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ANALYSIS OF TRAFFIC PROBLEMS OF INTEGRATED NETWORKS
ABSTRACT

A new approach to the analysis of Markovian queueing networks is developed
and applied to traffic problems of voice-data integration networks and trunked mo-
bile radio networks. This approach is shown to be computationally much less com-

plex for large systems compared to previous work.

In the integrated networks we consider, two classes of users share the system
facilities. If all the servers are busy, the first class of users are queued, but the
second class of users are blocked and cleared from the system. The performance
objective of such an integrated network is to trade the time delay performance of
the first class of users against the blockage performance of the second class of users

to keep the grade of service as high as possible for both classes of traffic.

The key-state approach introduced in this thesis is what makes the analysis of
the corresponding Markovian queueing network model of these integrated networks
computationally less complex than that of previous work. The performance of in-
tegrated networks is investigated under several control strategies and new exact
closed-form expressions are obtained for the equilibrium probabilities of the corre-
sponding Markovian models. The results are extended to a more general Markovian

process where a bulk of arrivals and departures are allowed.

The key-state approach is expected to become a standard tool for analyzing
large queueing networks such as will arise when Integrated Services Digital Networks

(ISDN) become widely deployed in the next five years.
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CHAPTER 1
INTRODUCTION

1.1 Integrated Networks and their importance

Today, telecommunication networks are dedicated to a single telecommunication
service. The first dedicated network, telegraphy, was developed 100 years ago to -
meet the requirements of a specific service where messages were served on a store-
and-forward basis using very little switching activity [1]. Later on, telephony was
invented, which brought a new dimension to telecommunications service. To be able
. to transmit human voice from one point to another meant more instantaneous and
personal communications. Therefore, the evolution of telephony proceeded differ-
ently from that of the telegraph network. As society transformed itself from a labor-
intensive to a knowledge-intensive society, new communication services with new
requirements had to be developed to satisfy the evolving needs of the information
society. A very natural result of this historical development was the proliferation

of new dedicated networks.

As far as their technological realization is concerned, the dedicated networks
are classified into circuit-switched and packet-switched networks [2], [3]. Circuit
switching, which has been used for telephony over the years, is a much older tech-
nology than packet-switched technology. The basic difference between a packet-
and circuit-switched network is that circuit switching requires the dedication of the
actual physical circuit to the users at either end before communication begins. In a
packet-switched network, however, data messages or pieces of messages called pack-
ets are transmitted from source to desﬁination using a routing algorithmn, sharing
transmission facilities. Telephone networks were originally developed for handling

voice traffic. These networks can therefore be very inefficient when transmitting
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data. Since the data messages are usually short messages, with long periods of
inactivity, it is very costly to dedicate a channel to a single pair of users who do not
utilize the transmission channel most of the time. Packet-switched networks have
been devised primarily for transmitting data efficiently, in short, bursty pieces.
Most commonly, the performance objective of a packet-switched network is to de-
crease the delay of data packets in the queue waiting for service. The performance
objective of the circuit-switched telephone is usually stated in terms of the blocking
probability, that is, if the transmission facilities are busy, an arriving call request is

blocked and cleared from the system.

In order to limit the proliferation of dedicated networks, new services have been
integrated into the existing dedicated networks. In this early form of integration,
data messages are transmitted through analog telephone networks by using modems.
This is not a full integration for two reasons. First, the required bandwidth for data
transmission is larger than the available bandwith of telephone networks. Therefore,
the speed of data transmission through the telephone network is limited. Second,
the features requested by data customers cannot be satisfied by this technique,
because of the restrictions in the switching technology. Today, the advent of digital
technology in transmission and switching makes the idea of integrating services more
appealing and interesting [4]. Most of the problems of early integration techniques

are now being overcome.

The networks of the future will be required to handle a variety of traffic, such
as digital voice, video, facsimile, and remote control of information [5], [6]. In order
to fulfill such requirements, these future networks are expected to combine circuit
and packet switching technologies. Digital telephone networks are being evolved

in such a way that the channel transmission bandwidth is now large enough to
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accommodate the integration of all nonvoice services. On the other hand, packet-
switched networks are evolving to handle other types of traffic besides interactive
data. It is no longer much of an obstacle to establish new services for integrated
networks because of electronic switching. As many of the technological components
become available for integrated networks, the concept of having an Integrated Ser-
vices Digital Networks (ISDN), which is defined as a network evolved from telephony
Integrated Digital Network that provides end-to-end digital connectivity to support

a wide range of services [7]-[8], is starting to turn into reality.
1.2 Traffic problems of Integrated Networks:

The traffic problems of dedicated networks and their performance analysis have
been well studied in the literature [9]-[14]. The fundamental results of Queueing
Theory can be used to obtain the performance of dedicated networks. Queueing
Theory arises naturally from the type of traffic problems dealt with in a communica-

tion network. The concept of server that is used very frequently in Queueing Theory

is here the transmission facility in communication networks. The state, which is
defined as the number of customers in the system, becomes the number of calls or
data i)ackets in the transmission facilities. The performance measure one should use
for a dedicated network varies according to the type of traffic served in the system.
In a packet-switched network arriving packets are buffered and processed. The time
spent in the buffer is then a very good measure of the packet-switched network per-
formance. On the other hand, in the older circuit-switched telephony network, the

blocking probability of arriving calls is a significant measure of performance.

The determination of state probabilities is the most important problem of
Queueing Theory. The behavior of queueing networks can be understood com-

pletely from the state probabilities, assuming memoryless arrivals and service times.
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Although existing fundamental results of queueing theory can be applied to most
dedicated network problems, these results are no longer valid in the analysis of in-
tegrated networks. This is basicaly because in an integrated network, transmission
facilities are shared by different types of traffic with different performance objec-
tives. As an example, in a voice-data integration network, the voice traffic, which
requires circuit-switched service, is multiplexed with the data traffic, which requires
packet-switched service. Therefore, the performance objective of a voice-data in-
tegration network is not only to reduce the blocking probability but also to keep
the mean waiting time of data packets below a certain level. As a very natural
consequence of the sharing process, there must always be a tradeoff between the

blockage and time-delay performance of integrated networks.

The analysis of integrated networks depends on the arrival process, the service
time distribution, and the service discipline. The idea of service discipline or priority
rules arises from different performance objectives. Objectives change from network
to network depending upon the purpose and the capacity of the network. For
example, the buffer size for the packet-switched traffic is finite because of practical
restrictions. If the number of packets in the queue is larger than the buffer size
most of the time, then this implies that most of the packet arrivals will be lost.
Therefore, in this case the performance objective must be to keep the number of
packets in the queue less than a certain threshold at all traffic levels. This problem
arises mostly at high traffic intensities. Hence, the service discipline selected to
achieve the particular objective described above may not be good at low packet
traffic intensities. This shows that the selection of service discipline is strongly
dependent on the traffic level. The priorities and sharing protocols are then set

according to the prespecified performance objectives.
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We note that the arrival processes are assumed to be Poisson (memoryless),
and the service time distributions are assumed to be exponential (memoryless) in
most traffic theory problems. In fact, numerous but not all real life situation can

be adequately modeled by these assumptions [9]-[16].

The necessity of developing a new approach which can be applied to a large
class of queueing networks, including integrated networks, is the motivation of this
thesis. Our primary interest is to understand the steady-state behavior of integrated
networks, which requires the determination of the steady-state probabilities. In
Chapter 2, we introduce a new approach for finding closed-form expressions for the
steady-state probabilities. This new approach, which we call key-state approach,
eliminates the computational problems that arise in previous work. Assuming that
the arrival process is Poisson and the service time distribution is exponential, we
investigate the performance results for several service disciplines by employing the

key-state technique.
1.3 Overview and organization.

Most of the models proposed for integrated networks shared by multiple classes
of users lead to Markovian queueing networks [18]-[27]. The determination of the
equilibrium probabilities of these Markovian queueing networks requires the solution

of a set of linear equations known as global balance equations. In the first section

of the Chapter 2, mathematical tools and definitions are introduced which yield the
derivation of the global balance equations. The algebraic techniques that have been
studied previously and their computational problems are discussed in Section 2.2.
Because of these computational problems, in most cases the behavior of the system
cannot be expressed transparently by using the previous techniques. We therefore
introduce a new approach in Section 2.3 that makes it possible to find closed-form

expressions for the equilibrium probabilities.
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In Chapter 3, we apply the key-state approach to one of the most prevalent type
of integrated network, voice-data integration networks. The integration of voice
and data is a very important step in the evolution of the Integrated Services Digital
Network concept. Two service disciplines, First-Come, First-Served and Preemptive
Movable-Boundary, are investigated. Closed-form expressions are obtained for the
voice and data performance measures. The performance results of these service
disciplines are compared to each other and to the results for dedicated networks.
At the end of Chapter 3, the solution found for the equilibrium probabilities is

extended to a more general case.

Chapter 4 introduces another type of integrated network, the Trunked Mobile

Radio Network whose transmission facilities are shared by two different types of

traffic as in the case of a voice-data integration network. However, here both types
of traffic are voice traffic. A sharing algorithm is proposed for the Trunk Mobile
Radio originally introduced by Motorola [28]. The performance of the original
traffic control strategy is compared with the performance of other control strategies

obtained by key-state approach in Chapter 4.

The last two chapters are devoted to possible extentions of the key-state ap-
proach to other traffic problems and to conclusions. The results of the key-state
approach are generalized to integrated bulk arrival and departure systems. At each
Poisson arrival instant, these systems accept a bulk of arrivals, which consist of
perhaps more than one customer, chosen from one or both of two classes of users.
Future communication networks are expected to handle different services, hence
they may be modeled as bulk arrivals and departure systems, for example, informa-
tion broadcast systems. Finally, the thesis discusses some open reserach problems

and concludes with a brief summary.
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CHAPTER 2
KEY-STATE APPROACH

2.1 Mathemetical tools of performance analysis

The assumptions made on the arrival and the departure processes make the in-
tegrated network models into Markovian queueing networks, where the state tran-
sitions probabilities satisfy the Markovian property. That is, the probability of the
next state value depends only upon the current state value; the distribution of the
transition time between states is memoryless. This property is satisfied only if the
inter-arrival and inter-departure time (for a busy server) distribution are exponen-

tial.

The consideration of Markovian systems with discrete state space will be central
to the performance analysis of integrated queueing networks. Therefore, this section

is devoted to the explanation of how we deal with Markovian systems.

We consider a Markovian system with discrete state space where X (t) denotes
the state of the system at time ¢. X(t) will take on values from a discrete set, S.
From the definition of Markovian system, X (¢) depends upon past history through
its current value only. We denote the probability that the system is at state X} at
time t as:

Pe(t) = PriX(t) = X3} (2.1)

The difference between the rate at which the system enters X, and the rate at which
the system leaves X must be equal to the rate of change of flow into X}, that is,
zero in the steady-state. This notion provides us with a set of differential-difference
equations for.state probabilities. If we concentrate on state X;, the probability flow

rate into X is:

N
Flow rate into X, = Z e P (t).
i=0
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Here Aj; is the transition rate {(or arrival rate) from state 7 to state k, and N + 1
is the number of states from which there are transitions to X,. The rate at which

the system leaves state X} is given by:

M
Flow rate out of X = Pyp(t) > pjx-
=1

Here pj is the transition (or departure rate) from state k to state 5, and M is the
number of states to which there are transitions from Xj. (Note that for an infinite-
state Markovian systems, M, N are not necessarily finite numbers.) Clearly, the
difference between these two flows is the effective probability flow rate into X}, that

is,

dlzct(t) — j—v:())\]mp,,(t) - Pk(t) iuﬂc. (22)

If the system is ergodic then the limiting probabilites exist and therefore

dPy(t)
ti}’glo dt

= 0. (2.3)

Assume that the system is stable (steady-state probabilities exist) for a set of tran-
sition rates. Then the flow rate into any state must be equal to the flow rate out of

that state. Hence, for each state the following equation can be written:

N M
Y AP =P pr, (2.4)
i==0 7=0
where
P = tlirglo Pr(t). (2.5)

We are only interested in the steady-state behavior of the system, in other
words, we are interested in the determination of the equilibrium (steady-state)
probabilities. The equilibrium probabilities, Py, are determined from the equations

obtained in 2.4. The particular equation given in 2.4 is called the balance equation of




—9—
state Xi. The equilibrium probabilities, Py, must satisfy all the balance equations.
Therefore the P are determined by solving a set of linear equations known as

global balance equations. The number of these equations is equal to the number of

states in the sytem.

Note that for an infinite-state Markovian system there is an infinite number of

equations. These equations can be expressed in matrix form as:
QP=0 (2.6)

where @ is called the transition-rate matrix and P is called the steady-state

probability vector. The elements of Q are anologously given by:

Aijs if 1 # J;
ij = oo 2.7
& {Eﬁwm,ﬂzzj @7
and the column vector P is given by:
P=[P, P .. I (2.8)

An alternative way of displaying the information contained in the Q matrix is by
means of the state-transition rate diagram where the states are represented by ovals
and the transitions by arrows from state to state. Note that the state-transition rate
diagram contains exactly the same information as does the transition-rate matrix
Q. An example is shown in Fig. 2.1, for the case of a birth—death process where

there are only four states.

The primary interest in the problem of queueing networks is the determination
of the equilibrium probabilities. Once the equilibrium probabilities are obtained, the
performance results such as mean waiting time in the queue, the blocking probability

of arrivals, the required buffer size, etc., can be easily found by employing the basic
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definitions. In the next section, techniques for finding the equilibrium probabilities

are summarized, together with their computational limitations.

Fig. 2.1

A

@l @1@ L 1D

#2

APy = 1Py
(A + p1) P = APy + pa Py

(A2 + pa) P = APy + psPs

psPs = APy
—Xo B K1 0 0
Q= 0  —(A1+m) K2 0
0 A1 —(A2+u2)  ps
0 0 As —H3

a. State transition rate diagram of a finite-state birth-death process.
b. Corresponding local balance equations.
c. Corresponding state-transition rate matrix Q.

2.2 Prior approach and computational problems

The equilibrium probabilities could be obtained directly by solving equation 2.6,

but this classical technique is not useful for two reasons. Firstly, when the system

size is infinite, it is not computationally feasible to obtain the solution directly from
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equation 2.6. Second, for large systems the numerical solution doesn’t give insight

about the system behavior.

Algebraic techniques for finding the equilibrium probabilities have been well
studied in the literature [11], [14], [16]. In most of the cases it has been shown that
global balance equations are satisfied by a so-called product-form solution. The net-

works with product-form solution defined below are called product-form networks.

Multi-node queueing networks with memoryless arrivals and service times are ex-
amples of product-form networks. These networks have a multidimensional state

space and global balance equations. The state of such a network is defined as:
S =[ny, ng,..., npl (2.9)

where ny is the number of users in the k** node, and M is the number of nodes in

the network. The joint probability P(n) is:
P(n) = P(ny, na,..., nag). (2.10)

Surprisingly enough, although there may be interconnections and coupling between
the nodes, and even constraints on the total number of customers in service, Jack-
son first showed that these nodes behave in a sense independently. That is, the
probability P(n) is the product-form:
M
P(n) = [] P(ns). (2.11)
i=1

Here P;(n;) is the probability of having n; users in the system at node 1.

The results obtained by Jackson [29] have been generdlized, and more general
conditions for the existence of product form solution have been found [31]. Recently,

a geometric approach was developed to study the existence of product-form solutions



19—
[31]-[33]. This uses the geometric replication of certain building blocks in order to

obtain the state-space structure of product-form networks.

In spite of great efforts to generalize the product-form solution to obtain closed-
form expressions for equilibrium probabilities, there is still a large class of queueing
networks where product-form solutions do not exist. This is the type of network
where satisfaction of the partial balance equations does not imply the satisfaction
of the global balance equations. Most of the integrated network models are unfor-

tunately of this type.

One of the most frequently used techniques in the study of queueing systems
is the moment-generating function, (ﬁ equivalently the z-transform technique. The
moment-generating function of a one-dimensional discrete random variable n such
as system size is defined as the expectation of the indeterminate z to the n* power,

when the random variable n has probability distribution P,:
oo
G(2) = > P, 2™ (2.12)
n=0
For queueing networks where the balance equations are not readily solved by re-
cursive techniques, especially for infinite-state queueing networks, the moment gen-
erating function is a very powerful tool in obtaining the balance equations. The
performance parameters can be obtained readily from the derivatives of the moment
generating function. For example, the first derivative of G(z) at z = 1 is equal to

the expected value of n. Higher order statistics of n are obtained by evaluating the

higher order derivatives of G(z) at z = 1.

In most of the integrated network models involving communication circuits
shared by two classes of usérs, the state space structure can be divided into two
disjoint subsets. The reason for attempting this division is that the balance equa-

tions in each subset have the same form. That is, there is a difference equation



_13_
associated with the global balance equations of Subset 1 and there is another differ-
ence equaﬁon associated with Subset 2. This can be seen as follows. As far as the
state transition rates are concerned, the behavior of the system is different when
some of the communication channels are free from the behavior when all channels
are busy. That is, when there is a free channel, under most service disciplines, an
incoming arrival gets service immediately without any restriction. But when all
the channels are occupied, the arrivals are either blocked or queued. In the latter
case, the channel allocations are made according to some i)riority rules defined by
a control scheme. Naturally, the transition rates enforced by this control scheme
will be different from those obtained when the channels are free, in other words,
when there is no need for a sharing algorithm. Therefore, usually Subset 2 consists
of the states that form after a queue started building up, and Subset 1 covers the

remaining states.

Note that the number of states in Subset 2 is infinite, since the buffer size is as-
sumed to be infinite. The number of states in Subset 1 is finite. Previous techniques
used generating functions to solve for the distribution of states in Subset 2. On the
other hand, the equilibrium probabilities in Subset 1 were found by directly solving
the linear equations obtained from the balance equatioﬁs of each state. This method
of solving the queueing network problem is not always satisfactory, because in most
of the cases the number of states in Subset 1 is a quadratic function of the number
of servers. Hence, the computational complexity increases quadratically. Further-
more, it is a very difficult task to obtain closed-form expressions for the equilibrium
probabilities from the moment generating function. Therefore, the behavior of the

system can almost never be expressed transparently using this technique.

