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Abstract

T
he main focus of this thesis is the use of
high-throughput sequencing technolo-
gies in functional genomics (in particu-
lar in the form of ChIP-seq, chromatin

immunoprecipitation coupled with sequencing,
and RNA-seq) and the study of the structure
and regulation of transcriptomes. Some parts of
it are of a more methodological nature while oth-
ers describe the application of these functional
genomic tools to address various biological prob-
lems. A significant part of the research presented
here was conducted as part of the ENCODE
(ENCyclopedia Of DNA Elements) Project.

The first part of the thesis focuses on the
structure and diversity of the human transcrip-
tome. Chapter 1 contains an analysis of the
diversity of the human polyadenylated tran-
scriptome based on RNA-seq data generated
for the ENCODE Project. Chapter 2 presents
a simulation-based examination of the perfor-
mance of some of the most popular computa-
tional tools used to assemble and quantify tran-
scriptomes. Chapter 3 includes a study of varia-
tion in gene expression, alternative splicing and
allelic expression bias on the single-cell level and
on a genome-wide scale in human lymphoblas-
toid cells; it also brings forward a number of crit-
ical to the practice of single-cell RNA-seq mea-
surements methodological considerations.

The second part presents several studies ap-
plying functional genomic tools to the study of
the regulatory biology of organellar genomes,
primarily in mammals but also in plants. Chap-
ter 5 contains an analysis of the occupancy of the
human mitochondrial genome by TFAM, an im-
portant structural and regulatory protein in mi-
tochondria, using ChIP-seq. In Chapter 6, the
mitochondrial DNA occupancy of the TFB2M
transcriptional regulator, the MTERF termina-
tion factor, and the mitochondrial RNA and

DNA polymerases is characterized. Chapter 7
consists of an investigation into the curious phe-
nomenon of the physical association of nuclear
transcription factors with mitochondrial DNA,
based on the diverse collections of transcrip-
tion factor ChIP-seq datasets generated by the
ENCODE, mouseENCODE and modENCODE
consortia. In Chapter 8 this line of research is
further extended to existing publicly available
ChIP-seq datasets in plants and their mitochon-
drial and plastid genomes.

The third part is dedicated to the analytical
and experimental practice of ChIP-seq. As part
of the ENCODE Project, a set of metrics for as-
sessing the quality of ChIP-seq experiments was
developed, and the results of this activity are
presented in Chapter 9. These metrics were later
used to carry out a global analysis of ChIP-seq
quality in the published literature (Chapter 10).
In Chapter 11, the development and initial ap-
plication of an automated robotic ChIP-seq (in
which these metrics also played a major role) is
presented.

The fourth part presents the results of some
additional projects the author has been involved
in, including the study of the role of the Piwi pro-
tein in the transcriptional regulation of transpo-
son expression in Drosophila (Chapter 12), and
the use of single-cell RNA-seq to characterize the
heterogeneity of gene expression during cellular
reprogramming (Chapter 13).

The last part of the thesis provides a review
of the results of the ENCODE Project and the
interpretation of the complexity of the biochem-
ical activity exhibited by mammalian genomes
that they have revealed (Chapters 15 and 16),
an overview of the expected in the near future
technical developments and their impact on the
field of functional genomics (Chapter 14), and a
discussion of some so far insufficiently explored
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research areas, the future study of which will, in
the opinion of the author, provide deep insights
into many fundamental but not yet completely

answered questions about the transcriptional bi-
ology of eukaryotes and its regulation.
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Preface

T
he path my graduate career took was
somewhat unusual. I had the fortune
to be able to work on a large number of
diverse projects (especially as a result

of being part of the ENCODE project). This
means I have a correspondingly large number of
at least somewhat interesting scientific stories to
tell in my thesis. However, the flip side of this is
that the common thread between all of them is
not necessarily obvious and the “lack of focus”
type of criticism towards it would not be entirely
misplaced. For a long time, what that common
thread was going to be was not obvious for me
either, except for the rather trivial common de-
nominator “High-throughput sequencing-based
functional genomics” and the so-broad-as-to-be-
almost-meaningless in the context of a graduate
thesis “Understanding the mechanism of gene
regulation and the structure and dynamics of
transcriptomes eukaryotes”. Yet, after some re-
flection, and especially after the response of the
general scientific community to the presentation
of ENCODE results and the subsequent activi-
ties I got involved in, I have come to think that
the latter is not only not that useless after all,
but I in fact have quite a lot to say on the sub-
ject and from a unique perspective and position
shared by not many other people. Thus even if
all I can offer is numerous very small compared
to the magnitude of the general and very big
task of understanding gene regulation contribu-
tions, they can nevertheless be brought under
a common theme and put in their proper place
in the bigger picture of where the field is circa
2013/2014 and what directions, in my humble
opinion, it might not be a bad idea for at least
a portion of it to move into in the near- and
medium-term future.

My thoughts on the latter subject are pre-
sented in the chapters comprising the last part

of this thesis, which also contain most of what
would normally go into an introductory section.
The rest of it is organized in four parts, each
containing separate chapters. The first part
is dedicated to the analysis of eukaryotic tran-
scriptomes, using a variety of experimental tech-
niques and data types, from bulk samples and
on the single-cell level. The second grew in
a completely unexpected way from a collabo-
ration with Yun Elisabeth Wang in the Chan
lab that initially focused on characterizing the
binding of TFAM to the human mitochondrial
genome but eventually grew into multiple stud-
ies applying functional genomic tools and data
to organelles in both animals and plants. The
third part concerns a number of technical issues
having to do with the practice of carrying out
chromatin immunoprecipitation (ChIP) experi-
ments and their coupling with high-throughput
sequencing (ChIP-seq), in particular the applica-
tion of ChIP-seq quality control metrics to real-
life data. It also includes a chapter on the devel-
opment of a robotic ChIP assay in the Wold lab,
something that will be a vital part of the future
practice in the field. The fourth part includes
chapters on some of the various other projects
I have been involved in. The last part, as al-
ready mentioned, summarizes my work in the
broader context of the current state of the field
and defines what in my opinion would be fruit-
ful directions for future research, both from the
perspective of the current and expected near-
future state of technology, and from the point
of view of the general questions about the evolu-
tion of regulatory and genomic complexity aris-
ing from ENCODE results and their interpreta-
tion. Most of the individual chapters contained
in each part were initially written as standalone
papers, to which I later made (mostly slight)
modifications in order to better fit the format of
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a thesis. Some of them have already been pub-
lished, and a few of the ones that have not been
will hopefully some day join them. The chap-
ters can still be read independently of each other

(this is especially true about those in the “Other
Projects” part), although I hope an overarching
team would become apparent to anyone reading
the thesis from cover to cover, in its entirety.
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Part I

The Structure of Eukaryotic
Transcriptomes
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T
his part contains four chapters ded-
icated to several functional genomic
studies of the structure of eukary-
otic transcriptomes that I have carried

out. The first one describes the results of an
early project aimed at characterizing the human
polyadenylated transcriptome using some of the
very first paired-end RNA-seq on multiple cell
lines in existence (generated as part of the EN-
CODE Project). That work made it very clear
that isoform assembly and isoform-level quan-
tification are critical and potentially very weak
points in the analysis of short-read RNA-seq
data. To clarify the extent, impact and nature of

these problems, I carried out an extensive sim-
ulation study on some of the most popular ex-
isting computational algorithms for carrying out
these tasks, the results of which are described
in the second chapter of this part. The third
chapter contains a study of cell-to-cell variation
in gene expression in human lymphoblastoid cell
lines using single-cell RNA-seq, which also dis-
cusses in detail multiple key experimental and
analytical issues with the practice of single-cell
transcriptomics. Finally, I include a short chap-
ter describing a proof-of-principle demonstration
of a simple but elegant and robust approach to
the analysis of mixed-species RNA-seq data.
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The polyadenylated transcriptome of ENCODE cell

lines

T
he material in this chapter (which consists of work done between 2010 and early 2012)
was intended to form the core of an ENCODE companion paper to complement the
main ENCODE transriptome paper (Djebali et al. 2012), and also present a some-
what different perspective of what the data is telling us:

Marinov GK*, Williams BA*, Trout D, Balasubramanian S, Fauli F, Reddy T, Gertz J, Murad R,
Mortazavi A, Myers RM, Wold BJ. The polyadenylated transcriptome of ENCODE cell lines. 2012

This unfortunately never happened for various reasons I will not go into here. It is based on
data generated primarily by Brian Williams in the Wold lab. The RNA Polymerase II and TAF1
ChIP-seq data from the Myers lab at the HudsonAlpha Institute for Biotechnology; the Nanostring
miRNA data is courtesy of Rabi Murad in the Mortazavi lab at the University of California, Irvine.

Abstract

Multiple lines of evidence have previ-
ously suggest that the complexity of the
transcript products generated by mam-
malian genomes is high. However, until
the advent of RNA sequencing technology,
it has not been possible to directly study
this diversity at the resolution and depth
provided by RNA-seq. In this study, we
performed the first large-scale characteri-
zation of the human polyadenylated tran-
scriptome using RNA-seq data from EN-
CODE cell lines and from a diverse collec-
tion of human tissues, as well as CAGE
(Capped Analysis of Gene Expression)
and ChIP-seq data for the TAF1 subunit
of the transcription initiation complex.
State-of-the-art analysis tools were then
used to generate and quantify a conserva-
tive set of annotated and novel transcrip-
tome elements, including splice junctions,

exons, intergenic transcripts, isoforms of
protein coding genes and alternative tran-
scription initiation sites. The results re-
veal the high complexity of the transcrip-
tome, but they also emphasize the in-
terpretative challenges presented by the
fact that much of the observed diversity is
present at low absolute levels, meaning it
is difficult to distinguish it from biochem-
ical noise generated by the transcription
and splicing machinery. Finally, I high-
light the areas where future technical ad-
vances that should help resolve some of
these issues are needed and expected.

1.1 Introduction

Contemporary polyA transcriptome measure-
ments, made by deep sequencing of cDNA
(RNA-seq), are remarkably information rich
(Mortazavi and Williams et al. 2008; Nagalak-
shmi et al. 2008; Wang et al. 2008; Wilhelm et
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al. 2008; Pan et al. 2008; Sultan et al. 2008;
Cloonan et al. 2008; Guttman et al. 2010; Ca-
bili et al. 2011; Li et al. 2011). High-quality
reference datasets can be mined, quantified, and
analyzed in different ways, using different soft-
ware and significance thresholds, to serve a wide
range of biological investigations. For exam-
ple, the majority of currently known mammalian
genes were mapped by working backwards from
knowledge of cloned RNA product(s) (Adams et
al. 1991; Adams et al. 1995; Curwen et al.
2004). In principle, a deeply sequenced tran-
scriptome can be used similarly to construct a
more complete catalog of genes and their alter-
nately processed RNA products, including both
protein coding and long non-coding RNAs (lncR-
NAs; Guttman et al. 2009; Guttman et al.
2010; Cabili et al. 2011). This discovery map-
ping function has been a major motivation for
ENCODE RNA-seq measurements (Myers et al.
2011; Djebali et al. 2012; this work), although
both computational and biological complexities
addressed below make this a challenging en-
terprise, especially for genes and isoforms ex-
pressed at relatively low levels. Reference RNA-
seq data can also be used to quantify differen-
tial gene expression among cell types and tis-
sues (Trapnell et al. 2012; Wang et al. 2010;
Adams & Huber 2010); to quantify RNA splice
use (Wang et al. 2008; Bradley et al. 2012);
RNA editing (Li et al. 2011; Park et al. 2012),
and other post-transcriptional processing (Jan
et al. 2011; Kodzius et al. 2006; Hoskins et
al. 2011; Affymetrix ENCODE Transcriptome
Project 2009). Finally, since these transcriptome
measurements reflect the steady state balance of
RNA biogenesis and decay, RNA-seq data can be
integrated with other genome-wide data-types
such as RNA Polymerase II (RNA Pol2) occu-
pancy and microRNA levels to gain insight into
the specifics transcription initiation, and RNA
processing, and turnover.

These diverse uses of mRNA-seq data are
best and most efficiently served by sequencing to
high depth, because greater depth increases sen-
sitivity; by using longer sequence reads, typically
in the paired-end format, because this increases
the specificity of mapping reads to the correct
gene and transcript isoform; and by using source
RNA that is highly enriched for being in the
polyA fraction, which reduces background from
other RNA types and improves interpretabil-
ity. As part of the ENCODE Porject, we there-
fore developed a community resource of human

polyA RNA-seq transcriptomes (100–200 million
sequence reads in each biological replicate) by
applying a widely used polyA RNA-seq method
(updated from Mortazavi et al. 2008), to diverse
human cell lines (ENCODE tier 1 and Tier 2).
The analysis of these cell-line and primary cell
culture RNAs was substantially augmented by
including and comparing RNA-seq data from 16
adult human tissues sequenced as part of the Hu-
man Body Map (HBM) project (primary data
available from GEO, accession code GSE30611).
The resulting data resource was analyzed using
a computational Cufflinks-based pipeline (up-
dated from Trapnell et al. 2010 and Roberts et
al. 2011) to examine the structure and diversity
of the human transcriptome, in particular focus-
ing on: 1) known and novel splice junctions, pro-
tein coding transcripts and lncRNAs, and other
elements of the transcriptome were analyzed as
a function of expression level, confidence value
and locus complexity; 2) global integrative min-
ing was illustrated by using ChIP-seq data for
TAF1 and RNA Polymerase II to determine the
number and cell type specific usage of alterna-
tive promoters; 3) specific loci, including the pro-
tocadherin gene clusters and the transcription
factor BHLHE40, were used to illustrate how
the transcriptome data and models can be used,
alone and in conjunction with other data-types
to generate explicit new hypotheses.

A particular computational challenge pre-
sented by short-read RNA-seq data is accurately
building and quantifying new gene models and
new isoform models of existing genes. The se-
quence read lengths used in this study were 2x75
(ENCODE) and 2x50 or 1x100 bp (HBM) com-
ing from on average ∼200bp-long RNA frag-
ments, while essentially all mRNAs are much
longer, with the median GENCODE V7 pro-
tein coding transcript being ∼1600bp long. This
prevents the direct measurement of long-range
contiguity, which is instead inferred, and this
inference process becomes extremely challeng-
ing for genes with many exons and large num-
ber of coexpressed alternative isoforms. An-
other great challenge in analyzing and mining
transcriptomic and other high-throughput data
comes from our limited understanding of the lev-
els and sources of biological noise in the underly-
ing processes, including transcription initiation,
splicing, and polyadenylation. Computational
tools, such as Cufflinks (Trapnell et al. 2010;
Roberts et al. 2011; used here) or Scripture
(Guttman et al. 2010), address these issues with
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algorithms designed to balance sensitivity of de-
tection with robustness and parsimony of tran-
script identification. It is expected that quan-
tification on the final transcript model set will
be significantly affected by uniformity of cover-
age over any given transcript, by its true level of
expression, and by the number of models offered
for each gene. Therefore the datasets were also
used to explore how transcript models are af-
fected by characteristics such as gene size, locus
complexity, overall expression level, and strength
of evidence for alternative splice junction use.

This analysis revealed, first, that the high
sensitivity and resolution of RNA-seq provides
evidence for the very high complexity of the
human transcriptome, with large numbers of
novel splice junctions, coding and noncoding
transcripts, alternative splicing and alternative
initiation events detectable in the data. Sec-
ond, the majority of this diversity is rare in
abundance, thus most of it likely represents bi-
ological noise rather than biologically functional
transcriptional products. However, as there is
no simple relationship between expression levels
and functionality, it is at present not possible
to determine in a straightforward way which of
these transcriptional elements are functional and
which are not. Third, a confounding factor that
has becoming apparent during the course of the
analysis, and one that has to feature prominently
in the interpretation of all data of this kind, orig-
inates from the fact that the computational chal-
lenges posed by short-read RNA-seq are very dif-
ficult to solve thus making any results that solely
depend on the performance of the tools used to
carry out the analysis provisional at best in the

absence of deeper investigation using orthogonal
means. This topic is explored in more detail in
the following chapter.

1.2 Results

We generated 2x75 bp paired-end RNA-seq data
on polyadenylated RNA from a diverse set of
10 human cell lines (Figure 1.1A) that include
primary cultures, immortalized lines, tumor-
derived lines, and a pluripotent embryonic stem
line. Derivatives of all three germ layers were
included, although these lines represent only a
small fraction of the hundreds of human cell
types. Two biological replicates were sequenced
for every cell line, to an average depth of 100–
120×106 mapped reads each (Table 1.1). These
sequencing depths are sufficient to reach satu-
ration of gene and transcript detection. The
data was of high quality as evidenced by the ab-
sence of 3’ bias and robust coverage of all of the
length of genes. In addition to these data, we
added to our analysis polyadenylated RNA-seq
data for 16 human tissue samples generated as
part of the Human Body Map 2 project (HBM),
sequenced to an average depth of 200–250×106

reads. In contrast to the ENCODE lines, each
human tissue is composed of multiple cell types
and none have experienced effects or artifacts of
ex-vivo culture or growth transformation. For a
subset of the ENCODE cell lines, we also gener-
ated ChIP-seq data for RNA Polymerase 2 and
for the transcription initiation complex compo-
nent TAF1, sequenced to a depth of at least
12×106 uniquely mappable reads per replicate

Figure 1.1 (preceding page): Overview of data generation protocols and computational
analysis. (A) PolyA-selected RNA-seq library generation. Libraries are built from PolyA-selected
RNA from ENCODE cell lines using fragmentation and random hexamer priming. Libraries are size-
selected so that the average fragment length is around 200bp and paired-end reads are generated
on the Illumina GAIIx or HiSeq 2000. (B) Data analysis workflow. RNA-seq reads from ENCODE
cell lines and from HBM tissues are individually mapped with TopHat in de novo splice junction
discovery mode. Next, all newly discovered splice junctions are combined with splice junctions
from the GENCODE annotation to create a consolidated set of junctions, which is supplied to
TopHat for remapping of all reads. The TopHat alignments are used to run Cufflinks in de novo
transcript discovery mode. The Cufflinks models for all cell lines and tissues are then merged with the
GENCODE annotation to create a final consolidated set of transcripts. Final Cufflinks quantification
is performed on the final merged annotation for each cell lines and downstream analysis of expression
values and transcript characteristics is carried out. (C) Distinction between transcript expression
estimation metrics used. In addition to the FPKM score corresponding to the most likely actual
transcript abundance, for stringency purposes we use extensively the FPKMconf–lo lower limit of
the 95% FPKM confidence interval provided by Cufflinks.



7

Figure 1.2: Number of isoforms per gene for protein coding genes in refSeq, GEN-
CODE V7 and the final merged assembly based on ENCODE+HBM data. Number of
isoforms per gene for protein coding genes in refSeq, GENCODE V7 and the final merged assembly
based on ENCODE + HBM data. (A) Distribution of isoforms number (Y-axis is plotted on a log2
scale) (B) Average number of isoforms per gene.

(Table 1.2).

1.2.1 Computational pipeline for
uniform analysis of the

transcriptome across multiple cell
lines and tissues

To take advantage of the potential of RNA-seq
to characterize both annotated and unannotated
portions of the transcriptome, it is first neces-
sary to define a full set of elements (exons, splice
junctions and transcripts) that could then be
compared and quantified between samples. A
number of tools exist for de novo reconstruc-
tion of all transcript models from RNA-seq data
(Trapnell et al. 2010; Guttman et al.; 2010).
However, these strategies, as previously applied,
produce results that are not directly compara-
ble between individual samples. This problem is
compounded by the fact that the resulting tran-
script models can be, and often are incomplete
and imperfect, due to sequence read mapping
errors, insufficient coverage of lowly expressed
genes, and highly variable read coverage over
some other genes. In order to address these
issues, I devised a computational pipeline that
combines de novo–generated transcript models
from individual samples with existing annotated
models while exerting a number of filters to re-
duce the number of artifactual and poorly sup-
ported transcripts. This single set of transcript

models was then re-quantified across all samples.

I aimed for a relatively stringent set of novel
isoform models of known genes plus transcripts
of novel genes. This approach is expected to
miss large numbers of “real” transcripts present
in the data and to therefore underestimate tran-
scriptome diversity. This is a necessary com-
promise between including all models for which
there is some evidence and the ability of software
and sequencing technology to reconstruct and re-
solve transcript abundance for complex loci. I
note that as a result of Cufflinks’ abundance fil-
ters during de novo assembly and the additional
stringency criteria imposed, final transcript level
annotation does not incorporate all splice junc-
tions for which there is sequence evidence; splice
junctions are therefore examined separately from
transcripts in later analysis.

Reads from individual samples were first
aligned against the hg19 version of the human
genome using TopHat (version 1.0.14; Trapnell
et al. 2009) in de novo mode. The splice junc-
tions identified this way were combined with the
splice junctions in the GENCODE v4 annotation
(Harrow et al. 2006) to create a final set of can-
didate junctions. This unified junctions set was
then supplied to TopHat and all samples were
remapped in order to include all reads mapping
to annotated and candidate novel splices, that,
due to low transcript abundance, low coverage
or exons being too short, TopHat had not been
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Figure 1.3: Number of genes for which isofor-level quantification is unidentifiable or
faces other numerical issues. Cufflinks assigns a FAIL or LOWDATA status to genes where
the algorithm can not confidently assign FPKMs to individual transcripts. (A) For the refSeq an-
notation, containing few isoforms, a very small percentage of genes are flagged in this manner (B)
For GENCODE V7, 10-15% of protein coding genes are flagged. (C) For an unfiltered Cuffmerge
assembly performed only on novel intergenic transcripts and novel isoforms with the GENCODE V7
annotation as a reference, more than half of protein coding genes are flagged. (D) A filtered assembly
of all novel intergenic transcripts and novel isoforms still has ∼5% more failed quantifications of pro-
tein coding genes than GENCODE V7 (E) A filtered assembly of all novel intergenic transcripts and
novel isoforms with the added requirement that they should be present at >= 1 FPKMconf lo in the
individual assemblies approaches the numbers observed for GENCODE v7 (the minimal annotation
complexity we could work with). Total number of protein coding genes: ∼20,500.

able to map in de novo mode.

Next, the resulting alignments were assem-
bled into transcripts using Cufflinks (version
1.0.1; Trapnell et al. 2010) and the individual
Cufflinks assemblies merged using the Cuffmerge
program in the Cufflinks suite (Trapnell et al.
2012) with the GENCODE v7 annotation as a
reference. The GENCODE annotation was cho-
sen because it was adopted as the ENCODE
analysis standard, selected as the most com-
prehensive set of curated transcript models for
the human genome. De novo transcript assem-
bly with Cufflinks can be done in a fully de
novo mode or in a reference annotation based
transcript (RABT) assembly mode (Roberts et
al. 2011). The latter delivers more complete

transcript models because incomplete assemblies
typically arise in de novo mode due to stretches
of low coverage or unmappable regions. In my
experience, this class of artifacts is significant,
even with very deeply sequenced datasets. How-
ever, the RABT mode produces a large number
of artifactual transcript models when run on very
complex annotations such as GENCODE v7,
which contains 4 to 6 alternate isoforms on aver-
age for each gene (Figure 1.2). Ideally, these arti-
factual transcripts would be irrelevant to down-
stream analysis, because they would be assigned
zero or very low expression values after requan-
tification, but in practice reads are often dissi-
pated across many models, due to uneven read
coverage or the absence of reads allowing for un-
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Figure 1.4: Relationship between “failure” of transcript-level quantification and locus
complexity and expression levels. (A) Successfully quantified GENCODE v7 transcripts in
adipose and testes tissue (two samples shown for brevity, results are similar for all cell lines) have a
median of 4 isoforms per gene. Genes for which quantification fails in these samples have a median
of 8 isoforms per gene. Finally, genes that are confidently quantified in all cell lines and tissues have
a median of only 2 isoforms per gene. 5-95 percentile whiskers. (B) With increased locus complexity,
an increasing number of genes become too complex to confidently quantify on the transcript level.
Shown is the fraction of GENCODE v7 genes for which quantification fails as a function of the num-
ber of annotated isoforms for that gene. Box plots represent the distribution of that fraction across
all samples used in this study. 5-95 percentile whiskers. (C) Weak correlation between expression
levels and quantification failure. Plotted is the distribution of refSeq FPKMs for protein coding
genes (here we used FPKMs calculated on the refSeq annotation to avoid the uncertainty arising
from summing the FPKM estimates for individual transcripts in a genes in a complex annotation
when transcript-level quantification is not reliable) as a function of their quantification status and
isoform number in adipose tissue. 10-90 percentile whiskers.

ambiguously distinguishing between transcripts.
Indeed, in the course of establishing the pipeline,
it was found that a major challenge for down-
stream analysis arises from the rapid growth in
the number of isoform models per gene, even
after stringent filtering of anticipated artifacts.
As more and more cell lines and tissues are ana-
lyzed, the number of isoforms becomes very large
and the ability to confidently assign the still rel-

atively short 75bp reads to individual isoforms
is compromised (even using the GENCODE V7
annotation alone, it was not possible to confi-
dently quantify the individual isoforms of about
2000 protein coding genes or about 10% of all;
see Figure 1.3 and 1.4 for more detail, as well as
the Discussion section for further treatment of
the subject).

I therefore assembled transcripts for each
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Figure 1.5: Isoform-level quantification, fragment support for known and novel junc-
tion, and TAF1 binding sites for the TCF3 locus. The arrows point to the novel splice
junctions incorporated in the novel isoforms annotated in the merged assembly.

sample individually in fully de novo mode, then
applied a number of filters before and after the
Cuffmerge step with the goal of deriving an as
conservative a set of transcript models as possi-
ble. First, the individual assemblies were com-
pared against the GENCODE annotation using
Cuffcompare (Trapnell et al. 2010) in order to
filter out intronic fragments and polymerase run-
on fragments; only transcripts classified as inter-
genic or as novel isoforms of known genes were
retained. I included all novel intergenic tran-
scripts in the merge, but for novel isoforms of
protein coding genes I required the lower 95%
confidence Fragments Per Kilobase per Million
reads (FPKM) estimate (FPKMconf lo, Figure

1.1) to be greater than 1. After merging tran-
scripts with Cuffmerge, transcripts present in
GENCODE V7 but missing from the resulting
set of models were added back and major arti-
fact classes such as retained introns and overtly
long 3’UTRs were removed.

I illustrate the results of the pipeline in Fig-
ure 1.5 using the TCF3 gene as an example. The
TCF3 gene encodes the E2A transcription fac-
tor, which plays important roles in myogenesis
(Berkes & Tapscott 2005), lymphocyte develop-
ment (Quong et al. 2002; Murre 2005), and in
other systems. The TCF3 /E2A locus is well
known for producing two different proteins, E12
and E47, as a result of mutually exclusive al-
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Figure 1.6: Isoform-level quantification, fragment support for known and novel junc-
tion, and TAF1 binding sites for the protocadherin-α cluster (Pcdhα).

ternative splicing of exons 17 and 18 (Murre et
al. 1989a; Murre et al. 1989b; Figure 1.5). Two
TCF3 isoforms (one for E12 and one for E47) are
annotated in the RefSeq set of transcript mod-
els, while 5 exist in GENCODE V7, with 2 and
3 alternative TSSs, respectively. A large num-
ber of unannotated splice junctions in the locus
were detected, most of which turn out to be of
low abundance when examined in detail. The
final merged set of models contained additional
24 isoforms not present in GENCODE, with a
new alternative TSS upstream of the 5’-most
GENCODE TSS for the gene, thus greatly ex-
panding the set of known TCF3 isoforms. These
newly assembled isoforms are of lower estimated

abundance relative to the expression levels of the
known ones. Finally, for two of the TSSs, one
annotated and the one identified from RNA-seq
data, we observed TAF1 binding overlapping the
5’ exon.

Another example of the utility of the
integrated use of these datasets was the
protocadherin-α (Pcdhα) cluster (Figure 1.6).
Protocadherins are cell surface single-pass trans-
membrane proteins, particularly highly ex-
pressed in the nervous system and enriched in
synaptic junctions, which have been proposed to
play a major role in the precise specification of
neuronal connectivity under the “chemoaffinity
hypothesis” model of establishing neural circuits
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(Zipursky & Janes, 2010). The Pcdhα, Pcdhβ
and Pcdhγ genes exhibit a striking pattern of
organization and clustering in the genome. All
Pcdhα and all Pcdhγ protocadherins share three
constant 3’ exons which code for a portion of
the intracellular domain of the protein, to which
numerous unique alternative 5’ exons, each with
its own promoter, are alternatively spliced (Wu
& Manitatis, 1999; Tasic et al. 2002; Wang et
al. 2002); these 5’ exons code for the extracel-
lular, transmembrane, and parts of the intracel-
llar portions of the protein. The Pcdhβ cluster
is similarly organized but there are no constant
exons and each gene is transcribed individually.
Protocadherins are transcribed monoallelically,
i.e. only a single variable exon is used on each
cluster allele, with which one exactly being de-
termined stochastically, meaning that each cell
produces one of a large number of combinations
of protocadherins, potentially generating unique
molecular identities for each neuron (Esumi et
al. 2005). I examined Pcdhα expression in our
datasets and observed the expected highest ex-
pression levels in brain tissue, with PCDHA6,
PCDHA10 and PCDHAC2 being most highly
expressed, and lower-level expression levels in
several other tissues such as thyroid and kid-
ney. Strikingly, I also found high (comparable
to those in brain) expression levels of Pcdhα in
human embryonic stem cells (which to the best
of my knowledge has not been reported previ-
ously), and lower levels in a few other cell lines
such as the breast cancer MCF7 cell line and
the lung fibroblast NHLF cell line (Figure 1.6).
TAF1 binding to the promoters of several of the
more highly expressed Pcdhα genes was observed
in H1-hESC. In addition, three TAF1 binding
sites in the 3’ intron of the Pcdhα cluster were
detected, as well as a number of low-abundance
novel splice junctions connecting the variable ex-
ons with each other (Figure 1.6); their signifi-
cance is at present not clear and remains to be
tested in future studies.

1.2.2 Catalog of splice junctions
in the human genome

I compared the full set of splice junctions present
in the TopHat mappings to the GENCODE V7
human genome annotation. Of the 318,693 splice
junctions in the annotation, 266,311 were cov-
ered by at least one and 253,063 by at least
two unique sequence fragments (to avoid count-
ing PCR duplicates, a unique sequence fragment

is defined as the number of non-identical read
pairs crossing a junction and I refer to that num-
ber everywhere except where explicitly specified
otherwise) (Figure 1.7C). This represents an ap-
proximate measurement of the breadth of cover-
age of the transcriptome in the data, with the
junctions not detected consisting of a combi-
nation of junctions from rarely expressed genes
not present in the cell lines and tissues exam-
ined, junctions from non-polyadenylated tran-
scripts and possibly artifacts in the annotation.
In addition to the annotated junctions, I also
observed 687,638 candidate novel junctions sup-
ported by at least one, and 462,274 supported
by at least two unique fragments. I note that
the TopHat algorithm relies on first finding pu-
tative exons based on read coverage and then
on identifying splice junctions nearby (Trapnell
et al. 2009), i.e. it employs an “exon-first” ap-
proach to junction discovery. This junction set
is therefore more conservative than those from
some other de novo splice mapping algorithms
relying on “seed-extend” strategies (Garber et
al. 2011) to find splices (Dobin et al. 2013;
De Bona et al. 2008; Wu et al. 2010), which
are likely to find more junctions in the same
dataset. I also note that I ran TopHat with de-
fault settings with respect to the genomic range
over which new junctions can be discovered so
the maximum distance between two splice sites
is 500 kb. Only 81 annotated junction span ge-
nomic distances longer than 500kb so it is un-
likely that many novel ones were missed due to
this constraint. On average, around 150,000 an-
notated junctions were detected in each cell line
or tissue (Figure 1.8A). Of the novel junctions,
between 150,000 and 250,000 were found in each
cell line, and 50-120,000 in each tissue (Figure
1.8B). The lower number in tissues likely re-
flects the fact that HBM data is a mixture of
2x50bp and 1x100bp reads, while the cell lines
were sequenced as 2x75bp. This difference in
read length is expected to make de novo junc-
tion discovery more difficult.

I next asked how exhaustively we had sam-
pled the diversity of splicing events in the hu-
man transcriptome by looking at the saturation
of junction detection as a function of the number
of cell lines/tissues examined (Figure 1.7A and
B). These cumulative plots show that annotated
junctions exhibit a clear saturation trend, with
more than 90% detected with less than half of
the cell lines considered. In contrast, the trend
for novel junction discovery indicates that fur-
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ther sequencing of additional cell lines and tis-
sues of different origin is likely to substantially
increase the number of new candidate junctions.

An open question regarding alternative splic-
ing events and unannotated transcripts in mam-
malian systems is to what extent they repre-
sent biologically functional events as opposed to
well-tolerated transcriptional and splicing ma-
chinery noise (Wang et al. 2008; Pan et al. 2008;
Melamud & Moult 2009; Sorek et al. 2004). I
therefore sought to characterize the properties
of novel junctions and compare them to those
of annotated ones as a function of their expres-
sion levels. When the effect of different fragment
support thresholds on junction discovery was ex-
amined (Figure 1.7C and D), a clear trend was
observed: annotated junctions have high frag-
ment count support (the splice-specific empiri-
cal surrogate for expression level) in multiple cell
lines, while novel splices are mostly detected in
one or a small number of cell lines. The ma-
jority of novel junctions were supported by only
a few fragments, with their corresponding tran-
script isoforms being at levels of uncertain sig-
nificance, assuming expression in most cells in
the population. This is entirely consistent with
a large fraction of them being noise. However,
due to the very large total number of candidate
novel junctions, significant numbers of highly
supported novel junctions were still discovered:
for example, 79,667 junctions were supported by
more than 5 unique fragments in more than 3
cell lines/tissues, and 8,898 junctions supported
by more than 20 fragments in more than 5 cell

lines/tissues, thresholds that can be considered
stringent and suggestive of biological functional-
ity.

1.2.3 Splice junction motif
preferences

Next, I asked how canonical (GT|AG) (Mount
1982) and non-canonical splice sites distribute
in the junctions set (Figure 1.7E). A number of
non-canonical splice site junctions are present
in the GENCODE v7 annotation and I ob-
served that they are most often found among
those junctions that were not detected in any
of our samples. The fraction of such junc-
tions decreased with increased fragment sup-
port thresholds. These may represent artifacts
in the annotation or transcripts which are de-
pleted in polyA-selected RNA. Novel junctions
were mostly of the canonical GT|AG type, but in
addition, GC|AG and AT|AC, substrates of the
minor U12 spliceosome (Burge et al. 1998; Patel
& Steitz 2005; Will & Luhrmann 2005; Jackson
1991; Hall & Padgett 1994; Sharp & Burge 1997;
Hall & Padgett 1996; Tarn & Steitz 1996a; Tarn
& Steitz 1996b) were also very abundant irre-
spective of the level of fragment support. It is
possible that this reflects a TopHat preference
for such junctions rather than actual biological
reality. About 10% of the novel canonical junc-
tions, but a much smaller fraction of all non-
canonical ones are supported by EST sequences
(Figure 1.9). Finally, I explicitly examined the
tissue specificity of junctions by calculating tis-

Figure 1.7 (preceding page): Catalogue of splice junctions in the human genome. (A)
and (B) Cumulative detection of annotated (A) and novel (B) splice junctions in ENCODE cell
lines and HBM tissues. Unique fragment counts were summed where replicates were available, the
order of the cell lines/tissues was permuted 10,000 times and the number of junctions detected with
the addition of every cell lines/tissue was counted for each permutation. A threshold of 2 unique
fragment counts was used. Note that the Y axis does not begin at 0. (C) and (D) Annotated
splice junctions are much more abundant and widely used than novel ones. Plotted is the number
of junctions detected at a given threshold with the color codes corresponding to the number of cell
lines in which this threshold is passed. Most known junctions are detected at high fragment counts
in multiple cell lines while the majority of novel junctions are supported by few reads and only in
a small number of cell lines. Shaded area corresponds to support levels that we are least confident
in. (A) Canonical and non-canonical splice-sites and total read support for annotated and known
junctions. The sum of unique fragment counts across all samples for each junction is shown, and for
each abundance category the fraction of canonical, major non-canonical (as reported by TopHat)
and other splice sites was plotted. The total number of junctions in each category is shown in
the blue bars below. (F) and (G) Tissue/cell type-specificity of splice junctions measured using
the JS Specificity Score. High score indicates high tissue-specificity, low score indicates widespread
abundance
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Figure 1.8: Number of splice junctions detected in each cell line and tissue. (A) Anno-
tated (B) Novel

sue specificity score for each junction (JS score;
see the Methods seciton for details). Annotated
junctions mostly had low JS scores reflecting
widespread abundance in multiple cell lines while
novel junctions clustered in two groups - either
with a JS score of 1 and perfect tissue specificity
(due to detection in only a single cell line) or
with a medium JS score and expression in a lim-
ited number of cell lines. In addition, canonical
junctions had lower JS scores than non-canonical
ones, suggesting detection of the latter in limited
number of samples.

1.2.4 Classifying novel splice
junctions relative to existing

annotation

To better understand where novel junctions arise
relative to existing gene structures, I classified
all RNA-seq junctions into the classes depicted
in Figure 1.10. I note that splice junctions con-
necting positions within a gene, for which no
splice site is annotated (novel intragenic exons),
need not originate from transcripts that belong
to the gene in which they are embedded; they

can instead result from nested, previously unan-
notated transcripts. Of all novel junctions, the
most numerous category were junctions connect-
ing an annotated exon to a novel exon within
the same gene (class E, 264,121), followed by
junctions connecting two novel intragenic exons
(class C, 186,668) junctions connecting two an-
notated exons (class A, 75,147) and intergenic
junctions outside of annotated genes (class H,
54,555) (Figure 1.10B).

Among all novel splice categories, the
strongest in read support were the relatively
small group of class B junctions that connect
exons of two different annotated genes. Of these
almost half arise from loci in which paralogs are
adjacent and both are highly expressed in one or
more of our samples (Figure 1.11A). One expla-
nation is that they may represent computational
artifacts, i.e. cases in which de novo junctions
discovery incorrectly placed reads across two ex-
ons of different genes due to their high sequence
similarity. A higher fraction of tandem para-
log pairs had multiple such junctions connect-
ing their exons (Figure 1.110B and C), and a
high fraction of them had very similar donor or
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Figure 1.9: EST support for annotated and novel junctions. (A) EST support different junc-
tion connection categories (see Fig. 3) (B) EST support for annotated canonical and non-canonical
junctions (C) EST support for novel canonical and non-canonical junctions.

acceptor sites in both genes compared to the rest
of class B junctions (Figure 1.11E), consistent
with a purely computational explanation. How-
ever, such junctions had higher fragment count
support (Figure 1.11F) and the number of frag-
ments in an individual sample correlated well
with both genes being expressed in that sample
(Figure 1.11G), which argues for their biochem-
ical presence. Of the other class B junctions,
about a third connect non-coding transcripts or
protein coding transcripts to non-coding tran-
scripts (Figure 1.11D) and on average, they orig-
inated from gene pairs with even higher expres-
sion than junctions connecting tandem paralogs
(Figure 1.11G).

The next most abundant class of junctions
were class A and class H junctions (Figure
1.10C), connecting known exons of a known gene

and intragenic exons, respectively.

Because annotated splice sites are over-
whelmingly canonical, we expect novel junctions
connecting to an annotated exon to also be pre-
dominantly canonical, which is what is observed.
Most non-canonical junctions belong to the E, F
and G classes, which connect intragenic genomic
positions. I note that completely intergenic,
class H junctions exhibit a much higher pro-
portion of canonical junctions than these three
groups (Figure 1.10D). The most plausible in-
terpretation of this observation is that a higher
fraction of class H intergenic junctions repre-
sent functional transcripts while the other classes
are mainly the result of biological and computa-
tional noise.

Previous studies have reported the existence
of large numbers of alternative canonical splice
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acceptor sites separated by 3 bp from the main
annotated acceptor site (”NAGNAG” splice ac-
ceptors) (Hiller et al. 2004; Akerman et al. 2006;
Bradley et al. 2012). I found 1193 class C junc-
tions of this kind, but this did not constitute
the majority of such junctions – in addition to
the classical NAGNAG events, I also observed
large numbers of splice junctions representing
other small shifts relative to the annotated splice
donor sites and at both donor and acceptor ends.
For a significant fraction of the junctions the
shift was not divisible by 3 and therefore frame-
preserving (Figure 1.12A and B) and there was
not a large difference in the fraction of junctions
that are canonical, in their fragment support or
expression specificity (Figure 1.12C and D) be-
tween frame-preserving and non-frame preserv-
ing junctions.

The A and C classes of novel junctions con-
nect known exons which have annotated junc-
tions connecting to them. This allows us to ask
what the abundance of these novel junctions rel-
ative to the associated annotated ones is, which
I quantified as the fraction of major annotated
junction counts (FMJ), where the major junc-
tion is the one with the highest fragment support
in a given sample. For the majority of A and
C novel junctions, this ratio was less than 0.1
(Figure 1.10F) arguing against their biological
functionality. A small, (less than 10%) fraction
had FMJ scores greater than 1 corresponding to
preferential utilization of the novel junction over
the annotated ones. However, around 80% of
such cases have total read support of less than
5 fragments, i.e. these events mostly happen at
junctions/genes that are lowly expressed, and bi-
ologically relevant preferential use of novel junc-
tions is limited to the remaining few thousand
junctions with high read coverage. Finally, I ex-
amined the cell type specificity of such events

(Figure 1.13) and found that they mostly oc-
cur in a small number of cell lines/tissues, with
testes, K562, H1-hESC and GM12878 exhibiting
the highest number.

1.2.5 Correlation between
presence of novel junctions and

gene expression and loci
complexity

Following the hypothesis that most novel junc-
tions detected in RNA-seq data are the result
of a combination of biological and experimental
noise, I tested the correlation between detection
of novel junctions for each gene and the expres-
sion levels and the number of exons for a given
gene. The expectation is that highly expressed
genes and genes with a large number of exons
are likely to generate more novel junctions than
genes with low expression levels and few exons.
Our observations are indeed consistent with such
an expectation as shown in Figure 1.10G and H.

1.2.6 Identification of novel
intergenic transcripts

In recent years, long intergenic non-coding
RNAs (lincRNA) have become a hot topic of re-
search, with thousands of such transcripts iden-
tified using microarrays and RNA sequencing
(Guttman et al. 2009; Khalil et al. 2009; Ca-
bili et al. 2011). Individual lincRNAs have been
implicated in a number of important biological
processes (Guttman et al. 2011; Borsani et al,
1991; Brown et al. 1991; Lee et al. 1999; Az-
zalin et al. 2007; Huarte et al. 2010; Meller
et al. 1997). To identify novel lincRNAs and
characterize lincRNA expression patterns across
cell types and tissues, I adapted previously pub-

Figure 1.10 (preceding page): Relation of novel junctions to existing annotations. (A)
Different categories of junction connections relative to an annotation. (B) Number of junctions in
each category (all annotated and novel ones included irrespective of read support). (C) Distribution
of read support (across all samples) for each category in unique fragment counts. (D) JS specificity
scores. (E) Canonical and non-canonical splice junctions. (F) Correlation between the number of
novel junctions detected and the number of annotated exons for a given gene (only protein coding
genes shown). (G) Correlation between the number of novel junctions detected and expression levels
of genes (RefSeq FPKM values for protein coding genes shown). (H) Novel splice junctions at least
one end of which is the same as that of an annotated splice junction are typically detected at a small
fraction of the fragment counts of the major annotated junction (FMJ) sharing that splice site. For
about 10% of them, the FMJ is greater than 1 but the majority are junctions with low fragment
support
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Figure 1.11: Splice junctions connecting known exons of different genes. (A) Number
of junctions originating from pairs of tandem duplicate genes, and number of junctions originating
from other genes. (B,C) Number junctions per gene pair. (D) Junctions connecting non-tandem
duplicate genes according to whether they connect protein coding or non-coding genes (E) Minimal
number mismatches between the donor or acceptor exon for gene A or gene B in a pair, respectively,
and other downstream exons in gene A or upstream exons in gene B, respectively. TopHat requires
at least 8bp on each side of a splice junction in order to map reads across it so lengths of 8, 10 and
12bp on each side of splice junctions were used. Note that 32 “tandem” junctions and 232 “others”
junctions connected genes located on opposite genomic strands, and those are not included in the
plot. (F) Total unique supporting fragment counts (G) Maximum expression level (in all cell lines
and tissues) of the connected genes (H) Correlation between the minimum expression of genes in a
pair and the distinct fragment counts mapping to the junctions in different samples.
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Figure 1.12: Distance of novel junction 5’ and 3’ ends to the nearest annotated splice.
(A) 5’ donor sites. (B) 3’ acceptor sites (C) Distribution of canonical and non-canonical splice sites,
5’ donor sites. (D) Distribution of canonical and non-canonical splice sites, 3’ acceptor sites. (E)
Total fragment support, 5’ donor sites. (F) Total fragment support, 3’ acceptor sites. (G) JS scores,
5’ donor sites. (H) JS scores, 3’ acceptor sites.

lished computational approaches for classifying
intergenic transcripts (Guttman et al. 2010; Ca-
bili et al. 2011). Briefly, for all intergenic multi-
exonic transcript models in the final merged as-
sembly, I first calculated the phylogenetic codon
substitution frequency (PhyloCSF) score (Lin et
al. 2011) and filtered out all transcripts with
significantly constrained putative ORFs. I then
scanned transcripts in all reading frames for the

presence of protein domains annotated in the
PFAM database (Punta et al. 2012) and re-
moved all transcripts which contained such do-
mains. The discarded transcripts were grouped
together as transcripts of uncertain coding po-
tential (TUCP) and analyzed separately. I iden-
tified 3591 candidate novel lincRNAs and 2592
TUCPs, numbers similar to those reported pre-
viously (Cabili et al. 2011; Guttman et al. 2009;
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Figure 1.13: FMJ>=1 events. (A,B) FMJ>= 1 events per cell lines. (C) Number of cell lines
in which each individual FMJ event is observed.

Khalil et al. 2010). In addition, the GENCODE
v7 annotation contains 1368 annotated lincRNA
genes which I analyzed in parallel. Most (67%)
putative lincRNAs consisted of two exons and
for 20% of them, more than one isoform was as-
sembled (Figure 1.14A and B); for comparison,
68% of GENCODE v7 lincRNAs have 3 or more
exons and 40% have multiple isoforms. I note
that I also identified the longest ORF for each
candidate lincRNA and TUCP and found ORFs
of substantial length for significant fraction of

both groups of transcripts (Figure 1.14J).

The majority of candidate lincRNAs were ex-
pressed at very low levels with only 695 (19%)
expressed at FPKMconf lo greater than 5, and
most only in one cell line/tissue (Figure 1.14C).
The majority of protein coding genes pass that
threshold (Figure 1.14E), and a higher propor-
tion (26%) of GENCODE lincRNAs (Figure
1.14D). TUCP loci exhibited very similar char-
acteristics in terms of number of exons and iso-
forms and expression patterns (Figure 1.14E,F
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and G).

In addition to the set of spliced inter-
genic transcripts discussed above, the final
merged assembly contained a very large number
(≥130,000) of monoexonic transcripts, mostly
shorter than 400 bp (Figure 1.14K). Due to
the specifics of the merge procedure which fuses
short overlapping fragments from multiple sam-
ples into a single larger one, and the short length
of current RNA-seq reads, it is not possible to
precisely define the start and end positions of
these transcripts. A large number of them prob-
ably represent short spurious intergenic frag-
ments yet there are still more than 20,000 ex-
pressed at a high-confidence threshold of more
than 10 FPKM, strikingly almost always only in
a single cell line (Figure 1.14M).

We are at present not certain how to inter-
pret the nature of monoexonic loci as well as
of candidate lincRNA and TUCP transcripts.
There seems to be a large number of these tran-
scripts expressed in highly cell type specific man-
ner, therefore more are expected to be found if
additional cell lines are sampled (Figure 1.14N).
However they are mostly expressed at very low
levels. Both candidate lincRNAs and TUCPs
have high tissue specificity scores with lincRNAs
being a little more tissue specific on average (Fig-
ure 1.14I). Each cell line and tissue expressed
between 50 and 150 candidate lncRNAs at more
than 1 FPKMconf lo, with the notable exception
of testes, where vastly more (more than 750)
were detected (Figure 1.15, Figure 1.14N), and
similar patterns were observed for TUCPs (Fig-
ure 1.16, Figure 1.14N). What the functional role

and biological significance of all these transcripts
is remains to be determined (See Discussion sec-
tion for further discussion)

Combining all transcripts annotated in GEN-
CODE v7 with novel isoforms of known genes,
candidate lncRNAs, TUCPs, and monoexonic,
I estimate that between 4 and 5 % of the hu-
man genome is expressed as exonic elements at
≥1 FPKM in at least one cell line or tissue in
our dataset, and about 45% when introns are
included (Figure 1.17).

1.2.7 Novel exons of annotated
genes

After performing transcript-level quantification
on the final merged assembly, I examined the na-
ture and abundance of novel exons of known pro-
tein coding genes in the assembly. To this end,
I assigned FPKM scores on exons derived from
the sum of FPKMs of all individual transcripts
containing them and classified exons according
to their relation to the existing annotation (Fig-
ure 1.18A and B). The largest classes of novel
exons were extensions of 5’ and 3’UTRs. We
expected this trend because of actual variation
in the biology of transcription starts and pro-
cessing (biology sources) and because of anno-
tation imperfections at transcript ends (Hoskins
et al. 2011; Carninci et al. 2006; Rach et al.
2011). The next most frequently observed nov-
elties arise from extensions or shortenings of in-
ternal exons, consistent with our previous obser-
vation of a large number of novel splice sites lo-
cated in introns and previously annotated exons.

Figure 1.14 (preceding page): Identification of novel intergenic transcribed loci (lincR-
NAs and TUCPs). (A) Number of exons for candidate lncRNA genes. (B) Number of isoforms for
candidate lncRNA genes (C), (D), (E) Expression of candidate lncRNA genes, annotated lncRNA
genes and protein coding genes for comparison. While protein coding genes are widely expressed at
high levels, annotated lncRNA are mostly expressed at low levels, and candidate novel lncRNAs are
expressed at even lower levels and in few cell lines/tissues. FPKMconf lo thresholds were used for
stringency purposes. (F), (G), (H) Transcripts of Uncertain Coding Potential (TUCP) are broadly
similar in their characteristics and expression patterns to candidate lncRNAs. (I) Candidate lncR-
NAs are slightly more tissue-specific than TUCPs. (J) Substantial numbers of both lncRNAs and
TUCPs contain ORFs of considerable length, with slightly more such ORFs observed in TUCPs (K)
Large numbers of monoexonic intergenic transcripts are detected, mostly below 400bp of length (see
text for detailed discussion). (L) Expression patterns of monoexonic intergenic transcripts. While
mostly of low abundance and observed only in individual cell lines/tissues, there are still thousands of
such transcripts expressed at significant levels, typically only in one cell lines (though again, usually
in a single cell line or tissue). (N) Cumulative detection of novel intergenic transcripts. Threshold
of FPKMconf lo ≥ 1 was used. Note the inflection of saturation caused by the testes sample in the
lncRNA and TUCP plots.
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Figure 1.15: Expression of candidate lncRNA across cell lines. (A) At 0.1 FPKMconf lo.
(B) At 1 FPKMconf lo threshold.

Completely novel exons are rare, with evidence
for 583 internal exons, 1279 novel 5 exons and
999 novel 3 exons at an FPKM cut-off of 5, for
a total of 17,197 novel exons (Figure 1.18A).

1.2.8 Splicing isoform expression
of protein coding genes

The final transcript set contained 42,775 novel
isoforms of protein coding in addition to those
already present in GENCODE. I examined the

Figure 1.16: Expression of TUCP transcripts across cell lines. (A) At 0.1 FPKMconf lo.
(B) At 1 FPKMconf lo threshold.
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expression patterns of annotated and novel iso-
forms and found that novel isoforms are on av-
erage expressed at lower levels than annotated
ones (Figure 1.18C and D), yet they are similarly
widely expressed (Figure 1.18I). Previous stud-
ies have suggested that almost all human genes
undergo alternative splicing (Wang et al. 2008;
Pan et al. 2008); however, alternative splicing
is a noisy process and a large number of low-
abundance isoforms might be generated without
much biological relevance, so I aimed to under-
stand isoform expression as a function of abun-
dance estimates. At a conservative threshold of
5 FPKMconf lo, 28,638 annotated isoforms and
3,374 novel ones were detected; this is an un-
derestimate since where quantification was un-
reliable due to identifiability and other numer-
ical issues, I assigned FPKM of 0 to all tran-
scripts of a gene. Large numbers of isoforms
were detected at lower thresholds and isoform
detection did not clearly saturate at the level of
5 FPKM neither for annotated not for novel iso-
forms (Figure 1.185E and F). Using the same 5
FPKMconf lo threshold, I detect multiple anno-
tated isoforms for 7,742 protein coding genes,
and a novel isoform for 2,717 protein coding
genes (Figure 1.18G and H), numbers that in-
crease or decrease as thresholds are correspond-
ingly relaxed or tightened.

Because transcription and splicing of very
highly abundant genes can generate aberrant
noise products that are still highly abundant
when compared to rarely transcribed genes in
the same cell lines/tissue, a more informative
metric for evaluating alternative splicing isoform
abundance is the ratio of a given isoform’s abu-

dance to that of the major isoform for the gene
(fraction of major isoform, FMI). Across all cell
lines and tissues, the median FMI value for the
second most abundant isoform was stably be-
tween 0.4 and 0.5, between 0.1 and 0.2 for the
third most abundant isoforms, and below 0.1 for
lower-ranked isoforms (Figure 1.18J). FMI val-
ues of novel isoforms tend to be lower. For exam-
ple, when ranked second, their FMI was below
0.2 rather than 0.4.

A different splicing isoform may be the major
isoform in different cell lines, which is here re-
ferred to as major isoform switch. To determine
how widespread this phenomenon is, I counted
the different major isoforms for each gene in all
cell lines and tissues at different detection cut-
offs. Using the 5 FPKMconf lo threshold, I esti-
mate that 7,541 genes express only a single ma-
jor isoforms while 5,749 express multiple major
isoforms, with 2308 expressing 3 or more (Fig-
ure 1.18K). For every pair of cell lines/tissues,
between 600 and 2,800 genes switched their ma-
jor isoform (Figure 1.1917).

The observations outlined above suggest a
larger expression diversity on the level of individ-
ual transcripts than on the gene level. Indeed,
when expression specificity was measured using
the JS tissue specificity metric, it was usually
higher for of individual transcripts than for the
genes they belong to (Figure 1.18P).

1.2.9 Impact of splicing isoforms
on protein sequence

The impact of alternative isoform expression on
protein function depends on the difference in

Figure 1.17: Fraction of genome expressed at a given FPKM threshold in at least one
cell line or tissue, with (A) or without (B) the inclusion of introns.
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ORFs from alternative isoforms. Some isoforms
with premature stop codons will likely be sub-
ject to nonsense-mediated decay (NMD) (Chang
et al. 2007) and while regulatory roles for NMD
alternative splicing events has been proposed
(Cuccurese et al. 2005; Green et al. 2003;
McGlincy & Smith 2008) many will likely have
little biological impact. Similar expectations ap-
ply to transcripts with very large retained in-
trons. More than a quarter of protein coding
gene isoforms in the GENCODE V7 annotation
are designated as non-coding for such reasons.
I assigned novel isoforms into coding and non-
coding following a similar requirement that pro-
tein coding isoforms contain an ORF and the
ORF does not finish more than 50 bp down-
stream of the 3’ exon splice junction. A similar
but slightly higher (likely because stringent fil-
ters on retained intron transcripts were applied)

fraction of novel isoforms was classified as coding
in this manner (Figure 1.18L). Next, I examined
the impact of expressed isoforms on the coding
sequence of each gene (Figure 1.18M). I calcu-
lated four quantities for each gene at a given
FPKM threshold: 1) the total number of iso-
forms expressed, 2) the number of protein coding
isoforms expressed (excluding non-coding ones),
3) the number of different protein sequences ex-
pressed (if two isoforms only differ in such a way
that there protein translation are the same, they
were counted as one), and 4) the number of pro-
tein domain sets expressed (I scanned each tran-
script for the presence of domains annotated in
the PFAM database; if two isoforms produced
the number, type, order and sequence of PFAM
domains, they were counted as one). At a con-
servative 5 FPKMconf lo threshold, 2,106 genes
express multiple protein sequences, and PFAM

Figure 1.18 (preceding page): Expression of annotated and novel isoforms of protein
coding genes. Genes and transcripts for which isoform-level quantification failed were excluded
in all cases except for exons in (A) and (B). (A) New exons identified classified according to their
relation to the existing annotation. Shortened 3’ and 5’UTRs are shaded because the majority of
these are likely to be the result of incomplete transcript assembly due to low read coverage. Exon
FPKMs were defined as the sum of FPKMs for all individual transcripts containing the exon. The
maximum such estimate for all samples is shown. (B) Cumulative detection of novel exons. C)
and (D) Expression patterns of annotated and novel isoforms of protein coding genes. Annotated
isoforms are on average more highly expressed than novel ones, however, novel ones are mostly as
widely expressed as annotated ones. (E), (F) Cumulative detection of annotated and novel isoforms.
(G), (H) Number of expressed annotated and novel isoforms per genes as a function of abundance
levels. The plot shows the number of genes with a number of isoforms indicated by the color code
expressed at level above the FPKMconf lo thresholds shown. (I). JS specificity scores for annotated
and novel isoforms. (J) Isoform abundance as a fraction of the major isoform (FMI) for a gene.
For each gene and each cell line/tissue, individual transcripts are ranked by their FPKM expression
estimates. The isoform with the highest FPKM is the major one, the distribution of the ratio
between the lower ranked isoforms and the major one for all genes and conditions is shown. (K)
Number of major isoforms per gene. Genes may express different major isoforms in different cell
lines; such events are more confidently identified when the expression level of the genes is high.
Shown is the number of major isoforms per gene as indicated by the color code at the indicated
FPKMconf lo thresholds for the major isoform. L) Coding potential of annotated and novel isoforms.
The ”other“ category contains transcripts classified as NMD products, retained intron transcripts
and other non-coding isoforms of coding genes. (M) Impact of isoforms on protein sequence. For
each gene, the number of expressed isoforms, expressed protein coding isoforms (not all isoforms
are protein coding), expressed protein sequences (some isoforms may only differ in their non-coding
regions), and expressed domain sets was calculated. Domain sets were defined by scanning all
transcripts for PFAM protein domains and counting as distinct only isoforms that differ in the
identity and sequence of their protein domains. A threshold of 5 FPKMconf lo was used for this
plot. (N) Number of expressed protein sequences as function of expression levels. The color code
indicates the number of genes with 1, 2 or 3 and more protein sequences detected at the indicated
FPKMconf lo threshold. (O) Fraction of expressed transcripts detected coding for proteins as a
function of expression levels. (P) Expression specificity (JS score) of individual transcripts and the
expression of the corresponding genes (protein coding genes only).
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Figure 1.19: Major isoform switch events. Major isoform switch events between cell lines
at an FPKMconf–lo threshold of 5. Shown is the number of genes for which the major isoform is
different in each pair of cell line/tissues.

domains are affected by alternative isoform ex-
pression for 1,674 (Figure 1.18M). Relaxing the
FPKM threshold results in higher estimates for
the number of such genes (Figure 1.18N).

While performing this analysis, I noticed that
approximately half of all expressed RNA iso-
forms, irrespective of detection threshold, are
non-coding, a higher fraction than expected
based on the fraction of such transcripts in the
annotation (Figure 1.18O). This is a somewhat
puzzling observation since the naive expectation
would be that non-coding isoforms are mostly
the result of transcriptional noise and that NMD
isoforms are degraded relatively quickly, there-
fore they would be more frequently seen at low
detection thresholds. Examples of such tran-
scripts with regulatory function are known (Le
Guiner et al. 2003; Sureau et al. 2001; Wollerton
et al. 2004) so there may be biological function-
ality behind this observation. Further investi-
gation will be needed to better understand this
phenomenon.

1.2.10 Reconstruction of primary
miRNA transcripts

We investigated whether any of the novel tran-
scripts not in GENCODE V7 could correspond
to miRNA primary transcripts. We compared
the 2,104 miRNAs in miRBase V18 (Kozomara
A & Griffiths-Jones 2011) to the GENCODE an-
notation and found that 57% were in the ex-
ons (9%) and introns (48%) of sense transcripts
longer than 125 bp (Figure 1.20A). The inclusion
of merged and filtered GENCODE+Cufflinks
transcripts increases the percentage of over-
lapping known miRNAs to 59%, with an in-
crease of microRNAs in exons to 15% (Figure
1.20A). However, it is likely that only a sub-
set of miRBase microRNAs are expressed in
our cell types and tissues. We therefore mea-
sured the expression of microRNAs in six EN-
CODE cell lines using Nanostring (Wyman et al.
2011) as described in the methods. We found
93 miRNAs expressed highly (≥200 counts) in
one or more of the six cell lines. Whereas
57% of these miRNAs (9% exonic) overlapped a
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sense GENCODE transcript, we found that 62%
(23% exonic) overlapped a merged and filtered
GENCODE+Cufflinks sense transcript (Figure
1.20A). Given that a single Nanostring probe can
map to more than one genomic location when
only a subset may be transcribed even though
we count all locations, our numbers are likely
be an underestimate of the fraction of miRNAs
that have evidence of primary transcripts in our
RNA-seq data.

1.2.11 Complexity of TAF1
binding patterns in the human

genome

Initiation of transcription at gene promoters is a
primary point of regulation of transcriptional ac-
tivity in eukaryotic cells, with many genes known
to initiate transcription from multiple promot-
ers (Landry et al. 2003; Wu et al. 1999; Tasic
et al. 2002). For this reason, the characteri-
zation of the identity and activity of novel in-
tergenic, novel alternative as well as annotated
promoters is of great interest. To this end,
we generated genome-wide ChIP-seq profiles for
the TAF1 subunit of the TFIID general tran-
scription factor, a component of the RNA Pol2
pre-initiation complex (PIC) (Buratowski et al.
1989; Näär et al. 2001), in GM12878, H1-hESC,
HeLa, HepG2 and K562 cells. TAF1 binding
is expected to mark all active promoters tran-
scribed by RNA Pol2 and therefore be a good
marker for discovery of new promoters.

I called TAF1 binding sites with ERANGE
4.0 (Johnson et al. 2007, http://woldlab.

caltech.edu/wiki/) using relatively relaxed
thresholds (see Methods) and calculated expres-
sion values in FPKM for all TSSs in GENCODE
and the final merged set of transcripts mod-
els by summing the FPKM values for all tran-
scripts sharing a given TSSs. I called between
9,000 and 20,000 TAF1 binding sites in individ-
ual replicates, with K562 and H1-hESC having
the highest number (Figure 1.21A). The distri-
bution of individual TAF1 binding site summits
centered right on top of GENCODE TSS (Fig-
ure 1.21C) and TAF1 loading correlated pos-
itively with gene expression. However, I no-
ticed that not all expressed TSSs are marked
by TAF1 loading, with up to 25 % of TSSs ex-
pressed at more than 100 FPKM in H1-hESC
not having a TAF1 binding sites, a proportion
that grows with the decrease of expression levels
(Figure 1.22A). In most cases this is not due to

these TSSs containing repetitive sequences and
sequencing reads failing to align as a result (Fig-
ure 1.22B). In the other cell lines we assayed,
fewer TAF1 binding sites were called (Figure
1.21A) and an even higher number of highly
expressed TSSs did not have a TAF1 binding
site (Figure 1.22C). This could be due to techni-
cal variability in ChIP strength; however, the
highest number of binding sites we identified
in a single GM12878 TAF1 ChIP-seq replicate
was less than 10,000, even though 12 different
biological and technical replicates were gener-
ated, and similar results were obtained with two
other lymphoblastoid cell lines, GM12891 and
GM12892 (Figure 1.21B), which makes this ex-
planation unlikely. It has been suggested that
in certain cell lines and tissues, the composition
of the PIC components varies (Deato & Tjian
2007; Goodrich & Tjian 2010; D’Alessio et al.
2011) which could explain the consistent differ-
ences between TAF1 binding observed in differ-
ent cell lines, yet there was no negative correla-
tion between TAF1 expression and the number
of TAF1 binding sites. The other explanation is
that there exists a class of promoters in the ini-
tiation of which TAF1 does not play a role. This
is in agreement with previous tiling array-based
studies profiling TAF1 distribution genome-wide
(Kim et al. 2005).

In order to compare TAF1 binding across cell
lines, I merged TAF1 binding sites summits that
were close to each other from individual repli-
cates across all cell lines (see Methods for de-
tails) and examined the binding patterns of the
resulting set of 44,702 sites. 12,585 summits
were within 100 bp of a GENCODE V7 TSS,
additional 7,811 and 6,907 within 1 kb of a TSS,
8,538 were more than 1 kb upstream of the clos-
est TSS and 7,864 downstream of it. Thus the
majority of sites were associated with or close
to known TSSs yet a sizeable fraction was lo-
cated away from any known TSS. The strength
of TAF1 binding as measured in RPM decreased
with distance away from annotated TSSs with
the majority of intergenic and intragenic sites
being weaker than those close to TSSs (Figure
1.22D).

Using the merged set of TAF1 binding sites,
I sought to determine whether the lack or pres-
ence of TAF1 binding was consistent between
cell lines. To this end I compiled the set of all
TSSs expressed at more than 1 FPKMconf lo in
each of the five cell lines for which we have TAF1
binding data and compared the presence or ab-

http://woldlab.caltech.edu/wiki/
http://woldlab.caltech.edu/wiki/
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sence of TAF1 binding by clustering the result-
ing data matrix. A large cluster of TSSs without
TAF1 binding in all cell lines emerged from this
analysis, and strikingly, it was also the group of
TSSs without CpG island in their vicinity (Fig-
ure 1.22C)

We then asked how many of the intergenic
or intragenic TAF1 sites we could explain with
gene models derived from RNA-seq data. For
this purpose we used a merged set of gene mod-
els generated without applying expression level
filtering on the input data sets. About 20 % of
TAF1 sites located more than 1 kb away from
a TSS in each direction had a candidate novel
TSS located within 1 kb of the peak summit,
and close to 40 % of TAF1 sites between 100 bp

and 1 kb upstream of known TSSs had candi-
date novel TSS within 100 bp (Figure 1.22D).
Very few TAF1 sites downstream of TSS had a
corresponding candidate TSS models, however, I
note that the merge procedure is heavily biased
against shortening of 5’ exons and this might
be the explanation. The other 80 % of inter-
genic and intragenic TAF1 sites may either be
the result of RNA-seq assemblies bypassing the
promoter region or falling short of it, or they
may represent “shadows” of promoter looping to
enhancer regions and not real promoters. The
latter possibility is consistent with the lower
strength of ChIP signal characteristic of these
sites.

I grouped the sites into 9 groups depending

Figure 1.20: Reconstruction of primary miRNA transcripts. (A) Comparison of GENCODE
and RNA-seq augmented annotations (merged assembly) to 1523 known miRNAs for evidence of
primary miRNA transcripts (left) and to 69 highly expressed miRNAs (in at least one of GM12878,
K562, human ES and HepG2, assayed with nanoString). Mature miRNAs were intersected with
exonic and intronic regions of sense and antisense transcripts. The fraction of miRNAs for which a
putative primary transcript was present increases in the merged assembly compared to GENCODE
v7, which is even more pronounced when only the highly expressed miRNAs are considered. (B)
Putative intronic promoter for mir-619, which is located within an intron of the SSH1 gene. A TAF1
site is situated upstream of the miRNA, suggesting the miRNA may be transcribed independently
from the gene from its own promoter.
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Figure 1.21: TAF1 binding sites. (A) Number of peak calls for individual replicates. (B) Num-
ber of peak calls for GM12891 and GM12892 cells, not used for subsequent analysis. (C) Distribution
of TAF1 binding sites (combined set) relative to GENCODE V7 TSSs.

on their position relative to the GENCODE V7
reference and the set of RNA-seq-derived tran-
script models, and clustered them according to
their presence or absence in each cell type. (Fig-
ure Fig.4.23E). Among the largest group (group
1), the GENCODE V7 TSS-associated sites, a
large core of sites present and TSSs utilized in
all cell lines is observed. In contrast, the sites lo-
cated away from annotated TSS tend to be more
highly cell type specific and present only in one
cell line (groups 2-9).

1.2.12 Identification of novel 5’
Transcription Start Sites

RNA-seq measurements have the potential to
identify novel transcription start sites, however,
there are several issue with the approach that
need to be considered and that highlight the
need for orthogonal information to increase con-

fidence in predictions. There can be two differ-
ent kinds of novel TSSs as illustrated in Figure
1.23 – novel 5’ exons derived from alternative 5’
end splicing events, and extensions of annotated
5’ exons. As already, discussed, de novo tran-
script assemblies can, for a number of reasons,
be incomplete and thus miss the actual TSS; in
the same time, in cases in which internal exons
serve as alternative promoters, a separate tran-
script may not be assembled due to the simul-
taneous expression of the longer isoform or the
subsequent merge of the transcript into a longer
model. Extensions of annotated 5’ exons are par-
ticularly difficult to assess, as the phenomenon
of imprecise transcriptional initiation occurring
over a neighborhood of nucleotides is well es-
tablished; while very long extensions are more
likely to represent real new promoters, the inter-
pretations of shorter ones is difficult. Promoters
can in principle be both extended and shortened;
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however, the latter is particularly challenging for
assembly as RNA-seq library building is typi-
cally performed using random hexamer priming,
which inherently results in lower coverage of the
very end of transcripts.

For these reasons, I aimed at utilizing or-
thogonal evidence to assess the assembly of 5’
transcript ends in our data. In addition to
the TAF1 and RNA Polymerase II ChIP-seq
data we generated, I also took advantage of
genome-wide Capped Analysis of Gene Expres-
sion (CAGE) (Kodzius et al. 2006; Carninci et
al. 2006) generated as part of the ENCODE con-
sortium (ENCODE Project Consortium 2011)
(See Methods for details on the use of CAGE
data). I first examined the relation of TAF1
binding, RNA Polymerase II loading and the
presence of CAGE clusters to the expression
of the TSSs of GENCODE V7 protein coding
genes (Figure 1.24A). As discussed above, not
all highly expressed TSSs have associated TAF1
binding (Figure 1.24D), however, the sensitivity
of CAGE clusters was much higher, with more
than 90% of TSSs expressed at more than 10
FPKM being CAGE-positive (Figure 1.24E).

The set of merged transcript models contains
9,787 instances of novel 5’ exons and 5,690 ex-
tensions of annotated 5’ exons, in addition to
the intergenic candidate lincRNAs and TUCP.

Since 5’ exon extensions are difficult to interpret
we initially focused our attention on novel 5’ ex-
ons. The expressions patterns of these 5’ exons
(where the expression of the exons is defined as
the sum of the FPKMs of all transcripts con-
taining it) (Figure 1.24K) were similar to those
of novel isoforms of protein coding genes (Fig-
ure 1.18D). A lower fraction of these exons was
supported by orthogonal TAF1 and CAGE ev-
idence compared to annotated TSSs at similar
expressions levels (Figure 1.24B,F and G). Strik-
ingly, almost none of the intergenic spliced tran-
scripts (lincRNA and TUCP) had TAF1 bind-
ing to its 5’ end and a smaller fraction were
positive CAGE clusters (Figure 1.24C,H and I).
This indicates that de novo assembly of inter-
genic spliced transcripts may not be as complete
as desired and/or some of them may utilize dif-
ferent mechanisms of their transcription initia-
tion. The resolution of TAF1 ChIP-seq data
is not high enough to be useful for assessing 5’
exon extensions, but this can be done by asking
for precise base pair matching of aligned CAGE
read. A strikingly high proportion of 5’ exon ex-
tensions, including the relatively few examples
of 5’ exon shortening, had orthogonal support in
such manner. I use the BHLHE40 transcription
factor as a representative example of a gene with
well supported novel TSSs in Figure 1.25.

Figure 1.22 (preceding page): Complexity of genome-wide TAF1 binding patterns. (A)
TAF1 binds to most but not all expressed transcription start sites (TSSs). (B) Absence of TAF1
is due in some but not the majority of cases to poor read mappability around the TSS. (C) TSSs
without TAF1 binding sites tend to lack TAF1 binding in all cell lines and to also lack CpG islands
in their vicinity. Shown are all TSSs expressed at more than 1 FPKMconf lo in all 5 cell lines
examined; according to the presence or absence of TAF1 binding or CpG island, a score of 1 (blue)
or 0 (light yellow) was assigned to it, and the resulting matrix was clustered hierarchically. (D,E)
Distribution of TAF1 binding sites relative to the GENCODE V7 annotation. The total number of
sites is indicated to the left of the plot in (E). (D) Binding sites found away from annotated TSSs
tend to be weaker. The maximum RPM for a TAF1 binding sites across all datasets is plotted. (E)
Orthogonal RNA-seq evidence from Cufflinks and Cuffmerge-derived transcript models for TAF1
binding sites not associated with annotated TSSs. For binding sites more than 1 kb away from a
TSS, a transcript model TSS within 1 kb of the TAF1 binding site was required. For binding sites
between 100 bp and 1 kb away from a TSS, a transcript model TSS within 100 bp of the TAF1
binding site was required. (F). TAF1 bindings sites not associated with GENCODE V7 TSS are
mostly seen in one cell line. According to the presence or absence of a TAF1 binding site in a cell
line, a score of 1 (red) or 0 (light yellow) was assigned to it, and the resulting matrix was clustered
hierarchically for each of 9 groups of TAF1 binding sites. 1) TAF1 sites within 100 bp of a TSS, 2)
TAF1 sites > 1 kb upstream of a TSS with RNA-seq evidence, 3) TAF1 sites > 1 kb downstream
of a TSS with RNA-seq evidence, 4) TAF1 sites 100 bp to 1 kb upstream of a TSS with RNA-seq
evidence, 5) TAF1 sites 100 bp to 1 kb downstream of a TSS with RNA-seq evidence, 6) other TAF1
sites > 1 kb upstream of a TSS, 7) other TAF1 sites > 1 kb downstream of a TSS, 8) other TAF1
sites 100 bp to 1 kb upstream, 9) other TAF1 sites 100 bp to 1 kb downstream of a TSS.
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Figure 1.23: Different types of novel 5’ transcirpt ends.

1.2.13 Alternative promoter
usage

Initiation of transcription from alternative pro-
moters is a well-established mechanism for gen-
eration of transcript diversity with a number
of examples known (Landry et al. 2003; Wu
et al. 1999; Tasic et al. 2002). To esti-
mate how prevalent overall this phenomenon is
in the human genome we examined the num-
ber of alternative TSSs utilized by each gene as
a function of their expression levels. Of 9,939
genes with individual GENCODE v7 TSSs ex-
pressed at more than a conservative threshold of
5 FPKMconf lo, 5,553 (∼56%) expressed only a
single TSS passing that threshold, 2,398 (24%)
expressed two TSSs, and 1,988 (20%) expressed
more than two TSSs. (Figure 1.24L). In addi-
tion, 1,494 genes had novel 5’ exons expressed
at more than 5 FPKMconf lo (Figure 1.18P), and
for both annotated TSSs and novel 5’ exons, re-
laxing this threshold results in the detection of
a larger number of alternative promoter usage
events (Figure 1.24M).

1.3 Discussion

A primary analysis of the human polyadenylated
transcriptome was presented. The results reveal
both the information richness of datasets gen-
erated with RNA-seq technology and the com-
plexity of transcription in human cells. In the
same time, they also highlight a number of chal-
lenges to data interpretation presented by the
very same transcriptome complexity and the im-
perfections of current experimental and analyti-
cal tools. Below, I discuss the impact of this kind
of RNA-seq measurements on the current status
of our knowledge about the transcriptome, the
major remaining areas of uncertainty and the

expected further advances that will be needed
to resolve them.

1.3.1 The growing complexity of
the human transcriptome

As shown here and by others (Djebali et
al. 2012), contemporary RNA-seq measure-
ment have the potential to greatly increase both
the number of isoforms of known genes and
the number of transcripts belonging to various
classes of intergenic, anti-sense and other more
or less exotic types of transcription events (Gin-
geras 2009). However, this same sensitivity also
presents a great challenge in distinguishing the
products of transcriptional noise from functional
transcripts. This is a problem to which in my
opinion a satisfactory solution has not yet been
found and I do not claim to have solved it here
either1. Reasoning that erring towards a more
conservative set of transcripts is more desirable
for the purpose of generating interesting hypoth-
esis with direct biological relevance for further
investigation, a number of filters designed to re-
move as much of noise products and computa-
tional artifacts as possible were applied. Thus,
the final set of transcripts expands on the GEN-
CODE v7 annotation with less than 40,000 novel
isoforms of protein coding genes, ∼3,500 can-
didate lncRNAs and ∼2,500 TUCPs. The in-
crease in the number of splice junctions was pro-
portionally significantly larger and even though
the majority of them are poorly supported, large
numbers of well-supported novel splice junctions
were left out of the final set of transcript mod-
els at various steps in the computational anal-
ysis pipeline. For each set of novel or anno-
tated elements of the transcriptome (splice junc-
tions, exons, known isoforms of protein coding
genes, novel isoforms of protein coding genes,
intergenic non-coding RNAs) the same pattern

1This is just as true in 2014 as it was when these words were originally written in 2011
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is observed - very large numbers of poorly sup-
ported/abundant and a small number of highly
abundant and well supported elements, with a
continuum between them. Which elements are
included and which are not is currently deter-
mined by setting thresholds that are somewhat
biologically informed but still arbitrary. Finding
the right balance in the necessary trade-off be-
tween sensitivity and specificity is an open chal-
lenge for the field; however, finding such a bal-
ance may be in principle impossible since func-
tional transcripts can be expressed at relatively
low levels while the noise products from highly
expressed loci are expected to be also relatively
highly abundant. For example, the important
regulator of neuronal fate NRSF is usually ob-
served to be expressed in single-digit FPKMs,
and few lncRNAs are detected at high levels in
each individual cell line even though large num-
bers of them were found to be of functional im-
portance when knocked down in mouse embry-
onic stem cells by a recent study (Guttman et al.
2011) (although our data is for human cells, it is
reasonable to expect that the general patterns of
lncRNA expression are not drastically different
between the two species).

The answers to several open questions in the
field as well as the interpretation of observa-
tions for individual loci by researchers looking
to more deeply investigate their gene of inter-
est are highly dependent on the approach to-
wards this problem. Both the extent of tran-
scriptional activity in the human genome and
the prevalence of functional alternative splicing
events have been widely debated (Kapranov et
al. 2002; Kapranov et al. 2007; Sorek et al.
2004; Wang et al. 2008; Dinger et al. 2009;
van Bakel et al. 2010; Clark et al. 2011; Mer-
cer et al. 2011); how abundance levels relate
to distinguishing noise products from functional
transcripts is at the heart of this debate.

Nevertheless, the number of annotated tran-
scripts in the human genome is expected to grow
considerably as more and more information de-
rived from RNA-seq measurements is incorpo-
rated into annotations. This is a reasonable ex-
pectation given that we have surveyed a wide
and diverse collection of cell lines and tissues
and the discovery of most novel elements did not
reach saturation (Figures 1.7B, 1.14N, 1.18B,E
and F).

1.3.2 Reliability of
transcript-level quantification

This growth in complexity, however, has the po-
tential to even further complicate data analysis
and results interpretation.

The accurate quantification of individual
transcripts of a gene is of critical importance
for the analysis of the prevalence and tissue-
specificity of alternative splicing and alternative
transcription initiation and termination events.
However, accurately and confidently assigning
the still short reads generated in RNA-seq exper-
iment to transcripts in a complex locus is still not
a trivial computational tas ; while current tools
employ highly sophisticated algorithms for de-
convolving the expression levels of individual iso-
forms, this becomes essentially impossible when
locus complexity grows beyond a certain thresh-
old as the statistical models employed often be-
come unidentifiable. Yet, as more and more new
transcripts are uncovered by the sequencing of
wider panels of cell lines and tissues, the com-
plexity of annotations is expected to grow fur-
ther and further and make this an ever more
intractable problem.

The current output of these program suggest
the existence of a number of potentially inter-
esting biological phenomena in the data, includ-
ing the widespread occurrence of major isoform

Figure 1.24 (preceding page): Identification and orthogonal support for novel 5’ tran-
script ends. (A-C) TAF1, RNA Polymerase II and CAGE cluster profiles around the TSS of
GENCODE V7 protein coding genes (A), candidate novel 5’ exon TSS of protein coding genes (B)
and candidate lncRNAs and TUCPs (C). TSSs are sorted by decreasing expression level. (D), (F),
(H) TAF1 coverage of expressed GENCODE V7 protein coding gene TSSs (C), candidate novel 5’
exon TSSs (F) and candidate lncRNAs and TUCPs (H) in 5 ENCODE cell lines. (E), (G), (I)
CAGE cluster coverage of expressed GENCODE V7 protein coding gene TSSs (E), candidate novel
5’ exon TSSs (G) and candidate lncRNAs and TUCPs (I) in 5 ENCODE cell lines. (J). Support by
CAGE reads for extended and shortened 5’ exons. (K) Abundance levels and cell type specificity of
novel TSSs. (L-M) Number of expressed annotated (L) and novel (M) TSS per gene as a function
of expression levels.
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Figure 1.25: Isoform-level quantification, fragment support for known and novel junc-
tion, and TAF1 binding sites for the BHLHE40 locus..

switch events with high tissue specificity (Fig-
ure 1.18K), the utilization of multiple alternative
promoters, and the surprisingly high abundance
of what appear to be NMD transcripts (Figure
1.18O), phenomena suggested to play significant
role in the generation of proteome diversity and
in gene regulation. However, their reality is to
a large extent contingent on how accurately the
underlying biological reality is reflected in this
output. Thus, conclusive confirmation or refuta-
tion of these phenomena will have to await the
arrival of data or computational tools that al-
low more confident deconvolution of transcript
levels.

This is also relevant to downstream appli-
cations of RNA-seq quantification feeding into
other areas of transcriptional biology. For ex-
ample, complete understanding of the mecha-
nisms of transcriptional regulation is not possible
without complete understanding of the relation-
ship between the interaction of sequence-specific

transcription factors, general transcription fac-
tors, RNA polymerase and chromatin state at
promoters, on one side, and transcript levels, on
the other. Working with simpler annotations of
the genome allows for mostly ignoring the issue;
however, if alternative promoter use is indeed as
ubiquitous as suggested by the data, the relative
use of these TSSs will have to be very finely and
accurately parsed and integrated with orthogo-
nal ChIP-seq data for such understanding to be
achieved.

Anecdotal evidence suggests that numerous
suspicious quantification results can be found.
For example, Figure 1.26 shows the case of the
FOSL2 gene, for which 5 isoforms are annotated
in GENCODE, and additional 6 were presented
in the merged assembly generated here. Requan-
tification on the merged assembly suggested that
two of the novel isoforms (originating from novel
alternative promoters) are presented at FPKM
levels comparable to those of the annotated iso-
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forms; however, these isoforms are supported by
just 1 spliced RNA-seq fragments spanning their
unique splice junctions, while the corresponding
unique splice junction of the annotated isoforms
had coverage of 45 fragments, thus it is morel
likely that the abundance of the novel isoforms
is in fact significantly lower, even though these
alternative promoters had orthogonal TAF1 oc-
cupancy support.

1.3.3 Transcript reconstruction
and resolving transcript ends

Both alternative transcript initiation and alter-
native polyadenylation (Di Giammartino et al.
2011; Sandberg et al. 2008) have been suggested
to play important role in gene expression regu-

lation. Due to the nature of RNA-seq library-
building protocols employing random hexamer
priming, the extreme ends of transcripts are
usually underrepresented in the final libraries,
which, combined with the lower coverage nat-
urally expected for lower-abundance transcripts,
makes it difficult to precisely determine the exact
beginning of a transcript or its polyadenylation
site (reads containing portions of the polyA tail
are also not expected to map to the genome).
CAGE data provides information about capping
events, and to the extent that capping events
correspond to transcriptional initiation events
(which is not always the case; Affymetrix EN-
CODE Transcriptome Project 2009), about pro-
moters. In addition, several approaches have
been devised to map polyadenylation sites (Oz-

Figure 1.26: Isoform-level quantification, fragment support for known and novel junc-
tion, and TAF1 binding sites for the FOSL1 locus.
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solak et al. 2010; Jan et al. 2011). However,
building such libraries for large numbers of sam-
ples is a practical challenge, and their interpre-
tation, as demonstrated by the discovery that
CAGE tags do not always correspond to tran-
scription initiation events and the fact that they
still only provide information about the extremes
of transcripts but not about the connectivity be-
tween, is not straightforward.

Here it has been possible to identify novel al-
ternative 5’ exons and to leverage CAGE data
to confirm the extent of 5’ extensions of known
5’ exons. In addition, in many cases what seems
to represent either 3’UTRs extending long past
the annotated polyA site or unspliced transcripts
originating in the 3’UTR vicinity was observed.
Such cases are of great interest if shown to
be continuous with the annotated transcript as
they can change the set of miRNAs targeting it
or play other, so far unappreciated, regulatory
roles. However, we are at present unable to ex-
amine the nature of these transcriptional events
as current short reads can be effectively used for
transcript reconstruction when splice junctions
are present but precisely defining transcripts for
long stretches of continuously overlapping reads
is challenging.

The same issue was confronted when analyz-
ing intergenic transcripts. A very large num-
ber of monoexonic intergenic transcripts are ob-
served (Figure 1.14K and L). A majority of these
consist of single fragments mapping to intergenic
space but large numbers of regions with high
read coverage are also seen. Determining where
these transcripts begin, and if they have biolog-
ically precisely defined ends, is of crucial impor-
tance for assessing their functional significance,
and elucidating the mechanisms of regulation of
their expression.

It was also observed that the 5’ ends of in-
tergenic spliced transcripts (candidate lncRNAs
and TUCPs) as currently defined using recon-
struction from RNA-seq are poorly supported by
TAF1 binding and CAGE tags (Figure 1.24H,
K, M and N). This suggests that due to the gen-
erally low expression levels of these transcripts,
they have not been fully reconstructed and either
large stretches of their first exons or whole first
exons are missing. Alternatively, TAF1 load-
ing and message capping may not play a role in
the transcription initiation and biology of these
transcripts. Either way, establishing that one
of these options is the case by completing their
transcript models is of great importance for un-

derstanding the biology of these RNAs.

1.3.4 Absolute numbers of
transcripts per cell

FPKM values reflect the proportional abundance
of transcripts in a sequencing library normalized
for transcript length. Ideally, however, the ac-
tual numbers of copies of a transcript per indi-
vidual cell should be obtained. This informa-
tion is important both for evaluating the func-
tional significance of transcriptional events (i.e.
if a transcript is found at what amounts to one
copy per ten cells, then it is more likely to be
a product of transcriptional noise than if it is
found at multiple copies per cell) and for de-
riving mechanistic insights into transcript func-
tions. For example, in addition to other biologi-
cal roles, both textitcis- and trans- action mecha-
nisms have been suggested for how lncRNAs may
participate in the regulation of transcription in
the nucleus (Koziol & Rinn 2010). Naturally,
this leads to the expectation that cis-acting
transcripts that function at the genomic loca-
tion which they are transcribed from, of which
there are only two copies, should be present at
very limited number of transcript copies per cell
while trans-acting transcripts should be on aver-
age more abundant. For this issue to be resolved,
measurements of the absolute transcript counts
per cell are needed. At present, it is difficult to
obtain that information from RNA-seq data, as
RNA sequencing libraries are prepared from bulk
RNA isolated from millions of cells. It is possi-
ble to calculate rough estimates of these numbers
(Mortazavi et al. 2008); however, this requires
precise tracking of cell numbers and the amount
of RNA going into libraries. This is something
that’s not easily tractable for tissues, and even
when it is available for cell lines, it is only a
rough guess with major uncertainties associated
with it.

1.3.5 Looking towards the future

I expect this issue and a number of the other
challenges outlined so far to be resolved with
the further advancement of sequencing technol-
ogy. Very long read lengths, ideally covering the
full length of transcripts, will be needed in or-
der to enable the precise demarcation of tran-
script structure and transcript ends, particu-
larly around polyadenylation sites and for inter-
genic non-coding transcripts. For truly accurate
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transcript-level quantification, an additional re-
quirement for large numbers of such reads ex-
ists, in order to fully cover the dynamic range of
transcript expression levels in bulk RNA preps.
Single-cell transcriptomics (Islam et al. 2011;
Tang et al. 2009; Tang et al. 2010; Tang et al.
2011) combined with single-molecule sequencing
and single-molecule RNA FISH measurements
should allow the determination of absolute tran-
script numbers on the level of individual cells,
and resolve several of the outstanding questions
in the field.

1.4 Methods

All data processing and analysis for which no
software packages are referenced was performed
using custom-written Python scripts.

1.4.1 Cell growth and RNA
harvesting

Cells were grown according to established EN-
CODE protocols (http://genome.ucsc.edu/
ENCODE/protocols/cell/) and RNA prepared
following the protocol described in Mortazavi et
al. 2008.

1.4.2 RNA-seq data generation

Total RNA was subjected to two rounds of polyA
selection and libraries built following the proto-
col described in Mortazavi et al. 2008. Libraries
were sequenced as 2x76bp reads on the Illumina
Genome Analyzer. Human Body Map data was
kindly provided by Dr. Gary Schroth and the
Expression Applications group at Illumina.

1.4.3 Read mapping

The last base pair of each read was removed.
The resulting 2x75bp reads were mapped using
TopHat (Trapnell et al. 2009, version 1.0.14)
in de novo mode against the hg19 verion of the
human genome. The same procedure was ap-
plied to polyadenylated RNA-seq data from 16
tissues generated using Illumina HiSeq 2000 as
part of the Human Body Map 2 project. The
de novo discovered splice junctions from all cell
lines and tissues were combined with the set
of splice junctions in the GENCODE v4 anno-
tation to derive an extended set of junctions.
Reads were mapped again using TopHat (ver-
sion 1.0.14) against the male or female version of

the hg19 version of the human genome with the
extended set of junctions supplied while keep-
ing the de novo junction discovery option turned
on. All subsequent analysis was done on the re-
sulting alignments. Read mapping statistics are
provided in Table 1.1.

1.4.4 Transcript models discovery,
merging and quantification

Cufflinks (Trapnell et al. 2010; Trapnell et al.
2012; version 1.0.1) was used to assemble tran-
scripts in de novo mode from the TopHat align-
ments. Each sample was processed individually.
The assemblies from all the samples were merged
together with Cuffmerge (version 1.1.0) into a
large transcript super-set using GENCODE v7
as a reference annotation. Assembly was done
in fully de novo mode rather than in reference
annotation based transcript (RABT; Roberts et
al. 2011) because RABT assemblies contain a
large number of clearly artifactual transcripts
(especially when a complex annotation with a
large number of isoforms is used such GEN-
CODE). Such false positives are often unique to
each sample and when merged result in a very
large number of isoforms per gene most of which
do not correspond to real transcript molecules
and which make accurate quantification impos-
sible. I also found that merging transcripts us-
ing the unfiltered de novo Cufflinks assemblies
also resulted in an unacceptably high number
of likely artifactual transcript models (although
significantly fewer than with RABT assemblies),
particularly transcripts with extremely large re-
tained introns. Therefore I aimed to minimize
the number of artifacts in the final assemblies
by applying multiple filters before and after the
merge step.

As an initial step, I classified new transcripts
according to their relation to the annotation us-
ing Cuffcompare. Only transcripts classified as
unknown intergenic and novel isoforms of known
genes (Cuffcompare class codes “j” and “u”)
were retained. In addition, I required that novel
isoforms of known genes had FPKMconf lo ≥ 1.
The resulting set of transcript models for each
cell line was used to run Cuffmerge.

The Cuffmerge output was filtered as fol-
lows. First, all retained introns relative to the
Cuffmerge output itself were filtered out, i.e.
if an exon had the same start and end posi-
tions as the left exon and the right exon re-
spectively in any pair of exons in the annota-

http://genome.ucsc.edu/ENCODE/protocols/cell/
http://genome.ucsc.edu/ENCODE/protocols/cell/
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tion, the transcript containing it was removed
from annotation. Next, all GENCODE v7 tran-
scripts that were not present in the merge were
added to the assembly according to the follow-
ing criteria: for multiexonic transcripts, if the
exact chain of splice junctions of a GENCODE
v7 transcript was not present in the merged as-
sembly, the transcript was added to it; there is
no good criteria to define presence of absence
for monoexonic transcripts so those were con-
sidered present if there was a monoexonic tran-
script overlapping them. After that step re-
tained introns were filtered out again, this time
against the GENCODE v7 annotation. Finally,
because multiple occasions of extremely long 3’
UTRs being assembled (usually due to the pres-
ence of overlapping transcript models in multiple
cell lines) were observed, which would artificially
drive down FPKM estimates by increasing the
length of transcripts, all 3’UTRs were trimmed
down to a maximum length of 5kb.

1.4.5 Genome and transcript
models, annotations, and

classification

Two transcript and gene model annotation
sets for the human genome were used - ver-
sion 7 of the GENCODE annotation (Har-
row et al. 2006; Harrow et al. 2012),
downloaded from http://hgdownload-test.

cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeGencodeV7/beta/ and the refSeq an-
notation, downloaded from http://genome.

ucsc.edu/. Transcripts and genes were classi-
fied into protein coding and various non-coding
classes according to the biotype classification
in GENCODE V7, and the same classifica-
tion was used where necessary for refSeq genes.
CpG island annotations were downloaded from
http://genome.ucsc.edu/ and TSSs were clas-
sified as CpG or non-CpG according to whether
a CpG island was present within 1kb of the
TSS. For novel transcript models, ORFs were
annotated using the longest ORF found in the
transcript; transcripts were classified as puta-

tive NMD substrates if the ORF ended more
than 50bp before the position of the last splice
junction.

1.4.6 Non-coding RNA
annotation and classification

Novel non-coding RNA were classified follow-
ing an approach similar to the computational
pipeline for lncRNA annotation described in
Cabili et al 2011. I only considered spliced
intergenic unannotated transcripts as classi-
fied by Cuffcompare. For each transcript, the
codon substitution frequency (CSF) score was
calculated using PhyloCSF (Lin et al. 2011)
and the 45 vertebrate multiple genome align-
ment for the hg19 version of human genome,
downloaded from http://hgdownload.cse.

ucsc.edu/goldenPath/hg19/multiz46way/

maf/. PhyloCSF was also run on annotated
lncRNA and protein coding transcript from
GENCODE V7 to establish thresholds for de-
termining whether a transcript is likely to be
coding or not (Figure 1.27). In addition to that,
each spliced intergenic transcript was translated
in all reading frames in both orientations, and
scanned for the presence of protein domain anno-
tated in the PFAM database (Punta et al. 2012;
http://pfam.sanger.ac.uk/search). Tran-
scripts with positive CSF scores and transcripts
containing PFAM domains were classified as
TUCPs.

1.4.7 Tissue specificity score
calculation

The JS tissue specificity score was calculated as
follows (Cabili et al. 2011), with the modifica-
tion that for splice junctions, due to the highly
quantized nature of the fragment counts at the
low end and the difficulty to properly normal-
ize fragment counts for sequencing depth in such
cases, a cap of 10 distinct fragment was applied
to all numbers before calculating the JS score:

The Jensen-Shannon divergence of two dis-
crete probability distributions D1 and D2 is de-
fined as:

JSD(D1, D2) = H

(
D1 +D2

2

)
+
H(D1) +H(D2)

2
(1.1)

http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeGencodeV7/beta/
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeGencodeV7/beta/
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeGencodeV7/beta/
http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/maf/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/maf/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/maf/
http://pfam.sanger.ac.uk/search
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Figure 1.27: PhyloCSF score distribution for annotated in GENCODE V7 protein
coding and lincRNA transcripts.

where H(P ) is the Shannon entropy for a dis-
crete distribution P defined as:

H(P ) = −
n∑
i=1

pi ∗ log(pi) (1.2)

The JS distance JSdist is then defined as fol-
lows:

JSdist(D1, D2) =
√
JS(D1, D2) (1.3)

For a vector with expression values E =
{e1, e2, ..., en}, a JS specificity score is then de-
fined with respect to sample/tissue i as follows:

JSsp(E|i) = 1− JSdist(E,Ei) (1.4)

where Ei is the vector with maximum ex-
pression specificity, i.e. a positive FPKM value
in sample/tissue i and FPKM = 0 everywhere
else:

Ei := {δi1e1, δi2e2, ..., δinen} (1.5)

where δij is the Kronecker delta function.

Finally, the JS specificity score JSsp is
the maximal specificity score across all sam-
ples/tissues, i.e.:

JSsp(E) = argmax
i={1,..,|E|}

(JSsp(E|i)) (1.6)

1.4.8 Nanostring miRNA
expression measurements

Measurements of miRNA expression using the
miRNA Nanostring assay were performed on bi-
ological replicates following the manufacturer’s
instructions. Briefly, total RNA was extracted
with the mirVana miRNA isolation kit and
the remaining genomic DNA was removed by
TURBO DNA-free kit (both kits are from Am-
bion, Life Technologies, NY). 100ng of total
RNA, together with “spike-in” positive and
negative control miRNAs, was annealed and
ligated to the miRNAtags. After the un-
used miRNAtags were cleaned up, the chimeric
miRNA:miRNAtag molecules were hybridized
to the reporter codeset and capture probeset
overnight. The hybridization mixture was puri-
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fied on the nCounter Prep Station and the target
molecules were immobilized and aligned on the
nCounter cartridge. The nCounter cartridge was
then scanned on the nCounter Digital Analyzer
at maximum resolution. The collected data was
further processed with nSolver analysis software
to calculate the normalized miRNA expression
level of each sample.

1.4.9 ChIP-seq data alignment
and processing

ChIP-seq experiments were performed as de-
scribed previously (Johnson et al. 2007), with
the modification that a single round of PCR am-
plification was used instead of the majority of
datasets (HeLa TAF1 being the only exception).
The following antibodies were used: mouse mon-
oclonal against TAF1 from Santa Cruz (sc-735),
mouse monoclonal against RNA Polymerase II,
clone 4H8 from Abcam (ab5408), mouse mono-
clonal against RNA Polymerase II, clone 8WG16
from (MMS-126R). Libraries were sequenced on
the Illumina Genome Analyzer and reads of 36
bp size were generated. Each replicate contained
at least 12 million uniquely aligned reads. Pre-
cise read mapping statistics are provided in Ta-
ble 1.2.

Reads were aligned according to ENCODE
standards against the male or female version
of human genome (with random chromosomes

and haplotypes excluded) depending on the
sex of the cell line (male for H1-hESC and
HepG2, female for HeLa, GM12878 and K562)
using Bowtie (Langmead et al. 2009), ver-
sion 0.12.7, with the following options: -v 2 -t

--best --strata. TAF1 peak calling was
done against appropriate input datasets using
ERANGE 4.0 (Johnson et al. 2007), with the
following settings: ‘‘--minimum 2 --ratio 3

--shift learn --revbackground --listPeak.
TAF1 peaks were merged according to the fol-
lowing procedure: if two peak summits were
closer than 200 bp to each other, they were
merged, with the new summit becoming the
summit from the dataset whose reads per million
(RPM) for the whole peak region were higher;
this procedure was iterated across all datasets.

CAGE data processing

Tracks containing CAGE clusters and BAM
files with individual read alignments were down-
loaded from the ENCODE portal at the UCSC
Genome Browser (http://genome.ucsc.edu/
ENCODE/. CAGE reads from all subcellular frac-
tions were considered. In order for a TSS to be
considered covered by a CAGE cluster, a CAGE
cluster on the same strand as the direction of
transcription was required. For the analysis of
5’ extensions, precise matching of 5’ ends of at
least one CAGE read on the same strand as the
direction of transcription was required.

http://genome.ucsc.edu/ENCODE/
http://genome.ucsc.edu/ENCODE/
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Table 1.1: Read mapping statistics for the RNA-seq datasets

Cell Line Read
Length

Description Insert
Size

Rep Unique Unique
Splices

Multi Multi
Splices

H1-hESC 2x75 ES cells ∼200 Rep4 45,317,222 8,618,025 1,933,958 92,172
H1-hESC 2x75 ES cells ∼200 Rep1 63,216,759 12,781,989 1,799,576 94,991
H1-hESC 2x75 ES cells ∼200 Rep2 64,849,492 12,937,223 1,996,326 106,373
H1-hESC 2x75 ES cells ∼200 Rep3 62,721,190 12,417,189 2,061,864 107,319
GM12878 2x75 lymphoblastoid ∼200 Rep2 152,774,148 23,930,558 6,259,715 420,288
GM12878 2x75 lymphoblastoid ∼200 Rep1 91,217,874 15,146,110 3,502,071 202,872
K562 2x75 myelogenous

leukemia
∼200 Rep1 133,776,448 27,150,397 4,809,472 349,097

K562 2x75 myelogenous
leukemia

∼200 Rep2 121,520,650 22,256,714 4,333,136 261,089

HSMM 2x75 myoblasts ∼200 Rep1 97,833,543 23,352,403 1,997,844 199,498
HSMM 2x75 myoblasts ∼200 Rep2 98,203,018 23,229,216 2,234,108 199,772
HUVEC 2x75 umbilical vein

endothelial
∼200 Rep1 74,294,272 17,207,804 2,053,278 167,529

HUVEC 2x75 umbilical vein
endothelial

∼200 Rep2 54,420,816 12,607,003 1,699,903 113,729

HeLa 2x75 HeLa ∼200 Rep1 49,453,158 9,301,487 2,060,411 125,644
HeLa 2x75 HeLa ∼200 Rep2 75,223,386 14,527,666 2,603,614 170,225
HepG2 2x75 liver carcinoma ∼200 Rep1 80,554,751 17,831,315 2,762,367 206,825
HepG2 2x75 liver carcinoma ∼200 Rep2 94,588,954 21,423,792 3,300,392 324,730
MCF7 2x75 breast cancer ∼200 Rep1 109,216,869 16,770,366 3,191,573 143,875
MCF7 2x75 breast cancer ∼200 Rep2 87,203,914 21,226,373 2,032,830 251,913
NHEK 2x75 keratinocytes ∼200 Rep1 79,396,401 12,110,678 2,642,317 292,371
NHEK 2x75 keratinocytes ∼200 Rep2 89,043,589 21,805,036 1,967,691 254,190
NHLF 2x75 lung fibroblasts ∼200 Rep1 87,308,499 20,557,003 1,786,840 149,586
NHLF 2x75 lung fibroblasts ∼200 Rep2 81,888,840 19,744,610 1,344,427 150,557
adipose 2x50+1x75 ∼200 Rep1 184,034,305 18,186,787 9,474,379 317,902
adrenal 2x50+1x75 v200 Rep1 182,891,875 15,312,732 8,797,765 376,596
brain 2x50+1x75 ∼200 Rep1 174,392,333 14,623,420 7,236,006 196,026
breast 2x50+1x75 ∼200 Rep1 183,725,194 16,979,055 8,734,757 346,215
colon 2x50+1x75 ∼200 Rep1 201,909,819 17,009,282 11,690,564 297,609
heart 2x50+1x75 ∼200 Rep1 197,439,159 18,189,625 14,170,195 416,843
kidney 2x50+1x75 ∼200 Rep1 192,378,197 15,596,359 11,063,331 281,585
liver 2x50+1x75 ∼200 Rep1 187,757,362 25,697,250 10,039,834 1,193,880
lung 2x50+1x75 ∼200 Rep1 194,249,068 19,991,574 9,938,722 702,441
lymph
node

2x50+1x75 ∼200 Rep1 193,396,478 18,473,375 12,780,186 1,271,624

ovary 2x50+1x75 ∼200 Rep1 198,207,292 20,096,511 10,231,268 317,030
prostate 2x50+1x75 ∼200 Rep1 205,065,901 21,109,090 10,372,722 302,181
muscle 2x50+1x75 ∼200 Rep1 197,504,306 23,329,011 9,776,756 340,782
testes 2x50+1x75 ∼200 Rep1 197,739,813 23,635,613 8,468,114 349,225
thyroid 2x50+1x75 ∼200 Rep1 194,749,061 23,851,093 7,835,229 319,566
WBC 2x50+1x75 ∼200 Rep1 199,299,458 24,007,769 10,147,780 366,024
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Table 1.2: Read mapping statistics and library characteristics for ChIP-seq datasets

Cell Line Factor/Antibody Replicate Uniquely aligned reads Library Complexity

GM12878 Pol2-CTD-4H8 Rep1 28,110,098 0.78
GM12878 Pol2-CTD-4H8 Rep2 24,404,299 0.88
GM12878 Pol2-CTD-8WG16 Rep1 27,121,649 0.82
GM12878 Pol2-CTD-8WG16 Rep2 27,783,933 0.82
GM12878 TAF1 Rep1 18,374,847 0.55
GM12878 TAF1 Rep2 22,148,439 0.59
H1-hESC Pol2-CTD-4H8 Rep1 17,359,575 0.89
H1-hESC Pol2-CTD-4H8 Rep2 19,062,392 0.77
H1-hESC Pol2-CTD-8WG16 Rep1 20,587,873 0.76
H1-hESC Pol2-CTD-8WG16 Rep2 18,325,024 0.81
H1-hESC TAF1 Rep1 14,023,010 0.87
H1-hESC TAF1 Rep2 13,217,524 0.85
HeLa Pol2-CTD-8WG16 Rep1 21,848,831 0.87
HeLa Pol2-CTD-8WG16 Rep2 25,528,202 0.83
HeLa TAF1 Rep1 28,472,126 0.53
HeLa TAF1 Rep2 11,429,207 0.9
HepG2 Pol2-CTD-4H8 Rep1 18,242,505 0.91
HepG2 Pol2-CTD-4H8 Rep2 33,930,680 0.88
HepG2 Pol2-CTD-8WG16 Rep1 14,722,736 0.71
HepG2 Pol2-CTD-8WG16 Rep2 22,030,475 0.83
HepG2 TAF1 Rep1 18,580,720 0.84
HepG2 TAF1 Rep2 16,568,099 0.79
K562 Pol2-CTD-4H8 Rep1 9,798,768 0.85
K562 Pol2-CTD-4H8 Rep2 23,095,649 0.73
K562 Pol2-CTD-8WG16 Rep1 29,190,954 0.84
K562 Pol2-CTD-8WG16 Rep2 26,469,081 0.78
K562 TAF1 Rep1 17,018,556 0.89
K562 TAF1 Rep2 19,987,210 0.78



47

2

Simulation-based characterization of transcript as-

sembly and quantification from short-read RNA-seq

data

T
his chapter contains the results of a simulation aimed at understanding the performance of
software performing transcript-level quantification and/or assembly. It was carried out af-
ter the work presented in the previous chapter was completed and as a result did not inform
it; however, it does shed light on the interpretation of the results from it, which I discuss

here.

Abstract

The reliability of the analysis of
transcriptome diversity using short-read
RNA-seq data is inherently limited by
the performance of the software used to
carry it out. Anecdotal evidence has pre-
sented numerous examples of computa-
tional artifacts significantly affecting bi-
ological conclusions. To clarify some of
these issues, a simulation study of some
of the most often used RNA-seq quantifi-
cation and transcript reconstruction tools
was carried out. Its results place mini-
mum bounds on the fraction of false pos-
itives and false negatives in the real-data
analysis presented in the previous chapter.
I also examine the effect of several charac-
teristics of RNA-seq datasets that are sus-
pected to influence quantification and/or
assembly but simulations published in the
past have so far not modeled.

2.1 Introduction

The currently existing high-throughput sequenc-
ing technologies that are capable of delivering

the needed for RNA-seq sequencing depth all
produce short reads, much shorter than the
length of mRNA molecules. Read lengths have
increased significantly with the development of
the technology, from 25bp around 2007 to up
to 2x250bp and even longer now. However,
the longer reads are not necessarily optimal for
RNA-seq applications (unless they cover full-
length mRNAs, which at present they do not),
for reasons outlined in the Methods section of
this chapter, thus the analysis of RNA-seq data
faces the following common challenges:

1. Aligning of short reads to the genome,
in a splice-aware manner that allows the
discovery of previously unannotated splice
junctions that are present in the data

2. The quantification of gene expression lev-
els, at the gene and at the transcript level.
The latter is important on its own as it
would ideally provide reliable information
on any differential regulation of splicing,
transcriptional initiation or polyadenyla-
tion between samples, but it is also vital
for the accurate quantification on the gene
level (again, see discussion below in the
Methods section).



48

Figure 2.1: Strategies for carrying out isoform-level quantification and assembly for
RNA-seq data. There are three approaches adopted in the literature for carrying out transcript-
level quantification of RNA-seq data: alignment and quantification in genomic space (A), alignment
and quantification in transcriptome space (B), and the alignment-free k-mer-based quantification ap-
proach adopted by Sailfish (C). See text for more details. Here, genomic alignment and quantification
were carried out using TopHat or STAR and Cufflinks, transcriptome alignment and quantification
using Bowtie and RSEM or eXpress. There are two main approaches for de novo transcript recon-
struction: alignment-based reconstruction (D), and alignment-free de novo assembly from reads (E).
Here, STAR and TopHat mappings plus Cufflinks assembly were used for the former, while Trinity
and SOPAdenovo-trans were used for the latter

3. The de novo reconstruction of expressed
transcripts from short reads. This
is needed for the discovery of novel
transcripts in sequenced and annotated
genomes, for the annotation of newly se-
quenced genomes and often for the se-
quencing and analysis of the transcrip-
tomes of species for which a genome as-
sembly does not exist.

A wide variety of computational tools have
been developed to carry out these tasks. Dozens
of RNA-seq mappers, which carry out read map-

ping and de novo splice junction detection, have
been published. These include TopHat (Trap-
nell et al. 2009; Trapnell et al. 2012), STAR
(Dobin et al. 2013), RUM (Grant et al. 2013),
SplitSeek (Ameur et al. 2011), SpliceMap (Au
et al. 2010), Map-Next (Bao et al. 2009), Super-
splat (Bryant et al. 2010), QPALMA (De Bona
et al. 2008), HMMSplicer (Dimon et al. 2010),
OSA (Hu et al. 2012), SOAPsplice (Huang et
al. 2011), PALMapper (Jean et al. 2010), Se-
qMap (Jiang & Wong 2008), MapAl (Labaj et al.
2012), TrueSight (Li et al. 2013), Subread (Liao
et al. 2013), GEM (Marco-Sola et al. 2012),



49

PASTA (Tang & Riva 2013), MapSplice (Wang
et al. 2010), X-MATE (Wood et al. 2011) ,
GSNAP (Wu & Nacu 2010), OLego (Wu et al.
2013), and others. The ENCODE Project used
both TopHat and STAR. TopHat was used for
most of the analyses presented in this thesis.

A similarly diverse set of transcript-level
quantification algorithms is available, including
Cufflinks (Trapnell et al. 2010; Trapnell et al.
2012; Trapnell et al. 2013; Roberts et al. 2011a;
Roberts 2011b), eXpress (Roberts & Pachter
2013), RSEM (Li et al. 2010; Li et al. 2011),
Sailfish (Patro et al. 2014), CEM/IsoLasso (Li
et al. 2011; Li & Jiang 2012), Flux-Capacitor,
IQSeq (Du et al. 2012), iReckon (Mezlini et
al. 2013), IsoEM (Nicolae et al. 2011), MMSeq
(Turro et al. 2011), PennSeq (Hu et al. 2014),
RNAExpress (Forster et al. 2013), SLIDE (Li
et al. 2011), and Traph (Jo et al. 2014), Oq-
tans (Sreedharan et al. 2014), rQuant (Bohnert
& Rätsch 2010), RNASEQR (Chen et al. 2012),
RDiff (Drewe et al. 2013), Montebello (Hiller
& Wong 2013), IsoformEx (Kim et al. 2011),
NEUMA (Lee et al. 2011), EBSeq (Leng et al.
2013), SASeq (Nguyen et al. 2013), NSMAP
(Xia et al. 2011), MITIE (Behr et al. 2013),
iQuant (iQuant et al. 2011), and others (Jiang
& Wong 2009; Bohnert et al. 2009, Feng et al.

2010; Feng et al. 2011).

In addition to transcript-level quantifica-
tion software, a number of packages focusing
on quantifying splicing inclusion at the level
of individual alternative splicing events (rather
than the more complicated problem of analyzing
full transcripts) have been developed, including
MISO (Katz et al. 2010), KISSPLICE (Saco-
moto et al. 2012), MATS (Shen et al. 2012),
DiffSplice (Hu et al. 2013), MMES (Wang et
al. 2010), SpliceTrap (Wu et al. 2011), DEXSeq
(Anders et al. 2012), SplicingCompass (Aschoff
et al. 2013), PSGInfer (LeGault & Dewey 2013),
and others.

Finally, the assembly problem has been ad-
dressed by multiple approaches too. Those based
on aligning reads to a reference genome include
Cufflinks, mGene (Behr et al. 2010), RNASEQR
(Chen et al. 2012), G-Mo.R-Se (Denoeud et
al. 2008), Montebello (Hiller & Wong 2013),
Rnnotator (Martin et al. 2010), DRUT (Man-
gul et al. 2012), GRIST (Boley et al. 2014),
CRAC (Philippe et al. 2013), MITIE (Behr et
al. 2013), and others (Jackson et al. 2009; Bao
et al. 2013; Seok et al. 2012). Alignment-free
de novo reconstruction programs include Oases
(Schulz et al. 2012), Trinity (Grabherr et al.
2011; Haas et al. 2013), SOAPdenovo-Trans

Figure 2.2: Distribution of the fraction of intronic reads in ENCODE datasets. Shown
is the fraction of intronic reads in different ENCODE datasets (downloaded from the USCS Genome
Browser) as well as the Human Body Map dataset (HBM).
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(Xie et al. 2014), Trans-ABySS (Robertson et
al. 2010) and EBARDenovo (Chu et al. 2013).

Most transcript-level quantification pro-
grams adopt a variation of a common likelihood-
based approach to the problem (first discussed in
Xing et al. 2006):

L(Θ) = P (O|Θ) (2.1)

Where Θ refers to the unknown parameters
of the model (for example, the relative abun-
dances of individual isoforms) and O is the set of
observations (for example, the set of alignments
to the genome or the transcriptome).

Perhaps the most general version of this like-
lihood function, which incorporates the major-
ity of complexities that are modeled by vari-
ous quantification algorithms, is the following
(Pachter 2011):

L(Θ) =
∏

(tG)∈(G,T )

∏
f∈F(G,T )

∑
(t,i)∈(tG)

1

l̃tG
ΘtG

DFL(ltG(f))
i−1∑
k=1

DFL(i− k)

w3’
(t,i)w

5’
(t,i−lt(f)+1)w

pos
i

ltG

etG,f (2.2)

where:

– tG refers to a transcript t belonging to gene
G.

– (G,T ) refers to the set of genes G and their
transcripts T between which reads are to
be allocated.

– Θ refers to the isoform abundance assign-
ments. For a given gene G,

∑
t∈G ΘtG = 1.

– f is a sequencing fragment; both ends of a
fragment are sequenced in paired-end for-
mat.

– F(G,T ) refers to the set of fragments align-
ing to transcripts T in a gene G, or a set
of genes {G1, ..., Gn} such that a subset of
fragments Fs ⊆ F align ambiguously to
transcripts of more than one gene.

– (t, i) refers to position i in transcript t.

– DFL is the fragment length distribution.

– w3’
(t,i) is a term accounting for coverage bias

at the 3’ end of fragments (Li et al. 2010).

– w5’
(t,j) is a term accounting for coverage bias

at the 5’ end of fragments.

– wposi
lt

is a positional bias term, accounting

for systematic coverage biases along the
length of the transcript.

– etG,f is the probability that the alignment
is correct; it accounts for mapping errors.

– l̃tG is the effective length of each transcript,
calculated as follows:

l̃tG =
∑
i∈tG


i−1∑
j=1

DFL(i− j)
i−1∑
k=1

DFL(i− k)

w3’
(t,i)w

5’
(t,i−lt(f)+1)w

pos
i

ltG

 (2.3)

In most cases the parameters are in-
ferred using some variation of the expectation-
maximization (EM) algorithm (Dempster et al.
1977). This is done in three general ways (Fig-
ure 2.1A-C): from splice-aware alignments to the

genome (for example, by Cufflinks), from align-
ments to the transcriptome (examples include
eXpress and RSEM), and without any align-
ments (the k-mer counting approach adopted by
Sailfish). Unfortunately, the likelihood model is
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not always identifiable (see discussion in Hiller
et al. 2009 and the supplement of Trapnell et
al. 2010). Identifiability becomes increasingly
difficult to achieve with the increase of isoform
complexity (as shown empirically in the previous
chapter), which in plain terms is the result of the
fact that the more isoforms there are in the an-
notation, the more likely it is that no fragments
that can unambiguously distinguish all of them
are present in the data.

The approaches to the de novo assembly are
somewhat more varied. For example, the most
popular alignment-based approach (Cufflinks;
Trapnell et al. 2010) aims to return the mini-
mal set of transcripts that can explain the ob-
served data (subject to some constraints on ab-
solute abundance), while the approach adopted
by GRIT (Boley et al. 2014) is to identify all
possible expressed isoforms and then rank them
by their estimated abundance. Alignment-free
assembly algorithms usually employ de Bruijn
graphs (de Bruijn 1946) to tackle the problem,
which have been extensively used for assembling
genomes from short reads (Pevzner & Tang 2001;
Pevzner et al. 2011; Zebrino & Birney 2008;
Butler et al. 2008; Gnerre et al. 2011; Luo et
al. 2012; Bankevich et al. 2012; Simpson et al.
2009; Zimin et al. 2013).

All the results presented in the previous
chapter depend critically on the ability of the
software used to faithfully carry out the tasks of
read mapping and transcript quantification and
reconstruction, thus which programs return the
most reliable output and to what extent it can be
trusted is of utmost importance for their inter-
pretation. However, an interesting phenomenon
is observed in the literature: each publication of
a new package concludes that it outperforms all
other existing tools, usually by carrying out sim-
ulations that demonstrate this is the case against
known ground truth. This is problematic, first,
because of its clear logical impossibility, and sec-
ond, because the simulations are usually not very
realistic as they do not model some data proper-
ties that working with data has lead me to sus-
pect are actually having a significant negative
effect on results – for example, it is usually the
case that isoforms from the refSeq annotation
(which does not contain many alternative splic-
ing products) are simulated, with no reads com-
ing from the intronic or intergenic space, making
the problem much easier to solve than the chal-
lenge presented by real data.

There are multiple known or suspected vari-

ables that affect both how difficult the problems
of isoform abundance estimation and transcript
reconstruction are and how well they can be
solved. These include:

1. Annotation complexity. As already
mentioned, more complex annotations
present a greater challenge to quantifica-
tion software even if only a single isoform
is actually expressed as reads have to be
properly allocated between more and more
transcripts. Annotations range from sim-
ple (i.e. refSeq, mostly one or two isoforms
per gene) to intermediately complex (i.e.
UCSC) to very complex (i.e. GENCODE,
with up to 10 isoforms per gene on aver-
age).

2. Isoform expression complexity. The
more isoforms are expressed in the sample,
the more different splice junctions there
are to be parsed between them, which
would be expected to be more difficult
to do than if only a single isoform is ex-
pressed. This affects both quantification
and assembly.

3. Data quality. PolyA-selected RNA-seq
can suffer from several kinds of data defi-
ciencies. First, suboptimal PolyA selection
can result in larger amounts of intronic
reads (although this can also be a purely
biological phenomenon). At high sequenc-
ing depths, this could pose problems for
both transcript assembly and quantifica-
tion as shorter introns can get completely
filled-in with reads leading to incorrect in-
ference of retained intron isoforms. Wide
variation of the fraction of intronic reads is
observed between different protocols, pro-
duction centers and biological sources (es-
pecially subcellular fractions), as shown in
Figure 2.2. Second, RNA degradation can
result in coverage being skewed towards
the 3’ end, which makes parsing alterna-
tive splicing events around the 5’ end more
difficult (even if algorithms try to normal-
ize for such biases; i.e. through the wposi

lt

term above)

4. Library construction protocol. Both
stranded and unstranded protocols are
in wide use for RNA-seq. Stranded li-
braries are expected to provide more power
for accurate transcript reconstruction and
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Figure 2.3: Number of “novel” splice junctions detected by STAR and TopHat. Shown
is the number of junctions not annotated in GENCODE V16 detected at different levels of coverage
(measured in collapsed, unique fragments) by the two mappers. Note that only annotated tran-
scripts were used in the simulation, i.e. no novel junctions are expected to be detected, and the ones
that are represent false positives.

quantification as they allow the resolution
of overlapping sense and anti-sense tran-
scripts. However, it has to be noted that
some stranded protocols (dUTP in partic-
ular) are not absolutely strand-specific.

5. Fragment length distribution. During
library construction, RNA is fragmented,
usually to pieces of 200 to 300 nucleotides
length. The exact fragment length can
have a significant effect on transcript as-
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Figure 2.4: Sequence type of “novel” splice junctions detected by STAR and TopHat.
Shown is the number of junctions not annotated in GENCODE V16 detected at different levels of
coverage by the two mappers split by the sequence of their splicing motifs. Canonical junctions
recognized by the major spliceosome are of the GT|AG type, the two major classes of non-canonical
junctions are GC|AG and AT—AC.

sembly and quantification. Longer frag-
ment lengths provide greater connectiv-
ity of distant sequences, but they lead to
stronger coverage and representation bi-

ases.

6. Read length. For obvious reasons, it is
intuitive to think that longer reads will al-
ways result in better assembly and quan-



54

Figure 2.5: Classification of “novel” splice junctions detected by STAR and TopHat
relative to the annotation. Shown is the number of junctions not annotated in GENCODE
V16 divided according to how they relate to the annotation (GENCODE V16). The categories are
introduced and detailed in the previous chapter.

tification. However, long reads only make
sense if the fragment size distribution is
correspondingly long, and as mentioned
above, longer fragment distribution leads
to poorer quantification results.

7. Sequencing depth. Again, for obvious
reasons, deeper sequencing provides more
quantification and assembly power.

It is not practically possible to examine all
these variables due to the high dimensionality
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of the parameter space, much less against the
very large number of software tools (new ver-
sions of which, as well as new algorithms, are
continuously being published). I chose to focus
on a limited set of the most popular analysis
packages that still represents the range of exist-
ing approaches to the problems and on the data
characteristics that are in my opinion most rele-
vant to ENCODE results and least studied, while
picking optimal parameter values for the others.
These parameters were the isoform expression
complexity and the impact of data quality, in
particular the prevalence of intronic reads (due
to the presence of numerous retained introns in
Cufflinks assemblies discussed in the previous
chapter).

2.2 Methods

2.2.1 Simulation parameters

For the purposes of this comparison, it is ir-
relevant what gene-level expression values are
used for the simulation although matching real-
life data is in no way a negative. Therefore,
Cufflinks-derived gene-level quantification esti-
mates for actual samples were used as a starting
point from which isoform expression levels were
assigned to individual transcripts. These esti-
mates are in FPKM (Fragments Per Kilobase
per Million fragments), where we define FPKM
for a transcript as follows:

FPKMT =
Number fragments mapping to a transcript

Total number of mapped fragments

1,000,000
∗

Length of transcript

1,000

(2.4)

Here a fragment is defined as a pair of reads
when both ends of a paired-end read are mapped
or as the read itself when it is a singleton or the
sequencing data is single-end.

For a gene G which contains N individual
transcripts TG0,....,N

, there are two ways to de-
fine FPKMs on the gene level:

FPKMG =
|fragmentsb∈BG

|
Total number of mapped fragments

1,000,000
∗
|BG|
1,000

(2.5)

Here we count all fragments fragmentsb
mapping to a base pair b belonging to all base
pairs BG annotated as part of the gene G and
normalize against the total number of base pairs
|BG|.

The alternative option is to calculate FPKM
as follows:

FPKMG =
∑
T∈G

FPKMTG
(2.6)

Which is the sum of the FPKMs estimated
for each individual transcript.

The latter is the more biologically correct
way of calculating FPKMs as it normalizes bet-
ter for cases in which an isoform that is very large
or very short relative to the total gene length is

expressed (Trapnell et al. 2010; Pachter 2011),
and is therefore the one adopted here.

For each transcript of a gene, we can define
the FMI (Fraction of Major Isoform) quantity
as follows:

FMITG
=

FPKMTG

max
T∈G

(FPKMTG
)

(2.7)

The FMI values can be used to determine
isoform expression complexity. Examination of
the distribution of FMI values on real data (with
the caveat that real-life isoform-level quantifica-
tion is unreliable, although this is not relevant
for simulation purposes) using Cufflinks showed
that the median FMI of the second major iso-
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form is around 0.5, of the third major isoform
between 0.25 and 0.3, of the fourth major iso-
form between 0.10 and 0.15, etc. (see previous
chapter). However, the distribution of the FMI
for the second major isoform is not normal but
actually roughly uniform with some bias towards
0. Uniform distribution is not well suited for
the goals of this simulation exercise because a
way to vary the isoform complexity is needed
and this would be better manipulated through

shifting the means (see below). Therefore the
FMI distribution was modeled with a Gaussian,
with mean µ and variance σ2, which is dispersed
and truncated by requiring that µ = σ, i.e. for
any FMI µ that is picked, the left 1− σ position
in the distribution is 0. For each gene G with N
individual isoform, TG0,...,N

ranked by expression
such that FMI(TG)i > FMI(TG)i+1

, the FMI for
each isoform is chosen as follows:

FMI(TG)i =


1 if i = 0;

max(0, FMI(TG)i+1
∼

1∫ FMIi−1

−∞
NFMIi

{NFMIi : FMIi < FMIi−1}) if i > 0 (2.8)

Where:

NFMIi = N (µiα1 , σ
2
i = µiα1

2
) (2.9)

N refers to a Gaussian, and they key param-
eters are the mean FMI for the second ranked
isoform (µ1) and α, which are used to scale the
global isoform complexity (higher α will lead to
much quicker decay of the mean FMI). Note that
the Gaussian is rescaled to take into account the
fact that only the parts of it between −∞ and
the FMI of the next more highly expressed iso-
form of the gene are considered, so that if the
randomly chosen FMI value was less than zero,
it was set to 0, at which point all subsequent iso-
forms were set to zero too. The isoform ranking
was also picked at random for each gene.

2.2.2 Read simulation

A reasonable very deeply sequenced RNA-seq
dataset contains ∼200× 106 reads, or about one
lane of HiSeq worth of reads. It is also what EN-
CODE produced for most of its samples (Djebali
et al. 2012). For this reason, the total sequenc-
ing depth was fixed at R = 200× 106 read pairs
(or double the ENCODE number, i.e. a very
deeply sequenced sample). It is known that long
fragment sizes actually degrade the performance
of RNA-seq. This is because:

1. Short transcripts are underrepresented by
reducing their effective length (there are
only 200 positions in which a 400bp-long
fragment can originate from a 600bp-long
trancsript, but 1600 such positions for a

2kb-long transcript). Quantification pro-
grams perform an effective length normal-
ization, which takes some of these biases
into account. However, another issue still
remains unresolved, and it is experimental
in nature:

2. Short transcripts are underrepresented in
the sequencing libraries. Suppose frag-
ments were size-selected so that they are
distributed as a Gaussian, i.e. DFL ∼
N (µ, σ2), with µ = 500 and σ = 100, and
consider the same case of the 600bp-long
transcript and the 2kb-long transcript de-
scribed above. Fragments are generated
by random fragmentation of either RNA
molecules or cDNA, depending on the pro-
tocol used. Assuming this fragmentations
is random, on average only 1/3 of frag-
ments will be within 100bp of the mean
of the size-selection range for the 600bp-
long transcripts, i.e. each transcript or
full-length cDNA molecule will be repre-
sented in the library 1/3 of the time, while
the 2kb-long one will usually contribute 3
fragments to it.

3. A significant contributor to uneven se-
quencing coverage in RNA-seq seem to be
RNA secondary structures and more and
more complex such structures are formed
in longer RNA molecules. Depending on
the protocol used, this may have a more
or less severe negative effect on transcript
representation and coverage in the final li-
braries.
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For these reasons, reads were sampled from
a fragment size distribution centered around
250bp with standard deviation of 50 (i.e. DFL ∼
N (250, 502)), and the length of the reads was
limited to 2x100bp. The mason read simulator
(Holtgrewe 2010) was used for simulating the
reads. The simulation was carried out as follows:

1. Separate “chromosomes” were generated
for each transcript using the GENCODE
V16 annotation and the human genome

reference sequence.

