregulated promoter [25]. A number of RNAP (P )

molecules can either bind nonspecifically over a (large) number of sites NNS , or specifically to

a promoter of interest. As a simplification we assume that all nonspecific binding sites can be

treated to have the same (effective) RNAP binding energy εNS , which presumably is higher (i.e.

corresponding to less strong binding) than the specific binding energy εS . Furthermore we assume

that RNAP always bind to DNA, and do not roam freely in the cell [58, 59]. Our goal is to

compute the probability pbound for the promoter to be bound by RNAP, which by the occupancy

hypothesis discussed above, should scale linearly with gene expression. According to the laws of

thermodynamics, the probability P (s) for a system in equilibrium to be in a microstate s is given

by P (s) = 1
Z e
−βE(s), where E(s) is the energy of s. The normalization constant Z, called the

partition function, is defined such that the sum of over all microstates
∑
s P (s) = 1. We can break

the partition function into two terms, corresponding to when the promoter is specifically bound by

RNAP or not

Z = Zbound + Zunbound. (1.5)

When the promoter is not bound by RNAP, the microstates correspond to all
(
NNS

P

)
= NNS !

P !(NNS−P )!

ways of distributing P indistinguishable RNAP molecules on a reservoir of NNS binding sites, which

results in

Zunbound =

(
NNS
P

)
e−βPεNS . (1.6)

When the promoter is bound by RNAP, there are now P − 1 RNAP molecules left to bind the
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nonspecific reservoir, and by the same argument as above

Zbound =

(
NNS
P − 1

)
e−β((P−1)εNS+εS). (1.7)

The probability for the promoter to be bound by RNAP is equal to the sum of the probabilities of

all microstates where the promoter is bound by RNAP, which is determined by Eq. (1.6)-(1.7)

pbound =

(
NNS

P−1

)
e−β((P−1)εNS+εS)(

NNS

P−1

)
e−β((P−1)εNS+εS) +

(
NNS

P

)
e−βPεNS

≈
P

NNS
e−β∆εpd

1 + P
NNS

e−β∆εpd
. (1.8)

Here we assume that NNS � P (in E. coli : NNS ≈ 5× 106, P ≈ 1000 [60]), and define the energy

difference between specific and nonspecific binding as ∆εpd = εS − εNS .

1.2.2 Stochastic model of a regulated promoter

As TFs diffuse around in the cell they randomly meet and associate to specific binding sites [61, 62].

The stronger a binding site is, the longer the TF remains bound. If we assume that the probability

per unit time is constant for a free TF molecule to associate with a binding site, or for a bound

TF to dissociate from it, we can assign to each of these processes a rate constant and calculate the

probability for a binding site to be either bound or unbound.

To illustrate the stochastic model of transcriptional regulation we first consider binding of a TF

F to a gene G

G+ F
konF−−−⇀↽−−−
koff
F

GF. (1.9)

Here each TF molecule associates to an unbound gene with rate constant konF , and once bound it

dissociates from the gene with rate constant koffF . If we have only one gene copy, the steady-state

probability for it to be bound P (B) (or unbound P (0) = 1−P (B)) can be calculated by considering

the balance equation corresponding to Eq. (1.9)

dP (B)

dt
= FkonF P (0)− koffF P (B). (1.10)

Setting the left hand side derivate to 0 gives us

P (B) =
FkonF

koffF + FkonF
. (1.11)

We can make this toy example more interesting by adding the production mRNA. Let rB be the
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rate of mRNA production in the bound state, and r0 the (basal) production rate in the unbound

state. Further we assume that mRNA degrades with a rate constant γ. The possible state transitions

of this system can be summarized by the following table

(B,m)
koff
F−−−→ (0,m), (0,m)

FkonF−−−→ (B,m),

(B,m)
rB−−→ (B,m+ 1), (0,m)

r0−→ (0,m+ 1), (1.12)

(B,m)
mγ−−→ (0,m− 1), (0,m)

mγ−−→ (0,m− 1),

where (B,m) and (0,m) denote states with m mRNAs, either in the bound or unbound state. To

find the steady state probabilities P (B,m) and P (0,m) we first need to write down the balance

equation of the two states [52]

d

dt
P (B,m) = −(koffF + rB + γm)P (B,m) + konF P (0,m) + rBP (B,m− 1) + γ(m+ 1)P (B,m+ 1)

(1.13)

d

dt
P (0,m) = −(konF + r0 + γm)P (0,m) + koffF P (B,m) + r0P (0,m− 1) + γ(m+ 1)P (0,m+ 1).

(1.14)

After a little bit of math one can show that the average number of mRNAs at steady state, where

we set the left hand derivatives equal to 0, is given by [52]

〈m〉 =
r0

γ

konF

konF + koffF

+
rB
γ

koffF

konF + koffF

. (1.15)

We can also calculate the variance (or noise) in m at steady state in terms of the rate parameters.

Already computing the average number of mRNAs, 〈m〉, for the relatively simple system of

Eq. (1.13) is not trivial. When moving to a more complicated system, involving several types of

TFs that regulate many different genes, the calculations quickly get very demanding. In these cases

Gillespie’s algorithm [54] can be a useful tool to study the system numerically.

1.3 Experimental techniques to measure gene expression

To be able to quantitatively study gene regulation, the ability to measure mRNA and protein

concentration, either in individual cells or in bulk, is essential. Only with a fruitful interplay between

theory and experiment can our understanding of regulatory processes in biology continue to develop.

Since the discovery of the double helix structure of DNA (1953), and transcriptional regulation

through TFs (1961), the field of molecular biology has advanced by leaps and bounds. Summarizing

all these advances would not only fall outside the expertise of the author, but require a thesis-length
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Figure 1.6: Mice which have been genetically engineered to express green fluorescent protein (GFP).
(Adapted from “Physical Biology of the Cell”, Garland Science, 2013.)

work on its own. Still, a few breakthrough discoveries relevant to our purposes deserve mention.

The isolation of green fluorescent protein (GFP) from the jellyfish Aequorea victoria [63], and

subsequently the ability to fuse GFP (or some of its colorful analogs) to a protein of interest in dif-

ferent organisms [64, 65], has made it possible to quantify gene expression in single cells, and identify

areas of a cell where different proteins are predominantly expressed [Fig. 1.6]. When GFP is subject

to incident fluorescent light of a certain wavelength, electrons can get excited into a higher orbital,

and as they return to a lower orbital light is emitted which can be directly observed in a microscope.

The usefulness of fluorescent proteins in molecular biology can hardly be underestimated, and its

discovery was awarded the 2008 Nobel Prize in Chemistry. For bulk measurements (as opposed to in

single cells), protein expression can also be measured with other methods such as western blots [66]

or mass spectrometry. The ability to to measure the same signal using several different experimental

methods provides a strong experimental control.

To measure RNA expression, several different methods exist, each with its own strengths and

weaknesses. Fluorescence in situ hybridization (FISH) [67, 68] can be used to measure mRNA levels

in single cells, by hybridizing multiple fluorescent probes with a complementary base pair sequence

to the mRNA. We will use this method in Chapter 4 and refer to this chapter for a more detailed

discussion. A disadvantage with mRNA FISH is that one cannot follow mRNA expression as a

function of time, as the cells are “fixed” (killed) before hybridization. An alternative method, MS2

[69], addresses this problem (arguably by introducing some others), by modifying the gene sequence

such that the transcript contains a binding region for fluorescent proteins. The mRNA level can

then be quantified by the fluorescence intensity, and be continuously monitored in time. To measure

mRNA/DNA levels for particular sequences in bulk, a popular technique is to use quantitative PCR
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(qPCR) [70, 71]. During a PCR reaction, the two strands of DNA are separated by increasing the

temperature, followed (at lower temperature) by the annealing of two specific primers that mark

the beginning and the end of the region to be amplified. DNA polymerases, typically involved

in DNA replication, assemble new second strands starting from the primers. By repeating this

procedure over and over, the DNA concentration increases exponentially until the involved reagents

run out. The initial concentration of DNA can be determined, at least relatively, by calibrating the

measurement against a known DNA concentration. In order to use qPCR to measure mRNA levels,

one must first convert the mRNA into complementary DNA (cDNA) using reverse transcriptase. A

completely different method of measuring mRNA levels, which allows the measurement of hundreds

of different mRNA types simultaneously, is based on the hybridization of cDNA to complementary

sequences attached to a microarray [72]. By labeling the cDNA with fluorescent markers the amount

of hybridization to the DNA probes can be measured. In medical research microarrays can be useful

for determining expression profiles in different kinds of tissues, or linking expression profiles with

diseases [73].

An increasingly popular alternative to microarrays is to use large-scale sequencing to determine

the mRNA content of a sample, a method called RNA-seq [74]. With the development of next

generation sequencing in the early 2000s the cost of sequencing (per base pair) dropped by an

impressive four orders of magnitude in only a decade, making large scale sequencing a powerful and

increasingly cost-effective tool. In RNA-seq, the resulting short sequencing reads are mapped back

to a reference genome, and then used to estimate the abundance of different transcripts. Many

experiments which at first sight seem to have little to do with sequencing have been formulated in

a way that allows next generation sequencing methods to be used. For example, in ChIP-seq [75]

one can identify sequences to which TFs predominately bind. First, DNA that is bound by TFs

can be isolated through the use of antibodies, and after unlinking the TFs, the binding sites can be

sequenced.

The above list presents some currently popular experimental techniques in molecular biology for

the measurement of gene expression. This list is, however, far from complete and likely to become

quickly outdated.

1.4 Roadmap to thesis

This thesis consists of two essentially independent parts, comprising Chapters 2-4 and Chapter 5

respectively. In the first part we predict and measure the regulatory effect of a TF that targets

multiple promoters. In the second part we investigate how transcriptional regulation affects gene

expression in E. coli, by combining data over the regulatory network in this organism with genome-

wide expression measurements.
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repressor

(A) (B)

Figure 1.7: Predicted fold change in gene expression as a function of repressor copy number for gene
copy numbers N = 1 (solid line), N = 10 (dashed line), and N = 100 (dotted line) for two different
promoter architectures: (A) Simple repression promoter architecture. A repressor can bind to a
single site overlapping the promoter, blocking RNAP from accessing the promoter. (B) Repression
by looping promoter architecture. A repressor can simultaneously bind two sites, one of which
overlaps the promoter, such that DNA gets looped.

Part I. In Chapter 2 we extend the thermodynamic model of transcriptional regulation presented

in [25] by taking into account the fact that TFs can regulate not only one but multiple genes or

gene copies. This includes the common scenario where a regulated gene is located on a plasmid. We

predict the fold change, or the relative change in gene expression, as function of TF copy number

(F ) and gene copy number (N) for several different promoter architectures [Fig. 1.7]. We identify

an interesting regime N ≈ F , where the pool of TFs is large enough to simultaneously repress the

transcription of all genes, resulting in a sharp drop in the regulatory function.

In Chapter 3 we verify the predictions of the previous chapter experimentally, by measuring the

expression from multiple gene copies, located on a plasmid or on the chromosome, as a function

of TF copy number. This experiment is carefully designed to eliminate the need to use free fit

model parameters: the absolute number of TFs is measured by a binomial partitioning method [76],

the plasmid copy number is measured using qPCR, and the affinities of the TF binding sites have

been previously reported in the literature. The underlying motivation behind this experiment is to

investigate the scope of the thermodynamic model. Previous experiments [77] have shown that the

thermodynamic model can successfully describe transcriptional regulation at an individual promoter,

but that should not be taken as a evidence that it will also be successful in a more complicated

setting involving multiple gene targets. Any theoretical model has its regime of validity, including

the beautiful theory of Newtonian mechanics, which breaks down either at the atomic scale, where

quantum mechanics rules, or near the speed of light, where the theory of relativity comes into play.

Little has been done to seek out the corresponding limitations of the much less mature theoretical
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Figure 1.8: Distribution of number of TF binding sites per operon in RegulonDB 8.5 [78] and the
random promoter architecture model. Shown separatly (“regulated only”) are distributions after
neglecting unregulated operons.

ideas in physical biology.

In Chapter 4 we extend these experimental efforts and study the coregulation of two (different)

genes, using the method of mRNA FISH. This allows us to measure not only mRNA expression as

a function of TF copy number, but also correlation in mRNA expression between the two genes.

Part II. In Chapter 5 we analyze the thousands of known regulatory interactions in E. coli to gain

insights into the strategies of transcriptional regulation used in a real genetic network. Combining

quantitative models of transcriptional regulation, such as presented in Part I, with genome-wide

promoter architecture data, could become an important future method for predicting gene expression

for a large set of genes in an organism. We take a step in this direction by connecting the known

regulatory interactions in E. coli with genome-wide expression censuses. To identify overrepresented

regulatory strategies [Fig. 1.8] we introduce a “random promoter architecture model”, where TF

binding sites are randomly “sprinkled” over a given set of promoters. This model allows us to

identify TF pairs that are frequently involved in the regulation of the same genes, signaling that

these TFs have a biologically related function.
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Chapter 2

Statistical mechanical model of
coupled transcription from
multiple promoters due to TF
titration

2.1 Introduction

TFs with regulatory action at multiple promoter targets is the rule rather than the exception, with

examples ranging from TFs like the cAMP receptor protein (CRP) in E. coli that regulates hundreds

of different genes simultaneously, to situations involving multiple copies of the same gene, such as

plasmids, retrotransposons, or highly replicated viral DNA. When the number of TFs heavily exceeds

the number of binding sites, TF binding to each promoter can be regarded as independent. However,

when the number of TF molecules is comparable to the number of binding sites, TF titration will

result in correlation (“promoter entanglement”) between transcription of different genes.

In this chapter we develop a statistical mechanical model to show that when the number of

TF molecules is comparable to the number of targets, depletion of the TF can result in nontrivial

dependence of the regulatory effect on the relative abundance of targets and TF molecules. The

existence of this effect has been previously explored in the context of ultrasensitive regulatory net-

works [1], as well as the impact of decoy binding sites on TF lifetimes and the response of particular

genetic circuits [2, 3]. Here we present a generalized model of gene expression in the presence of

TF competition. An advantage with this model is that any system of entangled promoters can be

explicitly described in terms of its individual components. Moreover quantities of interest can be

expressed analytically, which, for example, allows us to easily study the role of model parameters,

explore certain limits of e.g. strong/weak TF binding, and efficiently compute TF titration curves

without the need of running thousands of time-consuming Gillespie simulations.

A recent study asserts that half of the proteins in E. coli come in fewer than 10 copies [4] (30
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for TFs), a number comparable to the gene copy number in many important biological situations,

including plasmids [5], viral infections [6], gene duplications [7], (retro)transposons [8, 9, 10], rapid

cell growth [11], and transfection of DNA into animal cells [12]. Even for some TFs the number

of regular chromosomal binding sites could be large enough to titrate TFs (see Appendix 2.B). If

this picture is correct, a quantitative understanding of TF titration due to multiple targets will be

essential for making predictive models of transcription regulation. Such models could potentially also

shed new light onto diseases where gene copy number abnormalities play a role, including cancers

[13], neuropsychiatric diseases [14], and autoimmune disorders [12].

As case studies we use three specific promoter architectures, representing three different mecha-

nisms of repressing a gene. All three of these examples have been studied extensively both experi-

mentally and theoretically [15, 16, 17, 18, 19, 20]. The simple repression promoter architecture is

arguably the most common nonconstitutive architecture in E. coli [21] and refers to a single TF

binding site blocking RNAP from binding the promoter. For promoters with more than one binding

site for a particular TF, 34% of these promoters have two binding sites separated by more than 100

bp [21], indicating a frequent scenario of facilitated repression with DNA looping [22, Table 1]. A

famous example of this promoter architecture is the well-studied lac operon. In a variant of this

promoter architecture, reminiscent of GalR repression at the P2 promoter [23], repression can only

be achieved in the looped conformation. This repression exclusively due to looping promoter archi-

tecture has the interesting feature that the level of repression is not a monotonic function in number

of TFs. Though we believe these three promoter architectures are both interesting and relevant, the

particular choices are not central and the formalism presented here makes it possible to calculate

the titration effect for any arbitrary regulatory architecture.

The organization of this chapter is as follows. In Sec. 2.2 we introduce the thermodynamic

models and discuss their validity. In Sec. 2.3 we compute individual (N = 1) partition functions for

the three important promoter architecture case studies. This will be an instructive exercise before

turning to the more abstract treatment of Sec. 2.4, where we compute the partition function for a

general set of promoters (N ≥ 1). In Sec. 2.5 we benefit from the hard work of the previous two

sections to make predictions of a quantity of great biological importance, namely the fold change in

gene expression, a quantity directly accessible experimentally. In Sec. 2.6 we study correlation in

transcription rates of different genes due to TF titration. In Sec. 2.7 we extend the work of previous

sections to include the case when TF and promoter copy numbers are not fixed but rather fluctuating

according to a statistical distribution. Finally, in Sec. 2.8 we use Gillespie simulations to verify the

thermodynamic model and derive a relationship between the stochastic model rate constants and

thermodynamic free energy parameters for the three specific promoter architectures considered.
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2.2 Underlying assumptions of thermodynamic model

One of the most ubiquitous quantitative descriptions of transcription is founded upon the so-called

thermodynamic models of regulation. In these models, the quantitative behavior of a given promoter

is characterized in terms of the occupancy of that promoter by the transcription apparatus and a

constellation of molecular partners such as TF and nucleosomes [24, 25, 26, 27]. One of the reasons

for the success of these thermodynamic approaches is that in some cases the time scale associated

with the production of mRNA is often much slower than the rate at which most proteins, such

as TFs, move around within the cell [28] and bind or unbind DNA. For example, the effective

(1D+3D [29]) diffusion constant of LacI has been measured as Deff = 0.4 ± 0.02 µm−2s−1 [28],

which means that a LacI molecule can explore the full length of an E. coli cell in a few seconds.

This should be compared to the significantly slower production rate of LacI which, averaged over

the cell cycle, corresponds to around ∼0.3 per min [30]. Thus, there is reason to believe that LacI,

and probably other TFs, can significantly explore the DNA over the time scales at which LacI is

produced, providing circumstantial support for a quasiequilibrium approximation. This separation of

time scales permits the use of statistical mechanics at promoters that satisfy this condition in order to

compute the probabilities of different configurations of TFs and RNAP on the promoter targets. The

thermodynamic approach has been used far and wide for characterizing a host of different regulatory

processes [24, 25, 26, 31, 32, 33, 34, 35, 36, 37]. Interestingly, this approach not only serves as a

very powerful conceptual framework for predicting the behavior of different architectures, but even

in those cases where it fails it is useful for suggesting new hypotheses [38, 39, 40, 41, 19, 42].

Of course, this thermodynamic approach is really only the simplest first idea that one can exploit,

but at a deeper level it is just a caricature of the real complications of the transcription process and

the next layer of sophistication involves using rate equations. However, even in those cases in which

models of transcription are built using rate equations, they too essentially appeal to thermodynamic

models through the functions describing the occupancy of TFs. Generically, in these cases one writes

a rate of production for some protein as

dA

dt
= −γA+ foccupancy([TF]), (2.1)

where foccupancy([TF]) is an occupancy function that reflects the probability of occupancy of TF

binding sites as a function of the concentration of these factors. To make the point concrete, consider

the example of an activator that activates its own production. In this case, one typically writes a

rate equation of the form

dA

dt
= −γA+ r0 + r1

( A
Kd

)n

1 + ( A
Kd

)n
, (2.2)

where the first term describes protein degradation and dilution from cell growth and the second term
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describes basal production at a rate r0. The third term is a Hill function [43] relating production to

the occupancy of the promoter by its activator. This is obtained using precisely the same statistical

mechanics arguments that are common in thermodynamic models. The dissociation constant Kd

is only meaningful in the context of equilibrium, and a rapid change in TF copy number cannot

correspond to an instantaneous response in promoter occupancy. Therefore, one again needs to rest

on the assumption of quasiequilibrium. The literature is replete with examples of both prokaryotic

and eukaryotic transcription regulation based upon these kinds of occupancy-based rate equations

[44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58], only further raising the stakes for exploring

the limits and validity of this approach.

Using the thermodynamic formalism described above, we consider a (quasi) equilibrium system,

where the number of RNAP (P ), TFs (F ) and target promoters (N) are fixed. The term promoter

will be used either to refer to the RNAP binding site or the full promoter region, including TF

binding sites, depending on context. The number of nonspecific binding sites NNS is assumed to

be much larger than the number of RNAPs, the number of TFs, and the number of promoters

(NNS � P, F,N). Representative values for these parameters in E. coli are given by P ≈ 103

[59, 60, 61], NNS ≈ 5× 106 (the size of the E. coli genome), F ≈ 1− 103 [4, 62], and N ≈ 1− 102

[5, 6]. Unless stated otherwise we will use these given values of P and NNS where concrete numbers

are needed. Further we assume that TFs and RNAP are always bound to DNA and do not roam

freely in the cell. This is justified in the cases of RNAP and the Lac repressor, for example, by

studies using mini cells [63, 64], though this is not necessarily generically true. The results are

easily adjusted to the case in which the TFs are free in the cytoplasm rather than nonspecifically

bound. We furthermore assume that the promoters have no shared binding sites and that they do

not interact except via the competition for TFs.

For each configuration of TFs and RNAP we associate a free energy and corresponding Boltzmann

weight, which will determine the probability for the system to be in that particular state [24, 25,

26, 27]. The partition function (Z) is the sum of all these weights. Using the partition function the

probability of finding RNAP bound to the promoter of interest can be calculated. This probability

can in turn be related to the level of gene expression, a quantity accessible through the use of genetic

reporters, or fold change, defined as the ratio of the level of gene expression in the presence vs the

absence of a TF of interest, by assuming that the RNAP binding probability and gene expression

are linearly related [26, 27]. Such a linear relationship has been observed in vitro between RNAP

binding probability and open complex formation when RNAP binding is the rate limiting step in

transcription initiation [65]. A fully generalized model of transcription initiation taking the rates

of open complex formation, promoter escape as well as intermediate conformational changes into

account [66, 67, 68] is beyond the scope of this thesis. Likewise, we assume that TFs act by modifying

the RNAP binding affinity to the promoter. For repressors we can argue that this is indeed a
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common mechanism of repression by noticing that almost half [69] of these operators overlap with

the RNAP binding region spanning about 40bp upstream from the transcription start site, hence

blocking RNAP from binding the promoter. In some cases also other mechanisms of transcriptional

regulation, such as modulation of the promoter escape rate, can be rephrased in the thermodynamic

language above, e.g., in the case of fast open complex formation. In general, however, the regulatory

effect of a TF on transcription initiation depends in a complex way on the TF (un)binding rates

and the rates of the various transcription initiation steps of the particular promoter, which again is

beyond the scope of this thesis.

2.3 Single promoter partition function

2.3.1 Simple repression

Of the 795 transcription units reported in RegulonDB 7.1 [21] to have at least one TF interaction,

125 correspond to simple repressors [19], making it the most common promoter architecture in E.

coli. The simple repressor has a single binding site overlapping the promoter such that RNAP cannot

bind (or form an open complex which is mathematically equivalent in the context of our model) in

the presence of repressor hence inhibiting transcription [see Fig. 2.1(A)]. A classic example of this

regulatory motif are the well-studied lac operon mutants [15, 18].

The partition function for a simple repressor was derived in [26], but is for the sake of completeness

recaptured here. We assume that when not bound to the promoter, RNAP can be found at any

of NNS nonspecific binding sites with a binding energy of εNSpd . Treating the RNAP molecules as

indistinguishable, there are
(
NNS

P

)
ways of arranging P RNAP molecules on this nonspecific reservoir.

The partition function corresponding to this situation is

ZNSP =

(
NNS
P

)
e−βPε

NS
pd . (2.3)

As stated above, we assume that NNS � P , which allows us to make the approximation
(
NNS

P

)
=

NNS !
P !(NNS−P )! '

NP
NS

P ! .

Assuming that the repressor has only one binding head, leaving the more complicated case of

two binding heads to Sec. 2.3.2, the logic for finding the contribution of R repressor molecules to

the total partition function imitates that for RNAP, namely,

ZNSR =

(
NNS
R

)
e−βRε

NS
rd , (2.4)

where εNSrd is the nonspecific repressor binding energy. Again, assuming NNS � R allows us to

approximate
(
NNS

R

)
' NR

NS

R! .
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Figure 2.1: States and weights for the three studied promoter architectures (A) simple repression,
(B) repression with looping, and (C) repression exclusively due to looping. The last two promoter
architectures differ only by the addition of two states to the exclusive looping architecture (third and
eighth from the top), corresponding to RNAP and the main operator being simultaneously bound.



34

Since the total number of nonspecific sites is in great excess with respect to both the number

of repressors and RNAP, we can treat nonspecific binding of repressors and RNAP as independent,

and hence the total nonspecific partition function is given by the product

ZNS = ZNSP ZNSR . (2.5)

We use this nonspecific partition function to find the overall partition function Z that accounts for

binding to the promoter. The promoter can be found in three different states: empty, occupied by

RNAP, or occupied by a repressor. As a consequence the overall partition function is given by

Z(P,R) = ZNS(P,R)︸ ︷︷ ︸
empty

+ZNS(P − 1, R)e−βε
S
pd︸ ︷︷ ︸

RNAP bound

+ZNS(P,R− 1)e−βε
S
rd︸ ︷︷ ︸

repressor bound

. (2.6)

The first term corresponds to an empty promoter, the second term corresponds to taking an RNAP

molecule from the nonspecific reservoir and binding it to the promoter with a specific binding energy

of εSpd, and the third term similarly corresponds to taking a repressor from the nonspecific reservoir

and binding it to the promoter with a specific binding energy εSrd. If we normalize by ZNS(P,R) to

assign the empty promoter weight 1, the partition function is given by

Z = 1 +
P

NNS
e−β∆εpd +

R

NNS
e−β∆εrd , (2.7)

where we have defined the energy differences ∆εrd = εSrd − εNSrd and ∆εpd = εSpd − εNSpd . The factors

R
NNS

, P
NNS

in the last two terms are of entropic origin and associated with the cost of forcing one

molecule to stay on a particular site on the DNA, rather than letting it explore the full range of

possible nonspecific sites.

2.3.2 Repression with looping

In repression with looping, RNAP is still excluded from the promoter by repressor binding to a main

operator in the vicinity of the promoter. In this case, however, the repressors have two binding heads

that can simultaneously bind the main operator and an auxiliary operator through the formation of

a DNA loop, though the auxiliary operator does not block the promoter on its own (see Fig. 2.2).

As a result, there is an increase of effective concentration of repressor in the vicinity of the main

operator leading to an increase in repression [15, 16, 17, 70]. One of the most studied realizations

of this promoter architecture is again based on modifications of the lac operon [15, 16].

To compute the nonspecific partition function for repressors with two binding heads, we begin

with a single repressor molecule (R = 1). Then, invoking the assumption that the nonspecifically

bound repressors are noninteracting, it is easy to generalize the result to any number of repressors
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Figure 2.2: Repression through DNA looping. The repressor binds to the main and auxiliary oper-
ators simultaneously looping the intervening DNA.

(R > 1). A single repressor molecule can be found in either a looped state, with both heads bound,

or in a state with one head unbound. Each bound repressor head acquires a binding energy of

εNSrd , and for looped states there is an additional free energy cost (elastic plus entropic) Floop(i, j)

of bringing two sites i and j together.

Taking every possible such configuration into account we find the nonspecific single repressor

partition function

ZNSR (R = 1) =

NNS∑
i=1

e−βε
NS
rd

︸ ︷︷ ︸
One head bound

+
1

2
e−2βεNS

rd

NNS∑
i=1

NNS∑
j=1,j 6=i

e−βFloop(i,j)

︸ ︷︷ ︸
Two heads bound

. (2.8)

The factor of 1
2 in the second sum is necessary to avoid double counting of the looped states.

To simplify this expression we assume translational invariance, such that the last sum over j is

independent of i. This assumes that on average DNA “looks the same” everywhere, at least locally.

Using this assumption we get

ZNSR (R = 1) = NNSe
−βεNS

rd

1 +
1

2
e−βε

NS
rd

NNS∑
j=2

e−βFloop(1,j)


≡ NNSe−βε

NS
rd e−βF

NS
eff . (2.9)

In the last step we defined the effective nonspecific free energy FNSeff . To extend ZNSR (R = 1) to an

arbitrary number of repressors R ≥ 1 we use a familiar result from statistical mechanics, namely,

ZNSR (R) =
1

R!

(
ZNSR (R = 1)

)R
(2.10)

=
NR
NS

R!
e−βR(εNS

rd +FNS
eff ), (2.11)

which is applicable for indistinguishable and noninteracting repressors.

Finally, to find the total nonspecific partition function we combine ZNSR (R) with the nonspecific
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partition function for RNAP found in previous section [Eq. (2.3)] resulting in

ZNS(R,P ) = ZNSR (R)ZNSP (P )

=
NR
NS

R!

NP
NS

P !
e−βR(εNS

rd +FNS
eff )e−βPε

NS
pd . (2.12)

Our next task is to determine the weights for all states of the promoter shown in Fig. 2.1(B). As

an example we show how to determine the weight for the state with only the main operator bound

by a repressor with binding energy εSrmd. For this state we need to consider all configurations for the

second repressor head not bound to the main operator, as well as all configurations ZNSR (R− 1) for

the remaining R − 1 nonspecifically bound repressors. The weight associated with the specifically

bound repressor is given by

ZNSR (R = 1, one repressor head bound to main operator)

= e−βε
S
rmd

1 + e−βε
NS
rd

NNS∑
j=2

e−βFloop(1,j)


≡ e−βε

S
rmde−βF̃

NS
eff , (2.13)

where we have introduced another useful effective free energy F̃NSeff (note the absent factor of 1
2 ),

which allows us to express the weight associated with the nonspecifically bound or free hanging

repressor head simply as e−βF̃
NS
eff .

Using the same normalization condition as above we find the Boltzmann weight for the state

with only the main operator bound

Weight
( )

=
e−βε

S
rmde−βF̃

NS
effZNSR (R− 1)ZNSP (P )

ZNSR (R)ZNSP (P )

=
R

NNS
e−β(εSrmd−ε

NS
rd )e−β(F̃NS

eff−F
NS
eff )

=
κR

NNS
e−β∆εrmd . (2.14)

For convenience we introduce the following notation

∆εrmd = εSrmd − ε
NS
rd ,

∆εrad = εSrad − ε
NS
rd ,

∆εpd = εSpd − εNSpd ,

∆Floop = FSloop − (F̃NSeff − εNSrd ),

κ = e−β(F̃NS
eff−F

NS
eff ),

p = P
NNS

e−β∆εpd .

(2.15)
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Here ∆εrmd and ∆εrad correspond to the main and auxiliary operators, respectively. From the

definitions of F̃NSeff and FNSeff it is easy to see that κ is always a number between 1 and 2. If

F̃NSeff � 1 there is a large probability of nonspecific loop formation and κ ' 2. On the other hand, if

F̃NSeff ' 1 then there is just a small probability of nonspecific loop formation and κ ' 1. Thus, κ can

be viewed as a parameter related to how many repressor heads are effectively bound nonspecifically

to DNA.

Using the same method we can compute the weights for all other states, and by adding these

weights together we get the single promoter partition function

Z = 1 + p+ p

(
κR

NNS

)
e−β∆εrad +

(
κR

NNS

)
e−β∆εrad +

(
κR

NNS

)
e−β(∆εrad+∆εrmd+∆Floop)

+

(
κR

NNS

)
e−β∆εrmd +

κR

NNS

κ(R− 1)

NNS
e−β(∆εrad+∆εrmd). (2.16)

Here the states are listed in the same order as in Fig. 2.1(B).

2.3.3 Exclusive looping repression

For repression due exclusively to looping the situation is similar to the previous section but with

the difference that RNAP is considered to be blocked from binding the promoter only in the looped

state. Hence, it is not enough for just the main operator to be occupied to achieve repression. Such

a model of repression is reminiscent of the mechanism of galactose metabolism repression by GalR

at the P2 promoter [23] and the arabinose metabolism AraC repression at the PC promoter in the

absence of arabinose [71].