2.3 A new approach: Key-State
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The motivation for developing a new approach in the analysis of queueing net-
works is to avoid the computational problems mentioned in the previous section
and to find closed-form expressions for the equilibrium probabilities. Problems
arose from the fact that there is no single recursion on the state probabilities that
covers all the state space. As a natural consequence of this observation, the state
space was divided into disjoint subsets where there is a different recursion for each
subset. The infinite-state subsets are solved by employing moment-generating func-
tions, treating the ﬁnite—stafce subsets as the boundary of the system. As discussed
in the previous section, the solution becomes tedious as the size of the subset which

contains the boundary states increases.

In this study, we claim that one particular smaller subset of state space captures
the essence of whole system. In other words, all other states can be rather easily
found by employing the knowledge of the equilibrium probabilities in this subset
only. This is a major computational simplification The number of states in this
subset turns out to be much smaller than the number of states in the subsets
obtained by dividing the state space according to the type of the balance equations.
Hence, the number of equations to be solved decreases substantially in many cases.

We call the states in this special subset key-states.

In order to make the idea clear, consider a network shared by two classes of
users. We denote by P(¢,7) the probability of having 7 first-class and 7 second-
class users in the network. Assume {P(0,0), P(0,1),..., P(0,K)} are the key
states. Starting from the balance equations of the key states, it is found possible
to relate the equilibrium probabilities of the key states and the neighboring states.
Once the neighboring states are related to the key states, the states which do not

have direct transitions to the key states are also expressed in terms of the key
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states by means of the balance equations of the neighboring states. (This process is
equivalent to making row operations on the state transition matrix Q). Eventually,
we find that the equilibrium probability P(z, J) can be expressed in terms of key-

state probabilities:
K

P(i,7) = > col,7)P(0,£). (2.13)

£=0

Here ¢,(,7) is called the key-state coefficient.

Instead of using the difference equations obtained from the balance equations
for the equilibrium probabilities, we find equations relating the key-state coefficients
themselves. In this way, we obtain a set of equations with known initial conditions.
The computational problems of the previous techniques arose from the fact that the
equations obtained for the equilibrium probabilities are valid only in a particular
region and the equilibrium probabilities of the states (boundary states) outside this
region are unknown. For large networks, these boundary states are very difficult
to find. On the other hand, the initial values of key-state coefficients are obtained

easily by employing (2.13) and the balance equations. As an example:
. 1, ifj=¢

= [ 2.14
c0.9) = {o) 7 (2.14)
The key-state coefficients can be considered as the weights of the key states. As
long as the limiting probabilities exist, that is, the corresponding Markovian model
is ergodic, the weighted sum of key states span the whole probability space. That
is, there exists at least one solution for the key-state coefficients which represents
the equilibrium probabilities of the state space. This can be shown by the following
example. Consider the representation given in equation (2.13). The equilibrium

probability P(7,7) can be expressed as:

P(i,j) = P C(, 7). (2.15)
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Here ﬁK is the key-state probability vector
Px = [P(0,0), P(0,1),...,P(0, k)" (2.16)
and C (¢,7) is the key-state coefficients vector

C(4,5) = [co(6,5), e1(t,7)s-- -, ex (i, 1)]"- (2.17)

Provided that the key-state probabilities are greater than 0, the possible solutions

for C (7,7) are readily found as:

C(i,5) = {ﬁ((é”é)), 0,0,..., 0" (2.18)
C(i,7) = o, Ilj((é]l)) 0,..., 0 (2.19)
C(i,7) =| P(i,j) - PG.J) 0,..., 0], etc... (2.20)

2P(0,0)” 2P(0,1)°
Therefore, it is always possible to find solutions for C (7,7) in terms of the equilib-
rium probabilities. Note that the solution is not unique. There éan be infinitely
many solutions for the key-state coefficients and the existence of equilibrium proba-
bilities is sufficient for the existence of the solution. But since our primary interest
is in finding the equilibrium probabilities, the solutions given in (2.18), (2.19) and

(2.20) are not useful.

The existence of the key-state coefficients is independent of the selection of the
key states. The selection of key states, however, is very important in obtaining
useful recursions on the key-state coefficients. For arbitrary selected key states, it

may computationally be very hard to find key-state coefficients. The key states
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must be selected in such a way that the recursions found for the equilibrium prob-
abilities P(7,7) can be easily reflected (transformed) to recursions on the key-state
coefficients ¢,(7, §). Furthermore, this selection is done so as to make it possible to
obtain the key-state coefficients of the boundary states recursively, starting from

the initial values, in a way which avoids solving a large set of linear equations.

The idea given above will be clarified in Chapter 3, where the key-state approach

is applied to voice-data integrated network models.
2.4 Comparison with previous work:

The key-state approach in the analysis of queueing network problems does not
require the solution of a set of linear equation to obtain the steady-state probabilities
of boundary states. The number of unknowns to be solved in the key-state approach
is just equal to the number of key states, at least in most queueing network models.
Compared with previous work, this approach cuts the algebraic work to linear in

the size of problem from quadratic.

In the previous work, the recursions found for the equilibrium probabilities were
attempted to be solved by using the moment-generating function technique. As-
suming that the system is stable, the initial conditions were obtained by canceling
the poles of the generating function outside the unit circle. The boundary states
were solved for by using their balance equations. It is computationaly and phys-
ically better to have closed-form expressions for the probabilities themselves than
to have merely closed-form expressions for the moment generating function of the

equilibrium probabilities.

In this thesis, the recursions found for the key-state coefficients are solved for

directly in the time domain. Using the fact that the equilibrium probabilities must



—18-
approach zero at infinity in a stable queueing system, the key-state probabilities
are solved for explicitly. As a result, the behavior of the system can be expressed
transparently from the closed-form expressions obtained for the equilibrium proba-
bilities.

The next section will clarify the usefulness of key states approach.
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CHAPTER 3

VOICE-DATA INTEGRATION NETWORKS
3.1. A model for Integration Voice-Data:

In this chapter, we will focus on the problem of multiplexing two types of traffic:
voice and data. Voice traffic requires circust switched service, whereas data traffic
consists of packet-switched traffic. The voice traffic is blocked if transmission facil-
ities are not avaliable. On the other hand, the packet-switched traffic is allowed
to queue. The integration technique investigated here is a TDM (Time-Division
Multiplex) scheme in which the TDM frame is partitioned into equal-length time
slots. A time slot is assigned for every incoming request if there is a slot available.
In general, the’ number of time slots assigned for different users varies according to
their bandwith. Here, one time slot is assumed to be enough for each type of user.
Once the assignment is made, users keep their assignments from frame to frame as
long as required. If there are N time slots in a frame, this means that there are
N channels available for transmission. We assume that the frame length is small
compared with the voice and data holding times in the system and therefore ignore
the discrete nature of the frame structure. This allows us to model the system in
continous time. In the literature it is shown that a continous-time model is a good

approximation in the analysis of voice and data integration systems [34]-[35].

Fig. 3.1 represents this integrated multiplexer. Here, one circuit-switched type
of input is multipled with packets from a queue onto a TDM link. A more general
pictorial representation which multiplexes a number of circuit-switched inputs with

packet-switched traffic is given in [3, Fig. 12-16].

3.2. Integration with First-Come First-Served Discipline:
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Using the structure given in Fig. 3.1, we will initially investigate the First-Come,
First-Served (FCFS) combining strategy, where the slot assignments are made ac-

cording to _first-come, first-served priority. In the next section, FCFS scheme is

analyzed by using the key states approach. Closed-form expressions are found for

the equilibrium probabilities and the performance measures.
3. 2. 1. Analysis:

Assuming the arrival processes are Poisson (memoryless) and the service time
distributions are exponential (memoryless), let the voice arrival rate be A, and the
data arrival rate be A;. The departure rates are pu; and u; for voice and data
respectively. If all the servers are busy then the voice arrivals are blocked, but data

arrivals are queued.

We define the states as:
Sgw=[d,v]; 0<d, 0<v<N (3.1)

where d is the number of data packets and v is the number of voice calls in the

system. The state-transition rate diagram of this system is given in Fig. 3.2.

The key states in this case are found to be {Sgy,7 = 0,..., N — 1}. These are
the first row states except Sqy. Starting from Sy, each key state is connected
to other key states and one of the second row states by means of its equilibrium
equation. Hence, the second row states can be expressed in terms of only the key
state probabilities. Carrying on with the same method, the third row states are
connected to éecond row states. Iteratively, the £* row states are connected to
(£ — 1) and (€ — 2)'" row states, and so forth. As a result, for the steady-state

probability P,(d), we obtain the following representation:

P,(d) = Co(d)" K (3.2)
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where P,(d) is the probability of having d data packets and v voice calls in the
system and K is the key state probability vector:

K = [Py(0) Py(0)...Py_,(0)]". (3.3)

The vector 6U(d) is called the coeflicient vector and it is given as

Co(d) = [euo(d) cor(d) .. con-1(d)]” (3.4)
where ¢, ¢(d) is the coefficient of £/* key-state probability in the expression for P, (d).
That is

N-1
P,(d) = > ¢y e(d) Po(0). (3.5)
=0
If we expand each state in a column of the state-transition rate diagram, we
obtain a difference equation for the steady-state probabilities of the states located in
this column. Here, expanding a state means connecting this state to its neighboring
states by its equilibrium equation. As it is seen from the transition-rate diagram,

the only flow to the m** column states are from (m + 1)** column states after the

initial transition states, in other words, after the (N — m)™ row.

But the last column states Py(d) do not require the knowledge of any column.
By means of the balance equations obtained for the last column, we can get the

following difference equation for these Py/(d)’s:

Py(d—1), d>0, (3.6)
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which yields:

d
)\2 )\1
Prn(d) = ‘ d>0.
w(d) A1+NM2(/\1+NM2) ’ =0

Also, by employing (3.2), we obtain the coefficient vector of Py (d) as:

d
- A2 AL
Cyld) = en, d>0.
w(d) Ay + Ny ()\1+NM2) N o

(3.7)

(3.8)

Here, ey is an N x 1 vector with all its entries zero except the N** entry which is

equal to 1. From (3.8) and (3.4), the entries of the coefficient vector, ¢y ;(d)

be solved for as:

d
Az A ) LT .
A1+Npa (A1+NM2 if o = N’

CN,g(d) =
0 if ¢ £ N.

Equation (3.9) can also be expressed as

Bozg® if 1 = N;
CN,g(d) =
0 otherwise,
where
Bo Ae - M

= By = o,
A+ Ny 0 AL+ Ny

, can

(3.9)

(3.10)

(3.11)
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The balance equations of the (N — m)™ column states S = [N — m, d — 1] for

d > m + 2 yield the following difference equation:

¢ Pyom(d) + amPym(d = 1) + bpuPryom(d —2) = dpPy pmis(d—1), d>m+2
(3.12)

where

A N - A N-m+1
g = Fm TN Z oy A (N me D (3.13)
m mpy My

It is not possible to obtain the steady-state probabilities directly from equation
(3.12) because the difference equation is valid only for d > m -+ 2, and the initial

conditions are unknown.

Fischer and Bhat [26] have carried out the analysis of this same problem using
moment generating functions. By canceling the unstable roots inside the unit circle,
they obtain an expression for the z-transform of the equilibrium probabilities in
terms of the unknown steady-state probabilities for d < m. They propose to find
these unknown probabilities by solving the corresponding local balance equations.
But the number of unknowns to be solved for is N(N + 1)/2, which implies that
for large systems the solution is unfeasible. In order to avoid the computational
problems, they take ps/u; =1 as an approximation and obtain some closed-form
expressions for mean packet delay and the voice blocking probability. Here, by
using the key-state approach, we will find that it is possible to obtain a closed-form
solution for the equilibrium prdbabilities without making this approximation and
by solving only N linear equations. The exact results obtained here are compared

with Bhat and Fisher’s approximate result in the last section.
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Equation (3.12) can be employed to get difference equations for the entries of
the coefficient vector, the cn-m(d)’s. The initial conditions of these new difference
equations can be obtained from the balance equations of Py_pm(d)sford <m +2
by decomposing the Py _(d)’s into {P5(0), P1(0),... , Pnv_1(0)}. Substituting (3.5)
into (3.12), we obtain:

[CN—m,O(d) -+ ach_m,o (d - 1) + meN_m’O(d - 2)]P0(0)+

leN—m1(d) + @men—ma(d — 1) + brnCN-m1(d —2)] P, (0)+

[en—mN-1(d) + amen_mn-1(d — 1) + bpenemn-1(d — 2)|Pn_1(0) =
(3.14)
dmeN—m+10(d — 1) Po(0)+

dmCN-ms1,1(d — 1) P1(0)+

dmeN-mi1,N-1(d — 1) Py_1(0)

ford>m+2, 1<m<N.
Equation (3.14) is satisfied if:

CN—m,E(d) -+ a'ch—m,E(d - 1) + bch—m,E(d - 2) = dch—m-’rl,Z(d - 1)7 (315)

d>m+2, £={0,1,...,N —1}.

This set of difference equations can be solved iteratively for ¢ = 0,1,....N — 1

starting from m = 1. The first equation to be solved is:
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CN_1,g(d) -+ CLN_qlcN_l’g(d* 1) + bN~lcN-1,Z(d" 2) = dN_lcN,g(d“ 1), d 2 3 (316)

where ¢y ¢(d) is given in (3.10). The solution has the following form:

2m—2
EN—me(d) = AN—m,zm,ezgm+AN—m,zm—1,eng_1—f- Z AN—m,z’,ZZ:'iy d>m+2 (3.17)
i=0

Here the first two terms are the complete solution of the homogenous equation, and
the rest form the particular solution of the non-homogenous equation. The two

roots of the characteristic equation of the difference equation, the z;’s, are given by:

—a,-+wa?~—4bi. —a; — a?*‘ﬂ)i

5 N 5 , 1<i<m (3.18)

e

which we will need later.

We can use (3.17) to rewrite (3.15) as:

2m—2
cN—me(d) + amen—me(d — 1) + bmen—me(d — 2) = d, > An-mpriezt ! (3.19)

=0

for d > m + 2. By substituting the particular solution found (3.17) into (3.19), we

obtain a recursive relation for the coefficients of the particular solution found in

(3.17):
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AN-mi1ip dm 27t
1+ an, 27t +0b, zi_?’

[

AN_mie =

i=0,1,...,2m — 2.

(3.20)

The remaining coefficients, AN—m2me and AN -m,2m-1,, are found by making use of

the initial conditions at d = m and d = m + 1, and the solution is thus completed:

FNmt— (22m-1+ @) Enemy

(Z2m - Z2m—1) Z;’::z ,

AN—'m,,Zm,Z =

FN—m,Z - (Z2m + a/m)EN—m,e

(Z2m—1 — sz) ZSZ,T_‘?l ’

AN_mam—14 =

where
) 2m—2

Eneme= Y AN -mio(Gm 2z + bm) 2" — IN_m.s,

=0

2m—2
— m+1
FNome=bm D AN mieZ" ™~ TN e

=0
IN—m,E - amCN—m,Z(m + ]-) + meN—m,E(m)a

IN-me = by —me(m + 1),

where m = 1,2, ..., N.

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

From (3.5) and (3.17) the steady-state probabilities are now expressed as follows:
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N—-12m

Pyom(d) = > An-mie 28 Po(0), d>m+2. (3.27)

£=0 =0

In Appendix A, the roots z; which are given in (3.18) are found to be real and

positive and it is proved that they satisfy the following relations:

Zoiy > 1, 29 < 1, i:0,1,2,...N—1, (328)
A
ZaN = Nzln’ Zon_1 = 1. (3.29)

At the end of this section, we show that the system is ergodic when A\; < Nyq. If

the system is ergodic, (3.27) represents a probability distribution. This means that:

2; R}’D;—E’E)()d) < oo. (3.30)

In a stable ergodic system, the empty state probability can be found by normalizing

the obtained solution. The normalization condition is:

i i Py_m(d) =1. (3.31)

m=0d=0

But from (3.27) we observe that the terms invdlving z¢ diverge as d goes to infinity
for odd . This seems to contradict the stability requirement given above, because

(3.27) must be convergent.
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However, what it really means is that for a stable system, the coefficients of the

exponents with magnitude greater than 1 must be zero. In other words:

N-1
D AN-mpi-1e P(0) =0, 1<m<N, 1<j<m. (3.32)
£=0

That is, in a stable system the key state probabilities must satisfy the above rela-
tions. Most of the equations in (3.32) are redundant and they are all included in

the following set of N equations:

N~1
> AN-mam-1¢ Py(0) =0, 1<m<N. (3.33)
£=0
In other words;
N-1 N-1
> ANomam-1e Po(0) = 0= 3" An_jsmo1e P(0) =0, (3.34)
£=0 £=0

m<j<N, 1<m<N.

Equation (3.34) is proved in Appendix B.

We can now conclude that, in a stable voice and data integration system, the

key state probabilities must satisfy the following equations:

AN-110 An-111--- AN-1in-1 Py(0) 0
AN-230 An-231--- AN-23N-1 P;(0) 0

Aoan-10 Aognv-11--- Aoan-1N-1 Pyn_1(0) 0
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In this equation, there are N equations for N key state probabilities. If all the rows
were linearly independent, then the only solution would be the trivial solution, and
the stability condition would fail. But we know that there exists a set of system
parameters (arrival rates, departure rates) which makes this system stable, because
in the limiting case when ), = 0, this system is merely an M/M/N queueing
system. Therefore, the rank of the above matrix must be less than N. So as to
have a nontrivial solution for the key state probabilities; at least one of the above

equations can be obtained from the others.

