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Abstract

\,, S5 o5 he main focus of this thesis is the use of
E‘, high-throughput sequencing technolo-
gies in functional genomics (in particu-
; lar in the form of ChIP-seq, chromatin
immunoprecipitation coupled with sequencing,
and RNA-seq) and the study of the structure
and regulation of transcriptomes. Some parts of
it are of a more methodological nature while oth-
ers describe the application of these functional
genomic tools to address various biological prob-
lems. A significant part of the research presented
here was conducted as part of the ENCODE
(ENCyclopedia Of DNA Elements) Project.

The first part of the thesis focuses on the
structure and diversity of the human transcrip-
tome. Chapter 1 contains an analysis of the
diversity of the human polyadenylated tran-
scriptome based on RNA-seq data generated
for the ENCODE Project. Chapter 2 presents
a simulation-based examination of the perfor-
mance of some of the most popular computa-
tional tools used to assemble and quantify tran-
scriptomes. Chapter 3 includes a study of varia-
tion in gene expression, alternative splicing and
allelic expression bias on the single-cell level and
on a genome-wide scale in human lymphoblas-
toid cells; it also brings forward a number of crit-
ical to the practice of single-cell RNA-seq mea-
surements methodological considerations.

The second part presents several studies ap-
plying functional genomic tools to the study of
the regulatory biology of organellar genomes,
primarily in mammals but also in plants. Chap-
ter 5 contains an analysis of the occupancy of the
human mitochondrial genome by TFAM, an im-
portant structural and regulatory protein in mi-
tochondria, using ChIP-seq. In Chapter 6, the
mitochondrial DNA occupancy of the TFB2M
transcriptional regulator, the MTERF termina-
tion factor, and the mitochondrial RNA and
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DNA polymerases is characterized. Chapter 7
consists of an investigation into the curious phe-
nomenon of the physical association of nuclear
transcription factors with mitochondrial DNA,
based on the diverse collections of transcrip-
tion factor ChIP-seq datasets generated by the
ENCODE, mouseENCODE and modENCODE
consortia. In Chapter 8 this line of research is
further extended to existing publicly available
ChIP-seq datasets in plants and their mitochon-
drial and plastid genomes.

The third part is dedicated to the analytical
and experimental practice of ChIP-seq. As part
of the ENCODE Project, a set of metrics for as-
sessing the quality of ChIP-seq experiments was
developed, and the results of this activity are
presented in Chapter 9. These metrics were later
used to carry out a global analysis of ChIP-seq
quality in the published literature (Chapter 10).
In Chapter 11, the development and initial ap-
plication of an automated robotic ChIP-seq (in
which these metrics also played a major role) is
presented.

The fourth part presents the results of some
additional projects the author has been involved
in, including the study of the role of the Piwi pro-
tein in the transcriptional regulation of transpo-
son expression in Drosophila (Chapter 12), and
the use of single-cell RN A-seq to characterize the
heterogeneity of gene expression during cellular
reprogramming (Chapter 13).

The last part of the thesis provides a review
of the results of the ENCODE Project and the
interpretation of the complexity of the biochem-
ical activity exhibited by mammalian genomes
that they have revealed (Chapters 15 and 16),
an overview of the expected in the near future
technical developments and their impact on the
field of functional genomics (Chapter 14), and a
discussion of some so far insufficiently explored



research areas, the future study of which will, in  answered questions about the transcriptional bi-
the opinion of the author, provide deep insights  ology of eukaryotes and its regulation.
into many fundamental but not yet completely
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Preface

\ﬂ‘ S5 o5 he path my graduate career took was

w.‘, somewhat unusual. I had the fortune
&@‘ to be able to work on a large number of
. diverse projects (especially as a result
of being part of the ENCODE project). This
means | have a correspondingly large number of
at least somewhat interesting scientific stories to
tell in my thesis. However, the flip side of this is
that the common thread between all of them is
not necessarily obvious and the “lack of focus”
type of criticism towards it would not be entirely
misplaced. For a long time, what that common
thread was going to be was not obvious for me
either, except for the rather trivial common de-
nominator “High-throughput sequencing-based
functional genomics” and the so-broad-as-to-be-
almost-meaningless in the context of a graduate
thesis “Understanding the mechanism of gene
regulation and the structure and dynamics of
transcriptomes eukaryotes”. Yet, after some re-
flection, and especially after the response of the
general scientific community to the presentation
of ENCODE results and the subsequent activi-
ties I got involved in, I have come to think that
the latter is not only not that useless after all,
but I in fact have quite a lot to say on the sub-
ject and from a unique perspective and position
shared by not many other people. Thus even if
all T can offer is numerous very small compared
to the magnitude of the general and very big
task of understanding gene regulation contribu-
tions, they can nevertheless be brought under
a common theme and put in their proper place
in the bigger picture of where the field is circa
2013/2014 and what directions, in my humble
opinion, it might not be a bad idea for at least
a portion of it to move into in the near- and
medium-term future.

@

My thoughts on the latter subject are pre-
sented in the chapters comprising the last part

of this thesis, which also contain most of what
would normally go into an introductory section.
The rest of it is organized in four parts, each
containing separate chapters. The first part
is dedicated to the analysis of eukaryotic tran-
scriptomes, using a variety of experimental tech-
niques and data types, from bulk samples and
on the single-cell level. The second grew in
a completely unexpected way from a collabo-
ration with Yun Elisabeth Wang in the Chan
lab that initially focused on characterizing the
binding of TFAM to the human mitochondrial
genome but eventually grew into multiple stud-
ies applying functional genomic tools and data
to organelles in both animals and plants. The
third part concerns a number of technical issues
having to do with the practice of carrying out
chromatin immunoprecipitation (ChIP) experi-
ments and their coupling with high-throughput
sequencing (ChIP-seq), in particular the applica-
tion of ChIP-seq quality control metrics to real-
life data. It also includes a chapter on the devel-
opment of a robotic ChIP assay in the Wold lab,
something that will be a vital part of the future
practice in the field. The fourth part includes
chapters on some of the various other projects
I have been involved in. The last part, as al-
ready mentioned, summarizes my work in the
broader context of the current state of the field
and defines what in my opinion would be fruit-
ful directions for future research, both from the
perspective of the current and expected near-
future state of technology, and from the point
of view of the general questions about the evolu-
tion of regulatory and genomic complexity aris-
ing from ENCODE results and their interpreta-
tion. Most of the individual chapters contained
in each part were initially written as standalone
papers, to which I later made (mostly slight)
modifications in order to better fit the format of
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a thesis. Some of them have already been pub-  (this is especially true about those in the “Other
lished, and a few of the ones that have not been  Projects” part), although I hope an overarching
will hopefully some day join them. The chap- team would become apparent to anyone reading
ters can still be read independently of each other  the thesis from cover to cover, in its entirety.
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Part 1

The Structure of Eukaryotic
Transcriptomes



.5 his part contains four chapters ded-
@v icated to several functional genomic
studies of the structure of eukary-
@ 5 otic transcriptomes that I have carried
out. The first one describes the results of an
early project aimed at characterizing the human
polyadenylated transcriptome using some of the
very first paired-end RNA-seq on multiple cell
lines in existence (generated as part of the EN-
CODE Project). That work made it very clear
that isoform assembly and isoform-level quan-
tification are critical and potentially very weak
points in the analysis of short-read RNA-seq
data. To clarify the extent, impact and nature of

these problems, I carried out an extensive sim-
ulation study on some of the most popular ex-
isting computational algorithms for carrying out
these tasks, the results of which are described
in the second chapter of this part. The third
chapter contains a study of cell-to-cell variation
in gene expression in human lymphoblastoid cell
lines using single-cell RNA-seq, which also dis-
cusses in detail multiple key experimental and
analytical issues with the practice of single-cell
transcriptomics. Finally, I include a short chap-
ter describing a proof-of-principle demonstration
of a simple but elegant and robust approach to
the analysis of mixed-species RNA-seq data.
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The polyadenylated transcriptome of ENCODE cell
lines

he material in this chapter (which consists of work done between 2010 and early 2012)
was intended to form the core of an ENCODE companion paper to complement the
main ENCODE transriptome paper (Djebali et al. 2012), and also present a some-
what different perspective of what the data is telling us:

o

S6Z i‘

Marinov GK*, Williams BA*, Trout D, Balasubramanian S, Fauli F, Reddy T, Gertz J, Murad R,
Mortazavi A, Myers RM, Wold BJ. The polyadenylated transcriptome of ENCODE cell lines. 2012

This unfortunately never happened for various reasons I will not go into here. It is based on
data generated primarily by Brian Williams in the Wold lab. The RNA Polymerase II and TAF1
ChIP-seq data from the Myers lab at the HudsonAlpha Institute for Biotechnology; the Nanostring
miRNA data is courtesy of Rabi Murad in the Mortazavi lab at the University of California, Irvine.

Abstract

Multiple lines of evidence have previ-
ously suggest that the complexity of the
transcript products generated by mam-
malian genomes is high. However, until
the advent of RN A sequencing technology,
it has not been possible to directly study
this diversity at the resolution and depth
provided by RNA-seq. In this study, we
performed the first large-scale characteri-
zation of the human polyadenylated tran-
scriptome using RN A-seq data from EN-
CODE cell lines and from a diverse collec-
tion of human tissues, as well as CAGE
(Capped Analysis of Gene Expression)
and ChIP-seq data for the TAF1 subunit
of the transcription initiation complex.
State-of-the-art analysis tools were then
used to generate and quantify a conserva-
tive set of annotated and novel transcrip-
tome elements, including splice junctions,

exons, intergenic transcripts, isoforms of
protein coding genes and alternative tran-
scription initiation sites. The results re-
veal the high complexity of the transcrip-
tome, but they also emphasize the in-
terpretative challenges presented by the
fact that much of the observed diversity is
present at low absolute levels, meaning it
is difficult to distinguish it from biochem-
ical noise generated by the transcription
and splicing machinery. Finally, I high-
light the areas where future technical ad-
vances that should help resolve some of
these issues are needed and expected.

1.1 Introduction

Contemporary polyA transcriptome measure-
ments, made by deep sequencing of cDNA
(RNA-seq), are remarkably information rich

(Mortazavi and Williams et al. 2008; Nagalak-
shmi et al. 2008; Wang et al. 2008; Wilhelm et



al. 2008; Pan et al. 2008; Sultan et al. 2008;
Cloonan et al. 2008; Guttman et al. 2010; Ca-
bili et al. 2011; Li et al. 2011). High-quality
reference datasets can be mined, quantified, and
analyzed in different ways, using different soft-
ware and significance thresholds, to serve a wide
range of biological investigations. For exam-
ple, the majority of currently known mammalian
genes were mapped by working backwards from
knowledge of cloned RNA product(s) (Adams et
al. 1991; Adams et al. 1995; Curwen et al.
2004). In principle, a deeply sequenced tran-
scriptome can be used similarly to construct a
more complete catalog of genes and their alter-
nately processed RNA products, including both
protein coding and long non-coding RNAs (IncR-
NAs; Guttman et al. 2009; Guttman et al.
2010; Cabili et al. 2011). This discovery map-
ping function has been a major motivation for
ENCODE RNA-seq measurements (Myers et al.
2011; Djebali et al. 2012; this work), although
both computational and biological complexities
addressed below make this a challenging en-
terprise, especially for genes and isoforms ex-
pressed at relatively low levels. Reference RNA-
seq data can also be used to quantify differen-
tial gene expression among cell types and tis-
sues (Trapnell et al. 2012; Wang et al. 2010;
Adams & Huber 2010); to quantify RNA splice
use (Wang et al. 2008; Bradley et al. 2012);
RNA editing (Li et al. 2011; Park et al. 2012),
and other post-transcriptional processing (Jan
et al. 2011; Kodzius et al. 2006; Hoskins et
al. 2011; Affymetrix ENCODE Transcriptome
Project 2009). Finally, since these transcriptome
measurements reflect the steady state balance of
RNA biogenesis and decay, RNA-seq data can be
integrated with other genome-wide data-types
such as RNA Polymerase IT (RNA Pol2) occu-
pancy and microRNA levels to gain insight into
the specifics transcription initiation, and RNA
processing, and turnover.

These diverse uses of mRNA-seq data are
best and most efficiently served by sequencing to
high depth, because greater depth increases sen-
sitivity; by using longer sequence reads, typically
in the paired-end format, because this increases
the specificity of mapping reads to the correct
gene and transcript isoform; and by using source
RNA that is highly enriched for being in the
polyA fraction, which reduces background from
other RNA types and improves interpretabil-
ity. As part of the ENCODE Porject, we there-
fore developed a community resource of human

polyA RNA-seq transcriptomes (100-200 million
sequence reads in each biological replicate) by
applying a widely used polyA RNA-seq method
(updated from Mortazavi et al. 2008), to diverse
human cell lines (ENCODE tier 1 and Tier 2).
The analysis of these cell-line and primary cell
culture RNAs was substantially augmented by
including and comparing RNA-seq data from 16
adult human tissues sequenced as part of the Hu-
man Body Map (HBM) project (primary data
available from GEQO, accession code GSE30611).
The resulting data resource was analyzed using
a computational Cufflinks-based pipeline (up-
dated from Trapnell et al. 2010 and Roberts et
al. 2011) to examine the structure and diversity
of the human transcriptome, in particular focus-
ing on: 1) known and novel splice junctions, pro-
tein coding transcripts and IncRNAs, and other
elements of the transcriptome were analyzed as
a function of expression level, confidence value
and locus complexity; 2) global integrative min-
ing was illustrated by using ChIP-seq data for
TAF1 and RNA Polymerase II to determine the
number and cell type specific usage of alterna-
tive promoters; 3) specific loci, including the pro-
tocadherin gene clusters and the transcription
factor BHLHE40, were used to illustrate how
the transcriptome data and models can be used,
alone and in conjunction with other data-types
to generate explicit new hypotheses.

A particular computational challenge pre-
sented by short-read RNA-seq data is accurately
building and quantifying new gene models and
new isoform models of existing genes. The se-
quence read lengths used in this study were 2x75
(ENCODE) and 2x50 or 1x100 bp (HBM) com-
ing from on average ~200bp-long RNA frag-
ments, while essentially all mRNAs are much
longer, with the median GENCODE V7 pro-
tein coding transcript being ~1600bp long. This
prevents the direct measurement of long-range
contiguity, which is instead inferred, and this
inference process becomes extremely challeng-
ing for genes with many exons and large num-
ber of coexpressed alternative isoforms. An-
other great challenge in analyzing and mining
transcriptomic and other high-throughput data
comes from our limited understanding of the lev-
els and sources of biological noise in the underly-
ing processes, including transcription initiation,
splicing, and polyadenylation. Computational
tools, such as Cufflinks (Trapnell et al. 2010;
Roberts et al. 2011; used here) or Scripture
(Guttman et al. 2010), address these issues with
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algorithms designed to balance sensitivity of de-
tection with robustness and parsimony of tran-
script identification. It is expected that quan-
tification on the final transcript model set will
be significantly affected by uniformity of cover-
age over any given transcript, by its true level of
expression, and by the number of models offered
for each gene. Therefore the datasets were also
used to explore how transcript models are af-
fected by characteristics such as gene size, locus
complexity, overall expression level, and strength
of evidence for alternative splice junction use.

This analysis revealed, first, that the high
sensitivity and resolution of RNA-seq provides
evidence for the very high complexity of the
human transcriptome, with large numbers of
novel splice junctions, coding and noncoding
transcripts, alternative splicing and alternative
initiation events detectable in the data. Sec-
ond, the majority of this diversity is rare in
abundance, thus most of it likely represents bi-
ological noise rather than biologically functional
transcriptional products. However, as there is
no simple relationship between expression levels
and functionality, it is at present not possible
to determine in a straightforward way which of
these transcriptional elements are functional and
which are not. Third, a confounding factor that
has becoming apparent during the course of the
analysis, and one that has to feature prominently
in the interpretation of all data of this kind, orig-
inates from the fact that the computational chal-
lenges posed by short-read RNA-seq are very dif-
ficult to solve thus making any results that solely
depend on the performance of the tools used to
carry out the analysis provisional at best in the

absence of deeper investigation using orthogonal
means. This topic is explored in more detail in
the following chapter.

1.2 Results

We generated 2x75 bp paired-end RNA-seq data
on polyadenylated RNA from a diverse set of
10 human cell lines (Figure [[.IA) that include
primary cultures, immortalized lines, tumor-
derived lines, and a pluripotent embryonic stem
line. Derivatives of all three germ layers were
included, although these lines represent only a
small fraction of the hundreds of human cell
types. Two biological replicates were sequenced
for every cell line, to an average depth of 100-
120x10% mapped reads each (Table . These
sequencing depths are sufficient to reach satu-
ration of gene and transcript detection. The
data was of high quality as evidenced by the ab-
sence of 3’ bias and robust coverage of all of the
length of genes. In addition to these data, we
added to our analysis polyadenylated RNA-seq
data for 16 human tissue samples generated as
part of the Human Body Map 2 project (HBM),
sequenced to an average depth of 200-250x10°
reads. In contrast to the ENCODE lines, each
human tissue is composed of multiple cell types
and none have experienced effects or artifacts of
ex-vivo culture or growth transformation. For a
subset of the ENCODE cell lines, we also gener-
ated ChIP-seq data for RNA Polymerase 2 and
for the transcription initiation complex compo-
nent TAF1, sequenced to a depth of at least
12x10% uniquely mappable reads per replicate

Figure 1.1 (preceding page): Overview of data generation protocols and computational
analysis. (A) PolyA-selected RNA-seq library generation. Libraries are built from PolyA-selected
RNA from ENCODE cell lines using fragmentation and random hexamer priming. Libraries are size-
selected so that the average fragment length is around 200bp and paired-end reads are generated
on the Hlumina GAIIx or HiSeq 2000. (B) Data analysis workflow. RNA-seq reads from ENCODE
cell lines and from HBM tissues are individually mapped with TopHat in de novo splice junction
discovery mode. Next, all newly discovered splice junctions are combined with splice junctions
from the GENCODE annotation to create a consolidated set of junctions, which is supplied to
TopHat for remapping of all reads. The TopHat alignments are used to run Cufflinks in de novo
transcript discovery mode. The Cufflinks models for all cell lines and tissues are then merged with the
GENCODE annotation to create a final consolidated set of transcripts. Final Cufflinks quantification
is performed on the final merged annotation for each cell lines and downstream analysis of expression
values and transcript characteristics is carried out. (C) Distinction between transcript expression
estimation metrics used. In addition to the FPKM score corresponding to the most likely actual
transcript abundance, for stringency purposes we use extensively the FPKM o, ¢ 1, lower limit of
the 95% FPKM confidence interval provided by Cufflinks.
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scale) (B) Average number of isoforms per gene.