2. Separate “chromosomes” were also gener-
ated for the unspliced, pre-mRNA form of
each GENCODE V16 transcript. This is
not entirely realistic as in reality splicing is
predominantly cotranscriptional (Dujardin
et al. 2013), and pre-mRNAs exist in a
partially spliced state but rarely in a com-
pletely unspliced one. But this process is
generally poorly understood so for simplic-
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Figure 2.6: Number of transcripts in each assembly according to the Cuffcompare
classification. The number of transcripts in each Cuffcompare category is shown for Cufflinks as-
semblies on STAR (A) and TopHat (B) mapping and for de novo Trinity (C) and SOAPdenovo-trans
(D) assemblies. The Cuffcompare codes are defined (and prioritized during classification in the same
order) as follows (Trapnell et al. 2010; Trapnell et al. 2012): “=”: Complete match of intron chain;
“c”: Contained; “j”: Potentially novel isoform (fragment): at least one splice junction is shared
with a reference transcript; “e”: Single exon transfrag overlapping a reference exon and at least 10
bp of a reference intron, indicating a possible pre-mRNA fragment; “i”: A transfrag falling entirely
within a reference intron; “o”: Generic exonic overlap with a reference transcript; “p”: Possible
polymerase run-on fragment (within 2Kbases of a reference transcript); “r”: Repeat. Currently de-
termined by looking at the soft-masked reference sequence and applied to transcripts where at least
50% of the bases are lower case; “u”: Unknown, intergenic transcript; “x”: Exonic overlap with
reference on the opposite strand; “s”: An intron of the transfrag overlaps a reference intron on the
opposite strand (likely due to read mapping errors)
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ity here it is assumed that transcription
and splicing are completely uncoupled.

3. An ENCODE K562 sample RNA-seq sam-
pled was used to obtain real-life gene-level
FPKM estimates using Cufflinks (version
2.0.2). Note that only protein coding genes
were included, which was done deliber-
ately, with the goal of examining the per-
formance of quantification software with
respect to pseudogenes and lincRNAs, for
which mapping artifacts might confound
output (due to close sequence homology
with protein coding genes in the case of
pseudogenes, and due to the presence of
repetitive elements in many lincRNAs).

4. Isoform-level FPKMs were simulated from
the gene-level FPKMs as described above,
using all 9 combinations of µ = 0.25, 0.5
or 0.75 and α = 0.5, 1, or 4. A value of
α = 4 means almost no alternative isoform
expression), while when α = 0.5, the 10th
highest isoform will still have on average
Θ = 0.03 (see below for definition of Θ).

5. For each such combination, 3 datasets with
a different intronic fraction of reads were
simulated (IF = 0.05, 0.15 or 0.25). IF
= 0.05% corresponds to some of the best
polyA-selection cases we have observed in
practice, IF = 0.15 can be considered in-
termediate level of intronic reads, and IF
= 0.25 is what is often observed in some
nuclear subcellular fractions in ENCODE
data (though much higher values have also
been seen; Figure 2.2).

6. Using the IF and transcript-level FPKM
values, the number of reads that should
be simulated for each transcript containing
introns and its corresponding pre-mRNA
was calculated. The intronic fraction was
constant for all transcripts.

7. Stranded RNA-seq reads were gener-
ated for each mRNA and pre-mRNA
using mason, with the following set-
tings: illumina --read-length 100

--library-length-mean 250 -le 50

--include-read-information

--forward-only --simulate-qualities

--mate-pairs --prob-insert 0

--prob-delete 0 --haplotype-snp-rate 0

--haplotype-indel-rate 0. Reads were

subsequently renamed to records their ori-
gin and proper mapping.

8. FPKMs were rescaled according to the IF
value so that intronic reads are excluded
from the denominator in the calculation of
the true FPKM value. The true FPKM
values were recorded and saved.

The resulting simulated set of reads repre-
sents a somewhat easier to solve problem than
real-life data does, as it does not model tran-
script coverage non-uniformity (the sources of
which are not entirely understood). However,
it does provide a measure of the relative perfor-
mance of programs, as well as minimum bounds
on the fraction of incorrectly quantified and as-
sembled transcripts, which is still informative
with respect to the interpretation of the results
in the previous chapter.

2.2.3 Read Mapping

Reads were mapped to the hg19 assembly of
the human genome using both the STAR (ver-
sion 2.3.0e; Dobin et al. 2013) and TopHat
(Version 2.0.8; Trapnell et al. 2009; Trap-
nell et al. 2012b) aligners, using the GEN-
CODE V16 as a source of annotated transcripts
and junctions to aid mapping. The follow-
ing settings were used for STAR; default set-
tings were used for TopHat. --outFilterType

BySJout --outFilterMultimapNmax 20

--alignSJoverhangMin 8

--alignSJDBoverhangMin 1

--outFilterMismatchNmax 999

--outFilterMismatchNoverLmax 0.04

--alignIntronMin 20 --alignIntronMax

1000000 --alignMatesGapMax 1000000.
For RSEM and eXpress quantifications, reads

were mapped against a GENCODE V16 tran-
scriptome index, using Bowtie (version 0.12.7;
Langmead et al. 2009), with the following set-
tings: -e 200 -a --offrate 1 -t -X 1000.

2.2.4 Transcript assembly and
reconstruction

Cufflinks (version 2.0.2; Trapnell et al. 2010;
Trapnell et al. 2012a) was used for assembly on
STAR and TopHat alignemtns, with default set-
tings except for specifying that the libraries are
stranded. Scripture (Guttman et al. 2010) was
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also tested; however, its computational require-
ments were too large and made running it on all
simulated datasets practically impossible.

For alignment-free assembly, Trinity (Grab-
herr et al. 2011; Haas et al. 2013) was used
with the following settings: --SS_lib_type FR

--min_kmer_cov 2, and SOAPdenovo-Trans
(Xie et al. 2014) was run, with the
following settings: SOAPdenovo-Trans-31mer

max_rd_len=100 avg_ins=250 reverse_seq=0.
BLAT (Kent 2002) was used to map the result-
ing contigs back to the genome, with only contigs
longer than 200bp considered. Custom-written
python scripts were used to convert the resulting
PSL-format output to GTF format, while retain-
ing only the best alignment(s) for each contig.

2.2.5 Isoform-level quantification

Cufflinks (version 2.0.2; Trapnell et al. 2010;
Trapnell et al. 2012a) was run on both STAR
and TopHat alignemtns, with default settings
except for specifying that the libraries are
stranded.

RSEM (version 1.2.7; Li et al. 2010; Li
et al. 2011): was run as follows: --calc-ci

--forward-prob 1. eXpress (version 1.5.0;
Roberts & Pachter 2013) was run with default
settings. Both were run on Bowtie alignments.

Sailfish (version 0.5.0; Patro et al. 2014) was
run with default settings and k = 20.

A number of other packages were also tested:
CEM/IsoLasso (Li et al. 2011), Flux-Capacitor,
IQSeq (Du et al. 2012), iReckon (Mezlini et
al. 2013), IsoEM (Nicolae et al. 2011), MMSeq
(Turro et al. 2011), PennSeq (Hu et al. 2014),
RNAExpress (Forster et al. 2013), SLIDE (Li et
al. 2011), and Traph (Jo et al. 2014), However,
all of them turned out to be practically impos-
sible to run due to dependency issues with soft-
ware no longer being maintained and/or com-
putational requirements (for example, Penn-Seq
took more than a week running on 8CPUs and
40GB of memory without showing any signs of
convergence).

2.2.6 Metrics for evaluation of
quantification performance

The following metrics were used to evaluate
quantification performance:

1. The Pearson correlation r between the true
FPKMs and the estimated FPKMs on the
gene level

2. The Pearson correlation r between the true
FPKMs and the estimated FPKMs on the
transcript level

3. The mean total Θ difference between the
true relative isoform abundances in each
gene and the estimated isoform abun-
dances:

MTΘdiff =

∑
G

∑
T∈G
|ΘE(TG) −ΘT (TG)|

NG
(2.10)

Where NG is the total number of anno-
tated genes considered, ΘE is the esti-
mated Θ and ΘT is the true Θ for each
isoform of a gene, and Θ is defined as:

ΘTG
=

FPKMTG∑
T∈G

(FPKMTG
)

(2.11)

Note that the possible values of MTΘdiff

are limited to MTΘdiff ∈ [0, 2], with
MTΘdiff = 0 corresponding to perfectly
accurate parsing of reads between isoforms
and MTΘdiff = 2 to complete misalloca-
tion (for example, if only one isoform is
expressed but it received 0 FPKM and the
reads were instead allocated to other iso-
forms).

4. The fraction of genes with an incorrectly
assigned major isoform, i.e.:

argmax
TG

(max
T∈G

(ΘE(TG)))

6=
argmax

TG

(max
T∈G

(ΘT (TG)))

5. The fraction of genes with false positive
isoforms

6. The fraction of false positive isoforms

7. The fraction of genes with false negative
isoforms

8. The fraction of false negative isoforms

Here, a false positive isoform was defined as
one with ΘT (TG) = 0 and ΘE(TG) ≥ 0.05, and a
false negative isoform as one with ΘT (TG) ≥ 0.05
and ΘE(TG) ≤ 0.001.
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2.2.7 Metrics for evaluation of
assembly performance

The following metrics were used to evaluate as-
semblies relative to the GENCODE V16 anno-
tation that was used to generate the data.

1. The number of transcripts in the various
Cuffcompare classes (Cuffcompare is a pro-
gram in the Cufflinks suite used to com-
pare annotations). See the legend of Fig-
ure 2.6 for detailed explanation.

2. The number of perfectly matching intron
chains for expressed spliced transcripts,
where an intron chain is defined as fol-
lows. Every transcript TG in gene G is
defined according to its exonic coordinates
as the ordered set of exon left and right
positions: TG := {(l1, r1), ...., (ln, rn)}. An
intron chain IC is defined as the ordered
set of left and right intronic positions, i.e.:
ICTG

:= {(r1, l2), ...., (rn−1, ln)}. Compar-
ing the intron chains allows the 5’ and 3’
ends, which are very difficult to assemble
precisely (and are often not precisely de-
fined biologically to begin with) to differ.
An annotated transcript TG was defined as
expressed if FPKMTG

> 0.

3. The number of assembled but not ex-
pressed genes, i.e. transcripts with
FPKMTG

= 0, which were nevertheless
expressed. This may sound counterintu-
itive, but is not impossible, and does in
fact happen occasionally.

4. The number of partially assembled spliced
transcripts, i.e. transcripts, the intron

chain ICA of which is a strict subset of the
intron chain of some annotated transcript
TG, i.e. ICA ⊂ ICTG

.

5. The number of false positive spliced tran-
scripts, i.e. transcripts with an intron
chain that is inconsistent with the intron
chains found in the annotation.

6. The number of false negative spliced tran-
scripts, transcripts that were expressed but
not assembled. A threshold of 1 FPKM
was set to define a transcript as assembled.

2.3 Results

2.3.1 Splice junction discovery

The main goals of this simulation were to as-
sess transcript quantification and reconstruction.
For this purpose, reads were simulated from
the protein coding portion of the GENCODE
V16 transcriptome, and then it was again GEN-
CODE V16 that was used when mapping the
reads, i.e. there are no novel junctions to dis-
cover and the mapping process is maximally
aided by the annotation, which in this case com-
pletely matches the source of the reads. Never-
theless the simulation is useful with respect to
the minimum number of false positive junctions
observed in real-life data, and their nature.

Reads were mapped with both TopHat and
STAR, and the junctions detected extracted.
The strand of the junctions was annotated based
on the directionality of the reads. Figure 2.3
shows the number of “novel” splice junctions
detected by each algorithm in each of the 27

Figure 2.7 (preceding page): Assembly statistics for spliced transcripts. (A,C,E,G) The
distribution of true positives (“Expressed and Assembled”), partial true positives (“Partials”), par-
tial false positives (“Not Expressed and Assembled”) and false positives (“False Positives”) among
de novo assembled transcripts is shown. The categories are defined as follows: “Expressed and
Assembled” refers to transcripts that were expressed at > 0 FPKM in simulation and we assembled
completely, i.e. have a complete intron chain match in the annotation; “Partials” refers to assembled
transcripts the intron chain of which is a subset of the intron chain of an annotated transcript; “Not
Expressed and Assembled” refers to transcripts with FPKM= 0 in the simulation, which were nev-
ertheless assembled with a complete intron chain (this is not impossible in complex loci even if rare);
the “false positives” are transcripts with intron chains that are not found in the annotation, neither
as complete chains nor as subsets of annotated intron chains. (B,D,F,H) The distribution of true
positives (“Expressed and Assembled”) and false negatives (“False Negatives”) among annotated
transcripts expressed at > 1 FPKM in the simulation. A false negative is a transcript the complete
intron chain of which was not found among the de novo assembled transcripts. (A,B) Cufflinks on
STAR alignments; (C,D) Cufflinks on TopHat alignments; (E,F) Trinity; (G,H) SOAPdenovo-trans
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simulated libraries and their fragment support
(I use “novel” in quotation marks to indicate
that they are false positives). TopHat detected
between 2000 and 3000 false positive junctions,
while STAR found on average slightly fewer ones,
but in a few cases it produced substantially more
of them for unknown at present reasons. In both
cases there was a positive correlation between
the IF parameter and the number of false pos-
itive junctions. Figure 2.4 shows the intronic
motifs of these junctions, and Figure 2.5 shows
how they relate to the annotation, following the
convention adopted in the previous chapter. Re-
markably, most of the “novel” junctions turned
out to be anti-sense to known transcripts and
connecting known exons, as indicated by the fact
that the dominant intronic motif was CT|AC
(which is the antisense to GT|AG, the canonical
splice motif). This was not the case only in the
anomalous STAR mappings where a substantial
number of CT|AC junctions were still present.
Both STAR and TopHat found junctions with a
CT|GC motif but only TopHat returned GC|AG,
GT|AT, AT|AC and splices with other sequence
motifs. A large number of CT|AC junctions was
not observed in TopHat alignments of real RNA-
seq data suggesting that the majority of “novel”
junctions seen in the simulation were the re-
sult of strand assignment issues in this particular
set of alignments, possibly due to the version of
the software used. However, antisense junctions
can be easily spotted and filtered, thus bring-
ing down the real number of false positives to
just a few hundreds, meaning that the majority
of splicing complexity observed in real RNA-seq
data is not due to computational artifacts.

2.3.2 Accuracy of de novo
transcript assembly

Transcript reconstruction of STAR and TopHat
alignments was carried out using Cufflinks. In
parallel alignment-free assemblies were gener-
ated using Trinity and SOAPdenovo-Trans, then
the resulting contigs were mapped back to the
genome using BLAT, and converted to GTF file
format. As a first assembly evaluation step, all
four sets of GTF files were run through Cuff-
compare, the GTF comparison module in the
Cufflinks suite of programs, against the GEN-
CODE V16 reference, and the fraction of tran-
scripts classified under the different Cuffcompare
classes counted. The results are shown in Fig-
ure 2.6. Cufflinks produced very similar results

on STAR and TopHat alignments, generating
between 11,000 and 15,000 fully matched tran-
scripts (Cuffcompare class “=”) depending on
the expressed isoform complexity (Figure 2.6A
and B). A few notable trends emerged when the
fraction of partial assemblies (Cuffcompare class
“c”) and “new isoforms” (Cuffcompare class “j”)
assembled were considered – higher values of the
α parameter (α = 4), i.e. lower isoform com-
plexity, resulted in a relatively small fraction of
“new isoforms” (as only annotated transcripts
were simulated and the same GENCODE V16
annotation was used as a reference, no “new iso-
forms” were expected; all such transcripts are
therefore false positives), but in the simulations
with α = 0.5 and α = 1 more than 10,000 such
isoforms were assembled. Increasing the intronic
fraction also had a negative effect on assembly
though not as pronounced as the effect of isoform
complexity, with the fraction of true positives
decreasing slightly and the fraction of partial as-
semblies and false positives increasing.

Trinity and SOAPdenovo-Trans results were
striking in comparison (Figure 2.6 C and D).
Trinity actually generated a few hundred more
true positive transcripts than Cufflinks, al-
though this is not clearly visible in the figure,
which in turn is because of the extremely large
number of partial assemblies and false positives
it produced – in the hundreds of thousands. The
number of such contigs was strongly correlated
with the intronic fraction of reads. These results
are a combination of assembling each true tran-
scripts into multiple short fragmentary assem-
blies and of the assembly of many isoforms with
retained introns. In contrast, SOAPdenovo-
Trans did not assemble almost any “new iso-
forms”, instead generating a large number of
transcripts classified as “intronic”, suggesting
it might be dealing better with intronic reads.
However, it also assembled very few true tran-
scripts (only ∼3,000 on average) and it also gen-
erated many partial assemblies, the number of
which also correlated strongly with the intronic
fraction of reads.

To better understand the assemblies, I car-
ried out a more direct comparison using only
the assembled spliced transcripts/contigs using
the additional true/false positive and false nega-
tive metrics listed in the Methods section (Figure
2.7). This was done in two ways: from the per-
spective of the assemblies (Figure 2.7A,C,E,G),
and from the point of view of the set of ex-
pressed transcripts (Figure 2.7B,D,F,H). In the
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Figure 2.10: Distribution of estimated FPKMs for lincRNA genes. The number of lin-
cRNAs “detected” at different FPKM cutoffs in the output of RNA-seq quantification programs is
shown. Note that lincRNAs were not included in the original simulation therefore the true expression
values should be zero for all of them.

former case, we define a true positive as a tran-
script that is both expressed in the simulation
and assembled (at the level of its intron chain),
a partial true positive is a partially assembled
expressed transcripts, and a false positive is a
transcript, the intron chain of which is incom-
patible with the annotation. In the annotation-
centered comparison, true positives (expressed
at ≥1 FPKM and assembled) and false nega-
tives (expressed at ≥1 FPKM but not assem-
bled) transcripts are counted.

STAR+Cufflinks and TopHat+Cufflinks re-
sults were again comparable, with a slight ad-
vantage to the TopHat+Cufflinks combination.
Once again, the negative effect on the accuracy
of the results of isoform complexity was high-
lighted. At IF = 0.05, µ = 0.25, and α = 4, i.e
high-purity polyA-selection on samples in which
almost always only one isoform is expressed,
nearly 80% of assembled transcripts were true
positives, with ≤10% being false positives (Fig-
ure 2.7C), and >80% of expressed transcripts
were assembled, with <20% being false nega-
tives (Figure 2.7D). However, when µ = 0.75,
and α = 0.5, only ∼50% of assembled transcripts

were true positives, nearly 40% were false pos-
itives, and only ∼35% of expressed transcripts
were successfully assembled (with ∼65% remain-
ing as false negatives).

Trinity and SOAPdenovo-Trans results fol-
lowed the same trend across the parameter
space, but were worse in terms of absolute
performance. Trinity successfully assembled a
higher fraction of the expressed transcripts than
Cufflinks did (Figure 2.7F); however, this was at
the cost of a much larger fraction of false pos-
itives (Figure 2.7E). Notably, this fraction was
highly sensitive to the value of the IF parame-
ter. SOAPdenovo-trans was again less sensitive
to intronic reads but its performance was very
poor in absolute terms (Figure 2.7G and H)).

2.3.3 Accuracy of isoform-level
quantification

The accuracy of gene and transcript expression
quantification was assessed using the multiple
metrics listed in the Methods section. Figure
2.8 shows the Pearson correlation between the
estimated FPKMs on the gene level and the true



69



70



71

Figure 2.11: Distribution of estimated FPKMs for pseudogenes. The number of pseu-
dogenes “detected” at different FPKM cutoffs in the output of RNA-seq quantification programs
is shown. Note that pseudogenes were not included in the original simulation therefore the true
expression values should be zero for all of them.
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simulated locus-level FPKMs. The correlation
was mostly very high – 0.97 for most settings of
the isoform complexity and IF parameters and
for most programs – except for Sailfish FPKMs,
which exhibited a consistently poorer correlation
with the true values. Sailfish also displayed the
highest sensitivity to the increased presence of
intronic reads, with correlation dropping by be-
tween 0.03 and 0.06 from IF = 0.05 to IF ==
0.25. For the other programs, however, this ef-
fect was much more modest, usually less than
0.01 decrease in correlation.

Figure 2.9 shows the Pearson correlation be-
tween the estimated and true FPKMs for indi-
vidual transcripts. Sailfish was once again the
worst performing program, and it was once again
most sensitive to the intronic fraction param-
eter; this was also true for all other compari-
son metrics, thus for the rest of this exposition
I will focus on the other four options, without
mentioning Sailfish specifically. Overall, the cor-
relation between the estimated and true values
on the transcript level was significantly worse
than that for locus-level quantification, usually
being between 0.8 and 0.9. It was also signif-
icantly more sensitive to the intronic fraction
of reads, dropping by as much as 0.10 in some
cases when going from IF = 0.05 to IF = 0.25.
Some difference between the different programs
were apparent. Cufflinks on STAR alignments
performed consistently better than Cufflinks on
TopHat alignments, in curious contrast to the
slight advantage the latter had in assembly; how-
ever, these are not mutually exclusive possibil-
ities. But in both cases, Cufflinks was outper-
formed by both eXpress and RSEM, with RSEM
producing slightly better results than eXpress.
For example, at α = 0.5, µ = 0.25 and IF =
0.05, the correlation was 0.92 for RSEM, 0.9 for
eXpress, 0.85 for TopHat+Cufflinks, and 0.87
for STAR+Cufflinks. A counterintuitive obser-
vation was that the correlation decreased when
the α parameter was increased, i.e. when the iso-
form complexity decreased. This is most likely
explained by false positive FPKM values being
generated for transcripts that are in fact either
not expressed or expressed at relatively low lev-
els.

I next examined how many lincRNAs and
pseudogenes received positive FPKM values
(Figures 2.10 and 2.11, respectively). As previ-
ously mentioned, only protein coding genes were
included in the simulation; therefore, all lincR-
NAs and pseudogenes should have received 0 FP-

KMs, and the extent to which this is not the
case provides useful insight into the performance
of the different programs (it is also of interest
with respect to the reliability of results concern-
ing lincRNAs and pseudogenes that are based
on the output of these programs). Sailfish was
a clear outlier in this comparison, quantifying
many lincRNAs and even more pseudogenes (up
to half) as “expressed”, sometimes at quite high
levels. Smaller in magnitude, but still substan-
tial in some cases differences were observed be-
tween the other programs too. Cufflinks quan-
tified fewer lincRNAs and pseudogenes as ex-
pressed when run on STAR alignments than it
did when TopHat alignments was used as input.
STAR+Cufflinks was the best performing com-
bination with respect to lincRNAs, while RSEM
and eXpress had the fewest false positives when
pseudogenes were considered. The significance
of these differences is elaborated on in the Dis-
cussion section.

The distribution of the mean total Θ differ-
ence was examined next, for all transcripts, and
across the range of FPKM values (Figure 2.12)
and annotation complexity (Figure 2.13). Once
again, overall, RSEM and eXpress outperformed
Cufflinks, RSEM produced slightly better results
than eXpress, as did Cufflinks on STAR align-
ments compared to Cufflinks on TopHat align-
ments. However, some interesting patterns were
observed. Quantification was quite reliable when
the isoform expression complexity was low – for
example, at α = 4, µ = 0.25 and IF = 0.05, the
MTΘdiff values for RSEM and eXpress were
0.13 and 0.14, respectively – but with increased
isoform expression complexity, performance de-
teriorated significantly – the RSEM and eXpress
MTΘdiff values at α = 0.5, µ = 0.75 and IF
= 0.05, they were 0.50 and 0.49. A striking
pattern was observed when the relationship be-
tween gene expression levels and the ability to
accurately parse reads between isoforms was ex-
amined: the higher the gene-level FPKMs, the
worse Cufflinks’s performance was, while in con-
trast MTΘdiff values for RSEM and eXpress
either remained constant or decreased (Figure
2.12). This is not entirely surprising given the
way Cufflinks’s likelihood optimization proceeds
(Trapnell et al. 2010; and C. Trapnell, per-
sonal communication), but was nevertheless an
intriguing observation. Cufflinks’s performance
also deteriorated consistently with the increase
in isoform complexity in the annotation (Figure
2.12), but the pattern observed for RSEM and
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eXpress was more complicated. In the case of
α = 4, µ = 0.25 and IF = 0.05, i.e. the lowest
isoform expression complexity, the MTΘdiff ac-
tually went down for both, from 0.18 for eXpress
and 0.16 for RSEM for genes with 2 annotated
isoforms, to 0.12 for eXpress and 0.11 for RSEM
for genes with >20 annotated isoforms. How-
ever, in the simulated libraries with high isoform
expression complexity, the MTΘdiff values in-
creased for genes with more annotated isoforms.

The fraction of genes with an incorrectly as-
signed major isoform is shown in Figures 2.14
(as a function of gene expression levels) and
2.15 (as a function of annotation complexity).
It was highly dependent on the isoform expres-
sion complexity of the simulated libraries: for
example, RSEM assigned the wrong isoform 7%
of the time when α = 4, µ = 0.25 and IF
= 0.05, but it did so for 35% of genes when
α = 0.5, µ = 0.75 and IF = 0.05. The relative
performance of the programs according to this
metric was very similar to that revealed by the
MTΘdiff . RSEM and eXpress produced better
results than Cufflinks, and STAR+Cufflinks was
more reliable than TopHat+Cufflinks. Cufflinks
was once again performing worse on more highly
expressed genes (though in this case, this was the
group of genes expressed in the (100, 500] FPKM
range and not the highest expressed genes, the
≥500 FPKM ones, where the worst values were
observed). Annotation complexity had a signifi-
cant negative effect in the samples expressing a
complex mixture of isoforms (but, notably, not
so much in the ones where α = 4): 24–26%
of genes with 2 annotated isoforms had an in-
correctly assigned major isoform by RSEM in
α = 4 libraries, but this number rose to 44-48%
for genes with ≥20 annotated isoforms.

Figures 2.16 and 2.17 show the fraction of
genes with false negative isoforms in the various
quantification sets as a function of gene expres-
sion levels and annotation complexity, Figures
2.18 and 2.19 show the fraction of false nega-
tive isoforms among all transcripts, while Fig-
ures 2.20, 2.21, 2.22, and 2.23 show the corre-
sponding values for false positive isoforms (how
false positive and false negative isoforms are de-
fined is described in the Methods section). False
positive isoforms were generally rare, except for
genes expressed at very low levels, while false
negatives were a considerably more common oc-
currence. The relative performance of the pro-
grams followed the patterns established by the
previous metrics, with one notable difference.

RSEM returned consistently fewer false nega-
tives than eXpress did, but it also generated
more false positives than observed in eXpress
quantifications.

2.4 Discussion

The results of this simulation highlight the defi-
ciencies of current transcriptomic measurement
and analysis practices and also inform the inter-
pretation of the results presented in the previous
chapter. On a most general level, the conclusion
is that splice junction detection and discovery
work relatively well, as is the case for gene-level
quantification. However, isoform assembly and
isoform-level quantification not only remain un-
resolved problems, but are in fact likely unsolv-
able computationally as long as the nature of the
underlying data remains the same. Of note, sim-
ilar in their nature conclusions were reached by
the RGASP (RNA-seq Genome Annotation As-
sessment Project; Steijger et al. 2013; Engström
et al. 2013) initiative, which also used simula-
tions in addition to real RNA-seq datasets to
evaluate the performance of RNA-seq mapping
and transcript assembly and genome annotation
software.

While the simulation was simplistic and did
not present much of a challenge with respect to
splice junction discovery, the fact that so few
false positive junctions were returned is encour-
aging. However, the problem of assembling tran-
scripts de novo was not solved in satisfactory
way by any of the programs tested. Except for
the simples cases, in which only one isoform was
expressed for most genes, up to 40% of assembled
transcripts were false positives and up to 60%
of the expressed transcripts were false negatives.
Given that the simulation did not model real-life
complicating factors such as the nonuniformity
of sequence coverage, it is likely that results on
real RNA-seq data are in fact even worse. An-
other important insight gained from the simula-
tion was that genome-free assembly approaches
are extremely sensitive to the fraction of intronic
reads present in the sample, producing many
more false positive and/or partially assembled
transcripts when the IF parameter was increased
from 0.05 to 0.25, something of significant im-
portance for the practice of transcriptomic anal-
ysis in the absence of a corresponding genomic
assembly – to the best knowledge of the author,
little attention has been paid to the issue so far in
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such cases, but even if that was not the case, the
intronic fraction is almost impossible to measure
without an assembled and annotated genome,
presenting a difficult to resolve conundrum. In
any case, assembling the genome and then car-
rying out transcript reconstruction is clearly the
better option (if, of course, such a choice is avail-
able) by a significant margin.

Isoform-level quantification is also not quite
up to the desired level. As with assembly, it
is highly likely that performance on real-life
datasets is worse than what was observed on
simulated data. But even in the simplified sim-
ulation, in all of the complex samples (µ = 0.5
or µ = 0.75, and α = 0.5 or α = 1), 1/3 of
genes had an incorrectly assigned major isoform,
and this rose to ∼50% for genes with a large
number of annotated isoforms. Some clear dif-
ference between the programs emerged. Sailfish,
which uses k-mer frequencies instead of align-
ments provided the most unreliable sets of FP-
KMs; this is not surprising as the naive expec-
tation is that the problem of parsing k-mers be-
tween genes and transcripts would be consider-
ably more difficult to solve than the problem of
doing the same with alignments. In this con-
text, it is also not surprising that Sailfish gener-
ated so many false positives in pseudogenes and
lincRNAs. It is possible that different values of
k than the default value used here will gener-
ate better results, but it is unlikely that they
will ever reach the performance of the alignment-
based approaches. A bit more surprising was the
fact that the transcriptome-space programs per-
formed better than Cufflinks, but this in fact
makes sense given the nature of the alignments
each such programs is presented with and how
they affect their output. Cufflinks works with
alignments in genomic coordinates and does not
really “see” all alignments a read might have
to other genes, even though such reads are rec-
ognized as multireads and treated accordingly.
In contrast, programs like eXpress stream reads
and directly weigh alignments between all places
in the transcriptome they map to; this leads to
better parsing of reads between paralogous genes
and fewer false positives due to mapping issues,
though their performance with respect only to
the isoforms of protein coding genes also seems
to be superior. Based on the simulation results,
working in transcriptome space should be the
preferred approach if reliability of output is the
top priority of the analysis. However, it has to
remembered that even eXpress and RSEM do

not completely solve the problem and only pro-
vide a marginal in comparison to the deviation
from the truth improvement over Cufflinks.

These results are not surprising given the
background of a wide variety of accumulated
anecdotal examples of questionable quantifica-
tion output, but they do present an explicit illus-
tration of the magnitude of the problem. They
also provide some context for the interpretation
of real-life results if we are willing to engage
in some Bayesian reasoning: simulated samples
with low complexity of expressed isoforms con-
sistently returned results closest to the ground
truth, while samples with high isoform complex-
ity fared the worst. This means that if a ma-
jor isoform is observed with minor isoforms with
very low FMI values, then it is significantly more
likely that the quantification output represents
the underlying biochemical reality well. Con-
versely, if multiple isoforms are scored as ex-
pressed at high level, it is much more difficult
to tell whether their ranking is correct, which
one is the major isoform, and by how much.
These considerations are of major importance to
the question of how much regulated alternative
isoform switching happens between different cell
types; unfortunately, a major fraction of puta-
tive such events belong to the second category,
making any definitive conclusions about the phe-
nomenon difficult to defend.

The simulation also once again confirmed the
theoretical expectation that the complexity of
the annotation being quantified has a significant
negative effect on the output of the quantifica-
tion: the more isoforms there are in the anno-
tation, the more likely it is that the maximum
likelihood model becomes unidentifiable. The
unfolding of a quite unsettling scenario is thus
entirely possible in the near future: as RNA-
seq probes ever deeper into the complexity of
the transcriptome, and genome annotations be-
come updated to reflect that newly acquired
knowledge, an ever higher fraction of genes in
these annotations will become impossible to con-
fidently quantify as they will contain too many
isoforms that cannot be unambiguously distin-
guished from one another based on short reads.
In the same time, while the length of reads
keeps increasing, the length of the fragments
they originate from cannot increase without in-
troducing deeply problematic on their own bi-
ases in libraries (see discussion in the Methods
section), meaning that the short-read sequenc-
ing format of RNA-seq cannot really go beyond
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2x150bp. The only meaningful solution to these
issues will be the advent of sequencing technolo-
gies that can produce full transcript-length reads
at a sufficient sequencing depth (meaning tens
of millions of reads). Such a technology will
have to also achieve that without the limitations
imposed by size selection that exist for current
long-read platform such as PacBio (Sharon et al.
2013; Au et al. 2013) so that both short and very
long transcripts are sequenced equally efficiently.
It would be also highly desirable for it to perform
direct RNA-sequencing, i.e. without the need to
convert RNA into cDNA, as reverse transcrip-
tion might be a significant source of biases (for
example, due to the presence of secondary struc-

tures in RNA molecules, internal polyA priming
sites if oilgo-dT priming is used, etc.). A tech-
nology that has the potential to deliver such a
radical paradigm shift in the field is nanopore
sequencing (Branton et al. 2008), even if the de-
velopment of functional direct RNA sequencing
based on it is still at least a few years into the fu-
ture. Until then the analysis of alternative splic-
ing and processing using RNA-seq at the level of
whole transcripts and the whole transcriptome
(as opposed to the targeted sequencing of indi-
vidual genes and the analysis of localized splicing
events) will remain a complicated and fraught
with epistemological difficulties enterprise.
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Single-cell RNA-seq in human lymphoblastoid cells:

stochasticity in gene expression and RNA splicing

T
he majority of the material in this chapter was published as:

Marinov GK*, Williams BA*, McCue K, Schroth GP, Gertz J, Myers RM, Wold BJ.
2014. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and

RNA splicing. Genome Res 24:496–510. doi: 10.1101/gr.161034

The paper is reprinted in Appendix J. The single-cell RNA-seq data on which it is based was
generated by Brian Williams in the Wold lab. My contribution is the computational analytical
framework for analysis and the analysis itself as well as some input into the experimental design.

Abstract

In this work, we applied the SMART-
seq low-input RNA-seq protocol to study
cell-to-cell variation in gene expression,
alternative splicing and allelic bias in
the reference lymphoblastoid cell line
GM12878. We also identified and ad-
dressed the technical noise issues intrinsic
to single-cell RNA-seq, by devising exper-
imental and computational approaches to
distinguish between biological and tech-
nical variation in measurements. By us-
ing spike-in quantification standards we
estimated the absolute number of RNA
molecules per cell for each gene and found
significant variation in total mRNA con-
tent, between 50,000 to 300,000 tran-
scripts per cell. We directly measured
technical stochasticity by a pool/split de-
sign, and found that there are significant
differences in expression between individ-
ual cells, over and above technical vari-
ation. We identified specific gene coex-
pression modules that were preferentially
expressed in subsets of individual cells,

including one enriched for mRNA pro-
cessing and splicing factors. We assessed
cell-to-cell variation in alternative splic-
ing and allelic bias, and found evidence
for significant differences in splice site us-
age between individual cells that exceed
the observed variation in the pool/split
comparison. We also found similar cell-
to-cell differences in allelic bias suggest-
ing widespread random monallelic expres-
sion, however, such differences were also
observed (although at lower levels) in
pool/splits and have to be considered a
provisional result until further improve-
ments in experimental protocols. Finally,
we showed that transcriptomes from small
pools of 30-100 cells approach the informa-
tion content and reproducibility of RNA-
seq from large amounts of input material.

3.1 Introduction

Gene expression levels can differ widely be-
tween superficially similar cells. One source of
variation is stochastic transcriptional “bursting”
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Figure 3.1: Detection of expressed genes in simulated datasets as a function of the single
molecule capture efficiency, the number of cells and the average number of transcripts
per cell. (A) Average of 50,000 mRNAs per cell. (B) Average of 100,000 mRNAs per cell. (C)
Average of 200,000 mRNAs per cell. (D) Average of 500,000 mRNAs per cell. (E) Average of
1,000,000 mRNAs per cell. See the Methods section for full details on how the simulation was
carried out.

(Elowitz et al. 2002; Ozbudak et al.
2002; Blake et al. 2003; Raser & O’Shea 2005;
Kaufmann & van Oudenaarden 2007). Those
studies mainly used fluorescent protein fusion
genes to monitor the expression of one or a
few genes. They revealed dynamic fluctuations
through time that are seen as “salt-and-pepper”

variation across a cell population at any given
time. In addition to this bursting behavior, in-
dividual cells are expected to display controlled
and coordinated differences in the expression of
genes engaged in dynamic physiologic processes,
such as cell cycle phase progression, paracrine or
autocrine signaling response, or stress response.
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Figure 3.2 (preceding page): Accuracy of estimation of population-level gene abundance
as a function of the number of cells pooled and the single molecule capture probability.
Average of 50,000 mRNAs per cell. Shown is the fraction of genes at the indicated expression levels in
FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM in simulated libraries
was within 20% of their true value after stochasticity due to the probability of capture of cells that
express them and the single-molecule capture efficiency of the library-building protocol have been
modeled. See the Methods section for full details on how the simulation was carried out.

Figure 3.3: (following page) Accuracy of estimation of population-level gene abundance
as a function of the number of cells pooled and the single molecule capture probability.
Average of 100,000 mRNAs per cell. Shown is the fraction of genes at the indicated expression
levels in FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM in simulated
libraries was within 20% of their true value after stochasticity due to the probability of capture of
cells that express them and the single-molecule capture efficiency of the library-building protocol
have been modeled. See the Methods section for full details on how the simulation was carried out.
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Figure 3.4 (preceding page): Accuracy of estimation of population-level gene abundance
as a function of the number of cells pooled and the single molecule capture probability.
Average of 200,000 mRNAs per cell. Shown is the fraction of genes at the indicated expression
levels in FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM in simulated
libraries was within 20% of their true value after stochasticity due to the probability of capture of
cells that express them and the single-molecule capture efficiency of the library-building protocol
have been modeled. See the Methods section for full details on how the simulation was carried out.

Figure 3.5: (following page) Accuracy of estimation of population-level gene abundance
as a function of the number of cells pooled and the single molecule capture probability.
Average of 500,000 mRNAs per cell. Shown is the fraction of genes at the indicated expression
levels in FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM in simulated
libraries was within 20% of their true value after stochasticity due to the probability of capture of
cells that express them and the single-molecule capture efficiency of the library-building protocol
have been modeled. See the Methods section for full details on how the simulation was carried out.
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Figure 3.6 (preceding page): Accuracy of estimation of population-level gene abundance
as a function of the number of cells pooled and the single molecule capture probability.
Average of 1,000,000 mRNAs per cell. Shown is the fraction of genes at the indicated expression
levels in FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM in simulated
libraries was within 20% of their true value after stochasticity due to the probability of capture of
cells that express them and the single-molecule capture efficiency of the library-building protocol
have been modeled. See the Methods section for full details on how the simulation was carried out.

Figure 3.7: (following page) Accuracy of estimation of gene abundance within a cell pool
as a function of the number of cells pooled and the single molecule capture probability.
Average of 50,000 mRNAs per cell. Shown is the fraction of genes at the indicated expression levels in
FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM in simulated libraries
was within 20% of their true value after stochasticity due to the probability of capture of cells that
express them and the single-molecule capture efficiency of the library-building protocol have been
modeled. See the Methods section for full details on how the simulation was carried out.
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Figure 3.8 (preceding page): Accuracy of estimation of gene abundance within a cell
pool as a function of the number of cells pooled and the single molecule capture prob-
ability. Average of 100,000 mRNAs per cell. Shown is the fraction of genes at the indicated
expression levels in FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM
in simulated libraries was within 20% of their true value after stochasticity due to the probability of
capture of cells that express them and the single-molecule capture efficiency of the library-building
protocol have been modeled. See the Methods section for full details on how the simulation was
carried out.

Figure 3.9: (following page) Accuracy of estimation of gene abundance within a cell pool
as a function of the number of cells pooled and the single molecule capture probability.
Average of 200,000 mRNAs per cell. Shown is the fraction of genes at the indicated expression
levels in FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM in simulated
libraries was within 20% of their true value after stochasticity due to the probability of capture of
cells that express them and the single-molecule capture efficiency of the library-building protocol
have been modeled. See the Methods section for full details on how the simulation was carried out.
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Figure 3.10 (preceding page): Accuracy of estimation of gene abundance within a
cell pool as a function of the number of cells pooled and the single molecule capture
probability. Average of 500,000 mRNAs per cell. Shown is the fraction of genes at the indicated
expression levels in FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM
in simulated libraries was within 20% of their true value after stochasticity due to the probability of
capture of cells that express them and the single-molecule capture efficiency of the library-building
protocol have been modeled. See the Methods section for full details on how the simulation was
carried out.

Figure 3.11: (following page) Accuracy of estimation of gene abundance within a cell
pool as a function of the number of cells pooled and the single molecule capture prob-
ability. Average of 1,000,000 mRNAs per cell. Shown is the fraction of genes at the indicated
expression levels in FPKM in a bulk RNA-seq dataset, whose estimated expression level in FPKM
in simulated libraries was within 20% of their true value after stochasticity due to the probability of
capture of cells that express them and the single-molecule capture efficiency of the library-building
protocol have been modeled. See the Methods section for full details on how the simulation was
carried out.
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Figure 3.12 (preceding page): Accuracy of estimation of the ratio between the
expression values of two genes in bulk RNA-seq as a function of the single molecule
capture probability and the size of the cell pool in simulated transcriptomes. A single
cell, average of 100,000 mRNAs per cell. Genes were split into groups according to their expression
levels (step size of 1 on a log2 scale, shown on each axis) and the fraction of gene pairs {A,B} for
which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.

Figure 3.13: (following page) Accuracy of estimation of the ratio between the expres-
sion values of two genes in bulk RNA-seq as a function of the single molecule capture
probability and the size of the cell pool in simulated transcriptomes. A pool of 5 cells,
average of 100,000 mRNAs per cell. Genes were split into groups according to their expression
levels (step size of 1 on a log2 scale, shown on each axis) and the fraction of gene pairs {A,B} for
which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.
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Figure 3.14 (preceding page): Accuracy of estimation of the ratio between the
expression values of two genes in bulk RNA-seq as a function of the single molecule
capture probability and the size of the cell pool in simulated transcriptomes. A pool
of 10 cells, average of 100,000 mRNAs per cell. Genes were split into groups according to their
expression levels (step size of 1 on a log2 scale, shown on each axis) and the fraction of gene pairs
{A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.

Figure 3.15: (following page) Accuracy of estimation of the ratio between the expres-
sion values of two genes in bulk RNA-seq as a function of the single molecule capture
probability and the size of the cell pool in simulated transcriptomes. A pool of 30 cells,
average of 100,000 mRNAs per cell. Genes were split into groups according to their expression
levels (step size of 1 on a log2 scale, shown on each axis) and the fraction of gene pairs {A,B} for
which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.
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Figure 3.16 (preceding page): Accuracy of estimation of the ratio between the
expression values of two genes in bulk RNA-seq as a function of the single molecule
capture probability and the size of the cell pool in simulated transcriptomes. A pool
of 50 cells, average of 100,000 mRNAs per cell. Genes were split into groups according to their
expression levels (step size of 1 on a log2 scale, shown on each axis) and the fraction of gene pairs
{A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.

Figure 3.17: (following page) Accuracy of estimation of the ratio between the expres-
sion values of two genes in bulk RNA-seq as a function of the single molecule capture
probability and the size of the cell pool in simulated transcriptomes. A pool of 100 cells,
average of 100,000 mRNAs per cell. Genes were split into groups according to their expression
levels (step size of 1 on a log2 scale, shown on each axis) and the fraction of gene pairs {A,B} for
which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.
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Figure 3.18 (preceding page): Accuracy of estimation of the ratio between the
expression values of two genes in bulk RNA-seq as a function of the single molecule
capture probability and the size of the cell pool in simulated transcriptomes. A pool
of 1000 cells, average of 100,000 mRNAs per cell. Genes were split into groups according to their
expression levels (step size of 1 on a log2 scale, shown on each axis) and the fraction of gene pairs
{A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.

Figure 3.19: (following page) Accuracy of estimation of the ratio between the expres-
sion values of two genes in a cell pool as a function of the single molecule capture
probability. A single cell, average of 100,000 mRNAs per cell. Genes were split into groups
according to their expression levels (step size of 1 on a log2 scale, shown on each axis) and the
fraction of gene pairs {A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.
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Figure 3.20 (preceding page): Accuracy of estimation of the ratio between the expres-
sion values of two genes in a cell pool as a function of the single molecule capture
probability. A pool of 5 cells, average of 100,000 mRNAs per cell. Genes were split into groups
according to their expression levels (step size of 1 on a log2 scale, shown on each axis) and the
fraction of gene pairs {A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.

Figure 3.21: (following page) Accuracy of estimation of the ratio between the expres-
sion values of two genes in a cell pool as a function of the single molecule capture
probability. A pool of 10 cells, average of 100,000 mRNAs per cell. Genes were split into groups
according to their expression levels (step size of 1 on a log2 scale, shown on each axis) and the
fraction of gene pairs {A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.
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Figure 3.22 (preceding page): Accuracy of estimation of the ratio between the expres-
sion values of two genes in a cell pool as a function of the single molecule capture
probability. A pool of 30 cells, average of 100,000 mRNAs per cell. Genes were split into groups
according to their expression levels (step size of 1 on a log2 scale, shown on each axis) and the
fraction of gene pairs {A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.

Figure 3.23: (following page) Accuracy of estimation of the ratio between the expres-
sion values of two genes in a cell pool as a function of the single molecule capture
probability. A pool of 50 cells, average of 100,000 mRNAs per cell. Genes were split into groups
according to their expression levels (step size of 1 on a log2 scale, shown on each axis) and the
fraction of gene pairs {A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.
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Figure 3.24 (preceding page): Accuracy of estimation of the ratio between the expres-
sion values of two genes in a cell pool as a function of the single molecule capture
probability. A pool of 100 cells, average of 100,000 mRNAs per cell. Genes were split into groups
according to their expression levels (step size of 1 on a log2 scale, shown on each axis) and the
fraction of gene pairs {A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.

Figure 3.25: (following page) Accuracy of estimation of the ratio between the expres-
sion values of two genes in a cell pool as a function of the single molecule capture
probability. A pool of 1000 cells, average of 100,000 mRNAs per cell. Genes were split into groups
according to their expression levels (step size of 1 on a log2 scale, shown on each axis) and the
fraction of gene pairs {A,B} for which RAB < 0.5 was calculated, where

RAB =

FPKMpool
A

FPKMpool
A + FPKMpool

B

FPKMbulk
A

FPKMbulk
A + FPKMbulk

B

and FPKMbulk
A < FPKMbulk

B . Empty cells contain no gene pairs with the indicated expres-
sion values.
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Figure 3.26: Simulated and measured transcriptome profiles from individual cells and
small cell pools. (A) Number of detected genes in simulated datasets as a function of the number
of cells pooled and the single molecule capture efficiency (psmc) (assuming 100,000 mRNA molecules
per cell). See Supplementary Figure 1 for full details. (B and C) Accuracy of gene expression
estimation as a function of the number of cells pooled and the single molecule capture efficiency;
psmc = 0.1 in (B) and psmc = 0.8 in (C), 100,000 mRNA molecules per cell assumed. Shown is the
fraction of genes at the indicated expression levels in FPKM, whose estimated expression level in
FPKM in simulated libraries was within 20% of their true value, after modeling the stochasticity due
to the single-molecule capture efficiency of the library-building protocol. See the Methods section
and Supplementary Figures 2-11 for full details. Note that the simulation is intended to illuminate
the relative effects of the various parameters studied, and the absolute numbers of genes should not
be directly compared to the real-life data shown in (G). (D) Experimental design. Single cells are
combined with spike-in quantification standards and SMART-seq libraries are generated. In parallel,
multiple single cells are pooled together and combined with spikes, then lysed and split into the same
number of reactions and converted into SMART-seq libraries. Libraries are then sequenced, data
processed computationally and estimates for the absolute number of copies per cell are derived based
on the spikes. Variation in pool/split experiments is due to technical stochasticity, while variation
in single-cell libraries is a combination of biological variation and technical noise. (E) Uniformity of
transcript coverage. Shown is the average coverage along the length of an mRNA for single cells and
pool/split experiments. Only mRNAs longer than 1kb from genes with a single annotated isoform in
the refSeq annotation set were included. See Supplementary Figure 29 for more details. (F) Number
of detected protein coding genes for libraries built from 10ng and 100pg of polyA RNA, pools of 100,
30 and 10 cells, representative pool/split experiments (individually and summed across all libraries)
and representative single cells (individually and summed across all libraries). (G) Fraction of genes
from 100 ng bulk polyA+ RNA libraries that were detected in pools of 100, 30 or 10 cells, 100pg of
polyA+ RNA, pools/split experiments and single-cells. FPKM is shown on the X-axis.
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Table 3.1: Initial amounts of spiked-in sequences in absolute number of RNA copies.
Note that two more spikes, “Lambda 9786 clone F” (9786bp) and “Lambda 11300 clone G” (11290bp)
were included in libraries, however, they exhibit highly non-uniform read coverage leading to unre-
liable quantification estimates and were thus excluded.

Spike-in Libraries 12515-12543 Libraries 12818-13303

AGP23 100 5
AP2 5 50
EPR1 20 10
OBF5 10 500
PDF1 40 20
VATG3 5000 5000

Beyond such already appreciated heterogeneity
lie currently unknown cell-to-cell differences with
biological implications for defining cell states,
metabolic function, and in complex tissues, cell
identity.

Measuring RNA transcripts in single cells is
now done in multiple ways, and similar conclu-
sions about variability are emerging from the
higher sensitivity methods. For individual genes,
Single Molecule RNA Fluorescence In Situ Hy-
bridization (SM-RNA FISH) is highly informa-
tive (Femino et al. 1998; Raj et al. 2008), and
multiplexed versions now enable multiple genes
to be measured in parallel (Lubeck & Cai 2012).
A major advantage of SM-RNA FISH is the abil-
ity to accurately count the absolute number of
transcripts in a cell. A second and older ap-
proach is multiplexed single-cell RT-qPCR (Cor-
nelison & Wold 1997), which has now been ad-
vanced to increasingly high throughput formats
(White et al. 2011; Sanchez-Freire et al. 2012,
Livak et al. 2013). It produces semi-quantitative
relative comparisons between individual cells.
However, neither SM-RNA-FISH nor the current
forms of multiplex RT-qPCR cover the entire
transcriptome or have the single-nucleotide reso-
lution needed to study fine-structure features of
gene expression such as allele specificity, RNA
editing and alternative splicing.

To address these and other limitations, ele-
gant methods have recently been developed for
performing RNA-seq with very small amounts of
RNA, down to the level of individual cells. These
are broadly referred to as “single-cell RNA-seq”
(Tang et al. 2009; Tang et al. 2010; Tang
et al. 2011; Ozsolak et al. 2010; Islam et al.
2011; Hashimshony et al. 2012; Qiu et al. 2012;

Ramsköld & Luo et al. 2012; Brouilette et al.
2012; Pan et al. 2012, Cann et al. 2012). De-
spite these significant advances, there are sub-
stantial shortcomings in these methods, and a
robust method for comprehensive and accurate
measurement of the transcriptome of a single cell
is not yet available.

A particular challenge for single-cell meth-
ods is the efficiency and uniformity with which
each mRNA in copied into cDNA, and ultimately
represented in the library. This challenge inter-
sects in crucial ways with transcriptome struc-
ture. Specifically, thousands of genes are ex-
pressed in the range of 1 to 30 mRNA copies
per cell, including many essential mRNAs (for
example, key transcription factors, Zenklusen et
al. 2008). Even lower transcript levels, averag-
ing < 1 mRNA per cell on the population level,
are now being reliably detected by RNA-seq.
This raises questions whether very rare RNAs
represent background biological noise, or alter-
natively, are functional in only a small fraction
of cells. Single-cell RNA-seq has the potential
to address these issues, but their resolution de-
pends on how faithfully and efficiently RNAs are
captured and represented in sequencing libraries
(referred to throughout as the “single-molecule
capture efficiency”, psmc). In addition, the uni-
formity of transcript coverage in early single-cell
RNA-seq protocols has typically been heavily
biased towards the 3’ end, which affects both
gene expression estimates and the ability to ana-
lyze alternative splicing, RNA editing and allelic
bias.

A second major use for single-cell RNA-seq is
the transcriptomic characterization of rare cells.
The human body consists of hundreds of dis-
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Figure 3.27: Outline of the single-cell SMART-seq RNA-seq library generation work-
flow.

tinct cell types, plus large numbers of neuronal
and transient developmental cell types. Many of
these are numerically minor components of com-
plex tissues, making them inaccessible to stan-
dard methods relying on large RNA inputs. Iso-
lation of single cells based on the cell surface
markers or using microdissection coupled with
single-cell RNA-seq could fill this gap in our un-
derstanding of gene expression patterns in com-
plex multicellular organisms. However, the feasi-
bility of this approach also depends on the exper-
imental robustness of single-cell RNA-seq pro-
tocols. Alternatively, single-cell resolution may
not be absolutely required for this purpose and
small pools of cells may be sufficient to char-
acterize rare cell type transcriptomes; an open
unresolved question is how small such pools can
be to adequately meet that goal.

We addressed the issues highlighted above
using the SMART-seq protocol (Ramsköld &
Luo et al. 2012) to measure the transcrip-
tome of single cells and small cell pools from
the GM12878 lymphoblastoid cell line. This
line is derived from the NA12878 individual, for
which a fully sequenced genome with completely
phased heterozygous single nucleotide polymor-
phisms (SNPs) and indels is available (1000
Genomes Project Consortium 2012). GM12878
cells have also been the subject of an extensive
functional genomic characterization by the EN-
CODE Consortium (ENCODE Project Consor-

tium 2011; ENCODE Project Consortium 2012)
and have been used in prior studies aiming at
characterizing allele-biased gene expression and
transcription factor occupancy (Rozowsky et al.
2011; Reddy et al, 2012).

Using spike-in quantification standards of
known abundance (Mortazavi & Williams et al.
2008) we derived estimates for the absolute num-
ber of transcript copies for each gene in each cell,
and directly measured the average value of psmc.
“Pool/split” experiments (consisting of pooling
RNA from multiple single cells, splitting the pool
into the same number of separate reactions and
building libraries from them) allowed us to mea-
sure the extent and impact of and control for
technical variation. We found that the psmc
value is quite low (∼0.1). An analysis frame-
work accounting for technical stochasticity was
developed, which we used to assess variability
in gene expression, allelic bias, and alternative
splicing at the single cell level. Distinct from
prior studies, our approach allowed us to parse
findings into those that are just as likely to be of
technical origins and those that are more likely
to be of biological interest.

We found evidence of significant variability in
the total number of mRNA molecules per cell,
which underscores the importance of working
with absolute copies-per-cell estimates when an-
alyzing single cells as opposed to the widely used
R/FPKM (Reads/Fragments Per Kilobase per
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Million mapped reads/fragments) metric that
only measures the relative abundance of genes
in a library (FPKMs are still the better met-
ric to use for larger cell pools). We identi-
fied biologically coherent modules of coexpressed
genes specifically expressed in individual cells or
groups of cells. These include expected varia-
tion associated with cell cycle phases, and an
unexpected module enriched mRNA processing
and splicing genes. We observed evidence of
higher levels of autosomal allelic exclusion on

the single-cell level, potentially associated with
transcription bursts, however it is at present dif-
ficult to confidently distinguish from technical
variability. In contrast, we found much stronger
evidence for widespread major splice site us-
age switches between individual cells. Finally,
our analysis of similarly constructed small cell
pools (30 to 100 cells) revealed a high robustness
and reproducibility, approaching that of bulk
RNA measurements. This presents a reliable
path forward towards the future comprehensive

Figure 3.28: Uniformity of transcript coverage as a function of transcript length. Shown
is the average coverage along the length of an mRNA for single cells and pool/split experiments.
Only mRNAs with a single annotated isoform in the refSeq annotation set and within the indicated
length limits were included.
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transcriptomic characterization of rare cell
types.

3.2 Results

3.2.1 In silico examination of
major variables affecting

informativeness of single-cell and
small cell-pool RNA-seq

We began this study with two goals: first, to
study gene expression heterogeneity in GM12878
cells on the single-cell level, and second, to de-
termine the minimal optimal size of cell pools
that is informative of the characteristics of the
larger cell population, with the goal of applying
that approach to rare cell types in future studies.
How well these goals are achieved depends on
several parameters affecting biological and tech-
nical stochasticity and detection sensitivity, the
values of which were unknown. To understand
their influence, we carried out a simulation of
single-cell and cell-pool transcriptomes (see the
Methods section for details) by varying the fol-
lowing parameters:

1. Single-molecule capture efficiency
(psmc). In contrast to bulk RNA-seq li-
braries, an individual cell contains a very
limited total number of mRNA molecules.
Individual genes can be present in single-
digit transcript numbers. If only a fraction
of mRNAs are successfully represented in
a library, a technical stochasticity compo-
nent is introduced. Depending on its mag-
nitude, data interpretability can be sig-
nificantly affected due to false negatives
and a distortion of relative gene abun-
dance estimates. The psmc parameter
is the probability that any given original
RNA molecule is captured in the final li-
brary. We examined the effect on expres-
sion quantification of psmc ranging from
0.01 to 1.

2. Total number of mRNA molecules
per cell. The impact of low psmc on ex-
pression measurements will be more severe
if fewer mRNA molecules are present in a
cell. The average total number of mRNA
molecules in a single cell is not known for
most cell types, but it is expected to vary
with cell size, metabolic status, and even

cell cycle phase. This means that single-
cell expression measurements in some cell
types are likely to be more robust to tech-
nical noise than in others. We varied the
total number of mRNAs from 50,000 to
1,000,000 (while keeping the number of
genes expressed constant).

3. Frequency of expression of individ-
ual genes in single cells. From prior
studies we expect that some genes will be
expressed in all or most cells, while oth-
ers will be expressed in only a subset of
cells. Genes detected at lower levels in bulk
RNA-seq are the most obvious candidates
to be expressed in a subset of cells in a
population, although we do not know what
fraction of low-abundance RNAs behave in
such a way. This is particularly relevant
to cell pools: a gene expressed at 50 copies
per cell but only in 10% of cells would still
be stochastically represented in a pool of
10 cells even if psmc is high. In the ab-
sence of reliable data on this, we modeled
the probability of expression in a given sin-
gle cell with a distribution centered around
very high values for genes highly expressed
in bulk RNA-seq measurements, and pro-
gressively lower values with decreasing ex-
pression levels (details in the Methods sec-
tion).

The simulation results are summarized in
Figure 3.1 and Figures 3.2-3.25. As expected,
low psmc has a profoundly negative impact on
gene expression quantification accuracy and reli-
ability, leading to frequent false negatives Figure
3.1, and to poor estimates of expression levels.
For example, in a single cell with 100,000 mR-
NAs, psmc = 0.1 results in only 40% of genes ex-
pressed at 100 FPKM receiving FPKMs within
20% of the true value (Supplementary Figure
1C), but this fraction rises to nearly 100% if
psmc = 0.8 Figure 3.1G. The quantification of
relative expression levels is similarly affected,
with only the most highly expressed genes be-
ing consistently well quantified relative to each
other at low psmc (Figure 3.12-3.25.

In contrast, our simulation results indicate
that cell pools are much more robust to tech-
nical noise, with 90% of genes expressed at 10
FPKM receiving FPKM estimates within 20% of
their true value Figure 3.1C at psmc = 0.1 in a
pool of 100 cells. They also represent the expres-
sion profiles of the general population reasonably
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well Figure 3.1, even at low psmc, starting from
a size of ∼30 cells (10-cell pools seem not to be
sufficient to achieve this). Finally, as expected,
the larger the number of total mRNA molecules
per cell, the greater is the buffer against techni-
cal noise, resulting in more robust quantification
Figures 3.2-3.11.

3.2.2 Transcriptome
measurements of individual single
cells and companion pool/splits

The simulation results informed our experimen-
tal design, which aimed to gain a firm grasp on
technical stochasticity in two ways Figure 3.26A.
First, we generated single-cell RNA-seq libraries
and in parallel carried out “pool/split” experi-
ments. In a pool/split, multiple cells are pooled
and lysed together, then split into the same
number of reactions, from which libraries are
built. Variation between these libraries should
be purely technical (with stochastic splitting
possibly playing a role at the low end). Vari-
ation observed at similar levels in both single
cells and pool/splits cannot be confidently con-
sidered real, even if this leads to some true bio-
logical variation being obscured. However, vari-
ation above the pool-split level can be identified
and ascribed to biological sources.

We generated single-cell RNA-seq libraries
from 15 single GM12878 cells and from two pairs
of 10-cell pool/split experiments. We also se-
quenced replicates of pools of multiple cells (10,
30 and 100 cells) as well as 100pg and 10ng sam-
ples of bulk RNA (corresponding to ∼10 and
∼1000 cells), to assess the stability of measure-
ments as a function of the amount of starting
material.

We used the SMART-seq protocol

(Ramsköld & Luo et al. 2012) (Figure 3.27) to
generate our libraries. A detailed description of
the protocol, as we implemented it, is presented
in the Methods section. We obtained nearly
uniform full-length transcript coverage (Figure
3.26B, Figure 3.28). Uniformity of coverage,
which depends on the intactness of RNAs and
the successful copying of full-length molecules, is
highly desirable for several reasons. First, RNA-
seq data quantification using the RPKM/FPKM
metric (Mortazavi & Williams et al. 2008; Trap-
nell et al. 2010), makes an implicit assumption
of full coverage. Second, it enables the analy-
sis of alternative splicing and allelic bias as read
coverage of 5’-proximal splice sites and heterozy-
gous positions is ensured.

We added spike-in quantification standards
of known abundance (in absolute number of
RNA copies, Table 3) at the very beginning of
cDNA synthesis. This allows us to, first, esti-
mate psmc, and second, derive gene expression
estimates in absolute numbers of copies per cell.
The latter is important because while FPKM is
useful for comparing expression levels within a
library, it can only be used to compare directly
across different libraries when the total amount
of RNA in each starting sample is roughly the
same (Anders & Huber 2010). This assump-
tion is usually only mildly violated when working
with bulk samples, but when single cells are com-
pared, it becomes significantly more problematic
as the variation in the total amount of RNA in
each cell is expected to be much larger.

The extent of variation in the total amount
of RNA between single cells is not known a pri-
ori, but it will often be larger than that between
the averages of large populations of cells. For
this reason, the ideal single-cell RNA-seq pro-
tocol would directly measure the absolute num-

Figure 3.29 (preceding page): Technical and biological variation in single-cell RNA-
seq measurements of gene expression. (A) Correlation between expression levels (in FPKM)
between two pools of 100 cells. (B) Correlation between expression levels (in FPKM) between two
pools of 10 cells. (C) Correlation between expression levels (in FPKM) between two representative
pool/split libraries. A pseudocount of 0.001 was added to each data point in the scatter plots
for visualization purposes. (D and E) Hierarchical clustering of estimated copies-per-cell values
for protein coding genes in single-cell (D) and pool/split (E) libraries. Pearson correlation was
used as a distance metric and only genes expressed at a level of at least one estimated copy in at
least one library were included. (F and G) Correlation between estimated copies-per-cell values for
protein coding genes in single-cell libraries (F) and pool/split libraries (G). Two sets of pool/split
experiments (1 and 2) are shown and “1-2” in the box-plot refers to correlations between the two
sets while “1” and “2” refer to correlation within each experiment. Similar plots but using Spearman
correlation are shown in Supplementary Figure 32.
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Figure 3.30: Efficiency of enrichment for polydenylated messages. Shown is the fraction
of reads mapping to exons, introns or integenic space (GENCODE V13 annotation).

ber of transcripts per cell. This is not possi-
ble with the protocols existing at the time of
this work, including SMART-seq. Each original
cDNA molecule is amplified to a large number
of copies which are then subjected to tagmen-
tation and a second round of PCR; this erases
any relation between original molecules and the
fragments in the final sequencing library as each
founder molecule results in multiple overlapping
smaller fragments in the final library.

Figures 3.26 and 3.29 summarize the tech-
nical characterization of the SMART-seq proto-
col applied to GM12878 cells. In addition to
the mostly complete coverage along transcript
length, sequencing libraries were also highly en-
riched for exonic sequences (Figure 3.30), in-
dicating a high efficiency of enrichment for
polyadenylated molecules.

3.2.3 Gene detection in single
cells versus pools of varied sizes

We compared single cell and pool/split libraries,
as well as cell pools, with bulk RNA samples
from GM12878 cells (Figure 3.26C). In bulk
RNA libraries, we detect about 12,000 genes ex-
pressed at more than 0.1FPKM. A similar num-
ber of genes, between 4,000 and 5,000, is de-
tected in both single cell and pool/split libraries.
These differences between single cells and bulk

libraries are due mostly to genes expressed at
low levels. Genes expressed at more than 100
FPKM in 10ng bulk RNA samples are detected
in almost all libraries, while only ∼30% of genes
expressed at ∼10 FPKM and 10% of genes ex-
pressed at ∼1FPKM were detected in any given
single cell (Figure 3.26D). Notably, the number
of genes detected in both 100-cell and 30-cell
pools was similar to that detected in the 10ng
libraries (∼11,000). In contrast, in the 10-cell
pools and 100pg libraries lower numbers of genes
were detected, between 6,000 and 7,000. This
is consistent with simulation results suggesting
that 30 cells is the lower limit of cell number at
which the transcriptome library complexity be-
gins to approach that of the larger cell popula-
tion. This is corroborated by the correlation be-
tween the expression levels of replicate measure-
ments (Figure 3.29A, Figure 3.31). In contrast,
a sizable population of genes present at high lev-
els in one replicate and at very low levels or
completely absent in the other appears in 10-cell
pools (Figure 3.29B) and especially, in pool/split
libraries (Figure 3.29C). Finally, union sets of
genes detected in all individual cell libraries and
in all pool-split libraries was ∼10,000, which was
in the range seen for 30-100-cell pools.
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3.2.4 Pool/splits measure
technical variation and reveal

biological variation among single
cells

The observed variations in gene expression lev-
els and detection can be explained as a combina-
tion of some genes not being expressed in each
and every cell and low psmc resulting in large
numbers of false negatives. We calculated the
average psmc across all libraries based on the de-
tection of spike-ins (details in Methods). This
number is in our estimates ∼0.1. We also esti-
mated that for GM12878 single cells one tran-
script copy corresponds to on average to ∼10
FPKM 3.32. This agrees well with the obser-
vation that detection of genes becomes unsta-
ble below∼100FPKM (Figure 3.29B and 3.29C),
which in turn is consistent with previous obser-

vations (Ramsköld & Luo et al. 2012).

We compared expression measurements in
single-cell and pool/split libraries. Hierarchi-
cal clustering of each group is shown in Figures
3.29D and 3.29E (with two independent biologi-
cal replicate pool/spit experiments shown in Fig-
ure 3.29E). The distances between the expression
profiles within the same pool/split experiment
were significantly smaller than those for individ-
ual single cells (branch lengths in Figures 3.29D
and 3.29E) and average correlations between sin-
gle cells were accordingly lower than those be-
tween libraries from the same pool/split (Fig-
ures 3.29F and 3.29G). A notable feature of the
data are small clusters of genes present at high
levels in only one library. These are more promi-
nent in single cells than in pool/splits, yet they
are clearly present in all samples. In single cells,
this is due to a mixture of stochastic capture ef-

Figure 3.31: Correlation between expression estimates based on different cell pools
sizes and different amounts of input bulk RNA. Correlation coefficients were calculated on
the log2(FPKM+1) transform of the FPKM estimates for the refSeq annotation, with only protein
coding genes present at ≥ 1 FPKM in at least one library included.
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fects and real biological variation. In pool/splits,
stochastic capture is the predominant source. It
is important to note that given the low psmc, it
is difficult to determine the cause of variation
for any given gene. Nevertheless, the major con-
clusion at the transcriptome level is that there
are biological differences between single cells be-
cause the technical stochasticity in pool/splits
is significantly less than variation across single
cells.

3.2.5 Estimating absolute
transcript levels in single cells

Absolute transcript counts are the biologically
relevant values ideally obtained from a single-cell
gene expression profiling experiment because, as
discussed above, FPKM is a poor metric for com-
paring gene expression levels in individual cells
if the total amount of RNA varies a lot. We de-

rived transcript number estimates for each gene
based on the FPKM values of spike-ins. We ob-
served good agreement between the input num-
ber of spike-in RNA copies and the correspond-
ing FPKM values in the final libraries (Figures
3.33 and 3.34).

We used the transcripts-per-cell estimates for
all subsequent analyses. Previous studies have
reported that genes can be separated into two
distinct groups based on their expression levels
- one group expressed at high (> 1FPKM) lev-
els and one at very low (<< 1 FPKM) (Heben-
streit et al. 2011). We examined the dis-
tribution of estimated copies per cell in single
cells in pool/splits (Figure 3.35A). We found
that in individual cells, most protein coding
genes are expressed at levels between 1 and
∼50 copies per cell. The distribution suggests
a roughly equal number of genes at each level
except for a larger group of transcripts with

Figure 3.32: Relation between FPKMs and copies-per-cell estimates in representative
single-cell libraries.
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Figure 3.33: Correspondence between initial spike-in amounts and spike abundance in
sequenced libraries as measured in FPKMs. Error bars represent the standard error of the
mean.

fractional transcript-per-cell values. Obviously,
single-cell determinations are constrained in a

way that population level measurements can-
not be: one transcript per cell is the minimum

Figure 3.34: Stability of copies per cell estimation. Spike-in sequences of known abundance
(Supplementary Table 2) were added to each reaction prior to library building. A linear regression
calibration was derived based on RPKM/FPKM values calculated for each. Shown is the average
ratio of estimated copies per cell and the actual spiked in copies per cell for these spike sequences.
Error bars represent the standard error of the mean.
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Figure 3.35 (preceding page): Absolute expression levels at the single cell level. FPKM
values converted to estimated copies per cell using the spike-in quantification standards are shown.
(A) Distribution of expression levels of refSeq protein coding genes in estimated copies per cell in
single-cells and pool/split experiments. (B) Distribution of expression levels of GENCODE V13
lncRNA protein coding genes in estimated copies per cell in single-cells (red) and pool/split ex-
periments (blue). (C) Total number of mRNA copies per cell in single cells. (D) Total number
of mRNA copies in pool/split experiments; (E) Expression levels of house-keeping and highly ex-
pressed genes (GAPDH, CD74, left panel) and general (CTCF, REST, YY1 ) and B-cell regulatory
(PAX5, EBF1, BCL11A, ETS1, IRF4, IKZF1, PBX3, POU2F2, RUNX3, TCF3, TCF12 ) transcrip-
tion factors (right panel). Upper and middle panels show the estimated copies-per-cell numbers for
single-cells and pool/splits respectively. The lower panel shows FPKM values for cell pools and bulk
RNA libraries. (F, G and H) Distribution of absolute expression levels in copies per cell in single
cells for translation initiation, elongation and termination proteins (F), splicing regulators (G) and
transcription factors (H). The list of translation proteins was retrieved from the corresponding GO
category annotations downloaded from FuncAssociate 2.0 (Berriz et al. 2009). The list of splicing
regulators was obtained from the SpliceAid-F database of human splicing factors (Giulietti et al.
2013). The list of transcription factors used was the one from Vaquerizas et al. 2009. Note that
only values ≥0.1 estimated copies per cell were included in these plots, i.e. libraries in which the
genes was not detected were excluded.

Figure 3.36: Ratio of the variance of single cell and pool/split libraries vs. average
estimated number of mRNA molecules. The vertical line corresponds to a variance ratio of
1.5. Genes with a variance ratio higher than 1.5 were retained for network construction. Most genes
with a lower ratio (and correspondingly high variance in pool/split libraries) have a relatively low
average estimated number of mRNA molecules per cell.
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Figure 3.37: Optimization of the soft threshold parameter for constructing weighted
correlation gene expression network. (A) Scale independence (B) Mean connectivity. A value
of β = 6 was used for network construction.

Figure 3.38: Cluster dendrogram of gene coexpression modules derived from single
GM12878 cells..
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non-zero value possible. The lower values likely
represent a combination of mapping artifacts
(due to high sequence homology of paralogs)
and RNAs that were both present at low levels
and poorly represented (due, for example, to the
fragmentation of a single original RNA molecule
resulting in artificially low FPKMs as a result to
coverage only at the 3’ end). The distribution of
estimated copies in pool/split libraries exhibited
a more linear decrease in the number of more
highly expressed genes, consistent with averag-
ing of variation between cells.

We also examined the distribution of the ex-
pression levels of long non-coding RNAs (lncR-
NAs, Guttman et al. 2009). Consistent with
previous observations (Ramsköld et al. 2009;
Guttman et al. 2010; Djebali & Davis et al.
2012), lncRNAs have generally much lower ex-
pression levels compared to protein coding genes
(Figure 3.35B). We note that accurate quantifi-
cation of the absolute number of copies is of great
relevance to understanding lncRNA biology as
both cis and trans models for the function of
lncRNAs have been proposed (Koziol & Rinn,
2010; Rinn & Chang, 2012) and lncRNAs func-
tioning in cis are expected to be expressed at
lower levels (possibly only one or two copies per
cell) compared to lncRNAs acting in trans. At
present, copies-per-cell estimates are not suffi-
ciently reliable for this issue to be conclusively
resolved (in addition, the SMART-seq protocol
is specific for polyA+ RNAs while it cannot be
assumed that lncRNAs, especially the cis-acting
ones, are polyadenylated); nevertheless, we ex-
pect future improvements in single-cell RNA-seq
methodology to be highly informative in under-
standing lncRNA biology.

We were also able to directly assess the total
number of mRNAs present in each cell (Figures
3.35C and 3.35D). Based on the average mass
of RNA in each cell (derived from bulk RNA
samples from know number of cells) and the av-
erage length of mRNAs in the human genome,
we estimated that each GM12878 cell contains
on average 80,000 mRNAs. However, we ob-
served striking cell-to-cell differences in the total
transcript number of single cells, with some cells
expressing <50,000 mRNAs and others almost
300,000. In contrast, pool/split experiments ex-
hibited remarkable uniformity (between 50,000
and 100,000 transcripts), and agree well with
prior expectations. It is therefore unlikely that
the observed cell-to-cell variability is due to tech-
nical noise.

Because transcriptional regulators play a cru-
cial role in defining the gene expression state of
cells, we examined the expression of several well-
known general transcription factors as well as
major regulators of B-cell differentiation (Fig-
ure 3.35E). Remarkably, except for IRF4, which
was usually expressed at several dozen copies,
most factors were detected at <10 copies per
cell, and were often not detected at all. We
stress that this does not mean that they are not
expressed. Given the 10% psmc of the proto-
col, these observations are consistent with sim-
ple technical failure to detect them. It is also
possible that there are no mRNA copies in some
cells at the moment of harvest, especially if they
are infrequently transcribed. Extending these
observations to other functional groups, we as-
sessed proteins involved in translation (as a ma-
jor group of genes with housekeeping functions,
Figure 3.35F), splicing regulators (Figure 3.35G)
and all transcription factors (Figure 3.35H). The
median number of copies per cell was ∼100 for
translation proteins, ∼10 for splicing regulators,
and strikingly, only ∼3 for transcription fac-
tors. This highlights the differences that exist
between certain functional categories of genes in
the robustness of their quantification in single-
cell RNA-seq analysis, depending on their ex-
pression levels.

3.2.6 Identification of modules of
coexpressed genes

Cell-to-cell gene expression variability may occur
on the level of individual genes, but it can also
occur in a coordinated fashion. A well-studied
example is cell cycle phase-specific gene expres-
sion. In an asynchronous culture of cell, groups
of genes expressed at specific times during the
cell cycle will be present in a fraction of cells
proportional to the time cells spend in each such
phase.

To test whether we are able to identify the
expected cell cycle-associated variation, and to
search for any novel functional modules, we car-
ried out Weighted Gene Coexpression Network
Analysis (WCGNA, Zhang & Horvath 2005)
using the copies per cell estimates for single
cells and removing genes that were highly vari-
ant in pool/split libraries in order to minimize
technical noise (see Methods and Figures 3.36
and 3.37). We identified 19 coexpression mod-
ules containing ≥10 genes each (Figure 3.38).
The expression patterns of these modules were
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Figure 3.39: Average correlation within and between coexpression modules in single
cells and pool/splits. Modules are sorted by decreasing size. (A) Single cells. (B) Pool/splits
.

mostly well differentiated among single cells and
were absent from pool/split libraries (Figure
3.40A and Figure 3.39).

We then determined the Gene Ontology
(GO) category enrichment of each module. The
largest module (module 1) was highly enriched
for GO categories relating to housekeeping gene
functions (Table 3.2 and 3.3) and also for the
G1 and S phases of the cell cycle, and contained
most genes that are generally highly expressed
(Figure 3.40A). Module 6 was enriched for genes
involved in the M phase of the cell cycle, likely
corresponding to a single cell which was in that
phase. We tested the plausibility of this explana-
tion by measuring the fraction of unsynchronized
GM12878 cells in the G0+G1, S, and M phases
of the cell cycle using flow cytometry. About
14% of cells were in M phase, and the probabil-
ity of capturing exactly one such cell out of 15
is 0.25; that is, these observations are consistent
with this cell alone being in the M phase of the
cell cycle (Figure 3.40B).

A more surprising observation was that the
second largest module (module 2) was enriched
for genes involved in splicing and mRNA pro-
cessing. It is driven by an individual cell and
two additional cells with a somewhat similar ex-
pression profile. This cell, however, was not an
outlier when splice site usage patterns were com-
pared between individual cells (data not shown).

One interpretation of these observations is that
there is a general upregulation of splicing and
mRNA processing factors in this cell that does
not necessarily result in a distinctive alternative
splicing program.

Module 3 was enriched for metabolic cofactor
and iron-sulfur cluster binding proteins, includ-
ing proteins involved in mitochondrial respira-
tory chains. This is an intriguing observation
as module 3 was mostly driven by the two cells
exhibiting the highest total number of mRNA
molecules per cell (Figure 3.35C, 4th and 5th
columns in clustergram in Figure 3.40A), consis-
tent with a generally elevated metabolic state.

We also carried out a mirrored analysis
WCGNA where pool/splits were treated as sin-
gle cells and vice versa. We did not observe sig-
nificant GO enrichment beyond trivial terms in
the largest modules (Figure 3.41 and Table 3.4).

In addition to the coexpression analysis, we
also examined the relationship between the ex-
pression variability of genes and various genomic
data about their promoters, including long-range
chromatin interactions, DNA methylation sta-
tus, histone marks, transcription start site se-
quence elements, and CpG islands. No ro-
bust explanatory correlation was evident (Fig-
ures 3.42-3.46), and we expect that data with
less technical stochasticity will be needed to il-
luminate relationships of this kind.
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Figure 3.40: Gene coexpression modules derived from single GM12878 cells. Weighted
gene correlation networks were constructed using the WCGNA R package (Langfelder & Horvath
2008). (A). Expression levels and hierarchical clustering of genes within modules (modules are sorted
by number, which corresponds to their size) in single cells and pool/split experiments. Only genes
are clustered (dendrograms on the left) and the identity of the cells and pool/split experiments is the
same in each column (two right panels). The absolute expression values of genes belonging to repre-
sentative GO categories associated with cell cycle phases (modules 1 and 6) and mRNA processing
and splicing (module 2) are also shown. (B) Distribution of cell cycle states in a representative
GM12878 cell population, in growth media (GM) and picking media (PM). The fraction of cells in
M phase is consistent with 1 such cell being picked in a sample of 15.

3.2.7 Allele-biased expression at
the single-cell level

Allele-specific gene expression has been previ-
ously reported to be widespread (Gimelbrant et
al. 2007; Pickrell et al. 2010; Rozowsky et
al. 2011; Reddy et al. 2012; Zhang & Bore-
vitz 2009; McManus et al. 2010). An intriguing
phenomenon observed for hundreds of genes in
clonal lymphoblastoid cell lines (Gimelbrant et
al. 2007; Chess 2012) is the random monoal-
lelic expression of autosomal genes. However,
those studies were conducted on large pools of
cells, producing a snapshot of average allelic bias

in the population, and leaving open the possi-
bility that monoallelic expression is even more
widespread on the single-cell level.

GM12878 cells are a good system for address-
ing this issue, as its fully phased heterozygous
genome sequence is available (1000 Genomes
Project Consortium 2012). We aligned RNA-
seq reads in an allele-specific manner to the het-
erozygous GM12878 transcriptome and calcu-
lated allelic bias for each gene as the fraction
of reads mapping to the maternal allele. We
applied very stringent criteria for determining
statistically significant allele-biased expression
events based on the absolute transcript number
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Table 3.2: Representative Gene Ontology categories enriched in coexpressed gene mod-
ules. Gene Ontology enrichment in modules was assessed using FuncAssociate2.0 (Berriz et al.
2009). The full list of enriched categories is available in Table 3.3.

Adjusted
p-value

GO attrib ID attrib name

Module 1
<0.001 GO:0006415 translational termination
<0.001 GO:0006414 translational elongation
<0.001 GO:0070469 respiratory chain
<0.001 GO:0071845 cellular component disassembly at cellular level
<0.001 GO:0004129 cytochrome-c oxidase activity
<0.001 GO:0022904 respiratory electron transport chain
<0.001 GO:0030964 NADH dehydrogenase complex
<0.001 GO:0072413 signal transduction involved in mitotic cell cycle checkpoint
0.019 GO:0006626 protein targeting to mitochondrion
<0.001 GO:0048002 antigen processing and presentation of peptide antigen
<0.001 GO:0010467 gene expression
<0.001 GO:0006839 mitochondrial transport
0.007 GO:0006458 de novo’ protein folding
<0.001 GO:0016071 mRNA metabolic process
<0.001 GO:0000216 M/G1 transition of mitotic cell cycle
0.014 GO:0000502 proteasome complex
0.005 GO:0060333 interferon-gamma-mediated signaling pathway
<0.001 GO:0000084 S phase of mitotic cell cycle
<0.001 GO:0000082 G1/S transition of mitotic cell cycle
0.005 GO:0000209 protein polyubiquitination
<0.001 GO:0008380 RNA splicing

Module 2
<0.001 GO:0000398 nuclear mRNA splicing, via spliceosome
0.017 GO:0005681 spliceosomal complex
<0.001 GO:0006397 mRNA processing

Module 3
<0.001 GO:0051186 cofactor metabolic process
0.002 GO:0051539 4 iron, 4 sulfur cluster binding
0.021 GO:0051536 iron-sulfur cluster binding

Module 6
0.027 GO:0005680 anaphase-promoting complex
0.001 GO:0007094 mitotic cell cycle spindle assembly checkpoint

estimates and taking into account the challenges
presented by the nature of single-cell RNA-seq
data (see Methods for details). Previous studies
have evaluated allele-biased expression examin-
ing the ratio of reads mapping to each allele;
this approach, however, is not directly applicable
to single-cell data generated with the SMART-
seq protocol because of the large number of het-
erozygous reads that may be sequenced from a
very small number of original founder molecules

in the cell. For this reason, we used the esti-
mated absolute number of mRNA molecules in
the cell to derive estimates for the absolute num-
ber of mRNA molecules from each allele, and re-
quired that the allelic ratio for both reads and
estimated mRNA copies passes a binomial test
for significance. Finally, we also tested for the
possibility that apparent allelic biases are in fact
due to differential stochastic capture of the two
alleles (the details are described in the Methods
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Figure 3.41: Mirrored coexpression analysis of pool/split and single cell datasets. The
same analysis presented in Figure 4 was carried out treating pool/splits as single cells and vice versa.

section). This analysis was carried out on both
single-cell and pool/split libraries, and also on
10ng bulk RNA libraries (for which only allelic
bias on the level of reads was evaluated).

GM12878 are derived from a female donor
and it is well-documented that in mammalian
females, the X chromosome undergoes random
inactivation early in embryonic development
(Lyon, 1961). As a validation of our pipeline, we
first examined the allelic bias of genes located on
the X chromosome, and found that in all single
cells, expression was exclusively from the ma-
ternal X chromosome. We performed all subse-
quent analysis excluding X-chromosome genes.

We observed good reproducibility of allelic
bias profiles in 10ng bulk RNA libraries (Figure
3.47A), with most genes being expressed from
both alleles (Figure 3.47D). Allelic bias was also
highly reproducible in 30-cell and 100-cell pools
(Figure 3.48). In contrast, allelic bias profiles of

single cells correlated poorly with each other and
a large fraction of genes were apparently monoal-
lelically expressed from different alleles in differ-
ent cells (Figure 3.47B). The majority of highly
expressed genes (≥100 copies per cell) exhibited
biallelic expression while most genes at low ex-
pression levels were measured as monoallelically
expressed (Figure 3.47F). We then compared al-
lelic bias variability for individual genes across
individual single cells, focusing only on cells in
which statistically significant allelic bias was ob-
served, and observed frequent switching between
the two alleles (Figure 3.47G, Figure 3.49A)

These observations can be explained as a
combination of three factors. First, it has been
previously reported that allelic bias is more com-
mon among genes expressed at low levels (Gimel-
brant et al. 2007, Reddy et al. 2012). A second
explanation is the phenomenon of “transcrip-
tional bursting” (Raj & van Oudenaarden 2008;
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Dar et al. 2012). A single transcription burst
produces several mRNA molecules from a sin-
gle allele. If all mRNAs from a gene in a given
cell at a given moment are the product of one or
a small number of such bursts, all copies would
originate from only that allele. Finally, stochas-
tic effects due to the low single-molecule cap-
ture efficiency of the protocol undoubtedly play
a role. The fewer founder molecules are cap-
tured, the more likely it is that they belong to
only one allele. We therefore performed the same
analyses in pool/split libraries and observed a
broadly similar (although always lower) fraction
of genes passing all significance tests for allelic
bias (Figures 3.47C, 3.47E and 3.49). Thus, it is
at present difficult to draw confident conclusions
about the prevalence of random monoallelic ex-
pression at the single cell level. Lowering the
level of technical stochasticity will be necessary
for this issue to be resolved.

3.2.8 Alternative splicing at the
single-cell level

Previous studies have suggested that most genes
in mammalian genomes undergo some alterna-
tive splicing (Mortazavi & Williams et al. 2008;
Wang et al. 2008; Djebali & Davis et al. 2012).
At present, however, the biological relevance of
the majority of these alternative isoforms is still
uncertain and stochastic noise in the splicing ma-
chinery is one explanation (Sorek et al. 2004;
Melamud & Moult 2009). Characterizing alter-
native splicing at the single-cell level is highly
relevant to elucidating the importance of alter-
native splicing events, as it in principle provides
detailed information about their frequency both
within single cells and populations of cells that
is otherwise masked in bulk RNA-seq measure-
ments. A second important question is how con-
sistent the alternative splicing patterns observed
on the population level are when examined at the
level of individual cells.

We quantified alternative splicing using the
intron-centric splice inclusion ψ score approach
(Pervouchine et al. 2013). Details of our map-
ping and analysis pipeline are described in the
Methods section. For reasons given there, we
adopted a conservative approach and only an-
alyzed novel splice junctions for which at least
one of the donor or acceptor sites has already
been annotated in GENCODE V13 (Harrow et
al. 2012), thus avoiding library-building arti-
facts.

We detected between 200 and 2000 novel
splice junctions satisfying these criteria in each
individual cell (Figure 3.50). This number is
certainly an underestimate given the low psmc.
About 35% of novel junctions connected two
annotated exons (Figure 3.51A, Figure 3.52A);
most of these represent novel exon skipping
events. In another 60% the unannotated donor
or acceptor site was internal to the gene. These
were concentrated close to already annotated
splice sites (Figure 3.52B and C). In particular,
novel acceptor sites peaked at the +3 and −3 po-
sition downstream of annotated sites represent-
ing mostly instances of NAGNAG tandem accep-
tor sites (Hiller et al. 2004; Bradley et al. 2012).
Novel 5’ donor sites were fewer in number and
peaked at +4 and −4 positions relative to anno-
tated donor sites thus shifting the coding frame
of the transcript. This is a phenomenon we pre-
viously also observed in bulk RNA-seq data (See
Chapter 1), the significance of which is at present
not clear. The proportions observed were inde-
pendent of the read coverage and estimated num-
ber of copies per cell thresholds applied (Figure
3.54A).

We also examined the distribution of novel
splices across individual single cells and found
that the majority of them were found in only a
single cell, with <10% found in two cells, and
very few in three or more cells (Figure 3.51B,
3.53B). While this result could be greatly af-
fected by psmc issues, it was independent of the
read and estimated transcript copies threshold
used (Figure 3.54), suggesting that most novel
splices are indeed only present in a small frac-
tion of cells.

We asked how often multiple splice sites are
used at the single-cell level. In bulk RNA-seq
at a threshold of 15 distinct read fragments, a
numeric minority of ψ scores were equal to 1
(i.e. exclusive use of only one donor-acceptor
pair). The presence of alternative splice sites is
thus widespread. Nevertheless, in most cases,
ψ was close to 1. The vast majority of novel
splices received very low inclusion scores (Fig-
ure 3.51C) and would generally be considered to
be the result of biological noise in the splicing
system). In contrast, in single cells, one dom-
inant splice site was the norm except for very
highly expressed genes (≥ 100 copies per cell),
for which a wide diversity of splice site usage was
seen (Figure 3.51D, Figure 3.55). As this obser-
vation was true even for genes expressed at ≥ 50
copies per cell, we believe it is not a psmc arti-
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fact. It is an interesting and open question why
very highly expressed genes (enriched for genes
with housekeeping function) exhibit very high
levels of alternative splicing in single cells. These
results differ significantly from the same anal-
ysis carried out on novel splice junctions (Fig-
ure 3.51E, Figure 3.56). Somewhat surprisingly,
we found that a significant proportion of novel
splices had ψ scores of 1 in single cells; this was
true, however, only for genes expressed at lower
levels (≤ 50 copies) and it is therefore possible
that it is mostly a psmc artifact. In contrast,
in highly expressed genes, no novel junctions re-
ceived a dominant (≥ 0.5) ψ score. However, the
scores were still consistently higher than what is
observed for novel splices in bulk RNA samples.

Finally, we evaluated the consistency of splice
site usage between individual cells. We applied a
statistical framework similar to the one used to
analyze allelic bias and derived a list of dominant
splice junctions in each cell, taking into account
the estimated absolute number of copies and the
stochastic capture effects. We asked how often
the dominant splice site changes between differ-
ent cells. We found 282 such genes in single cells,
suggesting the phenomenon may be widespread.
The genes involved were enriched for riboso-
mal and translation proteins, and also, intrigu-
ingly, for proteins involved in RNA splicing and
processing (Table 3.6). We tested this single-
cell variation against pool/split experiments, in
which we found very few genes with different
dominant splice sites across libraries. (Figure
3.51F and 3.51G, Figure 3.57). This argues that
much of the observed alternative splicing varia-
tion is in fact due to biological differences be-
tween cells, and is in agreement with the bi-
modality of splicing in individual mouse immune
cells observed previously (Shalek et al. 2013).

3.3 Discussion

The two major goals for single-cell RNA-seq are
to obtain high-resolution transcriptomes for rare
cell types or states and to measure the differences
in RNA expression and processing between indi-
vidual cells. We showed that the first goal can
be achieved by studying 30-100 cell pool sam-
ples even in the absence of perfect capture of
each and every individual RNA molecule. Our
conclusion is consistent with independent 80-cell
measurements (Ramsköld & Luo et al. 2012).
The pools reproduce the expression profiles (Fig-
ure 3.31) and allelic-bias patterns (Figure 3.48)
of the larger population, and similar numbers of
genes and splice junctions are detected in them
(Figure 3.58, Figure 3.31). The approach is ap-
plicable to cells collected by laser-capture, micro-
manipulation, or cell sorting based on molecu-
lar markers or reporter-gene expression. This
defines a path forward for the transcriptomic
characterization of many previously inaccessible
rare cell types and states, including transient cell
types in embryonic development, diverse neu-
ronal types in the brain, and cells in tumors.

To understand single-cell variation in the
GM18278 reference cell line, we generated and
analyzed high-quality, state-of-the-art single-cell
RNA-seq data individual GM12878 cells. Nev-
ertheless, like prior studies, our data display sig-
nificant stochasticity. We present experimental
and analytical approaches for measuring and ac-
counting for technical stochasticity. We intro-
duced and measured single-molecule capture ef-
ficiency, the key parameter influencing technical
stochasticity and find that its value is around 0.1
with the current SMART-seq protocol. We con-
trolled for technical stochasticity experimentally
by carrying out pool/split experiments, which
allowed us to identify significant biological vari-
ation over and above technical variation.

In line with previous observations, we find
great cell-to-cell variability in gene expression

Figure 3.42 (preceding page): Relation between the long-range chromosomal element
connectivity of TSSs and gene expression stochasticity. Shown is the number of genes not
detected in 0-5, 6-10 and 11-15 cells as a function of the number of ENCODE ChIA-PET connections
to TSSs in K562 cells (replicates 1 and 2). K562 was used as the closest cell line to GM12878 for
which such data is currently available; ChIA-PET connections were downloaded from the UCSC
Genome Browser. Within each group of genes defined by the number of ChIA-PET connections,
genes were further split by their average number of estimated copies per cell (where the average
was calculated excluding libraries in which the genes were not detected) in order to define directly
comparable groups of genes. Subgroups with less than 20 genes were not plotted.
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Figure 3.43: Relation between the presence of TSS-associated sequence elements and
expression stochasticity. Shown is the number of genes not detected in 0-5, 6-10 and 11-15 cells
as a function of the presence or absence of sequence motifs at TSSs (defined by FIMO using position
weight matrices obtained from Jin et al., 2006). Within each such group, genes were further split
by their average number of estimated copies per cell (where the average was calculated excluding
libraries in which the genes were not detected) in order to define directly comparable groups of
genes. Subgroups with less than 20 genes were not plotted.

levels. We demonstrate that at least some of
this variation is due to coordinated differences
in the expression of biologically coherent sets of
genes, for example, genes associated with differ-
ent phases of the cell cycle, as well as the sur-
prising observation of a coexpression module en-
riched for genes involved in mRNA processing
and splicing.

We also observed unexpected levels of cell-
to-cell variation in autosomal allelic expression
bias and alternative splicing. The observation
of allele switching between single cells could be
explained as a technical artifact given that a sim-
ilar, although always lower, level of switching
was observed in pool/split libraries. We there-
fore consider this a provisional result in need of

further investigation with improved experimen-
tal protocols. The observed frequency of major
splice switching in single cells is a stronger ef-
fect, and based on comparison with pool/split
experiments, it is unlikely to be the sole result
of technical stochasticity.

Transcriptional bursting is a main candidate
for a biological explanation for these observa-
tions. If a gene is expressed in a series of infre-
quent relative to the half life of its mRNAs such
bursts, at any given time the population of mR-
NAs in the cell is likely to originate from only one
allele. This can also explain the observed varia-
tion in alternative splicing. It is possible that the
same set of factors influencing splice site choice
maintain physical association with the gene dur-
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Figure 3.44: Relation between the presence of CpG islands near TSSs and expression
stochasticity. Shown is the number of genes not detected in 0-5, 6-10 and 11-15 cells as a function
of the presence or absence of CpG islands within 1kb of the TSS. Within each such group, genes were
further split by their average number of estimated copies per cell (where the average was calculated
excluding libraries in which the genes were not detected) in order to define directly comparable
groups of genes. Subgroups with less than 20 genes were not plotted.

ing a transcriptional burst leading to a particular
splicing pattern being highly favored locally. Fu-
ture studies should shed light on these intriguing
questions. In-depth investigation of individual
cases by other methods will naturally be needed
to validate the initial global observations. The
limitations of the current single-cell RNA-seq as-
say make it possible to capture the general pat-
tern, and the data are a source of candidates for
detailed validation and study, but no single can-
didate event is assured of reproducing.

Much biology involves genes whose transcript
levels are in the range highly affected by tech-
nical variation. Considerable improvement in
the single-molecule capture efficiency is therefore
needed. Based on our simulations and results
from pool/split experiments, we estimate that
an increase in psmc from 0.1 to 0.5 would be a
major leap forward, while psmc ≥ 0.8 would pro-
vide sufficient measurement reliability for virtu-
ally any biological use. The experimental frame-
work provided here would be highly useful for
evaluating future improvements in protocols.

We also found that the amount of mRNA per

cell is highly variable between individual cells.
This is both biologically interesting and impor-
tant for analysis pipelines as RPKM-type met-
rics are not reliable given such large difference
in total RNA per cell (Lovén et al. 2012; Lin
et al. 2012). At present, the direct relationship
between the absolute number of mRNA copies
per cell and the number of sequencing reads in a
library is lost due to the fragmentation of ampli-
fied cDNA molecules that is a common feature
of available protocols resulting in multiple dis-
tinct but overlapping sequencing fragments for
each founder RNA molecule. mRNA copy num-
ber therefore has to be estimated back from FP-
KMs with the help of spike-in sequences. This
is far from a flawless method for doing so, as
first, it depends on the accuracy of quantifica-
tion of the spike-ins, and second, it assumes the
absence of systemic differences between spike-
in RNAs and endogenous RNAs. The ideal
single-cell RNA-seq assay would combine a very
high single-molecule capture efficiency with an
amplification-free, and preferably, also reverse
transcription-free, direct RNA sequencing that
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Figure 3.45: Relation between the methylation status of promoters and expression
stochasticity. Shown is the number of genes not detected in 0-5, 6-10 and 11-15 cells as a func-
tion of the methylation status of their promoters as defined using ENCODE reduced-representation
bisulfite sequencing data (RRBS) for the GM12878 cell line from Varley et al., 2013, downloaded
from the UCSC Genome Browser. Within each such group, genes were further split by their average
number of estimated copies per cell (where the average was calculated excluding libraries in which
the genes were not detected) in order to define directly comparable groups of genes. Subgroups with
less than 20 genes were not plotted.

allows the direct counting of transcript copies.
Emerging sequencing technologies (Branton et
al. 2008; Schadt et al. 2010) already hold
promise for such radical improvements.

3.4 Addendum: More
Recent Developments in the

Field

Between the completion of this work and the
writing of this chapter, a number of studies
appeared, which addressed some of the issues
adressed in it.

The observation that certain genes exhibit
dramatic variation in splice site usage between
individual cells in a population was confirmed
independently (Shalek et al. 2013), including an
orthogonal validation by SM-FISH.

Two groups reported widespread random
monoallelic expression between individual cells

(Xue et al. 2013; Deng et al. 2014), however
they paid significantly less attention to the prob-
lem of technical noise than we did (this was es-
pecially true in the case of Xue et al. 2013), thus
the question whether there indeed is widespread
such variation cannot be considered fully re-
solved yet.

In this work, we generated our libraries gen-
erated manually, however over the course of
2013, automated microfluidics-based methods
for carrying out RNA-seq became very popular,
in particular the Fluidigm C1 system. This has
allowed very large numbers of individual cells to
be profiled, and there are reasons to think that
the psmc is higher for libraries generated on the
Fluidigm (Wu et al. 2014; Islam et al. 2014)
though still not nearly as high as desired.

A new version of SMART-seq protocol,
SMART-seq2, was described (Picelli et al. 2013;
Picelli et al. 2014), which supposedly also im-
proves the psmc, maybe up to 0.4-0.5, although
this was not measured in a way comparable
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Figure 3.46: Relation between the histone modification status of promoters and expres-
sion stochasticity. Shown is the number of genes not detected in 0-5, 6-10 and 11-15 cells as a
function of the presence or absence of the various histone marks, the bivalent H3K4me3 + H3K27me3
combination of marks, CTCF and Ezh2 as defined from ENCODE data for the GM12878 cell line
using the peak calls available from the UCSC Genome Browser. Within each such group, genes were
further split by their average number of estimated copies per cell (where the average was calculated
excluding libraries in which the genes were not detected) in order to define directly comparable
groups of genes. Subgroups with less than 20 genes were not plotted.

to the way we did it, giving hopes that the
combination of SMART-seq2 and Fluidigm may
achieve even higher efficiencies. As I write these
words, this has not yet been tested.

None of these improvements, however, ad-
dress the issue of directly counting individual
transcripts. A new approach towards accom-
plishing this was described recently (Islam et
al. 2014), however it suffers from the problem
of being a 5’-tagging confounding analyses re-
quiring capture of the whole transcript. Full-
length single-molecule RNA sequencing remains
the goal for the future.

3.5 Methods

3.5.1 Single cell collection

Single cell harvesting from live cultures requires
a micropipet with a polished glass tip with an ap-
proximate diameter of 40µm. Borosilicate glass
microfiber pipettes (FHC omega dot fiber 30-30-
0) were pulled on a Sutter Instruments P80/PC
microcapillary puller with the following parame-
ters: 750 heat, 150 pull, 100 velocity, 5 time. Af-
ter pulling, the microcapillary tips were mounted
on a glass microscope slide using modeling clay,
and broken by closing a pair of #5 Dumont for-
ceps around the glass. We used a scaled eye-
piece reticle to judge the width of the break
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at about 40µm. After breaking, the tips were
smoothed using a microforge. To prevent stick-
ing of cells to the interior of the capillary, we
treated the pipettes with Sigmacote by attach-
ing Tygon tubing and a syringe to the blunt end
of the microcapillary, and drawing the Sigmacote
solution into the tip. This also provided assur-
ance that the forged tips had not closed. The
capillaries were then rinsed with distilled water
twice using the same technique, and allowed to
dry at room temperature overnight.

An aliquot (5 × 106 cells) of GM12878 cells
were thawed rapidly and cultured in 10mL
of medium (RPMI 1640, 15% FBS, 2mM L-
glutamine, 1% penicillin-streptomycin). The
cells were grown at density of 2× 105 − 2× 106

cells/mL of medium for 11 days until harvest.
On the day prior to harvest, the culture vol-
ume was increased to 100mL by the addition
of fresh medium, bringing the density to 2 ×
105 cells/mL. At harvest time (23 hours later),
cells were triturated using a 10mL pipette, and
a small aliquot (∼100µLs) of the culture was
removed. A few µLs of the cell suspension
was added to a 250µL volume of “cell pick-
ing medium” (RPMI1640 with 15% Superblock
(Pierce catalog #37515) and 2mM glutamine).
This diluted cell suspension was then placed in
a 3cm culture dish and returned to the 37 ◦C
incubator for 10 minutes prior to single cell har-
vesting.

The microcapillary pipet was mounted on a
micromanipulator and attached to a 100µL glass
syringe via Tygon tubing. A dish of picking
medium was brought to the illuminated stage
on the phase contrast scope, and the tip was
submerged using the micromanipulator. Picking
medium was drawn up into the microcapillary
to a height of about 75mm. The tip was re-
moved from the picking medium, re-submerged
into a dish from the incubator containing the di-
lute cell suspension, and lowered gently to the
floor of the dish. Individual cells were aspirated
into the pipet by gentle vacuum applied via the

glass syringe. When a single cell had been aspi-
rated, the tip was rapidly lifted out of the picking
medium, and the picking dish was removed from
the illuminated area of the stage. A small sliver
of silanated cover glass (Molecular Dimensions,
catalog #MD406) was then placed on a glass
slide on the stage, and a 4.5µL drop of cell lysis
solution was placed on the sliver with a Rainin
P10 micropipette. The lysis solution contains
2.5µL of reaction buffer (Clontech SMARTer Ul-
tra Low RNA kit), 1µL of 3 SMART CDS Primer
IIA (Clontech) and 1µL of spike-in quantification
standards. The drop of lysis solution was visual-
ized on the illuminated area of the stage, and the
pipette tip containing the picked cell was lowered
into it. Gentle pressure was applied to the sy-
ringe to expel the cell from the pipette, and the
tip was then lifted from the lysis solution. Vi-
sual confirmation was made at high power, while
the cell dissolved in the lysis solution. The glass
sliver was lifted from the stage using forceps, and
placed in the bottom of a 200µL PCR tube. The
tube was spun for 15 seconds at 10,000g, the
sliver was removed, and the lysed cell was imme-
diately frozen on dry ice. Twenty individual cells
were collected in this way. We also collected two
samples of ten cell pools into the same volume
of lysis buffer, using the pipette picking method.

For ∼100 cell pools, cells were first diluted in
picking buffer to a concentration of 10 cells/µL.
10µL of the dilute cell suspension were added to
90µL of picking buffer in a 200µL PCR tube, and
spun at 2500g for 90 seconds to pellet the cells.
The tube was then mounted sideways in model-
ing clay on a glass slide, and the pellet was visu-
alized under the phase contrast scope. A drawn
glass pipette tip attached to the micromanipula-
tor was advanced into the picking medium and
the excess picking medium was withdrawn using
the syringe. A 4.5µL aliquot of lysis buffer was
then added to the cell pellet, and the lysate was
spun and frozen as for the above samples.

After picking the individual and pooled cell
samples, the remainder of the culture (∼2× 107

Figure 3.47 (preceding page): Allele-biased expression at the single-cell level. (A,B and
C) Correlation between allele bias between 10ng bulk RNA replicates (A), between two individual
single cells (B) and between two pool/split libraries (C). Shown is the maternal fraction of reads for
genes with at least 15 reads covering heterozygous positions for 10ng libraries and for genes with
at least 10 reads covering heterozygous positions and expressed at more than 10 copies per cell for
single cells and pool/splits. (D). Distribution of allele bias in bulk RNA samples (≥15 reads covering
positions). (E and F). Distribution of allele bias as a function of the read and copies threshold in
single cell (E) and pool/split (F) libraries.
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Figure 3.48: Correlation between allelic bias in cell pools of different sizes.

cells) was spun down in two aliquots for 5 min-
utes at 1000g at 4 ◦C. The culture medium
was removed, the pellet was rinsed with PBS,
and re-spun as above. After the removal of
PBS, both pellets were lysed with 1.2mL lysis
buffer from the Ambion mirVana kit (catalog
#AM1560). The lysates were then processed
according to the manufacturer’s protocol. Af-
ter eluting total RNA from the columns, we per-
formed a DNA digestion step to remove residual
contaminating genomic DNA, using the DNA-
free kit from Ambion (catalog #AM1907). After
quality control with Qubit and the Agilent Bio-
Analyzer, the bulk prep total RNA was diluted
to both 10ng/µL and 100pg/µL concentrations.
We then added single microliter aliquots to the
lysis buffer described above, and froze the sam-
ples for processing using the single cell protocol.

3.5.2 First strand cDNA
synthesis and amplification

The frozen samples were brought to the lab
bench on dry ice. Lysis and denaturation were
accomplished by heating the samples for 3 min-
utes at 72 ◦C. The samples were spun down and
placed in a cooling rack at 4 ◦C. 5.5µL of first
strand reaction buffer (Clontech) was then added
(2µL of buffer, 1µl of RNAse inhibitor, 1µl of
dNTPs, 0.25µl of DTT, 1µL of SMARTer IIa
oligos, and 1µl of SMARTScribe reverse tran-
scriptase). The samples were reverse transcribed
at 42 ◦C for 90 minutes and denatured at 70 ◦C
for 10 minutes. After denaturation, the sam-
ples were spun down and 25µL of Ampure XP
SPRI beads (Beckman Coulter genomics) were
added. The samples were incubated for 8 min-
utes at room temperature, then the beads were
separated on a magnet for 5 minutes. The su-
pernatant solution was removed with a pipette,
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Figure 3.49: Changes in allele expression bias between individual cells and between
individual libraries in pool/split experiment 1. Shown is the maximum difference between
the maternal fraction of reads in single-cells (A) and the pool/split (B). Only gene/library pairs
for which the ψ score passed all three tests for statistical significance of bias towards one splice
(described in Methods) were included

and the beads were spun at 1000g for 1 minute to
pellet. The sample was then placed back on the
magnet, and excess supernatant was removed
with a 10µL Rainin pipet tip. 50µL of amplifi-
cation solution were then used to resuspend the
beads (5µL of PCR buffer, 2µL of dNTPs, 2µL
of amplification primers and 2µL of Advantage2
polymerase mix), and the samples were ampli-

fied under the following conditions: 1 minute at
95 ◦C, followed by cycles of 15 seconds at 95 ◦C,
30 seconds at 65 ◦C, 6 minutes at 68 ◦C, and fi-
nal elongation for 10 minutes at 72 ◦C. Single
cell and pool/split samples were amplified for
26 cycles, the 10 cell pools were amplified for
22 cycles, the 100 cell pools were amplified for
18 cycles, and the bulk prep RNA samples were
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Figure 3.50: Number of novel splice junctions (connecting to annotated donor and/or
acceptor sites) detected in individual cells.

amplified for 15 cycles. The amplified cDNA was
spun down, and 90µL of Ampure XP beads were
added. The beads were incubated with the am-
plified product for 8 minutes, then separated on
a magnet for 5 minutes. The reaction solution
was removed and the beads were washed twice
with 200µL of freshly prepared 80% ethanol for
30 seconds. After the second ethanol wash, the
beads were pelleted at 1000g for 1 minute, the
residual ethanol was removed with a P10 Rainin
pipette tip, and the beads were allowed to dry
until the pellet showed signs of cracking. The
beads were then resuspended in 20µL of 10mM
Tris-HCl pH 8.5 for 10 minutes, and then sepa-
rated on the magnet for 5 minutes. The super-
natant containing the amplified cDNA was then
withdrawn and 1µL was used for quantification
with Qubit HS DNA reagents (Lifetech). An ad-
ditional 1µL aliquot of the amplified sample was
diluted to 3ng/µL, and then used for fragment
length estimation on the Agilent BioAnalyzer us-

ing the HS cDNA kit.
Ten of the single cell samples were reverse

transcribed and amplified as single cell aliquots.
Ten were lysed and denatured, then pooled to-
gether and re-split to homogenize the mRNA
populations in each (pool/split samples). The
10 and 100 cell pools were processed as the sin-
gle cell aliquots, except they were amplified for
22 and 18 cycles each.

3.5.3 Tagmentation

Tagmentation (Illumina/Nextera) uses a trans-
posase mixture to simultaneously fragment and
tag the ends of fragmented cDNA with ampli-
fication primers. 50ng aliquots of the SMART
amplified cDNA were combined with tagmen-
tation reagents according to the manufacturers
protocol. After tagmentation, the reaction was
cleaned up using 1.5 volumes of QG buffer (Qia-
gen) and 1.8 volumes of Ampure XP SPRI beads,
according to the protocol of Gertz et al. 2012.
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The tagmented cDNA was eluted from the beads
in 20µL of Tris-HCL pH 8.5, and subjected to
an additional 5 rounds of amplification, accord-
ing to the manufacturers protocol. The ampli-
fied and tagmented cDNA was cleaned up using
0.8 volumes of SPRI beads, washed twice with
200µL of 80% ethanol, dried and eluted with
30µL of Tris-HCl pH 8.5.

The tagmented libraries were quantified with
Qubit HS DNA reagents, and 3ng from each
sample were assayed on the Agilent BioAnalyzer
using the HS cDNA kit. Libraries were judged
to be acceptable if they showed a peak in the
300-400bp range. Library sequencing was per-
formed on the HiSeq 2000 Illumina instrument,
using the single read, 100 bp format.

3.5.4 Preparation of quantitation
standards

The quantification spike-in standards are de-
signed to test a range of copy number concen-
trations over 3 factors of 10. We chose two
size ranges (∼ 300nt and ∼ 1400nt) to test
the effect of transcript length on counting accu-
racy. The following transcripts were amplified
from Arabidopsis total RNA for use as quantita-
tion standards: VATG (376nt), OBF5 (1444nt),
Apetala2 (1405nt), PDF (348nt), EPR (1451nt),
AGP (323nt). These amplified cDNAs were
cloned into a modified cloning vector contain-
ing the pBluescript II promoters and multiple
cloning site, flanking an elongated polyA se-
quence. The resulting clones were linearized
downstream of the polyA sequence, so that in

vitro transcription would result in the automatic
inclusion of a polyA tail, without the need for
polyA polymerase. In vitro transcription was
performed using the EpiCentre Ampliscribe T3
in vitro transcription kit (catalog #AS3103).
The reactions were cleaned up using a Qiagen
RNA cleanup column (Qiagen catalog #74124).
The transcribed products were quantified using
Qubit RNA reagents (3 repeated measures) and
then size verified on the Agilent BioAnalyzer us-
ing RNA Nano reagents. The transcripts were
then diluted in diluent containing yeast tRNA
as a carrier (Ambion Catalog #AM7119) and
RNAse inhibitor (Clontech catalog #2313A),
and then combined into a cocktail for use as 1µL
aliquots. The final concentrations for tRNA was
100pg/µL. The final concentrations of the spike-
in standards are listed in Table 3.

3.5.5 In silico simulation of
single-cell and cell pool

transcriptomes

We aimed primarily to examine the effects of the
levels of technical stochasticity and the amount
of input, but also tried to approximate what a
real population of cells might look like, with all
the variation of gene expression on the single-cell
level that exists in it. To this end, we used the
following model.

Let |S| be the number of cells pooled, and
pEg

be the probability that a gene g belonging
to the set of polyadenylated genes G is expressed
in any given cell Si ∈ S. There likely exist a

Figure 3.51 (preceding page): Alternative splicing at the single-cell level. (A) Classifi-
cation of new junctions connecting known splice sites. (B) Frequency of detection of novel splice
junctions. Novel junctions for which neither the donor nor acceptor site has been annotated were
excluded for reasons described in the main text in both (A) and (B). A threshold of 10 estimated
copies and a coverage of 10 reads was applied, but results are essentially the same independent of
the thresholds used (Supplementary Figure 40A). (C). Distribution of ψ scores in bulk RNA samples
for annotated and novel splice junctions. A threshold of 15 reads combined for all splice junctions
in which a donor or acceptor site participates was applied. Note that for each ψ1 score there is at
least one matching ψ2 ≤ 1−ψ1 score corresponding to the other alternative junction; in some cases,
more than two alternative donor or acceptor sites exist, thus the relative height of the 0 ≤ ψ ≤ 0.1
bar. (D - upper and lower) Distribution of 5’ ψ scores for annotated splice junctions at two different
detection thresholds in single-cell libraries (see Supplementary Figure 41 for more detail). (E - upper
and lower) Distribution of 5’ ψ scores for novel splice junctions at two different detection thresholds
in single-cell libraries (see Supplementary Figure 42 for more detail). (F) and (G) Frequency of
major splice site usage switches between individual cells (F) and individual libraries in a pool/split
experiment (G). Note the strong support for major splice site use switching across the collection of
single cells.
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Figure 3.52: Relationship of novel splice junctions to annotation. (A) Relation to anno-
tated exons. The detection threshold (in both estimated number of copies and reads mapping to
heterozygous positions) was varied as shown and the fraction of junctions belonging to each class
was calculated. (B) Distance of the donor site to the nearest annotated 5’ splice site. (C) Distance
of the acceptor site to the nearest annotated 3’ splice sites. All detected junctions were included in
(B) and (C).

group of housekeeping genes for which pEg
≈ 1,

and then there is a continuum of genes for which
pEg

< 1. Finally, there likely exist genes that are
present only in a small fraction of cells for which

pEg
� 1. We denote with T the total number

of mRNA molecules expressed in each cell Si,
with CCg

the true number of transcript copies
per cell for each gene g ∈ G, where G is the set
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Figure 3.53: Splice junctions detection. The total number of annotated or novel junctions in
all libraries is included in each plot and junctions that are not detected in each group of experiments
are represented by a white bar. (A, B and C) Annotated junctions in bulk and pool libraries (A),
pool/split experiments (B) and single cells (C). (D, E and F) Novel junctions in bulk and pool
libraries (D), pool/split experiments (E) and single cells (F). Shown are all junctions detected in
pools, pool/splits or single cells; when a junction is detected in 0 libraries, only the libraries in the
indicated group are referred to.

of all genes. By definition, T =
∑
g∈G CCg

. For
simplicity, we assume it is constant for each cell.

We derive FPKM estimates FPKMg for each
gene based on bulk RNA-seq measurements. For
simplicity, and since this does not in any way
affect the conclusions of the simulations, we as-
sume that the ratios of FPKM values between
genes are equal to the ratios between the their

absolute number of transcript molecules in the
very large cell pool from which the library was
built. We then derive an estimate for the aver-
age value of CCg when a gene is expressed in a
given cell as follows:
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Figure 3.54: Number of
cells in which a novel
junctions is detected.
The detection threshold (in
both estimated number of
copies and reads mapping
to heterozygous positions)
was varied as shown and the
fraction of splices detected
in a give number of cells
plotted.

CCg
=

Eg ∗ FPKMg∑
g∈G

Eg ∗ FPKMg

∗ T (3.1)

where we account for the fact that only a por-
tion of cells express the gene by setting Eg = 1
when a gene is expressed in a given cell, and
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Figure 3.55: Distribution of 5’ and 3’ ψ scores as a function of the expression and splice
junction spanning reads threshold.
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Figure 3.56: Distribution of 5’ and 3’ ψ scores as a function of the expression and splice
junction spanning reads threshold for novel splice junctions. Only novel splice junctions
connecting at least one of the donor or acceptor site for which is annotated are included.
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Figure 3.57: Major splice site switches between individual cells. Shown is the maximum
difference between ψ scores in single-cells (A) and individual libraries in pool/split experiment 1
(B). Only gene/library pairs for which the ψ score passed all three tests for statistical significance
of bias towards one splice (described in Methods) were included

Eg = 0 when it is not (Eg is set based on the
probability pEg

, as described further below).

Finally, we define the single-molecule capture
efficiency psmc as the probability that any given
RNA molecule in a cell will be converted into
cDNA, amplified and eventually present in the

sequencing library.

We use the following algorithm for generating
in silico cell pool transcriptomes and then the
FPKM values in the corresponding libraries. We
denote the number of original transcript copies
present in the final library (after the effects of
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Figure 3.58: Detection of annotated splice junctions in cell pools of different sizes.

technical stochasticity have been modeled) with
CLg

Algorithm 1 Cell pool RNA-seq simulation

for g ∈ G do
CLg

← 0
end for
for i = 1→ |S| do

for g ∈ G do
p← random number ∈ [0, 1]
if p ≤ pEg

then
Eg ← 1

else
Eg ← 0

end if
end for
for g ∈ G do

CCg
←

Eg ∗ FPKMg∑
g∈G

Eg ∗ FPKMg

∗ T

for i = 1→ CCg
do

p← random number ∈ [0, 1]
if p ≤ psmc then

CLg
= CLg

+ 1
end if

end for
end for

end for
for g ∈ G do

1. FPKMLg ←
CLg∑

g∈G
CLg

∑
g∈G

FPKMg

2. FPKMCg ←
CCg∑

g∈G
CCg

∑
g∈G

FPKMg

3. compare FPKMLg
with FPKMCg

end for

In practice, we have no reliable estimates
of what the distribution of pEg

might be
across the whole transcriptome (this in itself
is a major open research question). We as-
signed pEg

values to genes by first splitting
all genes expressed at FPKM ≥ 1 in 10 per-
centile groups in order of increased expression:
PG ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.
For each expression percentile group PG we
modeled the distribution of the pEg values with
the normalized Gaussian density N (µ, σ) over
the interval [F, 1] where µ = PG and σ =
|0.9−PG|, and F is the minimal fraction of cells
a gene can be expressed in (which we set to 0.01).

3.5.6 Sequence alignment and
gene expression quantification

Reads were aligned against a combined Bowtie
(Langmead et al. 2009) index of the NCBI
GRCh37 (hg19) version of the human genome
(downloaded from UCSC) excluding the Y chro-
mosome (as GM12878 cells are of female origin)
and random chromosomes and the spike-in se-
quences using TopHat version 1.4.1 (Trapnell et
al. 2009; Trapnell et al. 2012) and the GEN-
CODE V13 annotation (Harrow et al. 2012)
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with the "--GTF" option. Read mapping statis-
tics are available in Table 3.7. Gene expres-
sion was quantified using Cufflinks version 2.0.2
(Trapnell et al. 2010; Trapnell et al. 2012) for
both the GENCODE V13 and refSeq annota-
tions. FPKMs were converted to estimates for
copies-per-cell numbers using spike-in sequences
of known abundance (Supplementary Table 2);
FPKMs were calculated for the spike-ins and
used to create a calibration curve for each li-
brary (forcing the regression through 0 to avoid
the assignment of positive copies per cell to genes
with 0 FPKMs) on the basis of which and the
Cufflinks FPKMs copies-per-cell estimates were
derived for each gene.

3.5.7 Single-molecule capture
efficiency estimation

We estimated the average single-molecule cap-
ture efficiency based on the number of libraries
with 0 FPKM for each spike and the number of
input molecules at which that spike was present
in the reaction. The actual single-molecule cap-
ture efficiency need not be exactly the same for
all libraries. It is a binomial process, but it is
not possible to estimate it precisely by directly
modeling the outcome with a binomial distribu-
tion as only the number of complete failures (li-
braries with 0 FPKM for a given spike, in which
all Cs trials where Cs is the number of input
copies for spike s) is known. The number of suc-
cesses (and the corresponding exact number of
failures) is not known because multiple copies of
each spike are used as input, and as a result, in a
library with a non-zero FPKM it is only known
that some copies were successfully captured but
not how many exactly. We derived an approx-
imate estimate for the single-molecule capture
efficiency by treating individual libraries as sin-
gle trials in a binomial process, then dividing
the estimated single-molecule capture efficiency
by the number of input copies:

psmc =
1

Cs
arg max

p
L(p|L0 + L1, L1) (3.2)

Where L0 is the number of libraries with 0
FPKM and L1 is the number of libraries with
non-zero FPKM for the spike. This is a rela-
tively crude way to estimate psmc and it works
well only when its value is small but in practice
the psmc value is indeed small.

For the AGP23 spike (spiked-in at 5 copies),
the estimated single-molecule capture efficiency
was 0.138 (95% confidence interval 0.106 to
0.164); for the EPR1 spike (10 copies), the es-
timated single-molecule capture efficiency was
0.053 (95% confidence interval 0.037 to 0.068),
and for the PDF1 spike (20 copies), it was 0.045
(95% confidence interval 0.038 to 0.048). As
these are approximate estimates, for simplicity
we used an average single-molecule capture effi-
ciency psmc = 0.10 in subsequent calculations.

3.5.8 Analysis of allele-biased
expression

The diploid (May 2011 release) NA12878 genome
containing phased SNPs and indels based on
the NCBI build 36 (hg18) version of the hu-
man genome was downloaded from http://sv.

gersteinlab.org/NA12878_diploid/. Coordi-
nates for the refSeq annotation for hg18 (down-
loaded from the UCSC genome browser) were
converted into paternal and maternal coordi-
nates. Heterozygous transcriptomes containing
two copies of each transcript were built and
reads were aligned using Bowtie (Langmead et
al. 2009) (version 0.12.7) with the following set-
tings: "-v 0 -a --best --strata", i.e. with
no mismatches allowed. Reads were assigned to
an allele if they mapped only to one of the alle-
les of a gene. All identical reads were collapsed
into a single count in order to eliminate PCR
amplification artifacts. Allele-biased expression
was assessed as follows. First, for each gene us-
ing the total number of allele-specific reads for
each allele (over all heterozygous positions), a bi-
nomial test with a uniform read distribution ex-
pectation, a 0.05 p-value cutoff, and a Bonferroni
multiple-hypothesis testing correction where the
correction factor is the number of genes with suf-
ficiently many allele-specific reads for the bino-
mial test to pass the specified p-value in the case
of complete dominance of one of the alleles. Sec-
ond, the number of copies for each gene was used
to derive an estimate for the absolute number of
copies per cell for each allele, i.e., for alleles A
and a and a per-cell copies estimate for the gene
CE :

CEA
=

Nreads(A)

Nreads(A) +Nreads(a)
CE (3.3)

Another binomial test similar to the one de-
scribed above was then run using the CEA

and

http://sv.gersteinlab.org/NA12878_diploid/
http://sv.gersteinlab.org/NA12878_diploid/
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CEa estimates. As it is possible that only a small
number of reads map differentially to the two al-
leles of a gene (due, for example, to heterozy-
gous positions being located in a region of poor
sequencing coverage) while the gene itself is ex-
pressed highly, thus resulting in a significant bi-
nomial test using the copies-per-cell estimates
that is, however, poorly supported on the read
level, both tests were required to pass statistical
significance for an allele bias call to be made.

Finally, due to the imperfect single-molecule
capture efficiency of the single-cell RNA-seq li-
brary building process, it is possible that appar-

ent allele biases are the result of purely stochas-
tic differences between the capture efficiency for
the two alleles in a given library. For this reason,
we applied a third filter for allele-biased expres-
sion calls, which required that the probability
of obtaining apparently statistically significant
differences in the estimated copies per cell for
the two alleles CEA

and CEa
by chance from

two independent binomial process with the es-
timated single-molecule capture efficiency psmc
is low (p ≤ 0.05 after applying Bonferroni mul-
tiple hypothesis testing correction):

p =

CC∑
CE

NB(CC − CE , psmc)
CC∑
CE

NB(CC − CE , psmc)

CEa∑
0

B(CCa
, psmc)

CA∑
CEA

B(CCA
, psmc) (3.4)

Where CC = 2∗CCa = 2∗CCA
refer to the ac-

tual number of copies per cell (as opposed to the
estimated number of copies CE = CEa

+ CEA
),

NB(CC −CE , psmc) refers to the negative bino-
mial probability that the actual number of copies
is CC given the estimated number of copies CE :

NB(CC − CE , psmc) =

(
CE + (CC − CE)− 1

CE − 1

)
pCE
c (1− psmc)CC−CE

and the binomial probabilities B(CCA
, psmc)

and B(CCa
, pc) are defined as:

B(CCA
, psmc) =

(
CCA

CEA

)
psmc

CEA (1−psmc)CCA
−CEA

and

B(CCa
, psmc) =

(
CCa

CEa

)
psmc

CEa (1−psmc)CCa−CEa

The probability was evaluated for possible
values of the actual number of copies per cell
up to CC = min(5000, 100 ∗ CE).

Genes on the X chromosome were excluded
from all analysis as the GM18278 cell line is fe-
male. The inactivation of the X chromosome
leading to a corresponding allelic exclusion was
observed as expected (data not shown).

3.5.9 Alternative splicing analysis

We mapped reads using TopHat with de novo
junction discovery turned on; such alignments
are in principle suited for the discovery and anal-
ysis of novel splice junctions, a large number of
which has been recently reported by the EN-
CODE consortium (Djebali & Davis et al. 2012).
An important step in such analysis is distin-
guishing between true novel splice junctions on
one hand and mapping and library-building arti-
facts on the other. Such artifacts certainly exist
as we observe “novel junctions” in our spike-in
quantification standards, which are not spliced
(Table ). Confidence in the reality of newly dis-
covered splice junctions in traditional RNA-seq
is boosted by the number of distinct sequenc-
ing fragments supporting them, and by replica-
tion in other libraries. However, the former line
of evidence is not applicable to single-cell RNA-
seq due to the one-to-many relationship between
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original founder RNA molecules and sequencing
fragments in the final library, while the latter is
difficult to apply in all cases given the unique-
ness of each individual single cell. For these rea-
sons, we restricted alternative splicing analysis
to known splice junctions and novel junctions, at
least one end of which was annotated as splice
site in GENCODE V13.

We calculated 5’ and 3’ splicing inclusion ψ
scores as follows (Pervouchine et al. 2013):

ψ5(D,A) =
Nreads(D,A)∑

Ai∈A
Nreads(D,Ai)

(3.5)

ψ3(D,A) =
Nreads(D,A)∑

Di∈D
Nreads(Di, A)

(3.6)

Where D and A refer to the donor and ac-
ceptor splice sites, respectively, and the number
of reads Nreads refers to the number of spliced
reads crossing a splice or donor sites after ap-
parent PCR duplicates have been collapsed into
a single count. We note that any given donor
or acceptor splice site need not be included in
all transcripts expressed from the gene it be-
longs to. Since isoform-level quantification is not
a completely solved problem and it is even less
clear what its relative stability is for single-cell
RNA-seq compared to the bulk RNA datasets for
which algorithms have been designed, we only
included alternative splice sites for which the
donor or acceptor site was found in all anno-
tated transcripts for the gene (GENCODE V13
annotation) as well as novel junctions (compared
to the GENCODE V13 annotation) derived from
the TopHat mappings involving such splice sites.
This allows us to use gene-level FPKM esti-
mates, which are in general more reliable than
isoform-level ones, and the mRNA copies-per-
cell estimates based on those to derive the ap-
proximate absolute number of transcripts con-
taining a given splice junction in each. The sta-
tistical significance of bias towards one of the

sites was assessed analogously to the approach
described for allele-biased expression above, with
one significant modification: in cases of more
than two possible Ai acceptor sites, for a donor
site D or Di sites for an acceptor site A, the ma-
jor pair (the one with the most reads) was com-
pared to the sum of reads for all other pairs as if
those pairs constituted as single pair. This ap-
proach was adopted so that a maximum number
of alternative splicing events are included in the
analysis and with a focus on identifying cases of
robust and statistically significant splice site use
switches between individual single cells. When
the major (D,A) pair did not have more than
half of all reads, the site was excluded from fur-
ther analysis.