It will now be shown that the last equation is in fact redundant. By employing
the first N —1 equations in (3.35), it is possible to express all key-state probabilities
in terms of empty-state probability P,(0), i. e. we can find a set of positive numbers,

pe, such that:

Py(0) = pePy(0), O0<L<N-—1. (3.36)

Therefore, the equations given in (3.33) can be rewritten as:

N-1
Po(0) > pr An-mgm-1. = 0. (3.37)

£=0

The solution for the first column steady-state probabilities is given by (3.27) as:

N-1 IN—2
Py(d) = Z <A0,2N,£ 23y + Aoan- 10 Zin 1 + Z Ao Z,d) P,(0). (3.38)

£=0 =0
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Substituting the values of zon, zan_1 into (3.38) and employing equation (3.36) and

(3.37), we obtain the following expression for Py(0):

N—-1 A d N-1
Py(d) = Po(0) Z Pe (Ao,zN,e (“N—,ul) + Aoan—1.¢ + Z Ao 2ie Z‘zii)- (3.39)
= =0

Here the terms with 2§, ; have disappeared. Except for the first two terms, the
remaining terms contain exponents of terms whose magnitudes are less than 1, so
they indeed approch zero as d goes to infinity. This is also true for the second term
unless Ay /Ny; > 1. So, assuming A1/Np;y < 1, the following limiting expressién is
obtained for Py(d):

N-1
dlLI{olo Po(d) = Po(O) Z AO,2N—1,Z Pe. (340)
£=0

The limit of Py(d) found in (3.40) must be zero, otherwise the difference equation
given in (3.12) for Py_n(d) is not satisfied by (3.27) for m = N. This implies
that either Py(0) or the summation term is zero. P5(0) can not be zero, because
a Markovian system is ergodic if and only if Py(0) > 0 ([17], Chap. VIII, Sec. 7).
Therefore

N—-1 N-1
> P0) AN-mam1e=0 1<m<N-1= > Pi(0) Apan-10=0. (3.41)
=0 =0



-39
Hence, it is concluded that the first N — 1 equations in (3.35) indeed imply the last

one and (3.35) does have a nontrivial solution.

As a summary: the steady-state probabilities of the ergodic voice and data
integration network have been found in terms of the key state probabilities in (3.27).
The key state probabilities are solved for in terms of Py(0) in (3.35). The final

expression for Py_n,(d) as a function of Py(0) is given as:

N—

Pr-m(d) = Po(0)

£=0 i

[uuy

pe AN-mpaie 25, d>m+2, (3.42)
=0
where z3; is given in (3.18). The solution given in (3.42) will be completed by ex-

pressing Fy(0) explicitly by employing the normalization condition that probabilities

add to 1. Defining K, as:

: m+1 N N-1
KO = Z CN—m,Z(d) Pe (3.43)
d=0 m=0 £=0
we have
oo N
DD Pun(d)=1=>
d=0m=0

Py(0) (KO +- i Nz—:l f: zm: Pt AN-mais zg].) = 1. (3.44)

d=m+2 £=0 m=0;=0

Therefore, the empty state probability Py(0) is:

oo N-1

Fo(0) = (KO + >0 > 4% > pe AN-maje Z‘fj)_l- (3.45)

d=m+2 £=0 m=03;=0
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Fy(0) = (Ko + Ji{:l Niipe AN—mzie ( il ))_1 (3.46)

=0 m=045=0 1 - 22.’[

As is seen from (3.43), K, depends on the initial conditions cN-me(d) for d =
0,...,m+ 1. These initial conditions are obtained by decomposing the Py_,,(d)’s in

terms of key state probabilities starting from d = 0 to d = m + 1. For example:

1 f2=N-—-m
en-m,e(0) = {o HeAN—m (347)
A1+ Ag M2
cooll) = ——, co1ll) =—,... 3.48
0,0(1) p 01(1) o (3.48)

Assuming that the system is ergodic, the steady-state probabilities were found
in (3.42). The solution given in (3.42) represents a probability distribution if and
only if z;y < 1. Therefore, the necessary and sufficient condition for the stability

of this system is:

A < Ny (3.49)

It is no coincidence that (3.49) is also necessary and sufficient for the stability of the
corresponding M/M/N queueing system (no voice traffic), because incoming voice
requests are blocked unless the data queue is empty. Therefore, at high data traffic
intensities, a voice-data integration network behaves like a data-only system, which

in turn behaves like an M/M/N queueing system.
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3.2 2. Performance Results:
In the expression found for the equilibrium probabilities in (3.42), the coefficient
of 2§, is given by:

N
By _mz2i = Po(0) Y po An—maie. (3.50)
£=0

Substituting (3.50) into (3.42), the equilibrium probabilities are obtained as follows:

Pym(d) =Y By_pma 2%, d>m+2. (3.51)

i=0
The closed-form expressions for the mean packet delay and the standard deviation of

queue size can be obtained by employing (3.51), and we will now find the expressions.
3.2.2a. Mean Delay:

The mean packet delay, T, is obtained from the mean number, E[L], of packets

in the system by employing Little’s formula ([12], Chap. 4, pp. 140-148):
(3.52)

The mean packet size in the system is given by:

N m+1 o]

BILI= 3 S0 Puonld) = 30 5 P nld) + 30 S d Panld). (359)

m=0d=0 m=0 d=0 m=0 d=m+2

We define the first summation term as L;:

(3.54)
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Here L; depends on the initial equilibrium probabilities and is obtained by using
the coefficients ¢y_p, o(d) for d < m + 1. The second term in (3.54) can be written

as:

ad o 2 m 4+ 2 — zy(m + 1
> dPy_m(d) =) By_pa2 [ i )

d=m+2 i=0 (1 — 23:)*

(3.55)

Hence the normalized delay, u; T, the time delay relative to the transmission time,

is given by:

Ll PO(O) N om z;’““[m—i—Z—zz,(m—i— 1)}
T By i 2 3.56
Ha a; a; 7n2::0’i§0 o (1 — 294)? ( )

where a; = A;/p, is the data traffic. The normalized queueing time W is defined

as the time spend on the queue relative to the transmission time and clearly is

Subtracting 1 accounts for the transmission time.

Figs. 3.3 and 3.4 show the normalized queueing time as a function of data and
voice traffic respectively for different values of o = 4 /12 when the voice traffic is
fixed at 5 Erlangs. As expected, the mean packet queueing time increases as the
data traffic, a4, increases. Since the number of servers here is 10, the data traflic
must be iess than 10. Otherwise, the data queue blows up, as can be observed
from Fig. 3.4. The value of W is always greater for smaller voice departure rates

(larger « values). This is because if the holding time of voice calls is large, then
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they occupy the servers for a long time and arriving data packets cannot get service

immediately. This, of course, causes an increase in the queue length.

A closed-form expression is obtained for the mean queue length in [26], assuming
that @ = 1. The expression in [26] is therefore exact for u, = H2 and is a special
case of equation (3.56). We will investigate the dependency of mean delay to « and
to check the accuracy of the approximate expression found in [26] for @ > 1. For
this purpose, we plot normalized mean delay for three different values of & in Figs.
3.3 and 3.4. The first and second plots are obtained from (3.56) by taking a = 50
and o = 10. The third plot correponds to o = 1, and it can either be obtained from

the expression given in [26] or from (3.56) by taking o = 1.

As observed in Figs. 3.3 and 3.4, at large traffic intensities the mean delay is
strongly dependent on «, assuming « = 1 does not give good results. At low traffic
intensities, however, the mean queue length has weaker dependency on o. We see

that here the approximation gives more accurate results, as expected.

When « is small, that is, the voice departure rate is large, the integrated system
behaves like a data-only system. In this case, voice calls stay in the system for
a short time and therefore it is very unlikely to find the transmission capacity
occupied by voice calls; the system is open for data packets most of the time. As a
result, the system accomodates intensive voice traffic without degrading data traffic
performance. This can be observed in Fig. 3.4, where increasing voice traffic does
not affect normalized mean packet delay significantly. This means that for small
values of «, the interconnected system has the same time-delay performance as a
data-only system. From Fig. 3.4, when there is no voice traffic and the data traffic
is 5 Frlangs, the normalized delay is 1 or the normalized queueing time is 0, because

it is not likely that an arriving packet waits before service, and so the time spent in
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the system is equal to the service time. When the voice traffic is 9 Erlangs, oo = 1,
the normalized packet waiting time is 0.12. That is, in order to accomodate 9
Erlangs of voice traffic together with data traffic, the priced paid is just to wait
in the queue 12 percent of the mean packet service time. Therefore, compared
to the analogous data-only system, the integrated system is superior since it also
accommodates a second type of traffic without degrading the performance of the

first type of traffic substantially.
3.2.2b. Deviation of packet size:

The mean value analysis gives us no information about the fluctuations of data
and voice about their mean values. In practice, there is a very high correlation
between voice messages from frame to frame, because voice messages keep their slot
assignments from frame to frame as long as required. Therefore, the mean values
obtained here for the queue length do not give too much insight about the system
behavior. Voice calls typically last 3 minutes on the average, but data messages
are much shorter (in the order of milliseconds). In case voice calls occupy all the
transmission capacity, the system is closed for data traffic. Even if this doesn’t
happen frequently and lasts only a few seconds when it does occur, thousandé of
data packets may arrive to the system, and queue peaks will occur. The second
order statistics of queue length, i.e., the deviations of queue length around its mean,

give a better idea about system performance.

The second moment of packet size in the system is found as:

E(L?] = f; i d* Py_m(d) (3.57)
= gj mil d* Py_p(d) + g: i d* Py_m(d) (3.58)

m=0 d=0 m=0d=m-+2
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The first term is defined as K, and it is found by employing the key state coefficients

of initial probabilities as in (3.54):

N m+t1l
Ki= ) > d Pyv_n(d)
m=0 d=0
N m+1N-1 (3'59)

=P(0) >_ > > 4 en-me(d)pe.

m=0 d=0 £=0

The second term can be rewritten by employing the closed-form expression obtained

for the equilibrium probabilities:

N foe) N m Zm+2 22~+Z,'+7‘
>0 @ Pvon(d) =D  Byoma 2 (923, - ). (3.60)
m=0d=m+2 m=0 {=0 (1 — 22 )

where ¢ = m(m +2) and r = (m + 2)® + 1. The standard deviation of packet size
in the system can be found from the mean packet size and the second moment of L

as follows:

oL =+ E[L*] - E*[L}; (3.61)

it does not further simplify. For plotting, we define the normalized standard devi-

ation as:

gL,

sp = (3.62)

S|
LS

Fig. 3.5 and Fig. 3.6 show the normalized standard deviation of packet size in the
system as a function of data and voice traffic respectively. The plots are obtained
by employing equation (3.62) for different values of . For high traffic intensities

and for high values of «, sz is much larger than 1. This means that the standard



deviation of packet size is much larger than its mean. The result is not surprising,
because, as explained previously, when « is large it is likely for the transmission
capacity to be occupied by voice calls, and this causes the formation of queue peaks.
As soon as voice calls leave the system, data packets utilize the whole transmission
capacity to empty the buffers. Therefore, large variations will occur in the number

of packets in the system.
3.2.2c. Blocking probability of voice calls:

The voice arrivals are blocked when all the time slots are occupied. In other
words, they are blocked if the total number of data packet and voice calls in the
system is greater than N — 1. Therefore, the voice blocking probability can be

expressed as:
Pp=1-3 5 P(d) (3.63)

N N—i-1 N

=1-P(0) > > D cia(d)pe (3.64)

=0 d=0 ¢=1

Equation (3.64) gives the “exact” voice blocking probability, where the coefficients
¢;o(d) are obtained as in (3.47) and (3.48) and p,’s are obtained from (3.35) and
(3.36). Bhat and Fisher indicated in [26] that the blocking probability of voice
calls does not have a strong dependency on «, and so they proposed to use the
closed-form expression that they found by assuming « = 1. The exact result given
in (3.64) and the approximation given in [26] are compared in Figs. 3.7 and 3.8.

The expression found in [26] is exact for only « = 1.

Equation (3.64) is plotted as a function of data trafic in Fig. 3.7 and as a

function of voice traffic in Fig. 3.8 for o = uy/ps greater than 1. Our aim is to
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check the dependency of blocking probability on « and to understand if we can use
the closed-form approximation found in [26] when o« > 1. Figs. 3.7 depicts that
at low data traffic intensities (ag < 2) and at high data traffic intensities (ag > 8),

Bhat and Fisher’s approximation does indeed give good results.

Figs. 3.7 and 3.8 depict the voice-blocking probability as a function of data and
voice traffic respectively for o = 1,30 and 50. At high data traffic intensities, the
voice blocking probability is close to 1, which means that the system is closed to

the voice traffic most of the time.
3.2.2d. Effect of voice holding time on queue peaks:

From the designer’s point of view, the fraction of time the packet size exceeds a
finite threshold, say T, is important in designing an integrated system. The number
of buffers in the system must be large enough to accomodate almost all data traffic.
Therefore, the designer would like to know something about the maximum queue

size. The probability of packet queue size being greater than a finite threshold, T,

is given by:
N 00
Pr(d>T)= > > Pyx_n(d) (3.65)
m=0d=T+1

N m T+1

D D) I Ny (3.66)

m—0i1 L — 22

Here, we assume that 7' > N +1, because the closed-form expression found in (3.42)

is valid here only for T' > N + 1.

By employing equation (3.66), we obtain Figs. 3.9 and 3.10 for Pr(d > T) as a
function of T' (Fig. 3.9) and as a function of data traffic (Fig. 3.10). In these plots,
« = w1 /ue is taken 30, the voice traffic, a,, is 5 Erlangs and the data traffic, a4, is

9 Erlangs. These figures depict that for larger values of «, the buffer sizes must be
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kept larger. As an example, in Fig. 3.9 at T = 51, we obtain Pr(d > T) = 0.01
for @ = 1. That is, one percent of the time, the packet size in the system is larger
than 51. Hence, in order not to lose packets more than one percent of the time,
the buffer size must be 51. On the other hand, for a = 30, the buffer size must be
122 to keep the same performance. At large traffic intensities and for large values

of alpha, the necessity of buffering the data increases.

Mathematically speaking, the roots zy; converge to 1, which makes Pr(k > T)
increase as can be observed in (3.66). The dependency of the roots on a can be

seen as follows:

—Qy; — 3 — 4b1
Za; — 2 (3.67)
where
A+ N —1 A
a; = — 1+WI%.—( Z)M; b; = —1 (3-68)
(3251 (F251
Substituting a = u;/us2, we have
N —1 ) " -
ai:—(1+bi+ _ ) ~ —(1 4 b;) ifa > (N —1) /1. (3.69)
o

It can easily be shown that zy; = 1 if a; = —(1 4 b;). Therefore, if & > (N — 1) >
(N —1¢)/7, then the roots can be assumed to be equal since they are all very close

to 1. This assumption leads to the following approximation valid if & > (N —1):

Prd>T) =20 ) > M (3.70)

~z2F @ (3.71)
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where ¢ is the sum of the coeflicients of all roots:

N
B —m,2¢ .
¢ = ZZ—N—z and z = zy; for 2=0,1,...,N. (3.72)

In particular, for T = 0,

Pr(d > 0) = ¢. (3.73)

At high traffic intensities, it is not likely to find the system empty, so ¢ can be
assumed to be equal to 1. Therefore, we obtain the following simple expression as

an approximation to Pr(d > T), which is valid when « is much larger than N — 1:
Pr(d >T) =~ 2" (3.74)

Here, z can be chosen as the arithmetic mean of all roots, since they are all very

close to each other:
1 N
P — (3.75)

295
(VN +1) 5
For example, by employing (3.74), in order not to lose packets more than one percent
of the time, the buffer size is determined as follows:

log,,0.01 2

Buffer size =T = - )
log,, 2 log,, 2

(3.76)

Pr(d > T) found by (3.74) is compared with the exact formula given in (3.66) in
Fig. 3.11 for @ = 50 and in Fig. 3.12 for o = 100. These figures show that the
approximation is in a good agreement with the actual results, especially for large

values of a.
3.2.3 Conclusions on FCFS Strategy:

Due to the high correlation of the number of voice calls in the system from

frame to frame, the data traffic performance is degraded substantially. In order
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to improve the time delay performance of the data traffic, intervals when all the
transmission capacity are occupied by voice calls only must be avoided. Another
control strategy, which overcomes the problems of the FCFS control strategy, was
proposed in [36], [37]. In this, the frame structure is divided into 2 parts. The first
part is allocated to data traffic only. The analysis and the improvement obtained

by this strategy, which is called the _movable-boundary strategy, will be discussed

in the next section.
3.3. Integration with Preemptive Movable-Boundary (PMB) Priority:

As indicated in the previous section, another way of controlling the service
distribution between voice and data traffic is to divide the frame of N time slots
into two sections. The first section containing Ny slots is allocated to the voice
traffic, while the remaining N — N;j time slots, which form the second section, are
reserved for data traffic only. Time slots in the first section may be used by data
packets, but they are preempted by arriving voice calls if all the servers in the
first section are busy. On the other hand, voice arrivals can not access the second
section, so they are blocked if there is no available time slot in the first section. We
model the system in continuous time, to allow state transition rate diagrams to be
used. As defined previously, A, is theb voice and A; the data arrival rate, while u, is
the voice and p; the data departure rate. The state transition rate diagram of this

model is given in Fig. 3.13.
3.3.1. Analysis:

The balance equations of first row states connect the first row states to the sec-
ond row states. Therefore, the second row equilibrium probabilities can be obtained
by employing only the first row states. The same argument is pursued to show that
the steady-state probabilities in any row can be expressed in terms of the first row

steady-state probabilities.
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Fig. 3.13 The state transition rate diagram of PMB scheme for N = 3, N, = 2.
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Hence, we can conclude that the key states of this Markovian state space are the

first row states S = [v,0],0 < v < N;.