(Table [1.2).

1.2.1 Computational pipeline for
uniform analysis of the
transcriptome across multiple cell
lines and tissues

To take advantage of the potential of RNA-seq
to characterize both annotated and unannotated
portions of the transcriptome, it is first neces-
sary to define a full set of elements (exons, splice
junctions and transcripts) that could then be
compared and quantified between samples. A
number of tools exist for de movo reconstruc-
tion of all transcript models from RNA-seq data
(Trapnell et al. 2010; Guttman et al.; 2010).
However, these strategies, as previously applied,
produce results that are not directly compara-
ble between individual samples. This problem is
compounded by the fact that the resulting tran-
script models can be, and often are incomplete
and imperfect, due to sequence read mapping
errors, insufficient coverage of lowly expressed
genes, and highly variable read coverage over
some other genes. In order to address these
issues, I devised a computational pipeline that
combines de novo—generated transcript models
from individual samples with existing annotated
models while exerting a number of filters to re-
duce the number of artifactual and poorly sup-
ported transcripts. This single set of transcript

models was then re-quantified across all samples.

I aimed for a relatively stringent set of novel
isoform models of known genes plus transcripts
of novel genes. This approach is expected to
miss large numbers of “real” transcripts present
in the data and to therefore underestimate tran-
scriptome diversity. This is a necessary com-
promise between including all models for which
there is some evidence and the ability of software
and sequencing technology to reconstruct and re-
solve transcript abundance for complex loci. I
note that as a result of Cufflinks’ abundance fil-
ters during de novo assembly and the additional
stringency criteria imposed, final transcript level
annotation does not incorporate all splice junc-
tions for which there is sequence evidence; splice
junctions are therefore examined separately from
transcripts in later analysis.

Reads from individual samples were first
aligned against the hgl9 version of the human
genome using TopHat (version 1.0.14; Trapnell
et al. 2009) in de novo mode. The splice junc-
tions identified this way were combined with the
splice junctions in the GENCODE v4 annotation
(Harrow et al. 2006) to create a final set of can-
didate junctions. This unified junctions set was
then supplied to TopHat and all samples were
remapped in order to include all reads mapping
to annotated and candidate novel splices, that,
due to low transcript abundance, low coverage
or exons being too short, TopHat had not been
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Figure 1.3: Number of genes for which isofor-level quantification is unidentifiable or
faces other numerical issues. Cufflinks assigns a FAIL or LOWDATA status to genes where
the algorithm can not confidently assign FPKMs to individual transcripts. (A) For the refSeq an-
notation, containing few isoforms, a very small percentage of genes are flagged in this manner (B)
For GENCODE V7, 10-15% of protein coding genes are flagged. (C) For an unfiltered Cuffmerge
assembly performed only on novel intergenic transcripts and novel isoforms with the GENCODE V7
annotation as a reference, more than half of protein coding genes are flagged. (D) A filtered assembly
of all novel intergenic transcripts and novel isoforms still has ~5% more failed quantifications of pro-
tein coding genes than GENCODE V7 (E) A filtered assembly of all novel intergenic transcripts and
novel isoforms with the added requirement that they should be present at >= 1 FPKM_,, 0 in the
individual assemblies approaches the numbers observed for GENCODE v7 (the minimal annotation
complexity we could work with). Total number of protein coding genes: ~20,500.

transcript models because incomplete assemblies
typically arise in de novo mode due to stretches
of low coverage or unmappable regions. In my
experience, this class of artifacts is significant,

able to map in de movo mode.

Next, the resulting alignments were assem-
bled into transcripts using Cufflinks (version
1.0.1; Trapnell et al. 2010) and the individual

Cufflinks assemblies merged using the Cuffmerge
program in the Cufflinks suite (Trapnell et al.
2012) with the GENCODE v7 annotation as a
reference. The GENCODE annotation was cho-
sen because it was adopted as the ENCODE
analysis standard, selected as the most com-
prehensive set of curated transcript models for
the human genome. De novo transcript assem-
bly with Cufflinks can be done in a fully de
novo mode or in a reference annotation based
transcript (RABT) assembly mode (Roberts et
al. 2011). The latter delivers more complete

even with very deeply sequenced datasets. How-
ever, the RABT mode produces a large number
of artifactual transcript models when run on very
complex annotations such as GENCODE v7,
which contains 4 to 6 alternate isoforms on aver-
age for each gene (Figure. Ideally, these arti-
factual transcripts would be irrelevant to down-
stream analysis, because they would be assigned
zero or very low expression values after requan-
tification, but in practice reads are often dissi-
pated across many models, due to uneven read
coverage or the absence of reads allowing for un-
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Figure 1.4: Relationship between “failure” of transcript-level quantification and locus
complexity and expression levels. (A) Successfully quantified GENCODE v7 transcripts in
adipose and testes tissue (two samples shown for brevity, results are similar for all cell lines) have a
median of 4 isoforms per gene. Genes for which quantification fails in these samples have a median
of 8 isoforms per gene. Finally, genes that are confidently quantified in all cell lines and tissues have
a median of only 2 isoforms per gene. 5-95 percentile whiskers. (B) With increased locus complexity,
an increasing number of genes become too complex to confidently quantify on the transcript level.
Shown is the fraction of GENCODE v7 genes for which quantification fails as a function of the num-
ber of annotated isoforms for that gene. Box plots represent the distribution of that fraction across
all samples used in this study. 5-95 percentile whiskers. (C) Weak correlation between expression
levels and quantification failure. Plotted is the distribution of refSeq FPKMs for protein coding
genes (here we used FPKMs calculated on the refSeq annotation to avoid the uncertainty arising
from summing the FPKM estimates for individual transcripts in a genes in a complex annotation
when transcript-level quantification is not reliable) as a function of their quantification status and
isoform number in adipose tissue. 10-90 percentile whiskers.

ambiguously distinguishing between transcripts.  atively short 75bp reads to individual isoforms
Indeed, in the course of establishing the pipeline, is compromised (even using the GENCODE V7
it was found that a major challenge for down- annotation alone, it was not possible to confi-
stream analysis arises from the rapid growth in  dently quantify the individual isoforms of about
the number of isoform models per gene, even 2000 protein coding genes or about 10% of all;
after stringent filtering of anticipated artifacts. see Figure [1.3]and [I.4] for more detail, as well as
As more and more cell lines and tissues are ana-  the Discussion section for further treatment of
lyzed, the number of isoforms becomes very large  the subject).

and the ability to confidently assign the still rel- I therefore assembled transcripts for each
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Figure 1.5: Isoform-level quantification, fragment support for known and novel junc-

tion, and TAF1 binding sites for the TCF3 locus.

The arrows point to the novel splice

junctions incorporated in the novel isoforms annotated in the merged assembly.

sample individually in fully de novo mode, then
applied a number of filters before and after the
Cuffmerge step with the goal of deriving an as
conservative a set of transcript models as possi-
ble. First, the individual assemblies were com-
pared against the GENCODE annotation using
Cuffcompare (Trapnell et al. 2010) in order to
filter out intronic fragments and polymerase run-
on fragments; only transcripts classified as inter-
genic or as novel isoforms of known genes were
retained. I included all novel intergenic tran-
scripts in the merge, but for novel isoforms of
protein coding genes I required the lower 95%
confidence Fragments Per Kilobase per Million
reads (FPKM) estimate (FPKMcon 0, Figure

to be greater than 1. After merging tran-
scripts with Cuffmerge, transcripts present in
GENCODE V7 but missing from the resulting
set of models were added back and major arti-
fact classes such as retained introns and overtly
long 3’'UTRs were removed.

I illustrate the results of the pipeline in Fig-
ure[L.5|using the TCF3 gene as an example. The
TCF3 gene encodes the E2A transcription fac-
tor, which plays important roles in myogenesis
(Berkes & Tapscott 2005), lymphocyte develop-
ment (Quong et al. 2002; Murre 2005), and in
other systems. The TCF3/E2A locus is well
known for producing two different proteins, E12
and EA47, as a result of mutually exclusive al-
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Figure 1.6: Isoform-level quantification, fragment support for known and novel junc-
tion, and TAF1 binding sites for the protocadherin-« cluster (Pcdhc).

ternative splicing of exons 17 and 18 (Murre et
al. 1989a; Murre et al. 1989b; Figure . Two
TCF3 isoforms (one for E12 and one for E47) are
annotated in the RefSeq set of transcript mod-
els, while 5 exist in GENCODE V7, with 2 and
3 alternative TSSs, respectively. A large num-
ber of unannotated splice junctions in the locus
were detected, most of which turn out to be of
low abundance when examined in detail. The
final merged set of models contained additional
24 isoforms not present in GENCODE, with a
new alternative TSS upstream of the 5-most
GENCODE TSS for the gene, thus greatly ex-
panding the set of known T'CF'3 isoforms. These
newly assembled isoforms are of lower estimated

abundance relative to the expression levels of the
known ones. Finally, for two of the TSSs, one
annotated and the one identified from RNA-seq
data, we observed TAF1 binding overlapping the
5 exon.

Another example of the wutility of the
integrated use of these datasets was the
protocadherin-a (Pcdha) cluster (Figure [L.6).
Protocadherins are cell surface single-pass trans-
membrane proteins, particularly highly ex-
pressed in the nervous system and enriched in
synaptic junctions, which have been proposed to
play a major role in the precise specification of
neuronal connectivity under the “chemoaffinity
hypothesis” model of establishing neural circuits



(Zipursky & Janes, 2010). The Pcdha, Pcdhf
and Pcdhvy genes exhibit a striking pattern of
organization and clustering in the genome. All
Pcdha and all Pedh~y protocadherins share three
constant 3’ exons which code for a portion of
the intracellular domain of the protein, to which
numerous unique alternative 5’ exons, each with
its own promoter, are alternatively spliced (Wu
& Manitatis, 1999; Tasic et al. 2002; Wang et
al. 2002); these 5’ exons code for the extracel-
lular, transmembrane, and parts of the intracel-
llar portions of the protein. The Pcdhf cluster
is similarly organized but there are no constant
exons and each gene is transcribed individually.
Protocadherins are transcribed monoallelically,
i.e. only a single variable exon is used on each
cluster allele, with which one exactly being de-
termined stochastically, meaning that each cell
produces one of a large number of combinations
of protocadherins, potentially generating unique
molecular identities for each neuron (Esumi et
al. 2005). I examined Pcdho expression in our
datasets and observed the expected highest ex-
pression levels in brain tissue, with PCDHAG®,
PCDHA10 and PCDHAC2 being most highly
expressed, and lower-level expression levels in
several other tissues such as thyroid and kid-
ney. Strikingly, I also found high (comparable
to those in brain) expression levels of Pedha in
human embryonic stem cells (which to the best
of my knowledge has not been reported previ-
ously), and lower levels in a few other cell lines
such as the breast cancer MCF7 cell line and
the lung fibroblast NHLF cell line (Figure [L.6).
TAF1 binding to the promoters of several of the
more highly expressed Pcdha genes was observed
in HI-hESC. In addition, three TAF1 binding
sites in the 3’ intron of the Pcdha cluster were
detected, as well as a number of low-abundance
novel splice junctions connecting the variable ex-
ons with each other (Figure [L.6); their signifi-
cance is at present not clear and remains to be
tested in future studies.

1.2.2 Catalog of splice junctions
in the human genome

I compared the full set of splice junctions present
in the TopHat mappings to the GENCODE V7
human genome annotation. Of the 318,693 splice
junctions in the annotation, 266,311 were cov-
ered by at least one and 253,063 by at least
two unique sequence fragments (to avoid count-
ing PCR duplicates, a unique sequence fragment

13

is defined as the number of non-identical read
pairs crossing a junction and I refer to that num-
ber everywhere except where explicitly specified
otherwise) (Figure [1.7C). This represents an ap-
proximate measurement of the breadth of cover-
age of the transcriptome in the data, with the
junctions not detected consisting of a combi-
nation of junctions from rarely expressed genes
not present in the cell lines and tissues exam-
ined, junctions from non-polyadenylated tran-
scripts and possibly artifacts in the annotation.
In addition to the annotated junctions, I also
observed 687,638 candidate novel junctions sup-
ported by at least one, and 462,274 supported
by at least two unique fragments. I note that
the TopHat algorithm relies on first finding pu-
tative exons based on read coverage and then
on identifying splice junctions nearby (Trapnell
et al. 2009), i.e. it employs an “exon-first” ap-
proach to junction discovery. This junction set
is therefore more conservative than those from
some other de novo splice mapping algorithms
relying on “seed-extend” strategies (Garber et
al. 2011) to find splices (Dobin et al. 2013;
De Bona et al. 2008; Wu et al. 2010), which
are likely to find more junctions in the same
dataset. I also note that I ran TopHat with de-
fault settings with respect to the genomic range
over which new junctions can be discovered so
the maximum distance between two splice sites
is 500 kb. Only 81 annotated junction span ge-
nomic distances longer than 500kb so it is un-
likely that many novel ones were missed due to
this constraint. On average, around 150,000 an-
notated junctions were detected in each cell line
or tissue (Figure [I.8JA). Of the novel junctions,
between 150,000 and 250,000 were found in each
cell line, and 50-120,000 in each tissue (Figure
1.8B). The lower number in tissues likely re-
flects the fact that HBM data is a mixture of
2x50bp and 1x100bp reads, while the cell lines
were sequenced as 2x75bp. This difference in
read length is expected to make de novo junc-
tion discovery more difficult.

I next asked how exhaustively we had sam-
pled the diversity of splicing events in the hu-
man transcriptome by looking at the saturation
of junction detection as a function of the number
of cell lines/tissues examined (Figure and
B). These cumulative plots show that annotated
junctions exhibit a clear saturation trend, with
more than 90% detected with less than half of
the cell lines considered. In contrast, the trend
for novel junction discovery indicates that fur-
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ther sequencing of additional cell lines and tis-  lines/tissues, thresholds that can be considered
sues of different origin is likely to substantially  stringent and suggestive of biological functional-
increase the number of new candidate junctions. ity.

An open question regarding alternative splic-
ing events and unannotated transcripts in mam- 1.2.3 Splice junction motif
mahar.l sysjcems is to‘what extent they repre- preferences
sent biologically functional events as opposed to
well-tolerated transcriptional and splicing ma-  Next, I asked how canonical (GT|AG) (Mount
chinery noise (Wang et al. 2008; Pan et al. 2008;  1982) and non-canonical splice sites distribute
Melamud & Moult 2009; Sorek et al. 2004). I  in the junctions set (Figure [L.7E). A number of
therefore sought to characterize the properties non-canonical splice site junctions are present
of novel junctions and compare them to those in the GENCODE v7 annotation and I ob-
of annotated ones as a function of their expres- served that they are most often found among
sion levels. When the effect of different fragment  those junctions that were not detected in any
support thresholds on junction discovery was ex-  of our samples. The fraction of such junc-
amined (Figure and D), a clear trend was  tions decreased with increased fragment sup-
observed: annotated junctions have high frag-  port thresholds. These may represent artifacts
ment count support (the splice-specific empiri- in the annotation or transcripts which are de-
cal surrogate for expression level) in multiple cell — pleted in polyA-selected RNA. Novel junctions
lines, while novel splices are mostly detected in  were mostly of the canonical GT|AG type, but in
one or a small number of cell lines. The ma- addition, GC|AG and AT|AC, substrates of the
jority of novel junctions were supported by only — minor U12 spliceosome (Burge et al. 1998; Patel
a few fragments, with their corresponding tran- & Steitz 2005; Will & Luhrmann 2005; Jackson
script isoforms being at levels of uncertain sig-  1991; Hall & Padgett 1994; Sharp & Burge 1997;
nificance, assuming expression in most cells in  Hall & Padgett 1996; Tarn & Steitz 1996a; Tarn
the population. This is entirely consistent with & Steitz 1996b) were also very abundant irre-
a large fraction of them being noise. However, spective of the level of fragment support. It is
due to the very large total number of candidate  possible that this reflects a TopHat preference
novel junctions, significant numbers of highly  for such junctions rather than actual biological
supported novel junctions were still discovered:  reality. About 10% of the novel canonical junc-
for example, 79,667 junctions were supported by  tions, but a much smaller fraction of all non-
more than 5 unique fragments in more than 3  canonical ones are supported by EST sequences
cell lines/tissues, and 8,898 junctions supported  (Figure . Finally, I explicitly examined the
by more than 20 fragments in more than 5 cell  tissue specificity of junctions by calculating tis-

Figure 1.7 (preceding page): Catalogue of splice junctions in the human genome. (A)
and (B) Cumulative detection of annotated (A) and novel (B) splice junctions in ENCODE cell
lines and HBM tissues. Unique fragment counts were summed where replicates were available, the
order of the cell lines/tissues was permuted 10,000 times and the number of junctions detected with
the addition of every cell lines/tissue was counted for each permutation. A threshold of 2 unique
fragment counts was used. Note that the Y axis does not begin at 0. (C) and (D) Annotated
splice junctions are much more abundant and widely used than novel ones. Plotted is the number
of junctions detected at a given threshold with the color codes corresponding to the number of cell
lines in which this threshold is passed. Most known junctions are detected at high fragment counts
in multiple cell lines while the majority of novel junctions are supported by few reads and only in
a small number of cell lines. Shaded area corresponds to support levels that we are least confident
in. (A) Canonical and non-canonical splice-sites and total read support for annotated and known
junctions. The sum of unique fragment counts across all samples for each junction is shown, and for
each abundance category the fraction of canonical, major non-canonical (as reported by TopHat)
and other splice sites was plotted. The total number of junctions in each category is shown in
the blue bars below. (F) and (G) Tissue/cell type-specificity of splice junctions measured using
the JS Specificity Score. High score indicates high tissue-specificity, low score indicates widespread
abundance
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Figure 1.8: Number of splice junctions detected in each cell line and tissue. (A) Anno-

tated (B) Novel

sue specificity score for each junction (JS score;
see the Methods seciton for details). Annotated
junctions mostly had low JS scores reflecting
widespread abundance in multiple cell lines while
novel junctions clustered in two groups - either
with a JS score of 1 and perfect tissue specificity
(due to detection in only a single cell line) or
with a medium JS score and expression in a lim-
ited number of cell lines. In addition, canonical
junctions had lower JS scores than non-canonical
ones, suggesting detection of the latter in limited
number of samples.

