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Abstract

Today our understanding of the vibrational thermodynamics of materials at low

temperatures is emerging nicely, based on the harmonic model in which phonons

are independent. At high temperatures, however, this understanding must ac-

commodate how phonons interact with other phonons or with other excitations.

We shall see that the phonon-phonon interactions give rise to interesting coupling

problems, and essentially modify the equilibrium and non-equilibrium properties

of materials, e.g., thermodynamic stability, heat capacity, optical properties and

thermal transport of materials. Despite its great importance, to date the anhar-

monic lattice dynamics is poorly understood and most studies on lattice dynamics

still rely on the harmonic or quasiharmonic models. There have been very few

studies on the pure phonon anharmonicity and phonon-phonon interactions. The

work presented in this thesis is devoted to the development of experimental and

computational methods on this subject.

Modern inelastic scattering techniques with neutrons or photons are ideal for

sorting out the anharmonic contribution. Analysis of the experimental data can

generate vibrational spectra of the materials, i.e., their phonon densities of states

or phonon dispersion relations. We obtained high quality data from laser Raman

spectrometer, Fourier transform infrared spectrometer and inelastic neutron spec-

trometer. With accurate phonon spectra data, we obtained the energy shifts and

lifetime broadenings of the interacting phonons, and the vibrational entropies of

different materials. The understanding of them then relies on the development of

the fundamental theories and the computational methods.

We developed an efficient post-processor for analyzing the anharmonic vibra-
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tions from the molecular dynamics (MD) calculations. Currently, most first prin-

ciples methods are not capable of dealing with strong anharmonicity, because the

interactions of phonons are ignored at finite temperatures. Our method adopts

the Fourier transformed velocity autocorrelation method to handle the big data

of time-dependent atomic velocities from MD calculations, and efficiently recon-

structs the phonon DOS and phonon dispersion relations. Our calculations can

reproduce the phonon frequency shifts and lifetime broadenings very well at vari-

ous temperatures.

To understand non-harmonic interactions in a microscopic way, we have devel-

oped a numerical fitting method to analyze the decay channels of phonon-phonon

interactions. Based on the quantum perturbation theory of many-body interactions,

this method is used to calculate the three-phonon and four-phonon kinematics sub-

ject to the conservation of energy and momentum, taking into account the weight

of phonon couplings. We can assess the strengths of phonon-phonon interactions

of different channels and anharmonic orders with the calculated two-phonon DOS.

This method, with high computational efficiency, is a promising direction to ad-

vance our understandings of non-harmonic lattice dynamics and thermal transport

properties.

These experimental techniques and theoretical methods have been successfully

performed in the study of anharmonic behaviors of metal oxides, including rutile

and cuprite stuctures, and will be discussed in detail in Chapters 4 to 6. For exam-

ple, for rutile titanium dioxide (TiO2), we found that the anomalous anharmonic

behavior of the B1g mode can be explained by the volume effects on quasiharmonic

force constants, and by the explicit cubic and quartic anharmonicity. For rutile

tin dioxide (SnO2), the broadening of the B2g mode with temperature showed an

unusual concave downwards curvature. This curvature was caused by a change

with temperature in the number of down-conversion decay channels, originating

with the wide band gap in the phonon dispersions. For silver oxide (Ag2O), strong

anharmonic effects were found for both phonons and for the negative thermal

expansion.
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Chapter 1

Lattice Dynamics and
Phonon-Phonon Interactions
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1.1 Bravais Lattices

A fundamental concept in the description of a crystalline solid is the Bravais lattice,

which specifies the long-range periodicity. A crystal lattice can be generated by the

infinite repetition in 3-dimensional space of a unit cell defined by three noncoplanar

vectors: a⃗1, a⃗2, and a⃗3, which are called the primitive lattice vectors of the crystal.

Labeling each unit cell by a triplet of integers l = (l1, l2, l3), the equilibrium position

of the origin of the unit cell l is

R⃗l = l1 a⃗1 + l2 a⃗2 + l3 a⃗3 (1.1)

There are 14 Bravais lattices in 3 dimensions. A crystal can be described by its un-

derlying Bravais lattice, together with the arrangement of atoms within a particular

unit cell. The equilibrium position of each atom in the unit cell can be assigned a

basis vector b⃗ with respect to the origin of the unit cell R⃗l. The term ”lattice with a

basis” is usually used to describe the combination of these two vectors.

Sometimes it is convenient to study a Bravais lattice by its reciprocal lattice,

which is the Fourier transform of the real space domain of the original lattice to its

momentum k-space.

exp(iK⃗ · R⃗l) = 1 (1.2)

In this case, the reciprocal lattice vectors K⃗ are essentially the set of all wave vectors

that yield plane waves with the periodicity of a given Bravais lattice, i.e., the

reciprocal lattice consists of the equiphase planes of the plane wave for a given

Bravais lattice, and they are one-to-one maps to each other. Like the Wigner-Seitz

cell in real space, the volume included by surfaces at the same distance from one

site of the reciprocal lattice and its neighbors is defined to be the first Brillouin

zone.
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1.2 Harmonic Lattice Dynamics

In the model of harmonic lattice dynamics, the interatomic potentials are assumed

to be quadratic function of atom displacements. We shall see that the properites

of a lattice are not given accurately by a harmonic model in which phonons are

assumed to be a set of independent oscillators, however, this approximation gives

rise to a good quantum number, n, the number of excitation of a vibrational normal

mode, or equivalently, n phonons, based upon which most of anharmonic theories

are being developed.

In a periodic lattice, the basis functions for atom displacements should satisfy

the Bloch condition, therefore the displacement of atom in the lth unit cell and basis

b can be expressed as a Fourier transformation as

u⃗
(
l⃗
b⃗

)
=

∑
q⃗

U⃗
(q⃗
b⃗

)
ei q⃗· l⃗ (1.3)

This reduces the periodic system with infinite unit cells to just one cell with dis-

placement U⃗
(q⃗

b⃗

)
. Therefore we need to solve a standard small vibration problem

within one cell, but keeping in mind the q⃗ dependence in this cell.

d2

dt2
⃗̆U

(q⃗
b⃗

)
= −

∑
b′

D̂
( q⃗

b⃗ b⃗′
)

√
Mb Mb′

⃗̆U
( q⃗

b⃗′

)
= −

∑
b′

K
( q⃗

b⃗ b⃗′

)
⃗̆U

( q⃗

b⃗′

)
(1.4)

where the dynamical matrix D̂ is the Fourier transform of the harmonic force

constants

D̂
( q⃗

b⃗ b⃗′

)
=

∑
h⃗

Φ

(
h⃗

b⃗ b⃗′

)
ei q⃗· h⃗ (1.5)

and the renormalized displacement, ⃗̆U =
√

N Mb U⃗. Since the dynamical matrix

is Hermitian, we can always find a unitary transformation matrix [C], such that

[C]†[K][C] is diagonal. This is equivalent to an eigenvale problem [K]e⃗s = λe⃗s, where

e⃗s
(q⃗

b⃗

)
is the column vector of [C]. At same time, ⃗̆U is automatically decomposed to

a set of uncoupled eigenstates Xs as
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⃗̆U
(q⃗
b⃗

)
=

∑
s

e⃗s

(q⃗
b⃗

)
Xs (1.6)

For our problem, we can seek the simple solution of Xs = eiωs t, then Eq. (1.4)

becomes

ω2
s e⃗s = [K] e⃗s (1.7)

The solution gives the normal modes and the vector e⃗s. In lattice dynamics, e⃗s
(q⃗

b⃗

)
is

usually called the polarization vector due to its physical meaning, i.e., projecting

the normal mode to the atomic displacements. As we can see from Eq. (1.7),

the mass renormalization is necessary because otherwise a mass matrix will be

rediagonalized and this will lead to the inconvenient couplings of masses Mb.

With the normal modes known, we can simply obtain the well-known second

quantization expression for Xs in terms of the creation and annihilation operators

of phonons, a† and a,

Xs(q⃗ ) =

√
~

2ωs(q⃗)
(a†−q⃗ s + aq⃗ s) =

√
~

2ωs(q⃗)
Âq⃗s (1.8)

Introducing the second quantization is a powerful way to deal with interactions of

excitations, such as phonons and electrons, because the interaction can be depicted

physically as the creation and annihilation of propagators, which will be discussed

in the following sections.

Combining Eq. (1.3), (1.6) and (1.8), it can be shown that the second quantization

expression for the atomic displacement is

u⃗
(
l⃗
b⃗

)
=

∑
q⃗,s

e⃗s
(q⃗

b⃗

)√
ωs(q⃗ )

ei q⃗·⃗lÂq⃗s (1.9)
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1.3 Quasiharmonic Approximation

The quasiharmonic approximation (QHA) assumes that phonon frequencies de-

pend on volume alone, and the lattice dynamics at elevated temperatures can be

approximated as harmonic normal modes with frequencies that are altered by ther-

mal expansion. The usual trend is for phonons to soften with lattice expansion,

increasing the phonon entropy and stabilizing the expanded lattice at elevated

temperatures.

A mode Grüneisen parameter γ j is defined as the ratio of the fractional change

of the mode frequency ω j to the fractional change of volume V at constant temper-

ature.

γ j = −
∂(lnω j)
∂(ln V)

(1.10)

In the QHA method, the thermal expansion is evaluated by optimizing the

vibrational free energy as a function of volume.

F(T,V) = Es +

∫
g(ω)

(
~ω

2
+ kBT ln(1 − e−~ω/(kBT)

)
(1.11)

where the static energy Es is the energy of the cell when all atoms are at their

equilibirum positions. The vibrational free energy in the QHA is minimized to

obtain bothω j and V at different temperatures, and together with the bulk modulus

B and mode specific heat, CV j it is straightforward to calculate the thermal expansion

coefficient within the QHA as

α =
1
B

∑
j

γ jCV j . (1.12)

As we can see, all non-harmonic behavior is included in the Grüneisen parameters,

which depend only on volume.
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1.4 Anharmonic Lattice Dynamics

The anharmonic parts of atomic potentials are those involving terms higher than

second-order terms in the atomic displacements. When the anharmonicity is not

large, for example at very low temperature, we can still linearize the system with

the originial harmonic phonons as we do in the quasiharmonic approximation.

However, especially at high temperatures, with more and more anharmonic part

of the atomic potential being explored, the harmonic theory breaks down because

a set of anharmonic oscillators cannot be uncoupled. Transition probabilities, or

interactions, exist among them and depend on the strength of the anharmonic

couplings.

With the second quantization expression for the atomic displacement as de-

rived in Eq. 1.9, we can conveniently obtain the Hamiltonian of any order in the

second quantization form. For example, the cubic anharmonic Hamiltonian can be

expanded as

H(3) =
∑

q⃗s, q⃗′s′, q⃗”s”

[ ( ~
2N

) 3
2 1

6
√
ωs(q⃗)ωs′(q⃗′)ωs”(q⃗”)

Nδq⃗+q⃗′+q⃗”,G⃗

∑
b⃗α

∑
h⃗′b⃗′β

∑
h⃗”b⃗”γ

Φαβγ

(
h⃗′, h⃗”

b⃗, b⃗′, b⃗”

)

eαs
(q⃗

b⃗

)
eβs

(q⃗′

b⃗′
)

eγs
(q⃗”

b⃗”

)
√

MbMb′Mb”
eiq⃗′·h⃗′ eiq⃗”·h⃗”

]
Âq⃗sÂq⃗′s′Âq⃗”s” (1.13)

= V(3)(q⃗, s ; q⃗′, s′ ; q⃗”, s”) Âq⃗sÂq⃗′s′Âq⃗”s” (1.14)

where, Φαβγ
( h⃗′,h⃗”

b⃗,b⃗′,b⃗”

)
is the third order force constant, and all other symbols and

indices stand for the same physical quantities as those in the preceding sections

about harmonic lattice dynamics.

This second quantization form of Hamiltonian of higher orders shows vividly

how phonons interact with each other by the creation and annihilation operators Â.

More importantly, this form is convenient for us to construct Green’s functions for

higher order terms in the many-body interactions. The Green’s function method

for phonon-phonon interactions is discussed in the next section.
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1.5 Green’s Function Method

Condensed matter physics has evolved from traditional solid state physics that

largely focuses on the effective single particle picture in solids to the description of

many-body interactions and collective phenomena in matter. The understanding

of frequencies and lifetimes of interacting quasi-particles at ground or excited states

is one of the most important and interesting topics, and the anharmonic phonon

lifetime and frequency shift are such examples.

The essential feature is that interactions can only be treated correctly by taking

into account the infinite order of ”weak” perturbations. A systematic mathematical

formulation of the many-body interaction is called the Green’s function method,

which is the fundamental theory of the modern condensed matter physics and

is the primary concept of non-relativistic quantum field theory. Some important

concepts and conclusions will be discussed in this section, and in the next section

we will discuss phonon-phonon interactions using this method. More detailed

presentations of the Green’s function method can be found in [1–3].

1.5.1 The Retarded Green’s Function and Lehmann Representa-

tion

We can define a correlation between two Heisenberg operators A(t) and B(t),

GR(t, t′) = − i
~
θ(t − t′)⟨[A(t), B(t′)]±⟩ (1.15)

where A(t) = eiHt/~Ae−iHt/~ is an operator in the Heisenberg picture with the full

Hamiltonian H. The symbol ⟨⟩ represents the ensemble average and []± chooses

commutators for Fermions or anticommutators for Bosons. It is called the retarded

Green’s function because it works only in the time regime t > t′. To understand the

Green’s function, we may first notice that

GR(t, t′) = GR(t − t′) = − i
~
θ(t − t′)⟨[A(t − t′), B]±⟩ (1.16)
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The Green’s function therefore has the fundamental property of a propagator which

characterizes a propagating process of a state containing one additional particle.

For example, we usually specify A(t) = Ψ̂(t) and B(t′) = Ψ̂†(t′) where Ψ̂ and Ψ̂† are

the field operators for destruction and creation. Then the above definition depicts

a propagator which adds a quasiparticle at time t′ and removes it at time t.

The retarded Green’s function contains all necessary information for a interact-

ing system. By Fourier transforming GR, we can obtain

GR(ω) =
1
Z

∑
n,m

e−βEn⟨n|B|m⟩⟨m|A|n⟩ eβ~ωnm ± 1
ω − ωnm + iη

(1.17)

whereωnm = ~−1(En−Em) is the energy difference of two excited states n and m in the

interacting system, and η is a positive infinitesimal. Here an integral representation

for the step function is used:

θ(t − t′) = −
∫ ∞

−∞

dω
2πi

e−iω(t−t′)

ω + iη
(1.18)

Eq. 1.17 is the well-known Lehmann representation. GR(ω) is analytic in the up-

per half plane and the poles in the lower half plane determine the energy spectrum

of excitations of the interacting system. GR(ω) may contain even deeper physical

meaning, in that according to the linear response theory,

∆A = GR(ω) e−iωt+η t (1.19)

This implies that the retarded Green’s function is the amplitude of the system’s

response to the external disturbance ω. The amplitude will reach infinity when the

external disturbance is in resonance with the intrisinc frequency ωnm, and hence

gives mathematical poles. On the other hand, the retarded Green’s function is

naturally related to the thermodynamic observables, due to the fact that in second

quantization thermodynamic observables can be expressed as the product of field

operators, and the Green’s function itself is also defined in this way.

In the similar manner, we can define the so called advanced Green’s function
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GA(ω) by flipping the poles of GR(ω) with respect to the real axis to the upper

half plane. Combining these two Green’s function GR and GA we can obtain the

real-time Green’s function G(ω) which is analytic all over the complex plane except

the real axis. The Green’s function in real space is hence defined as

G(t, t′) = − i
~
⟨T [A(t), B(t′)]⟩ (1.20)

where the time ordering operator T orders the operators with the latest time t on the

left and includes an addtional factor -1 for each interchange of Fermion operators.

The functions have a common generating function

Γ(z) =
∫ ∞

−∞

dω′

2π
ρ(ω′)
z − ω′ (1.21)

This is easily proved to be true by defining ρ(ω) as the imaginary part of GR(ω), and

this quantity can be identified as the density of states. It is then straightforward to

see that z = ω for G and z = ω ± iη for GR and GA respectively.

1.5.2 Perturbation Theory and Wick’s Theorem For Finite Temper-

atures

All the above discussions are based on one assumption that we have known the

eigenstates and energies of the interacting systems H = H0 + H1, which, however,

is what we are trying to resolve in the first place. Therefore, although the Lehmann

representation of Green’s functions shows its power to derive the relationships of

physical observables and obtain the energy spectrum of excited states, we have

to figure out a way to calculate the Green’s function as defined in the Heisenberg

picture in terms of some functions that are already known. Usually, this is done by

perturbation theory.

For finite temperatures (for the zero temperature condition, a similar but much

simpler calculation can be performed in accordance with the Gell-Mann and Low

theorem), we need to first generalize the real time t in the Heisenberg picture
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and interaction picture to be a complex or pure imaginary time τ, i.e, Ψ̂(τ) =

eHτ/~ Ψ̂ e−Hτ/~ and Ψ̂I(τ) = eH0τ/~ Ψ̂ e−H0τ/~. In this manner, we define the temperature

Green’s function

g(τ, τ′) = −⟨Tτ[Ψ̂(τ) Ψ̂†(τ′)]⟩ (1.22)

where Tτ is the time ordering operator with respect to τ. The Green’s function

consists of a matrix element of Heisenberg operators. This form is inconvenient for

perturbation theory. It can be shown (with the Gell-Mann and Low theorem) that

this Green’s function can be related to the corresponding (generalized) interaction

picture for the field operators and perturbation Hamiltonian H1 in the following

way

g(τ, τ′) = −
⟨∑∞n=0

1
(−~)n

1
n!

∫ β~

0
· · ·

∫ β~

0
dτn Tτ[H1(τ1)· · ·H1(τn)Ψ̂I(τ) Ψ̂†I (τ′)]⟩0

⟨∑∞n=0(−~)−n(n!)−1
∫ β~

0
· · ·

∫ β~

0
dτn Tτ[H1(τ1)· · ·H1(τn)⟩0

(1.23)

where ⟨⟩0 represents the non-interacting H0 ensemble average. That the integral

extends from 0 to β~ is reasonable because of the β~ periodicity of g(τ, τ′), and

this magic periodicity also guarantees the transformation of temperature Green’s

function from the τ domain to the frequency domain, which is quite crucial because

it connects with the real-time Green’s function as we will see soon.

Eq. (1.23) shows that we must evaluate the expectation value of time ordering

Tτ products of creation and destruction operators, like ⟨ABC· · · F⟩0. The straight-

forward approach of classifying all possible contributions is very lengthy. Instead,

we shall rely on Wick’s theorem, which provides a general procedure for this

calculation. The main idea is to define a contraction

A•B• = T[A B] −N[A B] (1.24)

where A, B are field operators in the (generalized) interaction picture. The normal

ordering N represents a different order in which all the annihilation operators are
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placed to the right of all the creation operators. Thus a T product may be evaluated

by reducing it to the corresponding N product. N product is convenient because its

expectation in the non-interacting ensemble average is mostly zero. For example,

according to the definition of g in Eq. (1.22) and the corresponding interaction

picture, Ψ̂(τ)•I Ψ̂
†
I (τ′)• equals −g0(τ, τ′), the non-interacting temperature Green’s

function or free propagator, which is easy to evaluate. Then Wick’s theorem asserts

that < ABC· · ·F >0 is equal to the sum over all possible fully contracted terms, i.e.,

the exact temperature Green’s function g can be expanded in a series containing

the simple products of g0 and perturbation potential. The complete proof can be

found in Ref. [1]. Due to the β~ periodicity of g(τ, τ′) for each of its argument, for

temperature Green’s function, this expansion can be analyzed in energy space at a

discrete set of points ωn, and ωn = 2nπ/β~ for bosons, or (2n+ 1)π/β~ for fermions,

and the corresponding Fourier transformation is

g(ωn) =
∫ β~

0
dτ eiωnτ g(τ) (1.25)

We can associate a picture, called a Feynman diagram, with each of the terms in

the series expansion. Conventionally, the Green’s function G or g is denoted by a

bold or double solid line with an arrow. The free propagator g0 is denoted by a solid

line with an arrow while the interaction potential is denoted by a wavy line (or

equivalently, by a vertex). These diagrams appearing in the perturbation analysis

form a convenient way of classifying the terms obtained with Wick’s theorem.

One may begin with a few simple diagrams, then all possible summations of lines

and vertices are constructed based on the geometry (called ”putting flesh on the

skeletons”). Finally, a particular compact form of this expansion yields Dyson’s

equation

g(ωn) = g0(ωn) + g0(ωn)Σ⋆(ωn)g(ωn) (1.26)

where Σ⋆ is the proper self-energy, in which all the interaction are involved. The

Feynman diagram of Dyson’s equation is shown in Fig. 1.1

In the next section, we will focus on the calculation of the proper self-energy of
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= +

Figure 1.1: Dyson’s equation

phonons, thereby obtaining the quantitative result of phonon-phonon interactions;

similar evaluations can be done for the correlation energy of electron interactions

(e.g., random phase approximation) and electron-phonon interactions (e.g., BCS

theorem).

Finally, we should note that although the temperature Green’s function is con-

venient for performing mathematical calculations, it cannot be directly related to

the frequencies and lifetimes of excited states at finite temperature. Those quan-

tities are contained in the real-time retarded Green’s function GR as we discussed

in the previous section. Fortunately, similar to G, we can show that the temper-

ature Green’s function g(ωn) can be expressed by the generating function Γ(z) of

Eq. (1.21) as well, and z = iωn in this case. Therefore the analytical continuation, in

which z changes from iωn to ω± iη simply offers a remarkable connection between

g and G. In any practical calculation, we first evaluate g(ωn) via the expansion

process discussed above, and therefore know Γ(z) at discrete set of points. Then it

is necessary to perform an analytic continuation to the whole complex plane with

the restriction Γ(z) ∼ z−1 as |z| → ∞.
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Figure 1.2: The lowest order terms of the proper self energy

1.6 Phonon-Phonon Interactions and Phonon Lifetime

We define the phonon temperature Green’s function g, in which, q = (q⃗, s) is the

short notation for the branch s and q⃗ vector for an anharmonic phonon

gqq′(τ, τ′) = − < Tτ[Âq(τ) Â†q′(τ
′)] > (1.27)

It is exactly the same definition as in the general case, with the interaction Hamil-

tonian (or vertex in Feynman diagram) in this case a form shown in Eq. 1.13. We

can then follow the well established procedure discussed previously to derive the

phonon interactions quantitatively.

Step 1: The free propagator

This provides the concrete expression of solid lines in the diagram

g0
qq′(τ − τ′) = − < Tτ[Âq I(τ) Âq′I

†(τ′)] >0 (1.28)

= < T[a†−q(τ) a−q(τ′) + aq(τ) a†q(τ′)] >0 (1.29)

Here only q = q′ will have nonzero values. We can then transform it to the

corresponding frequency domain, and the result is

g0(q,ωn) =
1

iωn − ωq
− 1

iωn + ωq
=

2ωq

ω2
n + ω

2
q

(1.30)

Step 2: Dyson’s equation

gq⃗ss′(ωn) = g0(q⃗s,ωn) + g0(q⃗s,ωn)
∑

s”

Σ⋆q⃗ss”(ωn)gq⃗s”s′(ωn) (1.31)
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We can write the free phonon propagators in Eq. (1.31) in explicit form using

Eq. (1.30) and neglect the non-diagonal terms. We get

gq⃗ss(ωn) =
2ωs(q⃗)

ω2
s (q⃗) + ω2

n − 2ω2
s (q⃗)Σ⋆

q⃗ss
(ωn)

(1.32)

We see the anharmonic Green’s function is of the same form as Eq. (1.30) for the

free propagator in the harmonic approximation. All the effects of anharmonic

interactions are included in Σ⋆. If we write the self energy as a real and imaginary

part, then the frequency shift and lifetime of the phonons are explicitly identified.

Σ⋆q⃗ss(ωn) = −∆q⃗ss(ωn) + iΓq⃗ss(ωn) (1.33)

Step 3: The diagrams of the lowest order terms of the proper self energy are

presented in Fig. 1.2. The mathematical derivation of the 2nd order diagram (the

first diagram on the left) is shown in Appendix A, which is a concrete practice of

the temperature Green’s function approach discussed in this chapter.

The resulting mathematical expressions for these lowest orders diagrams are

∆(3)
s (Ω) = −18

~2

∑
q⃗1s1

∑
q⃗2s2

∣∣∣V(s; q⃗1s1; q⃗2s2)
∣∣∣2 × ℘[ n1 + n2 + 1

Ω+ ω1 + ω2
− n1 + n2 + 1
Ω − ω1 − ω2

+
n1 − n2

Ω − ω1 + ω2
− n1 − n2

Ω+ ω1 − ω2

]
(1.34a)

∆(3′)
s = −72

~2

∑
s1

∑
q⃗2,s2

V(s; s; 0⃗s1)V(⃗0s1;−q⃗2s2; q⃗2s2) × ℘
( 1
ω1

) (
n2 +

1
2

)
(1.34b)

∆(4)
s =

24
~

∑
q⃗1,s1

V(s; s; q⃗1s1;−q⃗1s1)
(
n1 +

1
2

)
(1.34c)

Γ(3)
s (Ω) =

18π
~2

∑
q⃗1s1

∑
q⃗2s2

∣∣∣V(s; q⃗1s1; q⃗2s2)
∣∣∣2 × [

(n1 + n2 + 1) δ(Ω − ω1 − ω2)

+ 2(n1 − n2) δ(Ω+ ω1 − ω2)
]

(1.34d)
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1.7 Self-Consistent Lattice Dynamics

Consider a crystal with Hamiltonian

H = Tk + V (1.35)

where Tk is the kinetic energy and the potential energy is given by

V =
1
2

∑
ll′
ψ(⃗rll′ + w⃗ll′) (1.36)

Here, r⃗ll′ are mean position vectors joining the atoms l and l′, and w⃗ll′ are the relative

displacement vectors.

Instead of trying to find the perturbation expansion as we usually do in the

quasiharmonic and anharmonic lattice dynamics, we now consider and effective

harmonic Hamiltonian

Ĥ = Tk + V̂ (1.37)

where

V̂ =
1
4

∑
ll′

∑
αβ

ϕ̂αβ(ll′) wll′αwll′β (1.38)

and the effective force constant ϕ̂ and the mean distance rll′ may be determined

self-consistently.

In essence, this method tries to obtain a mean field of harmonic form and keeps

the field updated. In this process, we want to have the potential difference operator

Ê = V − V̂ having the eigenvalue ϵ sufficiently small. Under this assumption, the

density matrix operator can be written as

ρ(H) = e−βH = e−β ϵ ρ(Ĥ) e−β (Ê−ϵ) (1.39)

We may disregard the last factor if < e−β (Ê−ϵ) >Ĥ= 1. Here, <>Ĥ is the thermal
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average under the effective Hamiltonian. To the first order, this requires

ϵ =< V̂ >Ĥ (1.40)

We can therefore write the free energy approximately as

F = F̂+ < V̂ >Ĥ (1.41)

where

F̂ = −kBT ln Tr{ρ(Ĥ)} (1.42)

and

< V̂ >Ĥ=
1
2

∑
ll′
< ψ(⃗rll′ + w⃗ll′) >Ĥ −

1
4

∑
ll′

∑
αβ

ϕ̂αβ(ll′) < wll′αwll′β >Ĥ (1.43)

Note that< wll′αwll′β >Ĥ is the displacement correlation function. Hence, the free

energy can be approximated by the free energy belonging to the effective harmonic

Hamiltonian, and the difference is supposed to be small. Physically speaking, it

means that for a system, even very anharmonic, we may find a harmonic system

that is effectively close enough to the dynamic and thermodynamic properties of

the original one. If this is the case, the problem is greatly simplified because the

harmonic theory is relatively complete.