As defined in the analysis of FCF'S strategy, Py,-m(d) denotes the probability
of having d data packets and Ny — m voice calls in the system. It can be written in

terms of key states as:

N,
Pri—m(d) = eny—me(d)P(0) d>0, 0<m< Ny, (3.77)
£=0

where ¢y, —m ¢(d) is the coeflicient of £ key state probability. The balance equation
of state S = [N; — m,d — 1] yields the following difference equation for d > N —

Ni+m+1and 0 <m < Nyj:
PNl—m(d) + a,mPNl_m(d - 1) -+ meN1~m(d - 2) =

deNl—m~1(d - 1) + emPNl_m+1(d — 1),
d>M + 1, 0<m< Ny, (3.78)

where M = N — Ny + m, and

4y, = _M/A1+(N1_m)/f'2+(1_5m)A2+)\1’ bm: Al (379)
My M
AZ (N1 - m + 1),“'2
i = = . 3.80
i Vi (3-80)

We substitute (3.77) into (3.78) to obtain the corresponding difference equation:

for the coeflicients of key states:

ch—m,Z(d) + a"m,cN1~m,£(d - ]-) + bchl—m,E(d - 2) -
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ANy ~m-1,6(d — 1) -+ emen, —mi1,e(d — 1)

d>M+1, 0<m<N;, 0<L<N. (3.81)

Note that for every difference equation in (3.78), we obtain N; + 1 difference
equations in (3.81) for the key state coefficients. These equations can be put into
a matrix form by making use of the following definitions. First, E is defined as a

delay operator:

Eey,—mo(d) = ey, —mo(d — 1). (3.82)
Then

fe(E) =1+ arE + b, E*, go(E) = —dyE, hp(E) = —eE, (3.83)

Jo(E)  go(E) 0

hMm(E) fi(E) a(E) ... O
R(E)=| 0 h(E) fo(E) ... 0 | (3.84)

0 0 0 e )
Co(d) = [en, o(d) eny—1,e(d) ... co(d)] . (3.85)

Finally, (3.78) is written in matrix form as:

R(E) Cy(d) =0  £=0,...,Ny. (3.86)
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If the solution of (3.86) is in the following form:

Cy(d) = B;z¢ (3.87)
where
By = [by, i, by - - -5 bos] T (3.88)
then (3.87) satisfies (3.86):
R(E) B; 28 = 28 R(z7") B, = 0. (3.89)
This implies that
R(z1) B; =0. (3.90)

Therefore, in order to have a nontrivial solution, R(z{l) must be a singular
matrix. That is, the nullity of R(z!) is not zero, in fact B; is an element of the
nullspace of R(2'). Note that the degree of detR(z;") is 2Ny + 2. This is because
the degree of its diagdnal entries is 2, and thus it has 2Ny +2 roots. Assuming these

roots are all distinct and real, the general form of the solution is the following:

. 2N1+2 .
Co(d) = > keiBiz?, d>M+1. (3.91)
i=1

From (3.85), (3.88) and (3.91), we obtain for the entries of Cy(d):
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2N1+42

CNl_m,g(d) = Z Icg,ile_m,,-zf d 2 M—l— 1. (3.92)

i=1

Our goal is to find the k,;, by, —m,, and z explicitly. Recall that each z; is a

root of the equation detR(z~') = 0. That is,

|R(z™)|=0 i=1,...,2N; +2. (3.93)

An iterative algorithm to find the determinant of R(z71) is obtained by expanding
the last row of R(27!) starting from fy,(27'). We define the function #1(2) as the

determinant of R(z71) for N; = k. Hence, the determinant of R(z71) is expressed

iteratively as follows:
¢—1(Z) =1
$o(2) = fo(z™")
$1(2) = fi(27)go(2) — ha(z7")go(2 ") p-1(2)

on, (2) = v (27 ony-1(2) = by, (27 ) gvi-1(27Y) vy -2 (2)

where

| R(z7) |= én,(2) (3.94)

The roots of the determinant are readily found by using a computer program.
In this study, we used the subroutines in the IMSL software library to obtain the

zeros of the determinant.
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The solution for B; is found by employing (3.90). The entries by, —m,q of B; are

found iteratively as follows:

by,i =1
by, -1 = _fo(zi_l)
T gz
AR S | C o PO L1 3o PO
s gm-a(z) gm-1(zT)
hn. .—1 B .—1
boy = ——Ai ] 1(21_ )bZ,z' Jwimala ) 1(211)51,1'
gv-1(z ) gn-1(z )

The solution for the key state coefficients cN—m,e given in (3.92) will be com-
pleted after finding the k,’s, which are obtained by making use of the initial condi-
tions at d = M and M + 1. We now proceed to do this. Note that from (3.81) we

have

ch—m,ﬂ(M + 1) + INl—m,E = echl_mH,g(M). (395)
eNy—m (M + 2) + apmen,—me(M 4+ 1) + Iy, —me = €menyom-1(M + 1), (3.96)

where
IN1~m,Z = a'mCNl—m,Z(M) + bchl—m,Z(M - 1) - dmCNl—m—l,lZ(M)a (397)

JNl—m,lZ — bchl—m,E(M) - dchl—m—l,(Z(M + ]—) (3-98)

Substituting (3.92) into (3.95) and (3.96), we obtain:

INy+2 2Ny +2
M+1 M __
D keibyy w2z e > keibn, 142 = —IN,—mge (3.99)

=1 =1
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IN1+2 2N1+2
M1 M+1 _
§ ki —miz T2 @) — em § ko ibn, —my1,i%; = —JIn-me (3.100)
i=1 i=1

form =0,1, ..., N;.

In (3.99) and (3.100), we have 2N; + 2 equations for 2Ny + 2 coefficients k,;’s

with £ fixed. These equations can be put in matrix form as:

quin Q12 qi3 --- qiL kE,l
921 q22 {q3 --. Q21 ke,z
g31 G322 g3 ... Q3L kys | = —S, (3.101)
gr1 9z 9Lz --- 4qLL ko1

where L = 2N; +2 and S¢ = [In,e Iny-10--- Tous Jnpe Iny-1e--- Jog]T. The entries

of the matrix [g;;] are given as follows:

qm'i'l:z = Z‘gw(le_m,e,i Z’l - embN1~—m+1,£,i), (3.102)

dN+m+2,i = ZiVIJrl(le—m,e,i(Zi + @m) — €mbN,—mi1.04) (3.103)

form=0,1,.., Ny and 7 = 1,2,...,2N; + 2.

Substituting the closed-form solution obtained for the key state coefficients

¢Ny—me(d) into (3.77), the equilibrium probabilities can now be expressed as:

Ny 2N1+2
Priem(d) =D D7 keibn,—mi 28 P(0),  d> M, (3.104)
=0 i=1
or
2N1+2 Ny
Pri-m(d) = D byy—mi?? (Z kng(O)), d> M. (3.105)
i=1 =0 '

If the system is stable, then the equilibrium probabilities must approach zero at
infinity. That is,

lim Ppy,_m(d) = 0 (3.106)

d— 00
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This is possible if only the terms with z; > 1 are exactly canceled. As in the
analysis of FCFS strategy, the key state probabilities are found by making use of

this stability requirement and the fact that probabilities must sum to 1.

So assuming that z; > 1 for ¢+ € I, where I is a subset of integers between 1 and
2Ny + 2, in order to have a stable system the key state probabilities must satisfy

the following relations, one for each element of I:
Ny
> keyiPo(0) =0, i€l (3.107)
=0

These can be put into matrix form as:

kos, kiiy oo knya Py(0)

kos, kisy .. ko, P,(0 .

Ofz Thiz e stz 1,( ) — 0. (3.108)
koi, kviy oo kg Py, (0)

Here I = {3, 12,..., 7}.

If the queueing system is stable, then the system of linear equations (3.108)
has a nontrivial solution. This means that the nullity of above matrix is nonzero.
Without loss of generality, we can assume that the normalized solution of (3.108)
is expressed as:

10,0y ...05]%. (3.109)

The key state probabilities can be related to empty state probability by employing
the solution given in (3.109). In fact, o; is the ratio of P;(0) to the empty state
probability Py(0):

P;(0) = o; Py(0). (3.110)

Finally, the empty state probability Py(0) is found explicitly by using the normal-

ization condition. The final form of the equilibrium probabilities are:

2N1+2 Ny
PNl—m(d) - P()(O) Z le_m,izf (Z ]{Zgﬂ; Ug) 5 d _>_ M -+ 1. (3111)
=1 £=0
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3.3.2. Special case: N=3, N;=1.
In this section, closed-form expressions are obtained for the equilibrium prob-
abilities for a case where the total number of servers is 3 and only one of them is
allocated for voice traffic. The state transition rate diagram of this example has

only two columns. The balance equations of the states in these columns are given

as:

Po(d)+a1Po(d—1)+61P0(d—2) :Clpl(d‘“l), d24, (3113)

where eg = d; = 0 and

a:M2M1+M2+/\1 4 :_3M1+>\2+>\1 (3.114)
0 244 ) 1 304 s .
A A
by = —=, by = -, (3.115)
: 2p 3
A
do=—2%, e =—17 (3.116)
21 3p1

The (N; + 1)x(Ny + 1) = 2x2 matrix R(27') defined in equation (3.84) is found

for this case as follows:

R(z‘l):( fol2™) QO(ZWI)). | (3.117)

By employing the definitions of fy, fi1, go, ho, given in (3.84), the determinant of

R(z71) is obtained as:



_58_
detR(27") = fo(z ") f1(2™") — (2 V) go(z7Y)

=1z b rsr P bz i 4z 4 1, (3.118)
where
r4 = boby, rs = apby + asbo,

Ty = a1ap + by — exdy, 71 = ao+ a;.

Let the roots of this quartic determinant polynomial be 2, 2z, 23, z4. Not very
useful closed-form expressions can be obtained for these roots by making use of the
Descartes-Euler or Ferrari solutions described in [40], and we shall review this. The

quartic equation given in (3.118) is transformed to the following reduced formed

through the substitution z71 = y=1 — = .

4ry
y eyt tayT b =0

The roots of this transformed equation are the four sums:

(/51 & /7 £ 4/53)

with the sign of the square roots chosen so that

V/S14/S2+/83 = —q/8.
Here sq, s2, ,s3 are the roots of the cubic equation

2
3, P 2 P AT q
ST T e 64

which then, of course, has to be solved.
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Assuming now that we have the four roots zy,..., 2, the solution of the key-

state coefficients is, as in (3.92),

4
Clome(d) =D kpiby mizf, m=0,1 d>3+m. (3.119)

=1

From the iterative algorithm given for byi_,;, we obtain bi; =1 and

T4 aoz ™t + boz

;  =1,2,3,4. 3.120
doz,i_l ¢ ( )
The vector S, defined in (3.101) is found as:

Sy = [T1e Tog Jie Joo]" (3.121)

where
I p = apc1,4(2) 4 bocy (1) — docoe(2), (3.122)
Ioe = a1co,4(3) + bicoe(2), (3.123)
Jie = boeq0(2) — docgo(3), (3.124)

Jo’g == blco’g(3). (3125)
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By employing equations (3.102) and (3.103), we obtain the entries of the matrix Q
as:
q1j = by 23, g2 = 2} (27 — 1 byj),

Q3j s blj Z? (Z]' -+ aO); Q4j - Z;i (Zj + Gy — €y bll) .7. = 1a2a374' (3126)

From (3.101), the coefficient vector Rg is solved for as:

K, =~Q7" 8, (3.127)
where
Ky = ko kep kg kea)”- (3.128)

At least one of the zeros of the determinant polynomial must be greater than 1,
otherwise the solution would not be unique. For if we assume that all zeros are less
than i, then the stability requirement given in (3.106) is satisfied automatically. In
this case, the only remaining equation to find the relationship between Py(0) and
Py (0) would be the normalization equation. But this is only one equation for two
unknowns. Therefore, an infinite number of distributions would satisfy the state

balance equations. This would contradict the uniqueness of the solution.

By using the Routh Hurwitz criterion [39], it is possible to show that half of
the roots of the determinant polynomial given in (3.118) are greater than or equal
to one and the other half of the roots are less than one. Without loss of generality,
we can number the four roots found from (3.118) so that z;, 2, are less than 1 and
23, 24 are greater than or equal to 1. Then, in order to have a stable system, we see

from (3.107) that the key state probabilities Py(0), P;(0) must. satisfy
k‘ogpo(()) + ]Clgpl(()) =0 (3129)

k04P0(0) + ]C14P1 (0) = Q. (3130)
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Therefore,
kos
P(0) = ——F(0). (3.131)
kis
k
= — 22 py(0). (3.132)
k4

Note that equations (3.129) and (3.130) are linearly dependent. This must be,
otherwise there would not be a nontrivial solution. But we know there exists a

nontrivial solution as long as the stability requirement is satisfied, which is:
as < N —E, =N —a,(1— Py). (3.133)

Here Pp is the Erlang-B blocking probability of the voice traffic, a, the offered voice
traffic and a4 the data traffic, while F, is the expected number of voice calls in the

system, and the carried voice traffic is a,(1 — Pg).

The stability condition given in (3.133) is intuitively appealing, since it means
that the data queue is at equilibrium only for

aq

WoE) < 1. | (3.134)

Here N is the total number of servers and E, is the mean number of servers occupied
by voice traffic. Therefore, on the average N — FE, servers are available for data
traffic. Hence the stability requirement given in (3.133) is equivalent to the stability
requirement of an M/M/(N — E,) queueing system. However, the known results of
M/M/n queueing networks cannot be used to derive (3.134) because they require
th.e assumption the that data queue reaches equilibrium at each voice state. This
assumption is valid if only the voice holding time is much larger than data holding

time and offered data traffic is below a certain threshold.
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By employing (3.132), the & defined in (3.109) is found as:
F=[1 — 247 (3.135)

Using this, we are ready to give the closed-form expressions for the equilibrium

probabilities. By employing (3.111), the first-row equilibrium probabilities are:

4 4
k
Po(d) == Z ]{50’,' bO,i sz PO (0) - Z kl,i bg’z‘ Zf%Po(O) (3.136)
=1 =1 1,4
! ko 4
= > \ko; — ki~ | bo ;28 Py(0), d >4, (3.137)
i=1 k1,4
and the second-row probabilities are:
! a4 ko4
Pl(d) :Zk01blz Z PO Zklz blz i k—PO( ) (3.138)
=1 1,4 B
4 ko 4 :
= | kos — ki —=)28P(0), d>3. (3.139)
i=1 k1,4

By making use of (3.131), the equilibrium probabilities can now be rewritten as:

Po(d) = Po(0) (012} + 1h0229), d > 4, (3.140)
Pi(d) = Py(0) (112} + th1229), d >3, (3.141)
where
ko4 kos o
o1 = boy (km - ‘“kn) oz = boz(koz - —“klz), (0-142)
kia k14
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k k
Y11 = (ko — ﬂ1911) Pra = (koz — —kiy). (3.143)
k14 k14

The empty state probability Py(0) is found by applying the normalization condition:

4 3 4 3 -1
PO(O) _ (¢0121 + ¢1121 i ¢ozz2 + ¢1222 i Ko) ’ (3‘144)
1-— 21 1- Z9
where
1 2+m k04
Ko= 3 > (c1-mo(d) = 7=c1-ma(d)). (3.145)
m=0 d=0 k14

The expected number of data packets, F(L), in the system is:

o0

E(L) = >_ d(P(0) + P1(0)). , (3.146)

d=0
From (3.146), the normalized mean queueing time W is obtained from Little’s result

as:

W = E(L()L — E{EL) —1. (3.147)

The following expression is found for E(L) by making use of the closed-form ex-

pressions obtained in (3.140) and (3.141):

2 222' 2 24 4— 321
E(L (Z ¢Oz—:;_) +>. "/Jli%)* + E(Lo)) (3.148)
=1 2 =1 1
where
E(Lo) = Z d (C1—m,0(d) - k—Cl_m,l(d)). (3.149)
. m=0 d=0 14

The following section is devoted to numerically comparing the performance results

of movable boundary, first-come, first-served and M/M/2 queueing systems.
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3.4 Comparison of PMB, FCFS and M/M/2

Fig. 3.14 shows the normalized mean queueing time as a function of data traffic
for the movable boundary (PMB) strategy. Here the total number of servers N = 3,
the offered voice traffic is 1 Erlang, and only one server is available for voice traffic,
that is, Ny = 1. The normalized mean queueing time is computed by employing
equation (3.147). Since the corresponding fixed-boundary system in this case is an
M/M/2 queueing system, the results obtained for PMB strategy are compared to
the results of the M/M/2 case. The results show clearly that the PMB strategy is
quite superior to the fixed boundary strategy, as expected. For the same queueing
time, we see that data traffic intensity is almost doubled in the PMB case. For
example, when the normalized queueing time is one unit, the data traffic carried is
1 Erlang in the M/M/2 queueing system and 1.85 Erlangs in PMB system when
a = 1. ( Recall that o was equal to pu;/us with pi" is the mean holding time of a

data packet and p;! is the mean holding time of a voice call.)

As expected , the dependence of queueing time on « is negligible for low data
traffic intensity. This is because the number of channels reserved for data use is
greater than the data traflic. So, it is not likely for the data arrivals to occupy
the secondary channels that are also shared by voice calls. Therefore, the mean
holding time of voice calls does not affect the system performance at low data
traffic intensities. But at high data traffic intensities, the reserved channels are
insufficient to accomodate the data traffic, and data arrivals attempt to use the
secondary servers. In this case, if the voice calls occupy the secondary servers
for a long time, data arrivals cannot access the system, and a data queue forms.
Consequently, the queueing time is substantially affected b.y a . In Fig. 3.14, the
normalized queueing time is plotted as a function of daté traffic for « = 1, 10 and

25. For data traflic values smaller than 1 Erlang, the difference between the three
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curves is negligible, i. e., the dependence upon « is very small, but this is not the

case for high data-traffic levels.