3.5.10 Gene expression clustering
and weighted correlation network

analysis

Weighted correlation networks (Zhang & Hor-
vath 2005) were constructed from the single-
cell vectors of estimated mRNA copies using
the WGCNA R package (Langfelder & Hor-
vath 2008) using the blockwiseModules func-
tion with β = 6 (Supplementary Figure 34) and
a minimum module size of 10 genes. Input genes
were filtered as follows: first, we required that
genes be expressed at more than one estimated
copy per cell CE in at least one cell; second, we
required that the ratio between the CE variance
in single cells and the CE variance in pool/split
libraries be more than 1.5. The latter require-
ment was imposed in order to minimize the iden-
tification of apparently coexpressed gene mod-
ules due to purely stochastic differences in tran-
script capture (see Supplementary Figure 33 for
more detail).

Gene Ontology enrichment in modules was
assessed using FuncAssociate2.0 (Berriz et al.
2009). Gene expression clustering was carried
out using Cluster 3.0 (de Hoon et al. 2004) and
visualized using TreeView (Saldanha 2004).
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Table 3.3: Full list of Gene Ontology categories enriched in coexpressed gene modules.
Gene Ontology enrichment in modules was assessed using FuncAssociate2.0 (Berriz et al., 2009).

N X LOD P P adj attrib ID attrib name

Module 1
80 85 2.22750847233495 2.4288542157057e-80 <0.001 GO:0019083 viral transcription
35 38 2.0543096800611 9.94569501487657e-35 <0.001 GO:0022625 cytosolic large ribosomal subunit
79 88 1.98429369667081 3.81815501340532e-75 <0.001 GO:0006415 translational termination
82 92 1.95783499865395 2.25183855262354e-77 <0.001 GO:0019058 viral infectious cycle
33 37 1.91934326185776 1.0606448232178e-31 <0.001 GO:0022627 cytosolic small ribosomal subunit
84 99 1.79959130536831 2.83136121010728e-75 <0.001 GO:0006414 translational elongation
79 98 1.67170885189082 2.54715717317477e-67 <0.001 GO:0043624 cellular protein complex disassembly
79 99 1.64996220882795 1.16143543924047e-66 <0.001 GO:0043241 protein complex disassembly

5 6 1.60339903304627 2.31518111579124e-05 0.042 GO:0042719
mitochondrial intermembrane space pro-
tein transporter complex

12 16 1.48484395467934 1.55655372018477e-10 <0.001 GO:0005753
mitochondrial proton-transporting ATP
synthase complex

12 16 1.48484395467934 1.55655372018477e-10 <0.001 GO:0045259
proton-transporting ATP synthase com-
plex

8 11 1.42532291837978 3.17730434970578e-07 <0.001 GO:0042274 ribosomal small subunit biogenesis
42 60 1.41110133078985 7.7723344218279e-32 <0.001 GO:0015935 small ribosomal subunit

10 14 1.40852193295129 1.23601718399618e-08 <0.001 GO:0042776
mitochondrial ATP synthesis coupled
proton transport

82 119 1.40425322218248 2.90687191098935e-60 <0.001 GO:0034623
cellular macromolecular complex disas-
sembly

43 62 1.39861873942686 2.70656133560673e-32 <0.001 GO:0015934 large ribosomal subunit
82 120 1.39279633589538 8.45636479922126e-60 <0.001 GO:0032984 macromolecular complex disassembly

14 20 1.39014850585389 1.95202402281072e-11 <0.001 GO:0015985
energy coupled proton transport, down
electrochemical gradient

14 20 1.39014850585389 1.95202402281072e-11 <0.001 GO:0015986 ATP synthesis coupled proton transport

9 13 1.36475589719287 1.06059816949165e-07 <0.001 GO:0045263
proton-transporting ATP synthase com-
plex, coupling factor F(o)

102 154 1.35835395745315 3.83509033779718e-72 <0.001 GO:0003735 structural constituent of ribosome
80 121 1.34883668562943 1.30325679955416e-56 <0.001 GO:0031018 endocrine pancreas development
6 9 1.3082177020168 2.3318724760727e-05 0.049 GO:0042273 ribosomal large subunit biogenesis
92 156 1.22084501073779 1.79769896957827e-58 <0.001 GO:0022415 viral reproductive process
9 15 1.20500031764798 6.35922215735707e-07 <0.001 GO:0042613 MHC class II protein complex
90 159 1.17815283094918 4.63835969773452e-55 <0.001 GO:0005840 ribosome

11 20 1.12368307791708 1.16201671228436e-07 <0.001 GO:0002504
antigen processing and presentation of
peptide or polysaccharide antigen via
MHC class II

126 243 1.1058240710311 8.64889403866865e-71 <0.001 GO:0006412 translation
33 66 1.04671661076047 1.04054778845837e-18 <0.001 GO:0070469 respiratory chain

88 180 1.04302248261017 8.36713797967258e-47 <0.001 GO:0071845
cellular component disassembly at cellu-
lar level

13 26 1.04120105244121 3.59500355461033e-08 <0.001 GO:0004129 cytochrome-c oxidase activity
13 26 1.04120105244121 3.59500355461033e-08 <0.001 GO:0015002 heme-copper terminal oxidase activity

13 26 1.04120105244121 3.59500355461033e-08 <0.001 GO:0016676
oxidoreductase activity, acting on a heme
group of donors, oxygen as acceptor

88 181 1.03832508439038 1.50023036663094e-46 <0.001 GO:0022411 cellular component disassembly
50 105 1.01033284389759 2.12881566827084e-26 <0.001 GO:0022904 respiratory electron transport chain

13 27 1.01013943569481 6.3992281019869e-08 <0.001 GO:0016675
oxidoreductase activity, acting on a heme
group of donors

13 27 1.01013943569481 6.3992281019869e-08 <0.001 GO:0019843 rRNA binding

22 46 1.00663430266062 2.01941178786577e-12 <0.001 GO:0005747
mitochondrial respiratory chain complex
I

22 46 1.00663430266062 2.01941178786577e-12 <0.001 GO:0030964 NADH dehydrogenase complex
22 46 1.00663430266062 2.01941178786577e-12 <0.001 GO:0045271 respiratory chain complex I

13 28 0.981148355026407 1.10254306563049e-07 <0.001 GO:0016469
proton-transporting two-sector ATPase
complex

20 44 0.965600146054987 6.60764042765157e-11 <0.001 GO:0003954 NADH dehydrogenase activity

20 44 0.965600146054987 6.60764042765157e-11 <0.001 GO:0008137
NADH dehydrogenase (ubiquinone) ac-
tivity

20 44 0.965600146054987 6.60764042765157e-11 <0.001 GO:0050136 NADH dehydrogenase (quinone) activity

10 22 0.964605445604187 4.26260478570593e-06 0.009 GO:0033177
proton-transporting two-sector ATPase
complex, proton-transporting domain

19 43 0.94357846286631 3.63592920641863e-10 <0.001 GO:0006120
mitochondrial electron transport, NADH
to ubiquinone

56 140 0.877587213657932 1.12610252541087e-24 <0.001 GO:0022900 electron transport chain

20 50 0.870301953062918 1.08177287181172e-09 <0.001 GO:0016655
oxidoreductase activity, acting on NADH
or NADPH, quinone or similar compound
as acceptor

126 329 0.864920624044305 7.76265565058296e-52 <0.001 GO:0016032 viral reproduction
19 48 0.862785503901917 3.4843140169824e-09 <0.001 GO:0022613 ribonucleoprotein complex biogenesis
51 133 0.846254921603025 1.32115278867509e-21 <0.001 GO:0044455 mitochondrial membrane part
13 36 0.80019305087457 3.59382041803685e-06 0.008 GO:0042611 MHC protein complex

Continued on next page
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Table 3.3 – Continued from previous page
N X LOD P P adj attrib ID attrib name

22 62 0.787906724016196 2.35759581410622e-09 <0.001 GO:0006977
DNA damage response, signal transduc-
tion by p53 class mediator resulting in
cell cycle arrest

22 62 0.787906724016196 2.35759581410622e-09 <0.001 GO:0072401
signal transduction involved in DNA in-
tegrity checkpoint

22 62 0.787906724016196 2.35759581410622e-09 <0.001 GO:0072413
signal transduction involved in mitotic
cell cycle checkpoint

22 62 0.787906724016196 2.35759581410622e-09 <0.001 GO:0072422
signal transduction involved in DNA
damage checkpoint

22 62 0.787906724016196 2.35759581410622e-09 <0.001 GO:0072431
signal transduction involved in mitotic
cell cycle G1/S transition DNA damage
checkpoint

22 62 0.787906724016196 2.35759581410622e-09 <0.001 GO:0072474
signal transduction involved in mitotic
cell cycle G1/S checkpoint

12 34 0.785381071713187 1.12064061460209e-05 0.019 GO:0006626 protein targeting to mitochondrion

31 88 0.784090641205952 1.6208634459227e-12 <0.001 GO:0048002
antigen processing and presentation of
peptide antigen

138 408 0.782753905363391 3.18149793786453e-49 <0.001 GO:0010467 gene expression

22 63 0.777286220816123 3.33709849401727e-09 <0.001 GO:0072395
signal transduction involved in cell cycle
checkpoint

22 63 0.777286220816123 3.33709849401727e-09 <0.001 GO:0072404
signal transduction involved in G1/S
transition checkpoint

19 55 0.770122744469575 4.78383728527817e-08 <0.001 GO:0071843
cellular component biogenesis at cellular
level

173 530 0.768759824961379 2.97828415371199e-59 <0.001 GO:0030529 ribonucleoprotein complex

28 82 0.763064993637299 4.54473457242155e-11 <0.001 GO:0002474
antigen processing and presentation of
peptide antigen via MHC class I

25 75 0.747063491558582 8.85423589248866e-10 <0.001 GO:0006839 mitochondrial transport
23 69 0.746932600935863 4.15847287902749e-09 <0.001 GO:0044085 cellular component biogenesis

32 97 0.741175253071487 5.45910901839781e-12 <0.001 GO:0015078
hydrogen ion transmembrane transporter
activity

16 49 0.73399635379054 1.30379324163326e-06 0.003 GO:0051258 protein polymerization

15 47 0.719731376252704 3.8551671841249e-06 0.008 GO:0051084
’de novo’ posttranslational protein fold-
ing

40 126 0.71784240561212 5.25251868522275e-14 <0.001 GO:0019882 antigen processing and presentation
23 73 0.710984404898217 1.41497713185833e-08 <0.001 GO:0071158 positive regulation of cell cycle arrest

21 67 0.707697276637143 6.62504934644734e-08 <0.001 GO:0051436
negative regulation of ubiquitin-protein
ligase activity involved in mitotic cell cy-
cle

95 311 0.705569345151931 4.85030590692832e-30 <0.001 GO:0048610 cellular process involved in reproduction
16 52 0.696666038434829 3.16984759196741e-06 0.007 GO:0006458 ’de novo’ protein folding
22 72 0.691795994094768 5.42170060581127e-08 <0.001 GO:0051352 negative regulation of ligase activity

22 72 0.691795994094768 5.42170060581127e-08 <0.001 GO:0051444
negative regulation of ubiquitin-protein
ligase activity

150 525 0.677439350068986 3.32539653823493e-43 <0.001 GO:0034621
cellular macromolecular complex subunit
organization

164 584 0.670332348124673 3.54836301881911e-46 <0.001 GO:0016071 mRNA metabolic process
23 78 0.669845547354692 5.69629303883152e-08 <0.001 GO:0000216 M/G1 transition of mitotic cell cycle

21 72 0.663205782638981 2.6219034657749e-07 <0.001 GO:0051437
positive regulation of ubiquitin-protein
ligase activity involved in mitotic cell cy-
cle

16 55 0.662279533745671 7.14593997684204e-06 0.014 GO:0000502 proteasome complex

16 55 0.662279533745671 7.14593997684204e-06 0.014 GO:0006521
regulation of cellular amino acid
metabolic process

25 86 0.66117774103715 2.09408969093921e-08 <0.001 GO:0030330
DNA damage response, signal transduc-
tion by p53 class mediator

19 67 0.64634468268949 1.55090946941351e-06 0.003 GO:0033238
regulation of cellular amine metabolic
process

26 92 0.644103259424952 2.09762058586999e-08 <0.001 GO:0072331 signal transduction by p53 class mediator

22 78 0.642874216140607 2.62393000307691e-07 <0.001 GO:0051439
regulation of ubiquitin-protein ligase ac-
tivity involved in mitotic cell cycle

19 68 0.637453778789019 1.9842690458222e-06 0.005 GO:0060333
interferon-gamma-mediated signaling
pathway

22 79 0.635227361820706 3.35087879773373e-07 <0.001 GO:0051443
positive regulation of ubiquitin-protein
ligase activity

23 83 0.63224585989498 2.00949230376557e-07 <0.001 GO:0051351 positive regulation of ligase activity
27 98 0.62887220631022 2.04834672373096e-08 <0.001 GO:0006364 rRNA processing

22 80 0.627711881242392 4.25874069739404e-07 <0.001 GO:0031145
anaphase-promoting complex-dependent
proteasomal ubiquitin-dependent protein
catabolic process

81 300 0.62621754092227 6.64252358742553e-22 <0.001 GO:0005743 mitochondrial inner membrane
17 63 0.617087551763504 1.13566498370941e-05 0.021 GO:0006200 ATP catabolic process

24 89 0.616024095582501 1.924740199118e-07 <0.001 GO:0031397
negative regulation of protein ubiquitina-
tion

23 86 0.61114511085871 4.04971652012907e-07 <0.001 GO:0016651
oxidoreductase activity, acting on NADH
or NADPH

27 103 0.599379377993909 6.42976552229558e-08 <0.001 GO:0016072 rRNA metabolic process
84 327 0.597134802233134 3.86637763010753e-21 <0.001 GO:0019866 organelle inner membrane

Continued on next page
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Table 3.3 – Continued from previous page
N X LOD P P adj attrib ID attrib name

24 93 0.590170688226641 4.68334780721795e-07 <0.001 GO:0051438
regulation of ubiquitin-protein ligase ac-
tivity

25 97 0.589412627207871 2.79036812385036e-07 <0.001 GO:0051340 regulation of ligase activity
28 109 0.587562019917053 5.91212587104247e-08 <0.001 GO:0000084 S phase of mitotic cell cycle
20 79 0.579289164068354 5.71262604161276e-06 0.012 GO:0071346 cellular response to interferon-gamma
141 582 0.575501427143487 5.37209201940123e-32 <0.001 GO:0071822 protein complex subunit organization
35 140 0.572325037803156 2.96216165946153e-09 <0.001 GO:0000082 G1/S transition of mitotic cell cycle

27 110 0.561161855618649 2.76881959100789e-07 <0.001 GO:0042770
signal transduction in response to DNA
damage

28 116 0.551583814959451 2.4384223848345e-07 <0.001 GO:0051320 S phase

19 79 0.550001609297223 2.1441603106869e-05 0.031 GO:0009206
purine ribonucleoside triphosphate
biosynthetic process

100 434 0.537107458537325 3.65671802133964e-21 <0.001 GO:0031966 mitochondrial membrane
31 132 0.536082594042894 1.10062427133423e-07 <0.001 GO:0090068 positive regulation of cell cycle process
22 95 0.528168311977894 9.49580519250266e-06 0.019 GO:0034341 response to interferon-gamma

84 371 0.523771651861378 1.85277099409276e-17 <0.001 GO:0006091
generation of precursor metabolites and
energy

130 595 0.513071456988699 5.70494731538591e-25 <0.001 GO:0005198 structural molecule activity

26 116 0.50961644963599 2.91400334562788e-06 0.007 GO:0031398
positive regulation of protein ubiquitina-
tion

148 687 0.508962926945213 1.09821996775926e-27 <0.001 GO:0044429 mitochondrial part

37 168 0.500349876744172 4.12597162657402e-08 <0.001 GO:0000377
RNA splicing, via transesterification re-
actions with bulged adenosine as nucle-
ophile

37 168 0.500349876744172 4.12597162657402e-08 <0.001 GO:0000398 nuclear mRNA splicing, via spliceosome
36 164 0.498410796185536 6.84854979223404e-08 <0.001 GO:0043623 cellular protein complex assembly

38 175 0.492543109861863 4.05723893001672e-08 <0.001 GO:0000375
RNA splicing, via transesterification re-
actions

27 126 0.484584970787029 4.69193568014889e-06 0.009 GO:0046034 ATP metabolic process

175 867 0.477792444174725 4.31717391375335e-29 <0.001 GO:0043933
macromolecular complex subunit organi-
zation

32 157 0.457121358455519 2.03558979738233e-06 0.005 GO:0000209 protein polyubiquitination
57 282 0.455331541986413 3.35174043037384e-10 <0.001 GO:0008380 RNA splicing
87 437 0.45206487497538 1.75634248577746e-14 <0.001 GO:0055114 oxidation-reduction process
31 154 0.450275487651611 3.84142188009438e-06 0.008 GO:0031396 regulation of protein ubiquitination

32 159 0.450199742241769 2.70953251758628e-06 0.006 GO:0043161
proteasomal ubiquitin-dependent protein
catabolic process

155 803 0.44828162002615 1.17127238506759e-23 <0.001 GO:0003723 RNA binding
32 160 0.446779218086837 3.11868915151585e-06 0.007 GO:0010498 proteasomal protein catabolic process
27 135 0.44673045980076 1.79130278352513e-05 0.028 GO:0005774 vacuolar membrane
239 1315 0.43236771896813 1.93513347789966e-32 <0.001 GO:0005739 mitochondrion
39 201 0.43074480120704 6.14144121470793e-07 <0.001 GO:0000075 cell cycle checkpoint
43 226 0.420501515091121 2.92681541907647e-07 <0.001 GO:0071156 regulation of cell cycle arrest
30 158 0.418585946292244 1.82741185723924e-05 0.028 GO:0044437 vacuolar part
57 304 0.414291886997772 6.22443660977404e-09 <0.001 GO:0000278 mitotic cell cycle

73 401 0.400691520310638 1.88837546257743e-10 <0.001 GO:0034622
cellular macromolecular complex assem-
bly

222 1296 0.39523148469997 2.51837746792813e-26 <0.001 GO:0034645
cellular macromolecule biosynthetic pro-
cess

226 1327 0.392809170439032 1.86450696466837e-26 <0.001 GO:0009059 macromolecule biosynthetic process
334 2084 0.38137706335828 1.33257319443321e-34 <0.001 GO:0044267 cellular protein metabolic process
334 2111 0.373898530461539 1.84879744335921e-33 <0.001 GO:0005829 cytosol
161 961 0.370923240921755 4.01275183856543e-18 <0.001 GO:0032774 RNA biosynthetic process
504 3431 0.370107849871159 4.0461986238786e-44 <0.001 GO:0032991 macromolecular complex
101 602 0.361160597240294 9.47442144063175e-12 <0.001 GO:0006396 RNA processing
766 6058 0.346864258263512 2.31238377684638e-47 <0.001 GO:0044444 cytoplasmic part
58 357 0.337821335867861 7.933880428251e-07 0.001 GO:0010564 regulation of cell cycle process
59 364 0.336711582120088 6.91212093849837e-07 0.001 GO:0006397 mRNA processing
144 911 0.336185023040326 3.85435400725073e-14 <0.001 GO:0005654 nucleoplasm
251 1662 0.330293674534452 1.10940941066799e-21 <0.001 GO:0016070 RNA metabolic process
313 2121 0.329217998390912 1.18114081249402e-25 <0.001 GO:0044249 cellular biosynthetic process
316 2160 0.324822918675263 2.91009865940903e-25 <0.001 GO:0090304 nucleic acid metabolic process
320 2232 0.313971532133542 4.41002855691382e-24 <0.001 GO:0009058 biosynthetic process
1145 11330 0.313948898323752 4.59005189412599e-31 <0.001 GO:0044424 intracellular part
75 485 0.313905177878569 1.5748417548981e-07 <0.001 GO:0022403 cell cycle phase

377 2686 0.312982629840953 4.90694955531477e-27 <0.001 GO:0006139
nucleobase, nucleoside, nucleotide and
nucleic acid metabolic process

686 5522 0.308771441881537 4.1087928647367e-37 <0.001 GO:0044446 intracellular organelle part
367 2644 0.304397651421782 2.77819227696323e-25 <0.001 GO:0019538 protein metabolic process
529 4046 0.302681908190103 8.82320727696583e-32 <0.001 GO:0044260 cellular macromolecule metabolic process
689 5601 0.302589536132723 8.22904448857063e-36 <0.001 GO:0044422 organelle part
712 5867 0.299367116917043 1.88823085526176e-35 <0.001 GO:0044237 cellular metabolic process
135 945 0.280373762273502 3.82813590337554e-10 <0.001 GO:0022414 reproductive process
74 511 0.279376163393885 2.44628059184637e-06 0.006 GO:0006974 response to DNA damage stimulus
969 9102 0.277956512781225 5.11225805494553e-30 <0.001 GO:0043229 intracellular organelle
969 9117 0.276313895789093 1.11162671743124e-29 <0.001 GO:0043226 organelle

403 3093 0.273819161695768 1.68049396494688e-22 <0.001 GO:0034641
cellular nitrogen compound metabolic
process
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108 765 0.270319977503456 4.55991397471596e-08 <0.001 GO:0022402 cell cycle process
99 701 0.269327927902864 1.66323414881123e-07 <0.001 GO:0007049 cell cycle
410 3199 0.265219890086891 1.5194034851802e-21 <0.001 GO:0006807 nitrogen compound metabolic process
556 4601 0.25742146969207 1.8068455687858e-24 <0.001 GO:0043170 macromolecule metabolic process
285 2171 0.257317984548616 7.98160838856529e-16 <0.001 GO:0043228 non-membrane-bounded organelle

285 2171 0.257317984548616 7.98160838856529e-16 <0.001 GO:0043232
intracellular non-membrane-bounded or-
ganelle

69 497 0.256916076214485 2.21805085904211e-05 0.031 GO:0005730 nucleolus
85 622 0.2504348652183 4.78113517987455e-06 0.01 GO:0006259 DNA metabolic process
744 6632 0.249054934285073 1.58723972093304e-25 <0.001 GO:0008152 metabolic process

293 2272 0.248502561040477 3.01319156248601e-15 <0.001 GO:0071842
cellular component organization at cellu-
lar level

295 2299 0.245967084736522 4.57315463821616e-15 <0.001 GO:0071841
cellular component organization or bio-
genesis at cellular level

98 729 0.243379241039335 1.87437352876668e-06 0.004 GO:0065003 macromolecular complex assembly
93 694 0.241149602052021 3.93342779914606e-06 0.008 GO:0016491 oxidoreductase activity
274 2153 0.238023679234234 1.58478501985632e-13 <0.001 GO:0044428 nuclear part
871 8242 0.235473646680484 5.82916610504252e-23 <0.001 GO:0043227 membrane-bounded organelle

870 8238 0.234562637103022 8.38290144947865e-23 <0.001 GO:0043231
intracellular membrane-bounded or-
ganelle

99 751 0.233280218653404 3.94595885765465e-06 0.008 GO:0046907 intracellular transport
665 5992 0.221831084147262 3.46559295245285e-20 <0.001 GO:0044238 primary metabolic process
102 803 0.214295076083374 1.41199427931906e-05 0.022 GO:0033554 cellular response to stress

99 783 0.211573308398039 2.28182618638875e-05 0.031 GO:0071844
cellular component assembly at cellular
level

344 2896 0.208867137566652 8.16942218480433e-13 <0.001 GO:0016043 cellular component organization

346 2923 0.20711459632924 1.09506306063704e-12 <0.001 GO:0071840
cellular component organization or bio-
genesis

329 2821 0.195993854311548 3.24914520945555e-11 <0.001 GO:0043234 protein complex
237 2006 0.191345208630818 1.2625912051491e-08 <0.001 GO:0031090 organelle membrane
1026 10840 0.168964395995212 1.74282758664301e-11 <0.001 GO:0009987 cellular process
485 4933 0.108855314264424 1.27790612421947e-05 0.021 GO:0005737 cytoplasm

Module 2
5 9 1.4353697859032 1.61126889116162e-05 0.024 GO:0008139 nuclear localization sequence binding
7 20 1.09388232798139 1.28535977541801e-05 0.018 GO:0051983 regulation of chromosome segregation

29 168 0.684180963922458 1.54004341495467e-10 <0.001 GO:0000377
RNA splicing, via transesterification re-
actions with bulged adenosine as nucle-
ophile

29 168 0.684180963922458 1.54004341495467e-10 <0.001 GO:0000398 nuclear mRNA splicing, via spliceosome

30 175 0.680816140112517 8.87046264555359e-11 <0.001 GO:0000375
RNA splicing, via transesterification re-
actions

38 282 0.558803234506848 4.52064927189642e-10 <0.001 GO:0008380 RNA splicing
19 141 0.555278310629005 1.0380427172764e-05 0.017 GO:0005681 spliceosomal complex
44 364 0.505813785001266 6.61426439925337e-10 <0.001 GO:0006397 mRNA processing
66 602 0.464516339086547 2.77728663822659e-12 <0.001 GO:0006396 RNA processing
32 288 0.460440562314741 9.75520192342185e-07 0.002 GO:0051301 cell division
62 584 0.446895852037615 5.12932632405468e-11 <0.001 GO:0016071 mRNA metabolic process
52 497 0.436204344115675 3.27009886602057e-09 <0.001 GO:0005730 nucleolus

33 351 0.378532533073338 2.40744755831632e-05 0.041 GO:0044419
interspecies interaction between organ-
isms

172 2153 0.343432744866356 1.75600448691817e-16 <0.001 GO:0044428 nuclear part
42 485 0.340242072283576 1.48503818757099e-05 0.022 GO:0022403 cell cycle phase
40 462 0.339711208044223 2.3766092104457e-05 0.04 GO:0044265 cellular macromolecule catabolic process
60 701 0.339160869975101 3.23571054989503e-07 0.001 GO:0007049 cell cycle
41 475 0.338432406345785 2.02295400933921e-05 0.034 GO:0044427 chromosomal part
68 803 0.336220984744933 7.65671927087538e-08 <0.001 GO:0003723 RNA binding
76 911 0.331218188924209 2.33893486630229e-08 <0.001 GO:0005654 nucleoplasm
43 511 0.326468203963555 2.35721317636639e-05 0.04 GO:0006974 response to DNA damage stimulus
44 530 0.320096499039325 2.63517822318679e-05 0.043 GO:0030529 ribonucleoprotein complex
590 11330 0.307725883035438 1.0960786202461e-16 <0.001 GO:0044424 intracellular part
128 1662 0.307694952226285 4.08803837662614e-11 <0.001 GO:0016070 RNA metabolic process
51 644 0.298647909108822 2.19483688586676e-05 0.035 GO:0051726 regulation of cell cycle
58 765 0.278965516407217 2.16486041316539e-05 0.035 GO:0022402 cell cycle process
152 2160 0.26839415907082 3.64000656801177e-10 <0.001 GO:0090304 nucleic acid metabolic process
151 2171 0.261862930845385 9.73365119250831e-10 <0.001 GO:0043228 non-membrane-bounded organelle

151 2171 0.261862930845385 9.73365119250831e-10 <0.001 GO:0043232
intracellular non-membrane-bounded or-
ganelle

340 5601 0.253862278441637 1.31291950589379e-14 <0.001 GO:0044422 organelle part
492 9102 0.250272137858337 4.30276700995675e-14 <0.001 GO:0043229 intracellular organelle
492 9117 0.248695876930274 6.1868252491176e-14 <0.001 GO:0043226 organelle

178 2686 0.244422165955063 9.13870908091538e-10 <0.001 GO:0006139
nucleobase, nucleoside, nucleotide and
nucleic acid metabolic process

332 5522 0.243714592261868 1.60539211670902e-13 <0.001 GO:0044446 intracellular organelle part

200 3093 0.237932293242852 4.47608150862857e-10 <0.001 GO:0034641
cellular nitrogen compound metabolic
process

204 3199 0.231396211719754 9.30860336734763e-10 <0.001 GO:0006807 nitrogen compound metabolic process
251 4046 0.231319523511239 5.73866479299139e-11 <0.001 GO:0044260 cellular macromolecule metabolic process
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449 8238 0.229250611380594 1.64011741005672e-12 <0.001 GO:0043231
intracellular membrane-bounded or-
ganelle

449 8242 0.228829514942579 1.79770699314044e-12 <0.001 GO:0043227 membrane-bounded organelle
338 5867 0.217174729554922 3.40468652787424e-11 <0.001 GO:0044237 cellular metabolic process
290 4933 0.212021859434929 3.43579358808612e-10 <0.001 GO:0005737 cytoplasm
302 5211 0.207147691965801 5.67529432661151e-10 <0.001 GO:0005634 nucleus
111 1743 0.20458125474222 1.63777858635897e-05 0.024 GO:0043412 macromolecule modification
266 4601 0.19325730820235 1.836736540134e-08 <0.001 GO:0043170 macromolecule metabolic process
363 6632 0.19076943584687 3.42220660572212e-09 <0.001 GO:0008152 metabolic process
328 5992 0.177849130815706 4.97783632875206e-08 <0.001 GO:0044238 primary metabolic process
174 3011 0.167727728807245 1.68644378475076e-05 0.031 GO:0010468 regulation of gene expression
315 6058 0.137883228026376 2.01099934629971e-05 0.034 GO:0044444 cytoplasmic part

Module 3
8 25 1.12174413109538 1.6195735819603e-06 0.002 GO:0051539 4 iron, 4 sulfur cluster binding
10 50 0.84991907137197 9.0161990136549e-06 0.021 GO:0051536 iron-sulfur cluster binding
10 50 0.84991907137197 9.0161990136549e-06 0.021 GO:0051540 metal cluster binding
25 229 0.538541159788376 7.47720629054225e-07 <0.001 GO:0051186 cofactor metabolic process
271 6058 0.166074173009115 2.78569620584793e-06 0.005 GO:0044444 cytoplasmic part
453 11330 0.161739187745443 1.86883086496289e-05 0.037 GO:0044424 intracellular part

Module 4
13 97 0.672080308928874 2.01477245308462e-05 0.047 GO:0005741 mitochondrial outer membrane
32 434 0.38218093135728 2.59169277455588e-05 0.05 GO:0031966 mitochondrial membrane
267 6058 0.209635231286387 1.1954907403548e-08 <0.001 GO:0044444 cytoplasmic part
430 11330 0.189685955412112 1.81000117796974e-06 0.003 GO:0044424 intracellular part
266 6401 0.167667578490431 3.97412665691163e-06 0.008 GO:0005515 protein binding
211 4933 0.164971820301435 1.42128334658729e-05 0.024 GO:0005737 cytoplasm

Module 5
7 33 1.07143232855034 1.02220662682094e-05 0.013 GO:0006695 cholesterol biosynthetic process
34 602 0.418505790853493 2.98488408837491e-06 0.005 GO:0006396 RNA processing
42 803 0.386267510008865 1.45554203385518e-06 0.003 GO:0003723 RNA binding
35 678 0.376246720272173 1.50758252204483e-05 0.044 GO:0044451 nucleoplasm part
74 1662 0.32717492580596 8.08519738698485e-08 <0.001 GO:0016070 RNA metabolic process
92 2160 0.316438423646489 1.22530842680858e-08 <0.001 GO:0090304 nucleic acid metabolic process

109 2686 0.302719794834586 5.16088110052742e-09 <0.001 GO:0006139
nucleobase, nucleoside, nucleotide and
nucleic acid metabolic process

204 5867 0.290215289462742 2.42264491073003e-11 <0.001 GO:0044237 cellular metabolic process
86 2153 0.279472007299701 7.06167821789315e-07 0.001 GO:0044428 nuclear part

258 8238 0.273394775085421 3.30641000342457e-10 <0.001 GO:0043231
intracellular membrane-bounded or-
ganelle

258 8242 0.272981776660256 3.51091215759553e-10 <0.001 GO:0043227 membrane-bounded organelle
320 11330 0.270756828023873 2.59329735790549e-08 <0.001 GO:0044424 intracellular part

117 3093 0.27018336330746 6.56451317805923e-08 <0.001 GO:0034641
cellular nitrogen compound metabolic
process

120 3199 0.267574242908932 6.5838967556536e-08 <0.001 GO:0006807 nitrogen compound metabolic process
274 9102 0.259905768442695 3.97303688891244e-09 <0.001 GO:0043229 intracellular organelle
145 4046 0.258957848074746 2.58310912976049e-08 <0.001 GO:0044260 cellular macromolecule metabolic process
274 9117 0.258358056899225 4.89474559380795e-09 <0.001 GO:0043226 organelle
186 5522 0.252387490202399 8.07568575286686e-09 <0.001 GO:0044446 intracellular organelle part
198 5992 0.249866826361352 8.08174185764168e-09 <0.001 GO:0044238 primary metabolic process
187 5601 0.24739223761693 1.47932676168125e-08 <0.001 GO:0044422 organelle part
212 6632 0.239108907629557 2.58709518947142e-08 <0.001 GO:0008152 metabolic process
155 4601 0.229008499074375 4.23085771940228e-07 <0.001 GO:0043170 macromolecule metabolic process
169 5211 0.214851860778109 1.14557794256476e-06 0.002 GO:0005634 nucleus
188 6058 0.198889582472837 3.92901841156595e-06 0.007 GO:0044444 cytoplasmic part

Module 6
5 17 1.35877762485371 1.27620339057008e-05 0.027 GO:0005680 anaphase-promoting complex

7 27 1.28109582819072 5.64148602718057e-07 0.001 GO:0007094
mitotic cell cycle spindle assembly check-
point

7 28 1.26038559665177 7.3990905561597e-07 0.004 GO:0045841
negative regulation of mitotic
metaphase/anaphase transition

7 28 1.26038559665177 7.3990905561597e-07 0.004 GO:0071173 spindle assembly checkpoint
7 28 1.26038559665177 7.3990905561597e-07 0.004 GO:0071174 mitotic cell cycle spindle checkpoint
7 30 1.22170492439836 1.23095671972835e-06 0.005 GO:0031577 spindle checkpoint

7 33 1.16944999653699 2.45864548304647e-06 0.007 GO:0030071
regulation of mitotic
metaphase/anaphase transition

7 33 1.16944999653699 2.45864548304647e-06 0.007 GO:0045839 negative regulation of mitosis
7 33 1.16944999653699 2.45864548304647e-06 0.007 GO:0051784 negative regulation of nuclear division
18 288 0.561314315261963 1.18040781186384e-05 0.026 GO:0051301 cell division

204 8238 0.251051414092351 1.67494198073935e-07 <0.001 GO:0043231
intracellular membrane-bounded or-
ganelle

204 8242 0.250640665799907 1.75182061275321e-07 <0.001 GO:0043227 membrane-bounded organelle
216 9102 0.231422137926905 1.80780431583472e-06 0.006 GO:0043229 intracellular organelle
216 9117 0.229882447927919 2.1050968158218e-06 0.007 GO:0043226 organelle
135 5211 0.208102879924293 2.05983907876377e-05 0.037 GO:0005634 nucleus

Module 8
3 4 2.15674334421143 1.64587987532083e-05 0.032 GO:0048280 vesicle fusion with Golgi apparatus
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5 21 1.31441473215979 1.74263922633301e-05 0.037 GO:0032201
telomere maintenance via semi-
conservative replication

8 35 1.28611338854416 6.73739625327887e-08 0.001 GO:0006261 DNA-dependent DNA replication
5 23 1.26467580787443 2.80631885844604e-05 0.047 GO:0000722 telomere maintenance via recombination

6 34 1.15088257068433 1.54366414227154e-05 0.024 GO:0010833
telomere maintenance via telomere
lengthening

8 69 0.935700200428791 1.48897081315905e-05 0.024 GO:0009411 response to UV
15 170 0.802685314737047 1.12157969185014e-07 0.001 GO:0006260 DNA replication
23 511 0.490955055548057 9.92989139304257e-06 0.019 GO:0006974 response to DNA damage stimulus
42 1327 0.340009071984013 1.98581541366046e-05 0.04 GO:0009059 macromolecule biosynthetic process

41 1296 0.338927033802861 2.55286781292076e-05 0.043 GO:0034645
cellular macromolecule biosynthetic pro-
cess

63 2160 0.318931266474648 1.75657887022238e-06 0.002 GO:0090304 nucleic acid metabolic process
128 5211 0.298549267749992 1.8238869432011e-08 <0.001 GO:0005634 nucleus
60 2153 0.292881834504383 1.38556689832231e-05 0.023 GO:0044428 nuclear part
100 4046 0.267683010803659 1.63739514172819e-06 0.002 GO:0044260 cellular macromolecule metabolic process

174 8238 0.263181580222692 4.66457450693039e-07 0.002 GO:0043231
intracellular membrane-bounded or-
ganelle

174 8242 0.262771810066496 4.85332067450148e-07 0.002 GO:0043227 membrane-bounded organelle
107 4601 0.239108491634204 1.07913454880254e-05 0.02 GO:0043170 macromolecule metabolic process
182 9102 0.22936103280645 1.25445382233209e-05 0.02 GO:0043229 intracellular organelle
182 9117 0.227824532081016 1.42589555343329e-05 0.023 GO:0043226 organelle

Module 10
190 11330 0.26726174432135 1.71596077751879e-05 0.032 GO:0044424 intracellular part

Module 14
20 1065 0.528808096440223 1.73407898205248e-05 0.032 GO:0044248 cellular catabolic process
33 2111 0.479914638806195 1.06712795272747e-06 <0.001 GO:0005829 cytosol

39 3093 0.388858388574349 1.71524549827148e-05 0.032 GO:0034641
cellular nitrogen compound metabolic
process

42 3431 0.382865420385352 1.42566606441697e-05 0.023 GO:0032991 macromolecular complex
60 5867 0.34446562764228 2.14508227397237e-05 0.032 GO:0044237 cellular metabolic process
61 6058 0.338468119322826 2.84679848054408e-05 0.041 GO:0044444 cytoplasmic part
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Table 3.4: Full list of Gene Ontology categories enriched in coexpressed gene modules
derived from a mirrored analysis of pool/split datasets. Gene Ontology enrichment in
modules was assessed using FuncAssociate2.0 (Berriz et al., 2009). A total of 16 modules were
detected

N X LOD P P adj attrib ID attrib name

Module 1
13 272 0.693095067094612 1.02007791233691e-05 0.011 GO:0006511

ubiquitin-dependent protein catabolic
process

13 279 0.68135455023532 1.33744095433394e-05 0.018 GO:0019941
modification-dependent protein catabolic
process

13 282 0.676415542913035 1.49811431033085e-05 0.019 GO:0043632
modification-dependent macromolecule
catabolic process

13 289 0.665098403683509 1.94061972015811e-05 0.024 GO:0051603
proteolysis involved in cellular protein
catabolic process

17 462 0.57616161468926 1.43352606692572e-05 0.018 GO:0044265 cellular macromolecule catabolic process
19 545 0.553524223505169 9.47597917000467e-06 0.009 GO:0009057 macromolecule catabolic process
29 1065 0.451649915259144 5.44374777913331e-06 0.007 GO:0044248 cellular catabolic process
50 2153 0.408372755551646 1.54662372619939e-07 ¡0.001 GO:0044428 nuclear part
38 1647 0.385284888523943 8.15733567738168e-06 0.007 GO:0006464 protein modification process
39 1743 0.371699071795165 1.23788499774497e-05 0.013 GO:0043412 macromolecule modification
75 4046 0.33429458014633 5.14482381026089e-07 ¡0.001 GO:0044260 cellular macromolecule metabolic process
93 5522 0.313764330996431 7.30843785397851e-07 ¡0.001 GO:0044446 intracellular organelle part
93 5601 0.304538452915935 1.46302793919708e-06 0.002 GO:0044422 organelle part
79 4601 0.296962579640552 5.07939215329675e-06 0.005 GO:0043170 macromolecule metabolic process
95 5867 0.292386561578076 3.34586773855207e-06 0.003 GO:0044237 cellular metabolic process
104 6632 0.29101237790736 3.17018865849522e-06 0.003 GO:0008152 metabolic process
96 5992 0.287467105557634 4.64261918086881e-06 0.005 GO:0044238 primary metabolic process

Module 3
5 16 2.01970458115929 9.51160735183834e-09 ¡0.001 GO:0016254

preassembly of GPI anchor in ER mem-
brane

6 30 1.76902612001682 5.55484070660725e-09 ¡0.001 GO:0018410
C-terminal protein amino acid modifica-
tion

5 25 1.76842092954302 1.11841352190966e-07 0.001 GO:0006501 C-terminal protein lipidation
5 49 1.43120717990547 3.66720733305651e-06 0.006 GO:0006497 protein lipidation
7 131 1.12827314119116 3.16442237797319e-06 0.005 GO:0043687 post-translational protein modification
22 1743 0.516764340612836 1.71498823237458e-05 0.023 GO:0043412 macromolecule modification

Module 9
19 2084 0.56988964370998 2.20527274140205e-05 0.031 GO:0044267 cellular protein metabolic process
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Table 3.6: Gene Ontology categories enriched in genes displaying splice site switching
between individual cells. Gene Ontology enrichment was assessed using FuncAssociate2.0 (Berriz
et al., 2009).

N X LOD P P adj attrib ID attrib name

7 18 1.60434572330591 7.81336494766272e-09 <0.001 GO:0030530
heterogeneous nuclear ribonucleoprotein
complex

6 22 1.38371032623861 1.0731443930779e-06 <0.001 GO:0000313 organellar ribosome
6 22 1.38371032623861 1.0731443930779e-06 <0.001 GO:0005761 mitochondrial ribosome
9 62 1.04144125075565 6.88184640563181e-07 <0.001 GO:0015934 large ribosomal subunit
10 79 0.972456465728994 6.10664091150019e-07 <0.001 GO:0071013 catalytic step 2 spliceosome
19 154 0.964236659283489 7.8714230213414e-12 <0.001 GO:0003735 structural constituent of ribosome

20 175 0.927300715975638 9.17354662099906e-12 <0.001 GO:0000375
RNA splicing, via transesterification re-
actions

19 168 0.92117404141009 3.70476457645963e-11 <0.001 GO:0000377
RNA splicing, via transesterification re-
actions with bulged adenosine as nucle-
ophile

19 168 0.92117404141009 3.70476457645963e-11 <0.001 GO:0000398 nuclear mRNA splicing, via spliceosome
15 141 0.888071082569232 1.03966880671155e-08 <0.001 GO:0005681 spliceosomal complex
16 159 0.861650703193511 7.48121263599197e-09 <0.001 GO:0005840 ribosome
23 243 0.838249153771732 1.25842265057125e-11 <0.001 GO:0006412 translation
46 530 0.826167157208287 9.02684713922854e-21 <0.001 GO:0030529 ribonucleoprotein complex
23 282 0.766509674540248 2.54718803100937e-10 <0.001 GO:0008380 RNA splicing
26 364 0.706261794294909 3.04918522987691e-10 <0.001 GO:0006397 mRNA processing
28 408 0.689368099675319 1.53848128981224e-10 <0.001 GO:0010467 gene expression
38 584 0.67579720156425 3.18781787872945e-13 <0.001 GO:0016071 mRNA metabolic process
47 803 0.636519902260068 1.87953754853827e-14 <0.001 GO:0003723 RNA binding
36 602 0.632953237795702 1.62794718956973e-11 <0.001 GO:0006396 RNA processing
16 277 0.597979679500433 1.35166171675457e-05 0.022 GO:0034660 ncRNA metabolic process
22 462 0.511423641446678 7.66202769258217e-06 0.015 GO:0044265 cellular macromolecule catabolic process
39 911 0.476845884038679 3.34218894462279e-08 <0.001 GO:0005654 nucleoplasm
24 545 0.47631618686561 1.09283168115262e-05 0.018 GO:0009057 macromolecule catabolic process
118 3431 0.473494407052489 1.56368496887015e-17 <0.001 GO:0032991 macromolecular complex
29 687 0.460527035699242 2.93531833594463e-06 0.005 GO:0044429 mitochondrial part
80 2160 0.454899179204351 5.73798891785767e-13 <0.001 GO:0090304 nucleic acid metabolic process
64 1662 0.453902252858483 4.77393199090586e-11 <0.001 GO:0016070 RNA metabolic process

51 1296 0.449261990101858 3.27437399406931e-09 <0.001 GO:0034645
cellular macromolecule biosynthetic pro-
cess

79 2153 0.448759965851525 1.38228172140963e-12 <0.001 GO:0044428 nuclear part
52 1327 0.448329514135066 2.57197941829179e-09 <0.001 GO:0009059 macromolecule biosynthetic process

94 2686 0.444930025696524 6.62602821448192e-14 <0.001 GO:0006139
nucleobase, nucleoside, nucleotide and
nucleic acid metabolic process

77 2111 0.443065370078769 4.00922406264811e-12 <0.001 GO:0005829 cytosol
127 4046 0.437107059343321 7.36675726742068e-16 <0.001 GO:0044260 cellular macromolecule metabolic process

102 3093 0.424687277579968 1.53499538750493e-13 <0.001 GO:0034641
cellular nitrogen compound metabolic
process

234 11330 0.410177502418009 4.26279474281887e-11 <0.001 GO:0044424 intracellular part
73 2121 0.408294011011211 2.6476698540441e-10 <0.001 GO:0044249 cellular biosynthetic process
102 3199 0.40626576617879 1.33115703600882e-12 <0.001 GO:0006807 nitrogen compound metabolic process
47 1315 0.398127144349952 2.71558632079032e-07 <0.001 GO:0005739 mitochondrion
157 5867 0.394560459760076 4.17387500074186e-14 <0.001 GO:0044237 cellular metabolic process
150 5522 0.390555837986407 8.85159181992679e-14 <0.001 GO:0044446 intracellular organelle part
74 2232 0.390317428579321 1.04923257025558e-09 <0.001 GO:0009058 biosynthetic process
131 4601 0.386021432185656 5.00037984912871e-13 <0.001 GO:0043170 macromolecule metabolic process
150 5601 0.381254965130809 3.18071089534335e-13 <0.001 GO:0044422 organelle part
157 6058 0.372860438339392 8.46004601459964e-13 <0.001 GO:0044444 cytoplasmic part
151 5992 0.342490468755501 4.80405598147904e-11 <0.001 GO:0044238 primary metabolic process
161 6632 0.334875288021427 1.12251899150943e-10 <0.001 GO:0008152 metabolic process
63 2084 0.331075785878351 7.59282101998268e-07 <0.001 GO:0044267 cellular protein metabolic process
184 8242 0.317619158465355 1.64375270407462e-09 <0.001 GO:0043227 membrane-bounded organelle

183 8238 0.311179434676407 3.27953523717327e-09 <0.001 GO:0043231
intracellular membrane-bounded or-
ganelle

194 9102 0.300093429975042 2.09541238702377e-08 <0.001 GO:0043229 intracellular organelle
194 9117 0.298556745854624 2.46813702747217e-08 <0.001 GO:0043226 organelle
70 2644 0.269207945316679 1.84621206416052e-05 0.04 GO:0019538 protein metabolic process
74 2821 0.267942614823057 1.34448891236763e-05 0.021 GO:0043234 protein complex
213 10840 0.265155481178129 2.70868933554443e-06 0.005 GO:0009987 cellular process
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Table 3.7: Read mapping statistics. Note that libraries with numbers lower than 12543 used
a different spike-in cocktail than other libraries and the correspondence between initial spike-in
amounts and final FPKM scores in the sequenced libraries was poor. For this reason, they were
excluded from analyses based on estimating absolute transcript abundances in copies per cell.

Library
Read
Length

Unique UniqueSplices Multi MultiSplices

12515 100-cell pool A 1x100 17,687,845 3,209,817 2,324,217 87,366
12516 100-cell pool B 1x100 19,196,833 3,613,603 2,472,612 116,124
12517 30-cell pool A 1x100 19,656,269 3,836,281 2,747,606 112,715
12518 30-cell pool B 1x100 15,906,819 3,105,647 2,209,219 107,243
12519 10-cell pool A 1x100 25,589,985 7,716,359 3,942,315 264,713
12520 10-cell pool B 1x100 14,033,035 3,831,207 2,172,320 92,664
12522 cell 183 1x100 13,444,432 4,123,615 1,991,506 151,473
12523 cell 184 1x100 18,553,787 6,282,207 2,753,213 162,393
12524 cell 185 1x100 15,306,477 4,973,962 2,375,825 123,920
12534 cell 186 1x100 9,412,759 1,792,734 1,104,103 92,146
12535 cell 187 1x100 12,021,473 2,593,517 1,762,078 122,152
12536 cell 188 1x100 6,173,793 1,609,714 751,818 35,935
12537 cell 189 1x100 8,900,605 2,552,063 1,195,651 71,165
12538 cell 190 1x100 11,976,901 3,061,070 1,578,373 114,265
12539 cell 191 1x100 4,894,790 990,183 687,469 55,952
12540 cell 192 1x100 8,586,601 2,191,767 1,312,434 70,208
12541 cell 193 1x100 11,615,819 2,810,842 1,636,014 75,938
12542 cell 194 1x100 9,299,741 2,543,984 1,388,630 61,370
12543 cell 195 1x100 9,051,228 1,583,943 1,172,717 52,683
12818 cell 200 1x100 9,465,272 2,903,793 1,338,444 87,282
12819 cell 205 1x100 11,895,334 3,486,064 1,184,543 59,413
12820 cell 208 1x100 13,034,342 2,346,996 1,418,030 120,778
12821 pool/split 5 1x100 9,152,130 2,394,362 1,520,080 76,965
12822 pool/split 6 1x100 13,938,165 3,517,926 2,286,058 113,187
12823 pool/split 7 1x100 11,217,362 1,872,905 1,154,032 73,843
12824 pool/split 8 1x100 11,822,904 2,135,005 1,364,032 70,389
13270 pool/split 3 219 1x100 7,416,424 4,799,669 1,463,631 457,029
13271 pool/split 4 220 1x100 8,421,706 5,262,489 1,644,668 496,781
13272 pool/split 9 225 1x100 12,782,172 4,509,292 1,480,617 427,615
13273 pool/split 10 226 1x100 10,325,385 6,582,179 2,100,134 641,196
13274 10ng RNA rep1 1x100 33,234,882 4,315,401 1,629,950 267,868
13275 10ng RNA rep2 1x100 36,981,036 5,266,981 1,704,651 301,449
13276 100pg RNA rep1 1x100 11,363,854 4,904,470 1,008,244 258,637
13277 100pg RNA rep2 1x100 34,939,583 6,750,980 2,212,161 442,062
13278 cell 204 1x100 20,631,514 11,290,949 3,418,238 921,764
13279 cell 207 1x100 10,926,463 4,949,640 1,664,688 490,150
13280 pool/split 232 1x100 21,240,282 9,537,592 2,722,244 726,943
13281 pool/split 233 1x100 25,425,429 9,576,495 2,510,136 703,065
13282 cell 235 1x100 10,167,950 3,677,729 966,782 191,523
13283 cell 236 1x100 18,782,295 7,784,497 2,210,674 572,837
13284 cell 237 1x100 25,766,827 8,914,958 2,235,457 594,889
13285 cell 238 1x100 16,334,009 6,842,776 2,351,813 602,952
13286 cell 239 1x100 19,717,157 5,801,008 2,473,230 595,738
13287 cell 240 1x100 21,881,195 8,373,245 2,386,125 645,571
13288 cell 242 1x100 19,165,078 6,146,306 1,338,990 330,167
13289 cell 243 1x100 24,802,270 9,575,191 2,885,175 744,245

Continued on next page
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Table 3.7 – Continued from previous page

Library
Read
Length

Unique UniqueSplices Multi MultiSplices

13290 cell 244 1x100 7,400,266 3,086,583 741,408 223,657
13291 cell 245 1x100 21,024,295 7,093,623 2,111,549 519,415
13292 pool/split 246 1x100 17,296,143 8,394,643 2,223,819 572,943
13294 pool/split 248 1x100 14,399,162 6,272,094 1,784,982 459,195
13295 pool/split 249 1x100 22,428,103 10,454,916 2,898,266 815,093
13296 pool/split 250 1x100 19,745,007 8,825,294 2,468,779 697,549
13297 pool/split 251 1x100 21,239,455 9,833,749 2,936,743 724,006
13298 pool/split 252 1x100 4,674,393 2,237,759 591,303 145,488
13299 pool/split 253 1x100 20,948,852 9,729,505 2,726,042 709,672
13300 10-cell pool 254 1x100 29,113,485 8,790,470 2,600,560 702,142
13301 11-cell pool 255 1x100 34,836,093 11,643,761 3,802,039 1,080,518
13302 100-cell pool 256 1x100 18,477,603 4,084,659 1,618,554 329,602
13303 100-cell pool 257 1x100 43,640,710 11,315,061 4,819,940 1,036,363
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4

Analysis of RNA-seq data from samples containing

a mixture of cells from multiple species

T
his chapter includes material that was previously published in:

“Raskatov JA, Nickols NG, Hargrove AE, Marinov GK, Wold B, Dervan PB. 2012. Gene expres-
sion changes in a tumor xenograft by a pyrrole-imidazole polyamide. Proc Natl Acad Sci U S A.
109(4):16041-16045. doi: 10.1073/pnas.1214267109

The experimental data in it was generated by Jevgeni Raskatov in the Dervan lab. I contributed
the computational approach to xenograft RNA-seq analysis. The paper is reprinted in Appendix D.

4.1 Introduction, Results
and Discussion

Multicellular organisms do not exist in isolation
but live in association with a very large number
of microorganisms (NIH HMP Working Group
et al. 2009; Human Microbiome Project Con-
sortium 2012), and they also encounter various
pathogens. A consequence of this is that the
transcriptome of many organs and tissues is not
purely the transcriptome of the host species but
a complex mixture of the transcriptomes of the
host and all other organisms living in association
with it. Understanding the dynamics and inter-
play of the combined transcriptome is of great
interest, and this is especially true about host-
pathogen interactions (Westermann et al. 2012).
Fortunately, the phylogenetic distance between
most pathogens and their multicellular hosts is
great, and it is relatively straightforward to an-
alyze their transcriptomes from the same pool
of RNA using RNA-seq, as the high level of se-
quence divergence means no or very few reads

map ambiguously to both genomes.

Xenografts, on the other hand, represent a
system, which presents much more significant
computational challenges to the characteriza-
tion of its transcriptome. A typical xenograft
model involves the grafting of human tumor cells
into immunosuppressed mice. Such systems are
widely used as models of human cancers in drug
development (Sano & Myers 2009; van Weerden
et al. 2009; Tentler et al. 2012; Luconi & Man-
nelli 2012), and accurately assessing transcrip-
tional changes in response to drug treatments
is therefore of high importance. The challenge
is that host cells often invade the xenograft (al-
though the degree to which this is happening
varies depending on the specifics of the tumor
and the host tissue) and thus even careful isola-
tion of xenograft tissue from the host results in a
mixture of mouse and human cells. Despite some
70 million years of divergence, mouse and hu-
man genes retain significant sequence homology
(Mouse Genome Sequencing Consortium 2002)
and assignment of short reads is not always un-
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Figure 4.1: Strategy for the simultaneous quantification of dual-species (in this case,
mouse and human) RNA-seq data. The sequences of mouse and human transcripts are ex-
tracted from the corresponding genomes and annotation files, and a combined Bowtie (Langmead
et al. 2009) index for the two transcriptomes is built. In this case, the refSeq annotations were used
(Pruitt et al. 2009), downloaded from the UCSC Genome Browser. Sequencing reads from xenograft
RNA-seq experiments are then aligned against this combined index, allowing reads to map to an
unlimited number of locations. The resulting alignments are used for simultaneous quantification of
both transcriptomes using eXpress. The quantification values are then used for downstream analysis,
either as FPKMs, or for assessment of differential expression using DESeq (Anders & Huber 2010);
in the latter case the “effective counts” values are used.
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Table 4.1: Percentage of reads mapping to hg19 or mm9 in the A549-luc-C8 xenograft-
derived RNA-seq samples as well as pure mouse and human samples. Read were mapped
separately to the mouse (mm9) and human (hg19) genomes using TopHat. The nearly equal number
of reads mapping to each genome in the xenograft samples compared to the lower fraction of reads
mapping to the other genome in A549 cells and in the mouse spleen sample indicated the presence
of a significant fraction of mouse cells in the xenografts.

Sample/Condtion Number of reads % mapping
to hg19

% mapping
to mm9

XenoVehicle 1 35,478,968 59.5 42.9
Xeno Vehicle 2 50,839,514 36.5 27.5
Xeno Vehicle 3 50,150,429 59.2 46.3
Xeno Treated 1 54,437,744 59.5 43.3
Xeno Treated 2 49,087,273 39.7 28.9
Xeno Treated 3 34,553,534 60.4 44.4
A549 in vitro 35,187,689 83.0 11.9
SCID-bg spleen 34,932,537 11.9 95.8

ambiguous, potentially confounding quantifica-
tion of gene expression changes in the xenograft
(Conway et al. 2012; Valdes et al. 2013; Rossello
et al. 2013). On the other hand, the presence
of mouse cells is also a potential benefit, as in a
xenograft containing a large proportion of nor-
mal host cells, RNA-seq allows in principle the
simultaneous measurements of gene expression
changes in both tumor and normal cells. This
can be illuminating about the differences be-
tween the effects of the drug tested on normal
(host) and tumor (xenograft) cells.

Another system where the same problem is
encountered are heterokaryons derived from the
fusion of cells from two species (for example,
mouse emryonic stem cells and human fibrob-
lasts, leading to reprogramming of the latter into

a pluripotent stem cell state; Blau et al. 1983;
Blau & Blakely 1999), where it is even more pro-
nounced as the proportion of the transcriptome
in the sample deriving from each species is ap-
proximately equal. Such a system was studied
by Brady et al. 2013, whose solution to deal-
ing with reads mapping to both species was to
simply discard them.

Several other studies in recent years have also
addressed the problem. Bradford et al. 2013
studied tumor and host changes in gene expres-
sion after treatment of xenografts the VEGFR
tyrosine kinase inhibitor cediranib. Their solu-
tion was also to map reads to each species sep-
arately and discard the ambiguous ones. This
was also the essence of the approach adopted
by Rossello et al. 2013, who studies small cell

Table 4.2: Comparison of qRT-PCR and RNA-seq of A549-luc-C8 tumor xenograft
gene expression levels. qRT-PCR measurements are normalized to GUSB as the housekeeping
gene, with three independent experiments with N = 5 animals per treatment condition averaged.
Arrows indicated the direction of expression change between the untreated and treated condition (⇓
indicates downregulation upon treatment while ⇑) corresponds to upregulation

Gene Fold change (qPCR) Fold change (RNA-seq)

ATM ⇓1.5 ± 0.2 ⇓1.5 (p > 0.05)
NPTX1 ⇓3.3 ± 0.6 ⇓2.9 (p < 0.001)
ROBO1 ⇓1.5 ± 0.2 ⇓1.7 (p > 0.05)
MMP28 ⇑1.5 ± 0.3 ⇑2.0 (p < 0.05)
EGFR ⇓1.2 ± 0.2 ⇓1.3 (p > 0.05)
CCL2 ⇓2.3 ± 0.4 ⇓1.7 (p < 0.001)
SERPINE1 ⇓2.0 ± 0.2 ⇓1.8 (p < 0.001)
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lung cancer xenografts, and by Kawahara et
al. 2012, who studied the mixed transcriptome
of rice (Oryza sativa) and the fungal pathogen
Magnaporthe oryzae.

A tool specifically designed to classify reads
from xenograft samples called Xenome has been
developed (Conway et al. 2012). It is based
on decomposing the transcriptomes of the two
species into k-mers (the set of all k-mers in a
larger sequence or set of sequences consists the
set of all subsequences of length k found in it)
and classifying the reads into originating from
the host, originating from the xenograft, am-
biguous or originating from neither. Once as-
signed, the reads can then be used for subsequent
species-specific mappings and analysis. How-
ever, this approach only classifies reads as am-
biguous rather than actually attempting to as-
sign them to a given species.

I developed what is in my opinion a much
simpler and more elegant solution to the prob-
lem, one that uses all reads, assigns them to
species, performs proper FPKM normalizations,
and does not involve a complex read process-
ing pipeline, by adopting the eXpress tool for
isoform-level quantification of RNA-seq data
(Roberts & Pachter 2013). I discussed eXpress
in a prior chapter so I will not revisit how it
works; for the purposes of this chapter it is
necessary to note that eXpress was specifically
designed to deconvolve the expression levels of
transcripts that are highly similar to each other
(such as the individual isoforms of a gene and
even allelic variants), and to do so in transcrip-
tomic (i.e. only the sequences of spliced tran-
scripts) rather than genomic space. Thus it is
ideally suited for the analysis of samples con-
taining a mixture of the transcriptomes of mul-
tiple species such as xenografts, and also poten-
tially metagenomes and metatranscriptomes. At
the time of writing this text, I am not aware of
any study that has actually used it for the anal-
ysis of metagenomic/metatranscriptomic sam-
ples, thus our results constituted the first proof-
of-principle study confirming the utility of the
approach to this kind of problems.

We studied the effect of a DNA-binding
pyrrole-imidazole polyamides (designed to tar-
get 5-WGGWWW-3 sequence motifs) on a
xenograft of the A549 cancer cell line onto im-
munocompromised SCID mice (Raskatov et al.,
2012). Such polyamides are of potential ther-
apeutic interest as they can bind to DNA se-
quences occupied by transcription factors driv-

ing the proliferation of cancer cells, outcom-
pete them and antagonize their action (Der-
van & Edelson 2003; Chenoweth & Dervan PB
2009; Nickols & Dervan 2007; Muzikar et al.
2009). The goal of the study was to exam-
ine the transcriptional changes in the xenograft
upon polyamide treatment. However, we faced
the problem of the xenograft tissue containing a
significant number of host cells, which can po-
tentially confound the quantification of gene ex-
pression in human cells (see Table 4.1). To re-
solve that problem I devised the pipeline out-
lined in Figure 4.1. It consists of extracting
the transcriptome sequences for both the human
and mouse genome, merging them together, cre-
ating a Bowtie index for the merged set of se-
quences, then mapping RNA-seq reads to it and
quantifying expression levels based on the re-
sulting alignments using eXpress. Subsequently,
we used the “effective counts” generated by eX-
press and DESeq (Anders & Huber 2010) to as-
sess changes in gene expression in both species.
We identified 615 differentially expressed human
genes. Notably, we also found 1338 mouse genes
that were differentially expressed between the
two conditions. We selected several human genes
for orthogonal testing of expression changes us-
ing qPCR and species-specific human primers
and found excellent agreement between the fold
changes estimated from RNA-seq data and those
calculated using qPCR (Table 4.2), underscoring
the usefulness of the eXpress-centered computa-
tional approach for analyzing dual- and multi-
species RNA-seq data.

4.2 Methods

4.2.1 RNA-seq Sample
Preparation

Double polyA-selection was used in order to en-
rich for mRNA. RNA-seq libraries were prepared
using standard Illumina reagents and protocols
(Mortazavi & Williams et al. 2008). All exper-
iments were carried out in triplicates and 35-50
×106 single-end sequences of 50 bp were gener-
ated for each library.

4.2.2 RNA-seq Data Processing

Sequencing data were mapped to a combined
human and mouse transcriptome index (using
the hg19 and mm9 refSeq annotations) using
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Bowtie version 0.12.7 (Langmead et al. 2009)
with the following settings: -v 2 -a, i.e. allow-
ing for two mismatches and an unlimited num-
ber of locations a read can map to. Alignments
were quantified on the transcript level using eX-
press, version 1.0.0 (Roberts & Pachter 2013).

For each gene the quantification values of all
its transcripts were summed and the eXpress-
determined “effective counts” were used as input
for differential expression analysis using DESeq
(Anders & Huber 2010).
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Part II

Functional Genomics of Organelles
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T
his part contains four chapters de-
scribing the functional genomic studies
of proteins associated with organellar
DNA. It grew out of a collaboration

with the Chan lab at Caltech, in which the goal
was to map the occupancy of the TFAM pro-
tein over the mitochondrial nucleoid in human
cells. The results of it are described in the first
chapter here. While working on this problem
we noticed that many nuclear transcription fac-
tors assayed by ENCODE exhibited strong en-
richment over some areas of the mitochondrial
genomes. We investigated the phenomenon in
depth, which resulted in a study of the binding

of nuclear transcription factors to mitochondrial
DNA in animal genomes, described in the third
chapter in this part. I then carried out a similar
analysis on published ChIP-seq data in plants,
which contain both a mitochondrial and a plas-
tid genome. The results from it are presented in
the fourth chapter. In parallel, we extended our
TFAM study to other proteins involved in mito-
chondrial transcription and replication, the oc-
cupancy of which we mapped in a couple of EN-
CODE cell lines in collaboration with the Myers
lab at the HudsonAlpha Institute of Biotechnol-
ogy, with the results detailed in the second chap-
ter.
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5

Genome-Wide Analysis Reveals Coating of the Mi-

tochondrial Genome by TFAM

M
ost of the material in this chapter was published as:

Wang YE, Marinov GK, Wold BJ, Chan DC. 2013. Genome-wide analysis reveals coat-
ing of the mitochondrial genome by TFAM. PLoS ONE 8(8):e74513. doi: 10.1371/jour-

nal.pone.0074513

The experimental data in it was generated by Yun Elisabeth Wang in the Chan lab. I contributed the
computational analysis. The paper is reprinted in Appendix H.

Abstract

Human mitochondria contain a 16.6
kb circular-mapping genome encoding 13
proteins as well as mitochondrial tRNAs
and rRNAs. Copies of the genome are
organized into nucleoids containing both
DNA and proteins, including the machin-
ery required for mtDNA replication and
transcription. The transcription factor
TFAM is critical for initiation of tran-
scription and replication of the genome,
and is also thought to perform a pack-
aging function. Although specific bind-
ing sites required for initiation of tran-
scription have been identified in the D-
loop, little is known about the character-
istics of TFAM binding in its nonspecific
packaging state. In addition, it is un-
clear whether TFAM also plays a role in
the regulation of nuclear gene expression.
We investigated these questions by using
ChIP-seq to directly localize TFAM bind-
ing to DNA in human cells. Our results
demonstrated that TFAM uniformly coats
the whole mitochondrial genome, with no
evidence of robust TFAM binding to the
nuclear genome and represent the first di-

rect assessment of TFAM binding on a
genome-wide scale.

5.1 Introduction

Mitochondria are essential eukaryotic organelles,
serving as the epicenter of ATP production in
the cell through oxidative phosphorylation. To
perform this bioenergetic function, mitochon-
dria utilize gene products encoded by the mi-
tochondrial genome, a circular DNA that is
16.6 kb long. This genome is organized into
DNA/protein structures termed nucleoids (Bo-
genhagen et al., 2008). Mitochondrial DNA
(mtDNA) encodes thirteen components of the
electron transport chain, as well as 22 tRNAs
and two ribosomal RNA genes. These gene
products are essential for the proper function
of the respiratory chain, and therefore mainte-
nance of mtDNA levels and sequence fidelity is
essential for cellular bioenergetics. In a human
cell, there are hundreds to thousands of copies
of the mtDNA genome (Bogenhagen & Clay-
ton, 1974; Satoh & Kuroiwa, 1991). Damage or
depletion of mtDNA causes numerous inherited
disorders, including Alpers Disease, ataxia neu-
ropathy spectrum, and progressive external oph-
thalmoplegia (Suomalainen et al., 2010; Stumpf
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Figure 5.1: Characterization of TFAM monoclonal antibodies. (A) Immunoprecipitation
of TFAM from cell lysates. HeLa cell lysate was applied to sheep anti-mouse Dynabeads conjugated
to anti-Myc, 20G2C12 TFAM antibody, 20F8A9 TFAM antibody, or a 50/50 mixture of 20G2C12
and 20F8A9 TFAM antibodies The labeled bands are: 1) Antibody heavy chain; 2) antibody light
chain; 3) TFAM. (B) Western blot using the 20G2C12 antibody detects a ∼23kDa band. (C and D)
Immunocytochemistry showing TFAM localization. Mitochondria were identified by PPIF staining;
mtDNA was identified by anti-DNA staining. There was no evidence for nuclear localization of
TFAM using either antibody.
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Figure 5.2: ChIP-seq analysis of genome-wide TFAM binding (A) Overview of compu-
tational processing of data. Reads were trimmed to 36 bp and then either mapped against the
mitochondrial genome (chrM), or the complete hg19 version of the genome. After removing multi-
reads and alignments to the mitochondrial genome, peaks in the nuclear genome were called using
MACS2. (B) The proportion of sequencing reads mapping to chrM in ChIP and input datasets. All
replicates of the ChIP-seq resulted in at least 30% of reads mapping to the mitochondrial genome,
much greater than the 0.4-1.9% of reads mapping to mtDNA in the input datasets. Replicates 1-3
were performed using the 20G2C12 antibody, while Replicate 4 was performed using the 20F8A9
antibody.

et al., 2013). Furthermore, loss and damage
to mtDNA has been implicated in cardiovascu-
lar disease (Sugiyama et al., 1991; Ide et al.,
2001; Karamanlidis et al., 2010; Karamanlidis
et al., 2011), diabetes (Maassen et al., 2004;
Simmons et al., 2005; Gauthier et al., 2009),
neurodegenerative disorders such as Alzheimers
(Coskun et al., 2004; Coskun et al., 2012), and

aging (Corral-Debrinski et al., 1992; Trifuvonic
& Larsson, 2008). Strikingly, increasing mtDNA
copy number promotes cell survival or function
in many models of disease associated with de-
creased mtDNA abundance, such as diabetes
(Gauthier et al., 2009; Suarez et al., 2008), ag-
ing (Hayashi et al., 2008), Alzheimer’s (Xu et
al., 2009), and Parkinson’s (Keeney et al., 2009;
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Piao et al., 2012). Thus, it is critical to under-
stand how mtDNA copy number and integrity
are maintained.

Mitochondrial transcription factor A
(TFAM) is a DNA binding protein that plays
multiple roles in regulating mtDNA function. As
a sequence-specific transcription factor, it binds
upstream of the light strand promoter (LSP)
and heavy strand promoter 1 (HSP1) to acti-
vate initiation of transcription. At these sites,
the footprint of TFAM binding is ∼22 bp long
(Fisher & Clayton, 1998; Ngo et al., 2011). As a
result, TFAM is essential for production of gene
products from the mitochondrial genome. In
addition, TFAM is required for normal mtDNA
copy number, because RNA primers generated
from LSP are used to prime mtDNA replica-
tion (Chang & Clayton, 1984; Chang & Clay-
ton, 1985). Mice heterozygous for a knockout
of TFAM exhibit not only an expected reduc-
tion (22%) in mitochondrial transcript levels in
the heart and kidney, but also a universal 34%
reduction in mtDNA copy number across all as-
sayed tissues. Furthermore, homozygous knock-
out mice have no detectable levels of mtDNA
and die during embryogenesis (Larsson et al.,
1998), highlighting the importance of TFAM in
maintenance of mtDNA levels and in cellular
and organismal viability.

Apart from its sequence-specific functions,
TFAM is thought to organize the mtDNA
genome by coating it in a nonspecific man-
ner. Although how TFAM packages mtDNA is
not well-understood, it is known to bind non-
specifically to DNA (Fisher et al., 1989) and
is estimated to be sufficiently abundant to coat
the genome completely (Alam et al., 2003; Ek-
strand et al., 2004; Kaufman et al., 2007). One
model suggests that nonspecific binding radi-
ates from the TFAM LSP binding site, which
acts as a nucleation site for subsequent cooper-
ative binding in a phased pattern to yield an
inter-genome homogeneous pattern of binding
(Fisher et al., 1992; Ghivizzani et al., 1994). The
packaging function of TFAM appears to have
important consequences for maintenance of the
mtDNA genome. A TFAM variant that is de-
ficient in transcriptional activation but compe-
tent in DNA binding is capable of preventing
mtDNA depletion (Kanki et al., 2004). There-
fore, as a prominent component of mtDNA
nucleoids, TFAM appears to coat the mito-
chondrial genome, perhaps protecting it from
turnover or deleterious damage.

Despite the importance of the associations
of TFAM with mtDNA in the maintenance of
mtDNA integrity and in cellular viability, these
interactions have not been characterized in vivo.
Therefore, to capture a high-resolution profile
of TFAM-mtDNA interactions across the en-
tire mitochondrial genome, we performed chro-
matin immunoprecipitation followed by mas-
sively parallel sequencing (ChIP-seq) (Johnson
et al., 2007) for TFAM in human HeLa cells.

5.2 Results

5.2.1 Detection of TFAM-DNA
interactions using ChIP-seq

To characterize TFAM binding to both the mi-
tochondrial and nuclear genomes in an unbi-
ased manner, we performed ChIP-seq targeting
TFAM in HeLa cells. Because ChIP-seq data
is highly dependent on the use of high-quality
antibodies, generated two new TFAM mono-
clonal antibodies (20G2C12 and 20F8A9) that
efficiently immunoprecipitated TFAM were gen-
erated and characterized (Figure 5.1A). Both of
these antibodies gave clean mitochondrial and
nucleoid signals in immunofluoresecence experi-
ments with cultured HeLa cells (Figure 5.1C,D).
The 20G2C12 antibody also performed well in
Western blots of whole-cell lysates, recognizing
a single protein band of ∼23 kD (Figure 5.1B).

Given the high efficiency of 20G2C12 in
immunoprecipitating TFAM, as well as its
high specificity, we used it to capture TFAM-
associated DNA fragments for ChIP-seq analy-
sis. DNA was sonicated prior to immunoenrich-
ment and size-selected prior to library building
so that the average fragment length of the fi-
nal library was centered around 200 bp, a frag-
ment distribution allowing for high-resolution
deconvolution of binding events. We generated 3
replicates and matching controls. The sequenc-
ing depth of all samples was between 18 million
and 48 million mappable reads, which is gener-
ally sufficient for comprehensive identification of
transcription factor binding sites as shown be-
fore (Landt, Marinov & Kundaje, 2012).

A common concern with ChIP-seq datasets
is the variability of enrichment for true bind-
ing events as compared to background. In a
typical ChIP-seq experiment, a minority of se-
quencing reads originates from binding events,
with the majority representing random genomic
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Figure 5.3: Coating of the mitochondrial genome by TFAM in HeLa cells. Circos plot of
plus strand and minus strand TFAM ChIP-seq and input read density signal over chrM. (A, E) An-
notation of protein coding (green on forward/heavy strand, red on reverse/light strand), ribosomal
RNAs (yellow) and tRNAs (blue on forward/heavy strand, grey on reverse/light strand) transcripts.
(B) D-loop (black), LSP promoter (large red tile), known LSP TFAM binding site (small red tile),
HSP promoter (large blue tile), known HSP TFAM binding site (small blue tile), and origins of heavy
strand replication (Ori-b, orange tile; OH , yellow tile). (C) TFAM ChIP-seq signal on forward (red)
and reverse (blue) strands. (D) Input signal on forward (red) and reverse (blue) strands. (F) Origin
of light strand replication (yellow tile). Note that the input signal is exaggerated 60-fold relative to
the ChIP-seq signal in order to visualize coverage irregularities. The signal from the TFAM ChIP-seq
largely follows that of the input, indicating generalized binding across the mitochondrial genome.
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Figure 5.4: Comparison of profiles of TFAM binding to mitochondrial genome. Circos
plots (A) of TFAM ChIP-seq experiments: (1) 20F8A9 antibody ChIP-Seq; (2) 20G2C12 replicate
1; (3) 20G2C12 replicate 2; (4) 20G2C12 replicate 3. Read profiles are very similar across replicates
and antibodies.

DNA. Even for the same DNA binding factor,
large variations in the strength of enrichment
can be observed, and therefore it is critical to as-
sess the degree of enrichment before downstream
analysis. A number of ChIP-seq quality control
metrics have been developed (Landt, Marinov
& Kundaje, 2012) for nuclear transcription fac-
tors. However, TFAM is expected to bind to the
mitochondrial genome, which has very different
characteristics from the nuclear genome. In ad-

dition, it is predicted to bind both in the classi-
cal localized manner (Kharchenko et al, 2008) as
well as broadly across the mitochondrial genome.
As a result, metrics for evaluating nuclear tran-
scription factors are not well-suited for analysis
of TFAM binding data. We therefore examined
the fraction of sequencing reads in our libraries
mapping to the mitochondria as a proxy for the
enrichment of TFAM binding events. Strikingly,
between 30% and 75% of TFAM ChIP-seq reads
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Figure 5.5: Absence of TFAM binding to the nuclear genome. (A) Cross-correlation plot
of input DNA computed over the nuclear genome. (B) Cross-correlation plot of TFAM ChIP-seq
computed over the nuclear genome. (C) Distribution of ChIP-seq reads mapping to the plus and
minus strand around called binding sites in a ChIP-seq dataset for the NRSF transcription factor
(Schoenherr & Anderson, 1995) in HeLa cells, generated by the ENCODE consortium (ENCODE
Project Consortium, 2011, ENCODE Project Consortium, 2012). (D) Distribution of TFAM ChIP-
seq reads mapping to the plus and minus strand around called binding sites indicates lack of real
binding sites. (E) No ChIP-seq enrichment around the promoter of the SERCA2/ATP2A2 gene,
previously suggested to be a TFAM target.

mapped to the mitochondrial genome, while less
than 2% of reads mapped to the mitochondrial
genome in the input samples, indicating that our
TFAM ChIP-seq datasets are indeed highly en-
riched for TFAM binding events (Figure 5.1B).

We note that 75% ChIP enrichment is extremely
high (in fact, practically unprecedented) for any
transcription factor dataset (Landt, Marinov
& Kundaje, 2012), thus underscoring the high
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experimental quality of our datasets.
Because partial copies of the mitochondrial

genome are also present in the nuclear genome,
not all reads originating from mtDNA can be
mapped uniquely. Therefore, we characterized
TFAM binding to mtDNA and to the nuclear
genome separately. We analyzed mitochon-
drial binding events by aligning sequencing reads
to the mitochondrial genome alone (restricting
our analysis to reads mapping perfectly with-
out any mismatches to further increase mapping
accuracy), and analyzed binding to the nuclear
genome by aligning only the reads which did not
map to the mitochondrial genome, as outlined in
Figure 5.2A. For a standard nuclear transcrip-
tion factor, this approach may cause some reads
originating from the nuclear genome to artifi-
cially map to the mitochondrial genome. How-
ever, given that TFAM is known to bind to the
mitochondrial genome and the extremely high
enrichment for TFAM binding to mtDNA in our
TFAM ChIP-seq libraries, this should not be a
significant confounding factor.

5.2.2 TFAM coats the
mitochondrial genome

As discussed above, TFAM has not only been
proposed to bind specifically to well-defined
binding sites in the D-loop, but has also been
suggested to play a nonspecific packaging role
in the nucleoid that is essential for mtDNA in-
tegrity. However, little is known about the pat-
tern of non-specific binding of TFAM to the mi-
tochondrial genome. Localized binding at the
D-loop and diffuse binding across the rest of the
genome are expected to result in distinct ChIP-
seq signal profiles. Localized, “point-source”
binding to DNA results in an asymmetric dis-
tribution of reads mapping to the forward and
reverse strand around the binding site of the
protein (Kharchenko et al, 2008, Pepke et al,
2009), while diffuse binding does not produce
such strand asymmetry.

To characterize TFAM binding to mtDNA,
we examined the forward and reverse strand read
distribution after mapping TFAM ChIP-seq and
input library reads to the mitochondrial genome.
Strikingly, we did not observe regions of obvi-
ous enrichment and strand asymmetry in the D-
loop; in particular, we did not see specific bind-
ing at the predicted HSP1 and LSP sites. On the
whole, the TFAM ChIP-seq signal was broadly
distributed over the whole mitochondrial chro-

mosome, and while coverage was not perfectly
uniform, the amplitude of the non-uniformity
was not significant and the signal profile closely
tracked that of the input sample (Figure 5.3).
The low level of non-uniformity likely results
from sequencing biases, which has been docu-
mented to skew coverage (Dohm et al., 2008;
Ross et al., 2013). Because our libraries were
carefully size-selected for fragments in the 200
bp range, discrete TFAM binding sites would
be expected to yield discrete signal localizations.
Therefore, we interpret these results as evidence
for the uniform coating of the whole mitochon-
drial genome by TFAM. We observed one re-
gion of apparent localized enrichment exhibit-
ing strand asymmetry in the ND2 ORF near the
origin of light strand replication (OL) (Figure
5.2F), which we discuss in the Discussion sec-
tion.

To further verify our results, we carried out
ChIP-seq against TFAM with a second TFAM
monoclonal antibody, 20F8A9. We obtained
similar results (Figure 5.4) and found significant
correlation between the 20F8A9 dataset and the
three datasets obtained from the 20G2C12 anti-
body datasets (p < 0.0001).

5.2.3 No evidence for binding to
the nuclear genome

Previous studies have suggested that TFAM can
be found in the nucleus and that it modulates
the transcription of nuclear genes. In rat neona-
tal cardiac myocytes, TFAM was found to bind
to the promoter of SERCA2, the homolog of
human sarco(endo)plasmic reticulum calcium-
ATPase 2 (ATP2A2 ), and was implicated in reg-
ulating its transcription (Watanabe et al, 2011).
Given the extremely high degree of TFAM bind-
ing enrichment in our datasets, any robust nu-
clear TFAM binding events should be readily
detectable. To analyze nuclear binding, we ex-
cluded all sequencing reads mapping to the mi-
tochondrial genome and used the resulting set of
reads to identify putative TFAM binding sites.
We first looked for significant global read cluster-
ing using cross-correlation between reads map-
ping to the forward and the reverse DNA strands
(Kharchenko et al, 2008, Landt, Marinov &
Kundaje, 2012). Cross-correlation plots for in-
put samples and for TFAM ChIP-seq datasets
were indistinguishable from each other (Figure
5.5A,B). Next, we called putative TFAM binding
sites using MACS2 (Zhang et al, 2008). Using
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default settings (corresponding to a q-value cut-
off of 10−2), we identified 72, 137 and 153 sites
respectively for the three replicates generated
with antibody 20G2C12, and a single site for the
20F8A9 antibody. However, manual inspection
of each of the identified sites revealed that all
were likely to represent artifacts, mostly asso-
ciated with repetitive DNA sequences, as none
had the expected strand asymmetry of read dis-
tribution around a binding site. Instead, the two
strand profiles at each site were identical (sum-
marized in Figure 5.5D, with the classic nuclear
transcription factor NRSF shown for compari-
son in Figure 5.5C), and numerous unmappable
regions and repetitive elements were present in
the immediate vicinity of many of the called
sites. Inspection of the ATP2A2 gene revealed
no TFAM enrichment neither in the promoter
region nor anywhere else in the neighborhood of
the gene (Figure 5.5E). Furthermore, we did not
detect nuclear localization of TFAM in our cells
(Figure 5.1C). Therefore, in HeLa cells under
normal growth conditions, we find no evidence
for specific binding of TFAM to nuclear target
genes.

5.3 Discussion

Previous in vitro studies have suggested that
TFAM binds specifically to LSP and HSP1, and
that it may also bind nonspecifically in a phased
manner. Furthermore, evidence has been pre-
sented for its nuclear localization and action as
a canonical nuclear transcription factor in rat
neonatal cardiac myocytes. However, no di-
rect genome-wide measurements of TFAM bind-
ing have been previously reported. Our TFAM
ChIP-seq data reveal very high enrichment for
reads mapping to the mitochondrial genome,
but a binding pattern that largely mirrors the
read distribution observed in the input DNA,

suggesting broad, non-specific binding to mito-
chondrial genome. This pattern is highly repro-
ducible, indicating that the average population-
wide state of TFAM-mtDNA interactions is sta-
ble. We found no correlation between irregu-
larities in TFAM signal distribution and char-
acteristics of the mitochondrial genome such as
GC content (data not shown). Thus, our conclu-
sion is that TFAM binds to the mitochondrial
genome nonspecifically and without bias when
cells are grown under typical culture conditions.
Although we did not observe the synchronized
phased binding seen in in-vitro studies, we can-
not rule out a model where individual mtDNAs
have such a pattern of binding initiating from a
non-universal nucleation site.

Strikingly, we did not observe localized en-
richment of binding at the known LSP and HSP1
TFAM binding sites. The ChIP-seq signal pat-
tern mirrored that of the input in these regions,
and no ChIP-seq peaks displaying the canoni-
cal strand asymmetry in read distribution were
observed. This finding can be explained by a
model in which the interaction of TFAM with
the LSP and HSP1 binding sites is relatively
transient and infrequent compared to a more sta-
ble non-specific association with the genome in
its packaging state.

We did detect one site in the genome ex-
hibiting the characteristics of a specific, localized
ChIP-seq peak, centered at 5175 bp in the ND2
ORF. The localized nature of the ChIP signal
at this site suggests higher occupancy of TFAM.
This peak localizes to 546 bp upstream of the
OL. Strikingly, TFAM has previously been local-
ized 520 bp upstream of the OL of rat mtDNA
(Gadaleta et al., 1996; Cingolani et al., 1997;
Pierro et al., 1999). We found no sequence sim-
ilarity between the rat and human sites, and in
general this region of the mtDNA genome shows
low homology between the two species. Further
work will be required to understand the signifi-

Figure 5.6 (preceding page): Cells treated with 50ng/ml EtBr experience rapid de-
pletion of TFAM levels, as assayed by anti-TFAM Western blot (A). This coincides with
a depletion of mtDNA levels to 17% that of wildtype after 4 days of treatment, as determined by
relative qPCR quantification (B). Removal of EtBr leads to a rapid increase in TFAM levels and to
an increase in mtDNA copy number per cell within 30 to 48 hours. Immunohistochemistry of HeLa
cells for TFAM, mitochondrial matrix protein PPIF, and DAPI show that TFAM is mitochondrial
under wildtype conditions (C). Treatment with EtBr leads to a remarkable consolidation of both
TFAM and mtDNA puncta (C, D), leading to larger, fewer nucleoids (E-G). By 24 to 36 hours
post-recovery, nucleoids redistribute uniformly throughout the mitochondrial network, with partial
recovery of nucleoid size, intensity, and number per cell.
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Figure 5.7: Discrete localization of TFAM on the mitochondrial genomes following
mtDNA depletion after EtBr treatment in HeLa cells. Circos plot of plus strand and minus
strand TFAM ChIP-seq and input read density signal over chrM. (A, F) Annotation of protein coding
(green on forward/heavy strand, red on reverse/light strand), ribosomal RNAs (yellow) and tRNAs
(blue on forward/heavy strand, grey on reverse/light strand) transcripts. (B) D-loop (black), LSP
promoters (large red tile), known LSP TFAM binding site (small red tile), HSP promoter (large
blue tile) and known HSP TFAM binding site (large blue tile). (C) TFAM ChIP-seq signal on
forward (red) and reverse (blue) strands. (D) Manually determined localized TFAM binding sites
(black tiles). (E) Input signal on forward (red) and reverse (blue) strands. Note that the input
signal is greatly exaggerated relative to the ChIP-seq signal (Fig. 1B) in order to visualize coverage
irregularities.

cance of this putative TFAM binding site.

Finally, analysis of all datasets for TFAM
binding to the nuclear genome yielded no hits

distinguishable from common ChIP-seq arti-
facts. Although Watanabe et al. observed regu-
lation of the SERCA2 gene in rat myocytes, we
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Figure 5.8: MEME-derived motif for TFAM enriched sites. (A) Sequence logo. (B) Fraction
of sites the motif is found in.

did not detect TFAM binding at the promoter
of its ortholog in humans. Previous studies have
shown nuclear localization of TFAM in rat hep-
atoma cells (Dong et al., 2002), as well as an
alternate isoform of TFAM in mouse testis nu-
clei (Larsson et al., 1996). We have thus far
been unable to detect nuclear TFAM localization
in HeLa cells (Figure 5.1C), suggesting that nu-
clear localization and transcriptional regulation
may be cell type or perhaps species-dependent.
ChIP-seq in different cell lines may be able to
detect such nuclear interactions.

In this study, we presented the first in vivo
ChIP-seq analysis of TFAM binding to the mi-
tochondrial genome. Aside from generalized,
largely non-specific binding across the mitochon-
drial genome, we detected a putative specific
binding site upstream of the origin of light strand
replication. We did not observe the expected
binding at the known HSP1 and LSP sites, nor
did we identify any nuclear binding sites. An
area that remains to be explored is the dynamic
nature of TFAM-DNA interactions with respect
to both the nuclear and mitochondrial genomes.
ChIP-chip on the yeast mitochondrial genome
has shown that metabolic changes can lead to
differential binding of the yeast TFAM homolog,
Abf2p (Kucej et al., 2008). It is possible that
such remodeling also occurs in the mammalian
system, and further studies will provide insight
into the dynamic nature of the mtDNA-protein
interactions within the nucleoid that serve to
protect its integrity. Some speculative results
we obtained from experiments addressing these
issues that are also relevant to later chapters are
presented as an additional section at the end of
this chapter.

5.4 Materials and Methods

5.4.1 Cell growth and treatment

HeLaS3 cells were cultured in Dulbeco’s
modified Eagle’s medium (DMEM, Invitrogen
#11995) containing 10% bovine serum (Invitro-
gen #16170), penicillin and streptomycin, and
additional L-glutamine (2mM). Cells were fed
24 hours before harvest for ChIP-seq, which was
performed at 80-90% confluency.

5.4.2 Antibody Production and
characterization

Antibodies were produced by the Caltech Mon-
oclonal Antibody Facility and raised against
the full-length TFAM protein in mouse. Im-
munoprecipitation with 20G2C12 and 20F8A9
TFAM antibodies and Myc antibody (Santa
Cruz #sc-40) was performed according to estab-
lished protocols using M-280 sheep anti-mouse
Dynabeads (Invitrogen #11201D). Immunoblot-
ting of IP products was performed using a mono-
clonal TFAM 18G102B2E11 antibody, also cus-
tom generated, at 1:2000, with goat anti-mouse
HRP antibody (1:10,000, Jackson ImmunoRe-
search #115-056-003). Immunoblotting of HeLa
whole cell lysate with 20G2C12 was performed at
a 1:200 dilution and with goat anti-mouse HRP
antibody.

5.4.3 Immunocytochemistry

HeLa cells cultured as described above were
plated onto poly-lysine coated glass coverslips 48
hours prior to fixation in formaldehyde and per-
meabilization with 0.1% Triton X-100. For colo-
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Figure 5.9: The few nuclear genome locations with TFAM ChIP-seq signal character-
istics similar to those of robust ChIP-seq peaks. (A) SLC39A10 (B) DDX17 (C) GPR137
(D) GABARAP (E) DDIT4 (F) SEPT17.

calization of TFAM to mitochondria, 20G2C12
or 20F8A9 antibodies were used at 1:10 in
conjunction with PPIF at 1:200 (ProteinTech

#18466-1-AP). Secondary antibodies were goat
anti-mouse AF488 (1:500, Invitrogen #A11001)
and donkey anti-rabbit AF546 (1:500, Invitrogen
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#A10040). Cells were also stained with DAPI
to visualize nuclei. Immunocytochemistry to vi-
sualize colocalization of mitochondrial nucleoids
and TFAM was performed sequentially due to
both antibodies being raised in mouse. Sequen-
tial immunostaining yielded no background flu-
orescence due to cross-antibody reactivity (data
not shown). Order was as follows: anti-TFAM
antibody (1:10); goat anti-mouse AF488 (1:500,
Invitrogen #A11001); anti-DNA antibody (1:25,
Millipore #CBL186); goat anti-mouse AF555
(1:500, Invitrogen #A21426), DAPI. Images
were acquired with a Zeiss LSM 710 confocal mi-
croscope with PlanApochromat 63X/1.4 oil ob-
jective. Z-stack acquisitions were converted to
maximum z-projections using ImageJ software.

5.4.4 Chromatin
immunoprecipitation and

sequencing

ChIP experiments and preparation of DNA for
sequencing were performed following standard
procedures (Johnson & Mortazavi et al, 2007)
with some modifications. Cells were fixed for
10min at RT in 1% formaldehyde, harvested us-
ing a cell scraper, washed once in ice-cold PBS,
and resuspended in RIPA buffer with protease
inhibitor. The sample was then sonicated using
a 3.2mm microtip (QSonica Sonicator 4000) at
30s on/30s off intervals and 40% amplitude for
180min while in a −30 ◦C 3:1 isopropanol and
water bath containing dry ice. Subsequent steps
were performed as per the standard protocol.
DNA was size-selected during library building
to an average fragment size of 200bp. Libraries
were sequenced using Illumina GAIIx and Illu-
mina HiSeq 2000. Sequencing data is available
under GEO accession record GSE48176.

5.4.5 Sequencing data processing
and analysis

Sequencing reads were trimmed down to 36 bp
and then mapped against either the female set
of human chromosomes (excluding the Y chro-
mosome and all random chromosomes and hap-
lotypes) or the mitochondrial genome alone,
using the hg19 version of the human genome
as a reference. Bowtie 0.12.7 (Langmead et
al. 2009) was used for aligning reads, not al-
lowing for any mismatches between the reads
and the reference. ChIP-seq peaks were called

using MACS2 (Zhang et al. 2008) with de-
fault settings except for the mfold parameter
which was lowered to (2,30). Circos plots were
generated using Circos version 0.60 (Krzywin-
ski et al 2009). Additional data processing
was carried out using custom-written python
scripts. ENCODE data was downloaded from
the UCSC browser (http://hgdownload-test.
cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeHaibTfbs) and its use here complies
with its terms of usage. Pearson correlation
coefficient, t-test, and p values were calculated
using embedded and custom Microsoft Excel
functions.

5.5 Possible discrete
localization of TFAM to the

mitochondrial genome
following mtDNA depletion

and recovery after EtBr
treatment

Previous studies have demonstrated that treat-
ment of cells with ethidium bromide (EtBr) se-
lectively causes depletion of mtDNA (Zylber et
al. 1969; Desjardins et al. 1985; King & At-
tardi 1989; Micol et al. 1997; Herzberg et al.
1993). Furthermore, we found that EtBr also
results in marked depletion of TFAM at the pro-
tein level as measured by Western blot (Figure
5.6A,B). We investigated this phenomenon fur-
ther by examining the dynamics of mitochon-
drial nucleoid morphology during an EtBr treat-
ment time course. We observed a remarkable
consolidation of both mtDNA and TFAM lo-
calization within the first 24 hours, resulting in
the formation of large, bright nucleoids (Figure
5.6C-G). These changes were concomitant with
depletion of TFAM and mtDNA and stabilized
by the 4th day of treatment. Upon withdrawal
of EtBr, nucleoid morphology and TFAM and
mtDNA levels were partially restored. At 36
hours after withdrawal, mtDNA and TFAM lev-
els are still significantly lower than in untreated
cells but mitochondrial replication is observed
again.

To elucidate the dynamics of TFAM bind-
ing to mtDNA concomittant with these changes,
we performed TFAM ChIP-seq at 36 hours
upon withdrawal of EtBr after 4 days of treat-
ment. In contrast with the uniform TFAM dis-

http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibTfbs
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibTfbs
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibTfbs
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tribution over the mitochondrial genome in un-
treated cells, we observed clear foci of TFAM
localization, with the strand asymmetry charac-
teristic of robust ChIP-seq transcription-factor
binding peaks (Figure 5.7C,D). Due to the
extremely high coverage of the mitochondrial
genome by sequencing reads, peak calling us-
ing standard publicly available packages such as
MACS, ERANGE (Johnson & Mortazavi et al.
2007), and SPP (Kharchenko et al, 2008) was
not successful in resolving individual peaks, so
we curated TFAM binding foci manually follow-
ing the criteria that forward and reversed strand
signal peaks should be separated by a distance
related to the input fragment distribution (de-
termined using cross-correlation analysis and the
BioAnalyzer profiles for the libraries). We iden-
tified 66 high confidence enrichment foci in this
manner (Figure 5.7D).

These observations raise the question of why
and how TFAM would localize to narrowly de-
fined loci after mtDNA depletion. The changes
in TFAM binding could be due to a combina-
tion of sequence specificity of binding, the local
structure of DNA, the global state of the mito-
chondrial nucleoid, and possible TFAM protein
interactors with other protein with DNA binding
affinity on their own. We attempted to derive en-
riched DNA sequence motifs from the 100bp re-
gions flanking the summit of TFAM binding sites
using MEME (Bailey et al, 2009). A loosely con-
strained, long (26bp), almost symmetric, C- and
A-rich motif emerged from this analysis (Figure
5.8), and was found in the majority (57 of 66) of
sites. However, we were not able to detect dif-
ferential affinity of TFAM for the best and worst
matches for this motif among the sites using flu-
orescence anisotropy (data not shown).

We also reexamined the question of whether
high-confidence TFAM ChIP-seq peaks can be
identified in the nuclear genome, this time us-
ing the EtBr-treated cell dataset. Several peaks
much stronger than those seen in untreated cells
were identified (Figure 5.9) and were associated
with the promoters of the SLC39A10, DDX17,

GPR137, GABARAP, DDIT4 and SEPT17
genes. As these genes are not obviously related
to mitochondrial function and because these
peaks are not extremely strong compared to con-
ventional transcription factor ChIP-seq peaks,
they cannot be confidently considered instances
of functional binding before more studies are
performed.

The observation of highly localized TFAM
binding to mtDNA following EtBr treatment is
highly intriguing, and potentially of great signif-
icance, but it was based on a single ChIP-seq ex-
periment, not the multiple replicates one would
like to have. Naturally, we invested a lot of effort
in replicating the result, repeating the experi-
ment three times, but in all three cases the re-
sulting TFAM ChIP-seq pattern was much closer
to the one observed in resting cells than to the
initial EtBr replicate (Figure 5.10), even though
the extent of TFAM localization to discrete loci
varied between different replicates (compare Fig-
ure 5.10B with Figure 5.10C).

It is unlikely that the original EtBr obser-
vation was an artifact given the quality charac-
teristics of that dataset. TFAM in those cells
indeed localized to discrete loci after EtBr treat-
ment and this was measured by the assay. Our
explanation for the failure to replicate the re-
sult is that the discrete localization happens only
at particular times during the EtBr time course
and the dynamics of the time course varies be-
tween experiments, i.e. the same sequence of
events happens each time the experiment is done
but at different times. As a result the point in
time at which TFAM is highly localized shifts in
time relative to the cell harvesting time point.
We were unfortunate not to capture that mo-
ment when we repeated the experiments, and to
eventually run out of time and resources before
we could succeed. However, more recent com-
pletely orthogonal observations that we made
quite strongly suggest that TFAM localization
to those sites of the mitochondrial genome is in-
deed real. They are discussed in more detail in
a later chapter.
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Figure 5.10: Replication of TFAM EtBr ChIP-seq results. (A,B,C) Three independent
biological replicate TFAM ChIP-seq datasets generated after treatment of HeLa cells with EtBr.
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6

Genome-Wide Analysis of the Human Mitochon-

drial Transcription and Replication Machineries

T
he material in this chapter is based on data generated in the Myers lab at the Hud-
sonAlpha Institute of Biotechnology, and is a preliminary version of what is intended
for publication in the future as:

Marinov GK, Wang YE, Pauli-Behn F, Newberry K, Chan DC, Myers RN, Wold BJ. Genome-Wide
Analysis of the Human Mitochondrial Transcription and Replication Machineries

Abstract

Mitochondria are vital to eukaryote bi-
ology organelles of endosymbiotic origin
containing their own (albeit highly re-
duced) genome. Mitochondrial transcrip-
tion and replication are regulated and car-
ried out by a dedicated set of proteins.
These processes have been studied in most
detail in mammalian mitochondria; how-
ever, the genome-wide occupancy of most
of the factors involved has so far not been
characterized. Here, we report global
maps of the distribution of the transcrip-
tional regulators TFB2M and TFAM, the
transcription termination factor MTERF,
and the mitochondrial RNA and DNA
polymerases POLRMT and POLG. These
data allow us to evaluate the mechanistic
models of replication and transcriptional
regulation in mitochondria.

6.1 Introduction

Mitochondria are the primary site of oxidative
phosphorylation in most eukaryotic cells, and in

addition to that play a vital role in a long list of
other important cellular processes (Williams et
al. 2013; Andersen & Kornbluth 2013; Miller
2011; Lill et al. 2012). They possess their
own genome (Nass et al. 1965; Schatz 1963),
which in mammals is circular mapping and ∼16
kilobases long (16,571 bp in humans) (Ander-
son et al. 1981; Bibb et al. 1981; Satoh &
Kuroiwa 1991). Mitochondria originated very
early in eukaryote evolution, when their most
likely α-proteobacterial ancestor became an en-
dosymbiont to the ancestor of modern eukary-
otes (Yang et al. 1985). The mitochondrial
genome is the remnant of the genome of that
prokaryotic endosymbiont, which, as a result of
the loss of genes and the transfer of genes from
the organellar to the nuclear genome (Kleine et
al. 2009), has been greatly reduced in size and
gene content. In humans, it encodes 13 proteins
(components of the electron transport chains), 2
rRNAs and 22 tRNAs. It has only one significant
stretch of non-coding DNA – the so called con-
trol, or D-loop (Arnberg et al. 1971; ter Schegget
et al. 1971) regulatory region (or non-coding
region, NCR), which is approximately 1kb long
and plays an important role in the processes of
transcription and replication.
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Figure 6.1: TFAM occupancy over the human mitochondrial genome. ChIP-seq against
TFAM was carried out in HepG2 cells. Shown is the plus and minus strand distribution of mapped
reads in ChIP (outer tracks, red and green) and control input datasets (inner track, blue and yel-
low). Also shown are the rRNA (blue tiles), tRNA (purple tiles), and heavy and light strand protein
coding genes (green and red tiles) as well as the LSP promoter (yellow tile), HSP promoter (black
tile), and the origins of heavy strand (Ori-b, orange square, and OH, yellow square) and light strand
(OL, gray square) replication. Plots were generated using Circos version 0.60 (Krzywinski et al.
2009).

The mitochondrial genome is expressed and
replicated by dedicated transcription and repli-
cation machineries separate from those acting
in the nucleus. Transcription initiates from
three different promoters located in the D-loop
– two promoters transcribing the “heavy” or H-

strand (HSP1 and HSP2) and one “light”-strand
promoter (LSP). Mitochondrial transcripts are
polycistronic and the mature mRNAs are pro-
duced by posttranscriptional processing medi-
ated by the excision of the tRNAs that are found
between all genes (Ojala et al. 1981). It is
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carried out by POLRMT, an RNA polymerase
of apparent phage origin (Masters et al. 1987;
Shutt & Gray 2002). Initiation of transcription
requires the activities of the TFAM (mitochon-
drial transcription factor A) and TFB2M (mi-
tochondrial transcription factor B2; Falkenberg
et al. 2002; Metodiev et al. 2009; Sologub et
al. 2009) proteins. TFAM also plays a struc-
tural and packaging role in the mitochondrial
nucleoid and is necessary for mtDNA replication
and maintenance (Alam et al. 2003; Ekstrand et
al. 2004; Kaufman).

Transcription from the HSP1 promoter is
thought to generate a transcript that includes
the two ribosomal RNAs and terminates shortly
after. The same site is also where termination
of transcription in the other direction, originat-
ing from the LSP promoter and containing the
ND6 gene, occurs. Both termination events are
triggered by the presence of the DNA binding
protein MTERF, which acts as a termination
factor (Christianson & Clayton 1988; Kruse et
al. 1989; Fernandez-Silva et al. 1997; Shang
& Clayton 1994). The polycistronic transcript
originating from the HSP2 promoter includes all
other protein coding genes and reaches all the
way to the other end of the D-loop (Montoya et
al. 1983; Asin-Cayuela & Gustafsson 2007).

Replication of mitochondrial DNA is carried
out by DNA Polymerase γ, which consists of two
subunits, the catalytic POLG and the accessory
POLG2 (Ropp & Copeland 1996; Yakubovskaya
et al. 2006; Chan & Copeland 2009; Wanrooij &
Falkenberg 2010); in addition, the mitochondrial
single-strand binding protein (mtSSB) and the
helicase TWINKLE also play an important role.
Multiple models for how the process of replica-
tion occurs have been proposed (Holt & Reyes
2012). The classic asynchronous strand displace-
ment model (SDM) of replication involves the
initiation of replication of the heavy strand from
replication origins within the D-loop. Lead-
ing strand replication then proceeds for about
two thirds of the length of the mitochondrial
genome until the origin of light strand replication
is encountered (OL; Martens & Clayton 1979),
upon which replication of the light strand be-
gins (Kasamatsu & Vinograd 1973; Robberson
& Clayton 1972; Clayton 1982). Two origins of
heavy strand replication have been mapped: OH

and Ori-b (Kang et al. 1997; Pham et al. 2006;
Crews et al. 1979; Fish et al. 2004). DNA
replication is primed by POLRMT transcription
initiating from the LSP promoter (Chang et al.

1985; Chang & Clayton 1985; Kang et al. 1997;
Pham et al. 2006); some 600bp downstream of
the OH, near the end of the D-loop region, repli-
cation often arrests, and a triple-stranded D-loop
structure forms in the NCR (Arnberg et al. 1971;
Kasamatsu et al. 1971; ter Schegget et al. 1971).

In the last decade, evidence for different
models of replication has been accumulating.
These include the RITOLS (Ribonucleotide
Incorporation ThroughOut the Lagging Strand)
model (Yasukawa et al. 2005; Yasukawa et al.
2006; Pohjoismäki et al. 2010; Holt & Reyes
2012) and the strand-coupled model (Holt et al.
2000). The RITOLS model is somewhat simi-
lar in its mechanism to the SDM model in that
both the D-loop and the OL replication origins
play a role; however, in contrast to SDM, it fea-
tures the incorporation of RNA on the lagging
strand while the leading strand is being synthe-
sized. Under the strand-coupled model, replica-
tion is bidirectional and can initiate from regions
outside of the NCR (Bowmaker et al. 2003).

These models have been developed using tra-
ditional molecular biology approaches, which
have proven highly useful in understanding the
biology of mitochondria. However, the global
distribution of these proteins over the mitochon-
drial genome has so far not been systematically
characterized. Here, we used ChIP-seq (Chro-
matin Immunoprecipitation coupled with high-
throughput sequencing; Johnson et al. 2007)
to generate such maps for TFAM, TFB2M,
MTERF, POLRMT and POLG and to further
elucidate the role of these proteins in the pro-
cesses of mitochondrial transcription and repli-
cation.

6.2 Results

6.2.1 Measuring the genome-wide
occupancy of mitochondrial

proteins using ChIP-seq

In order to characterize the genome-wide oc-
cupancy of mitochondrial proteins, we applied
ChIP-seq using standard, previously described,
protocols (Johnson et al. 2007) in two ENCODE
cell lines: the lymphoblastoid GM12878 and the
liver carcinoma HepG2 cells. The results were
generally very similar between the two lines,
and for this reason only a single dataset is used
for the visualization of the occupancy of each
protein throughout the manuscript. We gen-
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Figure 6.2: TFB2M binding over the human mitochondrial genome. ChIP-seq against
TFB2M was carried out in HepG2 cells. Shown is the plus and minus strand distribution of mapped
reads in ChIP (outer tracks, red and green) and control input datasets (inner track, blue and yellow).
Also shown are the rRNA (blue tiles), tRNA (purple tiles), and heavy and light strand protein cod-
ing genes (green and red tiles) as well as the LSP promoter (yellow tile), HSP promoter (black tile),
and the origins of heavy strand (Ori-b, orange square, and OH, yellow square) and light strand (OL,
gray square) replication. The black rectangles indicate the putative TFB2M binding sites within
the LSP and the HSP. Plots were generated using Circos version 0.60 (Krzywinski et al. 2009).

erated 50bp long sequencing reads and aligned
them against the mitochondrial genome (version
hg19 of the human genome, see the Methods
section for more details). As the size of the
mitochondrial genome is small and makes this
approach feasible (in contrast to the ≥3Gb nu-

clear genome), manual inspection of the result-
ing ChIP and control dataset read profiles was
used to identify regions of enrichment. In addi-
tion, we also mapped reads against the nuclear
genome in order to examine the possible associa-
tion of mitochondrial proteins such as POLRMT
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Figure 6.3: MTERF occupancy over the human mitochondrial genome. ChIP-seq against
MTERF was carried out in HepG2 cells. Shown is the plus and minus strand distribution of mapped
reads in ChIP (outer tracks, red and green) and control input datasets (inner track, blue and yellow).
Also shown are the rRNA (blue tiles), tRNA (purple tiles), and heavy and light strand protein cod-
ing genes (green and red tiles) as well as the LSP promoter (yellow tile), HSP promoter (black tile),
and the origins of heavy strand (Ori-b, orange square, and OH, yellow square) and light strand (OL,
gray square) replication. Plots were generated using Circos version 0.60 (Krzywinski et al. 2009).
Two sites of putative MTERF occupancy of lower intensity are also shown separately as insets.

with the nuclear genome. 6.2.2 TFAM

We previously characterized the occupancy of
the mitochondrial genome by TFAM using
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Figure 6.4: POLRMT occupancy over the human mitochondrial genome. ChIP-seq
against POLRMT was carried out in HepG2 cells. Shown is the plus and minus strand distribution
of mapped reads in ChIP (outer tracks, red and green) and control input datasets (inner track, blue
and yellow). Also shown are the rRNA (blue tiles), tRNA (purple tiles), and heavy and light strand
protein coding genes (green and red tiles) as well as the LSP promoter (yellow tile), HSP promoter
(black tile), and the origins of heavy strand (Ori-b, orange square, and OH, yellow square) and light
strand (OL, gray square) replication. Plots were generated using Circos version 0.60 (Krzywinski et
al. 2009).

ChIP-seq in HeLa cells (Wang et al. 2013).
TFAM was found to fully coat mtDNA with little
evidence for strong site-specific occupancy over
the promoter regions in the D-loop (although
such occupancy is by no means incompatible
with the data – TFAM plays a well-characterized

role in transcriptional initiation, but its associa-
tion with DNA might be transient compared to
the steady-state packaging role it also plays, and
as a result generates ChIP-seq signal that is too
weak in comparison to stand out). Here we also
carried out TFAM ChIP-seq in HepG2 cells and
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Figure 6.5: Examples of nuclear loci displaying evidence for physical association with
either POLRMT or its short nuclear isoform spRNAP-IV.

obtained very similar results. The fraction of all
mapped reads (to the nuclear chromosomes or

to chrM) mapping to the mitochondrial genome
was 68%. In the same time the TFAM ChIP-seq
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Figure 6.6: Occupancy of the DNA polymerase γ catalytic subunit POLG over the
human mitochondrial genome. ChIP-seq against POLG was carried out in HepG2 cells. Shown
is the plus and minus strand distribution of mapped reads in ChIP (outer tracks, red and green)
and control input datasets (inner track, blue and yellow). Also shown are the rRNA (blue tiles),
tRNA (purple tiles), and heavy and light strand protein coding genes (green and red tiles) as well as
the LSP promoter (yellow tile), HSP promoter (black tile), and the origins of heavy strand (Ori-b,
orange square, and OH, yellow square) and light strand (OL, gray square) replication. Plots were
generated using Circos version 0.60 (Krzywinski et al. 2009). A site of putative POLG occupancy
of near the OriL is shown separately as an inset.

signal profile was highly similar to that of the control sonicated input sample (Figure 6.1). As
discussed before (Wang et al. 2013), these ob-
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Figure 6.7: Distribution of the 5’ ends of forward and minus strand ChIP-seq reads
around the known origins of mitochondrial replication. Shown are UCSC Genome Browser
snapshots of POLG ChIP-seq tracks created by assigning non-zero scores only to the positions to
which the 5’ ends of reads map to. (A) Positions 1 to 300, containing the OH replication origin.
(B) Positions 15,900 to 16,571, containing the Ori-b replication origin. (C) Positions 5,751 to 5,913
around the OL replication origin.
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servations argue for the uniform coating of the
mitochondrial genome by TFAM, with the non-
uniformities in coverage being due to a combi-
nation of sonication, library preparation and se-
quencing biases.

6.2.3 TFB2M

We next characterized the genome-wide occu-
pancy of TFB2M. TFB2M is required for tran-
scription of mitochondrial genes and is known to
directly interact with DNA as part of the POL-
RMT transcription initiation complex (Sologub
et al. 2009; Litonin 2010). As such it is expected
to physically localize to the HSP and LSP pro-
moters. ChIP-seq data confirms this expectation
but also reveals a potentially more complicated
picture (Figure 6.2). Within the HSP promoter
region, we observed a single large occupancy site,
which displayed the characteristic for ChIP-seq
peaks asymmetry between the read distribution
on the plus and minus strands (Kharchenko et
al. 2008; Landt et al. 2012). We were not able to
distinguish separate binding sites for the HSP1
and HSP2 promoters; however, this is likely due
to the fact that they are too closely spaced rel-
ative to the resolution of the ChIP-seq assay.
The ChIP profile in the LSP region was more
complex, with at least two putative occupancy
sites observed – a stronger one exhibiting very
strong read asymmetry and located in the gen-
eral region of LSP transcription initiation, and
a weaker one located close to it downstream in
the direction of LSP transcription. The signifi-
cance of the second site is at present unknown.
Even more surprising is the observation of a re-
gion of elevated TFB2M occupancy (but with
difficult to identify specific binding sites) at the
very end of the D-loop downstream of the LSP
and the origins of replication. To the best of the
authors’ knowledge, association of TFB2M with
this region has previously not been reported and
it is not clear what role it might be playing there;
future studies will be needed to elucidate it.

6.2.4 MTERF

We then profiled the genome-wide occupancy of
the MTERF protein. As expected, we observed
a single extremely strong occupancy site, ex-
hibiting very notable strand asymmetry at the
LSP and HSP1 termination site (Figure 6.3).
These results are also in agreement with recently
published data in HeLaS3 cells (Terzioglu et al.

2013). However, detailed examination of the
read profiles identified two more putative occu-
pancy sites for MTERF, which, although much
weaker in terms of ChIP-seq signal strength,
are nevertheless above background and display
a read asymmetry suggesting they correspond to
real biochemical events. The first one (site “1” in
Figure 6.3) is located immediately downstream
of the HSP1/2 promoter, and is of interest as it
has been reported that MTERF interacts with
this region of mtDNA and a loops is formed be-
tween the two MTERF binding sites, with this
interaction being important for the activation of
transcription (Martin et al. 2005). The second
one is located in the vicinity (but not within)
the OL region and its functional significance is
at present unclear.

6.2.5 Mitochondrial RNA
Polymerase (POLRMT)

Next we studied the association of the mito-
chondrial RNA Polymerase POLRMT with the
mitochondrial genome (Figure 6.4). We found
one site of strong POLRMT localization in the
mitochondrial genome, and it coincided with
the MTERF termination sites between the 16S
rRNA and the ND1 genes. This suggests that
termination of transcription is associated with
pausing and/or an appreciable increase in the
residence time of the polymerase around this
site. In addition, we observed generally elevated
read coverage over the D-loop but without obvi-
ous distinct sites of localized enrichment.

In addition to its well characterized role in
mitochondrial transcription, the POLRMT gene
has been suggested to also participate in nuclear
transcription, through the production of an al-
ternative isoform called spRNAP-IV that lacks
the N-terminal 262 amino acids (Kravchenko et
al. 2005; Lee et al. 2011). The antibody we
used to carry out ChIP-seq against POLRMT
has been raised against amino acids 841-1140
located near its C-terminus, and should there-
fore also react with spRNAP-IV. We examined
the possible nuclear role of spRNAP-IV by call-
ing ChIP-seq peaks in the nuclear genome us-
ing MACS2 (Feng et al. 2012). After manual
curation of the resulting peaks (in order to fil-
ter out obvious artifacts), we identified 47 loci
with significant enrichment in POLRMT ChIP-
seq in HepG2 cells. Notably, only a small minor-
ity of these peaks were also called in GM12878
cells suggesting that if spRNAP-IV indeed tran-
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scribes through these regions, it may do so in
cell-type specific manner. Sites of POLRMT
enrichment displayed a preferential localization
in the immediate upstream and downstream re-
gions of protein coding genes, and were often
associated with transposable elements (represen-
tative examples are shown in Figure 6.5).

6.2.6 Mitochondrial DNA
Polymerase (Pol γ)

Finally, we analyzed the mitochondrial genome
occupancy of the catalytic subunit (POLG2) of
the mitochondrial DNA polymerase (Pol γ). We
observed several regions of significant enrich-
ment (Figure 6.6). First, a site of very strong
and localized read density is observed at the end
of the D-loop in the direction of LSP replica-
tion and about a 100bp downstream of the OH

replication origin. Second, a similar but lower-
intensity region of occupancy is found about a
100bp downstream of the Ori-b replication ori-
gin. Third, a weaker but detectable occupancy
site is seen at the OL replicaiton origin. Of
note, only the the OL site exhibited the typi-
cal for a ChIP-seq peak strand asymmetry; in
contrast, the two strong signal peaks in the D-
loop displayed forward and reverse strand pro-
files that were similar to each other, with little
shift between the peaks on the two strand, and
with a markedly higher signal on the forward
strand than on the reverse one. The features
of the site at the end of the D-loop would in-
dicate these sites to be a possible experimen-
tal artifact in other settings, and indeed this
is how they were interpreted previously when
they were observed in the ChIP-seq read profiles
around the D-loop of nuclear transcription fac-
tors (Marinov et al. 2014). However, given that
the DNA polymerase is known to pause at this
site, that the strength of the signal compared
to the background level is much stronger than
it is for nuclear transcription factors, and that
the DNA-polymerase is also observed at other
sites where its occupancy is expected, in this
case it is more likely that a significant portion
of the observed signal corresponds to true phys-
ical association events of POLG with mtDNA.
Also, the properties of DNA polymerase are ex-
pected to be somewhat different from those of
ChIP-seq against conventional double-stranded
DNA binding proteins. The typical asymmet-
ric, strand-shifted ChIP-seq profile arises in the
context of long double-stranded DNA molecules

within which transcription factor binding sites
are embedded and occupied, but the replicat-
ing DNA polymerase is associated with free 3’
ends, and also with free 5’ ends near the ini-
tiation sites. In the latter case, the structure
also contains an RNA-DNA hybrid; depending
on whether the RNA portion of it survives the
process of fixation and immunoprecipitation, it
is expected that if the DNA polymerase spends
significant time around the region of initiation,
the process of end repair and ChIP-seq library
construction will produce highly phased 5’ ends
corresponding most likely to the RNA-to-DNA
transition positions, and possibly to the initia-
tion of transcription. To examine this in depth,
we generated forward and reverse strand cover-
age tracks showing only the 5’ ends of ChIP-seq
reads (Figure 6.7). Remarkably, we indeed ob-
served highly phased clustering of 5’ ends on the
reverse strand (and not on the forward strand)
in the region of the D-loop around the OH repli-
cation origin (Figure 6.7A), located around po-
sition 110. This position is somewhat different
from the locations suggested by previous efforts
to map the heavy strand origin of replication
(position 191 according to Crews et al. 1979,
position 57 according to Fish et al. 2004, posi-
tion 300 according to Pham et al. 2006; Holt &
Reyes 2012), but is in the same region; of note,
it is also considerably downstream of the LSP
promoter suggesting it corresponds to the site of
initiation of replication from the RNA primer. A
region of phasing of reverse strand reads was also
observed around position 16,280 near the Ori-b
replication origin (Figure 6.7B), although it has
been previously suggested to be precisely located
at nucleotide 16,197 (Yasukawa et al. 2005). Fi-
nally, in the region around the OL replication
origin, we observed several positions with phased
5’ ends, all on the forward strand (in contrast to
the D-loop origins, where phasing is on the re-
verse strand).

These observations support several features
of the existing models of mitochondrial DNA
replication. First, the OL origin is definitely
used, as suggested by both the increased oc-
cupancy of POLG there, and the detection of
phased 5’ ends of ChIP-seq reads only on the
forward strand (likely corresponding to the 5’
end of newly synthesized DNA strands). Sec-
ond, the OH origin is also used, as evidenced
by the strong phasing of reads on the reverse
strand nearby, and the Ori-b is likely used too,
for similar reasons (although it does not exhibit
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the same strong phasing of 5’ ends). Third, as
suggested previously, replication pauses at the
end of the D-loop. The significant asymmetry
in the number of reads on the forward strand
(corresponding to the template strand for repli-
cation originating from OH or Ori-b in the direc-
tion of this end of the NCR) and reverse strand,
with the forward strand displaying larger num-
ber of reads compared to the reverse strand, and
with little shift between the two profiles, remains
puzzling. It is at present not clear what the rea-
son for this pattern is, as it might be due to
a complex combination of multiple poorly un-
derstood factors having to do with crosslinking,
sonication, size selection and library generation.
However, one attractive possibility is that it is
related to the direction of replication; of note,
lower in magnitude but detectable peaks which
display the opposite pattern of asymmetry be-
tween read density on the forward and reverse
strands are observed in the opposite direction of
both the OH and Ori-b origins, which is intrigu-
ing as there have reports that replication initia-
tion from these promoters is bidirectional (Holt
& Reyes 2012).

6.3 Conclusions

In this work, we generated comprehensive
genome-wide maps of the physical occupancy
over the mitochondrial genome of the main
proteins involved in mitochondrial transcription
(TFAM, TFB2M, MTERF and POLRMT) and
replication (POLG). Consistent with previous
work (Wang et al. 2013), we found TFAM to
fully coat the mitochondrial genome, with no
outstanding localized sites of enrichment in the
cells studied here. We found TFB2M to occupy
the HSP and LSP promoters, in line with previ-
ous observations. However, its occupancy seems
to be more complex than previously thought,
with at least three occupancy cites in the region;
in addition to this, we also observed it localizing
to the opposite end of the D-loop, where its role
is at present unclear. We observed very strong
MTERF localization at the known transcription
termination site. In addition, we also found
that MTERF can be crosslinked (though weakly
and likely due to an indirect interaction with
mtDNA) to the region immediately downstream
of the HSP1/2 promoter, consistent with the
previously suggested model in which MTERF
mediates looping between the termination sites

and the promoter region to activate transcrip-
tion (Martin et al. 2005). The termination site
was also the most notable region of strongly lo-
calized read enrichment for POLRMT, suggest-
ing it pauses there while termination takes place.
We also examined the previously proposed nu-
clear role of the POLRMT genes, through its al-
ternative isoform, spRNAP-IV, and found it to
indeed associate with a limited number of nu-
clear loci, but its binding patterns do not clearly
reveal its possible functional roles.

The POLG ChIP-seq datasets presented
strong evidence in support of existing models in
which all three known origins of replication fea-
ture prominently (although the data is consis-
tent with more frequent usage of the OH than
of the Ori-b) origin. We did not find direct
evidence for replication initiation elsewhere in
the mitochondrial genome, as suggested by some
versions of the strand-coupled replication model
(Bowmaker et al. 2003); however, that such
modes of replication are used cannot be ruled out
by the data as it is possible that they do not gen-
erate strongly localized POLG occupancy. The
data is consistent with both the SDM and the
RITOLS models, as the behavior of the DNA
polymerase is very similar under both, but the
SDM and RITOLS models can be distinguished
using functional genomics tools: under RITOLS,
the lagging strand is covered by RNA, while in
the SDM model, the lagging strand is associ-
ated with the mtSSB protein. It will therefore
be highly informative to apply strand-specific
ChIP-seq protocols (Zhou et al. 2013) to mtSSB
(and also, to the polymerase itself).

In addition, occupancy maps of other pro-
teins involved in the biology of mtDNA (for ex-
ample, the other three members of the MTERF
family) should prove highly valuable for under-
standing their functional role, as in contrast to
the well-known proteins studied here, much less
is known about them at present.

6.4 Methods

6.4.1 Cell growth, chromatin
immunoprecipitation and

sequencing

Cells were grown under standard ENCODE pro-
tocols, which can be found at http://genome.

ucsc.edu/ENCODE/protocols/cell/human/.
ChIP experiments and preparation of DNA for

http://genome.ucsc.edu/ENCODE/protocols/cell/human/
http://genome.ucsc.edu/ENCODE/protocols/cell/human/


230

sequencing were performed following standard
procedures (Johnson & Mortazavi et al. 2007;
Gasper et al., in press). The following antibodies
were used: mouse polyclonal α-TFAM (Sigma-
Aldrich, SAB1401382), mouse monoclonal α-
TFB2M (Novus Biologicals, H00064216-M01),
goat polyclonal α-MTERF (Santa Cruz, sc-
160543), goat polyclonal α-POLG (Santa Cruz,
sc-5930) and mouse monoclonal α-POLRMT
(Santa Cruz, sc-365082). Libraries were se-
quenced using the Illumina HiSeq 2000.

6.4.2 Data processing and
analysis

Reads were aligned as described previously
(Wang et al. 2010) using Bowtie (Langmead
et al. 2009), version 0.12.7. Two sets of align-
ments were generated. Firs, reads were mapped
against either the female or male hg19 ver-
sion of the human genome (excluding all ran-
dom chromosomes and haplotypes; assembly

downloaded from the UCSC genome browser)
depending on the sex of the cell line (male
for HepG2, female for GM12878) with the fol-
lowing settings: ‘‘-v 2 -t -k 2 -m 1 --best

--strata’’, which allow for two mismatches
relative to the reference and only retain unique
alignments. These alignments exclude all reads
mapping ambiguously to both the nuclear and
mitochondrial genomes, and were used for call-
ing peaks in the nuclear genome with MACS2
(Feng et al. 2012), version 2.0.9. Second, reads
were mapped against chrM alone, with the fol-
lowing settings: ‘‘-v 0 -t -k 2 -m 1 --best

--strata’’, i.e. allowing for zero mismatches
to the reference. These alignments were used for
visualization and evaluation of ChIP enrichment
over the mitochondrial genome. Circos plots
were generated using Circos version 0.60 (Krzy-
winski et al 2009). Additional data process-
ing was carried out using custom-written python
scripts.
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7

Evidence for Site-Specific Occupancy of the Mito-

chondrial Genome by Nuclear Transcription Factors

T
he material in this chapter was published as:

Marinov GK*, Wang YE*, Chan DC, Wold BJ. 2014. Evidence for site-specific occupancy
of the mitochondrial genome by nuclear transcription factors. PLoS ONE 9(1):e84713. doi:

10.1371/journal.pone.0084713
The experimental data in it was generated by Yun Elisabeth Wang in the Chan lab. The paper is
reprinted in Appendix L

Abstract

Mitochondria contain their own cir-
cular genome, with mitochondria-specific
transcription and replication systems and
corresponding regulatory proteins. All
of these proteins are encoded in the nu-
clear genome and are post-translationally
imported into mitochondria. In addi-
tion, several nuclear transcription factors
have been reported to act in mitochon-
dria, but there has been no comprehen-
sive mapping of their occupancy patterns
and it is not clear how many other fac-
tors may also be found in mitochondria.
We addressed these questions by analyz-
ing ChIP-seq data from the ENCODE,
mouseENCODE and modENCODE con-
sortia for 151 human, 31 mouse and 35 C.
elegans factors. We identified 8 human
and 3 mouse transcription factors with
strong localized enrichment over the mi-
tochondrial genome that was usually asso-
ciated with the corresponding recognition
sequence motif. Notably, these sites of oc-
cupancy are often the sites with highest
ChIP-seq signal intensity within both the
nuclear and mitochondrial genomes and
are thus best explained as true binding

events to mitochondrial DNA, which ex-
ists in high copy numbers in each cell. We
corroborated these findings by immuno-
cytochemical staining evidence for mito-
chondrial localization. However, we were
unable to find clear evidence for mitochon-
drial binding in ENCODE and other pub-
licly available ChIP-seq data for most fac-
tors previously reported to localize there.
As the first global analysis of nuclear tran-
scription factors binding in mitochondria,
this work opens the door to future stud-
ies that probe the functional significance
of the phenomenon.