With modern DFT calculations, several computational algorithms based on the

self-consistent lattice dynamics are being developed. Essentially, these methods

assign large displacements of atoms corresponding to the target temperature by

a random assignment or molecular dynamics simulation, and then try to find the

effective harmonic force constants by optimizing the thermodynamic quantities of

the system [4, 5].
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Chapter 2

Experimental Methods
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2.1 Raman Scattering

2.1.1 Introduction

When crystal or molecule is illuminated with monochromatic light of frequency

ωL (usually from a laser in the visible, near infrared, or near ultraviolet range),

it is found that the scattered spectrum of radiation consists of a very strong line

at the frequency of the incident light, as well as of a series of much weaker lines

with frequencies ωL ± ωq, where ωq are found to be equal to some optical phonon

energies. The strong line centered at ωL is known as Rayleigh scattering, which

originates from elastic scattering of photons. The series of weak lines constitute

the Raman sepctrum, which originates from the inelastic scattering of photons by

phonons. The Raman lines at frequencies ωL −ωq are called Stokes lines, and those

at frequenciesωL+ωq are called anti-Stokes lines. The intensities of Stokes lines are

generally much stronger than anti-Stokes lines, and as a result, Raman spectrum is

usually taken on the side of Stokes lines.

Since its discovery, many variations of Raman spectroscopy have been de-

veloped. Examples include surface enhanced Raman, resonance Raman, Raman

microscopy and time-resolved stimulated Raman spectroscopy. Owing to its great

versatality, Raman spectroscopy has been widely used in physics, chemistry, geol-

ogy, biology and many other fields of science and engineering. In chemistry and

geology, for example, Raman spectra are usually used to collect a fingerprint by

which the molecule or crystal can be identified, owing to the fact that vibrational

information is specific to the chemical bonds and symmetry. It also provides a

convenient way to perform in situ or non-destructive measurements, which is ex-

tremely important in many fields. For physicists and materials scientists, it is an

excellent tool for studying excitations such as phonons, magnons and excitons in

solids.

In our work, Raman spectroscopy is mainly used to investigate anharmonic

phonon behavior under temperature, and we will focus on first order Raman
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scattering. In first order Raman scattering, only optical phonons with momentum

equal to zero are involved, as a consequence of the large momentum difference

between phonons and photons. Although this is a limitation, Raman spectroscopy

probes phonon modes with extremely high resolution in energy, which is of great

value to study the phonon anharmonicity characterized by the energy broadening

and shift, for example.

In this section, we will focus on the theories of Raman scattering. The ex-

perimental details will be discussed, along with the specific descriptions of data

collection, in Chapters 4 to 6, and Appendix C, in which particular samples are

in study. Here, we start with a brief discussion of the classical theory of Raman

scattering. We then introduce the quantum theory to describe quantitatively how

photons interact with phonons in those inelastic scattering processes. We then

spend considerable efforts deriving and discussing Raman selection rule. The se-

lection rule is established with quantum theory and group theory; it provides the

fundamental information of symmetries of modes, and is therefore critical for our

study in understanding phonon dynamics.

2.1.2 The Frequency Resolved Raman Spectroscopy

2.1.2.1 Classical Theory

Let E⃗ = E⃗0 cosωLt be the electric field vector of the incident light and Q be the

normal coordinate of small displacements of the nuclei, the dipole moment M⃗ is

contributed by two parts,

M⃗ = M⃗d(Q) + α(Q)E⃗ (2.1)

where M⃗d(Q) is the static dipole moment of the system plus the response to the

atomic displacements. When the incident light is in the infrared, the atomic dis-

placement is the dominant mechanism for scattering light, and the moment M⃗d(Q)

drives the infrared scattering. On the other hand, the Raman effect originates with

the electric field induced dipole moment M⃗e = α(Q)E⃗. Here α(Q) is the polarizabil-
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ity, in general, M⃗e does not coincide with the direction of E⃗, and the polarizability

is thus a second-order tensor. It can be shown further that it is symmetrical, i.e.,

αT = α, hence only six of the nine components of α are independent.

Expanding the static dipole moment, M⃗d(Q), and the polarizability, α(Q), in

terms of Q, we obtain

M⃗ = M⃗d0 +

∂M⃗d

∂Q


0

Q + α0E⃗ +
(
∂α
∂Q

)
0

QE⃗ +O(Q2) (2.2)

In the following discussion of the fundamental principles, we will mainly focus

on the Raman effect since the mathematical treatment of infrared scattering is

similar. We drop the subscript e of M⃗e for brevity.

If a molecule vibrates with the frequency ωq, we have Q = Q0 cosωqt and the

electric field induced dipole moment can be written

M⃗(t) = α0E⃗0 cosωLt +
1
2

(
∂α
∂Q

)
0

Q0E⃗0[cos(ωL − ωq)t + cos(ωL + ωq)t] (2.3)

According to the rule of electromagnetic radiation, the intensity of radiation

emitted by the dipole moment M⃗e(t) into the solid angle dΩ = sinθ dθ dϕ is given

by

dI(t) =
dΩ

4πc3 sin2 θ | ¨⃗M(t)|2 (2.4)

Hence, the intensity of the scattered light per unit sold angle is give by

I(t) = E2
0 α

2
0ω

4
L cos2ωLt +

1
4

E2
0

(
∂α
∂Q

)2

0

Q2
0 [(ωL − ωq)4 cos2(ωL − ωq)t (2.5)

+ (ωL + ωq)4 cos2(ωL + ωq)t]

It follows that the ratio of the intensities of the Stokes and anti-Stokes lines

should be
IS

IAS
=

(ωL − ωq)4

(ωL + ωq)4 (2.6)

This is less than unity, which is found to be contrary to the experimental observa-
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tion. This inconsistency is eliminated in the quantum theory of the Raman effect,

as discussed next.

2.1.2.2 Quantum Theory and Placzek’s Approximation

The fundamental problem of the classical treatment is that we ignore the quantum

character of electrons and phonons, and we do not consider the occupancy factor

in those quantum states. Consider a system (crystal or molecule) with Hamiltonian

H obeying the time dependent Schrodinger equation

H0ψ
(0)(t) = i~

∂
∂t
ψ(0)(t) (2.7)

and the general solution is a superposition of the eigenfunctions ϕr’s of the time

independent Schrodinger equation (where ϕr = (e,n) denotes collectively the elec-

tronic quantum numbers e and the vibrational quantum numbers n.)

ψ(0)(t) =
∑

r

crϕre−iωrt (2.8)

Suppose that this system is perturbed by a light wave with the electric field

vector E⃗ = E⃗0e−iωLt. The Schrodinger equation of the perturbed system is

(H0 − E⃗ · M⃗)ψ(t) = i~
∂
∂t
ψ(t) (2.9)

Qualitatively speaking, the wave functions of the perturbed system acquires a

mixed character of all possible wave functions of the unperturbed system. We can

regard it as a non-stationary state only for a physical description of this perturbation

process, a so called ”virtual state” in Raman scattering.

Rigorously, if the unperturbed system is in the stateϕk, using the time-dependent

perturbation theory, it can be easily shown that the first order perturbed state is

ψ(1)
k =

1
~

∑
j

E⃗0 · M⃗kj

ω jk − ωL
ϕ j

 exp[−i (ωk + ωL)t] +
1
~

∑
j

E⃗0∗ · M⃗kj

ω jk + ωL
ϕ j

 exp[−i (ωk − ωL)t]

(2.10)
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where M⃗kj =< ϕk|M⃗|ϕ j > and ω jk = ωk − ω j. Meanwhile, the matrix element of the

dipole moment of the perturbed system is

M⃗(p)
km(t) = < ψ∗m |M⃗|ψk > (2.11)

= M⃗km exp(−iωkmt) + C⃗km exp[−i (ωkm + ωL)t] + D⃗km exp[−i (ωkm − ωL)t]

where

C⃗km =
1
~

∑
j

(E⃗0 · M⃗kj)M⃗ jm

ω jk − ωL
+

M⃗kj(E⃗0 · M⃗ jm)
ω jm + ωL

(2.12)

D⃗km =
1
~

∑
j

(E⃗0∗ · M⃗kj)M⃗ jm

ω jk + ωL
+

M⃗kj(E⃗0∗ · M⃗ jm)
ω jm − ωL

(2.13)

According to Eq. 2.4, we can obtain the intensity of the radiation by the dipole

moment M⃗(p)
km(t).

Ikm =
4

3c3 [ω4
km |M⃗km|2 + (ωkm + ωL)4 |C⃗km|2 + (ωkm − ωL)4 |D⃗km|2] (2.14)

Using Eq. 2.12, the components of C⃗km can be written in the form

(Cµ)km =
∑
ν

(cµν)kmE0
ν (2.15)

where the scattering tensor

(cµν)km =
1
~

∑
j

(Mν)kj (Mµ) jm

ω jk − ωL
+

(Mµ)kj (Mν) jm

ω jk + ωL
(2.16)

If the incident light is polarized in the direction of µ and the scattered light is

observed with the analyzer in the direction of ν, one finds for the scattered radiation

emitted per unit solid angle dΩ

Ikm[µν] =
1
c4 (ωkm + ωL)4 |(cµν)km|4 I0 (2.17)
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The direct evaluation of the scattering tensor (cµν)km is not practical in molecules

and crystals due to the complexity of the energy levels and the incomplete knowl-

edge of the excited states j’s. However, the scattering tensor of Eq. 2.16 derived by

the quantum theory does provide a direct way determining the Raman-activity in

terms of group symmetry.

Using Placzek’s approximation, it is possible to obtain the general result about

the direct relationship between the Raman scattering tensor and the electronic

polarizability. The physical idea of this approximation is quite straightforward.

Since in most cases of Raman scattering, ωeo > ωL >> ωnn′ , i.e., the exciting laser

frequency is less than any electronic transition frequency of the system, although

much larger than any vibrational frequency. In this sense, only the electrons but

not the atoms can respond to the light field. Therefore, only the electronic part of

the wavefunction is modified by the incident light and is the same for each atomic

configuration, denoted by r, as for the system with fixed nuclei. Hence the Raman

scattering tensor is equal to the electronic polarizability tensor

(cµν)0n,0n′ =

∫
ψ∗0n′(r)[cµν(r)]00ψ0n(r) dr = (αµν)0n,0n′ (2.18)

whereψ0n(r) is the vibrational part of wave function of configuration r and [cµν(r)]00

is the scattering tensor of the electronic ground state, which is identical with the

electronic polarizability. This establishes the fundamentals of Raman selection

rules; and more recently, the calculation of Raman intensity using first principles

mostly relies on this approximation.

By using the same treatment as in the classical approach,

(αµν)nn′ = (αµν)0δnn′ +

(
∂αµν
∂Q

)
0

Qnn′ (2.19)
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Figure 2.1: Schematic energy level diagram showing the states involved in Raman
signal.

For first order Raman scattering, n′ = n ± 1, we can then obtain

IS ∝ (ωL − ωq)4 ~

2ωq
α2
µν,Q(1 + n) (2.20)

IAS ∝ (ωL + ωq)4 ~

2ωq
α2
µν,Q n (2.21)

where αµν,Q is the short notation of
(
∂αµν
∂Q

)
0

and the intensity ratio of Stokes and

anti-Stokes scattering is

IS

IAS
=

(ωL − ωq)4

(ωL + ωq)4 exp(~ωq/ kBT) (2.22)

From Eq. 2.22 we see that the intensity of a Stokes line is larger than the intensity

of the corresponding anti-Stokes line, in agreement with experiments.

The quantum perturbation theory discussed above introduces a simple and clear

physical picture. As illustrated in Fig. 2.1, the photon is emitted by the perturbed

system which then jumps back to its stationary state as a result. If it returns to its

initial state, this gives rise to the elastic scattering, the Rayleigh scattering. With

a small probability, the photon can lose or gain energy. Since the ratio of the
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populations of two stationary states is proportional to exp(~ωq)/kBT, the ratio of

the intensities of a Stokes line to a corresponding anti-Stokes line is expected to be

proportional to Eq. 2.22.

It should be emphasized that, the Raman scattering of light is due to the electrons

of the system, and as shown in the next section, the transfer of the energy between

the light and nuclei is only possible through the coupling of electrons and nuclei.

It can be shown that there is no Raman scattering for a pure harmonic oscillator

with frequency ω0. In this case, the evaluation of dipole moment matrix Mkm only

involves the phonons but not the electrons, and can be simply written as

(Mµ)nn′ = e (
~

2mω0
)

1
2 [(n + 1)

1
2δn,n′+1 + n′

1
2δn,n′−1] (2.23)

It follows that the terms of Eq. 2.16 cancel off and hence the Raman scattering

tensor (c)n,n±1 vanishes. It should be mentioned that Raman scattering exists for an

anharmonic oscillator, however this does not mean that Raman scattering is due

to anharmonic motion of the nuclei. This is only the case for the radiation which

originates with the scattering from the nuclei themselves, known as the ionic Raman

effect. The essential part of the normal Raman scattering by molecules and crystals,

however, comes from the scattering by the electrons as presented in Eq. (2.18),

and the energy transfer between the light and the motion of nuclei provides the

important information of harmonicity and anharmonicity of phonons.

2.1.2.3 Loudon’s Third Order Perturbation Theory

Loudon’s approach explicitly assesses the scattering process of electrons, phonons

and the light wave by the third-order time-dependent perturbation theory, which

is theoretically equivalent to the discussion of the preceding section but more

direct. [6] As proposed by Loudon, the Raman process is described by a three-step

scattering process, involving three virtual electronic transitions accompanied by the

energy transfer of photons and phonons. Therefore, the transition probability of

the system from the state with ni incident photons, 0 scattered photon, nq phonons



26

and electron ground state (denoted by 0) to the final state with one new scattered

photon and one new phonon is

W(t) =
∑
q⃗, k⃗s

∣∣∣< ni − 1, ns + 1; nq + 1; 0 | e−iHt/~ | ni,ns; nq; 0 >
∣∣∣2 (2.24)

=
2πt
~6

∑
q⃗, k⃗s

∣∣∣∣∣∣∣∑m,n < ni − 1,ns = 1; nq + 1; 0|H|m >< m|H|n >< n|H|ni, ns = 0; nq; 0 >
(ωm − ωi)(ωn − ωi)

∣∣∣∣∣∣∣
2

×δ(ωi − ωq − ωs)

where H = HER + HEP, the total Hamiltonian of electron–photon (radiation) and

electron–phonon interactions. Followed by Eq. 2.24, the scattering ratio is

Ns

Ni
∝ (nq + 1)

ωs

ωi

∣∣∣Rq
i,s(−ωi,ωs,ωq)

∣∣∣2 (2.25)

where

Rq
i,s(−ωi,ωs,ωq) =

1
V

∑
m,n

{
(Ms)0n(Θq)nm(Mi)m0

(ωn + ωq − ωi)(ωm − ωi)
+ f ive similar terms

}
(2.26)

here the scripts of Rq
i,s stand for the polarization directions of the incident and

scattered photons i and s, and the phonon q. The two matrix elements M arise

from the electron-photon Hamitonia HER and Θ arises from the electron-phonon

Hamiltonia HEP. Loudon’s formula is important to define some complex selection

rules in the resonant Raman scattering. For example, in the case of the exciton-

assisted Raman scattering on Cu2O, the electric quadupole and magnetic dipole

transition has to be considered, and one HER term in Eq. 2.26 can be used to represent

this symmetry [7, 8].
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2.1.3 Group Theory and Selection Rules

2.1.3.1 Classical Approach

Selection Rule 1: A mode is Raman acitve only if it changes at least one of the six

independent components of the polarizability tensor.

There always exists a coordinate system (x, y, z) such that the polarizability α

defined in Eq. (2.1) is a diagonal matrix. Such axes are principal axes of polarizabil-

ity. It is easy to find the principal axes for a symmetrical system since they must

coincide with the symmetry axes.

From Eq. (2.5), we expect the normal mode Qs will appear in the Raman spec-

trum if at least one of the six components of the change of polarizability, ∂α
∂Qs

, is

nonzero, where the matrix form of the symmetrical tensor ∂α
∂Qs

is

(
∂α
∂Qs

)
0

=


αxx,s αxy,s αxz,s

αyx,s αyy,s αyz,s

αzx,s αzy,s αzz,s

 (2.27)

If for the s mode, the opposite phases of the vibration have the same bond lengths

and bond angles and therefore the same charge distribution for the configurations

of Qs and −Qs, the diagonal component of the polarizability, αµµ will thus have

the same value for both configurations and αµµ,s is zero as a result. Take the bent

XY2 molecule, such as H2O, for example, the anti-symmetric stretching has zero

diagonal component while the other two modes, the symmetric stretching and the

bending are nonzero.

For the off-diagonal component αµν in which µ , ν, the handy way is to check

whether the atomic ’distortion’ of the mode vibration Qs breaks the original sym-

metry of the system in equilibrium. If the symmetry remains the same, the property

of principal axes guarantees the zero value of off-diagonal components. Otherwise,

if the (x, y, z) coordinates are no longer principal, the off-diagonal components and

the corresponding change will be nonzero. For H2O molecule, the anti-symmetric

stretching mode has nonzero αµν because the x and z axes no longer remain prin-
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cipal axes during the vibration of this mode, while the other two modes are zero.

Therefore, all three modes in H2O are Raman-active.

This method is simple and practical, however, for complex crystal structures,

this rule is extremely difficult to apply. In the next subsection, we introduce a

rigorous and systematic approach to find the selection rule,which is based on the

group representation theory in quantum mechanics.

2.1.3.2 Group Theoretical Approach

Selection Rule 2: A mode s is Raman active only if the normal coordinate Qs

transforms in the same way as one of the polarizability components αµν.

Let’s first present an argument that is rigorous but impractical. The intensity of

the scattered light is given by Eq. (2.17), in which the component of the polarizability

is explicitly calculated using Eq. (2.18). In quantum mechanics, group theory can

greatly help to judge whether a given matrix element vanishes by symmetry, and

in our case, the assessment of the polarizability matrix leads to the Raman selection

rule. From the integral of Eq. (2.17) and unitarity of the symmetry operation group

R̂,

< n′ |αµν| n > =

∫
ψ∗0n′(r)[αµν(r)]00ψ0n(r) dr (2.28)

=
1
g

∑
R̂

< R̂ψ0m | R̂αµνR̂−1 | R̂ψ0l >

=
∑

m′, l′, µ′, ν′
< m′ |αµ′ν′ | l′ >

1
g

∑
R̂

Dmm′D
(α)
µ′ν′Dll′ (2.29)

where D’s are the matrix representations of the symmetry group R̂ with basis

functions as state vectors ψl, where R̂ψl =
∑
ψl′Dl′l or tensor elements αµν, where

R̂αµνR̂−1 =
∑
αµ′ν′ D

(α)
µ′ν′ . Due to the orthogonality relation of different basis func-

tions, a possible vibrational transition |n > to |n′ > is nonzero, or Raman active, if

and only if the representation D(α) of one or more of the polarizability component
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occurs in the reduction of D(vib,2) ×D(vib,2), where the components of the polarizabil-

ity tensor transform like the vector operators x2, y2, z2, xy, yz, zx since these tensor

elements have the form of dipole × dipole, as can be seen from Eq. (2.16). This rule

is quite general, however, we have to first work out the irreducible representations

of all the vibrational states and then test all possible pairs of states to see whether

the transition between them is allowed. Moreover, this rule does not consider the

energy difference and the order of intensity, i.e., which lines are the strong ones.

Here is a more practical approach. In accordance with Eq. (2.19), we can at

least have three important conclusions for first order Raman scattering: (1) the

symmetry of
(
∂αµν
∂Qs

)
0

Qs is just the symmetry of the normal mode Qs because the

derivative part is a scalar. (2) This term must always have the same symmetry of

αµν itself. (3) the Raman spectrum contains the fundamental line of frequency shift

ωs. Hence, we finally obtain the selection rule summarized on top of this section.

The selection rule for infrared scattering is completely analogous, in which we can

expand the dipole components in the same way. As a result, the determination

of Raman-activity is reduced to testing the existence of the normal modes that

transform in the same way as x2, y2, z2, xy, yz or zx.

Further, since the Hamiltonian H and the symmetry operations R̂ commute,

any group member of symmetry operations cannot transform one mode to another

with a different dynamic eigenvalue, i.e., under the irreducible representations of

H, and the H matrix is diagonal, the matrix of R̂ must be blocks of irreducible

representations of the symmetry group, and the rank of each block equals to the

degeneracy of the corresponding normal mode. The physical idea for this irre-

ducibility in lattice vibration is a normal mode coordinate Qs is decoupled from

other normal coordinates. As a result, the displacement pattern of a normal mode

is invariant under the symmetry operation and hence R̂Qs must have the same

frequency. One simple illustration of the matrix representations of H and R̂ under

the eigenbasis of H, with one doubly degenerate and two single modes, is
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H =



λ1 0 0 0

0 λ1 0 0

0 0 λ2 0

0 0 0 λ3


⇐⇒ R̂ =



× × 0 0

× × 0 0

0 0 × 0

0 0 0 ×


(2.30)

Accordingly, we can group the modes in accordance with the irreducible rep-

resentation of the symmetry of molecules or crystals. More explicitly, since H and

R̂ own the same eigenbasis, we can fully understand the symmetry of modes by

means of R̂, instead of H itself.

Combining the arguments discussed above, we obtain the following math-

ematical statement about how to apply the Rule 2: we need to transform the

corresponding symmetry group to a sum of irreducible representations (in a form

that looks like the above illustrative example), and the modes belonging to the

representations that inherit the symmetry of vector products x2, y2, z2, xy, yz, zx are

expected to be Raman active.

2.1.3.3 The Correlation Method

Although the rule derived from group theory is mathematically handy, the irre-

ducible decomposition is still nontrivial, and sometimes complicated. The cor-

relation method that relates the site symmetry of a system to the corresponding

crystallographic point symmetry offers a convenient way generating the selection

rule. In this section, we follow the approach described by Inui et al. [9]

To understand this method, we need some definitions and fundamental theo-

ries.

Site Group S: The site is defined as a point which is left invariant by some

operations of the space group. These operations may be shown to form a group

which is called the site group. Every point is thus a site, having at least the trivial

site group C1.

Point Group G0: For a space group G, rotational parts of the symmetry opera-

tions will form a group G0, which is a crystallographic point group. Evidently, S is
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a subgroup of G0.

Factor Group G/T: The translation group T forms an invariant subgroup of the

space group G. Therefore, the cosets of the translation group T in the space group

G form a factor group G/T, and it is isomorphic to the point group G0, though some

of the cosets may contain other than pure point operations combined with screws

or glides.

This is indeed the group theoretical counterpart of the Bloch theorem, in which,

the Bloch functions are actually the basis functions for the irreducible representation

of T and inherit all the translational symmetry of the crystal. The wavevector k⃗

designates the representation of the translation group with the character exp(i⃗k · r⃗ ).

At Γ point, the G0 symmetry is maintained for the obvious reason, in consequence,

for 1st order Raman scattering, the G0 symmetry determines the activity of spectra.

However, it should be noted that k⃗ generally cannot have the whole symmetry of

G0 but constitutes a subgroup, this explains the change of Raman activity when

going to higher order Raman scattering in which k⃗ is not at the Γ point, for example,

overtone or combinational bands in Raman.

Since the normal coordinates are linear combinations of the 3N atomic displace-

ments, the correlation method starts with the irreducible representation of the site

group S, and tries to transform to the point group symmetry of the system. Ob-

viously, under the site group’s operation, one atom will never be moved away to

another position, the ’mutual exclusion’ implies that the bases for the irreducible

representations are simply composed of the xyz coordinates (or displacements) of

each individual atom, with no superposition of other atoms. Therefore, the irre-

ducible representations of the site group are easily identified by picking out those

representations with Tx, Ty or Tz symmetry, which are followed by the basis vectors

x, y and z. Then, we can relate the site representation to the factor representation by

examining the character χ (the trace of the group representation). Under the trans-

formation between these two representations, the trace of the matrix is a constant.

As a result, the character of ith irreducible representation of the factor group is just

the same as that of the site group, or the sum of several irreducible representations
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of the site group (because the symmetry of factor group is higher, the degeneracy

of the factor group can be lifted), i.e.,

χ(β)
f (R̂) =

∑
(α)

aβα χαs (R̂) (2.31)

where s and f stand for site and factor respectively. This provides a straightforward

way to construct the correlation between two groups by comparing the character

tables.

When irreducible matrices of a representation is derived, we can define a pro-

jection operator

P(β) f =
dβ
g

∑
R̂

χ(β)(R̂)∗ R̂ (2.32)

Consider an arbitrary function f , it will contain in gereral, basis functions of various

irreducible representations

f =
∑
β

∑
m

c(β)
m ϕ

(β)
m (2.33)

where ϕ(β)
m are basis functions for the irreducible representation D(β), and c(β)

m are

coefficients of the expansion. For the vibration spectra, ϕ(β)
m ’s are the normal coor-

dinates Q’s for the mode β.

When applied to f , P(β) will project f onto the subspace of the representation

D(β).

P(β) f =
∑

m

c(β)
m ϕ(β)

m (2.34)

In practice, for the Raman spectra, we can take f as the displacement of one atom.

Examples of the rutile and cuprite structures are presented in Appendix B. More

examples can be found in the manual book written by Fateley et al. [10]
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2.2 Time of Flight Inelastic Neutron Scattering

2.2.1 Introduction

Neutron scattering is a powerful technique for studying lattice dynamics. One

advantage stems from the fact that the wavelength of a neutron is of the same

order of magnitude as the interatomic distances in crystals. Therefore, it has good

resolution in reciprocal space and is able to probe phonons in the whole Brillouin

zone. A historical disadvantage of neutron scattering is the relatively poor energy

resolution, due to the low intensity of available neutron beams. This situation has

changed with low background and high neutron flux at the Spallation Neutron

Source (SNS) at the Oak Ridge National Laboratory.

In our work, inelastic neutron scattering is used to investigate the phonon

densities of states. The measurements were performed with the wide angular-

range chopper spectrometer (ARCS) at SNS at the Oak Ridge National Laboratory.

In this section, we briefly review the basic principles and experimental techniques

of inelastic neutron scattering and its applications in the study of lattice dynamics.

More detailed discussions about theories of inelastic neutron scattering can be

found, for example, in [11, 12].

2.2.2 Basic Principles

2.2.2.1 Scattering Cross Section

When a beam of monoenergetic thermal neutrons is incident on a sample, the

neutrons may be either scattered, absorbed or pass with no interaction. The process

of neutron scattering is characterized by the cross section σ. The scattered intensity

is usually described by the partial differential cross section, which is defined to be

d2σ

dΩdE
=

number o f neutrons scattered per second into solid angle dΩwith energy E
incident neutron f lux

(2.35)

The strength of the a neutron-nucleus interaction is described by the scattering
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length b, which in general is a complex quantity ( the imaginary part gives the

neutron absorption). Since nuclear forces are short in range compared to the

neutron wavelength, in the first order Born approximation the interaction potential

between the neutron and the nucleus at R⃗ can be approximated by the Fermi

pseudopotential

V(⃗r ) =
2π~2b

m
δ(⃗r − R⃗ ) (2.36)

The cross section is evaluated in the Born approximation. The incoming neu-

trons are represented by plane wave functions, and the transition probability is

given by Fermi Golden rule, together with the Fermi pseudopotential, we can

obtain

d2σ

dΩdE
=

k f

ki

1
2π~

∑
l,l′

blbl′ ×
∫ ∞

−∞
⟨exp[−iQ⃗ · R⃗l′(0)] exp[iQ⃗ · R⃗l(t)]⟩ exp(−iωt)dt (2.37)

where Q⃗ = k⃗i − k⃗ f is the momentum transfer to the sample, and ω = (Ei − E f )/~ is

the energy transfer to the sample.