On the contrary, as discussed previously, the FCFS scheme is very sensitive to
o = p1/pe at all traffic levels. The performance degrades suddenly as « increases.
In Fig. 3.15, the normalized queueing time is plotted as a function of data traffic
in the FCFS case for « = 1,10, 25. Here again, the number of servers is 3 and the
offered voice traffic is 1 Erlang. At low data-traffic intensities, we observe that as
far as the time delay performance is concerned, the FCFS scheme is worse than
the M/M/2 queueing system. On the other hand, at high traffic intensities it is
even better than the PMB scheme. This is because at high traﬁic intensities, in
the FCFS scheme data packets occupy all the servers (slots) until all the queue is
emptied. However, in the PMB scheme voice calls are given preemptive priority over
data packets. Therefore, voice calls are allowed to preempt data packets in service
occupying slots allocated to voice if necessary for the voice call to receive service.
As a result, at high traffic intensities the expected number of servers available for

data traffic in PMB case is less than the number of slots available in FCFS case.

The blocking probability of voice calls in the PMB scheme is simply given by
the Erlang-B formula, because voice calls do not experience any interference from
data traffic. That is, there are always Ny servers (slots) available for voice traffic.
As explained above, although the data packets are allowed to use a slot allocated
for voice traflic, arriving voice calls preempt those data packets from service when

there is no other slot available for the voice call. We therefore have:

. LL{)VI/Nl!

Y%
7=0 41

Pg (3.150)
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Fig. 3.14 The normalized queueing time as a function of data traffic for PMB and
M/M/2 schemes for three different values of o. Here, N =3, N; =1 and q, = 1.
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Fig. 3.15 The normalized queueing time as a function of data traffic for FCFS and
M/M/2 schemes for three different values of « when N = N; =3 and a, = 1.
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where a, is the offered voice traffic and Ny is the number of channels available for
voice traffic. For example, we earlier considered in this section a, = 1 and N; = 1.

Therefore, the voice-blocking probability is found from (3.150) as:

a.
Pg=—""—=0.5. 3.151
5= Tra ( )

Note that Pp is independent of data traffic for the reason described above.

In Fig. 3.16, the blocking probabilty of voice calls is plottéd as a function of
data traffic for the PMB and FCFS scheme. As observed previously, in the FCFS
case, Pp has a very slight dependence on « and increases almost linearly with data
traffic. Here we also observe that at low data traffic levels, Pg is smaller in the FCFS

than in the PMB case. But at high data traffic levels, the situation is reversed.

Time-Delay Performance
Rank Low Traffic* High Traffic*
1 PMB FCFS
2 M/M/2 PMB
3 FCFS M/M/2

* (Carried data traffic)

Table 1. Comparison of the Time-Delay Performance of PMB and FCFS
Schemes for Voice-Data Integration in a Slotted-Channel system.

Voice Blockage Performance
Rank Low Traffic* High Traffic*
1 FCFS PMB
2 PMB FCFS

* (Carried data traffic)

Table 2. Comparison of the Voice-Blockage Performance of PMB and FCFS
Schemes for Voice-Data Integration in a Slotted-Channel system.
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In Tables 1 and 2, the time-delay and voice blockage performances of the FCFS
and PMB strategies are qualitatively compared. The time-delay performance of an

M/M/2 data-only system is also compared to the other strategies in Table 1.
3.5 Comparison with the previous work:

Two types of approximation have been proposed for the analysis of the movable-
boundary scheme for a large numbers of channels (slots in a frame). The first
approximation [34] is appropriate for the underload region of operation, a; < N—Nj.
The second approximation, a so called fluid-flow approach [35], [42], is appropriate
for the overload region of operation, a; > N — N;. Both approximations adopt a
continous-time model of the integrated system. That is, the frame length is assumed

to be small compared to voice and even the data service time.

In the underload region, assuming that the voice holding time is much larger
than the data holding time, i. e. & > 1, the mean queue length could be obtained for
each voice state by making use of the classical results of an M/M/(N — 1) queueing
system. This is because the data queue is assumed to reach the equilibrium for each
of the N; + 1 voice states. Therefore, the mean data queue length is approximated

in prior work as:
Ny
E(L) ~ > E{d/i} P,(Y), aq< N — Ny, (3.152)
=0

where P,(7) is the probability of having ¢ voice calls in the system. Since the voice

calls use Ny channels without any data interference, P,(¢) is the Erlang probability

of an M/M/Nj loss system:

_ at /4! .
P,(i)= —2— — {=0,1,..Ny, 3.153
©) Z;'V:IO ay/y! ' ( )

with a, as the offered voice traffic. Here E{q/¢}, the mean queue length in an
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M/M/(N — ©) queueing system, is given by:

N—1 24
. a N—i
Ba/i} = P Al LA B— (3.154)
(1 - e
)
with
—f— -1
P, = Nzla—snL# (3.155)
0 — k' 1 _ ag . .
k=0 " (N—i)

In the overload region the behavior of data queue has been approximated based
on fluid-flow approach [42], [3, sect. 12-4-3, p. 702]. This approach assumes intense
voice activity and high buildup of the data queue. It has been observed in {3, p.
706] that the data queue length behaves almost like a continuous variable in the
overload region. Therefore, the queue length can be represented by an z(t). The
probability density function that there are x packets in the system at equilibrium,
conditioned on having ¢ voice calls present, is defined as f;(z). A set of forward
equations can be obtained [3, p. 707] which represent the evolutign of the density
function f;(z) at stéady state. These are first-order differential equations and the
solution yields the density f;(z). The mean queue length is then approximated by

the following integral:
Ny

E(L) ~ fo TS file)da. (3.156)

‘—0

By using this fluid-flow approximation in the data overflow region, the following
expression was obtained in {3, equation (12-166)] for the normalized mean queueing
time when N; = 1:

alag — (N —1))a,

W =~ ,
adN - (ad + a,,(l — PB))(l -+ 0,,,)2

ag >N —1. (3.157)

Fig. 3.17 compares the underload and overload approximations of mean queue-

ing time obtained by employing (3.152) and (3.157) with the fully exact (except for
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time quantization) result obtained in equation (3.147). The system parameters are
o =25, N =3, N; = 1, and the offered voice traffic is a, = 1. Therefore, the under—
load region is defined by a4 < 2, and the overload region is déﬁned by ag > 2. It is
clear from Fig. 3.17 that in the neighborhood of a; = 2, both approximations devi-
ate from the actual curve drastically. However, the underload region approximation
does give extremely good results at very low data traffic intensities (ag < 1). On
the other hand, the overload approximation is only good at very high data traffic
intensities (a; > 2.25) and large o values. This is simply because for the Justifica-
tion of the fluid-flow approach the data queue must be large. So the new results
here provide the first accurate method for obtaining the performance parameters
of the movable boundary scheme at all traffic levels. Since the approximations are
very poor at the medium data traffic levels, to be able to obtain the actual results in
this region is very important. Also, this new method yields closed-form expressions
for the equilibrium probabilities. This makes it not only possible but even easy to
obtain all the important parameters besides mean delay and blocking probability,

such as second order statistics, the required buffer size for data packets, etc.
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CHAPTER 4
TRUNKED MOBILE RADIO NETWORKS

Although Trunked Mobile Radio networks are physically much different from
voice-data integration networks, their queueing models and traffic problems are
exactly the same. Instead of the time slots of a TDM frame, here the frequency slots
of a portion of the communication spectrum reserved for mobile communication are
shared. There is a repeater corresponding to each frequency slot, the place where
the messages are transmitted and receivéd. The detailed description of this system

is given below.
4.1 Introduction to Trunked Mobile Radio:

In the last several years, centralized interconnect trunked systems have been
introduced to service both dispatch-type mobile users and telephone line users [28].
The term trunked means that the telephone line is interfaced to the radio system
at the repeater, which allows both dispatch and telephone line users to access the
system simultaneously. Thus, two different types of communications utilize the same
system facilities. As far as communications traffic is concerned, the basic difference
between these two types of users is their average holding (service) times. A typical
dispatch communication is conductéd between the members of a mobile fleet or
between the base station and mobiles. These are very short messages compared to
an average telephone conversation, such as conducted by interconnect users. We
call the telephone line users interconnect users and the dispatch-type mobile users

dispatch users.

Fig. 4.1 shows the basic components of the trunked mobile system, which was
originally designed by Motorola [28]. We note that only a fraction of the repeaters
can be physically connected to interconnect calls. Therefore, the number of re-

peaters available for interconnect users is restricted. On the other hand, dispatch
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Fig. 4.1 Basic components of a trunked mobile system.
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Fig. 4.2 Flow diagram of trunked mobile traffic.
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users have the ability to access the system from any one of the repeaters. This is

because the “real” purpose of the system is to serve the dispatch users.

In any trunking system which serves both interconnect and dispatch users, it
is thus important for the system to be able to intelligently allocate the valuable
“air time” resources between the two. ”Intelligently” means the decision about
the channel resources to be allocated is based on the current traffic demands. The
parameters related to the current traffic are measured periodically, and channel
resources are re-allocated in order to optimize the system performance until the

next measurement.

As an example, in the evening when dispatch traffic is usually light and several
channels are likely to be available at any given point in time, it makes sense for
interconneqt users to be able to utilize these available channels. On the other
hand, in the morning, when dispatch traffic is at a peak and the dispatch demand is
greater relative to the interconnect demand than usual, it makes sense that channels
previously available for interconnect users be switched temporarily to dispatch use

only until the peak subsides.
4.2 A Sharing Algorithm for a Trunked Mobile Radio

In this section, we propose a computer-based service sharing algorithm for the
Trunked Mobile Radio based on a trade-off between the blocking probability for
interconnect users and the average dispatch delay. We should note that in the orig-
inal Motorola design, both dispatch and interconnect users can be queued. Different
from the original strategy, here we assume that only dispatch users can be queued,

and the interconnect users are blocked if there is no repeater available.

The shared service algorithm of the original Motorola design is basically to

increase or decrease the number of interconnected repeaters to meet the demands
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of traffic based upon the system owner’s preference for grade of service of dispatch
versus interconnect call traffic, called a targeted operating point. Therefore, the
system parameters such as the the number of interconnected repeaters are adjusted
to provide the targeted grade of service. As an example, if the dispatch delay is
less than its target value, the number of interconnect calls allowed is increased.
If it is greater than its target, then the number of interconnect calls allowed is
decreased. Since the aim of this algorithm is to keep the operation in a region
where all targeted values are met, the operating point may not be the optimum one
as far as minimizing the dispatch delay or the interconnect blockage is concerned.
This is because when the targeted operating point is reached, the algorithm doesn’t
make any modification to the number of interconnected terminals to increase the
grade of service. In order to find the best operating point, the average dispatch and
interconnect blocking probability must be calculated at all traffic intensities and for

all possible number of connections to the interconnect terminals.

In 2 Trunk Mobile Radio shared by blockable interconnect calls and delayed
dispatch calls, a decision on a good operating point involves a trade between the
blocking of interconnect calls and the queueing of dispatch calls. Therefore, we aim
to find closed-form expressions for interconnect blocking probability and dispatch
delay and understand this trade-off both quantitatively and qualitatively. Once
closed-form expressions are obtained, the number of interconnect connections re-
quired for the targeted dispatch delay and interconnect blocking probability can be
computed and necessary adjustment made automatically. Furthermore, the best op-
erating point can be reached by trading off the dispatch delay and the interconnect

blocking probability for a given traffic intensity.

Since the real purpose of the original Motorola design is to serve dispatch users,

the interconnect blocking probability is usually high. Other control strategies can
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be used to improve the interconnect blockage performance without substantially
degrading the dispatch time-delay performance. The traffic-control strategies dis-
cussed in Chapter 3 can be adapted for this purpose. These strategies can be
implemented in Motorola’s Trunk Mobile Radio by modifying the software (possi-
bly some hardware) of the system common central controller. The performance of
these modified strategies is compared with that of the simpler strategy we proposed

in this section.
4.2.1 System Traffic Modelling and Analysis

In developing a sharing algorithm for a trunked mobile system, the following
model is used:

(i) The arrivals of dispatch and interconnect call requests are independent and
are assumed to be coming from memoryless (Poisson) sources of infinite population.

(ii) In both traffic streams, the call durations are exponentially distributed.
That is, service times are memoryless and independent of everything else. (The
average call duration for dispatch calls will later be assumed much less than that
for interconnect calls.)

(iii) We call the interconnect repeaters secondary servers and the remaining
(dispatch-only) repeaters primary servers. When a call request from an interconnect
user arrives, it is lost (blocked calls cleared) if the secondary servers are busy, i.e.,
the call is cleared from the system. If the primary servers are busy but there are
empty secondary servers, the dispatch arrival is served. Otherwise it is placed in
an infinite queue. Fig. 4.2 shows a flow diagram of this trunked mobile traffic.

(iv) The mean service time for interconnect traffic, 1 /1 s much longer than

the mean service time for dispatch traffic, 1/uy, i.e

1/ >> 1/ pg.
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(v) Incoming dispatch call requests search for an empty repeater starting from

the leftmost repeater, whereas incoming interconnect calls start from rightmost re-
peater, i.e, if there is more than one empty repeater, dispatch calls use the leftmost,
and interconnect calls use the rightmost. (The reason for this allocation is to avoid
dispatch calls occupying secondary servers when a primary would do. Otherwise,

the blocking probability of interconnect calls would increase beyond that intended.)

Using the fact that the average holding time of an interconnect call is much
larger than the dispatch holding time, the conditional steady-state probabilities
of dispatch users can be simply found by employing the results of basic queueing
theory. But in order to find the mean dispatch delay, we need to find the steady-
state probabilities of interconnect users as well. It will be seen that the steady-state
probabilities of interconnect users depend on the conditional blocking probabilities
of interconnect users given in (4.9). So, if we know these conditional blocking
probabilities, we can find the unconditional steady-state interconnect probabilities,
which then yield both the mean dispatch delay and the blocking probability of an
interconnect request. Possible blocking conditions of interconnect calls and how
to calculate them are given in Section 4.2.2. The details of the analysis are given

below.

We have an N-server queueing system, where N is the total number of repeaters.
We will view the number of servers (repeaters) occupied by dispatch users as a ran-
dom process that varies according to how many servers are assigned to interconnect

traffic. We define the interconnect state as the number of interconnect-occupied

servers. The interconnect state varies much more slowly than the dispatch state,
which is the total number of dispatch-occupied servers. This is simply because we

have assumed that
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It is therefore a good approximation to assume that the time spent in each
interconnect state is much longer than the time it takes the number of dispatch
requests present in the system to reach steady-state behavior, given the number of
interconnect calls in progress. This steady-state approximation of Honig [22] is the
basis for our analysis. Given that 1 servers are currently assigned to interconnect
traffic, the probability that there are k dispatch calls in the system is simply found

by analyzing the resulting M/M/(N — 7) queueing system [11].

We define the conditional state probabilities of dispatch traffic as
Pyji(k) = Pr( there are k dispatch users in the system, given that ¢ servers

are occupied by interconnect calls).

From the assumed equilibrium at steady-state, we have

AaPasi(0) = paPyy(1)

AaPasi(1) = 2p4 Py (2)

AaPafi(N —1— 1) = (N — ))uaPaji(N — 7).

These equations yield

1
Pyi(k) = Pd/i(o)agﬁ, 0<k<N -1 (4.1)

For k> N —1, however, the arriving dispatch requests are queued, so the
steady-state probabilities satisfy
AaPaji(N — 1) = (N — Q)paPas(N — i + 1)

AaPaji(N ~ i + 1) = (N = i) puaPayi(N — i + 2)
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These equations imply that

G i .
Pd/z(k) = Pd/i(o)ad——(]\f——i)!_’ k >N — 7, (42)
where )
iy a 1 ) 1
Pd i e —~—.adNMz—*—a~— 4.3
il Z;) N TR e (4:3)
and
Ad
Qg = —
Md

is the dispatch traffic.

Given that there are 7 assigned interconnect calls, the mean number of queued

dispatch requests is readily found by using (4.2) and (4.3):

E(q/?) = Zqu/z —i+q)

Pd/1

o Lim g

. P % aiz'
B(gfi) = O gy

DT (4.4)

From this, the mean number of queued dispatch requests is found as follows:

E(q) = EZ% Pr(&)E(q/0) (4.5)

where K is the number of interconnect repeaters and Pr(2) is the probability of
having £ interconnect users in the system. This probability can be found by using

the method of entrance probability described in [22], which we now describe.

Pr(£) depends not only on the previous interconnect state but also on the num-
ber of dispatch calls occupying the secondary servers. Assuming there are ¢ in-

terconnect users in the system, where ¢ < K, an arriving interconnect request is
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blocked if the remaining K — £ secondary servers are all occupied by dispatch calls.
Therefore, the transition rate to the (£ + 1)** state is the arrival rate times the

entrance probability, which we define as

¢¢ =Pr( a new interconnect request is able to be served, given that there are

£ interconnect calls in the system), for 0 < £ < K. (¢x is, of course, 0.)

The rest of the analysis is similar to the analysis of an M /M/K blocking system

except that the arrival rates in each state £ are decreased by the factor de.

Assuming exponential service times and using the equilibrium equations, Py (£)

can be found as follows:

A Pr{0) g = p; Pr(1)

AiPr(1)¢y = 2u,Pr(2)

}\Z'P](K - 1)¢(K~1) = KM1PI(K)

Therefore,
F;(0
Pr(f) = Ie(, )af¢o¢1---¢£~1
P 0 -1
=0 T o, (4.6)
: k=0
where
Ai
@y = —,
i

the offered interconnect traffic, and

!
m=0 m: =

Pr(0) = [Z a;'”"ij @} : (4.7)
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Finally, substituting (4.7) into (4.6),

at o1
o H]':o ¢j

PI (8) == ar .
PO )

(4.8)

The blocking probability of interconnect users can be found from equation (4.8)
by employing the following equation:

K-1

Pg = > Pp;Pi(f) + Pi(K) (4.9)

£=0

where
Ppjy = Pr (an arriving interconnect request is blocked, given that there are

exactly £ interconnect calls in the system).