1.2.4 Classifying novel splice
junctions relative to existing
annotation

To better understand where novel junctions arise
relative to existing gene structures, I classified
all RNA-seq junctions into the classes depicted
in Figure I note that splice junctions con-
necting positions within a gene, for which no
splice site is annotated (novel intragenic exons),
need not originate from transcripts that belong
to the gene in which they are embedded; they

can instead result from nested, previously unan-
notated transcripts. Of all novel junctions, the
most numerous category were junctions connect-
ing an annotated exon to a novel exon within
the same gene (class E, 264,121), followed by
junctions connecting two novel intragenic exons
(class C, 186,668) junctions connecting two an-
notated exons (class A, 75,147) and intergenic
junctions outside of annotated genes (class H,
54,555) (Figure [1.10B).

Among all novel splice categories, the
strongest in read support were the relatively
small group of class B junctions that connect
exons of two different annotated genes. Of these
almost half arise from loci in which paralogs are
adjacent and both are highly expressed in one or
more of our samples (Figure[L.11JA). One expla-
nation is that they may represent computational
artifacts, i.e. cases in which de novo junctions
discovery incorrectly placed reads across two ex-
ons of different genes due to their high sequence
similarity. A higher fraction of tandem para-
log pairs had multiple such junctions connect-
ing their exons (Figure B and C), and a
high fraction of them had very similar donor or
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acceptor sites in both genes compared to the rest
of class B junctions (Figure ), consistent
with a purely computational explanation. How-
ever, such junctions had higher fragment count
support (Figure [.IIF) and the number of frag-
ments in an individual sample correlated well
with both genes being expressed in that sample
(Figure m%), which argues for their biochem-
ical presence. Of the other class B junctions,
about a third connect non-coding transcripts or
protein coding transcripts to non-coding tran-
scripts (Figure[I.1I]D) and on average, they orig-
inated from gene pairs with even higher expres-
sion than junctions connecting tandem paralogs

(Figure [L.11G).

The next most abundant class of junctions
were class A and class H junctions (Figure
1.10(C), connecting known exons of a known gene

and intragenic exons, respectively.

Because annotated splice sites are over-
whelmingly canonical, we expect novel junctions
connecting to an annotated exon to also be pre-
dominantly canonical, which is what is observed.
Most non-canonical junctions belong to the E, F
and G classes, which connect intragenic genomic
positions. I note that completely intergenic,
class H junctions exhibit a much higher pro-
portion of canonical junctions than these three
groups (Figure [1.10D). The most plausible in-
terpretation of this observation is that a higher
fraction of class H intergenic junctions repre-
sent functional transcripts while the other classes
are mainly the result of biological and computa-
tional noise.

Previous studies have reported the existence
of large numbers of alternative canonical splice
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acceptor sites separated by 3 bp from the main  (Figure and found that they mostly oc-
annotated acceptor site ("NAGNAG” splice ac-  cur in a small number of cell lines/tissues, with
ceptors) (Hiller et al. 2004; Akerman et al. 2006;  testes, K562, HI-hESC and GM12878 exhibiting
Bradley et al. 2012). I found 1193 class C junc-  the highest number.

tions of this kind, but this did not constitute

the majority of such junctions — in addition to

the classical NAGNAG events, I also observed 1.2.5 Correlatl.on be.tween
large numbers of splice junctions representing presence of novel junctions and
other small shifts relative to the annotated splice gene expression and loci
donor sites and at both donor and acceptor ends. complexity

For a significant fraction of the junctions the ) ) )
shift was not divisible by 3 and therefore frame- Following the hypothesis that most novel junc-

preserving (Figure [LI2A and B) and there was tions dete.cted- in RNA—seg data are thg result
not a large difference in the fraction of junctions ~ Of a combination of biological and experimental
that are canonical, in their fragment support or ~ 1oise, I tested the correlation between detection
expression specificity (Figure and D) be- of novel junctions for each gene and the expres-

tween frame-preserving and non-frame preserv- sion levels and the number of exons for a given
ing junctions. gene. The expectation is that highly expressed

genes and genes with a large number of exons
are likely to generate more novel junctions than
genes with low expression levels and few exons.
Our observations are indeed consistent with such
an expectation as shown in Figure [[.I0G and H.

The A and C classes of novel junctions con-
nect known exons which have annotated junc-
tions connecting to them. This allows us to ask
what the abundance of these novel junctions rel-
ative to the associated annotated ones is, which
I quantified as the fraction of major annotated
junction counts (FMJ), where the major junc- 1.2.6 Identification of novel
fcion is 'the one with the highest fr.agr'nent support intergenic transcripts
in a given sample. For the majority of A and
C novel junctions, this ratio was less than 0.1 In recent years, long intergenic non-coding
(Figure [L.IOF) arguing against their biological ~RNAs (lincRNA) have become a hot topic of re-
functionality. A small, (less than 10%) fraction  search, with thousands of such transcripts iden-
had FMJ scores greater than 1 corresponding to  tified using microarrays and RNA sequencing
preferential utilization of the novel junction over  (Guttman et al. 2009; Khalil et al. 2009; Ca-
the annotated ones. However, around 80% of  bili et al. 2011). Individual lincRNAs have been
such cases have total read support of less than  implicated in a number of important biological
5 fragments, i.e. these events mostly happen at  processes (Guttman et al. 2011; Borsani et al,
junctions/genes that are lowly expressed, and bi-  1991; Brown et al. 1991; Lee et al. 1999; Az-
ologically relevant preferential use of novel junc-  zalin et al. 2007; Huarte et al. 2010; Meller
tions is limited to the remaining few thousand et al. 1997). To identify novel lincRNAs and
junctions with high read coverage. Finally, I ex-  characterize lincRNA expression patterns across
amined the cell type specificity of such events cell types and tissues, I adapted previously pub-

Figure 1.10 (preceding page): Relation of novel junctions to existing annotations. (A)
Different categories of junction connections relative to an annotation. (B) Number of junctions in
each category (all annotated and novel ones included irrespective of read support). (C) Distribution
of read support (across all samples) for each category in unique fragment counts. (D) JS specificity
scores. (E) Canonical and non-canonical splice junctions. (F) Correlation between the number of
novel junctions detected and the number of annotated exons for a given gene (only protein coding
genes shown). (G) Correlation between the number of novel junctions detected and expression levels
of genes (RefSeq FPKM values for protein coding genes shown). (H) Novel splice junctions at least
one end of which is the same as that of an annotated splice junction are typically detected at a small
fraction of the fragment counts of the major annotated junction (FMJ) sharing that splice site. For
about 10% of them, the FMJ is greater than 1 but the majority are junctions with low fragment
support
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lished computational approaches for classifying
intergenic transcripts (Guttman et al. 2010; Ca-
bili et al. 2011). Briefly, for all intergenic multi-
exonic transcript models in the final merged as-
sembly, I first calculated the phylogenetic codon
substitution frequency (PhyloCSF) score (Lin et
al. 2011) and filtered out all transcripts with
significantly constrained putative ORFs. I then
scanned transcripts in all reading frames for the

presence of protein domains annotated in the
PFAM database (Punta et al. 2012) and re-
moved all transcripts which contained such do-
mains. The discarded transcripts were grouped
together as transcripts of uncertain coding po-
tential (TUCP) and analyzed separately. I iden-
tified 3591 candidate novel lincRNAs and 2592
TUCPs, numbers similar to those reported pre-
viously (Cabili et al. 2011; Guttman et al. 2009;
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in which each individual FMJ event is observed.

Khalil et al. 2010). In addition, the GENCODE
v7 annotation contains 1368 annotated lincRNA
genes which I analyzed in parallel. Most (67%)
putative lincRNAs consisted of two exons and
for 20% of them, more than one isoform was as-
sembled (Figure and B); for comparison,
68% of GENCODE v7 lincRNAs have 3 or more
exons and 40% have multiple isoforms. I note
that T also identified the longest ORF for each
candidate lincRNA and TUCP and found ORFs
of substantial length for significant fraction of

both groups of transcripts (Figure )

The majority of candidate lincRNAs were ex-
pressed at very low levels with only 695 (19%)
expressed at FPKM o, 710 greater than 5, and
most only in one cell line/tissue (Figure [1.14)C).
The majority of protein coding genes pass that
threshold (Figure ), and a higher propor-
tion (26%) of GENCODE lincRNAs (Figure
[[.14D). TUCP loci exhibited very similar char-
acteristics in terms of number of exons and iso-
forms and expression patterns (Figure |1.14E,F
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and G). and biological significance of all these transcripts
In addition to the set of spliced inter- is remains to be determined (See Discussion sec-
genic transcripts discussed above, the final tion for further discussion)
merged assembly contained a very large number Combining all transcripts annotated in GEN-
(>130,000) of monoexonic transcripts, mostly ~CODE v7 with novel isoforms of known genes,
shorter than 400 bp (Figure ) Due to candidate IncRNAs, TUCPs, and monoexonic,
the specifics of the merge procedure which fuses I estimate that between 4 and 5 % of the hu-
short overlapping fragments from multiple sam- man genome is expressed as exonic elements at
ples into a single larger one, and the short length ~ >1 FPKM in at least one cell line or tissue in
of current RNA-seq reads, it is not possible to  our dataset, and about 45% when introns are
precisely define the start and end positions of included (Figure[1.17).
these transcripts. A large number of them prob-
ably represent short spurious intergenic frag-
ments yet there are still more than 20,000 ex-
pressed at a high-confidence threshold of more
than 10 FPKM, strikingly almost always only in  After performing transcript-level quantification
a single cell line (Figure [L.T4M). on the final merged assembly, I examined the na-
We are at present not certain how to inter-  ture and abundance of novel exons of known pro-
pret the nature of monoexonic loci as well as  tein coding genes in the assembly. To this end,
of candidate lincRNA and TUCP transcripts. I assigned FPKM scores on exons derived from
There seems to be a large number of these tran-  the sum of FPKMs of all individual transcripts
scripts expressed in highly cell type specific man-  containing them and classified exons according
ner, therefore more are expected to be found if  to their relation to the existing annotation (Fig-
additional cell lines are sampled (Figure ) ure and B). The largest classes of novel
However they are mostly expressed at very low  exons were extensions of 5’ and 3’UTRs. We
levels. Both candidate lincRNAs and TUCPs  expected this trend because of actual variation
have high tissue specificity scores with lincRNAs  in the biology of transcription starts and pro-
being a little more tissue specific on average (Fig-  cessing (biology sources) and because of anno-
ure ) Each cell line and tissue expressed  tation imperfections at transcript ends (Hoskins
between 50 and 150 candidate IncRNAs at more et al. 2011; Carninci et al. 2006; Rach et al.
than 1 FPKMcop s 10, with the notable exception  2011). The next most frequently observed nov-
of testes, where vastly more (more than 750) elties arise from extensions or shortenings of in-
were detected (Figure m Figure ), and  ternal exons, consistent with our previous obser-
similar patterns were observed for TUCPs (Fig-  vation of a large number of novel splice sites lo-
ure Figure ) What the functional role  cated in introns and previously annotated exons.

1.2.7 Novel exons of annotated
genes

Figure 1.14 (preceding page): Identification of novel intergenic transcribed loci (lincR-
NAs and TUCPs). (A) Number of exons for candidate IncRNA genes. (B) Number of isoforms for
candidate IncRNA genes (C), (D), (E) Expression of candidate IncRNA genes, annotated IncRNA
genes and protein coding genes for comparison. While protein coding genes are widely expressed at
high levels, annotated IncRNA are mostly expressed at low levels, and candidate novel IncRNAs are
expressed at even lower levels and in few cell lines/tissues. FPKMcon 1o thresholds were used for
stringency purposes. (F), (G), (H) Transcripts of Uncertain Coding Potential (TUCP) are broadly
similar in their characteristics and expression patterns to candidate IncRNAs. (I) Candidate IncR-
NAs are slightly more tissue-specific than TUCPs. (J) Substantial numbers of both IncRNAs and
TUCPs contain ORF's of considerable length, with slightly more such ORFs observed in TUCPs (K)
Large numbers of monoexonic intergenic transcripts are detected, mostly below 400bp of length (see
text for detailed discussion). (L) Expression patterns of monoexonic intergenic transcripts. While
mostly of low abundance and observed only in individual cell lines/tissues, there are still thousands of
such transcripts expressed at significant levels, typically only in one cell lines (though again, usually
in a single cell line or tissue). (N) Cumulative detection of novel intergenic transcripts. Threshold
of FPKMconf1o > 1 was used. Note the inflection of saturation caused by the testes sample in the
IncRNA and TUCP plots.
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Figure 1.15: Expression of candidate IncRINA across
(B) At 1 FPKM_ o 1o threshold.

Completely novel exons are rare, with evidence
for 583 internal exons, 1279 novel 5 exons and
999 novel 3 exons at an FPKM cut-off of 5, for
a total of 17,197 novel exons (Figure [L.I8A).
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1.2.8 Splicing isoform expression
of protein coding genes

The final transcript set contained 42,775 novel
isoforms of protein coding in addition to those
already present in GENCODE. I examined the
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expression patterns of annotated and novel iso-
forms and found that novel isoforms are on av-
erage expressed at lower levels than annotated
ones (Figure and D), yet they are similarly
widely expressed (Figure ) Previous stud-
ies have suggested that almost all human genes
undergo alternative splicing (Wang et al. 2008;
Pan et al. 2008); however, alternative splicing
is a noisy process and a large number of low-
abundance isoforms might be generated without
much biological relevance, so I aimed to under-
stand isoform expression as a function of abun-
dance estimates. At a conservative threshold of
5 FPKMconf_i0, 28,638 annotated isoforms and
3,374 novel ones were detected; this is an un-
derestimate since where quantification was un-
reliable due to identifiability and other numer-
ical issues, I assigned FPKM of 0 to all tran-
scripts of a gene. Large numbers of isoforms
were detected at lower thresholds and isoform
detection did not clearly saturate at the level of
5 FPKM neither for annotated not for novel iso-
forms (Figure [[.I8FE and F). Using the same 5
FPKMcon#_io threshold, I detect multiple anno-
tated isoforms for 7,742 protein coding genes,
and a novel isoform for 2,717 protein coding
genes (Figure and H), numbers that in-
crease or decrease as thresholds are correspond-
ingly relaxed or tightened.

Because transcription and splicing of very
highly abundant genes can generate aberrant
noise products that are still highly abundant
when compared to rarely transcribed genes in
the same cell lines/tissue, a more informative
metric for evaluating alternative splicing isoform
abundance is the ratio of a given isoform’s abu-
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dance to that of the major isoform for the gene
(fraction of major isoform, FMI). Across all cell
lines and tissues, the median FMI value for the
second most abundant isoform was stably be-
tween 0.4 and 0.5, between 0.1 and 0.2 for the
third most abundant isoforms, and below 0.1 for
lower-ranked isoforms (Figure [1.18)J). FMI val-
ues of novel isoforms tend to be lower. For exam-
ple, when ranked second, their FMI was below
0.2 rather than 0.4.

A different splicing isoform may be the major
isoform in different cell lines, which is here re-
ferred to as major isoform switch. To determine
how widespread this phenomenon is, I counted
the different major isoforms for each gene in all
cell lines and tissues at different detection cut-
offs. Using the 5 FPKM_,,fo threshold, I esti-
mate that 7,541 genes express only a single ma-
jor isoforms while 5,749 express multiple major
isoforms, with 2308 expressing 3 or more (Fig-
ure [1.18K). For every pair of cell lines/tissues,
between 600 and 2,800 genes switched their ma-
jor isoform (Figure [L.19]L7).

The observations outlined above suggest a
larger expression diversity on the level of individ-
ual transcripts than on the gene level. Indeed,
when expression specificity was measured using
the JS tissue specificity metric, it was usually
higher for of individual transcripts than for the

genes they belong to (Figure [1.18P).

1.2.9 Impact of splicing isoforms
on protein sequence

The impact of alternative isoform expression on
protein function depends on the difference in
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Figure 1.17: Fraction of genome expressed at a given FPKM threshold in at least one
cell line or tissue, with (A) or without (B) the inclusion of introns.
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ORFs from alternative isoforms. Some isoforms fraction of novel isoforms was classified as coding
with premature stop codons will likely be sub-  in this manner (Figure ) Next, I examined
ject to nonsense-mediated decay (NMD) (Chang  the impact of expressed isoforms on the coding
et al. 2007) and while regulatory roles for NMD  sequence of each gene (Figure [[.I8M). I calcu-
alternative splicing events has been proposed lated four quantities for each gene at a given
(Cuccurese et al. 2005; Green et al. 2003; FPKM threshold: 1) the total number of iso-
McGlincy & Smith 2008) many will likely have  forms expressed, 2) the number of protein coding
little biological impact. Similar expectations ap-  isoforms expressed (excluding non-coding ones),
ply to transcripts with very large retained in-  3) the number of different protein sequences ex-
trons. More than a quarter of protein coding  pressed (if two isoforms only differ in such a way
gene isoforms in the GENCODE V7 annotation  that there protein translation are the same, they
are designated as non-coding for such reasons.  were counted as one), and 4) the number of pro-
I assigned novel isoforms into coding and non-  tein domain sets expressed (I scanned each tran-
coding following a similar requirement that pro-  script for the presence of domains annotated in
tein coding isoforms contain an ORF and the the PFAM database; if two isoforms produced
ORF does not finish more than 50 bp down-  the number, type, order and sequence of PFAM
stream of the 3’ exon splice junction. A similar  domains, they were counted as one). At a con-
but slightly higher (likely because stringent fil-  servative 5 FPKMcopf_o threshold, 2,106 genes
ters on retained intron transcripts were applied)  express multiple protein sequences, and PFAM

Figure 1.18 (preceding page): Expression of annotated and novel isoforms of protein
coding genes. Genes and transcripts for which isoform-level quantification failed were excluded
in all cases except for exons in (A) and (B). (A) New exons identified classified according to their
relation to the existing annotation. Shortened 3’ and 5’UTRs are shaded because the majority of
these are likely to be the result of incomplete transcript assembly due to low read coverage. Exon
FPKMs were defined as the sum of FPKMs for all individual transcripts containing the exon. The
maximum such estimate for all samples is shown. (B) Cumulative detection of novel exons. C)
and (D) Expression patterns of annotated and novel isoforms of protein coding genes. Annotated
isoforms are on average more highly expressed than novel ones, however, novel ones are mostly as
widely expressed as annotated ones. (E), (F) Cumulative detection of annotated and novel isoforms.
(G), (H) Number of expressed annotated and novel isoforms per genes as a function of abundance
levels. The plot shows the number of genes with a number of isoforms indicated by the color code
expressed at level above the FPKM_o,, ¢ 1, thresholds shown. (I). JS specificity scores for annotated
and novel isoforms. (J) Isoform abundance as a fraction of the major isoform (FMI) for a gene.
For each gene and each cell line/tissue, individual transcripts are ranked by their FPKM expression
estimates. The isoform with the highest FPKM is the major one, the distribution of the ratio
between the lower ranked isoforms and the major one for all genes and conditions is shown. (K)
Number of major isoforms per gene. Genes may express different major isoforms in different cell
lines; such events are more confidently identified when the expression level of the genes is high.
Shown is the number of major isoforms per gene as indicated by the color code at the indicated
FPKM_on .10 thresholds for the major isoform. L) Coding potential of annotated and novel isoforms.
The ”other“ category contains transcripts classified as NMD products, retained intron transcripts
and other non-coding isoforms of coding genes. (M) Impact of isoforms on protein sequence. For
each gene, the number of expressed isoforms, expressed protein coding isoforms (not all isoforms
are protein coding), expressed protein sequences (some isoforms may only differ in their non-coding
regions), and expressed domain sets was calculated. Domain sets were defined by scanning all
transcripts for PFAM protein domains and counting as distinct only isoforms that differ in the
identity and sequence of their protein domains. A threshold of 5 FPKMo,f 1o was used for this
plot. (N) Number of expressed protein sequences as function of expression levels. The color code
indicates the number of genes with 1, 2 or 3 and more protein sequences detected at the indicated
FPKMcons_io threshold. (O) Fraction of expressed transcripts detected coding for proteins as a
function of expression levels. (P) Expression specificity (JS score) of individual transcripts and the
expression of the corresponding genes (protein coding genes only).
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Figure 1.19: Major isoform switch events. Major isoform switch events between cell lines
at an FPKMco,¢_1o threshold of 5. Shown is the number of genes for which the major isoform is

different in each pair of cell line/tissues.

domains are affected by alternative isoform ex-
pression for 1,674 (Figure ) Relaxing the
FPKM threshold results in higher estimates for
the number of such genes (Figure [[.18N).