2.2.2.2 Coherent and Incoherent Scattering

The cross section in Eq. 2.37 contains products of pairs of scattering lengths, which

can be written as the sum of a correlated part and an uncorrelated part

blbl′ = |b|2 + δll′(b2 − |b|2) (2.38)

The coherent scattering is proportional to the average value b, and incoherent

scattering arises from the distribution of the deviations from b. Only a system with

an average scattering length can give interference effects.

As a result, the cross section can be split in a coherent part(
d2σ

dΩdE

)
coh
= b

2 k f

ki

∑
l,l′

∫ ∞

−∞
⟨exp[−iQ⃗ · R⃗l′(0)] exp[iQ⃗ · R⃗l(t)]⟩ exp(−iωt)dt (2.39)
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and an incoherent part(
d2σ

dΩdE

)
inc
= (b2 − b

2
)

k f

ki

∑
l

∫ ∞

−∞
⟨exp[−iQ⃗ · R⃗l(0)] exp[iQ⃗ · R⃗l(t)]⟩ exp(−iωt)dt (2.40)

These equations show that coherent scattering depends on the correlations between

different scatterers at different times, while the incoherent scattering involves only

the correlations between the positions of the same scatterer at different times. The

coherent and incoherent scattering for different elements can be quite different.

For example, the scattering is mostly coherent for vanadium-50 but incoherent for

vanadium-51.

Consider a crystal as a target for the thermal neutron beam. The position of a

nucleus at time t is given by R⃗l = r⃗l+ u⃗l (t), in which r⃗l is the equilibrium position of

the atom in the Bravais lattice, and u⃗l (t) is the displacement. Insert the expression

for R⃗l into Eq. 2.39 and notice that the correlation between atoms at r⃗l and r⃗l′ in a

Bravais lattice depends only on r⃗l − r⃗l′ , we get(
d2σ

dΩdE

)
coh
= b

2 k f

ki

∑
l

exp(iQ⃗ · r⃗l) ×
∫ ∞

−∞
⟨exp[−iQ⃗ · u⃗0(0)] exp[iQ⃗ · u⃗l(t)]⟩ exp(−iωt)dt

(2.41)

Expressing the displacements r⃗l in the second quantization form as derived in

Eq. 1.9, one can show that [11]

⟨exp[−iQ⃗ · u⃗0(0)] exp[iQ⃗ · u⃗l(t)]⟩ = exp[⟨Q2u2
0(0)⟩] exp[⟨Q⃗ · u⃗0(0) Q⃗ · u⃗l(t)⟩] (2.42)

where the first factor exp[⟨Q2u2
0(0)⟩] corresponds to the Debye-Waller factor, exp(−2W).

The partial cross section of Eq. 2.41 can be rewritten as(
d2σ

dΩdE

)
coh
= b

2 k f

ki
e−2W

∑
l

exp(iQ⃗·⃗rl)×
∫ ∞

−∞
exp[⟨Q⃗·u⃗0(0) Q⃗·u⃗l(t)⟩] exp(−iωt)dt (2.43)

If we expand the second exponential factor of Eq. 2.42 in a Taylor series, Eq. 2.43

has a quite clear physical meaning. It just gives the multi-phonon expansion
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which describes zero, first, second...order processes. The zero-th term corresponds

to elastic scattering, the first-order term corresponds to the one-phonon process,

the second-order term corresponds to the two-phonon process and so on. The

coherent one-phonon scattering process can be considered as elastic scattering on

a moving target crystal, while higher-order processes give a broad distribution in

the momentum and energy space and can be considered as the background [11].

The evaluation of the incoherent scattering, Eq. 2.40, is similar. The exponent

can be expanded in a power series, and the nth term corresponds to the n-phonon

process. As compared to the coherent cross section, there is only the energy con-

servation factor, therefore, the measurement of the incoherent scattering provides

information only on the number of phonon modes as a function of energy but not

on the dispersion relations.

2.2.3 Wide Angular-Range Chopper Spectrometer (ARCS)

Thermal neutrons can be produced in a nuclear reactor by a chain reaction of

nuclear fission or by spallation reactions with heavy metals. An important experi-

mental work on Ag2O presented in this thesis made use of time-of-flight inelastic

neutron scattering (INS) performed with the Wide Angular-Range Chopper Spec-

trometer (ARCS) at the Spallation Neutron Source (SNS) at the Oak Ridge National

Laboratory [13]. The source of the neutrons is the spallation of neutrons from a

mercury target bombarded with high energy protons. The SNS is currently the

most powerful neutron source in the world.

The initial energies of the neutrons are too high for materials science research,

and they are slowed down by passing through cells filled with water. The pulsed

neutron beam is then directed to the instrument through neutron guides, inside of

which the neutrons undergo total reflection, so the loss of intensity is negligible.

Two choppers rotating with different frequencies allow selection of the incident

energy E0 of neutrons. The first chopper is more massive and stops high energy

neutrons and other background radiation. The second chopper, usually called a
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Fermi chopper, is smaller and used for further tuning the energy distribution of

the neutron bunch. The schematic overview of the design in presented in Fig. 2.2.

Usually 3He-filled tubes are used for neutron detection, since a charge is pro-

duced after a neutron is captured by a 3He nucleus. ARCS has 115 packs of eight

1-meter-long tubes. Each is sensitive to linear position. The time the neutrons

take to reach the sample is fixed, while the time they take to reach the detector

depends on the distance to that particular pixel and the energy lost to or gained

from phonons in the sample. The change in neutron momentum is also calculated

from the position of the detector. The raw data from ARCS is a ‘neutron event’

record, i.e., for every neutron detected, the detector number and position as well

as the time-of-flight of the neutron are saved into a data file.

Figure 2.2: Schematic overview of the ARCS design with components labeled [13]
.

2.2.4 Data Reduction

For ARCS, the incident energy is more accurately determined than in older instru-

ments and the performance of the detectors is also superior. ARCS samples a large

part of (Q⃗,E), which helps to improve the accuracy of experimental phonon DOS.
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However, the data reduction of inelastic neutron scattering is still a complicated

task, not only due to the difficulty of binning a large amount of data, but also due

to the complexity of multiphonon and multiple scattering corrections. The detailed

principles and procedures are documented elsewhere [12–14], and the develope-

ment of the corresponding software package was an important part of the DANSE

project [15]. Here, we give a brief overview about the data reduction procedures

for ARCS.

The raw data are processed to obtain I(Q⃗,E) histograms. The binning of the

energy transfer and the momentum transfer are the main variable at this stage, and

there is a trade-off between the two axis in terms of counting statistics. The binning

used for the present work, 0.5 meV per energy bin and 0.1 Å per momentum bin,

is fairly standard.

The background subtraction is performed next. A measurement under the same

experimental conditions and sample environment is done, but without the sample.

This accounts for most of the real contribution from the background. At ARCS

the instrument background is quite low because it is almost completely shielded

by neutron-absorbing materials, including in between detector packs. Most of the

background comes from the sample environment.

Neutron-weighted phonon DOS curves are obtained from the I(Q⃗,E) histograms,

using getDOS, part of the DANSE software. For incoherent scatterers of neutrons,

the phonon DOS is obtained by integrating over the Q axis. The subtraction of

the elastic scattering is done by assuming an E2 scaling of the intensity of the

phonon DOS and fitting the elastic peak to a Gaussian. The main issue that the

code deals with is the determination and subtraction of multiphonon scattering,

which is solved by an iterative method: the n-phonon scattering can be written as

the convolution of the 1- and (n-1) -phonon scattering and this leads to a recursion

relation for all the orders of scattering, with one adjustable parameter. A detailed

description of the getDOS and underlying principles is given in [12, 14]
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Chapter 3

Computational Methodologies
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3.1 Density Functional Theory

3.1.1 Introduction

The fundamental principle of density function theory (DFT) is that any property

of a system of many-body interactions can be viewed as a functional of the ground

state density, which, in principle determines all the information for the ground

state. The existence proof was given by Hohenberg and Kohn [16]. Kohn and Sham

then provided an approach to make ground state functionals for real systems of

many electrons [17]. The remarkable successes of the functionals of local density

approximation (LDA) and generalized gradient approximation (GGA) within the

Kohn-Sham approach lead to widespread interests and applications in DFT. Here,

we briefly review the DFT theory. More theoretical details on this subject can be

found in [18].

3.1.2 Hohenberg-Kohn Theorems

For a system of electrons and nuclei in an external potential Vext(⃗r ), the Hamiltonian

can be written

H = − ~
2

2me

∑
i

∇2
i +

∑
i

Vext(⃗r ) +
1
2

∑
i, j

e2

|r⃗i − r⃗ j |
+ Ĥnn (3.1)

where Vext(⃗r ) includes interactions of electrons and nuclei and any other external

fields, and Ĥnn is nuclei-nuclei interaction potential.

The first theorem states that for this system, the potential Vext(⃗r ) is determined

uniquely, except for a constant, by the ground state electron density n0(⃗r ). Since

the Hamiltonian is fully determined, it follows that all properties of the system are

completely determined given only the ground state density.

The second theorem states that given the external potential there exists a unique

energy functional E[n(⃗r )], and the exact ground state energy of the system is the

global minimum value of this functional, and the density n(⃗r ) that minimizes the
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functional is the exact ground state density n0(⃗r ).

According to the first theorem, the ground state energy functional can be written

in the form

E[n(⃗r )] = T[n(⃗r )] + Eint[n(⃗r )] +
∫

d3rVext(⃗r )n(⃗r ) + Enn (3.2)

= FHK[n(⃗r )] +
∫

d3rVext(⃗r )n(⃗r ) + Enn (3.3)

where the functional FHK[n(⃗r )] includes kinetic and potential energies of the inter-

acting electron system. It follows from the second theorem that if the functional

FHK[n(⃗r )] is known, then by minimizing the total energy of the system with respect

to the density n(⃗r ), the exact ground state energy and density are determined.

Notice that, although the density is in principle sufficient, Hohenberg-Kohn

theorems do not provide a guidance for constructing the functional FHK[n(⃗r )], and

no exact functional is known for any system of more than one electron.

3.1.3 Kohn-Sham Theory

The task of finding good approximations to the energy functional is greatly simpli-

fied by Kohn-Sham theory [16,17]. The key of the success of Kohn-Sham approach is

that it replaces the interacting many-body system with an auxiliary non-interacting

system with the electron density equal to the original interacting system. Accord-

ingly, the Hohenberg-Kohn expression for the ground state energy functional can

be rewritten as

EKS = T0[n] +
∫

d3rVext(⃗r )n(⃗r ) +
1
2

∫
d3rd3r′

n(⃗r )n(r⃗′ )
|r⃗i − r⃗ j |

+ Enn + Exc[n(⃗r )] (3.4)

where T0 is the kinetic energy that a system with density n would have if there

were no electron-electron interactions. The second integral is the classical Coulomb

interaction energy of electrons, or the Hartree energy. All many-body effects of
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exchange and correlation are grouped into the exchange-correlation energy Exs.

Evidently, in Eq. 3.4, all the terms but the exchange-correlation energy can be

evaluated exactly, so the approximation for Exs plays the central role. Comparing

Eq. 3.2 and Eq. 3.4, we can obtain

Exs[n(⃗r )] = T[n(⃗r )] − T0[n(⃗r )] + Eint[n(⃗r )] − EHartree[n(⃗r )] (3.5)

One can see clearly that Exs is the difference of the kinetic and the internal interaction

energies of the interacting system from those of the auxiliary independent-electron

system with Hartree energy EHartree.

If we apply the variational principle to Eq. 3.4, we can obtain the Kohn-Sham

Schrödinger equation:

(−1
2
∇2 + VKS(⃗r ) − ϵ)Φ(⃗r ) = 0 (3.6)

with

VKS(⃗r ) = Vext(⃗r ) +
δEHartree

δn(⃗r )
+
δExc

δn(⃗r )
(3.7)

as we will discuss later, efficient methods exist for solving the single particle

Schrödinger equation with a local effective potential to yield

n(⃗r ) =
∑

i

|Φi(⃗r )|2 (3.8)

and all quantities derivable from it. There are many advantages of Kohn-Sham

approach. For example, in contrast to the Hartree-Fock approach, the effective

potential VKS is local. Also, in contrast to Thomas-Fermi approach where a large

kinetic energy term is approximated, only the small exchange energy and the even

smaller correlation contribution require approximation.

3.1.4 Functionals for Exchange and Correlation

The crucial quantity in the Kohn-Sham approach is the exchange-correlation energy,

which is also the main approximation of DFT. Although the exact Exs functional
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must be complicated, great progress has been made with simple approximation,

and remarkable accuracy has been achieved. A widely used approximation, the

local density approximation (LDA) is to postulate that the exchange-correlation

functional has the following form [19, 20]

ELDA
xc =

∫
n(⃗r )ϵxc(n(⃗r ))dr⃗ (3.9)

Here the function ϵxc(n(⃗r )) for the homogeneous electron gas is numerically known

by, for example quantum Monte Carlo method. The basic idea of LDA is that the

exchange-correlation energy can be found by dividing the system in infinitesimally

small volumes with a constant density, and each small volume contributes to Exc

by an amount equal to the exchange-correlation energy of a homogeneous electron

gas with the same electron density as the original system. It is therefore expected

that LDA will be good for solids close to a homogeneous gas with a slowly varying

density, like a nearly free-electron metal. But surprisingly, LDA appears to be

very accurate in many other cases too. No law guarantees the accuracy of this

approximation, but LDA is a reasonable guess. The reason is that the range of

the effect of exchange and correlation is local and rather short, and furthermore,

the detailed shape of the exchange-correlation need not be correct since only the

average enters the energy.

The success of LDA has led to the development of various improved func-

tionals, such as the generalized-gradient approximations (GGA). GGAs make the

exchange-correlation contribution of every infinitesimal volume dependent not

only on the local density, but also on the density in the neighboring volumes.

Therefore the gradient of the density plays a role, and there are numerous GGA

forms that have been proposed to modify the behaviors of gradients, for example,

the widely used forms of Perdew and Wang (PW91) [21], and Perdew, Burke and

Enzerhof (PBE) [22]. In general, GGAs perform slightly better than LDA, however,

in many GGAs, some free parameters are used to fit experimental data, which

make them not strictly ab initio.
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3.1.5 Pseudopotentials

Up to now, the Kohn-Sham single particle Schrödinger equation, Eq. 3.6, has been

well defined. To solve it, it is necessary to express the single particle obitals Φwith

a basis set. The common approaches include a plane wave basis set or a Gaussian

wave basis set. Having chosen a basis, we can tackle Eq. 3.6 as an eigenvalue

problem, and a self-consistent iteration and a matrix diagonalization process can

be performed numerically. However, it might be clear that Φ belongs to a function

space with infinite dimensions, and the number of basis functions is therefore

infinite in principle. In practice, we have to truncate the basis somehow to realize

the compromise between speed and accuracy. For plane waves, this can be easily

done by limiting the set to k with k < Kmax. In the valence part far away from the

nuclei, the wave function behaves like a plane wave and hence only a small Kmax

is needed. However, in the region near the nuclei (about 0.1 Å), the wave function

shows sharp changes, and a wavelength as small as an order of magnitude less

than this dimension is required, which roughly corresponds to 108 plane waves,

way beyond the capability of any computer.

The solution is to replace the potential in the oscillating core region by a pseu-

dopotential (PP) which is designed to have smooth wave functions inside this re-

gion. This idea, which is usually called the ’muffin-tin’ approach, came out much

earlier for the calculation of electron band structures before the use of DFT [23,24],

but the wide applications of DFT greatly pushed the development of pseudopo-

tential models. There is a big family of pseudopotentials that are actively in use for

DFT calculations. In the augmented plane wave (APW) PP, the wave functions take

a hybrid form with the core part using a basis of atomic orbitals, e.g., spherical har-

monics, and the valence part using standard plane waves. In the norm-conserving

PP, the electron charge within the core region is equal to that of the actual atom [25].

The ultrasoft PP does not conserve the charge, but instead reduces the height of the

peak of the potentials to reduce the number of plane waves needed to represent the

wave functions [26]. The more recent projector augmented wave (PAW) PP begins
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with a plane wave basis set, but then it adopts a set of projection operators to rein-

troduce the wave functions of the core electrons into the calculation. Essentially,

this method retains the full all-electron wave function and charge density [27, 28].

We used PAW and Ultrasoft PPs for the work presented in this thesis.

3.2 Molecular Dynamics Methods

3.2.1 Introduction

One possible way of simulating the behavior at a finite temperature is by allowing

the system to evolve in real time according to a dynamical equation. This is called

molecular dynamics (MD) simulation [29–31]. For nuclei, since they behave as

classical particles in usual cases, the dynamics is usually govened by Newton’s

second law. However, when the temperature is low, for instance in solids when

the temperature is much lower than Debye temperature, quantum effects should

be taken into consideration [32, 33].

MD simulations are commonly classified according to how the interatomic

forces are calculated. Classical MD uses simple multiple particle potentials in ana-

lytical forms. For example, for solids, a Buckingham potential or a Morse potential

is often adopted. Training a classical potential is usually performed by fitting the

target functions to the structural and/or thermodynamical properties of the sys-

tem, or by fitting to the simulated potential surface from first principles methods.

Although a MD with classical potential in general has lower accuracy than first-

principles methods because of the quality of potential surface in use, the speed is

several orders of magnitude faster than its counterpart, and is hence valuable for

studies requiring long simulation times and big system sizes. Developing classical

potentials is therefore a very active research field.

First-principles MD, on the other hand, uses DFT methods to obtain the in-

teratomic forces. First-principles MD includes two common categories: Born-

Oppenheimer MD (BOMD) and Car-Parrinello MD (CPMD) [34]. For BOMD, the
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electronic states are relaxed to the ground states by solving DFT equations at each

time step, and the interatomic forces are calculated from there. CPMD couples

the electronic degrees of freedom into the classical coordinate system by assigning

electrons a fictitious mass. The main benefit of a CPMD approach is the reduction

in computational expense but the convergence of CPMD is usually poorer than

BOMD.

In the work presented in this thesis, MD simulations were used extensively. For

example, to study anharmonic phonon effects, we used classical MD simulations

for rutile TiO2, and we used BOMD for Ag2O.

3.2.2 Solving Equations of Motion

The central role of MD simulation is to capture the trajectories of atoms in time,

e.g., positions r⃗i, velocities v⃗i and accelerations a⃗i. Given a position r⃗ (t) at time t,

we can write down its evolution for a small time step ∆t forward and backward,

r⃗ (t + ∆t) = r⃗ (t) + v⃗ (t)∆t +
1
2

a⃗ (t)∆t2 +
1
3!

d3r⃗ (t)
dt3 ∆t3 + ... (3.10)

r⃗ (t − ∆t) = r⃗ (t) − v⃗ (t)∆t +
1
2

a⃗ (t)∆t2 − 1
3!

d3r⃗ (t)
dt3 ∆t3 + ... (3.11)

and hence

r⃗ (t + ∆t) = (2r⃗ (t) − r⃗ (t − ∆t)) + a⃗ (t)∆t2 +O(∆t4) (3.12)

a⃗ (t) = − 1
m

dV
dr⃗ (t)

(3.13)

This is the Verlet algorithm for solving Newton’s equation numerically [35]. At each

step, the acceleration is evaluated from the potential, and then the position of each

atom can be updated. Note that the equation is correct to third order in ∆t because

the change in acceleration cancels. The preference of Verlet alogithm over, for

example, the Runge-Kutta method which is commonly used in solving differential

equations, is that it is time-reversible. This tends to improve energy conservation
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over long simulation times. The Verlet algorithm has disadvantages, however.

For example, the term proportional to ∆t2 may lead to numerical truncation error

because it is small compared with 2r⃗ (t) − r⃗ (t − ∆t). Moreover, this algorithm does

not have velocities shown explicitly, which is a problem while the simulation is for

a system that is in contact with constant temperature reservoir. The latter problem

in the Verlet algorithm can be remedied by the velocity Verlet algorithm which

includes an analogous expansion of velocity in the Verlet equations [36], in the

form

v⃗ (t + ∆t) = v⃗ (t) +
1
2

[a⃗ (t) + a⃗ (t + ∆t)]∆t (3.14)

The time step ∆t is an important parameter for a MD simulation. Evidently,

as the time step decreases, the numerically calculated trajectory is expected to

become closer and closer to the true trajectory, but the computational cost increases

accordingly. In practice, the limit of the maximum time step is determined by

the rate of the fastest process in the system. In the case of lattice vibrations, the

time step is typically a few femtoseconds, an order of magnitude smaller than the

vibrational period of the phonon mode of highest energy.

3.2.3 Ensembles

A standard MD simulation generates an NVE ensemble, i.e., a microcanonical

ensemble that preserves the total energy and volume, with the temperature and

pressure fluctuating. The NVE ensemble is the natural ensemble of MD, but it is

usually not a natural ensemble in nature. Fortunately, it is also possible to generate

other ensembles, for example, the NVT and NPT ensembles. The NVT ensemble

is a canonical ensemble that is coupled to a heat bath. In practice, this can be

realized by the Nosé-Hoover method [37, 38]. The Nosé-Hoover method is similar

to the extended Lagrange method and can produce a true canonical ensemble. In

this method, a fictitious mass and its related degree of freedom is added to the

system to simulate the coupling with the heat bath by scaling the timescale and

adding a potential term. In the NPT ensemble, the pressure can also be controlled
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by coupling to a pressure bath. Although these ensembles seem to be closer to

realisitic conditions, some fictitious parameters are added. The choices of these

parameters are crucial to maintain the properties of the ensemble and stability

of the system, and require tests and experiences to adjust. Therefore, it may be

advantageous to use an ensemble that achieves the target condition, and then

switch back to the simple NVE ensemble for the long time production run.

3.3 Phonon Calculations

3.3.1 Introduction

The methods and algorithms for calculating anharmonic phonons and analyzing

anharmonic behavior are central topics of this thesis. In this section we give

a brief overview of two popular approaches for calculating phonons, the small

displacement method and the density functional perturbation approach. Both of

these methods focus on the calculation of force constants based on harmonic lattice

dynamics. We adopted these methods to calculate the harmonic or quasiharmonic

phonons for further analysis. We focus more on the molecular dynamics approach

and the velocity autocorrelation method that we developed to study the phonon

anharmonicity. We also discuss how we developed an anharmonic fitting algorithm

based on the phonon perturbation theory and the application of this method.

3.3.2 Lattice Dynamics Approach

3.3.2.1 Small Displacement Method

The small displacement method is a direct method that calculates the force constant

matrix of the vibrating system by displacing the atoms of the system explicitly. As

we discussed in Section 1.2, the force constant matrix or its Fourier transformed

form, the dynamical matrix, is the key to phonon solutions. In this method, some

atoms are displaced and the forces induced by this displacement can be calculated.
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In fact, it is not necessary to displace all the atoms in the primitive cell since the

use of symmetries can reduce the amount of work.

In first-principles DFT methods, the calculation of forces is based on the use

of Hellmann-Feynman theorem. If we consider the ground state energy E(λ) and

wave function Φ(λ) to be parameterized by some parameter λ, then the change in

E(λ) incurred by a change in λ is given by

∂E(λ)
∂λ

= ⟨Φ(λ) | ∂H
∂λ
|Φ(λ)⟩ (3.15)

Accordingly, the force on the nucleus I at X⃗I is thus

F⃗I = −⟨Φ |
∂H

∂X⃗I

|Φ⟩ (3.16)

Feynman showed this to be the electrostatic force on the displaced nucleus.

Similar treatment of displacements can be used to study the potential surface of

one particular phonon mode. In the so called ”frozen” phonon method, one picks a

phonon mode for the system and applies a displacement field corresponding to this

phonon described by the polarization vector es and a displacement amplitude u.

By calculating the total energy for a set of displacement configurations varied by u,

one obtains the deformation potential for this phonon. This potential curve is typi-

cally parabolic around the equilibrium configuration, but for larger displacements,

anharmonic components in the potential become more important. The advantage

of this method is that it provides the potential for the atomic displacements not

limited to the harmonic approximation. However, it should be noticed that al-

though some anharmonic effect is seen from this approach, this potential surface

is only for this particular mode and therefore the contributions of phonon-phonon

interactions still cannot be evaluated.
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3.3.2.2 Density Functional Perturbation Method

The density functional perturbation theory (DFPT) is an advanced and fast de-

veloping branch of DFT calculations, and the calculation of phonons is one of its

important applications [39, 40]. In principle, DFPT can also be applied to calculate

some physical quantities related to anharmonic phonon effects, for example, the

third order phonon coupling tensors. These applications are more complicated to

implement and are active research fields.

The idea of DFPT is based on the linear response theory and DFT. Since the elec-

tron density is the fundamental quantity in DFT, we are interested in the changes to

first order of electron density in response to an external perturbation. The change

of electron density can be used to derive many physical quantities.

δn(⃗r ) =
∫

dr⃗′ χ(⃗r, r⃗′) δVext(r⃗′) (3.17)

whereχ is the coefficient of linear response in response to the potential perturbation

δVext, and is usually called a susceptibility. It is non-local because the change of

density somewhere will induce changes everywhere by electron-electron interac-

tion. In the case of phonons, the perturbed potential is the displacement described

by the phonon polarization vector. Once δn(⃗r ) is calculated, the dynamical matrix

can be easily derived because the second derivative of the energy can be simply

expressed as the integral form of the first derivative of electron density n(⃗r ) and

potential according to the well-known ”2n+1” theorem [40].

From basic quantum perturbation theory, it is easy to show that the suscepti-

bility χ0, which is the linear response coefficient for the total potential change, i.e.,

χ−1
0 (⃗r, r⃗′) = δVtotal

δn(r⃗′)
, is

χ0(⃗r, r⃗′) =
∑

i, j

( fi − f j)
Φi(⃗r )∗Φ j(⃗r )Φ j(r⃗′ )∗Φi(r⃗′ )

ϵi − ϵ j
(3.18)

where f ’s are the electron occupation factors at zero temperature. It should be
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noted that although the DFPT involves Kohn-Sham eigenstates and eigenvalues

of which the meaning is not very clear, they are just intermediate states. The real

problem comes from the computational cost because Eq. 3.18 scales as O(n4). The

computational complexity can be reduced to O(n2) by using a projection operator

to avoid the evaluation of conduction bands.

3.3.3 Molecular Dynamics Approach

3.3.3.1 Time-Correlation Method

MD simulation is a perfect tool to investigate phonon anharmonicity because it

naturally includes all effects of anharmonicity in the trajectories while the system

is evolving dynamically. MD simulations should be reliable for calculating phonon

spectra in strongly anharmonic systems, even when the QHA, or perturbation

theory fails. However, the phonon densities of states and the phonon dispersion are

not physical quantites that result directly from MD. How to extract the vibrational

information from the MD trajectories is the key to connecting MD simulations with

the study of phonon dynamics.