Here,

Ppre=1—¢, (4.10)

Therefore, (4.9) can be written by employing (4.10) as

Kzl 1 — ¢o) Pr() + Pr(K). (4.11)

£=0

As is seen from (4.5), (4.8) and (4.11), the blocking probability for interconnect
users and the expected number of dispatch users waiting for service depend on the
entrance probabilities ¢, or on the conditional probabilities Py /¢~ The next section
describes how to calculate these conditional blocking probabiliﬁies, thus solving our

problem.
4.2.2 Blocking Conditions for Interconnect Traffic

It is clear that an incoming interconnect call is blocked precisely when all the

secondary servers are busy. The secondary servers are busy if
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(i) there are already K interconnect calls in the system, where K is the total

number of repeaters connectable to interconnect calls, or

(ii) the number of dispatch users, d, in the system is greater than or equal to

N —1, when there are 7 interconnect users in the system and 0 < ¢ <K-1,or

(iii) the number of dispatch users, d, in the primary (dispatch-only) repeaters is
less than N — K, but there is at least one dispatch user in the secondary repeaters,

and the rest of the secondary repeaters are occupied by interconnect calls.

(BUT ALL
SECONDARY

SERVERS ARE
BUSY)

Fig. 4.3 Possible blocking cases for interconnect users when all the secondary
repeaters are busy.

The three possible blocking cases for interconnect users are illustrated in Fig.
4.3. Obviously, these are disjoint events. One possible evolution of these blocking

conditions is illustrated below. In the following, D corresponds to a dispatch user,
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I corresponds to an interconnect user, and ’.” corresponds to empty server. Here
time increases as the index j on ¢; increases; N = 15, K = 5.
(i) 1=K

¢ : the number of interconnect users in the system

t1i—D. DDDDDDDDIIIII
i DDDDDDDDDDIIIII

is—=DDDDDDDDD, ITIIII

(i) d>N—1

d: number of dispatch users in the system; ¢ = 3
L—-=DDDDDDDDDDIIDDI

t:>DDDDDDDDDDIIDDI

(iii) d+ ¢ = K in the secondary repeaters, while d < N — K in the primary

repeaters; 1 = 3

tt—=DDDDDDDDDDIDIDI
t2-DDDDDDDD, DIDIDI
i3 DDDDD. DD. DIDIDI

t—>DDDDDDDD. DIDIDI

If all the repeaters were physically connected to the interconnect terminals, i.e.,
N = K, then the only blocking condition would be d > N — ¢ as described in (ii).
This is the case where all arrivals can access any repeater. Such a case has been
analyzed by Honig [22]. But for a trunked mobile system the first and the third

conditions must also be considered.
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Define the probabilities corresponding to the events described in (i), (i), and

(iii) as follows:
Py = Pr( there are K interconnect calls in the system)

P, i = Pr( the number of dispatch users, d, is greater than or equal to N — ¢ given

that there are 7 interconnect calls in the system)
(Thus, in our prior notation, Py = Pyji(d > N —1).)

P3/; = Pr( The number of dispatch users in the primary is less than N — K, given
that there are 7 interconnect calls and K —¢ dispatch calls in the secondary repeaters,

where 7 > 0)

Psy; is obtained easily by using (4.2):

(4.12)

( Note that

(]\}lfi) < 1, otherwise an infinite queue forms in steady-state). Finally,

Py is found from

P, = Py(K) | (4.13)

For definition, this is the probability that there are K interconnect calls in the

system.

The conditional blocking probability is written by using the previous definitions

as

Ppji = Py + Py, 0<:<K, (4.14)
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so the entrance probability ¢; is

¢i:1"P2/i_P3/i, 0<71< K. (415)

Now we will calculate Ps/; explicitly. At the start, it was assumed that if there
is more than one empty repeater, an arriving dispatch call request uses the leftmost
repeater. Therefore, if the event described in (iii) occurs, that is d + 7 = K in the
secondary repeaters, while at least one primary repeater is empty, then in one of the
past repeater states the number of dispatch users must have been equal to N — 1.
The following diagram shows the state of the repeaters at times t1,t2,...,ts and

illustrates the blocking condition described by (iil) after time #;:
thh—-DDDDDDDDDDIDIDI (i7)
t2>DDDDDDDD . DIDIDI (47
ts>DDDDD. DD. DIDIDI (i)
t4—>DDDDD. D+ » DIDIDIT (i)
ts—>DDDDDDD . . DIDIDTI (i)
teﬁDDDDDDDD.DI-DIDI(iii)

Fig. 4.4 State of repeaters in blocking condition (iii)

At times ¢; through t¢, the interconnect requests are blocked, even though there
are empty primary servers. The system is in a blocking state between t, and ts as
is described in (iii). But before entering this state, the system comes from another
blocking state as described in (ii). At time ¢;, the system is in such a state and
d = N — 1. When the system is in blocking condition (iii), there are ¢ interconnect
and K — ¢ dispatch users in the secondary servers and they therefore occupy all

secondary servers. On the other hand, the number of dispatch users in the primary
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servers may vary from 0 to N —K —1. Whenever a departure occurs in the secondary

servers, the system gets out of the blocking state.

Since all secondary servers are busy, and there is no dispatch user in the queue
for this particular case (iii), the number of dispatch users in the primary servers
describes the system completely. So, we can merely define the state of the repeaters
in case (iii) as the number of dispatch users in the primary servers. We let X (t)
denote this state at time ¢. The random process X (t) forms a continuous-time
Markov chain, because clearly the future value of X (t) depends on the past only
through its current value. Fig. 4.5 is the state-transition-rate diagram for this
process. Concentrating on state S;, we observe that it can be entered only from
state S(;—1) or state S(; 1), and similarly, it can be left only by entering state Si-1)
or state S(;41), or by getting out of the blocking conditions altogether, i.e., by a
departure from the secondary repeaters. At steady-state, the rate at which the
system leaves S; must be equal to the rate at which the system goes into that state,
because X(t) is an ergodic Markov chain and therefore its steady-state probabilities

exist.

Now define the conditional state probabilities as follows, for 0 < 1 < K:
Qji =Pr( There are j dispatch users in the primary, given that all secondary

servers are busy and there are 7 interconnect users in the secondary )

Then for y = N — K,

Qjp = Quv-xyi

= Pai(N —1)
(N-i)
Qa4
= POy

The blocking condition described in (iii) occurs when the system is in one of the

states described above and 7 < N — K. Therefore
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Fig. 4.5 State transition diagram when secondary serves are busy.
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N-K-1

Pyi= > Qusis 0<i< K. (4.20)
m=0

Specifically, if we focus on state S; we observe that the rate at which probability

“flows” into this state at time t is given by

Flow rate into S; = (§ + 1)aQ(i11)i + AaQ(i-1)/s

whereas the flow rate out of that state at time t is given by

Flow rate out of S; = (jua + A:)Q;/i

where 142 = )‘d + Z/,L, -+ (K - Z)Md

Clearly, these two rates must be equal to each other, that is,

Md@1/z' = AiQO/l

214Q2/i + AaQosi = (pa + Ai)Quyi

(N — K)paQw—gy i + XaQv-rk-2)/i = (N — K — 1) g + A)QN-K-1)/i-

Note that Qn-x)j: = Paji(IN —1), because when the number of dispatch users in the
primary is N — K this means that all the servers are occupied, and this corresponds

to the blocking case described in (ii).

In matrix form, these relationships can be written as

oo —lig 0 ... 0 Qo/i 0
-y 6 —2ug ... O _ | Qu 0
0 -4 o ... 0O Q2 = 0
0 0 0 ... éum Qs (M + 1) g Q (rr11ys

(4.21)
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where M = N —~ K —1 and §; = jua + A;. This system of linear equations is easily

solved by using the Gauss elimination method. The result is

Qr/i-Cr = (T + 1),U'dQ(r+1)/i7 0<r<N-K- 1, (422)>

where C, is given as

rugA
C,= (6 — L"_—l'i) ,Co = . (4.23)
Thus,
N - K)u
Q(N—K~1)/z' = EC—*ﬁPd/i(N - K)
N-K-1
(N~ K)(N — K — 1)u2
K- : — P 2 N - K
Q(N K-2)/ Crnr1CrKs df ( )
(N — K)tug" ™
;= Pyi(N - K
o/ Cn_k-1Cn-k-2...Cy i )
where

N-K
Qg

Faji(N — K) = Pd/i(o)m-

Ps/; can now be determined by employing the equation (4.20):

N—-K-1

Pyi= > Qup 0<i<K.
m=0

4.2.3 Outline of the results and conclusions

Our aim is to find the blocking probability of interconnect users and the average

dispatch delay as a function of the number of interconnected repeaters. First, Ps /is
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P;(2), and ¢; are computed, and then the blocking probability of interconnect users

is obtained by making proper substitutions.

An outline of this computation algorithm will now be presented. The conditional

blocking probability of interconnect users are given as

PB/Z' _ {P2/1+P3/“ 0 St < K} (4.24)

PI(K), ZZK

| Psj; is computed as described in the previous section, equation (4.20), and ¢; is

simply found by the definition
¢ =1— Py — Py, (4.25)

one minus the blocking probability of interconnect users when the number of inter-

connect users ¢ in the system less than K. Pyy; is given as in equation (12):

(N -+ 1
Pyi = Pyi(0) - - (4.26)
/ (N =)l 1 s
Pr(K) is found using the method described in Section 4.2.1 as
ak K-1 4.
Pi(K) = iz ¢, (4.27)

B yE-1 a rrK-1 4.
=0 m! 11j=0 %7

After computing the steady-state probability of interconnect users, Pr(7), and the
conditional blocking probability, Py Ji» of interconnect users, the blocking probability

Pp is obtained by employing equation (4.9) :

PB = Kz_:l PB/ZPI(K) + P](K) (428)

£=0

where Pr(£) is
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af o1
o Hj:() ¢j

Pr{l) = —=———-_ (4.29)
Yo willf5' 8
The mean number of queued dispatch requests is found as:
K
B(q) = 3 PO E(g/0), (4.30)
=0
where E(q/4) is
aé\"e (1&{4)
WD o
(V-9

and Pr({) is as given in equation (4.29). The average dispatch delay is then obtained

by employing Little’s formulas:

W = E(qg)/ A, | (4.32)

where W is the mean delay and E (¢) is the mean number of dispatch users in the

queue given in (4.30). Fig. 4.6 describes the hierarchy of our computations.

Fig. 4.7 compares the interconnect blocking probability with the average delay
for various traffic levels as computed from equations (4.28) and (4.32) using the
method just described. The number of repeaters connectable to interconnect calls,
K, is shown on the abscissa. The ordinate corresponds to blocking probability or
mean dispatch delay, respectively. Obviously, when K = 0, the blocking probability
of interconnect users is 1, and the mean dispatch delay is at its minimum. In this
case, all repeaters are reserved for dispatch traffic. As we increase the number
of connections to interconnect terminals, KX, interconnect users start to access the

repeaters that were previously reserved for dispatch traffic and the blocking
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C:)nthiorw'aI'
-state
;r?ba ilsit?es of Pd/l(k)
dispatch users.
Eqns (1),(2),3 1
Eqn.(4) E(q/i)

Expected number of
queued dispatch E(q) = Wy
requests. Eqn.(5) I\

Steady-state

probabilities of P (4
interconnect users. )
Eqn. (8) \
Entrance probability ¢| PB
Eqn. (10) I\
Conditional /
blocking probability PB/I
Eqn. (14

/N,

PZ/I

Eqn.(12) Eqn. (20)

Fig. 4.6 Hierarchy in computation.

Mean dispatch
delay

Eqn.(32)

Blocking probabiiity for
interconnect users

Eqn. (28)
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probability of interconnect users therefore decreases, as is apparent in the figure.
Increasing the dispatch traffic increases the mean dispatch delay, which shifts the
delay curve left and the blocking probability curve up, as we see. When the amount
of dispatch traffic approaches the number of repeaters reserved for dispatch users,
we see that the mean delay increases rapidly, as we would expect. The service rates
used are pug = 4.01 and u; = 0.2, which correspond to the mean dispatch service
time of 14.96 seconds and interconnect service time of 5 minutes. The arrival rates
for the first comparison are Ay = 40 customers per minute and A; = 2 customers

per minute, for the second comparison A\; = 44 and for the last one A; = 48.

At the beginning of Section 4.2 we proposed that a sharing algorithm for a
trunked mobile system could be developed which would trade off the interconnect
blocking probability against the average dispatch delay. The blocking probability
for interconnect users and mean dispatch delay are found as described in the pre-
vious section. As a result of the comparison of these quantities, it is seen that the
interconnect blocking probability decreases almost linearly as K, the number of sec-
ondary servers, increases, and it is independent of dispatch traffic for small values
of K of the number of interconnected repeaters. When K is small and the dispatch
traffic is light, secondary repeaters are not likely to be occupied by dispatch users,
so the probability of an interconnect user being served is not affected by dispatch
traffic and is thus nearly proportional to the number of secondary servers. As K
increases, the dispatch users start to occupy the secondary servers, so the proba-
bility of being blocked depends not only on the number of servers but also on the
number of dispatch calls in the secondary servers. Thus, the decrease in blocking

probability for interconnect users is no longer linear.

Since the average holding time of an interconnect call is much larger than the

average holding time of a dispatch call, the interconnect state varies very slowly.
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As a result of this, when the number of interconnect users in the system is equal
to K, and the dispatch traffic is greater than N — K, the number of dispatch users
waiting for service starts to increase, and queue peaks occur as expected. As must
be, this causes an increase in the average delay of dispatch calls. However, the mean
delay is almost negligible when the number of primary servers is greater than the
amount of dispatch traffic, because the probability of finding an empty repeater is
very high for an incoming dispatch call. For example, when the dispatch traffic is
9.975 Erlangs and K = 10, the mean delay is 26 seconds as is séen from the second
curve of Fig. 4.7. But if K is decreased by one, to K = &, that is, if the number of
primary servers is increased by one, the mean delay suddenly drops to 2.4 seconds;

for K = 8 it is only 1.35 seconds.

As a result, for small values of K, as K increases, the blocking probability
decreases considerably, and the mean delay remains negligible. But as soon as
N — K approaches the value of the dispatch traffic, the mean delay becomes very

large, whereas the blocking probability for interconnect calls does not vary much.

So, in order to decrease the blocking probability of interconnect users and to
keep the mean dispatch delay at a tolerable level, we conclude that the number
of secondary repeaters should be the largest possible value smaller than (N — a,),

where N is the total number of repeaters and a, is the dispatch traffic.

As an example, let ag = 9.975 Erlangs, N = 20 repeaters, N — a; = 10.025.
According to our criterion, the value of K must be at most 10, otherwise the dispatch
queue blows up. In other words, a good operating point is to provide N —a, (rounded
down) interconnect repeaters. This could have been approximately predicted in

advance, as our above heuristics show.

4.3 Comparison with other Traffic Control Strategies:
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Fig. 4.7 The interconnect blocking probability and mean dispatch delay as a
function of interconnected repeaters.
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Several control strategies can be developed for the sharing of repeaters between
dispatch and interconnect traffic. In the original strategy proposed by Motorola [28],
the number of repeaters that are physically connected to interconnect terminals is
controlled by an operating system according to traffic intensity. The remaining
repeaters (primary) are reserved for dispatch use only. The dispatch users access
the system starting from primary repeaters, and they use the secondary repeaters
only if primary servers are occupied. The analysis of this scheme was given in the
previous section assuming that interconnect holding time is much larger than dis-
patch holding time. In this section we will investigate three other control strategies
by using key-state approach. The third and fourth strategies are adapted from
voice-data infegration networks and have already been ariélyzed in Chapter 3. The
analysis of the second strategy is also very similar to the analysis of the others; only
the coefficients of the difference equations obtained for the key-state coefficients are

different.

In the second control strategy, all the repeaters have physical connections to
the interconnect calls, but the number of interconnect terminals in the system
at any given point in time can not exceed a threshold, say K. In this strategy,
when all the repeaters are busy and there is a departure from one of the primary
repeaters, interconnect traffic can utilize that repeater. This use is not possible‘
in the first strategy. Therefore, the blockage performance of this new strategy

must be better than in the original one proposed by Motorola. We call this the

non-preemptive movable-boundary (NPMB) strategy, for dispatch users occupying
the secondary servers are not preempted by interconnect calls, and there is no fixed

boundary between the repeaters used by dispatch and interconnect calls.

The third strategy, called the preemptive movable boundary (PMB) strategy,

is adapted from voice-data integration networks. The only difference between this
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strategy and the previous one is that if the number of interconnect calls in the system
is less than the prespecified threshold and all the servers are busy, a dispatch call

is preempted, that is, caused to be disconnected by an arriving interconnect call.

Finally, we consider the first-come, first-served (FCFS) strategy, where the re-
peater assignments are made according to first-come, first-served priority. There-
fore, both dispatch and interconnect users can get service without any restriction
as long as there is at least one empty repeater. The dispatch arrivals are queued

while interconnect arrivals are blocked when all the repeaters are busy.

We assume, as usual, in all the strategies, that the arrival processes are Poisson,
and the service distributions are exponential. This allows us to model the system

as a Markovian queueing network. We can therefore define the states as:
Sy =Id,i]; 0<d, 0<i<K, (4.33)

where d is the number of dispatch calls and ¢ is the number of interconnect calls
in the system. The state-transition rate diagrams of the FCFS, NPMB and PMB
control strategies are shown in Fig. 4.8. The solid-line transitions correspond to the
state-transition diagram of the FCFS case when the total number of repeaters N is
2. The dashed line transitions together with the solid line transitions correspond to
the NPMB case for N = 3 and K = 2. Finally, including the dotted line transitions

we obtain the state-transition rate diagram of the PMB case for N = 3 and K = 2.

The similarities in the state-space structure of these control strategies make it
easy to extend the results obtained for them. The analysis given below is just a brief
summary of the analysis given in Chapter 3. The performance of FCFS, NPMB

and PMB are compared in Figs. 4. 9 - 4. 13.
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Fig. 4.8 State transition-rate diagram for FCFS, NPMB and PMB schemes.
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The key states in the NPMB and MB cases are found to be {S0i,¢=10,...,K}.

These are the first row-states. (In the FCFS case, however, Spx is not necessar-

ily a key state.) For the steady-state probability P;(d), we obtain the following

representation:

Pi(d) = Z_ZO cio(d) Pe(0).