In the course of our study of the association
of TFAM with the mitochondrial nucleoid, we
made the accidental but very intriguing obser-
vation that a number of transcription factors for
which ChIP-seq data was available from the EN-
CODE Consortium exhibited high levels of lo-
calized signal enrichment over the mitochondrial
genome. We followed these observations and in-
vestigated the phenomenon in depth. It turned
out this was not an entirely new observations
and the physical localization of nuclear tranc-
sription factors to the mitochondria had been
reported in the past. However, the power of the
resolution and comprehensiveness of coverage of
ChIP-seq had not been utilized in none of those
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Figure 7.1: Representative USCS Genome Browser snapshots of nuclear transcription
factor ChIP-seq datasets exhibiting strong enrichment in the mitochondrial genome.
(A) GM12878 GCN5 shows high signal intensity in the D-loop (the region between coordinates 16030
and 580, i.e. the non-coding regions on the left and right ends of the snapshot) representative of
the D-loop enrichment observed for a large number of transcription factors (B) In contrast, a large
MafK peak is observed in a coding region outside of the D-loop in HepG2 cells. Upper track (black)
shows reads aligning to the forward strand, lower track (gray) shows read aligning to the reverse
strand

studies, in fact there was very little direct bio-
chemical evidence for the binding of those fac-
tors to mtDNA. Our study, the results of which
I present in this chapter, was the first global sur-
vey of these events, both in terms of covering the
whole mitochondrial genome in multiple species,
and the number of transcription factors included
in it.

7.1 Introduction

In addition to the well-characterized regulators
of mitochondrial transcription, multiple reports
have suggested that transcription factors that
typically act in the nucleus might also have reg-
ulatory functions in mitochondrial transcription
(Leigh-Brown et al. 2010; Szczepanek et al.
2012b). The glucocorticoid receptor (GR) was
the first such factor reported to localize to mito-
chondria and to interact with mtDNA (Demona-
cos et al. 1993; Demonacos et al. 1995; Koufali
et al. 2003; Psarra et al. 2006). A 43kDa iso-
form of the thyroid hormone T3 receptor T3Rα1
called p43 has been found to directly control
mitochondrial transcription (Casas et al. 1999;
Enŕıquez et al. 1999a; Enŕıquez et al. 1999b;
Wrutniak et al. 1995). Cyclic-AMP Response el-

ement Binding protein (CREB) has been shown
to localize to mitochondria and suggested to bind
to the D-loop (Lee et al. 2005; Ryu et al. 2005;
Cammarota et al. 1999; De Rasmo et al. 2009).
The tumor suppressor transcription factor p53
has been implicated in mtDNA repair and reg-
ulation of gene expression through interactions
with TFAM (Marchenko et al. 2000; Marchenko
et al. 2007; Achanta et al. 2005; Heyne et al.
2004; Yoshida et al. 2003). It has also been
proposed to play a proapoptotic role through
association with the outer mitochondrial mem-
brane (Vaseva & Moll 2009). A similar role
has been also ascribed to the IRF3 transcrip-
tion factor (Liu et al. 2010; Chattopadhyay et
al. 2010). The mitochondrial localization of the
estrogen receptor (ER) is also well established,
for both its ERα and ERβ isoforms, and it too
has been suggested to bind to the D-loop (Chen
et al. 2004; Monje & Boland 2001). NFκB and
IκBα have been found in mitochondria and have
been proposed to regulate mitochondrial gene
expression (Cogswell et al. 2003; Johnson et
al. 2011). The AP-1 and PPARγ2 transcrip-
tion factors have been proposed to localize to
mitochondria and bind to the genome. (Casas
et al. 2000; Ogita et al. 2003; Ogita et al. 2002)
and the MEF2D transcription factor was found
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Figure 7.2: Unique mappability of the mitochondrial genome (chrM) in ENCODE and
modENCODE species. (A) human; (B) mouse; (C) C. elegans; (D) D. melanogaster. The 36bp
mappability track (see Methods for details) is shown. The annotated protein coding and rRNA and
tRNA genes are shown in the inner circles as follows: forward-strand genes are shown as green lines,
while reverse-strand genes are shown as red lines, with the exception of mouse and human rRNA
and tRNAs (blue). The D-loop region in human is shown in black. Gene annotations were obtained
from ENSEMBL (version 66). Plots were generated using Circos version 0.60 (Krzywinski et al.
2009).

to regulate the expression of the ND6 gene by
binding to a consensus sequence recognition mo-
tif within it (She et al. 2011). Finally, the pres-
ence of STAT3 in mitochondria has been found
to be important for the function of the elec-
tron transport chains and also to be necessary

for TNF-induced necroptosis (Szczepanek et al.
2011; Szczepanek et al. 2012a; Szczepanek et al.
2012b; Wegrzyn et al. 2009; Shulga & Pastorino
2012), although direct mtDNA binding has not
been established. Mitochondrial localization has
also been reported for STAT1 and STAT5 (Bo-
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engler et al. 2010; Chueh et al. 2010).
However, direct in vivo chromatin immuno-

precipitation evidence for the binding of these
factors to mtDNA exists only for CREB (Lee
et al. 2005), p53 (Achanta et al. 2005) and
MEF2D (She et al. 2011), and with the excep-
tion of MEF2D characterization is limited to the
D-loop region. No prior studies have assayed
transcription factor occupancy across the entire
mitochondrial genome in vivo with modern high
resolution techniques such as ChIP-seq (Chro-
matin Immunoprecipitation coupled with deep
sequencing, (Johnson & Mortazavi et al. 2007).
As a result, the precise nature, and in many in-
stances the existence, of the proposed binding
events remains unknown. The limited sampling
of transcription factors in previous studies also
leaves uncertain how common or rare localiza-
tion to mitochondria and binding to mtDNA is
for nuclear transcription factors in general.

To address these questions, I surveyed the
large compendium of ChIP-seq and other func-
tional genomic data made publicly available by
the ENCODE, mouseENCODE and modEN-
CODE Consortia (ENCODE Project Consor-
tium 2011; ENCODE Project Consortium 2012;
Gerstein et al. 2010; modENCODE Consor-
tium 2010; Mouse ENCODE Consortium 2012)
to identify transcription factors that associate
directly with mtDNA and to characterize the na-
ture of these interactions. This resulted in the
identification of eight human and three mouse
transcription factors for which robust evidence
of site-specific occupancy in the mitochondrial
genome exists. These sites exhibit the strand
asymmetry typical of nuclear transcription fac-
tor binding sites, usually contain the recognition
motifs for the factors in question, and are typi-
cally the strongest (as measured by ChIP-seq sig-
nal strength) binding sites found in both the nu-
clear and mitochondrial genome by a wide mar-
gin. Notably, these interactions are all found
outside of the non-coding D-loop region. The

D-loop region itself exhibits widespread sequenc-
ing read enrichment for dozens of transcription
factors. However, it does not show the afore-
mentioned feature characteristics of true binding
events. Though not observed in control datasets
generated from sonicated input DNA, the high
ChIP-seq signal over the D-loop is frequently
seen in control datasets generated using mock
immunoprecipitation, suggesting that it is likely
to represent an experimental artifact. Examina-
tion of available ChIP-seq data for the transcrip-
tion factors previously proposed to play a role in
mitochondria (GR, ERα, CREB, STAT3, p53)
revealed no robust binding sites except for en-
richment in the D-loop. Resolving the functional
significance of the identified occupancy sites in
future studies should provide exciting insights
into the biology of both mitochondrial and nu-
clear transcriptional regulation.

7.2 Results

In the course of a study of TFAM occupancy in
the mitochondrial and nuclear genomes (Wang
et al. 2013), we noticed that a number of nu-
clear transcription factors exhibit localized en-
richment in certain areas of the mitochondrial
genome in ChIP-seq data (Figure 7.1). These
events could be divided in two classes: high
ChIP-seq signal over the NCR, and localized
high read density over regions outside of it.
Given prior reports suggesting that nuclear tran-
scription factors might act in mitochondria, this
prompted me to determine the general preva-
lence of the phenomenon among transcription
factors and investigate evidence of occupancy in
detail, as the power and resolution of ChIP-seq
have not previously been brought to bear on this
somewhat mysterious phenomenon. We took
advantage of the wide compendium of human,
mouse, fly and worm functional genomics data
generated by the ENCODE (ENCODE Project

Figure 7.3 (preceding page): Variation in mitochondrial DNA copy number in cell lines
and tissues. The fraction of reads mapping to the mitochondrial genome (chrM) is shown. (A,B)
UW human (A) and mouse (B) UW ENCODE digital genomic footprinting (DGF) data; (C) UW
human ChIP input datasets; (D) LICR mouse ChIP input datasets. “UW” and “LICR” refers to the
ENCODE production groups that generated the data. Inputs from the UW and LICR groups were
chosen because they are the largest ENCODE sets in terms of number of cell lines/tissues assayed
by the same production groups, thus avoiding possible variation between different laboratories. A
general positive correlation between the expected metabolic demand of the tissue type and the
relative amount of reads mapping to chrM is observed.
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Figure 7.4: Signal distribution over the mitochondrial genome in human ChIP-seq
datasets. The maximum z-score for each individual TF ChIP-seq replicate in each cell line is
shown on the left (factors are sorted by average z-score, with control datasets always shown on
the bottom in red, below the red horizontal line). The z-score profile along the mitochondrial
chromosome for the replicate with the highest z-score is shown on the right. “SYDH” and “HA”
refer to the ENCODE production groups which generated the data. Z-scores ≥100 are shown as
equal to 100. (A) GM12878 cells; (B) K562 cells; (C) HepG2 cells; (D) HeLa cells; (E) A549 cells;
(F) H1-hESC cells; (G) IMR90.

Consortium 2011; ENCODE Project Consor-
tium 2012), mouseENCODE (Mouse ENCODE
Consortium 2012) and modENCODE (Gerstein
et al. 2010; modENCODE Consortium 2010)
consortia.

7.2.1 Identifying transcription
factor binding events in the

mitochondrial genome

I downloaded publicly available (as of Febru-
ary 2012) ENCODE and mouseENCODE ChIP-
seq and control data from the UCSC Genome
Browser and modENCODE data from ftp://

ftp.modencode.org, including ChIP-seq data
for 151 transcription factors in human cell lines
(Wang et al. 2012), 31 in mouse and 35 in

C.elegans (see discussion on D. melanogaster be-
low). I also downloaded DNase hypersensitvity
(both DNase-seq (Thurman et al. 2012) and
DGF (Neph et al. 2012)), FAIRE-seq (Song et
al. 2012) and MNase-seq data as these datasets
provide valuable orthogonal information about
potentially artifactual patterns of read enrich-
ment over the mitochondrial genome.

It is well known that the nuclear genome con-
tains partial copies of the mitochondrial genome
(NUMTs) (du Buy & Riley 1967; Hazkani-Covo
E et al. 2010). Depending on their levels of di-
vergence from the mitochondrial sequence, they
can present an informatics challenge for distin-
guishing binding events to the true mitochon-
drial genome from binding events to NUMTs.
For this reason, I aligned reads simultaneously

ftp://ftp.modencode.org
ftp://ftp.modencode.org
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Figure 7.5: Signal distribution over the mitochondrial genome in human FAIRE-seq,
DNAse-seq and MNAse-seq datasets. Shown is the maximum z-score for each individual repli-
cate for each cell line (left) and the z-score profile along the mitochondrial chromosome for the
replicate with the highest z-score (right). (A) FAIRE data; (B) DNAse data; (C) MNAse data.
“UNC”, “UW” and “SYDH” refer to the ENCODE production groups which generated the data.
Z-scores larger than 100 are shown as 100. No read enrichment over the D-loop is observed, sug-
gesting that the D-loop signal found in TF ChIP-seq datasets is not due to sequencing biases but is
a result of the immunoprecipitation process.
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Figure 7.6: Combined
signal distribution pro-
file for the forward and
reverse strand in the D-
loop region. Shown is the
average signal (in RPM) for
each strand in human ChIP-
seq datasets with z-scores
≥ 20 (A) and human IgG
controls (B). Also shown for
comparison is the plus and
minus strand read distribu-
tion around nuclear CTCF
binding sites in H1-hESC
cells (C)

against the nuclear and mitochondrial genomes.
I then retained only reads that map uniquely,
and with no mismatches, relative to the refer-

ence for further analysis (see Methods for de-
tails). As a consequence this stringent mapping
strategy, regions of the mitochondrial genome
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that are also present as perfectly identical copies
in the nuclear genome are “invisible” to analy-
sis; this was a necessary compromise in order to
focus only on a maximally stringent set of puta-
tive mitochondrial binding events. However, be-
fore proceeding, I examined how widely affected
the mitochondrial genome is by this treatment
in the four relevant species by generating map-
pability tracks (shown in Figure 7.2). The hu-
man mitochondrial genome contains numerous
small islands of unmappable sequence, particu-
larly concentrated between the ND1 and CO3
genes, but it displays no large completely un-

mappable segments (Figure 7.2A). The mouse
genome contains a large unmappable stretch be-
tween the CO1 and ND4 genes (Figure 7.2B).
The C. elegans mitochondrial genome is almost
completely uniquely mappable (Figure 7.2C). In
contrast, the D. melanogaster genome is almost
completely unmappable, indicating the presence
of very recent insertions into the nuclear genome
with high sequence similarity. Fly datasets were
therefore excluded from further analysis and I
focused on human, mouse and worm data.

Mammalian cells typically contain hundreds
to thousands of copies of mtDNA, with the pre-
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Figure 7.7: Human transcription factors with canonical ChIP-seq peaks (displaying the
typical strand asymmetry in read distribution around the putative binding site) outside
of the D-loop. Reads mapping to the forward strand are represented in black, reads mapping to
the reverse strand are represented in yellow. The unique mappability track for the mitochondrial
genome is shown in red in the outside track (see Methods for details). Protein-coding, rRNA and
tRNA genes are shown as colored bars. The innermost circle shows the motif occurrences in the
mitochondrial genome for each factor as black vertical bars. (A) CEBPβ; (B) c-Jun; (C) MafF; (D)
MafK (note that MafK has been assayed using two different antibodies in HepG2, both of which
are shown); (E) NFE2; (F) Rfx5. The reads per million (RPM) tracks are shown, scaled to the
maximum signal level (for both strands) for each dataset. Plots were generated using Circos version
0.60 (Krzywinski et al. 2009).

cise number varying depending on the metabolic
needs of the particular cell type (Bogenhagen &
Clayton 1974; Williams 1986; Satoh & Kuroiwa

1991). This variation is relevant to analysis
because the relative read density over the mi-
tochondrial genome is expected to scale with
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Figure 7.8: Signal distribution over the mitochondrial genome in mouse ChIP-seq
datasets. Shown is the maximum z-score for each individual replicate for each cell line (left) and
the z-score profile along the mitochondrial chromosome for the replicate with the highest z-score
(right). Control datasets are shown in red on the bottom, below the red horizontal line. (A) CH12
cells; (B) MEL cells.

the mtDNA:nuclear DNA ratio for a given cell.
Thus, cell types with very high mtDNA copy
number are expected to display correspondingly
elevated background read density over the mi-
tochondrial genome. Several types of ENCODE
data provide a rough proxy for the relative mi-
tochondrial genome copy number per cell. In
particular, the fraction of reads originating from
the mitochondrial genome in DNase hypersen-
sitivity and ChIP control datasets is expected
to scale accordingly. I examined the distribu-
tion of this fraction in ENCODE and mouseEN-
CODE DGF datasets and observed very large
differences between different cell lines and tis-
sues (Figure 7.3). For example, about half of
reads in K562 DGF data originated from mito-
chondria, while the fraction was less than 2% in

CD20+ B-cells (Figure 7.3A). Notably, these dif-
ferences are in many cases (though not always)
consistent with what is known about the cell
lines, with certain cancer cell lines (such as K562
and A549) and muscle cells (LHCN) showing the
largest number of mitochondrial reads, while pri-
mary cells with small volumes of cytoplasm such
as B-cells showed the least.

Mouse DGF data was available mostly for
tissues, and the fraction of mitochondrial reads
in these was much smaller compared to both the
human cell lines and the few mouse cell lines
assayed (Figure 7.3B). This is consistent with
a significant proportion of cells in tissues being
in a less active metabolic state than cell lines in
culture. Still, some expected differences between
tissues were observed. For example, one of the
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tissues that was most enriched for reads map-
ping to the mitochondrial genome was the heart.
Similarly large differences were observed in ChIP
control datasets (Figure 7.3CD), although the

absolute number of reads was much lower than
it was in DGF data. Again, the mouse tissues
with the highest number of mitochondrial reads
were the more metabolically active ones, such as

Figure 7.9: Mouse transcription factors with canonical ChIP-seq peaks (displaying the
typical strand asymmetry in read distribution around the putative binding site) outside
of the D-loop. Reads mapping to the forward strand are represented in black, reads mapping to
the reverse strand are represented in yellow. The unique mappability track for the mitochondrial
genome is shown in red in the outside track (see Methods for details). Protein-coding, rRNA and
tRNA genes are shown as colored bars. The innermost circle shows the motif occurrences in the mi-
tochondrial genome for each factor as black vertical bars. (A) MafK (note that the putative binding
site is found in a region that is not completely mappable, thus the read profiles loses the canonical
shape but the strand asymmetry is nevertheless apparent and a motif is present); (B) Max; (C)
USF2. The reads per million (RPM) tracks are shown, scaled to the maximum signal level (for both
strands) for each dataset. Plots were generated using Circos version 0.60 (Krzywinski et al. 2009).



245

brown adipose tissue, cortex, and heart.
These large differences in background read

coverage between different cells lines/tissues
have two consequences for the analysis of pu-
tative transcription factor binding to the mi-
tochondrial genome. First, peak calling algo-
rithms usually used to identify transcription fac-
tor binding sites from ChIP-seq data may not
work equally well in different cell lines due to
the highly variable background read density.
Second, these differences render comparing the
strength of binding across cell lines difficult.

I therefore devised a normalization proce-
dure (described in Methods) to convert read
coverage to signal intensity z-scores reflecting
how strongly regions of enrichment stand out
compared to the average background read den-
sity along the mitochondrial genome for each
dataset. I then used the maximum z-scores
for each dataset to identify datasets with very
strong such enrichment, which I then examined
manually in detail.

7.2.2 Nuclear transcription factor
binding to the mitochondrial
genome in human cell lines

The distribution of read density z-scores for tran-
scription factor ChIP-seq and control datasets
in seven ENCODE human cell lines (GM1278,
K562, HepG2, HeLa, H1-hESC, IMR90 and
A549) is shown in Figure 7.4. A wide range in
the values of the maximum z-score is observed,
from less than 5, to more than 100. Strikingly,
most factors exhibit high read density in the
NCR. One obvious explanation for this obser-
vation is that it represents an experimental arti-
fact. This is likely, as the NCR contains the D-
loop (Shadel & Clayton 1997), the unique triple-
strand structure of which could conceivably ei-
ther cause overrepresentation of DNA fragments
originating from it in sequencing libraries or it
could be non-specifically bound by antibodies
during the immunoprecipitation process. To dis-
tinguish between these possibilities, I carried out
the same analysis on DNase, FAIRE and MNase
data. As these assays do not involve an immuno-
precipitation step, they are a proper control for
sequencing artifacts. I did not observe signifi-
cant localized read enrichment in these datasets
(Figure 7.5), suggesting that the observed read
enrichment over the D-loop is not due to se-
quencing biases or overrepresentation of D-loop
fragments in ChIP libraries. Similarly, I did not

observe enrichment in the matched sonicated in-
put ChIP-seq control datasets. However, a num-
ber of mock-immunoprecipitation (IgG) control
datasets did exhibit high z-scores (up to >50 in
K562 cells) and closely matched the signal pro-
file over the D-loop of ChIP-seq datasets (Fig-
ure 7.6B). We also examined the forward and re-
verse strand read distribution in the NCR (Fig-
ure 7.6). Site-specific transcription factor bind-
ing events display a characteristic asymmetry in
the distribution of reads mapping to the forward
and reverse strands, with reads on the forward
strand showing a peak to the left of the bind-
ing site and reads on the reverse strand show-
ing a peak to the right of it (Kharchenko et al.
2008) (Figure 7.6C). Such read asymmetry was
not observed in the D-loop region (average pro-
file shown in Figure 7.6A, individual dataset pro-
file shown in Figure 7.1, and also in Figures 7.7
and 7.13).

These results suggest that while immunopre-
cipitation is necessary for high enrichment over
the D-loop, the enrichment might not be me-
diated by the proteins targeted by the primary
antibody. This does not explain why a large
number of factors show little enrichment over
the D-loop (Figure 7.4) and why some factors
show enrichment that is much higher than that
observed in K562 IgG controls, with z-scores of
up to 300 (compared to a maximum of 50 for the
most highly enriched IgG controls). Still, given
the lack of clear hallmarks of site-specific occu-
pancy, and the IgG control results, enrichment
over the D-loop has to be provisionally consid-
ered to be primarily the result of an experimental
artifact, even if it cannot be ruled that at least
in some cases it is the result of real biochemical
association with nuclear transcriptional regula-
tors.

In contrast to the widespread, but likely ar-
tifactual, read enrichment over the D-loop, I ob-
served strong enrichment, exhibiting the canon-
ical characteristics of a ChIP-seq peak over a
true transcription factor binding site, in other
regions of the human mitochondrial genome for
eight of the examined transcription factors using
a minimum z-score threshold of 20: CEBPβ, c-
Jun, JunD, MafF, MafK, Max, NFE2 and Rfx5.
Figure 7.7 shows the forward and reverse strand
read distribution for representative replicates of
each factor in each assayed cell line, as well as
the occurrences of the corresponding explana-
tory motifs (identified from the top 500 ChIP-
seq peaks in the nuclear genome, see Methods
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for details). The putative binding sites outside
of the D-loop are characterized by an asymmet-
ric forward and reverse strand read distribution,
and in most cases, the presence of the explana-
tory motif in a position consistent with binding
by the factor. I identified multiple binding sites
for CEBPβ: a strong site of enrichment around
the 5’ end of the CYB gene, what seems to be
two closely clustered sites in the ND4 gene, a
weaker site in the ND4L gene, and two other
regions of enrichment over CO2 and CO1 (Fig-
ure 7.7D). A single very strong binding site over
the ND3 gene was observed for c-Jun, as well as
two weaker sites, one coinciding with the ND4
CEBPβ sites and one near the 5’ end of ATP6
(Figure 7.7B); the strong ND3 site was also ob-
served for JunD in HepG2 cells. Max exhibited
two putative binding sites: one in the middle of
the 16S rRNA gene, containing a cluster of Max
motifs, and another one around the 5’ end of
CO3, which also contains a cluster of Max motifs
but is in a region of poor mappability. A com-
mon and very strong MafK and MafF binding
site is present near the 3’ end of ND5, though it
does not contain the common explanatory motif
for both factors (Figure 7.7CD). Several puta-
tive binding sites were identified for NFE2: one
close to the CEBPβ site in the 5’end of CYB, one
over the tRNA cluster between ND4 and ND5,
one in the 5’ end of ATP6 and one in the 16S
rRNA gene (Figure 7.7D). Finally, two putative
binding sites ar observed for Rfx5, at the 5’ end
of ND5 and in the middle of CO2 (Figure 7.7E).
Intriguingly, these binding events are not always
present in all cell lines. For example, CEBPβ
binding around CYB was absent in K562, A549
and H1-hESC cells, while the MafK ND5 bind-
ing site was absent in GM18278 and H1-hESC
cells, but present in the other cell lines for which
data is available.

7.2.3 Nuclear transcription factor
occupancy to the mitochondrial

genome in model organisms

I carried out the same analysis as described
above on mouse and C. elegans ChIP-seq
datasets. Figure 7.8 shows the distribution of
read density z-scores in mouse CH12 and MEL
cells. Similarly to the human data, I observed
widespread but probably artifactual read en-
richment over the D-loop. In addition to that,
we saw that three transcription factors (Max,
MafK, and USF2) also exhibit strong enrichment

elsewhere in the mitochondrial genome (Figure
7.9). I observed a single MafK binding site, con-
taining the explanatory motif and situated over
the tRNA cluster between the ND2 and CO1
genes (Figure 7.9A). Max displayed a strong
binding site (possibly a cluster of closely spaced
binding sites) in the ND4 gene, and a weaker
binding site near the 5’ end of ND5; both sites
contained the explanatory motif (Figure 7.9B).
Finally, a single site, also containing the ex-
planatory motif for the factor and situated near
the ND5 Max site, was present in CH12 USF2
datasets (but not in MEL cells) (Figure 7.9C).
MafK and Max were also assayed in human cells,
and, as discussed above, putative mitochondrial
sites were identified there for both, though not
at obviously orthologous to those found in the
mouse data positions in the genome. I also ana-
lyzed available ChIP-seq data for the mouse or-
thologs of c-Jun and JunD, which in human cells
exhibited putative mitochondrial binding sites.
In contrast to observation in human, I did not
detect strong sites for either protein in mouse.

Unlike the mouse and human datasets, most
C. elegans ChIP-seq datasets did not show
very strong enrichment over the mitochondrial
genome (Figure 7.10A), with the exception of
DPY-27 and W03F9.2. Of these, only W03F9.2
exhibited regions of enrichment with the char-
acteristics of transcription factor binding sites
(Figure 7.10B); however, very little is known
about this protein and the significance of its
binding to the mitochondrial genome is unclear.

7.2.4 ChIP-seq signal is
significantly stronger over

mitochondrial occupancy sites than
it is over nucleus sites

The occupancy observations reported above for
human and mouse mitochondria do not formally
rule out the possibility that there are unanno-
tated NUMTs in the genomes of the cell lines in
which binding is detected in our analysis and the
observed binding is in fact nuclear. Such an ex-
planation is superficially likely, given that bind-
ing to the mitochondrial genome was observed
in some cell lines and not in others. However,
closer examination reveals that this hypothesis
would require different NUMTs in different cell
lines as the cell lines that lack binding are not
the same for all factors. For example, MafF
and MafK binding is very prominent in K562
cells but CEBPβ and c-Jun seem not to bind
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to mtDNA in those cells. While still possible,
we consider the independent insertion of multi-
ple partial NUMTs in different cell lines to be
an unlikely explanation for the observed binding
patterns.

Each chromosome in the nuclear genome ex-
ists as only two copies in diploid cells, as com-
pared to the hundreds of mitochondria, each of
which may contain multiple copies of the mito-
chondrial genome (Satoh & Kuroiwa 1991; Bo-
genhagen & Clayton 1974), and although cancer
cells may exhibit various aneuploidies and copy
number variants, the number of mtDNA copies
is still expected to be much higher. Thus, higher
read density over mitochondrial transcription
factor binding sites than over nuclear ones is
expected, assuming similar occupancy rates. I
therefore used the strength of ChIP-seq signal
over mitochondrial occupancy sites in order to
test the hypothesis that they are in fact nuclear,
and not mitochondrial in origin. I compared the
peak height (in RPM) of the top 10 nuclear peaks
(peak calls generated by the ENCODE consor-
tium were downloaded from the UCSC Genome
Browser) with that of the putatively mitochon-
drial binding sites (Figure 7.11). I found that
the mitochondrial binding sites are usually the
strongest binding sites by a wide margin, or at
least within the top three of all peaks. For ex-
ample, while the strongest nuclear MafK peak
in mouse CH12 cells has a peak height of 14.5
RPM, the mitochondrial binding site has a peak
height of 290 RPM. These observations are diffi-
cult to explain as being the result of binding to
unannotated NUMTs in the nuclear genome, but
are entirely consistent with the hypothesis that
these factors indeed bind to the large number of
copies of the mitochondrial genome present in
each cell.

7.2.5 Evidence for localization of
transcription factors to

mitochondria

If the observed binding sites in ChIP-seq data
are the result of actual association of nuclear
transcription factors with mtDNA, then these
transcription factors should exhibit mitochon-
drial localization. We directly tested this by per-
forming immunocytochemistry (ICC) for MafK
in HepG2 cells (Figure 7.12). It is important
to note that such an assay for localization to
mitochondria is potentially difficult to interpret
if binding is the result of only a few protein
molecules entering mitochondria, which would
not yield sufficient signal for interpretation via
ICC. However, strikingly, we observe clear colo-
calization of MafK to mitochondira in 60% of
cells (n = 124). These observations provide in-
dependent corroboration for the mtDNA binding
events identified through ChIP-seq.

7.2.6 No robust mitochondrial
occupancy in ChIP-seq data for

most previously reported
mitochondrially targeted nuclear

factors

I note that none of the factors previously re-
ported to be localized to mitochondria and to
bind to mtDNA was retrieved by our analysis,
even though CREB, GR, ERα, IRF3, NFκB,
STAT1, STAT5A and STAT3 were assayed by
the ENCODE Consortium. This failure could be
attributed to the use of too stringent a z-score
threshold when selecting datasets with signifi-
cant enrichment. I therefore examined available
ChIP-seq data against these factors more care-
fully (Figure 7.13, Figure 7.14). I also performed
the same analysis on published mouse and hu-
man p53 ChIP-seq data (Kenzelmann Broz et
al. 2013; Li et al. 2012; Aksoy et al. 2012)

Figure 7.10 (preceding page): Signal distribution over the mitochondrial genome in
C.elegans ChIP-seq datasets. (A) Shown is the maximum z-score for each individual replicate
for each cell line (left) and the z-score profile along the mitochondrial chromosome for the replicate
with the highest z-score (right). Control datasets are shown in red on the bottom, below the red
horizontal line; (B) Forward and reverse strand read distribution over the C.elegans mitochondrial
genome for W03F9.2 (“Young Adult” stage). Reads mapping to the forward strand are represented
in black, reads mapping to the reverse strand are represented in yellow. The unique mappability
track for the mitochondrial genome is shown in red in the outside track (see Methods for details).
Plots generated using Circos version 0.60 (Krzywinski et al. 2009).
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Figure 7.11: Mitochondrial ChIP-seq peaks are generally significantly stronger than
nuclear peaks. Shown is the maximum signal (in RPM) for the top 10 nuclear peaks (“N”, smaller
black dots), and the maximum signal intensity (also in RPM) in the mitochondrial genome (“M”,
larger red dot) for representative ChIP-seq datasets for each factor. (A) Mouse datasets (B) Human
datasets.

(Figure 7.15). Again, I did not observe any ma-
jor sites of enrichment outside of the D-loop.
For these factors, the D-loop region exhibits
the same putatively artifactual pattern discussed
previously. And for STAT3 and p53, even the
enrichment over the D-loop was low. The one
factor for which binding to mtDNA is confirmed
by ChIP-seq is MEF2D, data for two of the iso-
forms of which in mouse C2C12 myoblasts was
recently published (Sebastian et al. 2013) (Fig-
ure 7.16). It exhibits a very complex binding
pattern over large portions of the mouse mito-
chondrial genome, which is not straightforward
to interpet, but nevertheless a number of lo-
cations exhibit strand asymmetry and contain
the MEF2 sequence recognition motif. Notably,
most of these are outside the ND6 gene.

It is at present not clear how to interpret
these discrepancies. It is not surprising that
some of these factors do not exhibit binding to
mtDNA, as they were reported to play a role
in mitochondrial biology through mechanisms
other than regulating gene expression (for ex-
ample, IRF3 and STAT3). However, this is not
the case for all of them. One possibility is that
many prior studies reporting physical association
of transcription factors with the D-loop suffered
from the same artifactual read enrichment over
that region that we observe, but this would not
have been noticeable using the methods of the
time. This would not be surprising, as it is only
apparent that D-loop enrichment is likely to be

artifactual when the high spatial resolution of
ChIP-seq is combined with the joint analysis of
input and mock immunoprecipitation controls.
However, the mitochondrial localization of these
factors has been carefully documented in a num-
ber of cases (Cammarota et al. 1999; Casas et
al. 1999; De Rasmo et al. 2009). Another pos-
siblity is that binding to mtDNA only occurs
under certain physiological conditions and the
factors were assayed using ChIP-seq only in cel-
lular states not matching those. Further analysis
of ChIP-seq data collected over a wide range of
conditions should help resolve these issues.

7.3 Discussion

I present here the first large-scale characteriza-
tion of the association of nuclear transcription
factors along the entire mitochondrial genome by
utilizing the vast ChIP-seq data resource made
publicly available by the ENCODE and mod-
ENCODE consortia. I find two classes of sig-
nal enrichment events, neither of which is de-
tected in high-throughput sequencing datasets
that do not involve immunoprecipitation and
therefore they are not due to sequencing biases.
First, the majority of factors for which we de-
tect strong read enrichment over the mitochon-
drial genome display high ChIP-seq signal only
over the D-loop non-coding region in both hu-
man and mouse datasets. However, these sig-
nals do not have the characteristics of sequence



250



251

specific occupancy and are present in a number
of mock-immunoprecipitation control datasets.
They are thus best explained as experimental
artifacts, although it remains possible that they
represent real non-canonical association with the
D-loop for some factors. Second, for a subset
of factors, specific ChIP-seq peaks are observed
outside of the D-loop, and these display the addi-
tional hallmark characteristics of sequence spe-
cific occupancy.

Nuclear transcription factors previously re-
ported to localize to mitochondria either did
not exhibit significant enrichment in the avail-
able ChIP-seq datasets or, when they did, it
was over the D-loop region with similar non-
specific read distribution shape as other factors.
In contrast, applying conservative thresholds I
found eight human and three mouse transcrip-
tion factors (two in common between the two
species) that strongly occupy sites outside of the
D-loop. They display the strand asymmetry pat-
tern around the putative binding site that typ-
ifies true nuclear ChIP-seq peaks. Even more
convincing is the fact that the explanatory motif
for the factor is usually found under the observed
enrichment peaks, further suggesting that they
correspond to true in vivo biochemical events.

There are three main explanations for these
observations. First, it is possible that despite
our considerable bioinformatic precautions the
observed binding events are in fact nuclear, orig-
inating from NUMTs present in the genomes of
the cell lines assayed, but absent from the refer-
ence genome sequence. I believe that this is very
unlikely. An experimental argument against un-
known NUMTs comes from the strength of the
ChIP-seq signal that is seen in the mitochondrial
genome. These signals are much higher than
even the strongest peaks in the nuclear genome
for the same factor in the same dataset. This
is expected for true mitochondrial genome bind-
ing because of the presence of many copies of
the mitochondrial genome per cell, in contrast
to the presence of only two copies of the nu-
clear genome. Second, it is possible that mito-
chondria are sometimes lysed in vivo, with mito-

chondrial DNA spilling into the cytoplasm where
transcription factors could then bind. This can-
not be ruled out based on the ChIP data alone
but we consider it unlikely, as this would need
to happen with a sufficient frequency to explain
the remarkable strength of mitochondrial occu-
pancy sites. The third and most plausible in-
terpretation is that these nuclear transcription
factors indeed translocate to the mitochondria
and interact with the genome, as has been ob-
served for the D-loop in some previous studies
for other factors. Indeed, immunocytochemistry
experiments in our study confirm the presence of
MafK in mitochondria in a majority of HepG2
cells.

Several major questions are raised by these
results. First, it is not clear how these nuclear
transcription factors are targeted to the mito-
chondria. Mitochondrial proteins are typically
imported into the mitochondrial matrix through
the TIM/TOM protein translocator complex,
and are targeted to the organelle by a mito-
chondrial localization sequence, which is cleaved
upon import. We scanned both human and
mouse versions of our factors for mitochon-
drial target sequences (MTS) with both Mi-
toprot (Claros & Vincens 1996) and TargetP
(Emanuelsson et al. 2007) (using default set-
tings), but we were unable to identify signifi-
cant matches using either. This seems to be a
common feature of nuclear transcription factors
previously found to localize to mitochondria,
most of which lack import sequences and are in-
stead imported through other means (Casas et
al. 1999; Szczepanek et al. 2012b). Posttrans-
lational modifications may be important for im-
port, as has been demonstrated for STAT3 in
TNF-induced necroptosis (Shulga et al. 2012).

Second, it is unclear why the same factor
binds detectably to the mitochondrial genome in
some cell types but not in others. It is certainly
possible that different splice isoforms or post-
translationally modified proteins are present in
different cell types, with only some capable of
being imported into mitochondria, or that im-
port into mitochondria only happens under cer-

Figure 7.12 (preceding page): Localization of MafK to the mitochondria (A) Immuno-
cytochemistry showing MafK localization in HepG2 cells. Mitochondria were identified by HSP60
staining. Shown are two representative images of cells showing that MAFK localizes strongly to the
nucleus and mitochondria, and exhibits diffuse staining in the cytoplasm. In 60% of cells (C), there
is colocalization of HSP60 with MAFK staining at an intensity higher than that of the surrounding
cytoplasm. (B) An example of a cell exhibiting only nuclear and cytoplasmic MAFK localization.
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tain physiological conditions only met in some
cell lines.

Third, the question of the biochemical re-
ality of transcription factor binding at the D-
loop remains open. Previous studies under-
standably focused on the D-loop, given its well-
appreciated importance in regulating mitochon-
drial transcription. As a consequence, the litera-
ture supporting a role for some nuclear factors in
mitochondria suggests that they do so through
binding to the D-loop. Our analysis of ChIP-seq
data, which was carried out in an agnostic man-
ner, revealed that dozens of transcription fac-
tors – many more than had been studied locally
at the D-loop alone – also show high level of
enrichment over the D-loop. However, the ob-
served enrichment has characteristics suggesting
that these signals are mainly due to experimen-
tal artifacts. In support of this judgment, the
explanatory motifs for most of these factors were
generally not found under the area of strongest
enrichment in the D-loop. Therefore a conser-
vative interpretation is that enrichment over the
D-loop is an artifact in most cases.

Finally, and most importantly, the functional
significance of factor occupancy observed by
ChIP-seq remains unknown. It is entirely pos-
sible that it represents biochemical noise, with
transcription factors entering the mitochondria
because they have the right biochemical proper-
ties necessary to be imported, then binding to
mtDNA but with little functional consequence.
Alternatively, nuclear transcription factors may
in fact be playing a regulatory role in mtDNA.
It is difficult to imagine the exact mechanisms
through which they might be acting, aside from
interactions with the regulatory D-loop. While
I do observe pairs of related factor such as c-Jun
and JunD, and MafK and MafF binding to the

same sites, binding events are overall widely dis-
persed over the mitochondrial genome and are
found outside of the known regulatory regions.
Plausible regulatory relationships are therefore
not obvious and our results suggest that biolog-
ical noise should be the working null hypoth-
esis explaining the data. The functional reg-
ulatory role of these nuclear transcription fac-
tors in mitochondria is a very exciting possibil-
ity but it will have to be demonstrated in sub-
sequent studies. Direct functional tests are the
golden standard for establishing regulatory re-
lationships, using gain and loss of function ex-
periments and genetic manipulation of putative
regulatory sites. The latter is at present not pos-
sible for mitochondria while the former are diffi-
cult to interpret in the case of the role of nuclear
transcription factors in mitochondrial gene reg-
ulation, as it is not easy to separate the direct
effects of binding to mtDNA from the indirect
effects of transcriptional changes in the nucleus.
Thus, it may be some time before definitive an-
swers to these questions are obtained. In the
meantime, larger compendia of transcription fac-
tor ChIP-seq data such as those expected to be
generated by the next phase of the ENCODE
project will be a primary source of further in-
sight by providing binding data for additional
nuclear transcription factors that will clarify al-
lowed or preferred occupancy patterns across the
mitochondrial genome.

7.4 Materials and Methods

7.4.1 Sequencing read alignment

Raw sequencing reads were downloaded from
the UCSC genome browser for ENCODE and

Figure 7.13 (preceding page): Distribution of reads over the human mitochondrial
genome for factors previously reported to bind to mitochondria in ENCODE ChIP-seq
data. Reads mapping to the forward strand are represented in black, reads mapping to the reverse
strand are represented in yellow. The unique mappability track for the mitochondrial genome is
shown in red in the outside track (see Methods for details). Protein-coding, rRNA and tRNA genes
are shown as colored bars. The innermost circle shows the motif occurrences in the mitochondrial
genome for each factor as black vertical bars. (A) CREB; (B) STAT3; (C) GR in A549 cells treated
with different concentrations of dexamethasone (Dex) (Reddy et al. 2009; Reddy et al. 2012); (D)
ERα in untreated (DMSO) ECC1 cells and ECC1 cells treated with bisphenol A (BPA), genistein
(Gen) or 17β-estradiol (E2) (Gertz et al. 2012); (E) IRF3; (F) NFκB in GM12878 cells treated
with TNFα (Kasowski et al. 2010). The reads per million (RPM) tracks are shown, scaled to the
maximum signal level (for both strands) for each dataset. Plots were generated using Circos version
0.60 (Krzywinski et al. 2009).
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Figure 7.14: Distribution of reads over the human mitochondrial genome for STAT1 and
STAT5A in ENCODE ChIP-seq data. Reads mapping to the forward strand are represented
in black, reads mapping to the reverse strand are represented in yellow. The unique mappability
track for the mitochondrial genome is shown in red in the outside track (see Methods for details).
Protein-coding, rRNA and tRNA genes are shown as colored bars. The innermost circle shows the
motif occurrences in the mitochondrial genome for each factor as black vertical bars. (A) STAT1;
(B) STAT5A; The reads per million (RPM) tracks are shown, scaled to the maximum signal level
(for both strands) for each dataset. Plots were generated using Circos version 0.60 (Krzywinski et
al. 2009).

mouseENCODE (Mouse ENCODE Consortium
2012) data, and from ftp://ftp.modencode.

org for modENCODE data (Gerstein et al.
2010; modENCODE Consortium 2010) (data
current as of February 2012). ChIP-seq data for
p53 was obtained rom GEO series GSE26361
(Li et al. 2012), GSE46240 (Kenzelmann Broz
et al. 2013) and GSE42728 (Aksoy et al. 2012).
Reads were aligned using Bowtie (Langmead
et al. 2009), version 0.12.7. Human data was
mapped against either the female or the male
set of human chromosomes (excluding the Y
chromosome and/or all random chromosomes
and haplotypes) depending on the sex of the
cell line (where the sex was known, otherwise
the Y chromosome was included), genome ver-
sion hg19. Mouse data was mapped against
the mm9 version of the mouse genome. mod-
ENCODE D. melanogaster data was mapped
against the dm3 version of the fly genome. mod-
ENCODE data for C. elegans was mapped
against the ce10 version of the worm genome.
Reads were mapped with the following settings:

‘‘-v 2 -k 2 -m 1 -t --best --strata’’,
which allow for two mismatches relative to the
reference, however for all downstream analy-
sis only reads mapping uniquely and with zero
mismatches were considered, to eliminate any
possible mapping artifacts.

7.4.2 Mappability track
generation

Mappability was assessed as follows. Sequences
of lengthN bases were generated starting at each
position in the mitochondrial genome. The re-
sulting set of “reads” was then mapped against
the same bowtie index used for mapping real
data. Positions covered by N reads were con-
sidered fully mappable. In this case, N = 36 as
this is the read length for most of the sequencing
data analyzed in this study.

ftp://ftp.modencode.org
ftp://ftp.modencode.org
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7.4.3 Signal normalization of
ChIP-seq data over the
mitochondrial genome

Because the number of mitochondria per cell
varies from one cell line/tissue to another, di-

rect comparisons between datasets based on the
absolute magnitude of the signal in RPM are
not entirely valid. For this reason, we normal-
ized the signal as follows. For each dataset, we

Figure 7.15: Distribution of reads over the human and mouse mitochondrial genome
for p53 in publicly available ChIP-seq datasets. Reads mapping to the forward strand are
represented in black, reads mapping to the reverse strand are represented in yellow. The unique
mappability track for the mitochondrial genome is shown in red in the outside track (see Methods
for details). Protein-coding, rRNA and tRNA genes are shown as colored bars. The innermost circle
shows the motif occurrences in the mitochondrial genome for each factor as black vertical bars. (A)
p53 in mouse embryionic fibroblasts (MEFs), data from (Kenzelmann Broz et al. 2013), GSE46240.
(B) p53 in mouse embryonic stem cells (mESC), data from (Li et al. 2012), GSE26361; (C) p53
in human IMR90 cells, data from (Aksoy et al. 2012), GSE42728. The reads per million (RPM)
tracks are shown, scaled to the maximum signal level (for both strands) for each dataset. Plots were
generated using Circos version 0.60 (Krzywinski et al. 2009).
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Figure 7.16: Distribution of reads over the mouse mitochondrial genome for MEF2D
isoforms MEF2Da1 and MEF2Da2 in C2C12 myoblasts. Reads mapping to the forward
strand are represented in black, reads mapping to the reverse strand are represented in yellow. The
unique mappability track for the mitochondrial genome is shown in red in the outside track (see
Methods for details). Protein-coding, rRNA and tRNA genes are shown as colored bars. The in-
nermost circle shows the MEF2D motif occurrences in the mitochondrial genome as black vertical
bars. Data was obtained from (Sebastian et al. 2013), GSE43223. Plots were generated using Circos
version 0.60 (Krzywinski et al. 2009).

fit a Gamma distribution over the RPM cover-
age scores for the bottom Fb percentile of fully
mappable position on the mitochondrial chro-
mosome. The estimated parameters were then
used to rescale the raw signal over all position
to a z-score. This results in datasets with strong

peaks receiving low z-scores over most of the
mappable mitochondrial genome, and very high
z-scores over the regions with highly localized
enrichment. We used Fb = 0.8 for our analy-
sis. As this procedure is sensitive to datasets
with very low total read coverage over the mito-
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chondrial genome, we restricted our analysis to
datasets with at least 5000 uniquely mappable
reads (and with no mismatches to the reference),
i.e. ≥ 10x coverage. We used a z-score cutoff of
20 to select datasets with high enrichment over
the mitochondrial genome, as it was the highest
z-score observed in sonicated input samples

7.4.4 Motif analysis

The peak calls for human and mouse ENCODE
data available from the USCS Genome Browser
were used to find de novo motifs for transcrip-
tion factors from ChIP-seq data. The sequence
around the peak summit (using a 50bp radius)
was retrieved for the top 500 called peaks for
each factor in each cell line and motifs were
called using the MEME program in the MEME
SUITE, version 4.6.1 (Bailey et al. 2009). The
MEME-defined position weight matrix was then
used to scan the mitochondrial genome for mo-
tif matches following the approach described in

(Mortazavi et al. 2006).

7.4.5 Cell growth and
immunocytochemistry

HepG2 cells were grown following the stan-
dard ENCODE protocol (DMEM media, 4mM
L-glutamine, 4.5g/L glucose, without sodium
pyruvate, with 10% FBS (Invitrogen 10091-148)
and penicillin-streptomycin). Cells were fixed in
10% formalin (Sigma-Aldrich HT501128-4L) for
10 min, permeabilized with 0.1% Triton X-100,
and blocked in 5% FBS. Primary antibodies used
were MafK (1:100, Abcam, ab50322) and Hsp60
(1:125, Santa Cruz, sc-1052). Secondary anti-
bodies used were donkey anti-goat AF488 (In-
vitrogen A11055) and donkey anti-rabbit AF546
(Invitrogen A10040). Imaging on a Zeiss LSM
710 confocal microscope with PlanApochromat
63X/1.4 oil objective, and 0.7µm optical sections
were acquired.
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8

Physical association of nuclear trancription factors

with organellar DNA in plants

T
his chapter generalizes the observation that nuclear transcription factors associate with
mitochondrial DNA to plants, and also suggest this might also be happening in chloro-
plasts. It is based on a still very limited set of ChIP-seq datasets, thus the results are
still preliminary; it will be extended in the future when more data become available.

Abstract

Plants contain two organelles of en-
dosymbiotic origin, mitochondria and
plastids, each of them containing their
own genome of bacterial origin. These
genomes are greatly reduced in terms of
their gene content due to the transfer
of genes to the nucleus. However, the
organellar proteomes are not straightfor-
ward derivatives of the ancestral bacterial
genome but are in fact a complex mixture
of the products of genes that also originate
from the nuclear genome, from the other
organelle and from additional sources.
Nuclear transcription factors have been
detected in mammalian mitochondria for
many years. Recently, the compendium
of ChIP-seq (Chromatin Immunoprecipi-
tation coupled with sequencing) data for
a wide diversity of metazoan transcrip-
tion factors generated by the ENCODE
and modENCODE consortia was used to
test their association with mitochondrial
DNA (mtDNA), which was observed for
between 5 and 10% of them. Here, pub-
licly available ChIP-seq datasets for nu-
clear transcription factors in Arabidopsis

thaliana and Zea mays were examined to
determine whether the same phenomenon
is also observed in plant genomes. Evi-
dence for physical association with the mi-
tochondrial genome was found for 2 of 21
transcription factors in Arabidopsis, and
putative such association with the plas-
tid genome was detected for 1 of the 3
maize factors for which ChIP-seq data was
available. While the sampling of plant
transcription factors assayed by ChIP-seq
is still very limited, these results suggest
that the phenomenon of nuclear transcrip-
tion factors localizing to organelles and
physically interacting with their genomes
may be widespread across eukaryotes.

8.1 Introduction

The evolution of eukaryotes is marked by two
profoundly significant primary endosymbiotic
events. All known extant eukaryotes share an-
cestrally a mitochondrion, an organelle vitally
important for oxidative phosphorylation (as well
as numerous other functions it has acquired dur-
ing its evolution), which arose as a result of
the endosymbiosis of the common ancestor of
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Figure 8.1: Mappability of the A. thaliana mitochondrial (chrM) genome (36bp reads).
The outer track (red) shows mappability evaluated against the whole genome allowing only for
unique reads (colored regions are uniquely mappable). The middle track (black) shows mappability
evaluated against the two organellar genomes (chrM and chrP) allowing for up to 2 locations to
which a read can map to. The inner track (yellow) shows mappability evaluated against the whole
genome allowing for up to 2 locations to which a read can map to (note that the regions where
the track is at half of its full height denote regions for which there is a single integration copy in
the nuclear genome). The innermost tracks show the mitochondrial genome annotation as follows:
forward-strand protein coding genes (green), reverse-strand protein coding genes (orange), repeats
(red), rRNAs (blue), forward-strand tRNAs (purple), and forward-strand tRNAs (grey). Genome
annotation was obtained from ENSEMBL plants (version 19). Plots were generated using Circos
version 0.60 (Krzywinski et al. 2009).

modern eukaryotes and a member of the α-
proteobacteria clade (Yang et al. 1985). A hall-

mark of mitochondria is the presence of their
own genome (Nass et al. 1965), derived from
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Figure 8.2: Mappability of the A. thaliana plastid (chrP) genome (36bp reads). The
outer track (red) shows mappability evaluated against the whole genome allowing only for unique
reads (colored regions are uniquely mappable). The inner track (black) shows mappability evalu-
ated against the two organellar genomes (chrM and chrP) allowing for up to 2 locations to which a
read can map to. The inner track (yellow) shows mappability evaluated against the whole genome
allowing for up to 2 locations to which a read can map to. The innermost tracks show the plastid
genome annotation as follows: forward-strand protein coding genes (green), reverse-strand protein
coding genes (orange), repeats (red), reverse-strand rRNAs (blue), forward-strand rRNAs (light
blue), forward-strand tRNAs (purple), and forward-strand tRNAs (grey). Genome annotation was
obtained from ENSEMBL plants (version 19). Plots were generated using Circos version 0.60 (Krzy-
winski et al. 2009).

their bacterial ancestor, although in some lin-
eages mitochondria have been subsequently re-

duced to hydrogenosomes (Lindmark & Müller
1973) and mitosomes (Tovar et al. 1999; Tovar
et al. 2003; Williams et al. 2002), in which the
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Figure 8.3: Mappability of the Zea mays mitochondrial (chrM) genome (36bp reads).
The outer track (red) shows mappability evaluated against the whole genome allowing only for
unique reads (colored regions are uniquely mappable). The middle track (black) shows mappability
evaluated against the two organellar genomes (chrM and chrP) allowing for up to 2 locations to
which a read can map to. The inner track (yellow) shows mappability evaluated against the whole
genome allowing for up to 2 locations to which a read can map to (note that the regions where
the track is at half of its full height denote regions for which there is a single integration copy in
the nuclear genome). The innermost tracks show the mitochondrial genome annotation as follows:
forward-strand protein coding genes (green), reverse-strand protein coding genes (orange), repeats
(red), forward-strand pseudogenes (blue), and reverse-strand pseudogenes (purple). Genome anno-
tation was obtained from ENSEMBL plants (version 19). Plots were generated using Circos version
0.60 (Krzywinski et al. 2009).

genome has been lost.

A second endosymbiotic event occurred in

the lineage to which modern green plants and
red algae belong, and involved the acquisi-
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Figure 8.4: Mappability of the Zea mays plastid (chrP) genome (36bp reads). The
outer track (red) shows mappability evaluated against the whole genome allowing only for unique
reads (colored regions are uniquely mappable). The inner track (black) shows mappability evalu-
ated against the two organellar genomes (chrM and chrP) allowing for up to 2 locations to which a
read can map to. The inner track (yellow) shows mappability evaluated against the whole genome
allowing for up to 2 locations to which a read can map to. The innermost tracks show the plastid
genome annotation as follows: forward-strand protein coding genes (green), reverse-strand protein
coding genes (orange), repeats (red), forward-strand pseudogenes (blue), and reverse-strand pseudo-
genes (purple). Genome annotation was obtained from ENSEMBL plants (version 19). Plots were
generated using Circos version 0.60 (Krzywinski et al. 2009).

tion of a photosynthetic cyanobacterial prokary-
ote, which eventually became the chloroplast.
Subsequently, on multiple occasions, nonpho-
tosynthetic eukaryotes established secondary

endosymbiosis with photosynthetic eukaryotes
(Archibald & Keeling 2002; Keeling 2004; Keel-
ing 2010; Keeling 2013). Plastids also contain
their own genome derived from their prokaryotic
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Figure 8.5: Read mapping strategy. The IR regions of the plastid genome are not uniquely
mappable within it, but are generally uniquely mappable compared to the nuclear genome (see Fig-
ure 8.2). The question of whether detected read enrichment within them is specific to the plastid can
therefore be answered conclusively even if it is not possible to distinguish between the two IR copies.
For these reasons, a two-step alignment procedure was implemented. First, reads were mapped to
the union of the two organellar genomes allowing for up to 2 locations a read can map to. Second,
reads were mapped against the union of all three genomes retaining uniquely mappable reads only.
Read aligning to the nuclear genomes from the second step were combined with the reads from the
first step and subsequent analysis was carried out on the resulting set of alignments while weighing
all multireads by the number of locations they map to (i.e. a read that maps to two locations is
counted as half a read at each).

ancestor.

Both mitochondrial and plastid genomes are
greatly reduced in terms of their gene content,
as a result of the transfer of genes from the or-
ganellar genome to the nucleus. DNA fragments
from degraded organelles can enter the nucleus
and integrate into the nuclear genome (a con-
stantly ongoing process, which can be observed
even today; Ayliffe et al. 1998; Huang et al.
2003; Hazkani-Covo et al. 2010), the genes they
contain can then evolve the ability to be tar-
geted back to the organelle, at which point the
organellar copy is not under selective pressure
anymore and can be lost. However, the present-
day organellar proteomes are not simply a sub-
set of the ancestral prokaryotic proteomes, but
instead contain the products of numerous genes
originally from the nucleus, the other organelle
(in the case of plants), or even external sources
(Suzuki & Miyagishima 2010).

A representative example of the latter are
the polymerases that transcribe organellar DNA.
Organellar genomes possess dedicated machiner-
ies that regulate and carry out the process of

transcription of their genomes, even though,
with one notable exception, their components
are encoded in the nucleus. The mitochondrial
RNA polymerase of most eukaryotes is of bacte-
riophage origin (Shutt & Gray 2006; Barbrook
et al. 2010), while two separate polymerases op-
erate in plastids, one of them also of phage origin
and encoded in then nucleus (NEP), and another
one of cyanobacterial origin, encoded in the plas-
tid genome (PEP) (Hess & Börner 1999).

The organization of plastid genomes is rela-
tively consistent between different lineages, with
some notable exceptions (Zhang et al. 1999).
They are typically circular mapping, between
100 and 200kb long, contain between ∼100 and
∼250 genes, and usually feature two large in-
verted repeats (Barbrook et al. 2010). The Ara-
bidopsis thaliana plastid genome is 154,478bp
long and contains 88 protein coding genes (Sato
et al. 1999); the Zea mays plastid genome is
140,387 bp in size (Maier et al. 1995). The genes
are transcribed as polycistronic units from mul-
tiple promoters by the NEP or the PEP.

In contrast a wide diversity of topology, or-
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Figure 8.6: Association of APETALA3 with the Arabidopsis thaliana mitochondrial
genome. ChIP and control datasets are drawn to the same scale, set to be the maximum signal
level within all four tracks (forward and reverse strand, ChIP and control). IGB browser plots of
the putative occupancy sites are shown zoomed in below. Plots were generated using Circos version
0.60 (Krzywinski et al. 2009) and the Integrated Genome Browser (Nicol et al. 2009).
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Figure 8.7: Association of PISTILLATA with the Arabidopsis thaliana mitochondrial
genome. ChIP and control datasets are drawn to the same scale, set to be the maximum signal
level within all four tracks (forward and reverse strand, ChIP and control). IGB browser plots of
the putative occupancy sites are shown zoomed in below. Plots were generated using Circos version
0.60 (Krzywinski et al. 2009) and the Integrated Genome Browser (Nicol et al. 2009).
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ganization, and sizes is observed in mitochon-
drial genomes. The best known mitochondrial
genomes are those of mammals. The human
mitochondrial genome is highly reduced, only
16,571bp long, and contains 13 protein coding
genes, 22 tRNAs and 2 rRNAs (Anderson et
al. 1981; Bibb et al. 1981). It features only
one significant noncoding region, the so-called
D-loop, from which transcription originates bidi-
rectionally generating long polycistronic mes-
sages, which are then processed to generate the
mature mRNAs, tRNAs and rRNAs (Montoya et
al. 1982; Shutt et al. 2011). Plant mitochondrial
genomes are strikingly different (Lynch et al.
2006), being hundreds of kilobases (and some-
times megabases; Alverson et al. 2011; Ward et
al. 1981; Sloan et al. 2012) long, which is pri-
marily due to the presence of introns and of very
large amounts of repetitive DNA. The Arabidop-
sis thaliana mitochondrial genome is 366,924bp
long (Unseld et al. 1997); the Zea mays plastid
genome is 569,630bp long (Clifton et al. 1995).
Not much is known about the details of tran-
scription and its regulation in these genomes,
but given how widely dispersed genes are within
them they are most likely transcribed into mul-
tiple independent units.

These processes are best understood in mam-
malian systems, where a curious phenomenon
has also been observed: the presence of nuclear
transcription factors in mitochondria (Leigh-
Brown et al. 2010). The functional significance
of this localization has been conclusively demon-
strated only in a few cases (Casas et al. 1999;
Enŕıquez et al. 1999a; Enŕıquez et al. 1999b;
Wrutniak et al. 1995); the direct physical asso-
ciation of these factors with mtDNA had sim-
ilarly not been directly shown. Recently, these
issues were addressed by utilizing the vast ChIP-
seq (Johnson et al. 2007) resource generated by
the ENCODE and modENCODE consortia (Cel-
niker et al. 2009; ENCODE Project Consortium
2012); occupancy of mtDNA by nuclear tran-
scription factors was conclusively demonstrated
by the direct biochemical evidence for it pro-
vided by ChIP-seq (Marinov et al. 2014). How-
ever, all reliably observed occupancy events were
located in regions of mammalian mitochondrial
genomes distant of the regulatory D-loop, mak-
ing their functional significance difficult to inter-
pret.

To gain further insight into the phenomenon,
publicly available ChIP-seq datasets for Ara-
bidopsis thaliana and Zea mays transcription

factors were examined. As plants possess two or-
ganelles with proteomes of complex history, the
genomes of which are not compact but instead
contain dispersed genes organized into multi-
ple transcriptional units, it is of great interest
whether nuclear transcription factors localize to
these organelles, and where their occupancy sites
are in their genomes. Two such factors (out of
21 tested) were found to associate with mtDNA
Arabidopsis thaliana and one (out of 3) factor
might be associating with plastid DNA (ptDNA)
in Zea mays, though the evidence is not entirely
conclusive in the latter case. Similarly to nuclear
transcription factors in human and mouse mito-
chondria, these occupancy sites were mostly not
located in immediately obvious regulatory re-
gions (with the caveat that transcriptional units
and regulatory elements are still to be precisely
defined in plant organelles).

8.2 Results

8.2.1 ChIP-seq datasets and data
processing

Publicly available in the Gene Expression Om-
nibus (GEO) as of April 1st 2014 ChIP-seq
data for Arabidopsis thaliana and Zea mays
transcription factors was downloaded and pro-
cessed as described below and in the Meth-
ods section. Data for the following transcrip-
tion factors was included in the final collec-
tion: FLM, AGAMOUS, SHORT VEGETA-
TIVE PHASE, SOC1, PIF, APETALA1 and
SEPALLATA3, JAGGED, FLOWERING LO-
CUS C (FLC), PIF4, APETALA3 and PIS-
TILLATA, REVOLUTA, PIF5, TOC1, FAR-
RED ELONGATED HYPOCOTYL3 (FHY3),
LEAFY, ABORTED MICROSPORES (AMS),
APETALA2, APETALA1, SEPALLATA3,
and KANADI1 (in Arabidopsis thaliana) and
RAMOSA1, Pericarp Color 1 (P1), and KNOT-
TED1 in Zea mays. In addition, Arabidopsis
ChIP-seq datasets against histone marks, the
H3 and H3.3 histones, AGO4, RNA polymerase
IV and RNA polymerase V (NRPE1), the
DNA methyltransferase CMT3, the polyadeny-
lation factor PCFS4, as well as MNAse-seq and
DNAse-seq datasets, and Zea mays ChIP-seq
data for centromere histone variants were also
examined, as potential negative controls.

As already mentioned, DNA from mitochon-
drial and plastid genomes is continuously trans-
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ferred to the nucleus, which means that frag-
ments of organellar DNA can be present in
the nuclear genome. This poses a challenge
when distinguishing true physical occupancy of
organellar DNA from occupancy of organellar-
derived DNA in the nucleus (Marinov et al.
2014). Therefore, the mappability of the or-
ganellar genomes in Arabidopsis thaliana and
Zea mays was first examined before a data pro-
cessing strategy was designed accordingly.

Unlike the mitochondrial genomes of mam-
mals, plant organellar genomes are large and
contain repetitive elements. Thus two different
mappings are relevant to the question of how
uniquely mappable they are and how that affects
data analysis and interpretation: mapping reads
against the union of the two organellar genomes,
and mapping reads to all three genomes (in-
cluding the nuclear one). In addition, the plas-
tid genome contains two large inverted repeats,
which may or may not be unique to it but are
highly similar to each other, and would not be
“visible” to downstream analysis if only uniquely
mappable reads are considered, even if only the
plastid genome is used as a reference during the
mapping step. For these reasons, mappability
was evaluated as follows:

1. Full genome unique mappability, us-
ing all three genomes as a reference
and considering only unique alignments
(Bowtie 0.12.7 was used; Langmead et al.
2009)

2. Combined organellar mappability
with maximum read multiplicity of
2, using both chrP and chrM as referenc
and considering reads mapping to up to 2
locations.

3. Full genome mappability with maxi-
mum read multiplicity of 2, using all
three genomes as a reference and consider-
ing reads mapping to up to 2 locations.

Figures 8.1 and 8.2 show the mappability of
the Arabidopsis thaliana mitochondrial (chrM)
and plastid (chrP) genomes, respectively. There
are large portions of the mitochondrial genome
that are not uniquely mappable in the full-
genome unique mappability track, while the
plastid genome is largely uniquely mappable
with the exception of the two inverted repeat re-
gions. In contrast, both organellar genomes are
almost completely fully mappable in the track

representing the combined organellar mappabil-
ity with maximum read multiplicity of 2. When
reads are mapped with the same settings (maxi-
mum read multiplicity of 2) but including the nu-
clear genome, the plastid genome is still mostly
fully mappable. Interestingly, the mitochondrial
genome is not fully mappable but the shape of
the track indicates that only a single copy of it
is present in the nuclear genome (Figure 8.1).
This means that it is in principle possible to
distinguish organellar from nuclear occupancy
of organellar-derived DNA as the ChIP-seq sig-
nal strength in the organellar genomes should be
significantly higher than what is observed in nu-
clear genomes due to the larger number of copies
of these organelles relative to the two copies of
the nuclear genome that exist in each cell. This
criterion was successfully used to confirm the
reality of mitochondrial occupancy by nuclear
transcription in mammalian cells (Marinov et al.
2014).

Taking these considerations into account, the
data processing strategy outlined in Figure 8.5
was adopted. Reads were mapped indepen-
dently against the nuclear genome, retaining
only unique alignments, and against the com-
bined organellar genomes, allowing for reads to
map to up to two locations (in order to make in-
verted repeats “visible” to subsequent analysis).
The two sets of alignments were then combined
for each sample, and read coverage was calcu-
lated as described in the Methods section, nor-
malizing for both total sequencing depth across
all three genomes and for read multiplicity.

This strategy works well for Arabidopsis
thaliana and its compact genome with relatively
low repetitive element content. However, the
maize genome is much larger and composed
largely of repeats (∼85%; Schnable et al. 2009).
The same analysis of mappability was carried
out for the Zea mays nuclear, mitochondrial and
plastid genome assemblies, and it revealed that
the large repetitive portions of the maize genome
apparently also contain multiple copies of both
organellar genomes. The majority of both chrM
and chrP is not mappable in mappings including
the nuclear genome, even when the maximum
read multiplicity is relaxed to 2, and significant
portions of the plastid genome are not fully map-
pable even in organelle-only mappings (Figures
8.3 and 8.4). For consistency, the same analysis
pipeline was adopted for maize as for Arabidop-
sis; results were subsequently interpreted with
caution.
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Figure 8.8: APETALA3 ChIP-seq profile over the Arabidopsis thaliana plastid genome.
ChIP and control datasets are drawn to the same scale, set to be the maximum signal level within
all four tracks (forward and reverse strand, ChIP and control). Plots were generated using Circos
version 0.60 (Krzywinski et al. 2009).

8.2.2 Physical association of
nuclear transcription factors with
organellar genomes in Arabidopsis

thaliana

After examining the organellar genomes signal
profiles of the 21 transcription factors included
in this survey (see the Methods section for de-
tails), two of them were found to display ev-
idence of physical association with organellar

DNA. Figures 8.6 and 8.7 show the forward
and reverse strand ChIP-seq read distribution
over chrM for APETALA3 and PISTILLATA,
respectively. The two datasets were generated
as part of the same study and from the same
source material, and the two profiles are very
similar to each other. Four major putative oc-
cupancy sites were observed. They were char-
acterized by the typical asymmetry of read dis-
tribution on the two strands around the bind-
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Figure 8.9: PISTILLATA ChIP-seq profile over the Arabidopsis thaliana plastid
genome. ChIP and control datasets are drawn to the same scale, set to be the maximum sig-
nal level within all four tracks (forward and reverse strand, ChIP and control). Plots were generated
using Circos version 0.60 (Krzywinski et al. 2009).

ing site (Kharchenko et al. 2008; Landt et al.
2012; Marinov et al. 2014), suggesting that
they are not sequencing artifacts. They are
located outside of the uniquely mappable por-
tions of the Arabidopsis thaliana mitochondrial
genome, however, their signal strength suggests
they are unlikely to be instances of occupancy
over the mitochondrial-derived sequence in the
nuclear genome. The three strongest nuclear
peaks (out of 12,440 identified using MACS2;

Feng et al. 2012) for APETALA3 have max-
imum peak heights of 123, 109 and 54 RPM
(Reads Per Million), while the strongest mito-
chondrial peak has a height of ∼100 RPM. The
three strongest PISTILLATA nuclear peaks (out
of 8414) have maximum peak heights of 56, 25
and 24 RPM, while the mitochondrial peaks have
a peak height of ∼230 RPM. It is not impossi-
ble that the nuclear copies of the mitochondrial
genome contain the strongest binding sites for
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Figure 8.10: ChIP-seq profile over the Zea mays plastid genome for RAMOSA1 in ear
primordia. ChIP and control datasets are drawn to the same scale, set to be the maximum signal
level within all four tracks (forward and reverse strand, ChIP and control). Plots were generated
using Circos version 0.60 (Krzywinski et al. 2009). Note that the putative occupancy sites were
only observed in RAMOSA1 ChIP-seq data from ear primordia, but not in tassel primordia (data
not shown).
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these factors in the whole genome, but the more
parsimonious explanation is that these factors
indeed bind to the mitochondrial genome.

The location of the four peaks identified did
not suggest immediately obvious regulatory roles
they might be playing. The first of them is
located just downstream of and partially over-
laps the short uncharacterized ORF196B puta-
tive protein coding gene. The second one is lo-
cated in the 3’ portion of CCB452. The third one
is within the 5’ end of the ATP6 gene, and the
fourth one (which is also the strongest) is located
a few hundred base pairs upstream of ORF275.
The last two might be playing a role in regulating
the transcription of their proximal genes as they
are in the vicinity (but right on top) of their 5’
ends, but it is less clear how the first two might
have a regulatory influence on gene expression.
However, as precise delineation of the transcrip-
tional units, the sites of transcriptional initiation
and its regulation in the organellar genomes of
plants is at present lacking, it is not yet possible
to draw conclusions regarding these questions.

The APETALA3 and PISTILLATA tran-
scription factors do not display strong evidence
for binding to the plastid genome. Peaks exhibit-
ing a asymmetric read distribution profile were
observed (Figures 8.8 and 8.9) but these were of
relatively small absolute magnitude, both within
the plastid genome and compared to the input,
thus they cannot be confidently concluded to be
true instances of physical association.

No peaks displaying the characteristics of
true ChIP-seq occupancy peaks were observed in
DNAse-seq, MNAse-seq, Polymerase IV and V,
histone and histone mark datasets in Arabidop-
sis.

8.2.3 Putative physical
association of nuclear transcription
factors with organellar genomes in

Zea mays

The same analysis was also carried out on the
available maize ChIP-seq datasets. Their num-
ber is at present very limited (only 3) but one
of them, RAMOSA1, did exhibit what might
be physical association with the plastid genome.
Figure 8.10) shows the RAMOSA1 signal profile
over chrP in ear primordia, displaying one rela-
tively strong putative occupancy site with very
clear read distribution asymmetry, and multiple
other smaller peaks. Interestingly, the same pro-
file was observed in both RAMOSA1 ChIP-seq

replicates available from ear primordia but the
putative occupancy sites were completely absent
in the two replicates from tassel primordia (data
not shown). However, some read asymmetry
around the same site was also observed in the
read profiles of the input control datasets (Fig-
ure 8.10)), thus it cannot be ruled out that these
observations are due to an experimental artifact.

8.3 Discussion

The results presented here extend the obser-
vation that nuclear transcription factors local-
ize to mitochondria and associate with mtDNA
to plants, and also suggest that the same phe-
nomenon might also occur in plastids. As is the
case with mammalian mitochondria, the func-
tional significance of the physical association of
these transcription factors with mtDNA is at
present unknown; as previously discussed (Mari-
nov et al. 2014), it is entirely possible that it
represents biochemical noise, with transcription
factors being transported to mitochondria with-
out their presence there having regulatory in-
fluence on mitochondrial gene expression. Such
understanding is not inconsistent with what we
know about the proteome content of organelles
in plants. The main theme in the evolution of or-
ganellar genomes has been the transfer of genes
to the nucleus, with the products of those es-
sential to the organelle’s function acquiring the
capacity to be targeted to it. However, their
modern proteomes are not exclusively derived
from the ancestral prokaryotes genome – for ex-
ample, less than half of the plastid proteins in
Arabidopsis are of direct cyanobacterial ancestry
(Bogorad 2008; Abdallah et al. 2000; Martin et
al. 2002), with the rest originating from the host
genome or from other external sources. It is pos-
sible that the translocation of nuclear transcrip-
tion factors to organelles represents intermediate
steps in such transitions, with at present neutral
adaptive and functional significance – these pro-
teins have biochemical properties that make it
possible for them to be imported into organelles
but they have not yet acquired specific regula-
tory roles there.

The more exciting possibility is that they do
in fact regulate gene expression there, but it is
currently difficult to say how and in what capac-
ity they might be doing that. This is at least
in part because the organellar genomes of plants
are very poorly functionally annotated compli-
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cating the interpretation of protein occupancy
measured by ChIP-seq. First steps towards fill-
ing these gaps in our knowledge have been made
in the form of mapping the transcriptome and
the genome-wide localization of PEP in plastids
(Fujii et al. 2011; Finster et al. 2013), how-
ever, these efforts have been mostly array-based
and not coordinated with each other to derive
a unified picture clearly delineating transcrip-
tional units. Much additional work remains to
be done in this area. In addition, whether these
occupancy events are functionally important or
not, the question why these factors bind to only
a limited set of sites within genomes that are
hundreds of bases long and contain numerous
instances of their recognition motifs will remain
open.

Another gap in our knowledge that has to
be mentioned is the still very small number of
existing ChIP-seq datasets in plants. Here, all
publicly available transcription factor ChIP-seq
datasets were surveyed, yet this only amounted
to 21 factors in Arabidopsis thaliana and 3 in
Zea mays, and these datasets were generated in
a wide diversity of labs using different protocols
making direct comparisons between datasets and
the exclusion of experimental artifacts as expla-
nation for certain observations less than straight-
forward (for example, the APETALA3 and PIS-
TILLATA datasets that do display strong evi-
dence for association with mtDNA were obtained
from the same study; the two factors are func-
tionally related so it is not entirely surprising
both of them would localize to the same sites in
mtDNA, but the observation of the same phe-
nomenon for the same and for other factors in
datasets generated from other labs would def-
initely be encouraging). This situation is in
marked contrast with the vast resources that
are at this point available in mammalian, fly
and worm systems through the efforts of the
ENCODE, mouse ENCODE and modENCODE
projects, and many other individual labs.

The future should bring a significant expan-
sion in the number of available plant transcrip-
tion factor ChIP-seq datasets, which should en-
able the much broader generalization of the find-
ings present here. Even more exciting would be
the generation of ChIP-seq datasets in systems,
in which mitochondrial and plastid genomes dis-
play unusual organizations. There are such
numerous such examples, especially in protists
(Burger et al. 2003; Gray et al. 2004; Gray
MW. 2012), and include mitochondrial genomes

organized into multiple small and large circles,
mitochondrial genomes existing in the form of
multiple linear chromosomes, plastid genomes
organized into minicircles, genes existing in split
from on multiple separate minichromosomes and
many other variations of these themes. Impor-
tantly, in system where large numbers of mini-
circles or small linear chromosomes exist in mi-
tochondria, transcriptional units are by neces-
sity numerous and relatively well defined; it
would be therefore illuminative to know whether
and where nuclear transcription factors bind to
mtDNA in such systems. The generation of
large numbers of transcription factor ChIP-seq
datasets in a large number of diverse systems in
the future should provide answers to many of
these questions.

8.4 Methods

8.4.1 Data processing and
analysis

Data was downloaded from the following
GEO series or SRA accession numbers and
their associated publications: GSE48082 (Posé
et al. 2013), GSE45939 and GSE45938
(ÓMaoiléidighet al. 2013), GSE45368 (Law et
al. 2013), GSE33120 (Gregis et al. 2013),
GSE45846 (Immink et al. 2012), GSE39215
(Zhang et al. 2013), GSE39097 (Du et al.
2012), GSE35381 (Zheng et al. 2012), GSE39247
(Zhong et al. 2012), GSE35315, GSE38358
(Wuest et al. 2012), GSE26722 (Brandt et
al. 2012), GSE36629 (Wollmann et al. 2012),
GSE35059, GSE35952 (Huang et al. 2012),
GSE34840 (Stroud et al. 2012), GSE30711
(Ouyang et al. 2011), GSE24568 (Moyroud
et al. 2011), GSE22276 (Ha et al. 2011),
GSE16940 (Wang et al. 2010), GSE21301 (Yant
et al. 2010), GSE20176 (Kaufmann et al. 2010),
GSE14600 (Kaufmann et al. 2009), GSE48081
(Merelo et al. 2013), GSE51048 and GSE51050
(Eveland et al. 2014), GSE47342 (Wang et
al. 2014), GSE38587 (Morohashi et al. 2012),
GSE39161 (Bolduc et al. 2012), GSE48793
(Heyman et al. 2013), GSE46894 and GSE46986
(Pajoro et al. 2014), GSE51537 (Schiessl et
al. 2014), SRP005412 (Deng et al. 2011),
SRA060798 (Xing et al. 2013).

Reads were trimmed to 36bp and aligned
using Bowtie (Langmead et al. 2009),
version 0.12.7, in two stages. First, an
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alignment against the combined mitochon-
drial and plastid organellar genomes was
carried out with the following settings:
‘‘-v 2 -t -k 3 -m 2 --best --strata’’,
i.e. allowing for two mismatches relative
to the reference and for up to 2 loca-
tions to which a read could map to. This
was done in order to retain reads align-
ing to the inverted repeats in the plastid
genomes. Second, reads were aligned against
all three genomes with the following settings:
‘‘-v 2 -t -k 2 -m 1 --best --strata’’,
retaining unique alignments only. The TAIR10
version of the Arabidopsis thaliana genome and
the AGPv3 assembly of the Zea mays genome
were used, downloaded from ENSEMBL. Reads
mapping to the nuclear genome from the second
mapping were combined with the reads mapping
to the organellar genomes into a single BAM file
and subsequent analysis was carried out on this
set of alignments. Read coverage was calculated
by weighing reads according to the following
rule:

Sc,i =

∑
R∈Rc,i

1

NHR

|R|
106

(8.1)

Where Sc,i is the signal score for position
i on chromosome c, |R| is the total number of
aligned reads, |Rc,i| is the number of reads cov-
ering position i on chromosome c, and NHR is
the number of locations in the genome a given
read maps to. This has the effect of counting
multireads that align to each inverted repeat as
“half-reads”, thus making read coverage across
those regions comparable with that of the rest
of the genome. Only reads aligning with zero
mismatches were considered for the organellar
genomes.

Nuclear peaks were called using MACS, ver-
sion 2.0.9 (Feng et al. 2012). Regions of en-
richment over the organellar genomes were de-
termined by manual curation. This was feasi-
ble thanks to the small size of these genomes
and necessary as several peak callers were tried
– MACS version 2.0.9., GEM (Guo et al. 2012),
and SPP (Kharchenko et al. 2008) – but each
produced significant numbers of obvious false
negatives and/or false positives.
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Part III

Quality Assessment and Analysis
of Chromatin Immunoprecipitation

Data
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T
he three chapters in this part contain
the work on developing and applying
metrics for assessing the success and
quality of ChIP-seq experiments that

I have been involved in, with an eye towards au-
tomating this critically important step in work-
ing with data of this type by reducing it to a sim-
ple set of numbers that can be rapidly scanned
by humans or machines. This goal has not quite
been achieved as reality has turned out to be a
little bit too complex for such an approach to
be always applicable without any human input,
but in the process we have learned a tremen-
dous amount about the ChIP-seq itself. I should
perhaps also note that intellectual honesty re-
quires to admit that initially the motivation be-
hind this work was a bit different - a large num-
ber of datasets of obviously poor quality were
apparent within the ENCODE project and else-
where and the frustration with that state of af-

fairs is what prompted the development of stan-
dardized ways of measuring quality, in which I
played some role. This should be particularly
noticeable in the second chapter in this part.

I have also included a chapter on the devel-
opment of a robotic ChIP protocol, in which the
quality-control metrics described in prior chap-
ters played a major role, and I carried out the
computational analysis. This was not a project
in which I had the leading role, but it is impor-
tant for my vision for the future laid out in the
last chapter of the thesis, thus its inclusion was
important for the self-consistency of the text as
a whole.

The three chapters as originally written as in-
dividual papers contain a lot of redundant ma-
terial as they focus on different aspects of the
same issue. I have retained the redundant ma-
terial for the sake of each chapter being as much
a self-contained entry as possible.
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9

ChIP-seq Quality Evaluation Metrics of the EN-

CODE Consortium

T
he major part of the material contain in this chapter was published as part of the

ENCODE Project Consortium paper on ChiP-seq quality evaluation and standardiza-
tion:

Landt SG*, Marinov GK*, Kundaje A*, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel
P, Brown JB, Cayting P, Chen Y, Desalvo G, Epstein C, Fisher-Aylor KI, Euskirchen G, Gerstein
M, Gertz J, Hartemink AJ, Hoffman MM, Iyer VR, Jung YL, Karmakar S, Kellis M, Kharchenko
PV, Li Q, Liu T, Liu XS, Ma L, Milosavljevic A, Myers RM, Park PJ, Pazin MJ, Perry MD, Raha
D, Reddy TE, Rozowsky J, Shoresh N, Sidow A, Slattery M, Stamatoyannopoulos JA, Tolstorukov
MY, White KP, Xi S, Farnham PJ, Lieb JD, Wold BJ, Snyder M. 2012. ChIP-seq guidelines
and practices of the ENCODE and modENCODE consortia. Genome Res. 22(9):1813–1831. doi:
10.1101/gr.136184.111.

The paper is reprinted in Appendix C. I have omitted some portions of the part of it that concerns
the characterization and validation of antibodies (which was contributed by Steven Landt and the
Snyder lab at Stanford). I have also omitted the several sets of specific guidelines for doing certain
things that were provided in the paper while including some material that was part of its earlier
version but did not make the final cut.

The NRF and FRiP metrics described here were developed based on work from Ali Mortazavi
(Johnson & Mortazavi et al. 2008. Cross-correlation metrics were developed by Anshul Kundaje
(A. Kundaje et al. 2014, unpublished) based on Kharchenko et al. 2008. IDR was developed and
described by Li et al. 2011. The IDR pipeline was developed by Anshul Kundaje and others.)

Abstract

Chromatin immunoprecipitation
(ChIP) followed by high-throughput
DNA sequencing (ChIP-seq) has become
a valuable and widely used approach
for mapping the genomic location of
transcription-factor binding and histone
modifications in living cells. Despite its
widespread use, there are considerable
differences in how these experiments are
conducted, how the results are scored and
evaluated for quality, and how the data
and metadata are archived for public use.
These practices affect the quality and util-
ity of any global ChIP experiment. Based

on the extensive experience the ENCODE
and modENCODE consortia have accu-
mulated working with ChIP-seq, a set of
working standards and metrics for the
quality evaluation of ChIP experiments
were developed. The standards and met-
rics, as well as how ChIP quality, assessed
in these ways, affects different uses of
ChIP-seq data, are discussed here.

9.1 Introduction

Methods for mapping transcription factor occu-
pancy across the genome by chromatin immuno-
precipitation (ChIP) were developed more than
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Figure 9.1: Overview of ChIP-seq workflow and antibody characterization procedures.
Steps for which specific ENCODE guidelines were established are indicated in red. (*) indicates a
commonly used but optional step.

a decade ago (Ren et al. 2000; Lieb et al. 2001;
Iyer et al. 2001; Horak and Snyder 2002; Wein-
mann et al. 2002). In ChIP assays, a transcrip-
tion factor, co-factor, or other chromatin pro-
tein of interest is enriched by immunoprecipita-
tion from crosslinked cells (Gilmour & Lis 1984;
Gilmour & Lis 1985; Hecht et al. 1996; Solomon
et al. 1988), along with its associated DNA. Ge-
nomic DNA sites enriched in this manner were

initially identified by qPCR, later by DNA hy-
bridization to a microarray (ChIP-chip) (Ren et
al. 2000; Iyer et al. 2001; Lieb et al. 2001; Ho-
rak and Snyder 2002, Weinmann et al. 2002),
and more recently by DNA sequencing (ChIP-
seq) (Barski et al. 2007; Johnson et al. 2007;
Robertson et al. 2007). ChIP-seq has now been
widely used for many transcription factors, hi-
stone modifications, chromatin modifying com-
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plexes, and other chromatin-associated proteins
in a wide variety of organisms. There is, how-
ever, much diversity in the way ChIP-seq ex-
periments are designed, executed, scored and re-
ported. The resulting variability and data qual-
ity issues affect not only primary measurements,
but also the ability to compare data from mul-
tiple studies or to perform integrative analyses
across multiple data-types.

The ENCODE and modENCODE Consor-
tia performed more than a thousand individ-
ual ChIP-seq experiments for more than 140
different factors and histone modifications in
more than 100 cell types in four different or-
ganisms (Drosophila melanogaster, Caenorhab-
ditis elegans, mouse and human), using multi-
ple independent data production and processing
pipelines (ENCODE Project Consortium 2004;
Celniker et al. 2009, ENCODE Project Consor-
tium 2011). During this work, guidelines, prac-
tices, and quality metrics for ensuring the high
quality of datasets used for analysis were devel-
oped and applied to all ChIP-seq work done by
the Consortium (Park 2009). Here they are de-
scribed, together with supporting data and illus-
trative examples. Issues common to all ChIP-
seq studies are emphasized: immunoprecipita-
tion quality, impact of DNA sequencing depth,
scoring and evaluation of datasets, appropriate
control experiments, biological replication, and
data reporting.

9.2 ChIP Overview

The goals of a genome-wide ChIP experiment
are to map the binding sites of a target pro-
tein with maximal signal-to-noise ratio and com-
pleteness across the genome. The basic ChIP-seq
procedure is outlined in Figure 9.1. Cells or tis-
sues are treated with a chemical agent, usually
formaldehyde, to crosslink proteins covalently to

DNA. This is followed by cell disruption and son-
ication, or, in some cases, enzymatic digestion,
to shear the chromatin to a target size of 100-
300 base pairs (bp) (Iyer et al. 2001; Ren et
al. 2000). The protein of interest (transcrip-
tion factor, modified histone, RNA polymerase,
etc.) with its bound DNA is then enriched rel-
ative to the starting chromatin by purification
with an antibody specific for the factor. Alter-
natively, cell lines expressing an epitope-tagged
factor can be generated and the fusion protein
immunoprecipitated via the epitope tag.

After immuno-enrichment, crosslinks are re-
versed, and the enriched DNA is purified and
prepared for analysis. In ChIP-chip, the DNA
is fluorescently labeled and hybridized to a
DNA microarray, along with differentially la-
beled reference DNA (Ren et al. 2000; Iyer
et al. 2001). In ChIP-seq, the DNA is ana-
lyzed by high-throughput DNA sequencing. The
ENCODE Consortium chose ChIP-seq for hu-
man and mouse experiments because it per-
mits comprehensive coverage of large genomes
and increases site resolution (Johnson et al.,
2007; Robertson et al. 2007). For organisms
with small genomes, the modENCODE Consor-
tium has used both ChIP-chip and ChIP-seq, as
the arrays available at the time provided high-
resolution coverage of small genomes (Gerstein
et al. 2010; Roy et al. 2010). In all formats, pu-
tatively enriched genomic regions are identified
by comparing ChIP signals in the experimental
sample with a similarly processed reference sam-
ple prepared from appropriate control chromatin
or a control immunoprecipitation.

Different protein classes have distinct modes
of interaction with the genome that necessi-
tate different analytical approaches (Pepke et al.
2009):

1. Point-source factors and certain chromatin
modifications are localized at specific posi-

Figure 9.2 (preceding page): Peak counts depend on sequencing depth. (A) Number of
peaks called with Peak-seq (0.01% FDR cut-off) for 11 ENCODE ChIP-seq data sets. (B) Called
peak numbers for 11 ChIP-seq data sets as a function of the number of uniquely mapped reads used
for peak calling. (Inset) Called peak data for the MAFK data set from HepG2 cells, currently the
most deeply sequenced ENCODE ChIP-seq data set (displayed separately due to the significantly
larger number of reads relative to the other data sets). Data sets are indicated by cell line and
transcription factor (e.g., cell line HepG2, transcription factor MAFK). (C) Fold-enrichment for
newly called peaks as a function of sequencing depth. For each incremental addition of 2.5 million
uniquely mapped reads, the median fold-enrichment for newly called peaks as compared with an
IgG control data set sequenced to identical depth is plotted.
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tions that generate highly localized ChIP-
seq signals. This class includes most se-
quence specific transcription factors, their
co-factors, and, with some caveats, tran-
scription start site or enhancer-associated
histone marks. These comprise the major-
ity of ENCODE and modENCODE deter-
minations and are therefore the primary
focus of this paper.

2. Broad-source factors are associated with
large genomic domains. Examples in-
clude certain chromatin marks (H3K9me3,
H3K36me3, etc.) and chromatin proteins
associated with transcriptional elongation
or repression (e.g. ZNF217) (Krig et al.
2007).

3. Mixed-source factors can bind in point-
source fashion to some locations of the
genome but form broader domains of bind-
ing in others. RNA polymerase II, as well
as some chromatin modifying proteins (e.g.
SUZ12) behave in this way (Squazzo et al.
2006).

9.3 ChIP-seq Experimental
Design Considerations

9.3.1 Antibody and
immunoprecipitation specificity

The quality of any ChIP experiment is governed
by the specificity of the antibody and the de-
gree of enrichment achieved in the affinity pre-
cipitation step. The majority of ENCODE ChIP
experiments in human cells and in Drosophila
embryos have been performed with antibodies
directed against individual factors and histone
modifications. 145 polyclonal and 43 mono-
clonal antibodies were used to successfully gen-
erate ChIP-seq data as of October 2011. As
also discussed below, the majority of antibodies
tested for ChIP performance either did not per-
form well in ChIP or presented concerns about
specificity. In the case of polyclonal reagents,
lot-to-lot variation can also be significant and
confounding. For these reasons, it is neces-
sary that the specificity of antibodies be as-
sessed experimentally separately from the ChIP
reaction, through immunoblotting, immunofluo-
rescene, IP coupled with mass-spectrometry, or
other means. A detailed description of the EN-

CODE procedures for carrying out this assess-
ment can be found in Appendix C.

9.3.2 Immunoprecipitation using
epitope tagged constructs

Given the challenges in obtaining antibodies
for suitable ChIP, an attractive alternative is
to epitope tag the factor followed by immuno-
purification with a well-characterized mono-
clonal reagent specific for the tag. Epitope-
tagging addresses the problems of antibody vari-
ation and cross-reaction with different members
of multigene families by using a highly specific
reagent that can be used for many different fac-
tors. However, this introduces new issues re-
lating to how the tagged factor is introduced
into cells, whether expression levels are near-
physiological, and whether tagging alters the ac-
tivity of the factor. The level of expression is
currently addressed by using large clones carry-
ing as much regulatory information as possible
to make the level of expression nearly physio-
logical (Hua et al. 2009; Poser et al. 2008).
Higher expression is known to result in occu-
pancy of sites not necessarily occupied at phys-
iological levels (DeKoter and Singh 2000; Fer-
nandez et al. 2003). Within ENCODE, tagged
factors have been used most extensively thus far
for C. elegans studies, where factors have been
tagged with GFP and shown to complement null
mutants (Zhong et al. 2010). In some cases, in-
formation regarding expression is not available
and expression from an exogenous promoter has
been used. More recently, endogenous knock-in
of GFP using CRISP-mediated genome editing
(Jinek et al. 2012) has been reported in various
systems (Dickinson et al. 2013; Chen et al. 2013;
Auer et al. 2014); such approached hold a lot of
promise for alleviating some of these issues.

9.3.3 Sequencing depth, library
complexity and site discovery

For ChIP-seq performed for a typical point-
source DNA binding factor, the number of target
sites identified by any contemporary peak call-
ing algorithm typically increases as the number
of sequenced reads increases (ENCODE Project
Consortium 2011) until the curve ultimately be-
comes shallower and begins to plateau. This
pattern is now generally expected, partly be-
cause studies of numerous factors by ENCODE
and by other groups have repeatedly found a
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continuum of ChIP signal strength, rather than
a sharply bounded and discrete set of positive
sites (ENCODE Project Consortium 2011; Ro-
zowsky et al. 2009). In addition, sites with
lower ChIP signal strength are now detected
more readily and with greater confidence be-
cause of increases in statistical power afforded
by more reads. Figure 9.2 shows an analysis
of peak calls for eleven human ENCODE ChIP-
seq datasets for which deep sequence data (50-
100 × 106 mapped reads) were obtained. Clear
saturation of peak counts was observed for one
factor with few binding sites, but counts contin-
ued to increase at varying rates for all other fac-
tors, including a case in which >150,000 peaks
were called using 100×106 mapped reads. Exam-
ination of peak signals reveals that the signal en-
richments plateau at greater sequencing depths.
At 20 × 106 mapped reads, 5-13 fold enrich-
ments are still attainable. The strongest peaks
have been identified at this read depth, with new
peaks identified after 20 × 106 reads giving en-
richments that are, on average, ∼20% of the
maximum enrichments identified (Figure 9.2).
Interestingly, many additional significant peaks,
with enrichment values of 3-7-fold, can still be
found by sequencing to much greater depths, in-
dicating that many regions of the genome are
enriched in a ChIP-experiment. It is likely that
many of these regions correspond to low affinity
sites and/or regions of open chromatin that bind
factors of interest less specifically.

The relationship of ChIP signal strength to
biological regulatory activity is a current area
of active investigation. A pertinent observation
is that biological activity of enhancers, defined
in the literature independently of ChIP data,
is distributed quite broadly relative to ChIP-
seq signal strength. Some highly active tran-
scriptional enhancers reproducibly display mod-
est ChIP signals. This means that one cannot a
priori set a specific target threshold for ChIP site
number or ChIP signal strength that will assure
inclusion of all functional sites (see Discussion
section of this chapter). Therefore, a practical
goal is to maximize site discovery by optimiz-
ing immunoprecipitation and sequencing deeply,

within expense constraints. For point-source fac-
tors in mammalian cells, a minimum of 10× 106

uniquely mapped reads are recommended for
each biological replicate (providing a minimum
of 20×106 uniquely mapped reads per factor); for
worms and flies a minimum of 4 × 106 uniquely
mapped reads per replicate is recommended. For
broad areas of enrichment, the appropriate num-
ber of uniquely mapped reads is currently un-
der investigation, but at least 20× 106 uniquely
mapped reads per replicate for mammalian cells
and 5 × 106 uniquely mapped reads per repli-
cate for worms and flies was produced for most
experiments in ENCODE and modENCODE. 1

Another factor affecting site discovery and
reproducibility is the complexity of a ChIP-seq
sequencing library. Library complexity is de-
fined as the number of non-redundant DNA frag-
ments. With increasing sequencing of a library,
a point is eventually reached where the com-
plexity will be exhausted and the same PCR-
amplified DNA fragments will be sequenced re-
peatedly (Figure 9.3A). Library complexity can
vary dramatically, depending on the number of
starting nuclei, the efficiency of DNA shearing
and size selection range, the efficiency of the im-
munoprecipitation, and genome size. The objec-
tive is to create a library that is sufficiently com-
plex that it does not interfere with the ability of
modern peak callers to identify legitimate signals
or become the limiting variable in discovering
additional sites. Low complexity of libraries is
indicative of very low amounts of DNA isolated
during the IP or library construction failure. In
most cases, the complete repertoire of binding
sites for a factor cannot be identified using such
datasets.

A useful working metric for complexity is cal-
culated as the fraction of non-redundant mapped
reads in a ChIP-seq dataset (non-redundant frac-
tion or NRF), which is similar to a redundancy
metric in Heinz et al. 20102. NRF decreases
with sequencing depth, and for point source
TFs, a reasonable target in mammalian genomes
is NRF > 0.8 for 10 × 106 uniquely mapped
reads. As sequencing technology improves and
read numbers in the hundreds of millions per

1More recently, the optimal sequencing depth for histone mark ChIP-seq datasets was examined in detail (Jung
et al. 2014), and it was found that < 20× 106 reads is sufficient for fly, and 40-50× 106 reads is a practical minimum
for the human genome.

2More recently, computational approaches for the estimation of the total number of unique fragments in a library,
which is of course, the quantity one would most like to measure, have been developed (for example the Pre-Seq
package, Daley & Smith 2013). NRF is still a highly useful metric for mammalian-sized genomes though, because of
the extensive experience in working with them that has accumulated, and the corresponding calibration curve for the
metric that exists
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lane become feasible, it is expected that even
complex libraries from point-source factor can be
sequenced at depths greater than necessary. To
maximize information that can be obtained for
each DNA sequencing run and to prevent overse-
quencing, barcoding and pooling strategies can
be used 3.

9.3.4 Control sample

An appropriate control dataset is critical for
analysis of any ChIP-seq experiment because
DNA breakage during sonication is not uni-
form. In particular, some regions of open chro-
matin are preferentially represented in the son-
icated sample, creating a non-uniform back-
ground (Auerbach et al. 2009). There are
also platform-specific sequencing efficiency bi-
ases that contribute to non-uniformity (Dohm
et al. 2008). There are two basic methods to
produce control DNA samples:

1. DNA is isolated from cells that have
been crosslinked and fragmented under
the same conditions as the immunoprecip-
itated DNA and is referred to as “Input”
DNA,

2. A “mock” ChIP reaction is performed us-
ing a control antibody that reacts with

an irrelevant, non-nuclear antigen (often
called an IgG control).

For both types of controls, sequencing is per-
formed to a depth at least equal to, and prefer-
ably larger than, that of the ChIP sample. For
the IgG control, care must be taken that suffi-
cient DNA is recovered to build a high complex-
ity library 4

Regardless of the type of control used, a sepa-
rate control is required for each cell line, develop-
mental stage and different condition/treatment
because of known and unknown differences in
ploidy, genotype and epigenetic features that af-
fect chromatin preparation. To serve as a valid
control, the protocol used to build ChIP and con-
trol sequencing libraries must be identical (i.e.
the number of PCR amplification cycles, frag-
ment size, etc.).

Although rare in our experience, control li-
braries with a particularly strong sonication bi-
ases have been observed and they can adversely
affect peak calling (see the following chapter for
an extensive discussion of the phenomenon). Al-
though it not always feasible, the optimal study
design is to produce a matching control chro-
matin library for each cell growth, fixation and
sonication condition used to prepare chromatin
for a ChIP-seq experiment.

Figure 9.3 (preceding page): Criteria for assessing the quality of a ChIP-seq experi-
ment. (A) Library complexity. Individual reads mapping to the plus (red) or minus strand (blue)
are represented. (B) Distribution of functional regulatory elements with respect to the strength
of the ChIP-seq signal. ChIP-seq was performed against myogenin, a major regulator of muscle
differentiation, in differentiated mouse myocytes. While many extensively characterized muscle reg-
ulatory elements exhibit strong myogenin binding, a large number of known functional sites are at
the low end of the binding strength continuum. (C) Number of called peaks vs. ChIP enrichment.
Except in special cases, successful experiments identify thousands to tens of thousands of peaks
for most TFs and, depending on the peak finder used, numbers in the hundreds or low thousands
indicate a failure. Peaks were called using MACS with default thresholds. (D) Generation of a
cross-correlation plot. Reads are shifted in the direction of the strand they map to by an increasing
number of base pairs and the Pearson correlation between the per-position read count vectors for
each strand is calculated. Read coverage as wigglegram is represented, not to the same scale in the
top and bottom panels.) (E) Two cross-correlation peaks are usually observed in a ChIP exper-
iment, one corresponding to the read length (“phantom” peak) and one to the average fragment
length of the library. (F) Correlation between the fraction of reads within called regions and the
relative cross-correlation coefficient for 1052 human ChIP-seq experiments. (G) The absolute and
relative height of the two peaks are useful determinants of the success of a ChIP-seq experiment.
A high-quality IP is characterized by a ChIP peak that is much higher than the “phantom” peak,
while often very small or no such peak is seen in failed experiments.

3This has indeed become a common practice since the writing of this text
4See the following chapter for more on this issue



284

Figure 9.4: Quality control of ChIP-seq data sets in practice. EGR1 ChIP-seq was per-
formed in K562 cells in two replicates. ChIP enriched regions were identified using MACS. However,
the cross-correlation plot profiles (A) indicated that both IPs were suboptimal, with one being un-
acceptable. In agreement with this judgment, ChIP enrichment (C) and peak number (D) also
indicated failure. The ChIP-seq assays were repeated (B), with all quality control metrics improving
significantly (B,D), and many additional EGR1 peaks were identified as a result. (E) Representa-
tive browser snapshot of the four EGR1 ChIP-seq experiments, showing the much stronger peaks
obtained with the second set of replicates.
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9.3.5 Peak Calling

After mapping reads to the genome, software
is used to identify regions of enriched by the
ChIP experiment. To identify point-source bind-
ing regions from ChIP-seq data, a very large
number of peak calling algorithms and corre-
sponding software packages have been developed
(MACS/MACS2, Zhang et al. 2008; Feng et al.
2012; ZINBA, Rashid et al. 2011; SISSRs, Jothi
et al. 2008; cisGenome, Ji et al. 2008; SICER,
Zang et al. 2009; HPeak, Qin et al. 2010; GPS,
Guo et al. 2010; USeq, Nix et al. 2008; QUEST,
Valouev et al. 2008; PeakSeq, Rozowsky et al.
2009; GLITR, Tuteja et al. 2009; F-Seq, Boyle
et al. 2008; FindPeaks, Fejes et al. 2008; CS-
Deconv, Lun et al. 2009; PeakRanger, Feng
et al. 2011; Sole-Search, Blahnik et al. 2010;
CHANCE, Diaz et al. 2012a, Diaz et al. 2012b;
NCIS, Liang & Keleş 2012; MAnorm, Shao et
al. 2012; CSAR, Muiño et al. 2011; Taslim et
al. 2009; PICS, Zhang et al. 2011; and others).
The output of these algorithms generally ranks
called regions by absolute signal (read counts) or
by computed significance of enrichment (e.g. p-
values and false discovery rates). Because ChIP
signal strength is a continuum with more weak
sites than strong ones (Figure 9.3B), the compo-
sition of the final peak list depends on specifics
of parameter settings and the algorithm used, as
well as the quality of the experiment itself. Re-
laxed thresholds lead to overcalling and a high
proportion of false positives. However, mod-
erate overcalling can be useful when there are
biological replicates, which can help determine
which of the peaks are reproducibly identified
(see IDR analysis below). When using standard
peak calling thresholds, successful experiments
generally identify thousands to tens of thousands
of peaks for most TFs (although some exceptions
are known; Frietze et al. 2010; Raha et al. 2010)
and, depending on the peak finder used, num-
bers in the hundreds or low thousands indicate
an experimental failure. In all study designs, an
appropriate control experiment should be per-
formed and should be accounted for in the peak
calling, either within the peak calling algorithm
employed or by means of direct comparison to
the experimental sample. It should be noted
that results from different algorithms use dif-
ferent approaches to calculate p-values and false
discovery rates (FDR), which means that these
values will not be directly comparable between

packages.
Calling discrete regions of enrichment for

Broad-source factors or Mixed-source factors is
more challenging. Methods to identify such re-
gions are emerging (for example ZINBA; Rashid
et al. 2011), and MACS2, an updated version
of MACS that is specifically designed to process
mixed signal types. However, these methods are
not as mature as point-source signal processing
algorithms. Therefore, statistical and biological
metrics for evaluating their performance remain
under development, and standards for identify-
ing broad regions of enrichment are not yet in
place. 5

9.3.6 Number of replicates

To ensure that ChIP experiments are repro-
ducible, biological replicate experiments using
independent cell cultures, embryo pools, or tis-
sue samples are prepared for ChIP analysis. Ini-
tial experiments for RNA Polymerase II indi-
cated that more than two replicates did not sig-
nificantly improve site discovery (Rozowsky et
al. 2009). Initially, either of the following two
criteria were applied in order to ensure that a
high level of reproducibility is maintained:

1. 80% of the top 40% of the targets iden-
tified from one replicate using an accept-
able scoring method should overlap the list
of targets from the other replicate. This
standard was chosen based on the experi-
ences of the ENCODE production groups
to allow an achievable threshold of re-
producibility for most validated antibod-
ies while generally producing high-quality
target lists.

2. Target lists scored using all available reads
from each replicate should share more than
75% of targets in common. Reads from
replicate experiments that meet either of
the above criteria are usually pooled for
final peak calling.

However, these were ad hoc criteria with
not much statistical justification, and were later
replaced by the Irreproducible Discovery Rate
(IDR) analysis methodology (Li et al. 2011),
which has been employed to assess replicate
agreement and set thresholds; IDR is discussed
in detail below. Examples of replicate experi-
ments that pass IDR are shown in Figure 9.5. It

5This statement is still true two years later.
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should be noted that the analysis of replicates
is generally sensitive to the presence of a weak
replicate, and if this is the case, it is desirable
that a third replicate be performed to ensure
that a comprehensive and reproducible set the
binding regions is identified.

9.4 Evaluation of ChIP-seq
data

The quality of individual ChIP-seq experiments
varies considerably and can be difficult to eval-
uate, especially when new antibodies are be-
ing tested and when little is known about the
factor and its binding motif. The first ques-
tion most experimenters want to answer is:
How well did this immunoprecipitation “work”?

Figure 9.5: The irreproducible discovery rate (IDR) framework for assessing repro-
ducibility of ChIP-seq data sets. (AC) Reproducibility analysis for a pair of high-quality
RAD21 ChIP-seq replicates. (D,E) The same analysis for a pair of low quality SPT20 ChIP-seq
replicates. (A,D) Scatter plots of signal scores of peaks that overlap in each pair of replicates. (B,E)
Scatter plots of ranks of peaks that overlap in each pair of replicates. Note that low ranks correspond
to high signal and vice versa. (C,F) The estimated IDR as a function of different rank thresholds.
(A,B,D,E) Black data points represent pairs of peaks that pass an IDR threshold of 1%, whereas
the red data points represent pairs of peaks that do not pass the IDR threshold of 1%. The RAD21
replicates show high reproducibility with ∼30,000 peaks passing an IDR threshold of 1%, whereas
the SPT20 replicates show poor reproducibility with only six peaks passing the 1% IDR threshold.
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The ENCODE consortium developed metrics for
assessing ChIP-seq quality that are described
and applied below, together with traditional
inspection-based evaluation. It is worth noting
that for each metric, there are some datasets for
which it is not ideally suited. However, when
they are applied in totality and interpreted as a
group, they provide a useful overall assessment
of experimental success and data quality.

9.4.1 Browser inspection and
previously known sites

A first impression about ChIP-seq quality can
be obtained by local inspection of mapped se-
quence reads on a genome browser, and this re-
mains invaluable. When there is prior biologi-
cal knowledge of binding at a given genomic lo-
cation, this site can be examined manually by
using the shape and signal strength relative to
control reads to gain a sense of ChIP quality.
The number and pattern of read tags can give
confidence that the known true site has been de-
tected within the large-scale experiment. A true
signal is expected to show a clear asymmetrical
distribution of reads mapping to the forward and
reverse strand around the midpoint (peak) of ac-
cumulated reads. This signal should be large
compared to the same region for the control li-
brary. An example of a set of experiments dis-
playing these characteristics is shown in Figure
9.3C. Of course it is not feasible to inspect the
whole genome in this manner, and evaluating a
limited number of the strongest sites can mis-
leadingly overestimate the quality of the entire
dataset. In addition, it is not possible to com-
pare many different datasets to each other by
visual inspection. For these reasons the genome-
wide metrics discussed below were developed.

9.4.2 Measuring global ChIP
enrichment (FRiP)

For point-source datasets, a first global met-
ric is calculated as the fraction of all mapped
reads that fall into peak regions identified by a
peak calling algorithm. Typically, only a minor-
ity of reads in ChIP-seq experiments come from
the read-enriched regions caused by factor occu-
pancy. The remainder is background. Because
of this, the fraction of reads falling within peak
regions is a useful first-cut metric for the suc-
cess of the immunoprecipitation, and is called
FRiP (Fraction of Reads in Peaks). In general,

FRiP values correlates positively with the num-
ber of called regions, although there are excep-
tions, such as NRSF and GABP, which always
yield a more limited number of called regions but
very high enrichment (Figure 9.3C). In practice,
most (787 out of 1052) ENCODE datasets had
a FRiP enrichment of 1% or more when peaks
were called using MACS with default parame-
ters. When FRiP falls below 1%, the experiment
should be further scrutinized.

The FRiP guideline works well when there
are thousands to tens of thousands of called oc-
cupancy sites in a large mammalian genome.
However, passing this threshold does not auto-
matically mean that an experiment is successful
and a FRiP below the threshold does not auto-
matically mean failure. For example, in cases
such as human RNA Polymerase III where there
are very few true binding sites (Frietze et al.
2010; Raha et al. 2010), a FRiP value of less
than 1% is obtained. At the other extreme,
lesser-quality ChIP experiments using combina-
tions of antibodies and factors that usually have
very high enrichment and/or numbers of binding
sites can still result in FRiP scores that exceed
those generally obtained for most factors (Figure
9.3C). Thus, FRiP is very useful as a quality con-
trol measure for comparing results for broadly
expressed factors using the same antibody across
cell lines or using different antibodies. A caveat
is that FRiP is sensitive to the specifics of peak
calling, including the way the algorithm defines
regions of enrichment and the parameters and
thresholds used. This means that all FRiP val-
ues that are compared should be derived from
peaks uniformly called by one algorithm and pa-
rameter set.

9.4.3 Cross-correlation analysis

A very useful ChIP-seq quality metric that is
independent of peak calling is cross-correlation.
It is based on the fact that a high-quality ChIP-
seq experiment produces significant clustering of
enriched DNA sequence tags at locations bound
by the protein of interest, and that the sequence
tag density accumulates on forward and reverse
strands centered around the binding site. As il-
lustrated in Figure 9.3D, these “true signal” se-
quence tags are positioned at a distance from
the binding site center that depends on the frag-
ment size distribution (Kharchenko et al. 2008).
A control experiment, such as sequenced input
DNA, lacks this pattern of shifted stranded tag
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Figure 9.6: Analysis of ENCODE data sets using the quality control guidelines. (AC)
Thresholds and distribution of quality control metric values in human ENCODE transcription-factor
ChIP-seq data sets. (A) NSC, (B) RSC, (C) NRF. (D) IDR pipeline for assessing ChIP-seq quality
using replicate data sets. (E,F) Thresholds and distribution of IDR pipeline quality control met-
rics in human ENCODE transcription factor ChIP-seq data sets. (Dashed lines) Current ENCODE
thresholds for the given metric, which are NSC > 1.05 (A); RSC > 0.8 (B); NRF > 0.8, N1/N2 ≥ 2
(where N1 refers to the replicate with higher N) (E); Np/Nt ≥ 2 (F).
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densities. This made it possible to develop a
metric that quantifies fragment clustering (IP
enrichment) based on the correlation between
genome-wide stranded tag densities. It is com-
puted as the correlation of the Crick strand to
the Watson strand, after shifting Watson by
k base pairs (Figure 9.3D). This typically pro-

duces two peaks when cross-correlation is plot-
ted against the shift value: A peak of enrich-
ment corresponding to the fragment length and
a peak of short fragments corresponding to the
read length (Figure 9.3E).

The normalized ratio between the enrichment
peaks and the background correlation (NSC):

NSC =
cross-correlation(fragment length)

min(cross-correlation)
(9.1)

and the ratio between the read length peak and the enrichment peak, called RSC:

RSC =
cross-correlation(fragment length)−min(cross-correlation)

cross-correlation(read length)−min(cross-correlation)
(9.2)

are useful metrics for assessing ChIP-
enrichment. High-quality ChIP-seq datasets
have larger enrichment peaks compared to the
read-length peak, whereas failed ones and inputs
have little or no such peak (Figure 9.3G). Most
(797 of 1052) ENCODE datasets had an NSC ra-
tio greater than 1.1 An example of a result from
a failed experiment is shown in Figure 9.4. In
general, a continuum between the two extremes
is observed, and broad-source datasets are ex-
pected to have flatter cross-correlation profiles
than point-source ones, even when they are of
very high quality. As expected, the NSC/RSC
and FRiP metrics are strongly and positively
correlated for the vast majority of experiments
(Figure 9.3F). As with the other quality metrics,
even high quality datasets generated for factors
with few genuine binding sites tend to produce
relatively low NSCs.

9.4.4 Consistency of replicates:
Analysis using IDR

To identify high-confidence data and to elim-
inate biologically unstable measurements, the
ENCODE Consortium made its goal a mini-
mum of two successful independent biological
replicates, with each experiment passing the ba-
sic quality control filters described above. To
take advantage of the reproducibility informa-

tion provided by replicates, the IDR (irrepro-
ducible discovery rate) statistic was developed
for ChIP-seq (Li et al. 2011).

Given a set of peak calls for a pair of repli-
cate datasets, the peaks can be ranked based on
a criterion of significance, such as the p-value,
the q-value, the ChIP to input enrichment, or
the read coverage for each peak (Figure 9.5A,
9.5B, 9.5D, and 9.5E). If two replicates measure
the same underlying biology, the most significant
peaks, which are likely to be genuine signals, are
expected to have high consistency between repli-
cates, whereas peaks with low significance, which
are more likely to be noise, are expected to have
low consistency. The latter peaks exhibit higher
variability in their ranks and begin to appear at
the noise level. If the consistency between a pair
of rank lists that contains both significant and
insignificant findings is plotted, a change (dis-
continuity) in consistency is expected [Figures
9.5C and 9.5F]. This self-consistency discontinu-
ity provides an internal indicator of the transi-
tion from signal-to-noise and suggests how many
peaks have been reliably detected.

The IDR statistic quantifies the above expec-
tations of consistent and inconsistent groups by
modeling all pairs of peaks present in both repli-
cates as belonging to one of two groups: a repro-
ducible group and an irreproducible group (Li
et al. 2011). In general, the signals in the re-
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producible group are more consistent (i.e., have
a larger correlation coefficient) and are ranked
higher than the irreproducible group. The pro-
portion of identifications that belong to the noise
component and the correlation of the significant
component are estimated adaptively from the
data. The IDR provides a score for each peak,
which reflects the posterior probability that the
peak belongs to the irreproducible group.

A major advantage of IDR is that it can be
used to establish a stable threshold for called
peaks that is more consistent across laborato-
ries, antibodies, and analysis protocols (e.g.,
peak callers) than are FDR measures (Li, et
al. 2011). Increased consistency comes from
the fact that IDR uses information from repli-
cates, whereas the FDR is computed on each
replicate independently. The application of IDR
to real-life data is shown in Figure 9.5. A pair
of high quality Rad21 ChIP-seq replicates dis-
play good consistency between IDR ranks for a
large number (∼28,000) of highly reproducible
peaks (Figures 9.5AB), with a clear inflection
between the signal and noise populations near
the 1% IDR value (Figure 9.5C). In contrast, a
pair of Spt20 replicates, which had already been
flagged as low-quality based on the individual
FRiP and NSC/RSC metrics, display very low
reproducibility as shown by IDR, with very few
significant peaks, and they show no visible inflec-
tion in the IDR curve (Figure 9.5F). It is impor-
tant that the peak-calling threshold used as in-
put to IDR analysis not be so stringent that the
noise component is entirely unrepresented in the
data, because the algorithm requires sampling
of both signal and noise distributions to sepa-
rate them. A caution in applying IDR is that it
is dominated by the weakest replicate. That is,
the IDR is a conservative statistical approach,
and hence if one replicate is quite poor, many
“good” peaks from the higher quality replicate
will be rejected by IDR analysis.

9.4.5 Metrics Applied In Practice

The application of the ChIP-seq quality metrics
to a failed experiment is shown in Figure 9.4. Ini-
tially, two EGR1 ChIP-seq replicates were gen-
erated in the K562 cell line. Based on the cross-
correlation profiles, the number of called regions,
and the FRiP score, these initial replicates were
flagged as marginal in quality. The experiments
were then repeated, with all quality control met-
rics improving considerably. On this basis, the

superior measurements replaced the initial ones
in the ENCODE database. A summary of the
distribution of the values of the different met-
rics and of the IDR pipeline used for the joint
assessment of replicates is shown in Figure 9.6.

9.5 Discussion

As part of the ENCODE Project, we and others
developed a set of working best practices and
guidelines for ChIP-seq experiments based on
more than 1,000 experiments as of October 2011
(and many more since then). They addressed the
central issues of immune reagent specificity and
performance by establishing a menu of primary
and secondary methods for antibody character-
ization, and the development and application of
global metrics to assess the quality of several as-
pects of an individual ChIP-seq experiment: li-
brary complexity (which can be measured by the
non-redundant fraction (NRF)), immunoenrich-
ment (which can be measured by the fraction
of reads in called peaks, FRiP, and by cross-
correlation analysis). How different aspects of
data quality interact with specific uses of ChIP-
seq data is discussed below.

9.5.1 Challenges in obtaining high
quality affinity reagents

Certainly one of the major challenges in ChIP is
the availability of high quality affinity reagents.
There are approximately 1500 transcription fac-
tors in humans (Vaquerizas et al. 2009), but
fewer than 200 antibodies against different tran-
scription factors have passed ENCODE charac-
terization criteria. Because only 25% of anti-
bodies, on average, pass quality controls, it is
likely that over 6000 antibodies will need to be
examined to complete the analysis of all human
transcription factors. The use of epitope-tagged
constructs (especially knock-ins into the enodge-
nous loci that are expressed at correspondingly
endogenous levels) will help generate data for
many factors, but they will still not be suitable
for introduction into human tissues and may not
work well for all cell lines of relevance. Thus, sig-
nificant effort is needed to expand our antibody
repertoire. The use of renewable reagents (such
as monoclonal antibodies) will be particularly
valuable so that well-characterized and plenti-
ful reagents can be distributed to and used by
the entire scientific community.
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Figure 9.7: Distribution of EGR1 motifs relative to the bioinformatically defined peak
position of EGR1-occupied regions derived from ChIP-seq data in K562 cells. Regions
are ranked by their confidence scores as called by SPP. Motifs were called using MEME (Bailey et
al., 2009; version 4.6.1), based on the top 500 regions. The top motif was used and its instances in
all called peaks identified using the approach described in Mortazavi et al. 2006. The position of
each motif instance relative to the peak summit is plotted.

9.5.2 How good can a ChIP-seq
experiment be?

Thus far, the most successful point-source fac-
tor experiments for ENCODE have FRiP val-
ues of 0.2 to 0.5 (factors such as NRSF, GABP,
and CTCF; Figure 9.3C) and NSC/RSC values
of 5 to 12. This implies very high biochemical
enrichment. These experiments produced differ-
ent site numbers: the peak caller SPP reported
50,000 for CTCF but only a few thousand for
NRSF, arguing that different point-source fac-
tors vary considerably in the number of occu-
pied regions, even when technical quality issues
are minimal. Although these quality scores and
characteristics can be routinely obtained for the
best-performing factor/antibody combinations,
they are not the rule. For most transcription
factors, the ChIP quality metrics obtained are
substantially lower and more variable. There
are likely multiple determinants of successful en-
richment, and they are not all controllable or
easy to measure. The quality of antibody (affin-
ity and specificity) is certainly very important,
but epitope availability within fixed chromatin,
sensitivity of the antibody to post-translational
modification of the antigen, the nuclear levels of
protein, and other physical characteristics of the
protein-DNA interaction can also contribute.

It is common for a lower-quality replicate, by
the criteria of FRiP, NSC/RSC and track inspec-
tion, to identify thousands fewer sites than the
best available replicate. Are sites detected in

only the best ChIP replicate “real” in the sense
of reflecting in vivo occupancy? Motif analysis
suggests that many are. A representative exam-
ple is shown in Figure 9.7, where the position
of Egr1 motifs relative to Egr1 ChIP-seq peaks
is shown. The known binding motif is promi-
nent and concentrated centrally under the ChIP
peaks, as expected if the motif mediates occu-
pancy; importantly, the central location of the
motif is observed even in the low ranking peaks
and this trend seems to continue below the peak
calling cut-off, suggesting the existence of ad-
ditional true sites. This means that the true
number of binding sites and how exhaustively
a ChIP-seq experiment identifies them is rarely
clear, especially when a factor is assayed for the
first time.

9.5.3 How good does a ChIP-seq
experiment need to be?

It would be ideal if every ChIP experiment
mapped all occupancy sites in the genome that
are biologically meaningful with minimal false
positives. The main impediment to this result
is that the field has not learned to determine, a
priori, the level of ChIP signal above which all
biologically functional sites have been identified,
or even if this is a valid concept. We have ob-
served that some biologically important sites can
have modest ChIP-seq signals while some sites
with very high enrichment fail to give positive
functional readouts (Figure 9.3B). Until more
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biologically-informed thresholds are established,
the best practical guidance for thresholds of sen-
sitivity, specificity and replicability will depend
on how the data is used. Below, four differ-
ent common uses for ChIP-seq data are outline,
ranging from relaxed to stringent in quality re-
quirements.

1. Motif analysis. Deriving DNA sequence
motifs for a ChIP-assayed factor is rela-
tively simple and can be performed suc-
cessfully with most ENCODE ChIP-seq
datasets. Experiments that pass suggested
thresholds for NRF, FRiP, and NSC/RSC
typically produce thousands of regions, a
sub-sample of which can be readily used
to deduce the recognition motif, assum-
ing that the protein bound is a sequence-
specific factor. Causal motifs are typically
centrally positioned and this can be used
as a confirming diagnostic. Motif finding
can also be successful from marginal qual-
ity data that fall below recommended qual-
ity metric thresholds (especially if only the
top-ranked peaks are analyzed). However,
the risk of artifacts increases if lower qual-
ity data is used and results from such anal-
yses should be interpreted and validated
with special care.

2. Discovering regions to test for bio-
logical function (such as transcriptional
enhancement, silencing, or insulation). Bi-
ologists often use ChIP-seq data to identify
candidate regulatory regions at loci of in-
terest. When the goal is to find a set of
representative regulatory domains, data of
modest quality can be effective. In general,
inspection of ChIP signals is strongly ad-
vised before investing deeply in functional
and/or mutagenesis studies, especially if
the criteria for selecting regions of inter-
est are computational. However, when the
aspiration is to identify and sample all reg-
ulatory regions bound by a factor, weaker
datasets are not adequate.

3. Deducing and mapping combinatoric
occupancy. Typical cis-acting regulatory
modules (CRM) are occupied by multiple
factors (Ghisletti et al. 2010; He et al.
2011a; He et al. 2011b; Lin et al. 2010;
Tijssen et al. 2011; Wilson et al. 2010)
and histones present at these elements are
modified with multiple marks (Barski et al.

2007; Mikkelsen et al. 2007; Wang et al.
2008). A frequent goal of ChIP-seq studies
is to deduce a combination of factors that
mediate a common regulatory action at
multiple sites in the genome. The presence
of one or more weak datasets that fail to
identify significant fractions of the true oc-
cupancy sites can seriously confound such
an analysis. Therefore, only high quality
datasets should be used for such studies.

4. Integrative analysis. A new frontier of
whole genome analysis is the integration of
data from many (hundreds or thousands)
experiments with the goal of uncovering
complex relationships. These endeavours
typically use sophisticated machine learn-
ing methods (Ernst & Kellis 2010; Ernst
et al. 2011; Mortazavi et al. 2013) with
complex and varying sensitivity to ChIP
strength; such efforts can be significantly
affected by data quality. Again, only high
quality datasets are recommended to be
used for such studies.

9.5.4 Uncertainties in
distinguishing high quality from

low quality datasets

Evaluating ChIP-seq data quality includes the
challenge of distinguishing technical versus bio-
logical sources of noise or error. I use the TAF1
subunit of the TFIID complex, part of the tran-
scription initiation machinery, as an example.
Given the known biological functions of TAF1,
one might expect that the set of genomic loca-
tions occupied by TAF1 would reflect the num-
ber and identity of active promoters in each cell
type. Based on RNA-seq measurements of gene
expression, it can be concluded that the number
of active transcriptional start sites is similar in
most cell types (Figure 9.9). Yet we have ob-
served substantial differences in the number of
identified TAF1-bound regions that appear to
depend on cell type (Figure 9.8). One expla-
nation is that this is entirely due to technical
variability in the quality of the TAF1 ChIP ex-
periments. However, it has been suggested that
TAF1 does not play a role in transcription initi-
ation in certain cell types (Deato & Tjian 2007);
ChIP-seq experiments against TAF1 in such cell
lines would appear very similar to technical fail-
ures. Additional experiments will be required to
discriminate between these possibilities.



293

Figure 9.8: Cross-correlation profiles and number of TAF1 ChIP-seq peaks in different
ENCODE cell lines. Regions are called from ChIP-seq data using MACS (version 1.4). The best
replicates for each cell line are shown, i.e. the low number of peaks in GM12878 cells was consistently
observed in multiple replicates (n > 5 for GM12878).

9.6 Conclusion

ChIP experiments that map the genomic distri-
bution of transcription factor and modified his-
tone binding sites have proven to be an impor-

tant tool across a wide range of organisms and
in different tissues and cell types. The quality
control metrics described above should provide
assistance to the scientific community with the
goal of ensuring that high quality data are pro-

Figure 9.9: Number of expressed transcription start sites in four ENCODE cell lines.
Show is the number of expressed transcription start sites (TSSs) at the indicated FPKM levels,
based on RNA-seq data for each cell line. The FPKM for each TSS was calculated as the sum of
the FPKMs of all transcripts containing that TSS: FPKMTSS =

∑
T3TSS FPKMT . Transcript-level

quantification was carried out on GENCODE version 7 (Harrow et al. 2012) using Cufflinks version
0.9.3 (Trapnell et al. 2010)
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duced and reported, which will not only enable
the mapping of regulatory information and net-

works, but will also be critical in elucidating the
effects of genomic variation in mediating human
traits and diseases.
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Large-scale quality analysis of published ChIP-seq

data

T
his chapter contains material that was published as:

Marinov GK, Kundaje A, Park PJ, Wold B. 2014. Large-scale quality analysis of pub-
lished ChIP-seq data. G3 4(2):209-23. doi: 10.1534/g3.113.008680.

The paper is reprinted in Appendix K

Abstract

ChIP-seq has become the primary
method for identifying in vivo protein-
DNA interactions on a genome-wide scale,
with nearly 800 publications involving the
technique in PubMed as of December
2012. Individually and in aggregate these
data are an important and information-
rich resource. However, uncertainties
about data quality confound their use by
the wider research community. In the
previous chapter, I described the metrics
developed and applied by the ENCODE
Project Consortium to objectively mea-
sure ChIP-seq data quality (which are also
reviewed here, in some cases more ex-
tensively). The ENCODE quality anal-
ysis was useful for flagging datasets for
closer inspection, eliminating or replac-
ing poor data, and for driving changes in
experimental pipelines. However, there
had been no similarly systematic quality
analysis of the large and disparate body
of published ChIP-seq profiles. To ad-
dress this question, I carried a uniform
analysis of vertebrate transcription fac-
tor ChIP-seq datasets in the Gene Ex-
pression Omnibus (GEO) repository as of
April 1st 2012. The majority (55%) of

datasets scored as highly successful, but
a substantial minority (20%) were of ap-
parently poor quality, and another ∼25%
were of intermediate quality. I discuss
how different uses of ChIP-Seq data are
affected by specific aspects of data qual-
ity, and highlight exceptional instances for
which the metric values should not be
taken at face value. Unexpectedly, I dis-
covered that a significant subset of con-
trol datasets (i.e. no-immunoprecipitation
and mock-immunoprecipitation samples)
display an enrichment structure similar to
successful ChIP-seq data. This can, in
turn, affect peak calling and data inter-
pretation. In the future, ChIP-seq quality
assessment similar to that used here could
guide experimentalists at early stages in
a study, provide useful input in the pub-
lication process, and be used to stratify
ChIP-seq data for different community-
wide uses.

10.1 Introduction

Chromatin immunoprecipitation (ChIP)
(Gilmour and Lis 1984; Gilmour and Lis 1985;
Solomon et al. 1988) experiments identify sites
of occupancy by specific transcription factors,
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cofactors, and other chromatin-associated pro-
teins as well as histone modifications. Such pro-
teins are concentrated at specific loci via direct
binding to DNA or by indirect binding mediated
by other proteins or RNA molecules. In most
ChIP protocols, proteins are first crosslinked to
DNA, most often using formaldehyde. The fixed
chromatin is sheared, and an antibody specific
for the protein or histone modification of inter-
est is used to retrieve protein:DNA complexes
from which the DNA segments are released and
then assayed. The assay was first applied to indi-
vidual transcription factor/promoter complexes
by using qPCR to detect enrichment over spe-
cific DNA segments (Hecht et al. 1996). Sub-
sequent adaptations extended it to large sets of
promoters or other genomic regions by using mi-
croarrays (ChIP-on-Chip/ChIP-Chip) (Ren et
al. 2000; Iyer et al. 2001; Lieb et al. 2001;
Horak and Snyder 2002; Weinmann et al. 2002).
Ultimately, the entire genome became accessible
with the advent of high-throughput sequencing
and the development of ChIP-seq (Johnson et al.
2007; Barski et al. 2007; Mikkelsen et al. 2007;
Robertson et al. 2007).