While performing this analysis, I noticed that
approximately half of all expressed RNA iso-
forms, irrespective of detection threshold, are
non-coding, a higher fraction than expected
based on the fraction of such transcripts in the
annotation (Figure [1.18)0). This is a somewhat
puzzling observation since the naive expectation
would be that non-coding isoforms are mostly
the result of transcriptional noise and that NMD
isoforms are degraded relatively quickly, there-
fore they would be more frequently seen at low
detection thresholds. Examples of such tran-
scripts with regulatory function are known (Le
Guiner et al. 2003; Sureau et al. 2001; Wollerton
et al. 2004) so there may be biological function-
ality behind this observation. Further investi-
gation will be needed to better understand this
phenomenon.

1.2.10 Reconstruction of primary
miRNA transcripts

We investigated whether any of the novel tran-
scripts not in GENCODE V7 could correspond
to miRNA primary transcripts. We compared
the 2,104 miRNAs in miRBase V18 (Kozomara
A & Griffiths-Jones 2011) to the GENCODE an-
notation and found that 57% were in the ex-
ons (9%) and introns (48%) of sense transcripts
longer than 125 bp (Figure[1.20/A). The inclusion
of merged and filtered GENCODE~+Cufflinks
transcripts increases the percentage of over-
lapping known miRNAs to 59%, with an in-
crease of microRNAs in exons to 15% (Figure
). However, it is likely that only a sub-
set of miRBase microRNAs are expressed in
our cell types and tissues. We therefore mea-
sured the expression of microRNAs in six EN-
CODE cell lines using Nanostring (Wyman et al.
2011) as described in the methods. We found
93 miRNAs expressed highly (>200 counts) in
one or more of the six cell lines. Whereas
57% of these miRNAs (9% exonic) overlapped a



sense GENCODE transcript, we found that 62%
(23% exonic) overlapped a merged and filtered
GENCODE+Cufflinks sense transcript (Figure
1.20lA). Given that a single Nanostring probe can
map to more than one genomic location when
only a subset may be transcribed even though
we count all locations, our numbers are likely
be an underestimate of the fraction of miRNAs
that have evidence of primary transcripts in our
RNA-seq data.

1.2.11 Complexity of TAF1
binding patterns in the human
genome

Initiation of transcription at gene promoters is a
primary point of regulation of transcriptional ac-
tivity in eukaryotic cells, with many genes known
to initiate transcription from multiple promot-
ers (Landry et al. 2003; Wu et al. 1999; Tasic
et al. 2002). For this reason, the characteri-
zation of the identity and activity of novel in-
tergenic, novel alternative as well as annotated
promoters is of great interest. To this end,
we generated genome-wide ChIP-seq profiles for
the TAF1 subunit of the TFIID general tran-
scription factor, a component of the RNA Pol2
pre-initiation complex (PIC) (Buratowski et al.
1989; Néér et al. 2001), in GM 12878, HI-hESC,
HeLa, HepG2 and K562 cells. TAF1 binding
is expected to mark all active promoters tran-
scribed by RNA Pol2 and therefore be a good
marker for discovery of new promoters.

I called TAF1 binding sites with ERANGE
4.0 (Johnson et al. 2007, http://woldlab.
caltech.edu/wiki/)) using relatively relaxed
thresholds (see Methods) and calculated expres-
sion values in FPKM for all TSSs in GENCODE
and the final merged set of transcripts mod-
els by summing the FPKM values for all tran-
scripts sharing a given TSSs. I called between
9,000 and 20,000 TAF1 binding sites in individ-
ual replicates, with K562 and H1-hESC having
the highest number (Figure [[.21JA). The distri-
bution of individual TAF1 binding site summits
centered right on top of GENCODE TSS (Fig-
ure [L.21]C) and TAF1 loading correlated pos-
itively with gene expression. However, I no-
ticed that not all expressed T'SSs are marked
by TAF1 loading, with up to 25 % of TSSs ex-
pressed at more than 100 FPKM in H1-hESC
not having a TAF1 binding sites, a proportion
that grows with the decrease of expression levels
(Figure [1.22A). In most cases this is not due to
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these TSSs containing repetitive sequences and
sequencing reads failing to align as a result (Fig-
ure [1.22B). In the other cell lines we assayed,
fewer TAF1 binding sites were called (Figure
1.21]A) and an even higher number of highly
expressed TSSs did not have a TAF1 binding
site (Figure[1.22]C). This could be due to techni-
cal variability in ChIP strength; however, the
highest number of binding sites we identified
in a single GM12878 TAF1 ChlIP-seq replicate
was less than 10,000, even though 12 different
biological and technical replicates were gener-
ated, and similar results were obtained with two
other lymphoblastoid cell lines, GM12891 and
GM12892 (Figure [[.21[B), which makes this ex-
planation unlikely. It has been suggested that
in certain cell lines and tissues, the composition
of the PIC components varies (Deato & Tjian
2007; Goodrich & Tjian 2010; D’Alessio et al.
2011) which could explain the consistent differ-
ences between TAF1 binding observed in differ-
ent cell lines, yet there was no negative correla-
tion between TAF1 expression and the number
of TAF1 binding sites. The other explanation is
that there exists a class of promoters in the ini-
tiation of which TAF1 does not play a role. This
is in agreement with previous tiling array-based
studies profiling TAF1 distribution genome-wide
(Kim et al. 2005).

In order to compare TAF1 binding across cell
lines, I merged TAF1 binding sites summits that
were close to each other from individual repli-
cates across all cell lines (see Methods for de-
tails) and examined the binding patterns of the
resulting set of 44,702 sites. 12,585 summits
were within 100 bp of a GENCODE V7 TSS,
additional 7,811 and 6,907 within 1 kb of a TSS,
8,538 were more than 1 kb upstream of the clos-
est TSS and 7,864 downstream of it. Thus the
majority of sites were associated with or close
to known TSSs yet a sizeable fraction was lo-
cated away from any known TSS. The strength
of TAF1 binding as measured in RPM decreased
with distance away from annotated TSSs with
the majority of intergenic and intragenic sites
being weaker than those close to TSSs (Figure
1.22D).

Using the merged set of TAF1 binding sites,
I sought to determine whether the lack or pres-
ence of TAF1 binding was consistent between
cell lines. To this end I compiled the set of all
TSSs expressed at more than 1 FPKM_cop 1o in
each of the five cell lines for which we have TAF1
binding data and compared the presence or ab-
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sence of TAF1 binding by clustering the result-
ing data matrix. A large cluster of T'SSs without
TAF1 binding in all cell lines emerged from this
analysis, and strikingly, it was also the group of
TSSs without CpG island in their vicinity (Fig-
ure [1.22/C)

We then asked how many of the intergenic
or intragenic TAF1 sites we could explain with
gene models derived from RNA-seq data. For
this purpose we used a merged set of gene mod-
els generated without applying expression level
filtering on the input data sets. About 20 % of
TAF1 sites located more than 1 kb away from
a TSS in each direction had a candidate novel
TSS located within 1 kb of the peak summit,
and close to 40 % of TAF1 sites between 100 bp

A
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and 1 kb upstream of known TSSs had candi-
date novel TSS within 100 bp (Figure [1.22D).
Very few TAF1 sites downstream of T'SS had a
corresponding candidate TSS models, however, I
note that the merge procedure is heavily biased
against shortening of 5’ exons and this might
be the explanation. The other 80 % of inter-
genic and intragenic TAF1 sites may either be
the result of RNA-seq assemblies bypassing the
promoter region or falling short of it, or they
may represent “shadows” of promoter looping to
enhancer regions and not real promoters. The
latter possibility is consistent with the lower
strength of ChIP signal characteristic of these
sites.

I grouped the sites into 9 groups depending

Reconstruction of miRNA primary transcripts
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Figure 1.20: Reconstruction of primary miRNA transcripts. (A) Comparison of GENCODE
and RNA-seq augmented annotations (merged assembly) to 1523 known miRNAs for evidence of
primary miRNA transcripts (left) and to 69 highly expressed miRNAs (in at least one of GM12878,
K562, human ES and HepG2, assayed with nanoString). Mature miRNAs were intersected with
exonic and intronic regions of sense and antisense transcripts. The fraction of miRNAs for which a
putative primary transcript was present increases in the merged assembly compared to GENCODE
v7, which is even more pronounced when only the highly expressed miRNAs are considered. (B)
Putative intronic promoter for mir-619, which is located within an intron of the SSH1 gene. A TAF1
site is situated upstream of the miRNA, suggesting the miRNA may be transcribed independently

from the gene from its own promoter.
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Figure 1.21: TAF1 binding sites. (A) Number of peak calls for individual replicates. (B) Num-
ber of peak calls for GM12891 and GM12892 cells, not used for subsequent analysis. (C) Distribution
of TAF1 binding sites (combined set) relative to GENCODE V7 TSSs.

on their position relative to the GENCODE V7
reference and the set of RNA-seq-derived tran-
script models, and clustered them according to
their presence or absence in each cell type. (Fig-
ure Fig.4.23E). Among the largest group (group
1), the GENCODE V7 TSS-associated sites, a
large core of sites present and TSSs utilized in
all cell lines is observed. In contrast, the sites lo-
cated away from annotated TSS tend to be more
highly cell type specific and present only in one
cell line (groups 2-9).

1.2.12 Identification of novel 5’
Transcription Start Sites

RNA-seq measurements have the potential to
identify novel transcription start sites, however,
there are several issue with the approach that
need to be considered and that highlight the
need for orthogonal information to increase con-

fidence in predictions. There can be two differ-
ent kinds of novel TSSs as illustrated in Figure
23] - novel 5’ exons derived from alternative 5’
end splicing events, and extensions of annotated
5" exons. As already, discussed, de novo tran-
script assemblies can, for a number of reasons,
be incomplete and thus miss the actual TSS; in
the same time, in cases in which internal exons
serve as alternative promoters, a separate tran-
script may not be assembled due to the simul-
taneous expression of the longer isoform or the
subsequent merge of the transcript into a longer
model. Extensions of annotated 5’ exons are par-
ticularly difficult to assess, as the phenomenon
of imprecise transcriptional initiation occurring
over a neighborhood of nucleotides is well es-
tablished; while very long extensions are more
likely to represent real new promoters, the inter-
pretations of shorter ones is difficult. Promoters
can in principle be both extended and shortened;
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however, the latter is particularly challenging for ~ Since 5’ exon extensions are difficult to interpret
assembly as RNA-seq library building is typi-  we initially focused our attention on novel 5’ ex-
cally performed using random hexamer priming, ons. The expressions patterns of these 5’ exons
which inherently results in lower coverage of the  (where the expression of the exons is defined as
very end of transcripts. the sum of the FPKMs of all transcripts con-

For these reasons, I aimed at utilizing or-  taining it) (Figure ) were similar to those
thogonal evidence to assess the assembly of 5>  of novel isoforms of protein coding genes (Fig-
transcript ends in our data. In addition to ure ) A lower fraction of these exons was
the TAF1 and RNA Polymerase II ChIP-seq supported by orthogonal TAF1 and CAGE ev-
data we generated, I also took advantage of idence compared to annotated TSSs at similar
genome-wide Capped Analysis of Gene Expres-  expressions levels (Figure 7F and G). Strik-
sion (CAGE) (Kodzius et al. 2006; Carninci et  ingly, almost none of the intergenic spliced tran-
al. 2006) generated as part of the ENCODE con-  scripts (lincRNA and TUCP) had TAF1 bind-
sortium (ENCODE Project Consortium 2011) ing to its 5’ end and a smaller fraction were
(See Methods for details on the use of CAGE  positive CAGE clusters (Figure [[.24C,H and I).
data). I first examined the relation of TAF1  This indicates that de novo assembly of inter-
binding, RNA Polymerase II loading and the genic spliced transcripts may not be as complete
presence of CAGE clusters to the expression as desired and/or some of them may utilize dif-
of the TSSs of GENCODE V7 protein coding ferent mechanisms of their transcription initia-
genes (Figure ) As discussed above, not tion. The resolution of TAF1 ChIP-seq data
all highly expressed T'SSs have associated TAF1  is not high enough to be useful for assessing 5’
binding (Figure ), however, the sensitivity  exon extensions, but this can be done by asking
of CAGE clusters was much higher, with more for precise base pair matching of aligned CAGE
than 90% of TSSs expressed at more than 10  read. A strikingly high proportion of 5 exon ex-
FPKM being CAGE-positive (Figure |1.24E). tensions, including the relatively few examples

The set of merged transcript models contains  of 5’ exon shortening, had orthogonal support in
9,787 instances of novel 5’ exons and 5,690 ex-  such manner. I use the BHLHE/(0 transcription
tensions of annotated 5’ exons, in addition to factor as a representative example of a gene with
the intergenic candidate lincRNAs and TUCP.  well supported novel TSSs in Figure

Figure 1.22 (preceding page): Complexity of genome-wide TAF1 binding patterns. (A)
TAF1 binds to most but not all expressed transcription start sites (TSSs). (B) Absence of TAF1
is due in some but not the majority of cases to poor read mappability around the TSS. (C) TSSs
without TAF1 binding sites tend to lack TAF1 binding in all cell lines and to also lack CpG islands
in their vicinity. Shown are all TSSs expressed at more than 1 FPKMcy,f 0 in all 5 cell lines
examined; according to the presence or absence of TAF1 binding or CpG island, a score of 1 (blue)
or 0 (light yellow) was assigned to it, and the resulting matrix was clustered hierarchically. (D,E)
Distribution of TAF1 binding sites relative to the GENCODE V7 annotation. The total number of
sites is indicated to the left of the plot in (E). (D) Binding sites found away from annotated TSSs
tend to be weaker. The maximum RPM for a TAF1 binding sites across all datasets is plotted. (E)
Orthogonal RNA-seq evidence from Cufflinks and Cuffmerge-derived transcript models for TAF1
binding sites not associated with annotated TSSs. For binding sites more than 1 kb away from a
TSS, a transcript model TSS within 1 kb of the TAF1 binding site was required. For binding sites
between 100 bp and 1 kb away from a TSS, a transcript model TSS within 100 bp of the TAF1
binding site was required. (F). TAF1 bindings sites not associated with GENCODE V7 TSS are
mostly seen in one cell line. According to the presence or absence of a TAF1 binding site in a cell
line, a score of 1 (red) or 0 (light yellow) was assigned to it, and the resulting matrix was clustered
hierarchically for each of 9 groups of TAF1 binding sites. 1) TAF1 sites within 100 bp of a TSS, 2)
TAF1 sites > 1 kb upstream of a TSS with RNA-seq evidence, 3) TAF1 sites > 1 kb downstream
of a TSS with RNA-seq evidence, 4) TAF1 sites 100 bp to 1 kb upstream of a TSS with RNA-seq
evidence, 5) TAF1 sites 100 bp to 1 kb downstream of a TSS with RNA-seq evidence, 6) other TAF1
sites > 1 kb upstream of a TSS, 7) other TAF1 sites > 1 kb downstream of a TSS, 8) other TAF1
sites 100 bp to 1 kb upstream, 9) other TAF1 sites 100 bp to 1 kb downstream of a TSS.
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Figure 1.23: Different types of novel 5’ transcirpt ends.

1.2.13 Alternative promoter
usage

Initiation of transcription from alternative pro-
moters is a well-established mechanism for gen-
eration of transcript diversity with a number
of examples known (Landry et al. 2003; Wu
et al. 1999; Tasic et al. 2002). To esti-
mate how prevalent overall this phenomenon is
in the human genome we examined the num-
ber of alternative T'SSs utilized by each gene as
a function of their expression levels. Of 9,939
genes with individual GENCODE v7 TSSs ex-
pressed at more than a conservative threshold of
5 FPKMon 10, 5,553 (~56%) expressed only a
single TSS passing that threshold, 2,398 (24%)
expressed two TSSs, and 1,988 (20%) expressed
more than two TSSs. (Figure [1.24L). In addi-
tion, 1,494 genes had novel 5 exons expressed
at more than 5 FPKM o5 1, (Figure )7 and
for both annotated T'SSs and novel 5’ exons, re-
laxing this threshold results in the detection of
a larger number of alternative promoter usage

events (Figure [1.24M).

1.3 Discussion

A primary analysis of the human polyadenylated
transcriptome was presented. The results reveal
both the information richness of datasets gen-
erated with RNA-seq technology and the com-
plexity of transcription in human cells. In the
same time, they also highlight a number of chal-
lenges to data interpretation presented by the
very same transcriptome complexity and the im-
perfections of current experimental and analyti-
cal tools. Below, I discuss the impact of this kind
of RNA-seq measurements on the current status
of our knowledge about the transcriptome, the
major remaining areas of uncertainty and the

expected further advances that will be needed
to resolve them.