(4.34)

The balance equations of the (K — m)® column states S = [K —m,d— 1] yield

the following difference equation:

® PK_m(d) -+ amPK_m(d — 1) -+ meK—m(d — 2) ==
deK—m—l(d“1)+emPK—m+1(d*1)7 dZM

Here, for the FCFS strategy, M = m + 2, N =K,1<m< K and

. _ Mt mp+ (K —mu,y _ Ay

" MLy ’ " misy’
K — 1

eo = 0; em:—( mt ),uz; dy = 0.
mpyy

For the PMB strategy, M =N — K +m+1,0<m < K and,

Ay, = 3
(M —1)p,
A
b, = 1; dg = eg = 0;
miy
. __‘(K—m—kl)m_ _ )\2
" M—-1Dp, > " (M —1)py’

while for the NPMB strategy, M = N — K 4+ m -+ 1,0<m < K and,

B )\1+(M—1)M1+(K—m)u2.
App = — )
(M — 1)

ep =0; d, =0;

(4.35)

(4.36)

(4.37)
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A _ (K —m+ 1y,
e .

b, =

It is not possible to obtain the steady-state probabilities directly from equation
(4.35), because the difference equation is valid only for d > M, and the initial
conditions are unknown. But equation (4.35) can be employed to get difference
equations for the entries of the coefficient vector, the cx_n(d)’s. Equation (4.35) is

satisfied if:

o cxome(d) + amcx—me(d — 1) + bpcx—me(d — 2) =
dmCK~m_1(d — ].) + emcK“erl’g(d - 1) (439)

for d 2 M, ¢=1{0,1,...,K}. The initial conditions are obtained by decomposing
the Px_n,(d)’s in terms of key-state probabilities starting from d =0 to d = m + 1.

For example:

1 ifZ=K-—-m
ex-me(0) = {o A K —m (4.40)
ALt Ay H2
coo(l) = . () =22 4.41
ool =, () = 2, (.41
It can be shown that the solution for the key-state coefficients are as follows:
2K +2
ck-meld) = D Agk -mp;Z d>M (4.42)
=0

where the z; are functions of the coefficients of the difference equation (in FCFS case
these are the roots of the corresponding characteristic equation) and the Ag_,, ¢
are obtained from these balance equations applied to states S = [K — m, M| and
S = [K — m, M — 1]. Here we make use of the initial conditions at d = M — 1 and

d=M — 2.

From (4.34) and (4.42) the steady-state probabilities are now expressed as fol-

lows:
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K 2K+2

Prem(d) = > Ag—mie 28 Po(0), d> M. (4.43)

£=0 {=0
The key-state probabilities are related to empty-state probabilities by employing
the stability requirements of the queueing network, as in (3.110):
Po(0) = 0, Pp(0). (4.44)

Finally, the empty state probability PO(O) is found explicitly by using the normal-

ization condition. The final form of the equilibrium probabilities are:

2K +2
Py m(d) = Py(0) > 2iBg_m;, d>M, (4.45)
Jj=0
where
2K+2
B —m,j = Z AK—m,,i0e- (4.46)
£=0

By using the closed-form expression found in (4.46) for the equilibrium probabilities,
the expressions for the mean dispatch delay and the blocking probability of the

interconnect calls can be obtained easily.

In Figs. 4.9, 4.10 and 4.11, the normalized queueing time, i.e, the queueing time
relative to the transmission time, is plotted as a function of dispatch traffic for the
FCFS, NPMB and PMB cases, respectively. The number of repeaters, IV, is 3, for
all the cases, and the number of repeaters available for interconnect users K, is 1, for
the NPMB and PMB cases. The offered interconnect traffic, a;, is equal to 1 Erlang
in all cases. Since the corresponding fixed boundary system for dispatch traffic
is an M/M/2 queueing system, the results obtained for mean dispatch delay have
been compared to the results of M/M/2 case. In Figs. 4.12 and 4.13, the blocking
probability of interconnect calls in the FCFS and NPMB cases is compared to the

blocking probability of PMB case.
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As described at the beginning of this section, in the original strategy proposed
by Motorola, the interconnect calls can only access to the repeaters that have phys-
ical connections to the interconnect terminals. This means that an interconnect
call is blocked if all the secondary repeaters are busy, even if there are empty pri-
mary repeaters. Because of this inefficiency in utilizing the primary repeaters, the
interconnect blocking probability increases. This is not so in NPMB case, where
interconnect calls can use the primary repeaters provided that their number in the

system is below a certain threshold.

Yet, on the other hand, as far as the dispatch grade of service is concerned, we
don’t gain much by the original strategy compared to the other strategies, either.
This is because the number of repeaters available for dispatch use in the original
strategy is the same as in the NPMB case at large dispatch traffic levels. Therefore,
the NPMB strategy gives a very good idea about the delay performance of the

original strategy.

As a summary, compared to the NPBM case, the original strategy has a no-
ticeably worse blockage performance at allvtrafﬁc levels, but a somewhat better
time-delay performance at low traffic levels. The latter can not be considered as a
real advantage because there is no congestion at low traﬁic levels, and so an arriving

dispatch call is very likely to find empty repeaters.

Therefore, especially at high interconnect traffic intensities, the original strategy
does not provide any advantages. Instead, one can choose another control scheme,
one of the FCFS, PMB, or NPMB schemes, that will provide a substantial decrease
in the interconnect blocking probability while keeping the dispatch grade of service
high. The selection of the best control scheme depends on both the traffic intensity

and the value of o = p1/ps. The only way of improving the blockage performance
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in the original strategy would be to increase the number of physical connections to
interconnect terminals, K. But this causes a substantial degradation of time-delay
performance of dispatch traffic, especially at high dispatch traffic intensities and
at large a values. Today’s small computer technology makes it possible and easy
to provide a new service discipline to the operating system of trunk mobile radio
networks so as to increase the system performance by selecting the best strategy

automatically.

From the comparison of those strategies, when N = 3, K = 1, a = 10, and
interconnect traffic is 1 Erlang, the interconnect blocking probability can be reduced
to 30% of its original value by using the PMB strategy instead of the NPMB strategy
at high traffic intensities (ay ~ 2 Erlangs). The price paid here is an increase
in the dispatch delay of approximately, at most, one dispatch transmission time.
On the other hand, if FCFS is selected instead of NPMB, then the interconnect
blocking probability would be reduced to 10% of its original value, without suffering

a significant increase in the dispatch delay at all.

At low dispatch traffic intensities (a4 ~ 0.5 Erlangs), the reduction of the block-
ing probabilty can amount to 65% by selecting the FCFS strategy. The normalized
dispatch queueing time, however, increases from 0.07 to 0.35. This means that the
dispatch users who got service immediately when NPMB was used, now wait 35%
of their holding time on the average. But the mean dispatch holding time is ap-
proximately 15 seconds. Therefore, dispatch users wait approximately 5 seconds in
the queue if we use a FCFS strategy. The PMB strategy, at low and medium traffic
intensities, cannot offer the same amount of reduction for the interconnect blocking
probability as the FCFS scheme does. On the other hand, it does not suffer much

in the dispatch time-delay performance.

In summary, we see that we should choose the FCFS Strategy at high dispatch
traffic intensity. At low dispatch traffic intensities, we should probably chose the
PMB strategy.
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CHAPTER 5
GENERALIZATIONS AND EXTENSIONS

In this chapter, the key-state approach is applied to a more general Markovian
process which arises when bulk arrivals and departures are permitted. That is,
when at least one server becomes free, a “bulk” of random but finite size will be
accepted for service, and the system also accepts bulk arrivals at each (Poisson)
arrival instant. Here we again consider two classes of users. The first-class users are
queued and the second class users are blocked if there is no service facility available.
The numbers of first-class and second-class users in a bulk are independent of each
other. We consider particular traffic control schemes which allocate the use of
service facilities between the users of different classes according to some specific
priority rules. We will not directly find the solution for these problems. Instead,
we focus on the solution for a more general problem. The solution for our special
cases can be obtained by selecting proper transition rates. The integration models

considered previously are special cases of this process as well.
5.1 Generalization of the Solution

Consider an ergodic Markovian process with state space S = {(¢,7) : 0 < ¢ <
00, 0<j <N <oo}. The set of states {(7,0), (1,1), (4,2),...,(¢, N)} are called
level-s states following to the notation of Neuts [41]. Note that there are infinite
levels and IV 41 states at each level. The parameter 7 corresponds to the number of

first-class users in the system, and j corresponds the number of second-class users

in the system. The transitions between states are defined by the following rates:
@ ji+ei+k 1S the transition rate from state (7,7) to state (1 + 4,7 + k).

We consider the class of Markovian processes where the transitions between

levels 73 and 7, are not allowed within the same column, if | ¢; — 43 |> M, nor
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between different columns, if | 4, — 45 |[> M — 1. That is, e j4re 46 = 0 if £ > M
andk =0orif £ > M—1and k # 0. This means that the number of first-class users
in a bulk cannot exceed M if there are no second-class users in the bulk; similarly,
the number of first-class users in a bulk can not exceed M — 1 if there is at least one
second-class user in the bulk. These restrictions on the transitions between states
keep the number of key states finite. Most of the queueing network models are
special cases of this class. As an example, the voice and data integration models
correspond to the case where M = 1, that is, we considered only one arrival or
departure at a time. The transitions were only allowed between neighboring states
on the same level and on the same coh;mn. This is an example for the class of
single-arrival and single-departure systems that can be solved as a special case of

bulk systems.

Packet networks and information broadcast systems can be considered as exam-
ples of systems where bulk arrivals and departures are allowed. In packet networks
where an arriving packet length exceeds the proto;ol maximum and so has to be
divided into smaller packets, a single-packet arrival can be considered as the arrival
of several smaller packets. Bulk departure models, on the other hand, may arise in
considering information broadcast systems where only a single unit of information
can be retrieved from a data base at a time. The customers waiting for a specific
piece of information receive the service simultaneously as soon as this information

is broadcast.

The bulk model is also used to analyze single-arrival and departure systems.
In cases where an arrival had to go through several, possibly a random number, of
exponential service stations in order to complete service, instead of modeling the

problem as a single arrival with an Erlangian service distribution, it can clearly
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be modeled as a bulk arrival system with an exponential service distribution |11,

Chapter 4 |.

In this study, we consider the cases where the arrival and departure rates of the
first-class users are independent of the number of first-class users in the system. This
is generally true for most queueing networks except for those where the number of
customers in the system is constant (closed queueing networks). In the latter case,

the transition rates are state-dependent.

Here we will assume that transition rate of a bulk system is proportional to
the number of first-class users in a bulk. This is usually the case when we model
an M/E,/1 system ( a single server system where arrival instants are Poisson and
the service distribution is Erlangian of phase r [44]) as an M/M/1 bulk-arrival
system. The mean of the exponential distribution corresponding to the Erlangian
distribution is proportional to the size r of the bulk. This assumption is essential
for the solution technique we will propose. The same assumption could be made
for the second-class users, but it turns out not to be a requirement for the solution.
Therefore, the transition rate between two levels is assumed to be a function of only

the difference of these levels.
This means
O jivej+k = O ke tor all £,
Here «; ;1 is defined as the rate of transition from (z,7) to (¢ +£,7 + k), the same
for all ¢+ > 0. Therefore, for this class of Markovian processes:

(1) The transition rates depend only upon the difference between levels.

(2) There are no transitions within the same column if the level difference is
greater than M, and there are no transitions between the different columns

if the level difference is greater than M — 1.

Fig. 5.1 shows the state diagram of an example with M = 2 of the class of Markovian

processes described above.
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Fig. 5.1. State transition rate diagram for M = 2 of a Markovian process where
transitions between two levels within the same columns are not allowed if the level
difference is greater than 2 and the transitions between two levels among different
columns are not allowed if the level difference is greater than 1.
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The local balance equation for state (7, 5) is obtained as follows. The probability

flow rate out of (¢,7) is

J "
( Z Qjj0 + Z Z Qjj+k, E) (5.1)
k=—j7 2=1-M
z;éo k0

Likewise, the probability flow rate into (7, ) is:

N-j M-1

Z Z P(i+ ¢, J+k)0‘9+k12+ Z P(i+ £, 5) 0o (5.2)
k=—7 t=1-M f=-M

k£0 ££0

From (5.1) and (5.2), the balance equation for state (1, ) is found as:

(Z Qe + NZ Z O‘JJ-HH) =

k=—j £=1-M
££0 k#0
N—-j M-1 M
Z Z P(Z + E,] -+ ]C) aj-l—k,j,é + Z P(’L + ﬁ,j)aﬁg. (53)
k=—j t=1-M t=—M
k#0 £#£0

We define the delay operator E; as:
E; P(Za]) = P(2 - 1,].)- (5'4)

Note that, with Ef the €' iterate of E;, Ef P(i,5) = P(i — £,5). We employ this

2

definition to simplify the expression given in (5.3):

M N—-j M-1
D @eBiP(65) + Y. > oyynieBiP(i 5 + k) = 0. (5.5)
k£0

Here, —aj;0 is the transition rate out of state (7,7), and define as:
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M N—-j7 M-1
Qjjo = —< > e+ > O‘j,j+k,e)~ (5.6)
t=—M

k=—j t=1-M
£#0 k#0

Claim: The key states of the class of Markovian processes described above are the

first (M — 1) level states, {(7,7) :0<i< M —1, 0<j5< N}

Proof: From (5.6), the equilibrium probability of state (¢ -+ M, 7) is obtained for

1 > 0 as:
2M N—j7 2M-—1
Z Ctj,j’g_MEfP(i + M, j.) -+ Z Z Olj+k’j,g_MEfP(?: + M,_]' + ]C) =0. (57)

k£0

By making use of the equation (5.7) at ¢ = 0, we see that all M*-level equilibrium
probabilities can be found by manipulating the lower-level probabilities. Hence,
starting from M*"-level probabilities, all the upper-level probabilities are connected
to the first (M — 1)-level state probabilities by means of (5.7). This completes the
proof of the claim that shows the key states are the first (M — 1)-level states in the

transition rate diagram.

As a result, all the equilibrium probabilities can be expressed as:
M-1 N
P(i,g) = 32 > cin(i)P(s,7), (5.8)

=0 r=0

where ¢;,,(1) is the coefficient of the r** key-state probability at level s.

We can now prove a theorem which gives closed-form expressions for the equi-
librium probabilities of the process described at the beginning of this section. It
generalizes the results found in Chapter 3 for voice-data integration networks, which
are included here as a special case where M = 1. Note that all the constraints on

the transition rates are satisfied automatically when M = 1.
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Theorem: The limiting (equilibrium) probabilities of the class of Markovian pro-

cesses described above are in the following form:

P(i,7) = P(0,0) Y dyezi. (5.9)

Here the z’s are the zeros of det{R(27')} with 2, < 1, while R(z"1) is given as:

foo fio fwo .. fwo
Joo fu fa ... fm
RzY)=| foo fiz fuo .. fwa2 |, (5.10)
Jon fin fon oo fan
with
oM 2M—1
fis= 2 2 e an, fivwg = 2. 2 ke (5.11)
k=0 =1

Proof: The local balance equation obtained in (5.7) can be rewritten as:

N—j
fis(E)P(e + M, 5) + Z fivki(E)P(i+M,5+k) =0 (5.12)
yod
where
2M 2M -1
Fii(Bs) = D EBfojjn-m,  fiani(Bi) = > Blajirjen. (5.13)
k=0 =1

The initial conditions of the equation (5.7) are found as {P(7,5) : 0<i < M, 0<
J < N}. These initial conditions are, however, unknown. Substituting (5.8) into
(5.12), we obtain difference equations for the key-state coefficients with known initial

conditions.

- As a result of the above substitution, equation (5.12) yields as many difference

equations as the number of key states. This means that we obtain a difference
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equation for every single key-state coefficient. These difference equations are given

as :

N—j
fii(Ei)ejrs(d) + z~fj+k,j(Ei)Cj+k,r,s(i) =0, +>M, (5.14)

k=—j7
0<r<N, 0<s<M~-—1.

In matrix form :

Joo fio fawo oo fwo COrs(i)
Joo  fu Jaoo ... I A C1rs(i)
Joo fiz fa2 .. fNa2 cors(t) | =0 (5.15)
fon' fiv fon ... TN CNrs(i)
or
R(E;) C,,(5) =0, 0<r<N, 0<s<M-1 (5.16)

As discussed in the solution of movable-boundary strategy in Sec. 3.1.1, érs(i)
depends only on the zeros of det{ R(z71)}. Since the degrees of the polynomials on
the diagonal entries are all 2M, the degree of the polynomial det{R(z"1)} is 2M (N +
1). Therefore, det{R(z7')} has 2M (N + 1) zeros, say {2z, 22, ..., ZIM(N+1) }-
Assuming that these zeros are all real and diétinct, the general form of the solution

is given as:

2M(N+1) .
C]',-s(Z.) - krst b]t Z;, ’t Z M (5.17)

t=1

Here the b;’s are the entries of the vector B, obtained by solving the following

equation:



R(z")B, =0 t=1,2,...2M(N +1). (5.18)

The k,,; are obtained by employing the initial conditions, as in (3.101).

Substituting the expression found for the key-state coefficients into equation
(5.8), we obtain the following solutions for the equilibrium probabilities P(i,j) for
the non-key states. These are expressed in terms of M(N + 1) unknowns P(s,r),

0<r<N, 0<s<(M—-1),which are the key-state probabiii’cies:

2M(N+1) /M-1 N
P(i,7) = > by ( > Zk,stP(s,r)), 0<j<N, i>M. (5.19)
t=1 s=0 r=0

Assuming the system is ergodic, the expression given in (5.19) must uniquely define a
probability distribution. Let T' be the subset of integers between 1 and 2M (N -+ 1)
and let z; > 1 for t € T. The key-state probabilities must satisfy the following

relations in order to cancel the divergent terms in equation (5.19):

M-1 N
Z kyss P(s,r) =0, for all t with z > 1.
5=0 r=0
In matrix form,
koot  kour ... km-in: P(00)
ko.oz ko.m - kM—.l,N,Z P(-Ol) _g (5.20)
kOOm kOlm e kM~1,N,m P(M - la N)

Here m is the number of zeros with magnitude greater than or equal to 1.
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The relationships between the key-state probabilities are obtained from (5.20).