In all cases, preferential enrichment of a given
immunoprecipitated DNA segment is detected
and quantified by comparing it with a control
experiment, in which there is no specific an-
tibody enrichment step. These controls can
be generated from sonicated DNA prior to im-
munoprecipitation (Input) or a mock immuno-
precipitation with an unrelated antibody (IgG).
Sequencing-based ChIP has become the method
of choice because it enables genome-wide cover-
age, even for large genomes, and because of its
superior signal-to-noise characteristics compared
to alternative methods. Since its initial devel-
opment, ChIP-seq has been used in hundreds
of publications (778 in PubMed as of December
18th, 2012), including by the ENCODE consor-
tium (ENCODE Project Consortium 2011; EN-
CODE Project Consortium 2012), to map occu-
pancy over a hundred human transcription fac-
tors and cofactors in a diverse collection of cell
lines. (Gerstein et al. 2012; Wang et al. 2012).

A basic question for any ChIP-seq exper-
iment is how successful it has been. It has
taken several years for the field to develop ob-
jective ways to quantify key aspects of success in
immunoprecipitation enrichment, library build-
ing and final sequencing. Poor datasets that
have high false negative rates in peak calling are
a predictable pitfall that has significant down-

stream consequences for some kinds of biological
and computational analyses. For example, when
lower quality data-sets are used for integrative
analyses that are sensitive to false negatives, in-
correct inferences and conclusions become likely
(see Discussion). In estimating data quality, the
traditional approach of visual inspection at a
limited number of sites (often previously well-
characterized using low-throughput approaches)
is inefficient, subjective and can ultimately be
deceptive. It is possible (and commonly ob-
served in practice) that sites, the biological im-
portance of which has been defined by indepen-
dent functional assays, can fall below the sensi-
tivity threshold of a poor or mediocre ChIP-seq
experiment. Moreover, there is no current way
to predict, a priori, the number of sites in the
genome that should be detected for a given factor
and cell type. Most transcription factors studied
thus far reproducibly occupy thousands to tens
of thousands of sites (ENCODE Project Consor-
tium 2012; Landt et al. 2012); Thus a dataset,
for which several thousand sites have been called,
might in fact be capturing a minority of true pos-
itive interactions, or it might encompass virtu-
ally all biologically pertinent sites. To help ad-
dress the problem of data assessment, as part of
the ENCODE project, we and others developed
a comprehensive set of ChIP-seq quality con-
trol metrics and guidelines (Landt et al. 2012),
which were adopted by the Consortium and ap-
plied to all of its datasets. Substandard datasets
were consequently replaced, flagged as substan-
dard, and/or removed from analysis (ENCODE
Project Consortium 2012; Landt et al. 2012).

Incorporating published datasets into an on-
going study can bring new biological insights and
avoid unnecessary duplication of work. Vari-
able quality of published data can be a signifi-
cant barrier to these uses of existing data. They
are the product of work from many different
labs, with invaluable expertise is specific bio-
logical systems, but also using many variations
in ChIP-seq experimental protocols and bioin-
formatics treatments. The extent and nature
of the variations has not been assessed glob-
ally and systematically. In this work, I exam-
ined the GEO submission series containing verte-
brate transcription factor ChIP-seq datasets and
found that ∼20% of datasets score as being of
low-quality with additional ∼25% exhibiting in-
termediate ChIP enrichment. I also noticed that
roughly a third of studies have control datasets
with a high degree of read clustering that is nor-
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mally expected only in ChIP-seq datasets. This
was observed more often for the IgG control de-
sign than for input DNA controls. These and
related observations suggest that routine charac-
terization and reporting of the quality of ChIP-
seq data be applied.

10.2 Results

10.2.1 Dataset collection, data
processing and quality metrics

I downloaded all GEO series containing ChIP-
seq datasets for vertebrate transcription factors
or chromatin modifying and remodeling pro-
teins, along with their corresponding control li-
braries, submitted prior to April 1st 2012. I ex-
cluded ENCODE datasets as they have previ-
ously been subjected to this quality assessment
(ENCODE Project Consortium 2012) and the
results were summarized in (Landt et al. 2012),
although I also provide here a summary of EN-
CODE transcription factor (TF) ChIP-seq data
from the two main production groups in Figures
10.13 and 10.14.

A different logic led to the exclusion of
histone modification and RNA Polymerase II
datasets. First, in our experience, ChIP-seq
against these targets is robust to experimental
variation and the success rate is reliably high
(provided the antibody reagents used are of high
quality). Second, an especially large propor-
tion of published data are for histone marks.
The effect of including all of these in the sur-
vey would have been to obscure or skew the
trends for transcription factors and cofactors.
Finally, the currently available quality control
metrics were designed and are best suited for
transcription factor data that produce highly lo-
calized “point-source” occupancy (as they quan-
tify the extent of read clustering in the genome).
This means that the metrics themselves need

to be interpreted differently if they are applied
to, for example, repressive histone marks such
as H3K9me3 and H3K27me3, which form large
“broad-source” regions of enrichment (Pepke et
al. 2009). Arguably, these data will need their
own metrics and this will be a challenge for the
future.

The final collection of datasets contained 191
GEO series containing a total of 917 ChIP-seq
and 292 control libraries. Except for a limited
number of cases in which a GEO series was as-
sociated with multiple publications, two or three
GEO series were associated with the same pub-
lication, or a GEO series has not yet been used
in a publication, there is a one-to-one relation-
ship between GEO series and published articles
in the literature (An et al. 2011; Ang et al. 2011;
Avvakumov et al. 2012; Barish et al. 2010; Bar-
ish et al. 2012; Bergsland et al. 2011; Bernt et
al. 2011; Bilodeau et al. 2009; Blow et al. 2010;
Boergesen et al. 2012; Botcheva et al. 2011;
Brown et al. 2011; Bugge et al. 2012; Canella
et al. 2012; Cao et al. 2010; Cardamone et al.
2012; Ceol et al. 2011; Ceschin et al. 2011;
Chen et al. 2008; Cheng et al. 2009; Cheng et
al. 2012; Chi et al. 2010; Chia et al. 2010; Chi-
cas et al. 2010; Chlon et al. 2012; Cho et al.
2012; Corbo et al. 2010; Costessi et al. 2011;
Cuddapah et al. 2009; De Santa et al. 2009;
Doré et al. 2012; Durant et al. 2010; Ebert et
al. 2011; Fan et al. 2012; Fang et al. 2011; Feng
et al. 2012; Fong et al. 2012; Fortschegger et
al. 2010; Gao et al. 2012; Gotea et al. 2010;
Gowher et al. 2012; Gu et al. 2010; Han et
al. 2010; Handoko et al. 2011; He et al. 2011;
Heikkinen et al. 2011; Heinz et al. 2010; Heng et
al. 2010; Ho et al. 2010; Hollenhorst et al. 2010;
Holmstrom et al. 2011; Horiuchi et al. 2011; Hu
et al. 2010; Hu et al. 2011; Hunkapiller et al.
2012; Hutchins et al. 2012; Johannes et al. 2010;
Joseph et al. 2011; Jung et al. 2010; Kagey et
al. 2010; Kassouf et al. 2010; Kim et al. 2010;
Kim et al. 2011; Klisch et al. 2011; Koeppel et

Figure 10.1 (preceding page): Sequencing library characteristics. (A) Joint distribution
of library complexity and sequencing depth for all datasets examined. Vertical lines are drawn at 1
million, 5 million and 12 million reads. Horizontal and vertical lines indicate quality classes discussed
in the text. The upper right domain (number of uniquely mappable reads ≥12 million and library
complexity ≥0.8) passes current quality thresholds. (B) Distribution of library complexity for ChIP-
seq datasets, IgG controls and Inputs; (C) Distribution of sequencing depth for ChIP-seq datasets,
IgG controls and sonicated inputs; (D) Fraction of ChIP-seq, IgG and Input datasets exhibiting
high, medium and low complexity; (E) Fraction of studies containing libraries of high, medium and
low complexity (the distribution of the minimum library complexity observed is shown)
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Figure 10.2: Examples
of cross-correlation plots
and QC score assignments
for both ChIP-seq and
control datasets. Suc-
cessful ChIP-seq is expected
to show a very high cross-
correlation peak relative to
the read length ”phantom
peak”. Failed ChIP-seq ex-
periments lack such a peak.
Control libraries (sonicated
inputs or IgG input) are also
expected to lack this peak;
the presence of a high cross-
correlation peak is most likely
due to a very strong Sono-seq
effect (Auerbach et al. 2009).
(A). Example of a ChIP-seq
dataset with QC score of -2
(from Visel et al. 2009; Gotea
et al. 2010; Blow et al. 2010).
(B). Example of a ChIP-seq
dataset with QC score of -
1 (from Ho et al. 2009).
(C). Example of a ChIP-seq
dataset with QC score of 0
(from Yuan et al. 2009). (D).
Example of a dataset with
QC score of 1 (from He et
al. 2011). (E). Example of
a ChIP-seq dataset with QC
score of 2 (from Handoko et al.
2011). (F). Example of a con-
trol dataset with QC score of
-2 (from Lee et al. 2010). (G).
Example of a control dataset
with QC score of -1 (from
GSE15844). (H). Example
of a control dataset with QC
score of 0 (from GSE23581).
(I). Example of a dataset with
QC score of 1 (from Ver-
meulen et al. 2010). (J).
Example of a control dataset
with QC score of 2 (from He
et al. 2011).
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Figure 10.3: Sequencing
depth distribution for ChIP-
seq and IgG and Input control
datasets.

al. 2011; Kong et al. 2011; Kouwenhoven et al.
2010; Krebs et al. 2010; Kunarso et al. 2010;
Kwon et al. 2010; Law et al. 2010; Lee et al.
2010; Lefterova et al. 2010; Li et al. 2010; Li
et al. 2012; Lin et al. 2010; Lister et al. 2009;
Little et al. 2011; Liu et al. 2010; Liu et al.
2011; Lo et al. 2011; Lu et al. 2012; Ma et al.
2010; MacIsaac et al. 2010; Mahony et al. 2010;
Marban et al. 2011; Marson et al. 2008; Mar-
tinez et al. 2010; Mazzoni et al. 2011; McManus
et al. 2011; Mendoza-Parra et al. 2011; Meyer
et al. 2012; Miller et al. 2012; Miyazaki et al.
2011; Mullen et al. 2011; Mullican et al. 2011;
Nakayamada et al. 2011; Nishiyama et al. 2009;
Nitzsche et al. 2011; Norton et al. 2011; Nover-
shtern et al. 2011; Ntziachristos et al. 2012; Palii
et al. 2010; Pehkonen et al. 2012; Ptasinska et
al. 2012; Qi et al. 2010; Quenneville et al. 2011;
Rada-Iglesias et al. 2010; Rahl et al. 2010; Ram-
agopalan et al. 2010; Ramos et al. 2010; Rao et
al. 2011; Remeseiro et al. 2012; Rey et al. 2011;
Robertson et al. 2007; Sadasivam et al. 2012;
Sahu et al. 2011; Sakabe et al. 2012; Schödel
et al. 2012; Schlesinger et al. 2010; Schmitz et
al. 2011; Schnetz et al. 2010; Sehat et al. 2010;

Seitz et al. 2011; Shen et al. 2011; Shukla et al.
2011; Siersbæk et al. 2011; Smeenk et al. 2011;
Smith et al. 2011; Soccio et al. 2011; Stadler
et al. 2011; Steger et al. 2010; Sun et al. 2011;
Tallack et al. 2010; Tan et al. 2011a; Tan et al.
2011b; Tang et al. 2010; Teo et al. 2011; Tijssen
et al. 2011; Tiwari et al. 2011a; Tiwari et al.
2011b; Trompouki et al. 2011; Trowbridge et al.
2012; van Heeringen et al. 2011; Vermeulen et
al. 2010; Verzi et al. 2010; Verzi et al. 2011;
Vilagos et al. 2012; Visel et al. 2009; Vivar et
al. 2010; Wang et al. 2011a; Wang et al. 2011b;
Wei et al. 2010; Wei et al. 2011; Welboren et
al. 2009; Whyte et al. 2011; Wilson et al. 2009;
Woodfield et al. 2010; Wu et al. 2011a; Wu et
al. 2011b; Wu et al. 2012; Xiao et al. 2012; Xu
et al. 2011; Yang et al. 2010; Yang et al. 2011;
Yao et al. 2010; Yildirim et al. 2011; Yoon et al.
2011; Yu et al. 2009; Yu et al. 2010; Yu et al.
2012;; Yuan et al. 2009; Zhang et al. 2011; Zhao
et al. 2011a; Zhao et al. 2011b; unpublished
at the time of completion of the manuscript
GEO accession numbers: GSE33346, GSE33850,
GSE36561, GSE30919, GSE33128, GSE35109,
GSE25426, GSE31951, GSE26711, GSE23581,
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Figure 10.4: ChIP QC assessment summary. The numbers in each box indicate the total
number of datasets/studies belonging to it. SPP QC scores of +1 and +2 indicate a high degree of
read clustering in a dataset. (A) Distribution of SPP QC scores for all ChIP-seq datasets examined;
(B) Distribution of SPP QC scores for the best replicates for a factor/condition combination in each
study; (C) Distribution of the maximum SPP QC scores for all ChIP-seq datasets in a study.

GSE26136, GSE26680, GSE15844, GSE21916,
GSE22303 and GSE29180; direct links to all
GEO series can be found in Supplementary Ta-
ble 1).

I discuss IgG and Input controls separately
as, to the best of my knowledge, any potential
general differences between the two types of con-
trols have not been investigated systematically
in the context of ChIP-seq (Peng et al. 2007
addressed these questions for ChIP-Chip data,
however, the nature of the background is sub-
stantially different for microarrays)

I mapped all reads with uniform settings (see
the Methods section for details) and examined li-
brary and ChIP quality control metrics for each
dataset. These criteria have already been dis-
cussed in Landt et al. 2012, and a detailed treat-
ment of cross-correlation is presented elsewhere
(Kundaje et al., submitted). Here we provide a
brief overview of each.

1. Sequencing depth. If a ChIP-Seq

experiment achieves successful immune-
enrichment and the resulting llibrary ad-
equately represents the sample, greater se-
quencing depth will produce a more com-
plete map of transcription factor occu-
pancy (Landt et al. 2012). At greater
depth, the measurement will identify a
larger number of reproducible sites con-
taining the corresponding DNA binding se-
quence motif. Undersequencing of an oth-
erwise successful library will lead to false
negatives. It has been difficult to establish
a universal minimal sequencing depth due
to differences between factors. Any thresh-
old is going to be somewhat arbitrary, but
in general, the major cost/benefit trade-
off is between sequencing one sample more
deeply and generating additional repli-
cates: for most contemporary purposes, an
independent duplicate measurement of 12
million reads arguably adds greater overall
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Figure 10.5: Distribution of the maximum
SPP QC scores for studies in which only a
single transcription factor was assayed.

value than a single determination with 24
million reads, even though the higher num-
ber of reads will increase sensitivity. Num-
bers of mapped reads below 1-2 million for
a typical transcription factor, will usually
be inadequate for capturing the complex-
ity of an interactome for a mammalian-
sized genome. Many datasets now in the
public domain were generated when se-
quencing throughput was lower than it is
now and costs were higher (between 2007
and 2013, sequencing throughput has in-
creased by about two orders of magni-
tude). As a consequence, many early
ChIP-seq libraries were sequenced to a
depth of only a few million reads. I there-
fore divided datasets into sequencing bins
by using thresholds of 1,5,12 and 24 mil-
lion uniquely mapped reads (taking into
account sequencing depths recommended
in the past by the ENCODE consortium
for transcription factors). Libraries hav-

ing less than a million reads are consid-
ered severely undersequenced, and those
with above 12 million reasonably deeply
sequenced.

2. Library complexity. A second char-
acteristic that influences the quality of
a ChIP-seq measurement is the sequence
fragment diversity of the sequencing li-
brary. This is generally referred to as li-
brary complexity and low complexity is un-
desirable with current technology, though
I note that much better IP enrichment
than what is now obtained could in the
future lead to high-quality datasets with
low library complexity. Currently, low-
complexity libraries mainly result from
experimental deficiencies: either too few
starting molecules at the end of the im-
munoprecipitation step or inefficient steps
in subsequent library building. As a re-
sult, the same starting molecules are se-
quenced repeatedly. Very low-complexity
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libraries will not contain enough informa-
tion to effectively sample the true positive
binding sites and they distort the signal
position and intensity. This can confuse
peak callers (especially if the algorithm

does not collapse presumptive PCR du-
plicates), leading to peak calling artifacts
(Landt et al. 2012). We use the following
metric as an indicator of library complex-
ity (Landt et al. 2012):

Library complexity =
Number positions in the genome that uniquely mappable reads map to

Number uniquely mappable reads
(10.1)

• Estimated in this way, library complex-
ity is expected to decrease eventually with
increased sequencing depth because even
highly complex libraries become exhausted
by very deep sequencing. Reduced ap-
parent complexity would also be observed
with extremely successful ChIP-seq exper-
iments for transcription factors that bind
to the genome in a highly discriminative
fashion and to a limited number of loca-
tions. In such libraries, the majority of
reads would originate from the limited ge-
nomic subspace around binding sites re-
sulting in low apparent library complexity.
With current methods, this is, a largely
theoretical consideration; in practice, in
most ChIP-seq libraries only a minority
of reads originate from factor-bound sites,
with the rest (the majority) representing
genomic background. As the vast majority
of libraries examined fell in the sequencing
depth range over which these values rep-
resent library complexity reasonably well
(Figure 10.1A, Table 10.1), I split datasets
in the following complexity groups: high
complexity (apparent library complexity
≥ 0.8), medium to low complexity (ap-
parent library complexity between 0.5 and
0.8), and very low complexity (apparent
library complexity ≤ 0.5). Finally, I note
that in substantially smaller genomes the
apparent library complexity is expected
to be lower as the number of positions
from which sequencing library fragments
can originate is smaller.

3. Cross-correlation analysis of read
clustering and ChIP enrichment.
Since the majority of sequencing reads in
a ChIP-seq library represents non-specific
genomic background, these reads are ex-

pected to be randomly distributed over
the genome. In contrast, reads originat-
ing from specific occupancy events clus-
ter around the sites of protein-DNA in-
teractions, where they are distributed in
characteristic asymmetric pattern on the
plus and minus strand (Kharchenko et
al. 2008). Cross-correlation analysis is
an effective way of measuring the extent
of this clustering. It also captures ad-
ditional global features of the data such
as the average fragment length and frag-
ment length distribution (Kharchenko et
al. 2008; Landt et al. 2012). Specifi-
cally, the read coverage profiles on the two
strands are shifted relative to the other
over a range of shift values and the cor-
relation between the profiles is calculated
at each shift (Kharchenko et al. 2008).
The resulting plot has one (“phantom”)
peak corresponding to the read length and
another peak corresponding to the aver-
age fragment length; the height of the
fragment-length peak is highly informa-
tive of the extent of read clustering in
the library and in turn of the success of
a ChIP-seq experiment. This feature is
best captured by the normalized and rel-
ative strand correlation (NSC and RSC)
metrics discussed in (Landt et al. 2012).
I applied SPP (Kharchenko et al. 2008)
to carry out cross-correlation analysis for
all libraries in this survey. I then used
the RSC cross-correlation metric to assign
integer quality control tag values in the
{−2, 2} range to datasets, with QC values
of 2 corresponding to very highly clustered
(and mosty likely, also successful) datasets
and QC values of -2 to datasets exhibit-
ing no to minimal read clustering; nega-
tive values are expected for input datasets.
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The RSC metric captures well the extent
of read enrichment in vertebrate genomes
similar in size to humans, which this study
focuses on. I provide representative exam-
ples of cross-correlation plots for each of
the five QC categories in Figure 10.2A) and
use these tags as convenient general prox-
ies for ChIP quality throughout the follow-
ing analysis. I note that the discretization
thresholds are not meant to be absolute
determinants of quality, but they enable
one to rapidly scan very large numbers of
datasets. In practice, examining the cross-
correlation plots and the continuously-
distributed NSC and RSC values is always
more informative and provides more nu-
ance in understanding specific datasets.

An additional major component of the ChIP-
seq quality control pipeline developed by the EN-
CODE consortium is reproducibility analysis of
replicates, based on the irreproducible discovery
rate (IDR) statistic (Li et al. 2011). However,
since many of the studies surveyed did not have
replicates, I only evaluated datasets on the level
of individual experiments. Single dataset evalu-
ation is also almost always a valuable precursor
to evaluation of replicates, as typically a second
replicate is generated following a successful first
one.

The full list of datasets, mapping and quality
control statistics is provided in Table 10.1.

10.2.2 Sequencing depth and
library complexity

Figure 10.1A shows the distribution of sequenc-
ing depth and library complexity for ChIP-seq
and control datasets. The upper right domain,
bounded by 12 million reads per sample and a
complexity value of 0.8 is an arbitrary but use-
ful definition of high quality according to these
measures. A majority of datasets had reasonably
good complexity and severely undersequenced
libraries were rare (Figure 10.1C). A minority
(38.8%) of datasets had more than 12 million
mapped reads; however, as discussed above, this
is not unexpected, as a large fraction of the
datasets we surveyed were generated in times
of significantly higher sequencing cost and lower
throughput. Strikingly, the median complexity
of IgG control datasets was below 0.8 and consid-
erably lower than that of either ChIP-seq or son-
icated Input libraries (Figure 10.1B). This is not

a result of IgG datasets having been sequenced
much more deeply than the other two groups;
in fact the median sequencing depth of IgG con-
trols is lower (Figure 10.3). The concern that
individual IgG inputs might provide insufficient
DNA mass to build highly complex libraries has
been raised before (Landt et al. 2012) and our
observations are consistent with this concern, al-
though it is not a uniform problem for all IgG
controls.

Slightly more than half (54.3%) of ChIP-seq
datasets had library complexity higher than 0.8
while very low-complexity (< 0.5) libraries com-
prised 12.9% of datasets; the fraction of very low-
complexity libraries was higher and lower for IgG
and Input datasets, respectively (Figure 10.1D).
As most GEO series contained multiple libraries,
I also asked how common is the presence of low-
complexity libraries in individual studies. Figure
10.3E shows the distribution of the minimum li-
brary complexity in each such series (for all types
of datasets). A quarter (25.4%) of all studies
contained very low-complexity libraries.

10.2.3 Cross-correlation quality
assessment of ChIP-seq datasets

Next, I examined the distribution of SPP QC
scores for ChIP-seq datasets. Before doing this, I
excluded a minority of datasets for which there
was a good reason to think high ChIP enrich-
ment should not be expected. For example, ex-
periments executed in knock-outs, knock-downs,
or settings, in which the factor is not expressed,
are not expected to produce a high-scoring mea-
surement. And in a few cases, the factor in ques-
tion might be known to bind to only a small
number of sites in the genome; this has been
proposed, for example, for some ZNF transcrip-
tion factors and Pol3 and its associated factors
(Landt et al., 2012). The detailed criteria for
inclusion are described in the Methods section.

Figure 10.4A shows the QC score distribu-
tion for all ChIP-seq datasets we retained. Strik-
ingly, only 55% (482 out of 876) of datasets had
QC scores of 1 or 2, i.e. they are likely to be
highly successful. Additional 24.5% (215 out of
876) had a score of 0, marking them as of in-
termediate quality, and 20.4% (179 out of 876)
had low-quality scores of -1 and -2. Sometimes
multiple replicates for a factor were submitted
but only one fails, so I also compiled a second
set of ChIP-seq experiments that only included
the best available replicate for each factor and
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Figure 10.6: Assessment of read clustering in control datasets. The numbers in each box
indicate the total number of datasets/studies belonging to it. SPP QC scores of 1 and 2 indicate
a high degree of read clustering in a dataset. (A) Distribution of SPP QC scores for all control
datasets (IgG+Input), IgG/mock IP controls (IgG) and sonicated inputs (Inputs); (B) Fraction of
studies containing highly clustered inputs. The distribution of the maximum SPP QC score for all
inputs in a dataset is shown. (C) Examples of a highly clustered input (mouse liver, upper two
tracks, from MacIsaac et al. 2010, QC score of 2) and an input that does not show high extent of
read clustering (also mouse liver, lower two tracks, from Soccio et al. 2011, QC score of -1). The
promoter of the MASTL gene is shown. All tracks are shown to the same scale and reads mapping to
the plus and minus strands and displayed separately for better visualization of the cross-correlation
between the two.
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Figure 10.7: Distribution of library complexity values and sequencing depth for Input
and IgG control datasets divided by QC scores. (A,B) Library complexity. (C,D) Sequencing
depth.
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condition (Figure 10.4B). This set includes 322
datasets (59%) with QC scores of 2 or 1.
The fraction of intermediate-quality and failing
datasets in this set decreased as expected; how-
ever the decrease was relatively small - 18% (97
out of 541) of the best available replicates still
had scores of -1 or -2, and 22.5% (122 out of 541)
had a score of 0.

I then examined the distribution of the max-
imum QC score for each study, regardless of
which target it was for (Figure 10.4C). The frac-
tion of failing scores decreased further, yet still
only 70.4% of studies (131 out of 186) had a score
of 1 or 2 for their best experiment. I also com-
piled a list of the best datasets from all studies
that only assayed a single transcription factor;
19.7% (19 out of 96) such studies had scores of
-1 or -2, 25% (24 of 96) had a score of 0, and
55.2% (53 of 96) were marked as likely to be
successful with scores of 1 and 2 (Figure 10.5).

10.2.4 Read clustering in control
datasets

Control datasets serve the important purpose of
helping to distinguish read enrichment due to
the immunoprecipitation step from artifactual
read clustering due to other experimental fac-
tors, both known and unknown. It is, for exam-
ple, well appreciated that differential chromatin
shearing efficiency can lead to the overrepresen-
tation of areas of open chromatin (usually im-
mediately surrounding transcribed promoters) in
sequencing libraries. This is termed “Sono-seq”
effect when attributed to sonication (Auerbach
et al. 2009). In addition, unknown copy number
variants and sequence composition biases may
give false positive putative occupancy. In partic-
ular, specifics of the amplification step in most
sequencing platforms can introduce significant
bias for GC content (Ho et al. 2011).

In general, control datasets are not expected
to exhibit a pattern of significant read clustering
similar in strength to that of successful ChIP-
seq datasets. In our own practice, under stan-
dard crosslinking protocols, most do not. How-
ever, we have noticed that a minority of con-
trol datasets show positive ChIP QC scores along
with prominent cross-correlation peaks. Figure
10.2B shows examples of cross-correlation plots
for individual control datasets with all possible
QC scores, from -2 to 2 and Figure 10.6C shows
a browser snapshot of a region with strong read
enrichment in a highly clustered (QC score of 2)
input library and no such enrichment in a library

from a similar biological source with a QC score
of -1.

I asked how general this phenomenon is by
examining the distribution of QC scores of both
IgG and Input control datasets (Figure 10.6A).
Surprisingly, only 53.6% (156 out of 291) of con-
trol datasets had QC scores of -2 or -1 and 25%
(73 of 291) had a score of 0, while 21.3% (62 of
291) exhibited very high degree of read cluster-
ing and received scores of 1 or 2. The highly clus-
tered inputs were notably more common among
IgG controls than among Input chromatin con-
trols (Figure 10.6A). Moreover, high read clus-
tering was more often found in low-complexity
libraries (which are themselves more common
among IgG controls) (Figure 10.7A and 10.7B).

I also examined how widespread input clus-
tering is on the level of GEO series/studies to see
if the phenomenon is restricted to a few larger
studies. Figure 10.6B shows the distribution of
the maximal QC score for all control datasets in
a study. Of the studies for which control datasets
were available, 32.8% (45 of 123) contained at
least one highly clustered control with a score of
1 or 2 and 29.2% (40 of 123) contained a control
with a score of 0. Thus control datasets surpris-
ingly often exhibit a high extent of read cluster-
ing similar to that of ChIP-seq datasets. This
is even more striking considering that FAIRE-
seq (Formaldehyde-Assisted Isolation of Regula-
tory Elements) data (an assay that is based on
the preferential enrichment of open chromatin
in sonicated DNA and aims at achieving high
read clustering) from ENCODE usually has QC
scores between -2 and 0, and that the Sono-seq
datasets published by Auerbach et al. all have
scores of -2.

I note that unless this effect is very strong
and is associated with notable genomic features
such as promoters of genes, it can be difficult to
detect by the usual methods of visual inspection
of signal tracks on a genome browser. It is, how-
ever, readily apparent in cross-correlation anal-
ysis and these results raise awareness of its exis-
tence. As mentioned above, one candidate expla-
nation for this phenomenon is the previously de-
scribed “Sono-seq” effect. Using standard exper-
imental protocols this effect has been rare in our
experience, but under more aggressive crosslink-
ing conditions, we have observed increased read
clustering (Figure 10.8). Notably, the original
“Sono-seq” description focused on promoter re-
gions, but we have also observed it over distal
regulatory elements, where its strength was even
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higher than at promoters (Figure 10.8). Thus
variation in the extent of fixation, as well as son-
ication, might be a substantial contributor to
variation in read clustering across the broader
data collection. Another potential contributing
factor is sequencing depth – “Sono-seq” effect of
the same magnitude can result in a more promi-
nent cross-correlation profile with increasing se-
quencing depth as more and more reads can be
found in proximity to each other (the same cor-
relation is observed in ChIP-seq datasets). The
average sequencing depth for highly clustered
IgG and Input controls is higher than that of
controls with negative QC scores (Figure 10.7C
and 10.7D); however, this by no means explains
all the clustering observed in controls as there
are plenty of examples of deeply sequenced In-
put and IgG libraries with no significant cross-
correlation peaks. Finally, “Sono-seq” need not
be the only explanation. Other, not yet identi-
fied, causes may be behind the phenomenon, and
the cause might not be the same in all cases. In-
deed, while a number of control datasets with
QC scores of 2 exhibited higher read coverage
around promoters, others did not (Figure 10.9),
suggesting at least one other source of read en-
richment over regions located elsewhere in the
genome. As rich annotation of functional ge-
nomic elements outside of promoter regions is
not available for many cell types in our study,
this phenomenon is a subject for future studies.

10.3 Discussion

In this study I carried out a systematic survey
of ChIP quality for publicly available vertebrate
ChIP-seq datasets. Over half of these datasets
were found by our measures to be of high quality.
This group comprises a set that can be used with
confidence for integrative analyses. This con-
clusion carries the important caveat that I did
not assess the specificity of the immune reagents
used to carry out the experiments, which is ob-
viously a critical concern of a different kind.

A substantial minority of published datasets
(between 20% and 45% of those examined) were
of low or intermediate quality by our metrics.
This was true not only for individual libraries,
but was also true when only the best replicate
from each study was examined. In addition, I
observed a substantial number of low-complexity
datasets and an unexpected group of highly clus-
tered control datasets. These observations un-
derscore the widespread variability in ChIP-seq
data. They also raised questions about which
kinds of conclusions in primary publications are
more or less sensitive to data quality. Global
quality analysis is especially useful to guide sub-
sequent re-uses of published data that require
higher quality than was needed or achieved in
the source study.

Dataset quality issues appeared in publica-
tions across impact levels. I separated datasets
into groups according to the 2011 Thomson

Figure 10.8 (preceding page): Relation between a well defined set of promoter-proximal
and promoter-distal transcription factor binding sites and input datasets with minimal
and significant read clustering. The high-quality C2C12 myogenin dataset shown in Figure 4 was
used, ERANGE3.2 binding sites were separated into promoter promoter-proximal (sites for which
the peak position, defined by the peak caller was within 1kb of a TSS present in the ENSEMBL63
annotation of the mm9 version of the mouse genome) and promoter-distal (sites for which the peak
position was more than 1kb away from TSSs) groups, each group was ranked by decreasing myogenin
signal and the distribution of input signal was plotted for the 1kb region around the peak position.
(A) A C2C12 input dataset generated from cells fixed with the usually used 1% concentration of
formaldehyde (FA) for 15 minutes, and showing little read clustering genome-wide (QC score of
-1). (B) A C2C12 input dataset generated from cells fixed with a combination of 1% formaldehyde
(for 10 minutes) and subsequent additional fixation with the long-arm crosslinker ethylene glycol-
bis(succinimidylsuccinate) (EGS) (Abdella et al. 1979) in order to enhance crosslinking between
proteins and capture the interactions of factors more loosely associated with chromatin (Zeng et al.
2006). There are reason to expect that such more aggressive crosslinking conditions will results in a
stronger Sono-seq effect and indeed this dataset exhibits significant amount of read clustering (QC
score of 2). The 1%FA+EGS input signal around myogenin binding sites is considerably higher than
the 1% FA input signal. Notably, the 1%FA+EGS signal signal is stronger for promoter-distal sites
than it is for promoter-proximal sites even though promoter-proximal sites are generally stronger
(C).
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Reuters Impact Factor for the journal in which
the corresponding article was published, and ex-
amined the distribution of QC scores in each
group (Figure 10.11). The group with highest
impact factor (≥ 25) contained the largest frac-
tion of datasets with a QC score of -2 or -1.
I also examined the distribution of QC scores
with respect to the year of publication (Fig-
ure 10.10). A higher proportion of low-quality
datasets were seen in earlier publications (2008-
2009), although this might be due to the smaller
number of datasets from early years. It is en-
couraging that the fraction has stabilized in the
last three years at around 20% (Figure 10.10).

It is important to recognize that datasets
scoring as poor quality by the metrics used here
can, nevertheless, make important biological dis-
coveries. For this reason, it would be an error
to set a fixed “standard” that every published
dataset of the future would have to meet. In-
stead, routine QC analysis would make it easy
to see when there is reason for concern about a
given dataset. It would also provide a first tier
of uniform guidance about what uses are likely
to be appropriate for a given dataset. As dis-
cussed previously, the appropriate level of qual-
ity control stringency depends on the specific
goals of the experiment and methods of analysis
(Landt et al. 2012). In particular, some analy-
ses that are sensitive to false negatives are par-
ticularly vulnerable to inclusion of low-scoring
datasets. For example, trying to derive combi-
natorial transcription factor occupancy rules is
seriously compromised and even misleading, if a
subset of the datasets included are suboptimal.

I illustrate this with a simple example from
our own practice in Figure 10.12. The MyoD and
myogenin transcription factors are well known
regulators of muscle differentiation (Yun & Wold
1996) and C2C12 cells (Yaffe & Saxel 1977) have
been widely used to study the process as they
can be propagated in an undifferentiated my-
oblast state and easily induced to differentiate
into myocytes and myotubes. We have done sev-

eral ChIP-seq experiments with these factors in
differentiated and undifferentiated C2C12 cells
(G. DeSalvo et al., in prep.; A. Kirilusha et al.,
in prep., K. Fisher-Aylor et al., in prep.), some of
which have been highly successful, while others
were of poor or intermediate quality. Here, I ex-
amined the effect of weaker ChIP-seq datasets
on combinatorial occupancy analysis, using a
MyoD ChIP-seq dataset with very high QC met-
rics, and three myogenin datasets with very
high, moderately good, and very low such met-
rics (Figure 10.12A). Using the best myogenin
dataset, we find a high degree of overlap be-
tween the binding sites of the two factors (Fig-
ure 10.12B). When the medium-quality myo-
genin dataset is used instead, a sizable group
of MyoD-only sites emerges (Figure 10.12C) and
the erroneous conclusion that a substantial num-
ber of MyoD sites lack myogenin binding could
be reached if this was the only dataset available
for analysis. Finally, the poor-quality myogenin
dataset contains very few called peaks and as
a result almost all MyoD sites show no myo-
genin binding when it is used for analysis (Figure
10.12D).

Recently, IDR analysis of replicate datasets
(Li et al 2011; ENCODE Project Consortium
2012; Landt et al. 2012) emerged as a robust
method for deriving lists of reproducible occu-
pancy sites from ChIP-seq datasets. IDR is
based on differences in the consistency of rank-
ing (usually by signal strength as measured by
read enrichment or by statistical significance) for
all identified peaks in a pair of ChIP-seq repli-
cates. A virtue of this approach is that it al-
lows a statistically robust and reproducible set
of binding sites to be derived largely independent
of thresholds and settings specific to a particu-
lar peak-calling algorithm. Ideally, IDR would
be used in conjunction with the quality metrics
used here (ENCODE Project Consortium 2012;
Landt et al. 2012). However, replicate measure-
ments do not exist for many of the datasets in
this survey, so it was not part of the pipeline

Figure 10.9 (preceding page): Distribution of signal around TSSs in control datasets.
Each group of three blue, red and yellow boxplots represents to one dataset, with blue corresponding
to a region 2kb upstream of TSSs, red to the region immediately surrounding the TSS, and yellow
to a region 2kb downstream of TSS. Datasets in which signal over TSSs is considerably higher than
the signal over flanking regions imply a possible “Sono-seq” overrepresentation effect; this, however,
is not evident (at least over TSSs) in all highly clustered datasets. (A) Human control datasets with
a QC score of +2. (B) Human control datasets with a QC score of -2. (C) Mouse control datasets
with a QC score of +2. (D) Mouse control datasets with a QC score of -2.



312

Figure 10.10: Distribution of dataset quality relative to year of publication.

in this study. IDR will likely become common
practice, as sequencing costs drop. Even when
that happens, measuring of the quality of indi-
vidual datasets will remain important because
IDR analysis is sensitive to the presence of poor-
quality replicates. An asymmetric pair, con-
sisting of one high-quality and one poor-quality
dataset, is dominated in IDR by the weaker repli-
cate, resulting in a shorter list of sites and a high
false-negative rate. Care should be exercised in
such cases. The best approach is to obtain a sec-
ond high-quality replicate but if this is not pos-
sible, special strategies for treating asymmetric
replicates have been devised (Landt et al. 2012).

The most perplexing observation made in
this survey was that a subset of control datasets
have extensive read clustering in the same range
as successful ChIP-seq experiments. In our own
practice, we have rarely encountered such li-
braries, and, to the best of my knowledge, there
has been no extensive treatment of this issue or

its influence on data analysis in the literature.
The phenomenon occurred more frequently in
IgG controls than in Input chromatin controls,
although it is by no means limited to the for-
mer. In theory, an IgG control should be a
superior representation of the true background
noise in a ChIP-seq sample, as it incorporates
biases introduced by the entire immunoprecip-
itation process, in addition to any enrichments
or biases created by chromatin shearing. Fol-
lowing this logic, a simple interpretation is that
high read clustering in these controls correctly
identifies background that depends on something
other than the factor-specificity of the antibody.
However, I also observed a large number of IgG
controls (Figure 10.6A) that show no such clus-
tering, meaning that this is not a general fea-
ture. In addition, the overall lower complexity of
IgG libraries introduces higher signal stochastic-
ity, and that may offset the benefit of providing
a better approximation of the immunoprecipita-
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Figure 10.11: Distribution of dataset quality relative to the impact factor of the journal
where an article was published. Shown are the 2011 Thompson-Reuters impact factor scores
for the journals in which ChIP-seq datasets were published in. (A) All datasets. (B). Breakdown
by year of publication.
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Figure 10.12: Effect of suboptimal datasets on combinatorial occupancy analysis. The
muscle regulatory factors MyoD and myogenin were assayed in C2C12 myocytes at 60h after differen-
tiation. Shown are a single, highly successful, MyoD ChIP-seq dataset and three myogenin ChIP-seq
datasets, one of which is similarly highly successful (“myogenin 1”), a second, weaker one (“myo-
genin 2”), and a third, one which is an experimental failure (“myogenin 3”). (A) Quality control
metrics. (B,C,D) The extent of overlap of MyoD and myogenin binding sites as determined using
each of the three myogenin datasets (See Methods for data processing details). MyoD and myogenin
are mostly found to bind to the same sites when interactome determinations of comparable strength
are used (B). A sizable group of apparently MyoD-only sites emerges when the medium-strength
myogenin dataset is used due to a large number of false negative myogenin calls (C). Finally, the
unsuccessful myogenin ChIP reveals most MyoD sites to not be shared by myogenin (D). Numbers
listed in the red blocks corresponding to the each set of peak calls indicates its size.
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tion process.

A crucial issue is the extent to which clus-
tering in controls is also present as experimen-
tal noise in ChIP libraries from the same mate-
rial. For example, a very strong Sono-seq effect
in a control sample is expected to give ChIP-seq
libraries with high read clustering in a combi-
nation of true ChIP (antibody-specific) signal,
plus non-specific promoter and enhancer Sono-
seq noise. While most contemporary peak callers
normalize for enrichment in controls, very strong
background noise will diminish the signal-to-
noise ratio and ultimately affect sensitivity. How
much this affects the results will depend on the
overlap between true factor occupancy sites as-
sayed and the regions of artifactual read enrich-
ment (for some factors this overlap may be neg-
ligible as they do not bind to such regions), on
the magnitude of the Sono-seq effect, and on the
strength of the ChIP itself (sufficiently strong de-
terminations will not be affected greatly by this
issue). Conversely, if a ChIP-seq library con-
tains a strong Sono-seq enrichment component,
but peak calling is done against a control sam-
ple in which the Sono-seq effect is of significantly
lower magnitude, the rate of false positive peak
calls is expected to increase. Unfortunately, in
practice such cases can be difficult to detect es-
pecially when little is already known about the
expected true positives. Similar reasoning ap-
plies if the noise source is something other than
Sono-seq, and the same increased caution about
reproducibility, sensitivity and attribution to the
factor of interest will apply.

Uniform retrospective quality assessment is
resource-intensive and will not be practically
feasible as the number of ChIP-seq datasets is
growing exponentially. Retrospective analysis
also comes too late to influence the experiments
themselves or to contribute to the review pro-
cess. A reasonable path forward would be to
incorporate routine quality assessment into ex-
perimental analysis, review for publication and
submission to public repositories, as a matter
of community practice. However, the results
presented here also strongly caution against the
blind application of our metrics or others, in
the absence of experimental and biological con-
text. We have seen that it is possible for good
datasets to receive low QC scores in certain spe-
cial situations. It is also possible for some poor
or mediocre datasets to receive high QC scores.
For example, this can happen in the presence in
the IP of very strongly clustered background of

the kind we found in some control datasets. It
can also happen for factors that ChIP so well,
and receive such high scores, that even data
that are substantially suboptimal score highly
(for example, CTCF ChIP-seq datasets routinely
identify 35-40,000 reproducible binding sites and
have QC scores of 2; a dataset that identifies
only 15,000 sites is clearly suboptimal given that
knowledge, yet it can still contain enough read
clustering to receive a positive QC score and
to match the maximum extent of read cluster-
ing observed for many other transcription fac-
tors). For these reasons, the quality metrics
should be applied and interpreted in the con-
text of what is known about the factor, the sys-
tem, and the questions under study. Despite the
important nuances of interpretation, using met-
rics and making the results readily accessible for
every dataset would facilitate better informed
data use by the wider community. An impor-
tant adjunct to public QC annotation would be
the ability, in major public data repositories, to
flag and explain the exceptional cases for which
QC scores should not be taken at face value. Fi-
nally, quality metrics themselves will continue
to improve as the field’s understanding of data
structure, experimental artifacts, and the un-
derlying biology all become more sophisticated.
Provisions will be needed for incorporating such
advances into routine dataset annotation, while
still achieving comparability through time.

10.4 Methods

10.4.1 Sequencing read alignment

Raw sequencing reads for all non-ENCODE
GEO series containing ChIP-seq datasets
against transcription factors and chromatin
modifying proteins (submitted prior to April 1st
2012) were downloaded from GEO in SRA for-
mat and converted to FASTQ format using the
fastq-dump program in the sratoolkit, ver-
sion 2.1.9. Reads were aligned using Bowtie
(Langmead et al. 2009), version 0.12.7,
with the following settings: ‘‘-v 2 -t -k 2

-m 1 --best --strata’’, which allow for two
mismatches relative to the reference and only re-
tain unique alignments. Human datasets were
mapped against the male set of chromosomes
(excluding all random chromosomes and haplo-
types) for version hg19 of the human genome;
the mm9 version of the mouse genome was used
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for mouse data, rn5 for rat, danRer7 for ze-
brafish, susScr2 for pig, and xenTro3 for the
clawed frog Xaenopus tropicalis; all assem-
blies were downloaded from the UCSC genome
browser (Kent at al. 2002).

10.4.2 ChIP quality assessment

ChIP quality assessment was carried out on both
ChIP and input datasets using the general strat-
egy described in (Landt et al. 2012). Because
a library may not score as a successful ChIP for
reasons other than the IP itself failing (such as
it being carried out in a knockout background,
in si/shRNA-treated cells or in conditions under
which the factor is not expressed or not bound
to DNA), the following additional criteria were
used to determine whether each library is ex-
pected to score positively in the QC assessment:

1. All experiments claimed to be successful by
authors are expected to exhibit high level
of read clustering

2. All inputs (sonicated DNA and IgG mock
IPs) are expected to exhibit minimal read
clustering (QC tag of -2 or -1)

3. All ChIP-seq experiments carried out in
a knock-out background for the factor are
expected to exhibit minimal read cluster-
ing (QC tag of -2 or -1)

4. As knock-down efficiency varies and it is
unknown what protein levels would be suf-
ficiently high for the factor to be success-
fully ChIP-ed, ChIP-seq experiments car-
ried out in cells treated with si/shRNAs
targeting the factor are set aside as “un-
known” and assessed for library complex-
ity and sequencing depth but not for ChIP
quality.

5. Experiments against factors known to bind
to DNA upon some stimulus carried out in
unstimulated cells are also tagged as “un-
known” as lower level binding in unstimu-
lated cells cannot be ruled out (and is in
fact often observed).

6. Experiments carried out in conditions
which may result in the factor not bind-
ing to DNA (time courses, knock-downs or
knock-outs for other factors that may af-
fect binding of the targeted factor, etc.)
are also tagged as “unknown”

7. Other experiments not matching any of
these categories are expected to exhibit
high level of read clustering

Cross-correlation analysis was performed
using version 1.10.1 of SPP (Kharchenko et
al. 2008) and the following parameters:
‘-s=0:2:400’. QC scores were assigned based
on the RSC values (integers ranging from -
2 to -2, RSC ∈ {0, 0.25} ⇒ QC ← −2,
RSC ∈ {0.25, 0.50} ⇒ QC ← −1, RSC ∈
{0.50, 1.00} ⇒ QC ← 0, RSC ∈ {1, 1.50} ⇒
QC ← +1, RSC ≥ 1.5 ⇒ QC ← +2, with -
2 corresponding to minimal read clustering and
2 to a highly clustered library; ) and used as
a measure of ChIP quality. These scores cap-
ture the extent of read clustering in a ChIP-seq
experiment in organisms whose genomes have
similar size and structure to those of mammals.
We point out that these scores may not be ap-
propriate in genomes with very different size
and/or structure. This motivated us to dis-
card data from non-vertebrate model organisms
for this analysis). Different values of RSC or
NSC coefficients may be more informative for
such genomes and is a topic for future investi-
gation. Cross-correlation plots were manually
examined in order to ensure no artifactual QC
scores were included due to size selection issues
(such as, for example, a library being fragmented
to an average size close to the read length and
confusing the automated fragment peak assign-
ment). The code for running SPP and assign-
ing QC scores is available at https://code.

google.com/p/phantompeakqualtools/

10.4.3 MyoD and myogenin
ChIP-seq peak calling

MyoD and myogenin datasets were generated by
the Wold lab and are available under GEO acces-
sion number GSE44824. We note that the appar-
ent weakness of the “myogenin 2” ChIP dataset
is most likely due to undersequencing and would
be elevated to high quality status if sequenced
deeper; undersequencing is one possible reason
for suboptimal quality metrics (Kundaje et al,
submitted). Reads were mapped as described
above and peaks called using ERANGE3.2
(Johnson et al. 2007) with the following set-
tings: ’-minimum 2 -ratio 3 -shift learn

-revbackground -listPeak’. ChIP-seq peak
calls were counted as overlapping if their sum-
mits were within 200bp of each other. Read
mapping statistics and QC metrics for these
datasets can be found in Supplementary Table
2.

https://code.google.com/p/phantompeakqualtools/
https://code.google.com/p/phantompeakqualtools/
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Figure 10.13: Distribution of the number of mapped reads and library complexity for
data from the main two TF ChIP-seq production groups in ENCODE. (A,B,C) Number
mapped reads. (D,E,F). Library complexity. Note that the same filters on the dataset inclusions
that were used on publicly available data (see Methods section) were also applied to ENCODE
datasets.
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Figure 10.14: Distribution of the discretized RSC QC scores for data from the main
two TF ChIP-seq production groups in ENCODE. (A,B,C) Transcription factor ChIP-seq
data. (D,E,F). Control datasets (Input and IgG).
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Table 10.1: Dataset QC evaluation and mapping statistics. A direct link to the GEO entry is provided in
the “Source” field
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Marson et al. 2008 mouse Nanog-mES-rep1 0.94 4.37 1.67 2 26 26 26 4,305,381 ChIP yes
Marson et al. 2008 mouse Nanog-mES-rep2 0.94 4.32 1.67 2 26 26 26 4,396,374 ChIP yes
Marson et al. 2008 mouse oct4-mES-rep1 0.95 6.54 0.34 -1 26 26 26 4,341,147 ChIP yes
Marson et al. 2008 mouse sox2-mES-rep1 0.96 4.03 1.21 1 26 26 26 4,033,101 ChIP yes
Marson et al. 2008 mouse sox2-mES-rep2 0.97 4.07 1.19 1 26 26 26 3,287,130 ChIP yes
Marson et al. 2008 mouse suz12-mES-repl 0.97 1.63 0.15 -2 26 26 26 3,624,473 ChIP yes
Marson et al. 2008 mouse suz12-rep2-1 0.98 1.24 0.41 -1 26 26 26 207,308 ChIP yes
Marson et al. 2008 mouse Tcf3-mES-rep1 0.96 3 0.72 0 26 26 26 5,247,274 ChIP yes
Marson et al. 2008 mouse Tcf3-mES-rep2 0.96 2.96 0.66 0 26 26 26 5,388,916 ChIP yes
Marson et al. 2008 mouse WCE-mES-rep1 0.94 1.37 0.2 -2 26 26 26 1,507,157 Input no
Marson et al. 2008 mouse WCE-mES-rep2 0.9 1.35 0.21 -2 26 26 26 3,770,502 Input no
Chen et al. 2008 mouse ES-c-Myc 0.86 1.51 0.48 -1 26 26 26 11,714,595 ChIP yes
Chen et al. 2008 mouse ES-E2f1 0.84 1.43 0.92 0 26 26 26 13,374,901 ChIP yes
Chen et al. 2008 mouse ES-Esrrb 0.88 4.5 1.69 2 26 26 26 7,982,162 ChIP yes
Chen et al. 2008 mouse ES-GFP 0.82 1.26 0.15 -2 26 26 26 7,520,858 IgG no
Chen et al. 2008 mouse ES-Klf4 0.41 1.96 0.62 0 36 36 36 368,908 ChIP yes
Chen et al. 2008 mouse ES-Nanog 0.81 3158 356 2 26 26 26 9,166,834 ChIP yes
Chen et al. 2008 mouse ES-n-Myc 0.79 1.74 0.41 -1 26 26 26 10,099,160 ChIP yes
Chen et al. 2008 mouse ES-Oct4 0.59 1.61 0.46 -1 36 36 36 139,512 ChIP yes
Chen et al. 2008 mouse ES-p300 0.77 1.26 0.23 -2 26 26 26 9,396,456 ChIP yes
Chen et al. 2008 mouse ES-Smad1 0.96 3074 298 2 26 26 26 9,681,328 ChIP yes
Chen et al. 2008 mouse ES-Sox2 0.86 1.94 0.62 0 26 26 26 12,489,175 ChIP yes
Chen et al. 2008 mouse ES-STAT3 0.77 1.68 0.38 -1 26 26 26 8,384,452 ChIP yes
Chen et al. 2008 mouse ES-Suz12 0.87 1.21 0.27 -1 26 26 26 12,378,715 ChIP yes
Chen et al. 2008 mouse ES-Tcfcp2I1 0.81 13.53 2.42 2 26 26 26 8,800,970 ChIP yes
Chen et al. 2008 mouse ES-Zfx 0.92 1.9 0.71 0 31 31 31 9,543,774 ChIP yes
Kwon et al. 2009 mouse GIgG-post-IL21-in-B-cells 0.84 1.4 0.47 -1 25 25 25 2,915,090 IgG no
Kwon et al. 2009 mouse GIgG-post-IL6 0.88 1.49 0.36 -1 25 25 25 2,129,448 IgG no
Kwon et al. 2009 mouse IgG-post-IL21-dup 0.89 1.26 0.34 -1 25 25 25 4,286,349 IgG no
Kwon et al. 2009 mouse IgG-post-IL21-in-B-cells 0.91 1.33 0.52 0 25 25 25 2,993,063 IgG no
Kwon et al. 2009 mouse IgG-post-IL21-in-WT-quar 0.74 1.89 0.7 0 25 25 25 7,228,784 IgG no
Kwon et al. 2009 mouse IgG-post-IL21-ter 0.92 1.35 0.11 -2 25 25 25 3,080,974 IgG no
Kwon et al. 2009 mouse IgG-post-IL2-dup 0.86 1.31 0.4 -1 25 25 25 3,406,531 IgG no
Kwon et al. 2009 mouse IgG-post-IL6 0.84 1.31 0.35 -1 25 25 25 4,247,181 IgG no
Kwon et al. 2009 mouse IRF4-post-IL21-dup-seq-1 0.86 2.08 0.89 0 25 25 25 3,295,774 ChIP yes
Kwon et al. 2009 mouse IRF4-post-IL21-dup-seq-2 0.66 2.21 0.92 0 25 25 25 5,496,827 ChIP yes

Kwon et al. 2009 mouse
IRF4-post-IL21-in-IRF4-KO-
mice

0.94 1.9 0.66 0 25 25 25 3,613,839 ChIP no

Kwon et al. 2009 mouse IRF4-post-IL21-seq-1 0.9 1.88 0.72 0 25 25 25 3,560,575 ChIP yes
Kwon et al. 2009 mouse IRF4-post-IL21-seq-2 0.93 2.14 0.73 0 25 25 25 1,273,441 ChIP yes
Kwon et al. 2009 mouse IRF4-pre-IL21-dup-seq-1 0.89 1.76 0.7 0 25 25 25 3,996,341 ChIP yes
Kwon et al. 2009 mouse IRF4-pre-IL21-dup-seq-2 0.9 1.83 0.72 0 25 25 25 3,308,064 ChIP yes
Kwon et al. 2009 mouse IRF4-pre-IL21-in-IRF4-KO-mice 0.81 1.5 0.42 -1 25 25 25 5,741,089 ChIP no
Kwon et al. 2009 mouse IRF4-pre-IL21-seq-1 0.89 2.19 0.9 0 25 25 25 2,882,656 ChIP yes
Kwon et al. 2009 mouse IRF4-pre-IL21-seq-2 0.73 2.44 0.84 0 25 25 25 4,304,206 ChIP yes
Kwon et al. 2009 mouse STAT3-post-IL21-dup-seq-1 0.93 1.47 0.44 -1 25 25 25 266,685 ChIP yes
Kwon et al. 2009 mouse STAT3-post-IL21-dup-seq-2 0.89 1.47 0.46 -1 25 25 25 1,818,900 ChIP yes

Kwon et al. 2009 mouse
STAT3-post-IL21-in-IRF4-KO-
mice

0.79 1.42 0.28 -1 25 25 25 5,334,084 ChIP unknown

Kwon et al. 2009 mouse
STAT3-post-IL21-in-IRF4-KO-
mice-second-exp

0.81 1.52 0.52 0 25 25 25 5,744,414 ChIP unknown

Kwon et al. 2009 mouse
STAT3-post-IL21-in-IRF4-KO-
mice-third-exp

0.82 1.5 0.48 -1 25 25 25 4,041,874 ChIP unknown

Kwon et al. 2009 mouse STAT3-post-IL21-in-WT-cinq 0.77 1.87 0.58 0 25 25 25 5,281,605 ChIP yes
Kwon et al. 2009 mouse STAT3-post-IL21-in-WT-quar 0.76 1.88 0.63 0 25 25 25 5,450,390 ChIP yes
Kwon et al. 2009 mouse STAT3-post-IL21-in-WT-ter 0.85 1.46 0.43 -1 25 25 25 3,416,726 ChIP yes
Kwon et al. 2009 mouse STAT3-post-IL21-seq-1 0.88 2.75 0.86 0 25 25 25 3,446,457 ChIP yes
Kwon et al. 2009 mouse STAT3-post-IL21-seq-2 0.84 2.89 0.81 0 25 25 25 3,340,925 ChIP yes
Kwon et al. 2009 mouse STAT3-pre-IL21-dup-seq-1 0.82 1.37 0.41 -1 25 25 25 3,736,863 ChIP unknown
Kwon et al. 2009 mouse STAT3-pre-IL21-dup-seq-2 0.86 1.42 0.4 -1 25 25 25 2,709,584 ChIP unknown

Kwon et al. 2009 mouse
STAT3-pre-IL21-in-IRF4-KO-
mice-first-exp

0.85 1.56 0.45 -1 25 25 25 3,709,343 ChIP unknown

Kwon et al. 2009 mouse
STAT3-pre-IL21-in-IRF4-KO-
mice-second-exp

0.79 1.83 0.71 0 25 25 25 6,924,787 ChIP unknown

Kwon et al. 2009 mouse
STAT3-pre-IL21-in-WT-4th-
experiment

0.82 1.51 0.37 -1 25 25 25 4,257,111 ChIP unknown

Kwon et al. 2009 mouse STAT3-pre-IL21-in-WT-ter 0.81 1.41 0.14 -2 25 25 25 3,395,506 ChIP unknown
Kwon et al. 2009 mouse STAT3-pre-IL21-seq-1 0.78 3.1 0.76 0 25 25 25 3,700,560 ChIP unknown
Kwon et al. 2009 mouse STAT3-pre-IL21-seq-2 0.76 3.1 0.67 0 25 25 25 3,667,278 ChIP unknown

Continued on next page
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Hollenhorst et al.
2009

human Jurkat-CBP-1 0.86 2.22 1.38 1 36 36 36 9,275,556 ChIP yes

Hollenhorst et al.
2009

human Jurkat-ETS1-1 0.85 2.41 2.58 2 26 26 26 7,562,377 ChIP yes

Hollenhorst et al.
2009

human Jurkat-Input-1 0.93 1.16 0.15 -2 26 26 26 15,389,799 Input no

Hollenhorst et al.
2009

human Jurkat-RUNX-1 0.63 2.55 0.61 0 36 36 36 10,337,694 ChIP yes

Han et al. 2010 mouse mESC-Input 0.96 1.17 0.18 -2 37 37 37 9,567,449 ChIP no
Han et al. 2010 mouse mESC-Tbx3 0.92 1.46 0.29 -1 35 35 35 7,526,549 ChIP yes
Yu et al. 2009 mouse MEL86-GATA1 0.94 1.34 0.28 -1 33.87 36 28 5,866,520 ChIP yes
De et al. 2009 mouse Macrophages-JMJD3 0.95 1.32 0.36 -1 36 36 36 8,731,417 ChIP yes
Yuan et al. 2009 mouse mESC-ESET 0.92 1.93 0.65 0 36 36 36 11,607,868 ChIP yes
Bilodeau et al. 2009 mouse mESC-SetDB1-rep-1 0.92 1.68 0.54 0 36 36 36 3,620,404 ChIP yes
Bilodeau et al. 2009 mouse mESC-SetDB1-rep-2 0.93 1.64 0.42 -1 36 36 36 3,301,043 ChIP yes
Bilodeau et al. 2009 mouse mESC-SetDB1-rep-3 0.92 1.65 0.51 0 36 36 36 4,251,421 ChIP yes
Bilodeau et al. 2009 mouse mESC-WCE-mES-rep-1 0.94 1.38 0.31 -1 36 36 36 3,966,359 Input no
Lister et al. 2009 human hESC-NANOG-1a 0.65 18.86 4.47 2 36 36 36 3,701,686 ChIP yes
Lister et al. 2009 human hESC-NANOG-1b 0.61 17.44 4.43 2 36 36 36 4,523,040 ChIP yes
Lister et al. 2009 human hESC-SOX2-1a 0.82 9.01 4.94 2 36 36 36 4,591,769 ChIP yes
Lister et al. 2009 human hESC-KLF4-1a 0.32 46.06 24.39 2 36 36 36 810,796 ChIP yes
Lister et al. 2009 human hESC-MYC-1a 0.58 4.15 2.02 2 36 36 36 2,391,782 ChIP yes
Lister et al. 2009 human hESC-Oct4-1a 0.98 2.46 1.04 1 36 36 36 574,662 ChIP yes
Lister et al. 2009 human hESC-Oct4-2a 0.98 4.37 1.81 2 36 36 36 151,346 ChIP yes
Lister et al. 2009 human hESC-P300-1a 0.57 7.51 2.52 2 36 36 36 3,490,165 ChIP yes
Lister et al. 2009 human hESC-TAFII-1a 0.64 2.93 1.96 2 36 36 36 4,031,316 ChIP yes
Lister et al. 2009 human hESC-TAFII-1b 0.67 2.9 1.72 2 36 36 36 3,507,401 ChIP yes
Nishiyama et al.
2009

mouse mESC-Cdx2 0.94 1.14 0.32 -1 36 36 36 7,347,351 ChIP yes

Cheng et al. 2009 mouse G1E-ER4-GATA1 0.96 1.75 1.2 1 36 36 36 24,281,091 ChIP yes
Cheng et al. 2009 mouse G1E-ER4-Input 0.97 1.28 0.58 0 36 36 36 15,990,494 Input no
Wilson et al. 2009 mouse HPC-7-Scl-1 0.95 1.86 0.88 0 45 45 45 5,563,933 ChIP yes
Wilson et al. 2009 mouse HPC-7-Scl-2 0.96 1.83 0.47 -1 36 36 36 3,637,766 ChIP yes
Robertson et al.
2007

human HeLaS3-IFNgamma-1-STAT1 0.86 4.41 1.1 1 27 27 27 693,473 ChIP yes

Robertson et al.
2007

human HeLaS3-IFNgamma-2-STAT1 0.85 3.67 1.04 1 27 27 27 663,874 ChIP yes

Robertson et al.
2007

human HeLaS3-IFNgamma-3-STAT1 0.94 4.07 1.58 2 36 36 36 3,079,284 ChIP yes

Robertson et al.
2007

human HeLaS3-IFNgamma-4-STAT1 0.94 3.97 1.59 2 27 27 27 2,176,985 ChIP yes

Robertson et al.
2007

human HeLaS3-IFNgamma-5-STAT1 0.95 4 1.96 2 27 27 27 2,808,038 ChIP yes

Robertson et al.
2007

human HeLaS3-IFNgamma-6-STAT1 0.95 4.17 1.95 2 27 27 27 2,718,185 ChIP yes

Robertson et al.
2007

human HeLaS3-unstimulated-1-STAT1 0.86 1.98 0.33 -1 27 27 27 478,619 ChIP unknown

Robertson et al.
2007

human HeLaS3-unstimulated-2-STAT1 0.84 2.6 0.34 -1 27 27 27 500,638 ChIP unknown

Robertson et al.
2007

human HeLaS3-unstimulated-3-STAT1 0.82 2.2 0.29 -1 27 27 27 496,979 ChIP unknown

Robertson et al.
2007

human HeLaS3-unstimulated-4-STAT1 0.92 1.45 0.23 -2 36 36 36 2,746,723 ChIP unknown

Robertson et al.
2007

human HeLaS3-unstimulated-5-STAT1 0.93 2.17 0.3 -1 27 27 27 1,447,320 ChIP unknown

Robertson et al.
2007

human HeLaS3-unstimulated-6-STAT1 0.93 2.05 0.28 -1 27 27 27 1,425,741 ChIP unknown

Robertson et al.
2007

human HeLaS3-unstimulated-7-STAT1 0.95 1.47 0.34 -1 27 27 27 2,452,058 ChIP unknown

Welboren et al. 2009 human MCF7-E2-ERa 0.7 12.72 1.74 2 32 32 32 9,428,987 ChIP yes
Welboren et al. 2009 human MCF7-Fulvestrant-ERa 0.83 5.17 1.22 1 32 32 32 6,243,484 ChIP yes
Welboren et al. 2009 human MCF7-mock-treated-ERa 0.67 6.52 2.9 2 32 32 32 1,722,599 ChIP unknown
Welboren et al. 2009 human MCF7-Tamoxifen-ERa 0.82 8.86 1.55 2 32 32 32 5,836,314 ChIP yes
Visel et al. 2009;
Gotea et al. 2010;
Blow et al. 2010

mouse Forebrain-p300 0.57 1.72 0.15 -2 36.32 38 36 4,842,793 ChIP yes

Visel et al. 2009;
Gotea et al. 2010;
Blow et al. 2010

mouse Limb-p300 0.73 2.16 0.15 -2 36 36 35 2,209,017 ChIP yes

Visel et al. 2009;
Gotea et al. 2010;
Blow et al. 2010

mouse Midbrain-p300 0.49 1.97 0.18 -2 36.25 38 36 5,942,773 ChIP yes

Ho et al. 2009 mouse mESC-Brg-J1 0.86 1.25 0.49 -1 25 25 25 12,146,582 ChIP yes
Ho et al. 2009 mouse mESC-IgG 0.91 1.17 0.51 0 25 25 25 14,118,667 IgG no
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Cuddapah et al.
2009

human CD4+-CTCF 0.88 31.05 2.29 2 24 24 24 2,942,119 ChIP yes

Cuddapah et al.
2009

human HeLa-CTCF 0.93 5.22 1.29 1 24 24 24 3,294,793 ChIP yes

Cuddapah et al.
2009

human Jurkat-CTCF 0.91 4.22 1.01 1 25 25 25 4,367,791 ChIP yes

Krebs et al. 2010 mouse mESC-LUZP1 0.62 16.78 4.02 2 36 36 36 7,021,192 ChIP yes
Krebs et al. 2010 mouse mESC-mock 0.37 16.17 3.94 2 36 36 36 7,446,009 IgG no
Corbo et al. 2010 mouse NRL-KO-Crx-Rep1 0.69 1.81 1.18 1 36 36 36 12,527,332 ChIP yes
Corbo et al. 2010 mouse NRL-KO-Crx-Rep2 0.8 1.8 1.24 1 36 36 36 10,488,445 ChIP yes
Corbo et al. 2010 mouse NRL-KO-IgG-Rep1 0.75 1.58 0.9 0 36 36 36 12,160,830 IgG no
Corbo et al. 2010 mouse NRL-KO-IgG-Rep2 0.69 2.43 1.51 2 36 36 36 11,005,528 IgG no
Corbo et al. 2010 mouse WT-Crx-Rep1 0.89 3.69 0.63 0 36 36 36 4,302,798 ChIP yes
Corbo et al. 2010 mouse WT-Crx-Rep2 0.9 4.07 0.89 0 36 36 36 4,308,655 ChIP yes
Corbo et al. 2010 mouse WT-IgG-Rep1 0.92 2.53 0.42 -1 36 36 36 3,707,696 IgG no
Ramagopalan et al.
2010

human GM10855-Input 0.94 1.16 0.27 -1 36 36 36 11,412,903 Input no

Ramagopalan et al.
2010

human GM10855-unstimulated-rep1 0.87 1.41 0.56 0 36 36 36 13,520,376 ChIP unknown

Ramagopalan et al.
2010

human GM10855-unstimulated-rep2 0.88 1.47 0.55 0 36 36 36 10,791,763 ChIP unknown

Ramagopalan et al.
2010

human GM10855-vitaminD-rep1 0.89 1.76 0.83 0 36 36 36 13,970,589 ChIP yes

Ramagopalan et al.
2010

human GM10855-vitaminD-rep2 0.89 1.67 0.82 0 36 36 36 14,642,572 ChIP yes

Ramagopalan et al.
2010

human GM10861-Input 0.95 1.19 0.35 -1 36 36 36 11,404,257 Input no

Ramagopalan et al.
2010

human GM10861-unstimulated-rep1 0.93 1.39 0.56 0 36 36 36 10,157,583 ChIP unknown

Ramagopalan et al.
2010

human GM10861-unstimulated-rep2 0.93 1.52 0.67 0 36 36 36 7,922,208 ChIP unknown

Ramagopalan et al.
2010

human GM10861-vitaminD-rep1 0.92 1.88 0.95 0 36 36 36 10,649,722 ChIP yes

Ramagopalan et al.
2010

human GM10861-vitaminD-rep2 0.93 1.88 0.95 0 36 36 36 11,754,302 ChIP yes

Wei et al. 2010 mouse Th1-STAT4-KO-STAT4 0.84 2.05 1.25 1 36 36 36 9,339,036 ChIP no
Wei et al. 2010 mouse Th1-WT-STAT4 0.88 7.69 2.19 2 36 36 36 10,525,607 ChIP yes
Wei et al. 2010 mouse Th2-Normal-Rabbit-Serum 0.75 2.42 1.31 1 36 36 36 7,610,146 IgG no
Wei et al. 2010 mouse Th2-STAT6-KO-STAT6 0.89 2.38 1.37 1 36 36 36 9,734,600 ChIP no
Wei et al. 2010 mouse Th2-WT-STAT6 0.83 6.45 1.62 2 36 36 36 9,139,067 ChIP yes
Schnetz et al. 2010 mouse mES-CHD7 0.91 1.56 0.55 0 37 37 37 8,269,486 ChIP yes
Schnetz et al. 2010 mouse mES-p300 0.96 1.35 0.73 0 37 37 37 17,677,307 ChIP yes
GSE22303 mouse mES-B2-TBP 0.92 2.43 1.21 1 36 36 36 18,683,322 ChIP yes
GSE22303 mouse mES-B6-TBP 0.91 1.94 0.73 0 26 26 26 3,617,586 ChIP yes
Lin et al. 2010 mouse A12-E2A-6h-E47ER 0.93 3.41 0.61 0 36 36 36 2,776,323 ChIP yes
Lin et al. 2010 mouse E2AKO-E2A-1h-E47ER 0.68 9.12 1.13 1 36 36 36 5,948,823 ChIP yes
Lin et al. 2010 mouse E2AKO-E2A-6h-E47ER 0.96 4.34 0.59 0 36 36 36 2,196,108 ChIP yes
Lin et al. 2010 mouse EBFKO-E2A 0.92 1.72 0.53 0 36 36 36 9,159,853 ChIP yes
Lin et al. 2010 mouse Input2 0.93 1.15 0.11 -2 36 36 36 10,675,120 Input no
Lin et al. 2010 mouse RAG1KO-CTCF 0.91 15.22 2.31 2 36 36 36 4,804,275 ChIP yes
Lin et al. 2010 mouse RAG1KO-E2A 0.85 4.13 1.39 1 30 36 25 7,601,861 ChIP yes
Lin et al. 2010 mouse RAG1KO-EBF 0.81 10.08 1.23 1 36 36 36 2,935,481 ChIP yes
Lin et al. 2010 mouse RAG1KO-FOXO1-1 0.91 6.82 1.06 1 36 36 36 15,561,578 ChIP yes

Durant et al. 2010 mouse
Th17-Stat3fl-fl-FoxP3-GFP-
STAT3

0.81 2.61 1.36 1 36 36 36 12,871,479 ChIP yes

Heinz et al. 2010 mouse Bcell-input-ChIP-Seq 0.68 1.75 0.12 -2 36 36 36 11,410,688 Input no
Heinz et al. 2010 mouse Bcell-Oct2-ChIP-Seq 0.95 2.16 0.17 -2 36 36 36 2,296,228 ChIP yes
Heinz et al. 2010 mouse Bcell-PU.1-ChIP-Seq 0.92 5.56 4.62 2 36 36 36 8,207,220 ChIP yes
Heinz et al. 2010 mouse BirA-input-GW-ChIP-Seq 0.96 1.24 0.54 0 23 23 23 2,263,641 Input no
Heinz et al. 2010 mouse BLRP-LXRb-GW-ChIP-Seq 0.8 2.02 0.68 0 22.45 25 22 9,426,604 ChIP yes

Heinz et al. 2010 mouse
BMDM.LXRDKO-PU.1-ChIP-
Seq

0.97 9.26 2.72 2 23 23 23 2,410,527 ChIP yes

Heinz et al. 2010 mouse BMDM-PU.1-ChIP-Seq 0.93 10.78 1.97 2 36 36 36 9,617,221 ChIP yes

Heinz et al. 2010 mouse
E2AKO-PU.1-bHLH-ER-ChIP-
Seq

0.91 7.77 2.76 2 23 23 23 5,093,144 ChIP yes

Heinz et al. 2010 mouse E2AKO-PU.1-ChIP-Seq 0.89 10.21 2.94 2 23 23 23 3,615,197 ChIP yes

Heinz et al. 2010 mouse
E2AKO-PU.1-E2A-ER-ChIP-
Seq

0.88 8.28 2.67 2 23 23 23 4,724,664 ChIP yes

Heinz et al. 2010 mouse EBFKO-PU.1-ChIP-Seq 0.94 11.94 2.4 2 23 23 23 3,058,714 ChIP yes
Heinz et al. 2010 mouse PU.1KO-CEBPb-ChIP-Seq 0.89 4.52 1.42 1 23 23 23 4,179,430 ChIP yes
Heinz et al. 2010 mouse PU.1KO-PU.1-ChIP-Seq 0.88 2.79 0.53 0 23 23 23 4,615,899 ChIP no
Heinz et al. 2010 mouse PUER-CEBPb-0h-ChIP-Seq 0.92 8.61 2.14 2 23 23 23 4,672,159 ChIP yes
Heinz et al. 2010 mouse PUER-CEBPb-1h-ChIP-Seq 0.92 9.02 2.1 2 23 23 23 3,790,612 ChIP yes
Heinz et al. 2010 mouse PUER-CEBPb-24h-ChIP-Seq 0.89 10.77 2.54 2 23 23 23 4,625,986 ChIP yes

Continued on next page

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12889
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12889
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12889
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12889
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12889
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12889
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21717
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21717
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20012
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20012
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20012
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20012
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20012
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20012
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20012
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22484
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22104
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22104
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22104
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22104
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22104
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22341
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22341
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22303
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22303
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21978
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21669
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21512


322

Table 10.1 – Continued from previous page

Source

S
p

e
c
ie

s

Library

C
o
m

p
le

x
it

y

NSC RSC QC

A
v
e
.

R
e
a
d

L
e
n
g
th

M
a
x
.

R
e
a
d

L
e
n
g
th

M
in

.
R

e
a
d

L
e
n
g
th

Mapped
reads

Type

Should
exhibit
read
clustering

Heinz et al. 2010 mouse PUER-CEBPb-48h-ChIP-Seq 0.9 8.09 1.95 2 23 23 23 5,022,074 ChIP yes
Heinz et al. 2010 mouse PUER-CEBPb-6h-ChIP-Seq 0.89 9.43 2.06 2 23 23 23 4,417,004 ChIP yes
Heinz et al. 2010 mouse PUER-PU.1-0h-ChIP-Seq 0.94 4.68 0.57 0 23 23 23 2,053,953 ChIP yes
Heinz et al. 2010 mouse PUER-PU.1-1h-ChIP-Seq 0.92 12.06 2.58 2 23 23 23 2,541,096 ChIP yes
Heinz et al. 2010 mouse PUER-PU.1-24h-ChIP-Seq 0.9 18.69 2.85 2 23 23 23 3,403,839 ChIP yes
Heinz et al. 2010 mouse PUER-PU.1-48h-ChIP-Seq 0.9 14.68 3.42 2 23 23 23 4,138,465 ChIP yes
Heinz et al. 2010 mouse PUER-PU.1-6h-ChIP-Seq 0.9 16.62 2.83 2 23 23 23 3,477,600 ChIP yes
Heinz et al. 2010 mouse RAG1KO-PU.1-ChIP-Seq 0.86 12.16 2.26 2 23 23 23 6,302,473 ChIP yes
Heinz et al. 2010 mouse ThioMac-CEBPa-ChIP-Seq 0.92 5.55 2.96 2 23 23 23 7,067,160 ChIP yes
Heinz et al. 2010 mouse ThioMac-input-ChIP-Seq 0.93 1.25 0.11 -2 23.67 25 22 5,491,097 Input no
Heinz et al. 2010 mouse ThioMac-PU.1-ChIP-Seq 0.97 5.1 3.4 2 23 23 23 5,289,667 ChIP yes
Steger et al. 2010 mouse 3T3-L1-0hr-CEBPb 0.51 5.34 1.6 2 36 36 36 11,295,935 ChIP yes
Steger et al. 2010 mouse 3T3-L1-0hr-Input 0.94 3.23 0.46 -1 36 36 36 5,129,801 Input no
Steger et al. 2010 mouse 3T3-L1-240hr-Input 0.95 3.48 0.55 0 36 36 36 5,019,654 Input no
Steger et al. 2010 mouse 3T3-L1-24hr-Input 0.81 6.84 1.26 1 36 36 36 4,731,402 Input no
Steger et al. 2010 mouse 3T3-L1-6hr-CEBPb 0.87 3.05 1.09 1 36 36 36 10,746,117 ChIP yes
Steger et al. 2010 mouse 3T3-L1-6hr-GR 0.86 1.79 0.75 0 36 36 36 10,761,593 ChIP yes
Steger et al. 2010 mouse 3T3-L1-6hr-Input 0.9 1.4 0.56 0 36 36 36 11,352,790 Input no
GSE21916 human H9-IgG 0.93 1.53 0.33 -1 26 26 26 4,499,095 IgG no
GSE21916 human H9-Oct4-replicate-2 0.97 1.97 0.83 0 36 36 36 4,556,649 ChIP yes
GSE21916 human H9-Oct4-technical-replicate-1 0.92 1.81 0.48 -1 26 26 26 4,187,685 ChIP yes
GSE21916 human H9-Oct4-technical-replicate-2 0.95 1.85 0.6 0 36 36 36 4,119,980 ChIP yes
Kassouf et al. 2010 mouse RER-SCL 0.72 1.94 0.91 0 36 36 36 5,208,895 ChIP no
Kassouf et al. 2010 mouse RER-SCL-no-AB 0.51 9.5 1.38 1 36 36 36 4,571,728 IgG no
Kassouf et al. 2010 mouse WT-no-AB 0.81 5.94 1.05 1 36 36 36 5,312,397 IgG no
Kassouf et al. 2010 mouse WT-SCL 0.68 2.77 1.4 1 36 36 36 4,154,252 ChIP yes
MacIsaac et al. 2010 mouse CEBPa-3T3-L1 0.93 2.43 0.75 0 35 35 35 4,326,509 ChIP yes
MacIsaac et al. 2010 mouse CEBPa-liver 0.9 14.08 2.03 2 35 35 35 4,595,713 ChIP yes
MacIsaac et al. 2010 mouse E2F4-liver 0.92 16.44 2.26 2 35 35 35 2,214,727 ChIP yes
MacIsaac et al. 2010 mouse FOXA1-liver 0.54 12.93 3.19 2 35 35 35 3,968,403 ChIP yes
MacIsaac et al. 2010 mouse FOXA2-liver 0.95 6.49 1.99 2 35 35 35 6,593,622 ChIP yes
MacIsaac et al. 2010 mouse p300-3T3-L1 0.96 1.74 0.77 0 35 35 35 3,575,940 ChIP yes
MacIsaac et al. 2010 mouse p300-liver 0.95 6.6 2.79 2 35 35 35 4,718,264 ChIP yes
MacIsaac et al. 2010 mouse Sample-control-reads-3T3-L1 0.29 1.46 0.47 -1 35 35 35 2,767,084 Input no
MacIsaac et al. 2010 mouse Sample-control-reads-cerebellum 0.93 1.9 0.52 0 35 35 35 5,139,906 Input no
MacIsaac et al. 2010 mouse Sample-control-reads-liver 0.64 23.8 2.7 2 35 35 35 5,270,015 Input no

Vivar et al. 2010 human
U2OS-ERb-Doxy-
nonspecificAntibodyIgG-rep1

0.96 1.33 0.26 -1 26 26 26 2,576,564 IgG no

Vivar et al. 2010 human
U2OS-ERb-Doxy-
specificAntibody-rep1

0.95 2.8 0.7 0 26 26 26 2,749,749 ChIP yes

Vivar et al. 2010 human
U2OS-ERb-DoxyE2-
nonspecificAntibodyIgG-rep1

0.95 1.43 0.31 -1 26 26 26 2,880,960 IgG no

Vivar et al. 2010 human
U2OS-ERb-DoxyE2-
specificAntibody-rep1

0.95 6.1 1.13 1 26 26 26 2,638,244 ChIP yes

Fortschegger et al.
2010

human Input-DNA-Hs68+FBS 0.97 1.32 0.27 -1 40 40 40 8,279,525 Input no

Fortschegger et al.
2010

human Input-DNA-Hs68-FBS 0.97 1.34 0.3 -1 40 40 40 7,059,465 Input no

Fortschegger et al.
2010

human Normal-IgG-293T 0.94 1.21 0.22 -2 50 50 50 7,860,447 IgG no

Fortschegger et al.
2010

human Normal-IgG-HeLa 0.92 1.76 0.55 0 50 50 50 7,000,514 IgG no

Fortschegger et al.
2010

human PHF8-293T 0.96 1.71 0.71 0 50 50 50 7,015,757 ChIP yes

Fortschegger et al.
2010

human PHF8-HeLa 0.95 2.74 1.13 1 50 50 50 6,982,792 ChIP yes

Fortschegger et al.
2010

human PHF8-Hs68+FBS 0.94 1.89 0.69 0 40 40 40 7,339,329 ChIP yes

Fortschegger et al.
2010

human PHF8-Hs68-FBS 0.9 1.75 0.51 0 35 35 35 11,313,461 ChIP yes

GSE15844 mouse MEF-NFIC-KO-NFI 0.29 7.55 1.85 2 35 35 35 10,794,407 ChIP no
GSE15844 mouse MEF-WT-Input 0.74 1.42 0.28 -1 36 36 36 5,483,670 Input no
GSE15844 mouse MEF-WT-NFI 0.34 5.81 1.72 2 35 35 35 9,746,594 ChIP yes
Kim et al. 2010 mouse ChIP-CBP-ab2832-KCl-b1 0.88 2.46 0.88 0 33 33 33 1,742,367 ChIP yes
Kim et al. 2010 mouse ChIP-CBP-ab2832-KCl-b2 0.9 1.9 0.31 -1 33 33 33 1,350,494 ChIP yes
Kim et al. 2010 mouse ChIP-CBP-ab2832-un-b1 0.11 2.19 0.23 -2 33 33 33 13,062,901 ChIP yes
Kim et al. 2010 mouse ChIP-CBP-Millipore-KCl-b1 0.14 2.55 0.19 -2 33 33 33 21,475,816 ChIP yes
Kim et al. 2010 mouse ChIP-CBP-Millipore-un-b1 0.14 3.57 0.22 -2 33 33 33 12,767,854 ChIP yes
Kim et al. 2010 mouse ChIP-CREB-SC-KCl-b1 0.25 1.6 0.2 -2 33 33 33 12,606,497 ChIP yes
Kim et al. 2010 mouse ChIP-CREB-SC-KCl-b2 0.11 2.71 0.25 -1 33 33 33 14,186,880 ChIP yes
Kim et al. 2010 mouse ChIP-CREB-SC-un-b1 0.47 1.39 0.25 -2 33 33 33 11,723,416 ChIP yes
Kim et al. 2010 mouse ChIP-CREB-SC-un-b2 0.11 3.54 0.43 -1 33 33 33 11,668,187 ChIP yes
Kim et al. 2010 mouse ChIP-input-KCl-b1 0.22 2.19 0.19 -2 33 33 33 29,829,497 Input no
Kim et al. 2010 mouse ChIP-input-KCl-b2 0.55 1.29 0.3 -1 33 33 33 11,407,302 Input no
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Kim et al. 2010 mouse ChIP-input-un-b1 0.57 1.86 0.16 -2 33 33 33 4,413,802 Input no
Kim et al. 2010 mouse ChIP-input-un-b2 0.59 1.28 0.39 -1 33 33 33 2,034,854 Input no
Kim et al. 2010 mouse ChIP-Npas4-KCl-b1 0.3 3.33 1.38 1 33 33 33 6,262,184 ChIP yes
Kim et al. 2010 mouse ChIP-Npas4-KCl-b2 0.7 2.39 0.92 0 33 33 33 3,474,756 ChIP yes
Kim et al. 2010 mouse ChIP-Npas4-un-b1 0.39 1.84 0.21 -2 33 33 33 12,918,805 ChIP yes
Kim et al. 2010 mouse ChIP-SRF-SC-KCl-b1 0.88 3.77 0.28 -1 33 33 33 1,953,844 ChIP yes
Kim et al. 2010 mouse ChIP-SRF-SC-KCl-b2 0.86 2.72 0.46 -1 33 33 33 7,001,063 ChIP yes
Kim et al. 2010 mouse ChIP-SRF-SC-un-b1 0.89 2.58 0.47 -1 33 33 33 2,076,216 ChIP yes
Kim et al. 2010 mouse ChIP-SRF-SC-un-b2 0.87 2.2 0.98 0 33 33 33 8,797,223 ChIP yes
Lefterova et al. 2010 mouse Lefterova-ad-PPARg 0.85 2.18 0.73 0 36 36 36 5,258,157 ChIP yes
Lefterova et al. 2010 mouse Lefterova-mac-CEBPb 0.67 11.03 1.5 2 36 36 36 5,717,739 ChIP yes
Lefterova et al. 2010 mouse Lefterova-mac-PPARg-1 0.87 1.59 0.69 0 36 36 36 10,646,239 ChIP yes
Lefterova et al. 2010 mouse Lefterova-mac-PU.1 0.86 13.27 1.64 2 36 36 36 6,261,063 ChIP yes
Tallack et al. 2010 mouse KLF1-Input-2 0.96 9.63 0.58 0 48 48 48 10,405,126 Input no
Tallack et al. 2010 mouse KLF1-2 0.68 1.28 0.18 -2 33 33 33 10,757,339 ChIP yes
Tallack et al. 2010 mouse KLF1-3 0.55 1.39 0.47 -1 48 48 48 17,728,355 ChIP yes
Tallack et al. 2010 mouse KLF1-Input-3 0.65 1.23 0.4 -1 33 33 33 548,382 Input no
Rahl et al. 2010 mouse mES-Ctr9 0.96 1.37 0.97 0 26 26 26 5,468,214 ChIP yes
Rahl et al. 2010 mouse mES-NelfA 0.7 2.42 1.42 1 36 36 36 3,643,555 ChIP yes
Rahl et al. 2010 mouse mES-Spt5 0.95 1.59 0.94 0 26 26 26 5,595,215 ChIP yes
Ramos et al. 2010 human T98G-CBP-T0 0.94 1.55 0.31 -1 32 32 32 4,047,183 ChIP yes
Ramos et al. 2010 human T98G-CBP-T30-1 0.94 1.63 0.4 -1 32 32 32 4,885,700 ChIP yes
Ramos et al. 2010 human T98G-CBP-T30-2 0.84 1.75 2.14 2 32 32 32 5,034,834 ChIP yes
Ramos et al. 2010 human T98G-p300-T0 0.96 1.79 0.85 0 32 32 32 5,119,057 ChIP yes
Ramos et al. 2010 human T98G-p300-T30-1 0.97 2.22 1.19 1 32 32 32 5,191,684 ChIP yes
Ramos et al. 2010 human T98G-p300-T30-2 0.87 1.95 3.44 2 32 32 32 5,159,200 ChIP yes
Kunarso et al. 2010 human hESC-CTCF 0.92 15.2 1.62 2 37 37 37 10,828,759 ChIP yes
Kunarso et al. 2010 human hESC-NANOG 0.94 3.91 1.42 1 36.18 37 36 10,240,400 ChIP yes
Kunarso et al. 2010 human hESC-Nanog-and-CTCF-control 0.96 1.25 0.19 -2 37 37 37 8,641,430 Input no
Kunarso et al. 2010 human hESC-OCT4 0.98 1.94 0.42 -1 30.07 36 26 11,288,800 ChIP yes
Kunarso et al. 2010 human hESC-Oct4-control 0.95 1.26 0.4 -1 36 36 36 8,560,581 Input no
Johannes et al. 2010 human HeLa-BTAF 0.79 13.25 2.7 2 33 33 33 2,654,681 ChIP yes
Johannes et al. 2010 human HeLa-GAPDH 0.84 2.51 0.02 -2 33 33 33 953,719 IgG no
Hu et al. 2010 human MCF7-E2-ER 0.8 10.66 1.28 1 36 36 36 1,656,740 ChIP yes
Hu et al. 2010 human MCF7-ethl-ER 0.81 3.76 0.87 0 36 36 36 2,857,720 ChIP unknown
Heng et al. 2010 mouse mESC-HA-1 0.97 1.25 0.83 0 35 35 35 14,266,600 IgG no
Heng et al. 2010 mouse mESC-HA-Nr5a2-1 0.85 1.54 0.36 -1 35 35 35 9,395,231 ChIP yes

Chicas et al. 2010 human
IMR90-Growing-cells-pRb-
experiment-1-1

0.78 2.94 0.41 -1 36 36 36 6,181,869 ChIP yes

Chicas et al. 2010 human IMR90-Mock-1 0.85 2.18 0.13 -2 36 36 36 3,317,485 IgG no
Chicas et al. 2010 human IMR90-Quiescent-cells-p130 0.92 4.12 0.95 0 36 36 36 3,753,591 ChIP yes

Chicas et al. 2010 human
IMR90-Quiescent-cells-pRb-
experiment-1-1

0.92 3.3 0.38 -1 36 36 36 1,441,212 ChIP yes

Chicas et al. 2010 human
IMR90-Quiescent-cells-pRb-
experiment-2

0.93 2.43 0.05 -2 36 36 36 4,608,677 ChIP yes

Chicas et al. 2010 human
IMR90-Quiescent-cells-Rb-
shRNA-p130

0.78 2.2 0.24 -2 36 36 36 5,348,557 ChIP yes

Chicas et al. 2010 human
IMR90-Quiescent-cells-Rb-
shRNA-Rb

0.85 2.42 0.38 -1 36 36 36 1,114,921 ChIP no

Chicas et al. 2010 human IMR90-Senescent-cells-p130 0.94 4.21 1.21 1 36 36 36 4,388,261 ChIP yes

Chicas et al. 2010 human
IMR90-Senescent-cells-pRb-
experiment-1-1

0.93 3.63 0.39 -1 36 36 36 3,867,162 ChIP yes

Chicas et al. 2010 human
IMR90-Senescent-cells-pRb-
experiment-2

0.91 2.29 0.22 -2 36 36 36 4,109,281 ChIP yes

Chicas et al. 2010 human
IMR90-Senescent-cells-Rb-
shRNA-p130

0.78 3.98 1.26 1 36 36 36 4,232,255 ChIP yes

Chicas et al. 2010 human
IMR90-Senescent-cells-Rb-
shRNA-pRb

0.89 2.02 0.23 -2 36 36 36 2,813,407 ChIP no

Martinez et al. 2010 mouse Input 0.51 2.26 2.59 2 36 36 36 14,617,059 Input no
Martinez et al. 2010 mouse RAP1-ko1-RAP1 0.09 20.55 2.72 2 36 36 36 11,542,127 ChIP no
Martinez et al. 2010 mouse RAP1-ko2-RAP1 0.18 21.54 3.88 2 36 36 36 7,585,528 ChIP no
Martinez et al. 2010 mouse WT-1-RAP1 0.26 11.02 2.45 2 36 36 36 11,249,746 ChIP yes
Martinez et al. 2010 mouse WT-2-RAP1 0.19 11.05 2.88 2 36 36 36 11,856,303 ChIP yes
Qi et al. 2010 human HeLa-PHF8 0.9 1.66 0.78 0 25 25 25 9,252,893 ChIP yes
Woodfield et al.
2010

human MCF7-IgG-control 0.97 1.38 0.63 0 40 40 40 8,158,903 IgG no

Woodfield et al.
2010

human MCF7-TFAP2C 0.93 7.1 1.74 2 40 40 40 8,188,674 ChIP yes

Kagey et al. 2010 mouse MEF-Med12-Rep1 0.85 1.58 0.46 -1 36 36 36 8,167,440 ChIP yes
Kagey et al. 2010 mouse MEF-Med1-Rep1 0.94 2.03 0.82 0 36 36 36 7,326,311 ChIP yes
Kagey et al. 2010 mouse MEF-Smc1-Rep1 0.62 6.04 2.96 2 36 36 36 9,601,525 ChIP yes
Kagey et al. 2010 mouse MEF-Smc1-Rep2 0.94 1.34 0.9 0 36 36 36 22,977,719 ChIP yes
Kagey et al. 2010 mouse mESC-CTCF-Rep1 0.94 7.28 1.29 1 36 36 36 3,966,359 ChIP yes
Kagey et al. 2010 mouse mESC-CTCF-Rep2 0.85 1.73 1.4 1 36 36 36 4,953,685 ChIP yes
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Kagey et al. 2010 mouse mESC-Med12-051809-ChipSeq 0.84 7.16 1.9 2 36 36 36 22,763,608 ChIP yes
Kagey et al. 2010 mouse mESC-Med12-Rep2 0.63 1.8 1.12 1 36 36 36 12,861,074 ChIP yes
Kagey et al. 2010 mouse mESC-Med1-Rep1 0.92 2.27 1.68 2 36 36 36 18,346,720 ChIP yes
Kagey et al. 2010 mouse mESC-Med1-Rep2 0.94 1.73 1.04 1 36 36 36 18,725,724 ChIP yes
Kagey et al. 2010 mouse mESC-Nipbl-Rep1 0.26 1.33 0.54 0 36 36 36 6,241,538 ChIP yes
Kagey et al. 2010 mouse mESC-Nipbl-Rep2 0.96 1.54 0.99 0 36 36 36 12,668,428 ChIP yes
Kagey et al. 2010 mouse mESC-Smc1-Rep1 0.96 3.37 1.88 2 36 36 36 21,733,223 ChIP yes
Kagey et al. 2010 mouse mESC-Smc1-Rep2 0.95 3.29 1.57 2 36 36 36 4,936,893 ChIP yes
Kagey et al. 2010 mouse mESC-Smc3-Rep3 0.89 3.86 1.81 2 36 36 36 21,491,459 ChIP yes
Kagey et al. 2010 mouse mESC-Smc3-Rep4 0.89 4.34 2.26 2 36 36 36 21,522,393 ChIP yes
Kagey et al. 2010 mouse mES-WCE 0.93 1.38 0.31 -1 36 36 36 3,669,758 Input no
Kouwenhoven et al.
2010

human Keratinocytes-p63-1 0.96 19.62 2.46 2 32 32 32 2,722,489 ChIP yes

Kouwenhoven et al.
2010

human Keratinocytes-p63-2 0.96 4.51 2.51 2 32 32 32 5,588,217 ChIP yes

Kouwenhoven et al.
2010

human Keratinocytes-p63-3 0.81 9.05 5.19 2 35 35 35 20,435,516 ChIP yes

Cao et al. 2010 human RD-Input 0.82 1.34 0.33 -1 40 40 40 6,587,573 Input no
Cao et al. 2010 human RD-pFM2-1 0.76 1.9 0.63 0 40 40 40 8,593,218 ChIP yes
Cao et al. 2010 human Rh4-Input-1 0.82 1.35 0.36 -1 38.7 40 36 20,270,400 Input no
Cao et al. 2010 human Rh4-pFM2-1 0.74 2.33 0.9 0 38.83 40 36 20,920,563 ChIP yes
Blow et al. 2010 mouse Heart-p300 0.85 1.77 0.16 -2 36 36 36 1,531,274 ChIP yes
Blow et al. 2010 mouse Midbrain-p300 0.87 1.34 0.21 -2 36 36 36 6,406,542 ChIP yes
Sehat et al. 2010 human DFB-IGF1R 0.9 1.56 0.13 -2 36 36 36 3,664,071 ChIP yes
Liu et al. 2010 human E2F1-HeLa 0.96 1.91 0.81 0 36 36 36 8,595,301 ChIP yes
Liu et al. 2010 human PHF8-HeLa-unsyn 0.97 2.21 0.84 0 36 36 36 3,841,047 ChIP yes
Liu et al. 2010 human SMC4-HeLa-M 0.62 2.43 0.65 0 36 36 36 9,809,944 ChIP yes
Tang et al. 2010 human K562-PMA-Egr1 0.84 1.62 0.21 -2 33 33 33 3,581,558 ChIP yes
Jung et al. 2010 mouse iHoxc9-Day5 0.97 1.35 0.79 0 36 36 36 10,149,860 ChIP yes
Jung et al. 2010 mouse WCE-Day5 0.94 1.37 0.82 0 36 36 36 15,043,390 Input no
Vermeulen et al.
2010

human BAP18-GFP-HeLa-rep1 0.8 2.1 1.6 2 35 35 35 11,153,198 ChIP yes

Vermeulen et al.
2010

human BAP18-GFP-HeLa-rep2 0.83 1.91 2.1 2 35 35 35 28,580,771 ChIP yes

Vermeulen et al.
2010

human GATAD1-GFP-HeLa-rep1 0.9 1.71 2.69 2 35 35 35 5,413,596 ChIP yes

Vermeulen et al.
2010

human GATAD1-GFP-HeLa-rep2 0.81 2.4 1.83 2 35 35 35 12,596,319 ChIP yes

Vermeulen et al.
2010

human LRWD1-GFP-HeLa 0.88 2.29 0.98 0 35 35 35 11,634,470 ChIP yes

Vermeulen et al.
2010

human N-PAC-GFP-HeLa-rep1 0.85 2.01 2.46 2 35 35 35 5,436,726 ChIP yes

Vermeulen et al.
2010

human N-PAC-GFP-HeLa-rep2 0.77 2.78 2.81 2 35 35 35 12,669,139 ChIP yes

Vermeulen et al.
2010

human PHF8-GFP-HeLa-rep1 0.88 1.7 2.13 2 35 35 35 4,896,779 ChIP yes

Vermeulen et al.
2010

human PHF8-GFP-HeLa-rep2 0.83 1.79 2.2 2 35 35 35 29,180,126 ChIP yes

Vermeulen et al.
2010

human Sgf29-GFP-HeLa-rep1 0.87 2.36 1.45 1 35 35 35 12,636,931 ChIP yes

Vermeulen et al.
2010

human Sgf29-GFP-HeLa-rep2 0.87 1.84 1.98 2 35 35 35 29,275,648 ChIP yes

Vermeulen et al.
2010

human TRRAP-GFP-HeLa-rep1 0.74 3.43 3.94 2 35 35 35 7,851,229 ChIP yes

Vermeulen et al.
2010

human TRRAP-GFP-HeLa-rep2 0.87 1.71 1.76 2 35 35 35 29,410,330 ChIP yes

Vermeulen et al.
2010

human wt-negative-control-HeLa 0.87 1.88 1.09 1 35 35 35 10,851,096 Input no

Chi et al. 2010 human GIST48-ETV1 0.95 2.79 0.97 0 36 36 36 10,740,357 ChIP yes
Chi et al. 2010 human GIST48-Input 0.98 1.12 0.27 -1 36 36 36 15,177,140 Input no
Chia et al. 2010 human hESC-Input 0.98 1.48 0.82 0 35 35 35 17,097,337 Input no
Chia et al. 2010 human hESC-PRDM14 0.95 1.87 0.67 0 35 35 35 14,268,098 ChIP no
Palii et al. 2010 human Erythroid-TAL1 0.94 6.12 0.9 0 37 37 37 6,882,358 ChIP yes
Palii et al. 2010 human Jurkat-IgG 0.97 1.48 0.16 -2 37 37 37 4,760,148 IgG no
Palii et al. 2010 human Jurkat-TAL1 0.94 2.58 0.45 -1 37 37 37 6,151,678 ChIP yes
Lee et al. 2010 human GM06990-E2F4 0.95 1.99 0.5 0 36 36 36 2,845,819 ChIP yes
Lee et al. 2010 human GM06990-Input 0.98 1.09 0.1 -2 36 36 36 7,164,483 Input no
Law et al. 2010 human ATRX-Human-Erythroid 0.98 1.83 0.31 -1 36 36 36 1,481,778 ChIP yes
Law et al. 2010 human ATRX-Human-Erythroid-Input 0.86 1.69 0.44 -1 36 36 36 2,815,016 Input no
Law et al. 2010 mouse ATRX-Mouse-ES 0.86 1.52 0.39 -1 51 51 51 47,903,467 ChIP yes
Law et al. 2010 mouse ATRX-Mouse-ES-Input 0.46 1.61 2.14 2 51 51 51 24,366,842 Input no
Yao et al. 2010 human HeLa-Input 0.97 1.17 0.51 0 36 36 36 44,239,692 Input no
Yao et al. 2010 human HeLa-p68 0.88 1.39 0.53 0 36 36 36 29,417,892 ChIP yes
Verzi et al. 2010 human Caco2-differentiated-CDX2 0.86 3.41 1.53 2 40 40 40 12,916,083 ChIP yes
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Verzi et al. 2010 human Caco2-differentiated-GATA6 0.86 2.75 0.73 0 40 40 40 14,079,635 ChIP unknown
Verzi et al. 2010 human Caco2-differentiated-HNF4A 0.9 6.15 1.42 1 40 40 40 5,599,576 ChIP yes
Verzi et al. 2010 human Caco2-Input 0.79 2.68 1.27 1 40 40 40 10,777,726 Input no
Verzi et al. 2010 human Caco2-proliferating-CDX2 0.87 3.04 1.24 1 40 40 40 11,527,010 ChIP unknown
Verzi et al. 2010 human Caco2-proliferating-GATA6 0.77 12.01 1.6 2 40 40 40 7,337,182 ChIP yes
Verzi et al. 2010 human Caco2-proliferating-HNF4A 0.76 6.64 1.55 2 40 40 40 9,186,141 ChIP yes
Barish et al. 2010 mouse macrophage-BCL6 0.73 3.1 1.36 1 42 42 42 14,741,775 ChIP yes
Barish et al. 2010 mouse macrophage-BCL6-LPS-1 0.59 2.47 1.38 1 36 36 36 12,161,935 ChIP unknown
Barish et al. 2010 mouse macrophage-BCL6-LPS-2 0.52 1.99 1.02 1 42 42 42 19,613,630 ChIP unknown
Barish et al. 2010 mouse macrophage-Bcl6-REP2 0.43 8.05 3.11 2 36 36 36 10,772,781 ChIP yes
Barish et al. 2010 mouse macrophage-IgG 0.59 3.32 1.14 1 36 36 36 11,046,455 IgG no
Barish et al. 2010 mouse macrophage-Input 0.96 1.33 0.5 -1 36 36 36 14,265,664 Input no
Barish et al. 2010 mouse macrophage-p65 0.85 3.3 2.23 2 42 42 42 13,878,454 ChIP no
Barish et al. 2010 mouse macrophage-p65-LPS-1 0.71 2.6 1.23 1 43 43 43 12,731,143 ChIP yes
Barish et al. 2010 mouse macrophage-p65-LPS-2 0.75 1.95 1.2 1 42 42 42 10,819,755 ChIP yes
Mahony et al. 2010 mouse HBG3-RAR-Day2+8hrsRA-1 0.67 1.6 0.6 0 26 26 26 16,947,890 ChIP yes
Mahony et al. 2010 mouse HBG3-RAR-Day2-1 0.7 1.87 0.76 0 26 26 26 19,693,750 ChIP yes
Mahony et al. 2010 mouse HBG3-WCE-Day2 0.92 1.52 0.15 -2 26 26 26 2,570,671 Input no
Mahony et al. 2010 mouse HBG3-WCE-Day3 0.94 1.44 0.2 -2 26 26 26 3,038,741 Input no
Yu et al. 2010 human HPC-GABPa 0.73 7 1.7 2 24 24 24 3,036,253 ChIP yes
Yu et al. 2010 human HPC-IgG 0.45 15.8 2.15 2 25 25 25 2,762,252 IgG no
Rada-Iglesias et al.
2010

human ESC-BRG1 0.95 1.66 1.37 1 36 36 36 16,085,353 ChIP yes

Rada-Iglesias et al.
2010

human ESC-input 0.95 1.33 0.98 0 36 36 36 14,508,164 Input no

Rada-Iglesias et al.
2010

human ESC-p300 0.92 2.01 2.76 2 36 36 36 12,822,655 ChIP yes

Rada-Iglesias et al.
2010

human NEC-input 0.97 1.34 0.65 0 36 36 36 21,774,646 Input no

Rada-Iglesias et al.
2010

human NEC-p300 0.94 1.71 0.58 0 36 36 36 13,264,013 ChIP yes

Gu et al. 2010 human MCF7-control-ERa 0.79 1.57 0.24 -2 36 36 36 4,385,795 ChIP no
Gu et al. 2010 human MCF7-E2-ERa 0.8 1.81 0.28 -1 36 36 36 5,785,635 ChIP yes
Ma et al. 2010 mouse mESC-FLAG-HA 0.93 1.59 0.59 0 36 36 36 6,257,485 IgG no
Ma et al. 2010 mouse mESC-Input 0.9 1.36 1.23 1 36 36 36 8,480,128 Input no
Ma et al. 2010 mouse mESC-Prdm14 0.84 5.1 2.59 2 36 36 36 10,899,040 ChIP yes
Schlesinger et al.
2010

mouse HL1-SRF 0.93 1.53 1.12 1 36 36 36 5,086,170 ChIP yes

Li et al. 2010 mouse Lin–Gata2 0.85 1.89 0.88 0 25 25 25 7,512,398 ChIP yes
Li et al. 2010 mouse Lin–IgG 0.75 1.87 0.2 -2 25 25 25 3,211,969 IgG no
Li et al. 2010 mouse Lin–Ldb1 0.71 5.7 1.95 2 25 25 25 4,251,705 ChIP yes
Li et al. 2010 mouse Lin–Tal1 0.81 4.15 1.77 2 36 36 36 11,482,776 ChIP yes
Kong et al. 2010 human ECC1-E2-ERa 0.95 1.65 0.37 -1 31.26 36 26 7,178,094 ChIP yes
Kong et al. 2010 human ECC1-EtOH-ERa 0.94 1.35 0.21 -2 26 26 26 11,049,926 ChIP no
Kong et al. 2010 human ECC1-Input 0.98 1.19 0.19 -2 30.16 36 26 7,631,501 Input no
Kong et al. 2010 human Ishikawa-E2-ERa 0.97 1.42 0.41 -1 30.73 36 26 10,438,320 ChIP yes
Kong et al. 2010 human Ishikawa-EtOH-ERa 0.97 1.38 0.36 -1 30.55 36 26 10,175,702 ChIP no
Kong et al. 2010 human Ishikawa-Input 0.98 1.19 0.37 -1 26 26 26 21,437,974 Input no
Kong et al. 2010 human MCF7-E2-ERa 0.95 5.96 1.63 2 26 26 26 9,652,711 ChIP yes
Kong et al. 2010 human MCF7-EtOH-ERa 0.97 1.23 0.4 -1 33.21 36 26 14,488,769 ChIP no
Kong et al. 2010 human MCF7-Input 0.97 1.17 0.18 -2 26 26 26 8,379,328 Input no
Kong et al. 2010 human T47D-E2-ERa 0.97 2.84 1.13 1 26 26 26 10,608,916 ChIP yes
Kong et al. 2010 human T47D-EtOH-ERa 0.97 1.21 0.29 -1 33.66 36 26 13,430,557 ChIP no
Kong et al. 2010 human T47D-Input 0.96 1.18 0.19 -2 26 26 26 12,933,672 Input no
Yang et al. 2010 human MCF7-IgG 0.1 14.93 1.71 2 36 36 36 5,500,498 IgG no
Yang et al. 2010 human MCF7-TDRD3 0.34 3.12 1.25 1 36 36 36 27,147,620 ChIP yes
Fang et al. 2011 human LN229-IgG 0.6 2.01 1.53 2 40 40 40 455,630 IgG no
Fang et al. 2011 human LN229-Sox2 0.65 1.8 1.04 1 40 40 40 932,166 ChIP yes
van Heeringen et al.
2011

xaenopus TBP-ChIPSeq 0.83 N/A N/A N/A 32 32 32 6,569,902 ChIP yes

GSE26680 mouse mES-MCAF1 0.86 1.63 1.04 1 36 36 36 13,907,040 ChIP yes
GSE26680 mouse mES-REST 0.86 2.61 1.01 1 26 26 26 4,159,486 ChIP yes
GSE26680 mouse mES-Ring1b 0.92 1.23 0.43 -1 26 26 26 3,785,138 ChIP yes

Teo et al. 2011 human
hESC-48h-endodiff-EOMES-XL-
eps1and2

0.74 4.08 1.67 2 36 36 36 33,687,700 ChIP yes

Teo et al. 2011 human hESC-Input-XL 0.98 1.37 0.44 -1 36 36 36 7,422,963 Input no
Joseph et al. 2011;
Kong et al. 2010

human MCF7-DMSO-cFos-1 0.93 1.31 0.43 -1 36 36 36 18,781,755 ChIP yes

Joseph et al. 2011;
Kong et al. 2010

human MCF7-DMSO-cJun-1 0.96 1.31 0.37 -1 36 36 36 14,827,454 ChIP yes

Joseph et al. 2011;
Kong et al. 2010

human MCF7-DMSO-FOXA1-1 0.95 1.51 0.63 0 36 36 36 14,414,733 ChIP yes

Joseph et al. 2011;
Kong et al. 2010

human MCF7-E2-cFos-1 0.95 1.48 0.68 0 31 31 31 12,684,762 ChIP yes
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Joseph et al. 2011;
Kong et al. 2010

human MCF7-E2-cJun-1 0.95 1.31 0.4 -1 36 36 36 18,012,142 ChIP yes

Joseph et al. 2011;
Kong et al. 2010

human MCF7-E2-FOXA1-1 0.93 2.52 1.07 1 36 36 36 15,884,461 ChIP yes

Joseph et al. 2011;
Kong et al. 2010

human T47D-DMSO-FOXA1 0.94 5.13 1.78 2 36 36 36 14,981,282 ChIP yes

Joseph et al. 2011;
Kong et al. 2010

human T47D-E2-FOXA1-1 0.94 2.27 0.92 0 36 36 36 11,819,434 ChIP yes

Novershtern et al.
2011

human HSPC-Ikaros-rep1 0.74 2.04 0.36 -1 36 36 36 3,228,102 ChIP yes

Novershtern et al.
2011

human HSPC-Ikaros-rep2 0.78 1.98 0.31 -1 36 36 36 2,635,528 ChIP yes

Novershtern et al.
2011

human HSPC-MEIS1-rep1 0.46 1.85 0.34 -1 36 36 36 9,565,937 ChIP yes

Novershtern et al.
2011

human HSPC-MEIS1-rep2 0.29 1.84 0.36 -1 36 36 36 12,342,658 ChIP yes

Novershtern et al.
2011

human HSPC-MEIS1-rep3 0.46 1.78 0.34 -1 36 36 36 10,465,042 ChIP yes

Novershtern et al.
2011

human HSPC-Pu.1-rep1 0.6 3.44 1.05 1 36 36 36 4,940,474 ChIP yes

Novershtern et al.
2011

human HSPC-Pu.1-rep2 0.61 3.19 1.03 1 36 36 36 4,617,421 ChIP yes

Novershtern et al.
2011

human HSPC-TAL1-rep1 0.69 1.31 0.18 -2 36 36 36 8,788,837 ChIP yes

Novershtern et al.
2011

human HSPC-TAL1-rep2 0.72 1.36 0.19 -2 36 36 36 7,439,145 ChIP yes

Novershtern et al.
2011

human HSPC-WCE 0.95 1.23 0.24 -2 36 36 36 6,321,189 Input no

GSE23581 mouse mES-Acitvin-Input 0.93 1.44 0.56 0 35 35 35 9,674,331 Input no
GSE23581 mouse mES-Acitvin-pSmad2 0.81 1.98 1.31 1 35 35 35 11,730,560 ChIP yes
GSE23581 mouse mES-DMSO-Input 0.93 1.51 0.69 0 35 35 35 10,750,428 Input no
GSE23581 mouse mES-DMSO-pSmad2 0.77 2.26 1.47 1 35 35 35 11,288,314 ChIP no
GSE23581 mouse mES-SP-Input 0.92 1.65 0.73 0 35 35 35 9,325,370 Input no
GSE23581 mouse mES-SP-pSmad2 0.8 2.16 1.08 1 35 35 35 9,079,108 ChIP no
GSE26136 mouse mES-Dpy-30 0.69 1.69 1.54 2 36 36 36 24,620,668 ChIP yes
Klisch et al. 2011 mouse Cerebella-Atoh1.control 0.95 2.28 0.97 0 35 35 35 10,310,101 Input no
Klisch et al. 2011 mouse Cerebella-Atoh1.rep1 0.89 7.47 1.86 2 35 35 35 2,649,698 ChIP yes
Klisch et al. 2011 mouse Cerebella-Atoh1.rep2 0.92 3.36 0.96 0 35 35 35 7,166,233 ChIP yes
Klisch et al. 2011 mouse Cerebella-IgG.s-5 0.69 2.33 1.44 1 36 36 36 8,514,915 IgG no
Yang et al. 2011 mouse WTTh17STAT3 0.73 4.58 1.63 2 25 25 25 28,501,100 ChIP yes
Yang et al. 2011 mouse WTTh17STAT5 0.58 6.08 1.65 2 25 25 25 30,799,471 ChIP yes
Ebert et al. 2011;
McManus et al.
2011

mouse DP-Tcell-CTCF 0.35 5.94 5.08 2 36 36 36 13,326,337 ChIP yes

Ebert et al. 2011;
McManus et al.
2011

mouse Mature-Bcell-CTCF 0.66 4.24 6.97 2 36 36 36 14,505,107 ChIP yes

Ebert et al. 2011;
McManus et al.
2011

mouse Pro-Bcell-Rad21 0.84 6.82 3.35 2 36 36 36 25,074,201 ChIP yes

Ebert et al. 2011;
McManus et al.
2011

mouse Pro-Bcell-Rag2KO-CTCF 0.62 4.52 3.98 2 36 36 36 15,641,228 ChIP yes

Zhao et al. 2011 mouse Myb-activated-B1T1 0.81 3.23 0.98 0 36 36 36 7,467,313 ChIP yes
Zhao et al. 2011 mouse Myb-activated-B1T2 0.83 3.33 0.88 0 36 36 36 5,454,019 ChIP yes
Zhao et al. 2011 mouse Myb-activated-B2 0.86 3.03 1.07 1 36 36 36 7,331,382 ChIP yes
Zhao et al. 2011 mouse Myb-activated-IgG 0.73 1.98 0.58 0 36 36 36 6,724,529 IgG no
Zhao et al. 2011 mouse Myb-inactivated-B1 0.83 1.79 0.5 -1 36 36 36 5,729,128 ChIP no
Zhao et al. 2011 mouse Myb-inactivated-B2 0.87 1.79 0.51 0 36 36 36 5,734,826 ChIP no
Zhao et al. 2011 mouse Myb-inactivated-IgG 0.94 4.16 0.34 -1 36 36 36 766,809 IgG no
Rey et al. 2011 mouse BMAL1-ZT02-rep1 0.8 2.4 1.15 1 37 37 37 9,023,818 ChIP unknown
Rey et al. 2011 mouse BMAL1-ZT02-rep2 0.74 1.76 1.5 1 37 37 37 24,294,126 ChIP unknown
Rey et al. 2011 mouse BMAL1-ZT06-rep1 0.66 2.1 1.71 2 37 37 37 20,808,528 ChIP unknown
Rey et al. 2011 mouse BMAL1-ZT06-rep2 0.25 5.49 1.89 2 37 37 37 20,234,777 ChIP unknown
Rey et al. 2011 mouse BMAL1-ZT10-rep1 0.9 1.75 0.92 0 37 37 37 9,220,495 ChIP unknown
Rey et al. 2011 mouse BMAL1-ZT10-rep2 0.84 1.74 1.53 2 37 37 37 22,892,744 ChIP unknown
Rey et al. 2011 mouse BMAL1-ZT14-rep1 0.88 1.61 0.84 0 37 37 37 12,447,404 ChIP unknown
Rey et al. 2011 mouse BMAL1-ZT14-rep2 0.64 2.91 2.58 2 37 37 37 20,961,930 ChIP unknown
Rey et al. 2011 mouse BMAL1-ZT18-rep1 0.7 2.03 1.77 2 37 37 37 22,079,073 ChIP unknown
Rey et al. 2011 mouse BMAL1-ZT18-rep2 0.21 4.51 1.94 2 37 37 37 30,803,372 ChIP unknown
Rey et al. 2011 mouse BMAL1-ZT22-rep1 0.67 2.77 1.33 1 37 37 37 10,194,650 ChIP unknown
Rey et al. 2011 mouse BMAL1-ZT22-rep2 0.88 1.4 0.85 0 37 37 37 21,473,568 ChIP unknown
Rey et al. 2011 mouse Input-DNA 0.84 1.76 1.44 1 37 37 37 21,940,254 Input no
Koeppel et al. 2011 human Saos-2-ChIP-Input-control 0.96 1.2 0.44 -1 35 35 35 15,967,510 Input no

Continued on next page

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26831
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26831
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26831
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26831
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26831
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26831
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26831
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26831
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26014
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23581
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23581
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23581
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23581
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23581
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23581
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26136
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22111
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22111
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22111
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22111
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26552
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26552
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27214
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27214
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27214
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27214
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27214
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27214
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27214
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27214
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27214
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27214
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27214
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27214
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22095
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22095
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22095
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22095
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22095
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22095
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22095
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26602
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26602
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26602
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26602
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26602
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26602
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26602
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26602
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26602
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26602
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26602
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26602
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26602
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15780


327

Table 10.1 – Continued from previous page

Source

S
p

e
c
ie

s

Library

C
o
m

p
le

x
it

y

NSC RSC QC

A
v
e
.

R
e
a
d

L
e
n
g
th

M
a
x
.