1.3.1 The growing complexity of
the human transcriptome

As shown here and by others (Djebali et
al.  2012), contemporary RNA-seq measure-
ment have the potential to greatly increase both
the number of isoforms of known genes and
the number of transcripts belonging to various
classes of intergenic, anti-sense and other more
or less exotic types of transcription events (Gin-
geras 2009). However, this same sensitivity also
presents a great challenge in distinguishing the
products of transcriptional noise from functional
transcripts. This is a problem to which in my
opinion a satisfactory solution has not yet been
found and I do not claim to have solved it here
eithelﬂ Reasoning that erring towards a more
conservative set of transcripts is more desirable
for the purpose of generating interesting hypoth-
esis with direct biological relevance for further
investigation, a number of filters designed to re-
move as much of noise products and computa-
tional artifacts as possible were applied. Thus,
the final set of transcripts expands on the GEN-
CODE v7 annotation with less than 40,000 novel
isoforms of protein coding genes, ~3,500 can-
didate IncRNAs and ~2,500 TUCPs. The in-
crease in the number of splice junctions was pro-
portionally significantly larger and even though
the majority of them are poorly supported, large
numbers of well-supported novel splice junctions
were left out of the final set of transcript mod-
els at various steps in the computational anal-
ysis pipeline. For each set of novel or anno-
tated elements of the transcriptome (splice junc-
tions, exons, known isoforms of protein coding
genes, novel isoforms of protein coding genes,
intergenic non-coding RNAs) the same pattern

1This is just as true in 2014 as it was when these words were originally written in 2011
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is observed - very large numbers of poorly sup-
ported/abundant and a small number of highly
abundant and well supported elements, with a
continuum between them. Which elements are
included and which are not is currently deter-
mined by setting thresholds that are somewhat
biologically informed but still arbitrary. Finding
the right balance in the necessary trade-off be-
tween sensitivity and specificity is an open chal-
lenge for the field; however, finding such a bal-
ance may be in principle impossible since func-
tional transcripts can be expressed at relatively
low levels while the noise products from highly
expressed loci are expected to be also relatively
highly abundant. For example, the important
regulator of neuronal fate NRSF is usually ob-
served to be expressed in single-digit FPKMs,
and few IncRNAs are detected at high levels in
each individual cell line even though large num-
bers of them were found to be of functional im-
portance when knocked down in mouse embry-
onic stem cells by a recent study (Guttman et al.
2011) (although our data is for human cells, it is
reasonable to expect that the general patterns of
IncRNA expression are not drastically different
between the two species).

The answers to several open questions in the
field as well as the interpretation of observa-
tions for individual loci by researchers looking
to more deeply investigate their gene of inter-
est are highly dependent on the approach to-
wards this problem. Both the extent of tran-
scriptional activity in the human genome and
the prevalence of functional alternative splicing
events have been widely debated (Kapranov et
al. 2002; Kapranov et al. 2007; Sorek et al.
2004; Wang et al. 2008; Dinger et al. 2009;
van Bakel et al. 2010; Clark et al. 2011; Mer-
cer et al. 2011); how abundance levels relate
to distinguishing noise products from functional
transcripts is at the heart of this debate.
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Nevertheless, the number of annotated tran-
scripts in the human genome is expected to grow
considerably as more and more information de-
rived from RNA-seq measurements is incorpo-
rated into annotations. This is a reasonable ex-
pectation given that we have surveyed a wide
and diverse collection of cell lines and tissues
and the discovery of most novel elements did not

reach saturation (Figures [[.7B, [[.14N, [.I8B.E
and F).

1.3.2 Reliability of
transcript-level quantification

This growth in complexity, however, has the po-
tential to even further complicate data analysis
and results interpretation.

The accurate quantification of individual
transcripts of a gene is of critical importance
for the analysis of the prevalence and tissue-
specificity of alternative splicing and alternative
transcription initiation and termination events.
However, accurately and confidently assigning
the still short reads generated in RNA-seq exper-
iment to transcripts in a complex locus is still not
a trivial computational tas ; while current tools
employ highly sophisticated algorithms for de-
convolving the expression levels of individual iso-
forms, this becomes essentially impossible when
locus complexity grows beyond a certain thresh-
old as the statistical models employed often be-
come unidentifiable. Yet, as more and more new
transcripts are uncovered by the sequencing of
wider panels of cell lines and tissues, the com-
plexity of annotations is expected to grow fur-
ther and further and make this an ever more
intractable problem.

The current output of these program suggest
the existence of a number of potentially inter-
esting biological phenomena in the data, includ-
ing the widespread occurrence of major isoform

Figure 1.24 (preceding page): Identification and orthogonal support for novel 5’ tran-

script ends.

(A-C) TAF1, RNA Polymerase II and CAGE cluster profiles around the TSS of

GENCODE V7 protein coding genes (A), candidate novel 5’ exon TSS of protein coding genes (B)
and candidate IncRNAs and TUCPs (C). TSSs are sorted by decreasing expression level. (D), (F),
(H) TAF1 coverage of expressed GENCODE V7 protein coding gene TSSs (C), candidate novel 5’
exon TSSs (F) and candidate IncRNAs and TUCPs (H) in 5 ENCODE cell lines. (E), (G), (I)
CAGE cluster coverage of expressed GENCODE V7 protein coding gene T'SSs (E), candidate novel
5” exon TSSs (G) and candidate IncRNAs and TUCPs (I) in 5 ENCODE cell lines. (J). Support by
CAGE reads for extended and shortened 5’ exons. (K) Abundance levels and cell type specificity of
novel TSSs. (L-M) Number of expressed annotated (L) and novel (M) TSS per gene as a function

of expression levels.
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Figure 1.25: Isoform-level quantification, fragment support for known and novel junc-
tion, and TAF1 binding sites for the BHLHEA40 locus..

switch events with high tissue specificity (Fig-
ure ), the utilization of multiple alternative
promoters, and the surprisingly high abundance
of what appear to be NMD transcripts (Figure
1.1800), phenomena suggested to play significant
role in the generation of proteome diversity and
in gene regulation. However, their reality is to
a large extent contingent on how accurately the
underlying biological reality is reflected in this
output. Thus, conclusive confirmation or refuta-
tion of these phenomena will have to await the
arrival of data or computational tools that al-
low more confident deconvolution of transcript
levels.

This is also relevant to downstream appli-
cations of RNA-seq quantification feeding into
other areas of transcriptional biology. For ex-
ample, complete understanding of the mecha-
nisms of transcriptional regulation is not possible
without complete understanding of the relation-
ship between the interaction of sequence-specific

transcription factors, general transcription fac-
tors, RNA polymerase and chromatin state at
promoters, on one side, and transcript levels, on
the other. Working with simpler annotations of
the genome allows for mostly ignoring the issue;
however, if alternative promoter use is indeed as
ubiquitous as suggested by the data, the relative
use of these T'SSs will have to be very finely and
accurately parsed and integrated with orthogo-
nal ChIP-seq data for such understanding to be
achieved.

Anecdotal evidence suggests that numerous
suspicious quantification results can be found.
For example, Figure shows the case of the
FOSL2 gene, for which 5 isoforms are annotated
in GENCODE, and additional 6 were presented
in the merged assembly generated here. Requan-
tification on the merged assembly suggested that
two of the novel isoforms (originating from novel
alternative promoters) are presented at FPKM
levels comparable to those of the annotated iso-



39

forms; however, these isoforms are supported by
just 1 spliced RNA-seq fragments spanning their
unique splice junctions, while the corresponding
unique splice junction of the annotated isoforms
had coverage of 45 fragments, thus it is morel
likely that the abundance of the novel isoforms
is in fact significantly lower, even though these
alternative promoters had orthogonal TAF1 oc-
cupancy support.

1.3.3 Transcript reconstruction
and resolving transcript ends

Both alternative transcript initiation and alter-
native polyadenylation (Di Giammartino et al.
2011; Sandberg et al. 2008) have been suggested
to play important role in gene expression regu-

FOSL2

RefSeq transcript models

lation. Due to the nature of RNA-seq library-
building protocols employing random hexamer
priming, the extreme ends of transcripts are
usually underrepresented in the final libraries,
which, combined with the lower coverage nat-
urally expected for lower-abundance transcripts,
makes it difficult to precisely determine the exact
beginning of a transcript or its polyadenylation
site (reads containing portions of the polyA tail
are also not expected to map to the genome).
CAGE data provides information about capping
events, and to the extent that capping events
correspond to transcriptional initiation events
(which is not always the case; Affymetrix EN-
CODE Transcriptome Project 2009), about pro-
moters. In addition, several approaches have
been devised to map polyadenylation sites (Oz-

UCSC transcript models

AK055915 IEG—

FosLommmf————————— oo} —
rosi2r - g 1 § —]
GENCODE v7 transcript models
t l [ 2
. N QO <
- N X 0 ~ ]
[ [ £
ice juncti g £8 88 &
Known splice junctions 232 28 B
I 1 o o 1 10
l.1 0 0 0 0 0 ©
0 0 0 1 0 10
= i 0 o 0 0 1 20
I 9 & @SN 13 30
| e > »II [ [ 2 1 0 0
................... P 2
] s 2 - 1[S00
. . . | S aamm———— | 0 0 4 1 0
Novel splice junctions
I NN NNNNNNNNNNNNNNNN NN NN ' 0 0 1 1 0
- o o o 0 o
I 1 0 0 0 1 0
II o o 0 o o
] { o o 1 o0 1
I > I o o 0 0o 0
- o 0o o 0 o
— e o o o 0 o
TAF1 binding sites "“[I'l S Emeem
| o 0o 0o o o
pos] o o o o o
H1-hEsC | mm mm_ 1y 9. 0 0 0.d
t o 0o o o 1
o 0o o 0 o
- - o 1 6 1 0
HepG2 - ; 8 e Tete e
Hela - - - b i e
|*”[ o 0o o o 1
iaa o o o 0 o
Kssz | 0 o 0 o 0
N . . . (J
Final merged and filtered Cufflinks transcript models 5 8 ~
3 1 g ¥ 8 9 8 2
bl . S 439 o 8 £
I 4 O I I I ¥ u
l & + I 002 0311116 419 024 0
b ] + 000 000 000 061 000 2
b L | 000 010 000 000 015 4
L & + N 000 0.00 0.02 0.00 0.00 6
— L + 040 0451060 4.86 0.66 8
I & + + . 002 0.00 0.00 0.00 0.01 10
I & + + . 0.00 0.02 1.07 021 0.03 12
[r— ™ t ¥ 002 004 252 032 o.oo-
i "] Il — 0.03 021 9.64 444 0.17
" | I 004 005 160 020 0.02
' ! ! . 068 06852 611 148

Figure 1.26: Isoform-level quantification, fragment support for known and novel junc-
tion, and TAF1 binding sites for the FOSL1 locus.



solak et al. 2010; Jan et al. 2011). However,
building such libraries for large numbers of sam-
ples is a practical challenge, and their interpre-
tation, as demonstrated by the discovery that
CAGE tags do not always correspond to tran-
scription initiation events and the fact that they
still only provide information about the extremes
of transcripts but not about the connectivity be-
tween, is not straightforward.

Here it has been possible to identify novel al-
ternative 5’ exons and to leverage CAGE data
to confirm the extent of 5’ extensions of known
5 exons. In addition, in many cases what seems
to represent either 3’'UTRs extending long past
the annotated polyA site or unspliced transcripts
originating in the 3’'UTR vicinity was observed.
Such cases are of great interest if shown to
be continuous with the annotated transcript as
they can change the set of miRNAs targeting it
or play other, so far unappreciated, regulatory
roles. However, we are at present unable to ex-
amine the nature of these transcriptional events
as current short reads can be effectively used for
transcript reconstruction when splice junctions
are present but precisely defining transcripts for
long stretches of continuously overlapping reads
is challenging.

The same issue was confronted when analyz-
ing intergenic transcripts. A very large num-
ber of monoexonic intergenic transcripts are ob-
served (Figure[l.14K and L). A majority of these
consist of single fragments mapping to intergenic
space but large numbers of regions with high
read coverage are also seen. Determining where
these transcripts begin, and if they have biolog-
ically precisely defined ends, is of crucial impor-
tance for assessing their functional significance,
and elucidating the mechanisms of regulation of
their expression.

It was also observed that the 5’ ends of in-
tergenic spliced transcripts (candidate IncRNAs
and TUCPs) as currently defined using recon-
struction from RNA-seq are poorly supported by
TAF1 binding and CAGE tags (Figure ,
K, M and N). This suggests that due to the gen-
erally low expression levels of these transcripts,
they have not been fully reconstructed and either
large stretches of their first exons or whole first
exons are missing. Alternatively, TAF1 load-
ing and message capping may not play a role in
the transcription initiation and biology of these
transcripts. FEither way, establishing that one
of these options is the case by completing their
transcript models is of great importance for un-
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derstanding the biology of these RNAs.

1.3.4 Absolute numbers of
transcripts per cell

FPKM values reflect the proportional abundance
of transcripts in a sequencing library normalized
for transcript length. Ideally, however, the ac-
tual numbers of copies of a transcript per indi-
vidual cell should be obtained. This informa-
tion is important both for evaluating the func-
tional significance of transcriptional events (i.e.
if a transcript is found at what amounts to one
copy per ten cells, then it is more likely to be
a product of transcriptional noise than if it is
found at multiple copies per cell) and for de-
riving mechanistic insights into transcript func-
tions. For example, in addition to other biologi-
cal roles, both textitcis- and trans- action mecha-
nisms have been suggested for how IncRNAs may
participate in the regulation of transcription in
the nucleus (Koziol & Rinn 2010). Naturally,
this leads to the expectation that cis-acting
transcripts that function at the genomic loca-
tion which they are transcribed from, of which
there are only two copies, should be present at
very limited number of transcript copies per cell
while trans-acting transcripts should be on aver-
age more abundant. For this issue to be resolved,
measurements of the absolute transcript counts
per cell are needed. At present, it is difficult to
obtain that information from RNA-seq data, as
RNA sequencing libraries are prepared from bulk
RNA isolated from millions of cells. It is possi-
ble to calculate rough estimates of these numbers
(Mortazavi et al. 2008); however, this requires
precise tracking of cell numbers and the amount
of RNA going into libraries. This is something
that’s not easily tractable for tissues, and even
when it is available for cell lines, it is only a
rough guess with major uncertainties associated
with it.

1.3.5 Looking towards the future

I expect this issue and a number of the other
challenges outlined so far to be resolved with
the further advancement of sequencing technol-
ogy. Very long read lengths, ideally covering the
full length of transcripts, will be needed in or-
der to enable the precise demarcation of tran-
script structure and transcript ends, particu-
larly around polyadenylation sites and for inter-
genic non-coding transcripts. For truly accurate



transcript-level quantification, an additional re-
quirement for large numbers of such reads ex-
ists, in order to fully cover the dynamic range of
transcript expression levels in bulk RNA preps.
Single-cell transcriptomics (Islam et al. 2011;
Tang et al. 2009; Tang et al. 2010; Tang et al.
2011) combined with single-molecule sequencing
and single-molecule RNA FISH measurements
should allow the determination of absolute tran-
script numbers on the level of individual cells,
and resolve several of the outstanding questions
in the field.

1.4 Methods

All data processing and analysis for which no
software packages are referenced was performed
using custom-written Python scripts.

1.4.1 Cell growth and RNA
harvesting

Cells were grown according to established EN-
CODE protocols (http://genome.ucsc.edu/
ENCODE/protocols/cell/) and RNA prepared
following the protocol described in Mortazavi et
al. 2008.

1.4.2 RNA-seq data generation

Total RNA was subjected to two rounds of poly A
selection and libraries built following the proto-
col described in Mortazavi et al. 2008. Libraries
were sequenced as 2x76bp reads on the Illumina
Genome Analyzer. Human Body Map data was
kindly provided by Dr. Gary Schroth and the
Expression Applications group at Illumina.

1.4.3 Read mapping

The last base pair of each read was removed.
The resulting 2x75bp reads were mapped using
TopHat (Trapnell et al. 2009, version 1.0.14)
in de novo mode against the hgl9 verion of the
human genome. The same procedure was ap-
plied to polyadenylated RNA-seq data from 16
tissues generated using Illumina HiSeq 2000 as
part of the Human Body Map 2 project. The
de movo discovered splice junctions from all cell
lines and tissues were combined with the set
of splice junctions in the GENCODE v4 anno-
tation to derive an extended set of junctions.
Reads were mapped again using TopHat (ver-
sion 1.0.14) against the male or female version of
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the hgl19 version of the human genome with the
extended set of junctions supplied while keep-
ing the de novo junction discovery option turned
on. All subsequent analysis was done on the re-
sulting alignments. Read mapping statistics are
provided in Table

1.4.4 Transcript models discovery,
merging and quantification

Cufflinks (Trapnell et al. 2010; Trapnell et al.
2012; version 1.0.1) was used to assemble tran-
scripts in de novo mode from the TopHat align-
ments. Each sample was processed individually.
The assemblies from all the samples were merged
together with Cuffmerge (version 1.1.0) into a
large transcript super-set using GENCODE v7
as a reference annotation. Assembly was done
in fully de novo mode rather than in reference
annotation based transcript (RABT; Roberts et
al. 2011) because RABT assemblies contain a
large number of clearly artifactual transcripts
(especially when a complex annotation with a
large number of isoforms is used such GEN-
CODE). Such false positives are often unique to
each sample and when merged result in a very
large number of isoforms per gene most of which
do not correspond to real transcript molecules
and which make accurate quantification impos-
sible. T also found that merging transcripts us-
ing the unfiltered de novo Cufflinks assemblies
also resulted in an unacceptably high number
of likely artifactual transcript models (although
significantly fewer than with RABT assemblies),
particularly transcripts with extremely large re-
tained introns. Therefore I aimed to minimize
the number of artifacts in the final assemblies
by applying multiple filters before and after the
merge step.

As an initial step, I classified new transcripts
according to their relation to the annotation us-
ing Cuffcompare. Only transcripts classified as
unknown intergenic and novel isoforms of known
genes (Cuffcompare class codes “j” and “u”)
were retained. In addition, I required that novel
isoforms of known genes had FPKM_;on 10 > 1.
The resulting set of transcript models for each
cell line was used to run Cuffmerge.