For this promoter architecture terms need to be added to the partition function of Eq. (2.16)

corresponding to states with the main or auxiliary operator bound by repressor and the promoter

bound by RNAP. In Fig. 2.1(C) these states are given by the third and eight states from the top.

After taking these new states into account we find the single promoter partition function

Z = 1 + p+ p

(
κR

NNS

)
e−β∆εrmd + p

(
κR

NNS

)
e−β∆εrad +

(
κR

NNS

)
e−β∆εrad

+

(
κR

NNS

)
e−β∆εrmd + (1 + p)

κR

NNS

κ(R− 1)

NNS
e−β(∆εrad+∆εrmd)

+

(
κR

NNS

)
e−β(∆εrad+∆εrmd+∆Floop), (2.17)

where again the states have been listed in the same order as in Fig. 2.1(C).



38

2.4 Multiple promoter partition function

The simplest example of computing the total partition function for a set of promoters with individual

partition functions Z(1), Z(2), . . . Z(N) is when these are independent. In our model this happens

when the promoters are unregulated or regulated by a TF whose copy number F greatly exceeds

the number of promoters (F � N). Then if one TF binds to a promoter, the number of remaining

available TFs is left essentially unchanged, and hence the other promoters are unaffected. By a

familiar result from statistical mechanics the total partition function Ztot for a system of independent

promoters is given by

Ztot = Z(1)Z(2) · · ·Z(N) for F � N. (2.18)

The complications associated with computing the partition function for a set of promoters reg-

ulated by the same TFs originate from the fact that at low TF copy numbers the promoters get

“entangled.” For entangled promoters, binding of one TF molecule to a promoter directly influences

the TF binding probability to another promoter, due to an effective decrease in the number of avail-

able TFs. In the following sections we extend Eq. (2.18) and derive the total partition function for

a general set of promoters without making any assumptions about the number of TFs or promoters.

While this generality leads to somewhat more abstract derivations, it has the benefit of allowing us

to apply the results to a wide range of interesting problems.

2.4.1 General set of promoters

We start by deriving the total partition function for a general set of, potentially different, promoters

under control of a single type of TF (F ). In Appendix 2.A we generalize to regulation with an

arbitrary number of TF types.

First we introduce the notation needed to make these calculations. Let fn and pn denote the

number of TFs and RNAP bound to promoter n ∈ {1, . . . , N}, respectively. Here fn is constrained

by the number of binding sites and the total number of TFs in the cell, namely,
∑
n fn ≤ F

and pn is always either 0 or 1. Let sn denote the state of promoter n (e.g., empty promoter,

operator 1 occupied, operator 2 unoccupied, etc.), and let F (sn) and P (sn) denote number of TFs

and RNAP bound at promoter n for state sn. To compute the total partition function we take

every allowed state into account by summing over the variables fn and pn, as well as the variables

sn for all states compatible with the choice (fn, pn). For each choice {fn} and {pn} there will

be F −
∑
i fi TFs and P −

∑
i pi RNAPs left for nonspecific binding on the DNA “reservoir,”

and the statistical weight associated with these are given by the nonspecific partition functions

ZNSF (F −
∑
i fi) and ZNSP (F −

∑
i pi), which we assume to have the forms ZNSF (F ) =

NF
NS

F ! e
−βFεNS

fd

and ZNSP (P ) =
NP

NS

P ! e
−βPεNS

pd , in accordance with our results for the simple repressor (Sec. 2.3.1) and
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repression by looping architecture (Sec. 2.3.2). The parameter εNSfd is assumed to be independent of

F . The specifically bound TFs and RNAP to promoter n will acquire a free energy E(sn) for state

sn. Since there might be many possible states sn for a given choice (fn, pn) we need to sum over

all states sn compatible with this choice, to find the specific part
∑
sn
e−βE(sn)

∣∣
F (sn)=fn, P (sn)=pn

of the statistical weight for promoter n. If there are no states sn for a given (fn, pn), the sum over

sn is set equal to 0. This is, for example, the case for the simple repressor which cannot have both

TF and RNAP specifically bound at the same time (fn = pn = 1) due to steric exclusion. The

specific part of the weight for different promoters “commute,” meaning that we can simply multiply

these parts together. The promoter entanglement is fully contained inside the F dependent factorial

terms, which motivates the order we have chosen to carry out the summations (fn, pn, sn). Using

a normalization where the state with N empty promoters is assigned weight 1, the total partition

function is given by

Ztot =
∑

f1,...,fN∑
i fi≤F

∑
p1,...,pN

ZNSF (F −
∑
i fi)Z

NS
P (P −

∑
i pi)

ZNSF (F )ZNSP (P )

N∏
n=1

∑
sn

F (sn)=fn
P (sn)=pn

e−βE(sn)

=
∑

f1,...,fN∑
i fi≤F

∑
p1,...,pN

F !

N
∑

i fi
NS (F −

∑
i fi)!

P !

N
∑

i pi
NS (P −

∑
i pi)!

N∏
n=1

∑
sn

F (sn)=fn
P (sn)=pn

e−β∆E(sn), (2.19)

where on the second line we have defined ∆E(sn) = E(sn)− fnεNSfd − pnεNSpd .

We now use the “high RNAP copy number” assumption P � N to make further progress on

Eq. (2.19) by approximating
(
P
P−i
)
' P i

i! for i specifically bound RNAP, resulting in

Ztot '
∑

f1,...,fN∑
i fi≤F

∑
p1,...,pN

F !

N
∑

i fi
NS (F −

∑
i fi)!

N∏
n=1

∑
sn

F (sn)=fn
P (sn)=pn

(
P

NNS

)pn
e−β∆E(sn) (2.20)

=
∑

f1,...,fN∑
i fi≤F

F !

N
∑

i fi
NS (F −

∑
i fi)!

Z
(1)
f1
Z

(2)
f2
· · ·Z(N)

fN

=

min(B1,F )∑
f1=0

min(B2,F−f1)∑
f2=0

· · ·
min(BN ,F−

∑N−1
i=1 fi)∑

fN=0

F !

N
∑

i fi
NS (F −

∑
i fi)!

Z
(1)
f1
Z

(2)
f2
· · ·Z(N)

fN
.

Here Bn is the number of TF binding sites on promoter n, and Z
(n)
fn

has been defined as

Z
(n)
fn
≡
∑
pn

∑
sn

F (sn)=fn
P (sn)=pn

(
P

NNS

)pn
e−β∆E(sn). (2.21)

A key observation is that the single promoter partition functions Z(n) are precisely given in terms
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of the Z
(n)
i factors,

Z(n) =

Bn∑
i=0

F !

N i
NS(F − i)!

Z
(n)
i , (2.22)

which implies that once the single promoter partition functions are known, the total partition func-

tion for the set of promoters can be directly obtained from Eq. (2.20), independently of promoter

architectures.

2.4.2 Identical promoters

Evaluating the total partition function for a general set of promoters can be computationally ex-

pensive. In Eq. (2.20) there are N summation indices {fi} and if these are not constrained by the

number of TFs (F ≥
∑N
i=1Bi) there are

∏N
i=1(1 + Bi) different terms in the summation. As the

number of promoters N increases this number grows exponentially, and computing the partition

function presents a great challenge. In the important special case of N identical promoter copies

each with partition function

Z =

B∑
i=0

F !

N i
NS(F − i)!

Zi, (2.23)

however, the computational cost can be significantly reduced.

One way to keep track of the total number of bound TFs is to introduce numbers {ki}, where ki

denotes the number of promoter copies occupied by i TFs, with the additional constraints
∑B
i=0 ki =

N and
∑B
i=0 iki ≤ F . To compute the partition function we first need to find the number of possible

arrangements given numbers {ki}, or the “degeneracy”. As an example for k0 = N there is only one

choice (all promoters empty), but for k0 = N−1, k1 = 1 there are N different choices, corresponding

to N different ways of choosing a single promoter to be occupied by one TF (assuming B,F ≥ 1).

Here we treat the promoters as distinguishable physical objects which is a valid assumption since

the promoters have the additional intrinsic degrees of freedom (e.g., position) that separate them.

Starting with empty promoters, there are
(
N
k0

)
ways of choosing k0 promoters without bound TF.

From the remaining N − k0 promoters we choose k1 promoters with exactly one TF bound; this can

be done in
(
N−k0
k1

)
ways. Repeating this procedure B times gives us the degeneracy, namely,

degeneracy{ki} =

(
N

k0

)(
N − k0

k1

)
· · ·
(
N −

∑B−1
i=0 ki

kB

)
=

(
N

k0, k1, . . . , kB

)
, (2.24)

where
(

N
k0,k1,...,kB

)
= N !

k0!k1!···kB ! is the multinomial coefficient. To find the total partition function
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Ztot we need to sum over all allowed values of {k0, k1, . . . , kB} and take the degeneracy into account.

Using otherwise the same weights as in Eq. (2.20) we find the total partition function for identical

promoter copies,

Ztot =
∑

k0,k1,...kB∑
i ki=N∑
i iki≤F

(
N

k0, k1, . . . , kB

)
F !

N
∑

i iki
NS (F −

∑
i iki)!

B∏
i=0

Zkii

=

min(N,bF/Bc)∑
kB=0

· · ·
min(N−

∑B
i=j+1 ki,b(F−

∑B
i=j+1 iki)/jc∑

kj=0

· · ·
min(N−

∑B
i=2 ki,F−

∑B
i=2 iki)∑

k1=0

×
(

N

k0, k1, . . . , kB

)
F !

N
∑

i iki
NS (F −

∑
i iki)!

B∏
i=0

Zkii . (2.25)

Here k0 is assigned the implicit value k0 = N −
∑B
i=1 ki and b·c denotes the floor function 1.

When the indices {ki} are not constrained by the number of TFs (F ≥ NB), corresponding

to the most computationally expensive case, the number of terms in the summation of Eq. (2.25)

equals the number of nonnegative integer solutions to the equation

k0 + k1 + . . .+ kB = N. (2.26)

This is a classical problem from combinatorics with the number of solutions given by
(
N+B
N

)
≈

NB/B! which grows polynomially with number of promoters N . Intuitively, we can understand

the polynomial dependence from the fact that there are B different indices (not counting k0 =

N −
∑B
i=1 ki), each of which can take N different values. Hence, the partition function for identical

promoter copies can be computed for much higher values of promoter copies N than permitted by

the general formula [Eq. (2.20)].

2.4.3 Simple repression

We now use our general results [Eq. (2.25)] to compute the partition function for multiple copies of

the specific promoter architectures considered in Sec. 2.3, starting with simple repression. From the

single promoter partition function Z [Eq. (2.7)] one can easily termwise identify Z0 = 1+ P
NNS

e−β∆εpd

and Z1 = e−β∆εrd , where Z = Z0 + R
NNS

Z1. These factors are needed to compute the total partition

function for multiple promoter copies.

Plugging Z0, Z1 into the general formula of Eq. (2.25) gives us the total partition function for N

1The floor function bxc is the largest integer not greater than x, e.g. b1.8c = b1.2c = 1.



42

promoters,

Ztot =

min(N,R)∑
k1=0

(
N

k1

)
R!

Nk1
NS(R− k1)!

e−βk1∆εrd(1 + p)N−k1 , (2.27)

where p = P
NNS

e−β∆εpd . The summation in Eq. (2.27) can be carried out explicitly to yield a closed

form expression of the partition function in terms of the Tricomi confluent hypergeometric function

[72, 73].

2.4.4 Repression with looping

From the single promoter partition function for repression with looping [Eq. (2.16)] we identify the

following Z0, Z1, Z2 factors 

Z0 = 1 + p,

Z1 = κ
(
e−β∆εrmd + (1 + p)e−β∆εrad

+e−β(∆εrmd+∆εrad+∆Floop)
)

Z2 = κ2e−β(∆εrmd+∆εrad),

(2.28)

where Z = Z0 + R
NNS

Z1 + R(R−1)
N2

NS
Z2. With the help of these we get the total promoter partition

function for N promoter copies from Eq. (2.25)

Ztot =

min(N,bR/2c)∑
k2=0

min(N−k2,R−2k2)∑
k1=0

(
N

k2, k1, N − k2 − k1

)
R!

Nk1+2k2
NS (R− k1 − 2k2)!

× κk1+2k2
(
e−β∆εrmd + (1 + p)e−β∆εrad + e−β(∆εrmd+∆εrad+∆Floop)

)k1
× (1 + p)N−k1−k2e−βk2(∆εrmd+∆εrad). (2.29)

2.4.5 Exclusive looping repression

Again, using the single promoter partition function [Eq. (2.17)] we identify the Z0, Z1, Z2 factors for

the exclusive looping repression architecture,
Z0 = 1 + p

Z1 = κ
(
(1 + p)

(
e−β∆εrmd + e−β∆εrad

)
+ e−β(∆εrmd+∆εrad+∆Floop)

)
Z2 = κ2(1 + p)e−β(∆εrmd+∆εrad).

(2.30)



43

By plugging these factors into Eq. (2.25) we find the total partition function for N promoter copies

Ztot =

min(N,bR/2c)∑
k2=0

min(N−k2,R−2k2)∑
k1=0

(
N

k2, k1, N − k2 − k1

)
R!

Nk1+2k2
NS (R− k1 − 2k2)!

× κk1+2k2
(

(1 + p)
(
e−β∆εrmd + e−β∆εrad

)
+ +e−β(∆εrmd+∆εrad+∆Floop)

)k1
× (1 + p)N−k1e−βk2(∆εrmd+∆εrad). (2.31)

2.5 Fold change

In order to create a bridge between experimental measurements and the thermodynamic model a key

assumption is made stating that the level of expression of a gene is proportional to the probability of

RNAP being bound to the promoter of the gene, or in the case of multiple gene copies, the expression

is proportional to the average number of promoters bound by RNAP. Using this assumption we can

predict the fold change, defined as the ratio of level of gene expression in the presence vs. absence

of a certain TF, which is a quantity commonly measured by experiments. We start by computing

the fold change for a set of identical promoter copies and then move to the case with a general

set of promoters. In Supplemental Material 2 we show how to perform these computations using

MATHEMATICA.

By assuming the number of RNAP molecules to be much bigger than the number of promoter

copies, any state with i promoters bound by RNAP will have a weight of the form ∝ pi, with

p = P
NNS

e−β∆εpd . Here ∆εpd is the energy difference between specific and nonspecific RNAP binding

to the promoter. Using this observation one can show that the expectation value for the number of

promoters bound by RNAP is given by

Occupancy = p
∂

∂p
lnZtot. (2.32)

Equation (2.32) together with the partition function derived in the previous section allows us to

compute the fold change f , defined as the ratio between occupancy in the presence and absence of

a TF,

f =
Occupancy (F )

Occupancy(F = 0)
. (2.33)

In the particular case of simple repression, plugging the partition function [Eq. 2.27] into Eqs. (2.32)-

2See Supplemental Material at: http://dx.doi.org/10.1103/PhysRevE.89.012702

http://dx.doi.org/10.1103/PhysRevE.89.012702
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(2.33) leads, after a bit of algebra, to

f =
1 + p

N

∑min(N,R)
k1=0

(
N
k1

)
R!

N
k1
NS(R−k1)!

e−βk1∆εrd(N − k1)(1 + p)N−k1−1∑min(N,R)
k1=0

(
N
k1

)
R!

N
k1
NS(R−k1)!

e−βk1∆εrd(1 + p)N−k1
. (2.34)

For weak promoters (p � 1) we can simplify this expression somewhat by dropping the last factor

in the nominator and denominator. The summation can again be expressed in closed form using the

Tricomi confluent hypergeometric function and a corresponding differentiation rule [74].

In Fig. 2.3, we show fold change as a function of number of repressors (R) for the three different

promoter architectures considered in Sec. 2.3. This figure shows the importance of TF titration as

there can exist order of magnitude differences in predicted fold change for N = 1 vs N ≥ 1 promoter

copies. For the simple repressor [Fig. 2.3(A)], with R < N the fold change will never be less than

1
N , corresponding to a situation where all promoters but one are “turned off.” However, as soon as

R ≥ N all promoters can be repressed, which yields a steep decline in fold change around R ≈ N ,

at least when the operators are strong enough to have high repressor binding probability (as is the

case in Fig. 2.3). For weak operators the move across the “boundary” R ≈ N is uneventful and no

such steep response occurs (see Fig. 2.4).

In the exclusive looping repression architecture [Fig. 2.3(C)], the fold change exhibits a sharp

trough near R ≈ N . This is explained by the fact that at high repressor copy number the operators

will be bound by repressors separately (an unrepressed state), hence avoiding having to pay the

energy cost of bending the DNA, and for low repressor copy number (R < N) the fold change is

again never less than 1
N . The observed trough corresponds to the middle range between these two

extremes.

Finally, the repression with looping architecture [Fig. 2.3(B)] is a combination of the simple

repression and exclusive looping repression architectures. Since both of these architectures show

steep response around R ≈ N the repression by looping architecture will share this feature, as

is apparent from Fig. 2.3(B). The free energy cost ∆Floop of forming DNA loops is critical for

this behavior. If ∆Floop is increased such that it exceeds the binding energy of both operators,

∆Floop > max(|∆εrmd|, |∆εrad|), the auxiliary operator serves only to titrate repressors and the

fold change will resemble the simple repression case. For all architectures, the fold change curves

converge in the high TF copy number limit (R � N) independently of promoter copy number. In

this limit the number of TFs available for binding is essentially constant and transcription from each

promoter can be regarded as independent.

So far we assumed that all promoters are identical; however, for a general set of promoters there

might be several different “output” proteins, each with its own associated fold change. By analogy
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(A) (B)

(C)

Figure 2.3: Fold change as a function of repressor copy number (R) for gene copy numbers N = 1
(solid line), N = 10 (dashed), and N = 100 (dotted) for three different promoter architectures: (A)
simple repression, (B) repression with looping, and (C) exclusive looping repression. For these plots
we used operator binding energy −17.3 kBT (equivalent to the strongest known lac operator Oid
[18]), the number of nonspecific sites as the genome length of E. coli (NNS = 5 × 106), number
of RNAP P = 1000, and the looping energy ∆Floop = 10 kBT [26]. The RNAP promoter binding
energy is assumed to be weak (p� 1) [75, 18].
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Operator binding 
energy (kBT)

Figure 2.4: Fold change of a simple repressor with gene copy number N = 10 for three different TF
binding site strengths, with strengths chosen to correspond to the range observed for real repressors.
Stronger repressor binding leads to a steeper response in fold change around R ≈ N . The RNAP
promoter binding energy is assumed to be weak (p � 1), and the number of nonspecific sites
NNS = 5× 106.

to the identical promoter case [Eq. (2.33)] we define the fold change f (n) with respect to promoter

n as

f (n) ≡ Occupancy for promoter n (F )

Occupancy for promoter n (F = 0)
, (2.35)

where the occupancy is given by

Occupancy for promoter n = p(n) ∂

∂p(n)
lnZtot, (2.36)

with p(n) ≡ P
NNS

e−β∆εpnd , and ∆εpnd the energy difference between specific and nonspecific RNAP

binding to promoter n. If one promoter has stronger TF binding sites than the other promoters

these binding sites will, in general, be filled first by TFs, but as soon as this happens the other

promoter might experience a sudden regulatory response [1]. As an example [3], let us assume we

have Npl plasmids, each with one TF binding site of energy ∆εpl as shown in Fig. 2.5(A). The Z
(1)
i

factors associated with these Npl binding sites are given by

Z
(1)
i =

(
Npl
i

)
e−βi∆εpl , (2.37)

corresponding to
(
Npl

i

)
ways of distributing i repressors on Npl plasmids, each with one binding site.

Furthermore, let the same TF act as an inhibitor (see Sec. 2.3.1) for a single simply repressed gene

located on the chromosome. We already know the Z
(2)
i factors for this promoter architecture from
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Figure 2.5: Effect of TF sequestration on fold change. (A) A repressor can bind to a reporter
construct located in a single copy on the chromosome or to a binding site on a multi-copy plasmid
which leads to no gene expression. (B) Fold change of a simple repressor for different repressor
binding site strengths, where the TF is subject to sequestration from 100 nonfunctional binding
sites (∆εpl = −15 kBT ). If the sequestration sites are much stronger than the simple repressor
operator, the fold change remains constant until these sites have been filled. The RNAP promoter
binding energy is assumed to be weak (p� 1), and the number of nonspecific sites NNS = 5× 106.

Sec. 2.4.3, namely Z
(2)
0 = 1 + P

NNS
e−β∆ε and Z

(2)
1 = e−β∆ε. Using Eq. (2.20) we find the total

partition function of the system

Ztot =

min(Npl,R)∑
i1=0

min(1,R−i1)∑
i2=0

R!

N i1+i2
NS (R− i1 − i2)!

Z
(1)
i1
Z

(2)
i2

= (1 + p)

min(Npl,R)∑
i1=0

R!

N i1
NS(R− i1)!

(
Npl
i1

)
e−βi1∆εpl

+

min(Npl,R−1)∑
i1=0

R!

N i1
NS(R− i1 − 1)!

(
Npl
i1

)
e−βi1∆εple−β∆ε. (2.38)

In Fig. 2.5(B) we show the fold change of the simple repressor on the chromosome for three choices

of operator strength ∆ε < ∆εpl, ∆ε = ∆εpl, and ∆ε > ∆εpl. As expected when the plasmid

binding sites are very strong, we do not get a response in fold change of the simple repressor until

all these sites have been filled. However, if the simple repressor binding site is stronger than the

plasmid binding sites, this is no longer the case and we see an immediate decline in fold change when

repressors are added. Even on a logarithmic plot the fold change shows a rich structure, which makes

it an ideal candidate for experimental verification since we expect that this functional form can be

easily detected above the intrinsic experimental noise in making such gene expression measurements.

Finally, for independent identical promoters, for example when the TFs are in great excess with

respect to number of gene copies, the fold change for the set of promoters reduces to the fold change

of an individual promoter. This intuitive result can be directly shown from Eq. (2.32) + (2.33),
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using the fact that for N independent promoters, each with partition function Z, the total partition

function is given by Ztot = ZN . Let fZ denote the fold change of a single promoter and fZtot denote

the fold change for N promoter copies, then

fZtot =

p
Ztot

∂
∂pZ

tot

p
Ztot

F=0

∂
∂pZ

tot
F=0

=
(ZF=0)

N ∂
∂pZ

N

ZN ∂
∂p (ZF=0)

N

=

p
Z
∂
∂pZ

p
ZF=0

∂
∂pZF=0

= fZ . (2.39)

This equality, fZtot = fZ , greatly simplifies calculating the fold change of the promoters.

2.6 Transcriptional correlation

There are many reasons why expression of different genes might be correlated [76, 77, 78]. One

obvious example is if a gene A regulates another gene B, then random intrinsic fluctuations in A

will affect the expression of B (with a time delay), resulting in correlated expression of the two genes.

For genes without direct regulatory connections, such random fluctuations due to intrinsic noise do

not lead to correlated expression. Extrinsic noise, on the other hand, refers to fluctuations which

affect the expression of both A and B simultaneously; this includes “global noise” such as fluctuating

number of RNAP molecules or cell size, which leads to a positive correlation in transcription rates

of the two genes. Another example of extrinsic noise, which we study in more depth in Sec. 2.7.2, is

fluctuations in TF copy number if A and B are regulated by the same TF.

In addition to these mechanisms we predict that promoter entanglement due to TF titration

constitutes another source of correlation in transcription rates for genes regulated by the same TFs.

Quantifying this effect is the topic of this section.

2.6.1 Toy model of transcriptional correlation

To develop intuition for the correlation in transcription from different promoters due to promoter

entanglement, we first consider a hypothetical system of two unregulated promoters (PA, PB), tran-

scribed by a single RNAP molecule (P = 1). This system can be found in three different states: no

promoter bound by RNAP, PA bound by RNAP, or PB bound by RNAP. Since the single RNAP

molecule can only bind to one of the promoters at a time, transcription of the two promoters will

become anticorrelated.

Let A,B denote the number (0 or 1) of RNAP bound to promoters PA and PB respectively.
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Figure 2.6: Correlation coefficient between transcription rates of two equally strong promoters
PA, PB for a single RNAP molecule (P = 1), as a function of probability pA = pB of one of
the promoters being bound.

These two random variables are correlated with the Pearson correlation coefficient,

ρcorr =
< (A− Ā)(B − B̄) >√

< (A− Ā)2 >< (B − B̄)2 >
(2.40)

=
< (A− Ā)(B − B̄) >

< (A− Ā)2 >
. (2.41)

For the sake of simplicity we assume that the two promoters PA, PB have the same strength, and

hence in Eq. (2.41) we set < (A−Ā)2 >=< (B−B̄)2 >. Let p0 and pA = pB denote the probabilities

of the three states listed above. In terms of these probabilities the correlation coefficient translates

to

ρcorr = − pA
1− pA

, (2.42)

which is plotted as a function of pA in Fig. 2.6. When the promoters are very strong PA or PB

will always be bound by RNAP (pA = pB = 1
2 ); hence, knowledge of the state of one promoter is

sufficient to tell the state of the other promoter (ρcorr = −1). However, when the promoters are

weak, at most times both promoters are empty and the correlation between the promoters will be

weak.

These results can be framed in terms of the familiar partition functions used throughout this

chapter. We now consider a statistical mechanical model of RNAP binding. The partition function
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for the two-promoter system is given by

Z = 1 +
1

NNS
e−β∆εA +

1

NNS
e−β∆εB (2.43)

= 1 +
2

NNS
e−β∆ε, (2.44)

where we again assume that both promoters have the same binding energy ∆ε = ∆εA = ∆εB . The

probability pA for promoter A to be in the bound state is then given by

pA =
1

NNS
e−β∆ε

Z
. (2.45)

Plugging pA back into the correlation coefficient [Eq. (2.42)] gives the transcriptional correlation as

a function of promoter strength, namely,

ρcorr = − 1

1 +NNSeβ∆ε
. (2.46)

These results are intended to illustrate how the correlations will be computed in the more general

case considered next.

2.6.2 General theory

As reported in Sec. 2.5, a state with i specifically bound RNAP molecules to a certain promoter

type has a statistical weight of the form ∝ pi with p = P
NNS

e−β∆εpd . This weight generalizes for

a set of N different promoter types to the form ∝ pi11 · · · p
iN
N . Using this observation it is easy to

derive the statistical moments for promoter occupancies

< i1 . . . im >≡ 1

Ztot
pi1

∂

∂pi1
· · · pim

∂

∂pim
Ztot, (1 ≤ ij ≤ N, ∀j). (2.47)

On the left hand side we use < i1 . . . im > as a shorthand notation for the expectation value of

the product of number of RNAP simultaneously bound to the promoters specified by the indices

i1, . . . , im. For two promoter types (N = 2) the Pearson correlation coefficient can be expressed in

terms of the partition function as

ρi1i2 =
< (i1 − ī1)(i2 − ī2) >√

< (i1 − ī1)2 >< (i2 − ī2)2 >
(2.48)

=
p1p2

∂
∂p1

∂
∂p2

lnZtot√[(
p1

∂
∂p1

)2

lnZtot
] [(

p2
∂
∂p2

)2

lnZtot
] . (2.49)

Here ī1,2 denotes the occupancy (< i1,2 >) for promoters 1, 2, respectively.
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Figure 2.7: States and weights for the simple activation regulatory motif [26].

2.6.3 Two anticorrelated genes

Let us now study the specific example of transcriptional correlation for a system with two genes

located together on Npl identical plasmids, where both genes are regulated by the same A activating

TFs (activators), as shown in Figs. 2.7 and 2.8. The transcription rates for the two genes will be

anticorrelated, because when one gene is highly activated there are fewer activator molecules left to

also activate the other gene. When there are no activators (A = 0) transcription of the two genes

is clearly independent, but this is also true if A � Npl because the number of activators available

for promoter binding will be essentially constant. Hence, we expect anti-correlation of transcription

rates between the two genes to have a peak in magnitude when the number of activators is roughly

comparable to the number of plasmids (A ≈ Npl).

There are four different states for a simple activator promoter architecture (see Fig. 2.7): empty

state, activator bound, promoter bound (by RNAP), and activator and promoter bound. The last

state has a (negative) activator-RNAP interaction energy εap, used by the activator to “recruit”

RNAP to the promoter. For simplicity we assume that the two genes have the same operator

strength and promoter strengths, and hence the same partition function,

Z = 1 +
P

NNS
e−β∆εpd +

A

NNS
e−β∆εad

+
A

NNS

P

NNS
e−β(∆εpd+∆εad+εap). (2.50)

We use Eq. (2.20) to find the partition function for the two genes on one plasmid copy, then Eq. (2.25)

to find the partition function for multiple plasmid copies. Once we have the total partition function

we can calculate the transcriptional correlation using Eq. (2.49).
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Figure 2.8: Two simple activators regulated by the same TF.

In Fig. 2.9(A) we show the transcriptional correlation of the system as a function of activator

copy number for different numbers of plasmids. As expected, the correlation exhibits a peak when

the number of activators is similar to the number of plasmids (peak value ρ ≈ −0.8). As the number

of activators outgrows the total number of binding sites (2Npl) the correlation dies off rapidly, at

least when the activator operators are strong. In Figs. 2.9(B) and 2.9(C) we show how the correlation

depends on the RNAP-activator interaction energy εap and the binding site strength of the activator

∆εad. As expected, the transcriptional correlation between the two genes increases in magnitude

when these interactions are stronger (more negative). In Fig. 2.9(D) we show how the transcriptional

correlation depends on the promoter binding strength. Weak promoters only recruit RNAP when

bound by activators. With just one single activator molecule this system becomes similar to the toy

model of Sec. 2.6.1, and we see a fast response in correlation. Strong promoters can recruit RNAP

well even without activators and hence it takes more of them before we see any substantial effect in

fold change and correlation.

A necessary condition for the transcriptional correlation effect to be experimentally observable

is that TFs stay bound to their binding sites a sufficient amount of time to avoid rapid switching

between different promoter states. For example, if mRNA levels are measured at fixed time points

(e.g., using FISH), TFs would need to stay bound longer to the operators than the mRNA lifetime.

To see this, consider the opposite extreme when the mRNA lifetime is very long (or say infinite), then

the observed mRNA expression merely corresponds to an averaged production over every possible

promoter state and no effect of transcriptional correlation will be observed. On the other hand, if

the mRNA lifetime is much shorter than the TF binding time, the observed mRNAs were likely

produced from the same promoter state (or configuration of TFs). This condition is met, e.g., in

the case of LacI regulating lacZ, where the TF on average stays bound approximately 10 min to the

strongest operator in 37 ◦C [79], whereas the lacZ mRNA lifetime is only about 2 min [80]. Even

when this condition is not met one might still be able to detect the transcriptional correlation effect

by measuring mRNA or protein production during a relatively short time interval from fluorescence

time traces, as long as the uncertainty in production (and maturation) time of mRNA or proteins
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Figure 2.9: Correlation coefficient between transcription rates of two positively regulated genes on a
plasmid, as a function of (A) number of plasmids, (B) RNAP-activator interaction energy εap, (C)
activator operator strength ∆εad, and (D) promoter strength ∆εpd. For fixed parameter values we
use number of nonspecific sites NNS = 5× 106, 10 plasmids, operator strength ∆εad = −17.3 kBT ,
promoter strength ∆εpd = −5 kBT , and interaction energy between TF and RNAP εad = −7 kBT .
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is small compared to the TF binding time.

Another condition for the transcriptional correlation effect to be biologically relevant is that

extrinsic noise sources, like fluctuations in plasmid or TF copy number, do not have a stronger

impact on gene expression than the correlation effect due to TF titration. This matter will be

discussed at more length in Sec. 2.7.2.

2.7 Statistically distributed TF and promoter copy numbers

In a cell the number of TFs and promoter copies are, because of inherent stochasticity, not fixed

but rather fluctuating according to a statistical distribution. These distributions vary greatly, with

examples ranging from the tightly regulated low-copy F-plasmid [81], to the wide distribution of

gene copies produced at viral infections [82]. In this section we see how the predicted fold change

and transcriptional correlation are affected by fluctuations in promoter copy number and TF copy

number. Given the wide range of possible copy number distributions, our goal is not necessarily to

model any particular biological system but rather provide a general framework which allows us to

compute the fold change and transcriptional correlation for any given such distribution, as well as

illustrate this effect on our previously derived results in a few specific cases.