R
e
a
d

L
e
n
g
th

M
in

.
R

e
a
d

L
e
n
g
th

Mapped
reads

Type

Should
exhibit
read
clustering

Koeppel et al. 2011 human Saos-2-p53-replicate1-1 0.86 2.41 1 1 35 35 35 14,932,313 ChIP yes
Koeppel et al. 2011 human Saos-2-p53-replicate2 0.95 2.26 1.68 2 35 35 35 14,969,104 ChIP yes
Koeppel et al. 2011 human Saos-2-TAp73alpha-replicate1 0.84 2.57 2.6 2 35 35 35 14,905,593 ChIP yes
Koeppel et al. 2011 human Saos-2-TAp73alpha-replicate2 0.93 2.05 1.34 1 35 35 35 14,626,232 ChIP yes
Koeppel et al. 2011 human Saos-2-TAp73beta-replicate1 0.96 5.1 4.12 2 32 32 32 4,927,558 ChIP yes
Koeppel et al. 2011 human Saos-2-TAp73beta-replicate2 0.94 6.37 2.61 2 35 35 35 16,272,496 ChIP yes
He et al. 2011 mouse HL1-BirA-control-1 0.3 8.52 9.14 2 40 40 40 15,388,943 IgG no
He et al. 2011 mouse HL1-Gata4-1 0.57 2.11 2.92 2 37.77 40 35 21,352,298 ChIP yes
He et al. 2011 mouse HL1-Input-control 0.92 1.94 1.84 2 36 36 36 13,770,246 Input no
He et al. 2011 mouse HL1-Mef2a-1 0.92 1.34 1 1 38.18 40 35 20,160,274 ChIP yes
He et al. 2011 mouse HL1-Nkx2-5-1 0.91 1.69 3.09 2 38.59 40 36 24,181,076 ChIP yes
He et al. 2011 mouse HL1-P300 0.9 1.83 1.28 1 36 36 36 15,446,431 ChIP yes
He et al. 2011 mouse HL1-Srf-1 0.8 1.81 2.37 2 38.29 40 36 25,881,877 ChIP yes
He et al. 2011 mouse HL1-Tbx5-1 0.9 2.1 2.13 2 37.91 40 36 11,074,980 ChIP yes
Bugge et al. 2011 mouse Liver-HDAC3-ZT10 0.49 2.56 1.67 2 36.93 38 36 38,211,882 ChIP unknown
Bugge et al. 2011 mouse Liver-HDAC3-ZT22 0.76 1.34 1.09 1 39.03 40 38 38,822,996 ChIP unknown
Bugge et al. 2011 mouse Liver-input-Mnase-ZT10 0.81 4.86 1.96 2 38 38 38 20,627,184 Input no
Bugge et al. 2011 mouse Liver-input-Mnase-ZT22 0.8 4.49 1.52 2 38 38 38 18,828,586 Input no
Bugge et al. 2011 mouse Liver-input-ZT10 0.58 1.35 1.13 1 40 40 40 18,254,032 Input no
Bugge et al. 2011 mouse Liver-input-ZT22 0.64 2.1 2.06 2 40 40 40 14,072,057 Input no
Bugge et al. 2011 mouse Liver-NCoR-ZT10 0.72 2.5 1.24 1 38 38 38 10,955,647 ChIP unknown
Bugge et al. 2011 mouse Liver-NCoR-ZT22 0.8 1.4 0.86 0 38 38 38 18,218,400 ChIP unknown
Bugge et al. 2011 mouse Liver-Rev-erba-ZT10 0.54 3.5 1.52 2 36 36 36 23,266,910 ChIP unknown
Bugge et al. 2011 mouse Liver-Rev-erba-ZT22 0.38 1.8 0.87 0 36 36 36 26,701,376 ChIP unknown
Siersbæk et al. 2011 mouse CEBPbeta-2-hours 0.86 4.2 4.51 2 36 36 36 13,391,765 ChIP yes
Siersbæk et al. 2011 mouse CEBPbeta-4-hours 0.82 3.94 5.44 2 36 36 36 14,184,719 ChIP yes
Siersbæk et al. 2011 mouse CEBPbeta-day-0 0.69 4.74 5.95 2 36 36 36 13,823,228 ChIP yes
Siersbæk et al. 2011 mouse CEBPbeta-day-2 0.77 3.59 2.97 2 36 36 36 11,535,365 ChIP yes
Siersbæk et al. 2011 mouse CEBPdelta-4-hours 0.63 6.24 3.44 2 40 40 40 11,803,122 ChIP yes
Siersbæk et al. 2011 mouse CEBPdelta-day-0 0.59 5.05 4.73 2 40 40 40 12,036,027 ChIP yes
Siersbæk et al. 2011 mouse GR-4-hours 0.41 3.12 1.97 2 24 24 24 9,694,597 ChIP yes
Siersbæk et al. 2011 mouse Input 0.92 1.27 0.71 0 36 36 36 12,904,842 Input no
Siersbæk et al. 2011 mouse PPARgamma-day-2 0.29 2.31 0.96 0 40 40 40 13,429,961 ChIP yes
Siersbæk et al. 2011 mouse PPARgamma-day-6 0.3 2.28 1.64 2 40 40 40 14,620,856 ChIP yes
Siersbæk et al. 2011 mouse RXR-4-hours 0.7 3.12 2.85 2 40 40 40 12,219,467 ChIP yes
Siersbæk et al. 2011 mouse Stat5a-4-hours 0.62 4.33 5.62 2 36 36 36 13,644,334 ChIP yes
Smeenk et al. 2011 human U2OS-p53-ActD 0.97 5.72 1.81 2 32 32 32 6,940,755 ChIP yes
Smeenk et al. 2011 human U2OS-p53-Eto 0.97 4.28 1.27 1 32 32 32 7,272,634 ChIP yes
Smeenk et al. 2011 human U2OS-p53-pS15-ActD 0.96 1.74 0.54 0 32 32 32 4,742,221 ChIP yes
Smeenk et al. 2011 human U2OS-p53-pS15-Eto 0.94 1.8 0.66 0 32 32 32 6,590,995 ChIP yes
Smeenk et al. 2011 human U2OS-p53-pS46-ActD 0.92 1.63 0.29 -1 32 32 32 5,408,031 ChIP yes
Smeenk et al. 2011 human U2OS-p53-pS46-Eto 0.94 1.84 0.47 -1 32 32 32 5,748,594 ChIP yes
Ceol et al. 2011 human WM262-MCAF1 0.45 3.9 1.5 1 36 36 36 13,346,938 ChIP yes
Ceol et al. 2011 human WM262-SetDB1 0.54 1.49 0.62 0 36 36 36 5,307,748 ChIP yes
Ceol et al. 2011 human Wm451-lu-SetDB1 0.39 1.39 0.67 0 36 36 36 6,295,121 ChIP yes
Wu et al. 2011a; Wu
et al. 2011b

mouse mES-IgG-exp1-no-KD 0.67 1.62 1.07 1 25 25 25 23,036,303 IgG no

Wu et al. 2011a; Wu
et al. 2011b

mouse mES-IgG-exp2-mock-KD 0.52 2.04 1.4 1 36 36 36 8,283,677 IgG no

Wu et al. 2011a; Wu
et al. 2011b

mouse mES-Tet1-exp1-no-KD 0.91 1.33 1.25 1 25 25 25 28,536,436 ChIP yes

Wu et al. 2011a; Wu
et al. 2011b

mouse mES-Tet1-exp2-mock-KD 0.89 1.54 1 0 36 36 36 9,521,384 ChIP yes

Wu et al. 2011a; Wu
et al. 2011b

mouse mES-Tet1-exp3-Tet1-KD 0.9 1.33 1.06 1 25 25 25 28,297,858 ChIP no

Wu et al. 2011a; Wu
et al. 2011b

mouse mES-Tet1-exp4-Tet1-KD 0.56 1.71 0.5 0 25 25 25 4,286,921 ChIP no

Horiuchi et al. 2011 mouse Th1-1-Input 0.84 1.4 0.36 -1 36 36 36 5,981,126 Input no
Horiuchi et al. 2011 mouse Th1-2-Input 0.88 2.25 1.22 1 36 36 36 4,609,331 Input no
Horiuchi et al. 2011 mouse Th1-GATA3 0.94 1.81 0.62 0 36 36 36 7,219,267 ChIP no
Horiuchi et al. 2011 mouse Th1-IgG 0.78 2.37 1.02 1 36 36 36 11,136,690 IgG no
Horiuchi et al. 2011 mouse Th2-1-Input 0.81 1.58 0.42 -1 36 36 36 5,428,949 Input no
Horiuchi et al. 2011 mouse Th2-2-Input 0.88 2.28 1.33 1 36 36 36 4,095,787 Input no
Horiuchi et al. 2011 mouse Th2-GATA3 0.91 1.49 0.41 -1 36 36 36 6,332,390 ChIP yes
Horiuchi et al. 2011 mouse Th2-IgG 0.77 1.26 0.25 -2 36 36 36 11,532,524 IgG no

Soccio et al. 2011 human
Human-Adipocytes-Input-rep1-
GAII

0.38 1.43 0.56 0 38 38 38 23,331,240 Input no

Soccio et al. 2011 human
Human-Adipocytes-PPARg-
rep1-GAII

0.21 2.69 0.65 0 38 38 38 17,934,158 ChIP yes

Soccio et al. 2011 human
Human-Adipocytes-PPARg-
rep2-GAII

0.71 1.95 0.56 0 40 40 40 19,418,441 ChIP yes

Soccio et al. 2011 human
Human-Liver-FOXA2-rep1-GAI-
1

0.89 2.46 0.26 -1 32 32 32 3,597,158 ChIP yes

Soccio et al. 2011 human Human-Liver-FOXA2-rep1-GAII 0.87 1.84 0.29 -1 36 36 36 6,591,761 ChIP yes
Continued on next page
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Soccio et al. 2011 human
Human-Liver-FOXA2-rep2-GAI-
1

0.89 2.41 0.26 -1 32 32 32 3,559,308 ChIP yes

Soccio et al. 2011 human Human-Liver-FOXA2-rep2-GAII 0.8 2.73 0.44 -1 36 36 36 6,415,023 ChIP yes
Soccio et al. 2011 human Human-Liver-Input-rep1-GAI 0.98 1.57 0.13 -2 36 36 36 4,853,927 Input no
Soccio et al. 2011 human Human-Liver-Input-rep1-GAII 0.96 1.27 0.11 -2 32 32 32 2,775,576 Input no
Soccio et al. 2011 human Human-Liver-Input-rep2-GAI 0.96 1.49 0.11 -2 32 32 32 2,636,496 Input no

Soccio et al. 2011 mouse
Mouse-Adipocytes-PPARg-rep2-
GAII

0.68 1.69 0.91 0 36 36 36 16,907,011 ChIP yes

Soccio et al. 2011 mouse Mouse-Liver-FOXA2-rep1-GAI 0.87 3.47 0.35 -1 36 36 36 2,288,906 ChIP yes
Soccio et al. 2011 mouse Mouse-Liver-FOXA2-rep2-GAI 0.77 4.67 0.6 0 36 36 36 2,986,172 ChIP yes
Soccio et al. 2011 mouse Mouse-Liver-FOXA2-rep3-GAI 0.56 3.79 0.46 -1 36 36 36 7,770,167 ChIP yes
Soccio et al. 2011 mouse Mouse-Liver-FOXA2-rep3-GAII 0.81 3.35 0.83 0 36 36 36 2,686,815 ChIP yes
Soccio et al. 2011 mouse Mouse-Liver-FOXA2-rep4-GAI 0.46 3.39 0.32 -1 36 36 36 7,311,631 ChIP yes
Soccio et al. 2011 mouse Mouse-Liver-FOXA2-rep4-GAII 0.84 5.04 1.06 1 36 36 36 1,701,117 ChIP yes
Soccio et al. 2011 mouse Mouse-Liver-Input-rep1-GAI 0.91 2.15 0.32 -1 36 36 36 3,658,469 Input no
Soccio et al. 2011 mouse Mouse-Liver-Input-rep2-GAI 0.91 2.34 0.4 -1 36 36 36 3,808,896 Input no
Soccio et al. 2011 mouse Mouse-Liver-Input-rep3-GAI 0.89 2.36 0.4 -1 36 36 36 3,849,533 Input no
Ang et al. 2011 mouse CCE-mES-Input 0.94 1.18 0.37 -1 36 36 36 20,085,978 Input no
Ang et al. 2011 mouse CCE-mES-Negative 0.78 4.01 1.06 1 36 36 36 5,894,488 Input no
Ang et al. 2011 mouse CCE-mES-Oct4 0.97 1.58 0.55 0 36 36 36 4,368,039 ChIP yes
Ang et al. 2011 mouse CCE-mES-Rbbp5 0.85 1.1 0.14 -2 36 36 36 20,687,485 ChIP yes
Ang et al. 2011 mouse CCE-mES-Wdr5 0.39 2.95 1.05 1 36 36 36 18,192,088 ChIP yes
Ang et al. 2011 mouse CCE-mES-WDR5-FL 0.93 2.09 0.89 0 36 36 36 9,435,450 ChIP yes
Verzi et al. 2011 mouse Jejunum-villus-cells-Cdx2 0.87 3.18 1.4 1 40 40 40 5,335,016 ChIP yes
Verzi et al. 2011 mouse Jejunum-villus-cells-Input 0.91 1.92 0.76 0 40 40 40 5,579,736 Input no
Wang et al. 2011 human LNCaP-AR-dht-siCTRL 0.94 1.31 0.3 -1 25 25 25 12,537,593 ChIP yes
Wang et al. 2011 human LNCaP-AR-dht-siFoxA1 0.96 2.25 1.64 2 25 25 25 7,690,074 ChIP unknown
Wang et al. 2011 human LNCaP-FoxA1-dht-siCTRL 0.95 5.46 5.19 2 22 22 22 7,796,027 ChIP yes
Wang et al. 2011 human LNCaP-FoxA1-vehicle-siCTRL 0.95 3.88 3 2 22 22 22 7,780,805 ChIP yes
Wang et al. 2011 human LNCaP-input-dht-1 0.98 1.48 0.58 0 36 36 36 4,211,736 Input no
Wang et al. 2011 human LNCaP-MED12-dht-siCTRL 0.98 1.53 0.45 -1 36 36 36 4,305,257 ChIP yes
Wang et al. 2011 human LNCaP-MED12-dht-siFoxA1 0.96 1.55 0.46 -1 28 28 28 17,506,375 ChIP yes
Wang et al. 2011 human LNCaP-p300-dht-siCTRL 0.98 1.59 0.51 0 36 36 36 3,133,925 ChIP yes
Wang et al. 2011 human LNCaP-p300-dht-siFoxA1 0.98 1.62 0.53 0 36 36 36 3,120,380 ChIP yes
Nitzsche et al. 2011 mouse mESC-CTCF-GFP 0.95 2.74 2.78 2 35 35 35 9,433,929 ChIP yes
Nitzsche et al. 2011 mouse mESC-IgG 0.94 1.92 0.8 0 35 35 35 9,008,251 IgG no
Nitzsche et al. 2011 mouse EB-Rad21-GFP 0.93 2.51 1.93 2 35 35 35 9,039,705 ChIP yes
Nitzsche et al. 2011 mouse EB-Rad21-GFP-IgG 0.91 2.25 1.19 1 35 35 35 8,488,336 IgG no
Nitzsche et al. 2011 mouse mESC-Rad21-GFP 0.92 2.38 2.86 2 35 35 35 20,118,696 ChIP yes
Nitzsche et al. 2011 mouse mESC-Rad21-GFP-IgG 0.91 2.12 1.86 2 35 35 35 18,171,398 IgG no
Kim et al. 2011 human Endoderm-FOXH1-pool 0.95 6.88 1.72 2 36 36 36 11,630,871 ChIP yes
Kim et al. 2011 human Endoderm-Input 0.97 1.45 0.69 0 36 36 36 16,775,681 Input no
Kim et al. 2011 human Endoderm-SMAD2-3-A-pool 0.98 1.69 0.71 0 36 36 36 10,591,855 ChIP yes
Kim et al. 2011 human Endoderm-SMAD2-3-B-rep1 0.98 2.65 1.02 1 36 36 36 6,467,438 ChIP yes
Kim et al. 2011 human Endoderm-SMAD3-rep1 0.98 1.86 0.63 0 36 36 36 6,664,422 ChIP yes
Kim et al. 2011 human Endoderm-SMAD4-rep1 0.98 2.4 0.98 0 36 36 36 6,664,039 ChIP yes
Kim et al. 2011 human hESC-FOXH1-pool-1 0.97 3.21 1.37 1 36 36 36 11,570,426 ChIP yes
Kim et al. 2011 human hESC-Input-1 0.65 1.53 0.51 0 36 36 36 30,699,298 Input no
Kim et al. 2011 human hESC-SMAD2-3-A-pool 0.98 1.88 0.9 0 36 36 36 11,364,210 ChIP yes
Kim et al. 2011 human hESC-SMAD2-3-B-rep1 0.97 2.3 0.93 0 36 36 36 9,667,298 ChIP yes
Kim et al. 2011 human hESC-SMAD3-rep1 0.98 1.78 0.81 0 36 36 36 7,743,314 ChIP yes
Kim et al. 2011 human hESC-SMAD4-rep1 0.96 1.89 0.75 0 36 36 36 10,007,703 ChIP yes
Lo et al. 2011 human Adipocytes-CEBPa 0.4 15.56 0.55 0 35 35 35 1,285,131 ChIP yes
Lo et al. 2011 human Adipocytes-E2F4 0.89 13.68 0.2 -2 35 35 35 64,667 ChIP yes
Lo et al. 2011 human Adipocytes-HSF1 0.74 6.03 0.05 -2 35 35 35 177,695 ChIP yes
Lo et al. 2011 human Adipocytes-IgG 0.71 21.81 0.12 -2 35 35 35 282,753 IgG no
Tijssen et al. 2011 human Megakaryocytes-FLI1 0.95 2.17 0.9 0 54 54 54 12,154,848 ChIP yes
Tijssen et al. 2011 human Megakaryocytes-GATA1 0.92 2.75 1.05 1 37 37 37 12,848,211 ChIP yes
Tijssen et al. 2011 human Megakaryocytes-GATA2 0.95 2.3 0.83 0 54 54 54 8,984,141 ChIP yes
Tijssen et al. 2011 human Megakaryocytes-rIgG 0.68 2.11 0.89 0 37 37 37 13,241,658 IgG no
Tijssen et al. 2011 human Megakaryocytes-RUNX1 0.97 8.42 2.6 2 54 54 54 10,822,021 ChIP yes
Tijssen et al. 2011 human Megakaryocytes-SCL 0.96 1.34 0.26 -1 54 54 54 11,782,604 ChIP yes
Tan et al. 2011 human MCF7-E2-AP2g 0.94 3.36 1.94 2 36 36 36 13,328,869 ChIP yes
Tan et al. 2011 human MCF7-E2-FoxA1 0.93 6.24 2.32 2 36 36 36 14,308,936 ChIP yes
Tan et al. 2011 human MCF7-EtOH-AP2g 0.95 3.31 2.03 2 36 36 36 13,306,339 ChIP yes
Tan et al. 2011 human MCF7-EtOH-FoxA1 0.92 6.76 2.13 2 36 36 36 17,586,631 ChIP yes
Handoko et al. 2011 mouse E14-mES-CTCF 0.8 26.13 2.04 2 37 37 37 14,006,006 ChIP yes
Handoko et al. 2011 mouse E14-mES-Input 0.96 1.17 0.18 -2 37 37 37 9,567,449 Input no
Handoko et al. 2011 mouse E14-mES-LaminB 0.89 1.45 0.8 0 36 36 36 15,336,482 ChIP yes
Handoko et al. 2011 mouse E14-mES-p300 0.96 1.35 0.73 0 37 37 37 17,677,307 ChIP yes
Hu et al. 2011 human CD34-WT-Brg1-1 0.9 2 0.77 0 25 25 25 6,821,309 ChIP yes
Hu et al. 2011 human CD34-WT-CTCF 0.93 2.76 0.96 0 25 25 25 6,413,538 ChIP yes
Hu et al. 2011 human CD34-WT-input 0.94 1.85 0.44 -1 25 25 25 3,838,343 Input no
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Hu et al. 2011 human CD34-WT-TAL1 0.87 1.69 0.23 -2 25 25 25 3,089,084 ChIP yes
Hu et al. 2011 human CD36-shBrg1-CTCF 0.9 12.03 2.57 2 24.63 25 24 10,427,559 ChIP yes
Hu et al. 2011 human CD36-shbrg1-GATA1 0.92 7.21 1.78 2 32.67 35 25 10,380,913 ChIP yes
Hu et al. 2011 human CD36-shBrg1-input 0.8 1.34 0.46 -1 25 25 25 8,880,654 Input no
Hu et al. 2011 human CD36-shbrg1-TAL1 0.97 10.44 1.8 2 25 25 25 10,119,729 ChIP yes
Hu et al. 2011 human CD36-shLuc-CTCF 0.81 12.76 2.53 2 25 25 25 9,434,898 ChIP yes
Hu et al. 2011 human CD36-shLuc-GATA1 0.89 6.8 1.84 2 25 25 25 13,602,919 ChIP yes
Hu et al. 2011 human CD36-shLuc-input 0.62 1.36 0.46 -1 25 25 25 10,984,175 Input no
Hu et al. 2011 human CD36-shLuc-TAL1 0.97 12.67 2 2 25 25 25 10,455,880 ChIP yes
Hu et al. 2011 human CD36-WT-Brg1-1 0.85 1.66 0.56 0 25 25 25 13,673,639 ChIP yes
Hu et al. 2011 human CD36-WT-input-1 0.8 2.53 1.05 1 25 25 25 10,309,351 Input no
Zhao et al. 2011 human IB4-EBNA2-rep1 0.94 1.91 0.3 -1 36 36 36 5,803,658 ChIP yes
Zhao et al. 2011 human IB4-EBNA2-rep2 0.95 2.87 1.03 1 40 40 40 5,536,068 ChIP yes
Zhao et al. 2011 human IB4-Input-rep1 0.98 1.38 0.3 -1 40 40 40 4,144,311 Input no
Zhao et al. 2011 human IB4-Input-rep2 0.96 1.27 0.3 -1 40 40 40 10,404,527 Input no
Zhao et al. 2011 human IB4-RBPJ-rep1 0.98 2.48 0.6 0 36 36 36 2,919,539 ChIP yes
Zhao et al. 2011 human IB4-RBPJ-rep2 0.93 3.03 1.26 1 40 40 40 7,475,552 ChIP yes
Rao et al. 2011 human HeLaB2-GR-DMSO-GRKD 0.39 8.06 6.32 2 35 35 35 25,313,813 ChIP no
Rao et al. 2011 human HeLaB2-GR-DMSO-p65KD 0.96 4.84 4.97 2 35 35 35 12,286,932 ChIP unknown
Rao et al. 2011 human HeLaB2-GR-DMSO-WT 0.6 1.35 0.51 0 35 35 35 26,883,356 ChIP unknown
Rao et al. 2011 human HeLaB2-GR-TA-WT 0.95 1.82 1.14 1 35 35 35 13,061,670 ChIP unknown
Rao et al. 2011 human HeLaB2-GR-TA+TNFa-GRKD 0.55 3.84 3.05 2 35 35 35 23,851,932 ChIP unknown
Rao et al. 2011 human HeLaB2-GR-TA+TNFa-p65KD 0.96 5.27 2.96 2 35 35 35 13,570,984 ChIP unknown
Rao et al. 2011 human HeLaB2-GR-TA+TNFa-WT 0.66 1.63 0.99 0 35 35 35 27,313,718 ChIP unknown
Rao et al. 2011 human HeLaB2-GR-TNFa-WT 0.96 1.29 0.47 -1 35 35 35 13,022,367 ChIP unknown
Rao et al. 2011 human HeLaB2-p65-DMSO-GRKD 0.4 7.86 7.04 2 35 35 35 25,556,594 ChIP no
Rao et al. 2011 human HeLaB2-p65-DMSO-p65KD 0.92 5.12 3.33 2 35 35 35 15,380,858 ChIP no
Rao et al. 2011 human HeLaB2-p65-DMSO-WT 0.52 1.73 0.99 0 35 35 35 17,693,337 ChIP no
Rao et al. 2011 human HeLaB2-p65-TA-WT 0.93 1.66 1.03 1 35 35 35 16,120,222 ChIP yes
Rao et al. 2011 human HeLaB2-p65-TA+TNFa-GRKD 0.58 4.86 4.49 2 35 35 35 25,972,505 ChIP yes
Rao et al. 2011 human HeLaB2-p65-TA+TNFa-p65KD 0.93 3.97 4.16 2 35 35 35 16,624,445 ChIP no
Rao et al. 2011 human HeLaB2-p65-TA+TNFa-WT 0.67 2.29 1.67 2 35 35 35 26,290,176 ChIP yes
Rao et al. 2011 human HeLaB2-p65-TNFa-WT 0.93 2.31 1.83 2 35 35 35 16,380,803 ChIP yes
Wang et al. 2011 human CUTLL-Input-1 0.98 1.24 0.42 -1 40 40 40 19,896,199 Input no
Wang et al. 2011 human CUTLL-Input-2 0.98 1.29 0.51 0 40 40 40 20,712,816 Input no
Wang et al. 2011 human CUTLL-Notch1-1 0.97 2.44 1.03 1 40 40 40 19,820,660 ChIP yes
Wang et al. 2011 human CUTLL-Notch1-2 0.93 4.98 1.27 1 40 40 40 15,252,998 ChIP yes
Wang et al. 2011 human CUTLL-RBPJ-1 0.97 1.57 0.69 0 40 40 40 20,226,038 ChIP yes
Wang et al. 2011 human CUTLL-RBPJ-2 0.9 3.1 1.06 1 40 40 40 17,569,147 ChIP yes
Wang et al. 2011 human CUTLL-ZNF143 0.8 7.23 1.9 2 40 40 40 25,444,869 ChIP yes
Wang et al. 2011 mouse G4A2-Input 0.6 1.99 1.14 1 39 39 39 21,212,246 Input no
Wang et al. 2011 mouse G4A2-Notch1 0.73 2.24 1.62 2 39 39 39 27,613,376 ChIP yes
Wang et al. 2011 mouse G4A2-RBPJ 0.89 1.53 1.03 1 40 40 40 12,929,417 ChIP yes
Wang et al. 2011 mouse T6E-Input 0.96 1.24 0.76 0 38 38 38 24,179,307 Input no
Wang et al. 2011 mouse T6E-Notch1 0.92 2.22 1.15 1 38 38 38 21,336,323 ChIP yes
Wang et al. 2011 mouse T6E-RBPJ 0.93 1.74 0.87 0 38 38 38 16,046,706 ChIP yes
Costessi et al. 2011 human K562-NFYA 0.78 4.8 6.12 2 35 35 35 11,661,523 ChIP yes
Costessi et al. 2011 human K562-NFYB 0.58 5.4 6.13 2 35 35 35 15,460,623 ChIP yes
Costessi et al. 2011 human K562-PRAME 0.87 1.76 1.32 1 35 35 35 6,685,161 ChIP yes
Costessi et al. 2011 human K562-Preimmune 0.9 1.67 0.84 0 35 35 35 6,366,475 IgG no
Miyazaki et al. 2011 mouse E2A-Day0 0.94 1.39 0.26 -1 36 36 36 9,650,009 ChIP yes
Miyazaki et al. 2011 mouse E2A-Day2 0.94 1.34 0.19 -2 36 36 36 8,529,512 ChIP unknown
Miyazaki et al. 2011 mouse Input 0.89 1.4 0.24 -2 36 36 36 11,673,268 Input no
GSE26711 mouse C2C12-FLAG 0.95 1.76 0.19 -2 26 26 26 2,144,135 IgG no
GSE26711 mouse C2C12-FLAG-Msx1 0.74 2.6 1.35 1 32.58 26 36 4,769,291 ChIP yes
Sun et al. 2011 mouse MEF-Input 0.85 1.37 0.8 0 36 36 36 17,709,015 Input no
Sun et al. 2011 mouse MEF-NelfB 0.75 1.99 1.52 2 36 36 36 16,971,968 ChIP yes
Heikkinen et al.
2011

human THP1-calcitriol-VDR 0.41 1.63 0.58 0 36 36 36 26,125,837 ChIP yes

Heikkinen et al.
2011

human THP1-IgG 0.46 1.4 0.28 -1 36 36 36 26,578,895 IgG no

Heikkinen et al.
2011

human THP1-unstimulated-VDR 0.4 1.37 0.32 -1 36 36 36 22,822,851 ChIP no

Yoon et al. 2011 xaenopus Input 0.59 N/A N/A N/A 36 36 36 3,219,500 Input no
Yoon et al. 2011 xaenopus Smad2-3 0.93 N/A N/A N/A 36 36 36 8,168,342 ChIP yes
Mullen et al. 2011 human BGO3-Oct4 0.94 2.13 1.51 2 36 36 36 7,835,807 ChIP yes
Mullen et al. 2011 human BGO3-Smad3 0.9 2.21 0.73 0 36 36 36 10,206,400 ChIP yes
Mullen et al. 2011 human BGO3-WCE 0.99 1.41 0.55 0 36 36 36 8,589,186 Input no
Mullen et al. 2011 mouse ESC-Activin-Smad3 0.85 1.98 0.36 -1 36 36 36 3,469,014 ChIP yes
Mullen et al. 2011 mouse ESC-Smad2-3-Activin 0.85 1.97 0.35 -1 36 36 36 3,521,351 ChIP yes
Mullen et al. 2011 mouse ESC-Smad3 0.92 1.86 0.3 -1 26 26 26 3,650,000 ChIP unknown
Mullen et al. 2011 mouse mESC-NoMyod1-Day2-Smad3 0.84 1.67 1.74 2 36 36 36 8,780,818 ChIP yes
Mullen et al. 2011 mouse mESC-NoMyod1-Day5-Smad3 0.64 2.84 1.43 1 36 36 36 7,935,259 ChIP yes
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Mullen et al. 2011 mouse mESC-PlusMyod1-Day2-Smad3 0.71 1.89 1.48 1 36 36 36 13,783,301 ChIP yes

Mullen et al. 2011 mouse
mESC-PlusMyod1-Day5-MyoD-
H2Flag

0.67 2.13 1.19 1 36 36 36 12,790,865 ChIP yes

Mullen et al. 2011 mouse mESC-PlusMyod1-Day5-Smad3 0.75 1.73 1 0 36 36 36 8,585,103 ChIP yes
Mullen et al. 2011 mouse Myotubes-IgG 0.65 1.98 0.75 0 36 36 36 5,056,829 IgG no
Mullen et al. 2011 mouse Myotubes-MyoD1-Rep1 0.78 6.25 2.23 2 36 36 36 4,485,416 ChIP yes
Mullen et al. 2011 mouse Myotubes-MyoD1-Rep2 0.54 3.75 1.62 2 36 36 36 14,493,250 ChIP yes
Mullen et al. 2011 mouse Myotubes-Smad3-Rep1 0.68 3.39 2.15 2 36 36 36 14,630,938 ChIP yes
Mullen et al. 2011 mouse Myotubes-Smad3-Rep2 0.19 2.5 2.03 2 36 36 36 11,953,645 ChIP yes
Mullen et al. 2011 mouse Pro-Bcells-IgG 0.76 3.51 1.09 1 36 36 36 22,066,974 IgG no
Mullen et al. 2011 mouse Pro-Bcells-PU.1-Rep1 0.61 4 1.75 2 36 36 36 11,557,346 ChIP yes
Mullen et al. 2011 mouse Pro-Bcells-PU.1-Rep2 0.76 6.98 1.47 1 36 36 36 21,066,565 ChIP yes
Mullen et al. 2011 mouse Pro-Bcells-Smad3-Rep1 0.68 1.84 1.26 1 36 36 36 13,801,014 ChIP yes
Mullen et al. 2011 mouse Pro-Bcells-Smad3-Rep2 0.74 4.61 2.45 2 36 36 36 13,745,867 ChIP yes
Wei et al. 2011 mouse CD4-Gata3 0.5 3.55 1.68 2 25 26 25 5,311,260 ChIP yes
Wei et al. 2011 mouse CD8-Fli1 0.64 1.78 0.91 0 25 25 25 4,267,162 ChIP unknown
Wei et al. 2011 mouse CD8-Gata3 0.8 1.9 1.08 1 25 25 25 4,827,087 ChIP yes
Wei et al. 2011 mouse CD8-Gata3-KO-Fli1 0.95 1.49 0.69 0 25 25 25 3,152,001 ChIP unknown
Wei et al. 2011 mouse CD8-Gata3-KO-Gata3 0.92 1.32 0.4 -1 25 25 25 1,997,286 ChIP yes
Wei et al. 2011 mouse DN-Gata3 0.66 2.87 1.68 2 25 25 25 6,301,966 ChIP yes
Wei et al. 2011 mouse DP-Gata3 0.76 1.86 1.14 1 25 25 25 6,402,211 ChIP yes
Wei et al. 2011 mouse DP-Gata3-replicate 0.08 14.33 7.09 2 25 25 25 20,563,880 ChIP yes
Wei et al. 2011 mouse iTreg-Gata3 0.26 2.42 1.28 1 25 25 25 7,299,209 ChIP yes
Wei et al. 2011 mouse NKT-Gata3 0.21 16.16 2.81 2 25 25 25 4,716,486 ChIP yes
Wei et al. 2011 mouse nTreg-Gata3 0.69 5.83 2.01 2 25 25 25 4,163,536 ChIP yes
Wei et al. 2011 mouse Th17-Gata3 0.32 1.64 0.68 0 25 25 25 5,051,835 ChIP unknown
Wei et al. 2011 mouse Th1-Gata3 0.67 2.79 1.53 2 25 25 25 6,296,541 ChIP yes
Wei et al. 2011 mouse Th2-Ets1 0.37 3.54 1.87 2 25 25 25 1,620,989 ChIP yes
Wei et al. 2011 mouse Th2-Fli1 0.81 4.76 0.02 -2 24 24 24 444,327 ChIP yes
Wei et al. 2011 mouse Th2-Gata3 0.86 2.86 2.47 2 25 25 25 7,514,211 ChIP yes
Wei et al. 2011 mouse Th2-Gata3-replicate 0.86 2.86 2.47 2 25 25 25 7,514,211 ChIP yes
Liu et al. 2011 mouse mES-TAF1 0.7 1.04 0.11 -2 36 36 36 42,959,794 ChIP yes
Liu et al. 2011 mouse mES-TAF1-IgG 0.66 1.1 0.27 -1 36 36 36 38,486,238 IgG no
Liu et al. 2011 mouse mES-TAF3 0.48 1.76 0.94 0 36 36 36 37,109,895 ChIP yes
Liu et al. 2011 mouse mES-TAF3-IgG 0.38 1.11 0.2 -2 36 36 36 41,265,618 IgG no
Liu et al. 2011 mouse mES-TBP 0.64 2.1 0.93 0 36 36 36 34,110,153 ChIP yes
Liu et al. 2011 mouse mES-TBP-IgG 0.31 1.21 0.17 -2 36 36 36 33,960,211 IgG no
Kong et al. 2011 human MCF7-DMSO-GATA3 0.92 2.27 1.02 1 36 36 36 16,110,797 ChIP yes
Kong et al. 2011 human MCF7-DMSO-p300 0.94 1.49 0.53 0 36 36 36 16,598,044 ChIP yes
Kong et al. 2011 human MCF7-E2-GATA3 0.94 3.42 1.43 1 36 36 36 22,771,157 ChIP yes
Kong et al. 2011 human MCF7-E2-p300 0.92 1.54 0.46 -1 36 36 36 12,820,747 ChIP yes
GSE31951 mouse 0hrKCl-Input-sampleB1 0.87 2.26 0.91 0 33 33 33 21,405,879 Input no
GSE31951 mouse 0hrKCl-Input-sampleB2 0.61 1.21 0.17 -2 33 33 33 11,303,008 Input no
GSE31951 mouse 0hrKCl-MeCP2IP-sampleB1 0.84 3.88 2.11 2 33 33 33 34,260,253 ChIP yes
GSE31951 mouse 0hrKCl-MeCP2IP-sampleB2 0.8 1.97 1.68 2 33 33 33 14,827,886 ChIP yes
GSE31951 mouse 2hrKcl-Input-sampleB1 0.88 1.97 0.32 -1 33 33 33 8,725,472 Input no
GSE31951 mouse 2hrKCl-Input-sampleB2 0.77 1.15 0.16 -2 33 33 33 45,501,766 Input no
GSE31951 mouse 2hrKCl-MeCP2IP-sampleB1 0.8 4.79 2.65 2 33 33 33 13,050,973 ChIP yes
GSE31951 mouse 2hrKCl-MeCP2IP-sampleB2 0.47 1.9 1.33 1 33 33 33 9,573,633 ChIP yes

GSE31951 mouse
2hrKCl-pS421MeCP2IP-
sampleB2

0.89 1.86 0.67 0 33 33 33 3,733,245 ChIP yes

Norton et al. 2011 rat H4IIE-input 0.75 3.28 1.41 1 40 40 40 22,889,534 Input no
Norton et al. 2011 rat H4IIE-TCF7L2 0.81 3.08 1.14 1 40 40 40 21,999,570 ChIP yes
Bernt et al. 2011 mouse MLL-AF9 0.76 2.2 2.05 2 36 36 36 20,979,495 ChIP yes
Sahu et al. 2011 human LNCaP-AR-rep1 0.96 2.15 0.84 0 30 30 30 13,178,048 ChIP yes
Sahu et al. 2011 human LNCaP-AR-rep2 0.97 1.71 0.69 0 30 30 30 13,295,369 ChIP yes
Sahu et al. 2011 human LNCaP-AR-siFoxA1-rep1 0.97 2.45 1.13 1 30 30 30 16,070,383 ChIP yes
Sahu et al. 2011 human LNCaP-AR-siFoxA1-rep2 0.96 2.64 1.18 1 30 30 30 16,077,043 ChIP yes
Sahu et al. 2011 human LNCaP-FoxA1-rep1 0.98 3.05 1.14 1 30 30 30 7,592,193 ChIP yes
Sahu et al. 2011 human LNCaP-FoxA1-rep2 0.98 3.56 1.38 1 30 30 30 8,058,879 ChIP yes
Sahu et al. 2011 human LNCaP-FoxA1-siFoxA1-rep1 0.97 1.77 0.44 -1 30 30 30 5,946,745 ChIP no
Sahu et al. 2011 human LNCaP-FoxA1-siFoxA1-rep2 0.97 1.76 0.42 -1 30 30 30 5,835,884 ChIP no
Sahu et al. 2011 human LNCaP-GR 0.97 1.78 0.83 0 36 36 36 22,124,446 ChIP yes
Sahu et al. 2011 human LNCaP-GR-siFoxA1 0.93 1.68 0.91 0 36 36 36 17,943,158 ChIP yes
Sahu et al. 2011 human LNCaP-rIgG 0.95 1.16 0.21 -2 30 30 30 16,327,209 IgG no
An et al. 2011 mouse C2C12-Input-rep1 0.95 1.13 0.48 -1 37 37 37 17,130,843 Input no
An et al. 2011 mouse C2C12-Input-rep2 0.94 1.1 0.5 -1 40 40 40 24,457,563 Input no
An et al. 2011 mouse C2C12-Sox6-rep1 0.92 2.16 0.39 -1 40 40 40 2,989,595 ChIP yes
An et al. 2011 mouse C2C12-Sox6-rep2 0.96 2.37 0.26 -1 40 40 40 1,470,144 ChIP yes
Shukla et al. 2011 human BJAB-CTCF 0.85 3.53 1.88 2 35 35 35 20,488,614 ChIP yes
Shukla et al. 2011 human BJAB-Rabbit-IgG 0.82 3.24 2.1 2 35 35 35 17,746,364 IgG no
Shukla et al. 2011 human BL41-CTCF 0.81 3.63 2.27 2 35 35 35 27,623,415 ChIP yes
Shukla et al. 2011 human BL41-Rabbit-IgG 0.68 4.44 3.71 2 35 35 35 29,655,822 IgG no
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Trompouki et al.
2011∗ mouse Gata1-G1ERbmp-r1-100914-4 0.97 1.5 0.99 0 36 36 36 18,435,160 ChIP yes

Trompouki et al.
2011∗ mouse Gata2-G1Ebmp-r1-101201-3 0.82 12.68 1.59 2 36 36 36 8,484,282 ChIP yes

Trompouki et al.
2011∗ mouse Smad1-G1Ebmp-r1-100914-6 0.8 4.78 1.52 2 36 36 36 14,561,496 ChIP yes

Trompouki et al.
2011∗ mouse Smad1-G1ERbmp-r1-100914-5 0.85 4.16 1.38 1 36 36 36 16,186,687 ChIP yes

Trompouki et al.
2011∗ mouse WCE-G1Ebmp-r1-101201-2 0.97 1.43 0.92 0 36 36 36 14,429,966 Input no

Trompouki et al.
2011∗ mouse WCE-G1ERbio-r1-100914-1 0.97 1.53 0.98 0 36 36 36 17,835,267 Input no

Trompouki et al.
2011∗ human

GATA1-CD34eryth-bio-r1-
101103-6

0.73 4.25 0.05 -2 36 36 36 94,232 ChIP yes

Trompouki et al.
2011∗ human

GATA1-CD34eryth-bio-r2-
101103-7

0.22 21.87 0.14 -2 36 36 36 744,924 ChIP yes

Trompouki et al.
2011∗ human

GATA1-CD34eryth-bmp-r1-
100922-4

0.57 10.86 0.14 -2 36 36 36 667,864 ChIP yes

Trompouki et al.
2011∗ human

GATA1-CD34eryth-bmp-r2-
101105-1

0.49 10.81 0.15 -2 36 36 36 900,792 ChIP yes

Trompouki et al.
2011∗ human

GATA2-CD34prog-bmp-r1-
101201-1

0.59 2.91 0.05 -2 36 36 36 479,725 ChIP yes

Trompouki et al.
2011∗ human

SMAD1-CD34eryth-bmp-r1-
100922-5

0.65 6.9 0.07 -2 36 36 36 634,638 ChIP yes

Trompouki et al.
2011∗ human

SMAD1-CD34eryth-bmp-r2-
101103-7

0.62 9.05 0.07 -2 36 36 36 730,479 ChIP yes

Trompouki et al.
2011∗ human

SMAD1-CD34prog-bmp-r1-
100901-1

0.68 4.26 0.06 -2 36 36 36 322,324 ChIP yes

Trompouki et al.
2011∗ human

SMAD1-CD34prog-bmp-r2-
101105-3

0.68 3.35 0.06 -2 36 36 36 620,959 ChIP yes

Trompouki et al.
2011∗ human

TCF7L2-CD34prog-bio-r1-
100826-7

0.72 3.01 0.06 -2 36 36 36 339,258 ChIP yes

Trompouki et al.
2011∗ human

TCF7L2-CD34prog-bio-r2-
101105-4

0.64 2.96 0.07 -2 36 36 36 529,093 ChIP yes

Trompouki et al.
2011∗ human

WCE-CD34eryth-bio-r1-101103-
4

0.59 19.41 0.28 -1 36 36 36 79,783 Input no

Trompouki et al.
2011∗ human

WCE-CD34eryth-bio-r1-101201-
4

0.54 3.54 0.05 -2 36 36 36 502,346 Input no

Trompouki et al.
2011∗ human

WCE-CD34eryth-bio-r2-101103-
5

0.69 8.49 0.04 -2 36 36 36 340,786 Input no

Trompouki et al.
2011∗ human

WCE-CD34eryth-bmp-r1-
100922-3

0.69 11.24 0.05 -2 36 36 36 246,281 Input no

Trompouki et al.
2011∗ human

WCE-CD34eryth-bmp-r2-
101105-2

0.68 10.7 0.05 -2 36 36 36 300,293 Input no

Trompouki et al.
2011∗ human WCE-CD34prog-bio-r1-100826-6 0.65 2.88 0.04 -2 36 36 36 356,819 Input no

Trompouki et al.
2011∗ human WCE-CD34prog-bio-r1-101201-1 0.59 2.91 0.05 -2 36 36 36 479,725 Input no

Trompouki et al.
2011∗ human WCE-CD34prog-bio-r2-101105-5 0.65 2.75 0.04 -2 36 36 36 283,167 Input no

Trompouki et al.
2011∗ human

WCE-CD34prog-bmp-r1-
101201-7

0.6 3.13 0.05 -2 36 36 36 430,773 Input no

Trompouki et al.
2011∗ human CEBPA-U937bio-r1-100709-5 0.58 26.28 0.3 -1 35 35 35 4,430,334 ChIP yes

Trompouki et al.
2011∗ human CEBPA-U937dmso-r1-100505-5 0.41 23.29 0.18 -2 36 36 36 151,538 ChIP yes

Trompouki et al.
2011∗ human CEBPA-K562-CEBPA-bmp4 0.46 10.99 0.34 -1 35 35 35 2,662,588 ChIP yes

Trompouki et al.
2011∗ human CEBPA-U937-bmp4 0.64 3.16 0.44 -1 36 36 36 228,810 ChIP yes

Trompouki et al.
2011∗ human GATA1-K562bio-r1-110325-6 0.49 11.55 0.09 -2 39 39 39 245,220 ChIP yes

Trompouki et al.
2011∗ human GATA1-K562bmp-r1-110325-4 0.67 11.66 0.16 -2 36 36 36 335,062 ChIP yes

Trompouki et al.
2011∗ human GATA1-K562 0.57 3.41 0.11 -2 36 36 36 371,785 ChIP yes

Trompouki et al.
2011∗ human GATA2-K562bio-r1-110325-5 0.51 5.76 0.13 -2 39 39 39 190,367 ChIP yes

Trompouki et al.
2011∗ human GATA2-K562bmp-r1-110325-3 0.27 5.97 0.14 -2 36 36 36 405,703 ChIP yes

Trompouki et al.
2011∗ human GATA2-K562 0.47 10.43 0.02 -2 36 36 36 451,795 ChIP yes

Trompouki et al.
2011∗ human Input-K562-CEBPA-bmp4 0.08 27.04 0.2 -2 39 39 39 248,035 Input no
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Trompouki et al.
2011∗ human SMAD1-K562bmp4-r1-100608-2 0.75 8 0.09 -2 35 35 35 834,331 ChIP yes

Trompouki et al.
2011∗ human

SMAD1-K562campk-r1-110323-
2

0.71 2.48 0.14 -2 36 36 36 645,936 ChIP yes

Trompouki et al.
2011∗ human SMAD1-U937bmp4-r1-100608-1 0.69 12.93 0.24 -2 36 36 36 1,184,890 ChIP yes

Trompouki et al.
2011∗ human SMAD1-K562-CEBPA-bmp4 0.83 16.08 0.21 -2 36 36 36 3,126,161 ChIP yes

Trompouki et al.
2011∗ human TCF7L2-K562bio-r1-100106-7 0.75 10.1 0.05 -2 36 36 36 88,763 ChIP yes

Trompouki et al.
2011∗ human TCF7L2-K562bio-r2-Childrens 0.73 5.78 0.07 -2 40 40 40 116,187 ChIP yes

Trompouki et al.
2011∗ human TCF7L2-U937bio-r1-100505-7 0.39 11.03 0.18 -2 36 36 36 145,311 ChIP yes

Trompouki et al.
2011∗ human WCE-K562bio-r1-100106-5 0.72 8.07 0.02 -2 36 36 36 163,001 Input no

Trompouki et al.
2011∗ human WCE-K562bio-r1-100608-2 0.67 5.23 0.02 -2 36 36 36 314,395 Input no

Trompouki et al.
2011∗ human WCE-K562bmp4-r1-100608-1 0.67 8.04 0.05 -2 36 36 36 340,757 Input no

Trompouki et al.
2011∗ human WCE-U937bio-r1-100505-6 0.61 4.26 0.07 -2 36 36 36 294,327 Input no

Trompouki et al.
2011∗ human WCE-U937bio-r1-100608-5 0.64 3.52 0.06 -2 36 36 36 326,001 Input no

Trompouki et al.
2011∗ human WCE-U937bio-r1-100709-4 0.62 3.02 0.06 -2 36 36 36 308,988 Input no

Trompouki et al.
2011∗ human WCE-U937bio-r1-100709-6 0.62 2.64 0.06 -2 36 36 36 299,190 Input no

Trompouki et al.
2011∗ human WCE-U937bmp4-r1-100608-3 0.65 3.73 0.04 -2 36 36 36 314,568 Input no

Trompouki et al.
2011∗ human WCE-U937dmso-r1-100505-3 0.63 4.64 0.07 -2 36 36 36 272,327 Input no

Ceschin et al. 2011 human H3396-CARM1-E2 0.88 2.05 0.19 -2 49 49 49 99,711 ChIP yes
Ceschin et al. 2011 human H3396-CARM1-EtOH 0.88 2.15 0.2 -2 49 49 49 105,031 ChIP yes
Ceschin et al. 2011 human H3396-CBP-E2 0.51 4.35 0.02 -2 36 36 36 152,170 ChIP yes
Ceschin et al. 2011 human H3396-CBP-EtOH-1 0.33 8.51 0.06 -2 36 36 36 289,897 ChIP yes
Ceschin et al. 2011 human H3396-CBPR2151m-E2 0.44 7.62 0.03 -2 36 36 36 168,286 ChIP yes
Ceschin et al. 2011 human H3396-CBPR2151m-EtOH 0.46 8.58 0.03 -2 36 36 36 149,173 ChIP yes
Ceschin et al. 2011 human H3396-CBPR742m-E2-1 0.39 1.93 0.07 -2 36 36 36 383,127 ChIP yes
Ceschin et al. 2011 human H3396-CBPR768m-E2 0.41 10.17 0.04 -2 40 40 40 168,599 ChIP yes
Ceschin et al. 2011 human H3396-CBPR768m-EtOH 0.4 3.59 0.12 -2 40 40 40 157,261 ChIP yes
Ceschin et al. 2011 human H3396-ERa-E2 0.47 8.8 0.01 -2 36 36 36 105,766 ChIP yes
Ceschin et al. 2011 human H3396-ERa-EtOH 0.51 10.95 0.02 -2 36 36 36 73,181 ChIP no
Ceschin et al. 2011 human H3396-Input-E2-rep1-1 0.71 9.46 0.03 -2 36 36 36 92,932 Input no
Ceschin et al. 2011 human H3396-RAC3-E2 0.52 6.03 0.02 -2 36 36 36 110,731 ChIP yes
Mendoza-Parra et
al. 2011

mouse mouse-F9-WCE 0.87 8.28 2.79 2 36 36 36 6,377,439 Input no

Mendoza-Parra et
al. 2011

mouse RARg-24h-ATRA 0.87 4.27 1.95 2 36 36 36 5,864,836 ChIP yes

Mendoza-Parra et
al. 2011

mouse RARg-2h-ATRA 0.87 4.27 1.92 2 36 36 36 6,545,542 ChIP yes

Mendoza-Parra et
al. 2011

mouse RARg-48h-ATRA 0.91 3.46 1.82 2 36 36 36 3,543,638 ChIP yes

Mendoza-Parra et
al. 2011

mouse RARg-48h-EtOH 0.8 4.55 0.93 0 36 36 36 6,281,297 ChIP unknown

Mendoza-Parra et
al. 2011

mouse RARg-6h-ATRA 0.65 5.31 1.93 2 36 36 36 6,353,453 ChIP yes

Mendoza-Parra et
al. 2011

mouse RXRa-24h-ATRA 0.67 4.42 1.29 1 36 36 36 6,444,150 ChIP yes

Mendoza-Parra et
al. 2011

mouse RXRa-2h-ATRA 0.56 9.77 3.79 2 36 36 36 6,676,769 ChIP yes

Mendoza-Parra et
al. 2011

mouse RXRa-48h-ATRA 0.6 11.1 3.89 2 36 36 36 5,869,783 ChIP yes

Mendoza-Parra et
al. 2011

mouse RXRa-48h-EtOH 0.7 5.14 1.32 1 36 36 36 6,631,973 ChIP unknown

Mendoza-Parra et
al. 2011

mouse RXRa-6h-ATRA 0.54 7.61 3.08 2 36 36 36 5,834,436 ChIP yes

Mendoza-Parra et
al. 2011

mouse rxra-ko-RXRa-48h-ATRA 0.89 2.86 0.88 0 36 36 36 4,573,205 ChIP yes

Schmitz et al. 2011 mouse mESC-Jarid1b-1 0.87 1.25 0.34 -1 34 34 34 3,996,359 ChIP yes
Schmitz et al. 2011 mouse mESC-Jarid1b-2 0.88 1.24 0.36 -1 26 26 26 3,488,817 ChIP yes
Bergsland et al.
2011

mouse C2C12-Sox3-transfected-Sox3 0.77 1.44 0.85 0 53 53 53 29,894,751 ChIP yes

Bergsland et al.
2011

mouse Early-formed-neurons-IgG 0.93 2.05 0.2 -2 33 33 33 2,107,025 IgG no
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Bergsland et al.
2011

mouse
Early-formed-neurons-Sox11-
rep1

0.94 2.15 0.27 -1 33 33 33 2,103,532 ChIP yes

Bergsland et al.
2011

mouse
Early-formed-neurons-Sox11-
rep2

0.95 1.99 0.27 -1 33 33 33 2,328,712 ChIP yes

Bergsland et al.
2011

mouse
Early-formed-neurons-Sox11-
rep3

0.96 1.67 0.34 -1 33 33 33 2,668,012 ChIP yes

Bergsland et al.
2011

mouse NPC-Sox2-rep1 0.9 1.38 0.29 -1 38 38 38 6,840,926 ChIP yes

Bergsland et al.
2011

mouse NPC-Sox2-rep2 0.74 1.62 0.69 0 38 38 38 12,391,326 ChIP yes

Bergsland et al.
2011

mouse NPC-Sox2-rep3 0.79 1.9 1.49 1 38 38 38 15,894,900 ChIP yes

Bergsland et al.
2011

mouse NPC-Sox3-rep1 0.88 2.68 1.34 1 34 34 34 3,339,224 ChIP yes

Bergsland et al.
2011

mouse NPC-Sox3-rep2 0.93 2.47 0.5 0 34 34 34 1,464,673 ChIP yes

Bergsland et al.
2011

mouse NPC-Sox3-rep3 0.87 2.87 2.24 2 34 34 34 3,496,087 ChIP yes

Marban et al. 2011 human Jurkat-Input 0.96 3.11 0.77 0 76 76 76 15,973,065 Input no
Marban et al. 2011 human Jurkat-Tat 0.94 4.07 1.04 1 76 76 76 18,900,158 ChIP yes
Quenneville et al.
2011

mouse mESC-HA 0.67 7.09 10.49 2 37.45 38 37 47,077,818 IgG no

Quenneville et al.
2011

mouse mESC-HAZFP57-HA 0.76 4.65 6.75 2 37.35 38 37 40,511,425 ChIP yes

Quenneville et al.
2011

mouse mESC-KAP1 0.63 4.31 7.86 2 49.63 76 38 58,793,249 ChIP yes

Mullican et al. 2011 mouse Macrophage-BSA-HDAC3 0.84 1.7 1.31 1 38 38 38 18,260,410 ChIP yes
Mullican et al. 2011 mouse Macrophage-IL4-HDAC3 0.89 1.64 1.18 1 38 38 38 17,042,856 ChIP yes
Mullican et al. 2011 mouse Macrophage-Input 0.95 1.09 0.36 -1 36 36 36 19,136,736 Input no
Brown et al. 2011 human hESC-D0-Smad-XL-rep1 0.95 1.67 0.42 -1 38 38 38 5,323,799 ChIP yes
Brown et al. 2011 human hESC-D0-Smad-XL-rep2 0.72 1.44 0.51 0 36 36 36 30,063,231 ChIP yes
Brown et al. 2011 human hESC-D3-Smad-XL-rep1 0.97 1.62 0.36 -1 38 38 38 6,844,734 ChIP yes
Brown et al. 2011 human hESC-D3-Smad-XL-rep2 0.75 1.44 0.42 -1 36 36 36 29,936,111 ChIP yes
Brown et al. 2011 human hESC-Input-XL 0.98 1.37 0.44 -1 36 36 36 7,422,963 Input no

Mazzoni et al. 2011 mouse
Progenitor-Motor-Neurons-
Day4-iOlig2-V5

0.92 3.13 1.85 2 36 36 36 3,330,651 ChIP yes

Mazzoni et al. 2011 mouse
Progenitor-Motor-Neurons-
Day4-Olig2

0.9 5 1.52 2 36 36 36 8,348,180 ChIP yes

Mazzoni et al. 2011 mouse
Progenitor-Motor-Neurons-
Day4-V5-control

0.93 1.48 0.48 -1 36 36 36 13,581,601 Input no

Mazzoni et al. 2011 mouse
Progenitor-Motor-Neurons-
Day5-iFlag-Hoxc9

0.87 3.68 2.59 2 36 36 36 29,775,081 ChIP yes

Mazzoni et al. 2011 mouse
Progenitor-Motor-Neurons-
Day5-iHoxc9-V5

0.71 2.48 2.42 2 69.05 76 36 28,150,488 ChIP yes

Tan et al. 2011 human LNCap-DHT-AR-1 0.83 11.17 1.68 2 36 36 36 13,158,813 ChIP yes
Tan et al. 2011 human LNCap-DHT-FoxA1-1 0.89 9.94 2.58 2 36 36 36 18,910,797 ChIP yes
Tan et al. 2011 human LNCap-DHT-NKX3-1 0.93 1.98 0.62 0 36 36 36 11,840,488 ChIP yes
Tan et al. 2011 human LNCap-EtOH-AR-1 0.92 2.71 0.92 0 36 36 36 10,786,161 ChIP unknown
Tan et al. 2011 human LNCap-EtOH-FoxA1 0.96 9.35 2.52 2 36 36 36 5,367,267 ChIP yes
Tan et al. 2011 human LNCap-EtOH-NKX3-1 0.91 1.59 0.51 0 36 36 36 16,850,974 ChIP yes
Tan et al. 2011 human LNCaP-Genomic-Input-1 0.95 1.54 0.51 0 36 36 36 10,550,285 Input no
Shen et al. 2011 mouse Heart-input1 0.87 1.86 0.47 -1 36 36 36 5,928,909 Input no
Shen et al. 2011 mouse Heart-input2 0.95 1.38 0.41 -1 36 36 36 6,264,090 Input no
Shen et al. 2011 mouse Heart-input3 0.94 1.21 0.48 -1 36 36 36 10,837,874 Input no
Shen et al. 2011 mouse Heart-Tbx20-GFP 0.95 1.9 0.63 0 36 36 36 23,754,878 ChIP yes
Seitz et al. 2011 human BL41-Input 0.98 1.19 0.1 -2 31 31 31 1,972,404 Input no
Seitz et al. 2011 human BL41-Myc 0.86 3.51 1.22 1 33 33 33 2,719,977 ChIP yes
Seitz et al. 2011 human Blue1-Input 0.99 1.27 0.12 -2 31 31 31 1,765,339 Input no
Seitz et al. 2011 human Blue1-Myc 0.98 2.46 0.66 0 31 31 31 1,884,244 ChIP yes
Seitz et al. 2011 human CA46-Input 0.98 1.2 0.13 -2 31 31 31 1,492,644 Input no
Seitz et al. 2011 human CA46-Myc 0.93 1.4 0.14 -2 71 71 71 1,734,564 ChIP yes
Seitz et al. 2011 human Raji-Input 0.95 1.26 0.16 -2 34 34 34 3,027,850 Input no
Seitz et al. 2011 human Raji-Myc 0.82 1.22 0.25 -2 34 34 34 2,186,015 ChIP yes
Seitz et al. 2011 human Ramos-Input 0.98 1.2 0.14 -2 31 31 31 1,880,856 Input no
Seitz et al. 2011 human Ramos-Myc 0.94 2.09 0.61 0 33 33 33 3,293,975 ChIP yes
Little et al. 2011 human C4-2B-Input 0.93 1.05 0.33 -1 50 50 50 85,985,363 Input no
Little et al. 2011 human C4-2B-Runx2 0.18 2.9 3.54 2 50 50 50 63,645,646 ChIP yes
Whyte et al. 2011 mouse mES-CoREST 0.94 1.37 0.39 -1 36 36 36 9,515,699 ChIP yes
Whyte et al. 2011 mouse mES-HDAC1 0.33 4.48 2.65 2 36 36 36 17,775,205 ChIP yes
Whyte et al. 2011 mouse mES-HDAC1-rep2 0.13 2.33 1.22 1 36 36 36 27,399,530 ChIP yes
Whyte et al. 2011 mouse mES-HDAC2 0.69 2.49 1.65 2 36 36 36 14,740,848 ChIP yes
Whyte et al. 2011 mouse mES-HDAC2-rep2 0.16 2.29 1.74 2 36 36 36 25,056,680 ChIP yes
Whyte et al. 2011 mouse mES-LSD1 0.94 1.54 0.79 0 36 36 36 3,907,159 ChIP yes
Whyte et al. 2011 mouse mES-LSD1-rep2 0.93 2.25 1.23 1 36 36 36 24,506,916 ChIP yes
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Whyte et al. 2011 mouse mES-Mi-2 0.42 1.54 0.56 0 36 36 36 24,712,531 ChIP yes
Whyte et al. 2011 mouse mES-Mi-2b 0.95 1.27 0.45 -1 36 36 36 10,665,386 ChIP yes
Whyte et al. 2011 mouse mES-REST 0.73 3.31 1.57 2 36 36 36 24,569,235 ChIP yes
Whyte et al. 2011 mouse WCE-DMSO-t0 0.71 2.01 0.9 0 36 36 36 11,409,350 Input no
Whyte et al. 2011 mouse WCE-DMSO-t48 0.77 2.31 1.4 1 36 36 36 13,324,722 Input no
Whyte et al. 2011 mouse WCE-TCP-48 0.76 2.37 1.41 1 36 36 36 12,021,728 Input no
GSE25426 human THP-1-Control 0.94 1.29 0.36 -1 36 36 36 21,074,660 Input no
GSE25426 human THP-1-PPARg 0.96 1.82 0.63 0 36 36 36 14,473,006 ChIP yes
GSE25426 human THP-1-PU.1 0.95 4.78 2.12 2 35 35 35 13,571,315 ChIP yes
GSE25426 human THP-1-RXR 0.98 1.46 0.29 -1 35 35 35 6,999,922 ChIP yes
Yildirim et al. 2011 mouse mESC-Brg1-KD-Mbd3 0.96 2.73 0.15 -2 36 36 36 1,656,511 ChIP unknown
Yildirim et al. 2011 mouse mESC-Mbd3-rep1 0.94 2.21 0.33 -1 36 36 36 2,189,692 ChIP yes
Yildirim et al. 2011 mouse mESC-Mbd3-rep2 0.85 1.23 0.61 0 36 36 36 15,055,944 ChIP yes
Yildirim et al. 2011 mouse mESC-Tet1-KD-Mbd3 0.97 1.56 0.25 -1 36 36 36 3,626,622 ChIP unknown
Botcheva et al. 2011 human IMR90-Input 0.87 1.27 0.21 -2 36 36 36 9,286,134 Input no
Botcheva et al. 2011 human IMR90-p53 0.7 2.66 0.61 0 36 36 36 5,285,892 ChIP yes
Stadler et al. 2011 mouse ES-CTCF-rep1 0.64 28.28 1.67 2 37 37 37 10,466,451 ChIP yes
Stadler et al. 2011 mouse ES-CTCF-rep2 0.44 26.16 2.87 2 38 38 38 13,296,384 ChIP yes
Stadler et al. 2011 mouse ES-CTCF-rep3 0.49 9.15 8.28 2 38 38 38 9,587,128 ChIP yes
Stadler et al. 2011 mouse ES-Input-rep1 0.82 1.77 1.05 1 38 38 38 11,095,374 Input no
Stadler et al. 2011 mouse ES-Input-rep2 0.83 1.94 2.94 2 38 38 38 29,650,665 Input no
Stadler et al. 2011 mouse TKO-CTCF-rep1 0.63 10.83 3.72 2 36 36 36 34,828,958 ChIP yes
Stadler et al. 2011 mouse TKO-CTCF-rep2 0.91 5.48 3.61 2 36 36 36 2,836,169 ChIP yes
Holmstrom et al.
2011

mouse Pancreas-Input 0.97 1.46 0.88 0 36 36 36 11,479,285 Input no

Holmstrom et al.
2011

mouse Pancreas-Lrh1 0.84 4.4 1.89 2 36 36 36 13,587,564 ChIP yes

Xu et al. 2011 zebrafish Mxtx2-4.5hpf 0.77 1.7 1.39 1 36 36 36 11,341,093 ChIP yes
Xu et al. 2011 zebrafish Nanog-like-3.5hpf 0.63 1.89 1.44 1 36 36 36 7,535,238 ChIP yes
Xu et al. 2011 zebrafish Nanog-like-4.5hpf 0.84 3.94 1.22 1 36 36 36 10,103,194 ChIP yes
Xu et al. 2011 zebrafish WCE-Mxtx2-4.5hpf 0.97 1.24 0.59 0 36 36 36 18,309,687 Input no
Xu et al. 2011 zebrafish WCE-Nanog-like-3.5hpf 0.91 1.63 0.9 0 36 36 36 11,252,453 Input no
Xu et al. 2011 zebrafish WCE-Nanog-like-4.5hpf 0.98 1.36 0.67 0 36 36 36 15,831,173 Input no
Tiwari et al. 2011a;
Tiwari et al. 2011b

mouse ES-JNK13-biological-replicate-a 0.82 4.27 2.79 2 38 38 38 8,462,462 ChIP yes

Tiwari et al. 2011a;
Tiwari et al. 2011b

mouse ES-JNK13-biological-replicate-b 0.51 10.19 3.89 2 38 38 38 8,175,875 ChIP yes

Tiwari et al. 2011a;
Tiwari et al. 2011b

mouse ES-NFYA-biological-replicate-a 0.79 2.98 5.24 2 38 38 38 19,929,924 ChIP yes

Tiwari et al. 2011a;
Tiwari et al. 2011b

mouse ES-NFYA-biological-replicate-b 0.66 3.93 7.62 2 38 38 38 24,051,713 ChIP yes

Tiwari et al. 2011a;
Tiwari et al. 2011b

mouse Input 0.82 1.77 1.05 1 38 38 38 11,095,374 Input no

Tiwari et al. 2011a;
Tiwari et al. 2011b

mouse NP-JNK13-biological-replicate-a 0.69 8.11 5.07 2 38 38 38 8,802,240 ChIP yes

Tiwari et al. 2011a;
Tiwari et al. 2011b

mouse NP-JNK13-biological-replicate-b 0.92 2.07 1.37 1 38 38 38 9,691,977 ChIP yes

Tiwari et al. 2011a;
Tiwari et al. 2011b

mouse NP-NFYA-biological-replicate-a 0.85 2.18 3.96 2 38 38 38 23,674,653 ChIP yes

Tiwari et al. 2011a;
Tiwari et al. 2011b

mouse NP-NFYA-biological-replicate-b 0.86 1.97 3.33 2 38 38 38 21,717,487 ChIP yes

Tiwari et al. 2011a;
Tiwari et al. 2011b

mouse TN-DMSO-JNK1-3 0.17 11.6 12.92 2 36 36 36 38,425,945 ChIP yes

Tiwari et al. 2011a;
Tiwari et al. 2011b

mouse
TN-JNK1-3-biological-replicate-
a

0.35 17.31 5.6 2 38 38 38 8,678,605 ChIP yes

Tiwari et al. 2011a;
Tiwari et al. 2011b

mouse
TN-JNK1-3-biological-replicate-
b

0.29 20.52 7.67 2 38 38 38 6,897,900 ChIP yes

Tiwari et al. 2011a;
Tiwari et al. 2011b

mouse TN-JNKi-JNK1-3 0.35 5.86 12.97 2 36 36 36 42,637,275 ChIP yes

Tiwari et al. 2011a;
Tiwari et al. 2011b

mouse TN-NFYA-biological-replicate-a 0.68 3.06 5.64 2 38 38 38 27,386,709 ChIP yes

Tiwari et al. 2011a;
Tiwari et al. 2011b

mouse TN-NFYA-biological-replicate-b 0.84 2.15 3.33 2 38 38 38 25,748,779 ChIP yes

Zhang et al. 2011 mouse F-Bcl6-rep1-G51 0.91 2.05 1.74 2 36 36 36 7,810,319 ChIP yes
Zhang et al. 2011 mouse F-Bcl6-rep2-G65-M1 0.9 6.17 0.58 0 36 36 36 6,073,003 ChIP yes
Zhang et al. 2011 mouse F-Bcl6-rep3-G65-M2 0.75 2.83 1.16 1 36 36 36 6,266,286 ChIP yes
Zhang et al. 2011 mouse F-Bcl6-rep4-G65-M3 0.93 3.23 0.42 -1 36 36 36 12,764,985 ChIP yes
Zhang et al. 2011 mouse FH-STAT5-rep1-G66-M1 0.83 6.19 3.78 2 36 36 36 6,691,463 ChIP yes
Zhang et al. 2011 mouse FH-STAT5-rep2-G66-M2 0.69 5.59 2.97 2 36 36 36 6,110,031 ChIP yes
Zhang et al. 2011 mouse FH-STAT5-rep3-G66-M3 0.65 9.48 4.33 2 36 36 36 13,444,170 ChIP yes
Zhang et al. 2011 mouse FL-STAT5-rep1-G52 0.19 2.48 1.94 2 36 36 36 5,389,553 ChIP yes
Zhang et al. 2011 mouse FL-STAT5-rep2-G70-M3 0.52 3.27 1.47 1 36 36 36 5,884,969 ChIP yes
Zhang et al. 2011 mouse FL-STAT5-rep3-G72-M1 0.63 2.55 0.92 0 36 36 36 2,627,103 ChIP yes
Zhang et al. 2011 mouse IgG-control 0.62 1.66 0.81 0 35 35 35 11,562,651 IgG no

Continued on next page

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27841
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27841
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27841
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27841
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27841
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27841
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25426
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25426
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25426
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25426
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31690
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31690
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31690
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31690
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31558
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31558
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30203
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30203
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30203
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30203
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30203
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30203
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30203
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34295
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34295
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34295
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34295
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34683
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34683
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34683
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34683
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34683
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34683
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25532
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31578
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31578
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31578
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31578
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31578
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31578
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31578
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31578
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31578
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31578
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31578


335

Table 10.1 – Continued from previous page

Source

S
p

e
c
ie

s

Library

C
o
m

p
le

x
it

y

NSC RSC QC

A
v
e
.

R
e
a
d

L
e
n
g
th

M
a
x
.

R
e
a
d

L
e
n
g
th

M
in

.
R

e
a
d

L
e
n
g
th

Mapped
reads

Type

Should
exhibit
read
clustering

Zhang et al. 2011 mouse M-Bcl6-rep1-G49 0.49 3.13 1.72 2 35 35 35 18,985,967 ChIP yes
Zhang et al. 2011 mouse M-Bcl6-rep2-G50 0.8 2.86 2.36 2 35 35 35 14,452,480 ChIP yes
Zhang et al. 2011 mouse M-Bcl6-rep3-G71-M2 0.76 2.33 0.74 0 35 35 35 14,149,114 ChIP yes
Zhang et al. 2011 mouse MH-STAT5-rep1-G36 0.62 4.29 2.69 2 35 35 35 15,997,841 ChIP yes
Zhang et al. 2011 mouse MH-STAT5-rep2-G41 0.76 3.64 2.47 2 35 35 35 12,841,332 ChIP yes
Zhang et al. 2011 mouse MH-STAT5-rep3-G42 0.64 3.39 2.67 2 36 36 36 9,528,779 ChIP yes
Zhang et al. 2011 mouse ML-STAT5-rep1-G35 0.71 2.18 2.17 2 36 36 36 16,024,096 ChIP yes
Zhang et al. 2011 mouse ML-STAT5-rep2-G40 0.84 1.69 1.42 1 36 36 36 5,688,929 ChIP yes
Smith et al. 2011 mouse mES-ELL 0.79 1.71 0.79 0 40 40 40 16,754,758 ChIP yes
Smith et al. 2011 mouse mES-Input 0.96 1.38 0.76 0 40 40 40 19,454,353 Input no
Nakayamada et al.
2011

mouse CD4+-Tbet 0.56 3.09 1.78 2 36 36 36 23,421,318 ChIP yes

Lu et al. 2012 human IgG-1-BCBL1 0.94 2.23 1.07 1 36 36 36 19,209,840 IgG no
Lu et al. 2012 human IgG-2-BCBL1 0.81 1.44 0.3 -1 36 36 36 12,604,075 IgG no
Lu et al. 2012 human LANA-1-BCBL1 0.46 1.6 0.53 0 36 36 36 19,777,228 ChIP yes
Lu et al. 2012 human LANA-2-BCBL1 0.86 1.44 0.27 -1 36 36 36 11,880,205 ChIP yes
Meyer et al. 2012 human LS180-bCat-125-1 0.43 13.11 1.87 2 35.43 36 35 39,712,224 ChIP yes
Meyer et al. 2012 human LS180-bCat-Veh-1 0.43 6.85 2.83 2 35.1 36 35 25,024,509 ChIP yes
Meyer et al. 2012 human LS180-CDX2-125-1 0.57 4.36 1.81 2 35.59 36 35 38,267,118 ChIP yes
Meyer et al. 2012 human LS180-CDX2-Veh-1 0.56 4.57 1.71 2 35.6 36 35 34,581,066 ChIP yes
Meyer et al. 2012 human LS180-CEBPb-125-1 0.81 8.48 1.8 2 35 35 35 24,978,947 ChIP yes
Meyer et al. 2012 human LS180-CEBPb-Veh-1 0.05 8.15 1.82 2 35.75 36 35 78,542,681 ChIP yes
Meyer et al. 2012 human LS180-Input-1 0.15 1.83 1.02 1 35.66 36 35 54,134,263 Input no
Meyer et al. 2012 human LS180-RXR-125-1 0.09 7.72 1.64 2 36 36 36 29,948,896 ChIP yes
Meyer et al. 2012 human LS180-RXR-Veh-1 0.1 7.3 1.79 2 36 36 36 26,448,441 ChIP yes
Meyer et al. 2012 human LS180-TCF4-125-2 0.28 10.15 1.78 2 45.01 50 35 49,453,419 ChIP yes
Meyer et al. 2012 human LS180-TCF4-Veh-2 0.36 10.26 1.9 2 42.43 50 35 20,780,670 ChIP yes
Meyer et al. 2012 human LS180-VDR-125-1 0.23 5.74 3.37 2 36 36 36 4,734,750 ChIP yes
Meyer et al. 2012 human LS180-VDR-Veh-1 0.18 11.61 5.58 2 35.79 36 35 72,061,937 ChIP unknown
Ntziachristos et al.
2012

mouse DP-mnase-input-replicate-1 0.92 2.74 1.13 1 34 34 34 15,457,880 Input no

Ntziachristos et al.
2012

mouse DP-mnase-input-replicate-2 0.9 6.08 3.06 2 34 34 34 12,676,911 Input no

Ntziachristos et al.
2012

mouse T-ALL-mnase-input-replicate-1 0.58 1.7 0.18 -2 34 34 34 9,970,383 Input no

Ntziachristos et al.
2012

mouse T-ALL-mnase-input-replicate-2 0.86 2.17 0.68 0 34 34 34 12,351,316 Input no

Ntziachristos et al.
2012

mouse T-ALL-Notch1 0.75 2.23 1.97 2 34 34 34 15,248,670 ChIP yes

Ntziachristos et al.
2012

mouse T-ALL-sonicated-input 0.7 1.28 0.17 -2 34 34 34 12,479,110 Input no

Cheng et al. 2012 human Gdown1-Control 0.97 1.69 0.66 0 36 36 36 3,798,010 ChIP yes
Cheng et al. 2012 human Gdown1-Flavo 0.93 1.77 0.74 0 36 36 36 7,869,560 ChIP yes
GSE33128 human Gdown1-IMR90 0.67 2.83 1.46 1 36 36 36 13,781,340 ChIP yes
GSE33128 human IgG-IMR90 0.67 7.4 2.05 2 36 36 36 7,308,478 IgG no
GSE33128 human Input-IMR90 0.96 1.47 0.69 0 36 36 36 14,239,395 Input no
GSE35109 human ERa-ChIP-seq-1 0.86 1.46 1.99 2 51 51 51 48,891,564 ChIP yes
GSE35109 human ERa-ChIP-seq-2 0.7 2.02 3.17 2 51 51 51 52,808,583 ChIP yes
GSE35109 human ERa-ChIP-seq-3 0.3 5.75 5.72 2 51 51 51 46,155,863 ChIP yes
GSE35109 human ERa-ChIP-seq-4 0.8 1.64 2.76 2 51 51 51 57,965,746 ChIP yes
Canella et al. 2012 mouse INPUT-Rep1 0.8 1.37 1.93 2 75 75 75 31,537,710 Input no
Canella et al. 2012 mouse INPUT-Rep2 0.8 1.38 1.96 2 75 75 75 33,328,402 Input no
Canella et al. 2012 mouse RPB2-Rep1 0.8 1.55 1.74 2 75 75 75 35,847,372 ChIP yes
Canella et al. 2012 mouse RPB2-Rep2 0.83 1.94 1.75 2 75 75 75 30,551,646 ChIP yes
Canella et al. 2012 mouse RPC1-Rep1 0.9 1.9 1.48 1 75 75 75 23,033,105 ChIP yes
Canella et al. 2012 mouse RPC1-Rep2 0.91 1.72 1.31 1 75 75 75 22,145,329 ChIP yes
Canella et al. 2012 mouse RPC4-Rep1 0.87 1.9 1.49 1 75 75 75 25,973,018 ChIP yes
Canella et al. 2012 mouse RPC4-Rep2 0.86 1.83 1.6 2 75 75 75 31,517,301 ChIP yes
Sadasivam et al.
2012

human BMyb-HeLa-Rep1 0.88 1.36 0.32 -1 36 36 36 15,389,344 ChIP yes

Sadasivam et al.
2012

human BMyb-HeLa-Rep2 0.77 1.81 0.07 -2 36 36 36 1,052,761 ChIP yes

Sadasivam et al.
2012

human Input-HeLa-Rep1 0.71 1.79 0.69 0 36 36 36 17,569,472 Input no

Sadasivam et al.
2012

human Input-HeLa-Rep2 0.64 1.56 0.08 -2 36 36 36 1,586,928 Input no

Sadasivam et al.
2012

human LIN9-HeLa-Rep1 0.92 1.39 0.49 -1 36 36 36 17,000,309 ChIP yes

Sadasivam et al.
2012

human LIN9-HeLa-Rep2 0.88 1.41 0.05 -2 36 36 36 1,798,161 ChIP yes

Boergesen et al.
2012

mouse LXR-WT-Bexarotene 0.93 1.94 2.05 2 35 35 35 6,469,307 ChIP yes

Boergesen et al.
2012

mouse LXR-WT-Control 0.9 1.91 1.45 1 35 35 35 6,086,575 ChIP unknown
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Boergesen et al.
2012

mouse LXR-WT-T0901317 0.93 2.21 3.81 2 35 35 35 6,773,502 ChIP unknown

Boergesen et al.
2012

mouse PPARalpha-LXRdKO-Control 0.69 4.14 4.68 2 35 35 35 12,603,632 ChIP yes

Boergesen et al.
2012

mouse PPARalpha-WT-Control 0.66 4.02 10.05 2 35 35 35 13,493,293 ChIP yes

Boergesen et al.
2012

mouse RXR-LXRdKO-Bexarotene 0.96 2.71 2 2 34 34 34 4,499,835 ChIP yes

Boergesen et al.
2012

mouse RXR-LXRdKO-Control 0.92 2.7 1.99 2 32 32 32 5,011,146 ChIP yes

Boergesen et al.
2012

mouse RXR-LXRdKO-T0901317 0.94 2.14 1.9 2 32 32 32 5,048,268 ChIP unknown

Boergesen et al.
2012

mouse RXR-WT-Bexarotene 0.94 2.57 1.82 2 34 34 34 4,819,549 ChIP yes

Boergesen et al.
2012

mouse RXR-WT-Control 0.95 1.96 1.33 1 32 32 32 5,847,078 ChIP yes

Boergesen et al.
2012

mouse RXR-WT-T0901317 0.93 3.08 2.13 2 32 32 32 5,510,973 ChIP unknown

Schödel et al. 2012 human HIF-1beta 0.37 3.41 1.44 1 51 51 51 7,729,167 ChIP yes
Schödel et al. 2012 human HIF-2alpha 0.64 3.11 1.21 1 51 51 51 1,885,345 ChIP yes
Schödel et al. 2012 human Pre-immune-control 0.29 4.94 1.87 2 51 51 51 5,806,061 IgG no
Pehkonen et al.
2012

human IgG-control 0.72 1.41 0.24 -2 36 36 36 15,281,888 IgG no

Pehkonen et al.
2012

human LXR-T09 0.87 1.47 0.29 -1 36 36 36 14,265,491 ChIP yes

Pehkonen et al.
2012

human LXR-vehicle 0.9 1.42 0.27 -1 36 36 36 14,289,777 ChIP unknown

GSE30919 mouse
CapH2-Ab1-DMSO-NOT-
NORMALIZED-mES-MM8

0.69 1.61 0.91 0 36 36 36 16,534,945 ChIP yes

GSE30919 mouse
CapH2-Ab1-FLAVO-NOT-
NORMALIZED-mES-MM8

0.71 1.61 0.83 0 36 36 36 15,830,789 ChIP yes

GSE30919 mouse CapH2-Ab1-WT-mES-MM8 0.66 1.73 0.92 0 36 36 36 16,607,056 ChIP yes
GSE30919 mouse CapH2-Ab2-WT-mES-MM8 0.9 1.41 0.78 0 36 36 36 17,717,075 ChIP yes

GSE30919 mouse
Smc1-DMSO-NOT-
NORMALIZED-mES-MM8

0.84 5.22 1.99 2 36 36 36 19,206,320 ChIP yes

GSE30919 mouse
Smc1-FLAVO-NOT-
NORMALIZED-mES-MM8

0.78 4.43 1.88 2 36 36 36 19,650,774 ChIP yes

Gao et al. 2012 human CBX2 0.83 1.51 0.52 0 46 46 46 11,796,622 ChIP yes
Gao et al. 2012 human FH-CBX2.HA 0.89 1.22 0.37 -1 36 36 36 20,303,587 ChIP yes
Gao et al. 2012 human FH-PCGF1.HA 0.82 1.35 0.35 -1 36 36 36 18,667,442 ChIP yes
Gao et al. 2012 human FH-PCGF2.HA 0.66 1.9 0.67 0 36 36 36 18,549,373 ChIP yes
Gao et al. 2012 human FH-PCGF4.HA 0.31 2.44 0.81 0 36 36 36 18,274,491 ChIP yes
Gao et al. 2012 human FH-PCGF5.HA 0.66 1.78 0.65 0 36 36 36 18,930,930 ChIP yes
Gao et al. 2012 human FH-PCGF6.HA 0.8 1.48 0.43 -1 36 36 36 19,548,786 ChIP yes
Gao et al. 2012 human FH-RING1B.HA 0.43 1.94 1.58 2 36 36 36 19,398,688 ChIP yes
Gao et al. 2012 human FH-RYBP.HA 0.83 1.32 0.36 -1 36 36 36 16,950,286 ChIP yes
Gao et al. 2012 human input 0.78 1.23 0.22 -2 36 36 36 19,426,459 Input no
Gao et al. 2012 human PCGF4 0.93 1.16 0.19 -2 46 46 46 14,654,954 ChIP yes
Gao et al. 2012 human RING1B 0.9 1.18 0.24 -2 46 46 46 19,431,342 ChIP yes
Gao et al. 2012 human RYBP 0.91 1.36 0.44 -1 46 46 46 15,442,467 ChIP yes
Yu et al. 2012 mouse CBFb-induced-1 0.62 1.62 2.88 2 39.24 40 36 58,627,013 ChIP yes
Yu et al. 2012 mouse CBFb-thymocyte-control 0.25 1.63 0.62 0 40 40 40 8,637,405 ChIP yes
Yu et al. 2012 mouse CBFb-thymocyte-Runx1KO 0.35 1.4 0.54 0 40 40 40 7,518,656 ChIP yes
Yu et al. 2012 mouse CBFb-uninduced-1 0.73 1.58 2.28 2 36 36 36 26,748,905 ChIP yes
Yu et al. 2012 mouse IgG-induced-1 0.13 4.73 3.85 2 39.39 40 36 60,744,963 IgG no
Yu et al. 2012 mouse IgG-thymocyte-control 0.11 7.03 0.93 0 40 40 40 10,387,710 IgG no
Yu et al. 2012 mouse IgG-thymocyte-Runx1KO 0.04 9.33 0.8 0 40 40 40 11,696,369 IgG no
Yu et al. 2012 mouse IgG-uninduced-1 0.14 3.57 1.51 2 36 36 36 30,535,688 IgG no
Yu et al. 2012 mouse Ring1b-alt-ab 0.11 8.57 1.74 2 40 40 40 17,104,492 ChIP yes
Yu et al. 2012 mouse Ring1b-induced-1 0.67 1.5 2.59 2 39.31 40 36 65,911,236 ChIP yes
Yu et al. 2012 mouse Ring1b-thymocyte-control 0.21 3.38 0.58 0 40 40 40 7,476,406 ChIP yes
Yu et al. 2012 mouse Ring1b-thymocyte-Runx1KO 0.1 8.31 1.1 1 40 40 40 11,067,615 ChIP yes
Yu et al. 2012 mouse Ring1b-uninduced-1 0.38 2.1 3.58 2 36 36 36 31,481,625 ChIP yes
Yu et al. 2012 mouse Runx1-for-Ring1b-alt-ab 0.2 6.16 2.13 2 40 40 40 14,979,699 ChIP yes
Yu et al. 2012 mouse Runx1-induced-1 0.45 1.72 3.1 2 39.26 40 36 65,873,746 ChIP yes
Yu et al. 2012 mouse Runx1-thymocyte-control 0.24 5.51 1.23 1 40 40 40 8,075,699 ChIP yes
Yu et al. 2012 mouse Runx1-thymocyte-Runx1KO 0.17 4.65 0.84 0 40 40 40 9,234,112 ChIP no
Yu et al. 2012 mouse Runx1-uninduced-1 0.65 1.55 1.73 2 36 36 36 23,915,032 ChIP yes
GSE29180 human Jurkat-GATA3 0.75 4.85 0.85 0 36 36 36 4,308,315 ChIP yes
GSE29180 human Jurkat-Input-Rep1 0.97 1.19 0.42 -1 36 36 36 12,308,677 Input no
GSE29180 human Jurkat-RUNX1-Rep1 0.61 2.83 0.82 0 36 36 36 5,791,954 ChIP yes
GSE29180 human Jurkat-RUNX1-Rep2 0.53 2.44 0.53 0 36 36 36 5,800,696 ChIP yes
GSE29180 human Jurkat-RUNX1-Rep3 0.44 4.33 0.89 0 36 36 36 3,795,121 ChIP yes
GSE29180 human Jurkat-TAL1-Rep1 0.92 1.62 0.38 -1 36 36 36 5,485,444 ChIP yes
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GSE29180 human Jurkat-TAL1-Rep2 0.86 2.59 0.68 0 36 36 36 6,350,195 ChIP yes
GSE29180 human Jurkat-TCF12 0.81 1.53 0.38 -1 36 36 36 8,594,457 ChIP yes
GSE29180 human Jurkat-TCF3 0.84 1.51 0.24 -2 36 36 36 5,398,758 ChIP yes
Sakabe et al. 2012 mouse input-1 0.95 1.86 0.47 -1 36 36 36 6,264,090 Input no
Sakabe et al. 2012 mouse input-2 0.94 1.38 0.41 -1 36 36 36 10,837,874 Input no
Sakabe et al. 2012 mouse input-3 0.95 1.21 0.48 -1 36 36 36 23,754,878 Input no
Sakabe et al. 2012 mouse Tbx20-GFP 0.87 1.9 0.63 0 36 36 36 5,928,909 ChIP yes
Miller et al. 2012 human HCC-1428-LTED-ER 0.92 1.2 0.36 -1 43 43 43 23,589,680 ChIP yes
Miller et al. 2012 human MCF-7-LTED-ER 0.93 1.15 0.55 0 43 43 43 27,118,853 ChIP yes
Hutchins et al. 2012 mouse PEC-IL10-treated-Input 0.97 1.39 0.25 -1 49 49 49 4,244,316 Input no
Hutchins et al. 2012 mouse PEC-IL10-treated-STAT3 0.71 5.06 1.09 1 49 49 49 3,841,121 ChIP yes
Hutchins et al. 2012 mouse PEC-Untreated-Input 0.97 1.39 0.17 -2 49 49 49 4,321,159 Input no
Hutchins et al. 2012 mouse PEC-Untreated-STAT3 0.83 3.12 0.73 0 49 49 49 4,189,247 ChIP unknown
Trowbridge et al.
2012

mouse MLL1 0.96 1.44 0.35 -1 36 36 36 4,933,023 ChIP yes

Xiao et al. 2012 mouse E14-IgG 0.58 2.13 0.42 -1 100 100 100 3,823,799 IgG no
Xiao et al. 2012 mouse E14-TAF1 0.95 1.07 0.37 -1 75 75 75 22,675,646 ChIP yes
Xiao et al. 2012 pig piPSC-IgG 0.62 2.33 0.45 -1 75 75 75 3,237,532 IgG no
Xiao et al. 2012 pig piPSC-NANOG 0.79 1.06 0.2 -2 75 75 75 15,130,135 ChIP yes
Xiao et al. 2012 pig piPSC-OCT4 0.84 1.58 0.63 0 75 75 75 4,150,813 ChIP yes
Xiao et al. 2012 pig piPSC-p300 0.86 1.07 0.16 -2 75 75 75 27,328,401 ChIP yes
Xiao et al. 2012 pig piPSC-TAF1 0.76 1.06 0.23 -2 75 75 75 8,822,964 ChIP yes
Doré et al. 2012;
Chlon et al. 2012

mouse G1ME-ETS1 0.91 1.37 1.33 1 36 36 36 31,187,821 ChIP yes

Doré et al. 2012;
Chlon et al. 2012

mouse G1ME-GATA1 0.52 1.77 2.14 2 36 36 36 35,032,324 ChIP yes

Doré et al. 2012;
Chlon et al. 2012

mouse G1ME-GATA2 0.96 1.8 1.22 1 36 36 36 10,496,766 ChIP yes

Doré et al. 2012;
Chlon et al. 2012

mouse G1ME-INPUT-GAII 0.93 1.23 0.19 -2 36 36 36 10,209,628 Input no

Doré et al. 2012;
Chlon et al. 2012

mouse G1ME-INPUT-GAIIx 0.63 1.42 1.59 2 36 36 36 20,517,340 Input no

Li et al. 2012 mouse Input-seq-Adr8h 0.86 1.98 1.75 2 35 35 35 22,456,496 Input no
Li et al. 2012 mouse Input-seq-untreated 0.68 3.73 4.81 2 35 35 35 24,631,682 Input no
Li et al. 2012 mouse p53-Adr8h 0.74 8.66 2.17 2 35 35 35 22,316,127 ChIP yes
Li et al. 2012 mouse p53-untreated 0.95 5.29 1.57 2 35 35 35 9,544,532 ChIP unknown
Li et al. 2012 mouse p53S18P-Adr8h 0.92 14.22 1.65 2 35 35 35 9,487,356 ChIP yes
Li et al. 2012 mouse p53S18P-untreated 0.91 2.65 1.59 2 35 35 35 15,417,989 ChIP unknown
Bugge et al. 2012;
Feng et al. 2012

mouse Reverb-alpha-null-5pm 0.63 1.91 1.73 2 50 50 50 82,551,235 ChIP yes

Bugge et al. 2012;
Feng et al. 2012

mouse Reverb-beta-5am 0.83 1.7 0.73 0 36 36 36 7,098,042 ChIP unknown

Bugge et al. 2012;
Feng et al. 2012

mouse Reverb-beta-5pm 0.18 2.08 1.77 2 36 36 36 39,165,327 ChIP unknown

Gowher et al. 2012 human HA-flag-Vezf1-Rep1 0.91 1.22 0.5 0 36 36 36 41,807,364 ChIP yes
Gowher et al. 2012 human HA-flag-Vezf1-Rep2 0.94 1.22 0.38 -1 36 36 36 10,730,653 ChIP yes
Gowher et al. 2012 human Input-HELA-Rep1 0.91 1.34 0.96 0 36 36 36 39,886,595 Input no
Gowher et al. 2012 human Input-HELA-Rep2 0.96 1.32 0.58 0 36 36 36 10,704,869 Input no
Gowher et al. 2012 mouse Input-mm9ES-wt 0.96 1.31 0.86 0 36 36 36 14,112,421 Input no
Gowher et al. 2012 mouse Input-Vezf1-ko 0.96 1.35 0.83 0 36 36 36 13,596,489 Input no
GSE33346 mouse CapD3-Nocodazole-mES 0.66 1.78 0.96 0 36 36 36 23,506,234 ChIP unknown
GSE33346 mouse CapD3-WT-mES 0.77 2.75 1.33 1 36 36 36 20,944,575 ChIP yes
GSE33346 mouse CapG-Nocodazole-mES 0.72 1.45 0.63 0 36 36 36 22,267,698 ChIP unknown
GSE33346 mouse CapG-WT-mES 0.73 1.62 1.11 1 36 36 36 23,314,867 ChIP yes
GSE33346 mouse CapH2-Nocodazole-mES 0.42 2.65 1.94 2 36 36 36 19,469,725 ChIP unknown
GSE33346 mouse CapH2-shGFP-mES 0.81 1.57 1.18 1 36 36 36 22,027,077 ChIP yes
GSE33346 mouse CapH2-shNipbl-mES 0.49 2.23 1.31 1 36 36 36 21,121,437 ChIP unknown
GSE33346 mouse Rad21-rep1-WT-mES 0.93 12.57 1.37 1 36 36 36 14,695,398 ChIP yes
GSE33346 mouse Rad21-rep2-WT-mES 0.85 13.29 2.19 2 36 36 36 20,290,096 ChIP yes
GSE33346 mouse WCE-Nocodazole-mES 0.61 1.54 0.97 0 36 36 36 22,934,718 Input no
GSE33346 mouse WCE-shGFP-mES 0.9 1.32 0.93 0 36 36 36 20,882,926 Input no
GSE33346 mouse WCE-shNipbl-mES 0.81 1.47 0.68 0 36 36 36 8,493,397 Input no
GSE33850 human E2A-CCRF-CEM 0.2 3.3 0.46 -1 40 40 40 9,580,539 ChIP yes
GSE33850 human GATA3-CCRF-CEM 0.14 4.27 0.54 0 40 40 40 8,433,815 ChIP yes
GSE33850 human HEB-CCRF-CEM-Rep1 0.11 5.07 0.79 0 39 39 39 11,256,332 ChIP yes
GSE33850 human HEB-CCRF-CEM-Rep2 0.15 4.66 0.66 0 40 40 40 13,394,868 ChIP yes
GSE33850 human Input-WCE-CCRF-CEM-Rep1 0.21 3.28 0.24 -2 39 39 39 3,524,267 Input no
GSE33850 human Input-WCE-CCRF-CEM-Rep2 0.81 1.33 0.08 -2 40 40 40 4,060,683 Input no

GSE33850 human
Input-WCE-Prima2-T-ALL-
Rep1

0.08 2.97 1.63 2 39 39 39 11,209,256 Input no

GSE33850 human
Input-WCE-Prima2-T-ALL-
Rep2

0.22 1.72 0.53 0 40 40 40 11,519,126 Input no

GSE33850 human
Input-WCE-Prima5-T-ALL-
Rep1

0.21 2.32 0.69 0 39 39 39 9,218,972 Input no
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GSE33850 human
Input-WCE-Prima5-T-ALL-
Rep2

0.46 1.54 0.46 -1 40 40 40 10,635,018 Input no

GSE33850 human LMO1-Jurkat-Rep1 0.27 1.67 0.12 -2 40 40 40 6,940,746 ChIP yes
GSE33850 human LMO1-Jurkat-Rep2 0.57 1.79 0.27 -1 36 36 36 5,951,620 ChIP yes
GSE33850 human LMO2-CCRF-CEM-Rep1 0.11 2.74 0.28 -1 39 39 39 10,129,558 ChIP yes
GSE33850 human LMO2-CCRF-CEM-Rep2 0.15 2.72 0.25 -1 40 40 40 6,136,649 ChIP yes
GSE33850 human RUNX1-CCRF-CEM-Rep1 0.03 82.73 4.18 2 39 39 39 8,181,063 ChIP yes
GSE33850 human RUNX1-CCRF-CEM-Rep2 0.38 2.56 0.46 -1 40 40 40 12,118,147 ChIP yes
GSE33850 human TAL1-CCRF-CEM-Rep1 0.14 5.99 1.07 1 39 39 39 8,072,878 ChIP yes
GSE33850 human TAL1-CCRF-CEM-Rep2 0.17 3.12 0.68 0 40 40 40 17,651,204 ChIP yes
GSE33850 human TAL1-Prima2-T-ALL-Rep1 0.08 10.81 1.54 2 40 40 40 4,774,060 ChIP yes
GSE33850 human TAL1-Prima2-T-ALL-Rep2 0.05 10.97 1.65 2 39 39 39 7,554,079 ChIP yes
GSE33850 human TAL1-Prima5-T-ALL-Rep1 0.07 6.54 1.44 1 40 40 40 6,603,228 ChIP yes
GSE33850 human TAL1-Prima5-T-ALL-Rep2 0.05 7.04 1.56 2 39 39 39 9,252,579 ChIP yes
Avvakumov et al.
2012

human HBO1 0.96 1.24 1 0 36 36 36 31,901,032 ChIP yes

Avvakumov et al.
2012

human input 0.98 1.19 0.55 0 36 36 36 31,414,277 Input no

Hunkapiller et al.
2012

mouse InputDNA-Pcl3-shRNA 0.64 4.68 1.18 1 30 30 30 14,811,561 Input no

Hunkapiller et al.
2012

mouse InputDNA-Pcl3-shRNA6 0.95 1.2 0.4 -1 36 36 36 15,249,656 Input no

Hunkapiller et al.
2012

mouse InputDNA-Pcl3-shRNA7 0.95 1.22 0.55 0 36 36 36 19,965,283 Input no

Hunkapiller et al.
2012

mouse InputDNA-scramble 0.58 5.36 1.45 1 30 30 30 11,650,029 Input no

Hunkapiller et al.
2012

mouse Pcl3-shRNA6 0.88 1.28 1.38 1 36 36 36 14,295,321 ChIP no

Hunkapiller et al.
2012

mouse Pcl3-shRNA7 0.86 1.41 0.8 0 36 36 36 10,534,049 ChIP no

Hunkapiller et al.
2012

mouse Suz12-Pcl3-shRNA 0.78 1.41 1.43 1 30 30 30 13,893,316 ChIP unknown

Hunkapiller et al.
2012

mouse Suz12-scramble 0.78 1.77 1.38 1 30 30 30 11,020,925 ChIP yes

Remeseiro et al.
2012

mouse Input 0.89 1.22 0.56 0 40 40 40 25,401,900 Input no

Remeseiro et al.
2012

mouse InputMEFs 0.93 1.14 0.44 -1 40 40 40 27,631,354 Input no

Remeseiro et al.
2012

mouse KO-SA1 0.86 1.35 0.64 0 40 40 40 20,865,198 ChIP no

Remeseiro et al.
2012

mouse KO-SA2 0.79 1.49 0.95 0 40 40 40 26,737,423 ChIP unknown

Remeseiro et al.
2012

mouse SMC1-KO.R1 0.78 4.13 1.66 2 40 40 40 9,276,356 ChIP unknown

Remeseiro et al.
2012

mouse SMC1-KO.R2 0.82 3.98 1.93 2 40 40 40 12,183,058 ChIP unknown

Remeseiro et al.
2012

mouse SMC1-WT 0.91 1.91 1.38 1 40 40 40 22,390,032 ChIP yes

Remeseiro et al.
2012

mouse SMC3-KO 0.88 2.54 2.01 2 40 40 40 27,111,387 ChIP unknown

Remeseiro et al.
2012

mouse SMC3-WT 0.9 1.48 1.03 1 40 40 40 25,310,295 ChIP yes

Remeseiro et al.
2012

mouse WT-SA1 0.78 4.43 2.46 2 40 40 40 26,143,843 ChIP yes

Remeseiro et al.
2012

mouse WT-SA2 0.65 2.12 1.59 2 40 40 40 25,387,005 ChIP yes

GSE36561 mouse Brd4-mES 0.94 1.47 1.14 1 36 36 36 18,715,973 ChIP yes
GSE36561 mouse Brg1-mES 0.92 1.62 0.42 -1 36 36 36 4,204,507 ChIP yes
GSE36561 mouse SA1-mES-Rep1 0.95 13.34 2.23 2 36 36 36 6,935,496 ChIP yes
GSE36561 mouse SA1-mES-Rep2 0.84 21.27 2.29 2 36 36 36 18,853,613 ChIP yes
GSE36561 mouse SA2-mES-Rep1 0.94 16.15 2.13 2 36 36 36 7,883,128 ChIP yes
GSE36561 mouse SA2-mES-Rep2 0.84 15.88 2.29 2 36 36 36 18,512,023 ChIP yes
Vilagos et al. 2012 mouse EBF1-8246.2 0.96 3.03 1.04 1 36 36 36 5,435,592 ChIP yes
Vilagos et al. 2012 mouse EBF1-8246.6 0.96 3.1 1.13 1 36 36 36 7,748,856 ChIP yes
Vilagos et al. 2012 mouse EBF1-mature-B-8271 0.94 1.89 0.41 -1 36 36 36 5,327,224 ChIP yes
Vilagos et al. 2012 mouse EBF1-mature-B-9842 0.51 2.34 1.05 1 36 36 36 16,361,104 ChIP yes
Vilagos et al. 2012 mouse Rag2.Pro-B.input-8091.5 0.72 2.43 0.08 -2 36 36 36 2,188,795 Input no
Vilagos et al. 2012 mouse Rag2.Pro-B.input-8091.6 0.73 2.22 0.08 -2 36 36 36 2,267,935 Input no
Vilagos et al. 2012 mouse Rag2.Pro-B.input-8112.1 0.97 1.39 0.17 -2 36 36 36 4,627,018 Input no
Vilagos et al. 2012 mouse Rag2.Pro-B.input-8112.6 0.96 1.28 0.19 -2 36 36 36 6,424,234 Input no
Vilagos et al. 2012 mouse Rag2.Pro-B.input-8123.2 0.51 2.4 0.08 -2 36 36 36 2,220,931 Input no

Vilagos et al. 2012 mouse
Rag2.Pro-B.input-
8149.8.301DTAAXX

0.81 3.37 0.19 -2 36 36 36 1,534,780 Input no
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Vilagos et al. 2012 mouse
Rag2.Pro-B.input-
8149.8.30222AAXX

0.86 2.37 0.57 0 36 36 36 5,533,095 Input no

Vilagos et al. 2012 mouse
WT.Mature-B.Input-
8042.5.208KBAAXX

0.87 1.32 0.1 -2 34 34 34 4,297,854 Input no

Vilagos et al. 2012 mouse
WT.Mature-B.Input-
8042.7.207JYAAXX

0.89 1.57 0.12 -2 36 36 36 3,133,666 Input no

Vilagos et al. 2012 mouse
WT.Mature-B.Input-
8042.7.20CUYAAXX

0.88 1.66 0.13 -2 36 36 36 3,220,120 Input no

Vilagos et al. 2012 mouse
WT.Mature-B.Input-
8042.8.208KDAAXX

0.87 3.9 0.2 -2 36 36 36 1,082,634 Input no

Vilagos et al. 2012 mouse WT.Mature-B.Input-8087 0.97 1.6 0.18 -2 32 32 32 4,201,759 Input no
Vilagos et al. 2012 mouse WT.Mature-B.Input-8089 0.96 1.59 0.22 -2 36 36 36 4,101,017 Input no
Vilagos et al. 2012 mouse WT.Mature-B.Input-8094 0.96 1.53 0.16 -2 36 36 36 3,717,876 Input no
Vilagos et al. 2012 mouse WT.Mature-B.Input-8096 0.95 1.33 0.17 -2 36 36 36 5,480,836 Input no
Cardamone et al.
2012

human GPS2 0.89 1.77 1.2 1 76 76 76 8,251,524 ChIP yes

Cardamone et al.
2012

human NCOR-siCTL 0.67 3 2.11 2 36.01 44 36 6,572,892 ChIP yes

Cardamone et al.
2012

human NCOR-siGPS2 0.72 2.5 0.78 0 36.01 44 36 5,121,903 ChIP unknown

Cardamone et al.
2012

human TBL1 0.87 1.87 1.93 2 36 36 36 9,798,221 ChIP yes

Fan et al. 2012 mouse HoxB4-day-16 0.95 2.1 1.08 1 41 41 41 8,877,542 ChIP yes
Fan et al. 2012 mouse HoxB4-day-26 0.94 4.72 1.79 2 41 41 41 10,871,546 ChIP yes
Fan et al. 2012 mouse HoxB4-day-6 0.92 2.36 1.63 2 36 36 36 6,336,688 ChIP yes
Fan et al. 2012 mouse Input-day-16 0.97 1.41 0.72 0 41 41 41 12,098,959 Input no
Fan et al. 2012 mouse Input-day-26 0.97 1.45 0.79 0 41 41 41 11,607,750 Input no
Fan et al. 2012 mouse Input-day-6 0.97 1.22 0.3 -1 36 36 36 8,817,894 Input no
Fong et al. 2012 mouse MM-MyoD 0.84 8.25 1.83 2 39 39 39 21,182,386 ChIP yes
Fong et al. 2012 mouse MM-NeuroD2 0.92 5.14 1.67 2 39 39 39 13,996,908 ChIP yes
Fong et al. 2012 mouse P19-control 0.97 1.42 0.56 0 38 39 37 8,903,023 IgG no
Fong et al. 2012 mouse P19-MyoD 0.92 12.89 1.94 2 39 39 39 12,117,729 ChIP yes
Fong et al. 2012 mouse P19-NeuroD2 0.94 7.18 1.67 2 39 39 39 14,558,083 ChIP yes
Ptasinska et al.
2012

human Input 0.88 1.35 0.2 -2 40 40 40 5,280,044 Input no

Ptasinska et al.
2012

human RUNX1-Kasumi-1 0.97 1.37 0.83 0 43.34 80 36 17,904,797 ChIP yes

Ptasinska et al.
2012

human RUNX1-non-t-8-21 0.91 3.67 1.81 2 36 36 36 30,747,325 ChIP yes

Ptasinska et al.
2012

human RUNX1ETO-control 0.95 1.79 0.97 0 75.95 80 40 7,462,090 ChIP yes

Ptasinska et al.
2012

human RUNX1ETO-siMM 0.94 1.65 0.97 0 73.57 80 40 12,843,591 ChIP yes

Ptasinska et al.
2012

human RUNX1ETO-siRE 0.82 2.82 1.2 1 67.36 80 40 5,525,324 ChIP no

Cho et al. 2012 mouse liver-input 0.78 1.54 1.25 1 42 42 42 29,085,894 Input no
Cho et al. 2012 mouse REV-ERBalpha 0.89 2.05 1.69 2 42 42 42 32,677,790 ChIP yes
Cho et al. 2012 mouse REV-ERBbeta 0.65 2.15 2.84 2 42 42 42 28,812,418 ChIP yes
Wu et al. 2012 mouse input-RUNX1 0.97 1.26 0.58 0 34 34 34 11,771,941 Input no
Wu et al. 2012 mouse input-TCF7 0.96 1.2 0.82 0 36 36 36 22,172,123 Input no
Wu et al. 2012 mouse RUNX1-Rep1 0.71 3.8 2.2 2 34 34 34 9,285,076 ChIP yes
Wu et al. 2012 mouse RUNX1-Rep2 0.68 4.01 2.32 2 34 34 34 10,064,029 ChIP yes
Wu et al. 2012 mouse TCF7 0.83 1.85 1 1 36 36 36 13,877,190 ChIP yes
Barish et al. 2012 mouse Bcl6-KO-macrophage-NCoR 0.66 1.75 1.37 1 42 42 42 25,491,046 ChIP yes
Barish et al. 2012 mouse Bcl6-KO-macrophage-SMRT 0.81 1.51 1.14 1 42 42 42 25,610,348 ChIP yes
Barish et al. 2012 mouse WT-macrophage-NCoR 0.84 1.81 1.79 2 43 43 43 24,281,787 ChIP yes
Barish et al. 2012 mouse WT-macrophage-SMRT 0.62 2.05 2.21 2 43 43 43 27,456,911 ChIP yes

∗ Note: datasets from Trompouki et al. 2011 were excluded from figures as the vast majority of them had a
very low number of mapped reads.
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Table 10.2: Dataset QC evaluation and mapping statistics for MyoD and myogenin datasets
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Wold Lab mouse C2C12 60h MyoD 0.90 12.39 1.65 2 36 36 36 6,771,837 ChIP yes
Wold Lab mouse C2C12 60h myogenin 1 0.88 9.21 1.93 2 36 36 36 10,385,089 ChIP yes
Wold Lab mouse C2C12 60h myogenin 2 0.97 6.95 1.32 1 36 36 36 1,198,656 ChIP yes
Wold Lab mouse C2C12 60h myogenin 3 0.93 1.20 0.40 -1 36 36 36 19,600,577 ChIP yes
Wold Lab mouse C2C12 60h 1%FA Input 3 0.94 1.22 0.46 -1 36 36 36 17,856,564 ChIP no
Wold Lab mouse C2C12 60h 1%FA+EGS Input 3 0.87 4.88 1.52 2 36 36 36 9,092,000 ChIP no
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11

High-throughput robotic chromatin immunoprecip-

itation for ChIP-seq (R-ChIP)

T
he material in this chapter has, at the time of writing this, prepared for publication
as:

Gasper WG, Marinov GK, Pauli-Behn F, Scott MT, Newberry K, deSalvo G, Ou S, Myers
RM, Vielmetter J, Wold BJ. Fully automated high-throughput chromatin immunoprecipitation for
ChIP-seq: Identifying ChIP-quality p300 monoclonal antibodies.

The R-ChIP protocol was developed by Clarke Gasper and Jost Vielmetter. My contribution was in
analyzing the data and writing the manuscript.

Abstract

Chromatin immunoprecipitation cou-
pled with DNA sequencing (ChIP-seq) is
the major contemporary method for map-
ping in vivo protein-DNA interactions in
the genome. It identifies sites of tran-
scription factor, cofactor and polymerase
occupancy, as well as the distribution of
histone marks. Consortia such as the
ENCyclopedia Of DNA Elements (EN-
CODE) and the NIH Roadmap Epige-
nomics Mapping Consortium have pro-
duced large datasets over a period of sev-
eral years using manual protocols. How-
ever, future measurements of hundreds
of additional factors in many cell types
and physiological states call for the higher
throughput and uniformity afforded by
automation. The immunoprecipitation
process has become rate-limiting, and is,
in addition, a source of substantial vari-
ability when performed manually. Here
we report a fully automated robotic ChIP

(R-ChIP) pipeline that allows up to 96
reactions, with high consistency and lim-
ited human involvement. A second bot-
tleneck is the dearth of renewable ChIP-
competent immune reagents, which do
not yet exist for the majority of known
mouse and human transcription factors
and co-factors. We used R-ChIP to screen
new mouse monoclonal antibodies raised
against p300, a histone acetylase protein
well-known as a marker of active tran-
scriptional enhancer elements. Despite its
importance, ChIP-competent monoclonal
reagents for p300 have been lacking. We
identified and validated for ChIP-seq a
monoclonal reagent called ENCITp300-1.

11.1 Introduction

Contemporary studies of gene regulation are of-
ten based, at least in part, on learning the
patterns of chromatin mark distribution and
the locations of specific transcription factor
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occupancy in the genome. The chromatin Im-
munoprecipitation (ChIP) assay, in several vari-
ations, provides this information (Gilmour &
Lis 1984; Gilmour & Lis 1985; Solomon et al.
1988). ChIP protocols typically begin by cross-
linking proteins to DNA (usually using formalde-
hyde); then selectively retrieving DNA frag-
ments associated with a protein of interest by
immunoprecipitation; and finally analyzing the
enriched DNA. Originally, ChIP-enrichment was
analyzed using qPCR at predefined genomic re-
gions (Hecht et al. 1996). Later, it was coupled
with microarray readouts (ChIP-Chip/ChIP-on-
Chip) which allowed many selected regions to
be assayed in parallel (e.g. all promoters) or
even whole genomes, especially in organisms
with small genomes. (Ren et al. 2000; Iyer
et al. 2001; Lieb et al. 2001; Horak & Snyder
2002; Weinmann et al. 2002). Eventually, high-
throughput sequencing enabled truly genome-
wide mapping of protein-DNA interactions, with
high resolution, in the form of ChIP-seq (Barski
et al. 2007; Johnson et al. 2007; Mikkelsen et
al. 2007; Robertson et al. 2007; Wold & Myers
2008).

ChIP-seq has become the workhorse for map-
ping the whole-genome occupancy of hundreds
of transcription factors in human, mouse, fly and
worm by the ENCODE (ENCODE Project Con-
sortium 2011; ENCODE Project Consortium
2012; Gerstein et al. 2012; Wang et al. 2012),
mouse ENCODE (Mouse ENCODE Consortium
2012) and modENCODE consortia (Gerstein et
al. 2010; modENCODE Consortium 2010) and
to profile the genomic distribution of numerous
histone modifications in a wide variety of hu-
man cell lines and tissues by the NIH Roadmap
Epigenomics Mapping Consortium (Bernstein et
al. 2010). Despite the large number of datasets
generated thus far, they are a small fraction
of the expected future ChIP-seq experiments
from individual laboratories as well as consor-
tia. For example transcription factors assayed
by ENCODE through 2013 represent only about
10% of the total number of transcription fac-
tors in the genome (Vaquerizas et al. 2009),
and this has been done in a very limited number
of cell types. Initially, DNA sequencing capac-
ity and cost were major barriers to very large
scale ChIP-seq, but sequencing capacity has in-
creased by several orders of magnitude and costs
per ChIP have dropped significantly. Notably,
the ChIP step has emerged as rate-limiting. It
is tedious and, in practice it is often variable

from one practitioner to another, from experi-
ment to experiment and even among replicates
in a single experiment. This suggested that a
robust robotic ChIP protocol could stabilize and
improve data quality, reproducibility, manpower
use, and overall costs and efficiency per experi-
ment.

A second independent challenge for ChIP-seq
experiments is that the supply of high-quality
sustainable immune reagents experimentally val-
idated for ChIP remains very limited. Many
antibodies, including some marketed as “ChIP-
grade” have failed in the ENCODE pipeline, and
many that succeed are polyclonal, which means
that different lots can vary radically in how well
they perform in ChIP. At present, monoclonal
antibodies are the most reliable renewable ChIP
reagents, although they do not account for the
majority of characterized reagents, and there are
no ChIP-competent reagents for the majority of
human and mouse transcription factors. Vali-
dated polyclonal reagents have been shown to
vary substantially from one lot to another (Egel-
hofer et al. 2010). The field therefore faces the
twin challenges of generating large quantities of
ChIP-seq data in reliable high-throughput man-
ner for factors with extant affinity reagents, and
screening and characterizing new sustainable im-
mune reagents.

In this work we developed a fully automated
robotic pipeline for the chromatin immunopre-
cipitation reaction (R-ChIP). High-throughput
96-well plate methods for performing ChIP have
been described before (Garber et al. 2012;
Blecher-Gonen et al. 2013). However, those
methods require substantial hands-on time and
are subject to variability inherent in experiments
done by humans. The R-ChIP reported here em-
ploys a widely used, multipurpose programmable
liquid handling robotic platform (Tecan EVO
200), which can be used for a multitude of other
purposes, such as robotic plasmid cloning or au-
tomated ELISA screenings when it is not being
used for automated ChIP. We tested our proto-
col on factors that had previously been charac-
terized in multiple ENCODE cell lines and show
that it performs comparably to manual ChIP-
seq in enrichment and in producing high qual-
ity ChIP-seq libraries that are consistent within
and between experiments. We then applied
R-ChIP to screen candidate monoclonal anti-
bodies against the transcriptional co-activator
p300, a protein for which monoclonal ChIP-
competent reagents have until now not been
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available, and for which polyclonal reagent lots
have been highly variable.

11.2 Results

11.2.1 Automated ChIP protocol
adaptations

The primary goal of this work was to fully au-
tomate ChIP without compromising yield and
quality. Our design approach was to develop au-
tomation that mimics as closely as possible the
established manual process, using the ENCODE
ChIP protocol as the starting point (the current
manual ENCODE ChIP protocol is provided
in supplementary appendix). Where process
changes were made to accommodate automation,
we benchmarked the new process against results
from the established protocol.

We configured a Tecan EVO Freedom 200
robot as detailed in Figure 11.1, and pro-
grammed it for running a 96-well format of auto-
mated chromatin immunoprecipitation reactions
(the program itself is supplied as supplemen-
tary file). Major considerations for automating
ChIP revolved around magnetic bead-handling
to achieve successful incubation, washing, and
recovery of immunoprecipitated material, while
effectively eliminating unbound chromatin. In
the manual version of ChIP, bead agitation is
achieved by tumbling the reaction mix in stan-
dard Eppendorf 1.5-mL micro tubes on a tum-
bler wheel. The agitation device available on the
robot is an orbital shaker with a 2-mm shake
radius and adjustable speeds ranging from 100
rpm to 1600 rpm. An alternate method for auto-
mated bead agitation mixes by repeated pipet-
ting (trituration). We reasoned that pipetting
would have inevitable bead losses to the pipette
surface, especially as multiple tip changes would
be required. We therefore focused on the or-
bital shaker. The second automation constraint
comes from the 96-well plate format compared

with individual microtubes in the manual proto-
col. This change requires effective robotic wash-
ing without cross-contamination between wells
or sample spillage. Finally, the 96-well format
requires a plate magnet strong enough to effi-
ciently pull down all beads. Several vendors of-
fer plate magnet compatible with the robot plat-
form, but most are designed for standard low
profile micro plates, while our automated ChIP
protocol requires deep well plates for effective
bead washing. A magnet designed specifically
for deep well plates (SPRIPlate Super Magnet
Plate from Agencourt, Beckman Coulter) proved
effective. Its success in our hands was optimal
with a round well deep well plate with U-bottom
wells (catalog # 278752, Nunc). A summary
of major differences for the robotic protocol is
below and both protocols are given in detail in
Supplemental Methods:

1. Bead agitation was changed from a tum-
bling motion in the manual protocol to
rapid orbital shaking. The shake speed was
optimized to keep beads fully suspended
without spillage (1400 rpm).

2. The sample volume was reduced from 1000
µL to 500 µL to prevent spillage.

3. Wash steps after antibody and chromatin
binding where increased in number from 3
to 4 to compensate for the smaller wash
volume.

4. Bead recovery time on the magnet was ex-
tended to 7 min on the robot, a condition
determined empirically using the criterion
that no detectable beads were left behind
in the supernatant upon microscopic in-
spection.

The R-ChIP protocol incubates the ChIP an-
tibody with the magnetic beads in the conjuga-
tion step for 1 hour at room temperature, and in-
cubates chromatin with the antibody-conjugated

Figure 11.1 (preceding page): Illustration of individual automated ChIP protocol steps. A
Tecan Freedom EVO 200 robot equipped with a Liquid Handling arm (LiHa), a Multi Channel Arm
(MCA) and Robotic Manipulator arm (RoMa) is used for all steps. Additional devices integrated
into the robot are standard size plate carriers, magnet plate, orbital plate shaker and PCR machine.
The cartoons in the left column illustrate each protocol step, described in the flow diagram in the
second column. The cartoon sequences on the right illustrate the robotic process step sequences
used for each protocol step. The white arrows pointing to the protocol steps indicate which robot
sequences apply to each protocol step.
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magnetic beads for 1 hour at room temperature
plus 1 hour on a 4 ◦C cooling plate carrier, but
with interruptions to resuspend the beads.

The step that dissociates bound chromatin
from antibody-magnetic beads is done in the
robot’s PCR module, thus eliminating bead ag-
itation during the 65 ◦C 1 hour incubation.

11.2.2 Consistency of robotic
ChIP results

We first tested the robustness and reproducibil-
ity of our robotic ChIP protocol by carry-
ing out multiple manual and R-ChIP experi-
ments for the NRSF/REST transcription fac-
tor. NRSF/REST (Schoenherr & Anderson
1995; Chong et al. 1995) is a negative tran-
scriptional regulator of neuronal genes in non-
neuronal cell types. It was the first transcription
factor to which ChIP-seq was applied (Johnson
et al. 2007), its binding has been extensively
mapped in multiple cell lines, and its recogni-
tion site (and its binding variants) is well stud-
ied. The monoclonal antibody used for NRSF
ChIP has been well characterized for specificity
and for efficacy in the ChIP-seq format. It is thus
an ideal system to characterize our method.

We performed ChIP-seq experiments in two
cell lines, GM12878 and Jurkat, producing at
least three libraries from four separate plates for
GM12878 and from four separate plates for Ju-
rkat. We compared the resulting data to existing
manually generated NRSF ChIP-seq datasets for
GM18278 cells (ENCODE Project Consortium
2012) and to additional four manual ChIP-seq
datasets generated in parallel with the R-ChIP
ones. These data are summarized in Figure 2.

To assess ChIP quality, we used library and
ChIP QC metrics that were developed previ-

ously by us and others as part of the ENCODE
Consortium (Landt et al. 2012; Kundaje et
al. unpublished; Marinov et al. 2014). The
first question regarding ChIP quality is how
well the immunoprecipitation step has enriched
for DNA fragments attached to the antigen of
interest. This can be assessed by calculating
the fraction of reads falling within called peaks
(FRiP, Landt et al. 2012) or by using cross-
correlation (Kharchenko et al. 2008; Landt et
al. 2012). Both measures have limitations in
some special cases (Marinov et al. 2014), but
when both are applied and concur, confidence
in the results is high. Figure 11.2A shows the
number of called peaks and Figures 11.2B and
11.2C show the RSC (Relative Strand Correla-
tion, Landt et al. 2012; Kundaje et al., unpub-
lished) and FRiP values for manual and robotic
NRSF ChIP-seq datasets. R-ChIP data consis-
tently exhibited good RSC values (RSC ≥ 1)
and FRiP and peak number values compara-
ble to those of manually generated libraries,
with the exception of three Jurkat libraries (the
first ChIP on plates 2, 3, and 4, Figure 11.2A,
11.2B and 11.2C) that scored as less successful.
We do not presently know the cause of these
lower-quality libraries, but their frequency is well
within the range of variability of manually gen-
erated libraries we have observed over several
years, during which sporadic unsuccessful exper-
iments for factor/antibody pairs that are other-
wise routinely successful have occurred. Finally,
we asked how similar the final sets of called peaks
are for the robotic protocol and how they com-
pare with reference manual datasets for the same
factor and cell type, by evaluating peaks called
after sequencing. Figures 11.2D and 11.2E show
the similarity of peak call sets for all libraries
measured by calculating the size of the overlap

Figure 11.2 (preceding page): Reproducibility of R-ChIP experiments. Multiple ChIP-
seq experiments on multiple plates were generated for the NRSF/REST repressor in GM12878
lymphoblastoid cells (n = 4 plates) and Jurkat T-cells (n = 4 plates) cell lines. The numbers (1
through 5) refer to the number of the plate a library came from, “M” refers to manually generated
datasets. The first two manual GM12878 datasets were previously published as part of the ENCODE
project, the next four were generated in parallel with the R-ChIP ones. (A) Number of called regions
for each dataset (using ERANGE 4.0, Johnson & Mortazavi et al. 2007) (B) Assessment of ChIP
enrichment using RSC (Relative Strand Correlation) cross-correlation scores (Landt et al. 2012);
(C) Assessment of ChIP enrichment using FRiP (Fraction of Reads in Peaks) scores (Landt et al.
2012); (D) Overlap between called peaks in robotic and manual ChIP libraries in GM12878 cells;
(E) Overlap between called peaks in robotic and manual ChIP libraries in Jurkat cells. The overlap
score (OXY ) shown in each box indicates the fraction of peaks in the dataset on the y-axis that are
also found in the dataset on the x-axis, i.e. OXY = |X ∩ Y |/|Y |.
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Figure 11.3: Comparison between manual and robotic ChIP-seq resullts and between ChIP-

seq results on GM12878 chromatin fixed under standard fixation conditions and chromatin

fixed at 37 ◦C for additional targets. (A,B,C) ChIP-seq against H3K27ac in GM12878 cells. (A)
FRiP score, (B) number of peaks called, (C) overlap between the sets of peaks; (D,E,F) ChIP-seq
against GABP in GM12878 cells. (D) FRiP score, (E) number of peaks called, (F) overlap between
the sets of peaks; (G,H,I) ChIP-seq against ZBTB33 in GM12878 cells. (G) FRiP score, (H) number
of peaks called, (I) overlap between the sets of peaks; (J,K,L) ChIP-seq against PU.1 in GM12878
cells. (J) FRiP score, (K) number of peaks called, (L) overlap between the sets of peaks. The overlap
score (OXY ) shown in each box indicates the fraction of peaks in the dataset on the y-axis that are
also found in the dataset on the x-axis, i.e. OXY = |X ∩ Y |/|Y |
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between each pair of libraries. We observed con-
sistently high overlap scores and thus high re-
producibility between all libraries. These obser-
vations applied both within and between plates,
underscoring the consistency and robustness of
the R-ChIP protocol.

To further characterize the consistency be-
tween the results R-ChIP and manual ChIP
experiments, we generated paired manual and
robotic ChIP-seq datasets using matched chro-
matin samples for several additional targets
(Figure 11.3). These included the H3K27ac
histone modification (Figure 11.3A, 11.3B and
11.3C), the GABP transcription factor (Watan-
abe et al. 1990; Thompson et al. 1991; Collins
et al. 2007; Figure 11.3D, 11.3E and 11.3F),
the ZBTB33/Kaiso zing-finger protein known
for its preferential binding to methylated DNA
(Prokhortchouk et al. 2001; Figure 11.3G,
11.3H and 11.3I), and the important regula-
tor of hematopoiesis SPI1/PU.1 (Klemsz et al.
1990; Burda et al. 2010; Figure 11.3J, 11.3K
and 11.3L). We observed comparable results be-
tween the manual and robotic datasets (with
the exception of one not very successful robotic
PU.1 libraries, although it should be noted that
PU.1 does not perform consistently well in ChIP-
seq even though it often produced very strong
datasets), further confirming the applicability of
R-ChIP to large-scale ChIP-seq production.

11.2.3 Using R-ChIP to
characterize new monoclonal p300

antibodies

Having established the R-ChIP protocol, we next
applied it to characterize a set of monoclonal an-
tibodies raised against the p300 transcriptional
coactivator in the Beckman Institute Protein
Expression Center at Caltech. The p300 pro-
tein is a histone acetyltransferase (Eckner et al.
1994; Arany et al. 1994; Lundblad et al. 1995;
Ogryzko et al. 1996), best known for its role
in the acetylation of histones. It is used as
a marker of active transcriptional enhancers in
mammalian genomes (Visel at al. 2009; Blow
et al. 2010; May et al. 2011; Visel et al. 2013).
Commercially available antibodies used to gener-
ate published p300 data are from a series of poly-
clonal reagents and are neither identical from lot
to lot, historically, nor are they renewable.

We generated 11 α-p300 mouse monoclonal
antibodies which were initially screened, cloned
and then rescreened using a plate based ELISA

assay. We tested hundreds of individual hy-
bridoma B-cells isolated from spleens of mice in-
jected with a GST-tagged p300 protein fragment
(aa 152-213) or a synthetic KLH-coupled pep-
tide (aa 1526-1545). The GST-tagged prepara-
tions were subjected to formaldehyde “fix” con-
ditions (1% FA for 10 min) with the goal of in-
creasing the likelihood of reactivity in ChIP. The
resulting 11 p300 monoclonal antibodies were
tested for ChIP together with two lots of rabbit
polyclonal p300 antibodies (Santa Cruz sc-585,
lot numbers F2711 and E3113,) on chromatin
from GM12878 cells. The resulting datasets were
compared to each other and to publicly available
ENCODE p300 data from the same cells (us-
ing two commercially available rabbit polyclonal
antibodies, Santa Cruz sc-585 and sc-584) (Fig-
ure 11.4). Three of the mouse monoclonal anti-
bodies raised against and N-terminal p300 syn-
thetic peptide scored positive by ChIP-seq, iden-
tifying between 1,524 and 4,870 peaks (Figure
11.4A and 11.4B). We sequenced multiple addi-
tional replicates for the best-scoring one, 1F4-
E10P and identified and even higher number of
peaks in some of the datasets, up to 8,430, with
the typical number being ∼6,000. The peaks
called in the monoclonal antibody dataset are
a subset of those found in the polyclonal data
(Figure 11.4C) confirming the specificity of the
antibodies towards p300. While the monoclonal
numbers are lower than the two most successful
polyclonal datasets, they are within the range
of what was previously observed in ENCODE
data, and also within the range of published p300
datasets.

It was not our purpose in this study to char-
acterize new polyclonal reagent lots, but the ones
used previously by ENCODE were no longer
available. We therefore used two additional
rabbit polyclonal antibodies in R-ChIP (Santa
Cruz sc-585, lot numbers E3113 and F2711), and
they identified up to ∼30,000 peaks. This num-
ber greatly exceeds previously published p300
datasets, including currently available ENCODE
data for the same GM12878 B-cell line (for which
between 2,610 and 12,924 peaks were called pre-
viously) (Figure 11.4A and 11.4B). This increase
has two likely causes, and they are not mutu-
ally exclusive. The first well-appreciated vari-
able is different performance by polyclonal anti-
body lots. In principle, individual lots can vary
in the number and identity of epitopes recog-
nized, in effective antibody concentration and
in non-specific reactivity. A second difference
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Figure 11.4: Characterization of novel monoclonal p300 antibodies using robotic ChIP. ChIP-
seq against p300 was carried out in GM12878 cells and prior ENCODE data for it in that cell line
(from the “SYDH” production group) was used as a reference. ENCODE data was generated using
two different rabbit polyclonal antibodies from Santa Cruz (sc-584 and sc-585). We carried out
robotic ChIP testing of two different lots of the sc-585 antibody and 11 different monoclonals we
raised. The 1F4-E10P clone scored best and additional replicate were generated in subsequent ex-
periments. (A) Number of called regions; (B) ChIP enrichment as measured by FRiP scores (Landt
et al. 2012); (C) Overlap between called peaks with different antibodies. The overlap score (OXY )
shown in each box indicates the fraction of peaks in the dataset on the y-axis that are also found
in the dataset on the x-axis, i.e. OXY = |X ∩ Y |/|Y |; (D) Representative browser snapshot of p300
ChIP enrichment in polyclonal and monoclonal datasets around the IL13 and IL4 locus



350

Figure 11.5: Overlap of called p300 peaks with regions of histone mark enrichment in EN-

CODE data from GM12878 cells. The overlap score (OXY ) shown in each box indicates the
fraction of peaks in the dataset on the y-axis that are also found in the dataset on the x-axis, i.e.
OXY = |X ∩ Y |/|Y |. The ENCODE histone mark region calls were downloaded from the UCSC
Genome Browser.

from the prior ENCODE data is the fixation
condition. For p300, we fixed cells at 37 ◦C
versus room temperature for the historic EN-
CODE data. This condition was suggested to
us, specifically for p300, by Dr. Bing Ren,

and is based on the idea that a longer time
and elevated temperature would increase p300
cross-linking via indirect links to DNA-bound
transcription factors or histones. This condi-
tion significantly improves p300 ChIP in our
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hands - we generated four datasets using the
1F4-E10P antibody on chromatin fixed under
standard conditions and they were all unsuc-
cessful (Figure 11.6). Of the 30,000 p300 peaks
called the majority (between 76% and 88%) over-
lap with one or more chromatin marks associ-
ated with enhancer and promoter activity in EN-
CODE data (H3K27ac; H3K4me1) or with re-
gions of DNAse Hypersensitivity (Figure 11.5),
consistent with them being active enhancers and
promoters. For multiple cell types, the num-
bers of DNAse hypersensitive regions (Neph et
al. 2012; Thurman et al. 2012), H3K27ac
and H3K4me1 positive regions, reported previ-
ously are typically in the tens of thousands (EN-
CODE Project Consortium 2012), and the num-
ber of expressed genes per cell type is between
5 and 10,000. Thus the expected number of
enhancers (and p300-positive regions) is larger
than the single-digit thousands of p300 peaks

called in most previously available data. There-
fore while reagent-specific background, includ-
ing possible polyclonal cross-reactivity, could ex-
plain the thousands of p300 peaks that lack ad-
ditional enhancer or promoter marks, the most
parsimonious explanation for the overall very
large number of p300 peaks is that prior ChIP
measurements have under-estimated p300 occu-
pancy. Our best-performing monoclonal anti-
body did not produce comparably high peak
numbers using the same chromatin substrate,
but 99% of its peaks overlap those called in
the polyclonal datasets. We tested additional
factors with the 37 ◦C fixation condition. Re-
sults were very similar to the standard condition
for NRSF, H3K27ac and GABP (Figure 11.7,
11.3A-F) suggesting the more aggressive fixa-
tion condition does not result in general non-
specific background. Surprisingly, the individual
37 ◦C ZBTB33 and PU.1 were worse than the

Figure 11.6: Comparison between p300 ChIP-seq resullts on GM12878 chromatin fixed under

standard fixation conditions and chromatin fixed at 37 ◦C. The 1F4-E10P monoclonal antibody
was used for all datasets. (A) Number of called peaks; (B) ChIP-enrichment measured by FRiP.
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Figure 11.7: Comparison between NRSF ChIP-seq resullts on GM12878 chromatin fixed

under standard fixation conditions and chromatin fixed at 37 ◦C. (A) Number of called regions;
(B) ChIP enrichment as measured by FRiP; (C) Overlap between called peaks. The overlap score
(OXY ) shown in each box indicates the fraction of peaks in the dataset on the y-axis that are also
found in the dataset on the x-axis, i.e. OXY = |X ∩ Y |/|Y |;
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standard-fixation ones (Figure 11.3G-L), how-
ever, at present these datasets constitute a very
small sample size and it is still not possible to
draw comprehensive conclusions about the 37 ◦C
fixation condition. A much wider survey of dif-
ferent factors will be necessary for that purpose.

11.3 Discussion

The robotic ChIP (R-ChIP) reported here was
developed on a widely used commercial liquid-
handling platform (Tecan) whose configura-
tion and running program for ChIP are pro-
vided. Our initial goal was to increase ChIP-seq
throughput, uniformity, and quality, while re-
ducing investigator tedium and error in the con-
text of a large consortium project, but this plat-
form could also be put to work for widespread
small projects through core or contract facilities.
Our R-ChIP results were comparable in quality
to those from the manual pipeline history by all
metrics. However, this is a new protocol, and
the platform’s performance is not perfect. We
expect that we and others will continue to make
improvements. Specifically, we have observed
some sporadic single reaction failures for dupli-
cate samples on a single plate. It is our stan-
dard practice to include on each R-ChIP plate a
minimum of triplicate control samples deployed
across the plate geometry. We use a monoclonal
reagent and a large batch of control chromatin
to allow comparisons over plates through time.
This allows us to evaluate each plate run and
to compare it with other runs. This evaluation
can be done as a QC step before committing to
building the other libraries and sequencing them,
which has clear economic implications.

Troubleshooting is aided by R-ChIP com-
pared to standard manual practices. If a group
of failed samples are embedded in a large R-
ChIP run where the controls and other samples
are successful, it becomes unlikely that the ChIP
process is the source of failure, and a user can
turn attention to the input sample and immune
reagent (or any post-ChIP variation) as more
likely problem. Of course, the overall success
of ChIP-seq includes the local DNA sequencing
process, which can be differentially sensitive to
the mass of sample, fragment size, and other
characteristics of a ChIP output.

We used R-ChIP to screen for monoclonal
p300 ChIP-seq antibodies as a further test of R-
ChIP. The p300 protein is a “high value” tar-

get for ChIP-seq because a map of active tran-
scriptional enhancer candidates is often wanted.
Many antibodies made against transcription fac-
tors fail in ChIP reactions, even though they
work well in one or more conventional uses (e.g.
standard immunoprecipitation, western blots or
immunocytochemical stains). Moreover, poly-
clonal reagents that are ChIP-seq compatible
typically vary, sometimes greatly, in their speci-
ficity and performance from lot to lot (Egelhofer
et al. 2011). The upshot has been that the only
way to identify a ChIP-quality antibody is to
test it directly for ChIP, and the most general
way to ensure reliability and unlimited supply is
with a monoclonal antibody. Whether the final
readout for ChIP competence is DNA sequenc-
ing or qPCR (the latter requiring known targets
for the factor), the capacity to test many ChIP
reactions is critical for screening. Here we used
R-ChIP to identify a ChIP-grade monoclonal
for p300.. The interactomes identified with this
hybridoma clone, ENCITp300-1, overlap highly
with prior measurements from ENCODE for the
same cell line and with concurrent polyclonal de-
terminations, confirming its specificity for p300
and the utility of R-ChIP for screening new im-
mune reagents for ChIP. We note, however, that
the data obtained with it are not as inclusive as
the best ones produced using polyclonal rabbit
reagents.

For p300 R-ChIP, we used chromatin from
cells fixed with a modified condition (37 C,
1% formaldehyde, 30 min) which was recom-
mended to us by Dr. Bing Ren (UC San Diego),
whose laboratory has extensive experience with
p300 ChIP. This improved p300 ChIP signifi-
cantly in our hands compared with our stan-
dard fixation condition (see Results and Meth-
ods), while it had no detectable effect on NRSF,
GABP and H3K27ac ChIP. However, we empha-
size that we do not know if, or how frequently,
this more stringent fixation condition will affect
other factor-antibody pairs. Epitope destruction
or occlusion, or elevated signals from lower affin-
ity interactions, are among the plausible neg-
ative effects. The most positive impact is ex-
pected for proteins that interact indirectly with
DNA, as p300 does.

By increasing the reliability and throughput
of ChIP-seq and by liberating investigator time
from a tedious and nontrivial experimental pro-
tocol, we anticipate that R-ChIP, and variations
on it, will break a current bottleneck and help
to advance a wide range of transcription investi-
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gations.

11.4 Methods

11.4.1 Cell growth and harvesting

Cells were grown and harvested following estab-
lished ENCODE protocols (available at http:

//genome.ucsc.edu/ENCODE/cellTypes.html)
with the exception of GM12878 p300 experi-
ments for which chromatin was fixed at 37◦C.