The Cuffmerge output was filtered as fol-
lows. First, all retained introns relative to the
Cuffmerge output itself were filtered out, i.e.
if an exon had the same start and end posi-
tions as the left exon and the right exon re-
spectively in any pair of exons in the annota-


http://genome.ucsc.edu/ENCODE/protocols/cell/
http://genome.ucsc.edu/ENCODE/protocols/cell/

tion, the transcript containing it was removed
from annotation. Next, all GENCODE v7 tran-
scripts that were not present in the merge were
added to the assembly according to the follow-
ing criteria: for multiexonic transcripts, if the
exact chain of splice junctions of a GENCODE
v7 transcript was not present in the merged as-
sembly, the transcript was added to it; there is
no good criteria to define presence of absence
for monoexonic transcripts so those were con-
sidered present if there was a monoexonic tran-
script overlapping them. After that step re-
tained introns were filtered out again, this time
against the GENCODE v7 annotation. Finally,
because multiple occasions of extremely long 3’
UTRs being assembled (usually due to the pres-
ence of overlapping transcript models in multiple
cell lines) were observed, which would artificially
drive down FPKM estimates by increasing the
length of transcripts, all 3'UTRs were trimmed
down to a maximum length of 5kb.

1.4.5 Genome and transcript
models, annotations, and
classification

Two transcript and gene model annotation
sets for the human genome were used - ver-
sion 7 of the GENCODE annotation (Har-
row et al.  2006; Harrow et al.  2012),
downloaded from |http://hgdownload-test.
cse.ucsc.edu/goldenPath/hgl19/encodeDCC/
wgEncodeGencodeV7/beta/ and the refSeq an-
notation, downloaded from http://genome.
ucsc.edu/. Transcripts and genes were classi-
fied into protein coding and various non-coding
classes according to the biotype classification
in GENCODE V7, and the same classifica-
tion was used where necessary for refSeq genes.
CpG island annotations were downloaded from
http://genome.ucsc.edu/|and TSSs were clas-
sified as CpG or non-CpG according to whether
a CpG island was present within 1kb of the
TSS. For novel transcript models, ORFs were
annotated using the longest ORF found in the
transcript; transcripts were classified as puta-

J
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Dy + Dy

tive NMD substrates if the ORF ended more
than 50bp before the position of the last splice
junction.

1.4.6 Non-coding RNA
annotation and classification

Novel non-coding RNA were classified follow-
ing an approach similar to the computational
pipeline for IncRNA annotation described in
Cabili et al 2011. I only considered spliced
intergenic unannotated transcripts as classi-
fied by Cuffcompare. For each transcript, the
codon substitution frequency (CSF) score was
calculated using PhyloCSF (Lin et al. 2011)
and the 45 vertebrate multiple genome align-
ment for the hgl9 version of human genome,
downloaded from http://hgdownload.cse.
ucsc.edu/goldenPath/hgl9/multiz46way/
maf/. PhyloCSF was also run on annotated
IncRNA and protein coding transcript from
GENCODE V7 to establish thresholds for de-
termining whether a transcript is likely to be
coding or not (Figure . In addition to that,
each spliced intergenic transcript was translated
in all reading frames in both orientations, and
scanned for the presence of protein domain anno-
tated in the PFAM database (Punta et al. 2012;
http://pfam.sanger.ac.uk/search). Tran-
scripts with positive CSF scores and transcripts
containing PFAM domains were classified as
TUCPs.

1.4.7 Tissue specificity score
calculation

The JS tissue specificity score was calculated as
follows (Cabili et al. 2011), with the modifica-
tion that for splice junctions, due to the highly
quantized nature of the fragment counts at the
low end and the difficulty to properly normal-
ize fragment counts for sequencing depth in such
cases, a cap of 10 distinct fragment was applied
to all numbers before calculating the JS score:

The Jensen-Shannon divergence of two dis-
crete probability distributions Dy and Ds is de-
fined as:

H(D:) + H(D-)

JSD(Dy, Dy) = H(

2

2

)
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http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeGencodeV7/beta/
http://genome.ucsc.edu/
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http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/maf/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/maf/
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43

GENCODE v7 phyloCSF score distribution

0.204

== lincRNA
=#= protein coding

0.06

0.054

0.044

0.034

Fraction transcripts

0.024

0.014

0.00-

T L] L] L] L] L] L] L] L] L]
-1000 -900 -800 -700 -600 -500 -400 -300 -200 -100
decibans

Figure
coding and lincRNA transcripts.

where H(P) is the Shannon entropy for a dis-
crete distribution P defined as:

H(P)=— Zpi * log(pi) (1.2)
i=1
The JS distance JSg;s: is then defined as fol-

lows:

JSaist(D1, Do) = /JS(D1, D2) (1.3)

For a vector with expression values F
{e1,e2,...,en}, a JS specificity score is then de-
fined with respect to sample/tissue i as follows:

JSsp(Eli) =1 — JSaist(E, E") (1.4)

where E? is the vector with maximum ex-
pression specificity, i.e. a positive FPKM value
in sample/tissue ¢ and FPKM = 0 everywhere
else:

E' = {0;1€1,0i2€2, ..., Sinen }

where §;; is the Kronecker delta function.

(1.5)
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1.27: PhyloCSF score distribution for annotated in GENCODE V7 protein

Finally, the JS specificity score JS,, is
the maximal specificity score across all sam-
ples/tissues, i.e.:

JSsp(E) = argmax (JSs,(Eli))
i={1,..,|E|}

(1.6)

1.4.8 Nanostring miRNA
expression measurements

Measurements of miRNA expression using the
miRNA Nanostring assay were performed on bi-
ological replicates following the manufacturer’s
instructions. Briefly, total RNA was extracted
with the mirVana miRNA isolation kit and
the remaining genomic DNA was removed by
TURBO DNA-free kit (both kits are from Am-
bion, Life Technologies, NY). 100ng of total
RNA, together with “spike-in” positive and
negative control miRNAs, was annealed and
ligated to the miRNAtags.  After the un-
used miRNAtags were cleaned up, the chimeric
miRNA:miRNAtag molecules were hybridized
to the reporter codeset and capture probeset
overnight. The hybridization mixture was puri-



fied on the nCounter Prep Station and the target
molecules were immobilized and aligned on the
nCounter cartridge. The nCounter cartridge was
then scanned on the nCounter Digital Analyzer
at maximum resolution. The collected data was
further processed with nSolver analysis software
to calculate the normalized miRNA expression
level of each sample.

1.4.9 ChIP-seq data alignment
and processing

ChIP-seq experiments were performed as de-
scribed previously (Johnson et al. 2007), with
the modification that a single round of PCR am-
plification was used instead of the majority of
datasets (HeLa TAF1 being the only exception).
The following antibodies were used: mouse mon-
oclonal against TAF1 from Santa Cruz (sc-735),
mouse monoclonal against RNA Polymerase II,
clone 4H8 from Abcam (ab5408), mouse mono-
clonal against RNA Polymerase II, clone SWG16
from (MMS-126R). Libraries were sequenced on
the Illumina Genome Analyzer and reads of 36
bp size were generated. Each replicate contained
at least 12 million uniquely aligned reads. Pre-
cise read mapping statistics are provided in Ta-
ble .2

Reads were aligned according to ENCODE
standards against the male or female version
of human genome (with random chromosomes
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and haplotypes excluded) depending on the
sex of the cell line (male for HI-hESC and
HepG2, female for HeLa, GM12878 and K562)
using Bowtie (Langmead et al. 2009), ver-
sion 0.12.7, with the following options: -v 2 -t
--best --strata. TAF1 peak calling was
done against appropriate input datasets using
ERANGE 4.0 (Johnson et al. 2007), with the
following settings: ‘‘--minimum 2 --ratio 3
--shift learn --revbackground --listPeak.
TAF1 peaks were merged according to the fol-
lowing procedure: if two peak summits were
closer than 200 bp to each other, they were
merged, with the new summit becoming the
summit from the dataset whose reads per million
(RPM) for the whole peak region were higher;
this procedure was iterated across all datasets.

CAGE data processing

Tracks containing CAGE clusters and BAM
files with individual read alignments were down-
loaded from the ENCODE portal at the UCSC
Genome Browser (http://genome.ucsc.edu/
ENCODE/. CAGE reads from all subcellular frac-
tions were considered. In order for a TSS to be
considered covered by a CAGE cluster, a CAGE
cluster on the same strand as the direction of
transcription was required. For the analysis of
5’ extensions, precise matching of 5’ ends of at
least one CAGE read on the same strand as the
direction of transcription was required.


http://genome.ucsc.edu/ENCODE/
http://genome.ucsc.edu/ENCODE/
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Table 1.1: Read mapping statistics for the RN A-seq datasets

Cell Line Read Description Insert Rep Unique Unique Multi Multi
Length Size Splices Splices
H1-hESC 2x75 ES cells ~200 Rep4d 45,317,222 8,618,025 1,933,958 92,172
H1-hESC 2x75 ES cells ~200 Repl 63,216,759 12,781,989 1,799,576 94,991
H1-hESC 2x75 ES cells ~200 Rep2 64,849,492 12,937,223 1,996,326 106,373
H1-hESC 2x75 ES cells ~200 Rep3 62,721,190 12,417,189 2,061,864 107,319
GM12878 2x75 lymphoblastoid  ~200 Rep2 152,774,148 23,930,558 6,259,715 420,288
GM12878 2x75 lymphoblastoid  ~200 Repl 91,217,874 15,146,110 3,502,071 202,872
K562 2x75 myelogenous ~200 Repl 133,776,448 27,150,397 4,809,472 349,097
leukemia
K562 2x75 myelogenous ~200 Rep2 121,520,650 22,256,714 4,333,136 261,089
leukemia
HSMM 2x75 myoblasts ~200 Repl 97,833,543 23,352,403 1,997,844 199,498
HSMM 2x75 myoblasts ~200 Rep2 98,203,018 23,229,216 2,234,108 199,772
HUVEC 2x75 umbilical vein ~200 Repl 74,294,272 17,207,804 2,053,278 167,529
endothelial
HUVEC 2x7T5 umbilical vein ~200 Rep2 54,420,816 12,607,003 1,699,903 113,729
endothelial
HeLa 2x75 HeLa ~200 Repl 49,453,158 9,301,487 2,060,411 125,644
HeLa 2x75 HelLa ~200 Rep2 75,223,386 14,527,666 2,603,614 170,225
HepG2 2x75 liver carcinoma  ~200 Repl 80,554,751 17,831,315 2,762,367 206,825
HepG2 2x75 liver carcinoma  ~200 Rep2 94,588,954 21,423,792 3,300,392 324,730
MCF7 2x75 breast cancer ~200 Repl 109,216,869 16,770,366 3,191,573 143,875
MCF7 2x75 breast cancer ~200 Rep2 87,203,914 21,226,373 2,032,830 251,913
NHEK 2x75 keratinocytes ~200 Repl 79,396,401 12,110,678 2,642,317 292,371
NHEK 2x75 keratinocytes ~200 Rep2 89,043,589 21,805,036 1,967,691 254,190
NHLF 2x75 lung fibroblasts ~200 Repl 87,308,499 20,557,003 1,786,840 149,586
NHLF 2x75 lung fibroblasts ~200 Rep2 81,888,840 19,744,610 1,344,427 150,557
adipose 2x50+1x75 ~200 Repl 184,034,305 18,186,787 9,474,379 317,902
adrenal 2x504+1x75 v200 Repl 182,891,875 15,312,732 8,797,765 376,596
brain 2x50+1x75 ~200 Repl 174,392,333 14,623,420 7,236,006 196,026
breast 2x50+1x75 ~200 Repl 183,725,194 16,979,055 8,734,757 346,215
colon 2x504-1x75 ~200 Repl 201,909,819 17,009,282 11,690,564 297,609
heart 2x50+1x75 ~200 Repl 197,439,159 18,189,625 14,170,195 416,843
kidney 2x504-1x75 ~200 Repl 192,378,197 15,596,359 11,063,331 281,585
liver 2x50+1x75 ~200 Repl 187,757,362 25,697,250 10,039,834 1,193,880
lung 2x5041x75 ~200 Repl 194,249,068 19,991,574 9,938,722 702,441
lymph 2x50+1x75 ~200 Repl 193,396,478 18,473,375 12,780,186 1,271,624
node
ovary 2x504-1x75 ~200 Repl 198,207,292 20,096,511 10,231,268 317,030
prostate 2x50+1x75 ~200 Repl 205,065,901 21,109,090 10,372,722 302,181
muscle 2x504+1x75 ~200 Repl 197,504,306 23,329,011 9,776,756 340,782
testes 2x50+1x75 ~200 Repl 197,739,813 23,635,613 8,468,114 349,225
thyroid 2x504+1x75 ~200 Repl 194,749,061 23,851,093 7,835,229 319,566
WBC 2x50+1x75 ~200 Repl 199,299,458 24,007,769 10,147,780 366,024
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Table 1.2: Read mapping statistics and library characteristics for ChIP-seq datasets

Cell Line Factor/Antibody Replicate Uniquely aligned reads Library Complexity

GM12878 Pol2-CTD-4H8 Repl 28,110,098 0.78
GM12878 Pol2-CTD-4H8 Rep2 24,404,299 0.88
GM12878 Pol2-CTD-8WG16 Repl 27,121,649 0.82
GM12878 Pol2-CTD-8WG16 Rep2 27,783,933 0.82
GM12878 TAF1 Repl 18,374,847 0.55
GM12878 TAF1 Rep2 22,148,439 0.59
HI-hESC  Pol2-CTD-4H8 Repl 17,359,575 0.89
H1-hESC Pol2-CTD-4HS8 Rep2 19,062,392 0.77
HI-hESC  Pol2-CTD-8WG16  Repl 20,587,873 0.76
H1-hESC Pol2-CTD-8WG16 Rep2 18,325,024 0.81
H1-hESC TAF1 Repl 14,023,010 0.87
H1-hESC TAF1 Rep2 13,217,524 0.85
HeLa Pol2-CTD-8WG16 Repl 21,848,831 0.87
HeLa Pol2-CTD-8WG16 Rep2 25,528,202 0.83
HeLa TAF1 Repl 28,472,126 0.53
HeLa TAF1 Rep2 11,429,207 0.9
HepG2 Pol2-CTD-4HS8 Repl 18,242,505 0.91
HepG2 Pol2-CTD-4H8 Rep2 33,930,680 0.88
HepG2 Pol2-CTD-8WG16 Repl 14,722,736 0.71
HepG2 Pol2-CTD-8WG16 Rep2 22,030,475 0.83
HepG2 TAF1 Repl 18,580,720 0.84
HepG2 TAF1 Rep2 16,568,099 0.79
K562 Pol2-CTD-4HS Repl 9,798,768 0.85
K562 Pol2-CTD-4H8 Rep2 23,095,649 0.73
K562 Pol2-CTD-8WG16 Repl 29,190,954 0.84
K562 Pol2-CTD-8WG16 Rep2 26,469,081 0.78
K562 TAF1 Repl 17,018,556 0.89
K562 TAF1 Rep2 19,987,210 0.78
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Simulation-based characterization of transcript as-

sembly and quantification from short-read RN A-seq

data

& his chapter contains the results of a simulation aimed at understanding the performance of

Abstract

The
transcriptome diversity using short-read
RNA-seq data is inherently limited by
the performance of the software used to
carry it out. Anecdotal evidence has pre-
sented numerous examples of computa-
tional artifacts significantly affecting bi-

reliability of the analysis of

ological conclusions. To clarify some of
these issues, a simulation study of some
of the most often used RN A-seq quantifi-
cation and transcript reconstruction tools
was carried out. Its results place mini-
mum bounds on the fraction of false pos-
itives and false negatives in the real-data
analysis presented in the previous chapter.
I also examine the effect of several charac-
teristics of RN A-seq datasets that are sus-
pected to influence quantification and/or
assembly but simulations published in the
past have so far not modeled.

2.1 Introduction

The currently existing high-throughput sequenc-
ing technologies that are capable of delivering

software performing transcript-level quantification and/or assembly. It was carried out af-
ter the work presented in the previous chapter was completed and as a result did not inform

the needed for RNA-seq sequencing depth all
produce short reads, much shorter than the
length of mRNA molecules. Read lengths have
increased significantly with the development of
the technology, from 25bp around 2007 to up
to 2x250bp and even longer now. However,
the longer reads are not necessarily optimal for
RNA-seq applications (unless they cover full-
length mRNAs, which at present they do not),
for reasons outlined in the Methods section of
this chapter, thus the analysis of RNA-seq data
faces the following common challenges:

1. Aligning of short reads to the genome,
in a splice-aware manner that allows the
discovery of previously unannotated splice
junctions that are present in the data

2. The quantification of gene expression lev-
els, at the gene and at the transcript level.
The latter is important on its own as it
would ideally provide reliable information
on any differential regulation of splicing,
transcriptional initiation or polyadenyla-
tion between samples, but it is also vital
for the accurate quantification on the gene
level (again, see discussion below in the
Methods section).
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Figure 2.1: Strategies for carrying out isoform-level quantification and assembly for
RNA-seq data. There are three approaches adopted in the literature for carrying out transcript-
level quantification of RNA-seq data: alignment and quantification in genomic space (A), alignment
and quantification in transcriptome space (B), and the alignment-free k-mer-based quantification ap-
proach adopted by Sailfish (C). See text for more details. Here, genomic alignment and quantification
were carried out using TopHat or STAR and Cufflinks, transcriptome alignment and quantification
using Bowtie and RSEM or eXpress. There are two main approaches for de novo transcript recon-
struction: alignment-based reconstruction (D), and alignment-free de novo assembly from reads (E).
Here, STAR and TopHat mappings plus Cufflinks assembly were used for the former, while Trinity

and SOPAdenovo-trans were used for the latter

3. The de movo reconstruction of expressed
transcripts from short reads. This
is needed for the discovery of novel
transcripts in sequenced and annotated
genomes, for the annotation of newly se-
quenced genomes and often for the se-
quencing and analysis of the transcrip-
tomes of species for which a genome as-
sembly does not exist.

A wide variety of computational tools have
been developed to carry out these tasks. Dozens
of RNA-seq mappers, which carry out read map-

ping and de novo splice junction detection, have
been published. These include TopHat (Trap-
nell et al. 2009; Trapnell et al. 2012), STAR
(Dobin et al. 2013), RUM (Grant et al. 2013),
SplitSeek (Ameur et al. 2011), SpliceMap (Au
et al. 2010), Map-Next (Bao et al. 2009), Super-
splat (Bryant et al. 2010), QPALMA (De Bona
et al. 2008), HMMSplicer (Dimon et al. 2010),
OSA (Hu et al. 2012), SOAPsplice (Huang et
al. 2011), PALMapper (Jean et al. 2010), Se-
gMap (Jiang & Wong 2008), MapAl (Labaj et al.
2012), TrueSight (Li et al. 2013), Subread (Liao
et al. 2013), GEM (Marco-Sola et al. 2012),



PASTA (Tang & Riva 2013), MapSplice (Wang
et al. 2010), X-MATE (Wood et al. 2011) |,
GSNAP (Wu & Nacu 2010), OLego (Wu et al.
2013), and others. The ENCODE Project used
both TopHat and STAR. TopHat was used for
most of the analyses presented in this thesis.