2.7.1 Fold change

In Sec. 2.5 we showed that the fold change of a promoter architecture can depend sensitively on

the number of repressors R when this number is comparable to the number of promoter copies N

[Fig. 2.3]. We now see how this sensitivity is affected when the number of repressors R or promoter

copies N are not fixed but rather fluctuating according to a probability distribution P (R,N). In

this case the RNAP occupancy [Eq. (2.32)] to the promoters needs to be replaced by the expectation

value with respect to P (R,N),

< Occupancy >P (R,N)=
∑
R,N

P (R,N)Occupancy(R,N),

which we can consequently insert into the definition of fold change,

f =
< Occupancy >P (R,N)

< Occupancy(R = 0) >P (N)
(2.51)

=

∑
R,N P (R,N)Occupancy(R,N)∑
N P (N)Occupancy(R = 0, N)

. (2.52)
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(A) (B)

Figure 2.10: (A) Fold change in the simple repression architecture for fixed (N = 10) or Poisson
distributed (mean N̄ = 10) promoter copy number. (B) Fold change in the exclusive looping
repression architecture for fixed (N = 100) or Poisson distributed (mean N̄ = 100) promoter copy
number. For these plots we use operator binding energy −17.3 kBT , looping energy 10 kBT, and
number of nonspecific sites NNS = 5× 106. The RNAP promoter binding energy is assumed to be
weak.

We can simplify the last line [Eq. (2.52)] by noticing that for R = 0 the promoters are independent

and hence the occupancy must be proportional to N

f =

∑
R,N P (R,N)Occupancy(R,N)

< N >P (N) Occupancy(R = 0, N = 1)
. (2.53)

As an example in Fig. 2.10 we investigate the effect of replacing the promoter copy number

with a Poisson distribution in the simple repression (Sec. 2.3.1) and exclusive looping repression

(Sec. 2.3.3) architectures. A set of simple repressors will only be effectively repressed when all the

promoter copies are inhibited; therefore, the steep decline in fold change around N ≈ R will now be

shifted up to a higher repressor copy number. For the exclusive looping architecture we note that

a trough is still clearly visible but less deep and slightly widened (at half peak depth) compared to

the case with fixed promoter copy number. If we in Fig. 2.10 instead were to replace the repressor

copy number by a Poisson distribution and keep the promoter copy number fixed, the fold change

will look close to identical (result not shown).

2.7.2 Transcriptional correlation

Fluctuations in TF copy number constitute an extrinsic form of noise that affects the transcription

rate of all genes regulated by the TF. In this section we show that such fluctuations, when large

enough, can hide the effect of transcriptional correlation due to TF titration. To include extrinsic

noise into our calculation of transcriptional correlation [Eq. (2.49)] between two genes we compute
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the Pearson correlation coefficient using weighted moments,

ρi1i2 = (2.54)

< i1i2 >P (F ) − < i1 >P (F )< i2 >P (F )√
< (i1− < i1 >P (F ))2 >P (F )< (i2− < i2 >P (F ))2 >P (F )

where the expectation value < · >P (F )≡
∑∞
i=0 P (F = i) < · >F=i is evaluated over the distribution

of TFs. In Fig. 2.11 we use this formula to show how TF fluctuations affect the transcriptional

correlation of the particular system of two genes activated by the same TF studied in Sec. 2.6.3. In

this case we use, for illustrative purposes, a Gaussian distribution which allows us to vary the distri-

bution width and see what effect is has on transcriptional correlation. Promoter entanglement and

extrinsic noise will have opposite effects on transcriptional correlation, and their relative strengths

will determine the resulting sign of the correlation coefficient. For A > 2Npl there is no promoter

entanglement but a positive correlation due to TF fluctuations remains until the average number of

activators is so high that essentially all operators will be occupied.

As the TF copy number increases the TFs will distribute themselves more and more evenly

among their targets, and the transcriptional correlation due to TF titration will have a smaller

impact on gene expression. We therefore expect transcriptional correlation due to TF titration to

be most relevant when the TF copy number is low and extrinsic noise limited. These conditions

can be somewhat relaxed due to recent advances in molecular biology; for example cells with TFs

labeled by a fluorescent reporter can be sorted by fluorescence to limit the effect of TF fluctuations

on transcriptional correlation, hence allowing precision tests of the thermodynamic model.

2.8 Verifying the thermodynamic model of TF titration us-

ing Gillespie simulations

To examine the validity of the thermodynamic calculations, we use Gillespie simulations [83] to

predict fold change and correlation in transcription rates. Although this is computationally more

onerous than the thermodynamic models used throughout this chapter, it has the benefit of simplic-

ity, requiring only knowledge of the gene/TF copy numbers and allowed reactions. Consequently,

the intricate details of TF binding combinatorics are given to us “for free.”

To demonstrate the Gillespie algorithm we consider, as an example, free repressors (R) (un)binding

to empty gene promoters (G) to form repressor-gene complexes (GR) through the reactions

G+R
konR−−−⇀↽−−−
koff
R

GR. (2.55)

Here we assume, as in the law of mass action, that the total rate of repressor association is propor-
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Figure 2.11: Correlation coefficient between transcription rates of two positively regulated genes
located on 20 plasmids, as a function of number of TFs. Three different Gaussian TF copy number
distributions are considered with standard deviations σ = 0, 1

2

√
A,
√
A. TF fluctuations constitute

extrinsic noise, affecting expression of both genes, that hides the anti-correlation in transcription
rates due to promoter entanglement. As parameter values we choose number of RNAP P = 1000,
nonspecific sites NNS = 5 × 106, 20 plasmids, operator strength ∆εad = −17.3 kBT , promoter
strength ∆εpd = −5 kBT , and interaction energy between TF and RNAP εad = −7 kBT .

tional to both the number of free repressors and empty promoters. The normalized rate parameter

konR gives number of associations per free repressor, per empty promoter, per time unit. Similarly

the normalized disassociation rate parameter koffR gives number of disassociations per repressor-

gene complex, per time unit. These rate parameters will depend on operator strength and number

of competing nonspecific binding sites (NNS), but not molecular numbers of the species involved.

Notice that since the repressors are assumed to be always bound on DNA we do not consider cell

volume, or cytosolic repressor/gene concentration, as parameters of our model. However cell volume

will have an indirect effect on above rate parameters through its influence on the nonspecific free

energy of binding a repressor to DNA.

In the first step of the Gillespie algorithm we calculate the total accumulated reaction rate,

G × R × konR + GR × koffR , for both reactions and then draw a random time step at which the

next reaction will take place from an exponential distribution, with mean equal to the inverse of

this rate. The decision which of the two reactions should be chosen is random but weighted by the

accumulated rate for each reaction G × R × konR vs GR × koffR . If the repressor binding reaction

is chosen we update the corresponding state variables according to G → G − 1, R → R − 1, and

GR→ GR+ 1 (analogously for repressor unbinding). Notice that G,R,GR are discrete quantities,

not continuous concentrations. By repeating this procedure over and over we acquire time traces

for G,R, and GR, which can be used to compute the (time averaged) occupancy of repressors to
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genes, fluctuations in G,R and GR etc. To compute fold change, a quantity of central importance

throughout this chapter, we use Gillespie’s method to find the average number of promoters bound

by RNAP, with and without TFs present.

In order to connect the stochastic model with our thermodynamic calculations much effort in this

section is dedicated to finding mathematical relations between the stochastic model rate constants

and corresponding thermodynamic free energy parameters. This matter is alleviated by the fact

that the rate constants are independent of gene copy number, TF copy number, and RNAP copy

number, which allows us to determine the rates using stripped-down version of the full promoter

architectures.

2.8.1 Simple repression

To determine the rate parameters corresponding to repressor (un)binding in the simple repression

architecture (Sec. 2.3.1) we consider a minimal system with a single promoter (N = 1) and no

RNAP. In this system there are only two states (see Fig. 2.12): repressor bound (state B) and

empty promoter (state 0), with dynamics described by the following master equation

dP (B)

dt
= RkonR P (0)− koffR P (B). (2.56)

Here P (B), P (0) correspond to the respective state probabilities [P (B) + P (0) = 1]. In equilibrium

there is no net probability flux between the two states, or mathematically,

RkonR P (0) = koffR P (B) =⇒
konR

koffR

=
1

R

P (B)

(1− P (B))
. (2.57)

In the thermodynamic model we find the probability P (B) from the partition function computed in

Eq. (2.7),

P (B) =
R

NNS
e−β∆εrd

1 + R
NNS

e−β∆εrd
, (2.58)

which gives us a simple expression for the ratio between the rates

konR

koffR

=
1

NNS
e−β∆εrd . (2.59)

This argument holds equally well for RNAP and we find

konRNAP

koffRNAP

=
1

NNS
e−β∆εpd . (2.60)
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Figure 2.12: States and transition rates in a the simple repression architecture with no RNAP
present. The rates correspond to “per molecule” rates, i.e. the total probability flux into the right,
repressed state, is given by RkonR P (0).

In equilibrium each reaction will be balanced by its reverse reaction; hence, the final state probabil-

ities can only depend on these ratios, also in the case of multiple gene copies.

We are now ready to apply Gillespie’s method to simulate the full simple repression promoter

architecture (see Fig. 2.1(A)), using the following set of reactions:

G+R
konR−−−⇀↽−−−
koff
R

GR,

G+ P
konRNAP−−−−−⇀↽−−−−−
koff
RNAP

GP.

(2.61)

Here we use the notation: G (empty promoter), R (free repressor), P (free RNAP), GR (promoter

bound by repressor), and GP (promoter bound by RNAP). From the resulting simulation time trace

we can compute the average number of RNAP-promoter complexes (GP ), which we use as a proxy

for gene expression. By repeating the simulation with no repressors (R = 0) we can then determine

the fold change.

Fig. 2.13 shows a precise agreement in fold change between Gillespie simulations and thermody-

namic theory, as one would expect.

2.8.2 Repression with looping

In the case of repression by looping [Sec. 2.3.2] we not only need to take the repressor (un)binding

rates into account but also the rate of DNA (un)looping between the main and auxiliary binding site.

To find the rate constants corresponding to the thermodynamic free energy parameters we consider

a simplified system with a single promoter, no RNAP, and only three states: empty promoter (state

0), main operator bound (state M), and looped state (state L). The transitions between these

states are illustrated in Fig. 2.14. We consider the state with only the auxiliary operator bound

by a repressor to be forbidden. This does not affect the rate constants for repressor (un)binding or

DNA loop formation as compared to the full repression with looping architecture, but makes the
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Figure 2.13: Fold change as a function of repressor copy number in the simple repression (•),
repression with looping (�), and repression exclusively due to looping (N), promoter architecture,
forN = 10 promoter copies. Solid lines correspond to thermodynamic model predictions and markers
Gillespie simulated data. Here we use the parameters: konR = 1.0, koffR = 0.15 (simple repression),

koffR = 0.075 (looping), konRNAP = 3.0 × 10−5, koffRNAP = 1, kloop = 1, and kunloop = 6.8 × 10−4 in
arbitrary inverse time units, chosen according to Eqs. (2.59), (2.60), (2.64). The standard deviations,
acquired from three separate runs, are smaller than the marker size. Since the rates only enter as
ratios in the state probabilities we use this freedom to set larger of the two rates to 1. As initial
condition we set all promoters to the empty state, G = 10, RNAP copy number P = 1000, and
repressor copy number R indicated by the x axis.

kR
on

kR
off

kloop

auxiliary 
operator

main 
operator

kunloop

Figure 2.14: States and transition rates in a simplified version of the repression with looping promoter
architecture, with no RNAP and where the auxiliary operator is not allowed to be bound individually.
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mathematical derivations more straightforward. The detailed balance equations for this system are

RP (0)konR = P (M)koff ,

P (M)kloop = P (L)kunloop, (2.62)

P (0) + P (M) + P (L) = 1,

which can be easily solved for P (0), P (M), and P (L).

On the other hand the state probabilities for this system can be derived using the statistical

mechanical framework, similar to the procedure used in Sec. 2.3.2

P (0) =
1

1 + 2R
NNS

e−β∆εrd + 2R
NNS

e−β(2∆εrd+∆Floop)
,

P (M) =
2R
NNS

e−β∆εrd

1 + 2R
NNS

e−β∆εrd + 2R
NNS

e−β(2∆εrd+∆Floop)
, (2.63)

P (L) =
2R
NNS

e−β(2∆εrd+∆Floop)

1 + 2R
NNS

e−β∆εrd + 2R
NNS

e−β(2∆εrd+∆Floop)
.

Here we assume that the main and auxiliary operators have the same binding energy ∆εrd. Equating

the state probabilities found in the thermodynamic model with those from Eq. (2.62) allows us to

express the (un)binding and (un)looping rates in term of the free energies ∆εrd,∆Floop

konR

koffR

=
2

NNS
e−β∆εrd ,

kloop
kunloop

= e−β(∆εrd+∆Floop).

(2.64)

Notice that, by assuming that the two TF operators have the same binding energy we only need one

set of (un)looping rates. We use these rates to apply Gillespie’s method on the full repression with

looping architecture, where all states in Fig. 2.1 (B) are allowed, using the reaction scheme

G+R
konR−−−⇀↽−−−
koff
R

GRM , G+R
konR−−−⇀↽−−−
koff
R

GRA, GRM
kloop−−−−−⇀↽−−−−−
kunloop

GL,

GRA
kloop−−−−−⇀↽−−−−−
kunloop

GL, GRM +R
konR−−−⇀↽−−−
koff
R

GRMA, GRA +R
konR−−−⇀↽−−−
koff
R

GRMA,

GRA + P
konRNAP−−−−−⇀↽−−−−−
koff
RNAP

GRAP, G+ P
konRNAP−−−−−⇀↽−−−−−
koff
RNAP

GP.

(2.65)

where we use the following notation: G (empty promoter), R (free repressor), P (free RNAP), GRM

(main operator bound), GRA (auxiliary operator bound), GRMA (main and auxiliary operator

bound), GL (looped conformation), GRAP (auxiliary operator bound by TF and promoter by

RNAP), GP (promoter bound by RNAP).
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Figure 2.15: Simple activation promoter architecture in the weak promoter approximation, neglect-
ing RNAP binding to the empty promoter.

In Fig. 2.13 we find that our statistical mechanical predictions for fold change are precisely

replicated by Gillespie simulations. To achieve the level of precision shown in the figure required

around 1h of Gillespie simulations for 30 data points, compared to the analytical framework which

allowed us to compute the fold change for 1000 data points in less than 1s.

2.8.3 Repression exclusively due to looping

For repression exclusively due to looping (Sec. 2.3.3) we use the same rate parameters as found in

Eq. (2.60)+(2.64), but allow RNAP to bind all states except the looped state (see Fig. 2.1). This

means we need to add the following reactions to the scheme in (2.65)

GRM + P
konRNAP−−−−−⇀↽−−−−−
koff
RNAP

GRMP,

GRMA + P
konRNAP−−−−−⇀↽−−−−−
koff
RNAP

GRMAP,

(2.66)

where we use the following notation GRMP (main operator bound by TF and promoter by RNAP)

and GRMAP (main plus auxiliary bound by TF and promoter by RNAP).

In Fig. 2.13 we compare the fold change predicted by the thermodynamic model with Gillespie

simulations, and again find them to be in precise agreement.

2.8.4 Transcriptional correlation

In Sec. 2.6 it was shown that under certain conditions the transcription rates of two genes can be

correlated and we used the simple activation promoter architecture as a case study. To find the rate

constants that correspond to the thermodynamic model free energy parameters for this promoter

architecture we solve the detailed balance equations resulting from Fig. 2.15

AP (0)konA = P (A)koff ,

P (A)PkonRNAP∗ = P (AP )koffRNAP∗ , (2.67)

P (0) + P (A) + P (AP ) = 1,
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where we use the notation: empty promoter (state 0), activator bound to promoter (state A), acti-

vator and RNAP bound to promoter (state AP ), and koffRNAP∗ , konRNAP∗ refer to RNAP (un)binding

rate when the promoter is already bound by an activator. For mathematical convenience we invoke

the weak promoter approximation and neglect the state with RNAP bound to an empty promoter.

In the thermodynamic model we can write down the corresponding state probabilities (see no-

tation Fig. 2.7)

P (0) =
1

1 + A
NNS

e−β∆εrd + AP
N2

NS
e−β(∆εad+εap)

,

P (A) =
A

NNS
e−β∆εrd

1 + A
NNS

e−β∆εrd + AP
N2

NS
e−β(∆εad+εap)

, (2.68)

P (AP ) =

AP
N2

NS
e−β(∆εad+εap)

1 + A
NNS

e−β∆εrd + AP
N2

NS
e−β(∆εad+εap)

.

Equating the state probabilities in Eqs. (2.67) and (2.68) allows us to express the TF and RNAP

(un)binding rate in terms of the thermodynamic model parameters

konA

koffA

=
1

NNS
e−β∆εad ,

konRNAP∗

koffRNAP∗

=
1

NNS
e−β(∆εpd+εap) =

konRNAP

koffRNAP

e−βεap . (2.69)

Using these rates we can apply Gillespie’s method to the system of two genes considered in Sec. 2.6.3,

described by the reaction scheme

G1 +A
konA−−−⇀↽−−−
koff
A

G1A, G2 +A
konA−−−⇀↽−−−
koff
A

G2A, G1 + P
konRNAP−−−−−⇀↽−−−−−
koff
RNAP

G1P,

G2 + P
konRNAP−−−−−⇀↽−−−−−
koff
RNAP

G2P, G1A+ P
konRNAP∗−−−−−⇀↽−−−−−
koff
RNAP∗

G1AP, G2A+ P
konRNAP∗−−−−−⇀↽−−−−−
koff
RNAP∗

G2AP.

(2.70)

At each time step of the simulation the number of promoters of each type bound by RNAP is

recorded, and using the time traces we can compute the correlation coefficient between the two

quantities. Fig. 2.16 again shows a precise agreement between our thermodynamic model and Gille-

spie simulations.

2.9 Conclusion

In this chapter we have developed a general framework based on statistical mechanics to predict

gene expression for systems with multiple genes or gene copies regulated by the same TFs. These

kinds of systems arise in a multitude of biologically relevant circumstances. In particular, we have
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Figure 2.16: Correlation coefficient between transcription rates of two positively regulated genes on
a plasmid (copy number N = 10) as a function of activator copy number. The solid line corresponds
to thermodynamic model prediction, and dots corresponds to Gillespie simulated data. Here we use
the parameters: konA = 1.0, koffA = 0.15, konRNAP = 3.0 × 10−5, koffRNAP = 1, konRNAP∗ = 0.033 and

koffRNAP∗ = 1 in arbitrary inverse time units, chosen according to Eq. (2.59), (2.60), (2.69). The
standard deviations, acquired from three separate runs, are smaller than the marker size. Since the
rates only enter as ratios, we use this freedom to set the larger of the two rates to 1. As initial
condition we set all promoters to the empty state, G1 = G2 = 10, RNAP copy number P = 1000,
and activator copy number A indicated by the x axis.

shown that when the number of TF binding sites is large enough to titrate the TFs, the predicted

gene expression depends in a highly nontrivial way on the relative abundance of promoter and TF

copy numbers. New data [4] on protein copy numbers in E. coli indicate that such titration might

happen more often than previously thought. We have also quantitatively linked the effect of TF

titration to correlation between transcription rates of different genes.

An advantage with the presented model is that quantities of interest, e.g. fold change or corre-

lation in transcription rates, can be expressed analytically for a set of promoters explicitly in terms

of the individual promoter architectures. This allows us to vary model parameters and TF copy

number without the need to run thousands of time-consuming Gillespie simulations.

Recent advances in the field of molecular biology have made it possible to accurately measure

and tune protein copy numbers in a cell [4, 62, 84, 18], which provides an excellent opportunity to

test the predictions presented here experimentally. This will indeed be the topic of Chapter 3.
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Appendix

2.A Partition function for a set of promoters regulated by

multiple low-copy TFs

One can easily show that the partition function derived in Eq. (2.20) for a set of promoters regulated

by one TF type is valid also when the promoters are regulated by additional TFs, as long as these

extra factors are not subject to titration effects and can be summed out together with RNAP in

Eq. (2.21). However, in the case of regulation by multiple low-copy TFs the derivation needs to be

generalized. To do this let us denote the different TFs by F1, . . . , Fm and fnj the number of TFs of

type j ∈ {1, . . . ,m} bound to promoter n ∈ {1, . . . , N}. By analogy to the treatment in Sec. 2.4.1

the total partition function is given by

Ztot =
∑

fnj
, ∀n,j∑

n fnj
≤ Fj ,∀j

 m∏
j=1

Fj !

N
∑

n fnj

NS (Fj −
∑
n fnj

)!

 N∏
n=1

Z
(n)
fn1

,...,fnm
, (2.71)

where Z
(n)
g1,...,gm corresponds to states for promoter n occupied by g1 number of TFs of type F1, g2

TFs of type F2 etc. Analogously to Eq. (2.22) the single promoter partition functions with multiple

TF types are given by

Z(n) =
∑

g1,...gm

 m∏
j=1

Fj !

N
gj
NS(Fj − gj)!

Z(n)
g1,...,gm . (2.72)

For the case when all promoter copies are identical we can also generalize the computationally
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more efficient Eq. (2.25) to multiple low-copy TF types F1, . . . , Fm

Ztot =
∑

ki1,...,im ,∀i1,...,im∑
i1,...im

ki1,...,im=N∑
i1,...im

ijki1,...,ij ,...,im
≤Fj ,∀j

(
N

{ki1,...,im}

) ∏
i1,...im

Z
ki1,...,im

i1,...,im

 (2.73)

×
m∏
j=1

Fj

N
∑

i1,...im
ijki1,...,im

NS (Fj −
∑
i1,...im

ijki1,...,im)!
.

Here ki1,...,im is the number of promoters which have i1 TF of type F1 bound, i2 TF of type F2 bound,

etc., Zi1,...,im corresponds to states with ij TFs of type Fj bound, and the notation
(

N
{ki1,...,im}

)
refers

to the multinomial coefficient N !
∏
i1,...,im

1
ki1,...,im ! .

2.B Number of binding sites vs. TF copy number in E. coli

For the specific case of E. coli, hundreds of TFs and their corresponding vast array of binding sites

have been identified [21]. As a result, one can make an educated guess about regulatory architectures

where the TF titration effect might play a role by looking for cases where the number of binding

sites (N) approaches the number of TF molecules (F ) per cell. An attempt to amass such data is

shown in Fig. 5.6. The majority of genes belong to a regime where we do not expect strong titration

of TFs, however, with a handful of exceptions, especially in the borderline regime F ≈ 2N where

TFs binding as dimers could experience depletion. As new binding sites are discovered more TFs

might fall into this category.
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Figure 2.17: Transcription factor (TF) copy number vs. number of binding sites, using two different
protein censuses of E. coli. Protein copy numbers were determined using mass spectrometry [62]
and fluorescence [4]. The number of binding sites was obtained from RegulonDB [21]. The solid line
marks the boundary between depletable TFs (more binding sites than TF copies) and nondepletable
(more TF copies than binding sites). For TFs forming dimers (e.g. CRP, Fis, GalR), this boundary
is replaced by the dashed line. Due to incomplete knowledge about the E. coli regulatory system
we expect the number of binding sites to be underestimated, and hence more TFs might belong to
the depletable category than shown in the figure.
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Chapter 3

The transcription factor titration
effect dictates level of gene
expression

This chapter reproduces the submitted version of [1].

3.1 Introduction

Models of transcription are often built around a picture of RNA polymerase (RNAP) and transcrip-

tion factors (TFs) acting on a single copy of a promoter. However, most TFs are shared between

multiple genes with varying binding affinities. Beyond that, genes often exist at high copy number;

in multiple identical copies on the chromosome or on plasmids or viral vectors with copy numbers

in the hundreds. Using a thermodynamic model, we characterize the interplay between TF copy

number and the demand for that TF. We demonstrate the parameter-free predictive power of this

model as a function of the copy number of the TF and the number and affinities of the available

specific binding sites; such predictive control is important for the understanding of transcription and

the desire to quantitatively design the output of genetic circuits. Finally, we use these experiments

to dynamically measure plasmid copy number through the cell cycle.

Regulatory biology remains one of the most fertile areas for the quantitative dissection of bi-

ological systems, with two broad classes of examples coming from the study of cell signaling and

gene regulation [2, 3, 4, 5, 6]. With increasing regularity, these systems are examined in tandem

using both theoretical models with precise “governing equations” and precision measurements whose

ambition is to explicitly test the validity of these models. The study of gene expression in bacteria

has enjoyed a close interplay between the so-called thermodynamic models, which predict the mean

level of expression as a function of architectural parameters characterizing the regulatory motif of

interest, and quantitative measurements, which can now even be performed at the single- cell level

[7, 8, 9, 10, 11, 12, 13, 14].
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Typically, such models rely on the assumption that the number of TFs is in excess with respect

to the number of its binding sites in the cell. There are many situations where this assumption

might break down, such as those involving highly replicated viral DNA[15], genes expressed on

plasmids [16], genes existing in multiple identical copies on the chromosome [17, 18, 19, 20, 21] or

even just genes controlled by “overworked” TFs with many available target genes [22]. Additionally,

this interplay between the number of TFs and the number of its binding sites provides yet another

tuning parameter with which to test and refine theoretical models of transcriptional regulation as

well as precisely control the output of synthetic genetic circuits [23, 24, 25, 26]. In fact, it is common

to explore regulatory architecture in the context of multicopy plasmids [16, 27, 28, 12]. As a result,

precise knowledge of the role of plasmid copy number on the output levels of gene expression is

required. This interdependence of a given gene’s input-output relation with the external environment

in which it exists has been termed “retroactivity” [29, 30] and is treated in analogy to impedance in

electrical circuits. Some studies have explored this interplay, typically in the context of activation

with binding competition stemming from molecular depletants [31] or binding arrays [32].

Here we dissect the interplay between TF copy number and the number of its target binding

sites using the simple repression regulatory architecture. Simple repression is a ubiquitous motif in

E. coli [33, 34] which consists of a promoter with a single proximal repressor binding site such that

when a repressor is bound no transcription ensues [35, 36, 37]. In particular, we focus on simple

repression by Lac repressor (LacI), which has been extensively studied in the context of theoretical

models of transcriptional regulation [38, 8, 10, 39, 11, 13, 14]. Using video fluorescence microscopy,

we simultaneously measure both the absolute number of repressors and the rate of expression of

a reporter fluorescent protein in single cells as they progress through the cell cycle. This method

is used to examine several cases of simple repression in which the TF binding sites are placed in

multiple locations, shown schematically in Fig. 3.1. In particular, these include transcription from

a plasmid at several distinct copy numbers [Fig. 3.1B], transcription from multiple identical copies

integrated in the chromosome [Fig. 3.1C], and transcription from a single chromosomal copy that

competes for the repressor with plasmids also containing a specific binding target [Fig. 3.1D].

One major outcome of this study is that, when a TF is shared among many binding sites,

either due to multiple identical copies of a gene regulated by that TF or unrelated genes which

also independently bind the TF, the correlation in occupancy between the binding sites will lead

to a complex dosage response to that TF [32, 40]. At low copy numbers (relative to the number

of binding sites), this essentially buffers the transcriptional level to the presence of the TF, and at

high copy numbers the response of the fold-change is similar to that seen for a single isolated copy

of the gene with no binding competition. The sharpness of the transition between these regimes is

predicted to depend explicitly on the relative strength of the specific binding site on the gene of

interest compared to the specific sites with which it competes. However, we find that the width of the
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Figure 3.1: Examples examined in this study of transcriptional regulation with compe-
tition for the TF.
(A) Single chromosomal copy of the gene of interest. (B,C) Competition from multiple, identical
genes in the simple repression regulatory architecture when the promoters are (B) placed on a high
copy number plasmid or (C) integrated in multiple chromosomal locations. (D) The chromosomal
reporter construct competes with competitor plasmids which have binding sites for the repressor,
but do not code for the reporter gene. In this particular case the competitor binding sites can have
a different affinity than the regulated gene.

plasmid distribution inside the population of cells can also play a role in flattening the transition,

and the distribution must be taken into account to accurately predict gene expression when the

plasmid distribution itself becomes wider than the transition region in the fold-change curve, which

tends to occur for stronger binding operators. Building on the success of the predictive model, we

then exploit it as a tool for measuring plasmid copy number throughout the course of the cell cycle.

The average number of plasmids per cell increases as the cell cycle progresses with a time-averaged

mean value that is consistent with our independent bulk qPCR measurements of the mean copy

number.

3.2 Results

3.2.1 Thermodynamic model

Our results are based upon time-lapse fluorescence microscopy [Fig. 3.2] in which we measure the

level of gene expression by looking at the rate of production of a fluorescent reporter (i.e. dP/dt,

where P is the fluorescent protein number per cell). Specifically, we measure the fold-change given

by

fold-change =
dP
dt (R 6= 0)
dP
dt (R = 0)

, (3.1)

which typically measure the steady-state level of the gene product in cell populations. However,

we can demonstrate the relationship between the fold-change data from steady-state measurements,

where expression is quantified as levels of fluorescence reporter, P , and that obtained using video



78

YFP

mCherry

Repressor
binding site

Reporter gene

lacI-mCherry

Promoter

Promoter Repressor
fusion

aTc

A B
YFP production
in daughter cells

Time

Calibrating
mCherry levels
by fluctuations

mother cell daughter cells

Figure 3.2: Experimental methods for the single-cell dissection of regulatory architec-
tures.
(A) Genetic circuit employed in this work. The expression of the LacI-mCherry fusion is induced
by the small molecule aTc. The repressor acts on a promoter expressing a YFP reporter gene. (B)
Individual cells are observed through a division event. The fluctuations in the partitioning of the
LacI-mCherry between the daughters is used to calibrate the signal such that the mCherry fluores-
cence measurement in each cell can be expressed as an absolute number of repressor molecules. In
addition, the rate of YFP production is measured over the cell cycle.

microscopy by observing the rate of production of a fluorescent reporter, dP/dt. In the limit that

degradation of the measured product is slow, the equivalence of these methods can be derived (see

Appendix section “Equivalence of fold-change in steady-state measurements and video microscopy”),

fold-change =

experiments︷ ︸︸ ︷
dP
dt (R 6= 0)
dP
dt (R = 0)︸ ︷︷ ︸

video microscopy

=
P (R 6= 0)

P (R = 0)︸ ︷︷ ︸
steady-state microscopy

=

theory︷ ︸︸ ︷
pbound(R 6= 0)

pbound(R = 0)
, (3.2)

suggesting that a direct comparison between the bulk measurements and those presented here is

admitted, as is the comparison to thermodynamic models.

The basic idea of the thermodynamic model of transcriptional regulation is to enumerate the

possible configurations of the molecular players among the available specific and nonspecific binding

sites and calculate the probability of finding RNAP bound at the promoter of interest. These models

predict the fold-change in gene expression defined as the ratio of the level of gene expression in the

presence of TF to the level of expression in its absence. In particular, the fold-change for simple

repression in the case where the gene and corresponding TF specifically bind only at the reporter

gene [Fig. 3.1A] is [41]

fold-change =
1

1 + R
NNS

e−∆ε/kBT
, (3.3)

where R is the number of repressors present in the cell, NNS is the size of the nonspecific binding

reservoir (which we take here to be the whole E. coli chromosome such that NNS = 5×106) and ∆ε
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is the binding energy of repressor to its operator. In reference [40], this model has been extended

to the case of simple repression from multiple identical copies of the gene, schematically shown in

Fig. 3.1B and C. In this case, the fold-change is predicted to have the form,

fold-change =

∑min(N,R)
m=0

R!
(NNS)m(R−m)!

(
N
m

)
e−βm∆ε(N −m)

N
∑min(N,R)
m=0

R!
(NNS)m(R−m)!