In the work presented in this thesis, we used time-correlation method to study

the lattice dynamics properties from MD simulation. Specifically, we adopted the

so called ”Fourier transformed velocity autocorrelation method” to connect the ve-

locity trajectories with the vibrational energy spectra. The time-correlation method

is one of the most active and fruitful areas of nonequilibrium statistical mechan-

ics. It was initiated by Green and Kubo in 1950s [41, 42], who showed that many

transport processes and time-dependent phenomena could be written as intergrals

over a certain type of function called a time-correlation function. Similar to the role

of partition functions in equilibrium statistical mechanics, these time-correlation

functions play a role in determining physical quantities in nonequilibrium statisti-

cal mechanics. One great advantage of this approach is that the resulting formulas

do not depend upon the details of any particular model. For example, it can

be shown that any frequency dependent conductivity σ(ω) resulting from some
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time-dependent current J⃗ caused by an external field is given by

σ(ω) =
1

kT

∫ ∞

0
dt e−iωt⟨J⃗ (0) J⃗ (t)⟩ (3.19)

where T is temperature. ⟨⟩ is the ensemble average of the system. Note that this

equation is so general that it even describes the self-diffusion process if a zero

frequency limit is applied. Likewise, we will show in the next subsection that a

velocity correlation function can give phonon spectra.

One possible problem here is the evaluation of the ensemble average, which is

in practice very difficult. In principle, we have to average a large number of similar

systems or trajectories with different initial conditions over some equilibrium en-

semble. This problem can be tackled by the ergodic hypothesis, which states that

for a stationary random process, a large number of observations made on N arbi-

trarily chosen systems at the same time from an ensemble of similar systems have

the identical statistical properties as observing a single system at N arbitrary in-

stants of time. Under this assumption, the ensemble average is equivalent to a time

average, the latter of which is simpler to evaluate from time-evolving simulations,

e.g., a MD simulation.

3.3.3.2 Fourier-Transformed Velocity Autocorrelation Method

We developed an autocorrelation method to transform the velocity trajectory to

the vibrational energy space to study the phonon anharmonicity at various tem-

peratures or pressures. The essence of this method is a stochastic signal sampling

algorithm. We correlate the velocities of different atoms at different times and use

a complete set of the harmonic functions to sample the energy space of the system,

taking advantage of the orthogonality nature of harmonic vibrational eigenstates.

The proof is not difficult. Here we show how a Fourier-transformed velocity au-

tocorrelation leads to the vibrational DOS. Note that we generalize the question to

the aperiodic system which has no q⃗ dependence. In this sense, the phonon DOS of

a periodic lattice is just a special case, and this method has already automatically
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summed the q⃗ part. As a result, similar methods are used to study the molecule

or liquid systems [43, 44]. More interestingly, it does not require any pre-defined

model embedded here, such as a harmonic model in lattice dynamics. This ”first

principles” character benefits the study of the anharmonicity intrinsically. The vi-

brational DOS can be obtained by the Fourier transformed velocity autocorrelation

method as follows:

g(ω) =
2

kBT

N∑
j=1

3∑
k=1

m j lim
τ→∞

1
2τ

∫ ∞

−∞
dt′

∫ τ

−τ
dt vk

j(t
′ + t)vk

j(t
′)∗ e−iωt (3.20)

where velocities can be written as the superpostion of normal coordinates

vk
j(t) =

1
m j

∑
s

Ẋs e j k
s (3.21)

Here Xs and es are normal coordinate and eigenvector of the s mode respectively,

defined in Section 1.2. Note that we do not assume any periodicity in the system,

therefore there is no normalization factor 1/
√

N or q⃗ dependence. Combining

Eq. 3.20 and Eq. 3.21 and using the orthogonality property of eigenvectors, i.e.,∑
j,k e j k

s e j k
s′ = δss′ , we can show that

g(ω) =
2

kBT

3N∑
s=1

1
4
ω2

s A2
s (δ(ω − ωs) + δ(ω + ωs)) (3.22)

where As is the amplitude of Xs. In the classical limit, 1
4A2

sω
2
s =

1
2kBT, and hence

g(ω) =
3N∑
s=1

δ(ω − ωs) + δ(ω + ωs) (3.23)

We can also recover the q⃗ dependence in this process for a periodic system, i.e.,

project the DOS to a particular q point and obtain the phonon dispersion relation

ω(q⃗). The proof is more tedious, but the idea is clear: we account for the q⃗ in

the supperposition of normal modes. Therefore, in addition to the time domain

transformation for DOS, the spatial domain transformation is also performed si-
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multaneously with the equilibrium lattice structures as the initial input. We can

get a power spectrum P(q⃗, ω) which not only provides the dispersion relation, but

also the power intensity distribution at any q⃗ point. This method is versatile and

powerful, and can be applied to many related fields. For example, similar method

was used to study the thermal transport phenomena in solids [45].

Fig. 3.1 schematically illustrates how our velocity autocorrelation package

works. The package takes in the time-dependent velocity data from a long time MD

simulation, implemented with first-principles or classical MD packages, such as

VASP or GULP. After the boundary correction and cell grouping, the velocity data

are fed into the core of this package which calculates the autocorrelation function

in parallel. It can then transform the autocorrelation function to the corresponding

energy or momentum space and generate the DOS or phonon dispersion. The

implementation of this code has little dependence on symmetry, atomic type, e.g.,

and hence is very robust. This is a signal processing code, and the accuracy is

only determined by the quality of MD simulation. As expected, the frequency

resolution ∆ f is inversely proportional to the simulation time T, and the resolution

in q⃗ space is inversely proportional to the size of the simulation box. As a result,

the longer the MD simulation and the larger the simulated system, the better the

quality of the output. For example, a 10 ps MD production roughly corresponds

to a frequency resolution of 10 wavenumbers. Interesting applications and results

from this method will be presented and discussed in the next few chapters.
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Figure 3.1: The flow chart implementing the Fourier-transformed velocity autocor-
relation method

3.4 Anharmonic Fitting Algorithm

Based on the phonon-phonon interactions derived in Chapter 1, we developed a

new method to fit the thermal broadenings and shifts of Raman and infrared peaks

simultaneously with a full calculation for the kinematics of three-phonon and four-

phonon processes. This fitting method correlates the thermal broadenings and

shifts together, and provides rigorous procedures to identify the cubic and quartic

components of the anharmonicity for each mode.

The main idea behind this method is the fact that the anharmonic coupling

strength and the two-phonon kinematical processes are approximately separable if
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the anharmonicity tensor does not vary significantly for different phonon processes.

An analytical form of anharmonicity tensor was proposed by Ipatova [46], and more

recently was found to be a good approximation by first principles calculations

[47, 48] .

V( j; q⃗1 j1; ...; q⃗s−1 js−1) =
1

2s!

(
~

2N

) s
2

N∆(q⃗1 + · · · + q⃗s−1)

×[ω j0ω1 · · · ωs−1 ]
1
2 C( j; q⃗1 j1; ...; q⃗s−1 js−1) (3.24)

where ∆(q⃗1 + · · · + q⃗s−1) enforces momentum conservation. We consider the term

C( j; q⃗1 j1; ...; q⃗s−1 js−1) to be a constant of the Raman mode j, and we use it as a fit-

ting parameter. This approximation is not rigorous because C( j; q⃗1 j1; q⃗2 j2) and

C( j; j; q⃗1 j1;−q⃗1 j1) change with j1 and j2, but an average over modes, ⟨C(.)⟩ =∑
1,2 C( j; q⃗1 j1; q⃗2 j2)/

∑
1,2 1, is found by the fitting, where 1, 2 under the summation

symbol represent q⃗i ji.

Central to this method is the calculation of the two-phonon DOS, D(Ω), defined

as

D(Ω) =
∑
q⃗1, j1

∑
q⃗2 j2

D(Ω,ω1,ω2)

=
1
N

∑
q⃗1, j1

∑
q⃗2, j2

∆(q⃗1 + q⃗2)
[
(n1 + n2 + 1) δ(Ω − ω1 − ω2)

+ 2(n1 − n2) δ(Ω+ ω1 − ω2)
]

(3.25)

which counts the number of phonon-phonon interaction channels available to a

phonon of frequencyΩ. It depends on temperature through the phonon occupancy

factors, n, and satisfies the kinematical conditions of conservation of energy and

momentum. The first and second terms in square brackets in Eq. 6.5 are from

down-conversion and up-conversion processes, respectively [47]. This spectral

quantity can be calculated by scanning all phonon modes in Brillouin zone.

We will discuss this algorithm in detail, and present examples of analyzing the

anharmonicity strengths of rutile and cuprite structures in the next few chapters.
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Chapter 4

Phonon Anharmonicity of Rutile TiO2

The main content of this chapter appeared in the journal article: Tian Lan, Xiaoli

Tang and Brent Fultz, Physical Review B 85, 094305 (2012).
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Raman spectra of rutile titanium dioxide (TiO2) were measured at temperatures

from 100 K to 1150 K. Each Raman mode showed unique changes with temperature.

Beyond the volume-dependent quasiharmonicity, the explicit anharmonicity was

large. A new method was developed to fit the thermal broadenings and shifts of

Raman peaks with a full calculation of the kinematics of 3-phonon and 4-phonon

processes, allowing the cubic and quartic components of the anharmonicity to be

identified for each Raman mode. A dominant role of phonon-phonon kinematics

on phonon shifts and broadenings is reported. Force field molecular dynamics

(MD) calculations with the Fourier-transformed velocity autocorrelation method

were also used to perform a quantitative study of anharmonic effects, successfully

accounting for the anomalous phonon anharmonicity of the B1g mode.

4.1 Introduction

Rutile is the most common and stable crystal structure of titanium dioxide (TiO2),

and is important for both science and technology. Owing to its high refractive

index and strong ultraviolet resistance, it is used extensively for pigments, optical

coatings and sunscreens. In the past two decades, TiO2 surfaces have been subjects

of research as photocatalysts and high efficiency solar cells [49–53]. Many questions

remain about point defects, vibrational dynamics, size effects and the recently-

reported close relationship between surface and bulk properties [53–55]. A better

understanding of the lattice dynamics of rutile will help answer many of them.

Rutile TiO2 is tetragonal with the space group P4/mnm. It is stable to 1800 K

[56]. The other two naturally-occurring phases of TiO2, anatase and brookite, are

metastable and both convert to rutile upon heating. The 15 optical vibrational

modes of rutile TiO2 have the irreducible representation 1A1g+ 1A2g+ 1A2u+ 1B1g+

1B2g + 2B1u + 1Eg + 3Eu. The modes of symmetry B1g, Eg, A1g and B2g are Raman

active. The Raman active modes comprise motions of anions with respect to sta-

tionary central cations, either perpendicular to the c axis (modes B1g, A1g and B2g),

or along the c axis (mode Eg). The Raman spectrum of rutile was first recorded
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by Narayanan [57], and peak assignments were made by Porto, et al. [58]. Ra-

man spectrometry has been used in many studies of the lattice dynamics, phase

transition and nanostructures of TiO2 [59–64].

The present work on rutile TiO2 focuses on anharmonicity, one of the most

important but poorly understood characteristics of lattice dynamics at elevated

temperatures. Anharmonic behavior affects crystal stability, heat capacity, optical

properties and thermal transport. It causes shifts of phonon energies with tempera-

ture because larger thermal displacements emphasize components of the potential

with higher powers of the displacement. Phonon broadening from decreased life-

times is another anharmonic phenomenon, and an anharmonic model should be

able to predict both the broadenings and shifts of the phonons with temperature. To

date there have been few studies of anharmonicity of rutile TiO2. Perhaps the most

complete experimental results are from Samara and Peercy’s work in 1973 [59].

They reported frequency shifts of Raman modes with temperature and pressure,

although the temperature range was below 500 K and no broadening information

was reported. Their results show that the B1g mode, which comprises rotatory mo-

tions of the four nearest neighbor oxygen anions around a central titanium atom

(Fig. 4.1) is especially interesting. Its frequency changes little with temperature,

but softens with pressure. Studies on other materials with the rutile structure, e.g.,

SnO2, MgF2 and FeF2 report similar behavior of the B1g mode [65–68]. There are

two conflicting views on the physical origin of these anomalies. One attributes it

to an incipient structural phase transition [65, 69, 70], and the other attributes it to

a thermal- or pressure-induced lattice contraction [66–68].

Lattice dynamics calculations based on density functional theory (DFT) were

used to study the effect of pressure on phonons in rutile TiO2 [70, 71]. These

calculations were for low temperature and in the quasiharmonic approximation,

where phonons are assumed to be harmonic but their frequencies change with

volume. Only a few studies have used molecular dynamics (MD) to calculate

anharmonic frequency shifts and broadenings of phonon mode of materials [72,73],

and to our knowledge, no such investigation has yet been performed on rutile TiO2.
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(a) B1g

(c) A1g(b) Eg

Figure 4.1: Rutile structure and oxygen atom displacements for Raman-active
modes.

Here we report measurements of Raman spectra with high resolution at tem-

peratures from 100 to 1150 K. Both phonon frequency shifts and broadenings were

measured and analyzed. The quasiharmonic effects from thermal expansion were

separated from anharmonic effects of phonon-phonon interactions by comparing

temperature and pressure dependent trends of the Raman peaks. To identify the ef-

fects of cubic and quartic anharmonicity, we developed a new anharmonic analysis

that allows data fitting with calculated two-phonon kinematic functionals. We also

used force-field molecular dynamics (MD) calculations and Fourier-transformed

velocity autocorrelation function methods to study the anharmonicity. The meth-

ods proved quite successful, and are able to account for the anomalous phonon

softening of the B1g mode.

4.2 Experiments

Samples were commercial TiO2 powder (Alfa Aesar, Ward Hill, MA) with a rutile

phase fraction of at least 99.9%. The sample powder was packed loosely inside a

quartz sample cell in a furnace with several electrical resistance heating elements

insulated by ceramic rods [74]. The heating assembly was supported by stainless
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steel flanges and surrounded by heat shields made of niobium foil. The assembly

was mounted in a quartz optical tube of 1 mm thickness, and evacuated with a

turbomolecular pump. Both the interior and exterior of the tube were covered by

aluminum foil for thermal radiation shielding. A temperature controller drove a

1 kW direct current power supply for heating power. For low temperature measure-

ments, the sample cell was mounted on the copper cold finger of a liquid nitrogen

filled cryostat and evacuated. Uniformity of sample temperature was confirmed by

multiple ultrafine thermocouples mounted at different locations inside the sample

cell, and the temperature resolution was ±1 K. Samples were measured at tem-

peratures from 100 to 1150 K, with intervals of 100 K below 700 K and 50 K above

700 K.

The Raman spectrometer used the 532 nm line from a solid state laser at power

levels of 100 mW or less. A high efficiency longpass edge filter was used to block

the laser line. The single pass spectrometer (Princeton Instruments Acton Series

500 mm) used a two-dimensional charge-coupled device camera with thermoelec-

tric cooling (Princeton Instruments PIXIS 400B). The instrument resolution was

1.4 cm−1. Each Raman spectrum was accumulated in 10 measurements with 1 s

exposure times.

4.3 Molecular Dynamics Calculations

Our classical molecular dynamics (MD) calculations used simulation tools in the

GULP software package [75]. Rutile TiO2, with its relatively small ionicity and large

dipole moments on anions, is a challenging system for developing an interatomic

potential. Few of those we tried [76–79] could simultaneously provide the crystal

structure, elastic properties, thermal expansion and phonon vibrational frequen-

cies. The best results for phonon properties were obtained with the Buckingham

potential (Model 3) developed by Mostoller and Wang (MW shell model) [79]. The

MW shell model was parameterized by fitting the phonon spectra over the whole

Brillouin zone, and the model also gives reasonable bulk properties. We altered
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slightly this model to improve its transferability and stability at different temper-

atures and pressures (the shell charge of titanium atoms was increased to 0.37 |e|).
The parameters of the force field model were fixed for all the calculations presented

below.

To extract anharmonic information on individual phonon modes from the

atomic trajectories of the MD simulations, the phonon spectral energy density

function g(q⃗,ω) was obtained by the velocity autocorrelation technique [43, 80]

g(q⃗,ω) =
∫

dt e−iωt
∑
n,b

ei q⃗·R⃗n ⟨v⃗n,b(t) v⃗0,0(0)⟩ (4.1)

where ⟨ ⟩ is an ensemble average, v⃗n,b(t) is the velocity of the atom b in the unit

cell n at time t, R⃗n is the equilibrium position of the cell n, and q⃗ is the phonon

wavevector. Equation 4.1 is both a time and space Fourier transform, and gives the

frequency and lifetime of each phonon mode with a resolution determined by the

size of the supercell used in the simulation.

Our MD simulations were performed with a 2×2×20 supercell containing 960

atom cores and shells. We used the Verlet algorithm, an NPT ensemble, and a

modified Nosé-Hoover thermostat for control of temperature and pressure. Both

the isobaric temperature-dependent phonon peaks and the isothermal pressure-

dependent phonon peaks were obtained in ranges of 300 K to 900 K and 0 GPa to

6 GPa. The run time for each set was 100 ps with time steps of 0.5 fs and sampling

periods of 10 fs. The time-dependent atomic trajectories of velocity were post-

processed by the velocity autocorrelation method to obtain mode frequencies and

linewidths. The resolution of the wavevector q⃗ along theΓ-Z direction was therefore

Gz/20, where Gz is the magnitude of the reciprocal lattice vector. The frequency

resolution was approximately 0.5 cm−1.
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4.4 Results

4.4.1 Experiment

After background subtraction, each peak in each spectrum was fitted to a Lorentzian

function to obtain a centroid and full-width-at-half-maximum (FWHM). The FWHM

data from the experiment were corrected for the finite resolution of the spectrome-

ter [81]. Figure 4.3 presents these results of peak shifts and widths versus temper-

ature. At room temperature, the Raman peak frequencies were 143 cm−1, 447 cm−1

and 612 cm−1, consistent with the well-accepted data from Porto, et al. [58]. We

also find good agreement with the frequency shift data reported by Samara and

Peercy [59] at temperatures below 480 K.

The Eg mode undergoes a large phonon softening with temperature. The A1g

mode has a small thermal softening at high temperature, but below 400 K the A1g

mode tends to stiffen slightly with temperature, as also reported by Samara and

Peercy [59]. The B1g mode appears to have no thermal shift. The thermal broaden-

ings of Eg and A1g peaks are large, but the B1g mode shows far less broadening.
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Figure 4.2: Raman spectra of rutile TiO2 at selected temperatures from 100 K to

1150 K.



65

0 200 400 600 800 1000 1200

0.90

0.92

0.94

0.96

0.98

1.00

1.02

(a)

 

B1g

A1g

Eg

 

��
��

��
��
���

���

Eg

A1g

B1g

(b)

0 200 400 600 800 1000 1200

0

3

6

20

40

60

80

 

F
W

H
M

(c
m

-1
)

Temperature (K)

��
��

��
���

���
��

���
���

���
���

��
���

���
���

���
��

ω
(T

) 
/ 
ω

(3
0
0
K

)

Figure 4.3: Temperature dependence of (a) frequency shifts, (b) FWHM, of the

Raman modes B1g, Eg and A1g. Data of Ref. [ [59]] are shown as open triangles in

panel a.
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4.4.2 MD Simulations

Table 4.1: Properties of rutile TiO2 from present calculations, compared to exper-

imental data. Units: lattice parameters in Å, Raman frequencies in cm−1, thermal

expansion coefficients in 10−6K−1, volume compressibility in 10−3GPa−1.

Experiment Calculation

Crystal Structure

a 4.593 4.499

c 2.959 3.077

u 0.3048 0.3059

Raman Frequency

B1g 143 169

Eg 447 400

A1g 612 558

B2g 826 803

Thermal Expansion

βa 8.25 8.13

βb 10.86 9.85

βV 27.35 26.1

Compressibility

κ 4.73 4.09

Table 6.1 presents results from our MD simulations and experimental data on

lattice parameters, Raman frequencies, thermal expansion and volume compress-

ibility. The calculated lattice parameters and Raman frequencies were from MD

simulations at 300 K. The thermal expansion and compressibility were from iso-

baric (0 GPa) MD calculations to 900 K and isothermal (300 K) MD calculations to

6 GPa. The agreement with experimental data is good. The good agreement for the

thermal expansion is encouraging for the use of the MD calculations for predicting
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anharmonic behavior.

Figure 4.4a presents simulated Raman peaks of the B1g mode at elevated tem-

peratures at 0 GPa, and at elevated pressures at 300 K. The small thermal shift

and broadening seen in the experimental results of Fig. 5.2 are apparent in the

simulated results.

Figure 4.4b, c presents simulated Raman peaks of the Eg and A1g modes at

elevated temperature. The large thermal broadening of both modes, and the large

thermal shift of the Eg mode are in apparent agreement with the experimental

results of Fig. 5.2.

4.5 Experimental Data Analysis

4.5.1 Analysis of Quasiharmonicity and Anharmonicity

Both quasiharmonicity and explicit anharmonicity contribute to the non-harmonic

lattice dynamics of rutile TiO2. In the quasiharmonic model, phonon modes be-

have harmonically with infinite lifetimes, but their frequencies are changed by the

effects of volume on the interatomic potential. Explicit anharmonicity originates

with phonon-phonon interactions, which increase with temperature. Explicit an-

harmonicity contributes to shifts in phonon frequencies, but also causes phonon

damping and lifetime broadening of phonon peaks with temperature. The large

peak broadenings and peculiar differences in shifts of the Raman peaks in rutile

TiO2 suggest there are important effects from explicit anharmonicity.

To separate the effects of quasiharmonicity and explicit anharmonicity, we treat

the mode frequency ω j = ω j(V,T) as a function of volume and temperature [59]

(
∂ lnω j

∂T

)
P
= −
β

κ

(
∂ lnω j

∂P

)
T
+

(
∂ lnω j

∂T

)
V

(4.2)

where j is the phonon mode index, β is the volume thermal expansivity and κ is the

isothermal compressibility. The left-hand side gives the temperature-dependent
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Figure 4.4: (a) The B1g Raman peak calculated from the velocity trajectories of
MD simulations, at temperatures as labeled and constant pressure of 0 GPa, and at
pressures from 0 to 6 GPa at 300 K. (b) Calculated Eg Raman peak, and (c) Calculated
A1g Raman peak at temperatures as labeled and constant pressure of 0 GPa. Solid
red curves are the Lorentzian fits.
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isobaric frequency shift, including both quasiharmonic and explicit anharmonic

behavior. The first term on the right-hand side, the isothermal frequency shift as a

function of pressure, is the quasiharmonic contribution to the frequency shift. By

defining a mode Grüneisen parameter as the proportionality of the relative change

of the mode frequency to the relative change of volume, i.e., γ j = −∂(lnω j)/(∂(ln V)),

this term can be written as γ jβ. The second term on the right of Eq. 6.7 is the pure

temperature contribution to the frequency shift from the explicit anharmonicity.

From the difference of the isobaric and isothermal frequency shifts, the explicit

anharmonicity can be determined experimentally.

We used the mode Grüneisen parameters γ j reported by Samara and Peercy [59]

from Raman measurements under pressure. Since the γ j are very weakly depen-

dent on temperature [59,65], as is the thermal expansion above 300 K [82], the γ j can

be assumed to be constants for identifying the volume dependent quasiharmonic

contribution. The results, summarized in Table 5.2, separate the frequency shifts

from quasiharmonicity and explicit anharmonicity. Samara and Peercy’s results at

296 K are also shown for comparison. For the B1g mode, Table 5.2 shows that the

quasiharmonic and explicit anharmonic contributions are both large but opposite

in sign, and their near-perfect cancellation causes the B1g mode to have a small

thermal frequency shift to 1150 K. The quasiharmonic softening of the B1g mode

with increasing pressure (or equivalently, with decreasing temperature), and its

negative Grüneisen parameter, are anomalous. The A1g mode has a similar can-

cellation of quasiharmonic and explicit anharmonic contributions, but the signs of

two contributions are reversed. The positive explicit anharmonic shift of the A1g

mode is unusual. We find this explicit anharmonicity at higher temperature to be

smaller than Samara and Peercy’s result below 400 K. There is a similar difference

for the Eg mode but with an opposite trend, where the explicit anharmonic contri-

bution increases by an order of magnitude when averaged over a larger range of

temperature. It becomes comparable to the quasiharmonic contribution, hastening

the softening of the Eg mode at temperatures above 400 K.



70

Table 4.2: Frequencies of the three Raman modes, their logarithmic pressure and
temperature derivatives, and mode Grüneisen parameters. The measured isobaric
temperature derivatives are separated into the pure volume and pure temperature
contributions. Samara and Peercy’s results are listed in the lower row for each
mode. And mode Grüneisen parameters are from Ref. [59]

ω γ j

(
∂ lnω
∂T

)
P
= −γ jβ +

(
∂ lnω
∂T

)
V

Mode (cm−1) (10−5K−1) (10−5K−1) (10−5K−1)
B1g 143 -5.03 0.788 11.82 -11.03

143 0.6 -11.22
Eg 447 2.43 -11.17 -5.71 -5.46

450 -6.3 -0.59
A1g 612 1.59 -1.42 -3.72 2.3

612 0.6 4.32

4.5.2 Analysis of Cubic and Quartic Anharmonicity

The previous section showed how the comparison of temperature-dependent and

pressure-dependent shifts of phonon frequencies can be used to separate quasihar-

monic and anharmonic behavior. The anharmonic behavior can be resolved further.

When phonon anharmonicities are treated as perturbations that cause interactions

of quasiharmonic phonons, it is known how the cubic anharmonicity associated

with three-phonon processes and the quartic anharmonicity of four-phonon pro-

cesses affect differently the shift and broadening of quasiharmonic phonons. The

Feynman diagrams for the leading-order contributions to the phonon self-energy

are [2]
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The lowest order contributions to the shifts, ∆, and broadenings, Γ, of the

Raman mode j, are derived from the real and imaginary parts of the cubic and

quartic self-energies Σ(3), Σ(3′) and Σ(4)

∆(3)( j;Ω) = −18
~2

∑
q⃗1 j1

∑
q⃗2 j2

∣∣∣V( j; q⃗1 j1; q⃗2 j2)
∣∣∣2

×℘
[ n1 + n2 + 1
Ω+ ω1 + ω2

− n1 + n2 + 1
Ω − ω1 − ω2

+
n1 − n2

Ω − ω1 + ω2
− n1 − n2

Ω+ ω1 − ω2

]
(4.4a)

∆(3′)( j) = −72
~2

∑
j1

∑
q⃗2, j2

V( j; j; 0⃗ j1)V(⃗0 j1;−q⃗2 j2; q⃗2 j2)

×℘
( 1
ω1

) (
n2 +

1
2

)
(4.4b)

∆(4)( j) =
24
~

∑
q⃗1, j1

V( j; j; q⃗1 j1;−q⃗1 j1)
(
n1 +

1
2

)
(4.4c)

Γ(3)( j;Ω) =
18π
~2

∑
q⃗1 j1

∑
q⃗2 j2

∣∣∣V( j; q⃗1 j1; q⃗2 j2)
∣∣∣2

×
[
(n1 + n2 + 1) δ(Ω − ω1 − ω2)

+ 2(n1 − n2) δ(Ω+ ω1 − ω2)
]
, (4.4d)

where Ω is the phonon frequency and ℘ denotes the Cauchy principal part. The

V(.)’s are elements of the Fourier transformed anharmonic tensor, denoting the

coupling strength between the Raman mode j to other modes {q⃗i ji} having quasi-

harmonic frequencies {ωi} and occupancies {ni}. The broadening of the Raman

peaks is 2Γ(3)( j;Ω). The simplicity of the first-order shift ∆(4)( j;Ω) is partly a conse-

quence of zero momentum transfer in Raman spectroscopy.