That is,

P(S,r)zam P(0,0), 0<r<N, 0<s<M-—1. (5.21)

Here o,, is the ratio of the key-state probability P(s,r) and the empty-state prob-
ability P(0,0). The existence and uniqueness of the equilibrium probabilities in
an ergodic Markov chain guarantee a nontrivial solution of (5.20) for the key-state
probabilities P(s,r),0<r <N, 0<s<M-—1. The uniqueness of the rela-
tions between key-state probabilities implies that the nullity (dimension of the null
space) of the coefficient matrix given in (5.20) must be 1. Hence, there is only one
linearly independent solution to (5.20), and the desired solution vector is obtained
by scaling this solution by P(0,0). As a result of this scaling, the o,, are solved
uniquely from (5.20). Finally, by substituting (5.21) into (5.19), the equilibrium

probabilities can be expressed as follows (remember that 2z, < 1 for ¢ ¢T):

M-1 N
P(¢,7) = P(0,0) ijt( kyoy ars> zi, 0>3>N, 1> M, (5.22)
tgT s=0 r=0
or
P(i,5) = P(0,0) Y s 28, > M. (5.23)
tgT

Here ¢;; is defined as:

M-1 N
¢ft - bjt ( Z Z krstars> - (524)

=0 r=0
This completes the proof of the theorem.

5.2 Computational Problems:

The first computational problem arises in determining the determinant of

R(z7') and in finding the zeros of the determinant polynomial. The polynomial
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det{R(z7")} is a 2M (N + 1)*-degree polynomial in z. In cases where only the
transitions between neighboring columns are allowed, R(z7!) is a tridiagonal ma-
trix. Generalized birth-death processes are of this type. Therefore, the algorithm
(3.94) given in the previous section for the determinant of tridiagonal matrices can
be used. In more general cases where transitions between non-neighboring states are
allowed, conventional techniques can still be used to evaluate the determinant. We
note that finding the zeros of the determinant polynomial is usually a tedious task
and requires computer programs. For example, the so-called IMSL software library

[43] contains some subroutines for finding the zeros of an arbitrary polynomial.

In order to calculate the coefficient vector B?t given in (5.15), the following

system of linear equations must be solved for each zero of detR(z71), 2, € T*:
R(zY B, =0, teT". (5.25)

Here T* = {1, 2,...,2M (N +1)} — T, that is, T* = {¢ | 2, < 1}. This is equivalent
to solving (IV - 1) linear equations simultaneously and repeating this one for every

te T

In all the examples we have considered, only half of the zeros were greater than
1. We leave the proof of this observation in general as an extension to this research.

Assuming that our observation can be generalized, the number of linear equations

to be solved to obtain B, is M(N + 1).

Finally, the coefficients £, given in (5.17) are obtained by employing the initial

conditions on the key-state coefficients. From (5.8}, these conditions are:

) 1, ifr=y7, s=u;
. — b] b ? < < < < - . . ~
¢rs(7) {0’ otherwise, 0<r< N, 0<s<M-1 (5.26)

Substituting these initial conditions into (5.14), we obtain, at ¢ = M:

S hpbpzM = 20070 0<r <N, 0<s<M 1. (5.27)
t ajvj)_M
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Equation (5.27) depicts the fact that k., are found by solving M(N + 1) linear

equations simultaneously.

As a result, as far as computational requirements are concerned, the price paid
to get a closed-form solution increases as M and N increase. In addition to the
computational work that must be done té find detR(z7!) and its zeros, the number
of linear equations to be solved is 2M (N +1). The form of the solution gives insight

into the system behavior, in spite of these computational difficulties.

In fact, the zeros of the detR(z') are very good indicators of the steady-state
behavior. At lower traffic intensities, since the system is more likely to be empty,
the lower-level states are the more probable states. IHence, we expect that the
probability distribution of a level goes to zero rapidly as the level is increased. The
closed-form expression given in (5.9) then suggests that the ét must be much less
than 1, since the rate of decrease of P(7,7) is controlled by these zeros. On the
other hand, at high traffic intensities, the higher-level states are the more probable
states. Therefore z must be closer to 1 to make the distribution shift to higher
levels. As a result, at traffic intensities where the values of some of these zeros are
above a certain threshold, one can predict that the probability of being at higher
levels will increase. Naturally, this will increase the size of the buffer required to
store first-class users waiting for service. The problem of relating the buffer size to

the values of 2 is also left as an open research problem.
5.3 Example: M =2, N =1

In this section, we apply the results of the previous section to a special case of a
bulk arrival and departure systems with two classes of users. Here we assume that
there cannot be more than two arrivals or departures at the same time. Also, in a

bulk, either there are two users from the first class or one user from the first and
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Fig. 5.2 State transistion rate diagram of a bulk arrival departure system when
M=2 N-=1.
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one user from the second class. Single arrivals and departures are also allowed from
both classes of traffic. In the notation of the previous section, M = 2 and N = 1.
The latter assumption means that the number of second-class users in the system
cannot exceed 1. The corresponding state-transition rate diagram is given in Fig.
5.2. This system can be considered as a single-server system where two first-class
users or one first- and one second-class user can be served simultaneously. The
second-class users can get service immediately upon arrival by preempting a first-
class user. First-class arrivals are quéued, and the second class arrivals are blocked

if the server is busy.

The balance equations of the first column states are:
2 1
Z Oéo()gP(i - E,O) ~+ Z alogP(’I: — ﬁ, 1), ) Z 2. (528)
t=—2 e=—1
The second column states are:
2 1
> P~ 4,1) + > apeP(i —£,0), 1>2, (5.29)
£=—2 =-1

where

2 1
— 0o = ( > et Y. 06013)7 ' (5.30)

2=—2 =—1
££0
2 1
— 19 = ( Z j4e -+ Z Cllog) . (531)
=-2 =—1
20

Equations (5.30) and (5.31) can be rewritten by using the delay opearator E;
defined in (5.5):

Foo(E:) P + 2,0) + fa(E:)P(1+2,1) =0, (5.32)

f1o(E:) P(7 +2,0) + fu(E:)P(s +2,1) = 0, (5.33)
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or in matrix form:

fOO(Ei) fOl(Ei) P(i + 2,0) ~
; = 0. 5.34
(le(Ei) f11(Es) P(r+2,1) ( )
Here
fool Bi) = cwoa Bf + oot EY + oo EE + oo 1 Fs + cgo—s,
for(E:i) = 06101E§ + (XlooEiz + ajo-1 B,

f11(E:) = cazBf + B + cnpoB? + ag1 1 F; + oy_s,

f10(E:) = conn B} + 10 E? + cp1-1 ;. (5.35)
We find that detR(z!) is an 8'* degree polynomial:

detR(z™') = foolz ") fu(z71) — for(z™Y) fo(27h). (5.36)

Assuming that all the roots are real and distinct, the solution for the key-state

coefficients is found in (5.17):
8 .
Cirs(8) = D krotbjizi. j=0,1 1>2. (5.37)
t=1
Here r,s € {0,1}. The coefficients b;; are solved from (5.18) for 1 < ¢ < 8:
bOt =1

_foo(zfl) _ *fOI(th—l)
for(z) fulz)

by = (5.38)

From the balance equations obtained in (5.30) and (5.31) and from the proof
of the claim about the key states of a bulk system given in the previous section,
it can be shown that the key states are {(0,0), (0,1}, (1,0), (1,1)}. Hence, the
initial conditions for the key-state coefficients are as in (5.26). The coefficients k,,;

are found by using these initial conditions to complete the solution for key-state
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coefficients. By employing the solution found for the key-state coefficients, the
equilibrium probabilitiés are found by (5.19):
8

P(i,0) = > (koo:P(0,0) + ko1, P(0,1) + k10: P(1,0) + k13, P(1,1))2}, 4> 2, (5.39)

t=1

8
P(1,1) = > b1 (Koot P(0,0) + koys P(0,1) + kyo, P(1,0) + kg P(1,1)) 28, ¢ > 2.

t=1

(5.40)

The key-state probabilities must satisfy the following relations to cancel the

terms with 2, > 1, ie.,t € T:
koot P(0,0) + koy P(0,1) + kio P(1,0) + k1, P(1,1) = 0, (5.41)

or in matrix form:

koor  kotr ki ki P(

k k k k -
0:02 0:12 1:02 1:12 PEOl _g | (5.42)

kOOm kOlm klOm kllm (

Here we assumed that 2; > 1 for t € {1,2,...,m}.

The existence and uniqueness of the solution guarantees a unique set of relations

between the key-state probabilities. Therefore, from (5.42), we uniquely obtain:

P(1,0) = 01, P(0,0), P(0,1) = 001 P(0,0). P(1,1) = 013 P(0,0). (5.43)

In order to have a unique solution, the nullity of the coefficient matrix corresponding
to the equations given in (5.42) must be exactly one. This implies that there can
only be one linearly independent solution vector for (5.42) which gives the unique

relations between key-state probabilities.
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5.4 Extensions:

The generalized model given in Section 5.1 is still not the most general one.
We have only considered two-dimensional Markovian processes. Application of the
key-state approach to higher-dimensional problems can be effected by employing
the same principles. Of course, we should expect to have to solve more difference

equations as we increase the dimension of our problem.

Note that the difference equations obtained for the key-state coefficients are
always constant-coefficient difference equations in the cases we have considered.
The reason for that is the assumptions we made on the state-transition rates. At
the beginning of this chapter, we assumed that the transition rates depend only
upon the difference between levels. In cases where the state-transition rates depend
directly on the level of the states, these difference equations no longer have constant
coefficients. The cases in which this assumption fails will be an important area for

extension of the key-state approach.

One of the most important questions about queueing networks is the existence
of a product-form solution for a given state-space structure, as defined in Section
2.2. Despite efforts to categorize those queueing networks for which product-form
solution do or do not exist, an approach has not been developed yet to check for
this. The expression found for the equilibrium probabilities in (5.9) suggests re-
search on developing an algorithm to check the existence of product-form solutions
which depends on the factorization of the coefficient ¢,;. If there is a product-form
solution, then the joint probability of having ¢ first- and 5 second-class users in the
system can be factored into the product of each of the marginal distributions. That
is:

P(i,5) = P.i) By (3). (5.44)
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This is possible only if the coefficient ¢;; in (5.23) can also be factored into two

coeflicients, which must be functions of 5 or ¢ only:

bjt = ¢; - (5.45)
Hence, (5.23) can be rewritten as:
P(i,5) = P(0,0)¢; Et: iz (5.46)
or |
P(i,5) = B(z) P;(5), (5.47)

as required for a product-form solution. Here P;(5) = P(0,0)¢; and P;(i) = X, ¢:2}.
As a result, conditions on the factorization of ¢;; would give an idea about the ex-
istence of product-form solutions for the type of networks which equilibrium prob-

abilities can be expressed as in (5.9).
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CHAPTER 6
SUMMARY AND CONCLUSIONS

In this thesis, a new approach (key-state) which provides exact closed-form
expressions for the equilibrium probabilities of a rather general Markovian queueing
network is developed. Prior techniques use linear recursions on the equilibrium
probabilities. In the key-state approach, recursions are developed for the key-state
coefficients which eliminate the computational problems previously encountered.

Chapter 2 was devoted to the explanation of this approach.

In Chapter 3, several voice-data integration techniques were investigated by
using the key-state technique. We found that the optimal traffic control scheme for
the distribution of output channels between two classes of users strongly depends
on the ratio of the mean holding times and traffic intensities. In Tables 3.1 and 3.2,
the traffic control strategies were ranked according to their performance under light
and heavy traffic intensities. As desired, there was a quantitative trade off between
the blockage and the tirhe-delay performance of a traffic control strategy when one

class of traffic is blocked and the other class is delayed.

In Chapter 4, we focused on the traffic problems of another integrated type
of network, trunked mobile radio. Here the two classes of users were dispatch
and interconnect. In the original design, the number of physical connections to
interconnected terminals were controlled by an operator according to the traffic
intensity. In Section 4.2, we proposed a sharing algorithm that determined the
number of repeaters permitted access to interconnect use. This algorithm operated
automatically, transparent to the system operator. The traffic-control strategies
discussed in Chapter 3 gave better blockage performance than the original strategy.

However, the proposed strategies were not readily applicable to trunked mobile
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radio because of the physical constraints of the equipment. But today’s small-
computer technology now makes it possible and even easy to modify the original
dispatch-interconnect integration technique so that these new schemes can also be
used. The best control scheme would then be selected automatically based on the

traffic intensity and the ratio between the holding times.

Finally, in Chapter 5, the resulfs of the key-state approach were generalized to a
more general Markovian process, which arises when bulk arrivals and departures are
permitted in a system shared by two classes of users. The computational complexity
of finding closed-form expressions for the equilibrium probabilities increased as the
size of bulk increased, but obtaining the solution was still computationally feasible.
To be able to analyze bulk arrival and departure integrated systems was important
for two reasons. First, the result covers integration schemes where the holding time
distribution is no longer exponential but Erlangian. As an example, we considered a
- single-arrival, single-departure system where the arrivals had to go through several
exponential service stations. This system can be modeled as a bulk arrival system
with a single exponential server. Second, new protocols and integration schemes
may be developed for communication services that have not yet been integrated,

and these may involve the bulking of arrivals at points in the network.
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APPENDIX A
The roots in FCFS strategy

Claim: The roots of the characteristic equation given in (18) are real, positive and

satisfy the following relations:

Ay
Z9N-1 = 7
1

29y < 1, Zo;i 1 > 1, 29N — 1, 1= 1,2,...,N — 1. (A - 1)

Proof: The roots are given as:

2y —

—ai—\/a?—llbi. —ai+\/a§—4b,~ (A—-—3)

2 ’ 2
where

A i (N =g b-:i (A —4)
iy ’ Yoy

If a? — 4b; > 0 then the roots are real. From (A-4),

a; =

(N = i)ps

1+a; = b — -
(235}

since %}ﬂ > 0. This implies that
4(1 + a;) < —4b; = a? +4(1 + a;) < —4b; + a?

= (24 a;)? < af — 4b; = (2 + ;) |< \/a} — 4b; (A — 6)

= (a? — 4b;) > (2 + a;)* > 0 = the roots are real.

From (A-6), for a; > —2,

_ai+m>l

2—|~a,~< @?“4bi:>225_1: 2 N
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and for a; < —2,

—aQ; af —41)1‘
—(2+a;) <\Ja?—4b; = zy; = 5 < 1. (A —8)

Furthermore, z5,_; > 1 > 2z5; > —a; > 0. Hence the two roots are positive.
Finally, if + = N then 1+ a; = —b;, which yields:

A1 )
Nyy’

zan = 1, ZaN-1 =

this completes the proof of the claim given by (A-1).
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APPENDIX B

The stability equations for key-state probabilities

Claim: For 1 <m < N,

N-1

Z AN_j,2m_1’g Pg(O) =0 for ]‘ = m
=

implies that the summation is zero for all 5 with m < 5 < N.

Proof: From (27), the equilibrium probabilities can be written as:

2m N-1
PN_.m(d) = sz Z AN——m,i,j Pj(O), d>m+ 2.

i=0 7=0

We define gy_p; as:
-1
GN-mi = Z AN«m,i,ij(O)'
3=0
Substituting this into (B-2), we get :

Pr(d) = g o28;
_ d d d,
Py_1(d) = gN-1,0%) T gN-1,1%21 T IN—1,275;

Py_s(d) = gN—z,oZg + gN~2,1Zil + gN—2,2Z§ -+ QN—2,3Z§I + gN-2,4ZZl;

PN—m(d) - gN——m,Ozg + .ot gN~m,2m—123m—1 + gN«m,2mZ§m-

(B-1)
(B-2)
(B -3)
(B - 1)
(B - 5)
(B-6)

(B—1)
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From equations (B-4) to (B-7), it is observed that zgj_l appears in the éxpressions
for all Py_p’s for m > j. We will show that if the coefficient of 23;_y is zero in
Py _;(d), then the corresponding coefficients are zero in all Py _m(d)’s for m > 3.

Algebraically speaking, we will show that
gn-j2j-1 =0 gN-m2;-1 =0, J<m<N, (B —8)

By employing the recursive relation obtained for the coefficient of the particular

solution in (20), gy_; 21 can be written as follows:

N-1

IN-j2i-1= Y ANn_j2i-12 Ps(0)
2=0

N-1 1+ a: 12;_.1__ + b'+12h~2_
_ Z( 7+172; 1_1 R An-j-12j-1, Pe(0)

=0 diy1 2351

~1 —2
_ (1 T i1 251+ b 247

=3 gN—j+1,25—1
diy1 25 4

- -1 -2
_ ]ﬁ(l T e 254 T bje 257,

1
dj+e 2951

)9N—m,2j—1-
=1

These equations imply that if gy_;,;.1 =0 then IN—-t,2—1 = 0 for £ > j, because

1+ a. ‘—‘1_ + b, Z_'2_ |
+ ]'I’EZZ] 1 Ite 2j17é0’ £:17"'7N_m' (B_g)

-1
djye Zo5-1
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The reason why (B-9) is non-zero can be explained as follows: z;7 and Zyj_1 are
the roots of the characteristic equation of the difference equation given in (19).

Therefore, z3; and 23;_1 are the roots of the polynomial given by:

pi(z) =14+ a; 274+ b; 272, (B — 10)

The numerator of (B-9) is found as p;,,(2). Hence, the zeros of (B-9) are found to

be 23(j1¢) and 2z3(;4¢-1. From (18), it can be seen that

22(j+g)~1 75 224—1 for ¢ 75 0 (B - 11)

because, a;,, # a; and bjy, # b; for 1 # j. Therefore, 29;—1 can not be a zero for

(B-9). This completes the proof of the claimed implication in (B-1).
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