(
N
m

)
e−βm∆ε

, (3.4)

where the only new parameter is N , the copy number of the gene. Finally, the model predicts the

regulatory outcome of a single gene copy regulated by simple repression with a binding affinity ∆ε in

the presence of competing binding sites with a distinct affinity ∆εc [Fig. 3.1D]. In this more complex

case, the fold-change is given by

fold-change =
Zu

Zb + Zu
(3.5)

where Zb and Zu are the partition functions for the case where the repressor is bound or unbound

to the chromosomal promoter, given by,

Zu =

min(Nc,R)∑
k=0

R!

Nk
NS(R− k)!

(
Nc

k

)
e−βk∆εc , (3.6)

Zb =

min(Nc,R−1)∑
k=0

R!

Nk
NS(R− k − 1)!

(
Nc

k

)
e−β(k∆εc+∆ε), (3.7)

where Nc is the copy number of the plasmid containing the competing binding site and no reporter

gene. The extension of this model to N copies of the gene with Nc competitors is detailed in the

Appendix section “Accounting for chromosome replication in competitor theory”. One feature of

the theoretical predictions in Eqs. (3.4) and (3.5), is that in the limit that R � N (Eq. (3.4))

or R � Nc (Eq. (3.5)) these expressions immediately simplify to Eq. (3.3) (see Appendix section

“Thermodynamic model in the limit R� N” for details), meaning that the multiple promoters are

independent in this limit. Between all of these situations there are relatively few parameters: the

number of TFs (R), the size of the nonspecific reservoir (NNS), the strength of binding sites (∆ε,

∆εc), and the copy number of the gene (N) or of the competing binding site plasmid (Nc). Inter-

estingly, many of the same parameters arise within each of the different scenarios we are considering

and a critical test of the theoretical understanding is the self-consistency of those results. Once these

quantities are determined, the theory generates falsifiable predictions without any free parameters

for all remaining experiments. In the following paragraphs we discuss how these parameters were

determined from independent measurements with the ultimate objective of performing a stringent

test of the thermodynamic models, in general, and of the impact of gene copy number on regulation,

in particular.
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3.2.2 Fluorescent measurements of gene expression and absolute TF copy

number

We consider a number of distinct regulatory landscapes [Fig. 3.1], all of which involve a rich interplay

between the gene copy number and the copy number of the transcription factor controlling that gene.

To test the expressions for fold-change given in Eqs. (3.3) - (3.5), we need to simultaneously measure

both the rate of gene expression and the absolute number of TFs. To that end, as shown in Fig. 3.2B,

our cells harbor two important fluorescent proteins, one to mark the TF and one to mark the gene

product.

We use the partitioning statistics of the repressor TF, an mCherry-LacI fusion, during cell divi-

sion to determine the absolute TF copy number from the arbitrary mCherry fluorescence intensity

in a given cell [42, 43, 44]. We find our maximum induction level is ∼ 1000 repressors per cell

[Fig. 3.9C] and our lower resolution limit is 3− 5 repressors per cell [Fig. 3.9E]. See Appendix sec-

tion “Calibrating LacI-mCherry intensity to absolute copy number” and Fig. 3.9 for details on this

method. Simultaneously, we determine the level of gene expression by measuring the rate of YFP

production.

3.2.3 Gene copy number measured by qPCR

We determine gene copy number using qPCR to measure the average number of plasmids in a cell.

In this study we use plasmids based off the ColE1 ∆Rom origin of replication from Lutz and Bujard

[45, 46, 47]. We also have made a version where the Rom protein, responsible for regulating the

plasmid copy number, is inserted back into the ColE1 ∆Rom origin to arrive at an origin functionally

similar to the wild-type ColE1 origin [48, 49, 50, 45]. While previous measurements locate the copy

number of ColE1 ∆Rom plasmid in the range of 50 ∼ 70 ([45]), the addition of the Rom protein

should result in a reduced average plasmid copy number [48]. We find the ColE1 plasmid has an

average copy number of 52± 5 while the ColE1 ∆Rom plasmid has a copy number of 64± 11 (error

bars are standard deviation from triplicates). These values for the copy number show up as either N

or Nc in the predictions generated by Eqs. (3.4) and (3.5), respectively. One obvious naive aspect to

this approach is that the plasmid copy number is treated as a single static value. In any population

of cells, the copy number is subject to cell-to-cell variability and thus the copy number is more

accurately represented as a distribution rather than a single value [51]. Additionally, plasmid copy

numbers are bound to increase as the cell progresses through its cycle under steady state conditions

[52]. We will examine the consequences of these simplifications in a later section.



81

3.2.4 Determining sequence dependent TF binding energies

Finally, the affinities ∆ε and ∆εc of Lac repressor to its specific binding sites (Oid, O1, O2 and O3

from strongest to weakest) have been previously determined using bulk measurements [38, 8, 14].

Thus, we know all the parameters in Eqs. (3.3), (3.4) and (3.5) necessary to predict the fold-change in

gene expression for every one of the regulatory cases considered in this chapter [Fig. 3.1]. Effectively,

this means that we can predict the fold-change as a function of the number of repressors without

any free parameters at all.

3.2.5 Simple thermodynamic model predicts expression level of single

integrated gene copy

Our approach has several facets that require deeper examination. One possible confounding factor

in the comparison to other measurements on the same architecture is that the fusion of LacI to a

fluorescent protein might affect its function as a TF, thus changing its binding properties with DNA.

A second point is that it’s not immediately clear that a comparison of expression rate from cells

grown under a microscope on a flat surface is comparable to steady-state measurements grown in

bulk media [38, 11, 14].

To assess these issues, we compare our video microscopy method against the outcome of previous

bulk steady-state results performed using wild-type Lac repressor [38, 14, 53]. In Fig. 3.3 we show the

result of measuring fold-change in expression of a single chromosomal copy of our simple repression

construct as a function of the number of repressors per cell for different binding sites (filled symbols)

using the dilution method and video microscopy advocated here. The limits of our measurement

both at low repressor numbers and at low fold-change (where repressed YFP production becomes

small) are discussed in the Appendix. The lines are the theory predictions from Eq. (3.3) for each

operator without any fit parameters with a shaded region representing the uncertainty in ∆ε. One

assumption in this simple theory of Eq. (3.3) is that the copy number of the gene is exactly one. In

reality, the copy number of our single integrated copy varies between one and two over the course

of the cell cycle [17]. However, the predicted expression for two chromosomal copies, Eq. (3.4) with

N = 2, is identical to Eq. (3.3) when R � N . Thus, the promoters will express independently

and we can ignore this small correction [Fig. 3.11]. The data from reference [14] is shown as open

symbols in the figure. These results lead to the interesting conclusion that single-cell measurement

of the expression rates agree precisely with previous bulk measurements of steady-state expression.
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Figure 3.3: Simple repression of a single chromosomal construct.
Fold-change of simple repression construct located on the chromosome as a function of Lac repressor
copy number. The solid lines correspond to Eq. (3.3) with values for ∆ε from steady-state measure-
ments of expression. The data from steady-state measurements [14] is shown as open symbols. The
data from our experiments (filled symbols) is both consistent with the model with no free parameters
(curves) and with expression data obtained from the same construct in steady-state measurements.
The shaded regions on the curves represent the uncertainty from the errors in the measurement of
the binding energies.
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3.2.6 Predicting expression levels from plasmid constructs as a function

of gene copy number

We now wish to compare the predictions of the thermodynamic theory against the more complicated

cases involving TF binding. In this section, we compare the predictions of Eq. (3.4) to measurements

of expression from plasmids as illustrated in Fig. 3.1B.

To begin, we measure the expression of an O1 simple repression construct placed on either the

ColE1 or ColE1 ∆Rom plasmids, akin to Fig. 3.1B. The fold-change in gene expression as a function

of Lac repressor copy number is shown for both plasmids in Fig. 3.4A. The data shown here is

taken from the chronological middle of the cell cycle; the effect of the evolution of the copy number

throughout the cell cycle on expression will be addressed later. The solid lines in the figure are

plots of the predictions from Eq. (3.4) with no adjustable parameters. The shaded region accounts

for the standard deviation in N from our qPCR measurements of the average copy number and the

uncertainty in the binding energy ∆ε. For reference, the green points and line are the chromosomal

data and theory for the O1 operator from Fig. 3.3. The theory predicts the fold-change in expression

and captures the major features observed in our data. When the repressor copy number is much

larger than the gene copy number, the fold-change is relatively unchanged with respect to the

single copy chromosomal case as predicted for the case R � N . However, when the repressor copy

number is less than the gene copy number the effect of the repressors is largely buffered away and

the repressors have little effect on the fold-change. Between these two regions, the transition is

sharp and switch-like. An alternative way to look at the data and its agreement with the theoretical

predictions is to plot the fold-change as a function of the promoter copy number for a defined number

of repressors. The inset to Fig. 3.4A shows this data for three distinct repressor copy numbers (8

black, 64 violet, 256 cyan). The distinct values for promoter copy number, N , are obtained by taking

data from the simple repression O1 construct taken at the end of the cell cycle (N = 2) in addition

to the plasmid data with and without Rom (N=52 and 64 respectively).

3.2.7 Simple thermodynamic model predicts expression levels from mul-

tiple integrated chromosomal gene copies

Plasmids can differ from the chromosome in their relative distribution throughout the cell, the ac-

cessibility to TFs and their segregation mechanisms [54, 55, 56]. However, the effect of the interplay

between repressor and gene copy number is not exclusive to constructs located on plasmids. The

same regulatory features can be seen at low gene copy numbers from multiple copies of the gene

located on the chromosome. We measure gene expression using a strain which has the Oid simple re-

pression construct integrated into the chromosome in five different locations, as schematically shown

in Fig. 3.1C. To avoid uncertainty in the copy number of the gene, we examine expression near the
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Figure 3.4: Fold-change of multiple identical gene copies.
(A) Fold-change as a function of Lac repressor copy number for two distinct plasmids with the O1
simple repression motif on a high copy number (ColE1) plasmid with (blue) and without (red) the
Rom protein. Measurements are performed at the middle of the cell cycle. The blue and red solid
lines are the theory from Eq. (3.4) using the average copy number measured by qPCR and known
binding energies from earlier steady-state measurements as in Fig. 3.3. The shaded regions represent
the combined uncertainty in the copy number measurement and the binding energy measurement.
For reference, the green symbols and line are the data and theory prediction from Fig. 3.3 for simple
repression with the O1 binding site for a single chromosomal copy. The inset shows the predicted
scaling (lines) and measured fold-change (points) for three distinct repressor copy numbers as the
number of promoter copies is varied. (B) Fold-change as a function of concentration of Lac repressor
for multiple gene copies on the chromosome. The red symbols are measurements of the fold-change
in expression at the end of the cell cycle of a strain with the Oid simple repression motif integrated
into 5 unique sites on the chromosome. We expect 10 copies of the gene at the end of the cell cycle.
The red line is the theory prediction for multiple identical gene copies with N = 10 from Eq. (3.4).
The shaded region represents the uncertainty from the measured value of ∆ε. The blue symbols
and line are the data and theory prediction for simple repression with the Oid binding site from
Fig. 3.3. In both cases, the fold-change is approximately 1 when the copy number of the repressor
is less than the copy number of the gene. At high repressor copy number, the curve coincides with
simple repression from the chromosome with a sharp transition between these two regimes.
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end of the cell cycle (the last 15 minutes before division); we expect that each of the 5 chromoso-

mal copies will have fully replicated (the D period of the cell cycle, the time between replication

completion and division, is roughly 27 minutes at our growth rate [17]) and the copy number of the

gene should be 10 resulting from two sets of 5 copies, one on each completed chromosome [17, 57].

The resulting fold-change data for this construct is shown in Fig. 3.4B as red symbols. The red

curve is the prediction from Eq. (3.4) for N = 10 and the Oid binding energy with, once again, no

fit parameters. The shaded region in the fit comes from the uncertainty in ∆ε for the Oid binding

site. For reference, the blue curve and symbols are the theory and data (from Fig. 3.3) for the Oid

construct integrated at a single copy in the chromosome. The observed behavior of this construct is

qualitatively comparable to that observed for genes on plasmids [Fig. 3.4A]. Additionally, the same

theory predicts its quantitative features without any free parameters. Once again, there is a sharp

drop in fold-change when the number of repressors equals the gene copy number before rejoining

the predictions (and measurements) for fold-change from a single gene copy. The genetic locations

of integration and a discussion of the distribution and uncertainty in the measurement of gene copy

number can be found in Appendix section “The copy number of multiple chromosomal integrations

strain” and Fig. 3.10.

3.2.8 Predicting expression levels in complex TF binding landscapes

Finally, a common situation which results in competition for TFs occurs when different genes share

the same TF. For example, in the regulatory databases of RegulonDB for E. coli [34] three quarters

of TFs are listed as having specific interactions with more than one operon. In fact, many of these

TFs target dozens of operons (and it is worth noting that these databases are far from complete and

represent only a partial list of binding interactions, implying that these numbers will continue to

grow). In this case, the competing specific binding sites which do not modulate the gene of interest

may out-compete the gene copy when TFs are limiting.

To examine this competition scenario, we measure the expression from a single copy of the

O1 simple repression construct integrated on the chromosome (identical to the O1 construct from

Fig. 3.3) in a cellular context containing competitor binding sites. These binding sites are carried

in a high copy number ColE1 ∆Rom plasmid that does not express a gene product, illustrated

schematically in Fig. 3.1D. In Fig. 3.5A we show the measured fold-change of the chromosomal O1

construct in the case where the competing plasmid has a weaker O2 binding site (green symbols),

equal strength O1 binding site (red symbols) or a stronger Oid binding site (black symbols). The

theory curves stemming from Eq. (3.5) are shown in the corresponding color with the shaded region

corresponding to the uncertainty in the theory stemming from the uncertainty in Nc, ∆ε and ∆εc

(see Appendix section “Determining errors in theoretical predictions”). The stronger binding sites
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Figure 3.5: Effects of repressor competition on expression.
(A) Fold-change as a function of concentration of Lac repressor for the O1 simple repression construct
integrated into the chromosome in competition with a ColE1 ∆Rom plasmid containing a stronger
(Oid; black symbols), equal (O1; red symbols) or weaker (O2; blue symbols) Lac repressor binding
site. For reference, the green symbols and line are the data and theory prediction, from Fig. 3.3,
for simple repression with the O1 binding site without the competitor plasmid. (B) The same data
used in (A) but now the solid lines represent the plasmid distribution theory assuming a normal
distribution. The parameters are found by fitting the Oid (black) data for N , the average copy
number, and the CV and these parameters are plotted for each binding energy, i.e. the red and
blue curves are parameter free. (C) Fitted means of all three plasmid copy numbers for both the
theory in Eq. (3.5), which assumes a single static copy number for plasmid (blue bars, NOid

c = 112,
NO1

c = 90, NO2
c = 75), and the same theory where the plasmid distribution is normal with CV

as determined from fitting the Oid data (red bars, NOid
c = 73, NO1

c = 70, NO2
c = 68). All three

plasmids in this case have the same origin of replication and differ only by a few bases which alter
Lac repressor affinity to their binding sites. As such we expect all three plasmids to have identical
copy numbers. This is observed for the theory with plasmid distribution (red bars), however the
theory without a plasmid distribution systematically overestimates the copy number for stronger
binding (blue bars).
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shift and sharpen the transition of the gene of interest with respect to LacI copy number. Once

the repressor copy number exceeds the number of competitors, the gene finally gains access to the

repressor and becomes regulated. In contrast, when the competitors are weaker the position of the

transition is shifted towards lower LacI numbers. This simple example illustrates how the regulatory

behavior of a gene can be indirectly controlled through identical competitor plasmids. This effect is,

however, more general as in wild-type genes the competition will come from a spectrum of binding

sites each controlling a specific gene. The thermodynamic model can produce predictions for any

such specific arrangement of binding sites with the theoretical infrastructure demonstrated here.

3.2.9 The influence of plasmid distribution on the repressor titration

curves

One unsatisfactory feature of Fig. 3.5A is that the observed transition for strong binding sites (Oid

and to a lesser extent, O1) is not as sharp as predicted by the theory. Furthermore, the blue bars

in Fig. 3.5C show the resulting fit values for the mean competitor plasmid copy number if Eq. (3.5)

is fit to the data in Fig. 3.5A. All three of these measurements correspond to plasmids which differ

only in the strength of their LacI binding site (which in this case is isolated and not connected to a

promoter) and thus we would expect the mean copy number to be unchanged in the Oid, O1 or O2

strain. However, it is clear that stronger binding sites systematically predict a higher copy number

showing that in this case the model lacks internal consistency.

These discrepancies, both in the fit to the sharpness of the transition region and in the measured

copy number between similar plasmids, likely stem from the theory not accounting for the fact that

there is a distribution of plasmids in the population of cells [16, 58, 51]. This distribution will result

in a less sharp transition in the fold-change curve. To see intuitively how a distribution of plasmid

copy numbers alters the fold-change curve, we imagine the situation of a simple distribution where

cells have a single chromosomal YFP gene with half the cells having N and the other half having 3N

competing plasmids. Further, assume the binding site on these competing plasmids has an extremely

high affinity. The average plasmid copy number is 2N and it is at this value that the thermodynamic

model predicts a sharp transition in the fold-change curve. However, when the number of repressors

is R = 2N all the cells with N plasmids are repressed by free repressors and produce very little YFP

because all the competing plasmids are saturated. On the other hand, the cells with 3N plasmids

will still not be repressed because the competing plasmid can buffer the 2N available repressors.

Hence, for the entire population, the fold-change is no less than 1/2. Only when the repressor copy

number reaches 3N will repression in every cell ensue and begin to show a steep drop on a log scale.

This simple argument provides the intuition for why a distribution of plasmids is required in the

theory when thinking about the strong operator limit on the competitor plasmids.
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Generically, a distribution of plasmid copy number in a population of cells will move the location

of the switch-like transition to repressor numbers above the mean plasmid copy number and the

transition will be softened. This effect is stronger as the copy number distribution becomes wider

than the width of the transition region in the fold-change curve. Therefore we expect that the

stronger the plasmid binding site, the worse the simple single copy number theory will fit. This is

observed for the data in Fig. 3.5A where O2 fits well to the simple theory, O1 fits worse and Oid

fits even worse.

It is relatively simple to account for a distribution of plasmids in the thermodynamic theory,

however the derivation is left to the Appendix. In the case of identical copies of the gene, Eq. (3.4)

must be modified such that the fold-change in the presence of a distribution, fold-changedist, is

related to the fold-change of the fixed copy number fold-change by,

fold-changedist =

∞∑
n=0

p(n)
n

< n >
fold-change(n), (3.8)

where p(n) is the probability that any cell in the population has n plasmids, with < n >=∑∞
n=0 np(n) the average number of plasmids in the population, and fold-change(n) is given by

Eq. (3.4) for a particular value of n. The theory for competitor binding sites on a plasmid can be

adjusted for a plasmid distribution in a similar fashion. In this case we find,

fold-changedist =

∞∑
n=0

p(n)fold-change(n), (3.9)

where now fold-change(n) refers to Eq. (3.5) with n plasmids.

To exploit these ideas in the context of our data, we propose a simple phenomenological dis-

tribution for the plasmid copy number, a normal distribution with a fixed coefficient of variation

(standard deviation over mean). We have chosen a normal distribution for simplicity as we do not

expect the exact details of the distribution to have a major effect, as a plasmid distribution will

always dull the sharp transition of the fold-change repressor titration curve. We fit the Oid com-

petitor data from Fig. 3.5A to the distribution treating the mean copy number (Nc) and coefficient

of variation (CV), σ/Nc, of the distribution as fit parameters. We find the best fit mean is Nc = 72

with CV = 0.6; the resulting fit is shown in Fig. 3.5B as the solid black line. We also plot the data

from the O2 and O1 plasmid with the same values for the mean and standard deviation.

The theory, which was fit to the Oid data, now describes the data from all three operator sites

very well. This is an important sanity check, as we don’t expect the strength of a LacI binding

site far from the origin of replication to affect the plasmid copy number or its distribution. This

is further demonstrated in Fig. 3.5C where we plot the mean plasmid copy number measured by

fitting either the simple no distribution model to our data or fitting the mean copy number while
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holding the width of the distribution fixed with CV = 0.6. The point is illustrated in these bar

graphs. When the transition is not sharp, as in the O2 data (and to a lesser extent the O1 data), the

fixed Nc single parameter theory fits well and with a copy number consistent with what we expect.

However, as the competitor binding gets strong and the fold-change response curve is expected to

get sharp compared to the distribution of plasmids, the single parameter fixed Nc theory fits poorly

and Nc goes from being descriptive of the actual copy number to merely a phenomenological fit

parameter. However, the fit to the mean copy number for the three operators remains consistent

when the distribution of plasmids is accounted for in the model.

3.2.10 Cell cycle dependence of the plasmid copy number and the result-

ing expression

To this point we have varied the copy number of competing binding sites or gene copy number by

comparing the fold-change of different constructs at similar points in the cell cycle. However, it is

clear that over the course of the cell cycle all genetic material in the cell must double. As a result,

we examine the time dependence of the copy number by binning the data according to when in the

cell cycle each measurement is made. In this metric, the time of birth of the cell is represented as

0 and the time of its subsequent division is 1. In Fig. 3.6a, an example of the fold-change curves

obtained are shown for the O1 simple repression chromosomal integration with the Oid competitor

plasmid. In this case, each time bin is fit to Eq. (3.9) for the copy number Nc, keeping the coefficient

of variation fixed; the resulting copy number for that point in the cell cycle is written in the legend.

As expected, the measured average plasmid copy number increases as the cell cycle progresses. In

addition, the copy on the chromosome will double. The operator associated with this copy will

affect our measurement of Nc, however the addition of one extra operator in the presence of dozens

of copies on plasmid results in a only a very small change to the predicted fold-change. The exact

details of the size of this effect are discussed in the Appendix section “Accounting for chromosome

replication in competitor theory”. Repeating this process for all plasmids with the proper theory

equations (Eq. (3.8) for identical plasmids expressing YFP, Eq. (3.9) for the competitor plasmid

data), we plot in Fig. 3.6B the measured plasmid copy number versus fractional cell cycle for each.

The horizontal dashed lines and corresponding shaded region represent our qPCR measurements

of the average copy number for ColE1 and ColE1 ∆Rom. It should be noted that the cell cycle

parameter relates to when the measurement itself was made, but due to fluorophore maturation the

actual measurement may represent a time period earlier in the cell cycle.
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Figure 3.6: Variation of plasmid copy number throughout the cell cycle.
(A) Fold-change as a function of LacI copy number for the O1 simple repression construct integrated
into the chromosome in the presence of a competing ColE1 ∆Rom plasmid bearing an Oid site for
different time points in the cell cycle. The “cell cycle” parameter is the average fraction of the total
cell lifetime from which the binned data is taken with 0 representing birth and 1 representing the
cell division. The plasmid copy number is fit to Eq. (3.9) at every time point, keeping CV = 0.6
fixed, and the resulting value for N is listed in the legend. (B) Plasmid copy number versus the cell
cycle. The plasmid copy number is measured by fitting the copy number parameter in the theory
to the data from all our experiments binned by time in the cell cycle. The horizontal dashed lines
and matching shaded regions are our qPCR measurements for average copy number of ColE1 (blue
dashed line) and ColE1 ∆Rom (black dashed line).
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3.3 Discussion

Recent experimental and theoretical efforts have focused on understanding the role of regulatory

architecture in transcriptional decisions. In these studies, the details of isolated regulatory architec-

tures (number, location and strength of binding sites and TF copy number) are varied systematically

and the transcriptional output is compared to corresponding theoretical predictions [7, 41, 39]. How-

ever, it is rarely the case that TFs act on only one promoter. As a result, the study of transcriptional

decisions at individual promoters, without taking into account the rest of the regulatory network,

might be insufficient. In particular, the presence of multiple targets for the same TF can result in a

competition that reduces the available free TFs for the gene of interest [40].

In this chapter we explored the interplay between the binding sites for a transcription factor

at a gene of interest and competing binding sites regulating other genes in the context of the well

studied simple repression architecture [14]. We show that the presence of competing binding sites

not only changes the effective amount of available TF, it can also affect the input-output relation by

introducing a sharp transition. This transition separates the regime where the repressor is depleted

compared to the number of available binding sites and the regime where the repressor is in excess of

the number of binding sites. The width of this transition is controlled by the strength of the binding

sites. The theory also predicts that the width of this transition, in a population of cells, depends on

the size of cell-to-cell fluctuations in binding site copy number; larger fluctuations in the number of

available competitor binding sites (or number of identical genes) tend to flatten this transition. We

find that when a very strong transition is predicted, the measured transition is considerably dulled

which we attribute to the copy number variability in the population.

The quantitative consequences of binding site competition can be predicted using thermody-

namic models without any free fitting parameters. Previously, these models had been successful in

predicting transcription output for the simple repression architecture in the absence of binding site

competition [14]. By measuring binding site copy numbers using qPCR we show that an extended

version of these models accounting for the presence of multiple binding sites [40] describes our data

precisely with no fit parameters for a wide range of binding site copy numbers and strengths.

Building on the success of the theory in quantitatively predicting the regulatory outcome of the

various architectures considered here, we fit the theory to the fold-change curve at different points

in the cell cycle as a way to measure the time evolution of the plasmid copy number during the

course of the cell cycle. One noteworthy feature of this method is that the reporter fluorescence

molecule need not be expressed by the measured plasmid, it only requires that a TF be shared

between an unrelated chromosomal copy and the plasmid for the copy number of the competitor

to be measured. This can be of benefit as it requires only the insertion of a binding site on the

plasmid of interest. Additionally, this approach prevents possible changes in cell physiology due to
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starvation or phototoxicity from overexpression and measurement of a fluorescent reporter protein

expressed from a high copy plasmid.

The ability to measure absolute numbers of both binding site and input TF copy number is key for

contrasting our experimental data with the theoretical predictions stemming from thermodynamic

models of transcriptional regulation [41, 39]. In this work we have made use of a recently introduced

fluctuation method for taking the repressor census and thereby checking the governing equation for

the simple repression regulatory motif in a wide array of situations where the TF was in demand

from multiple sources [42, 44]. We find that this dilution method, a form of video microscopy, gives

quantitatively compatible results to more traditional steady-state snapshots and bulk measurements

[14]. However, there are numerous advantages of the dilution method. This method provides a single

cell readout of the number of repressors in each cell. The fact that no new repressors are produced

ensures that this “input” level of repressors is held constant through the entire measurement. The

single cell nature of this method certainly increases our resolution as compared to measuring a bulk

sample where the possible distribution of repressors from cell to cell can have a wider distribution

than the feature we wish to illuminate; akin to the issues we see when the plasmid distribution is

wider than the sharp transitions we wish to study, seen in Fig. 3.5A. Finally, this method allows

one to probe particular regions of the titration curve with varying degrees of resolution; a feature

that was essential when trying to distinguish sharp features of the repressor titration curve at 10

repressors for the chromosomal case and over 100 repressors in the plasmid case.

As our characterization of cellular decision making becomes more quantitative so must our the-

oretical description of this process. The quantitative and predictive control of such decisions allows

one to probe their molecular details at a level that escapes any qualitative description. In addition

to expanding our understanding of regulation, quantitative models give us the ability to control

regulatory output by predictive design. In fact, synthetic biology has focused on the development of

standardized regulatory units with known input-output functions [23, 24]. The modification of these

input-output functions to have, for example, a particular shape usually requires the reengineering

of the regulatory architecture at the DNA level [42, 16, 27]. Our work provides a complementary

approach to controlling input-output functions as the introduction of competing binding sites for a

TF into a cell makes it possible to tune regulatory response in a predictive fashion without the need

of any modifications at the DNA of the gene of interest.

3.4 Experimental procedures

3.4.1 Gene expression measurements

Cultures are grown overnight in 2 ml of LB at 37◦C and diluted ∼ 1 : 104 in M9 + 0.5% glucose

minimal media with antibiotics and 1, 2, 3, 4, 6, 8, 100 ng/mL anhydrotetracycline (aTc) to induce the
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production of various levels of LacI-mCherry that cover the full repressor range (for induction curve,

see Fig. 3.7). The diluted cultures are grown at 37◦C until they reached an OD600 ≈ 0.2− 0.4 and

then they are washed twice with fresh, M9 media (without aTc) to remove the inducer. They are then

diluted to give several cells per field of view when placed on a 2% low melting point M9+0.5% glucose

agar pad. An automated fluorescent microscope, simultaneously records multiple fields of view for

each concentration of aTc. In addition, one pad contains cells without the repressor construct,

whose expression measurements serve as the denominator of our fold-change measurements. Growth

of cells is observed by fluorescence microscopy at 37◦C for 2.5 hours while measuring CFP (used for

segmentation), YFP and mCherry intensities.

3.4.2 Data analysis

Data analysis was performed using the Matlab code “Schnitzcells” kindly provided by Michael

Elowitz [42]. This code segments cells in a movie and tracks their lineages.
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Appendix

3.A Genetic elements and details of the dilution method

3.A.1 Dilution circuit

The dilution method is used in this work to measure the transcription factor (TF) titration curve

for the expression of a gene under the control of that TF [42]. The required genetic elements of

the dilution circuit are: the target gene with a fluorescent protein product (YFP) whose promoter

has the regulatory architecture to be queried, a TF-fluorescent protein fusion (LacI-mCherry) whose

production is tightly regulated and shut off by another repressor (TetR) that can be inactivated

by a small molecule inducer (aTc). Finally, a volumetric marker (CFP) is used to easily segment

cells in microscopy images. A schematic of the dilution circuit used here is shown in Fig. 3.7A. To

measure fold-change, we also measure the rate of expression of a strain which does not contain the

LacI-mCherry fusion gene.

3.A.2 The one step dilution method

As originally outlined [42], the dilution method consists of fully inducing a culture to the maximal

level of a TF concentration before shutting off production of the TF and observing under a microscope

as individual cells grow to form colonies. During this growth process, the quantity of TF in each cell

drops and the response of a gene product which is regulated by that TF is measured in successive

generations, with each generation diluting the TF by roughly a factor of two. A powerful aspect

of this method is that by observing how the TF partitions to the daughters, one can arrive at a

“calibration” relating the fluorescence of the TF-fluorescence protein fusion to the actual number of

TF molecules present.

In the experiments reported here we alter the strategy slightly. Instead of fully inducing the

culture and taking a long dilution movie, we variably induce with 6 to 10 distinct concentrations

of inducer such that the entire range of starting TF concentration is covered. Individual cells

are followed over one full division cycle with only one mCherry fluorescence measurement (which

measures relative LacI concentrations) followed by 75 minutes of gene production measurements (10
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Figure 3.7: Experimental circuit schematic and response to aTc, related to Fig. 3.2.
(A) Full schematic of dilution circuit. LacI-mCherry regulates the target gene which expresses YFP.
The LacI-mCherry is expressed from a PLtetO−1 promoter [45]. When the small inducer molecule
aTc is not present, TetR, which is expressed from a PN25 promoter, shuts off production of LacI-
mCherry. When saturating amounts of aTc are present, the LacI-mCherry level can be induced to
roughly 1000 dimers per cell. Finally, CFP is constitutively expressed from the chromosome and
is used as a volume marker for segmentation. (B) Induction of the dilution circuit. Steady state
fluorescence level per cell of LacI-mCherry and YFP as a function of aTc concentration in the O2
single chromosomal copy strain (used for the green data in Fig. 3.3). Fluorescence is measured in
bulk using a plate reader as described in [59].
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exposures, once every 7.5 minutes). We argue this method has several advantages which improve

the measurement over its original version:

• Data points are acquired in a uniform fashion over the whole range of induction. In the long

growth method, the data is exponentially distributed towards lower TF concentrations (for

every one cell with N repressors, there are two with N/2, 4 with N/4, etc.).

• The accuracy of the measurement is uniform over the range of repressor concentrations. In the

long growth method, measurements in the high TF copy number regime are less photobleached

as compared to cells in the low TF copy number regime, which occurs towards the end of the

movie. A bleaching correction needs to be done for the entire movie’s worth of exposures that

were previously taken. This results in a statistical averaging of our partitioning events during

cell division and amplifies noise, which is the dominant source of error, particularly late in the

movie when the signal is low.