For crystals having atoms without inversion symmetry, as is the case for the

rutile structure, an additional low-order cubic term ∆(3′)( j), expressed in Eq. 4.4b,

is possible. It corresponds to the second diagram in Eq. 3 with instantaneous

phonons at a three-phonon vertex [2]. Group theory further showed that the

only nonzero contribution to Eq. 4.4b arises from the j1 mode that belongs to the
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identity representation [83]. Owing to the rigorous restrictions on the existence

of instantaneous three-phonon processes, ∆(3′) is generally much smaller than ∆(3).

For rutile TiO2, this term needs to be evaluated only for the A1g mode because it

does not have inversion symmetry for oxygen atom motions (see Fig. 4.1c).

Including all shifts, the frequencies of the Raman peaks are

ω j(T,Ω) = ω j0 exp
[
−γ j

∫ T

0
β(T) dT

]
+ ∆(3)( j;Ω)

+∆(3′)( j) + ∆(4)( j) . (4.5)

The first term on the right of Eq. 4.5 is the integral form of the quasiharmonic phonon

shift (discussed after Eq. 6.7) and from the last term of Eq. 4.5, (∂ω j/∂T)V δT =

∆(3)( j;Ω) + ∆(3′)( j) + ∆(4)( j) is the explicit anharmonic shift. To obtain β(T), experi-

mental data from 4 K to 1200 K [59, 82] were fitted with a well-accepted analytical

form [84]

β(T) =
(A

T
+

B
T2

)
sinh−2

(T1

T

)
(4.6)

giving A = 7.16 × 10−5, B = 0.524K and T1 = 146.2K.

In what follows, we use Eqns. 4.4a - 4.4d, to identify the magnitudes and signs

of the cubic and quartic anharmonicities from the thermal shifts and broadenings

of the Raman modes in rutile TiO2. We do not calculate the V(.)’s, which are

complicated tensor quantities, but instead we treat them as parameters in fitting

the experimental trends of the Raman modes. We do a full calculation of the

two-phonon density of states, however, as described below.

From Ipatova, et al. [46], an anharmonic tensor element for a process with s

phonons is

V( j; q⃗1 j1; ...; q⃗s−1 js−1) =
1

2s!

(
~

2N

) s
2

N∆(q⃗1 + · · · + q⃗s−1)

×[ω j0ω1 · · · ωs−1 ]
1
2 C( j; q⃗1 j1; ...; q⃗s−1 js−1) (4.7)

where ∆(q⃗1 + · · · + q⃗s−1) enforces momentum conservation. Ipatova, et al. [46],
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suggest that the C(.)’s are slowly-varying functions of their arguments. Several

studies used this assumption to calculate or fit approximately the anharmonic

broadening [46, 85, 86]. Klemens assumed the frequency independent part of the

coupling tensor for a Raman mode j was a constant that depended on the strain field

of the mode [87]. Likewise, we consider the term C( j; q⃗1 j1; ...; q⃗s−1 js−1) to be a constant

of the Raman mode j, and we use it as a fitting parameter. This approximation is

not rigorous because C( j; q⃗1 j1; q⃗2 j2) and C( j; j; q⃗1 j1;−q⃗1 j1) change with j1 and j2, but

an average over modes, ⟨C(.)⟩ = ∑
1,2 C( j; q⃗1 j1; q⃗2 j2)/

∑
1,2 1, is found by the fitting,

where 1, 2 under the summation symbol represent q⃗i ji. We define the cubic and

quartic fitting parameters as

C(3)
j = ⟨C( j; q⃗1 j1; q⃗2 j2)⟩ (4.8a)

C(4)
j = ⟨C( j; j; q⃗1 j1;−q⃗1 j1)⟩ (4.8b)

While the anharmonic tensor describes the coupling strength of phonon-phonon

interactions, a prerequisite is that the phonons in these processes satisfy the kine-

matical conditions of conservation of energy and momentum (as explicitly written

in Eqs. 4.4 and 6.2). Central to phonon linewidth broadening from the cubic anhar-

monicity, 2Γ(3), is the two-phonon DOS, D(Ω), defined as

D(Ω) =
∑
q⃗1, j1

∑
q⃗2 j2

D(Ω,ω1,ω2)

=
1
N

∑
q⃗1, j1

∑
q⃗2, j2

∆(q⃗1 + q⃗2)
[
(n1 + n2 + 1) δ(Ω − ω1 − ω2)

+ 2(n1 − n2) δ(Ω+ ω1 − ω2)
]

(4.9)

which depends on temperature through the phonon occupancy factors, n. The first

and second terms in square brackets in Eq. 6.5 are from down-conversion and up-

conversion processes, respectively [47]. The two-phonon kinematical functional
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for the anharmonic frequency shifts from the cubic anharmonicity, ∆(3), is P(Ω)

P(Ω) =
∑
q⃗1, j1

∑
q⃗2, j2

P(Ω,ω1,ω2)

=
1
N

∑
q⃗1, j1

∑
q⃗2, j2

∆(q⃗1 + q⃗2) ℘
[ n1 + n2 + 1
Ω+ ω1 + ω2

− n1 + n2 + 1
Ω − ω1 − ω2

+
n1 − n2

Ω − ω1 + ω2
− n1 − n2

Ω+ ω1 − ω2

]
(4.10)

Both D(Ω) and P(Ω) were calculated at various temperatures for the phonon

dispersions calculated with the MW shell model, sampling ωq⃗ j with a 16×16×16

q-point grid, giving good convergence. Figure 4.5 shows representative results for

D(Ω) and P(Ω). The down-conversion and up-conversion subspectra of D(Ω) are

shown for 1000 K. The up-conversion processes are skewed to lower frequencies,

and disappear above 800 cm−1, consistent with the highest phonon frequency of

rutile TiO2 being about 800 cm−1.

With Eqs. 6.2, 6.4, 4.9 and 5.2, the anharmonic frequency shifts and linewidth

broadenings are rewritten as functions of P(Ω) and D(Ω), weighted by average

anharmonic coupling strengths

∆(3)( j;Ω) = − ~
64
ω j0

∣∣∣C(3)
j

∣∣∣2 ∑
q⃗1, j1

∑
q⃗2, j2

ω1ω2 P(Ω,ω1,ω2) (4.11a)

∆(3′)( j) = − ~
16N
ω j0

∣∣∣C(3)
j

∣∣∣2 ∑
q⃗2 j2

ω j2(q⃗2)
(
nq⃗2 j2 +

1
2

)
(4.11b)

∆(4)( j) =
~

8N
ω j0C(4)

j

∑
q⃗1 j1

ω j1(q⃗1)
(
nq⃗1 j1 +

1
2

)
(4.11c)

Γ(3)( j;Ω) =
π~
64
ω j0

∣∣∣C(3)
j

∣∣∣2 ∑
q⃗1, j1

∑
q⃗2, j2

ω1ω2 D(Ω,ω1,ω2) (4.11d)

It is an approximation to use the same |C(3)
j |2 for∆(3) and∆(3′), but∆(3′) is expected

to be small, and is nonzero for only the A1g mode. Using Eq. 6.6 and Eq. 4.5, for each

Raman mode both its frequency shift and its broadening were fitted simultaneously
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with the two parameters, |C(3)
j |2 and C(4)

j . The best fits for the shifts and broadenings

are shown in Figs. 4.6, 4.7 and 4.8, and the fitting parameters are given in Table

5.3. Figure 4.6a, 4.7a and 4.8a also present contributions to the shift from the

quasiharmonic and explicit anharmonicity as dashed curves.
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Figure 4.5: (a) Two-phonon density of states D(Ω) of Eq. 4.9 for 300 K (black) and

1000 K (red). The up-conversion and down-conversion contributions to D(Ω) at

1000 K are shown in green dash and red dash curves, respectively. The overtone

process at 1000 K is highlighted as the filled area under the blue curve. (b) P(Ω) of

Eq. 5.2 at 300 K (black) and 1000 K (red).



77

 

Temperature (K)

 0 200 400 600 800 1000 1200
130

135

140

145

150

155

160

165

 

R
a

m
a

n
 S

h
if
t 

(c
m

-1
)

(a) 

 0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

 

 

F
W

H
M

 (
c
m

-1
)

(b) 

Figure 4.6: Temperature dependence of parameters for fittings to Raman peaks of

mode B1g (a) frequency shift, and (b) FWHM. Solid circles are experimental data.

Solid curves are the fittings of the experimental points to Eq. 4.5 and Eq. 4.11d.

Dotted line is the quasiharmonic contribution to the frequency shift. Dash-dot line

is the explicit anharmonicity ω0 + ∆
(4) + ∆(3), and dashed line is ω0 + ∆

(3).
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4.6 Discussion

4.6.1 Anharmonicities from Experimental Trends

Two factors determine the explicit anharmonicity – the anharmonic coupling strength

described by the coupling tensor, and the two-phonon kinematical processes de-

scribed by D(Ω) and P(Ω). The two are approximately separable if the anhar-

monicity tensor does not vary significantly for different phonon processes, and

some features of the fits of Figs. 4.6, 4.7 and 4.8 suggest this is approximately true.

Figure 4.5 shows that D(Ω) has a peak at the frequency Ω0 = 600 cm−1. The cubic

anharmonicity and hence the broadening of the mode Eg and especially A1g are

large because they are near this peak in D(Ω). On the other hand, the B1g mode can

have only a small cubic anharmonicity because its frequency is far from Ω0. For

the Eg and A1g modes good fittings to the broadenings are obtained, indicating the

dominance of cubic anharmonicity. The unusual concave downwards curvature

of broadening of Eg in Fig. 4.3b is caused by the large frequency shift of this mode

with temperature, which rapidly moves the Eg mode away fromΩ0, and down the

steep slope of D(Ω) in Fig. 4.5. This causes the broadening of the Eg mode to have

a trend with temperature that is less than linear.

Starting with the same cubic fitting parameters used for the broadenings, the

frequency shifts of the Eg and A1g modes are fit well by adding the quasiharmonic

and quartic anharmonic effects. As illustrated in Fig. 4.7 and Fig. 4.8, the quartic

contribution ∆(4) is of the same order as the cubic one ∆(3), consistent with the fact

that ∆(4) and ∆(3) are both the leading order terms for the anharmonic frequency

shifts. They are opposite in sign, however, because ∆(3) enters with a negative sign

Table 4.3: Fitting parameters for the temperature dependent Raman modes (unit:
1011 erg−1)

B1g Eg A1g

|C(3)|2 0.21 0.63 0.34
C(4) 0.45 3.0 2.4
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times the square of the cubic coupling tensor. The net anharmonic shift is usually

negative, as for the Eg mode. For the A1g mode, the additional contribution from

the instantaneous three-phonon processes, ∆(3′) is also considered, but owing to a

symmetry restriction, this term is small. The A1g mode is unusual, having a net

anharmonic shift that is positive, indicating the quartic contribution to the shift is

larger than the cubic. Figure 4.5 shows that, at the frequency of mode A1g, P(Ω)

is close to zero. The cubic anharmonic shift ∆(3) is therefore attenuated for the A1g

mode.

For the B1g mode, Fig. 4.6a shows that the fitting deviates substantially from the

experimental data. The discrepancies may originate with anharmonic contribu-

tions beyond the leading terms we considered. The rapid increase of the linewidth

of the B1g mode above the Debye temperature (≃780 K for rutile TiO2) further sup-

ports this argument (a T2 dependence is typical of broadening from higher-order

quartic anharmonicity [46]).

The ratio of cubic to quartic anharmonicity is sometimes evaluated by fitting

Raman spectra to a simplified Klemens model, in which the shifts and broadenings

from phonon-phonon interactions (Eq. 4.4) include only overtone processes (one

optical phonon at the Γ point decays into two or three phonons of equal energy on

the same branch) [88]. In this simplified model, the temperature dependence of the

Raman peak linewidth is

Γ j(T) = Γ j(0) + A
(
1 +

2
e~ω j0/2kBT − 1

)
+ B

(
1 +

3
e~ω j0/3kBT − 1

+
3

(e~ω j0/3kBT − 1)2

) (4.12)

where Γ j(0) is the FWHM extrapolated to 0 K, and A and B are fitting parameters

for three-phonon and four-phonon processes, respectively. A similar expression

is used to fit the frequency shift, with fitting parameters C, D replacing A, B, and

the quasiharmonic frequency shift replacing Γ j(0) in Eq. 4.12. This approach often

gives good fits to experimental Raman data, but the results can be misleading

owing to the oversimplified approximations. In performing such fits for our data
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on rutile TiO2, we found a cubic anharmonicity for the B1g mode that was large

compared to the quartic, which we know to be incorrect. This approach also gave

a negative fitting parameter B for the quartic anharmonicity to explain the concave

curvature of the thermal broadening of the Eg mode, which is unreasonable. The

independent fits to thermal trends of linewidth and frequency shift (using Eq. 4.12

and its equivalent) offer no correlation between these quantities, even though they

share a dependence on the same cubic anharmonic coupling tensor. Furthermore,

it has been shown that the contributions from overtone processes are usually very

small [81], as is shown by the lowest curve in Fig. 4.5(a) for rutile TiO2.

4.6.2 Anharmonicities from MD Simulations

Figure 4.9 shows the effects of temperature on the frequency shifts and broadenings

of the B1g mode, obtained from MD results such as those of Fig. 4.4a. Also shown

is the effect of pressure on the frequency shift of the B1g mode. These results are in

excellent agreement with the experimental data.

From Fig. 4.9c, the Grüneisen parameter of the B1g mode is found to be −4.23,

which compares well to the experimental value of −5.03 reported by Samara and

Peercy [59].

To further study the anomalous anharmoncity of the B1g mode, the frozen

phonon method was used with the force field of MW shell model, allowing us to

obtain the effective potential energy curve of the B1g mode at different temperatures

and pressures, as shown in Fig. 4.10. Three sets of lattice parameters were used,

obtained from MD calculations at 300 K and 0 GPa, 300K and 6 GPa, 800 K and 0

GPa. These correspond to the volume at ambient conditions, a volume contraction

of about 2.4%, and a volume expansion by about 1.3%, respectively. The quadratic

potential dominates, and there is no cubic anharmonic contribution, as expected

from symmetry. The quartic anharmonic potential is significant, however.

Figure 4.10 shows that the harmonic part of the B1g potential has a curvature that

increases with volume, contrary to the usual trend. This anomalous quasiharmonic



83

response to volume reduces the force constant with increasing pressure, giving an

anomalous mode softening. This phenomenon can be explained by the transverse

motion of oxygen anion in the B1g mode, perpendicular to the Ti-O bond. This

transverse motion makes the mean interatomic distance ⟨R⟩ = |⟨⃗rO − r⃗Ti⟩| greater

than the distance between the mean atomic positions R0 = |⟨⃗rO⟩ − ⟨⃗rTi⟩|. An in-

crease in volume increases the tension in the bond, tending to bring ⟨R⟩ closer

to R0. The restoring force for transverse motion is thus increased, and the mode

is stiffened [89]. For most materials this tension effect is hardly seen because the

stretching along the bond direction is usually dominant, and bond stretching weak-

ens the force constant. Rutile TiO2 is special owing to its open structure, which

reduces the coordination of atoms around the oxygen, allowing it large transverse

amplitudes. Moreover, the Ti-O bonds are strong (vibrational modes along this

bond direction, such as mode B2g, are at the highest frequencies). The rigidity

of the Ti-O bond suppresses bond stretching for the B1g mode. A similar mech-

anism was used to explain the negative thermal expansion in polyethylene and

Cu2O [90, 91]. The temperature dependence of the B1g mode is also anomalous –

for both experiment and MD calculations, thermal expansion does not stiffen or

soften the mode. As discussed following Eq. (6.7), this results from a quartic an-

harmonicity that increases with temperature, cancelling the stiffening trend from

quasiharmonicity.
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Figure 4.9: (a) Temperature dependent frequency shift, (b) FWHM broadening,

and (c) pressure dependent frequency shift, of the B1g mode from MD calculations

(red), compared with experiment data (black).
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The success of the MD calculations at elevated temperature and pressure shows

that a shell model with a Buckingham potential can reproduce both the anomalous

quasiharmonicity and the explicit anharmonicity of the B1g mode of rutile TiO2,

giving a detailed picture than can be compared to results from uniaxial-stress

experiments [92], zero-pressure extrapolations of phonon frequencies [67, 68], and

DFT calculations within the quasiharmonic approximation [70]. No orthorhombic

or other distortion was found for our supercell at any temperature or pressure.

The anomalous anharmonic behavior of the B1g mode can be explained by volume

effects on quasiharmonic force constants, and by the quartic anharmonicity. We

need not invoke an incipient phase transition to the orthorhombic structure to

explain this anharmonic behavior.

For the Eg and A1g modes, the force field of the MW shell model qualitatively

accounts for the large anharmonicity. As shown in Fig. 4.11 and Fig. 4.12, we obtain

the trends of the large linewidth broadenings and the thermal softening of the Eg

mode, but the MD calculations significantly underestimate the amount. The Eg

and A1g modes are more anharmonic than predicted by the MW shell model.

For each Raman mode, Fig. 4.13 compares the anharmononic potential to the

harmonic potential, both obtained from the frozen phonon method with the MW

shell model. The B1g mode shows a large quartic potential. The A1g mode is dom-

inated by cubic anharmonicity. (A cubic contribution is not allowed by symmetry

for the B1g and Eg modes.) Since the MW shell model significantly underestimates

the anharmonicity of the A1g mode, the actual cubic potential energy could be

larger. Evidently the frozen phonon potential cannot itself explain the large anhar-

monic effects, especially for the Eg mode, due to the fact that the frozen phonon

potential does not account for phonon-phonon interactions. The large anharmonic

effects of the Eg mode may originate from the many couplings between anharmonic

phonons.
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Figure 4.10: Frozen phonon potential of the B1g mode calculated with the MW shell

model, and its response to the volume increase (indicated as the dash arrow). The

potential is decomposed into the harmonic component and quartic component.

The three potentials are for lattice parameters corresponding to 300 K at 0 GPa

(black), 300 K at 6 GPa (blue), and 800 K at 0 GPa (red). The inset shows the B1g

mode of rutile TiO2 structure projected along the c-axis. Small arrows indicate the

polarization vectors of this mode.
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Figure 4.11: Temperature dependence of the (a) frequency shift, and (b) FWHM

broadening, of the Eg mode from MD simulations (red) and experimental data

(black).
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Figure 4.12: Temperature dependence of the (a) frequency shift, and (b) FWHM

broadening, of the A1g mode from MD simulations (red) and experimental data

(black).



89

300 400 500 600 700 800 900 1000

0.000
0.003
0.006

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Eg quarticA1g quartic

A1g cubic

 

 

F
ra

c
ti
o

n
 o

f 
H

a
rm

o
n

ic

Temperature (K)

B1g quartic

Figure 4.13: Ratio of the mode anharmonic potential and harmonic potential, with
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4.6.3 Vibrational Entropy of Rutile TiO2

Vibrational entropy is important for thermophysical properties of materials, and

for the thermodynamic stabilities of different solid phases as reviewed recently [93].

The vibrational entropy Svib is

Svib = 3kB

∫ ∞

0
g(ϵ)

[
(n(ϵ) + 1) ln(n(ϵ) + 1) − n(ϵ) ln(n(ϵ))

]
dϵ (4.13)

where g(ϵ) is the single phonon DOS at the temperature of interest, and n(ϵ) is the

phonon occupancy. Although Eq. 4.13 is derived from the harmonic model, it is

known to be valid for anharmonic systems to first order in perturbation theory [94].

From the phonon DOS obtained by MD simulations at elevated temperatures, Svib

was calculated with Eq. 4.13 and the results are presented in Table 4.4. The

calculated results are in general agreement with the experimental data, but the dis-
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crepancies suggest that the average phonon frequencies from the MD calculations

are about 3.7 % too small.

Table 4.4: Entropy in J/(mol K) of rutile TiO2 from MD calculations and experimental

data of Ref. [95].

T [K] MD Experimental

300 48.01 50.69

500 80.28 82.21

700 101.79 105.51

900 119.22 123.65

4.7 Conclusions

Raman spectra were measured on rutile TiO2 at temperatures to 1150 K, and giant

anharmonic behaviors were found for the shifts and broadenings of the three mea-

surable Raman peaks. The pressure-dependence and temperature-dependence of

the Raman peak shifts were used to separate the anharmonic behavior from the

quasiharmonic behavior. Individual assessments of the cubic and quartic contribu-

tions to the anharmonicity were performed with a new data fitting method based

on the kinematics of 3-phonon and 4-phonon processes, with the phonons calcu-

lated from a shell model in this case. In fitting the anharmonic behavior, mode

broadening is from effects of cubic anharmonicity, while the anharmonic shifts are

from the same cubic factor plus a quartic anharmonicity. The quartic anharmonic-

ity of the B1g mode was found to be large, and its cubic anharmonicity small, unlike

the large cubic anharmonicity found for the Eg and A1g modes. From successes of

the fitting method, we suggest that the observed anharmonic effects are dominated

by considerations of the kinematics of energy and momentum conservation in the

phonon-phonon scattering processes, and less by the details of the anharmonicity

tensor.

Force field molecular dynamics (MD) calculations were performed with the
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same shell model. Both the anomalous quasiharmonic behavior and the explicit

anharmonic behavior of the B1g mode from our calculations were in excellent

agreement with the experimental observation. No orthorhombic distortion was

found, suggesting that the anomalous anharmonicity originates with the phonon

responses to temperature and pressure, and not an incipient phase transition. Dis-

crepancies for the Eg and A1g modes suggest that the shell model potential may

not be sufficient for obtaining accurate anharmonicities from molecular dynamics

calculations, however.
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Chapter 5

Phonon Anharmonicity of Rutile
SnO2

The main content of this chapter appeared in the journal article: Tian Lan, Chen W.

Li and Brent Fultz, Physical Review B 86, 134302 (2012).
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Raman spectra of rutile tin dioxide (SnO2) were measured at temperatures from

83 to 873 K. The pure anharmonicity from phonon-phonon interactions was found

to be large and comparable to the quasiharmonicity. First principles calculations of

phonon dispersions were used to assess the kinematics of 3-phonon and 4-phonon

processes. These kinematics were used to generate Raman peak widths and shifts,

which were fit to measured data to obtain the cubic and quartic components of the

anharmonicity for each Raman mode. The B2g mode had a large quartic component,

consistent with the symmetry of its atom displacements. The broadening of the

B2g mode with temperature showed an unusual concave downwards curvature.

This curvature is caused by a change with temperature in the number of down-

conversion decay channels, originating with the wide band gap in the phonon

dispersions.

5.1 Introduction

Rutile tin dioxide (SnO2) is the most common and stable oxide of tin found in nature.

Owing to the wide variety of its applications for optoelectronics, heterogeneous

catalysis and gas sensors, rutile SnO2 has been the subject of much recent research.

[96] Lattice dynamics, phase transitions, and nanostructures of SnO2 have been

studied by measurements of optical phonons with Raman, Brillouin or infrared

spectroscopy, [65, 97–100] and by computation with force field models or density

functional theory. [97, 101–105] Rutile SnO2 is tetragonal with the space group

P4/mnm. The modes of symmetry B1g, Eg, A1g and B2g are Raman active, and

comprise motions of oxygen anions with respect to stationary tin cations, either

perpendicular to the c axis (modes B1g, A1g and B2g), or along the c axis (mode Eg).

Nonharmonic effects are known to be important for understanding the ther-

modynamic stability and the thermal transport properties of materials at elevated

temperatures, but the anharmonic lattice dynamics of rutile SnO2 is largely un-

known. Perhaps the most complete experimental results are from Peercy and

Morosin’s work in 1973. [65] They reported frequency shifts of Raman modes with
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temperature and pressure, although the temperature range was below 480 K and

no phonon broadening information was reported. The linewidth broadening of the

A1g mode was measured to 973 K by Sato and Asari, and compared well with results

from shell model calculations. [102] Their results suggest that the anharmonicity

of SnO2 is large.

In our recent study on rutile TiO2, the pure anharmonicity gave shifts of Raman

peaks that were as large as from quasiharmonicity. [106] In that study we developed

a rigorous method of simultaneously fitting Raman peak widths and shifts with

calculations from the kinematics of phonon-phonon interactions. The effects of

cubic and quartic anharmonicity were separated, and these anharmonic effects

were found to be dominated by phonon kinematics. This previous work on TiO2

used kinematics calculated with a shell model, but in the present study on rutile

SnO2, inconsistencies in the different shell model parameters from the literature

motivated the use of ab initio methods to calculate phonon dispersions. The analysis

and comparison of our present results on rutile SnO2 with previous results on TiO2

provides a better understanding of the anharmonic phonon dynamics in both.

Figure 5.1: Rutile structure and oxygen atom displacements for Raman-active

modes.
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Here we report high resolution measurements of Raman spectra at temper-

atures from 83 to 873 K. Both phonon frequency shifts and broadenings are re-

ported. The quasiharmonic effects from thermal expansion were separated from

the anharmonic effects of phonon-phonon interactions by comparing the tempera-

ture dependence to the pressure dependence of the Raman peaks. The data fitting

method used ab initio calculations of two-phonon kinematic functionals to identify

the effects of cubic and quartic anharmonicity. The peak broadening originates with

cubic anharmonicity, but the peak shifts depend on both cubic and quartic effects.

The phonon-phonon kinematics explains an unusual feature in the temperature

dependence of the broadening of the B2g mode of rutile SnO2. The large difference

in masses of Sn and O atoms causes a gap in the phonon density of states (DOS)

that produces a peak in the two-phonon DOS (TDOS). The thermal shift moves the

frequency of the B2g mode away from this peak in the TDOS, and reduces the num-

ber of channels available for three-phonon processes, giving a concave-downwards

curvature to the thermal broadening of the B2g peak. The symmetrical B2g mode

was found to have a relatively large quartic anharmonicity.

5.2 Experimental Procedures

Measurements were performed on both powder and single crystal samples of rutile

SnO2. The powder sample was prepared from commercial SnO2 powder (Alfa

Aesar, Ward Hill, MA) with a grain size of 10µm. The powder was compressed

into pellets of 1 mm thickness using a pressure of 50 MPa at ambient temperature.

Raman spectra were acquired before and after compression into a pellet, and were

found to be identical. A sample of single crystal casiterite of high optical quality

was provided by the Mineral Museum of the Division of Geological and Planetary

Sciences at the California Institute of Technology. The sample was cut and polished

to a thickness of approximately 0.3 mm. Samples were mounted on the silver block

of a Linkam thermal stage that provided excellent heat transfer and temperature

stability for both heating and cooling. The sample chamber was sealed and purged
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with nitrogen gas flow. A temperature controller drove a 200 W power supply

for heating. For low temperature measurements, the stage was equipped with a

coolant pump that injected liquid nitrogen directly into the silver block. Samples

of powder pellets were measured at temperatures from 83 to 833 K, and the single

crystal sample was measured from 83 to 873 K. Each temperature was held stable

for 10 min before the spectrum was taken. The temperature precision was within

1 K.

The Raman spectra were measured with a Renishaw micro-Raman system with

an Olympus LMPlanFI microscope lens. The spectrometer was configured in

backscattering geometry, minimizing issues with the thickness of the sample. A

depolarized solid state laser operated at wavelength of 514.5 nm excited the sample

with the low incident power of 10 mW to avoid additional thermal heating. The

laser spot size was 12µm in diameter. To test for heating effects this spot size was

varied, but no changes were found. Each Raman spectrum was accumulated in 10

measurements with 10 s exposure times.

5.3 Results

Representative Raman spectra of powder samples are shown in Fig. 5.2. Three of

the four Raman-active modes, Eg, A1g and B2g, have enough intensity for extracting

quantitative information on phonon frequencies and linewidths. The B1g mode

was too weak for obtaining quantitative information (its intensity is about three

orders of magnitude smaller than that of the A1g mode [97]). The single crystal

sample showed very similar spectra, but the Eg mode was weaker primarily because

of orientation effects. Three weak abnormal Raman bands that were previously

reported [107] were also observed at 503, 545 and 692 cm−1 for both powder and

single crystal samples.