A similarly diverse set of transcript-level
quantification algorithms is available, including
Cufflinks (Trapnell et al. 2010; Trapnell et al.
2012; Trapnell et al. 2013; Roberts et al. 2011a;
Roberts 2011b), eXpress (Roberts & Pachter
2013), RSEM (Li et al. 2010; Li et al. 2011),
Sailfish (Patro et al. 2014), CEM/IsoLasso (Li
et al. 2011; Li & Jiang 2012), Flux-Capacitor,
IQSeq (Du et al. 2012), iReckon (Mezlini et
al. 2013), IsoEM (Nicolae et al. 2011), MMSeq
(Turro et al. 2011), PennSeq (Hu et al. 2014),
RNAExpress (Forster et al. 2013), SLIDE (Li
et al. 2011), and Traph (Jo et al. 2014), Og-
tans (Sreedharan et al. 2014), rQuant (Bohnert
& Rétsch 2010), RNASEQR (Chen et al. 2012),
RDiff (Drewe et al. 2013), Montebello (Hiller
& Wong 2013), IsoformEx (Kim et al. 2011),
NEUMA (Lee et al. 2011), EBSeq (Leng et al.
2013), SASeq (Nguyen et al. 2013), NSMAP
(Xia et al. 2011), MITIE (Behr et al. 2013),
iQuant (iQuant et al. 2011), and others (Jiang
& Wong 2009; Bohnert et al. 2009, Feng et al.
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2010; Feng et al. 2011).

In addition to transcript-level quantifica-
tion software, a number of packages focusing
on quantifying splicing inclusion at the level
of individual alternative splicing events (rather
than the more complicated problem of analyzing
full transcripts) have been developed, including
MISO (Katz et al. 2010), KISSPLICE (Saco-
moto et al. 2012), MATS (Shen et al. 2012),
DiffSplice (Hu et al. 2013), MMES (Wang et
al. 2010), SpliceTrap (Wu et al. 2011), DEXSeq
(Anders et al. 2012), SplicingCompass (Aschoff
et al. 2013), PSGInfer (LeGault & Dewey 2013),
and others.

Finally, the assembly problem has been ad-
dressed by multiple approaches too. Those based
on aligning reads to a reference genome include
Cufflinks, mGene (Behr et al. 2010), RNASEQR
(Chen et al. 2012), G-Mo.R-Se (Denoeud et
al. 2008), Montebello (Hiller & Wong 2013),
Rnnotator (Martin et al. 2010), DRUT (Man-
gul et al. 2012), GRIST (Boley et al. 2014),
CRAC (Philippe et al. 2013), MITIE (Behr et
al. 2013), and others (Jackson et al. 2009; Bao
et al. 2013; Seok et al. 2012). Alignment-free
de movo reconstruction programs include Oases
(Schulz et al. 2012), Trinity (Grabherr et al.
2011; Haas et al. 2013), SOAPdenovo-Trans
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Figure 2.2: Distribution of the fraction of intronic reads in ENCODE datasets. Shown
is the fraction of intronic reads in different ENCODE datasets (downloaded from the USCS Genome
Browser) as well as the Human Body Map dataset (HBM).



(Xie et al. 2014), Trans-ABySS (Robertson et
al. 2010) and EBARDenovo (Chu et al. 2013).

Most transcript-level quantification pro-
grams adopt a variation of a common likelihood-
based approach to the problem (first discussed in
Xing et al. 2006):

L(©) = P(0]O) (2.1)
|
1
cor= I 11 2 50w
(tc)€(G,T) fE€F a1 (ti)E(te) “ta
where:

— tq refers to a transcript ¢ belonging to gene
G.

— (G, T) refers to the set of genes G and their
transcripts T' between which reads are to
be allocated.

O refers to the isoform abundance assign-
ments. For a given gene G, >, O, = 1.

f is a sequencing fragment; both ends of a
fragment are sequenced in paired-end for-
mat.

F(q,r) refers to the set of fragments align-
ing to transcripts T' in a gene G, or a set
of genes {G4, ..., Gy, } such that a subset of
fragments Fy; C F align ambiguously to
transcripts of more than one gene.

1€tg

- > Dpyfi
k=1

In most cases the parameters in-
ferred using some variation of the expectation-
maximization (EM) algorithm (Dempster et al.
1977). This is done in three general ways (Fig-

ure[2.1A-C): from splice-aware alignments to the

are
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Where O refers to the unknown parameters
of the model (for example, the relative abun-
dances of individual isoforms) and O is the set of
observations (for example, the set of alignments
to the genome or the transcriptome).

Perhaps the most general version of this like-
lihood function, which incorporates the major-
ity of complexities that are modeled by vari-
ous quantification algorithms, is the following
(Pachter 2011):

w(t Wi lt(f)+1)w & €tc f (2.2)

> Dpp(i-
k=1

(t,1) refers to position ¢ in transcript t.
Dpy is the fragment length distribution.

w?t’ 0 is a term accounting for coverage bias
at the 3’ end of fragments (Li et al. 2010).

wf’ is a term accounting for coverage bias
at the 5’ end of fragments.

pos

w'; ~ is a positional bias term, accounting

Lt
for systematic coverage biases along the

length of the transcript.

€tq,f is the probability that the alignment
is correct; it accounts for mapping errors.

I, o 1s the effective length of each transcript,
calculated as follows:
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W) Witi—t(H+1) Wi
ta

(i — k)

genome (for example, by Cufflinks), from align-
ments to the transcriptome (examples include
eXpress and RSEM), and without any align-
ments (the k-mer counting approach adopted by
Sailfish). Unfortunately, the likelihood model is



not always identifiable (see discussion in Hiller
et al. 2009 and the supplement of Trapnell et
al. 2010). Identifiability becomes increasingly
difficult to achieve with the increase of isoform
complexity (as shown empirically in the previous
chapter), which in plain terms is the result of the
fact that the more isoforms there are in the an-
notation, the more likely it is that no fragments
that can unambiguously distinguish all of them
are present in the data.

The approaches to the de novo assembly are
somewhat more varied. For example, the most
popular alignment-based approach (Cufflinks;
Trapnell et al. 2010) aims to return the mini-
mal set of transcripts that can explain the ob-
served data (subject to some constraints on ab-
solute abundance), while the approach adopted
by GRIT (Boley et al. 2014) is to identify all
possible expressed isoforms and then rank them
by their estimated abundance. Alignment-free
assembly algorithms usually employ de Bruijn
graphs (de Bruijn 1946) to tackle the problem,
which have been extensively used for assembling
genomes from short reads (Pevzner & Tang 2001;
Pevzner et al. 2011; Zebrino & Birney 2008;
Butler et al. 2008; Gnerre et al. 2011; Luo et
al. 2012; Bankevich et al. 2012; Simpson et al.
2009; Zimin et al. 2013).

All the results presented in the previous
chapter depend critically on the ability of the
software used to faithfully carry out the tasks of
read mapping and transcript quantification and
reconstruction, thus which programs return the
most reliable output and to what extent it can be
trusted is of utmost importance for their inter-
pretation. However, an interesting phenomenon
is observed in the literature: each publication of
a new package concludes that it outperforms all
other existing tools, usually by carrying out sim-
ulations that demonstrate this is the case against
known ground truth. This is problematic, first,
because of its clear logical impossibility, and sec-
ond, because the simulations are usually not very
realistic as they do not model some data proper-
ties that working with data has lead me to sus-
pect are actually having a significant negative
effect on results — for example, it is usually the
case that isoforms from the refSeq annotation
(which does not contain many alternative splic-
ing products) are simulated, with no reads com-
ing from the intronic or intergenic space, making
the problem much easier to solve than the chal-
lenge presented by real data.

There are multiple known or suspected vari-
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ables that affect both how difficult the problems
of isoform abundance estimation and transcript
reconstruction are and how well they can be
solved. These include:

1. Annotation complexity. As already
mentioned, more complex annotations
present a greater challenge to quantifica-
tion software even if only a single isoform
is actually expressed as reads have to be
properly allocated between more and more
transcripts. Annotations range from sim-
ple (i.e. refSeq, mostly one or two isoforms
per gene) to intermediately complex (i.e.
UCSC) to very complex (i.e. GENCODE,
with up to 10 isoforms per gene on aver-

age).

. Isoform expression complexity. The
more isoforms are expressed in the sample,
the more different splice junctions there
are to be parsed between them, which
would be expected to be more difficult
to do than if only a single isoform is ex-
pressed. This affects both quantification
and assembly.

. Data quality. PolyA-selected RNA-seq
can suffer from several kinds of data defi-
ciencies. First, suboptimal PolyA selection
can result in larger amounts of intronic
reads (although this can also be a purely
biological phenomenon). At high sequenc-
ing depths, this could pose problems for
both transcript assembly and quantifica-
tion as shorter introns can get completely
filled-in with reads leading to incorrect in-
ference of retained intron isoforms. Wide
variation of the fraction of intronic reads is
observed between different protocols, pro-
duction centers and biological sources (es-
pecially subcellular fractions), as shown in
Figure Second, RNA degradation can
result in coverage being skewed towards
the 3’ end, which makes parsing alterna-
tive splicing events around the 5’ end more
difficult (even if algorithms try to normal-
ize for such biases; i.e. through the w"’®

Q
T
term above)

. Library construction protocol. Both
stranded and unstranded protocols are
in wide use for RNA-seq. Stranded li-
braries are expected to provide more power
for accurate transcript reconstruction and
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Figure 2.3: Number of “novel” splice junctions detected by STAR and TopHat. Shown
is the number of junctions not annotated in GENCODE V16 detected at different levels of coverage
(measured in collapsed, unique fragments) by the two mappers. Note that only annotated tran-
scripts were used in the simulation, i.e. no novel junctions are expected to be detected, and the ones
that are represent false positives.

quantification as they allow the resolution 5. Fragment length distribution. During
of overlapping sense and anti-sense tran- library construction, RNA is fragmented,
scripts. However, it has to be noted that usually to pieces of 200 to 300 nucleotides
some stranded protocols (dUTP in partic- length. The exact fragment length can

ular) are not absolutely strand-specific. have a significant effect on transcript as-
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Figure 2.4: Sequence type of “novel” splice junctions detected by STAR and TopHat.
Shown is the number of junctions not annotated in GENCODE V16 detected at different levels of
coverage by the two mappers split by the sequence of their splicing motifs. Canonical junctions
recognized by the major spliceosome are of the GT|AG type, the two major classes of non-canonical
junctions are GC|AG and AT—AC.

sembly and quantification. Longer frag- ases.

ment lengths provide greater connectiv-

ity of distant sequences, but they lead to 6. Read length. For obvious reasons, it is
stronger coverage and representation bi- intuitive to think that longer reads will al-

ways result in better assembly and quan-
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Figure 2.5: Classification of “novel” splice junctions detected by STAR and TopHat
relative to the annotation. Shown is the number of junctions not annotated in GENCODE
V16 divided according to how they relate to the annotation (GENCODE V16). The categories are
introduced and detailed in the previous chapter.

tification. However, long reads only make 7. Sequencing depth. Again, for obvious
sense if the fragment size distribution is reasons, deeper sequencing provides more
correspondingly long, and as mentioned quantification and assembly power.
above, longer fragment distribution leads

to poorer quantification results. It is not practically possible to examine all

these variables due to the high dimensionality



of the parameter space, much less against the
very large number of software tools (new ver-
sions of which, as well as new algorithms, are
continuously being published). I chose to focus
on a limited set of the most popular analysis
packages that still represents the range of exist-
ing approaches to the problems and on the data
characteristics that are in my opinion most rele-
vant to ENCODE results and least studied, while
picking optimal parameter values for the others.
These parameters were the isoform expression
complexity and the impact of data quality, in
particular the prevalence of intronic reads (due
to the presence of numerous retained introns in
Cufflinks assemblies discussed in the previous
chapter).

J
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2.2 Methods

2.2.1 Simulation parameters

For the purposes of this comparison, it is ir-
relevant what gene-level expression values are
used for the simulation although matching real-
life data is in no way a negative. Therefore,
Cufflinks-derived gene-level quantification esti-
mates for actual samples were used as a starting
point from which isoform expression levels were
assigned to individual transcripts. These esti-
mates are in FPKM (Fragments Per Kilobase
per Million fragments), where we define FPKM
for a transcript as follows:

Number fragments mapping to a transcript

FPKMr =

Total number of mapped fragments

Length of transcript

1,000,000

Here a fragment is defined as a pair of reads
when both ends of a paired-end read are mapped
or as the read itself when it is a singleton or the
sequencing data is single-end.

J

1,000

For a gene G which contains N individual
transcripts Tg, . ., there are two ways to de-
fine FPKMs on the gene level:

FPKMg =

[fragments;c 5., | (2.5)
Total number of mapped fragments |Bg| ’
*
1,000,000 1,000

Here we count all fragments fragments,
mapping to a base pair b belonging to all base
pairs Bg annotated as part of the gene G and
normalize against the total number of base pairs
|Ba|-

The alternative option is to calculate FPKM
as follows:

FPKMg = Y _ FPKMz,
TeG

Which is the sum of the FPKMs estimated
for each individual transcript.

The latter is the more biologically correct
way of calculating FPKMs as it normalizes bet-
ter for cases in which an isoform that is very large
or very short relative to the total gene length is

(2.6)

(

expressed (Trapnell et al. 2010; Pachter 2011),
and is therefore the one adopted here.

For each transcript of a gene, we can define
the FMI (Fraction of Major Isoform) quantity
as follows:

FPK Mg,

FPKM
gy (P PR M)

FMIy, = (2.7)

The FMI values can be used to determine
isoform expression complexity. Examination of
the distribution of FMI values on real data (with
the caveat that real-life isoform-level quantifica-
tion is unreliable, although this is not relevant
for simulation purposes) using Cufflinks showed
that the median FMI of the second major iso-
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form is around 0.5, of the third major isoform  shifting the means (see below). Therefore the
between 0.25 and 0.3, of the fourth major iso-  FMI distribution was modeled with a Gaussian,
form between 0.10 and 0.15, etc. (see previous  with mean p and variance o2, which is dispersed
chapter). However, the distribution of the FMI  and truncated by requiring that y = o, i.e. for
for the second major isoform is not normal but  any FMI p that is picked, the left 1 — o position
actually roughly uniform with some bias towards  in the distribution is 0. For each gene G with N
0. Uniform distribution is not well suited for  individual isoform, Tg,  , ranked by expression

the goals of this simulation exercise because a  such that FM (7)), > FMI(t,),,,, the FMI for
way to vary the isoform complexity is needed each isoform is chosen as follows:
and this would be better manipulated through
J
1 if i = 0;

1

FMIzg), ={ max(0, FMI(rg),,, ~ —pm—————Npwr, s FMI < FMIi}) ifi>0  (2.8)

/ Nrumi,
[

Where: 2kb-long transcript). Quantification pro-

4 L grams perform an effective length normal-

Nrewvr = N (@i of = i) (2.9) ization, which takes some of these biases

into account. However, another issue still

N refers to a Gaussian, and they key param- . o .
remains unresolved, and it is experimental

eters are the mean FMI for the second ranked

isoform (p11) and «a, which are used to scale the I nature:
global isoform complexity (higher « will lead to 2. Short transcripts are underrepresented in
much quicker decay of the mean FMI). Note that the sequencing libraries. Suppose frag-
the Gaussian is rescaled to take into account the ments were size-selected so that they are
fact that only the parts of it between —oo and distributed as a (:‘-,3115513117 i.e. Dpp ~
the FMI of the next more highly expressed iso- N (u,0?), with 4 = 500 and o = 100, and
form of the gene are considered, so that if the consider the same case of the 600bp-long
randomly chosen FMI value was less than zero, transcript and the 2kb-long transcript de-
it was set to 0, at which point all subsequent iso- scribed above. Fragments are generated
forms were set to zero too. The isoform ranking by random fragmentation of either RNA
was also picked at random for each gene. molecules or cDNA, depending on the pro-
tocol used. Assuming this fragmentations
2.2.2 Read simulation is random, on average only 1/3 of frag-
ments will be within 100bp of the mean
A reasonable very deeply sequenced RNA-seq of the size-selection range for the 600bp-
dataset contains ~200 x 10% reads, or about one long transcripts, i.e. each transcript or
lane of HiSeq worth of reads. It is also what EN- full-length ¢cDNA molecule will be repre-
CODE produced for most of its samples (Djebali sented in the library 1/3 of the time, while
et al. 2012). For this reason, the total sequenc- the 2kb-long one will usually contribute 3
ing depth was fixed at R = 200 x 10‘? read pairs fragments to it.
(or double the ENCODE number, i.e. a very
deeply sequenced sample). It is known that long 3. A significant contributor to uneven se-
fragment sizes actually degrade the performance quencing coverage in RNA-seq seem to be
of RNA-seq. This is because: RNA secondary structures and more and
more complex such structures are formed
1. Short transcripts are underrepresented by in longer RNA molecules. Depending on
reducing their effective length (there are the protocol used, this may have a more
only 200 positions in which a 400bp-long or less severe negative effect on transcript
fragment can originate from a 600bp-long representation and coverage in the final li-

trancsript, but 1600 such positions for a braries.
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For these reasons, reads were sampled from reference sequence.
a fragment size distribution centered around
250bp with standard deviation of 50 (i.e. Dpy, ~ 2. Separate “chromosomes” were also gener-
N(250,50%)), and the length of the reads was ated for the unspliced, pre-mRNA form of
limited to 2x100bp. The mason read simulator each GENCODE V16 transcript. This is
(Holtgrewe 2010) was used for simulating the not entirely realistic as in reality splicing is
reads. The simulation was carried out as follows: predominantly cotranscriptional (Dujardin
et al. 2013), and pre-mRNAs exist in a
1. Separate “chromosomes” were generated partially spliced state but rarely in a com-
for each transcript using the GENCODE pletely unspliced one. But this process is
V16 annotation and the human genome generally poorly understood so for simplic-
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C Cuffcompare statistics, Trinity
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Figure 2.6: Number of transcripts in each assembly according to the Cuffcompare
classification. The number of transcripts in each Cuffcompare category is shown for Cufflinks as-
semblies on STAR (A) and TopHat (B) mapping and for de novo Trinity (C) and SOAPdenovo-trans
(D) assemblies. The Cuffcompare codes are defined (and prioritized during classification in the same
order) as follows (Trapnell et al. 2010; Trapnell et al. 2012): “=": Complete match of intron chain;

7P “p,

¢”: Contained; “j”: Potentially novel isoform (fragment): at least one splice junction is shared

“p.,

with a reference transcript; “e”: Single exon transfrag overlapping a reference exon and at least 10

“p.

bp of a reference intron, indicating a possible pre-mRNA fragment; “¢”: A transfrag falling entirely

within a reference intron; “o”: Generic exonic overlap with a reference transcript; “p”: Possible
polymerase run-on fragment (within 2Kbases of a reference transcript); “r”: Repeat. Currently de-
termined by looking at the soft-masked reference sequence and applied to transcripts where at least

50% of the bases are lower case; “u”: Unknown, intergenic transcript; “x”: Ezonic overlap with

G,

reference on the opposite strand; “s”: An intron of the transfrag overlaps a reference intron on the
opposite strand (likely due to read mapping errors)



ity here it is assumed that transcription
and splicing are completely uncoupled.