• By using one long exposure in the repressor measurement we get an extremely accurate mea-

surement since we don’t need to limit the exposure times in order to minimize photobleaching.

• Colony size is small and independent of TF copy number. In the long growth method, low TF

numbers are always correlated with larger colony sizes which can make very significant con-

tributions to the background fluorescence from neighboring cells. In particular, once multiple

layers of cells begin to grow in the middle of big colonies, we find that the contributions from

out of plane fluorescence can be as big as the signal itself.

3.A.3 Physiological effect of repressor induction

To demonstrate that the induction of repressor does not introduce a global physiological change to

the cell as a function of induction, in Fig. 3.8 we show that the relative expression of the volume

marker from a constitutive lacUV5 promoter integrated on the chromosome (solid circles) remains

unaffected as we change the repressor copy number by almost three orders of magnitude. This

promoter is identical to the one responsible for the expression of our reporter gene (data also shown

in corresponding color and open circles), except that its repressor binding site has been mutated

away (see Appendix section “Constructs and strains”). We conclude that the fold-change of our

reporter gene does not change significantly as a result of physiological changes in the cell resulting

from varying the intracellular repressor load.

3.A.4 Cell growth and detailed experimental procedure

Three distinct strains are grown for each experiment. First, the rate of YFP expression from the

construct of interest is measured in a strain background bearing LacI-mCherry. Second, the rate
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Figure 3.8: Comparison of fold-change of lacUV5 promoter with and without repressor
binding site, related to Figs. 3.3-3.5.
Fold-change of unregulated CFP expression from a single integrated gene copy (solid points) com-
pared to the fold-change data from Figs. 3.3-3.5 (open points). Like-colored data is taken simulta-
neously in the same population of cells and the promoter in both cases is lacUV5. The induction of
repressor does not have any obvious secondary effects on the global transcription, as demonstrated
by the fold-change of the unregulated promoters staying constant at 1 while the same promoter with
a repressor binding site exhibits orders of magnitude lower expression.
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of expression of the same construct is measured in a strain lacking Lac repressor. Finally, the

autofluorescence is determined using a strain which does not have the LacI-mCherry construct or a

reporter YFP construct.

Overnight cultures are grown in 2 ml of LB in the presence of the appropriate antibiotic (chlo-

ramphenicol is always present for the TetR plasmid and kanamycin for both ColE1 based plasmids

or ampicillin for the “competitor” plasmids) at 37◦C. They are then diluted ∼ 1 : 10000 in M9

+ 0.5% glucose minimal media with antibiotics and anhydrotetracycline (aTc; Acros Organics cat.

num. 233131000) at several different concentrations (1ng/mL, 2ng/mL, 3ng/mL, 4ng/mL, 6ng/mL,

8ng/mL or 100ng/mL) to induce the production of various levels of LacI-mCherry. The induction

curve for LacI-mCherry, shown in Fig. 3.7B, is used as a guide for choosing aTc concentrations that

cover the full repressor range. These minimal media cultures are grown at 37◦C until they reach an

OD600 ≈ 0.2− 0.4 and then they are washed twice with fresh, M9 media (without aTc) to remove

the inducer.

The resuspended cultures are then diluted (typically 1:10 in fresh M9+0.5% glucose minimal

media) to give several cells per field of view when 2 µl are placed on a 2% low melting point M9+0.5%

glucose agar pad (NuSieve GTG Agarose, Lonza cat. no. 50081). An automated Nikon fluorescent

microscope (Nikon Eclipse TI) is controlled by the software Micro-Manager [60], and multiple fields

of view (totaling roughly 35 individual fields per experiment) are recorded simultaneously for each

concentration of aTc. In addition, one pad contains cells without the repressor construct whose

expression measurements serve as the denominator of our fold-change measurements (i.e. expression

for R = 0). Before the growth movie is started, the autofluorescence signal in YFP and mCherry is

measured from the autofluorescence strain with 10 positions accounting for roughly 500 individual

cells.

Growth of the LacI-mCherry and ∆LacI-mCherry strains is observed by fluorescence microscopy

at 37◦C over 2.5 hours with CFP exposures every 7.5 minutes for the first 9 frames of growth. This

initial period of exposures is used to record the lineage of all cells and identify daughter pairs. In the

10th frame, the CFP exposure is taken along with a single, long exposure of mCherry to determine

the LacI concentration in every cell. The last 10 frames consist of both CFP and YFP exposures

every 7.5 minutes. The difference in corrected fluorescence of consecutive YFP images (corrections

explained below) makes one measurement of expression. By examining only the first division we

eliminate colony size as a source of error in our fluorescence measurements; cells in large colonies can

have nontrivial contributions to their fluorescence signal from neighboring cells. In addition, only

measuring the LacI-mCherry concentration once eliminates the necessity to correct for photobleach-

ing, which necessarily assumes that the bleached fluorophores have been proportionately distributed

to the daughters. Furthermore it increases the sensitivity of the LacI-mCherry measurement by

allowing for longer exposures without worrying about bleaching. Exposures are chosen to be as long
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as possible without impacting the growth rate, compared to a control with no fluorescence exposures.

3.B Image segmentation and analysis

For cell segmentation and lineage identification, we use a modified version of Schnitzcells [61] (kindly

provided by the lab of Michael Elowitz, Caltech) designed to segment on a fluorescence marker. We

have altered the program slightly such that segmentation and tracking is automated with error

checks based on lineage verification (every cell either has a mother or was alive in frame 1, every

cell has two daughters or was alive in frame 20) and growth verification (to check that cells do not

grow (or shrink) too fast; this usually indicates a tracking error). Failing either of these error checks

requires manual intervention, however, most movie positions do not require any intervention. Once

all errors are resolved, the program provides a list of all cells, their lineages and the total fluorescence

intensity (pixel intensities summed over the segmented pixels of a cell) for every channel and every

frame for each cell.

There are essentially two separate data collections going on in the same experiment. One data

collection corresponds to gathering pairs of daughter cells whose lineage is known (i.e. their common

mother cell is known) and have an mCherry measurement (they had divided from their mother

already by frame 10). The second data collection corresponds to expression measurements where a

cell must have an mCherry measurement to quantify the LacI-mCherry number (i.e. the division

event that produced the cell must have occurred before frame 10), and must have both been “born”

during the movie and divided again sometime later in the movie (it must have an identified mother

and daughter set). This prerequisite of two division events allows us to categorize where in the cell

cycle the expression measurement occurs. Knowing the location in the cell cycle is important since

the copy number of plasmids and chromosomal integrations changes over time. Fluorescence values

are corrected for field nonuniformities, chromatic aberration, autofluorescence, photobleaching and

crosstalk as described in the following sections. Autofluorescence values for YFP and mCherry are

determined as the fluorescence value per pixel from the snapshots of the autofluorescence strain

taken immediately preceding each movie.

3.B.1 Flattening fluorescence images

Our illumination is not spatially uniform over an entire field of view. We correct for this fact by taking

fluorescence images in the YFP channel of a plastic slide with uniform but bright autofluorescence

intensity (Autofluorescent Plastic Slides, Chroma cat. no. 92001) and averaging over 10 − 20 of

these images. The resulting image is a map of illumination intensity at any given pixel Iflat. The
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raw images, I, are then renormalized such that for pixel i, j with raw intensity I(i,j),

I
(i,j)
corrected =

I(i,j) − I(i,j)
dark

I
(i,j)
flat − I

(i,j)
dark

×mean(I
(i,j)
flat − I

(i,j)
dark), (3.10)

where Idark corresponds to an image taken with no illumination (mostly these counts are from camera

offset).

3.B.2 Chromatic aberration correction

Due to chromatic aberrations in the microscope, the various fluorescence channels are slightly offset

from each other. We measure this offset by imaging microspheres (Invitrogen Tetraspeck micro-

spheres, cat. no. T-7281) which fluoresce in all three channels we use (CFP, YFP and mCherry)

and rapidly image in all three channels. We then measure the center-to-center distance of the iden-

tified sphere in the three images. We find that the YFP image is translated in the x-direction by

two pixels and the mCherry is translated by three pixels in the same direction with respect to the

CFP image. We find there is no offset in the y-direction. To account for this we translate all YFP

images and all mCherry images by the measured offset and trim the edges such that we only look

at pixels where there is a measurement in all three channels.

3.B.3 Autofluorescence correction

To calculate the autofluorescence stemming from cells in the YFP and the mCherry channel, we take

8− 10 snapshots of a strain which is ∆YFP and ∆LacI-mCherry and measure the average per pixel

intensity of the identified cells in both the YFP channel and the mCherry channel. This average is

then subtracted from each pixel of any YFP or mCherry measurement that is made.

3.B.4 Correcting for crosstalk and cross bleaching

We measure the crosstalk between any two channels used in our experiment by determining the

difference between the autofluorescence of a strain without a given fluorophore in the presence of

the other fluorophore fully induced. So, for instance, we can find the crosstalk of YFP into the

mCherry channel by taking exposures of our ∆mCherry strain with the appropriate YFP construct

(depending on the experiment in question). The ratio of the average per pixel mCherry fluorescence

signal to the average per pixel YFP signal (corrected for all the above factors) is the crosstalk.

Therefore we correct mCherry measurements for this factor, γcross, by subtracting from the cells’

summed mCherry fluorescence, the summed YFP fluorescence times this crosstalk factor. We do

not have to worry about normalizing exposure times because the crosstalk factor between any two

channels is measured with the same exposure time used in the experiment. We find that this crosstalk
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factor is only relevant in the case of the ColE1 and ColE1∆Rom plasmids which express YFP. In

this case we measure γcross = 0.006, or 0.6% of the YFP signal can be seen in the mCherry channel.

For our other constructs there is 10 − 50 times less YFP (corresponding to 1 − 10 copies of the

YFP gene compared to 50− 70 plasmids) and so we can expect the effect would be correspondingly

smaller, though for our experiments it is too small to measure and this correction is not included in

those cases.

Conveniently, we do not have to worry about CFP crosstalk into the YFP channel. The first point

is that all cells have the same expression of CFP (same constitutively expressed construct), so any

potential crosstalk shows up as autofluorescence when we measure YFP; even our autofluorescence

strain expresses CFP with the proper construct. Additionally, because our YFP measurement is

always measured as a rate of production, which is the difference in production from consecutive

frames, most of the autofluorescence and crosstalk corrections cancel out since the correction term

is proportional to the size of the cell on both measurements.

We also check for cross bleaching between the fluorescence channels. It is possible that one of

our exposures, shaped to excite a particular fluorophore, excites and bleaches a different fluorescent

protein species (for instance if the CFP exposure excites and bleaches YFP). Bleaching in the CFP

channel does not change our measurements and the mCherry exposure occurs only once before we

begin to measure YFP. Since we are only concerned with the rate of YFP production, bleaching

YFP molecules before we begin measurements does not change the measured rate of production.

Therefore, we only need to worry about how the CFP exposures bleach the YFP or mCherry signal.

To account for the CFP exposure, all YFP bleaching curves are measured accounting for both

the YFP and CFP exposure; therefore the bleaching from the CFP exposure is rolled into our

measurement of the YFP bleaching rate. To check the cross bleach rate of CFP on mCherry, we take

an mCherry exposure followed by a long CFP exposure 600× longer than that used in experiment,

followed by a last mCherry exposure. As a control we also measure the bleach rate of the mCherry

exposures alone, without the CFP exposure. We find that the bleaching for this extremely long

exposure is roughly 25%, implying that the bleaching from a single exposure is less than 1/10th of

a percent.

3.B.5 Correcting for photobleaching

The only channel which must be corrected for photobleaching is YFP. Due to the fact that only one

mCherry image is taken per experiment, we do not need to correct it for photobleaching. Before

each movie we measure a photobleaching curve of YFP using the highest expression strain available.

The characteristic bleaching rate, τ , is extracted by fitting the autofluorescence subtracted bleaching

curve to a single exponential decay. Then, all measurements of YFP production, ∆YFP, are corrected
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such that,

∆YFP = YFPi+1 −YFPi(1− γ), (3.11)

where γ = e(−texp/τ) and texp is the exposure time for a YFP image.

3.C Calibrating LacI-mCherry intensity to absolute copy num-

ber

The absolute number of TFs per cell is usually obtained by cross-calibrating to independent mea-

surements such as immunostaining [38, 62, 14]. In our case, where our signal comes from the

LacI-mCherry fusion, the total fluorescence intensity of a cell, I, can be related to the absolute

number of TFs N through the calibration factor α such that,

I = αN. (3.12)

The calibration factor is often determined by measuring the mean intensity of a single copy of the

fluorescent molecule [63, 64, 59] or of a bulk solution of purified fluorophore [65, 66, 67, 68, 64]. Here

we determine α using a calibration method based on fluctuations in protein partitioning during cell

division [42, 43, 44]. By tracking fluorescence partitioning between two daughters after a division,

the properties of binomial partitioning state that the average size of fluctuations in the signal of

daughter 1 and 2 will be proportional to the total fluorescence signal partitioned. This circumvents

the need for a cross-calibration as it allows us to obtain α and simultaneously measure absolute TF

copy number, R, in single cells. We expect the distribution of our LacI-mCherry between the two

daughter cells should obey the statistics of a fair binomial partitioning [Fig. 3.9A and B, discussed

below]. This simple fact alone is enough to determine the calibration factor α. In particular, by

observing the fluorescence of the two daughters, captured in the quantities I1 and I2, it can be shown

that

〈(I1 − I2)2〉 = α(I1 + I2), (3.13)

where α is the desired calibration factor that links fluorescence intensity and number of fluorophores

via I = αN . This relation follows from the properties of the binomial distribution as shown in the

following subsection. In Fig. 3.9C, we show an example of the calibration data from the experiment

in Fig. 3.3. The exact value for the calibration factor is specific for a given acquisition and the

current settings of the microscope and is determined for each experiment’s unique imaging conditions

(exposure times, illumination intensity, etc.).
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Figure 3.9: Determination of the calibration factor of LacI, related to Fig. 3.3.
(A,B) Fraction of area partitioned between a daughter pair on division versus fraction of fluorescence
signal partitioned between a pair of daughters for (A) LacI-mCherry and (B) CFP. The partitioning
of the cytoplasmic CFP volume marker (B) is strongly influenced by area partitioning differences
(more fluorescence partitions to larger cells with more volume). However, the LacI-mCherry (A)
is only weakly influenced by volume area partitioning. This is expected since LacI tends to be
DNA bound and the chromosomal DNA is partitioned in approximately equal measures indepen-
dent of differences in cell volume of the daughters. (C) Calibration of fluorescence of LacI-mCherry
molecules. The square of the error in fluorescence partitioning between two daughter cells is plotted
as a function of the fluorescence of the mother cell for a representative data set. Each black point
represents a specific division event. These points are binned resulting in the red, averaged data
points which are fitted to Eq. (3.13) in order to obtain the calibration factor α relating mCherry
fluorescence to the absolute number of LacI-mCherry molecules inside the cell. (D) Sensitivity of the
calibration factor to data binning. The determined calibration factor as a function of the number
of points in each total fluorescence bin. For sufficient averaging (bin sizes ≈ 15 or greater), the
calibration factor is relatively insensitive to the binning. (E) Histogram of mCherry measurement of
the auto fluorescence strain in units of number of LacI-mCherry. This histogram depicts the inherent
limit of detection for LacI-mCherry proteins calculated in an example experiment. The histogram is
the mCherry fluorescence of a collection of cells with no LacI-mCherry, but due to autofluorescence
fluctuations are typically measured to have nonzero fluorescence. We use the width of this distribu-
tion to set the limit of where we can distinguish signal from autofluorescence fluctuations. This is
calculated for every experiment and we ignore points in our data which have less than one standard
deviation above zero fluorescence.
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3.C.1 Fairness of repressor partitioning

The fluctuation-based counting method employed here relies on measuring the asymmetries in par-

titioning of a TF-fluorescent protein fusion during the cell division process. In this scenario of DNA

bound TFs, it is assumed that the partitioning between daughter cells is random, mediated by the

segregation of the chromosomal DNA (to which the LacI-mCherry are bound) to the daughter cells.

This corresponds effectively to each molecule making a coin flip. In Fig. 3.9A and B, we show the

partitioning error of fluorescence with area. On the y-axis the percent of the difference in partitioned

area of each daughter at division, normalized by the total area of the two daughters, is shown. The

x-axis shows the percent of the total difference in mCherry fluorescence between the two daughters

divided by the total. If the protein was more likely to partition into bigger cells (because it has more

volume), larger cells would have an increased probability of obtaining more protein and the cloud of

points would tilt towards the upper right and lower left quadrants of Fig. 3.9. This behavior is seen

in Fig. 3.9B for the partitioning of a cytoplasmic protein (CFP). The CFP results are consistent with

previous reports where it was shown that for cytoplasmic proteins the error in volume partitioning

on division can influence the “fairness” of the distribution [44]. However, the correlation we see for

LacI-mCherry is very weak, indicating that volume partitioning fluctuations do not have a strong

effect on the fluctuations in the partitioning of LacI-mCherry.

3.C.2 Derivation of calibration factor

It is of interest to have a simple derivation of the relation between fluorescence intensity and repressor

number. To do this we exploit a convenient statistical property of binomial partitioning, namely if a

mother cell had Ntot repressors and divided them randomly between two daughter cells, which now

have N1 and N2 repressors respectively, then the variance in the total number of repressors in one

daughter, N1, is σ2 = Ntot/4. However, the variance can also be written,

σ2 = < (N1− < N1 >)2 >, (3.14)

=

〈(
N1 −N2

2

)2
〉
, (3.15)

using < N1 >= (N1 + N2)/2. By combining these two expressions for the variance, we arrive at

the final expression relating the total number of repressors in the daughters to the difference in that

number,

〈
(N1 −N2)

2
〉

= N1 +N2. (3.16)
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By assuming that the measured intensity in a cell I can be written as I = αN , where α is some

calibration factor that converts from number of proteins to intensity, we now find,

< (N1 −N2)2 >= N1 +N2 ⇒<
(
I1
α
− I2
α

)2

> =
I1 + I2
α

(3.17)

1

α2
< (I1 − I2)2 > =

I1 + I2
α

(3.18)

⇒
√
< (I1 − I2)2 > =

√
α(I1 + I2). (3.19)

This gives us the relationship between the fluctuations in the difference between the intensities of

two daughter cells and the total intensity present between the two daughters, Itot = I1 + I2. We

can determine the unknown calibration factor α by taking time-lapse movies of dividing bacteria,

tracing lineages to determine which pairs of daughter cells came from which mother cells, and for

each set of daughters plotting < (I1 − I2)2 > versus I1 + I2. A more sophisticated treatment using

information from tracking over multiple generations and the introduction of random errors can be

found in reference [43].

3.C.3 Interpretation of < (I1 − I2)
2 >

As noted above, the mathematical derivation for the error in partitioning is predicated on the idea

that for a given value of (I1 + I2), we have many division events to average over to arrive at a well-

averaged value for the partitioning error < (I1−I2)2 >. However, the data itself in the experimental

case does not come in this convenient format. This raises the concern of how data will be binned.

In practice, data is binned by fracturing the data into bins of a set number of data points. The data

point corresponding to the bin is placed in the geometric center of the data comprising that bin such

that data points in the bin fall with equal weight to the left and right of the bin center in log space.

In Fig. 3.9D we show the effect of choice in bin size on the calibration factor by plotting the

calibration factor as a function of the number of points in each bin. Over the majority of the range

of bin sizes the calibration factor is relatively insensitive to the bin size. However, when bins have

few points the calibration factor is strongly affected by the presence of data points where, by chance,

< (I1 − I2)2 >≈ 0, which weighs heavily on a log-log fit. It is interesting that the fit is not changed

by making the size of the bins very large, thus averaging data over a larger range of (I1 + I2). In

this case, where the data should fit a straight line in log-log space, a point located a distance ε away

from the bin center on either side is expected to contribute equal and opposite weight to the function

value and thus should not change the fit.
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3.C.4 Photon counting noise

One possible additional source of noise might be simply the Poisson noise corresponding to counting

photons. Our camera is a Photometrics CoolSNAP ES2 which has a linear full-well count of 13, 500

electrons. This means that for this 12-bit output, a count on the camera corresponds to roughly

3.3 photons detected. As seen in Fig. 3.3 of the main text, a LacI typically corresponds to roughly

100 counts on the camera which means 330 photons counted per LacI. The Poissonian standard

deviation for a single LacI is then 18 photons or 6% of a LacI. This is small even in the single LacI

limit. When we have 10 LacI-mCherry molecules or more, the noise is lower than 2%. This error

is smaller than any of the errors related to quantifying our fluorescence levels. As a result, Poisson

statistics are not expected to influence the partitioning error significantly.

3.C.5 Limits in LacI-mCherry detection

In order to check our ability to distinguish low repressor copy numbers from cellular auto-fluorescence

fluctuations, we examine the mCherry fluorescence signal of a collection of cells from our ∆LacI-

mCherry control strain. On average these cells will have zero signal, once they are corrected for

autofluorescence (each pixel has the average signal per pixel of the ∆LacI-mCherry strain subtracted)

the remaining signal is, on average, 0. However, due to fluctuations the signal is typically not exactly

0 and instead has a distribution. This can be seen for an example experiment in Fig. 3.9E, when

we histogram the mCherry signal from a collection of our ∆LacI-mCherry cells. As can be seen,

the average is indeed 0, but the distribution has a standard deviation of 3 LacI-mCherry repressors.

Therefore, we set our confidence regime for measuring LacI-mCherry signal in this experiment at

3 LacI-mCherry and do not consider cells which are measured as having less signal than this since

our measurements show we cannot resolve the difference between 0 and 3. This detection limit is

calculated in every experiment and that value is used as a threshold for all data from that experiment;

we do not accept cells with an mCherry signal lower than our detection threshold.

3.C.6 Limits in YFP production detection

In a similar fashion to the LacI-mCherry detection threshold, the production measurements also have

a lower limit of detection. We account for this in the fold-change vs. LacI number measurements by

rejecting binned data points where the standard error is larger than the value of the point itself. In

almost all cases, this threshold occurs at a fold-change in the range of 10−3 and 10−2. Intuitively,

this is the range where the fluctuations of the autofluorescence in YFP become significant. For

instance, taking our autofluorescence measurements of YFP (static snapshots), normalized by the

YFP of the ∆LacI strain, we find that the standard deviation of the fold-change in YFP of these cells

is between 10−2 to 10−3. This choice is designed to remove points without significant information
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and does not affect the quality of the data. This limitation can be seen in Figs. 3.3-3.6 where the

points typically cut off around a fold-change of 10−3.

3.D qPCR measurement of average plasmid copy number

To measure the average copy number of the ColE1 and ColE1 ∆Rom plasmids we performed qPCR

measurements. The primers we used target part of the YFP gene and the sequences for these primers

are given in Table 3.1. The probe primer is ordered from Integrated DNA Technologies and the /56-

FAM/, /ZEN/ and /3IABkFQ/ tags refer to modifications from parts of the ZEN internal quencher

system.

A DNA sample to be used as a standard is obtained by Maxiprep (Qiagen Hi Speed Plasmid

Maxi Kit) of the ColE1 ∆Rom plasmid which was further concentrated in a PCR purification column

(QIAquick PCR Purification Kit). The final concentration of the stock plasmid is ≈ 600 ng/µL as

measured by a Qubit fluorimeter (Invitrogen Qubit dsDNA HS Assay Kit). As a control to determine

the purity of our purified plasmid stock from chromosomal DNA contamination, we also perform the

same Maxiprep on a culture without the plasmid and find a final concentration of less than 5% of

the measured plasmid concentration. Then, starting with a 16x dilution of the stock, we step down

by factors of 4 to generate a standard dilution series; meaning we have 8 standard concentrations

ranging from a 16x dilution of the stock down to a 106 dilution of the stock separated by factors of

4 in concentration.

For the qPCR measurement we start by growing the ColE1 ∆Rom and ColE1 cells in the same

conditions as our cells used for microscopy measurements. However, we chose an aTc concentration

(4ng/µL) which corresponds to a LacI concentration close to the transitional region of the fold-

change curve [Fig. 3.7B]. We also grow a strain with no plasmid or YFP genes which will act as a

background for the standard and make 8 samples out of this strain, one for each standard. When

the cells are at the proper OD they are spun down, washed twice (exactly as described in Sec. 3.A.4)

and finally resuspended in 200µL of Qiagen P1 lysis buffer without LyseBlue or RNAseA. We then

add 1µL of the prepared pre-diluted standards to each control tube, such that the standards will

undergo the exact same process as our samples to be measured. The cell mixtures are then set on ice

while the cellular density in each sample is measured by hemocytometer chips (InCyto DHC-S01)

under 10x phase magnification.

Meanwhile, 25µL of cells is then added to 25µL of Qiagen buffer P2 to lyse the cells. The

cells are allowed to sit for 5 minutes. The cells are then diluted 1:100 into 1x NEB buffer 2 (1µL

+99µL) and 20µL of that mixture is added to a thin walled PCR tube with 0.5µL HindIII (NEB)

restriction enzyme. The mixture digests at 30◦C for 30 minutes followed by heat deactivation for

20 minutes. This mixture is then diluted 1:10 in water. The final 20µL qPCR reaction consists
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of: 4.2µL of template, 10µL Supermix (PerfeCTa MultiPlex qPCR SuperMix, Quanta BioSciences

Cat. no. 95063-200), 0.4µL forward primer, 0.4µL Rox, 5µL water. The number of copies of

the YFP gene are determined by comparing the measured CT of each sample and interpolating

from the standard. Together with the knowledge of the number of cells in the sample (from the

hemocytometer measurements) we arrive at an average copy number of the plasmid in our cells.

3.E The copy number of multiple chromosomal integrations

strain

The genetic location (and position on the chromosome in minutes; where 1 minute = 1/100th of

the E. coli chromosome and oriC is located at minute 85) of each specific integration is: intS (53

minutes), yffO (55 minutes), intB (97 minutes), intE (26 minutes), and essQ (35 minutes). There is

some uncertainty in the number of copies of these genes at any given time in the cell cycle. We chose

to make measurements at the end of the cell cycle because we know that there are two completed

copies of the genome at that point in time [17]. However, the gene copy at essQ is directly opposite

of the origin of replication, oriC, on the chromosome (50 minutes away) and is one of the last parts

of the chromosome to be replicated during a round of replication. Therefore, although all of our

measurements take place in the D period when the first round of chromosomal replication should be

complete, fluorescent protein maturation times may make it such that the extra copy of essQ is not

fully measurable yet. A second source of uncertainty comes from the fact that at 65 minutes division

time, we expect that the next round of chromosome replication to have already begun by the end

of the cell cycle. intB is a mere 12 minutes (or 600 kbp) away from oriC, the origin of chromosomal

replication. Therefore it is possible that there are already 4 copies of the intB integration when

we make our measurements. As a result, we estimate the range of chromosomal construct copy

number during our measurements to be between 9 and 12, with 10 being most probable. As such,

we expect that there is some cell-to-cell variation in copy number within our measurement. However

this small, tight range would not cause a major correction to the predictions of the thermodynamic

model. Fig. 3.10 shows the difference in theoretical predictions between assuming exactly 10 copies

(red line, as is reported in Fig. 3.4B) and allowing a normal distribution centered on 10.5 copies

with a standard deviation of 1.5 copies (black line). While the model of chromosome copy number

as a normal distribution is not correct in detail, we intend to show an upper limit on the effect of

copy number distribution on our predictions.
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Figure 3.10: Effect of copy number distribution on multiple chromosomal integration
theory, related to Fig. 3.4B.
Fold-change versus LacI copy number for the multiple integration strain (red points) overlayed
with theoretical predictions from the thermodynamic model using a fixed value for the promoter
copy number N = 10 (red line), as used in the main text, and using a normal distribution for
promoter copy number centered around 10.5 with a standard deviation of 1.5 (black line). This
choice of distribution is only meant to approximate the effect of chromosomal copy number variation
within our expected copy number range of 9− 12 and demonstrate the relatively small effect of the
distribution for this case. For reference, the theory predictions and data for the single integrated
copy case are shown as blue.
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3.F Additional theoretical details of the thermodynamic model

3.F.1 Equivalence of fold-change in steady-state measurements and video

microscopy

In bulk, the fold-change is calculated by comparing the steady state fluorescence, P , of cells with

repressor to the fluorescence of those without repressor. To determine this steady-state fluorescence,

we consider the rate of production of the fluorescent reporter,

dP

dt
= rpbound − γP, (3.20)

where r is the rate of production, pbound is the probability that the promoter is occupied by RNAP

and γ is the degradation rate. In steady-state, we find

P =
rpbound

γ
, (3.21)

which implies that the fold-change in steady-state experiments can be written as

fold-change =
P (R 6= 0)

P (R = 0)
=
pbound(R 6= 0)

pbound(R = 0)
. (3.22)

The right hand side is a quantity that is directly calculable in the thermodynamic framework [7,

8, 41, 39]. However, over the timescales of our experiments, YFP is stable (i.e. rpbound � γ) [69].

As a result, the rate of fluorescent increase we measure in video microscopy is simply rpbound. This

implies that we can write the fold-change in our experiments as

fold-change =
dP
dt (R 6= 0)
dP
dt (R = 0)

=
pbound(R 6= 0)

pbound(R = 0)
, (3.23)

and thus the comparison of fold-change as measured in steady-state experiments should be directly

comparable to that measured as a production rate in video microscopy and to the theoretical pre-

dictions of the thermodynamic theory which calculated pbound.

3.F.2 Thermodynamic model in the limit R� N or R� Nc

Equations 3.4 and 3.5 from the main text predict the fold-change in expression as a function of

the number of binding sites available to the repressor (N or Nc, respectively). However, when

the number of repressors is much larger than the number of binding sites available, such that the
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approximation R!/(R−N)! ≈ RN is valid, these equations immediately simplify to,

fold-change =
1

1 + R
NNS

e−∆ε/kBT
, (3.24)

identical to the prediction for a single isolated copy of the gene in Eq. (3.3).

3.F.3 Accounting for chromosome replication in competitor theory

In the theoretical predictions of Eq. (3.5) it is assumed that the reporter gene integrated into the

chromosome exists at only a single copy. This introduces an error in our calculation of Nc during the

portion of the cell cycle where two copies of the reporter gene exist. This error does not come from

the presence of an extra copy of the gene producing more of the reporter gene product; measuring

fold-change ensures that we are normalizing by cells expressing with the same average copy number

of the gene. However, the addition of a new operator site associated with the chromosomal gene

copy will change the expression profile by contributing to the demand for repressor and this will be

interpreted in our measurement as a larger value for of Nc. The general formula to derive this effect

follows from the partition function,

Z =

min(R,Nc)∑
rc=0

min(R−rc,Nr)∑
rint=0

R!

N
(rc+rint)
NS (R− rc − rint)!

Zc
rcZ

int
rint , (3.25)

with Zc
i =

(
Nc

i

)
exp(−βi∆εc) and Z int

i =
(
Nint

i

)
exp(−βi∆εint)(1+p)(Nint−i) where Nint is the number

of integrated copies that exist on the chromosome and Nc is the number of competitor plasmids,

∆εint and ∆εint are the repressor binding energies to the chromosomal operator and plasmid operator,

respectively, and finally p = (nP /NNS)exp(−∆εp/kBT ) where nP is the number of RNAP, and ∆εp

is the energy of polymerase binding to the promoter. The fold-change is then,

fold-change =
∂pln(Z)

∂pln(ZR=0)
. (3.26)

For our particular experiments, the integrated copy begins at a single copy and doubles over the

course of the cell cycle. Fig. 3.11 shows the predicted fold-change for an integrated O1 promoter

with Nint = 1 (solid lines) or 2 (dashed lines) and a competitor plasmid with Nc = 64 and an O1

operator site identical to the chromosomal operator, an O2 operator site weaker than the chromo-

somal operator, and an Oid operator site stronger than the chromosomal operator. In all cases the

predicted change between one and two integrated gene copies is small.
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Figure 3.11: Comparison of fold-change predictions for multiple chromosomal gene
copies, related to Figs. 3.3 and 3.6.
The fold-change predicted from 1 or 2 chromosomal copies with an O1 operator site either without
a competing plasmid (grey solid and black dashed line) or competing with a high copy number
plasmid Nc = 64 and bearing an O1 site (purple solid and red dashed line), O2 site (yellow solid
and green dashed line), or Oid site(light blue solid and dark blue dashed line). In this case, simply
going from 1 (solid lines) to 2 (dashed lines) copies of the chromosome does not change the expected
fold-change significantly.
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3.F.4 Thermodynamic model with plasmid distribution

The fold-change predictions in Eqs. (3.4) and (3.5) of the main text are derived by assuming that

any given cell has exactly N plasmids. However, our measurements are averaged over many different

cells and thus we do not expect the copy number of the plasmid to be exactly the same in every cell.