After background subtraction, each peak in each spectrum was fitted to a

Lorentzian function to obtain a centroid and full-width-at-half-maximum (FWHM).

The FWHM data from the experiment were corrected for the finite resolution of the
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spectrometer. [81] At room temperature, the Raman peak frequencies were 475 cm−1

for Eg, 633 cm−1 for A1g, 774 cm−1 for B2g. The mode frequencies at 83 K, ω(83 K),

were 476 cm−1, 636 cm−1 and 778 cm−1. Figure 5.3 presents results of peak shifts and

widths versus temperature. Here the peak shift∆ω is defined asω(T)−ω(83 K). We

find good agreement with the frequency shift data reported by Peercy and Morosin

at temperatures below 480 K. [65] We also find good agreement with the linewidth

broadening data of the A1g mode reported by Sato and Asari to 900 K. [102]

With increasing temperature, the A1g and B2g modes undergo large shifts to

lower frequencies and significant linewidth broadenings, but the Eg mode under-

goes less shift and broadening. At high temperatures above 500 K, the broadening

of the B2g mode shows an unusual concave downward curvature, while the other

two modes broaden linearly. At low temperatures, the B2g mode has a much larger

linewidth than the other two modes. The linewidth of the B2g mode extrapolated

to 0 K is approximately 8 cm−1, whereas the linewidths of the Eg and A1g modes

extrapolate to less than 2 cm−1.
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Figure 5.2: Raman spectra of powder samples of rutile SnO2 at selected tempera-

tures.
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Figure 5.3: Temperature dependence of (a) frequency shifts, (b) breadths as
FWHMs, of the Raman modes Eg, A1g and B2g. The solid and open symbols repre-
sent the experimental data from powder and single crystal samples, respectively.
Solid curves are the theoretical fittings with a full calculation of the kinematics
of three- phonon and four-phonon processes. The dashed curve was calculated
without considering the frequency dependence of D0↓(Ω), the number of decay
channels, at elevated temperatures.
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5.4 Calculations

5.4.1 First Principles Lattice Dynamics

Phonon dispersion calculations over the whole Brillouin zone were performed

with the QuantumEspresso package, within the framework of ab initio density

functional perturbation theory (DFPT). [39] Vanderbilt ultrasoft pseudopotentials

with the local density approximation (LDA) and nonlinear core corrections were

used. The LO /TO splitting was corrected by adding a non-analytical part into the

dynamical matrix. [40] The calculated dispersion curves are shown in Fig. 6.2a,

and mode frequencies at the Γ-point are presented in Table 6.1. Calculations of

the phonon density of states (DOS) with a uniform 16×16×16 sampling grid were

also performed, as shown in Fig. 6.2b. Our calculations are in good agreement

with prior experimental and theoretical results. [97, 101–105] A band gap of width

100 cm−1, centered around 400 cm−1, is evident in Fig. 6.2. Above the gap, phonon

modes are dominated by the motions of oxygen atoms.
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Table 5.1: Comparison of the mode frequencies (cm−1) at the Γ point for rutile SnO2.

Calc1. is from the first principles LDA calculation from Borges, et al., Ref. [105];

Calc2. is from Force field calculation by Katiyar, et al., Ref. [97]. For expt., the data

of infrared active modes at 100 K are from Katiyar, et al., Ref. [97], and The data for

Raman-active modes at 83 K are from the present measurement.

Mode Present Calc. Calc. Calc. Expt.

B1g 104 83 100 1214

B1u 147 138 140 -

E(1)
u (TO) 223 200 236 244

E(1)
u (LO) 269 252 268 276

E(2)
u (TO) 285 270 297 293

E(2)
u (LO) 335 307 377 366

A2g 360 320 398 -

A2u(TO) 456 457 512 477

Eg 468 462 476 4764

B1u 564 553 505 -

E(3)
u (TO) 613 584 651 618

A1g 633 617 646 6364

A2u(LO) 670 648 687 705

E(3)
u (LO) 745 712 750 770

B2g 765 734 752 7784
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Figure 5.4: (a) Calculated phonon dispersion along high symmetry directions

of rutile SnO2. Γ (0, 0, 0), X (0.5, 0, 0), M (0.5, 0.5, 0), Z (0, 0, 0.5), R (0.5, 0, 0.5) and

A (0.5, 0.5, 0.5). At the Γ point, the frequencies from Table 6.1 are presented as up

triangles (Raman) and down triangles (infrared). At the X, M, Z, R and A points,

the mode frequencies from Ref. [ [103]] (all doubly degenerate) are presented as

squares. (b) Total phonon DOS (black curve) and oxygen-projected DOS (filled

green).

5.4.2 The Kinematic Functionals Dω(Ω) and Pω(Ω)

In anharmonic phonon perturbation theory, [2] the phonon linewidth is related to

the two-phonon density of states (TDOS), D(Ω), which is defined as

D(Ω) =
∑
q⃗1, j1

∑
q⃗2 j2

D(Ω,ω1,ω2)

=
1
N

∑
q⃗1, j1

∑
q⃗2, j2

∆(q⃗1 + q⃗2)
[
(n1 + n2 + 1) δ(Ω − ω1 − ω2)

+ 2(n1 − n2) δ(Ω+ ω1 − ω2)
]

(5.1)



103

where Ω is the frequency of the initial phonon, and phonon modes {q⃗i ji} have

quasiharmonic frequencies {ωi} and occupancies {ni}. The first and second terms in

square brackets are from down-conversion and up-conversion phonon processes,

respectively. [47]

The two-phonon kinematical functional P(Ω) for the anharmonic frequency

shift is

P(Ω) =
∑
q⃗1, j1

∑
q⃗2, j2

P(Ω,ω1,ω2)

=
1
N

∑
q⃗1, j1

∑
q⃗2, j2

∆(q⃗1 + q⃗2) ℘
[ n1 + n2 + 1
Ω+ ω1 + ω2

− n1 + n2 + 1
Ω − ω1 − ω2

+
n1 − n2

Ω − ω1 + ω2
− n1 − n2

Ω+ ω1 − ω2

]
(5.2)

where ℘ denotes the Cauchy principal part. The two-phonon spectra, D(Ω) and

P(Ω), depend on temperature through the phonon occupancy factor, n. Both D(Ω)

and P(Ω) were calculated at various temperatures from the first principles lattice

dynamics calculations described in the previous subsection, sampling modes {q⃗ j}
with a 16×16×16 q-point grid over the first Brillouin zone for good convergence.

5.5 Analysis

5.5.1 Separating Anharmonicity from Quasiharmonicity

Both quasiharmonicity and pure anharmonicity contribute to the non-harmonic

lattice dynamics of rutile SnO2. In the quasiharmonic model, phonon modes be-

have harmonically with infinite lifetimes, but their frequencies are altered by the

effects of volume on the interatomic potential. Pure anharmonicity originates with

phonon-phonon interactions, which increase with temperature. Pure anharmonic-

ity contributes to shifts in phonon frequencies, but also causes phonon damping

and lifetime broadening of phonon peaks. The large peak broadenings in SnO2

show that there are large effects from pure anharmonicity.
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To separate the peak shifts caused by pure anharmonicity from shifts caused

by quasiharmonicity, we treat the mode frequency ω j = ω j(V,T) as a function of

volume and temperature [59](
∂ lnω j

∂T

)
P
= −
β

κ

(
∂ lnω j

∂P

)
T
+

(
∂ lnω j

∂T

)
V

(5.3)

where j is the phonon mode index, β is the volume thermal expansivity and κ

is the isothermal compressibility. This is a general method to separate phonon

quasiharmonicity from phonon anharmonicity, and is not unique for rutile struc-

tures, for example. The left-hand side gives the directly measurable temperature-

dependent isobaric frequency shift, including both quasiharmonic and pure anhar-

monic behavior. The first term on the right-hand side, the isothermal frequency

shift as a function of pressure, is the quasiharmonic contribution, which is also

measureable. By defining a mode Grüneisen parameter as the proportionality of

the relative change of the mode frequency to the relative change of volume, i.e.,

γ j = −∂(lnω j)/(∂(ln V)), the quasiharmonic term can be written as γ jβ. The second

term on the right of Eq. 6.7 is the frequency shift from the pure anharmonicity,

which depends on temperature and not volume. From the difference of the iso-

baric and isothermal frequency shifts, the pure anharmonicity can be determined

experimentally.

To obtain the quasiharmonic contributions to the peak shifts, we used the mode

Grüneisen parameters γ j reported recently by Hellwig, et al., from Raman mea-

surements at pressures to 14 GPa, [98] which agreed well with earlier high pressure

measurements to 4 GPa. [108] These results suggest that Peercy and Morosin over-

estimated the quasiharmonic contributions to their data, for which the pressure

was only 0.4 GPa.

We also performed first principles calculations of the mode Grüneisen parame-

ters by optimizing the enthalpy function to 10 GPa. Our calculated γ j were in good

agreement with the experimental results of Hellwig, et al., and both are listed in

Table 5.2. Since the γ j are very weakly dependent on temperature, as is the thermal
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Table 5.2: Frequencies of the three Raman modes, mode Grüneisen parameters,
and the logarithmic pressure and temperature derivatives of frequency. Grüneisen
parameters data from Hellwig, et al., Ref. [98]. Thermal expansion data from Peercy
and Morosin, Ref. [65]

ω(300 K) γ j γ j

(
∂ lnω
∂T

)
P
= −γ jβ +

(
∂ lnω
∂T

)
V

Mode (cm−1) [expt.] [calc.] (10−5K−1) (10−5K−1) (10−5K−1)
Eg 475 1.45 1.48 -2.6 -1.7 -0.9
A1g 633 1.65 1.81 -4.2 -1.9 -2.3
B2g 774 1.49 1.71 -4.6 -1.7 -2.9

expansion above 400 K, [59, 65] the γ j were assumed to be constants when assess-

ing the volume dependent quasiharmonic contribution. The last two columns of

Table 5.2 separate the measured isobaric temperature derivatives into the pure

volume and pure temperature contributions as in Eq. 6.7. These last columns in

Table 5.2 are the frequency shifts from quasiharmonicity and pure anharmonicity

at temperatures above 400 K.

By comparing the last two columns in Table 5.2, we see that like rutile TiO2, the

pure anharmonic contribution is comparable to the quasiharmonic contribution

above 400 K. Nevertheless, the total anharmonicity of SnO2 is considerably smaller

than for TiO2. For the modes A1g and B2g in SnO2, the pure anharmonic contribution

is larger than the quasiharmonic, while the Eg mode is more quasiharmonic. The

relative magnitudes of pure anharmonicities of the three modes derived from

the frequency shift data are consistent with the relative magnitudes of linewidth

broadenings of the modes as shown in Fig. 5.3b.

5.5.2 Cubic and Quartic Anharmonicity

Anharmonicity tensors describe the coupling strengths for phonon-phonon inter-

actions, but a prerequisite is that the phonons in these processes satisfy the kine-

matical conditions of conservation of energy and momentum. An anharmonicity
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tensor element for an s-phonon process is [46]

V( j; q⃗1 j1; ...; q⃗s−1 js−1) =
1

2s!

(
~

2N

) s
2

N∆(q⃗1 + · · · + q⃗s−1)

×[ω j0ω1 · · · ωs−1 ]
1
2 C( j; q⃗1 j1; ...; q⃗s−1 js−1) (5.4)

where ∆(q⃗1 + · · · + q⃗s−1) enforces momentum conservation and the C(.)’s, elements

of the s-phonon anharmonic tensor, are expected to be slowly-varying functions of

their arguments. The cubic anharmonicity tensor has been calculated by first prin-

ciples methods, [47, 109, 110] but to our knowledge the the quartic anharmonicity

tensor has never been fully calculated from first principles.

Nevertheless, if the anharmonicity tensor or its average does not vary signifi-

cantly for different phonon processes, the coupling factor and the kinematic factor

are approximately separable in Eq. 6.2. The separation of the anharmonic cou-

pling and the kinematics has been used with success in many studies including

our recent report on rutile TiO2. [106] We consider the term C( j; q⃗1 j1; ...; q⃗s−1 js−1) to

be a constant of the Raman mode j, and use it as a fitting parameter. Although

C( j; q⃗1 j1; q⃗2 j2) and C( j; j; q⃗1 j1;−q⃗1 j1) change with j1 and j2, an average over modes,

⟨C(.)⟩ = ∑
1,2 C( j; q⃗1 j1; q⃗2 j2)/

∑
1,2 1, is needed by the fitting, where 1, 2 under the sum-

mation symbol represent q⃗i ji. We define the cubic and quartic fitting parameters as

C(3)
j = ⟨C( j; q⃗1 j1; q⃗2 j2)⟩ (5.5a)

C(4)
j = ⟨C( j; j; q⃗1 j1;−q⃗1 j1)⟩ (5.5b)

To the leading order of cubic and quartic anharmonicity, the broadening of the

Raman peaks is 2Γ(3)( j;Ω). The frequency shift of the Raman peaks is ∆Q + ∆(3) +

∆(3′) +∆(4), where the quasiharmonic part ∆Q is the integral form of the first term in

Eq. 6.7. These quantities can be written as functions of D(Ω,ω1,ω2) and P(Ω,ω1,ω2),
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weighted by average anharmonic coupling strengths [106]

Γ(3)( j;Ω) =
π~
64
ω j0

∣∣∣C(3)
j

∣∣∣2 ∑
q⃗1, j1

∑
q⃗2, j2

ω1ω2 D(Ω,ω1,ω2)

= ω j0

∣∣∣C(3)
j

∣∣∣2 Dω(Ω) (5.6a)

∆(3)( j;Ω) = − ~
64
ω j0

∣∣∣C(3)
j

∣∣∣2 ∑
q⃗1, j1

∑
q⃗2, j2

ω1ω2 P(Ω,ω1,ω2)

= ω j0

∣∣∣C(3)
j

∣∣∣2 Pω(Ω) (5.6b)

∆(3′)( j) = − ~
16N
ω j0

∣∣∣C(3)
j

∣∣∣2 ∑
q⃗2 j2

ω j2(q⃗2)
(
nq⃗2 j2 +

1
2

)
(5.6c)

∆(4)( j) =
~

8N
ω j0C(4)

j

∑
q⃗1 j1

ω j1(q⃗1)
(
nq⃗1 j1 +

1
2

)
(5.6d)

where Dω(Ω) and Pω(Ω) are functionals of D(Ω,ω1,ω2) and P(Ω,ω1,ω2) weighted

by the kinematics of anharmonic phonon coupling. Figure 6.10 shows represen-

tative results for Dω(Ω) and Pω(Ω) at 0 K and 800 K. The down-conversion and

up-conversion subspectra are also shown.
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Figure 5.5: (a) Two-phonon density of states Dω(Ω) for 0 K and 800 K. The arrow-

heads mark the positions of the three Raman modes, Eg, A1g and B2g, respectively.

The up-conversion and down-conversion contributions at 800 K are shown in green

and black dash curves, respectively. There is no up-conversion process at 0 K. (b)

Pω(Ω) at 800 K.

The∆(3′) is an additional low-order cubic term that corresponds to instantaneous

three-phonon processes. [2] It is nonzero for crystals having atoms without inver-

sion symmetry, as in the case for the oxygen atom motions in the A1g mode. It is

much smaller than other contributions, however, owing to symmetry restrictions.

With Eq. 6.6 and rigorous calculations of Dω(Ω) and Pω(Ω) at various temper-

atures, for each Raman mode both its frequency shift and broadening were fitted

simultaneously with the two parameters, |C(3)
j |2 and C(4)

j . The best fits for the shifts

and broadenings are shown in Fig. 5.3, and the fitting parameters are given in Table

5.3. Figure 5.6 also shows contributions to the shift from the quasiharmonic and
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Figure 5.6: Fittings of the temperature dependence of frequency shift of (a) the Eg

mode, (b) the A1g mode and (c) the B2g mode. Solid curves are the final fittings to
∆Q + ∆(3) + ∆(3′) + ∆(4). Different contributions are indicated individually in these
figures.

pure anharmonicity (dashed curves).

Table 5.3: Fitting parameters for the temperature dependent Raman modes (unit:

1010 erg−1)

Eg A1g B2g

|C(3)|2 0.87 1.6 1.0

−C(4) 1.0 2.6 7.3

With a single parameter |C(3)|2 for each mode, good fittings to the broadenings

are obtained as shown in Fig. 5.3b, indicating significant cubic anharmonicity for

these Raman-active modes. Moreover, our fittings also successfully reproduced the

unusual concave curvature of the B2g mode at high temperatures. The |C(3)
j |2 do not

vary much among different modes, suggesting the assumption of slowly-varying

properties of C(.)′s is reasonable.

Starting with the same cubic fitting parameters used for the broadenings, the

frequency shifts of these modes are fit well by adding the quasiharmonic and

quartic anharmonic effects. As shown in Fig. 5.6, the quartic contribution ∆(4) is

generally of the same order as the cubic contribution ∆(3), consistent with the fact

that ∆(4) and ∆(3) are both leading-order terms for the anharmonic frequency shifts.

For the Eg and A1g modes, the pure anharmonicity is mainly from the cubic terms,
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but for the B2g mode, the quartic anharmonicity is dominant and is as large as the

quasiharmonic part.

5.6 Discussion

We can understand why the B2g mode has a relatively larger quartic anharmonicity

than the A1g from differences in how the O atoms move towards the Sn atoms.

Using a unit cell with 4 O atoms and 2 Sn atoms, as shown in Fig. 5.1, the A1g mode

has all 4 O atoms moving directly into one Sn atom on one half of the cycle, but

moving between two Sn atoms during the other half cycle. The B2g mode has 2 O

atoms moving into a Sn atom and 2 O atoms moving between two Sn atoms on both

halves of the vibrational cycle, making for a potential that is an even function of the

phonon coordinate. Table 5.3 shows a larger quartic contribution for the B2g mode

than the A1g. (The Eg mode does not have similar atom motions for comparison.)

The TDOS function Dω(Ω) in Fig. 6.10 shows large variations with Ω that ex-

plains a trend in the thermal broadening of Fig. 5.3b. Owing to the high frequency

of the B2g mode, at the temperatures of this study its phonon-phonon anharmonic-

ity comes mostly from down-conversion processes, as shown in Fig. 6.10. Ignoring

the small up-conversion contribution, at high temperatures [48]

Dω(Ω,T) ∝ T
∑
q⃗1, j1

∑
q⃗2, j2

δ(Ω − ω1 − ω2) ≡ T D0↓(Ω) (5.7)

where D0↓(Ω) is the number of two-phonon down-conversion channels. Usually the

line broadening is linear in T because D0↓(Ω) does not vary much with temperature.

However, the B2g mode at 774 cm−1 lies on a steep gradient of Dω(Ω,T) in Fig. 6.10.

Because the B2g mode undergoes a significant shift of frequency with temperature,

it moves down the gradient of Dω(Ω,T), and its broadening is less than linear

in T. The temperature dependence of the broadening of the B2g mode has an

unusual concave downwards shape. For comparison, the dashed line in Fig. 5.3

was calculated without considering the frequency dependence of D0↓(Ω) at elevated
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temperatures, and it deviates substantially from the experimental trend.

The unusual temperature dependence of the linewidth of the B2g mode comes

from the sharp peak in Dω(Ω,T) centered at 800 cm−1. This feature in the TDOS

originates with the phonon DOS of SnO2 shown in Fig. 6.2, which has a band

gap between 360 cm−1 to 450 cm−1 associated with the mass difference of Sn and O

atoms. The shape of the TDOS can be understood as the convolution of the phonon

DOS with itself. With two approximately equal regions above and below the gap,

the result is a peak at 800 cm−1, with steep slopes on both sides. For comparison,

although the TDOS of rutile TiO2 is shaped as a broad peak, [106] it does not have

the sharp features of Fig. 6.10a because the mass difference between Ti and O atoms

does not cause a band gap in the phonon DOS of TiO2.

Especially with more up-conversion processes at higher temperatures, there is

another peak in the SnO2 TDOS at 400 cm−1. The up-conversion channels are pri-

marily from the pairs of sharp peaks in the phonon DOS at 100 cm−1 and 500 cm−1,

200 cm−1 and 600 cm−1, and 350 cm−1 and 750 cm−1. Although the Eg mode at

475 cm−1 is on the slope of this peak in the TDOS, the Eg mode does not show

anomalous broadening with temperature because it undergoes only a small ther-

mal shift in frequency.

In the low-temperature limit, up-conversion processes are prohibited because

n → 0. The peak linewidth extrapolated to 0 K is determined entirely by down-

conversion processes, quantified by the down-conversion TDOS. [48] The B2g mode

has a significant broadening because its frequency is near a peak in the down-

conversion TDOS, as seen in Fig. 6.10. On the other hand, the Eg and A1g modes are

not broadened at low temperatures because their frequencies are at low values of

the TDOS. The phonon-phonon kinematics accounts for the significant difference of

linewidths between the B2g and the other two Raman modes at low temperatures.
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5.7 Conclusions

Raman spectra were measured on rutile SnO2 at temperatures from 83 to 873 K,

and large anharmonic shifts and broadenings were found for the three measurable

Raman peaks. Individual assessments of the cubic and quartic contributions to

the anharmonicity were performed by calculating the kinematics of 3-phonon and

4-phonon processes with ab initio methods, and varying the anharmonic coupling

parameters to fit the peak shifts and broadenings simultaneously. The quartic

anharmonicity of the B2g mode was found to be large, unlike the Eg and A1g modes

for which cubic anharmonicity is dominant. The quartic behavior of the B2g mode

can be understood from the symmetry of the oxygen atom displacements.

The phonon DOS of SnO2 has a band gap around 400 cm−1 owing to the mass

difference of Sn and O atoms, with similar structure above and below the gap. This

causes a sharp peak in the TDOS at 800 cm−1. The frequency of the B2g mode is on the

slope of this peak in the TDOS, and its frequency shift with temperature reduces the

number of down-conversion channels for its broadening. The thermal broadening

of the B2g mode consequently shows an anomalous concave downwards curvature.

At 0 K, the large TDOS around 800 cm−1 explains the large linewidth of the B2g

mode. The anharmonic peak shifts and broadenings were well accounted for by

the kinematics of phonon-phonon interactions, suggesting that on the average, the

anharmonicity tensors for rutile SnO2 are not rich in structure.
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Chapter 6

Phonon Anharmonicity of Ag2O with
Cuprite Structure

The main content of this chapter appeared in the journal article: Tian Lan, Chen W.

Li, Jennifer L. Niedziela, Hillary Smith, Douglas L. Abernathy, George R. Rossman,

and Brent Fultz Physical Review B 89, 054306 (2014)
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Inelastic neutron scattering measurements on silver oxide (Ag2O) with the

cuprite structure were performed at temperatures from 40 to 400 K, and Fourier

transform far-infrared spectra were measured from 100 to 300 K. The measured

phonon densities of states and the infrared spectra showed unusually large en-

ergy shifts with temperature, and large linewidth broadenings. First principles

molecular dynamics (MD) calculations were performed at various temperatures,

successfully accounting for the negative thermal expansion (NTE) and local dy-

namics. Using the Fourier-transformed velocity autocorrelation method, the MD

calculations reproduced the large anharmonic effects of Ag2O, and were in excel-

lent agreement with the neutron scattering data. The quasiharmonic approximation

(QHA) was less successful in accounting for much of the phonon behavior. The

QHA could account for some of the NTE below 250 K, although not at higher

temperatures. Strong anharmonic effects were found for both phonons and for the

NTE. The lifetime broadenings of Ag2O were explained by anharmonic perturba-

tion theory, which showed rich interactions between the Ag-dominated modes and

the O-dominated modes in both up- and down-conversion processes.

6.1 Introduction

Silver oxide (Ag2O) with the cuprite structure has attracted much interest after the

discovery of its extraordinarily large negative thermal expansion (NTE), [111, 112]

which exceeds −1 × 10−5 K−1 and occurs over a wide range of temperature from

40 K to its decomposition temperature near 500 K. Besides its large NTE, Ag2O is

commonly used as a modifier in fast-ion conducting glasses and batteries, [113,114]

and its catalytic properties are also of interest. [115, 116]

In the cuprite structure of Ag2O shown in Fig. 6.1, the fcc Ag lattice is expanded

by the presence of the O atoms, which form an interpenetrating bcc lattice. The O

atoms occupy two tetrahedral sites of the standard fcc unit cell of Ag atoms. Each O

atom is linked to four O atoms through a bridging Ag atom, placing the Ag atoms

in linear O-Ag-O links with little transverse constraint. A geometrical model of
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Figure 6.1: Cuprite structure of Ag2O, showing standard cubic fcc unit cell and
O-Ag-O links that pass between cubes.

NTE considers tetrahedra of Ag4O around each O atom that bend at the Ag atoms

linking the O atoms in adjacent tetrahedra. Rigid-unit modes (RUMs) account for

counteracting rotations of all such tetrahedra. [117, 118] These RUMs tend to have

low frequencies owing to the large mass of the unit, and hence are excited at low

temperatures. Locally, the O-Ag bond length does not contract, but bending of the

O-Ag-O links pulls the O atoms together, leading to NTE. This model correlates

the NTE and lattice dynamics. Similar models seem to explain the large NTE of

ZrW2O8 and other systems.

The RUM model has value even if the Ag4O tetrahedra do not move as rigid

units, but the interpretation of NTE becomes less direct. A related concern is that

modes involving bending of the O-Ag-O links may be strongly anharmonic. In a

recent study on ScF3, for example, the NTE largely originated with the bending of

linear Sc-F-Sc links. [119] Frozen phonon calculations showed that the displacement

of F atoms in these modes followed a nearly quartic potential, and the low mass

of F made it possible to approximate the problem as independent local quartic

oscillators. The heavy mass of the Ag atoms in the O-Ag-O links implies that

different Ag atoms will move cooperatively, and delocalized anharmonic oscillators

are challenging to understand.

Recent measurements by high-resolution x-ray diffractometry and extended x-
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ray absorption fine structure spectrometry (EXAFS) showed large deformations of

the Ag4O tetrahedra. [120–123] Although these tetrahedra are not distorted by a

pure RUM, the simultaneous excitation of other modes makes it unrealistic to view

the dynamics as motions of rigid framework units. Measurements by EXAFS also

showed that the average Ag-O nearest-neighbor distance expands slightly upon

heating, but the Ag-Ag next-nearest neighbor distance contracts approximately as

expected from the bulk NTE.

Anharmonic phonon behavior is known to be important for the thermody-

namics and the thermal conductivity of materials at elevated temperatures. It is

also important for the thermodynamic stability of phases. [124, 125] Anharmonic

phonon behavior is sometimes associated with NTE, but such relationships are not

well understood, and helped motivate the present study.

Inelastic neutron scattering is a powerful method to measure phonon dynamics,

allowing accurate measurements of vibrational entropy. [93] Additionally, phonon

energy broadening can be measured, allowing further assessment of how anhar-

monic effects originate from the non-quadratic parts of the interatomic potential.

A recent inelastic neutron scattering experiment on Ag2O with the cuprite struc-

ture showed phonon softening (reduction in energy) with temperature. [126] The

authors interpreted this result with a quasiharmonic model, where they calculated

harmonic phonons for reduced volumes of the structure and obtained a negative

Grüneissen parameter. These measurements were performed on the neutron en-

ergy gain side of the elastic line, restricting measurements to temperatures above

150 K, and the available energy range of 20 meV allowed about a quarter of the

Ag2O phonon spectrum to be measured.