11.4.2 Chromatin Preparation

Chromatin was cross-linked by adding formalde-
hyde directly to the cell culture media at a fi-
nal concentration of 1% and gently mixed for 10
minutes. The exception was (where indicated)
fixation at 37 ◦C for 30 minutes, which was used
for p300 experiments. In all cases, the formalde-
hyde reaction was quenched by adding glycine
to a final concentration of 0.125M for 10 min-
utes. Cells were then pelleted, rinsed once in
cold phosphate-buffered saline (PBS) with 1mM
PMSF and once in cold MC lysis buffer (10mM
Tris pH 7.5, 10mM NaCl, 3mM MgCl2, 0.5%
NP-40, and Roche Complete Protease Inhibitor
Cocktail) to obtain nuclear pellets. Nuclei were
sonicated in RIPA buffer (PBS, 1% NP-40 Sub-
stitute, 0.5% Sodium Deoxycholate, 0.1% SDS,
and Roche Complete Protease Inhibitor Cock-
tail) at a concentration of at least 5 × 107 nu-
clei/mL using a probe sonic dismembrator from
Fisher Scientific (Model 550). To check for frag-
ment size distribution after sonication, a small
fraction of the sample was reverse cross-linked
for two hours at 65 ◦C, purified using DNA pu-
rification columns from Qiagen, then loaded onto
a 2% agarose EtBr E-Gel from Invitrogen.

11.4.3 Antibodies used

The following antibodies were used: an α-NRSF
mouse monoclonal (12C11) from the Ander-
son Lab at Caltech (Mortazavi et al. 2006;
Johnson et al. 2007), an α-p300 rabbit poly-
clonal (sc-585) from Santa Cruz Biotechnology,
a mouse monoclonal α-GABP (sc-28312) from
Santa Cruz Biotechnology, a mouse monoclonal
α-Kaiso/ZBTB33 (sc-23871) from Santa Cruz
Biotechnology, a rabbit polyclonal α-SPI1/PU.1
(sc-22805) from Santa Cruz Biotechnology, and a
mouse monoclonal α-H3K27ac (306-34849) from
Wako. In addition 11 α-p300 mouse monoclonals

were generated in the Caltech Mouse Monoclonal
Facility. Four of the α-p300 mouse monoclonals
were raised against a bacterially expressed GST
fusion protein containing N-terminal residues
152-213. The remaining seven antibodies were
raised against a synthetic peptide from Gen-
Script containing C-terminal residues 1526-1545.

11.4.4 Robotic-ChIP (R-ChIP)
Workflow

ChIP experiments were adapted from meth-
ods previously described and optimized for per-
formance in a 96-well plate format using a
Tecan Freedom EVO 200 liquid handling robot.
Reagents and labware are placed on deck of the
robot.

After setup the R-ChIP workflow is com-
pletely hands-off and consists of a series of mod-
ules with a run time of ∼24 hours to run, includ-
ing the 12-hour reverse cross-linking step. All
aspects of the setup are checked thoroughly to
ensure a smooth run.

1. Blocking and Washing of Magnetic
Beads. The Tecan begins by resuspending
magnetic beads (Invitrogen M-280 Dyn-
abeads) from the source tube with the
liquid-handling arm (LiHa) and dispenses
the magnetic beads into a Fisher 96-Well
DeepWell TM Polypropylene known as the
ChIP plate. 100 µL of beads is used for
a monoclonal IP antibody and 200 µL for
a polyclonal. The LiHa tips are evac-
uated and rinsed with ddH2O between
subsequent dispenses to prevent cross-
contamination. 500 µL of PBS contain-
ing 5% bovine serum albumin (BSA) is
then dispensed by the LiHa from a buffer
reservoir (Te-Fill) to block and wash the
magnetic beads. The plate containing the
beads is transferred to an orbital mixer
(Te-Shake) with the robotic manipulator
arm (RoMa) and mixed several times for
20 seconds with a 20 second pause be-
tween each mix. The RoMa moves the
bead plate to a magnetic plate for seven
minutes where the beads are then pelleted
in a ring allowing the multi-channel arm
(MCA96) fitted with natural 200 µL tips
from TipOne to aspirate liquid. These
steps are repeated three more times and
include an ethanol rinse of the MCA96 tips
as needed to prevent cross-contamination.

http://genome.ucsc.edu/ENCODE/cellTypes.html
http://genome.ucsc.edu/ENCODE/cellTypes.html
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2. Binding of Antibody to Magnetic
Beads. The LiHa adds 400 µL of PBS-
BSA to the antibody plate bringing the
final volume to 500 µL. The antibody is
then added to the beads using the MCA
96 which transfers the diluted antibody
from the a 2.0-mL 96-well PlateOne V-
bottom plate to the ChIP plate. For mon-
oclonal antibodies, 5 µg of antibody were
diluted in 500 µL (10 µg for polyclonals).
The beads and antibody are incubated to-
gether for one hour with mixing using the
Te-Shake. Any unbound antibody is then
aspirated with the MCA96 and deposited
into a fresh 2.0-mL 96-well PlateOne V-
bottom plate for further analysis if needed.

3. Incubation of Chromatin and
Antibody-Bead Complex The MCA96
transfers 500 µL of chromatin contain-
ing 2.5 × 107 cells from the Matrix tube
rack to the ChIP plate. The chromatin
and antibody bead complex are then incu-
bated together for 2 hours during which
the ChIP plate alternates between the
Te-Shake and a 4 ◦C cool plate using the
RoMa. The chromatin is stored in 1.2 mL
screw-top Matrix tubes that can be ar-
rayed on the chromatin plate as needed.
Any unbound chromatin is then aspirated
with the MCA96 and deposited into a fresh
2.0-mL 96-well PlateOne V-bottom plate
for further analysis if needed.

4. Washing of IP Complex. The LiHa dis-
penses 500 µL of LiCl wash buffer (100mM
Tris pH 7.5, 500mM Lithium Chloride, 1%
NP-40, 1% sodium deoxycholate) from the
Te-Fill onto the beads, which are then
mixed for 20 seconds with 20 second pauses
between each mix. The beads are then pel-
leted and the wash with LiCl buffer is re-
peated four more times. The LiHa then
adds 500 µL of TE buffer (10mM Tris pH
7.5 and 1mM EDTA) and resuspends the
beads with the Te-Shake for 20 seconds.
Beads are then pelleted with the magnetic
plate and any remaining buffer is aspirated
and discarded by the MCA96.

5. Elution from Beads. The LiHa dis-
penses 100 µL of IP elution buffer (1%
SDS and 0.1M NaHCO3) from the Te-
Fill and the beads are resuspended by
mixing for 20 seconds with the Te-Shake.

The MCA96 then aspirates the beads and
transfers them from the ChIP plate to a
Hard-Shell Semi-Skirted PCR Plate from
Bio-Rad. The RoMa transfers a PCR lid
from the storage hotel and places it on top
of the PCR plate then transfers the lidded
PCR plate to a DNA Engine Peltier Ther-
mal Cycler with Remote Alpha Dock Sys-
tem from Bio-Rad. The top of the thermal
cycler closes and places force on the PCR
plate lid creating a seal. The beads are
then heated for one hour at 65 ◦C to disas-
sociate the IP complex from the magnetic
beads.

6. Reversal of Cross-links. The RoMa
takes the PCR plate from the thermal cy-
cler and transfers it to the Te-Shake to re-
suspend the beads. The PCR plate is then
transferred to the magnetic plate for pel-
leting of the beads. The MCA96 mounts
50 µL Tecan Pure Disposable tips from
Tecan, slowly aspirates the supernatant,
and transfers it to a fresh PCR plate. 10µL
of proteinase K from Epicentre diluted 1:5
in proteinase K buffer (50% glycerol, 50
mM Tris-HCl pH 7.5, 0.1 M NaCl, 0.1 mM
EDTA, 1 mM DTT, 10 mM CaCl2, 0.1%
Triton R© X-100) is then added to the super-
natants with the LiHa. The RoMa places
a lid on the fresh PCR plate and trans-
fers both back to the thermal cycler for a
12 hour incubation at 65 ◦C to reverse the
cross-links. Once the incubation is finished
the plate is transferred to the deck with the
RoMa and the R-ChIP is complete.

11.4.5 DNA Cleanup

Samples from the R-ChIP ChIP experiments
presented here were then cleaned up manually
using the protocol described by Qiagen in their
Qiaquick PCR purification kit with the addition
that the EB buffer is heated to 55 ◦C prior to elu-
tion and eluted in a 50 µL volume using DNA
lo-bind 1.5 mL tubes from Eppendorf. We an-
ticipate automating this step.

11.4.6 Library building and
sequencing

Library building for sequencing on the Illumina
HiSeq platform was performed conventionally
with barcoding to allow multiple ChIP libraries
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to be sequenced in a single flow cell lane, ac-
cording to the Hudson Alpha ENCODE ChIP
protocol.

Standard methods were used for end repair
and dA addition of DNA fragments recovered
from ChIPs or chromatin controls. The frag-
ments were then ligated to Illumina Paired-End
adaptor sequences and PCR-amplified to com-
plete the adaptor sequences and introduce a 7-
base DNA barcode in the i7 position. The bar-
code allowed mixing of multiple samples per
flowcell lane. Control libraries were prepared
from 500 ng of DNA from reverse crosslinked
sonicated chromatin. ChIP library starting
amounts varied by ChIP, with a median of 7.5
ng. Fragment size selection was achieved at the
lower threshold with solid phase reversible im-
mobilization (SPRI) technology to recover ds-
DNA greater than 100 bp after adaptor ligation
(thereby excluding unligated adaptors) and at
the upper threshold with an extension time of 30
seconds during PCR amplification. This size se-
lection method consistently produced final DNA
library fragments that ranged from ∼100 to 400
bp, as determined by BioAnalysis. Final library
amounts varied by ChIP, with a median of 546
ng.

Libraries were pooled in equimolar amounts
and sequenced on the Illumina HiSeq2000 or
HiSeq2500 with 50 bp single-end reads follow-
ing the manufacturer’s recommendations. Raw

sequencing reads are available from GEO acces-
sion number GSE53366.

11.4.7 Data processing and
analysis

Reads were aligned using Bowtie (Lang-
mead et al. 2009), version 0.12.7, with
the following settings: ‘‘-v 2 -t -k 2

-m 1 --best --strata’’, which allow for two
mismatches relative to the reference and only
retain unique alignments, against the hg19 ver-
sion of the human genome (assembly down-
loaded from the UCSC genome browser) with
the Y chromosome retained or removed depend-
ing on the sex of the cell line. Peak calling
was carried out using ERANGE (Johnson et al.
2007), version 4.0, with the following settings:
--minimum 2 --ratio 3 --listPeak --shift

learn --revbackground, against matching con-
trol samples. Library complexity was estimated
as described in Landt et al., 2012. Cross-
correlation analysis was carried out using ver-
sion 1.10.1 of SPP (Kharchenko et al. 2008; A.
Kundaje et al., submitted) and the following
parameters: ‘-s=0:2:400’.

All additional analysis was carried out using
custom-written Python scripts.

Read mapping statistics for all datasets are
provided in Tables 11.1, 11.2 and 11.3.

Table 11.1: Read mapping and dataset quality statistics for robotic NRSF ChIP
datasets. Quality control scores were determined using SPP as described in Landt et al. 2012
and Marinov et al. 2014

Cell
Line

Factor Plate Well Library Complexity NSC RSC QC
Number
Peaks

FRiP
Uniquely
Mapped
reads

GM12878 NRSF 3365 A2 SL26735 0.84 6.165 1.215 1 3,821 0.127 12,246,881
GM12878 NRSF 3365 E6 SL26736 0.86 5.675 1.235 1 4,030 0.144 12,166,760
GM12878 NRSF 3365 F12 SL26737 0.85 3.747 1.143 1 3,349 0.103 16,531,315
GM12878 NRSF 3405 B1 SL28743 0.91 3.808 1.044 1 2,143 0.037 16,286,924
GM12878 NRSF 3405 E6 SL28744 0.89 4.343 1.107 1 2,413 0.048 19,731,464
GM12878 NRSF 3405 F12 SL28745 0.9 3.67 1.092 1 2,295 0.044 19,898,394
GM12878 NRSF 3646 B1 SL34357 0.97 2.541 0.824 0 1,569 0.015 7,567,674
GM12878 NRSF 3646 E6 SL34381 0.97 2.816 0.906 0 1,642 0.017 8,035,350
GM12878 NRSF 3646 F5 SL34380 0.88 3.915 0.811 0 2,087 0.029 4,774,294
GM12878 NRSF 3646 F6 SL34382 0.93 6.315 1.198 1 3,502 0.095 6,378,277
GM12878 NRSF 3646 F7 SL34383 0.93 8.092 1.197 1 3,547 0.095 6,404,751
GM12878 NRSF 3646 G12 SL34384 0.97 1.235 0.815 0 1,656 0.016 6,231,497
GM18278 NRSF 4028 D3 SL46179 0.87 2.729 1.411 1 3,000 0.072 8,672,020
GM18278 NRSF 4028 E3 SL46180 0.66 2.709 1.718 2 3,726 0.096 17,661,548
GM18278 NRSF 4028 A12 SL46217 0.61 4.030 1.262 1 3,979 0.132 15,999,430
GM18278 NRSF 4028 A12 SL46171 0.67 1.444 1.410 1 4,565 0.204 24,180,628

Continued on next page



357

Table 11.1 – Continued from previous page

Cell
Line

Factor Plate Well Library Complexity NSC RSC QC
Number
Peaks

FRiP
Uniquely
Mapped
reads

GM18278 NRSF 4028 B11 SL46211 0.51 2.510 1.356 1 5,019 0.200 20,187,765
GM18278 NRSF 4028 B2 SL46173 0.87 2.813 1.128 1 4,028 0.131 10,454,082
GM18278 NRSF 4028 F3 SL46181 0.74 1.461 1.623 2 4,317 0.187 25,430,927
GM18278 NRSF 4028 G11 SL46216 0.89 3.999 1.170 1 2,222 0.040 13,250,634
GM18278 NRSF 4028 G2 SL46176 0.67 1.455 1.907 2 5,160 0.233 21,980,053
GM18278 NRSF 4028 G3 SL46182 0.71 1.479 1.443 1 4,538 0.201 23,259,881
GM18278 NRSF 4028 H12 SL46218 0.85 3.855 1.226 1 2,430 0.052 20,550,794
GM18278 NRSF 4028 H1 SL46172 0.92 2.018 0.975 0 1,445 0.013 24,630,268
GM12878 NRSF Manual Manual ENCODE 0.78 2.121 1.089 1 3,085 0.019 11,945,180
GM12878 NRSF Manual Manual ENCODE 0.89 6.594 2.081 2 3,363 0.070 16,286,742
GM18278 NRSF Manual Manual SL45074 0.89 3.012 1.266 1 3,232 0.105 30,326,354
GM18278 NRSF Manual Manual SL45075 0.94 3.237 1.162 1 2,105 0.039 24,260,996
GM18278 NRSF Manual Manual SL45072 0.90 2.409 1.629 2 3,381 0.068 28,464,754
GM18278 NRSF Manual Manual SL45073 0.87 2.286 1.843 2 3,681 0.078 37,706,507
GM18278
37 ◦C

NRSF 4028 B10 SL46206 0.88 1.759 1.033 1 2,846 0.076 24,978,799

Jurkat NRSF 3365 A1 SL26729 0.94 4.948 1.017 1 1,792 0.025 14,447,433
Jurkat NRSF 3365 B1 SL26732 0.93 4.99 1.061 1 1,899 0.029 17,281,495
Jurkat NRSF 3365 C1 SL26733 0.78 8.33 1.225 1 3,833 0.144 12,742,979
Jurkat NRSF 3365 D1 SL26734 0.73 12.4681.218 1 3,995 0.144 7,551,313
Jurkat NRSF 3365 D6 SL26730 0.92 8.756 1.141 1 2,430 0.057 13,738,597
Jurkat NRSF 3365 H12 SL26731 0.92 5.374 1.083 1 1,906 0.029 16,829,422
Jurkat NRSF 3405 A1 SL28740 0.97 1.075 0.516 0 277 0.001 18,013,669
Jurkat NRSF 3405 D6 SL28741 0.85 8.854 1.144 1 2,785 0.072 13,132,743
Jurkat NRSF 3405 H12 SL28742 0.73 8.507 1.141 1 2,937 0.078 14,966,401
Jurkat NRSF 3435 A1 SL29213 0.96 1.125 0.739 0 1,020 0.006 17,997,043
Jurkat NRSF 3435 D6 SL29214 0.84 6.077 1.183 1 2,852 0.084 19,801,560
Jurkat NRSF 3435 H12 SL29215 0.84 6.727 1.189 1 3,062 0.098 18,127,638
Jurkat NRSF 3549 A1 SL31830 0.7 6.928 1.1 1 2,233 0.045 18,458,174
Jurkat NRSF 3549 D6 SL31851 0.91 3.993 0.957 0 1,702 0.020 16,754,683
Jurkat NRSF 3549 H12 SL31882 0.89 1.182 0.852 0 1,331 0.010 19,956,019

Table 11.2: Read mapping and dataset quality statistics for p300 datasets. Quality
control scores were determined using SPP as described in Landt et al. 2012 and Marinov et al. 2014

Cell Line Antibody Library Complexity NSC RSC QC
Number
Peaks

FRiP
Uniquely
Mapped
reads

GM12878 37 ◦C 1A3-F8p SL31840 0.85 1.244 0.293 -1 3 0 18,894,243
GM12878 37 ◦C 1F4-E10 SL31838 0.90 1.645 0.422 -1 4,870 0.019 13,446,233
GM12878 37 ◦C 2E10-D10 SL31839 0.87 1.364 0.269 -1 6 0 13,916,005
GM12878 37 ◦C 2F4-A8 SL31832 0.85 1.217 0.292 -1 40 0 17,928,468
GM12878 37 ◦C 2F6-F7 SL31831 0.72 1.541 0.366 -1 9 0 15,450,180
GM12878 37 ◦C 3B4-G6 SL31835 0.95 1.463 0.266 -1 45 0.001 13,546,541
GM12878 37 ◦C 3H6-B6 SL31834 0.92 1.242 0.242 -2 5 0 15,393,775
GM12878 37 ◦C 4C5-A1 SL31833 0.83 1.439 0.287 -1 15 0 12,550,517
GM12878 37 ◦C 5D2-A1 SL31836 0.89 1.422 0.270 -1 2 0 11,297,381
GM12878 37 ◦C 5F7-C9 SL31841 0.86 1.365 0.392 -1 2,868 0.010 14,992,412
GM12878 37 ◦C 7H5-F2 SL31842 0.83 1.447 0.421 -1 1,524 0.051 14,582,010
GM12878 37 ◦C 1F4-E10 SL34359 0.96 1.836 0.509 0 6,374 0.031 4,802,800

Continued on next page
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Table 11.2 – Continued from previous page

Cell Line Antibody Library Complexity NSC RSC QC
Number
Peaks

FRiP
Uniquely
Mapped
reads

GM12878 37 ◦C sc585 lot# E3113 SL34362 0.95 3.467 1.281 1 34,333 0.317 5,811,746
GM12878 37 ◦C sc585 lot# F2711 SL34358 0.94 3.659 1.239 1 36,868 0.342 6,688,765
GM12878 37 ◦C 1F4-E10 SL46203 0.88 1.673 0.852 0 6,333 0.030 20,062,190
GM12878 37 ◦C 1F4-E10 SL46209 0.87 2.027 0.874 0 6,725 0.030 16,221,052
GM12878 37 ◦C sc585 lot# E3113 SL46202 0.88 2.867 1.628 2 28,447 0.257 26,343,063
GM12878 37 ◦C sc585 lot# E3113 SL46205 0.92 2.585 1.431 1 11,369 0.066 27,085,241
GM12878 37 ◦C sc585 lot# F2711 SL46204 0.93 2.907 1.381 1 15,093 0.091 15,854,599
GM12878 37 ◦C 1F4-E10 SL45094 0.96 1.798 0.993 0 8,430 0.042 31,243,370
GM12878 37 ◦C 1F4-E10 SL45095 0.96 1.663 0.978 0 6,181 0.031 33,548,275
GM12878 1F4-E10 SL45092 0.97 1.224 0.580 0 108 0.0004 26,071,005
GM12878 1F4-E10 SL45093 0.97 1.237 0.588 0 252 0.0009 26,022,658
GM12878 1F4-E10 SL46207 0.91 1.146 0.217 -2 37 0.0001 18,794,116
GM12878 1F4-E10 SL46208 0.91 1.152 0.236 -2 17 0.0000 20,417,157
GM12878 sc584 ENCODE 0.92 1.549 0.759 0 12,924 0.063 15,906,721
GM12878 sc584 ENCODE 0.91 1.639 0.765 0 4,510 0.018 16,950,416
GM12878 sc585 ENCODE 0.86 2.088 1.258 1 8,267 0.043 23,366,821
GM12878 sc585 ENCODE 0.88 1.292 0.698 0 2,610 0.011 20,403,419

Table 11.3: Read mapping and dataset quality statistics for H3K27ac, GABP, ZBTB33,
PU.1 and input datasets. Quality control scores were determined using SPP as described in Landt
et al. 2012 and Marinov et al. 2014

Cell Line Factor Rep R/M Library Complexity NSC RSC QC
Number
Peaks

FRiP
Uniquely
Mapped
reads

GM12878 37 ◦C Input Rep1 SL45100 0.96 1.308 0.748 0 25,588,571
GM12878 37 ◦C Input Rep2 SL45101 0.96 1.242 0.613 0 28,422,425
GM12878 Input Rep3 SL45098 0.96 1.475 0.763 0 21,218,915
GM12878 Input Rep4 SL45099 0.96 1.381 0.820 0 26,213,457
GM12878 GABP Rep1 M SL45068 0.86 2.456 2.343 2 5,694 0.144 28,778,500
GM12878 GABP Rep2 M SL45069 0.90 2.615 2.296 2 4,675 0.096 29,626,523
GM12878 H3K27ac Rep3 M SL45090 0.89 1.629 1.945 2 35,570 0.502 31,263,444
GM12878 H3K27ac Rep4 M SL45090 0.87 1.699 1.811 2 34,619 0.497 36,587,615
GM12878 H3K27ac Rep1 M SL45090 0.92 1.463 1.593 2 28,580 0.384 30,476,218
GM12878 H3K27ac Rep2 M SL45090 0.93 1.444 1.541 2 32,345 0.386 25,852,868
GM12878 Input Rep1 SL45096 0.98 1.210 0.683 0 33,254,931
GM12878 Input Rep2 SL45097 0.98 1.090 0.272 -1 32,985,584
GM12878 PU.1 Rep1 M SL45076 0.88 6.960 2.143 2 19,779 0.182 27,166,940
GM12878 PU.1 Rep2 M SL45077 0.89 6.197 2.166 2 17,346 0.143 31,549,754
GM12878 ZBTB33 Rep1 M SL45080 0.94 1.992 1.250 1 2,066 0.030 22,662,929
GM12878 ZBTB33 Rep2 M SL45081 0.95 1.614 1.159 1 1,242 0.016 27,577,513
GM12878 37 ◦C GABP Rep1 R SL46201 0.85 4.153 1.538 2 4,630 0.111 18,416,079
GM12878 37 ◦C H3K27ac Rep1 R SL46215 0.87 1.542 3.067 2 36,216 0.509 21,994,873
GM12878 37 ◦C PU.1 Rep1 R SL46212 0.89 1.513 0.656 1,961 0.007 22,811,938
GM12878 37 ◦C ZBTB33 Rep1 R SL46213 0.95 1.373 0.376 475 0.004 10,385,335
GM12878 GABP Rep1 R SL46174 0.73 3.779 2.651 5,158 0.151 10,708,570
GM12878 GABP Rep2 R SL46175 0.63 3.524 3.101 6,170 0.198 13,707,692
GM12878 H3K27ac Rep3 R SL46199 0.88 1.590 2.402 40,102 0.511 21,229,446
GM12878 H3K27ac Rep4 R SL46200 0.88 1.553 2.801 37,038 0.520 24,739,874
GM12878 H3K27ac Rep1 R SL46197 0.92 1.379 1.974 29,449 0.337 20,680,756

Continued on next page
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Table 11.3 – Continued from previous page

Cell Line Antibody Rep R/M Library Complexity NSC RSC QC
Number
Peaks

FRiP
Uniquely
Mapped
reads

GM12878 H3K27ac Rep2 R SL46198 0.93 1.358 1.861 32,267 0.343 21,320,237
GM12878 PU.1 Rep1 R SL46183 0.79 9.692 2.561 2 22,376 0.246 21,431,025
GM12878 PU.1 Rep2 R SL46184 0.91 2.242 1.561 2 7,383 0.040 23,919,950
GM12878 ZBTB33 Rep1 R SL46187 0.92 1.891 1.203 1 1,343 0.016 17,536,255
GM12878 ZBTB33 Rep2 R SL46188 0.92 1.796 1.032 1 1,157 0.013 19,265,589
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12

The role of Piwi in piRNA-guided transcriptional

silencing and establishment of repressive chromatin

T
he data in this chapter was generated by the Fejes-Tóth and Aravin labs; my contri-
bution was in carrying out the analysis for it. Most of the material in it consists of
what was previously published as:

Le Thomas A*, Rogers AK*, Webster A*, Marinov GK*, Liao SE, Perkins EM, Hur JK, Aravin
AA, and Fejes-Tóth K. 2013. Piwi induces piRNA-guided transcriptional silencing and estab-
lishment of a repressive chromatin state. Genes Dev 27:390–399. doi: 10.1101/gad.209841.112.

The paper is reprinted in Appendix F.
I have also added some further analysis that I did that refutes certain claims about the way Piwi

functions in the nucleus that appeared in the literature after our paper was published.

Abstract

In the metazoan germline, piwi pro-
teins and associated piwi-interacting
RNAs (piRNAs) provide a defense sys-
tem against the expression of transpos-
able elements. In the cytoplasm, piRNA
sequences guide piwi complexes to destroy
complementary transposon transcripts by
endonucleolytic cleavage. However, some
piwi family members are nuclear, rais-
ing the possibility of alternative pathways
for piRNA-mediated regulation of gene
expression. We found that Drosophila
Piwi is recruited to chromatin, colocal-
izing with RNA polymerase II (Pol II)
on polytene chromosomes. Knockdown of
Piwi in the germline increases expression
of transposable elements that are targeted
by piRNAs, whereas protein-coding genes
remain largely unaffected. Derepression
of transposons upon Piwi depletion corre-
lates with increased occupancy of Pol II
on their promoters. Expression of piR-
NAs that target a reporter construct re-
sults in a decrease in Pol II occupancy and
an increase in repressive H3K9me3 marks

and heterochromatin protein 1 (HP1) on
the reporter locus. Our results indicate
that Piwi identifies targets complemen-
tary to the associated piRNA and induces
transcriptional repression by establishing
a repressive chromatin state when correct
targets are found. More recently, a dif-
ferent model for Piwi’s action has been
proposed, which features Piwi binding
strongly and very specifically to repeti-
tive elements in the genome (even those
that are not expressed). I show why that
model is wrong and based on flawed data.

12.1 Introduction

Diverse small RNA pathways function in all
kingdoms of life, from bacteria to higher eu-
karyotes. In eukaryotes, several classes of small
RNA associate with members of the Argonaute
protein family, forming effector complexes in
which the RNA provides target recognition by
sequence complementarity, and the Argonaute
provides the repressive function. Argonautes-
mall RNA complexes have been shown to reg-
ulate gene expression both transcriptionally and
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Figure 12.1: Piwi associates with chromatin and nuclear transcripts. (A) Polytene chro-
mosomes from Drosophila nurse cells expressing GFP-Piwi on the otu[7]/otu[11] background. Piwi
pattern on chromosomes correlates with Pol II staining. (B) Mass spectrometry analysis of Piwi
interaction partners. Piwi complexes were precipitated in the presence and absence of RNase A.
The outer circle represents classification of Piwi-associated proteins based on GO term analysis.
The inner pies represent the fraction of each group whose association with Piwi depends on RNA
(percentage indicated). Note that chromatin, splice, and mRNA export factors are virtually absent
after RNase A treatment.

post-transcriptionally. Post-transcriptional re-
pression involves cleavage of target RNA through
either the endonucleolytic activity of Argonautes
or sequestering targets into cytoplasmic ri-
bonucleoprotein (RNP) granules (Hutvagner &
Simard 2008).

The mechanism of transcriptional repression
by small RNAs has been extensively studied
in fission yeast and plants. Several studies
showed that Argonautesmall RNA complexes
induce transcriptional repression by tethering
chromatin modifiers to target loci. In fission
yeast, the effector complex containing the Arg-
onaute and the bound siRNA associates with
the histone H3 Lys 9 (H3K9) methyltransferase
Clr4 to install repressive H3K9-dimethyl marks
at target sites (Nakayama et al. 2001; Maison
& Almouzni 2004; Sugiyama et al. 2005; Gre-
wal & Jia 2007). Methylation of histone H3K9
leads to recruitment of the heterochromatin pro-
tein 1 (HP1) homolog Swi6, enhancing silencing
and further promoting interaction with the Arg-
onaute complex. The initial association of Ago

with chromatin, however, requires active tran-
scription (Ameyar-Zazoua et al. 2012; Keller
et al. 2012). Plants also use siRNAs to estab-
lish repressive chromatin at repetitive regions.
Contrary to yeast, heterochromatin in plants is
marked by DNA methylation, although repres-
sion also depends on histone methylation by a
Clr4 homolog (Soppe et al. 2002; Onodera et al.
2005). Although siRNA-mediated gene silencing
is predominant on repetitive sequences, it is not
limited to these sites. Constitutive expression
of dsRNA mapping to promoter regions results
in production of corresponding siRNAs, de novo
DNA methylation, and gene silencing (Mette et
al. 2000; Matzke et al. 2004).

In metazoans, small RNA pathways are pre-
dominantly associated with post-transcriptional
silencing. One class of small RNA, microRNA,
regulates expression of a large fraction of
protein-coding genes (Friedman et al. 2009). In
Drosophila, siRNAs silence expression of trans-
posable elements (TEs) in somatic cells (Chung
et al. 2008; Ghildiyal et al. 2008) and target vi-
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ral genes upon infection (Galiana-Arnoux et al.
2006; Wang et al. 2006; Zambon et al. 2006).
Another class of small RNAs, Piwi-interacting
RNAs (piRNAs), associates with the Piwi clade
of Argonautes and acts to repress mobile ge-
netic elements in the germline of both Drosophila
and mammals (Siomi et al. 2011). Analysis of
piRNA sequences in Drosophila revealed a very
diverse population of small RNAs that primar-
ily maps to transposon sequences and is derived
from a number of heterochromatic loci called
piRNA clusters, which serve as master regula-
tors of transposon repression (Brennecke et al.
2007). Additionally, a small fraction of piR-
NAs seems to be processed from the mRNA of
several host protein-coding genes (Robine et al.
2009; Saito et al. 2009). The Drosophila genome
encodes three piwi proteins: Piwi, Aubergine
(AUB), and Argonaute3 (AGO3). In the cy-
toplasm, AUB and AGO3 work together to re-
press transposons through cleavage of transpo-
son transcripts, which are recognized through se-
quence complementarity by the associated piR-
NAs (Vagin et al. 2006; Agger et al. 2007; Bren-
necke et al. 2007; Gunawardane et al. 2007).

In both Drosophila and mammals, one mem-
ber of the Piwi clade proteins localizes to the
nucleus. Analogously to small RNA pathways
in plants, the mouse piRNA pathway is required
for de novo DNA methylation and silencing of
TEs (Carmell et al. 2007; Aravin et al. 2008;
Kuramochi-Miyagawa et al. 2008); however, the
exact mechanism of this process is unknown. In
Drosophila, DNA methylation is absent; how-
ever, several studies indicate that elimination of
Piwi from the nucleus causes changes in histone
marks on TEs (Klenov et al. 2011; Pöyhönen et
al. 2012), yet a genome-wide analysis of Piwi’s
effect on chromatin marks and transcription is
lacking.

We showed that Piwi interacts with chro-

matin on polytene chromosomes in nurse cell nu-
clei. We found that Piwi exclusively represses
loci that are targeted by piRNAs. We showed
that Piwi-mediated silencing occurs through re-
pression of transcription and correlates with in-
stallment of repressive chromatin marks at tar-
geted loci.

12.2 Results

To analyze the role of Piwi in the nucleus, we
generated transgenic flies expressing a GFP-
tagged Piwi protein (GFP-Piwi) under the con-
trol of its native regulatory region. GFP-Piwi
was expressed in the ovary and testis in a pattern
indistinguishable from the localization of native
Piwi and was able to rescue the piwi-null phe-
notype as indicated by ovarian morphology, fer-
tility, transposon expression, and piRNA levels.
GFP-Piwi was deposited into the mature egg
and localized to the pole plasm; however, con-
trary to a previous observation (Brower-Toland
et al. 2007), we did not detect Piwi expres-
sion outside of the ovary and testis in third in-
star larvae or adult flies. We also did not ob-
serve the association of Piwi with polytene chro-
mosomes in salivary gland cells of third instar
larvae. In both follicular and germline cells of
the Drosophila ovary, GFP-Piwi localized exclu-
sively in the nucleus, with slightly higher concen-
trations apparent in regions enriched for DAPI,
indicating a possible interaction with chromatin.
To gain further insight into Piwi localization
in the nucleus, we took advantage of the fact
that nurse cell chromosomes are polytenized
and can be visualized on the otu mutant back-
ground (Mal’ceva et al. 1997). Analysis of poly-
tene chromosomes from nurse cells demonstrated
that GFP-Piwi associates with chromatin in
a specific banding pattern. Interestingly,

Figure 12.2 (preceding page): Piwi function, but not its nuclear localization, requires
piRNA association. (A) The Piwi-YK mutant does not associate with piRNA. Immunoprecipi-
tation of PiwipiRNA complexes was performed with GFP antibody on ovaries from GFP-Piwi and
GFP-Piwi-YK transgenic flies and a control strain. Small RNAs were isolated, 5’-labeled, and re-
solved on a denaturing gel. The same amount of 42-nucleotide RNA oligonucleotides was spiked
into all samples prior to RNA isolation to control for loss of RNA during isolation and labeling.
piRNAs (red arrow) are absent in the Piwi-YK complex. (B) GFP-Piwi-YK is present in the nuclei
of nurse cells and colocalizes with chromatin (DAPI-stained areas). (C) The Piwi-YK mutant does
not rescue the morphological changes caused by the piwi-null mutation. Dark-field images of ovaries
where either the wild-type piwi or the piwi-YK transgene has been backcrossed onto the piwi-null
background.



365

Figure 12.3: Fluorescence Loss in Photobleaching (FLIP) experiments indicate fast
redistribution of most of nuclear Piwi and slower movement of the Piwi-YK mutant.
Amount of fluorescence decrease after 110 bleaching iterations for H2A-RFP, GFP-Piwi and GFP-
Piwi-YK mutant and GFP in a nurse cell nucleus is shown. In each case significant fluorescence loss
(red pixels) is observed along the bleach axis. Both GFP and WT GFP-Piwi has extensive loss of
fluorescence (≥75%) across much of the nucleus, except for specific loci. GFP-Piwi-YK mutant ex-
hibits far less change (≤40%) in regions far from the site of bleaching. H2A-RFP control undergoes
very little change in intensity away from the bleach region. Note that the apparent slower redistri-
bution of free GFP is likely due to simultaneous nuclear import from the unbleached cytoplasmic
pool. Bars = 5µm. Arrowheads indicate position of bleach stripe across the nucleus.

coimmunostaining showed that a GFP-Piwi sig-
nal on polytene chromosomes generally overlaps
with the RNA polymerase II (Pol II) signal,
which marks sites of active transcription (Fig-
ure 12.1A).

In order to identify factors that might be re-
sponsible for targeting Piwi to chromatin, we
immunoprecipitated Piwi complexes from the
Drosophila ovary and analyzed Piwi interaction

partners by mass spectrometry. We purified Piwi
complexes from ovaries of three different trans-
genic lines expressing GFP-Piwi, myc-Piwi, or
Flag-Piwi using antibodies against each respec-
tive tag. As a control, we used flies expressing
free GFP in the ovary. We identified ¿50 factors
that showed significant enrichment in all three
Piwi purifications but were absent in the control.
We were unable to identify chromatin-associated
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factors that directly associate with Piwi but
identified several RNA-binding proteins that as-
sociate with nascent transcripts, such as splic-
ing (Rm62, Pep, Ref1, Yps, CG9684, CG31368,
CG5728, and Mago) and nuclear export (Tho2
and Hpr1) factors (Figure 12.1B). Upon RNase
A treatment prior to immunoprecipitation, the
presence of most of these RNA-binding proteins
in purified Piwi complexes was eliminated.

Piwi proteins are believed to find their tar-
gets through sequence complementarity of the
associated piRNA. In fact, it has been proposed
that lack of the associated piRNA leads to desta-
bilization of piwi proteins and to Piwi’s inabil-
ity to localize to the nucleus (Saito et al. 2009;
Haase et al. 2010; Olivieri et al. 2010; Handler et
al. 2011; Ishizu et al. 2011). On the other hand,
Piwi has been proposed to have functions that
are independent of its role in transposon control
by regulating stem cell niche development (Cox
et al. 1998; Klenov et al. 2011). To address the
role of piRNA in translocation of Piwi into the
nucleus and its function, we generated transgenic
flies expressing a point mutant Piwireferenced as
Piwi-YKthat is deficient in piRNA binding due
to a substitution of two conserved amino acid
residues (Y551L and K555E) in the 5 phosphate-
binding pocket (Kiriakidou et al. 2007; Djura-
novic et al. 2010). The Piwi-YK mutant was
expressed in Drosophila follicular and germ cells
at levels similar to that of wild-type Piwi but
was completely devoid of associated piRNA (Fig-
ure 12.2A). In contrast to wild-type Piwi, Piwi-
YK could be found in the cytoplasm, support-

ing the existence of a quality control mechanism
that prevents entrance of unloaded Piwi into the
nucleus (Ishizu et al. 2011). Nevertheless, a
significant amount of piRNA-deficient Piwi lo-
calized to the nucleus (Figure 12.2B). Similar
to wild-type Piwi, Piwi-YK seemed to associate
with chromatin, as indicated by its localization
in DAPI-stained regions of the nuclei, and this is
consistent with fluorescence loss in photobleach-
ing (FLIP) experiments that demonstrated re-
duced nuclear mobility compared with free diffu-
sion (Figure 12.3). Based on sterility and ovarian
morphology, the piwi-YK transgene was unable
to rescue the piwi-null phenotype despite its nu-
clear localization (Figure 12.2C), indicating that
while piRNA binding is not absolutely essential
for stability and nuclear localization of Piwi, it
is required for Piwi function.

To directly test the function of Piwi in the
nucleus, we analyzed the effect of Piwi deficiency
on gene expression and chromatin state on a
genome-wide scale. Piwi mutant females have
atrophic ovaries caused by Piwi deficiency in so-
matic follicular cells (Lin and Spradling 1997;
Cox et al. 1998), which precludes analysis of
Piwi function in null mutants. Instead, we used
RNAi knockdown to deplete Piwi in germ cells
while leaving it functionally intact in somatic
follicular cells. The Piwi knockdown flies did
not exhibit gross morphological defects in the
ovary; however, they showed drastic reduction in
GFP-Piwi expression in germ cells and were ster-
ile (Figure 12.4A and B). To analyze the effect
of Piwi deficiency on the steady-state transcrip-

Figure 12.4 (preceding page): Piwi transcriptionally represses TEs. (A) Piwi knockdown
is efficient and specific to ovarian germ cells as indicated by GFP-Piwi localization. GFP-Piwi;
Nanos-Gal4-VP16 flies were crossed to control shRNA (shWhite) or shPiwi lines. Piwi is specifically
depleted in germ cells and not in follicular cells, consistent with expression of the Nanos-Gal4-VP16
driver. (B) Piwi expression as measured by RNA-seq in the Piwi knockdown and control lines. Note
that Piwi expression is unaffected in follicular cells, leading to relatively weak apparent knockdown in
RNA-seq libraries from whole ovaries. (C) Effect of Piwi knockdown on the expression of TEs. Two
biological replicate RNA-seq experiments were carried out, and differential expression was assessed
using DESeq. Transposons that show significant change (p < 0.05) are indicated by dark-red circles.
Out of 217 individual RepeatMasker-annotated TEs, 15 show a significant increase in expression
upon Piwi knockdown. (D) The change in the levels of TE transcripts and Pol II occupancy on
their promoters upon Piwi knockdown. Twenty up-regulated and 10 down-regulated transposons
with the most significant changes in expression level are shown. Note the low statistical significance
for down-regulated transposons. For a complete list of transposons, see Supplemental Figure S2.
(E) Pol II signal over the Het-A retrotransposon in control flies (shWhite; red) and upon Piwi
knockdown (shPiwi; blue). (F) Increased abundance of transposon transcripts upon Piwi depletion
correlates with increased Pol II occupancy over their promoters (r2 = 0.21). Note that the majority
of elements do not show significant change in either RNA abundance or Pol II occupancy.
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tome as well as the transcription machinery, we
performed RNA sequencing (RNA-seq) and Pol
II chromatin immunoprecipitation (ChIP) com-
bined with deep sequencing (ChIP-seq) experi-
ments from Piwi knockdown and control flies.

In agreement with previous observations that
implicated Piwi in transposon repression (Saito
et al. 2006; Aravin et al. 2007; Brennecke et
al. 2007), we found that steady-state transcript
levels of several TEs were increased upon Piwi
knockdown in germ cells (Figure 12.4C and D;
Figure 12.5). We found little to no change of
RNA levels for transposons whose activity is re-
stricted to follicular cells of the ovary, indicat-
ing that the observed changes are indeed due
to loss of Piwi in the germline (Figure 12.5).
The analysis of Pol II ChIP-seq showed that Pol
II occupancy increased over promoters of multi-
ple TEs (Figure 12.4DF; Figure 12.6). Indeed,
the change in steady-state levels of transposon
transcripts upon Piwi depletion correlated with
changes of Pol II occupancy (Figure 12.4F). This
result demonstrates that Piwi ensures low levels
of transposon transcripts through a repressive
effect on the transcription machinery.

To test whether Piwi-mediated transcrip-
tional repression is accompanied by a corre-
sponding change in chromatin state, we used
ChIP-seq to analyze the genome-wide distribu-
tion of the repressive H3K9me3 mark in the
ovary upon Piwi knockdown. We identified 705
genomic loci at which the level of H3K9me3 sig-
nificantly decreased. More than 90% of the re-
gions that show a decrease in the H3K9me3 mark
upon Piwi depletion overlapped TE sequences,
compared with the 33% that is expected from
random genome sampling (Figure 12.7A). Fur-
thermore, these regions tend to be located in the
heterochromatic portions of the genome that are
not assembled on the main chromosomes (Figure
12.7B). Only 20 of the identified regions local-
ized to the euchromatic parts of the genome. Of
these, 15 (75%) contained potentially active an-
notated copies of transposons. Taken together,

our results indicate that Piwi is required for
installment of repressive H3K9me3 chromatin
marks on TE sequences of the genome.

While the vast majority of protein-coding
host genes did not show significant changes in
transcript level or Pol II occupancy upon Piwi
knockdown, the expression of a small set of
protein-coding genes (150 genes with a p-value <
0.05) was significantly increased (Figure 12.8A;
Table Figure 12). There are several possible
explanations for Piwi’s effect on host gene ex-
pression. First, failure in the piRNA pathway
might cause up-regulation of several genes that
generate piRNAs in wild-type ovaries (Robine
et al. 2009; Saito et al. 2009). However,
the genes up-regulated in Piwi-deficient ovaries
were not enriched in piRNAs compared with
other genes. Second, H3K9me3 marks installed
on TE sequences in a Piwi-dependent manner
might spread into neighboring host genes and re-
press their transcription, as was recently demon-
strated in a follicular cell culture model (Sien-
ski et al. 2012). To address this possibility, we
analyzed genomic positions of the genes whose
expression was increased upon Piwi knockdown
relative to genomic regions that showed a de-
crease in H3K9me3 marks. We found that up-
regulated genes did not show a significant change
in the H3K9me3 mark (Figure 12.8B; Figure
12.9). Furthermore, the few genes located close
to the regions that show a decrease in H3K9me3
signal had unaltered expression levels upon Piwi
knockdown. Next, we analyzed the functions
of up-regulated genes using gene ontology (GO)
term classifications and found significant enrich-
ment for proteins involved in protein turnover
and stress and DNA damage response pathways
(Figure 12.8C). Particularly, we found that 31
subunits of the proteasome complex were over-
expressed. Therefore, our analysis indicates that
up-regulation of specific host genes is likely a
secondary response to elevated transposon levels
and genomic damage.

In contrast to host genes, transcripts of TEs

Figure 12.5 (preceding page): Piwi regulates transposon levels through transcriptional
repression. The change in the levels of transposable element transcripts and RNA Polymerase II
occupancy upon Piwi knockdown is shown. RNA-seq and ChIP-seq experiments were carried out in
shWhite and shPiwi ovaries in two replicates. Differential expression was assessed using DESeq (see
methods). The first column shows the statistical significance of the observed expression change (in
log10(p-value)); upregulated and downregulated genes are sorted separately in order of decreasing
significance. The second column shows the average change in RNA levels as defined by DESeq. The
third column shows the average change in Pol II occupancy between the two replicate experiments.
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Figure 12.6: Piwi depletion increases RNA Pol II association with promoters of trans-
posable elements. RNA Polymerase II ChIP-seq signal over the consensus sequences of selected
transposable elements in the control (shWhite) and Piwi-depleted (shPiwi) ovaries. Pol II occu-
pancy increases in the promoter regions (LTRs) of transposons upon germline knockdown of Piwi.
Transposons expressed in somatic follicular cells such as ZAM are not affected.

are targeted by piRNA. To directly address the
role of piRNA in Piwi-mediated transcriptional
silencing, we took advantage of a fly strain
that expresses artificial piRNAs against the lacZ
gene, which are loaded into Piwi complexes and
are able to repress lacZ reporter expression in
germ cells (Figure 12.10A; Josse et al. 2007;
Muerdter et al. 2012). Expression of piRNAs
that are antisense to the reporter gene caused
transcriptional silencing of the lacZ gene as mea-
sured by Pol II occupancy (Figure 12.10B). Fur-
thermore, we found that piRNA-induced silenc-
ing of the reporter gene was associated with an
increase in the repressive H3K9me3 mark and
HP1 occupancy and a decrease in the abundance
of the active H3K4me2/3 marks at the reporter
locus (Figure 12.10C). This result is in good
agreement with the genome-wide effect of Piwi
depletion on distribution of the H3K9me3 mark
and suggests that transcriptional silencing corre-
lates with the establishment of a repressive chro-
matin structure and is mediated by piRNAs that
match the target locus.

12.3 Discussion

Little is known about the function of nuclear
piwi proteins. The nuclear piwi in mice (Miwi2)
affects DNA methylation of TEs (Carmell et al.
2007; Aravin et al. 2008; Kuramochi-Miyagawa
et al. 2008). Several recent reports impli-
cate Drosophila Piwi in regulation of chromatin
marks on transposon sequences (Lin and Yin
2008; Klenov et al. 2011; Wang and Elgin 2011;
Sienski et al. 2012). The mechanism of these
processes is unknown in both organisms. Previ-
ously, Piwi was shown to associate with polytene
chromosomes in salivary gland cells and colo-
calize with HP1, a chromodomain protein that
binds to heterochromatin and a few loci in eu-
chromatin, suggesting that HP1 mediates Piwi’s
interaction with chromatin (Brower-Toland et al.
2007). However, recent results showed that the
putative HP1-binding site on Piwi is dispensable
for Piwi-mediated transposon silencing (Wang
and Elgin 2011).
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We did not detect Piwi expression outside of
the ovary and testis, including in salivary gland
cells, using a GFP-Piwi transgene expressed un-
der native regulatory elements. We detected
GFP-Piwi on polytene chromosomes in ovarian
nurse cells that have a germline origin; how-
ever, it localizes in a pattern that largely does
not overlap with HP1. FLIP experiments with
GFP-Piwi indicated a relatively fast rate of flu-
orescence redistribution as compared with his-
tone H2A (Figure 12.3), implying a transient
interaction of Piwi with chromatin. Our pro-
teomic analysis of Piwi complexes isolated from
Drosophila ovaries did not identify chromatin-
associated factors but revealed several RNA-
binding proteins, such as splicing and nuclear ex-
port factors that bind nascent RNA transcripts

(Fig. 1B). Importantly, the interaction of most
of these RNA-binding proteins with Piwi was
dependent on RNA, indicating that Piwi asso-
ciates with nascent transcripts. As Piwi itself
lacks DNA- and RNA-binding domains (beyond
the piRNA-binding domain), it is likely that
the recruitment of Piwi to chromatin is through
interactions with other RNA-binding proteins
or sequence-specific interactions between Piwi-
bound piRNA and nascent transcripts.

Using specific Piwi knockdown in germ cells
of the Drosophila ovary, we analyzed the effect
of Piwi depletion on gene expression, the tran-
scription machinery, and H3K9me3 chromatin
marks genome-wide. In agreement with pre-
vious results (Klenov et al. 2011), we found
up-regulation of several TEs upon Piwi knock-

Figure 12.7: Piwi-induced transcriptional repression correlates with establishment of a
repressive chromatin state. (A) Overlap between genomic regions of H3K9me3 depletion upon
Piwi knockdown and TEs. Two replicates of H3K9me3 ChIP-seq experiments were carried out on
control and Piwi-depleted ovaries, and enriched regions were identified using DESeq (see the Ma-
terials and Methods for details). A total of 705 regions show significant (p < 0.05) decrease in
H3K9me3 occupancy upon Piwi knockdown, while only 30 regions showed a similarly significant
increase. Out of the 705 regions that show a decrease in H3K9me3 marks upon Piwi knockdown,
91% (646) overlap with TE sequences compared with the 33% expected from random genome sam-
pling. (B) Genomic positions of H3K9me3-depleted regions upon Piwi depletion (outer circle) and
RepeatMasker-annotated transposons (inner circle). Note that almost all regions are localized in
heterochromatic and repeat-rich portions of the genome (Het, chrU, and chrUExtra chromosomes).
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Figure 12.8: Piwi does
not directly repress
protein-coding genes (A)
Effect of Piwi knockdown on
the expression of genes. Two
replicate RNA-seq experi-
ments were carried out, and
differential expression was
assessed using DESeq. Genes
that show significant change
(p < 0.05) are indicated
by black circles. The vast
majority of genes does not
change significantly upon
germline Piwi knockdown
(shPiwi) compared with con-
trol (shWhite). (B) H3K9me3
mark density does not change
over genes that show a sig-
nificant change in expression
upon Piwi knockdown (see
Figure 12.4C). Up-regulated
and down-regulated genes are
plotted separately. Signal
indicated is after background
subtraction. (C) Functional
analysis of up-regulated
genes by the Database for
Annotation, Visualization,
and Integrated Discovery
(DAVID) reveals activation
of the protein degradation
and DNA damage response
pathways. Percentages of
all up-regulated genes are
indicated.

down (Figure 12.4C). The TEs that did not
change their expression upon germline knock-
down of Piwi might be expressed exclusively in
somatic follicular cells of the ovary, such as the
gypsy retrotransposon. Alternatively, some el-
ements present in the genome might not have
transcriptionally active copies, or the cytoplas-
mic AUB/AGO3 proteins may efficiently silence
them at the post-transcriptional level.

The increase in steady-state levels of RNA
upon Piwi depletion strongly correlates with an
increase in Pol II occupancy on the promoters

of transposons (Figure 12.4D,F; Figure 12.5).
This result suggests that Piwi represses trans-
poson expression at the transcriptional level, al-
though we cannot completely exclude the pos-
sibility of an additional post-transcriptional ef-
fect. It was shown previously that depletion or
mutation of Piwi leads to depletion of the re-
pressive H3K9me3 mark and an increase in the
active H3K4me2/3 marks on several transposon
sequences (Klenov et al. 2011; Wang and El-
gin 2011). Our ChIP-seq data extend these re-
sults to a genome-wide scale, proving that trans-
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Figure 12.9: Piwi depletion does not alter H3K9me3 occupancy over differentially
expressed genes. Scatter plot indicating average H3K9me3 mark levels upon Piwi depletion (sh-
Piwi) and control (shWhite) over genes that were previously identified in the RNA-seq experiments
to be differentially expressed upon Piwi knockdown. (red: upregulated genes, green: downregu-
lated genes). The average signal of two biological replicates was taken after subtraction of the
corresponding input signals.

posons are indeed the sole targets of Piwi, and
demonstrate that changes in histone marks di-
rectly correlate with transcriptional repression.

Piwi depletion in the germline does not af-
fect expression of the majority of host genes, al-
though a small fraction of genes changes expres-
sion (Figure 12.8A). One possible mechanism of
the effect Piwi has on host genes is the spreading
of repressive chromatin structure from transpo-
son sequences to adjacent host genes. Indeed,
such a spreading and the resulting repression of
host gene transcription were observed in an ovar-
ian somatic cell (OSC) culture model (Sienski
et al. 2012). However, we did not find signif-
icant changes in the H3K9me3 mark for genes
that are up-regulated upon germline depletion
of Piwi, arguing against this mechanism playing
a major role in host gene regulation. Instead,
we found that the majority of host genes whose

expression is increased as a result of Piwi deple-
tion participate in protein turnover (e.g., pro-
teasome subunits) and stress and DNA damage
response pathways, indicating that they might
be activated as a secondary response to cellular
damage induced by transposon activation. The
different effect of Piwi depletion on host gene
expression in ovary and cultured cells might be
explained by the fact that silencing of host genes
due to transposon insertion would likely have a
strong negative effect on the fitness of the organ-
ism but could be tolerated in cultured cells. Ac-
cordingly, new transposon insertions that cause
repression of adjacent host genes should be elim-
inated from the fly population but can be de-
tected in cultured cells. In agreement with this
explanation, the majority of cases of repressive
chromatin spreading in OSCs were observed for
new transposon insertions that are absent in the
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sequenced Drosophila genome. Indeed, it was
shown that the vast majority of new transpo-
son insertions is present at a low frequency in
the Drosophila population, likely due to strong
negative selection (Petrov et al. 2003). Such
selection was primarily attributed to the ability
of TE sequences to cause recombination and ge-
nomic rearrangements. We proposed that in ad-

dition to the effects on recombination, the selec-
tion against transposons can be driven by their
negative impact on host gene expression in the
germline linked to Piwi-mediated chromatin si-
lencing.

How does Piwi discriminate its proper tar-
getstransposonsfrom host genes? In the case
of cytoplasmic Piwi proteins AUB and AGO3,

Figure 12.10: piRNA-dependent targeting of Piwi to a reporter locus leads to establish-
ment of a repressive chromatin state and transcriptional silencing. (A) The mechanism
of trans-silencing mediated by artificial piRNA and a schematic representation of the repressor and
reporter lacZ constructs. The repressor construct is inserted in a subtelomeric piRNA cluster, lead-
ing to generation of piRNA from its sequence. Primers mapping to both constructs used for the
Pol II and H3K4me2/3 ChIP-quantitative PCR (qPCR) are shown by light-gray arrows; primers
specific to the reporter locus used for the H3K9me3, H3K9me2, and HP1 ChIP-qPCR are indicated
by dark-gray arrows. (B) piRNAs induce transcriptional repression of the lacZ reporter. Pol II
and H3K4me2/3 signals decreased on the lacZ promoter in the presence of artificial piRNAs as
measured by ChIP-qPCR. Shown is the fold depletion of signal in flies that carry both repressor
and reporter constructs compared with control flies that have only the reporter construct. The
signal was normalized to RP49. (C) piRNAs induce an increase in H3K9me3 and H3K9me2 marks
and HP1 binding as measured by ChIP-qPCR. Shown is the fold increase of corresponding ChIP
signals downstream from the lacZ reporter in flies that carry both repressor and reporter constructs
compared with control flies that have only reporter construct. The signal was normalized to RP49.
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recognition and post-transcriptional destruction
of TE transcripts is guided by associated piR-
NAs. Our results indicated that piRNAs pro-
vide guidance for transcriptional silencing by the
nuclear Piwi protein as well. First, in contrast
to host genes that are not targeted by piRNAs,
TE transcripts, which are regulated by Piwi,
are recognized by antisense Piwi-bound piRNA
(Brennecke et al. 2007). Second, a Piwi mu-
tant that is unable to bind piRNA failed to res-
cue the piwi-null mutation despite its ability to
enter the nucleus. Finally, expression of arti-
ficial piRNAs that target a reporter locus in-
duced transcriptional silencing associated with
an increase in repressive H3K9me3 and HP1
chromatin marks and a decrease in the active
H3K4me2/3 marks (Figure 12.10B and C). In
contrast, the tethering of Piwi to chromatin in a
piRNA-independent fashion by fusing Piwi with
the lacI DNA-binding domain that recognizes
lacO sequences inserted upstream of a reporter
gene did not lead to silencing of the reporter
(data not shown). Together, our results demon-
strated that piRNAs are the essential guides of
Piwi to recognize its targets for transcriptional
repression.

It is tempting to propose that, similar to
Argonautes in fission yeast, Drosophila Piwi di-
rectly recruits the enzymatic machinery that es-
tablishes the repressive H3K9me3 mark on its
targets. Establishment of repressive marks can
lead to stable chromatin-based transcriptional
silencing that does not require further associa-
tion of Piwi with target loci. This model ex-
plains why we found that Piwi is relatively mo-
bile in the nucleus, indicative of only a transient
interaction with chromatin. The Piwi-mediated
transcriptional silencing has an interesting par-
allel in Caenorhabditis elegans, where the Piwi
protein PRG-1 and associated 21U RNAs are
able to induce stable transgenerational repres-
sion that correlates with formation of silencing
chromatin marks on target loci. Interestingly,
PRG-1 and 21U RNAs are necessary only for ini-
tial establishment of silencing, while continuing
repression depends on siRNA and the WAGO
group of Argonautes (Ashe et al. 2012; Bag-
ijn et al. 2012; Buckley et al. 2012; Shirayama
et al. 2012). Future studies should reveal the
pathway that leads to transcriptional repression
downstream from Piwi in Drosophila and the dif-
ferences from and similarities to other species.

12.4 Materials and methods

12.4.1 Drosophila stocks

Nanos-Gal4-VP16 (BL4937), UASp-shWhite
(BL33623), UASp-shPiwi (BL 33724), and Chr.
I and II Balancer (BL7197) were purchased
from the Bloomington Stock Center. GFP-
Piwi-expressing flies (see below) were back-
crossed onto the piwi1/piwi2 (available from
Bloomington Stock Center) background or the
otu7/otu11 (available from Bloomington Stock
Center) background, respectively. LacZ reporter
lines were a generous gift from S. Ronsseray.

12.4.2 Generation of transgenic
fly lines

The GFP-Piwi, 3xFlag-HA-Piwi, and myc-Piwi
constructs were generated using bacterial recom-
bineering (Gene Bridges Counter Selection kit)
to insert the respective tag after the start codon
of the Piwi genomic region cloned in BAC clone
BACN04M10. The KpnIXbaI genomic fragment
that contains the Piwi gene and flanking se-
quences was transferred to corresponding sites of
the pCasper4 vector to create pCasper4/tagged
Piwi.

The pCasper4/GFP-Piwi construct was used
to generate pCasper4/GFP-Piwi-YK with two
point mutations, Y551I and K555E. Mutations
were introduced by PCR, amplifying products
corresponding to a 3.1-kb upstream fragment
and a 2.58-kb downstream fragment. The up-
stream fragment included a unique XbaI site
at the 5 end of the amplicon and overlapped
39 base pairs (bp) with the downstream frag-
ment, which included a unique BamHI site at
its 3 end. The single XbaIBamHI fragment
was generated by overlap PCR with outside
primers and cloned into corresponding sites of
pCasper4/GFP-Piwi to replace the wild-type
fragment. Transgenic flies were generated by P-
element-mediated transformation (BestGene).

12.4.3 Immunoprecipitation of
Piwi proteins and RNA gel of

piRNA

Dissected ovaries were lysed in lysis buffer (20
mM HEPES at pH 7.0, 150 mM KCl, 2.5 mM
MgCl, 0.5% Triton X-100, 0.5% Igepal, 100
U/mL RNasin [Promega], EDTA-free Complete
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Protease Inhibitor Cocktail [Roche]) and super-
natant clarified by centrifugation. Supernatant
was incubated with anti-eGFP polyclonal anti-
body (Covance) conjugated to Protein-G Dyn-
abeads at 4 ◦C. Beads were spiked with 5
pmol of synthesized 42-nucleotide RNA oligomer
to assess purification efficiency, proteinase K-
digested, and phenol-extracted. Isolated RNA
was CIP-treated, radiolabeled using PNK and γ-
32P-labeled ATP, and run on a 15% urea-PAGE
gel. Western blots of ovary lysate and anti-
eGFP immunoprecipitates were obtained from
8% SDS-PAGE gels and probed with polyclonal
rabbit anti-eGFP antibody to confirm expression
of the full-length transgene.

12.4.4 Mass spectrometric
analysis of Piwi interaction

partners

Lysis and clarification of ovary samples were per-
formed as described above using lysis buffer with
reduced detergent (0.1% Triton X-100, 0.1%
Igepal). Piwi proteins with Flag, Myc, or GFP
tag were purified from Drosophila ovaries using
corresponding antibodies covalently coupled to
M-270 epoxy Dynabeads (Invitrogen) (Cristea
et al. 2005). Immunoprecipitation of free GFP
from GFP-expressing ovaries was used as a neg-
ative control. Immunoprecipitations were per-
formed in the presence or absence of RNase A
(100 µg/mL; 30 min at 25 ◦C). Piwi and copu-
rified interacting proteins were resolved on Nu-
PAGE Novex 4%12% Bis-Tris gels and stained
with colloidal Coomassie blue. Gel fragments
that contained protein bands were excised and
in-gel-trypsinized, and the peptides were ex-
tracted following the standard protocol of the
Proteome Exploration Laboratory at California
Institute of Technology. Peptide analyses were
performed on an LTQ-FT Ultra (Thermo Fisher
Scientific) equipped with a nanoelectrospray ion
source (Thermo Fisher Scientific) connected to
an EASY-nLC. Fractionation of peptides was
performed on a 15-cm reversed-phase analyti-
cal column (75-µm internal diameter) in-house-
packed with 3-µm C18 beads (ReproSil-Pur C18-
AQ medium; Dr. Maisch GmbH). Acquired
spectra were searched against the Drosophila
melanogaster proteome using the search engine
Mascot (Matrix Science, version 2.2.06), and
protein inferences were performed using Scaffold
(Proteome Software, version 3).

12.4.5 Antibodies

eGFP antibody (rabbit polyclonal serum; Cov-
ance) was affinity-purified in the Aravin/Tóth
laboratories. Anti-myc (Millipore), anti-Flag
(Sigma), Pol II (ab5408), and Pol II pSer5
(ab5131) are commercially available.

12.4.6 Imaging of ovaries

Ovaries were fixed in 4% PFA in PBS for
20 min, permeabilized in 1% Triton X-100 in
PBS, DAPI-stained (Sigma-Aldrich), washed,
and mounted in 50% glycerol/PBS. Images were
captured using an AxioImager microscope; an
Apotome structured illumination system was
used for optical sections (Carl Zeiss).

12.4.7 FLIP

FLIP time series were captured on an LSM510
confocal microscope equipped with a 40×/0.9
NA Imm Corr multi-immersion objective.
Ovaries were dissected into halocarbon 700 oil
(Sigma) and mounted under a 0.17-mm coverslip
(Carl Zeiss) immediately before imaging. Two
initial baseline images were captured, followed
by 80100 iterations consisting of two bleach iter-
ations at 100% laser power (488 nm or 543 nm for
GFP- and RFP-tagged proteins, respectively),
followed by two images with reduced illumina-
tion intensity. FLIP series were cropped and
median-filtered with a 2-pixel radius to reduce
noise using FIJI (Schindelin et al. 2012) and the
“Rigid Body” function of the StackReg plugin
(Thévenaz et al. 1998) to correct drift when
needed. Using Matlab software (The Math-
works), images were background-subtracted and
corrected for acquisition bleaching. A value rep-
resenting the true loss of intensity relative to
the initial prebleach images, where 0 indicates
no change in intensity and 1 represents com-
plete photobleaching, was calculated for each
pixel and each bleach/capture cycle and plot-
ted with a color lookup table and calibration
bar. Scale bars and annotations were made in
Inkscape (http://inkscape.org).

12.4.8 Preparation of polytene
squashes for immunofluorescence

Flies carrying the GFP-Piwi BAC construct
were backcrossed onto the otu[7] and otu[11]
background. Progeny from the cross of the
two lines were grown at 18 ◦C. Stage 712 egg

http://inkscape.org
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chambers were separated and transferred to a
polylysine-coated microscopic slide into PBST.
From here, the “smush” protocol was followed
(Johansen et al. 2009), but PFA cross-linking
was reduced to 10 min. Slides were imaged using
an AxioImager microscope and a 63× oil immer-
sion objective (Carl Zeiss).

12.4.9 ChIP, ChIP-seq, and
RNA-seq

ChIP was carried out using standard proto-
cols (Moshkovich and Lei 2010). ChIP-seq and
RNA-seq library construction and sequencing
were carried out using standard protocols fol-
lowing the general principles described by John-
son et al. (2007) and Mortazavi et al. (2008),
respectively. For quantitative PCR (qPCR)
primers, see 12.2. GO term analysis of genes up-
regulated upon Piwi knockdown was performed
using the Database for Annotation, Visualiza-
tion, and Integrated Discovery (DAVID) (Huang
et al. 2009a,b) and FlyBase for additional as-
signment of GO terms.

12.4.10 High throughput data
analysis

Except for where specifically specified other-
wise, all data processing was carried out using
custom-written python scripts. The dm3/BDGP
assembly, release 5 version of the Drosophila
melanogaster genome was used.

12.4.11 ChIP-seq and ChIP-seq
data processing

Sequencing libraries were sequenced on the Il-
lumina HiSeq 2000 (50bp reads). The resulting
sequencing reads were trimmed down to 36bp
and mapped against the genome using Bowtie
0.12.7 (Langemad et al. 2009) with the following
settings: ’’-v 2 --best --strata’’ retaining
only uniquely mappable reads with up to two
mismatches. Read mapping statistics for ChIP-
seq datasets processed this way are presented in
12.3.

12.4.12 Gene expression
quantification using RNA-seq

RNA-seq libraries were built from polyA-
selected RNA from fly ovaries following stan-
dard protocols (Mortazavi & Williams et al.

2008) and sequenced on the HiSeq 2000 (50bp
reads). For the purposes of expression quan-
tification, reads were mapped as 50mers, us-
ing TopHat 1.4.1 (Trapnell et al. 2009) and
splice junctions from the ENSEMBL62 dm3 an-
notation with otherwise default settings. Gene
expression was quantified in RPKMs/FPKMs
(Reads/Fragments Per Kilobase per Million
mapped reads/fragments) for the refSeq annota-
tion (downloaded from the UCSC browser) with
Cufflinks 2.0.2 (Trapnell et al. 2010; Trapnell
et al. 2012). Read mapping statistics for these
libraries are presented in 12.4.

12.4.13 Repeat analysis

The usual practice when mapping ChIP-seq data
is to retain only unique alignments as the ambi-
guity of the allocation of multimapper seriously
confounds most analyses. In this study it was
necessary to examine repeats but not absolutely
necessary to properly allocate multimappers to
each individual repeat. I therefore adopted the
following two strategies for processing our ChIP-
seq and RNA-seq data and examining ChIP en-
richment over the expression of repeat elements:

12.4.13.1 Analysis on RepeatMasker-
annotated repeat elements

Both ChIP-seq and RNA-seq reads were
trimmed down to the same length (36bp) and
again aligned with Bowtie 0.12.7 against the dm3
genome but this time with the following options:
“-v 0 -a --best --strata -q”, i.e. no mis-
matches and an unlimited number of locations to
which a read can map to. Read mapping statis-
tics for these alignments are presented in 12.5.
For each read r, an integer multiplicity score
NHr was defined (corresponding to the number
of positions in the genome the read maps to) and
for each individual instance of a repeated ele-
mentRE (as defined in the RepeatMasker repeat
element annotation downloaded from UCSC) an
RPM score was calculated as follows:

RPMRE =
∑
r∈RE

1

NHr
(12.1)

A combined repeat RPM score was calcu-
lated as the sum of the RPMs for each individual
instance of that repeat:

TotalRPMRE =
∑
RE

RPMRE (12.2)
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For RNA-seq data, repeat expression change
was assessed as the RPM ratio between the sh-
Piwi and shWhite libraries. For Pol II ChIP-
seq data, an additional confounding factor exists
as the differences in signal between two regions
is the result of the combination of the actual
change in occupancy and the difference in ChIP
strength between the two experiments. I there-
fore used the total Pol II RPMs over transcrip-
tion start sites in order to assess the difference
in ChIP strength and derive a normalization fac-
tor to be used for rescaling of the repeat RPMs
of one libraries so that they are comparable to
those in the other (here, this factor turned out
to be very close to 1).

12.4.13.2 Analysis on consensus repeat
sequences

An orthogonal strategy for the analysis of re-
peat occupancy and expression change that we
employed was to map reads against consen-
sus repeat sequences (obtained from FlyBase
version FB2012 05 (McQuilton et al. 2012)).
Reads were mapped with the following settings:
“-v 3 -a --best --strata -q” (allowing for
up to 3 mismatches and unlimited number of
multimappers). Read mapping statistics for
these alignments can be found in 12.6. Read
counts for each repeat were calculated (normal-
izing for multimapper multiplicity as described
above) and normalized for sequencing depth
against the total number of reads mappable to
the genome (derived from the alignment with-
out limits to read multiplicity discussed in the
previous section) and finally, normalized for the
length of the consensus sequences (RPKMs).

Results from both analyses were very similar
and so only plots for RepeatMasker repetitive
elements are shown.

12.4.14 Differential expression
and occupancy analysis

In order to identify differentially expressed genes
and transposons we used a combination of eX-

press quantification (Roberts & Pachter 2013)
and DESeq (Anders & Huber 2010) differential
read count analysis. For each replicate, RNA-
seq reads were aligned against the transcriptome
and the quantification values for all transcripts
belonging to the same gene were summed to de-
rive gene-level quantifications. The “effective
counts” values were used for downstream analy-
sis. As only a minority of reads align to trans-
posons, differential expression analysis only on
transposons is not reliable. For this reason, I
combined raw read counts for transposons (de-
rived for the RepeatMakser annotation as de-
scribed above or for the consensus sequences)
with the eXpress quantifications on genes and
ran DESeq to evaluate the statistical significance
of the observed expression changes over the two
shWhite and shPiwi replicates.

Differential occupancy of H3K9me3 was esti-
mated as follows. First, the genome was divided
into 1000bp bins and the H3K9me3 read count
was estimated for each using the alignments gen-
erated with unlimited number of locations a read
can map (dividing each alignment by the read
multiplicity as discussed above). Next, DESeq
was run on the H3K9me3 replicates to identify
regions enriched or depleted upon Piwi knock
down (p-value of 0.05 threshold was applied).
Neighboring depleted regions were merged into
contiguous clusters.

Pol II occupancy change over transposons
was estimated from the combined RPM values
for RepeatMasker transposons and from RPKM
values for consensus transposons after taking
into account that the difference in ChIP signal
between two regions is the result of the combi-
nation of the actual change in occupancy and
the difference in ChIP strength between the two
experiments. I therefore used the total Pol II
RPMs over TSSs in order to assess the difference
in ChIP strength and derive a normalization fac-
tor to be used for rescaling of the repeat RPMs
of libraries so that they are comparable to those
in the other (this factor turned out to be close
to 1 for both sets of replicates).
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Table 12.1: List of genes significantly upregulated upon Piwi knockdown. Shown are the
DESeq log2(FoldChange) and p-values as calculated from two biological replica

.

Gene log2(foldchange) p-value

CG14628 Inf 6.77E-10
CG15056 Inf 8.05E-03
CG18823 Inf 2.77E-02
CG31054 Inf 3.28E-12
CG4984 Inf 2.59E-02
Sdic1 Inf 3.80E-02
yellow-c Inf 9.49E-03
blanks 9.97 7.11E-04
Rpt6R 9.5 3.17E-05
CG32259 7.65 3.91E-02
Rpt3R 6.42 1.73E-07
Oseg5 6.32 8.24E-07
Shawl 6.1 2.02E-09
CG18193 5.63 1.56E-02
CG15201 5.37 4.01E-02
CG12493 5.24 1.87E-02
TrxT 5.19 5.90E-03
Salt 5.14 4.61E-02
CG4650 4.74 2.73E-02
CR18854 4.59 3.91E-11
Rbp4 4.48 1.69E-03
PebIII 4.42 5.82E-03
CG5791 4.33 1.52E-02
CG13321 4.26 2.81E-09
CG3884 3.79 1.47E-02
CG12655 3.68 3.73E-03
CG10151 3.45 6.51E-05
CG5281 3.32 9.62E-05
GstD2 3.32 3.00E-02
CG30108 3.3 3.83E-06
IM1 3.3 1.59E-02
CG10440 3.23 2.18E-02
CG34291 3.2 3.13E-02
CG16758 3.14 1.34E-02
CG6776 3.1 3.14E-05
Cyp12d1-p 3.03 1.37E-03
CG18186 2.94 1.18E-05
Obp99b 2.86 5.56E-04
CG1600 2.82 2.48E-04
CG13936 2.79 4.55E-02
Hsp70Ab 2.77 7.62E-03
CG7470 2.7 2.51E-04
Gfat1 2.65 4.23E-03
CG9960 2.6 2.87E-03
Ptp52F 2.58 1.58E-03
GstD10 2.58 4.32E-02
GstD5 2.57 2.29E-02
Mdr49 2.57 1.13E-02
Lsd-1 2.48 7.31E-04

Continued on next page



380

Table 12.1 – Continued from previous page
Gene log2(FoldChange) p-value

scpr-A 2.47 3.65E-03
GstE5 2.45 3.60E-02
Cyp28d1 2.34 1.05E-02
CG7408 2.34 4.42E-02
CG9380 2.3 1.04E-02
CG15347 2.28 2.26E-02
CG14629 2.27 1.03E-02
CG32572 2.26 7.74E-03
CG5399 2.24 4.98E-03
Jheh3 2.2 8.99E-03
CG5171 2.19 3.17E-02
CG9743 2.17 4.68E-02
Hsp23 2.13 8.02E-04
RpS19b 2.1 4.61E-02
Lip4 2.07 6.69E-03
Hsp70Aa 2.06 8.74E-05
IM2 2.05 3.62E-02
Pomp 2 8.31E-04
pncr008 1.99 4.42E-03
CG5853 1.96 1.08E-02
CG9360 1.93 2.94E-02
CG30104 1.93 5.42E-03
CG12290 1.92 2.58E-02
ref(2)P 1.92 1.26E-03
Prosalpha5 1.92 1.56E-03
CR42871 1.91 3.78E-02
Pros28.1 1.86 1.72E-03
Pros35 1.86 5.95E-03
CG6299 1.85 5.75E-03
Prosbeta7 1.8 3.75E-03
CG15445 1.79 5.28E-03
qsm 1.78 1.13E-02
CG11378 1.78 2.50E-02
DnaJ-H 1.76 2.53E-03
CG17331 1.74 4.46E-03
Jheh1 1.73 8.66E-03
dgo 1.7 2.67E-02
IM3 1.69 3.05E-02
CG3348 1.69 4.28E-02
Prosbeta5 1.68 8.07E-03
CG5958 1.67 1.50E-02
Prosbeta1 1.65 6.22E-03
Hmu 1.65 1.08E-02
msd1 1.64 7.74E-03
CG4199 1.64 1.08E-02
cathD 1.63 9.09E-03
CG10208 1.62 1.45E-02
Gel 1.61 1.41E-02
GstE3 1.61 1.75E-02
Prosbeta2 1.6 6.70E-03
sev 1.58 2.74E-02

Continued on next page
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Table 12.1 – Continued from previous page
Gene log2(FoldChange) p-value

Prosalpha7 1.58 7.14E-03
CG5167 1.57 2.87E-02
Lsm10 1.57 1.72E-02
Rpn9 1.57 9.83E-03
Rpn6 1.56 1.13E-02
Rpt1 1.55 8.58E-03
CG2046 1.55 6.56E-03
CG5384 1.55 1.59E-02
CG12795 1.54 7.79E-03
Pros29 1.53 1.19E-02
Roc1a 1.53 1.11E-02
Rpn12 1.52 2.12E-02
CG13779 1.51 8.89E-03
Cyp9f2 1.51 7.47E-03
Pros54 1.51 3.31E-02
Pros26 1.49 1.46E-02
Tsf1 1.49 3.31E-03
Pros25 1.47 1.99E-02
CG33099 1.46 3.51E-02
Pros45 1.46 1.90E-02
Cyp12d1-d 1.41 3.26E-02
CG11885 1.41 3.85E-02
p47 1.4 1.86E-02
Rpt4 1.39 4.25E-02
Uch-L3 1.39 2.20E-02
CG6218 1.36 2.05E-02
Sirt4 1.36 3.52E-02
PHGPx 1.36 1.86E-02
Rpn11 1.36 2.56E-02
Mov34 1.36 2.08E-02
CG12398 1.36 3.46E-02
CalpB 1.35 3.57E-02
Jheh2 1.32 3.59E-02
Clc 1.31 2.97E-02
Ube3a 1.31 3.51E-02
borr 1.28 4.07E-02
Irc 1.28 3.78E-02
Txl 1.27 2.78E-02
Rpn3 1.27 2.72E-02
CG42488 1.23 2.32E-02
TER94 1.21 3.78E-02
Ice 1.19 4.30E-02
CG4572 1.18 3.84E-02
Cyt-b5 1.17 3.81E-02
Prosbeta3 1.16 4.38E-02
CG4673 1.16 4.35E-02
CG13349 1.15 4.32E-02
CG9436 1.12 4.70E-02
SelG 1.11 4.04E-02
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Table 12.2: PCR primers

Name sequence

RP49-f(14) CCGCTTCAAGGGACAGTATCTG
RP49-r(14) ATCTCGCCGCAGTAAACGC
lacZpromoter-f ATCGCCCTTCCCAACAGTTGC
lacZpromoter-r TTCTGGTGCCGGAAACCAGG
lacZreporter-f TGCACATTTTGCAGGAGTACGGC
lacZreporter-r GATTTCGGCGCGACTGCTACC

Table 12.3: ChIP-seq datasets read mapping statistics

Library Read
Length

Uniquely mapped reads

Ovary shPiwi Rep1 H3K9me3 36 11,093,401
Ovary shPiwi Rep1 Input 36 23,783,156
Ovary shPiwi Rep1 Pol II 36 21,233,655
Ovary shWhite Rep1 H3K9me3 36 17,745,203
Ovary shWhite Rep1 Input 36 22,091,234
Ovary shWhite Rep1 Pol II 36 18,377,757
Ovary shPiwi Rep2 H3K9me3 36 22,467,219
Ovary shPiwi Rep2 H3K9me3 Input 36 14,843,946
Ovary shPiwi Rep2 Pol II 36 9,627,221
Ovary shPiwi Rep2 Pol II Input 36 2,985,999
Ovary shWhite Rep2 H3K9me3 36 21,135,950
Ovary shWhite Rep2 H3K9me3 Input 36 16,619,035
Ovary shWhite Rep2 Pol II 36 5,731,448
Ovary shWhite Rep2 Pol II Input 36 1,629,660

Table 12.4: RNA-seq datasets read mapping statistics (TopHat 1.4.1 mappings)

Library Read
Length

Unique Multi Unique
splices

Multi
splices

Ovary 50 19,868,793 3,249,894 2,021,378 31,552
Ovary shWhite Rep1 50 4,266,297 868,256 389,035 5,895
Ovary shPiwi Rep1 50 5,886,236 906,534 606,030 8,962
Ovary shWhite Rep2 50 10,345,357 1,186,659 607,786 18,881
Ovary shPiwi Rep2 50 12,764,829 1,393,823 1,177,886 25,302
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Table 12.5: Repeat analysis mapping statistics (whole genome with unlimited multimappers,
zero mismatches)

Library Read Length Unique Multi

Ovary shPiwi Rep1 H3K9me3 36 9,469,110 4,511,259
Ovary shPiwi Rep1 Input 36 20,029,978 2,042,023
Ovary shPiwi Rep1 Pol II 36 17,994,285 1,994,455
Ovary shWhite Rep1 H3K9me3 36 15,101,194 5,076,952
Ovary shWhite Rep1 Input 36 18,568,175 1,435,948
Ovary shWhite Rep1 Pol II 36 15,589,380 1,675,468
Ovary shWhite Rep1 RNA-seq 36 3,682,085 6,376,989
Ovary shPiwi Rep1 RNA-seq 36 5,119,512 5,808,312
Ovary shWhite Rep2 RNA-seq 36 8,658,005 4,005,709
Ovary shPiwi Rep2 RNA-seq 36 10,573,906 3,641,282
Ovary shPiwi Rep2 H3K9me3 36 13,315,195 3,808,164
Ovary shPiwi Rep2 H3K9me3 In-
put

36 13,489,170 3,501,374

Ovary shPiwi Rep2 Pol2 36 8,137,867 1,183,428
Ovary shPiwi Rep2 Pol2 Input 36 2,424,728 698,521
Ovary shWhite Rep2 H3K9me3 36 19,021,830 9,010,645
Ovary shWhite Rep2 H3K9me3 In-
put

36 12,018,516 5,698,668

Ovary shWhite Rep2 Pol2 36 4,858,338 824,157
Ovary shWhite Rep2 Pol2 Input 36 1,303,208 873,869

Table 12.6: Repeat analysis mapping statistics (consensus repeats)

Library Read Length Unique Multi

Ovary shWhite Rep1 RNA-seq 36 14,016 4,615
Ovary shPiwi Rep1 RNA-seq 36 39,413 9,692
Ovary shWhite Rep2 RNA-seq 36 15,309 7,910
Ovary shPiwi Rep2 RNA-seq 36 27,691 10,559
Ovary shPiwi Rep1 H3K9me3 36 2,720,971 283,437
Ovary shPiwi Rep1 Input 36 1,123,614 133,470
Ovary shPiwi Rep1 Pol II 36 515,368 109,711
Ovary shWhite Rep1 H3K9me3 36 3,208,049 318,559
Ovary shWhite Rep1 Input 36 739,854 83,425
Ovary shWhite Rep1 Pol II 36 346,044 74,633
Ovary shPiwi Rep2 H3K9me3 36 5,487,961 469,778
Ovary shPiwi Rep2 H3K9me3 In-
put

36 2,819,017 340,768

Ovary shPiwi Rep2 Pol II 36 380,988 79,937
Ovary shPiwi Rep2 Pol II Input 36 318,557 38,475
Ovary shWhite Rep2 H3K9me3 36 5,556,191 463,857
Ovary shWhite Rep2 H3K9me3 In-
put

36 1,718,729 205,205

Ovary shWhite Rep2 Pol II 36 220,634 52,925
Ovary shWhite Rep2 Pol II Input 36 174,554 25,171
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12.5 No evidence that Piwi
binds to the majority of

transposons in the
Drosophila genome

The model suggested by the findings described
above, as well as in other recent studies (Sienski
et al. 2012; Rozhkov et al. 2013; Ge & Zamore
2013), is one of Piwi scanning the transcrip-
tome for piRNA-matching sequences and initiat-
ing transcriptional silencing when such matches
are found. An expectation based on this model
is that Piwi would be found to physically as-
sociate with transcribed genes and with more
highly expressed transposable elements but not
necessarily with most transposons, which are si-
lenced and expressed only at very low levels.

We tried to test this prediction using Piwi
ChIP-seq. Initial experiments using traditional
fixation conditions were unsuccessful (data not
shown) likely due to the transient and indirect
nature of association of Piwi with chromatin
(Piwi is likely associating with transcribed RNAs
and maybe in some way with the RNA Poly-
merase machinery but is not necessarily directly
interacting with DNA). We reasoned that fixa-
tion with a long-arm crosslinking agent such as
ethylene glycolbis(succinimidylsuccinate) (EGS)
(Abdella et al. 1979; Zeng et al. 2006), which
we had previously employed successfully to sta-
bilize protein-DNA and protein-protein interac-
tions (see Li et al. 2012), could result in a suc-
cessful Piwi ChIP.

We obtained a pattern seemingly consistent
with Piwi binding to active genes, as the Piwi
ChIP-seq signal was concentrated around tran-
scription start sites and its strength correlated
strongly with gene expression levels in datasets
generated using a Piwi antibody, a FLAG-tagged
version of Piwi, and a GFP-tagged version of
Piwi (Figure 12.11A-C). This pattern was very
similar to the one observed for RNA Polymerase
II (Figure 12.11D) although Piwi enrichment
over background was considerably lower. How-
ever, an unsettling feature of this pattern was the
fact that Piwi was greatly concentrated to TSSs,
more similar to the Ser5-phosphorylated form of
the RNA Polymerase II CTD Figure 12.11F),
which is associated with transcriptional initia-
tion, than the profiles seen in ChIP-seq against
RNA Polymerase II CTD pSer2 (Figure 12.11E),
which is associated with transcriptional elonga-

tion (Buratowski, 2009). Such an observation
is not consistent with the scanning model as
piRNAs are not concentrated close to the TSS
and Piwi would presumably need to scan the
whole transcript to find regions complementary
to them. This, the findings described in the sec-
ond chapter of Part III (in particular, the ob-
servation that strong read clustering is more of-
ten seen in IgG controls than in sonicated in-
puts, which we used initially for normalization
in our analysis), and the suspicion that EGS
cross-linking might exacerbate the known soni-
cation biases towards open chromatin (as it may
tightly crosslink nucleosomes to each other, mak-
ing them refractory to sonication in the way het-
erochromatin is; Auerbach et al. 2009; Teytel-
man et al. 2009; Gaulton et al. 2010) suggested
that the apparent Piwi enrichment might be an
artifact of fixation. This was confirmed when we
carried out ChIP-seq against GFP in EGS-fixed
cells not expressing any GFP or GFP-fusion pro-
tein and observed the same pattern as what we
saw in Piwi datasets.

Soon after the publication of our work (which
excluded all Piwi ChIP-seq data), a study ap-
peared claiming to present the first genome-
wide analysis of Piwi binding to the fly genome
(Hwang et al. 2013). Its results were very sur-
prising as the authors found that Piwi local-
izes extensively and highly specifically to trans-
poson sequences, with 87% of reads originat-
ing from transposable elements. Transposable
elements comprise only about a quarter of the
D. melanogaster genome based on the repeat-
Masker repeat element annotation, which would
make this Piwi dataset one of the most highly
enriched ChIP-seq datasets in existence. En-
richment levels approaching a FRiP value of 0.5
are only seen with proteins associating consti-
tutively and/or very tightly with DNA such as
histones, CTCF, RNA Polymerase II (Landt et
al. 2012; Marinov et al. 2014) and TFAM (Wang
et al. 2013). That a protein that has been so no-
toriously difficult to ChIP due to the transient
nature of its association with chromatin could
exhibit even higher ChIP enrichment than what
is only sometimes observed with the best per-
forming in ChIP factors seemed inconceivable.

This prompted us to carry out a close exami-
nation of the Piwi ChIP-seq data from Hwang
et al., which revealed that their Piwi ChIP
failed completely and the claimed enrichment
over repetitive elements is entirely the result
of improper handling of the data. Hwang et
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al. employed a highly unusual data process-
ing pipeline that involved non-standard read
mapping settings and a normalization procedure
that amplifies small differences between ChIP
and input, but most crucially, they included
both unique alignments and multiread align-
ments (reads mapping to multiple locations in
the genome) without normalizing in any way for
the number of locations a read can map to, ef-
fectively treating all such alignments as separate
unique reads. As transposable elements are the
primary cause for the presence of repetitive re-
gions in genomes, it is no surprise that such a
large fraction of “reads” originated from them.

I illustrate this in several ways here, using an
H3K9me3 dataset (a classic heterochromatin hi-
stone modification) from Muerdter et al. 2013
and modENCODE transcription factor ChIP-
seq data for comparison. Figures 12.12, 12.13
and 12.14 show the effect of data processing (see
the following Methods section for details) on the
appearance of the Piwi profile over transposable
elements (using the three genomic region fea-
tured in genome browser snapshots in Hwang
et al. 2013). When only unique reads are ex-
amined and when multireads are normalized for
their multiplicity, no Piwi enrichment is appar-
ent over transposons. The highly localized to
repeats distribution of Piwi becomes apparent
only when multiread alignments are treated as
individual uniquely aligned reads and even then
it is also present to a very similar extent in the
input dataset.

The same conclusions were drawn from an
analysis of the global distribution of Piwi and
input signal over transposable elements (Fig-
ures 12.15, 12.16A and 12.17). Piwi ChIP-seq
was indistinguishable from background and also
from modENCODE transcription factor ChIP-
seq datasets, for which there is no expecta-
tion of high levels of localization to transposons
(Figure 12.17). In contrast, H3K9me3 exhib-

ited strong and significant enrichment over back-
ground (Figures 12.15 and 12.16B) over trans-
posable elements. Thus the published by Hwang
et al. Piwi ChIP-seq is of extremely poor quality
and does not demonstrate high levels of localiza-
tion of Piwi to transposons.

In conclusion, the question what exactly
Piwi’s distribution over the genome is remains
to be directly answered experimentally.

12.6 Reanalysis of Hwang
et al. 2013; Methods

Except for where specifically specified other-
wise, all data processing was carried out using
custom-written python scripts. The dm3/BDGP
assembly, release 5 version of the Drosophila
melanogaster genome was used.

12.6.1 ChIP-seq data processing

Sequencing reads (36bp in data from Huang
et al. 2013, paired 75bp reads in data from
Muerdter et al. 2013; mixed read lengths
trimmed down to 36bp in modENCODE data)
were mapped against the genome using Bowtie
0.12.7 (Langmead et al., 2009) with the fol-
lowing settings: ’’-v 2 -k 2 -m 1 --best

--strata’’ for unique 36bp alignments, ’’-v 3

-k 2 -m 1 --best --strata’’ for unique
2x75bp alignments, and ’’-v 0 -a --best

--strata’’ for alignments in which multireads
were retained. The -X 1000 option was applied
and only concordant read pairs were retained for
2x75bp H3K9me3 data. Read mapping statistics
for ChIP-seq datasets processed this way are pre-
sented in Supplementary Table 3. Read mapping
statistics for all alignments are presented in Sup-
plementary Tables 1 and 2.

Three different types of signal tracks were
then generated.

Figure 12.11 (preceding page): Relationship between ChIP-signal and gene expression
in Piwi, RNA Polymerase Two and GFP IgG control datasets. Shown are metagenes
profiles of the ChIP signal (in RPM) over genes (with the background subtracted), with the 2kb
(±1kb) regions around the transcription start site (TSS) and transcription termination site (TTS)
shown to scale and the rest of the gene body rescaled to 2kb length (genes shorter than 4kb were
excluded). Gene were additionally split into 5 quantiles according to their expression levels as
measured by RNA-seq. (A) ChIP-seq on FLAG-tagged Piwi ; (B) ChIP-seq on Piwi using a Piwi
antibody; (C) ChIP-seq on GFP-tagged Piwi; (D) ChIP-seq pon RNA Polymerase II; (E) ChIP-seq
against RNA Polymerase II pSer2; (F) ChIP-seq against RNA Polymerase II pSer5; (G) ChIP-seq
against GFP.
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Figure 12.12: Effect of data processing on apparent Piwi occupancy over repetitive el-
ements. Shown is the region from Fig.2B of Huang et al. 2013. (A) Piwi ChIP-seq and background
(input) data from Huang et al. 2013 (B) H3K9me3 ChIP-seq and background data from Muerdter
et al. 2013. For each dataset, four tracks are shown: 1) unique alignments; 2) all alignments, with
multireads normalized for read multiplicity (as described in Methods); 3) all alignments, with all
reads treated as unique (analogous but not identical to the processing procedure of Huang et al.);
4) data processed as in Huang et al. 2013. The striking enrichment of Piwi over repetitive elements
is only observed when no multiread normalization is applied. Note than in this case a similar en-
richment is observed in the background as well. Strong H3K9me3 enrichment is observed only over
a short stretch corresponding to a LINE element if multiplicity is taken into consideration. If all
reads are treated as unique then H3K9me3 shows a similar profile as Piwi.

1. Unique tracks retaining uniquely mapping
reads only, normalized to RPMs (Reads
Per Million mapped reads) according to
the following formula:

Sc,i =
|Rc,i|
|R|
106

(12.3)

Where Sc,i is the signal score for position i
on chromosome c, |R| is the total number
of mapped reads, and |Rc,i| is the number
of reads covering position i on chromosome
c.

2. Tracks normalized for read multiplicity
based on all alignable reads, where the nor-
malization to RPMs is carried out as fol-
lows:

Sc,i =

∑
R∈Rc,i

1

NHR

|R|
106

(12.4)

Where NHR is the number of locations in
the genome a read maps to.

3. Tracks generated using all alignments
without normalization for multiplicity, i.e.
treating each individual alignment A as if
it is a uniquely mappable read:

Sc,i =
|Ac,i|
|A|
106

(12.5)
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Figure 12.13: Effect of data processing on analysis of Piwi occupancy of repetitive
elements. As described in Figure 1 for the genomic region shown in Fig. 2D of Huang et al.
2013. Piwi enrichment is only observed if multiplicity is not taken into consideration. Note that the
enrichment over the repetitive ank sequences is stronger in the H3K9me3 background than in the
ChIP, indicating the lack of enrichment even if multiplicity is not taken into consideration.

12.6.2 Analysis of
RepeatMasker-annotated repeat

element coverage

The RepeatMasker repeat element annotation
downloaded from UCSC (Kent et al. 2002) was
used for all repeat analysis. An RPM score was
calculated for each repeat using the following for-
mula:

RPMRE =

∑
R∈RE

1

NHR

|R|
106

(12.6)

12.6.3 Analysis of
consensus-sequence repeat element

coverage

Consensus repetitive elements for Drosophila
melanogaster were downloaded from FlyBase

(Marygold et al. 2013). Reads were trimmed
down to 36bp as this was the read length
of the Piwi ChIP-seq data from Huang et al.
2013. Reads were then aligned against the
Flybase repetitive element consensus sequences
using Bowtie 0.12.7 (Langmead et al., 2009)
with the following settings: ’’-v 3 -a --best

--strata’’, i.e. allowing for up to 3 mis-
matches, and unlimited number of locations a
read can map to. Read counts were calculated
for each repetitive element and normalized to
RPM against the total number of reads aligning
to the whole genome (with unlimited number of
locations a read can map to) as follows:

RPMREc =
|R ∈ REc|
|R|
106

(12.7)

where REc refers to the consensus repetitive
element.
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Figure 12.14: Effect of data processing on analysis of Piwi occupancy of repetitive el-
ements. As described in Figure 1 for the genomic region shown in Fig. 2C of Huang et al. 2013.
Piwi enrichment is only observed if multiplicity is not taken into consideration. In Contrast to Fig.
1 and Fig S3 in this snapshot at least some of the repeats identified by Huang et al to show Piwi
enrichment do show H3K9me3 enrichment even if multiplicity is taken into consideration indicating
that these regions are targeted for heterochromatinization.



390

Figure 12.15: Enrichment of Piwi and H3K9me3 over consensus repetitive elements.
Shown are the Input and ChIP RPMs for H3K9me3 (red, from Muerdter et al. 2013) and for Piwi
(yellow, from Huang et al) over transposon consensus sequences (flybase (Marygold et al. 2013)).
All reads were trimmed down to 36bp (the read length of the Piwi ChIP-seq data from Huang et al.
2013) and aligned against the consensus sequences allowing up to 3 mismatches. Read counts were
calculated for each repetitive element and normalized to RPM against the total number of reads
aligning to the whole genome (with unlimited number of locations a read can map to). A clear
overall enrichment over repeats is observed for H3K9me3. In contrast, the Piwi-ChIP dataset from
Huang et al. is very similar to the background.
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Figure 12.16: Genome-wide enrichment of Piwi and H3K9me3 over repetitive elements.
Shown is the average signal distribution over LINE repetitive elements for ChIP (red) and back-
ground (yellow) datasets for Piwi from Huang et al. 2013 (A) and for H3K9me3 from Muerdter et
al. 2013 (B). The background-normalized enrichment is indicated in black. The 100bp around the
beginning and the end of individual elements are shown to scale, the rest of each LINE elements
is rescaled to 100 units. The repeatMasker repetitive element annotation available from the UCSC
Genome Browser was used. A clear enrichment over background is observed in H3K9me3 datasets,
even when only uniquely aligning reads are considered. In contrast, the Piwi dataset from Huang et
al. 2013 is indistinguishable from background.
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Figure 12.17: Distribution of
ChIP-over-control enrichment
for individual repetitive ele-
ments. Shown is the cumulative
distribution function (cdf) of the ratio
between the total ChIP RPM and
control/background RPM for each
DNA, LINE or LTR repetitive element.
Piwi ChIP-seq data from Huang et al.
2013 (red) and H3K9me3 data from
Muerdter et al. 2013 (blue) are plotted
alongside the cumulative distribution
for 10 transcription factor ChIP- seq
datasets from modENCODE (gray), for
which there is no expectation of high en-
richment over repetitive elements. Only
repeat instances with at least 10 RPM
in at least one of the ChIP and control
datasets for each ChIP/background
pairing were included. H3K9me3 shows
very high average enrichment over
background over most of the elements
in all 3 classes. In contrast the Piwi
ChIP-seq data falls in the middle
of the distribution of cdf curves for
modENCODE transcription factors.
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Table 12.7: ChIP-seq datasets read mapping statistics; Huang et al. 2013 Piwi and
Muerdter et al. 2013 H3K9me3

Library Read
Length

Alignment policy Unique
reads

Multi-reads

Piwi ChIP (Huang et al) 36 -v 2 -k 2 -m 1 1,252,047
Piwi ChIP (Huang et al) 36 -v 0 -a 571,778 173,696
background (Huang et al) 36 -v 2 -k 2 -m 1 1,803,636 0
background (Huang et al) 36 -v 0 -a 960,165 268,324
H3K9me3 ChIP 2x75 -v 0 -a 47,243,150 50,690,870
H3K9me3 ChIP 2x75 -v 3 -k 2 -m 1 53,692,762 0
input 2x75 -v 0 -a 75,933,354 13,978,550
input 2x75 -v 3 -k 2 -m 1 121,920,616 0

Table 12.8: ChIP-seq datasets read mapping statistics; modENCODE

Library Read
Length

Alignment policy Unique
reads

Multi-reads

Caudal-Embryos-0-4h-ChIP-Rep1 36 -v 0 -a 6,634,927 1,449,839
Caudal-Embryos-0-4h-Input-Rep1 36 -v 0 -a 7,758,011 2,263,029
KNI-Embryos-8-16h-ChIP-Rep1 36 -v 0 -a 1,739,675 527,196
KNI-Embryos-8-16h-Input-Rep1 36 -v 0 -a 1,424,498 471,903
cnc-Adult-Female-ChIP-Rep1 36 -v 0 -a 13,427,663 1,438,195
cnc-Adult-Female-Input-Rep1 36 -v 0 -a 16,303,018 1,770,286
fru-Embryos-0-8h-ChIP-Rep1 36 -v 0 -a 1,165,616 352,686
fru-Embryos-0-8h-Input-Rep1 36 -v 0 -a 1,371,922 381,865
hairy-Embryos-0-8h-ChIP-Rep1 36 -v 0 -a 1,073,716 245,579
hairy-Embryos-0-8h-Input-Rep1 36 -v 0 -a 1,368,786 271,948
hth-Embryos-0-8h-ChIP-Rep1 36 -v 0 -a 1,147,405 292,100
hth-Embryos-0-8h-Input-Rep1 36 -v 0 -a 1,391,304 376,075
lola-Embryos-0-12h-ChIP-Rep1 36 -v 0 -a 666,154 322,079
lola-Embryos-0-12h-Input-Rep1 36 -v 0 -a 1,179,350 312,687
pangolin-Embryos-0-8h-ChIP-
Rep1

36 -v 0 -a 1,354,532 240,999

pangolin-Embryos-0-8h-Input-
Rep1

36 -v 0 -a 1,252,479 547,165

prd-Embryos-0-12h-ChIP-Rep1 36 -v 0 -a 1,349,189 464,935
prd-Embryos-0-12h-Input-Rep1 36 -v 0 -a 1,391,042 447273
scute-Embryos-0-12h-ChIP-Rep1 36 -v 0 -a 12,440,506 2,471,660
scute-Embryos-0-12h-Input-Rep1 36 -v 0 -a 1,391,042 447,273
usp-Embryos-0-12h-ChIP-Rep1 36 -v 0 -a 830,111 252,276
usp-Embryos-0-12h-Input-Rep1 36 -v 0 -a 1,270,822 246,580
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13

Single-cell heterogeneity in the noncoding transcrip-

tome during iPS cell reprogramming

T
his chapter contains a study on transcriptomic changes on the single-cell level during
iPS repogramming that was intended to be published (but at the time of writing this
thesis has not yet been accepted for publication) as:

Kim DH, Marinov GK, Singer ZS, Pepke S, Williams BA, Schroth GP, Elowitz MB, Wold BJ. Single-
cell heterogeneity in the noncoding transcriptome during iPS cell reprogramming.

My role was in carrying out most of the computational analysis for it (except the Self-Organizing
Map part). I note that it features single-cell RNA-seq that was generated before we established
our approaches for correcting for technical noise with a pool/split design and before we made it our
standard to include spike-in quantification standards and work with absolute copy-per-cell estimates
of gene expression. This is the reason why the manuscript ignored the question of technical noise and
the data was analyzed as if there is no noise. Nevertheless we were able to derive useful biological
insights from the data.

Abstract

Somatic cell reprogramming into in-
duced pluripotent stem (iPS) cells (Taka-
hashi & Yamanaka 2006; Takahashi et
al. 2007; Wernig et al. 2007) in-
volves widespread changes in the protein-
coding transcriptome, which have been
extensively characterized at the popula-
tion level (Buganim et al. 2013; Loh et
al. 2011). Recent studies have shown
that acquisition of pluripotency occurs
in a stepwise manner, where function-
ally related protein-coding genes are ac-
tivated in distinct waves (Buganim et al.
2012; O’Malley et al. 2013; Polo et
al. 2012; Hansson et al. 2012). How-
ever, the dynamic changes in the noncod-
ing transcriptome during reprogramming
are poorly understood. Here we char-
acterize the transcriptomes of individual
reprogramming iPS cells and show that
numerous long noncoding RNAs (lncR-

NAs) are heterogeneously expressed us-
ing single-cell RNA sequencing (RNA-
seq) and single-molecule RNA FISH (sm-
FISH). At a systems level, activation
of the endogenous pluripotency network
led to an unexpected global decrease
in protein-coding transcriptome variation.
Notably though, reprogramming iPS cells
failed to fully recapitulate a lncRNA ex-
pression repertoire that is more promi-
nent and stably expressed in the pluripo-
tent state. Resetting of the noncoding
transcriptome therefore appears incom-
plete in most iPS cells, even at late stages
of reprogramming. Loss-of-function ex-
periments showed that lncRNAs activated
during reprogramming (LADR), many of
which associate with chromatin regula-
tory proteins (Guttman et al. 2011; Zhao
et al. 2010), are required for generat-
ing iPS cells and silencing lineage-specific
genes. Transcriptome analysis of iPS
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Figure 13.1: Flow cytometry analysis of SSEA-1 in reprogramming TTFs. SSEA-1 ex-
pression on reprogramming TTFs after doxycycline exposure for 2-3 weeks in culture, as determined
by flow cytometry.

LADR knockdowns showed that two spe-
cific lncRNAs, LADR1 and LADR2, co-
repress a common gene set, indicating
combinatorial control of lineage-specific
genes by these lncRNAs. Taken together,
our findings reveal that functionally im-
portant lncRNAs are stochastically active
and rate-limiting, with the capacity to
directly affect downstream differentiation
genes during reprogramming

13.1 Introduction, Results
and Discussion

Epigenetic reprogramming is understood to be
clonal in nature (Tchieu et al. 2010), wherein in-
dividual cells ultimately convert to the pluripo-
tent state. An ectopic pulse of Oct4, Sox2
Klf4, and Myc (OSKM) expression can initiate
a lengthy reprogramming process that requires
weeks in culture to produce iPS cells (Yamanaka
2009). This process has both stochastic and de-
terministic elements (Yamanaka 2009; Buganim

Figure 13.2: Experimental outline. Live-cell imaging, FACS isolation, micromanipulation, and
single-cell RNA-seq library generation from tail-tip fibroblasts, SSEA-1(-) and SSEA-1(+) repro-
gramming iPS cells, and embryonic stem cells. DOX, doxycyline. FACS, fluorescence-activated cell
sorting.
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Figure 13.3: Protein-coding and lncRNA genes in single-cell libraries. Number of genes
detected in single-cell RNA-seq libraries, according to abundance class. RPKM, Reads Per Kilobase
per Million mapped reads.

et al. 2012), and only a small fraction of cells be-
come pluripotent. Conventional protein-coding
transcriptome studies of reprogramming, per-
formed at the population level, have identified
key transcriptional regulators and chromatin re-
modeling proteins (Buganim et al. 2013; Loh
et al. 2011). Some of those remodeling fac-
tors have been shown to associate with lncRNAs
(Guttman et al. 2011; Zhao et al. 2010; Lee
2012; Rinn & Chang 2012), but previous studies
have not examined the entire coding and noncod-
ing transcriptomes during reprogramming. For

both coding and noncoding RNAs, population
level measurements obscure individual cell dif-
ferences by mixing and mutual dilution, blur-
ring both known and new RNA signatures of
cell states and phenotypes. Recent studies have
begun to address the limitation of population-
based approaches by using single-cell techniques
to examine small and specific subsets of known,
protein-coding genes (Polo et al. 2012; Buganim
et al. 2012), but noncoding genes have yet to be
characterized systematically during reprogram-
ming, and full transcriptomes have not been
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Figure 13.4: Global decrease in transcriptome variation during reprogramming. a, Hier-
archical clustering of protein-coding genes detected in single-cell RNA-seq libraries. RPKM, Reads
Per Kilobase per Million mapped reads. b, Correlation matrix for single-cell RNA-seq libraries us-
ing protein-coding genes. c, Visualization of individual cell transcriptomes using the self-organizing
map (SOM). Colorbar indicates normalized expression values of clustered genes, as determined by
single-cell RNA-seq.

measured in single cells. Here we performed
RNA-seq and smFISH on individual cells drawn
from a reprogramming stimulus timecourse, ex-
tending the single-cell view to the entire coding
and noncoding transcriptomes.

We characterized the single-cell transcrip-
tomes of reprogramming cells by capturing full-
length poly(A)+ RNA from individual cells
(Ramsköld et al. 2012). We isolated tail-tip
fibroblasts (TTFs) from the “reprogrammable
mouse” (Carey et al. 2010), which express
OSKM in a doxycycline (dox)-dependent man-
ner. TTFs exposed to dox for 2 weeks remained
negative for the SSEA-1 reprogramming marker
(Buganim et al. 2013), and SSEA-1 positive (+)
cells first appeared after 3 weeks of dox induction
(Figure 13.1). After 4 weeks of culturing in dox,

we obtained SSEA-1(+) iPS colonies that pro-
liferated in the absence of OSKM (Figure 13.2).
We sorted SSEA-1(+) cells at 3-9 weeks from
the time of OSKM initiation, isolated cells us-
ing micromanipulation, and generated single-cell
RNA-seq libraries (Figure 13.2 and Table 13.1).
Additionally, we constructed RNA-seq libraries
from single embryonic stem cells (ESCs) to char-
acterize the transcriptomes of the pluripotent
state.

We detected ∼5,000-8,000 protein-coding
genes in each single-cell library out of 12,482
protein-coding genes detected at >1 RPKM
(Mortazavi & Williams et al. 2008) in the union
set of all libraries (Figure 13.3). Additionally,
we found that ∼100-200 lncRNA genes were ex-
pressed in individual cells, out of the set of 525
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Figure 13.5: The self-organizing map (SOM). A gene is clustered according to the minimum
distance of its expression vector from prototype vectors assigned to units in a 2D grid. Initial vec-
tors can be chosen in a variety of ways. In this work, they are initialized by mapping the first two
principal components of the data onto the grid. Training proceeds by incrementally moving each
prototype toward input vectors that map near it, using a weighting that decreases with map distance
from the best matching unit (BMU). The trained SOM consists of prototypes adapted to input data
and exhibits spatial organization of units in larger-scale clusters across the grid. Colorbar represents
log transformation of normalized data vectors, where normalization is performed on a gene-by-gene
basis by subtracting the vector mean and dividing by its standard deviation.

lncRNAs detected at >1 RPKM (Figure 13.3).
To examine global differences between single cell
transcriptomes, we performed hierarchical clus-
tering of all protein-coding genes (>1 RPKM)
(Figure 13.4A). The single-cell transcriptomes
of week 2 (Wk2) cells remained most similar to
TTFs, but starting at week 3 (Wk3), the tran-
scriptomes of SSEA-1(+) cells began to more
closely resemble the ESC transcriptome (Figure
13.4A). Unexpectedly, SSEA-1(+) cells also ex-
hibited a large global decrease in transcriptome
variation during reprogramming (Figure 13.4B).
The overall systems level picture thus suggests
that the reprogramming process entrains partici-
pating cells and quashes a level of cell-tocell vari-
ability that typifies the TTFs.

In order to cluster, visualize, and search for
functional relationships in the single-cell tran-
scriptome data, we generated a self-organizing
map (SOM, Kohonen 2013) (Figure 13.4C, Fig-
ure 13.5 and Figure 13.6). The SOM inte-
grated data from all cells and projected the re-
sulting clustering onto a two-dimensional topo-
logical map, in which proximity on the map
reflected similarity of gene expression vectors
to each other across all cells. As expected,
pluripotency factors (e.g. Nanog, Rex1, Es-
rrb, Sall4, Oct4) and chromatin remodeling pro-

teins (e.g. Suz12, Jarid1b, Tet1, Tet2, Dpy30)
clustered together (cluster A) (Figure 13.6C),
and this cluster showed enrichment for the gene
ontology (GO) terms “stem cell development”
(Bonferroni-corrected p = 4.88 × 10−3) and
“chromatin organization” (Bonferroni-corrected
p = 8.61× 10−6). Cluster B was expressed most
highly in ESCs and included several key regu-
lators of germ cell development (e.g. Prdm14,
Stella) involved in the GO term “nucleic acid
metabolic process” (Bonferroni-corrected p =
5.41×10−8). Notably, the adjacent cluster (clus-
ter C) (Figure 13.4C) contained several lncR-
NAs that associate with the chromatin regula-
tory proteins from cluster A (Guttman et al.
2011; Zhao et al. 2010), including the Poly-
comb protein Suz12 and Jarid1b. While these
lncRNA genes had similar activation kinetics to
the pluripotency and germ cell factors, they were
coordinately regulated with a different module
of genes, including those involved in the GO
term “RNA binding” (Bonferroni-corrected p =
1.33 × 10−6). These initial observations from
the SOM clustering focused attention on germ
cell genes and lncRNAs, together with RNA-
associated proteins.

Coinciding with the global reduction in cell-
to-cell variation, numerous pluripotency fac-
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tors were activated by Wk3, including Esrrb,
Dppa2, Utf1, and Lin28 (Figure 13.7A), which
are predictor genes for successful reprogram-
ming (Buganim et al. 2012). Other pluripo-
tency genes activated by Wk3 included Tcfcp2l1,
Fbxo15, Klf2, Fgf4, Dppa4, and Nr0b1, as well
as the epigenetic regulators Wdr5, Dnmt3b, and
Dnmt3l (Figure 13.7A). Many of these genes
are thought to be activated in a determinis-

tic manner, based on single-cell measurements
from a pluripotency gene panel (Buganim et al.
2012). While our results are generally consis-
tent with these observations (Figure 13.8), we
found that a group of germ cell genes were ex-
pressed more heterogeneously during reprogram-
ming (Figure 13.2A and Figure 13.9). Three key
germ cell genes in particular, Blimp1, Stella, and
Prdm1418, were coordinately expressed at week

Figure 13.6: Single-cell components of the self-organizing map (SOM). Each single-cell
SOM component represents one single-cell RNA-seq library at a defined time-point during OKSM-
induced reprogramming, as indicated. Colorbar represents log transformation of normalized data
vectors, where normalization is performed on a gene-bygene basis by subtracting the vector mean
and dividing by its standard deviation.
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Figure 13.7: Late activation kinetics of germ cell-related genes during reprogramming.
a, Hierarchical clustering of a subset of pluripotency- and germ cell-related genes in single-cell
RNAseq libraries. Italicized genes in bold indicate genes examined using smFISH. RPKM, Reads
Per Kilobase per Million mapped reads. b, Single-cell smFISH of reprogramming iPS cells at week
6 (Wk6) in culture. Scale bar, 10 um. c, Histograms showing the distributions of mRNA molecules
per cell as determined by smFISH. d, Reprogramming efficiencies of tail-tip fibroblasts treated with
indicated cytokines or expression vectors, as determined by the number of SSEA-1(+) colonies using
live-cell imaging. Error bars indicate S.D. (n = 3).
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Figure 13.8: Genes involved in Buganim et al. reprogramming hierarchy. Hierarchical
clustering of genes involved in a previously reported hierarchical phase of reprogramming. RPKM,
Reads Per Kilobase per Million mapped reads.

6 (Wk6) (Figure 13.7A), following pluripotency
factor activation at Wk3 (e.g. Rex1, Nanog).

To validate our single-cell RNA-seq results,
we used 4-channel smFISH (Raj et al. 2008)
as an orthogonal, amplification-independent
method to count Blimp1, Stella, Prdm14, and
Rex1 transcripts (Figure 13.7B and Figure
13.10), as well as Oct4 and Sox2 (Figure 13.10),
in hundreds of cells at Wk6 (n = 303). Consis-
tent with the single-cell RNA-seq data, Blimp1,
Stella, and Prdm14 were almost always de-
tected only in cells that expressed Rex1 (Figure
13.7B,C). Blimp1 and Prdm14 were mainly ex-
pressed in cells with high levels of Rex1, while
Stella was expressed in cells with low Rex1 (Fig-
ure 13.7C). These results suggest that activation
of key germ cell genes may be part of a later
and hitherto unappreciated set of limiting molec-
ular events in the reprogramming progression,

which predicts that early gain-of-function exper-
iments would increase efficiency. Overexpression
of Blimp1 or Prdm14 enhanced reprogramming
efficiency by 50% and 26%, respectively (Figure
13.7D), though Stella alone had negligible effect.
Seeking independent evidence for a germ-cell
network role in reprogramming, we also found
that culture conditions (bFGF/SCF/LIF) that
induce dedifferentiation of primordial germ cells
into pluripotent embryonic germ cells also en-
hanced reprogramming efficiency by 72% (Fig-
ure 13.7D). These results suggest that a set of
regulators of epigenetic reprogramming in the
germline (Magnúsdóttir et al. 2012) are also en-
gaged during somatic cell reprogramming.

We next tested the functional significance of
lncRNAs during reprogramming. Of the 525
lncRNAs expressed at >1RPKM in our single-
cell RNA-seq libraries (Figure 13.11A), 240
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lncRNAs have previously been reported to physi-
cally interact with Polycomb repressive complex
2 in ESCs (Zhao et al. 2010), suggesting that
they could be needed to silence lineage-specific
genes during reprogramming. We also identified
27 lncRNAs within our single-cell data that as-
sociate with additional chromatin-modifying en-
zymes in ESCs (Guttman et al. 2011), many
of which were previously reported to act as in-
hibitors (e.g. Suv39h1, Yy1) or enhancers (e.g.
Ring1b, Eset, Suz12, Jarid1b, Jarid1c) of re-
programming (Onder et al. 2012). A group
of robustly expressed lncRNAs in ESCs (as-

terisk, Figure 13.11A) was notably more vari-
able during the reprogramming time-series at
Wk3-Wk9 when compared to ESCs (p < 0.05,
Kolmogorov-Smirnov test), with no individual
cell attaining the high fractional activation ob-
served consistently in ESCs (Figure 13.11B). In-
terestingly, the majority of these lncRNAs asso-
ciate with chromatin-modifying proteins in ESCs
(Guttman et al. 2011; Zhao et al. 2010) (Figure
13.11B) and are also heterogeneously expressed
during epigenetic reprogramming in individual
primordial germ cells (PGC) (Magnúsdóttir et
al. 2013) (13.13).

Figure 13.9: Heterogeneity in germ cell-related gene expression. Hierarchical clustering of
a subset of germ cell-related genes in single-cell RNA-seq libraries. Dotted line box highlights germ
cell-related gene expression signatures prominent in pluripotent ESCs. RPKM, Reads Per Kilobase
per Million mapped reads.
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Figure 13.10: smFISH of
reprogramming iPS cells.
Single-cell 4-channel smFISH
of reprogramming iPS cells
at week 6 (Wk6) in culture.
Scale bar, 10µm.

To further explore lncRNA heterogeneity
during reprogramming, we used smFISH to
determine the expression of three LADRs in
hundreds of cells (n = 351) (13.11C). These
Polycomb-associated lncRNAs were expressed
at low/undetectable levels in TTFs and were
first detected by Wk2 (LADR1, LADR3) or
Wk3 (LADR2), as determined by single-cell
RNA-seq (13.11B). In single-molecule measure-
ments, LADR3 expression was aberrantly low at

Wk6 when compared to ESCs, which might ex-
plain their stochastic detectability using single-
cell RNA-seq. By Wk9, LADR3 levels became
comparable to ESCs (13.11D). In contrast, the
LADR2 expression profile showed substantial
stochastic variation, with a subset of cells re-
sembling ES, and another group expressing aber-
rantly high levels at Wk6 that were even more
prominent at Wk9, when compared to the more
uniform distribution in ESCs (13.11E). Lastly,
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Figure 13.11: Single-cell heterogeneity in lncRNA expression during reprogramming.
a, b, Hierarchical clustering of lncRNA genes detected in single-cell RNA-seq libraries (a) and a sub-
set of ESC-enriched lncRNAs (asterisk, b) and their known associations with chromatin regulators
(plus). RPKM, Reads Per Kilobase per Million mapped reads. c, Single-cell smFISH of reprogram-
ming iPS cells at week 6 (Wk6) and week 9 (Wk9) in culture. Scale bar, 10 um. d, e, f, Cumulative
distribution function plots of lncRNA molecules per cell, as determined by smFISH.

the distributions of LADR1 expression at both Wk6 and Wk9 were relatively uniform and indis-
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Figure 13.12: Silencing of lineage-specific genes by lncRNAs during reprogramming.
a, Reprogramming efficiencies of tail-tip fibroblasts treated with indicated siRNAs, as determined
by the number of SSEA-1(+) colonies using live-cell imaging. Error bars indicate S.D. (n = 3). b,
c, qRT-PCR and RNA-seq quantification of lncRNA expression levels upon transfection of siRNAs
targeting LADR1 or LADR2. d, e, f, Differential expression analysis of significantly upregulated (red
dots) or downregulated genes (blue dots) in iPS cells deficient for LADR1 or LADR2, as determined
by RNA-seq.
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Figure 13.13: lncRNA expression in individual primodial germ cells. Hierarchical clus-
tering of ESC-enriched lncRNAs expressed in at least one primordial germ cell from previously
published single-cell RNA-seq . RPKM, Reads Per Kilobase per Million mapped reads.

tinguishable from ESCs, with a subset of cells
lacking LADR1 expression (13.11F). Taken to-
gether with LADR2 and LADR3, these results
highlight a spectrum of cell-to-cell variability for
individual lncRNA activation during reprogram-
ming.

Given that individual lncRNAs can modu-
late the expression of hundreds of protein-coding
genes (Guttman et al. 2011), heterogeneity in
the noncoding transcriptome may exert broad
effects on the protein-coding transcriptome dur-
ing reprogramming. To test whether Polycomb-
associated lncRNAs were functionally impor-
tant for reprogramming, we performed loss-of-
function studies using small interfering RNAs
(siRNAs) to attenuate the levels of LADR1 and
LADR2, at the time when they were first de-
tected by single-cell RNA-seq at Wk2 and Wk3,
respectively. LADR1 knockdown at Wk2 led to

a ∼50% reduction in the number of SSEA-1(+)
colonies by Wk4, and LADR1 or LADR2 knock-
down at Wk3 led to a ∼30% reduction in SSEA-
1(+) colony formation by Wk5 (13.12A). Given
the known functions of Polycomb in silencing
lineage-specific genes, we used RNA-seq to ex-
amine iPS cells deficient for LADR1 or LADR2,
to determine whether they were required for gene
silencing. Both qRT-PCR and RNA-seq con-
firmed that siRNAs against LADR1 (siLADR1)
and LADR2 (siLADR2) reduced the levels of
their respective target lncRNAs, while RNA-seq
also showed that siLADR1 and siLADR2 were
sequence-specific and did not affect the levels
of LADR2 and LADR1, respectively (13.12B,C).
LADR1 knockdown led to up-regulation of nu-
merous muscle-related genes, including Pax3,
Acta1, Acta2, Tpm2, Tagln, Myl9, and Tnnc1
(13.12D), indicating that LADR1 normally plays
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a role in silencing these lineage-specific genes
during reprogramming. When all differentially
expressed genes (p < 0.05) were examined, the
most enriched annotated GO term was “loco-
motion” (Bonferroni-corrected p = 6.34×10−7),
consistent with a functional role for LADR1 in
silencing muscle lineage genes.

To examine whether any genes were persis-
tently up-regulated upon loss of LADR1, we per-
formed RNA-seq on iPS cells at day 6 post-
transfection of siLADR1. Only 4 genes that
were upregulated at day 1 post-transfection re-
mained up-regulated at day 6: Acta1, a skele-
tal muscle actin, Cxcr6, Lce1g, and Zscan4f
(13.12E), which is heterogeneously expressed in
a small fraction of ESCs that transit through
a two-cell (2C) embryo-like state (Zalzman et
al. 2010). For all differentially expressed genes
(p < 0.05), the most enriched annotated GO
term was “MRF (myogenic regulatory factor)
binding” (Bonferroni-corrected p = 3.33×10−3).
Unexpectedly, when we also examined iPS cells
deficient for LADR2 by RNA-seq, we found that
7 genes were up-regulated in both the LADR1-
and LADR2-deficient iPS cells, including Acta1
and the homeodomain transcription factor Alx4
(13.12F). These findings suggest combinatorial
control of a common set of genes by LADR1
and LADR2, indicating that lncRNAs can act
together to silencing lineage-specific genes dur-
ing reprogramming.

This initial study of transcriptome-wide
single-cell expression patterns focused attention
on lncRNA heterogeneity at both early and late
stages of reprogramming, by comparison with
fully pluripotent cells. Experimentally perturb-
ing the levels of some of these lncRNAs affected
the efficiency of iPS cell derivation. Additionally,
numerous lncRNAs that appear stochastic dur-
ing reprogramming associate with one or more
chromatin regulatory proteins (Guttman et al.
2011; Zhao et al. 2010), and our results demon-
strated that perturbing these lncRNAs can al-
ter the normal course of expression for lineage-
specific genes. Notably, even some late-stage iPS
cells exhibited lncRNA heterogeneity and quan-
titative dysregulation (e.g. LADR2) relative to
pluripotent ES cells. We suggest that incomplete
and incorrect expression of such lncRNAs could
explain the intriguing and therapeutically rele-
vant phenomenon of epigenetic memory in iPS
cells (Kim et al. 2010; Polo et al. 2010).

13.2 Methods

13.2.1 iPS cell reprogramming.

Tail-tip fibroblast (TTF) cultures were es-
tablished from 3-8 day old reprogrammable
mice homozygous for both the tet-inducible
OSKM polycistronic cassette and the ROSA26-
M2rtTA allele (Carey et al. 2010). TTFs
were cultured in ES medium (DMEM, 15%
FBS, sodium bicarbonate, HEPES, nonessen-
tial amino acids, penicillin-streptomycin, L-
glutamine, β-mercaptoethanol, 1000 U/mL LIF)
with doxycycline and grown on 6-well plates
coated with 0.1% gelatin and irradiated MEF
feeder cells. For gain-of-function, reprogram-
ming cells were transiently transfected 1 or more
times with Blimp1, Prdm14, or Stella TrueORF
cDNA plasmids (Origene) using Lipofectamine
LTX with Plus Reagent (Life) between weeks 3-4
after OSKM induction. For loss-of-function, re-
programming cells were transiently transfected
1 or more times with lncRNA-targeting siRNAs
(IDT) using Lipofectamine RNAiMAX (Life) at
early (between weeks 1-4 after OSKM induction)
and late (week 6+ after OSKM induction) stages
of iPS cell reprogramming. Reprogramming effi-
ciencies were determined by plating equal num-
bers of cells in triplicate and counting the num-
ber of SSEA-1 positive iPS cell colonies us-
ing StainAlive SSEA-1 DyLight 488 antibody
(Stemgent) and live-cell imaging, where cells
were incubated with antibody (1:100) for 2 hours
and washed 3 times with PBS. SSEA-1 DyLight
488 positive cells at specified time-points dur-
ing reprogramming were isolated using flow cy-
tometry on an iCyt Mission Technology Reflec-
tion Cell Sorter inside a Baker Bioguard III
biosafety cabinet. Single-cell and bulk sample
cDNA synthesis and amplification. cDNA syn-
thesis was performed using the Smart-Seq pro-
tocol as previously described (Ramsköld et al.
2012). Briefly, the SMARTer Ultra Low RNA
kit for Illumina sequencing (Clontech) was used
to generate and amplify cDNA from single cells
isolated using a micromanipulator or from bulk
samples. Intact single cells were deposited di-
rectly into hypotonic lysis buffer. Poly(A)+
RNA was reverse transcribed through oligo dT
priming to generate full-length cDNA, which was
then amplified using 20-22 cycles. cDNA length
distribution was assessed using High Sensitivity
DNA kits on a Bioanalyzer (Agilent).
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13.2.2 Single-cell and bulk sample
RNA-seq library generation and

sequencing

Single-cell and bulk sample RNA-seq libraries
were constructed using the Nextera DNA Sam-
ple Prep kit (Illumina). Briefly, cDNA was “tag-
mentated” at 55 ◦C with Nextera transposase,
and tagmented DNA was purified using Agen-
court AMPure XP beads (Beckman Coulter).
Purified DNA was amplified using 5 cycles of
Nextera PCR, and library quality was assessed
using High Sensitivity DNA kits on a Bioana-
lyzer (Agilent). Libraries were sequenced on the
Illumina HiSeq2000. Single-end reads of 50bp or
100bp length were obtained.

13.2.3 Read mapping and
expression quantification

All reads were trimmed down to 50bp (if nec-
essary) and mapped to the mouse genome (ver-
sion mm9) with TopHat (Trapnell et al. 2009)
(version 1.2.1) while supplying splice junctions
annotated in the ENSEMBL63 set of transcript
models. RPKMs for the ENSEMBL63 annota-
tion were obtained using Cufflinks (Trapnell et
al. 2010, version 1.0.3) with otherwise default
settings. Single-cell libraries (n = 3) display-
ing very low numbers of detected genes were
excluded from analysis, as while it is possible
that they represent accurate measurements of so
far unappreciated biological variability, techni-
cal failure of library building is at present the
more likely explanation for such observations.
For downstream analysis, the biotype classifica-
tion of genes and transcripts in the ENSEMBL
annotation was used to identify noncoding genes.
Hierarchical clustering (Spearman rank correla-
tion, unless otherwise indicated) was carried out
using Cluster 3.02 (de Hoon et al. 2004) and
visualized using Java Treeview (Saldanha 2004).
For differential expression analysis, we aligned
reads against the refSeq mouse transcriptome
using Bowtie 0.12.72 (Langmead et al. 2004).
Expression levels were then estimated using eX-
press version 1.3.0 (Roberts & Pachter 2013),
with gene-level effective counts and RPKM val-
ues derived from the sum of the corresponding
values for all isoforms of a gene. The effective
count values were then used as input to DESeq
(Anders & Huber 2010) to assess differential ex-
pression.

13.2.4 qRT-PCR

Total RNA was isolated using Direct-zol (Zymo
Research) and reverse transcribed using random
hexamers or lncRNA-specific primers (IDT, se-
quences available upon request) and Superscript
III reverse transcriptase (Invitrogen) per manu-
facturers instructions. Real-time PCR was per-
formed on a LightCycler (Roche) using SYBR
Green Supermix (Bio-Rad) and normalized to
Actin.