While this static single parameter characterization of the copy number is sufficient to predict the

fold-change repression titration curve in most of the cases we examine, we wish to determine how

the reality of the plasmid distribution changes our predictions. To begin, we rewrite the fold-change

in terms of expression measurements for the case of a static number of plasmids, N ,

fold-change =
expression(R,N)

expression(R = 0, N)
. (3.27)

However, if there is a distribution of plasmids p(n) then the expression is the sum of the probability

of finding a cell with N plasmids times the expression from a cell with N plasmids such that,

fold-changedist =

∑∞
n=1 p(n)expression(R,n)∑∞

n=1 p(n)expression(R = 0, n)
. (3.28)

First let’s examine this in terms of a single chromosomal copy expressing YFP in the presence of com-

petitor plasmids which do not express the measured gene product (corresponding to Eq. (3.5)). In

this case when there is no repressor, the number of plasmids is irrelevant to the predicted expression.

Now we can rewrite

fold-changedist =

∑∞
n=1 p(n)expression(R,n)

expression(R = 0)
, (3.29)

which can be rewritten as

fold-changedist =

∞∑
n=1

p(n)fold-change(R,n), (3.30)

where fold-change(R,n) is the expression for the fold-change of a static, fixed-N plasmid from

Eq. (3.5) from the main text, and the above equation is listed in the main text as Eq. (3.9). The

situation differs slightly when one considers, instead, identical genes expressing the same measured

gene product. Now the expression of the R = 0 strain (in the denominator of the fold-change) does

depend on the number of plasmids; the expression of a cell with n plasmids is equivalent to n times

the production of a cell with just one plasmid. As such we rewrite Eq. (3.28),

fold-changedist =

∑∞
n=1 p(n)expression(R,n)

< N > expression(R = 0, N = 1)
, (3.31)
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and by breaking up the above sum term by term we see the same equivalence, expression(R = 0, N =

n) = n× expression(R = 0, N = 1), allows us to arrive at Eq. (3.8) from the main text,

fold-changedist =

∞∑
n=1

p(n)
n

< n >
fold-change(R,n), (3.32)

where < n >=
∑∞
n=1 np(n) and fold-change(R,n) is the fold-change from a static fixed-N distribu-

tion from Eq. (3.4) of the main paper.

3.F.5 Determining errors in theoretical predictions

Figures of fold-change vs. repressor copy number often show the standard deviation in theoretical

predictions stemming from uncertainty in the parameters of the model such as operator binding

energies ∆ε, ∆εc, gene copy number N , or competitor binding site copy number Nc while assuming

the repressor copy number is fixed. We estimate the standard deviation in fold-change by a first

order Taylor expansion around the mean values of these parameters, ∆ε, ∆εc, N , Nc. For instance,

calculating the error bars for Fig. 3.5A where the uncertainties in ∆ε, ∆εc and N are all included,

the calculation goes as follows,

fold-change(R,∆ε,∆εc, Nc) ≈ (∆ε−∆ε)
∂

∂∆ε
fold-change(R,∆ε,∆εc)

+ (∆εc −∆εc)
∂

∂∆εc
fold-change(R,∆ε,∆εc)

+ (Nc −Nc)
∂

∂Nc

fold-change(R,∆ε,∆εc, Nc) (3.33)

which gives us the corresponding estimated variance in fold-change

V[fold-change(R,∆ε,∆εc, Nc)] ≈ V[∆ε]

(
∂

∂∆ε
fold-change(R,∆ε,∆εc)

)2

+ V[∆εc]

(
∂

∂∆εc
fold-change(R,∆ε,∆εc)

)2

+ V[Nc]

(
∂

∂Nc

fold-change(R,∆ε,∆εc, Nc)

)2

, (3.34)

where we used the additional assumption of no correlation between any of the expanded parameters.

The derivatives in Eq. (3.34) can be computed either numerically or analytically using standard

mathematical software. To be explicit, here we list the relevant figures and the parameters which

contribute to the uncertainty. Fig. 3.3 has uncertainty stemming only from uncertainty in the

binding energy ∆ε. Fig. 3.4A has uncertainty from both ∆ε and the copy number of the reporter

plasmid N , while in part B of that figure we use only the error from ∆ε. Fig. 3.5A has uncertainty
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EYFP

kanamycin resistance

t0 terminator

SC101 Origin
(Approx Position)

t1 terminator

EcoRI (747)

HindIII (1491)
XbaI (1508)

KpnI (772)

XhoI (685)

AvrII (1619)

SacI (3956)

AatII (614)

RBS

pZS25Oid+11
YFP (4298bp)

XhoI -35 -10 Oid EcoRI

lacUV5 promoter

aaatgtgagcgagtaacaaccO2

ctcgagtttacactttatgcttccggctcgtataatgtgtggaattgtgagcgctcacaattgaattc
O1 aattgtgagcggataacaatt

O3 ggcagtgagcgcaacgcaatt

Figure 3.12: Plasmid diagram and promoter sequence, related to Fig. 3.1.
The main features of the plasmids pZS25O1+11-YFP are shown flanked by unique restriction sites.
The particular promoter sequence based on the lacUV5 promoter is shown together with the se-
quences of the different Lac repressor binding sites used. This plasmid was used as a basis for
creating the plasmids and chromosomal integration reporters for this study.

contributions from ∆ε, as well as the binding strength and number of competitor plasmids, ∆εc and

Nc. In Fig. 3.5B, the distribution is initially fit to the Oid data and thus the only uncertainty shown

there is due to ∆ε and ∆εc.

3.G Constructs and strains

The base strain through this work is HG105, which is MG1655 with a LacIZYA deletion [59]. A

constitutive CFP marker has been integrated at the gspI chromosomal location [70]. The marker

is expressed from a lacUV5 promoter with no Lac repressor binding site. In addition, every strain

contains a low copy number plasmid which expresses TetR pZS3PN25-tetR. This is a plasmid with

a sc101 origin and a PN25 promoter controlling the TetR gene and was obtained by PCR from the

chromosome of DH5αZ1 [45]. Specific details of the construction of the individual strains used in

each part of the experiment are now listed below:

• Single copy chromosomal integration: This originates from plasmid pZS25O1+11-YFP (map

shown in Fig. 3.12). From this plasmid, we have produced, by site-directed mutagenesis, the

same plasmid with the Oid, O2 and O3 repressor binding sites in place of O1 (sequences listed

in Table 3.12) [59]. These constructs, consisting of the terminators, resistance marker, and

EYFP gene are integrated into the chromosomal location of galK using recombineering [71, 59]

with primers listed in the table below.

• High copy number plasmids: The sc101 origin of plasmids pZS25O1+11-YFP was removed by

digestion with SacI and AvrII and ligated to a ColE1∆Rom origin to make pZE25O1+11-YFP
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[45]. This procedure was repeated for plasmids with the binding sites Oid, O2 and O3. To

create the ColE1 origin, we have added the Rom protein near the origin of the pZE25O1+11-

YFP plasmid to make pRE25O1+11-YFP. This is achieved by PCR of the Rom protein from

plasmid pBR322 followed by Gibson assembly with plasmid pZE25O1+11-YFP to make our

ColE1 plasmid.

• Multiple chromosomal integrations: The plasmids pZS2∗5Oid+11-YFP, pZS3∗5Oid+11-YFP

and pZS4∗5Oid+11-YFP contain resistance genes for kanamycin, chloramphenicol and specti-

nomycin, respectively. These resistance genes are flanked by FLIP recombinase sites. The

kanamycin and chloramphenicol cassettes were obtained by PCR from plasmids pKD4 and

pKD3, respectively [72] and places between the SacI and AatII sites of pZS25Oid+11-YFP.

FLIP recombinase sites were placed flanking the spectinomycin resistance gene in pZS4∗5Oid+11-

YFP by site-directed mutagenesis on pZS45Oid+11-YFP using primers 15.15 and 15.16 [Ta-

ble 3.1]. These constructs were integrated into the chromosomal locations of genes intS, yffO,

intB, intE, and essQ [70, 56] using recombineering [71]. The oligos used to amplify the pZS

plasmid to integrate constructs at every chromosomal location are listed in Table 3.1. All re-

sistances are then flipped out by FLP recombinase transiently expressed from plasmid pCP20

[72].

• Competitor plasmids: These plasmids are made from the pZE25O1+11-YFP plasmid digested

with AatII and XbaI. An insert containing Oid, O1,or O2 flanked with sticky ends for the

same restriction sites restriction sites (sequence of inserts listed below) are ordered as annealed

double stranded oligos (Integrated DNA Technologies) and then ligated into the pZE vector.

The result is a plasmid with the ColE1∆Rom origin of replication, a resistance marker and a

LacI binding site without an active YFP gene or promoter.

• Constitutive marker: The cerulean (CFP in this work) gene was obtained from [73], amplified

using primers 15.14 and 15.14R [Table 3.1], and ligated between the KpnI and HindIII sties sites

of pZS4∗5O1+11-YFP to create pZS4∗5O1+11-CFP. The O1 binding site was deleted using

mutagenesis primer 21.3 [Table 3.1] [38] in order to create pZS4∗5NoO1-CFP. This construct

was integrated into the gspI gene.

• TetR plasmid: The tetR gene controlled by the pN25 promoter was amplified from the genome

of DH5αZ1 [45] using primers 13.6 and 13.7v2 [Table 3.1]. The PCR product was digested

between the XhoI and HindIII of pZS3∗1-LacI to create pZS3PN25-tetR.

• LacI-mCherry fusion: A construct bearing mCherry was obtained from [74] and amplified using

primers 13.12 and 13.13 [Table 3.1]. The LacI gene was amplified from pZS3∗1-LacI [59] using

primers 13.28 and 13.30. Both of these PCR products were combined and amplified once again
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using primers 13.28 and 13.13 [Table 3.1]. The resulting LacI-mCherry PCR product has a

KpnI site on its 5’ end and a HindIII site on its 3’ end. This repressor cannot tetramerize due

to the deletion of the last 11 amino acids of its sequence. The fusion was ligated between the

KpnI and HindIII sites of pZS3∗1-LacI to create pZS3∗1-LacI-mCherry. Finally this construct

was integrated into the chromosome at the ybcN chromosomal location with the ybcN primers

listed below.
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3.H Primers used in this study to create strains

Name Sequence

Chromosomal

integrations

galK<>res TTCATATTGTTCAGCGACAGCTTGCTGTACGGCAGGCACCAGCTCTTCCGGGCTAATGCACCCAGTAAGG

galK<>YFP GTTTGCGCGCAGTCAGCGATATCCATTTTCGCGAATCCGGAGTGTAAGAAACTAGCAACACCAGAACAGCC

gspI<>res TGCCAGAACTGGACGTGTTTTCCTCGCCGAATGAATCTTGTGACTGAAGCGGCTAATGCACCCAGTAAGG

gspI<>YFP TCAAACGCTCGCCAGAGATACCCGCCCATGAACAAACAATCAGGGATGACACTAGCAACACCAGAACAGCC

intS<>res ATAGTTGTTAAGGTCGCTCACTCCACCTTCTCATCAAGCCAGTCCGCCCAGGCTAATGCACCCAGTAAGG

intS<>YFP CCGTAGATTTACAGTTCGTCATGGTTCGCTTCAGATCGTTGACAGCCGCAACTAGCAACACCAGAACAGCC

yffO<>res TTTCAAACTATTCAGCTTGGCTGCTGCCAGTAGTGCCTTTGCCTTTGCTTGGCTAATGCACCCAGTAAGG

yffO<>YFP GGTGGAATCATGAAACACGTTTTTAAATATCTTGATTTTGCAGAAGACCGACTAGCAACACCAGAACAGCC

intB<>res ACGCACTATTTACCGTATTCTCACTCATGGGTTTGTGCGAATCGTGATCAGGCTAATGCACCCAGTAAGG

intB<>YFP TGTCCATCCAAATGGTTCTAAGTACTGGCGTTTGCAGTACCGTTATGAGGACTAGCAACACCAGAACAGCC

intE<>res CAAGCGATCCAGGATGACAGGCTTAAAAGTGGTGATATAAGACTCAACACGGCTAATGCACCCAGTAAGG

intE<>YFP TCACAACGCTACTTTGCTCCATCCTTTACCTCGATCATCATGATAACGATACTAGCAACACCAGAACAGCC

essQ<>res TAAGGCTACAGTTACCGTAACTTTATTCTCAAAATTACGGACTCCTTTCAGGCTAATGCACCCAGTAAGG

essQ<>YFP TAAAGGTCCTGCAGCAGCAAATGTCATCATTACTGATTAAAATTCATCGCACTAGCAACACCAGAACAGCC

Mutagenesis

15.15 GGAGTCCAAGCGAGCTCAGTTCCTATTCCGAAGTTCCTATT

CTCTAGAAAGTATAGGAACTTCGATATCCGTCGGCTTGAACG

15.16 GGTTCGTGCCTTCATCGAAGTTCCTATTCCGAAGTTCCTATT

CTCTAGAAAGTATAGGAACTTCATATCGACGTCTAAGAAACC

21.3 CCGGCTCGTATAATGTGTGGGATTGTTAGC

GGAGAAGAATTGAATTCATTAAAGAGGAG

LacI-mCherry fusion

13.12 ATTATTGGTACCGCATGGTTTCCAAGGGCGAGGAGG

13.13 ATATCTAAAGCTTATTTGTACAGCTCATCCATGCCACC

13.28 ATTATAGGTACCATATGGTGAATGTGAAACCAGTAAC

13.30 CTCGCCCTTGGAAACCATCACCAGTTCCAGGCCGCCCAGCTGCATTAATGAATCGGCCAA

CFP amplification

15.14 ATTATTGGTACCGCATGACTAGCAAAAGAAGCAAAGGTG

15.14R ATAATATAAGCTTTATACAGTTCATCCATGCCCAG

TetR cloning

13.6 ATACAAAAGCTTAAGACCCACTTTCACATTTAAGTTGTT

13.7v2 ATACAActcgagGCGCAACGCAATTAATGTAAGTTAGC

Competitor plasmid

O1Add-F CTAGACTCAGCTAATTAAGAATTGTTATCCGCTCACAATTATAATGGTTTCTTAGACGT

O1Add-R CTAAGAAACCATTATAATTGTGAGCGGATAACAATTCTTAATTAGCTGAGT

O2Add-F CTAGACTCAGCTAATTAAGGGTTGTTACTCGCTCACATTTATAATGGTTTCTTAGACGT

O2Add-R CTAAGAAACCATTATAAATGTGAGCGAGTAACAACCCTTAATTAGCTGAGT

OidAdd-F CTAGACTCAGCTAATTAAGAATTGTGAGCGCTCACAATTATAATGGTTTCTTAGACGT

OidAdd-R CTAAGAAACCATTATAATTGTGAGCGCTCACAATTCTTAATTAGCTGAGT

qPCR primers

forward CAGTGGAGAGGGTGAAGGTG

reverse GTGTCTTGTAGTTCCCGTCAT

probe /56-FAM/TCAAGAGTG/ZEN/CCATGCCCGAAGGT/3IABkFQ/

Table 3.1: Primers used in this study to create strains, related to Fig. 3.1.
The names of the chromosomal integration primers are formatted with the gene location followed
by the side of the plasmid it binds to (the resistance or the FP reporter; see 3.12) with <>between.
The red bases bind to the plasmid to amplify and the black bases are homologous to the integration
site on the chromosome.
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Chapter 4

The transcription factor titration
effect in a system of two
coregulated genes

This chapter presents preliminary results for an experiment suggested by the theoretical consid-

erations presented in Chapter 2. The experiment was designed and conducted in collaboration with

Robert Brewster.

4.1 Introduction

In Chapter 3 we carefully examined the effect of transcription factor (TF) titration on the expression

of a repressed gene that existed in multiple copies. We found that the regulatory function has a

sharp transition [1, 2, 3] as the number of TFs grows large enough to simultaneously repress all gene

copies. In E. coli, most TFs regulate not only a single gene but a family of genes, as is shown in Fig.

4.1 using data from RegulonDB [4]. As an extreme example, the cAMP receptor protein regulates

almost 500 genes. A natural generalization of the experiment in Chapter 3 is therefore to study the

effect of TF titration in a setting where multiple genes share the same TF [5]. This allows us not

only to study fold change in gene expression but also the correlation in expression between different

genes [6, 7, 8].

To demonstrate the effect of TF titration on transcriptional correlation, we need to bear in mind

that TFs stay bound to their binding sites only for a finite amount of time, around 10 min in the

case of LacI binding to Oid [9], and hence an expression measurement might reflect only the average

production over multiple different TF configurations. By using the method of fluorescence in-situ

hybridization [10] (FISH) to directly measure mRNAs (which are inherently short lived [11]) instead

of long-lived proteins [12], we maximize our ability to study direct correlation in transcription rates

between different genes. The basic idea behind mRNA FISH is to measure mRNA levels through

the hybridization of mRNA with a set of complementary base paired probes, each around 20 bp in
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Figure 4.1: Number of genes regulated per TF as reported by RegulonDB 8.5 [4]. Each small dot
corresponds to an individual TF. The TFs have been sorted by increasing number of regulated genes.
TFs regulating two or more genes are shaded dark.

length, which have been crosslinked to a fluorescent dye. By using multiple dyes that emit light at

different wavelengths many different species of mRNA can be observed simultaneously [13].

As proof of principle we investigate the transcription of two different genes repressed by the same

TF using mRNA FISH. Choosing these reporter genes still requires some care. First of all, the two

genes should not be essential to the organism; neither knocking them out nor overexpressing them

should have any noticeable impact on the fitness of the cell. Second, since we quantify mRNA levels

using FISH it would be desirable, to avoid introducing unnecessary systematic differences between

the mRNA signals, if the two genes had approximately the same length (in base pairs), hence binding

an equal number probes. For the same reason, it would desirable if the two mRNAs had similar

lifetimes. For convenience we again use lacZ as one of the reporter genes and let it be repressed

by LacI-mCherry, which allows us to reuse several genetic constructs from Chapter 3. Next we

want to find a second gene compatible with the choice of lacZ, taking the above considerations into

account. In this study we choose uidA, which codes for an enzyme that catalyzes the cleavage of β-

glucuronides. This gene has been previously used as a reporter gene [14] and fulfills our requirement

of being nonessential. The lifetime of the uidA transcript has been observed to be very similar to

lacZ transcripts (around 10 min in M9 at 30 ◦C [11]), and is, at 1812 bp, closer in length to lacZ,

which is remarkably long (3075 bp) compared to most other genes in E. coli. Finally, lacZ and uidA

have low sequence similarity, which suggests a low off-target hybridization of probes.

To tune the expression of LacI-mCherry, and accordingly the expression of lacZ and uidA, we
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LacI-mCherry, which in turn is repressed by TetR. Higher aTc concentration leads to inactivation of
TetR, and hence higher expression of LacZ and UidA. LacI-mCherry is expressed from the PLtetO−1

promoter [15], whereas LacZ and UidA are both expressed from the lacUV5 promoter [16].

use the same aTc induced tetR circuit as in Chapter 3, with the only exception that tetR is now

integrated into the chromosome. When an active TetR repressor binds lacI-mCherry it blocks RNA

polymerase (RNAP) from accessing the promoter, thus inhibiting the transcription of the gene.

In turn, a lower concentration of LacI-mCherry leads to a higher transcription rate of lacZ and

uidA, as these genes are no longer being repressed. The circuit is tuned by aTc, which inactivates

TetR [15] and makes it unable to bind the lacI-mCherry promoter. By varying the concentration

of aTc we can therefore alter the transcription rate of lacZ and uidA. In particular we can tune the

number of LacI-mCherry to be comparable to the number of plasmids, corresponding to the most

interesting regime of transcriptional regulation. For calibration we can make an aTc induction curve

by measuring, in bulk, the amount of LacI-mCherry produced for different concentrations of aTc

using a plate reader [Appendix 4.A]. This helps guide our choices of aTc concentration to ensure

our samples are spaced well in expression space.
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4.2 Results

4.2.1 Thermodynamic model

With multiple copies of lacZ and uidA located on plasmids there are a huge number of ways that

the genes can be turned off or on, as a function of plasmid and repressor copy number. By using

the thermodynamic model presented in Chapters 2-3 we can take all these states into account and

predict quantities of experimental interest, such as fold change in gene expression and correlation in

transcription rates of the two genes. As a first step we need to compute the statistical weights, or

Zi factors [Eq. (2.22)], associated with specific binding of i repressors to Np gene copies. We note

that there are
(
Np

i

)
number of ways to choose i genes to turn off in a set of Np gene copies, and for

each such configuration the statistical weight associated with the Np − i unrepressed promoters is

given by (1 + p)Np−i. Here p = P
NNS

e−β∆pd corresponds to either the promoter strength of lacZ or

uidA, which are equal as transcription of both genes is initiated from the lacUV5 [16] promoter. By

using the same strategies as in Chapter 2 one can show that the individual (“unentangled”) partition

functions associated with the lacZ and uidA genes are given by

ZlacZ =

Np∑
i=0

R!

N i
NS(R− i)!

ZlacZi with ZlacZi =

(
Np
i

)
(1 + placZ)Np−i, (4.1)

ZuidA =

Np∑
i=0

R!

N i
NS(R− i)!

ZuidAi with ZuidAi =

(
Np
i

)
(1 + puidA)Np−i. (4.2)

Although the promoter strengths are numerically identical, puidA = placZ = P
NNS

e−β∆pd , we need

to assign them different labels in order to later derive the transcriptional correlation function. To

compute the total partition function, including the effect of “entanglement” as to the two genes

share a common pool of TFs, we use Eq. (2.20)

Ztot =

min(R,Np)∑
f1=0

min(R−f1,Np)∑
f2=0

R!

Nf1+f2
NS (R− f1 − f2)!

ZlacZf1 ZuidAf2 . (4.3)

The total partition function allows us to derive the fold change [Sec. 2.5] and correlation in tran-

scription rates [Sec. 2.6] between the two genes. In the same way a “competitor plasmid” hosting a

TF binding site titrates away TFs and significantly alters the regulatory response of a gene, the two

genes uidA and lacZ will effectively titrate repressors away from each other [see Fig. 3.5]. Hence we

expect the two genes to have an impact on each other’s regulatory response function. To compute
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Figure 4.3: (Theory) Fold change as predicted by the statistical mechanical model for two coregulated
(“2 genes”) or independently regulated (“1 gene”) genes located on a plasmid. In this plot we use
operator binding energies −17.0 kBT (Oid) and −15.3 kBT (O1) [17], plasmid copy number Np = 20,
number of nonspecific sites as the genome length of E. coli (NNS = 5 × 106), number of RNAP
P = 1000, and the RNAP binding energy to the lacUV5 promoter −7.0 kBT [18] (same for both
genes).

the fold change of the two genes as a function of repressor copy number we use Eq. (2.32)+(2.33)

flacZ =
1 + placZ

Np
∂placZ

lnZtot, (4.4)

fuidA =
1 + puidA

Np
∂puidA

lnZtot. (4.5)

The statistical mechanical model predicts [Fig. 4.3], as expected, that it takes twice as many

repressors to reach the critical regime where every gene copy can be “turned off”, when the two

genes are sharing the same pool of repressors, as compared to when they are independently regulated.

To study the correlation in expression we compute the Pearson correlation coefficient between

the number of RNAPs binding the two kinds of promoters using Eq. (2.49)

ρlacZ,uidA =
placZpuidA

∂
∂placZ

∂
∂puidA

lnZtot√[(
placZ

∂
∂placZ

)2

lnZtot
] [(

puidA
∂

∂puidA

)2

lnZtot
] . (4.6)

When many repressors are blocking transcription of lacZ genes, fewer will be left to block uidA, and

hence the thermodynamic model predicts [Fig. 4.4] a (weak) negative correlation in transcription
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Figure 4.4: (Theory) Transcriptional correlation between two genes repressed by the same TF which
binds to either Oid or O1. In this plot we use the operator binding energies −17.0 kBT (Oid) and
−15.3 kBT (O1), plasmid copy number Np = 20, number of nonspecific sites as the genome length of
E. coli (NNS = 5× 106), number of RNAP P = 1000, and the RNAP binding energy to the lacUV5
promoter −7.0 kBT (some for both genes). For these particular parameter values the transcriptional
correlation effect is expected to be small.

of lacZ and uidA. The correlation will be less prominent as the repressor or RNAP binding energy

gets weaker. Our ability to see this correlation, however, is limited. In reality the repressor copy

number and plasmid copy number is not fixed, but rather it is fluctuating according to some sta-

tistical distribution [19]. Such extrinsic noise leads to a positive contribution to the correlation in

transcription rates of lacZ and uidA, as we saw in Sec. 2.7.2. Since the repressors are fluorescently

labeled we can reduce the variance in repressor copy number by binning our data, but there is no

analogous procedure to reduce the variance in plasmid copy number. We therefore expect plasmid

copy number variations to be the dominant source of extrinsic noise among the two.

4.2.2 Stochastic model

Even if extrinsic noise might prevent us from directly observing a negative correlation in the tran-

scription rates of lacZ and uidA, coupled transcription could still potentially show up in the relative

mRNA expression

Q =
MlacZ

MlacZ +MuidA
, (4.7)
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where MlacZ and MuidA denote number of mRNAs in a cell of each kind. By measuring the ratio Q,

instead of the absolute numbers MlacZ ,MuidA, the effect of extrinsic noise could be greatly reduced.

For example, if the number of RNAP were to double, the average transcription rate of both genes

would also double, leaving the ratio Q unchanged. The distribution of Q over a large set of cells

should however depend on whether lacZ and uidA are transcriptionally entangled or not: If the

two genes are transcribed independently of each other, apart from the effect of extrinsic noise, we

expect a small variance in Q related to the intrinsic stochasticity of transcription. The width of the

Q distribution should, however, increase if a higher transcription rate of one gene leads to a lower

transcription rate of the other.

The thermodynamic model is not suitable for predicting the distribution of Q, as it does not

take into account the stochastic nature of mRNA production [10, 20, 7, 21]. The promoter used in

our experiment, lacUV5, produces around 15 transcripts at steady state per cell [18] which follow

approximately a Poisson distribution, and the width of this distribution (≈
√

15) sets a lower bound

on the distribution of Q. To qualitatively study how promoter entanglement affects the distribution

of Q we resort to stochastic simulations. For a given average repressor copy number R̄, we repeat

the following procedure: (A) Choose a random repressor copy number R from a Poisson distribution

of mean R̄, and plasmid copy number Np uniformly from the interval [20− 5, 20 + 5]. The Poisson

distribution crudely corresponds to our resolution of binning data by LacI-mCherry copy number.

The choice of average plasmid copy number N̄p = 20 will become apparent after next section.

To simplify matters we assume that when there are fewer Lac repressors than Oid binding sites

(R < 2Np), which is the most interesting case for transcriptional entanglement, all repressors are

specifically bound, and moreover that repressed promoters are completely shut off. The probability

that k out of R repressors will bind to the lacZ genes (or uidA genes) is then given by

P (k;R,Np) =
1

Z

(
Np
k

)(
Np
R− k

)
, max(0, R−Np) ≤ k ≤ min(R,Np), (4.8)

where the total number of repressor configurations Z is given by

Z =

min(R,Np)∑
k=max(0,R−Np)

(
Np
k

)(
Np
R− k

)
. (4.9)

(B) Draw a random repressor configuration (RlacZ , RuidA), where RlacZ and RuidA stands for the

number of repressors that are bound to lacZ genes and uidA genes, from the probability distribution

determined by Eq. (4.8). Draw one more independent repressor configuration sample (R∗lacZ , R
∗
uidA),

that will be used as a control. (C) For each unrepressed promoter, sample the mRNA production

from a Poisson distribution with a mean burst size of 15 mRNAs per cell to get a total production

of (MlacZ ,MuidA) and (M∗lacZ ,M
∗
uidA) for the two repressor configurations. (D) Compute the ratio
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Figure 4.5: (Simulation) Stochastic simulation of the standard deviation σQ for the relative expres-
sion of two genes repressed by the same TF. The binding site is assumed to be strong enough that
all TFs bind specifically, when there are fewer TFs than number of binding sites. The stochastic
configuration of repressors on the two genes is determined by the probability distribution in Eq.
(4.8). Each unrepressed promoter is assumed to produce an average of 15 mRNAs per cell following
a Poisson distribution.

Q = MlacZ

MlacZ+MuidA
, and the control ratio Q∗ = MlacZ

MlacZ+M∗
uidA

(notice only M∗uidA is stared) guaranteed

to lack transcriptional entanglement. To acquire a distribution for Q and Q∗ we repeat the above

steps 15,000 times for each value of R̄ ∈ [0, 50]. In Fig. 4.5 we plot the predicted standard deviation

of Q (σQ) for the given input distributions of plasmid and repressor copy numbers. As expected σQ

increases with repressor copy number, as lower transcription leads to higher relative uncertainty in

mRNA production, but more interestingly we see that promoter entanglement leads to an increase

in σQ.

4.2.3 FISH measurements

To demonstrate the effect of TF titration on two coregulated genes we measure the mRNA expression

of lacZ and uidA as a function of LacI-mCherry copy number either when the two genes are located

on the same plasmid or when only one of the genes is located on the plasmid. The difference in fold

change between these two cases shows the effect of TF titration. In Fig. 4.6 we show the measured

fold change when LacI-mCherry binds to the strong Oid operator. Our data clearly shows that lacZ

and uidA compete for LacI-mCherry, as it takes approximately twice as many repressors to reach

the critical point where transcription of all gene copies can be turned off. With only one regulated
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Figure 4.6: (Data) Fold change in transcription of lacZ and uidA when both genes are located on
the same plasmid (“2 genes”) or when only one gene is located on the plasmid (“1 gene”). As
transcription of both genes is repressed by LacI-mCherry (binding to Oid) it takes twice the number
of repressors to inhibit transcription when both genes are located the plasmid. The absolute number
of repressors is estimated by calibrating the fluorescence signal to a strain with known absolute
expression of LacI-mCherry, as described in Sec. 4.4.5.

gene the critical point occurs at R ≈ 20, which also suggests [Chapter 3] a plasmid copy number

around Np ≈ 20, or somewhat less, as a distribution in plasmid copy number tends to shift the

estimated Np upwards [Sec. 3.2.9]. In [15] the plasmid copy number was measured to 10-12, i.e.

somewhat lower than our estimate. With both genes on the plasmid the critical point is shifted to

around R ≈ 40, consistent with the idea that all binding sites (≈ 2 · 20) on the plasmid needs to be

filled before transcription of both genes can be effectively repressed.