Lattice dynamics calculations, based on either classical force fields or density

functional theory (DFT), have been used to study materials with the cuprite struc-

ture. [126–128] All these calculations were performed with the quasiharmonic ap-

proximation (QHA), where the interatomic forces and phonon frequencies changed

with volume, but all phonons were assumed to be harmonic normal modes with

infinite lifetimes. This QHA ignores interactions of phonons at finite temperatures
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through the cubic or quartic parts of the interatomic potential, but these interac-

tions are essential to explicit phonon anharmonicity. Although the QHA calculation

accounted for the NTE behavior in ZrW2O8, [129] for Ag2O with the cuprite struc-

ture, the QHA was only partly successful. Molecular dynamics (MD) simulations

should be reliable for calculating phonon spectra in strongly anharmonic systems

, [72, 130, 131] even when the QHA fails. To our knowledge, no MD investigation

has yet been performed on Ag2O with the cuprite structure.

To study phonon anharmonicity in Ag2O, and its possible relationship to NTE,

we performed temperature-dependent inelastic neutron scattering experiments at

temperatures from 40 to 400 K to obtain the phonon density of states (DOS). (At

temperatures below 40 K a first-order phase transition occurs, giving a temperature-

dependent fraction of a second phase with different phonon properties [112, 132].)

Fourier transform infrared spectrometry at cryogenic temperatures was also used

to measure the frequencies and lineshapes of phonons at the Γ-point of the Bril-

louin zone. First-principles ab-initio MD simulations were performed, and by

Fourier transforming the velocity autocorrelation function, the large temperature-

dependent phonon anharmonicity was reproduced accurately. An independent

calculation of anharmonic phonon interaction channels was performed with in-

teracting phonon perturbation theory, and semiquantitatively explained anhar-

monicites of the different phonons. Most of the phonons have many channels for

decay and are highly anharmonic. Although the QHA is capable of predicting

about half of the NTE at low temperatures, part of this NTE is associated with

anharmonicity, and most of the NTE above 250 K originates with anharmonic in-

teractions between Ag-dominated and O-dominated phonon modes.
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6.2 Experiments

6.2.1 Inelastic Neutron Scattering

Inelastic neutron scattering measurements were performed with the wide angular-

range chopper spectrometer, ARCS, [13] at the Spallation Neutron Source at Oak

Ridge National Laboratory. Powder samples of Ag2O with the cuprite structure of

99.99% purity were loaded into an annular volume between concentric aluminum

cylinders with an outer diameter of 29 mm and an inner diameter of 27 mm, giving

about 5% scattering of the incident neutron beam. The sample assembly was

mounted in a bottom-loading closed cycle refrigerator outfitted with a sapphire

hot stage that can be controlled independently of the second stage of the cryostat.

Spectra were acquired with two incident neutron energies of approximately 30

and 100 meV. Measurements were performed at temperatures of 40, 100, 200, 300

and 400 K, each with approximately 1.6 × 106 neutron counts. Backgrounds with

empty sample cans were measured at each temperature. Ag has an absorption

cross section of 63 barns, but this was not be a problem with low background and

high neutron flux.

The raw data were rebinned into intensity I as a function of momentum transfer

Q and energy transfer E. After deleting the elastic peak around zero energy,

neutron-weighted phonon densities of states curves were calculated from I(Q, E) by

subtracting the measured background, and using an iterative procedure to remove

contributions from multiple scattering and higher-order multiphonon processes.

[133]

6.2.2 Fourier Transform Far-Infrared Spectrometer

The far-infrared spectrometry measurements were performed with a Thermo-

Nicolet Magna 860 FTIR spectrometer using a room-temperature deuterated triglycine

sulfate detector and a solid substrate beam splitter. The same Ag2O powder was

mixed with polyethylene fine powder with a mass ratio of 1:19 and finely ground.
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Figure 6.2: Neutron weighted phonon DOS of Ag2O with the cuprite structure from
ARCS experimental data (black dots) and MD simulations (red curves) at tempera-
tures from 40 to 400 K. The dashed spectrum corresponds to the 40 K experimental
result, shifted vertically for comparison at each temperature. Vertical dashed lines
are aligned to the major peak centers at 40 K from experiments, and are numbered
at top. The incident energy was 100 meV for panel (a), and 30 meV for panel (b).

The sample was compressed into a pellet of 1 mm thickness, and mounted on a

copper cold finger of an evacuated cryostat filled with liquid nitrogen. The cryostat

had polyethylene windows that were transparent in the far-infrared. Spectra were

acquired at temperatures from 100 to 300 K, and temperature was measured with

a thermocouple in direct contact with the sample pellet. Backgrounds from a pure

polyethylene pellet of the same size were measured at each temperature.
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Figure 6.3: Shifts of centers of peaks in the phonon DOS, relative to data at 40 K.
The filled symbols are experimental data, open symbols (green) are from MD-based
QHA calculations and solid curves (red) are from MD calculations. Indices 1, 2, 3
correspond to the peak labels in Fig. 6.2, and are also represented by the triangle,
square and circle respectively for experimental data and QHA calcuations.

6.2.3 Results

Figure 6.2 presents the “neutron-weighted” phonon DOS of Ag2O with the cuprite

structure from ARCS data at two incident energies at temperatures from 40 to

400 K. Neutron-weighting is an artifact of inelastic neutron scattering by phonons.

Phonon scattering scales with the scattering cross section divided by atom mass,

σ/m, so the Ag-dominated modes around 8 meV are relatively weaker than the

O-dominated modes around 63 meV. Since the instrument energy resolution is

inversely related to both the incident energy and the energy transfer, the spectra

in Fig. 6.2(b) have generally higher resolution than in Fig. 6.2(a). As shown in

Fig. 6.2, the main features (peaks 1, 2 and 3) of the DOS curve from inelastic

neutron scattering experiments undergo substantial broadening with temperature,
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even below 200 K, indicating an unusually large anharmonicity. Along with the

broadening, peak 1 stiffens slightly, but peaks 2 and 3 shift to lower energy by

more than 3.2 meV. This is an enormous shift over such a small temperature range.

Over the same temperature range, phonons of ScF3 shifted by about 1 meV, for

example. [119] To quantify thermal shifts, Gaussian functions were fitted to the

three major peaks in the phonon DOS, and Fig. 6.3 presents the peak shifts relative

to their centers at 40 K.

Figure 6.4 presents the infrared spectra of Ag2O between 50 and 650 cm−1.

Two absorption bands at 86 cm−1 and 540 cm−1 are seen, consistent with previous

measurements at room temperature [134]. Analysis by group theory showed they

have F1u symmetry. The low frequency mode at 86 cm−1 is an Ag-O-Ag bending

mode, while the high frequency band corresponds to Ag-O stretching. Consistent

with the trend of phonon DOS measured by neutron scattering, the high frequency

band broadened significantly with temperature. From 100 to 300 K, the two modes

shifted to lower energy by about 4 cm−1 and 13 cm−1, respectively.

6.3 First-Principles Molecular Dynamics Simulations

6.3.1 Methods

First-principles calculations were performed with the generalized gradient ap-

proximation (GGA) of density functional theory (DFT), implemented in the VASP

package. [135–137] Projector augmented wave pseudopotentials and a plane wave

basis set with an energy cutoff of 500 eV were used in all calculations.

First-principles Born-Oppenheimer molecular dynamics simulations were per-

formed for a 3 × 3 × 3 supercell with temperature control by a Nosé thermostat.

The relatively small simulation cell could be a cause for concern. [138] As shown in

Fig. 6.5, we did the convergence test for different sizes of cells, and the test showed

that the supercell in our study is large enough to accurately capture the phonon

anharmonicity of Ag2O. We also did the convergence test for different simulation
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Figure 6.4: (a) FT-IR absorbtion spectra of Ag2O with the cuprite structure at 300 K.
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time. As shown in Fig. 6.6, the simulated phonon spectra were well converged

after 12 ps simulation time. The simulated temperatures included 40, 100, 200, 300

and 400 K. For each temperature, the system was first equilibrated for 3 ps, then

simulated for 18 ps with a time step of 3 fs. The system was fully relaxed at each

temperature, with convergence of the pressure within 1 kbar.

Phonon frequency spectra and their k-space structure were obtained from the

MD trajectories by the Fourier transform velocity autocorrelation method. [45, 72,

130, 131] The phonon DOS is

g(ω) =
∑
n,b

∫
dt e−iωt⟨v⃗n,b(t) v⃗0,0(0)⟩ (6.1)

where ⟨ ⟩ is an ensemble average, and v⃗n,b(t) is the velocity of the atom b in the unit

cell n at time t. Individual phonon modes could also be projected onto each k-point

in the Brillouin zone by computing the phonon power spectrum. [72,131] To better

compare with data from inelastic neutron scattering, the calculated DOS at each

temperature was convoluted with the ARCS instrumental broadening function,

and was neutron-weighted appropriately. [119, 133]

Calculations in the quasiharmonic approximation were performed two ways.

In the lattice dynamics method, the thermal expansion was evaluated by optimiz-

ing the vibrational free energy as a function of volume. [119] Calculations were

performed self-consistently with a 6-atom unit cell with a 10 × 10 × 10 k-point

grid. Phonon frequencies were calculated using the small displacement method

implemented by the Phonopy package. [139] These phonon dispersions in the

QHA were also used for the anharmonic perturbation theory described below. The

second method used MD calculations to implement the QHA. We removed the

temperature-dependent explicit anharmonicity by performing simulations at 40 K

for volumes characteristic of 400 K, which produced a pressure of 0.45 GPa at 40 K.

Further computational details are given in Section 6.5.1.

At the lowest simulation temperature of 40 K, classical MD trajectories may re-

quire justification. In principle, nuclear motions could be better treated by mapping
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each nucleus onto a classical system of several fictitious particles governed by an

effective Hamiltonian, derived from a Feynman path integral, for example. [32,33]

Such low temperature quantum effects are beyond the scope of this work. Nev-

ertheless, our results should not be altered significantly by quantum effects for

the following reasons. Our particular interest is in anharmonic phonon-phonon

interactions at higher temperatures, and our new results concern the phonons and

NTE above 250 K. A classical MD simulation is usually appropriate at higher tem-

peratures. The modes most subject to quantum corrections are those involving

the dynamics of the lower mass O atoms, but these are at high energies. They are

not activated at 40 K, and show weak anharmonic effects. Relatively larger anhar-

monic effects at low temperatures are found in the modes below 10 meV. These are

dominated by the Ag atoms, but with their high mass only tiny quantum effects are

expected. There are several semi-quantitative methods to estimate the magnitudes

of quantum corrections. For example, Berens, et al. [140] and Lin, et al. [44] suggest

that quantum effects could be evaluated from the difference between the quantum

and classical vibrational energy or free energy derived from the corresponding par-

tition functions. These methods do not account for all quantum effects on nuclear

trajectories, but for Ag2O at 40 K, by using both classical and quantum paritition

function for the same phonon DOS, we found the vibrational energy difference

between classical and quantum statistics is only 1.2% of the cohesive energy.
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6.3.2 Results

Table 6.1 presents results from our MD simulations and experimental data on lattice

parameter, bulk modulus, thermal expansivity, and phonon frequences at the Γ-

point. As shown in Fig. 6.7, the MD simulations predicted the NTE very well. On

the other hand, consistent with a recent QHA calculation, [126] the NTE calculated

with the QHA method was much smaller.

The phonon DOS curves calculated from first-principles MD simulations are

shown in Fig. 6.2 with the experimental spectra for comparison. To facilitate visual

comparison, in Fig. 6.2(a) the energy axis of the calculated spectra were scaled

by 6.8% to correct for underestimates of the force constants in the GGA method.

Nevertheless, excellent agreement is found between the simulated phonon DOS

and the experimental data, and the calculated thermal broadenings and shifts are

in good agreement, too. Gaussian functions were also fit to the calculated spectra,

and Fig. 6.3 compares these thermal shifts from experiment and calculation.

Because of the large mass difference between Ag and O atoms, the O-dominated

phonon modes are well separated from the Ag-dominated modes. Partial phonon

DOS analysis showed that the Ag-dominated modes had similar energies, forming

the peak of the phonon DOS below 20 meV (peak 1 in Fig. 6.2), whereas the O-

dominated modes had energies above 40 meV (peaks 2 and 3).

Figure 6.8 shows the normal modes from MD simulations, projected to the

Γ-point. Six vibrational modes are evident, including the IR-active F(1)
1u and F(2)

1u

modes. The calculated frequencies of these modes at 40 K are listed in Table 6.1,

showing good agreement with experiment. Large thermal shifts and broadenings

are apparent in the simulated frequencies, consistent with experiment. The calcu-

lated peaks were then fitted with Lorentzian functions to extract the centroids and

linewidths, which compare well with the FT-IR data as shown in Fig. 6.9.



127

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Exp. data

 QH calc.

 MD calc.
(a

(T
)/

a
(T

4
0

K
)-

1
)X

1
0

0
0

0 150 300 450

 

 

Temperature (K)

Figure 6.7: Temperature dependence of lattice parameter from experimental data

in Ref. [ [111]], quasiharmonic calculations and MD calculations, expressed as the

relative changes with respect to their 40 K values, i.e., a(T)/a(40 K) − 1.



128

Table 6.1: Properties of Ag2O with the cuprite structure from present MD calcula-

tions, compared to experimental data. Units: lattice parameters in Å, bulk modulus

in GPa, thermal expansion coefficients in 10−6K−1, vibrational frequencies in meV.

Lattice parameter at 40 K is from neutron scattering measurements in the present

work, which is in good agreement with Refs. [ [111, 112]]. Bond linear thermal

expansion (LTE) and variance data are from Refs. [ [121,122]]. The IR active mode

frequencies are from FT-IR measurements in the present work, and the frequencies

of the lowest two modes are from the luminescence spectra in Ref. [141].

Experiment Calculation

Lattice Parameter

a 4.746 4.814

Bulk Modulus

K N/A 72

Bond LTE

βAg−O 12.1–35.0 19.4

βAg−Ag -9.99 -14.7

Bond Variance

σAg−Ag (40 K) 0.0078 0.0073

σAg−Ag (400 K) 0.053 0.067

Mode Frequency

F2u 5.60 5.58

Eu 8.9 7.45

F(1)
1u 11.2 11.5

A2u N/A 29.4

F2g N/A 48.4

F(2)
1u 67 63.6
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6.4 Anharmonic Perturbation Theory

6.4.1 Computational Methodology

Cubic anharmonicity gives rise to three-phonon processes, which are an important

mechanism of phonon-phonon interactions. The strengths of the three-phonon

processes depend on two elements – the cubic anharmonicity tensor that gives

the coupling strengths between three phonons, and the kinematical processes de-

scribed by the two-phonon density of states (TDOS). [2, 48, 142]

From Ipatova, et al. [46], an anharmonic tensor element for a process with the

initial phonon mode j at the Γ-point and s phonons is

V( j; q⃗1 j1; ...; q⃗s−1 js−1) =
1

2s!

(
~

2N

) s
2

N∆(q⃗ + q⃗1 + · · · + q⃗s−1)

×[ωω1 · · · ωs−1 ]
1
2 C( j; q⃗1 j1; ...; q⃗s−1 js−1) (6.2)

where the phonon modes {q⃗i ji} have quasiharmonic frequencies {ωi} and occupan-

cies {ni}. The C(.)’s are expected to be slowly-varying functions of their argu-

ments. [143] We assume the term C( j; q⃗1 j1; ...; q⃗s−1 js−1) is a constant for the initial

phonon j, and use it as a parameter when fitting to trends from MD or experiment.

Although C( j; q⃗1 j1; q⃗2 j2) changes with j1 and j2, an average over modes,

⟨C(.)⟩ =
∑

1,2 C( j; q⃗1 j1; q⃗2 j2)∑
1,2 1

(6.3)

is found by fitting to experimental or simulational results, where 1, 2 under the

summation symbol represent q⃗i ji. We define the cubic fitting parameter as

C(3)
j = ⟨C( j; q⃗1 j1; q⃗2 j2)⟩ (6.4)

The second key element of perturbation theory is that interacting phonons

satisfy the kinematical conditions of conservation of energy and momentum. This

condition is averaged over all phonons with the two-phonon density of states
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(TDOS), defined as

D(ω) =
∑
q⃗1, j1

∑
q⃗2 j2

D(ω,ω1,ω2)

=
1
N

∑
q⃗1, j1

∑
q⃗2, j2

∆(q⃗1 + q⃗2)
[
(n1 + n2 + 1) δ(ω − ω1 − ω2)

+ 2(n1 − n2) δ(ω + ω1 − ω2)
]

(6.5)

The first and second terms in square brackets are from down-conversion and up-

conversion scattering processes, respectively.

The strength of the cubic phonon anharmonicity can be quantified by the quality

factorQ, related to the phonon lifetime as the number of the vibrational periods for

the energy to decay to a factor of 1/e, and Q = ω/2Γ, where 2Γ is the linewidth of

the phonon peak. Considering Eqs. (6.2) to (6.5), the phonon linewidth is related

to the TDOS, D(ω), weighted by the coupling strength. [131, 143] To leading order,

the inverse of the quality factor can be expressed as a function of the TDOS

1
Q j
=
π~
32
|C(3)

j |
2
∑
q⃗1, j1

∑
q⃗2, j2

ω1ω2 D(ω,ω1,ω2) (6.6)

The TDOS at various temperatures was calculated from the kinematics of all three-

phonon processes, sampling the phonon dispersions with a 16 × 16 × 16 q-point

grid for good convergence. TheQ from MD simulations were used to approximate

the anharmonicity of the phonon modes of different energies, and obtain the the

coupling strengths |C(3)
j |2 for the different modes.

6.4.2 Results

Fig. 6.10(a) shows calculated phonon dispersion curves of Ag2O with the cuprite

structure along high-symmetry directions. From these, the TDOS spectra, D(ω),

were obtained at different temperatures, presented in Fig. 6.10(b) for 40 and 400 K.

At low temperatures there are two small peaks in the TDOS centered at 15 and
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65 meV. Our calculation showed that the peak at 15 meV is from the decay processes

of one Ag-dominated mode into two with lower frequencies, i.e., Ag 7→ Ag + Ag.

The peak at 65 meV originates from spontaneous decay of one O-dominated mode

into another O-dominated mode of lower frequency and one Ag-dominated mode.

At high temperatures there are more down-conversion processes, but an even

greater change in up-conversion processes. Figure 6.10(b) shows how the strong

down-conversion peaks at low temperatures grow approximately linearly with

temperature, following the thermal population of phonon modes involved in the

interactions. Near the peak at 65 meV, one up-conversion band centered at 50 meV

is also strong. This band comprises scattering channels in which one O-dominated

mode is combined with a Ag-dominated mode to form a higher frequency O-

dominated mode, i.e., O 7→ O − Ag. At the low energy side, there is another

band below 15 meV from two types of up-conversion processes. One is from Ag-

dominated modes alone, i.e., Ag 7→Ag −Ag. The other involves two O-dominated

modes, i.e., Ag 7→ O − O, owing to the increased number of higher energy O-

dominated modes that can participate in these processes at higher temperatures.

Figure 6.11 shows the inverse of quality factors, 1/Q, of the F(1)
1u , F2g, F(2)

1u and A2u

phonon modes from FT-IR and MD calculations, together with the best theoretical

fits with Eq. (6.6). These modes are near the centers of main features of the phonon

DOS shown in Fig. 6.2, i.e., the peaks 1, 2, 3 and the gap in between, respectively,

and are useful for understanding the overall anharmonicity. As shown in Fig. 6.11,

at higher temperatures the quality factors decrease substantially. At 400 K, the F(1)
1u ,

F2g, F(2)
1u modes have low Q values from 12 to 15, but the A2u mode has a much

larger value of 26. With a single parameter |C(3)
j |2 for each mode, good fittings to

the quality factors are obtained. The fitting curves and the corresponding values of

the parameters |C(3)
j |2 are presented in Fig. 6.11. The |C(3)

j |2 values do not vary much

among different modes, so the typical assumption of a slowly varying C(.) seems

reasonable.
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Figure 6.10: (a) Calculated phonon dispersion along high-symmetry directions of
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(b) The TDOS spectra, D(ω), at 40 K (dashed) and 400 K (solid). The down-

conversion and up-conversion contributions are presented separately as black and

green curves, respectively.
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6.5 Discussion

6.5.1 Quasiharmonic Approximation

In the quasiharmonic approximation (QHA), a mode Grüneisen parameter γ j is

defined as the ratio of the fractional change of the mode frequency ω j to the frac-

tional change of volume V, at constant temperature, γ j = −
∂(lnω j)
∂(ln V) . The usual trend

is for phonons to soften with lattice expansion, increasing the phonon entropy and
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stabilizing the expanded lattice at elevated temperatures. A negative Grüneisen

parameter is therefore expected for the special phonon modes associated with NTE,

such as RUMs. If all the anharmonicity of Ag2O with the cuprite structure is at-

tributed to this volume effect, however, the values of Grüneisen parameters are

approximately –9 for the high energy modes at peaks 2 and 3 of the phonon DOS,

and –20 for the infrared-active F1u mode. These anomalous values may indicate

a problem with the QHA. The QHA method also significantly underestimates the

NTE, and misses the behavior at temperatures above 250 K.

To separate the effects of quasiharmonicity and explicit anharmonicity, the mode

frequency ω j = ω j(V,T) is expressed as a function of volume and temperature

(
∂ lnω j

∂T

)
P
= −γ jβ +

(
∂ lnω j

∂T

)
V

(6.7)

where j is the phonon mode index, β is the volume thermal expansivity and γ j is

the mode Grüneisen parameter. The left-hand side is the temperature-dependent

frequency shift at constant pressure, and includes contributions from both quasi-

harmonicity and explicit anharmonicity. The first term on the right-hand side, the

isothermal frequency shift as a function of pressure, is the quasiharmonic contri-

bution to the frequency shift. The second term on the right is the pure temperature

contribution to the frequency shift from the explicit anharmonicity. From the dif-

ference of the isobaric and isothermal frequency shifts, the explicit anharmonicity

can be determined.

In a molecular dynamics simulation, the quasiharmonic contribution can be

evaluated explicitly by turning off the temperature-dependent anharmonicity. In

principle, this method is equivalent to the QHA method implemented with self-

consistent lattice dynamics, [119] and in practice we have found this to be true.

For example, we performed simulations at 40 K for volumes characteristic of 400 K,

which produced a pressure of 0.45 GPa. This calculation therefore removed the

temperature effect while preserving the quasiharmonic volume effect at 400 K. The

corresponding phonon DOS curves from MD calculations are shown in Fig. 6.12.
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By comparing the phonon spectrum of a simulation at 40 K and 0.45 GPa with a

simulation at 400 K, the pure temperature dependence is identified. From the spec-

tra of Fig. 6.12, it is found that the explicit anharmonicity dominates the softening

and broadening of the phonon spectra. All features in the phonon spectra with the

QHA showed little change with temperature, except for small stiffenings at high

energies.

As seen in Fig. 6.12 and in Fig. 6.8, the giant negative Grüneisen parameters are

inconsistent with the results of MD simulations. The volume change alone does

not affect much the phonon lifetimes or frequency shifts. All features in the phonon

spectra generated with the MD-implemented QHA showed little change except for

small stiffening about 0.6 meV at high energies, in agreement with the recent lattice

dynamics QHA calculations. [126]
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Figure 6.12: Neutron weighted phonon DOS of Ag2O with the cuprite structure

from MD simulations. The green spectrum is the MD simulated phonon DOS at

40 K and 0.45 GPa. Vertical dashed lines are aligned to the major peak centers at

40 K and labeled by numbers. The incident energy was 100 meV for panel (a), and

30 meV for panel (b). The spectra were convoluted with the resolution function

characteristic of ARCS for the different energies of the incident neutron beam.
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6.5.2 Negative Thermal Expansion

Our eigenvector analysis of phonon modes showed that the three low-energy Ag-

dominated F2u, Eu and F1u modes correspond to two distinct types of vibrations.

The F2u mode involves rigid rotations of Ag4O tetrahedra, and could be considered

as RUM. The Eu mode involves the shearing of Ag4O units by changing the Ag-O-

Ag bond angles. The F1u mode measured by infrared spectrometry also shears the

Ag4O units, and includes some displacements of O atoms. Shearing the tetrahedra

was shown to reduce the average vertex-vertex distance [134, 144] and contribute

to the NTE.

In the cuprite structure, the modes associated with the rigid rotations and

the distortions of the Ag4O tetrahedra have similar energies below 10 meV. They

are equally favorable thermodynamically, and both would be active at very low

temperature. As a consequence, there is simultaneously a large deformation of

Ag4O units and a strong contraction of the Ag-Ag shell, as observed experimentally

and computationally at low temperatures. The large thermal distortions of the

Ag4O tetrahedra involve the Ag atoms at the vertices, and their large mass causes

these distortions to occur at low frequencies. Polyhedral units in most other NTE

materials are bridged by the lightweight atoms, such as O and C-N, so the polyhedra

are distorted at significantly higher energies (usually above 40 meV), and may not

distort at lower temperatures.

It is a thermodynamic requirement that the NTE of Fig. 6.7 must go to zero

at T = 0, but the intervening phase transition at 40 K impedes this measurement.

Nevertheless, the steep slope of the lattice parameter with temperature is consis-

tent with the occupancy of phonon modes of 10 meV energy, suggesting that the

QHA model of NTE involves the correct modes, such as the F2u mode (which is a

RUM). These low-energy modes are dominated by motions of the Ag atoms. This

explanation based on the QHA is qualitatively correct, but anharmonic interactions

are large enough to cause the QHA to underestimate the NTE by a factor of two.
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6.5.3 Explicit Anharmonicity

At temperatures above 250 K, there is a second part of the NTE behavior that is

beyond the predictions of quasiharmonic theory. This NTE above 250 K is predicted

accurately by the ab-initio MD calculations, so it is evidently a consequence of

phonon anharmonicity. The temperature-dependence of this NTE behavior follows

the Planck occupancy factor for phonon modes above 50 meV, corresponding to the

O-dominated band of optical frequencies. In the QHA these modes above 50 meV

do not contribute to the NTE. These modes are highly anharmonic, however, as

shown by their large broadenings and shifts.

For cubic anharmonicity, the two-phonon DOS (TDOS) is the spectral quantity

parameterizing the number of phonon-phonon interaction channels available to

a phonon. For Ag2O with the cuprite structure, the peaks in the TDOS overlap

well with the peaks in the phonon DOS. Most of the phonons therefore have

many possible interactions with other phonons, which contributes to the large

anharmonicity of Ag2O with the cuprite structure, and small Q (short lifetimes).

Although the Q values of most phonon modes in Ag2O with the cuprite structure

are small and similar, the origins of these lifetime broadenings are intrinsically

different. For peak 2 of the phonon DOS, the anharmonicity is largely from the up-

conversion processes: O 7→O−Ag, while for peak 3 it is from the down-conversion

processes: O 7→ O + Ag. The anharmonicity of peak 1 is more complicated. It

involves both up-conversion and down-conversion processes of Ag-dominated

modes. The TDOS also shows why the A2u mode has a larger Q than other modes.

Figure 6.10(b) shows that the A2u mode lies in the trough of the TDOS where there

are only a few phonon decay channels.