. An ENCODE K562 sample RNA-seq sam-
pled was used to obtain real-life gene-level
FPKM estimates using Cufflinks (version
2.0.2). Note that only protein coding genes
were included, which was done deliber-
ately, with the goal of examining the per-
formance of quantification software with
respect to pseudogenes and lincRNAs, for
which mapping artifacts might confound
output (due to close sequence homology
with protein coding genes in the case of
pseudogenes, and due to the presence of
repetitive elements in many lincRNAs).

. Isoform-level FPKMs were simulated from
the gene-level FPKMs as described above,
using all 9 combinations of p = 0.25,0.5
or 0.75 and o = 0.5,1, or 4. A value of
«a = 4 means almost no alternative isoform
expression), while when « = 0.5, the 10th
highest isoform will still have on average
© = 0.03 (see below for definition of ©).

. For each such combination, 3 datasets with
a different intronic fraction of reads were
simulated (IF = 0.05, 0.15 or 0.25). IF
= 0.05% corresponds to some of the best
polyA-selection cases we have observed in
practice, IF = 0.15 can be considered in-
termediate level of intronic reads, and IF
= 0.25 is what is often observed in some
nuclear subcellular fractions in ENCODE
data (though much higher values have also

been seen; Figure .

. Using the IF and transcript-level FPKM
values, the number of reads that should
be simulated for each transcript containing
introns and its corresponding pre-mRNA
was calculated. The intronic fraction was
constant for all transcripts.

. Stranded RNA-seq reads were gener-
ated for each mRNA and pre-mRNA
using mason, with the following set-
tings: illumina --read-length 100
--library-length-mean 250 -le 50
--include-read-information

--forward-only --simulate-qualities
--mate-pairs —--prob-insert 0O
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subsequently renamed to records their ori-
gin and proper mapping.

. FPKMs were rescaled according to the IF
value so that intronic reads are excluded
from the denominator in the calculation of
the true FPKM value. The true FPKM
values were recorded and saved.

The resulting simulated set of reads repre-
sents a somewhat easier to solve problem than
real-life data does, as it does not model tran-
script coverage non-uniformity (the sources of
which are not entirely understood). However,
it does provide a measure of the relative perfor-
mance of programs, as well as minimum bounds
on the fraction of incorrectly quantified and as-
sembled transcripts, which is still informative
with respect to the interpretation of the results
in the previous chapter.

2.2.3 Read Mapping

Reads were mapped to the hgl9 assembly of
the human genome using both the STAR (ver-
sion 2.3.0e; Dobin et al. 2013) and TopHat
(Version 2.0.8; Trapnell et al. 2009; Trap-
nell et al. 2012b) aligners, using the GEN-
CODE V16 as a source of annotated transcripts
and junctions to aid mapping. The follow-
ing settings were used for STAR; default set-
tings were used for TopHat. --outFilterType

BySJout --outFilterMultimapNmax 20
--alignSJoverhangMin 8
--alignSJDBoverhangMin 1
--outFilterMismatchNmax 999
--outFilterMismatchNoverLmax 0.04
-—alignIntronMin 20 --alignIntronMax

1000000 --alignMatesGapMax 1000000.

For RSEM and eXpress quantifications, reads
were mapped against a GENCODE V16 tran-
scriptome index, using Bowtie (version 0.12.7;
Langmead et al. 2009), with the following set-
tings: —e 200 -a —-—offrate 1 -t -X 1000.

2.2.4 Transcript assembly and
reconstruction

Cufflinks (version 2.0.2; Trapnell et al. 2010;
Trapnell et al. 2012a) was used for assembly on
STAR and TopHat alignemtns, with default set-

--prob-delete 0 --haplotype-snp-rate O tings except for specifying that the libraries are

--haplotype-indel-rate 0. Reads were

stranded. Scripture (Guttman et al. 2010) was



also tested; however, its computational require-
ments were too large and made running it on all
simulated datasets practically impossible.

For alignment-free assembly, Trinity (Grab-
herr et al. 2011; Haas et al. 2013) was used
with the following settings: --SS_lib_type FR
--min_kmer_cov 2, and SOAPdenovo-Trans
(Xie et al. 2014) was run, with the
following settings: SO0APdenovo-Trans-31imer
max_rd_len=100 avg_ins=250 reverse_seq=0.
BLAT (Kent 2002) was used to map the result-
ing contigs back to the genome, with only contigs
longer than 200bp considered. Custom-written
python scripts were used to convert the resulting
PSL-format output to GTF format, while retain-
ing only the best alignment(s) for each contig.

2.2.5 Isoform-level quantification

Cufflinks (version 2.0.2; Trapnell et al. 2010;
Trapnell et al. 2012a) was run on both STAR
and TopHat alignemtns, with default settings
except for specifying that the libraries are
stranded.

RSEM (version 1.2.7; Li et al. 2010; Li
et al. 2011): was run as follows: --calc-ci
--forward-prob 1. eXpress (version 1.5.0;
Roberts & Pachter 2013) was run with default
settings. Both were run on Bowtie alignments.

Sailfish (version 0.5.0; Patro et al. 2014) was
run with default settings and k = 20.

A number of other packages were also tested:
CEM/IsoLasso (Li et al. 2011), Flux-Capacitor,
IQSeq (Du et al. 2012), iReckon (Mezlini et
al. 2013), IsoEM (Nicolae et al. 2011), MMSeq
(Turro et al. 2011), PennSeq (Hu et al. 2014),
RNAExpress (Forster et al. 2013), SLIDE (Li et
al. 2011), and Traph (Jo et al. 2014), However,
all of them turned out to be practically impos-
sible to run due to dependency issues with soft-
ware no longer being maintained and/or com-
putational requirements (for example, Penn-Seq
took more than a week running on 8CPUs and
40GB of memory without showing any signs of
convergence).

2.2.6 Metrics for evaluation of
quantification performance

The following metrics were used to evaluate
quantification performance:

1. The Pearson correlation r between the true
FPKMs and the estimated FPKMs on the
gene level
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2. The Pearson correlation r» between the true
FPKMs and the estimated FPKMs on the
transcript level

. The mean total © difference between the
true relative isoform abundances in each
gene and the estimated isoform abun-
dances:

Z Z ©p(1e) — O1(16)]

G TeG

MT@diff = Ne

(2.10)
Where Ng is the total number of anno-
tated genes considered, Op is the esti-
mated © and ©Or is the true © for each
isoform of a gene, and © is defined as:

FPK Mr,

> (FPKMr,)
TeG

Note that the possible values of MT©g;f
are limited to MTOgs; € [0,2], with
MTOg;55 = 0 corresponding to perfectly
accurate parsing of reads between isoforms
and MT©g;ry = 2 to complete misalloca-
tion (for example, if only one isoform is
expressed but it received 0 FPKM and the
reads were instead allocated to other iso-
forms).

Or, = (2.11)

. The fraction of genes with an incorrectly
assigned major isoform, i.e.:

argmax(r%lgéi(@E(TG)))

Ta
)
argTI;laX(r%lélé((@T(TG) )

The fraction of genes with false positive
isoforms

. The fraction of false positive isoforms

The fraction of genes with false negative
isoforms

8. The fraction of false negative isoforms

Here, a false positive isoform was defined as
one with ©7(r,;) = 0 and O,y > 0.05, and a
false negative isoform as one with Op(r.) > 0.05
and @E(TG) S 0.001.
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2.2.7 Metrics for evaluation of chain ICy4 of which is a strict subset of the

assembly performance intron chain of some annotated transcript
) ) Tg,ie IC4 C ICT,.
The following metrics were used to evaluate as-

semblies relative to the GENCODE V16 anno- 5. The number of false positive spliced tran-
tation that was used to generate the data. scripts, i.e. transcripts with an intron
chain that is inconsistent with the intron

1. The number of transcripts in the various chains found in the annotation.

Cuffcompare classes (Cuffcompare is a pro-

gram in the Cufflinks suite used to com- 6. The number of false negative spliced tran-
pare annotations). See the legend of Fig- scripts, transcripts that were expressed but
ure [2.6] for detailed explanation. not assembled. A threshold of 1 FPKM

2. The number of perfectly matching intron was set to define a transcript as assembled.

chains for expressed spliced transcripts,
where an intron chain is defined as fol- 2.3 Results
lows. Every transcript T in gene G is
defined according to its exonic coordinates

as the ordered set of exon left and right 2.3.1 Splice junction discovery

positions: Tg := {(l1,71),....,(In,7n)}. An The main goals of this simulation were to as-
intron chain IC' is defined as the ordered  sess transcript quantification and reconstruction.
set of left and right intronic positions, i.e.:  For this purpose, reads were simulated from

ICr, = {(r1,12), ..., (rn—1,1n)}. Compar-  the protein coding portion of the GENCODE
ing the intron chains allows the 5° and 3° V16 transcriptome, and then it was again GEN-
ends, which are very difficult to assemble ~CODE V16 that was used when mapping the
precisely (and are often not precisely de- reads, i.e. there are no novel junctions to dis-
fined biologically to begin with) to differ.  cover and the mapping process is maximally
An annotated transcript T was defined as  aided by the annotation, which in this case com-
expressed if FPKMr, > 0. pletely matches the source of the reads. Never-
theless the simulation is useful with respect to
the minimum number of false positive junctions
observed in real-life data, and their nature.
Reads were mapped with both TopHat and
STAR, and the junctions detected extracted.
The strand of the junctions was annotated based
on the directionality of the reads. Figure [2.3]
4. The number of partially assembled spliced  shows the number of “novel” splice junctions
transcripts, i.e. transcripts, the intron  detected by each algorithm in each of the 27

3. The number of assembled but not ex-
pressed genes, i.e. transcripts  with
FPKMr, = 0, which were nevertheless
expressed. This may sound counterintu-
itive, but is not impossible, and does in
fact happen occasionally.

Figure 2.7 (preceding page): Assembly statistics for spliced transcripts. (A,C,E,G) The
distribution of true positives (“Expressed and Assembled”), partial true positives (“Partials”), par-
tial false positives (“Not Expressed and Assembled”) and false positives (“False Positives”) among
de novo assembled transcripts is shown. The categories are defined as follows: “Expressed and
Assembled” refers to transcripts that were expressed at > 0 FPKM in simulation and we assembled
completely, i.e. have a complete intron chain match in the annotation; “Partials” refers to assembled
transcripts the intron chain of which is a subset of the intron chain of an annotated transcript; “Not
Expressed and Assembled” refers to transcripts with FPKM= 0 in the simulation, which were nev-
ertheless assembled with a complete intron chain (this is not impossible in complex loci even if rare);
the “false positives” are transcripts with intron chains that are not found in the annotation, neither
as complete chains nor as subsets of annotated intron chains. (B,D,F,H) The distribution of true
positives (“Expressed and Assembled”) and false negatives (“False Negatives”) among annotated
transcripts expressed at > 1 FPKM in the simulation. A false negative is a transcript the complete
intron chain of which was not found among the de novo assembled transcripts. (A,B) Cufflinks on
STAR alignments; (C,D) Cufflinks on TopHat alignments; (E,F) Trinity; (G,H) SOAPdenovo-trans
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simulated libraries and their fragment support
(I use “novel” in quotation marks to indicate
that they are false positives). TopHat detected
between 2000 and 3000 false positive junctions,
while STAR found on average slightly fewer ones,
but in a few cases it produced substantially more
of them for unknown at present reasons. In both
cases there was a positive correlation between
the IF parameter and the number of false pos-
itive junctions. Figure shows the intronic
motifs of these junctions, and Figure 2.5 shows
how they relate to the annotation, following the
convention adopted in the previous chapter. Re-
markably, most of the “novel” junctions turned
out to be anti-sense to known transcripts and
connecting known exons, as indicated by the fact
that the dominant intronic motif was CT|AC
(which is the antisense to GT|AG, the canonical
splice motif). This was not the case only in the
anomalous STAR mappings where a substantial
number of CT|AC junctions were still present.
Both STAR and TopHat found junctions with a
CT|GC motif but only TopHat returned GC|AG,
GT|AT, AT|AC and splices with other sequence
motifs. A large number of CT|AC junctions was
not observed in TopHat alignments of real RNA-
seq data suggesting that the majority of “novel”
junctions seen in the simulation were the re-
sult of strand assignment issues in this particular
set of alignments, possibly due to the version of
the software used. However, antisense junctions
can be easily spotted and filtered, thus bring-
ing down the real number of false positives to
just a few hundreds, meaning that the majority
of splicing complexity observed in real RNA-seq
data is not due to computational artifacts.

2.3.2 Accuracy of de novo
transcript assembly

Transcript reconstruction of STAR and TopHat
alignments was carried out using Cufflinks. In
parallel alignment-free assemblies were gener-
ated using Trinity and SOAPdenovo-Trans, then
the resulting contigs were mapped back to the
genome using BLAT, and converted to GTF file
format. As a first assembly evaluation step, all
four sets of GTF files were run through Cuff-
compare, the GTF comparison module in the
Cufflinks suite of programs, against the GEN-
CODE V16 reference, and the fraction of tran-
scripts classified under the different Cuffcompare
classes counted. The results are shown in Fig-
ure 2.6] Cufflinks produced very similar results
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on STAR and TopHat alignments, generating
between 11,000 and 15,000 fully matched tran-
scripts (Cuffcompare class “=") depending on
the expressed isoform complexity (Figure
and B). A few notable trends emerged when the
fraction of partial assemblies (Cuffcompare class
“c”) and “new isoforms” (Cuffcompare class “;57)
assembled were considered — higher values of the
a parameter (o = 4), i.e. lower isoform com-
plexity, resulted in a relatively small fraction of
“new isoforms” (as only annotated transcripts
were simulated and the same GENCODE V16
annotation was used as a reference, no “new iso-
forms” were expected; all such transcripts are
therefore false positives), but in the simulations
with @ = 0.5 and o = 1 more than 10,000 such
isoforms were assembled. Increasing the intronic
fraction also had a negative effect on assembly
though not as pronounced as the effect of isoform
complexity, with the fraction of true positives
decreasing slightly and the fraction of partial as-
semblies and false positives increasing.

Trinity and SOAPdenovo-Trans results were
striking in comparison (Figure C and D).
Trinity actually generated a few hundred more
true positive transcripts than Cufflinks, al-
though this is not clearly visible in the figure,
which in turn is because of the extremely large
number of partial assemblies and false positives
it produced — in the hundreds of thousands. The
number of such contigs was strongly correlated
with the intronic fraction of reads. These results
are a combination of assembling each true tran-
scripts into multiple short fragmentary assem-
blies and of the assembly of many isoforms with
retained introns. In contrast, SOAPdenovo-
Trans did not assemble almost any “new iso-
forms”, instead generating a large number of
transcripts classified as “intronic”, suggesting
it might be dealing better with intronic reads.
However, it also assembled very few true tran-
scripts (only ~3,000 on average) and it also gen-
erated many partial assemblies, the number of
which also correlated strongly with the intronic
fraction of reads.

To better understand the assemblies, I car-
ried out a more direct comparison using only
the assembled spliced transcripts/contigs using
the additional true/false positive and false nega-
tive metrics listed in the Methods section (Figure
. This was done in two ways: from the per-
spective of the assemblies (Figure ,C,E,G)7
and from the point of view of the set of ex-
pressed transcripts (Figure [2.7B,D,F,H). In the
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Figure 2.10: Distribution of estimated FPKMs for lincRNA genes. The number of lin-
cRNAs “detected” at different FPKM cutoffs in the output of RNA-seq quantification programs is
shown. Note that lincRNAs were not included in the original simulation therefore the true expression

values should be zero for all of them.

former case, we define a true positive as a tran-
script that is both expressed in the simulation
and assembled (at the level of its intron chain),
a partial true positive is a partially assembled
expressed transcripts, and a false positive is a
transcript, the intron chain of which is incom-
patible with the annotation. In the annotation-
centered comparison, true positives (expressed
at >1 FPKM and assembled) and false nega-
tives (expressed at >1 FPKM but not assem-
bled) transcripts are counted.

STAR+Cufflinks and TopHat+Cufflinks re-
sults were again comparable, with a slight ad-
vantage to the TopHat+Cufflinks combination.
Once again, the negative effect on the accuracy
of the results of isoform complexity was high-
lighted. At IF = 0.05, p = 0.25, and a = 4, i.e
high-purity polyA-selection on samples in which
almost always only one isoform is expressed,
nearly 80% of assembled transcripts were true
positives, with <10% being false positives (Fig-
ure ), and >80% of expressed transcripts
were assembled, with <20% being false nega-
tives (Figure [2.7D). However, when p = 0.75,
and o = 0.5, only ~50% of assembled transcripts

were true positives, nearly 40% were false pos-
itives, and only ~35% of expressed transcripts
were successfully assembled (with ~65% remain-
ing as false negatives).

Trinity and SOAPdenovo-Trans results fol-
lowed the same trend across the parameter
space, but were worse in terms of absolute
performance. Trinity successfully assembled a
higher fraction of the expressed transcripts than
Cufflinks did (Figure ); however, this was at
the cost of a much larger fraction of false pos-
itives (Figure 2.7E). Notably, this fraction was
highly sensitive to the value of the IF parame-
ter. SOAPdenovo-trans was again less sensitive
to intronic reads but its performance was very

poor in absolute terms (Figure and H)).

2.3.3 Accuracy of isoform-level
quantification

The accuracy of gene and transcript expression
quantification was assessed using the multiple
metrics listed in the Methods section. Figure
2.8 shows the Pearson correlation between the
estimated FPKMs on the gene level and the true
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Figure 2.11: Distribution of estimated FPKMs for pseudogenes. The number of pseu-
dogenes “detected” at different FPKM cutoffs in the output of RNA-seq quantification programs
is shown. Note that pseudogenes were not included in the original simulation therefore the true
expression values should be zero for all of them.
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