Fig. 4.6 raises a couple of concerns. First of all the measured fold change does not approach

f → 1 as R → 0. An explanation for this, consistent with previous observations in Chapter 3,

is that the genetic circuit of Fig. 4.2 produces (“leaks”) a small number of LacI-mCherry even

when the tetR is fully induced. Even though this number is smaller than can be distinguished from

background fluorescence, it is still large enough to repress transcription by roughly a factor of two. If

this interpretation is correct we should see a smaller effect of these leaking repressors if we exchange

Oid with O1 [Fig. 4.7]. Indeed, our measurements show that when using O1 the fold change goes

up from f → 0.4 to roughly f → 0.7 as R → 0. The leakage production should have less of an

impact on fold change when both lacZ and uidA are located on a plasmid, as there are twice as
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Figure 4.7: (Data) Fold change in transcription for two genes, lacZ and uidA, repressed by LacI-
mCherry binding to either Oid or O1.

many binding sites for LacI-mCherry to bind. In Fig. 4.6 we do see less repression when the two

genes are coregulated, but a much smaller difference (≈ 10%) than the expected factor of two. One

speculative explanation to the observation is that the resolution limit [22], i.e. the smallest number

of LacI-mCherry molecules that can be distinguished from background, might have been different

in the two experiments. As an example, if one of the microscopy dishes had more fluorescent “dirt”

attached to it, the ability to resolve low numbers LacI-mCherry would be reduced, causing more

cells to get randomly assigned to the lower bins of Fig. 4.6, which would lead to a drop in fold

change.

The measured fold change also behaves unexpectedly in the limit when the number of repressors

grows large, where fold change seems to plateau or even increase. In this regime, however, our

signal is almost identical to the background and we deduce that our experiment lacks sensitivity

to measure expression of mRNA in this regime. The ability to measure small numbers of mRNA

could be greatly improved by using lasers [23] to excite the FISH probes, rather than a regular

fluorescence lamp. One might also consider optimizing the choice of dyes for the given FISH probes.

For example, in our experiment the ATTO425 dye gave much higher background signal variance

than did ATTO514.

Our measurement of fold change inarguably shows that TF titration can have a strong impact on

the regulatory response of coregulated genes. This means that, in principle, the transcription rate
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Figure 4.8: (Data) Correlation in mRNA levels for two genes, lacZ and uidA, repressed by LacI-
mCherry binding to either Oid or O1.

of lacZ should affect the transcription rate of uidA and vice versa. To see if we can directly observe

transcriptional coupling we first look at the correlation in mRNAs levels as a function of repressor

copy number [Fig. 4.8]. Due to extrinsic noise from e.g. plasmid copy number and repressor copy

number variations the correlation is, as argued previously and predicted by the thermodynamic

model [Fig. 2.11], distinctly positive.

A better way to observe transcriptional coupling between lacZ and uidA might be to look at

the relative levels of mRNAs of each kind, to reduce the effect of extrinsic noise. We showed in

Sec. 4.2.2 that coupled transcription of two genes can produce a widening of the distribution of Q,

the relative number of lacZ (or uidA) mRNAs. Using the dataset from Fig. 4.6 we can plot the

standard deviation of Q as a function of repressor copy number. The data and simulations show

similar increasing trends in σQ for higher number of repressors. In general, the data falls between

the two curves corresponding to coupled or uncoupled transcription of lacZ and uidA. Without

carefully studying how experimental noise affects the relative expression of the two genes, as well as

the theoretical assumptions (plasmid copy number distribution etc.) which went into the stochastic

simulations it is, however, difficult to conclusively say if lacZ and uidA are transcriptionally coupled

or not.
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Figure 4.9: (Data) Standard deviation σQ in the relative mRNA expression levels for two genes, lacZ
and uidA, which are repressed by LacI-mCherry binding to Oid. The fluorescence signals have been
normalized to make the observed number of mRNAs of each kind equal, which one would expect for
genes transcribed from the same promoter (lacUV5 ). For each cell at least one of the signals must
be two standard deviations above background, or else the cell is disregarded. Signals which are not
distinguishable from background are set identically to zero, to reduce unwanted fluctuations.

4.3 Discussion

We have shown that TF titration can play an important role in the regulation of genes that share

a common pool of TFs. As coregulated genes compete for TFs, it takes higher TF copy number

to reach the same level of regulatory response had the genes been independently regulated. In real

biological regulatory networks this effect should be accounted for, leading us to believe that TFs

with a vast number of binding sites should also have higher TF copy number. We have demonstrated

the TF titration effect for the regulation of two genes located on a multi-copy plasmid (copy number

≈ 15 − 20), but TF titration will most certainly be of similar relevance in settings with a larger

number of different genes. In such cases, the affinities of TF binding sites can be different and hence

provide a richer set of possible regulatory outcomes [Fig. 2.5, Fig. 3.5].

The TF titration effect shows how one gene can influence the regulatory response of another,

which also suggests that one might be able to observe a direct correlation in the transcription rates

of two genes. If two genes share a limited pool of TFs, random fluctuations in the TF binding

configuration could lead to a temporary enhancement of the transcription rate of one gene at the

expense of the transcription of the other. However, our experiments show that if such transcriptional

coupling exists it gets drowned by extrinsic noise from e.g. plasmid copy number fluctuations. A

rather labor intensive way of reducing this source of extrinsic noise could be to integrate several
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copies of lacZ and uidA on the chromosome [24], and sort cells by size to make sure that all cells

are at the same stage in the cell cycle and hence have the same number of gene copies. Even

if transcriptional coupling of coregulated genes might be of limited biological significance, as our

difficulties in observing it suggest, the effect might still be well-suited for future precision tests of

theoretical models of transcriptional regulation.

4.4 Methods

4.4.1 Strains

The cloning procedure consists of two parts. First we create a plasmid with lacZ and uidA, as well

as two binding sites for LacI-mCherry (a fluorescent fusion) to repress each gene. Second we create

a host strain for this plasmid with the native lacIYZA and uidA genes deleted, and the aTc induced

circuit of Fig. 4.2 integrated.

As starting point for the plasmid we use pZS25Oid+11-lacZ [25], which contains the lacZ part

of the desired construct, and replace the coding part of lacZ with uidA to create pZS25Oid+11-

uidA. We do this by PCR amplifying pZS25Oid+11-lacZ minus lacZ as well as PCR amplifying

uidA from the chromosome with DNA overhangs matching the plasmid. We join the two fragments

together using Gibson assembly [26]. Next we create a single plasmid that hosts both genes by

PCR amplifying lacZ (including the promoter) and then (again using Gibson assembly [26]) insert

it into pZS25Oid+11-uidA. Untransformed pZS25Oid+11-lacZ plasmids are digested after the lacZ

PCR amplification using Dpn1 as well as NarI, KasI and SfoI, which cleaves DNA at sites outside

the lacZ fragment. By growing cells transformed with the new plasmid on agar plates spread with

X-gal [27] we can identify colonies of cells containing lacZ, which turn blue, hence increasing our

ability to select colonies successfully transformed with the desired product. To verify the construct

we PCR amplify segments supposed to contain both genes and confirm the presence of lacZ and

uidA through electrophoresis and sequencing.

As starting point for the host strain we use wild-type E. coli (MG1655) with lacIZYA deleted

[17]. A ∆uidA strain (JW1609-1) was kindly provided by Yale Coli Genetic Stock Center. Using

P1 phage transduction we insert ∆uidA into our host strain. Additional P1 transductions are used

to insert lacI-mCherry into the locus of ybcN, to regulate production of LacZ/UidA, and tetR into

the locus of intS, to regulate the production of LacI-mCherry.

Finally we transform our plasmid into the host strain and into a version lacking lacI-mCherry,

which allows us to measure unrepressed mRNA production from lacZ and uidA. The whole procedure

above is performed twice to make constructs carrying either the LacI-mCherry repressor binding site

Oid or O1.
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4.4.2 Growth

Cultures are grown to saturation in LB and then diluted 1:6000 into 30 mL of M9 supplemented

with 0.5% glucose and grown. After growing overnight for around 10 hours, under aluminum foil to

avoid degradation of aTc by light, cells are harvested at OD 0.3-0.5.

4.4.3 Single cell mRNA FISH

Following the protocol of [10] we centrifuge cells at 4500 g for 5 min at 4 ◦C. Harvested cells are

fixed by resuspending in 1 mL of 3.7% formaldehyde. After 30 min of nutation cells were washed

twice in 1 mL 1x PBS buffer, and then permeabilized in 1 mL of 70 % ethanol, to allow the FISH

probes to enter through the cell membrane. After 1 h of nutation cells are gently centrifuged and

resuspended in 20 % wash solution (200 µL formamide, 100 µL 20x SSC, 700 µL water). The cells

are then resuspended in 50 mL of hybridization solution (0.1 g dextran sulfate, 0.2 mL formamide, 1

mg E. coli tRNA, 0.1 mL 20x SSC, 0.2 mg BSA, 10 µL 200mM ribonucleoside vanadyl complex) and

1.5 mL of probes and crosslinked dye (ATTO425 or ATTO514), and left overnight at 30 ◦C. One

fifth (10µL) of the hybridization product is resuspended and centrifuged (600 g, 3.5 min) three times

in wash solution with 1 h of incubation at 30 ◦C between each wash, before finally resuspending in

200-1000 µL of 2x SSC.

4.4.4 FISH data acquisition

We plate 2 µL of cells on 1.5% agarose pads made from 1x PBS buffer, and image the pads using

a Nikon Eclipse Ti equipped with a CoolSNAP ES2 camera. Exposure times for the fluorescence

images were set to 7 s for FITC (uidA probes), 5 s for CFP (lacZ probes) and 5 s mCherry (LacI-

mCherry). The camera offset Idark is subtracted from the signal, and a fluorescent calibration plate

Iflat is used to “flatten” the image and correct for a slightly nonuniform fluorescence exposure over

the field of view, yielding a corrected signal I
(i,j)
corrected at pixel (i, j)

I
(i,j)
corrected =

(
I(i,j) − I(i,j)

dark

)
×

(
maxi,j(I

(i,j)
flat − I

(i,j)
dark)

I
(i,j)
flat − I

(i,j)
dark

)
. (4.10)

Cells are segmented on bright-field phase images using the Schnitzcells program kindly provided

by the Elowitz lab. In a semi-automated fashion cells which are are about to divide or which are

located too close to other cells are removed. In total around 1000 cells from each sample are kept

for subsequent analysis. Autofluorescence is measured in the host strain minus lacI-mCherry and

without plasmids expressing LacZ or UidA. The background fluorescence is subsequently subtracted

from the measured signal.
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4.4.5 Determining the absolute number of LacI-mCherry molecules

A useful application of the TF titration effect, explored in Chapter 3, is that it allows us to measure

the copy number of a plasmid that hosts a strong TF binding site. However, this is only possible when

one knows the absolute number of repressors in the cell, which is typically not the case. In Chapter 3

the calibration factor between fluorescence intensity and the absolute number of Lac repressors

was determined by asserting random partitioning of molecules at cell division and measuring the

difference in fluorescence intensity between daughter cells. Unfortunately this approach cannot be

used in mRNA FISH experiments, where cells are fixed with formaldehyde and, most certainly, no

longer dividing. But by reusing a strain from Chapter 3 with a known average absolute number

of Lac repressors, we can again relate fluorescence intensity to absolute number of repressors. The

strain corresponding to the red points in Fig. 3.3 has, at full induction, an average of 423 repressors

after around 105 minutes of additional growth at agar pads, after being taken out of M9. During

these 105 minutes the cells divide and dilute the LacI-mCherry molecules. To estimate the average

number of LacI-mCherry molecules per cell immediately after growth in M9, N0, we assume that

the cells are in exponential phase with a division time of 65 min

423 =N0 × 2−105/65,

→N0 = 1270.

To find the calibration factor we grow the strain exactly as described in Sec. 4.4.2, measure the

average mCherry signal and divide by N0 = 1270 to find the estimated fluorescence intensity of a

single LacI-mCherry molecule.
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Appendix

4.A aTc induction curve

We determine the response of LacI-mCherry as a function of aTc concentration in bulk using a

plate reader [Fig 4.10]. To reach the critical point where the number of LacI-mCherry exceeds

the number of pZS25Oid+11-lacZ plasmids, it takes only a very small amount of aTc. The used

inducer concentrations for the data shown in Fig. 4.6 are: 0.05, 0.10, 0.25, 0.40 ng/ml. The inducer

concentrations for the O1 data shown in Fig. 4.7 are: 0.10, 0.20, 0.40, 0.60 ng/ml. Finally, the

calibration strain used to determine the absolute number of LacI-mCherry molecules is maximally

induced at 100 ng/ml.

4.B Plasmid structure

The two genes lacZ and uidA are transcribed from the same strong promoter lacUV5 and oriented

as shown in Fig. 4.11.

The sequence at the junction between lacZ and uidA is given by:

· · ·GGTCGCTACCATTACCAGTTGGTCTGGTGTCAAAAATA]lacZ AAAGCTTAATTAGCT

GAGTCTAGAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTT

TATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCGCCCTAGACC

TAGGGTACGGGTTTTGCTGCCCGCAAACGGGCTGTTCTGGTGTTGCTAGTTTGTTATC

AGAATCGCAGATCCGGCTTCAGCCGGTTTGCCGGCTGAAAGCGCCTAAGAAACCATTA

TTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCACCT

CGAG [TTTACACTTTATGCTTCCGGCTCGTATAATGTGTGG]lacUV 5 [AATTGTGAGCGC

TCACAATT]Oid GAATTCATTAAAGAGGAGAAAGGTACC uidA[ATGTTACGTCCTGTAGA

AACCCCAACCCGTGAAATCAAAAAACTCGACGGCCT· · ·.

For O1 data shown in Fig. 4.7 the Oid operator sequence is replaced by the O1 sequence [AAT

TGTGAGCGGATAACAATT]O1 .
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Figure 4.10: (Data) Induction curve of LacI-mCherry by aTc. Fluorescence is measured in bulk
using a plate reader and normalized by the optical density (OD) of the sample.

Figure 4.11: Plasmid diagram showing the main features of the pZS25Oid+11-lacZ-
uidA/pZS25O1+11-lacZ-uidA plasmid.
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4.C PCR primers

To amplify the pZS25Oid+11-lacZ/pZS25O1+11-lacZ plasmid minus lacZ we use:

Forward 5’-GGTACCTTTCTCCTCTTTAATGAATTC-3’

Reverse 5’-AAGCTTAATTAGCTGAGTCTAGAGGC-3’

To amplify uidA from the chromosome including overhangs (lower case) that match the pZS25Oid+11-

lacZ/pZS25O1+11-lacZ plasmid we use:

Forward 5’-cattaaagaggagaaaggtaccATGTTACGTCCTGTAGAAACCCC-3’

Reverse 5’-gactcagctaattaagcttTCATTGTTTGCCTCCCTGC-3’

To amplify lacZ (with promoter) including overhangs to match the pZS25Oid+11-uidA/pZS25O1+11-

uidA plasmid we use:

Forward 5’-ctggcaattccgacgtATTATTATCATGACATTAACCTATAAAAATAGGCGTATCAC-3’

Reverse 5’-gataataatggtttcttagGCGCTTTCAGCCGGCAAA-3’

To sequence the final plasmid and verify that it has both lacZ and uidA we use:

Forward 5’-ATTGGTGGCGACGACTCC-3’

Reverse 5’-ACCAACGCTGATCAATTCC-3’

To verify that lacIZYA is deleted from the host strain we run PCR with the following primers

and verify with electrophoresis that the amplified segment is no more than 300 bp :

Forward 5’-GTGTCTCTTATCAGACCGTTTCCC-3’

Reverse 5’-TGATAAGCGCAGCGTATCAGG-3’

To verify that uidA is deleted from the host strain we run PCR with the following primers and

verify with electrophoresis that the amplified segment is no more than 300 bp :

Forward 5’-GACGATGGTGCGCCAGGA-3’

Reverse 5’-CAGATTAAAGGTTGACCAGTATTATTATCTTAATGAGGAGT-3’
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To verify that tetR is inserted to the host strain we run PCR with the following primers and

verify with electrophoresis that the amplified segment is 1400 bp instead of wild-type 1177 bp :

Forward 5’-CGCAAAATCCCCTGAATATC-3’

Reverse 5’-TTGCACTGGATTGCAAGACT-3’

To verify that lacI-mCherry is inserted to the host strain we run PCR with the following primers

and verify with electrophoresis that the amplified segment is several thousand base pairs instead a

few hundred for wild-type :

Forward 5’-AGCGTTTGACCTCTGCGGA-3’

Reverse 5’-GCTCAGGTTTACGCTTACGACG-3’
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Chapter 5

The influence of promoter
architectures and regulatory motifs
on gene expression in Escherichia
coli

This chapter presents results which are about to be submitted for publication.

5.1 Introduction

One of the most impressive accomplishments in molecular biology over the past half-century has

been the mapping of thousands of gene interactions to create genetic networks for a broad collection

of different organisms. Such maps have made it possible to qualitatively understand how groups of

genes can together provide important functionality. Still, the genetic network descriptions leave us

with a picture of the regulatory landscape that is not quantitatively predictive. Although impressive,

genetic networks do not provide information necessary to make concrete predictions, such as the

number of proteins produced of a given kind under particular environmental conditions, not the least

because the notions of ‘activation’ and ‘repression’ are inherently verbal rather than quantitative.

The amount of activation or repression achieved by transcription factors (TFs) can vary by many

orders of magnitude, depending on how tightly TFs bind to the promoter of interest [1] and many

other factors. Moreover the resulting response curves depend on promoter architecture, i.e. the

particular configuration of TF binding sites. For example, a repressor that blocks a promoter

through DNA looping (e.g. LacI) has been shown to have a steeper response curve than its unlooped

counterpart [2]. Furthermore, genetic networks do not tell if the TF supposed to regulate a gene is

actually present in the cell at all, which might not be the case if it is inactivated through nucleosomal

organization or by chromatin remodeling complexes [3, 4].

For genetic networks to be predictive tools in biology they need to be be augmented with quan-
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titative descriptions of the census of regulatory players. Our goal with the present chapter is to take

a step in this direction by studying the role of promoter architectures in transcriptional regulation,

from a genome-wide point of view. Few organisms offer a better opportunity to do so than E.

coli, which after more than half a century of intense study demonstrates arguably one of the most

well understood regulatory networks. Through ambitious efforts many cold and hard facts about

transcriptional regulation in E. coli have been collected and made easily accessible in databases like

RegulonDB [5] and EcoCyc [6]. These contain information including, but not limited to, which TFs

regulate different operons, where they bind to promoters, and their regulatory effect (activation or

repression). All of these features play an important role in transcriptional regulation. A TF which

binds cooperatively to multiple binding sites, either through direct contact or DNA looping, provides

a steeper regulatory response than TFs binding just a single site [7], which is typically reported by

Hill coefficients. The position of binding sites play an equally important role. In experiments where

a single repressor binding site has been systematically moved along the promoter region [8, 9, 10, 11],

the effect of repression has shown a clear dependence on position, interestingly featuring a 10-11 bp

modulation following the periodicity of the DNA helix. The most dramatic position effect occurs

when a TF binds near the promoter and allosterically blocks RNAP from accessing the promoter,

hence turning off transcription of the gene.

In this chapter we study both the positions and multiplicities of TF binding sites in E. coli,

for the 2500 or so known TF-DNA interactions in RegulonDB 8.5. A challenge inherent in using

RegulonDB, EcoCyc, or any other biological database as primary information source is that the data

is inevitably incomplete. More than half of the genes in E. coli still lack any regulatory annotation,

including important genes such as those responsible for mechanosensation. We must therefore be

cautious when interpreting our results. Whereas there is no obvious reason that, for example, binding

site positions are biased, the absolute number of binding sites is almost certainly underestimated.

This assertion is supported by the fact that the rate of newly discovered TF binding sites does

not show any sign of slowing down, thanks to the advent of powerful techniques such as ChIP-seq

[12] and Sort-Seq [13]. A healthy skepticism from the reader is thereby encouraged and the results

should be viewed as provisional until more of the underlying regulatory facts are in hand. Although

incomplete, we can use RegulonDB to construct expectations for what promoter architectures should

look like and identify overrepresented promoter architectures motifs deviating from this expectation,

in the same way as overrepresented genetic network motifs have been identified from an incomplete

genetic network [14].

We view the work presented here as a step towards using promoter architectures to give a more

detailed understanding of transcriptional regulation than can be given by a genetic network map

alone. Hopefully these findings can also provide valuable input for the theoretical dissection of

transcription regulation, which has shown increasing capability to make distinct predictions for the
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response function of different promoter architectures [15, 16, 17, 18]. Perhaps most importantly,

the analysis presented here shows how far short the current factual understanding of regulatory

architectures and measured expression levels falls from serving as a predictive framework, and thus

should be seen as a call for higher predictive expectations and a more rigorous treatment of the

relation between regulatory architecture and input-output functions.

5.2 Models

5.2.1 Random promoter architecture model

In the study of genetic networks, network motifs refer to recurring patterns that are overrepresented

in biological networks as compared to random networks [14]. A well-studied network motif is the

feed-forward loop, where a single gene is regulated by two TFs, and in addition one of the TFs

regulates the other. Motifs are presumedly promoted in biological systems because of functionality

they provide, for example robustness against concentration fluctuations of regulatory molecules. In

this section we will apply the idea of network motifs to the configuration of TF binding sites. For

this we need to introduce a random promoter architecture model, analogously to a random genetic

network, to be used as reference for identifying overrepresented reported promoter architectures.

TF binding sites can be both lost and gained due to the steady pace of mutations across the

genome. These mutations are thought to occur randomly across the genome, and hence in the

absence of selection any specific distribution of a given number of TF binding sites over a set of

operons would be as probable as any other. If a certain class of promoter architectures occurs more

frequently in real regulatory networks than in this null model, we expect them to encode biological

functions which are advantageous. The simple approach we will adopt to implement a random

promoter architecture is therefore to imagine all binding sites reported in RegulonDB as being

“sprinkled” over all operons with uniform probability. The mathematical implications of this simple

postulate will be developed here, saving for the Results section the task of identifying promoter

architecture motifs.

As a first application of the random promoter architecture model we will look at the distribution

of number of binding sites per operon. The problem of independently assigning Nbs binding sites

(2871 in RegulonDB 8.5) to Nop operons (2642 in RegulonDB 8.5) can be formulated as the flipping of

a biased coin, where each binding site has a probability 1/Nop to be assigned to a particular operon,

in each of Nbs repeated coin tosses. Here we neglect the complicating fact that a small number

of binding sites can regulate multiple operons (9 % in RegulonDB 8.5). Hence the probability

distribution Pbs(m;Nbs) for an operon to end up with m binding sites is given by a simple binomial
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distribution

Pbs(m;Nbs) =

(
Nbs
m

)(
1

Nop

)m(
1− 1

Nop

)Nbs−m

, m = 0, 1, 2, . . . (5.1)

Since the probability is small for a binding site to be assigned a particular operon, namely 1/Nop,

the binomial distribution can be approximated by a Poisson distribution with mean λ = Nbs

Nop
. For

the numbers of Nbs and Nop given by RegulonDB 8.5 the Poisson approximation is valid to within

1 % for m ∈ {0 . . . 10}, which covers 98 % of the operons in the dataset. However, for very highly

regulated operons, m & 20, the Poisson approximation should not be used.

We can generalize the distribution in Eq. (5.1) to incorporate several types of binding sites,

say activators or repressors, or different particular TFs. Since all binding sites are assumed to be

independently distributed, the probability distribution P2 bs(m1,m2;N
(1)
bs , N

(2)
bs ) for an operon to

end up with m1 binding sites (from a total of N
(1)
bs ) of one type and m2 binding sites (from a total

of N
(2)
bs ) of a second type will be given as an independent product of two binomial distributions
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Several TFs in E. coli preferentially bind to multiple binding sites at a given promoter, for exam-

ple NarP binds to two sites or more at 10 out of 11 regulated operons according to RegulonDB 8.5.

This can hardly be a coincidence, but how do we rigorously define the level of “self-cooperativity”?

Simply looking at the absolute number of operons with multiple binding sites is not a good measure

of self cooperativity of a TF, as it does not take into account the total number of binding sites

available. A global TF [19, 20] with hundreds of binding sites will likely bind at multiple sites at

several promoters simply by chance.

Instead we will use the random promoter architecture model to derive the probability Pco(M)

for M operons to be regulated by at least two binding sites for the same TF, as a function of total

number of TF binding sites Nbs (Nbs > 2M). To find the number of ways Nbs binding sites can be

distributed over Nop operons, with two or more sites at M of these, we first choose M operons, in

any of
(
Nop

M

)
ways, and assign two binding sites to each of them. See illustration Fig. 5.1. Next

we put k of the remaining Nbs − 2M binding sites into k of the remaining Nop −M operons (i.e.

one binding site per operon), which we can choose in
(
Nop−M

k

)
ways. Finally we put the remaining

Nbs − 2M − k binding sites into the M operons, which already have two binding sites, however we

want. The number of ways this can be done equals the number of nonnegative integer solutions

to the equation x1 + x2 + · · · + xM = Nbs − 2M − k, a famous problem from combinatorics with(
Nbs−M−k−1

M−1

)
solutions. To find the probability P (M) we sum over k and divide by the total number
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Figure 5.1: Binding sites are distributed into M operons with at least two binding sites, and k
operons with exactly one binding site. The remaining Nop −M − k operons are empty.

. . .

Nop

M k
1

k
2

Figure 5.2: Two different kinds of binding sites (black and red) are distributed into: M operons
with at least one binding site of each kind, k1 operons with at least one binding site of first kind
but none of the second, and k2 operons with at least one binding site of the second kind but none
of the first. The remaining Nop −M − k1 − k2 operons are empty.

of ways to distribute Nbs binding sites over Nop operons, which according to the same argument as

above is given by
(
Nbs+Nop−1

Nbs

)
.

Pco(M ;Nbs) =
1(

Nbs+Nop−1
Nbs

) ∑
0≤k≤min(Nop−M,Nbs−2M)

(
Nop
M

)(
Nop −M

k

)(
Nbs −M − k − 1

M − 1

)
(5.4)

M ≤ min(Nop, bNbs/2c)

By using the general definition of binomial coefficient
(
x
y

)
= Γ(x+1)

Γ(y+1)Γ(x−y+1) where Γ(x) is the

gamma function [21], Eq. (5.4) gives us the right probability also for M = 0, namely Pco(0) =(
Nop

Nbs

)
/
(
Nbs+Nop−1

Nbs

)
(for Nop ≥ Nbs).

We can generalize this problem to cooperativity between TF pairs [7]. TF pairs which coregulate

operons more frequently than suggested by the random promoter architecture model are more likely

to have related biological function. Let N
(1)
bs and N

(2)
bs be the number of binding sites for two different

types of TFs. As above we start by choosing M operons where we put one binding site of each kind.

Next we put the remaining N
(1)
bs −M binding sites of first type into the M “shared” operons plus

an additional of k1 operons, which we can choose in
(
Nop−M
k1

)
ways, with at least one binding site in

each. See Fig. 5.2. The number of ways this can be done equals the number of integer solutions to
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the equation below with the given constraints

x1 + . . .+ xM︸ ︷︷ ︸
xi≥0

+xM+1 + . . .+ xM+k1︸ ︷︷ ︸
xi≥1

= N
(1)
bs −M. (5.5)

After subtracting k1 from both sides one realizes that the number of solutions to this equation equals

the number of solutions to the simpler equation

x1 + . . .+ xM + x̃M+1 + . . .+ x̃M+k1︸ ︷︷ ︸
xi≥0

= N
(1)
bs −M − k1, (5.6)

which is given by
( N(1)

bs −1
M+k1−1

)
. Next we use the same argument to distribute the remaining binding

sites of the second kind onto the M shared operons plus an additional k2 operons, which we can

now choose in
(
Nop−M−k1

k2

)
ways. We find the probability P2 co(M) for M operons to be regulated

by at least one binding site of each type by summing over k1, k2 and dividing by the total number

of binding site arrangements, which is given by
(Nop+N

(1)
bs −1

N
(1)
bs

)(Nop+N
(2)
bs −1

N
(2)
bs

)
;

P2 co(M ;N
(1)
bs , N

(2)
bs ) =

1(Nop+N
(1)
bs −1

N
(1)
bs

)(Nop+N
(2)
bs −1

N
(2)
bs

) min(N
(1)
bs −M,Nop−M)∑
k1=0

min(N
(2)
bs −M,Nop−M−k1)∑

k2=0

×
(
Nop
M

)(
Nop −M

k1

)(
Nop −M − k1

k2

)(
N

(1)
bs − 1

M + k1 − 1

)(
N

(2)
bs − 1

M + k2 − 1

)
.

(5.7)

As a sanity check we use MATHEMATICA to see that the probabilities add up to one. We can

also compare with [22], which solved essentially the same problem but under the assumption that

binding sites, even of the same kind, are distinguishable. However, as long as the probability is small

that two binding sites regulate the same operon the two methods will give similar results, just like

Fermi-Dirac statistics approaches Boltzmann statistics in dilute systems [23].

A different method to identify TF cooperativity based on mutual information from ChIP data

was used in [24]. The advantage with the random promoter architecture model is that it takes, for

example, biasing due to differences in number of TF binding sites into account, and it allows us not

only to determine the expected number of coregulated operons but also the associated p-value with

any given observation, i.e. the probability of an equal or more extreme outcome with respect to the

random promoter architecture model. This will become useful in the Results section where we want

to identify TF binding motifs in the reported distributions from RegulonDB.
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5.2.2 Linear energy model of RNAP-DNA binding

The binding affinity of RNAP to the promoter of a gene is determined by the nucleotide sequence

of the promoter and has a strong influence on the transcription rate of the gene [18]. The more

effectively a promoter can recruit RNAP and initiate open complex formation, the higher the tran-

scription rate of the gene will be. Creating a predictive map between DNA sequence and RNAP

binding affinity is a problem which has received much attention [13, 25, 26, 27, 28]. One of the

simplest but yet most successful approaches to the modeling of RNAP-DNA (or TF-DNA) interac-

tions is to assume independent energy contributions from each individual nucleotide in the binding

sequence. Under this linear assumption the total binding energy of a sequence S can be expressed

as a simple matrix trace

E(S) =

L∑
i=1

∑
j=A,C,T,G

Mi,jSj,i = Tr(MS), (5.8)

where SA/C/T/G,i = 1 if the identity of the base at nucleotide position i in the sequence is given by

A/C/T/G and otherwise SA/C/T/G,i = 0, Mi,A/C/T/G represents the energy contribution at position

i for base A/C/G/T respectively, and L is the length (in base pairs) of the binding sequence. The

RNAPσ70 complex has two binding domains which interact with the promoter at −35 and −10 base

pairs upstream of the transcription start site [29]. In this study we compute the binding energy from

these two boxes separately using the energy matrix Mi,j of Brewster et al. [25] and allow a spacer

region between 16−18 bp that does not influence the total binding energy. Further we allow the -10

box to deviate one base pair up or down from its consensus position. The RNAP binding energy is

taken as the minimum binding energy of the 3× 3 = 9 possible binding configurations.

To relate the RNAP binding affinity and transcription rate a commonly used assumption, the

occupancy hypothesis [15], states a linear relationship between the transcription rate of a gene and the

probability of its promoter being occupied by RNAP. This probability is, according to the Boltzmann

distribution, proportional to e−E(S)/kBT for systems in (quasi)equilibrium, an approximation which

can be made if RNAP homogenize throughout the cell at a much higher rate than that at which

they are being produced. The occupancy hypothesis has despite its simplicity (for example ignoring

details of open complex formation and promoter escape rate) proved surprisingly successful in many

different settings [25, 1].
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Figure 5.3: Number of operons, genes and binding sites regulated per TF as reported by Regu-
lonDB 8.5. The TFs have been sorted by increasing number of interactions, and the dark shaded
area highlights the TFs responsible for 50% of all regulatory interactions in E. coli. The median
number of operons regulated per TF is 3.0.

5.3 Results

5.3.1 How many genes do TFs regulate?

In regulatory networks, genes of correlated biological function are often coregulated. For example a

flagellum in E. coli consists of roughly thirty different proteins [30] present at exact ratios. Not all

the flagellar genes can however fit the same operon, since an RNA polymerase (RNAP) would likely

fall off or stall before reaching the end, and instead these thirty genes are being transcribed from

roughly ten different operons [6]. To express the flagellar proteins at correct ratios it is important

that these operons are coregulated, a task which in E. coli is handled by the TFs FlhC and FlhD.

However, other biological functions correlate with the production of flagella. For example production

of sugar receptors in the cell membrane such as MglBAC, necessary for chemotaxis, are also regulated

by FlhC and FlhD. In general we expect “correlated genes” to form clusters that are regulated by

the same TFs, and the question we will address in this section is: What is the typical size of such

clusters?