Owing to explicit anharmonicity from phonon-phonon interactions, the ther-

modynamic properties of Ag2O with the cuprite structure cannot be understood

as a sum of contributions from independent normal modes. The frequency of an

anharmonic phonon depends on the level of excitation of other modes. At high

temperatures, large vibrational amplitudes increase the anharmonic coupling of
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modes, and this increases the correlations between the motions of the Ag and O

atoms, as shown by perturbation theory. Couplings in perturbation theory have

phase coherence, so the coupling between Ag- and O-dominated modes at higher

energies, as seen in the peak of the TDOS, causes correlations between the motions

of Ag and O atoms. The ab-initio MD simulations show that anharmonic inter-

actions allow the structure to become more compact with increasing vibrational

amplitude. The mutual motions of the O and Ag atoms cause higher density as

the atoms fill space more effectively. The large difference in atomic radii of Ag and

O may contribute to this effect. Perhaps it also facilitates the irreversible changes

in Ag2O at temperatures above 500 K, but this requires further investigation. For

cuprite Cu2O, which has less of a difference in atomic radii, the thermal expansion

is much less anomalous.

6.6 Conclusions

Phonon densities of states of Ag2O with the cuprite structure at temperatures

from 40 to 400 K were measured by inelastic neutron scattering spectrometry. The

infrared spectra of phonon modes were also obtained at temperatures from 100

to 300 K. Large anharmonicity was found from both the shifts and broadenings of

peaks in the phonon spectra. A normal mode analysis identified the rigid unit

modes and the bending modes of the Ag4O tetrahedra that play key roles in the

negative thermal expansion (NTE) at low temperatures. Some of the NTE can be

understood by quasiharmonic theory, but this approach is semiquantitative, and

limited to temperatures below 250 K.

First principles MD calculations were performed at several temperatures. These

calculations accurately accounted for the NTE and local dynamics of Ag2O with

the cuprite structure, such as the contraction of the Ag-Ag shell and the large

distortion of the Ag4O tetrahedra. The phonon DOS obtained from a Fourier-

transformed velocity autocorrelation method showed large anharmonic effects in

Ag2O, in excellent agreement with the experimental data. A second part of the NTE
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at temperatures above 250 K is due largely to the anharmonicity of phonon-phonon

interactions and is not predicted with volume dependent quasiharmonicity.

Phonon perturbation theory with the cubic anharmonicity helped explain the

effects of phonon kinematics on phonon anharmonicity of Ag2O with the cuprite

structure. The phonon interaction channels for three-phonon processes are given

by the TDOS, weighted approximately by the phonon coupling strength. The

phonons that are most broadened are those with energies that lie on peaks in the

TDOS. The temperature-dependence of the quality factors Q of individual phonon

modes measured by infrared spectrometry were explained well by anharmonic

perturbation theory. Perturbation theory also showed strong interactions between

the Ag-dominated modes and the O-dominated modes in both up-conversion and

down-conversion processes. In particular, the strong interactions of O-dominated

modes with Ag-dominated modes causes the second stage of NTE at temperatures

above 250 K.
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Chapter 7

Conclusions

7.1 Summary

Non-harmonic phonon-phonon interaction in solids is a central but poorly under-

stood topic in condensed matter physics. For example, thermodynamic equilib-

rium cannot be achieved with non-interacting harmonic phonons. Finite thermal

conductivity also requires phonon-phonon interactions. We obtained the data of

anharmonic effects in metal oxides (rutile TiO2, cuprite Ag2O, e.g. ) from Raman

spectroscopy, FTIR spectroscopy and inelastic neutron scattering. The focus of

this thesis is more on the models and algorithms we developed, which success-

fully reproduced the vibrational information on anharmonic lattice dynamics. In

particular, we developed the Fourier transformed velocity autocorrelation method

to reproduce the anharmonic phonon energy spectra in solids, and we also used

perturbation theory to investigate microscopically the phonon interaction channels

and interaction intensities in anharmonic processes.

In Chapter 1, fundamental theories of lattice dynamics were reviewed. The

focus was on anharmonic lattice dynamics and phonon-phonon interactions, upon

which most of work presented in this thesis is based. In particular, the Green’s

function method for phonon-phonon interactions was derived in detail, and the

mathematical expressions for anharmonic phonon energy broadening and shift

were proved.

In Chapter 2, the experimental techniques performed in this thesis were dis-
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cussed. For Raman scattering, the quantum theory and selection rules based on

the group theoretical analysis were discussed in detail. For time-of-flight inelastic

neutron scattering, basic principles of neutron scattering were reviewed, and the

experimental setup and data reduction procedures were introduced.

In Chapter 3, the main computational methods and algorithms that we used

in this study were discussed. This chapter started with a brief review of modern

density functional theory, and molecular dynamics simulations. The focus was on

the methods for phonon calculations, especially the Fourier-transformed velocity

autocorrelation method and the anharmonic phonon-phonon interaction analysis

method.

In Chapter 4, we considered the phonon anharmonicity of rutile TiO2. Raman

spectra of rutile TiO2 were measured at temperatures from 100 K to 1150 K. A dom-

inant role of phonon-phonon kinematics on phonon shifts and broadenings was

reported. Force field MD calculations with the Fourier-transformed velocity auto-

correlation method were also used to perform a quantitative study of anharmonic

effects, successfully accounting for the anomalous phonon anharmonicity of the

B1g mode.

In Chapter 5, we considered the phonon anharmonicity of rutile SnO2. Raman

spectra of rutile SnO2 were measured at temperatures from 83 to 873 K. The pure

anharmonicity from phonon-phonon interactions was found to be large and com-

parable to the quasiharmonicity. The broadening of the B2g mode with temperature

showed an unusual concave downwards curvature. This curvature is caused by

a change with temperature in the number of down-conversion decay channels,

originating with the wide band gap in the phonon dispersions.

In Chapter 6, we considered the phonon anharmonicity of Ag2O with the cuprite

structure. Inelastic neutron scattering measurements on Ag2O were performed at

temperatures from 40 to 400 K, and Fourier transform far-infrared spectra were

measured from 100 to 300 K. The measured phonon densities of states and the in-

frared spectra showed unusually large energy shifts with temperature, and large

linewidth broadenings. First principles molecular dynamics (MD) calculations
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were performed at various temperatures, successfully accounting for the nega-

tive thermal expansion (NTE) and local dynamics. Using the Fourier-transformed

velocity autocorrelation method, the MD calculations reproduced the large anhar-

monic effects of Ag2O, and were in excellent agreement with the neutron scattering

data. Strong anharmonic effects were found for both phonons and for the NTE.

The lifetime broadenings of Ag2O were explained by anharmonic perturbation

theory, which showed rich interactions between the Ag-dominated modes and the

O-dominated modes in both up- and down-conversion processes.

7.2 Future Work

The study of phonon anharmonicity and phonon-phonon interaction is a difficult

but exciting field. It is difficult because we must consider how phonons interact

with other phonons or with other excitations – an example of a notorious many-

body interaction problem. In comparison, our understanding today about the

vibrational thermodynamics of materials at low temperatures is broad and deep

because it is based on the harmonic model in which phonons are independent,

avoiding issues of anharmonic lattice dynamics.

Phonon anharmonicity is an exciting topic because of its fundamental impor-

tance and broad applications. With the development of modern experimental

techniques and the progress of the anharmonic phonon theories and computa-

tional methodologies, we are in a good position to study the relation between the

phonon anharmonicity and many important thermodynamic properties of materi-

als, for example, thermodynamic phase stability, thermal expansion and thermal

conductivity. Nevertheless, this subject needs new theoretical models and compu-

tational algorithms.

I. Thermodynamic Phase Stability

The ability to predict phase equilibria and structural transformations in solids
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under pressure and temperature is of great importance to both science and indus-

try. The failure of the harmonic theory mostly arises from the assumption of in-

dependent phonons, which becomes increasingly inaccurate at high temperatures.

For example, although rutile is the most common and stable crystal structure of

TiO2, most of the phonon calculations do not agree well with experimental results.

For example, the anatase phase was calculated to be more stable than the rutile

phase [145]. Moreover, a recent study based on the quasiharmonic approximation

found the low energy modes of rutile to be very soft, and some of them decrease

to zero frequency upon a 0.5% lattice expansion [71]. This suggests an instability

of rutile upon heating. With inelastic neutron scattering data from ARCS, and

very recent first principles MD calculations, we found double well potentials with

a depth of about 2.5 meV for the modes with negative frequencies upon lattice

expansion. This is a classic ”Landau potential”. Using MD simulation at finite

temperatures, the thermal energy of anharmonic modes was found to be consid-

erably larger than the shallow depth of the double wells, ensuring no symmetry

break and structure instability. Moreover, at elevated temperatures, it was found

that these anharmonic modes explore a potential surface that can be approximated

as a quartic form, which accounts for the anomalously large thermal stiffening.

This work is coming along well, and is a good example showing how the phonon

anharmonicity determines the phase stability.

II. Thermal Expansion

Thermal expansion is another anharmonic effect. Recently, negative thermal

expansion (NTE) has been discovered and its potential applications in engineering

are attacting much interest. However, most studies about thermal expansion are

based on harmonic theory or quasiharmonic theory with non-interacting phonons.

In some cases, a harmonic free energy optimization leads to a good estimation of

thermal expansivity, but there are many examples showing that the anharmonic

contribution is significant. The NTE of Ag2O presented in this thesis, for example,
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is an interesting one [146]. At high temperatures, large vibrational amplitudes

increase the anharmonic coupling of modes, and this tends to increase the correla-

tions between the motions of the Ag and O atoms. The ab-initio MD simulations

show that anharmonic interactions allow the structure to become more compact

with increasing vibrational amplitude. Although we can understand this effect at

a qualitative level, a quantitative model is desirable to describe this interaction.

Because couplings in perturbation theory have phase coherence, the coupling be-

tween Ag- and O-dominated modes at higher energies, as seen in the peak of the

TDOS, is expected to cause correlations between the motions of Ag and O atoms,

and the study of this correlation could be an interesting direction.

III. Thermal Conductivity

In many cases, harmonic lattice dynamics can still be regarded as the leading

order approximation, but such a model predicts an infinite phonon thermal con-

ductivity for a perfect crystal. To obtain a finite thermal conductivity, three-phonon

and higher anharmonic processes must be considered. Thermal conductivity can

be predicted with the Green-Kubo method by using the heat current generated by

MD and taking the autocorrelation [41,42]. The calculation is a little more complex

than the velocity autocorrelation method, but the computational logic and struc-

ture are exactly the same. Our code should be easily extended to this calculation,

which converges fast and is quite robust and accurate.

The Callaway method is also popular [147]. It computes the phonon lifetime

directly, but it also requires the phonon group velocity and energy/momentum

conservation to be calculated explicitly. Actually, several important components

of this method were already developed in the work presented in this thesis. This

method has its own benefit because it can investigate thermal conduction in a mi-

croscopic manner, i.e., contributions from different modes can be clearly identified.

The result from this method can also compare directly with the anharmonic data

obtained in real experiments. For example, using inelastic neutron scattering, we
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can directly obtain phonon dispersions with lifetime broadening. In our recent

neutron experiment, we got such phonon data on a single crystal of silicon (Si).

These new data could be an important testbed to develop and implement this

method.

IV. Other Theoretical Methods

With the MD calculations and the velocity autocorrelation analysis being well

developed, we can incorporate the MD method with the self-consistent lattice

dynamics model described in Chapter 1. These methods are promising in the

study of anharmonic thermal stabiliy, for example. The benefit of a self-consistent

lattice dynamics calculation is that it is based on a lattice dynamics model, and

therefore once the parameters in this model are known, it could be more efficient

and simpler to get the anharmonic phonon dispersions with very high signal to

noise ratio. It is also interesting to compare the self-consistent lattice dynamics

model with pure MD results because using a mean field harmonic model could be

questionable under very anharmonic conditions.

Another interesting approach might be a frozen ”phonon-phonon interaction”

method. It is based on the direct frozen phonon method, but we can add one more

loop above it. This additional loop would sample different atomic displacements

of different frozen phonons and assign with them appropriate amplitudes. In this

way, we can still take advantage of the well-established frozen phonon method,

but we may also generate an ensemble to simulate the phonon-phonon interactions

and their high-dimensional potential surface. The key to this method is that instead

of assigning displacements randomly, we should build the ensemble according to

the phonon eigenvectors and the target temperature. A MD calculation essentially

provides a dynamic phonon-phonon interactions atmosphere, while in this method,

we are interested in how to freeze these interactions in a controllable manner, and

to extract the potential surface.

Last but not least, the evaluation of anharmonic entropy is quite an interesting



149

and challenging topic. As we presented before, up to now the vibrational entropy

is exclusively based on the harmonic or quasiharmonic approximation, the validity

is under question for a strong anharmonic case. This approximation should fail for

a highly anharmonic material. Although it is more theoretical, the understanding

of the anharmonic vibrational entropy is crucial for advancing the basic theory

of lattice dynamics. In this case, approachs with the harmonic partition function

may be unreliable, and one possible way is to start from the orignial definition

of entropy, i.e., we can sample the phase space from a MD simulation, and try to

obtain the phase volume from those trajectories. Such an approach may include

problems of chaotic dynamics, but rich contributions could come from this.
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Appendix A

The evaluation of the 2nd order
Feynman diagram of phonon-phonon
interactions

Following Section 1.6, we can simply translate the 2nd order diagram by replacing

the lines and vertices with the corresponding free phonon propagator and anhar-

monic interaction terms. Because there are two lines connected with two vertices,

this gives Eq. A.1a. Here, ωn =
2nπ
β~ is the discrete set of energies by Fourier trans-

forming the complex time τ of the self energy Σ⋆, as defined previously for the

temperature Green’s function; similarly, ωn1 and ωn2 are the corresponding energy

sets for the free propagators in the energy space, and ωn = ωn1 +ωn2 . ω1 and ω2 are

harmonic or quasiharmonic phonon frequencies of phonon mode q, as defined in

Section 1.6 for the free phonon propagator.

C

C’

Figure A.1: Coutour of evaluation for energy sums
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The complete mathematical proof is provided here, followed by the notes for

some important and non-obvious steps

Σ⋆q⃗ss′(ωn) (A.1a)

=
18
β~3

∑
q1,q2

∑
n1

V(3)(−q, q1, q2)V(3)(q′,−q1,−q2)g0(q1,ωn1)g0(q2,ωn2)

=
18
~2

∑
ω1,ω2

4ω1ω2V(3)(...)V(3)(...) × (A.1b)

1
β~

∑
n1

1
(ω1 − iωn1)(ω1 + iωn1)(ω2 − i (ωn − ωn1)(ω2 + i (ωn − ωn1))

=
18
~2

∑
ω1,ω2

4ω1ω2

2πi
V(3)(...)V(3)(...) × (A.1c)∫

C

dz
eβ~z − 1

1
(z − ω1)(z + ω1)(z + ω2 − iωn)(z − ω2 − iωn)

=
18
~2

∑
ω1,ω2

4ω1ω2V(3)(...)V(3)(...) × (A.1d)(
1

eβ~ω1 − 1
−1

2ω1(ω1 + ω2 − iωn)(ω1 − ω2 − iωn)
+ similar other 3 terms

)
=

18
~2

∑
ω1,ω2

4ω1ω2V(3)(...)V(3)(...)
(

n1

2ω1(ω1 + ω2 − iωn)(ω2 − ω1 + iωn)
(A.1e)

+
n1 + 1

2ω1(ω2 − ω1 − iωn)(ω1 + ω2 + iωn)
+

n2

2ω2(ω1 − ω2 − iωn)(ω1 + ω2 + iωn)

+
n2 + 1

2ω2(ω1 + ω2 − iωn)(ω1 − ω2 + iωn)

)
=

18
~2

∑
ω1,ω2

V(3)(...)V(3)(...)
( n1 + n2 + 1
ω1 + ω2 − iωn

+
n2 − n1

ω1 − ω2 + iωn
(A.1f)

+
n1 + n2 + 1
ω1 + ω2 + iωn

+
n2 − n1

ω1 − ω2 − iωn

)
Note:

(1) The prefactor 18 comes from the fact that this diagram has 3 degrees of

freedom in each vertex and there are hence 3 × 3 × 2 = 18 equivalent diagrams.

(2) From Eq. A.1b to Eq. A.1c, we are using the following equality which is
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typical of evaluating summations of a series of excitations in many body physics:

∑
n

1
iωn − x

=
β~

2πi

∫
C

dz
eβ~z − 1

1
z − x

(A.2)

Here the integral is along a coutour C encircling the imaginary axis in the positive

sense, as shown in Fig. A.1. Notice that the integrand has poles at z = 2nπi/β~ =

iωn, each with unit residue, then Cauchy’s Residue theorem directly gives the

Eq. A.2. It is evident that the choice of the integrand is not unique mathematically;

But physically, (eβ~z − 1)−1 is preferred because it is connected with the quantum

occupation number explicitly and we will see its advantages shortly.

(3) From Eq. A.1c to Eq. A.1d, we are evaluating the integral. As illustrated

in Fig. A.1, we deform the countour C to C′, which extends to infinity and only

includes a simple pole at z = x. Using Residue theorem again, we simply obtain

the result ∑
n

1
iωn − x

=
−β~

eβ~x − 1
(A.3)

(4) From Eq. A.1d to Eq. A.1e, notice that (eβ~ω − 1)−1 is the phonon occupancy

number n, and importantly, n(iωn + ω) = n(ω) since eiβ~ωn = 1, which amazingly

guarantees the original physical meaning of the occupancy number and gives

Eq. A.1e.

As discussed in the end of Sec. 1.5.2, though the temperature Green’s function

is convenient to perform the mathematical calculation, it cannot be directly related

to the frequencies and lifetimes of excited states at finite temperature. Those

quantities are containted in the real-time retarded Green’s function GR, and we need

an analytical continuation to make a transformation. As discussed, by comparing

the generating function of g(ωn) and GR(ω), we can simply replace iωn in Eq. A.1f

with ω + iη in which η is positive infinitesimal. Using the following equality,

lim
η→0+

1
ω + iη

= 1/ω − πiδ(ω) (A.4)

we finally prove the mathematical form of the 2nd order Feynman diagram of
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phonon-phonon interactions as presented in Eq. 4.4(a) and (d), which correspond

to the energy shift and broadening respectively. We can use the same mathematical

manipulation to calculate other diagrams. In particular, that the other two lowest

order diagrams in Fig. 1.2 have no phonon lifetime broadening is because these

terms turn out to have no ωn dependence by the end and hence no imaginary part

when doing the analytical continuation.
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Appendix B

The Corrrelation method: an example
for Ag2O with curprite structure

Essentially, we are using the character table to transform the symmetry group rep-

resentation from its natural atomic coordinate basis to its normal basis. Following

Eq. 2.31 and the theory discussed in Section 2.1.3.3, we will provide an example

showing how to derive the group correlation and the selection rule, and the only

tool we need is a character table of point groups that can be found in most books

about group theory.

As described in Section 2.1.3.3, we need to establish the correlation between

the site group and the factor group by comparing the characters in both groups.

Consider first the four equivalent Ag atoms. The D3d sites accommodate four atoms

and it can be shown that Ag atoms are indeed on sites of D3d symmetry. Similarly,

we can find that the two O atoms are on sites of Td symmetry. Since cuprite

structure belongs to the space group O4
h , and for the first order Raman scattering,

the factor group inherites the full symmetry of the space group, we therefore need

to establish the correlation between the site groups D3d, Td and the factor group Oh.

Let’s correlate D3d with Oh first. To do this, we need compare the characters of

the operations common to both groups, and find the representations (or modes in

the language of lattice dynamics) of both groups having the same characters. We

can simply write the partial character table of factor group Oh, including only the

operations common to both D3d and Oh. As shown in Table B.1, the irreducible
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Table B.1: Derivation of the correlation table between point group Oh and D3d.

Oh E 2C3 2C2 i 2S6 3σd D3d

A1g 1 1 1 1 1 1 A1g

A2g 1 1 -1 1 1 -1 A2g

Eg 2 -1 0 2 -1 0 Eg

F1g 3 0 -1 3 0 -1 A2g + Eg

F2g 3 0 1 3 0 1 A1g + Eg

A1u 1 1 1 -1 -1 -1 A1u

A2u 1 1 -1 -1 -1 1 A2u

Eu 2 -1 0 -2 1 0 Eu

F1u 3 0 -1 -3 0 1 A2u + Eu

F2u 3 0 1 -3 0 -1 A1u + Eu

Table B.2: Derivation of the correlation table between point group Oh and Td.

Oh E 8C3 3C2
′ 6S4 6σd Td

A1g 1 1 1 1 1 A1

A2g 1 1 1 -1 -1 A2

Eg 2 -1 2 0 0 E
F1g 3 0 -1 1 -1 F1

F2g 3 0 -1 -1 1 F2

A1u 1 1 1 -1 -1 A2

A2u 1 1 1 1 1 A1

Eu 2 -1 2 0 0 E
F1u 3 0 -1 -1 1 F2

F2u 3 0 -1 1 -1 F1

representations of both groups have been successfully correlated according to their

characters. Adopting the same method, we can also correlate Td with Oh, and the

corresponding correlation table is shown in Table B.2.

After obtaining the correlation, the next step is to pick up those representations

from the site group with translational symmetry, i.e., the representations have the

basis vectors x, y, z, or equivalently, have the translation tensor operators Tx,Ty,Tz.

These representations can be easily identified, for example, by comparing their

characters with those of the site group representations with basis x, y, z. As listed

in the left sides of Table B.3 and B.4, the corresponding representations of cuprite
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Table B.3: Irreducible representation of Ag atoms

Site Group D3d =⇒ Factor Group Dh

irr. reps. trans. type irr. reps. degeneracy
A2u 1

A2u Tz F1u 3
F1u 3

Eu (Tx, Ty) Eu 2
F2u 3

Table B.4: Irreducible representation of O atoms

Site Group Td =⇒ Factor Group Dh

irr. reps. trans. type irr. reps. degeneracy
F2 (Tx,Ty,Tz) F1u 3

F2g 3

structures have been identified. Then we can use the correlation tables that we

just built up to map these site group representations to the factor group, which is

straightforward at this point. The only issue here is to adjust the number of each

factor group representations to maintain the degrees of freedom. Take the Ag atom

for example, the degrees of freedom from the site group is simply 4 atoms (per unit

cell) times 3 translational degrees of freedom and is hence equal to 12. On the right

hand side, evidently, the mode degeneracy times the number of corresponding

mode also sum up to 12.

The acoustic modes are also included in this irreducible representation. The

acoustic modes are readily identifiable in factor group because they correspond to

the translational motions of the system. Therefore we can identify them in exactly

the same way as we do for the site group representations with translational sym-

metry. When we consider only those vibrations at the Γ point, the three acoustic

modes are of no physical interest, we can therefore substract them from the irre-

ducible representation. Finally, we obtain the irreducible representation of Ag2O
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with cuprite structure as follows:

ΓAg2O = ΓAg + ΓO − Γacoust (B.1)

= (A2u + Eu + 2F1u + F2u) + (F1u + F2g) − F1u (B.2)

= A2u + Eu + 2F1u + F2u + F2g (B.3)

At this point, we just need to apply the Selection Rule 2: A mode s is Ra-

man active only if the normal coordinate Qs transforms in the same way as one

of the polarizability tensor components αµν, or equivalently, in the same way as

x2, y2, z2, xy, yz or zx. This is easy to accomplish by checking the corresponding

characters (the same method as being used for identifying the translational sym-

metry described above). Actually in some professional handbooks [9, 10], this

information is explicitly provided along the character table. We find only mode

F2g, a triply degenerate mode, contains the polarizability tensor component and

thereofore is Raman active. Similarly, we find mode F1u is infrared active because

it transforms in the same way as Tx,Ty,Tz. The corresponding eigenvectors can

be derived by using the group projection operator as discussed in Section 2.1.3.3.

The displacement patterns of the normal modes in this example can be found in

Chapter 6.



158

Appendix C

Raman spectra of two-phase and solid
solution phase of Li0.6FePO4 at
elevated temperatures

Over the past decade, phosphate-based olivine materials have attracted great re-

search interest as a new class of cathods for lithium-ion rechargeable batteries. In

particular, with the flat discharge voltage of 3.5 V, a theoretical specific capacity of

169 mAh/g and the environmentally friendly constituents, LiFePO4 has been the

focus of much of this research [148,149]. The electrochemical properties of LiFePO4

are limited by a low intrinsic electronic conductivity, and efforts are being made to

improve this feature [150, 151]. The Raman scattering technique clearly represents

a suitable way to investigate the dynamic properties of this material. Although

it is not the focus of the study presented in this thesis, the data we obtained are

interesting and informative for reference and further study.

In particular, Fig. 1 shows the Raman spectra at elevated temperatures of

Li0.6FePO4. The Raman spectra for the two-phase compound (LiFePO4 + FePO4

with phase boundary) show clear evidences of phase transition from the two-phase

to the solid solution above 230 ◦C. As shown in the figure, the sharp Raman lines

diminished at 230 ◦C, caused by a diffusion transfer of lithium ions across the phase

boundary of LiFePO4 and FePO4. Fig. 2 shows evidences that the transition from

the two-phase to the solid solution phase may involve some slow kinetic processes.

Compared with a short heat time (40 mins, 2 hrs and 40 mins), the spectra at long
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heating time (5 hrs and 40 mins) shows additional energy broadening and shift

features.
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Figure C.1: Raman spectra at elevated temperatures of two-phase Li0.6FePO4 (left
panel) and solid solution phase quenched at 400 ◦C(right panel)
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Figure C.2: Raman spectra of two-phase Li0.6FePO4 right above the phase transition
temperature at 260 ◦C but with different heating times.
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90(3):1550–1557, 2001.

[101] F. Gervais and W. Kress. Phys. Rev. B, 31:4809–4814, Apr 1985.

[102] T. Sato and T. Asari. J. Phys. Soc. Japan, 64:1193, 1995.

[103] K. Parlinski and Y. Kawazoe. Eur. Phys. J. B, 13:679, 2000.

[104] H. W. Leite Alves, C. C. Silva, A. T. Lino, P. D. Borges, L. M. R. Scolfaro, and

E. F. da Silva, Jr. Appl. Surf. Sci., 255(3):752–754, 2008.

[105] P. D. Borges, L. M. R. Scolfaro, H. W. Leite Alves, and E. F. da Silva, Jr. Theor.

Chem. Acc., 126:39–44, 2010.

[106] T. Lan, X. Tang, and B. Fultz. Phys. Rev. B, 85:094305, 2012.



168

[107] D. Wang, B. Chen, and J. Zhao. J. Appl.Phys., 101(11):113501, 2007.

[108] J. F. Mammone, M. Nicol, and S. K. Sharma. J. Phys. Chem. Solids, 42:379, 1981.

[109] A. Debernardi. Phys. Rev. B, 57:12847, 1998.

[110] G. Deinzer, G. Birner, and D. Strauch. Phys. Rev. B, 67:144304, 2003.

[111] W. Tiano, M. Dapiaggi, and G Artioli. J. Appl. Crystallogr., 36:1461, 2003.

[112] B. J. Kennedy, Y. Kubota, and K. Kato. Solid State Commun., 136:177, 2005.

[113] S. Bhattacharya and A. Ghosh. Solid State Ionics, 161:61, 2003.

[114] T. Minami. J. Non-Crys. Solids, 56:15, 1983.

[115] W-X Li, C. Stampfl, and M. Scheffler. Phys. Rev. Lett., 90:256102, 2003.

[116] L. Gou and C. Murphy. Nano Lett., 3:231, 2003.

[117] A. K. A. Pryde, K. D. Hammonds, M. T. Dove, V. Heine, J. D. Gale, and M. C.

Warren. J. Phys.-Condens. Matter, 8(50):10973–10982, 1996.

[118] V. Heine, P. R. L. Welche, and M. T. Dove. J. Am. Ceram. Soc., 82:1793, 1999.
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