In Fig. 5.3 we show the number of genes and operons that are coregulated by TFs as well as the

total number of binding sites for these TFs, reported by RegulonDB 8.5. The numbers provide a

lower estimate of the actual E. coli regulatory network, acknowledging the fact that not all binding

sites have yet been discovered. The figure reveals two almost separate groups of TFs: a large

number of specific TFs which regulate only a few operons, and a mere handful of global TFs [19, 20]
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Transcription factor Operons Genes Binding sites
CRP 221 495 320
FNR 108 296 131
Fis 96 225 237
IHF 76 219 114

H-NS 70 179 105
ArcA 64 172 118
Fur 63 129 122
Lrp 41 103 103

...
...

...
...

Table 5.1: Global TFs and their associated number of binding sites (RegulonDB 8.5).

regulating up to a hundred operons [see Table 5.1]. Half of all TFs regulate two operons or less,

suggesting that many processes in E. coli are not strongly correlated with other processes and can

be carried out independently, unlike the construction of flagella. For example, in response to varying

levels of copper in the cytoplasm ComR reportedly regulates only one single gene bhsA, which alters

the outer cell membrane permeability for copper [31]. It would not have been far-fetched to believe

that other genes would also be regulated by this TF. Global TFs, which regulate core activities in

the cell, for example metabolic pathways (e.g. CRP) or the translational machinery (e.g. Fis), are

the exceptions to this rule. Despite the small number of global TFs, these are involved in roughly

half of all reported regulatory interactions.

Instead of considering the number of operons regulated per TF, we can, conversely, consider

the number of TFs regulating each operon. This serves as a simple proxy for the complexity of

the regulatory function at a promoter. The more TFs regulating an operon, the more specific its

response can be to various cellular conditions. In Fig. 5.4 we show the number of TF interactions

and number of different TF types regulating operons as reported by RegulonDB 8.5. The average

number of TF binding sites per operon is only 1.1, but climbs to 3.5 when neglecting operons

without known regulatory interactions. This observation suggests that data in RegulonDB is, to some

extent, collected “one operon at a time”, i.e. the binding site locations for one operon are carefully

examined before moving to the next operon. There is an approximately exponential decrease (see

fit) in reported number of operons as the number of regulatory interactions increases. It is perhaps

surprising that even for such a well studied organism as E. coli more than half of the genes still lack

any regulatory annotation. Among these unannotated genes we find important examples such as the

genes responsible for mechanosensation mscS, mscL, mscK, ynal, ybio and ybdG. Preliminary results

from our lab based on the method of Sort-seq [13] show that at least some of these genes might in

fact be regulated. Other notable genes lacking regulatory annotation include: lpp, a lipoprotein

believed to be one of the most abundant proteins in E. coli [32]; rep, a helicase required for genomic

replication [33] ; kdpD and nhaB, genes related to regulation of potassium [34] and sodium [35]
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Figure 5.4: Number of binding sites and TF types regulating each operon (RegulonDB 8.5). The
mean number of binding sites per operon is 1.1 (3.5 for operons with at least one known binding
site).

levels in the cell. Nevertheless, it is still clear that genes in E. coli do not strictly depend on TFs

to be transcribed. This is in contrast with eukaryotic transcription where TFs are necessary for the

transcription initiation process. Moreover, in many eukaryotes, TFs frequently bind in clusters [36],

of which we find little evidence in Fig. 5.4.

We can compare the observed distribution of number of TF interactions per operon with the ran-

dom promoter architecture model [see Models]. Looking at Fig. 5.5 we see some notable differences

between the random promoter architecture model and the observed distribution. A larger number

of operons are reported as unregulated in RegulonDB 8.5 than expected from the random promoter

architecture model. One possible explanation could be that some TFs tend to bind cooperatively at

multiple sites at a promoter region rather than in isolation, which would lead to a higher number of

unregulated operons for a given number of binding sites. We will address this interesting question

in more detail below. Another explanation could simply be that RegulonDB 8.5 is inherently biased

and reports a higher fraction of unregulated operons than the actual value. The logic behind this

hypothesis is that those operons for which there are known binding sites correspond in general to

those that have been studied carefully. To take the latter possibility into account we subtract unreg-

ulated operons to consider the distribution of binding sites for only operons known to be regulated.

In this case we update the prediction of the random promoter architecture model [Eq (5.1)] by first

assigning one binding site to each of N
(reg)
op regulated operons. Then we randomly distribute the
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Figure 5.5: Distribution of number of TF binding sites per operon in RegulonDB 8.5 and the ran-
dom promoter architecture model. Shown separately are distributions after neglecting unregulated
operons (“regulated only”).

remaining Nbs −N (reg)
op binding sites on the N

(reg)
op operons, as in Eq (5.1), leading to

Pbs(m;Nbs) =

(
Nbs −N (reg)

op

m− 1

)(
1

N
(reg)
op

)m−1(
1− 1

N
(reg)
op

)Nbs−N(reg)
op −m+1

, m = 1, 2, 3, . . . .

(5.9)

In Fig. 5.5 we now observe an overrepresentation of operons regulated from a single binding site,

compared to the random promoter architecture model (compare black and blue dashed lines). This

supports the idea that E. coli generally favors simple regulatory strategies when possible. On the

contrary there is also a small group of highly regulated operons. For example gadAXW, coding for

genes in the acid resistance system[37], is regulated by 35 TF binding sites. The operon csgDEFG,

coding for genes that regulate the assembly and transport of extracellular amyloid fibres (known as

Curli) [38], is regulated by 33 TF binding sites, and the operon glpTQ, coding for genes responsible

for the uptake of glycerol-3-phosphate [39], is regulated by 21 TF binding sites. These promoter

architectures could virtually never (P ≈ 10−40 − 10−20, Eq. (5.1)) occur in the random promoter

architecture model, and might as such be of interest for further study.

We can also use the random promoter architecture model to study the number of TF interactions

per operon for particular TFs. We expect this number to be higher than suggested by the random

promoter architecture model since a TF can regulate an operon cooperatively from multiple sites. As

an example the well-studied Lac repressor has three known binding sites in E. coli [2], all regulating

the same operon (lacZYA). Had these three sites been randomly distributed over all operons, it would
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TF
Total number of

binding sites

Operons regulated by
multiple binding sites

(RegulonDB)

Operons regulated by
multiple binding sites
(Random promoter)

p-value

OxyR 44 19 0.69 1.9× 10−31

ArgR 34 15 0.41 3.4× 10−27

NarP 21 10 0.16 7.7× 10−22

NarL 98 25 3.3 1.4× 10−19

Fis 237 52 18 2.7× 10−17

TyrR 19 8 0.13 2.0× 10−16

FlhDC 30 10 0.32 1.0× 10−15

IHF 114 25 4.5 1.5× 10−15

CRP 320 67 31 3.5× 10−14

CytR 23 8 0.19 4.8× 10−14

NagC 23 8 0.19 4.8× 10−14

Table 5.2: TFs regulating operons at multiple binding sites that differ significantly from the random
promoter architecture model. The p-value for data in RegulonDB 8.5 is given by the probability of
an equal or more extreme outcome in the random promoter architecture model.

have been an unlikely outcome for them all to regulate the same operon. In Table 5.2 we show the

number of operons regulated at multiple binding sites for a given TF, both in RegulonDB 8.5 and

as predicted by the random promoter architecture model [Eq. (5.4)]. Many of these TFs differ very

significantly from the random promoter architecture model, which could be indicative of multiple

TF binding domains (e.g. OxyR [40], ArgR [41]), cooperative binding (e.g. TyrR [42]), TFs which

repress operons by DNA looping (e.g. NagC [43]), or chromosomal restructuring through repeated

TF binding (e.g. Fis [44]). Interesting exceptions include Rob and MarA, which despite being

common regulators do not bind to multiple binding sites at a single operon. Thus the random

promoter architecture model allows to us identify TFs of special interest.

With a large number of targets we expect global TFs to be more abundantly expressed in the

cell, to avoid running the risk of depleting the reservoir of TFs and hence the TF losing its ability

to function effectively [45, 46]. In Fig. 5.6, we explore the relationship between TF copy number

and corresponding number of binding sites, using two different genome-wide protein copy number

censuses based on fluorescence measurements [47] and mass spectrometry [48]. The data shows

a positive but not statistically significant linear relationship in the fluorescence data set (log-log

slope=0.14± 0.18), but not in the mass spectrometry data set (log-log slope=0.01± 0.17), where we

estimated the uncertainty in the linear fit parameter using the method of bootstrapping [49]. Large

systematic deviations in the protein censuses [50, p. 43] makes them difficult to use as means for

model testing.

Naively one could also imagine highly expressed genes to be subject to more regulation, because

expressing too many of these would be energetically costly and expressing too few could have serious

consequences to fitness of the cell. By combining binding site multiplicities from RegulonDB 8.5 with
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Figure 5.6: Number of TF binding sites (RegulonDB 8.5) vs. number of TF copy number as measured
in [48, 47]. The two lines mark the critical boundary where the number of binding sites is large
enough to deplete TFs binding as monomers (solid) or dimers (dashed). Updated version of figure
published in [45].

the same protein copy number censuses [47, 48] we can explore the possible relationship between

these two quantities. In Fig. 5.7 we show number of TF binding sites (RegulonDB 8.5) vs. number

of TF copy number. Again we find a positive but not statistically significant relationship using

the fluorescence based protein census (log-log slope=0.20± 0.13), but not in the mass spectrometry

protein census (log-log slope=0.02± 0.08). Thus, it appears that highly expressed genes are not in

general subject to more regulation than others.

5.3.2 How are activator and repressor binding sites configured?

Many genes need to be expressed only under conditions satisfying some “combinatorial rule”. For

example the β-galactosidase enzyme LacZ in E. coli, which cleaves lactose into glucose, is only

expressed if lactose is present and glucose, the more favored energy source, is not present [51].

To achieve combinatorial control TFs must be able to both activate and repress genes, and the

configuration of the two types of interactions determines the regulatory response. In this section we

will study promoter architectures in more detail and their influence on gene expression.

To classify promoter architectures we adapt the notation (A,R) for a promotor regulated by

A activator and R repressor binding sites. Using RegulonDB we can easily find the distribution

P (A,R) for (A,R) with respect to all known regulatory interactions in E. coli. We show the most

dominant promoter architectures in Fig. 5.8, along with their expected frequency in the “two-TF”

random promoter architecture model described in Models [Eq. (5.3)]. We see an almost equal



161

1 2 3 4 5 6 7 8 9
Number of regulatory TF interactions

10-1

100

101

102

103

104

Pr
o
te

in
 c

o
p
y 

n
u
m

b
er

1 2 3 4 5 6 7 8 9
Number of regulatory TF interactions

101

102

103

104

105

Pr
o
te

in
 c

o
p
y 

n
u
m

b
er

Figure 5.7: Measured protein copy number vs. number of TF binding sites regulating the transcrip-
tion of the protein. The boxes show median, upper and lower quartiles, and the dashed lines show
the range of the data. (Top) Protein data based on fluorescence measurements [47]. (Bottom) mass
spectrometry [48].
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Figure 5.8: Frequency of the most dominant promoter architectures listed in RegulonDB 8.5 and their
corresponding frequency in the random promoter architecture model. Binding site configurations
with A activator and R repressor binding sites are denoted by (A,R).

use of repressors and activators, 53 % vs. 47 % interactions, and for each promoter architecture

(A = a,R = r) shown in Fig. 5.8 its symmetric counterpart (A = r,R = a) is almost equally

present, both in absolute numbers and compared to the random promoter architecture model. Using

the random promoter architecture model we can identify TF pairs which coregulate operons more

frequently than one would expect by chance, a possible sign of TF-TF interactions or two TFs with

otherwise related biological function [24]. In Table 5.3 we list the ten most such overrepresented TF

pairs. The top pairs MarA, SoxS and Rob are all paralogous proteins, having around 45% identical

amino acid sequence at their N-terminals [52], responsible for regulating various stress responses.

FNR and ArcA are both global regulators responding to the availability of oxygen [53] in the cellular

environment. NarL and NarP are homologous proteins responding to availability of nitrate and

nitrite [54], and have been shown to act (anti)cooperatively with FNR [55, 56]. Fur and IHF are

also global regulators, whose interplay with FNR has been investigated in [57, 58, 59]. GalR-GalS

are homologous proteins responding to galactose [60], and GadX-GadW are homologous proteins

responding to variations in pH level [37]. Even though TF pairs like Fis-CRP are more frequent

coregulators (at 38 operons) in absolute numbers than any of the TF pairs listed in Table 5.3, this

pair is still not particularly overrepresented when compared to the random promoter architecture

model (p-value “only” 10−3), and their frequent coregulation can simply be attributed to the large

number of CRP and Fis binding sites. Hence the random promoter architecture model allows us to

find the most interesting TF pairs.
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TF 1 TF 2
Total binding
sites (TF 1)

Total binding
sites (TF 2)

Coregulated
operons

(RegulonDB)

Coregulated
operons

(Random promoter)
p-value

MarA SoxS 24 29 18 0.26 5.5× 10−34

MarA Rob 24 17 14 0.15 1.2× 10−28

SoxS Rob 29 17 14 0.18 4.6× 10−27

FNR ArcA 131 118 30 5.3 6.4× 10−16

FNR NarL 131 98 27 4.5 3.0× 10−15

NarP NarL 21 98 11 0.75 1.7× 10−11

FNR Fur 131 122 24 5.5 2.8× 10−10

FNR IHF 131 114 23 5.2 4.3× 10−10

GalR GalS 12 12 5 0.054 5.5× 10−10

GadX GadW 37 20 6 0.27 1.5× 10−7

Table 5.3: TF pairs that frequently coregulate operons. The p-value for data in RegulonDB 8.5 is
given by the probability of an equal or more extreme outcome in the random promoter architecture
model.

Having identified the most common promoter architectures we are curious to find out how these

relate to gene expression. For example, are activated genes more abundantly expressed than re-

pressed genes? To answer this question we identify all genes corresponding to a certain promoter

architecture (A,R) in RegulonDB and acquire the protein copy number distribution of these genes

from the two E. coli protein censuses [47, 48] [see Fig. 5.9]. Perhaps surprisingly, we find no system-

atic correlation between the number of activator and repressor binding sites, and gene expression in

the two sets of 600-1000 genes. The only exception is the promoter architecture with one activator

and one repressor binding site each (1,1), whose median expression level is higher than the upper

quartile of the other five studied promoter architectures, indicating that genes with this architecture

might be more abundantly expressed. The figure shows that even for a given promoter architecture

there is a vast spread in protein copy number, spanning up to three orders of magnitude. It seems

likely that all promoter architectures in Fig. 5.9 would be capable of producing proteins across the

full range of biologically relevant concentrations. The main purpose of activators appears not to be

increasing the maximum possible expression of a gene but rather, together with repressors, modu-

lating it around a certain mean level. Such modulation can be achieved through other mechanisms,

such as the ribosomal binding sequence (RBS) or promoter strength, which we will discuss in a later

section.

5.3.3 Where are TF binding sites located?

There are many different ways in which TFs can regulate the transcription rate of a gene. Perhaps

most intuitively TFs can facilitate or block RNAP from interacting with a promoter of interest,

to either activate or repress transcription of a gene [15]. However, TFs can modulate basically

any step in the chain of events preceding promoter escape [61], or modify the DNA methylation
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Figure 5.9: Protein copy number as a function of promoter architecture for the most common
architectures. The notation (i, j) represents a promoter with i activator and j repressor binding
sites. (Top) protein data based on fluorescence measurements [47]. (Bottom) mass spectrometry
[48].



165

250 200 150 100 50 0 50 100
Position relative to TSS

0

20

40

60

80

100

120

140

O
ve

rl
ap

p
in

g
 o

p
er

at
o
rs

All

CRP

Fis

(A) Global activator binding sites
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(B) Global repressor binding sites
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(C) Specific activator binding sites
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Figure 5.10: Distribution of activating and repressing binding sites bound by global TFs and specific
TFs, respectively. The y-axis shows number of binding sites overlapping each nucleotide position,
after aligning all promoters with respect to their transcription start site for the different kinds of
TFs. Similar figures were reported in [19] using an earlier version of RegulonDB.

or compactification states [62]. In eukaryotes, where the latter regulatory strategies are common,

TF binding sites can be located hundreds of thousands of base pairs away from the transcription

start site, which means that DNA needs to “loop” to establish a contact between TF and RNAP (if

necessary for regulation) [62]. Hence each class of transcriptional regulation will have its own TF

binding profile, and in this section we will investigate these profiles in more detail for E. coli.

After aligning all known promoters with respect to their transcription start site we can make

a histogram [see Fig. 5.10] over the number of binding sites overlapping each nucleotide position.

The lack of nucleosomes in procaryotes leads to a much narrower TF binding profile compared to

eukaryotes; in fact 75 % of all reported TF interactions in RegulonDB 8.5 take place within 100 bp

of the transcription start site. Activator and repressor binding sites have fundamentally different

profiles; whereas repressors overlap the RNAP binding site for maximum repression, activators

facilitate transcription initiation from upstream of the -35 region. TFs binding significantly upstream
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Figure 5.11: Probability of TF binding site overlap. Binding sites are defined as an interval of
nucleotides from the 5× 106 bp E. coli genome taken up by a TF upon binding. Two binding sites
sharing one or more nucleotides are considered to be overlapping, independently of which strand the
TFs bind.

of -35 bp would to a larger extent need to loop DNA to interact directly with RNAP, or regulate

expression of genes through other long range mechanisms. An interesting difference between specific

activators [Fig. 5.10(B)] and global activators [Fig. 5.10(A)], is that the latter have two separate

peaks, located at -70 bp and -45 bp respectively, rather than one. The TFs whose contribution

dominates these two peaks, which should correspond to class I and class II activation [63, 61], are

CRP and Fis (shown separately in Fig. 5.10(A)). Class I activators interact with the α-CTD domain,

whereas class II activators interact directly with the σ factor. Although most repressors function

by blocking RNAP from binding the promoter, still around 27 % of the repressors bind upstream of

-70 bp, i.e. without the possibility of blocking RNAP. One possible way these upstream repressors

could function is by preventing activators from binding the promoter. To test this theory we show

in Fig. 5.11 the probability of a repressor binding site to overlap with an activator binding site as a

function of position, using the probability for two activators to overlap as a control. The results show

that around 30 % of the repressors binding upstream of -70 bp overlap with an activator, compared

to 15-20 % for two different activators. This suggests that blocking of activators is an important

regulatory strategy for upstream repressors but not the only one, as a large fraction of upstream

repressors inhibit transcription through other means. Additional mechanisms through which an

upstream repressor could inhibit an activator from accessing its binding site without overlapping it

include DNA allostery [10] or DNA bending [64, 65]. In total, almost half of all binding sites reported

in RegulonDB 8.5 overlap with other binding sites, which leads us to believe that this constitutes
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Figure 5.12: Footprint size (in base pairs) for all TF-DNA interactions (RegulonDB 8.5). Mean
footprint size: 17.3 bp. Updated version of figure published in [67].

an important regulatory strategy. As more binding sites are discovered, the number of overlapping

binding sites will likely increase noticeably, just as the probability of two students in a class having

birthday on the same day goes up rapidly with the number of students. Interestingly, TFs often

(37 % of the reported overlapping interactions) overlap with themselves. For example, out of the 88

known Fur binding sites, 75% of them overlap with other Fur binding sites [66].

Since the regulatory region of a gene is of limited size, TFs need to compete for space at pro-

moters with other binding sites, in particular TFs which interact directly with RNAP. To study this

“real estate” problem we first collect the footprint size of all TF-DNA interaction sites reported in

RegulonDB 8.5 [see Fig. 5.12]. A similar figure is reported in [67] using an earlier version of Regulon

DB. Some of the notable peaks in Fig. 5.12 correspond mainly to binding of global TFs: Fis (15

bp), ArcA (15 bp) and CRP (22 bp). Most TFs interact with a region of around 15 bp (although

outliers exist) which means that one could theoretically fit three nonoverlapping binding sites within

50 bp. Since the majority of operons reportedly have fewer than this number of binding sites [see

Fig. 5.4], the size of the regulatory region does in general not seem to be a major constraining factor.

However, for promoters with a larger number of binding sites, of which we saw some examples in

Fig. 5.4, TFs would either need to bend DNA to access RNAP, or overlap with other TFs. To

further study the real estate of the promoter we look at the separation between binding sites [see

Fig. 5.13], which shows the the edge-to-edge distance for nonoverlapping adjacent binding sites. The

majority of binding sites in this set are separated by less than 15 bp from their neighbors. Hence

for an operon with three binding sites the regulatory region would be expected to take up around

3× 15 + 2× 15 = 75 bp, around the same as observed in Fig. 5.10.
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Figure 5.13: Edge to edge distance between adjacent binding sites (RegulonDB 8.5). Figure does not
include binding sites separated by more than 150 bp, which would likely correspond to regulation of
different operons.

5.3.4 How does promoter architecture relate to promoter strength?

Many prokaryotic genes do not rely on TFs for regulation, and will be constitutively expressed

independently of the cellular environment. The production of these genes will, at our current best

understanding, only be affected by the global availability of RNAP, sigma factors, ribosomes and the

interaction strengths with these different complexes. For proteins which are in constant demand,

constitutive expression provides a simple and efficient choice of promoter architecture. Despite

its simplicity, constitutive expression allows an impressive dynamic range in protein production,

spanning at least three orders of magnitude, as we found evidence for in Fig. 5.9. This demonstrates

the power of the basal production machinery, whose transcriptional component we will study further

in this section. In particular we will be interested in the relationship between promoter strength

and regulation by TFs.

In E. coli the transcription rate of a gene can vary by up to three orders of magnitude due to

differences in the RNAP affinity alone [25], not taking TFs into account. To illustrate this point we

use the linear RNAP-DNA interaction model introduced in Models to predict the binding energy

to all known σ70 promoters along with the corresponding distribution for nonspecific binding [see

Fig. 5.14]. As expected we get two separate distributions, where RNAP binds on average 2.4 kBT

more strongly to known promoters than sequences chosen randomly from the E. coli genome. The

predicted RNAP binding energy distribution spans roughly 8 kBT from the strongest to the weakest

promoter, corresponding to a predicted 3000-fold difference in RNAP binding affinity. This difference

is similar to that found between the most abundantly expressed proteins (e.g. CRP) and scarcely
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Figure 5.14: Predicted RNAP binding energy [25] for promoters in RegulonDB 8.5 and DNA se-
quences randomly chosen from the E. coli genome. The spacer region is allowed to range from 16-18
bp, and the -10 box is allowed to deviate by one base pair up or down from its consensus position.
The RNAP binding energy is taken as the minimum binding energy of the 3×3 = 9 possible binding
configurations.

expressed proteins (e.g. LacI) [68, 69] in E. coli, suggesting that promoter strength alone might be

a powerful enough tool to set the mean level of gene expression to most biologically relevant values.

A discomforting observation from Fig. 5.14, however, is that 200,000 sites or so in the 5× 106 bp E.

coli background interact more strongly with RNAP than the typical promoter. This raises several

important questions [70, 71, 72]: Is the linear energy model missing key information, or can all the

predicted promoters in principle produce transcripts? Do weak promoters need to be activated by

TFs to function? Although trying to solve these important questions falls outside the scope of the

current chapter, we note that the paradox might originate from the fact that the promoter sequence

encodes detailed information about both RNAP binding affinity, open complex formation rate and

promoter escape rate [73, 74] in a way that likely cannot be captured in a simple linear model.

Powerful new methods such as RNA-seq [75] could provide further insight into which of the 200,000

predicted promoters are actually transcriptionally active.

In Fig. 5.9 we learned that the number of activator or repressor binding sites did not seem to have

any systematic effect on the average gene expression in two sets of 600-1000 genes. Since activators,

by definition, increase the expression of a gene and repressors reduce it, the only possible explanation

for this observation (if true) is that repressed genes have a higher basal level of expression. This

could, for example, be the result if repressed genes have a higher affinity (promoter strength) for

RNAP to their promoters. Since stronger promoters recruit RNAP more easily they would hence
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Figure 5.15: Predicted RNAP binding energy to promoters in the simple activation (1,0) and simple
repression architecture (0,1). Operons whose transcription is initiated from multiple promoters are
excluded.

become transcriptionally more active. To investigate the relationship between promoter strength

and promoter architecture we show in Fig. 5.15 the RNAP binding energy distribution for genes

which according to RegulonDB 8.5 are regulated from a single activator or repressor binding site. Our

data suggest, though not conclusively, that RNAP binds more strongly to the promoters of repressed

genes, Erepressed = −1.9 ± 0.17, than promoters of activated genes, Eactivated = −1.1 ± 0.24. The

reported uncertainty in the median is given by the standard deviation divided by the square root

of number of data points (≈ 50). Our results suggest that repressed genes have higher basal rate of

transcription, providing a possible explanation as to why we do not see a significant differences in

gene expression as compared to activated genes. Conversely, weak promoters are more likely to be

activated by TFs, suggesting that these promoters might not work effectively without TF activation.

5.4 Discussion

After more than half a century of intense study E. coli remains one of the most important model or-

ganisms in biology. In order to make the vast pool of knowledge obtained from these studies publicly

available and directly accessible, ambitious initiatives such as RegulonDB have screened thousands

of references to collect information relating to TF binding site locations, operon organization, and

much more. Although this annotation process is far from complete, as more than half of the E.

coli genes still lack any known regulation, we now have a better opportunity than ever to study
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regulatory interactions in detail.

In this study we have analyzed TF-DNA interactions reported in RegulonDB 8.5, and found

distinct differences in binding site locations depending on TF type (activator, repressor, global

TF or specific TF). Using an analytic random promoter architecture model, analogous to random

genetic networks, we concluded that most promoters in E. coli are less heavily regulated than

one would expect (with some interesting exceptions). In fact the majority of operons listed in

RegulonDB 8.5 have fewer than three associated TF binding sites, and the majority of TFs regulate

fewer than three operons, suggesting that many E. coli activities can be performed with little

“oversight”. The random promoter architecture model further allowed us to identify, with well

defined statistical significance, homologous or otherwise related pairs of TFs. Perhaps surprisingly

we found no systematic correlation between the number of activating or repressing TF interactions

and expression of a gene, as measured by two different genome-wide protein censuses covering 600-

1000 genes. A position weight matrix model of RNAP provided some evidence that this might be

related to a higher basal rate of transcription for repressed genes compared to activated genes

One of the grand challenges of physical biology is to be able to construct predictive maps between

promoter nucleotide sequence and gene expression. Increasingly accurate promoter architecture

data, found e.g. using powerful techniques like ChIP-seq, allow predictive maps to be both tested

and refined. A difficulty with mapping promoter architecture and gene expression, apart from

lacking complete knowledge of the regulatory network, is a substantial disagreement on protein

concentrations as measured using different experimental methods and under different experimental

conditions. The protein copy numbers measured using mass spectrometry [48] are for example on

average at least one order of magnitude higher than for the same proteins measured with fluorescence

based techniques [47], though these kinds of effects can be due to different growth conditions for

the cells. As TF copy number plays a central role in regulatory function, we believe resolving these

discrepancies will be a necessary step for a deeper understanding of several important aspects of

gene regulation. Ultimately, predictive maps of gene expression combined with accurate promoter

architecture data could give an opportunity to understand in silico how many processes in bacteria

are regulated, and hence provide important guidelines to experimentalists.
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Chapter 6

Conclusion

To survive in an unpredictable environment, such as the 20 km thick life-sustaining region near

the surface of the earth, living organisms depend critically on their ability to sense and respond to

external and internal stimuli. These responses are programmed in the DNA of every cell, which

carry instructions for how to produce the right configuration of proteins, at the right (average)

concentrations, and at the right time. These actions are not only carried out by proteins, but also

regulated by proteins, which are connected into a complex genetic network. Regulatory networks

are under immense pressure from mutations to disintegrate, and their ability to stay, largely, intact

over time demonstrates the critical role of gene regulation for the survival of an organism.

Regulatory proteins which bind DNA, or transcription factors (TFs), typically target not only a

single gene but a multitude of genes, either identical gene copies (for example located on plasmids

or viral vectors), or different coregulated genes. Moreover, for each regulated gene a TF can have a

varying number of binding sites. This leads to a large number of possible ways a given set of TFs or

binding sites can be distributed over a set of genes. Using the classical problem of “balls and bins”

from mathematical combinatorics, we here derive such distributions and show that they can provide

valuable insights into gene regulation

Interestingly, many TFs are believed to exist at a concentration comparable to their target

binding sites. As TFs bind to their targets, fewer remain available to also regulate the other genes,

resulting in “entangled” transcription of the coregulated genes. One of the major results presented

in this work is a general thermodynamic model of transcriptional regulation that takes the promoter

entanglement effect into account, and predicts the fold change in gene expression, as well as the

correlation in transcription between different genes. One of the signature predictions of this model

is a sharp drop in gene expression when the copy number of a repressor exceeds the number of

regulated genes.

To test our theoretical predictions experimentally, we design an experiment where we can sys-

tematically tune the various model parameters involved, such as the TF copy number, binding site

affinities, or gene copy number. All these parameters are experimentally measured or taken from
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literature, which allows us to test the theoretical predictions using no free fit parameters. Our re-

sults clearly prove the existence of the TF titration effect, and that its influence on transcriptional

regulation can (by biology standards), be accurately predicted by the thermodynamic model. An

interesting side effect of TF titration is that it can be exploited to measure the plasmid copy number,

as well as its variance. This can otherwise be an expensive and time-consuming operation.

Our experiments show that the thermodynamic model can predict the fold change in gene ex-

pression as a function of different model parameters for some specific genetic constructs. However,

a grand challenge of quantitative biology is to be able to use theoretical models to predict the

expression for every gene throughout an organism. To take a small step in this direction, we ana-

lyze the thousands of known regulatory interactions in E. coli, the model organism which arguably

demonstrates the most well-explored regulatory network, to better understand the strategies of tran-

scriptional regulation in a real organism. Specifically, we look at the number of TF binding sites

per promoter, binding site positions, and their regulatory action (activation or repression) for every

annotated gene. To identify frequently biologically recurring strategies in transcriptional regulation

we compare our findings to a “random promoter architecture model”, analogous to random genetic

networks used in the study of genetic network motifs, where promoters are constructed by random

“sprinkling” of a set of binding sites. Interestingly, many of the mathematical ideas underlying the

thermodynamic model can here be reused in a very different context. The random promoter archi-

tecture model can also be used to identify TF pairs which coregulate genes more frequently than

one would expect by chance, indicating that these TFs might have a related biological function. In

fact, many such overrepresented TFs in E. coli turn out to be homologous.

Next, we study whether promoter architecture has any systematic effect on the average gene

expression in E. coli, using two different genome-wide expression censuses. Our preliminary results

show, surprisingly, that there seems to be no such strong dependence. Before taking these results

for granted one should, however, bear in mind that the regulatory data of E. coli is still incomplete,

and that genome-wide expression measurements might still not be considered fully reliable.

The goal to understand and accurately predict gene expression in a genome-wide setting, presents

a great but exciting challenge in quantitative biology. Such modeling capabilities could open doors

to profound applications in other fields where genetic circuits play a role. The work presented

here takes a step in this direction, by generalizing a previously successful thermodynamic model of

transcriptional regulation, taking into account that TFs in general regulate many different genes or

gene copies. Many problems, however, remain to be addressed. The thermodynamic model has little

to say about dynamical properties of genetic networks, and fails to describe nonequilibrium processes,

such as abortive transcription initiation or regulatory action of TFs which is not only related to the

binding occupancy. An even greater challenge, perhaps, is to obtain information about promoter

architectures, e.g. binding site identities to feed the quantitative models, for thousands of genes in
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an organism at once. Current approaches that explore promoter architectures one at a time would

need further development to be suitable for genome-wide studies. However, given the rapid advances

in both the experimental and theoretical understanding of regulatory processes in a cell, there are

good reasons to be optimistic that many valuable future lessons will be learned about gene regulation

at a larger scale.
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