13.2.5 Single-molecule
fluorescence in situ hybridization

smFISH was performed as previously described
(Raj et al. 2008). Up to 48 DNA probes
per target mRNA or lncRNA were synthesized
and conjugated to Alexa fluorophore 488, 555,
594, or 647 (Life Technologies) and then puri-
fied by HPLC. Cells were trypsinized, fixed in
4% Formaldehyde, and permeabilized in 70%
ethanol overnight. Cells were then hybridized
with probe overnight at 30 ◦C, in 20% For-
mamide, 2X SSC, 0.1g/mL Dextran Sulfate,
1mg/mL E. coli tRNA, 2mM Vanadyl ribonu-
cleoside complex, 0.1% Tween 20 in nuclease
free water. Samples were washed twice in 20%
Formamide, 2X SSC, and Tween 20 at 30 ◦C,
and then twice in 2X SSC + 0.1% Tween at
RT. 1µL of hybridized cells was placed between
#1 coverslips and flattened. Automated grid-
based acquisition was performed on a Nikon Ti-
E with Perfect Focus System, Semrock FISH
filtersets, Lambda LS Xenona Arc Lamp, 60×
1.4NA oil objective, and Coolsnap HQ2 cam-
era. Semi-automated dot detection and segmen-
tation was performed using custom-built MAT-
LAB software with a Laplacian-of-Gaussian Ker-
nel, using Otsu’s method to determine “dotness”
threshold across all cells in the dataset.

13.2.6 Self-organizing maps

The 5000 genes with the greatest variance among
the libraries were used for training a self-
organizing map (SOM) (Kohonen 1982; Koho-
nen 2013). Prior to SOM training, the data vec-
tors were normalized on a gene-by-gene basis by
subtracting each vector mean and dividing by its
standard deviation. The SOM was constructed
using the R package kohonen. The total number
of map units was set to the heuristic value 5

√
N ,

where N is the number of data vectors. The map
grid was initialized with the first two principal
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components of the data multiplied by a sinu-
soidal function to yield smooth toroidal bound-
ary conditions. Training lasted 200 epochs (pre-
sentations of the data) during which the radius
within which units were adapted toward the win-
ning unit decreased linearly from h/8 to 2 units,
where h is the map height (always chosen as the
direction of largest length). Further analysis,
including clustering and visualization, was per-
formed with custom python code. Clusters were

seeded by the local minima of the U-matrix, with
a value for each unit defined as the average of the
vector difference between that unit’s prototype
and its six neighbors on the hexagonal grid. All
other unit prototypes were then assigned to clus-
ters according to the minimum vector distance to
a seed unit. The lists of clustered genes were sub-
mitted to the Princeton GO TermFinder (Boyle
et al. 2004) server (http://go.princeton.edu)
in order to determine enriched terms.

Table 13.1: Read mapping statistics for single-cell RNA-seq libraries.

Single cells Unique reads Unique splices Multi reads Multi splices

TTF-A 4,754,379 1,793,789 1,016,116 17,993
TTF-B 3,186,598 1,330,084 705,038 25,690
TTF-C 5,882,879 1,802,289 1,364,458 14,894
TTF-D 4,150,724 1,651,656 799,307 12,882
Wk2-A 6,796,932 2,388,019 1,320,707 28,850
Wk2-B 6,695,477 2,128,141 1,687,672 29,942
Wk2-C 7,321,838 2,460,231 1,319,304 23,164
Wk2-D 3,766,443 1,565,189 1,006,975 27,793
Wk3-A 10,817,581 1,468,929 7,879,702 13,590
Wk3-B 10,544,532 1,005,115 4,389,066 9,234
Wk3-C 15,297,126 1,725,119 5,606,955 17,313
Wk6-A 6,649,903 812,609 3,487,925 7,031
Wk6-B 16,445,945 1,629,904 8,522,770 19,809
Wk7-A 20,598,921 2,543,587 11,733,247 27,259
Wk7-B 13,242,715 1,516,497 7,271,470 15,986
Wk8-A 12,817,740 1,535,044 6,579,353 17,672
Wk8-B 14,308,754 1,453,584 7,336,354 13,362
Wk9-A 13,643,846 1,753,756 7,938,751 16,795
ESC-A 8,280,645 2,934,602 2,123,766 26,275
ESC-B 7,072,853 2,610,021 2,225,725 24,739
ESC-C 6,227,982 2,182,842 1,853,443 17,492
ESC-D 5,048,404 1,767,981 1,550,137 15,637
ESC-E 9,095,244 3,412,551 2,766,101 32,967
ESC-F 3,061,161 1,177,880 889,317 10,666
ESC-G 6,711,997 2,475,645 2,177,537 20,003
ESC-H 4,115,001 1,578,915 1,268,654 13,544

http://go.princeton.edu
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Part V

Conclusions and Towards the
Future
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14

Third-Generation Sequencing Technologies and Func-

tional Genomics Studies

H
igh-throughput sequencing technologies, in particular the Illumina platform, form the basis
of most of the work described in this thesis. The short nature of the reads they generate,
however, has also presented numerous challenges to data analysis and as repeatedly men-
tioned so far. Platforms that produce long reads have now emerged, and here I present my

perspective on the implications of these technologies, their strength and their expected limitations, on
the future of functional genomics research.

Abstract

In recent years, “second generation”
sequencing technologies have revolution-
ized multiple aspects of biomedical re-
search, in particular genome sequencing
and functional genomic studies. However,
the short-read nature of the data pro-
duced by second generation sequencing in-
struments has presented numerous chal-
lenges to data analysis and interpretation
in both areas due to the specifics of li-
brary generation, read alignment, assem-
bly and a number of other issues. So called
“Third-generation” sequencing technolo-
gies promise to alleviate a lot of these
difficulties by providing a combination of
single-molecule sequencing and/or much
longer read lengths. This is expected to
greatly benefit de novo genome sequenc-
ing and genome resequencing efforts, but
it also has the potential to transform func-
tional genomics studies by resolving ex-
isting issues that second-generation tech-
nologies have so far not been able to con-
clusively address, and by opening com-
pletely novel research directions. In the
same time, certain functional genomic ap-
plications are very well suited to the short-

read format and have at this point reached
maturity, and are therefore less likely to
change significantly in the future. Here,
the anticipated impact of further devel-
opments in sequencing technology is re-
viewed, together with the still unmet chal-
lenges to data quality that will have to be
resolved in order to answer the major un-
resolved questions in the field.

14.1 Introduction

The completion of the sequence of the hu-
man genome in the early 2000s (Lander et al.
2001; Venter et al. 2001; International Human
Genome Sequencing Consortium 2004) was the
culmination of many years development of ge-
nomic science and provided the foundation for
an explosion in the further advancement of our
understanding of the structure and function of
genomes during the next decade. While a lot
can be learned from the sequence of the genome
and the annotation of the genes in it, full un-
derstanding of the relationship between the ge-
nomic sequence on one side, and cellular and or-
ganismic phenotypes on the other, requires deep
and comprehensive understanding of the mech-
anisms of regulation of gene expression, the ge-
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nomic regulatory elements through which it is
carried out, and their dynamics (Hood & Galas
2003; ENCODE Project Consortium 2004). For
this reason, a key component of the advances
in genomics following the completion the hu-
man genome sequences has been the develop-
ment of functional genomic tools for measuring
gene expression, interactions between proteins
and DNA, the activity of regulatory elements,
and many others.

For about a decade, between the late
1990s and the late 2000s, functional genomics
was dominated by DNA microarray technology,
which is based on the hybridization of DNA
molecules in a sample against a known set of
complementary sequences situated on an array.
Initially, the availability of genome (or transcrip-
tome) sequences allowed the development of mi-
croarrays designed to measure gene expression
levels (Schena et al. 1995; Lashkari et al. 1997).
Later, the combination of chromatin immuno-
precipitation and microarrays (ChIP-on-Chip)
enabled the mapping of the occupancy of tran-
scription factors in promoter regions or over the
whole genome (Iyer et al. 2001; Ren et al. 2000).
Microarray-based techniques delivered numerous
insights into genome biology (ENCODE Project
Consortium 2007); however, they were still a
less-than-ideal solution to the major challenges
in the field, as they suffered from issues with hy-
bridization artifacts, the lack of single base pair
resolution, and the limitation of measurements
to only sequences included on the array. The lat-
ter, especially, made difficult not only the assay-
ing of the whole human genomes, but imposed
a major limitation in terms of which organisms
were available to be studied: a new microarray
had to be manufactured for each species, and
the process of designing and producing arrays
was slow, cumbersome and expensive.

The sequencing of the human genome re-
lied entirely on assembly of the genome from
reads of several hundred base pairs (bp) length
generated using the Sanger sequencing method
(Sanger et al. 1977), which requires exten-
sive sample preparation and has low through-
put. As a result, it cost several billion dol-
lars. Later sequencing projects for organisms
with similarly sized genomes were less costly,
but still carried a price tag in the millions of
dollars. This stimulated the development of
so called “second-” or “next-generation” (NGS)
high-throughput sequencing technologies in the
mid-2000s, which promised to make genome se-

quencing much cheaper and faster. The first
such technology was 454 pyrosequencing (Mar-
gulies et al. 2005), followed shortly by Polonator
sequencing (Shendure et al. 2005), Solexa (later
Illumina) (Bentley etal. 2008), ABI SOLiD
(McKernan et al. 2009), Helicos (Harris et al.
2008), and more recently, Ion Torrent (Rothberg
et al. 2011). Initially, these technologies deliv-
ered much shorter reads than Sanger sequencing
did: a few tens to hundreds of thousands reads,
with a read distribution in the low hundreds of
bp (454), or a few hundreds of thousands to a
few million reads that were just 20-25 bp long
(Solexa/Illumina). Very short read lengths pose
severe challenges to de novo genome assembly
(Whiteford et al. 2005; Alkan et al. 2011), but
they are much better suited for functional ge-
nomic applications, and this is where they were
first applied and made their mark, helping them
become well-established (Wold & Myers 2008).
Small RNA species such as miRNAs and piR-
NAs (Bartel 2004; Aravin et al. 2007) are mostly
less than 30bp long which enabled the direct se-
quencing of the whole cellular repertoire of small
RNAs very early in the development of NGS
technologies and greatly stimulated the develop-
ment of the field (Ruby et al. 2006; Brennecke et
al. 2007). The coupling of the ChIP assay with
high-throughput sequencing (ChIP-seq) allowed
the truly genome-wide identification of protein-
DNA interactions (Barski et al. 2007; Johnson
et al. 2007; Robertson et al. 2007; Mikkelsen et
al. 2007), while the direct sequencing of reverse-
transcribed RNA fragments provided single base
pair-resolution view of the transcriptome (Na-
galakshmi et al. 2008; Mortazavi et al. 2008;
Cloonan et al. 2008; Sultan et al. 2008; Wil-
helm et al. 2008; Wang et al. 2008). By ob-
viating the need for the design and manufac-
turing of arrays for each genome, sequencing-
based assays allowed the application of func-
tional genomics approaches to any species with
a sequenced genome (discussed in depth in the
last chapter of the thesis). A wide array of “seq-
assays” has been developed in the last few years
(Table 14.1) targeting almost every imaginable
aspect of chromatin, transcriptional and RNA
biology, and as a result sequencing has gradu-
ally replaced arrays as the method of choice for
assaying of nucleic acids in functional genomics
(ENCODE Project Consortium 2011).

As technology has improved, the number of
reads and their length have increased signifi-
cantly and the cost of sequencing has dropped; in
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Table 14.1: Seq-based functional genomic assays.

Group of as-
says

Assay Detection of / Description References
G

en
o
m

ic
O

cc
u
p
a
n
cy ChIP-seq Protein-DNA interactions

Johnson et al. 2007; Barski et
al. 2007; Mikkelsen et al. 2007;
Robertson et al. 2007

ChIP-exo-seq
High-resolution protein-DNA inter-
actions

Rhee & Pugh 2011; Rhee & Pugh
2012

ChIRP-seq RNA-DNA interactions Chu et al. 2011
CHART-seq RNA-DNA interactions Simon et al. 2011

Chem-seq
Genome-wide localization of small-
molecules

Anders et al. 2014

Chromatin
interactions

4C
Targeted physical interactions be-
tween distant genomic regions

Dostie et al. 2007

5C
Targeted physical interactions be-
tween distant genomic regions

Bau et al. 2011; Umbarger et al.
2011;

Hi-C
Physical interactions between dis-
tant genomic regions

Lieberman-Aiden et al. 2009; Um-
barger et al. 2011

ChIA-PET
Protein-mediated interactions be-
tween distant genomic regions

Fullwood et al. 2009; Li et al. 2010;
Handoko et al. 2011; Li et al. 2012

Open
chromatin

DNAse-seq DNAse accessible regions
Hesselberth et al. 2009; Song et al.
2011; Boyle et al. 2011

FAIRE-seq
Shearing-susceptible open chro-
matin

Gaulton et al. 2010; Song et al.
2011

Sono-seq
Shearing-susceptible open chro-
matin

Auerbach et al. 2010

ATAC-seq
Transposition-mediated mapping of
accessible chromatin

Buenrostro et al. 2013

DGF Digital Genomic Footprinting Neph et al. 2012
DNAse-
FLASH

Fragment-length analysis of DNAse
hypersensitivity

Vierstra et al. 2014

Replication
timing

Repli-seq Newly replicated DNA Hansen et al. 2010

D
N

A
m

et
h
y
la

ti
o
n

RRBS
Reduced representation bisulfite se-
quencing

Meissner et al. 2008

BS-seq Whole-genome bisulfite sequencing Lister et al. 2008; Lister et al. 2009
PBAT Whole-genome bisulfite sequencing Miura et al. 2013
MeDIP-seq Methylation-enriched regions Down et al. 2008
MethylCap-
Seq

Methylation-enriched regions Brinkman et al. 2010

oxBS-seq
Mapping of sites of 5-
hydroxymethylcytosine methy-
lation

Booth et al. 2012

TAB-seq
Mapping of sites of 5-
hydroxymethylcytosine methy-
lation

Yu et al. 2012

T
ra

n
sc

ri
p
to

m
ic

s RNA-seq Various long transcripts

Mortazavi et al. 2008; Nagalakshmi
et al. 2008; Sultan et al. 2008;
Wilhelm et al. 2008; Marioni et al.
2008

Small RNA
sequencing

Small RNA species
Ruby et al. 2006; Brennecke et al.
2007

CAGE Capped 5’ ends of transcripts
Kodzius et al. 2006; Balwierz etal.
2009; Plessy et al. 2010

Continued on next page
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Table 14.1 – Continued from previous page

Group of as-
says

Assay Detection of / Description References

T
ra

n
sc

ri
p
to

m
ic

s
3P-seq, PAS-
seq, MAPS,
PolyA-seq

Polyadenylation sites
Jan et al. 2011; Yoon et al. 2010;
Derti et al. 2012; Fox-Walsh et al.
2011; Shepard et al. 2011

RNA-PET Paired 5’ and 3’ transcript ends
Fullwood et al. 2009; Ruan & Ruan
2012

PARE
Endonuclease Degradation prod-
ucts

German et al. 2009

GRO-seq Global Nuclear Run-On products Core et al. 2008
NET-seq Nascent RNA molecules Churchman et al. 2011
RAMPAGE Promoter mapping Batut et al. 2013
PARE-seq Mapping of RNA ends German et al. 2008
TIF-seq Mapping of transcript ends Pelechano et al. 2013
PEAT Transcription initiation Ni et al. 2012

Single–cell
transcrip-
tomics

CEL-seq Single-cell RNA-seq Hashimshony et al. 2012
SMART-seq Single-cell RNA-seq Ramsköld et al. 2012
SMART-seq2 Single-cell RNA-seq Picelli et al. 2013
STRT Single-cell RNA-seq Islam et al. 2011
Quartz-seq Single-cell RNA-seq Sasagawa et al. 2013

RNA-protein
interactions

HITS-CLIP
UV cross-linked protein-RNA inter-
actions

Licatalosi et al. 2008; Chi et al.
2009

PAR-CLIP
UV cross-linked protein-RNA inter-
actions

Hafner et al. 2010

iCLIP
UV cross-linked protein-RNA inter-
actions

König et al. 2010

RIP-seq
RNA coimmunoprecipitated with
proteins

Zhao et al. 2010

RNA-RNA
interactions

CLASH Mapping RNA-RNA interactions Kudla et al. 2011

RNA modifi-
cations

MeRIP-seq Mapping of RNA methylation sites Meyer et al. 2012
ICE Mapping A-to-I RNA editing sites Sakurai et al. 2010

R
N

A
st

ru
ct

u
re PARS

Genome-wide RNA structure deter-
mination

Kertesz et al. 2010

FRAG-seq
Genome-wide RNA structure deter-
mination

Underwood et al. 2010

SHAPE-seq
Targeted RNA structure determi-
nations

Lucks et al. 2011

HRF-seq Determination of RNA accessibility Kielpinski & Vinther 2014

Ribosome
profiling

Ribo-seq
Genome-wide mapping of ribosome
occupancy

Ingolia et al. 2009

High-
throughput
functional
assays

Massively
parallel func-
tional assays

Simultaneous measurements of the
enhancer activity of very large num-
ber of constructs

Patwardhan et al. 2012; Melnikov
et al. 2012

STARR-seq
Genome-wide measurement of en-
hancer activity

Arnold et al. 2013

the same time improved analytical tools tailored
to the now well-understood specifics of the data
coming from the major platforms have been de-
veloped. As a result, human genome resequenc-
ing and the study of human genetic variation,

cancer genomics, the de novo assembly of newly
sequenced genomes and metagenomics are now
also thriving fields currently mostly based on
NGS technologies (1000 Genomes Project Con-
sortium 2010; 1000 Genomes Project Consor-



415

tium 2012; Mardis et al. 2010; Gnerre et al.
2011; Human Microbiome Project Consortium
2012; Garraway & Lander 2013; Bradnam et al.
2013; Gilbert & Dupont 2011; Lappalainen et
al. 2013; Khurana et al. 2013; i5K Consortium
2013). However, the reads generated by these
platforms are still short enough to present con-
siderable difficulties in the analysis and interpre-
tation of data, genomes assembled de novo from
short-read data are still highly fragmented and
incomplete (Alkan et al. 2011; Koboldt et al.
2010; Earl et al. 2011; Bradnam et al. 2013),
and the cost of sample preparation and the com-
putational infrastructure investments needed to
generate and handle the data are still substan-
tial. This has provided an incentive for further
sequencing technology development that is both
even cheaper and in the same time improves on
the current inadequacies of NGS data. As a re-
sult “third-generation” sequencing (TGS) tech-
nologies are currently emerging. There is some
debate whether the term “TGS” should even be
used at this point given that there is much less
of a sharp divide between these technologies and
the NGS technologies compared to the paradigm
shift relative to Sanger sequencing that NGS
platforms triggered. I will nevertheless still use
it here for simplicity, but I will define what ex-
actly I mean by it first. TGS sequencing delivers
much longer reads that, in contrast with most
NGS technologies, originate from single founder
nucleic acid molecules and not from amplified
clones (i.e. single-molecule sequencing). The
long read lengths promise to greatly simplify and
improve de novo genome assembly, the study of
genomic structural variation and metagenomics,
but they also have the potential to once again
transform the practices of some areas of func-
tional genomic research. In the same time their
single-molecule nature comes at the cost of low-
ered accuracy. Here, I discuss the functional ge-
nomic areas in which TGS technologies are ex-
pected to have the greatest impact, as well as
the areas, which are at this point mature and
for which TGS will not provide much benefit
over NGS. NGS can therefore be expected to re-
main dominant for the foreseeable future in these
applications. In particular, transcriptomics and
the study of DNA methylation are highlighted,
and the anticipated requirements towards the
characteristics and quality of data necessary for
the promised impact to materialize are exam-
ined.

14.2 Overview of second
generation sequencing

technologies

A common feature of most NGS sequencing tech-
nologies is the use of clonally amplified clusters
of DNA sequences, the sequence of which is read
one or several bases at a time using a variety of
sequencing-by-synthesis readout strategies that
rely on the signal boost due to the presence
of large numbers of identical source molecules.
This enables the generation of high-quality se-
quence reads but it has also limited the read
lengths that can be achieved as errors accumu-
late during each synthesis step in different pieces
of DNA in a cluster and eventually proper phas-
ing between individual sequences in a cluster
is lost. The most successful NGS technology
has been the Solexa/Illumina reverse terminator
chemistry, and it and 454 will be used to illus-
trate the common characteristics of NGS plat-
forms. Illumina sequencing is based on the at-
tachment of DNA sequences to complementary
primers immobilized on a glass surface, followed
by clonal bridge amplification of each sequence
in order to form a cluster of identical sequences.
Then, these sequences are read one base at a
time using sequencing-by-synthesis relying on re-
versible fluorescent dye-terminator nucleotides
differently colored for each base that can be
scanned by a high-resolution microscope after
addition, then cleaved off and another based
added. This provides high-quality sequencing
reads with very low error rates, with errors
mostly consisting of base-pair substitutions. The
HiSeq incarnation of the technology was initially
capable of generating more than three billion in-
dividual reads of lengths longer than 100bp, but
with subsequent improvements this has now in-
creased to up to 2x250, and 2x500 reads have
been generated on the MiSeq platform. The 454
technology was1 based on the clonal amplifica-
tion of individual DNA sequences within emul-
sion droplets containing beads with primers at-
tached to them. Single beads are placed inside
the wells of an optic chip and sequencing re-
lies on adding one of the four nucleotides, one
at a time; when a nucleotide is incorporated by
DNA polymerase to a complementary position
in the template, an inorganic pyrophosphate is
released which is used to determine the identity

1As of the time the last edits of this text were put in place, 454 was scheduled to be phased out within a year
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of the base. Polymerase will proceed adding nu-
cleotides over stretches of multiple instances of
the same base pair; the resulting signal scales
linearly with the length of such homopolymers
only up to a point, and as a result indels are
the major source of errors with this technology
(and other technologies where multiple bases are
read at a time). The reads generated by 454 are
longer than those generated by most other NGS
platforms, even approaching the length of Sanger
reads, however their number was always limited
(to around a million at most), which limited its
applications. In addition indel errors are more
difficult to deal with during read alignment and
assembly than base substitutions.

14.3 Third-generation
sequencing technologies

Newer sequencing technologies continue to be
constantly developed, and some of them are very
similar to the NGS strategies outlined above in
their characteristics (such as the most recent
newcomer to become established on the mar-
ket, Ion Torrent). The defining features of TGS
technologies can be summarized as much longer
read lengths combined with the ability to se-
quence single DNA molecules rather than mul-
tiple clones in clusters (Schadt et al. 2010).
The first single-molecule sequencing platform
was Helicos; however reads generated by Heli-
cos were very short (Harris et al. 2008; Ozsolak
et al. 2010; Orlando et al. 2011) and had high
error rates; as a result (together with some other
undesirable properties of the instrument) Helicos
is, at the time of the writing of this text, largely
a footnote in the history of sequencing. Single-
molecule sequencing has the benefit of much sim-
plified library preparation, which eliminates a lot
of the representation biases and artifacts intro-
duced into current sequencing libraries; however
it comes at the cost of much increased error rates
as reading the sequence of single molecules ac-
curately is considerably more challenging than
reading out massively amplified clonal popula-
tions.

Two companies have so far presented com-
mercially available TGS technologies: Pacific
Biosciences (PacBio) and Oxford Nanopores (al-
though data from the latter has yet to be pub-
lished2). PacBio’s SMRT (Single-Molecule Real

Time) sequencing technology is based on an-
choring individual DNA polymerase molecules
and DNA templates into Zero-Mode Waveguide
(ZMW) nanowells, and then observing the in-
corporation of fluorescently labeled nucleotides
in real time (Eid et al. 2009). It is possible to
do so with single molecules because ZMW wells
are smaller than the wavelength of visible light
which cannot enter the bottom of the well; by
illuminating the well from the bottom, only the
bottom volume of the well is visible. Fluores-
cently labeled nucleotides diffuse very fast in and
out of the well but when incorporated by DNA
polymerase (an orders-of-magnitude slower pro-
cess than diffusion), they are held in the well
for much longer, which enables the identifica-
tion of the DNA sequence. The technology al-
lows for the generation of read lengths greater
than Sanger sequencing (up to several and even
tens of kilobases; read length is limited by the
lifetime of the polymerase molecule which is de-
graded by the laser light used to read fluorescent
nucleotides). Its limitations include the high
error rate (up to 15%) and the at present low
number of sequencing reads generated (a single
SMRT cell only generates several tens of thou-
sands of reads). Error rates can be improved
by generating circularized single-stranded tem-
plates which can be sequenced several times to
derive a consensus (Travers et al. 2010); this,
however, comes at the cost of decreasing the ef-
fective read lengths.

Nanopore sequencing is a very promis-
ing approach towards sequencing nucleic acids
(and, potentially, other biological heteropoly-
mers too), based on the characteristic changes
in electric current through a nanopore situated
in an impermeable membrane that are induced
by different nucleotides passing through it; as
each base passes through the pore, the current
changes in a way that is unique to that base al-
lowing its identification (Branton et al. 2008;
Manrao et al. 2010; Cherf et al. 2012; Man-
rao et al. 2012). The method was first pro-
posed about two decades ago (Kasianowicz et
al. 1996; Deamer et al. 2000); however, build-
ing a working sequencer has been a major chal-
lenge as simple electrophoresis of DNA through
a nanopore occurs too fast for the sequence to
be read, which has necessitated the development
of methods to slow down the rate of transloca-
tion through the pore. The commercial launch of
such an instrument has finally been announced

2As of late April 2014
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by Oxford Nanopores Technologies in the last
two years. However, actual sequence data gen-
erated by nanopores is still not publicly avail-
able, and therefore key details regarding error
rates (which, due to the single-molecule nature
of the method, are certain to be significantly
higher than Illumina sequencing, but possibly
lower than those of SMRT sequencing) and the
cost of generating a given number of reads re-
main unknown. Still, nanopore sequencing holds
the long-term promise of delivering reads that
are tens or even hundreds of kilobases long, with
minimal to no sample prep, little to no sen-
sitivity to the fragment length distribution of

the input library (a limitation of both Illumina
and PacBio instruments, which do not sequence
short and long fragments with the same effi-
ciency), and further in its development, the di-
rect identification of modified nucleotides and
eventually direct RNA and even protein sequenc-
ing. Its characteristics make it a particularly
attractive candidate for being the next transfor-
mative technology in the sequencing world, if it
delivers on its promises.

Below, the expected impact of these TGS
technologies on the different subfields of func-
tional genomic research is reviewed in the con-
text of the experimental and analytical chal-

Figure 14.1 (preceding page): Functional genomic assays for measuring chromatin occu-
pancy, openness and interactions. (A) In ChIP-seq, proteins are crosslinked to DNA, chromatin
is sonicated down to fragments of at most 300-400bp in size, and immunoprecipitated with an anti-
body against the protein of interest. The resulting set of DNA sequence fragments is then converted
into a sequencing library and sequenced. (B) A characteristic asymmetric distribution of reads on
the forward and reverse strand around the occupancy site is observed, with the distance between
the peaks on each strand corresponding to the average fragment length. (C) In ChIP-exo-seq, the
high-resolution modification of ChIP-seq, crosslinked fragments are subjected to 5’-to’-3’ λ exonu-
clease treatment; the exonuclease is processive but is blocked by the site of crosslinking. As a result,
the 5’ ends of sequencing fragments in the final library are very highly enriched immediately around
the site where the protein of interest is crosslinked to DNA. (D) DNAse-seq and its variations are
based on the high sensitivity of DNA that is not protected by nucleosomes to DNAse cleavage. The
resulting DNA fragments are then converted into libraries and sequenced. (E) Assays measuring
chromatin interactions rely on the fact that such interactions are mediated by proteins; crosslinking
of DNA to proteins and of proteins to proteins leads to the formation of complexes in which the
ends of DNA fragments originating from distant genomic locations are brought in close physically
proximity and can be ligated to each other (of course, so can be the ends of each fragment on its own,
and this is a major source of noise in the final libraries). The ligation products are then subjected to
further processing (with the details varying on the protocol) with the end result being the generation
of chimeric DNA fragments each end of which originates from one of the interacting genomic loci.
These fragments are then sequenced in a paired-end format. Note that in all these assays the size of
the fragments being sequenced is small (a few hundred base pairs at most), and their short length
is actually important to the resolution of the assay. (F) The fraction of the human and Drosophila
melanogaster genomes that is uniquely mappable at different read lengths. Mappability was evalu-
ated as follows: for each read length r, a set of “sequencing reads” was generated by creating one
such read starting at each position in the genome. The reads were then mapped to the genome
using Bowtie (version 0.12.7; Langmead et al. 2009) while retaining only unique alignments, and
read coverage C (in raw read counts) was calculated for each position in the genome. The mappable
fraction of the genome MFG was then calculated as follows:

MFG =

∑
c∈G
|c|

∑
c∈G

|c|∑
p=1

I(Cc,p ≥ r)

(14.1)

where I is the indicator function, c is a chromosomes in the genome, |c| is the length of a chromosome,
and p are the individual positions in each chromosome.
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Figure 14.2: General strategies for contemporary RNA-seq measurements of the tran-
scriptome. A hypothetical gene expressing six different alternative transcripts (T1 to T6) in the
relative ratios indicated in the pie chart is shown. The input RNA may first be polyA-selected or
rRNA-depleted; the transcribed mRNAs are then either subjected to random fragmentation (as in
the original protocol described in Mortazavi et al. 2008), and then converted to cDNA (using, for
example, random priming). Alternatively, the mRNAs can be converted to full-length (to the extent
the input mRNA is full-length and the reverse transcription reaction proceeds to completion) cDNA
molecules (such as in the SMART-seq protocol; Ramsköld et al. 2012) and then fragmented. In
either case, a final library of fragment size usually in the 150–350bp range is generated, much shorter
than the length of the original transcripts. The transcripts have to be then assembled and/or quan-
tified using probabilistic methods, which does not always return results true to the original biological
reality. In this case, this is illustrated by following the approach adopted by Cufflinks (Trapnell et
al. 2010) and assembling the minimum number of transcripts that can explain the data (assembled
transcripts AT1 to AT5), which, however, results in the loss of one transcript and not fully accurate
isoform-level quantification.
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lenges that the field at present faces

14.4 Functional genomics
assays and third-generation

sequencing

14.4.1 ChIP-seq and derivatives
for the measurement of genomic

occupancy

Our current understanding of gene regulatory
mechanisms revolves around the extremely com-
plex interplay between the binding of sequence
specific transcription factor to regulatory ele-
ments in the genome (in the immediate vicinity
of promoters of genes or to enhancer sequences
located very far upstream or downstream of pro-
moters), which affects transcription by the re-
cruitment or inhibition of the transcriptional
machinery and the induction of changes in the
chromatin state, mainly covalent modifications
on histone tails nearby (Kouzarides 2007). In
the same time, chromatin state also influences
transcription factor binding, with, for exam-
ple, many transcription factors being unable to
bind to chromatin in closed inactive conforma-
tion (Zaret & Carroll 2011). Thus measuring the
genomic location of binding events of transcrip-
tion factors and chromatin modifying enzymes,
and the distribution of histone modifications, in
diverse cell types and conditions, is of critical
importance for full understanding of the process
of gene regulation.

ChIP-seq is at present the standard tool
for accomplishing this task. As shown in Fig-
ure 14.1, a ChIP-seq experiment begins with
the chemical cross-linking of proteins bound to
DNA, shearing the cross-linked chromatin to size
of a few hundred bp at most (typically below
200), immunoprecipitating the DNA fragments
bound to the protein of interest, reversing cross-
links, and building a sequencing library by lig-
ating sequence adapters and PCR amplification;
a parallel library is built from crosslinked chro-
matin without immunoprecipitation for compar-
ison and normalization purposes when calling
binding sites. Usually, a short tag (initially
36bp, later 50bp, with longer read lengths of
1x100 or even 2x100 increasingly common now)
from only one end of the DNA fragment is se-
quenced and aligned to the genome. Crucially,
because adapters are ligated only in one direc-

tion relative to the original genomic strands of
the fragment and the length of fragments is vari-
able, reads mapping to the forward and reverse
strands distribute in a characteristic asymmetric
way around the position where the target protein
binds to DNA (if the protein binds to specific
locations in the genome in a sequence specific
manner; elongating RNA polymerase and his-
tone marks spread along large genomic domains
do not exhibit that behavior), and this informa-
tion is used to more precisely define transcrip-
tion factor binding sites Figure 14.1A and B)
(Kharchenko et al. 2008). Derivatives of the
ChIP assay have been developed that aim at
identifying the binding sites of RNA molecules
– ChIRP-seq (Chu et al. 2011) and CHART-seq
(Simon et al. 2011) – as well as the chromatin oc-
cupancy of small molecules (Chem-seq; Anders
et al. 2014).

So far, a significant limitation in the prac-
tice of ChIP-seq has been the bottleneck cre-
ated by the process of performing the ChIP reac-
tion, which has traditionally been slow, tedious
and low-throughput. Automated robotic proto-
cols for carrying it out have now been developed
(Aldridge et al. 2013; Gasper et al., in press),
and coupled with the automation of library gen-
eration promise to enable a major increase in
throughput, allowing up to 96 samples to be ef-
ficiently processed in the same time (although
it should be noted that even then there will still
be a bottleneck in the workflow, one that will re-
main for the foreseeable future: the crosslinking
and sonication steps; unless very large amounts
of chromatin from the same source are analyzed,
large numbers of samples will still have to be
crosslinked and fragmented manually).

The other area where improvements are
needed in the ChIP-seq assay is achieving truly
single base-pair resolution. Recently, the ChIP-
exo-seq variation of ChIP-seq has been devel-
oped, which addresses this issue by combining
ChIP with 5’-to-3 λ exonuclease digestion of the
crosslinked fragments. Exonuclease processiv-
ity is blocked by the site of the crosslink thus
providing precisely phased sequencing ends right
around the protein-DNA interaction site, with
higher resolution than traditional ChIP-seq, es-
pecially in regions where closely spaced binding
of multiple transcription factor molecules occurs
(Rhee & Pugh 2011; Rhee & Pugh 2012; Fig-
ure 14.1C). Because improving resolution is the
key area of further development of the assay,
the longer reads generated by TGS platforms
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will not be of much advantage in ChIP-seq. Se-
quencing longer reads can improve the ability
to detect binding events over a larger fraction
of the genome as it will make a more of the
genome uniquely mappable (Figure 14.1F shows
the uniquely mappable fraction of the human
and fly genomes as a function of read length).
However, first, the length of reads can only be
as long as that of the input fragments, and
shorter fragments usually lead to better resolu-
tion (Figure 14.1B), and second, Illumina read
lengths, especially in the paired end format, are
already covering the range of fragment sizes ob-
served in a typical ChIP-seq library. In addi-
tion, large numbers of reads are necessary for
the comprehensive identification of transcription
factor binding sites (in the tens of millions of
reads for mammalian-sized genomes; Landt et al.
2012), and even larger numbers are optimal for
broad-source histone marks (Jung et al. 2012);
at present, second-generation sequencing tech-
nologies are comfortably delivering that many
reads, and of very high quality too. However, if
true single molecule sequencing with no library
preparation that can generate a very large num-
ber of reads of comparable quality becomes avail-
able at acceptable cost, it would eliminate the
need for PCR amplification together with the
various biases introduced by it and it would en-
able working with very small amounts of sam-
ples. This is currently challenging (Shankara-
narayanan et al. 2011; Adli et al. 2011), but
has great potential importance to provide insight
into the working of rare cell types in the body.

14.4.2 DNAse hypersensitivity
and other open chromatin assays

Active regulatory elements in the genome (en-
hancers and promoters) are characterized by in-
creased chromatin accessibility. This property
can be used in order to identify them: increased
chromatin accessibility manifests itself as ele-
vated susceptibility to DNAse cleavage. DNAse
I hypersensitivity mapping has been used for
decades to study individual loci (Maniatis &
Ptashne 1973), and paired with NGS technolo-
gies has allowed the genome-wide detection of
DNAse hypersensitive sites by sequencing the
resulting DNA ends (Hesselberth et al. 2009;
Song et al. 2011; Boyle et al. 2011; Figure
14.1D). Other methods for identifying open chro-
matin regions rely on the preferential segrega-
tion of open chromatin regions into the aque-

ous phase when cross-linked chromatin is phenol-
chloroform extracted (FAIRE-seq and Sono-seq;
Gaulton et al. 2010; Song et al. 2011; Auerbach
et al. 2010). For all of these methods, resolution
and depth of sequencing is a key consideration.
Indeed, sequencing DNAse I digested chromatin
to a depth of nearly half a billion reads yields
high-resolution maps of individual transcription
factor footprints (and is even labeled separately
as Digital Genomic Footprinting, or DGF; Neph
et al. 2012a; Neph et al. 2012b), and more re-
cently, analysis of the different fragment lengths
produced by DNAse digestion (DNAse-FLASH;
Vierstra et al. 2014) has proved very useful
for understanding nucleosome architecture and
transcription factor binding in detail. For these
reasons, similar reasoning to the one outlined
above for ChIP-seq applies regarding the utility
of third generation sequencing technologies.

14.4.3 Mapping long-range
chromatin interaction

Key components of eukaryotic gene regulatory
networks are enhancer elements, regulatory se-
quences located far away from the promoters of
the genes they regulate. ChIP-seq can identify
potential enhancers but as these elements can be
located very far away from their target genes,
even “skipping” over one or multiple genes (Let-
tice et al. 2003), it is usually not possible to as-
sign an enhancer to its corresponding promoter
(or promoters) with absolute certainty. The rela-
tionship between enhancers and promoters is far
from the only known type of long-range phys-
ical interactions between genomic elements; in
recent years, appreciation for the dynamic 3D
structure of the nucleus has been steadily grow-
ing, and structures as transcriptional factories
that bring multiple genes in close genomic prox-
imity have been proposed. Identification of these
long-range interactions is of major importance
for understanding the biology of the nucleus and
the logic of gene regulation.

The chromosome conformation capture (3C)
technique was the first one developed to tackle
this issue and to test the interaction between
two candidate genomic loci (Dekker et al. 2002).
The advent of NGS technology has allowed to de-
velop derivatives of 3C that measure interactions
between large sets of candidate loci (4C and 5C;
Bau et al. 2011; Umbarger et al. 2011), or
on a fully genome-wide scale (Hi-C; Lieberman-
Aiden et al. 2009; Umbarger et al. 2011), while
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the ChIA-PET assay measures long-range inter-
actions mediated by a particular protein (Full-
wood et al. 2009; Li et al. 2010; Handoko et al.
2011; Li et al. 2012). These assays rely on the
chemical crosslinking of protein-mediated inter-
actions between distant genomic loci, the sub-
sequent shearing of chromatin and the ligation
of the ends held together by the proteins under
dilute conditions so that ligation between DNA
ends in different complexes floating in solution
is prevented (Figure 14.1E). After library build-
ing, short reads are generated from both ends
of the resulting chimeric fragments and aligned
to the genome. These fragments are once again
short, sometimes extremely short (in the case of
the original ChIA-PET protocol, only very short
stretches of sequences on each end are informa-
tive due to the use of Type IIS restriction en-
zymes during library building), it is not expected
that TGS technologies will initially have a great
impact in this field.

14.4.4 Mapping DNA
methylation genome-wide

Numerous modifications of DNA bases playing
a biological role have been described, especially
in prokaryotes and single-cell eukaryotes (Mruk
& Kobayashi 2014; Gommers-Ampt et al. 1993;
van Luenen et al. 2012).The one that has at-
tracted the most attention in multicellular eu-
karyotes, due to its role in epigenetic regulation,
is the methylation of the 5 position of cytho-
sine (5mC), particularly in the context of CpG
dinucleotides (Bird 1986; Fuks 2005; Miranda &
Jones 2007). While it was first identified many
decades ago (Wyatt & Cohen 1952), in the last
few years 5-hydroxymethylcytosine (5hmC) has
also begun to emerge as a biologically impor-
tant modification (Kriaucionis et al. 2009; Tahil-
iani et al. 2009; Guo et al. 2011). The clas-
sical role of 5mC in mammalian systems is in
the CpG context in promoter-associated CpG
islands. The methylation of a CpG island is
associated with the repression of gene expres-
sion from the associated promoter (Fuks 2005;
Miranda & Jones 2007)), which is of vital im-
portance during embryonic development, for the
establishment of imprinted loci and cancer pro-
gression, among many other processes. In addi-
tion to this classical view, genome-wide profiling
of the modification in both mammalian systems
and in other clades of the tree of life has revealed
a much more complex picture involving methy-

lation over gene bodies and in non-CpG contexts
(Lister et al. 2008; Lister et al. 2009; Zemach
et al. 2010; Huff & Zilberman 2014; see also
an extensive discussion on the topic in the final
chapter).

Two general strategies exist and have been
in wide use for profiling DNA methylation: en-
richment for methylated DNA and bisulfite se-
quencing. Enrichment methods rely on immuno-
precipitation with antibodies specific for 5mC
(MeDIP; Weber et al. 2005) or on enrichment
using the methyl binding domains (MBD) of nat-
urally occurring proteins (MethylCap; Cross et
al. 1994). Both methods can be coupled with
NGS sequencing and the nature of the data gen-
erated is similar to that of ChIP-seq (Down et
al. 2008; Brinkman et al. 2010). The drawback
is that they do not provide single base-pair reso-
lution of methylation events but only enrich for
regions with elevated methylation levels. Base-
pair resolution is provided by bisulfite sequenc-
ing (BS; Frommer et al. 1992; Clark et al. 1994).
Treatment of DNA with bisulfite converts un-
methylated cytosine to uracil but leaves 5mC
unaffected; as a result 5mC is sequenced as cy-
tosine while unmethylated cytosine as thymine.
The resulting libraries can be sequenced and
aligned against the genome and methylation
levels assessed at the level of individual base
pairs. As the cost of sequencing whole genomes
has been until recently prohibitively high for
routine whole-genome BS sequencing, reduced-
representation bisulfite sequencing approaches
(RRBS) have been developed; in RRBS, restric-
tion enzymes are used to cleave specific positions
in the genome and the methylation status of the
surrounding nucleotides is assessed after bisul-
fite conversion and sequencing (Meissner et al.
2008). With decreasing costs, whole-genome BS-
seq is becoming more widely used even in mam-
malian systems (Lister et al. 2009; Lister et al.
2011).

BS-seq assays present considerable analyt-
ical challenges due to the nature of methyla-
tion events and bisulfite conversion. Alignment
of BS-seq sequencing reads is a non-trivial in-
formatics problem with numerous trade-offs be-
tween sensitivity and specificity that have to be
made as a result of the conversion of cytosines
to thymine, the potential for heterogeneity of
methylation events between CpGs in close prox-
imity to each other, and a number of other is-
sues (Krueger et al. 2012). In addition, bisulfite
treatment does not differentiate between 5mC
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Figure 14.3: Future long-read RNA-seq format. The same gene shown in Figure 14.2 is
depicted here too. If the appropriate sequencing technology is available, RNA can be converted
into cDNA and the cDNA directly sequenced (preferably without amplification, if possible). An
even better option would be to sequence RNA directly, which is in principle possible with nanopore
sequencing but still some way from becoming a commercially available reality. Note that the se-
quencing has to be carried out to a sufficiently high depth for results to be representative for all
genes in the dynamic range of the transcriptome (meaning tens of millions of reads should be gen-
erated). The problems of transcript assembly and transcript-level quantification become greatly
simplified and likely actually solvable in the great majority of cases with data of this kind, unlike
the insurmountable computational and epistemological challenges presented by current datasets.
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and 5hmC and as a result additional assays have
had to be developed to measure its levels. Fi-
nally, it is at present difficult to examine the
phasing of methylation events between maternal
and paternal chromosomes due to the short na-
ture of NGS sequencing reads.

TGS technologies promise to deliver a solu-
tion to many of these issues by avoiding bisulfite
conversion and reading methylation events di-
rectly over long stretches of DNA. The ability of
the PacBio platform to directly detect 5mC has
been demonstrated based on the characteristic
delay in nucleotide incorporation by the poly-
merase at 5mC positions (Flusberg et al. 2010;
Clark et al. 2012). Both 5mC and 5hmC have
also been shown to induce characteristic changes
in the current through nanopores (Clarke et al.
2009; Wallace et al. 2010), thus potentially pro-
viding a way to directly read methylation events
over very long DNA sequences with very min-
imal sample preparation (and correspondingly
lower cost), potentially even from single cells.
The long reads are advantageous because they
will allow the reliable allelic phasing of methy-

lation status, which is at present very difficult
with short reads. If error rates can be sufficiently
minimized, these technologies could enable us to
dive much deeper into the detailed workings of
the epigenome than currently possible.

14.4.5 Transcriptomics

The area of functional genomics where TGS
technologies can be expected to have the great-
est impact is transcriptomics. The interaction
between the immense complexity of the tran-
scriptome, the short length of current sequencing
reads and the limitations of library building pro-
tocols and sequencing platforms has presented
some very difficult analytical challenges to the
field, which longer reads should be able to ad-
dress if generated in sufficient numbers.

14.4.5.1 Long RNA molecules and RNA-
seq

The primary tool for characterizing transcrip-
tomes today is RNA-seq. A typical RNA-seq
experiment aims at measuring mRNA molecules

Figure 14.4: Robustness of long-read RNA-seq to sequencing depth. Gene-level FPKMs
for the H1-hESC cell line (2x75bp ENCODE data from the Wold lab) were used a starting point.
Assuming the relative FPKM abundances correspond to real relative abundances, a long-read tran-
scriptome was simulated as follows. First, the FPKM for each gene was multiplied by 10×104. Then
the resulting transcriptome was sampled at different sequencing depths, assuming that 1 long read
corresponds to 1 transcript. Gene-level expression values were calculated in TPM (Transcripts Per
Million transcripts sequenced), and the fraction of genes expressed at different FPKM levels (upper
right) that were quantified within 5% of their original relative abundance was calculated.
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and involves the selection of polyadenylated
RNAs, their fragmentation to a size usually be-
low 200-300bp, conversion of the fragments to
cDNA, PCR amplification and sequencing of the
resulting fragments, either from one end or from
both ends as paired-end reads. Other proto-
cols may feature alternative sequence of steps
(Figure 14.3) but the general principle remains
the same: long RNA molecules are converted
into much shorter DNA fragments in the final
library and then sequenced. Several varieties of
the library-building protocol that preserve infor-
mation about which strand reads originate from
(”stranded” RNA-seq; Levin et al. 2010) exist.
In addition, while what is most often measured
is polyA-selected mRNAs, non-polyadenylated
transcripts can also be specifically targeted using
various strategies for depleting ribosomal RNA;
Chen et al. 2011). Finally, specific very rare
transcripts can be specifically captured and sub-
jected to RNA-seq (Mercer et al. 2011).

The resulting datasets contain an enormous
amount of information about the transcriptome
at a single base-pair resolution (Djebali et al.
2012; Chapter 2 of this thesis). Splicing events
can be directly quantified using sequencing reads
that cross splice junctions and new splice iso-
forms can be identified (Katz et al. 2010).
Chimeric transcripts resulting from chromosome
translocations playing a role in cancer biology
can be identified (Levin et al. 2009; Zhang et
al. 2010; Kinsella et al. 2011; Kim et al. 2011;
Sakarya et al. 20102; Li et al. 2011; McPherson
et al. 2011; Levin et al. 2009). RNA-editing
events can be cataloged (Li et al. 2011; Peng et
al. 2012; Bahn et al. 2012; Park et al. 2012)
and expression bias towards the maternal or pa-
ternal chromosome can be measured (Rozowsky
et al. 2011; Reddy et al. 2012; Chapter 3 of this
thesis). New classes of transcripts, such as long
intergenic non-coding RNAs (lincRNAs), can be
discovered, annotated and quantified (Cabili et
al. 2011; Guttman et al. 2010). Finally, newly-
sequenced genomes can in principle be annotated
de novo using RNA-seq data.

While RNA-seq datasets have already pro-
vided highly useful insights into all of the above
areas, as extensively discussed in Chapters 2
and 3, two very important classes of problems
have remained unsolved at a satisfactory level for
all biological applications: isoform-level quantifi-
cation and de novo transcript assembly. The
ability to faithfully carry out these tasks is of
critical importance for the study of alternative

splicing, alternative initiation and termination
(Lenhard et al. 2012; Sandberg et al. 2008; Jan
et al. 2011), and for the accurate annotation
of genomes. These are unsolved problems not
because of lack of sufficient computational so-
phistication, but simply because the information
needed to solve them in all cases is often sim-
ply not present in the data. The median length
of annotated mRNAs in the human genome is
in the 2-3kb range while the length of sequence
reads has only recently approached 150-250b,
still far shorter than a full-length mRNA, neces-
sitating the use of probabilistic methods to parse
them between all available isoforms, a non-trivial
computational problem for which a unique solu-
tion not always exists. Not only that, but the
situation is posed to worsen as annotations get
more and more comprehensive by including more
and more alternative isoforms for each gene – the
ability of isoform-level quantification algorithms
to accurately parse reads between the transcripts
of a gene is inversely proportional to the num-
ber of isoforms annotated for it. Even if longer
(but still shorter than the longest transcripts in
the genome) reads were available, it would not
be advisable to use them for purposes other than
assembly because this would introduce a number
of undesirable biases in datasets (see discussion
in Chapter 3 for details). Long RNA fragments
present more opportunities for the formation of
secondary structures, which affect reverse tran-
scription in unpredictable ways and increase cov-
erage non-uniformity, and even if this was not
the case, long fragments create representation
biases against shorter transcripts.

It has now become abundantly clear that the
only viable solution to these problems is to se-
quence full-length RNAs using long-read TGS
technologies, as this will provide the long-range
connectivity information that is missing in cur-
rent RNA-seq datasets and which will allow the
accurate assembly and transcript-level quantifi-
cation of even the most complex loci. This will
be possible even with relatively high error rates,
as, first, in many cases a reference genome of
high quality will be available, and second, hybrid
strategies, which combine TGS reads with high-
quality Illumina reads, using the latter for error
correction (Au et al. 2012; Au et al. 2014) can
be used. However, it is still not clear whether all
requirements that need to be met for short-read
RNA-seq to be displaced by long-read RNA-seq
will in fact be satisfied by TGS technologies. The
primary ones are sequencing depth and library
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preparation. First, tens of millions of reads are
still going to be needed for accurate quantifica-
tion even with long reads (Figure 14.4). This
is far beyond what is economically feasible with
current PacBio output. It is not clear what
the throughput of nanopore sequencers is go-
ing to be, but it has the theoretical potential
to be much higher as the speed of translocation
through pores is very fast (indeed the main chal-
lenge impeding their development has been how
to slow it down). Second, sequencing RNA on
the PacBio platform has so far required the par-
titioning of samples into different length classes,
preparing separate libraries for each and then se-
quencing them separately. Such approach makes
quantification of the whole sample pretty much
impossible. Therefore, practical RNA long-read
sequencing will have to be done on a platform
that is not biased towards or against fragment of
certain sizes. Once again, this is in theory a char-
acteristic of nanopore sequencing, but it remains
to be seen how real-life instruments will operate.
Nanopores have one more potential feature, per-
haps the most desirable of all, and it is the ability
to sequence RNA directly (Ayub & Bayley 2012;
Ayub et al. 2013; Cracknell et al. 2013). Work-
ing instruments capable of direct RNA sequenc-
ing are still some time from being commercially
available. However, they are the most promising
candidate for delivering what would be perhaps

the end point of development of RNA-seq tech-
nology: protocols based on direct RNA sequenc-
ing would remove all of the enzymatic steps that
are sources of various biases in current protocols
(such as reverse transcription and PCR), in ad-
dition to providing long reads (Figure 14.3).

14.4.5.2 Small RNA sequencing

The sequencing of small RNAs was one of the
very first applications of NGS sequencing but
ever since most NGS-based small RNA sequenc-
ing studies have primarily aimed at identification
and annotation of small RNAs rather than quan-
tification and comparison between samples. The
reason is that while multiple protocols for build-
ing small RNA libraries exist, relying either on
ligation or oligonucleotide-tailing, they all intro-
duce very serious representation biases into the
final libraries, making it difficult to compare the
levels of individual small RNA species (Linsen
et al, 2009; Hafner et al. 2011; Toedling et al.
2012). A technology allowing for direct RNA-
sequencing would be ideally suited for this prob-
lem, and again, nanopore-based platforms could
in principle accomplish this, though whether the
quality of the data will be sufficiently high to dis-
place current sequencing platforms remains to be
seen. Initial steps in this direction have already
been reported (Wang et al. 2011; Gu & Wang

Figure 14.5 (preceding page): The single-cell RNA-seq of the future. In addition to
the less-then-ideal aspects common to all current RNA-seq protocols, single-cell RNA-seq faces the
challenge of maximizing capture efficiency (the probability that each original RNA molecule will
be captured and represented in the final library, i.e. single molecule capture probability or psmc).
Single cells contain a finite and limited number of founder RNA molecules, and it is vitally important
that each and every one of them is counted, and counted just once, if one is to obtain accurate
measurements of the transcriptome of each individual cell. Unfortunately, psmc is at present nowhere
near 1, and is a source of significant technical stochasticity between individual cells. Sequencing
very large numbers of cells (Shalek et al. 2013; Jaitin et al. 2014) can recover common patterns
in cell-to-cell diversity in large populations of cells, but it is still highly desirable to overcome the
technical stochasticity by generating truly accurate measurements. The best way to achieve that
is to eliminate as many of the enzymatic steps between founder RNA molecules and sequencing as
possible. Ultimately, this means direct RNA sequencing, which is in principle possible with nanopore
sequencing though it still lies quite some time into future. Ideally, it would be incorporated into
a microfluidic system, which channels single cells into individual microfluidic chambers, in which
they are first lysed, and then their RNA content is passed through nanopores embedded into the
wall of the chamber. This would provide digital counts of isoform-level transcript abundances in
absolute copies per cell numbers (depicted as CG,T,K , where C stands for absolute transcript copy
numbers, G for the gene a transcript belongs to, T for the transcript itself, and K for the index of
each individual cell), potentially also including the non-polyadenylated portion of the transcriptome
(which has received virtually no attention in single-cell transcriptomics so far as all currently available
protocols feature a polyA-selection step).



428

2013; Gu et al. 2013).

14.4.5.3 Single-cell transcriptomics and
epigenomics

The vast majority of functional genomic mea-
surements are performed on large populations
of cells. This is largely due to the limitations
of many of the experimental protocols (for ex-
ample, it is most likely not possible to perform
ChIP-seq on single cells due to the inefficiency of
cross-linking) but it has the end result of mask-
ing cell-to-cell variation and noise, the presence
of distinct subpopulations within the larger pop-
ulation and other very interesting biological phe-
nomena that only manifest themselves when ex-
amined on the level of single cells. Ideally, sin-
gle cell functional genomic measurements would
be routinely available, and this has prompted
the development of protocols for sequencing both
the genomes (Xu et al. 2012; Hou et al. 2012)
and the transcriptomes of single cells (Tang et
al. 2009; Tang et al. 2010; Tang et al. 2011; Is-
lam et al. 2011; Ramsköld et al. 2012; Marinov
et al. 2014). Here is also the place to note that
the RPKM normalization widely used for RNA-
seq quantification is only a relative measurement
of gene expression levels (and so is RNA-seq it-
self in general in its current form) as it mea-
sures the allocation of a given number of reads
between genes/transcripts but not the absolute
levels of transcript copies per cell. It is in prin-
ciple possible to obtain estimates of the average
number of copies per cell by precisely tracking
down the number of cells and amounts of purified
RNA that went into a library (Mortazavi et al.
2008) but this information is typically not avail-
able and even when it exists, it is no match for
actually knowing the number of copies for indi-
vidual single cells. However, because enormously
larger amounts of DNA are needed for sequenc-
ing on NGS platforms relative to the amount of
RNA present in a single cell, current single-cell
transcriptomics protocols all involve massive am-
plification of fragmented RNA, typically in two
rounds of amplification separated by a fragmen-
tation step. As a result, information about the
number of transcript copies in a cell is lost, in
addition to biases introduced by PCR amplifi-
cation, reverse transcription, and the stochasti-
cally variable capture rate of the original tran-
scripts (psmc, single-molecule capture probabil-
ity), most of which are present at low copy num-
ber per cell to begin with. There are two par-

tial solutions to this problem: first, the use of
spike-in standards of know abundance and the
subsequent recalibration of FPKMs to estimated
copies per cell (Marinov et al. 2014; Islam et
al. 2011), and second, the use of unique molec-
ular identifiers that track the number of founder
molecules (Shalek et al. 2013; Islam et al. 2014).
Both approaches are far from ideal. The first one
is not entirely quantitative, as spike-ins are not
necessarily present in exactly the fixed number
of copies that are on average inputted in each re-
action, while all current variations of the second
involve the tagging of one end of transcripts and
result in the loss of the rest of it, with the corre-
sponding consequences for the ability to analyze
alternative splicing and allelic biases on the sin-
gle cell level. Neither of them resolves the techni-
cal stochasticity problem either, which can only
be eliminated by eliminating the enzymatic steps
in protocols that are its source.

The most viable way, in which such an ad-
vance can be achieved, is the direct sequenc-
ing of RNA from single cells, using nanopores.
Whether and when this will be practically possi-
ble remains an open question, but it is the only
technology that has the potential to be the ba-
sis of a single-cell RNA-seq assay of the kind
shown in Figure 14.5. Microfluidics-based single-
cell genomics devices are already in widespread
use (such as the Fluidigm C1 system; Shalek et
al. 2013; Wu et al. 2014) and proven their use-
fulness. It is in principle possible to design a
microfluidics platform that integrates the sort-
ing of individual cells into microfluidic chambers
with nanopores in each of them, capable of direct
RNA sequencing of the RNA content of each cell
after lysis. This would provide a direct readout
of the absolute abundances of all RNA species
in a cell, hopefully with minimal bias, resolving
most of the technical issues with current proto-
cols and platforms.

Similarly promising are the prospects for the
application of TGS platforms to single-cell epige-
nomics. While assays measuring genomic oc-
cupancy and chromatin structure are ill-suited
for single-cell measurements, DNA methylation
could be well measured on the level of single cells
with a very long-read single-molecule sequenc-
ing platform. The examination of large numbers
of allelically phased single-cell DNA methylation
profiles should reveal a great deal about the dy-
namics and regulation of epigenetic DNA modi-
fications.

There are numerous formidable technical
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challenges to be overcome for these prospects
to become reality. The concept of nanopore se-
quencing has been applied in practice in ways
that are not directly compatible with the vi-
sion outlined above, due to the numerous diffi-
cult technical issues that have had to be tack-
led to even get this far. These include: the
need to slow down the rate of DNA transloca-
tion through the pore, the need to ensure that
nanopores are loaded with DNA, (these two have
meant that some library prep has always had to
be applied depending on the specifics of the ap-
proach adopted, in order to bring DNA in con-
tact with the pore and the surface it is embed-
ded in), the use of designs that feature protein
nanopores embedded in a lipid membrane (which
means that at any given moment multiple bases
are present in the pore and the sequence is re-
constructed from the reading of several bases at
a time instead of just one; this basically pre-
cludes the application of the method to methy-
lated DNA), and others. Thus further advances
in miniaturization and manufacturing will have
to be made to enable true direct single-base pair
readout, to ensure that all nucleic acid molecules
in a single cell are read efficiently by the pore,
and in the case of direct RNA sequencing on
single cells, to further minimize library prepa-
ration. Nevertheless, the fundamental features
of nanopore sequencing make it the only candi-
date technology that has the potential to deliver
all the information that is at present impossible
to obtain using existing tools and protocols, pro-
vided that, of course, solutions are found to the
challenges that still remain unresolved.

14.5 Concluding Remarks

Advances in sequencing technology have been
the primary driver of development in genomics
for most of the existence of the field. New se-
quencing technologies have repeatedly enabled

us to ask questions that were not accessible prior
to that. The refinement of sequencing technol-
ogy is not complete – we still do not have the se-
quencing capabilities we would like to have, both
in the area of genome sequencing (where large
and highly repetitive genomes are at present
practically impossible to assemble) and in sev-
eral areas of functional genomics, in particular
transcriptomics (where we need to be able to se-
quence full-length transcripts, at very high se-
quencing depth, preferably without having to
use PCR and reverse transcription). However,
we can be reasonably certain that these prob-
lems will be eventually resolved and we will be
able to carry out the measurements we want,
whether it is thanks to currently emerging third
generation sequencing technologies, or through
further developments beyond that.

In the same time, many functional genomic
assays, in particular those centered on chromatin
biology, are either not expected to derive large
benefits from these anticipated developments, or
the changes in the nature of the data generated
will not be radical. We can therefore consider
methods such as ChIP-seq to be at this point
mature. This means that, first, the analytical
tools developed for working with them, such as
the ones described in Part 3 of this thesis, will re-
main relevant for quite some time into the future,
and second, that it is time to shift the empha-
size of functional genomic research efforts from
developing and improving assays and methods to
using the data we can generate and analyze with
them to address biological questions (a common
criticism of the field, which I personally cannot
disagree with, has been its overt focus on techno-
logical development). Once the needed advances
in the area of transcriptomics outlined above are
achieved, the same reasoning will apply for it
too. The biological questions, the exploration
of which is of particular interest to me, are dis-
cussed in the last chapter of the thesis.
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The extent of functionality in the human genome

I
n this chapter, I present my personal view on the question of how much of human genome
is functional. This is a subject that generated much attention after the publication of the
main ENCODE papers in late 2012. As a result, a perspective on the issue was put together
by members of the ENCODE Consortium, which I had a hand in putting together, and

which has been published as:

Kellis M*, Wold BJ*, Snyder MP*, Bernstein BE*, Kundaje A‡, Marinov GK‡, Ward LD‡, Birney
E, Crawford GE, Dekker J, Dunham I, Elnitski L, Farnham PJ, Feingold EA, Gerstein M, Giddings
MC, Gilbert DM, Gingeras TR, Green ED, Guigo R, Hubbard TJP, Kent WJ, Lieb JD, Myers
RM, Pazin MJ, Ren B, Stamatoyannopoulos J, Weng Z, White KP, Hardison RC. 2014. Defining
functional DNA elements in the human genome. Proc Natl Acad Sci U S A 111:6131-6138. doi:
10.1073/pnas.1318948111.
The original text of the paper is reprinted in Appendix M. I contributed to it the coverage anal-
ysis, using the set of publicly available ENCODE element files as input as well as newly gener-
ated histone mark ChIP-seq region calls provided by Anshul Kundaje (Stanford University). The
conservation analysis was added by Luke Ward (Broad Institute and CSAIL, Massachusetts In-
stitute of Technology). I will not reiterate all of the points made in that manuscript here, but
will instead emphasize the ones that were either not made or did not feature prominently in it.
Also, it should be noted that here I focus almost exclusively on ENCODE results; a more ex-
tensive treatment of all the issues associated with this topic can be found in the next chapter.

Abstract

The completion of the sequence of the
human genome gave us a rich source of in-
formation about certain features of it such
as genes and repetitive elements. How-
ever, a complete understanding of how the
human genome functions requires also the
comprehensive identification and charac-
terization of all other functional elements
in the genome, especially those involved in
the regulation of gene expression. In addi-
tion, the annotation of the gene content of
the human genome carried out as part of
the initial sequencing effort was far from
complete, in particular with respect to

noncoding RNA species. To fill these gaps
in our knowledge, the ENCODE Consor-
tium was set up with the goal of gener-
ating an exhaustive genome-wide map of
functional elements in the human genome.
The main approach that the ENCODE
project adopted towards achieving that
goal was the use of functional genomic as-
says to produce maps of biochemical activ-
ity across the genome. Its efforts resulted
in a collection of such maps that cov-
ered the majority (≥80%) of the genome
with reproducibly detectable biochemical
activity, in stark contrast with prior stud-
ies using evolutionary conservation, which



431

usually estimate no more than 10% of the
genome to be functional. Here, a discus-
sion of the sources of this discrepancy, the
various lines of evidence for function, the
nature of “function”, and what the most
likely true value is (much lower than 80%),
is presented.

15.1 Introduction

The sequencing of the human genome (Lander
et al. 2011; Venter et al. 2001; International
Human Genome Sequencing Consortium 2004)
was a monumental achievement in our quest to
understand the genetic basis of human biology.
However, on its own it was not sufficient, as,
while it provided a list of genes, the identity of
the regulatory elements that control them were
largely unknown. These elements reside mostly
in the noncoding portions of the genome, and
their importance is illustrated by the fact that
the majority of known trait-associated sequence
variants reside outside of protein coding exons
(Kleinjan & Lettice 2008; Hindorff et al. 2009;
Nicolae et al. 2010; Zhong et al. 2010). In addi-
tion, the complexity of the transcriptome had by
no means been exhaustively explored, with the
corresponding absence of understanding of what
roles the RNA species not immediately appar-
ent in the human genome sequence and its initial
annotation might be playing. It is with the goal
of addressing these gaps in knowledge that the
ENCODE Project was set up in the early 2000s
(ENCODE Project Consortium 2004). Initially,
in its pilot phase, it used tiling microarrays
to comprehensively assay transcript abundance
and diversity, regions of open chromatin, tran-
scription factor occupancy and histone modifica-
tions over 1% of the human genome (ENCODE
Project Consortium 2007). It revealed the signif-
icant complexity of biochemical activity over the
genome (for example, in the form of the perva-
sive transcription of the targeted regions). How-
ever, microarrays are not the ideal technology
for the detailed functional genomic characteri-
zation of the genome, especially with respect to
the transcriptome, as they do not provide a truly
single base-pair resolution, and suffer from lim-
itations to their dynamic range, relatively high
noise levels and a number of other issues (Royce
et al. 2005). In this context, it was fortu-
nate that the beginning of the second, genome-

wide production phase of ENCODE coincided
with the advent of high-throughput sequencing
technology, which quickly displaced microarrays
as the primary platform for functional genomics
research. Sequencing-based assays are charac-
terized by greatly diminished noise levels and
very high resolution (single-base pair in the case
RNA-seq and whole-genome bisulphite sequenc-
ing), and confidence in the results they deliver
is correspondingly higher. The second phase of
ENCODE detected reproducible biochemical ac-
tivity over 80% of the genome, which lead to a
heated discussion over whether this is evidence
that 80% of human genome is functional or not,
ranging from rejection of that idea (Eddy 2012;
Eddy 2013; Doolittle 2013; Graur 2013; Niu &
Jiang 2012) to its acceptance (Germain et al.
2014; Tragante et al. 2014; Mattick & Dinger
2013). The reason such a position is controver-
sial is that decades of research in population ge-
netics and evolutionary biology have converged
onto a coherent view of the human genome as one
that consists of a tiny fraction of functional DNA
and a majority of nonfunctional DNA, often re-
ferred to as “junk” (Ohno 1973). This “junk”
DNA exists primarily because the power of nat-
ural selection in mammalian lineages is insuffi-
cient to efficiently eliminate it, while the balance
of mutational biases (in particular, transposable
element insertions as well as small insertion and
deletions) is on average directed towards expan-
sion, with the strength of natural selection being
limited by the low effective population size (Ne)
of these species (Lynch 2007a; Lynch 2007b).
This subject is elaborated on in depth in the
next chapter.

15.2 The three types of
evidence for genomic

function

A main driving factor behind this debate is the
varying weight that is given to the different types
of evidence for the functionality of a given region
of the genome according to each view. There
are three approaches (complementary to each
other) for evaluating functionality: biochemical,
genetic, and evolutionary, with biochemical ev-
idence being the primary type that ENCODE
collected. These are briefly reviewed below, and
are also summarized in Table 15.1
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15.2.1 Biochemical evidence

Functional elements in the genome exhibit cer-
tain biochemical activities when their function is
expressed and exercised. These activities include
the production of mRNA in the case of protein
coding genes and of functional non-coding RNAs
from non-coding genes, the binding of transcrip-
tion factors, chromatin modifying and remodel-
ing complexes, and other proteins to enhancers,
promoters, insulators and other regulatory ele-
ments, the establishment of characteristic combi-
nations of histone marks over regulatory regions
and certain portions of genes, the open chro-
matin structure of enhancers and promoters, and
others. Biochemical activities can be measured
genome-wide using functional genomic assays:
RNA-seq for transcripts (Mortazavi et al. 2008),
ChIP-seq for the occupancy of DNA by proteins
and the distribution of histone marks along the
genome (Johnson et al. 2007; Barski et al. 2007;
Mikkelsen et al. 2007), DNAseq-seq (and its
high-resolution version DGF, or Digital Genomic
Footprinting; Hesselberth et al. 2009; Neph
et al. 2012a), and FAIRE-seq (Formaldehyde-
Assisted Identification of Regulatory Elements;
Song et al. 2010). This is the main approach
that the ENCODE Consortium adopted in order
to identify candidate functional elements in the
genome, and has also been successfully used to
identify them in other systems, in particular to
find candidate enhancers regions in mammalian
genomes (Visel et al. 2009; Rada-Iglesias et al.
2011; Creyghton et al. 2010).

The main advantage of the biochemical ap-
proach is that it provides a direct readout of the
biochemical activities in which a functional ele-
ment is involved. However, the presence of bio-
chemical activity it on its own not sufficient evi-
dence that a given region of DNA is functional –
functional elements are biochemically active, but
the opposite is not necessarily true (Table 15.1),
and biochemical activity can occur over regions
of DNA with little to no functional significance.

15.2.2 Genetic evidence

The genetic dissection of the biological role
that candidate functional elements may play, in
loss- and gain-of-function settings, is the classic,
gold-standard approach for defining functional-
ity. This can be accomplished through the study
of naturally occurring mutants, the targeted gen-
eration of loss-of-function mutants or of RNAi
knock-downs (Berns et al. 2004), through the

use of transfection assays to measure the activ-
ity of candidate enhancer regions, and others.
Genetic evidence provides very strong indication
for functionality, however, traditionally most ge-
netic approaches have been low-throughput and
labor-intensive, in particular in human systems.
This has begun to change recently, with the
appearance of high-throughput functional as-
says (Patwardhan et al. 2012; Melnikov et al.
2012; Kheradpour et al. 2013), and of simpli-
fied and widely accessible genome editing proto-
cols (Jinek et al. 2012). One problem still re-
mains, however, and it is that not all functional
elements display a phenotype upon genetic ma-
nipulation. Famously, deletion of ultraconserved
elements in mice is known to sometimes lead to
viable animals (Ahituv et al. 2007); this might
be the result of redundancy with other functional
elements or, alternatively, phenotypes may not
be visible in laboratory conditions with fitness
costs being incurred only in the diverse environ-
mental conditions encountered in the wild. Thus
while positive results using genetic tests for func-
tionality can be straightforwardly interpreted as
strong evidence for it, negative results do not
constitute correspondingly strong evidence for
its absence (Table 15.1).

15.2.3 Evolutionary evidence

While experimental tests for functionality suf-
fer from the issue of phenotypes not always be-
ing visible under laboratory conditions, through-
out the process of evolution functionality is con-
stantly being tested all the time without this
constraint. Regions of the genome, the sequence
of which is of major functional significance, are
subjected to strong purifying selection, and can
be detected in multiple genome alignments as
conserved, in contrast to the rest of the genome,
which tends to evolve largely neutrally and as
a result its sequence diverges to a much greater
extent between different lineages. This method
has been widely used to find conserved noncod-
ing elements in mammalian and other genomes
(Nobrega et al. 2003; Cliften et al. 2003; Bof-
felli et al. 2003; Siepel et al. 2003). It is also
the source of the most conservative minimal esti-
mates for the fraction of the genome that is func-
tional – between 5 and 10% (Lindblad-Toh et al.
2011). However, while strong sequence conser-
vation implies functionality, the opposite is not
always true – there is extensive evidence that
regulatory elements can and often do turnover
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Table 15.1: Approaches for evaluating the functionality (F ) of segments of the genome.
Note that the table is presented as if each criterion produces binary results and functionality is also
a binary characteristic, however, the biological reality is, of course, different and all of these are in
fact continuously distributed. A means a positive score according to each criterion.

Approach (A) F
?⇒ A ¬F ?⇒ ¬A A

?⇒ F ¬A ?⇒ ¬F
Biochemical yes no not always yes

Genetic yes yes yes not always
Evolutionary not always mostly yes yes not always

relatively rapidly on an evolutionary timescale,
and as a consequence are not always detectable
in multiple genome alignments (McGaughey et
al. 2008; Meader et al. 2010; Lohmueller et al.
2011). Thus absence of conservation does not
necessarily imply lack of function (Table 15.1).

15.3 What fraction of the
human genome is functional?

The question of how much of the human genome
is functional has fascinated researchers for a long
time, ever since it was recognized that genome
size does not correlate with perceived organis-
mal complexity (the so called C-value paradox,

Thomas et al. 1971), and even more so after
more recently it was realized that the number of
genes in a genome also does not correlate with
it, with the human genome containing barely
more genes (20,000) than the genome of the
nematode Caenorhabditis elegans (19,000) and
only half the number of genes that many plants
have (≥40,000 in some cases). A well-established
within the field of molecular evolution explana-
tion for the C-value paradox has been that, aside
from cases of polyploidy, the observed differences
in genome size are largely the result of the dif-
ferent amount of “junk” DNA that different lin-
eages have accumulated in their genomes. This
idea has been consistently supported by the re-
sults of comparative genomics, which have re-

Figure 15.1 (preceding page): Summary of coverage of the human genome by ENCODE
data. Shown is the fraction of the human genome covered by ENCODE elements in at least one cell
line/tissue for each assay as well as genomic coverage by annotated genes and repetitive elements.
Version 16 of the GENCODE annotation (Harrow et al. 2012) was used to calculate coverage
by annotated genes. Detailed breakdown of the coverage of the genome by the exons of protein
coding genes and various non-coding transcripts and pseudogenes is shown separately. The Repeat
Masker annotation downloaded from the USCS Genome Browser was used to calculate coverage of
the genome by repetitive elements. For transcripts, coverage was calculated from RNA-seq derived
contigs (Djebali et al. 2012) separated into abundance classes by FPKM values. Note that FPKMs
are not directly comparable between different subcellular fractions as they reflect relative abundances
within a fraction rather than average absolute transcript copy numbers per cell. Depending on the
total amount of RNA in a cell, 1 transcript copy per cell corresponds to between 0.5 and 5 FPKM
in PolyA+ whole cell samples according to current estimates (with the upper end of that range
corresponding to small cells with little RNA and vice versa). “All RNA” refers to all RNA-seq
experiments, including all subcellular fractions. DNAse hypersensitivity and transcription factor
(TFBS) and histone mark ChIP-seq coverage was calculated similarly but divided according to
signal strength. “Motifs+footprints” refers to the union of occupied sequence recognition motifs for
transcription factors as determined by ChIP-seq and as measured by digital genomic footprinting,
with the purple portion of the bar representing the genomic space covered by bound motifs in ChIP-
seq. Signal strength for ChIP-seq data for histone marks was determined based on the p-value of
each enriched region (the −log10 of the p-value is shown), using peak calling procedures tailored to
the broadness of occupancy of each modification (Supplementary Methods). “E+P and “E+P+T”
refer to the union of coverage by histone marks associated with enhancers and promoters (“E+P”)
or enhancers, promoters and transcriptional activity (“E+P+T”).
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Figure 15.2: Relationship between ENCODE signal and conservation.. Signal strength
of ENCODE functional annotations were defined as follows: log10 of signal intensity for DNase and
TFBS, log10 of RPKM for RNA, and log10 of −log10 P value for histone modifications. Annotated
regions were binned by 0.1 units of signal strength. (A) The number of nucleotides in each signal
bin was plotted. (B) The fraction of the genome in each signal bin covered by conserved elements
(by genomic evolutionary rate profiling) was plotted.

peatedly estimated the fraction of the human
genome that is conserved within mammals to be
below 10% (Mouse Genome Sequencing Consor-
tium 2002; Lindblad-Toh et al. 2011), and by the
fact that half of the human genome consists of
decayed copies of transposable elements. How-
ever, proposals that most of the human genome
is in fact functionally important, even though it
is not conserved on the sequence level, and that
the regulatory complexity hidden in the noncod-
ing and nonconserved portions of the genome is
what is responsible for the organizational com-
plexity of the human body and even our cog-
nitive abilities have been repeatedly made (see
discussion in the following chapter).

15.3.1 The “biochemically active”
80% fraction

It is in this context that ENCODE’s result that
≥80% of the human genome is biochemically ac-
tive appeared in the scientific literature. How-
ever, while the number became widely popular,
its origin was not explained properly, so where
exactly does the 80% figure come from?

It should first be noted that given the nature
of the functional genomic assays used to gener-
ate the data, which cover 80% of the genome
with significant and reproducible signal, 80% is
really largely equivalent to 100%. The high-
throughput sequencing platforms used during
this phase of the ENCODE Project generate
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reads of between 25 and 100bp in length, how-
ever, the human genome contains many repeti-
tive and highly similar to each other sequences,
meaning that a fraction of it is not uniquely map-
pable with reads of such length. As only unique
reads were considered during analysis, the effec-
tively “visible” portion of the human genome
was only slightly larger than 80% of it (Fig-
ure 14.1), i.e. ENCODE elements in fact cover
nearly 100% of the accessible part of the genome.

Second, ENCODE invested great effort into
ensuring the quality of the data produced and
the reproducibility of the candidate elements de-
tected (Landt et al. 2012; Li et al. 2011); thus
the detected coverage is generally unlikely to be
the result of experimental artifacts. However,
detailed investigation of where the coverage of
the whole genome originates from is needed be-
fore conclusions about its significance are made.
To this end I generated the summary shown in
Figure 15.1, where the coverage of the human
genome by different types of data is shown, as
a function of signal strength, together with the
coverage of the genome by exons and introns
of annotated genes, and by repetitive elements.
Several types of relevant data were generated by
ENCODE, and their properties need to also be
understood:

1. Transcription factor ChIP-seq. Maps
of the genomic occupancy of over 120 hu-
man transcription factors were generated
using ChIP-seq. However, transcription
factors bind to short stretches of DNA se-
quence, usually 6-8bp long, more rarely up
to ∼20bp, while ChIP-seq libraries consist
of fragments of average length ∼200bp. As
a result, binding regions called from ChIP-
seq data are several hundred bases long
even though the causative sequence is typ-
ically only less than 10bp in length.

2. Maps of DNAse hypersensitivity re-
gions. Similarly to ChIP-seq, the iden-
tified regions of DNAse hypersensitivity
can be several hundred bases long but are
caused by the binding of transcription fac-
tors and other proteins to DNA sequences
of considerably shorter length.

3. DNAse footprinting. Very deeply se-
quenced DNAse libraries provide digital
genomic footprints of DBA occupancy and
while they are still somewhat longer than
actual transcription factor binding sites,

they provide a more refined mapping of
the contacts between non-nucleosomal pro-
teins and DNA in the genome.

4. Histone mark ChIP-seq. The following
histone modifications were mapped across
a wide variety of cell types: H3K4me3 (a
mark associated with active promoters),
H3K4me2 (promoters), H3K4me1 (en-
hancers), H3K9ac (promoters), H3K27ac
(ehnancers and promoters), H3K36me3
(transcriptional elongation), H3K79me2
(transcriptional elongation), H3K27me3
(transcriptional repression, in particu-
lar when mediated by Polycomb com-
plexes), H3K9me3 (repressed heterochro-
matin), H3K9me1 and H4K20me1 (of less
clear function), and the histone variant
H2A.Z (associated with promoter regions).
However, a histone state can be induced
by sequence elements much shorter than
the genomic space occupied by the nucle-
osome carrying the corresponding marks.
For example, an enhancer region might in-
duce histone modifications over several nu-
cleosomes on each side (or just one side;
Kundaje et al. 2012).

5. RNA-seq. RNA-seq was carried out on
polyadenylated RNA from whole cells (the
most commonly targeted portion of the
transcriptome as these are the character-
istics of messenger RNAs and most lincR-
NAs), but also separately on polyadeny-
lated and nonpolyadenylated RNA from
whole cells and from subcellular fractions
(primarily nucleus and cytosol, and in a
few cell lines, nucleolus, nucleoplasm and
chromatin). While the resolution of RNA-
seq is single base-pair and its dynamic
range is vast, it still has an imperfection
and it is that it only measures the rela-
tive abundance of transcripts but not their
absolute abundances (Löven et al. 2012).
This is best illustrated by the following
thought experiment. Imagine two differ-
ent cellular conditions A and B; all genes
are upregulated by a factor of 2 in B rela-
tive to A, however, when RNA-seq libraries
from each are sequenced, the FPKM met-
ric used to calculate gene expression will
be the same for each gene. Naturally,
one would want to know how many copies
of each transcript are present in each cell
but this information is generally not avail-
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able in RNA-seq datasets without signifi-
cant modifications to experimental design.
It is generally understood that 1 FPKM
unit corresponds to between 0.5 and 5 FP-
KMs (depending on how much total RNA
there is in each cell on average: small cells
with little RNA per cell would be expected
to have higher FPKM-per-copy values) in
polyadenylated samples from whole cells,
but not even a rough such estimate is avail-
able for subcellular fractions. It is likely,
however, that the abundance of transcripts
in them is significantly lower than that in
whole-cell polyA+ samples.

Coverage by annotated elements. Ac-
cording to version 13 of the GENCODE annota-
tion, 50% of the human genome is covered by the
exons and introns of annotated genes. Of this,
<4% consists of exons, of which ∼2.9% is ex-
ons of protein coding genes (including the open
reading frames and the untranslated regions),
∼0.2% is exons of lincRNAs, and ∼0.7% is pseu-
dogenes; the rest is introns (Figure 15.1). Also,
according to the RepeatMasker annotation, 45%
of the genome is covered by repetitive elements.
These numbers are relevant, because introns are,
of course, transcribed and can be expected to be
detected, in particular in the form of not yet
spliced pre-mRNAs, in the nuclear and nucleo-
plasmic subcellular fractions.

Coverage by RNA-seq data. A total of
75% of the genome is covered by RNA-seq ele-
ments across all datasets. It is worth first going
over the generation of these elements. The EN-
CODE transcriptome analysis effort (Djebali et
al. 2012) eventually settled on generating RNA
contigs from the data instead of relying on de
novo transcript reconstruction (as it is a difficult
and still not fully solved problem). RNA contigs
were generated based on the overlap of mapped
reads on the same strand, FPKMs were calcu-
lated for each of them, and they were then sub-
jected to a non-parametric irreproducible discov-
ery rate (npIDR) filtering to narrow down the
final list of elements to those that are repro-
ducible. Thus regions for which functionality is
not a priori expected such as intronic fragments
within subcellular fractions were definitely in-
cluded in the final list of elements.

Even more importantly, much of the observed
coverage was derived from elements with very
low FPKM values and from subcellular frac-
tions. The fraction of the genome covered by

≥1 FPKM elements is 30% across all fractions,
slightly above 10% if only whole cell PolyA+
samples are considered, and ∼5% in Cytosol
PolyA+ samples. It is nearly 20% and 15%
in nuclear PolyA– and PolyA+ samples, respec-
tively (Figure 15.1).

Coverage by transcription factors oc-
cupancy sites and DNAse. Around 15% of
the genome is covered by DNAse hypersensitiv-
ity and transcription factor occupancy regions
(Figure 15.1). In each case, there is a smaller
fraction of the genome covered by high signal
levels, and a larger fraction covered by signals
of lower intensity. This relationship has been
noted numerous times in the past (Landt et al.
2012) and it is an open research question to
what extent there is a correlation between signal
strength and functionality – there are certainly
good reasons to think that low-level occupancy
may not on average be as functionally important
as strongly occupied sites are; some empirical ev-
idence in support of this view has been published
in Drosophila melanogaster (Fisher et al. 2012).

In addition, up to 10% of the genome is
occupied by DGF footprints and by motifs of
known transcription factors located within called
transcription factor ChIP-seq occupancy regions
(Figure 2 in Appendix M).

Coverage by histone marks. As men-
tioned above, coverage by histone marks is not
necessarily a good measure of the extent of the
functionality of the genome, as its resolution
is not high enough due to the fact that the
sequences inducing a specific chromatin state
are often much smaller than the region of the
genome occupied by that space. It should also
be noted that the numbers shown in Figure
15.1 were generated using a broader set of hi-
stone marks in terms of the number of cell
lines included, further extending total coverage,
but also that a more conservative region calling
pipeline was used that resulted in regions of sig-
nificantly shorter length than those used in the
main ENCODE publication (ENCODE Project
Consortium 2012). Thus they are not necessarily
directly relevant to the origin of the 80% number
but they are informative on their own. Using this
more conservative set, a total of ≥35% of the hu-
man genome is covered by regions of enrichment
for marks associated with active enhancers and
promoters, and ≥55% by marks associated with
active enhancers, promoters and transcribed re-
gions, and the same trend of a small fraction of
the genome with high signal and a larger portion
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with lower signal is observed.

15.3.2 The level of biochemical
signal correlates with evolutionary

conservation

It is clear from the considerations presented
above that assuming that biochemical activity
measured in these ways is equivalent to function-
ality is not a viable strategy, as first, the reso-
lution of many of the assays is not sufficiently
high, and second, it is not possible to distin-
guish biochemical noise from functionally signif-
icant activity. As discussed at length in the next
chapter, it is not reasonable to expect that all
transcription in the human genome is functional
and that all trascription factor binding events
are of major regulatory importance, even when
they are reproducibly detected. This means that
integrative use of all three criteria for functional-
ity should be used to assess the functional signif-
icance of the candidate functional elements iden-
tified using functional genomic tools.

We took a first step in this direction by ex-
amining the relationship between the strength
of the biochemical signal measured by the var-
ious assays and level of sequence conservation
(Figure 15.2). Strikingly, positive correlation be-
tween signal intensity and evolutionary conser-
vation was observed for all types of data, with
two exceptions: the H3K4me1 curve was mostly
flat and dipped slightly downwards at the high
end of the signal distribution, and H3K9me3 ex-
hibited a strong negative correlation with con-
servation. The former is not straightforward to
interpret at present, but the latter is very clearly
related to the fact that H3K9me3-modified nu-
cleosomes are a core component of repressed het-
erochromatin, and repressed heterochromatin is
a classic location for “junk” DNA as heterochro-
matinization is used by cells to silence transpos-
able elements. It is therefore no surprise that
regions with more H3K9me3 are less conserved
than the genomic average.

That there is strong correlation between con-
servation and signal levels in RNA-seq, DNAse
and transcription factor ChIP-seq datasets also
makes sense, and this has clear implications for
the interpretation of the majority low-signal cov-
erage of the genome – it is more likely that much
(though by no means all) of it is nonfunctional
and represents biochemical noise.

15.3.3 The most likely estimate
for the fraction of the human

genome that is functional

At present we cannot provide a definitive an-
swer to the question how much of the human
genome is functional. This is in part because we
do not have all the data we would like to have
and which we need to tackle it, but also, in even
larger part, because it is a question the answer to
which is highly dependent on definitions. There
is as of now no universally agreed upon defini-
tion of what function is, what should be called a
functional element (Doolittle 2013; Graur et al.
2013), and at what resolution.

We are naturally inclined to think of func-
tion as a binary characteristic that a region
of DNA either does or does not have. How-
ever, this is not how biology works – the func-
tional significance of individual base pairs, reg-
ulatory elements, portions of genes, and even
whole genes is distributed on a continuum. The
lower end of this continuum, where what is pure
biochemical noise meets the currently marginally
functional elements, is perhaps where a lot of
evolutionary innovation takes place, and it will
never be straightforward to place a dividing line
and declare that all nucleotides on one side of
it are functional while everything else is not.
And it might have to be individual nucleotides
and not larger regions of DNA as even within
well-established functional elements not all nu-
cleotides are of equal significance. One of the
most fundamental components of our biology,
the genetic code provides a very good example
for that, with its often degenerate third positions
in codons, and this is even more so for other func-
tional elements. Table 15.2 shows a fictional but
typical in its structure position weight matrix
(PWM) representing the binding preference of a
hypothetical eukaryotic factor. Some positions
are very strongly constrained, some can toler-
ate more than one nucleotide, yet others are not
constrained at all and a binding site could be
fully functional with each of the four nucleotides
in that position. Individual transcription fac-
tor binding sites can therefore exhibit signifi-
cant tolerance to substitutions (though signifi-
cantly less to deletions and insertions). An ex-
ample of even less constraint is provided by the
3’UTR of genes, which contain sequences, rec-
ognized by miRNAs and by RNA binding pro-
teins, but these are often embedded within se-
quence that is largely unconstrained. Similarly
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Table 15.2: An example of a position weight matrix (PWM) describing the binding
preferences of a transcription factor. The PWM score is defined as the fraction of binding sites
for the factor in which each base is found in the indicated positions.

Position\Nucleotide A T C G

1 1 0 0 0
2 0 1 0 0
3 0.5 0 0 0.5
4 0.25 0.25 0.25 0.25
5 0.25 0.25 0.25 0.25
6 0 0.5 1.5 0
7 1 0 0 0
8 0 1 0 0

low constrains are likely operating with respect
to the sequence of long non-coding RNAs. Fi-
nally, there are transcriptional phenomena where
the act of transcription is important but the se-
quence of the transcripts produced is not, for
example transcription interference, in which the
production of noncoding RNAs upstream of and
through the promoter of a gene inhibits its ex-
pression, and numerous other variations of the
same theme (Martens 2004; Petruk et al. 2006;
Shearwin et al. 2005; Hirota et al. 2008; Uhler
et al. 2007; Kuehner & Brow 2008; Thiebaut
et al. 2008; Palmer et al. 2009). It is far from
clear how to classify the regions that produce
such transcripts with respect to whether their
sequence is functional or not.

Perhaps the most natural measure of func-
tionality would be the selective coefficient s as-
sociated with the presence of the fixed allele in
the genome with respect to its hypothetical al-
ternatives and especially compared to the to-
tal absence of the element. This is, of course,
continuously distributed over many (technically
an infinite number) orders of magnitude, thus it
cannot provide a hard estimate for how much of
the genome is functional. It is also very diffi-
cult to measure accurately (near impossible in
humans) and is to a great extent dependent on
environmental conditions therefore not constant
in time. But even if we had a way to measure
it with absolute accuracy, we would still be left
with the problem of defining what an allele is and
what its alternatives are. For example, the fit-
ness effect of substitutions of individual positions
in a transcription factor binding site will differ
according to their importance for occupancy by
that factor, which will relate in some way to the
factor’s PWM, but even the most severe of these

effects will be much smaller than deletion of the
whole site. The same reasoning applies on mul-
tiple progressively higher levels. Within an indi-
vidual enhancer there might be several binding
sites for the same transcription factor and inac-
tivation of one of them can be compensated but
deletion of the whole enhancer will have more
serious fitness consequences. A gene might be
regulated by multiple enhancers, which are com-
pletely or partially redundant, and deletion of
some of them can be tolerated, but not of mul-
tiple ones, and so on. It matters greatly what
resolution we use when we define functional el-
ements and the most appropriate choices of res-
olution may not be the same for different kinds
of elements.

These are all difficult issues, and the
prospects of ever achieving conclusive resolution
of all of them are slim. But we do not necessarily
have to solve them, as obtaining an accurate es-
timate of how much of the genome is functional
is really of very little practical significance and
is in the opinion of the author primarily driven
by our collective inability to have an objective
understanding of our genome and of ourselves
as a biological species. The important questions
are first, whether most of the genome consists
of “junk DNA” and second, what regions of the
genome (as opposed to how much of it) are func-
tional and in what ways. Even though a lot of
it is biochemically active, the conclusion reached
decades ago that most of the genome is “junk”
is in no way overturned by ENCODE data, as
shown here and in the next chapter, and the an-
swers to the second question will be derived from
detailed functional analysis of individual candi-
date elements, an endeavor that will be greatly
facilitated by the advent of genome editing tools
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and massively parallel functional assays, but will
nevertheless still require an immense amount of
effort.

Still, if we are to place a rough estimate of
how much of the human genome, in my opin-
ion we should use a definition of function that
includes the presence of selected effect on the se-
quence of a given region of DNA (Doolittle 2013;
Graur et al. 2013). The most comprehensive
comparative genomics effort across mammals
(Lindblad-Toh et al. 2011) estimated that at
least 5.5% of the human genome is under purify-
ing selection. This is certainly an underestimate
as mammalian lineages seem to be subject to
particularly massive turnover of distal regulatory
elements (Villar et al. 2014). Lineage-specific
constraint might be therefore the more relevant
metric, one that will certainly produce higher

estimates (Lohmueller et al. 2011). Although
the large numbers of sequenced human genomes
needed to conclusively answer this question are
not yet available, initial studies have produced
estimates in the neighborhood of 10% of the
genome (Ward & Kellis 2012). This is consis-
tent with the limits on the fraction of the hu-
man genome that might be under sequence con-
straint imposed by the mutation rate (as was un-
derstood back in the 1960s, if all of our genome
was functional and constrained on the sequence
level, given the empirically measured mutation
rate, each new generation would suffer from de-
bilitating mutations, which is not the case, there-
fore the fraction of the genome that is sequence-
constrained has to be low), and is the most use-
ful in terms of how we think about the genome
rough estimate.
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16

The origins of genomic complexity and the Tree-of-

Life ENCODE

I
n this chapter, I summarize my view of the results of the ENCODE Project from an
evolutionary perspective, especially in the context of the controversy it generated regarding
the extent of functionality of the human genome. It consists in large part my vision for
the future, but it was also written because a proper response to the controversy coming

from within the consortium was, at the time of writing not available. The opinions presented here
are, of course, solely mine and not those of the Consortium as a whole.

Abstract

The publications of the results of
the first genome-wide phase of the
ENCyclopedia Of DNA Elements (EN-
CODE) project as well as its sis-
ter modENCODE projects in Drosophila
melanogaster and Caenorhabditis elegans
were landmark moments in our progress
towards understanding the biology of eu-
karyotic genomes as functional genomic
characterization of eukaryote species was
carried out for the first time at such depth.
However, discussion of the actual results
of the human ENCODE project was over-
shadowed by the portrayal of its conclu-
sions as debunking the well-established
concept of “junk DNA”, and while ques-
tioning this interpretation is fully justi-
fied, some of it extended into question-
ing the utility of the field of functional ge-
nomics as a whole. I have two goals here.
First, I discuss how ENCODE results are
entirely consistent with existing nonadap-
tive frameworks for understanding the ori-
gins of genome complexity. Second, I de-
scribe the usefulness of and highlight the

need for ENCODE-style characterization
of a wide diversity of genomes across the
tree of life, in particular in the protozoan
groups that account for most of the di-
versity of eukaryotes. Such projects are
becoming feasible with recent technical
advances and can be expected to resolve
a number of important open questions.
They would help more rigorously test the
different hypotheses about the origins of
genome architecture as wide variations of
genome sizes and structures exist and in-
tersect with similarly wide variations in
organismal complexity. They would also
clarify what the truly fundamental princi-
ples of eukaryotic gene regulation are, as
radical departures from the familiar from
opisthokonts and flowering plants genome
organization and mechanisms of gene reg-
ulation have been found in other eukary-
otic lineages, but in general very little is
known in detail about these groups. The
comprehensive functional genomic charac-
terization approaches pioneered by EN-
CODE are ideally suited for addressing
these gaps in our knowledge.
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16.1 Introduction, or a
historic overview of what is

in our genome

Perhaps the most fundamental question in all of
biology concerns the relationship between geno-
type and phenotype. Understanding that re-
lationship is the ultimate goal of genome biol-
ogy, both for purely intellectual reasons and for
very practical ones as it is what figuring out
the genetic basis of diseases reduces to in the
end. Knowing how genomes function is crucial
for accomplishing this, and involves understand-
ing both the set of molecules that the genome
encodes and the mechanisms of gene expression
regulation during development and in response
to changing environmental conditions.

There are two approaches, complementary
to each other, towards achieving these goals.
The first one is the very detailed functional ge-
nomic characterization of the genomes of certain
species, in particular that of humans, and in-
volves the exhaustive identification of functional
(i.e. relevant to the organism’s phenotype) ge-
nomic elements (genes, transcript, regions with
regulatory and structural roles). The second
one recalls the old saying that nothing in bi-
ology makes sense except in the light of evolu-
tion (Dobzhansky 1973) and aims at identifying
the general principles driving the evolution of
genomes, the establishment of certain features
in them, and ultimately, understanding the hu-
man genome as a product of these principles in
action. The former is the approach taken first
by the Human Genome Project (Lander et al.
2001; Venter at al. 2001; International Human
Genome Sequencing Consortium 2004) and later
by the ENCODE consortium, the latter has been
pursued by researchers in the fields of molecular
evolution and evolutionary genomics. However,
a narrative that the main result of the ENCODE
Project has been the debunking of the existence
of “junk DNA” (DNA, the sequence of which is
of little, or even negative, consequence for or-
ganismal fitness) emerged. This prompted an at
times quite vigorous debate for and against this
proposition (Mattick & Dinger 2013; Graur et al.
2013; Eddy 2012; Eddy 2013; Doolittle 2013),
and took attention away from the real scientific
results of the ENCODE Consortium and other
large-scale functional genomic initiatives.

The intellectual roots of the “controversy” go
back deep in history, and perhaps can even ul-

timately be traced back all the way to the 19th
century and Charles Darwin’s works that laid
the foundation of evolutionary theory (Darwin
1859). The history of evolutionary biology since
that time is long and complex, but if there is a
major discontinuity in it, that is the period when
a quantitative explanatory framework for under-
standing how the frequency of genotypes changes
in population was developed in the form of pop-
ulation genetics in the first half of the 20th cen-
tury (Fisher 1930; Haldane 1932), a framework
that incorporated the Mendelian principles of in-
heritance and is still the foundational basis for all
work in the field. Mendel’s work was published
in Darwin’s time (Mendel 1866), however, it was
not widely noticed and the proper integration of
evolutionary theory with genetics did not hap-
pen until the principles of the latter were redis-
covered at the turn of the century (de Vries 1900;
Correns 1900) and the discipline was further de-
veloped. As a result, while the modern theory of
evolution recognizes multiple evolutionary forces
- mutation, genetic drift, migration and natural
selection - only the last one featured prominently
in Darwin’s writings and to this day, due to the
cultural importance of Darwin and the atten-
tion his work has deservedly received, thinking
about evolution has been excessively skewed to-
wards viewing all of its outcomes as the result
of adaptation (Gould & Lewontin 1979; Brenner
1998; Lynch 2007b; Lynch 2007c). The “hard-
ening” of the Modern Synthesis (Huxley 1942)
in the mid-20th century also greatly contributed
to this state of affairs, which later developments
in the opposite direction have only partially al-
tered.

How we think about evolution greatly affects
how we think about genome biology, and vice
versa. Advances in our knowledge of genome
function have been critical for the development
of evolutionary theory. Throughout the 20th
century, new discoveries of the molecular fea-
tures of genomes, the biology of RNA and the
mechanisms for regulating gene expression have
gone hand in hand with placing them in an evo-
lutionary context, with improved understanding
in both areas being the end result. The con-
cept of the “gene” as an individual unit of in-
heritance was developed around the turn of the
20th century (de Vries 1989; Johannsen 1909),
and around the same time it was understood
that genetic material is physically organized into
chromosomes (Sutton 1902; Sutton 1903; Boveri
1904; Morgan et al. 1915). However, even
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though DNA was discovered long before that
(Miescher 1871), it was not until the 1940s that
it was confirmed that it is the carrier of ge-
netic information (Avery et al. 1944; Hershey
& Chase 1952). In retrospect it is remarkable
that much of the mathematical foundations of
population genetics, still standing strong today,
was worked out in the absence of understand-
ing of the molecular biology of heredity. The
subsequent discovery of the structure of DNA
(Watson & Crick 1953a; Watson & Crick 1953b),
the elucidation of the genetic code and the ba-
sic mechanisms of gene expression (Crick 1958;
Crick et al. 1961; Lengyel et al. 1961; Nirenberg
& Matthaei 1961; Yanofsky et al. 1964; Sarabhai
et al. 1964; Nirenberg & Leder 1964; Marcker &
Sanger et al. 1964; Holley et al. 1965a; Hol-
ley et al. 1965; Weigert & Garen 1965; Brenner
et al. 1965; Crick 1966; Khorana et al. 1966)
and the formulation of the Central Dogma of
molecular biology (that genetic information can-
not flow back from protein to nucleic acids or
between proteins; Crick 1970) filled that gap in
knowledge, and facilitated the development of
the neutral and nearly neutral theories of molec-
ular evolution in the late 1960s and the 1970s
(Kimura 1968; King & Jukes 1969; Ohta 1973;
discussed in more detail below).

The main question in the study of genome
biology since then has been how the expression
of genes is regulated, as differential gene regu-
lation is the process that is ultimately behind
the establishment of different cell states during
development and in response to environmental
stimuli. Much of our progress has consisted of
a growing appreciation of the complexity of the
roles that noncoding DNA (ncDNA) and non-
coding RNAs (ncRNAs) play in these processes.
The foundations of the study of gene regula-
tion were laid by studies of the bacterial lac
operon (Jacob & Monod 1961) and the λ phage
(Ptashne 1967), but it took quite a bit longer for
a rudimentary understanding of it in eukaryotes
to emerge. An early and important observations
from studies of DNA reassociation kinetics (C0t
curves) was that the amount of repetitive DNA
in multicellular organisms is much higher in the
more organizationally “complex” species than it
is in the “lower” ones, explaining most of the
large variation in genome size seen between them
(Britten & Kohne 1968). As a consequence, an
early theory of gene regulation featured a promi-
nent role for repetitive DNA in the regulation of
gene expression in multicellular organisms (Brit-

ten & Davidson 1968; Britten & Davidson 1969).

However, repetitive DNA was later under-
stood to be the product of transposable ele-
ment insertions, which were discovered through
genetic means years earlier (McClintock 1950;
McClintock 1953) and even suggested to con-
trol genes (McClintock 1951; McClintock 1956).
When placed in the context of the nearly neu-
tral theory of molecular evolution, developed
in the 1970s, it eventually came to be seen as
parasitic “junk” (Orgel & Crick 1980; Doolit-
tle & Sapienza 1980), the result of transpos-
able elements reproducing themselves within the
genome with the sole purposes of making more
copies of themselves.

Around the same time, the first pseudogenes
were identified (Jacq et al. 1997; Hardison et
al. 1979; Fritsch et al. 1980; Vanin et al. 1980;
Nishioka et al. 1980; Lauer et al. 1980). Pseudo-
genes are portions of the genome that are clearly
derived from inactivated copies of formerly func-
tional protein coding genes. They have also been
long understood to constitute “junk” DNA in
their majority.

In the early 1980s, the first transcriptional
enhancers were found (Banerji et al. 1981;
Banerji et al. 1983; Gillies et al. 1983), se-
quence elements capable of stimulating the ex-
pression of genes from a long distance and ir-
respective of their orientation relative to genes
and their promoters. Later, insulator (elements
blocking the action of an enhancer when situ-
ated between it and its target promoter) and
other regulatory elements were also identified,
primarily from studies of β-globin and a limited
number of other loci (Emerson et al. 1985; For-
rester et al. 1986; Grosveld et al. 1987; Udvardy
et al. 1985; Chung et al. 1993). Eventually it
became clear that gene expression in multicel-
lular eukaryotes is in large part controlled not
just by transcription factor binding sites in their
promoter proximal region but also by regulatory
elements residing away from genes in noncod-
ing space that can act at large distance (with
extreme examples of enhancers residing nearly
1Mb away from their target known; Lettice et
al. 2003).

While histone proteins have been known
since the late 19th century, it was in the early
1970s that it was found that unlike prokaryotes
eukaryotic chromatin is organized into nucleo-
somes (Kornberg 1974; Olins & Olins 1974). It
was later shown that such a chromatin organi-
zation has a repressive effect on transcription
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(Grunstein 1990), a consequence of which is that
overcoming this barrier is key component of both
the regulation and execution of gene expression.
That histones carry various chemical modifica-
tion, in particular in their N-terminal tails, was
also known for a long time, but only in the mid-
and late 1990s that was it understood that these
marks are deposited and removed in a dynamic
and regulated manner (Brownell et al. 1996).
We now know that chromatin modifications and
chromatin remodeling play key role in all as-
pects of chromatin biology, as histone modifica-
tions constitute a form of code that is specifically
written and read by various proteins and is criti-
cal for the orderly execution of biochemical pro-
cesses operating on chromatin (Jenuwein & Allis
2001; Kouzarides 2007; Li et al. 2007). They,
together with the methylation of position 5 of
cytosine residues in DNA (Johnson & Coghill
1925; Hotchkiss 1948) also play a vital role in
the epigenetic specification of cell states (Holli-
day & Pugh 1975; Riggs 1975; Goldberg et al.
2007; Bernstein et al. 2007).

In the late 1970s and early 1980s it was real-
ized that genes in eukaryotes are interrupted by
introns (Berget et al. 1977; Chow et al. 1977),
which are spliced out before the mature mRNA
is translated, with the process sometimes gener-
ating alternative splicing products (King & Pi-
atigorsky 1983; Schwarzbauer et al. 1983). The
evolutionary origins of splicing have been much
debated and the outcome of their study has had
major implications for how we understand the
evolution of life (see discussion below).

In the 1980s, another interesting phe-
nomenon was observed, the editing of the se-
quence of RNAs through the modification, or
even the insertion or replacement, of individual
bases, initially in the mitochondria of the kine-
toplastid protozoans (Benne et al. 1986; Feagin
et al. 1987; Feagin et al. 1988; Shaw et al. 1988)
but later also in the nuclear genomes of animals
and many other eukaryotes.

Since the 1970s, an ever expanding universe
of ncRNA species carrying out a wide variety
of cellular functions has been identified, in eu-
karyotes and in other organisms. These include
among others:

1. snRNAs, or U-RNAs, small nuclear
RNAs that are core components of the
spliceosomal machinery necessary for ex-
cising introns during splicing.

2. snoRNAs, small nucleolar RNAs that

guide the chemical modifications of other
RNAs, such as the ribosomal and trans-
port RNAs.

3. The SRP RNA (Walter & Blobel 1982),
component of the signal recognition parti-
cle used to target proteins to the endoplas-
mic reticulum.

4. Antisense transcripts, first discovered
in bacteria where antisense transcription
can be used to inhibit translation by base
pairing with the sense transcript (Mizuno
et al. 1984).

5. the phenomenon of RNA interference (Fire
et al. 1998), induced by double stranded
RNA, and by siRNAs (small interfer-
ing RNAs; Hamilton & Baulcombe 1999;
Elbashir et al. 2001)), in which the
expression of genes is inhibited post-
transcriptionally through the degradation
of mRNAs complementary to these small
RNAs.

6. miRNAs, 21-23nt small RNAs (Lee et al.
1983; Reinhart et al. 2000; Pasquinelli
et al. 2000) that can inhibit the transla-
tion of genes and/or target them for cleav-
age, in particular through binding to their
3’UTRs.

7. lncRNAs/lincRNAs, long (intergenic)
noncoding RNAs that do not code for
proteins but function as RNAs, such as
the Xist and Tsix (Borsani et al. 1991;
Brown et al. 1991; Lee et al. 1999), and
roX (Meller et al. 1997) RNAs, involved
in the establishment of dosage compensa-
tion of sex chromosomes in mammals and
Drosophila, respectively, as well as numer-
ous others (Ji et al. 2003; Wang et al.
2002; DeChiara & Brosius 1987).

8. The telomerase RNA, a core compo-
nent of the machinery responsible for the
maintenance of chromosome ends in eu-
karyotes (Greider & Blackburn 1987; Grei-
der & Blackburn 1989; Shippen-Lentz &
Blackburn 1990).

9. 7SK RNA (Reddy et al. 1984), which
regulates the activity of the transcription
elongation factor P-TEFb (Diribarne G,
Bensaude 2009), Y RNAs (Lerner et al.
1981; Christov et al. 2006), Vault RNAs
(Kedersha & Rome 1986), and numerous
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others, the precise functions of which are
less clear.

Remarkably, all of these regulatory mecha-
nisms and ncRNAs were discovered in the ab-
sence of complete genome sequences, in the
course of biochemical and cell and molecular bi-
ology studies. One of the very relevant to the
ENCODE debate discoveries, that the genome
is pervasively transcribed was also made in the
pregenomic era. The C0t curve methodology
used to find that much of the genomes of mul-
ticellular organisms consists of repetitive se-
quence, was also applied to the transcriptome
in the late 1970s. A large fraction of the genome
was found to be transcribed (Hough et al. 1975;
Holland et al. 1980), but also to be present at
very low copy number, significantly less than one
RNA molecule per cell.

Successive major technical advances have en-
abled both the generalization of these findings
and the discovery of many additional layers of
complexity. These include the development of
DNA sequencing technology (Sanger et al. 1997;
Maxam & Gilbert 1977), which made possible
the sequencing of the human genome (Lander et
al. 2001; Venter et al. 2001; International Hu-
man Genome Sequencing Consortium 2004) and
the genomes of the main model organisms (Gof-
feau 1996; C. elegans Sequencing Consortium.;
Adams et al. 2000; Mouse Genome Sequencing
Consortium 2002); the development of microar-
ray technology for measuring RNA expression
levels (Schena et al. 1995; Lashkari et al. 1997)
and the genomic occupancy of proteins (Iyer et
al. 2001; Ren et al. 2000), and the more recent
advent of high-throughput sequencing technolo-
gies (Shendure et al. 2005; Margulies et al. 2005;
Bentley et al. 2008; McKernan et al. 2009; Har-
ris et al. 2008; Rothberg et al. 2011) and the
myriad of applications it has found in the form
of various functional genomic *-seq assays for
(Wold & Myers 2008): RNA-seq for the study of
the transcriptome, at the level of large cell pop-
ulations (Mortazavi et al. 2008; Nagalakshmi
et al. 2008; Pan et al. 2008; Sultan et al. 2008;
Wang et al. 2008; Wilhelm et al. 2008) and indi-
vidual cells (Tang et al. 2009; Tang et al. 2010;
Islam et al. 2011; Hashimshony et al. 2012;
Ramsköld et al. 2012; Picelli et al. 2013; Islam
et al. 2014; Wu et al. 2014), CAGE for the map-
ping of the 5’ ends of capped transcripts (Kodz-
ius et al. 2006; Balwierz et al. 2009), GRO-seq
(Core et al. 2008) for measuring the instanta-

neous rate of transcription, ribosome profiling
for the measuring translational activity (Ingolia
et al. 2009), ChIP-seq for the high-resolution
genome-wide profiling of protein-DNA interac-
tions (Johnson & Mortazavi et al. 2007; Barski
et al. 2007; Mikkelsen et al. 2007; Robertson et
al. 2007), DNAse-seq (Hesselberth et al. 2009;
Song et al. 2011), FAIRE-seq (Gaulton et al.
2010; Song et al. 2011) and DGF (Neph et al.
2012a; Neph et al. 2012b) for the mapping of re-
gions of open chromatin in the genome, BS-Seq
for assessing levels of DNA methylation (Lister
et al. 2008; Lister et al. 2009; Meissner et al.
2008), ChIA-PET (Fullwood et al. 2009; Han-
doko et al. 2010; Li et al. 2010; Li et al. 2012),
and Hi-C (Lieberman-Aiden et al. 2009; Um-
barger et al. 2011; Zhang et al. 2012; Dixon
et al. 2012) for studying the three-dimensional
physical organization of genomes, as well as nu-
merous others.

The genomic era has delivered the, exhaus-
tive identification of previously known functional
components of the genome as well as the discov-
ery of a number of novel RNA species and new
phenomena in transcriptional and regulatory bi-
ology. These advances include:

1. The comprehensive cataloging of gene con-
tent. Initially, >30,000 protein coding
genes were reported in the human genome
(Lander et al. 2001). This number has
gone down after subsequent refinement
of annotations and has stabilized around
20,000 (Harrow et al. 2012).

2. The genome-wide identification of con-
served noncoding sequences from multiple
genome alignments,. Such sequences are
strong candidates for functional regulatory
elements (Hardison et al. 1997; Hardison
2000; Siepel et al. 2005; Bejerano et al.
2004; Woolfe et al. 2004; Margulies et
al. 2003; Cooper et al. 2004). In total,
while <2% of the human genome consists
of protein coding sequence, the sequence-
constrained fraction of it is at least 5.5%
(Lindblad-Toh et al. 2011).

3. The genome-wide identification of miR-
NAs using both computational and exper-
imental methods (Lagos-Quintana et al.
2001; Lau et al. 2003; Grad et al. 2003; Lai
et al. 2003; Lagos-Quintana et al. 2003;
Aravin et al. 2003; Houbaviy et al. 2003;
Lim et al. 2003a; Lim et al. 2003b; Bartel
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2004), of which several hundred are now
known in vertebrate genomes.

4. The discovery of multiple additional
classes of small RNAs in various organ-
isms, with piRNAs, 24-29nt RNAs playing
a crucial role in the defense of the genome
against transposable element proliferation
being perhaps the most significant (Aravin
et al. 2006; Girard et al. 2006; Grivna et
al. 2006; Lau et al. 2006; Ruby et al.
2006; Aravin et al. 2007a; Aravin et al.
2007b; Batista et al. 2008; Brennecke et
al. 2007; Lin 2007; Aravin et al. 2007a;
Brennecke et al. 2007; Gunawardane et al.
2007; Houwing et al., 2007; Bagijn et al.
2012; Ashe et al. 2012; Shirayama et al.
2012; Lee et al. 2012; Vazquez et al. 2004;
Peragine et al. 2004).

5. The significant expansion of the list of lin-
cRNA genes, of which several thousands
are now known in vertebrate genomes
(Guttman et al. 2009; Khalil et al. 2009;
Guttman et al. 2011; Dinger et al. 2008;
Mercer et al. 2008; Pauli et al. 2012),
the functional role of a number of which
have been investigated in detail (Sleutels
et al. 2002; Sunwoo et al. 2009; Tian et
al. 2010; Loewer et al. 2010; Gupta et
al. 2010; Huarte et al. 2010; Grote et al.
2013; Hacisuleyman et al. 2013; Sun et al.
2013; Kretz et al. 2012).

6. The identification of alternative splicing
events in the genome, initially through
the sequencing of expressed sequence tags
(EST; Adams et al. 1991; Adams et al.
1995), and later using microarrays and
RNA-seq, which has shown that the vast
majority of mammalian genes can be tran-
scribed into more than one isoform.

7. The growing appreciation of the molecular
and functional complexity of the transcrip-
tome driven by the discoveries of numer-
ous novel RNA species and transcriptional
phenomena (Gingeras 2009), a functional
role for some of which has been shown:

7.1 The discovery of eRNAs (enhancer
RNAs). These RNAs are transcribed
bidirectionally from active enhancers
and there is evidence that their tran-
scription is necessary for the positive
regulation of the genes targeted by

the enhancer from which they origi-
nate (Koch et al. 2008; Kim et al.
2010; Ørom et al. 2010; Melo et al.
2013; Li et al. 2013; Lam et al. 2013;
Hah et al. 2013; Mousavi et al. 2013).

7.2 The discovery of circular RNAs. Nu-
merous examples of circularized RNA
molecules, arising from the nonlin-
ear splicing of introns, have been re-
ported over the decades (Hsu & Coca-
Prados 1979; Cocquerelle et al. 1992;
Capel et al. 1993; Cocquerelle et
al. 1993; Surono et al. 1999; Zaphi-
ropoulos 1996; Zaphiropoulos 1997;
Li & Lytton 1999; Dixon et al. 2005;
Burd et al. 2010). However, it was
the advent of RNA-seq that allowed
for the identification of a large num-
ber of them on a genome-wide scale
(Salzman et al. 2012; Salzman et al.
2013; Memczak et al. 2013; Hansen
et al. 2013; Wang et al. 2014). Func-
tional characterization of individual
cases has suggested that they play a
regulatory role by acting as miRNA
“sponges” sequestering miRNAs and
making them unavailable for repres-
sion of their target genes.

7.3 The ceRNA hypothesis, which pro-
poses that mRNAs, and in particular
transcribed pseudogenes and lincR-
NAs compete for the binding of miR-
NAs, and therefore ceRNA molecules
can be used to modulate the effi-
ciency of miRNA-mediated repression
(Salmena et al. 2011; Karreth & Pan-
dolfi 2013; Ala et al. 2013; Karreth et
al. 2011; Tay et al. 2014a; Tay et al.
2014b).

7.4 Widespread antisense transcription,
in particular in the form of cis-NATs
(Natural Antisense Transcripts),
which have been proposed to play
a role in the regulation of the expres-
sion of their cognate genes (Vanhée-
Brossollet & Vaquero C 1998; Lehner
et al. 2002; Wang et al. 2005; Yelin
et al. 2003; Cheng et al. 2005;
Katayama et al. 2005; Korneev &
O’Shea 2005; Kiyosawa et al. 2003).

7.5 The pervasively transcribed genome.
As mentioned already, it had been
known that the genome is pervasively
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transcribed at a low level for decades,
but microarray-based studies in the
early 2000s in mammals (Cheng et al.
2005; Manak et al. 2006; Johnson
et al. 2005; Kapranov et al. 2002;
Kapranov et al. 2005; Clark et al.
2011; Bertone et al. 2004; Kampa
et al. 2004; Kapranov et al. 2007;
Carninci et al. 2005), fly (Stolc et
al. 2004), rice (Li et al. 2006), and
yeast (David et al. 2006; Dutrow et
al. 2008) presented further direct ev-
idence for it and attracted a lot of
attention to this phenomenon (Van
Bakel 2010; Clark et al. 2011).

7.6 Promoters are bidirectionally tran-
scribed. GRO-seq studies and the
deep sequencing of the small RNA
fraction of the transcriptome have
shown that promoters are bidirection-
ally transcribed (Core et al. 2008;
Seila et al. 2008; Xu et al. 2009), al-
though generally only the sense tran-
script produces a stable mRNA (Al-
mada et al. 2013).

7.7 CUTs (Cryptic Unstable Tran-
scripts), SUTs (Stable Uncharacter-
ized Transcripts) and PROMPTS
(PROMoter associated Pervasive
Transcripts), RNA species originat-
ing from intergenic and intragenic
regions, which are normally present
at low levels (higher for SUTs) and
become robustly detectable upon in-
activation of RNA degradation path-
ways such as the exosome (Wyers
2005; Thiebaut 2006; Thompson &
Parker 2006; Davis & Ares 2006; Neil
et al. 2009; Preker et al. 2008).

7.8 RNA species of unknown functional
significance associated with transcrip-
tion starts sites (TSSs) and tran-
scription terminations sites (TTSs),
such as TSS-RNAs (20-90bp bidirec-
tionally transcribed, TSS-associated
RNAs; Seila et al. 2008), tiRNAs
(∼18bp RNAs bidirectionally asso-
ciated with transcription initiation
sites; Taft et al. 2009a; Taft et al.
2009b; Taft et al. 2010), Promoter-
Associated Short RNAs (PASRs)
and Promoter-Associated Long RNAs
(PALRs) (Kapranov et al. 2007;

Fejes-Toth et al. 2009), and Termina-
tion Associated Short RNAs (TASRs
(Kapranov et al. 2007).

It is in the context of these developments that
the ENCODE Project was set up in the early
2000s (The ENCODE Project Consortium 2004)
and later carried out, as a follow up to the Hu-
man Genome Project, and with the goal of com-
prehensively identifying the functional elements
in the human genome. The first, pilot phase of
the ENCODE Project concluded in 2007 (The
ENCODE Project Consortium 2007); it focused
on assaying a selected 1% of the genome us-
ing high-density tiling arrays. It demonstrated
the utility of the large-scale functional genomic
characterization of genomes, but also generated
some controversy as it delivered a message of
pervasive transcription and biochemical activity
throughout the genome, which was portrayed as
debunking of the concept of junk DNA (Weiss
2007; Sample 2007). The pilot phase of EN-
CODE was followed by a genome-wide produc-
tion phase, which was also accompanied by com-
panion modENCODE projects in fly and worm
(Celniker et al. 2009) and later by a mouse EN-
CODE project (Mouse ENCODE Consortium
2012). The beginning of the second phase of
ENCODE coincided with the adoption of high-
throughput sequencing, which allowed a truly
genome-wide coverage of the genome, at much
higher resolution and with less noise than mi-
croarrays did, significantly increasing the con-
fidence in the signals observed. The publica-
tion of the results of these projects (Gerstein
et al. 2010; modENCODE Consortium 2010;
Kharchenko et al. 2011; Négre et al. 2011;
ENCODE Project Consortium 2011; ENCODE
Project Consortium 2012; Djebali & Davis et
al. 2012; Gerstein et al. 2012; Thurman et
al. 2013; Neph et al. 2012; Wang et al. 2012)
also emphasized the extent to which the genome
is biochemically active and was strongly repre-
sented as a proof against the existence of large
amounts of nonfunctional DNA in the human
genome. This has resulted in even more heated
arguments than the pilot phase generated, a de-
bate which has at times moved beyond attacking
the conclusions of the project and into doubting
the basic premises of functional genomic studies.
A major factor behind this course of events has
been the tendency to view ENCODE data pri-
marily through the prism of a panadaptationist
understanding of genome evolution, while ignor-
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ing alternative theories, in which nonadaptive
evolutionary forces have been a main driver of
the evolution of genome organization, and which
have enjoyed wide acceptance within the molec-
ular evolution community for some time. Below
I overview these competing perspectives on the
subject before interpreting ENCODE results in
what is in my opinion the proper context.

16.2 The adaptive view of
the evolution of genome

complexity

There is a long tradition in biology of pro-
viding adaptive explanations for most observa-
tions. This goes back to the fact that natu-
ral selection was the main theme of Darwin’s
foundational work on the subject (Darwin 1859)
but is also because panadaptationist views have
dominated popular presentations of evolution
(Dawkins 1986; Dawkins 1996), and because
of the explanatory utility of adaptation (Mayr
1983). It is in the spirit of this tradition that the
growing appreciation of the complexity of meta-
zoan transcriptional regulation and RNA biology
has been interpreted, and in turn the results of
the ENCODE project have been widely viewed
through the lens of an ultra-adaptationist ex-
planatory framework (for example, Mattick &
Dinger 2013). Specific propositions that are of-
ten argued for include the following:

16.2.1 The absence of sequence
conservation does not mean that
nonconserved sequences are not

functional

A traditionally widely used criterion for assess-
ing the functional significance of genomic seg-
ments is the phylogenetic conservation of their
sequence. Strong sequence conservation is the
result of the action of purifying selection, which
means such sequences are subject to significant
evolutionarily constraint and highly likely to be
functional. However, while conservation is very
strong evidence for functionality, the absence
of conservation does not necessarily imply lack
of function, and numerous examples of both
conserved and nonconserved functionalities con-
ferred by rapidly turning over at the sequence
level functional elements are known (Smith et al.
2004; Meader et al. 2010; Ponting & Hardison

2011; see also discussion below). The existence
of nonconserved functional elements is often ex-
trapolated to a proposition that most or even the
whole genome has a function in the absence of
sequence conservation (Pang et al. 2006; Pheas-
ant & Mattick 2007; Oldmeadow et al. 2010;
Mattick & Dinger 2013). It is also sometimes ar-
gued that the conservation criterion is based on
the circular reasoning of assuming that repet-
itive elements evolve neutrally and then using
their rate of evolution as a reference to identify
the constrained portion of the genome (Pheasant
& Mattick 2007; Mattick & Dinger 2013).

16.2.2 Biochemical activity
implies functionality

Functional DNA elements exhibit biochemical
activity in the form of transcription and occu-
pancy by transcription factors, and other regu-
latory or architectural chromatin-associated and
RNA-binding proteins. thus detection of such
biochemical activity does suggests possible func-
tionality for a given region of the genome. How-
ever, this is often taken further to argue that the
detection of biochemical activity always means
a given region of the genome is functional, and
such interpretations are a primary reason why
the results of the ENCODE Project and of ear-
lier efforts reporting pervasive transcription in
mammalian genomes have been perceived as de-
bunking the concept of “junk” DNA.

16.2.3 Repetitive DNA of
transposable-element origin is

functional

Transposons are traditionally understood to be
“selfish” DNA sequences existing solely in order
to propagate themselves, and thus an archetypal
example of “junk DNA” (Orgel & Crick 1980;
Doolittle & Sapienza 1980). However, trans-
posons have been a rich source of material for
evolutionary innovation and have been exapted
into functional roles on numerous occasions, at
the level of individual transposable element in-
sertions (Norris et al. 1995; Vansant & Reynolds
1999; Rebollo et al. 2012; Chen et al. 2009;
Krull et al. 2007; Lynch et al. 2011; Medstrand
et al. 2001; Naito et al. 2009; Peaston et al.
2004; Schmidt et al. 2012; Santangelo et al.
2007; Bejerano et al. 2006; Faulkner et al. 2009;
Kunarso et al. 2010) and even globally (Singh
et al. 1985; Espinoza et al. 2004; Allen et al.
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2004; Fornace & Mitchell 1986; Li et al. 1999;
Mariner et al. 2008; Liu et al. 1995). These
and other observations (for example, the somatic
retrotransposition observed in the human brain
and in cancer cells; Peaston et al. 2004; Muotri
et al. 2005; Coufal et al. 2009; Baillie et al.
2011; Lee et al. 2012; Evrony et al. 2012) have
been extrapolated into interpreting transposable
elements as a vital functional regulatory compo-
nent of the human genome (Makalowski 2003;
Shapiro 1999; Shapiro 2005; Shapiro JA & von
Sternberg).

16.2.4 Pseudogenes have
functions

Pseudogenes are another classic example of
“junk DNA”, for which examples of possible
exaptation have accumulated in recent years.
From such observations a function for the major-
ity or even all of them is generalized (Balakirev
& Ayala 2003; Pink et al. 2011; Muro et al.
2011; Li et al. 2013). There are several known
mechanisms though which a pseudogene could
play a functional role. First, antisense pseudo-
gene transcripts could regulate the expression of
sense transcripts from the parental gene (McCar-
rey & Riggs 1986), some possible examples of
which have been reported (Korneev et al. 1999;
Hawkins & Morris 2010). Second, pseudogene-
derived small RNAs can have a regulatory effect
on the parent genes (Tam et al. 2008; Watan-
abe 2008). A role for pseudogenes in regulating
mRNA stability has also been proposed (Hirot-
sune et al. 2003; Piehler et al. 2008). Finally,
pseudogene-derived ceRNAs can act as miRNA
sponges (Tay et al. 2014b), affecting the expres-
sion of the parent gene.

16.2.5 Functionally important
alternative splicing is widespread

Numerous examples of alternative splicing gen-
erating different protein products with distinct
functions have accumulated since the discovery
of splicing (for example, Lynch & Maniatis 1996;
Kornblihtt et al. 1996; Graveley 2002; Liao et al.
2005; Izquierdo 2005; Venables 2012), and the
number of human genes for which multiple splice
products have been detected has been constantly
increasing as technology moved from EST se-
quencing to splicing microarrays and eventually
to RNA-seq (Mironov et al. 1999; Croft et al.
2000; Xu et al. 2002; Johnson et al. 2003;

Kwan et al. 2008; Wang et al. 2008; Harrow
et al. 2012). It now includes the great major-
ity of multiexonic genes in the human genome.
Much of this splicing has been reported to be
tissue-specific (Pan et al. 2004; Xing & Lee 2005;
Wang et al. 2008), and these observations have
been interpreted as evidence for the widespread
prevalence of adaptively important functional al-
ternative splicing in complex multicellular ani-
mals (Kim et al. 2007; Romero et al. 2007;
Stamm et al. 2005). The vast universe of al-
ternative splicing products could play a crucial
role in expanding the protein coding repertoire of
the genome and are proposed to explain the per-
ceived contradiction between the high level of or-
ganismal complexity of humans and the fact that
we do not have a larger number of genes than
other species. Early theories for the evolution of
splicing also viewed it from an adaptive angle,
by suggesting that genes existed in pieces con-
taining separate functional domains very early
in evolution and splicing allows for the shuffling
of these domains and the generation of increased
protein diversity, which was selectively benefi-
cial (Gilbert et al. 1997; de Souza et al. 1996;
Kriventseva 2003). While these theories are now
largely rejected (see a more detailed discussion
of this subject in the next section), the idea that
the presence of introns and splicing is a major
causal factor driving increased organismal com-
plexity (Mattick 1994) is still very much alive
(Chen et al. 2014).

Additional functions of alternative splicing
products have also been proposed. For exam-
ples, it is commonly observed that a significant
fraction of alternative splicing products contain
truncated ORFs and are expected to be subject
to nonsense mediated decay (NMD). It has been
suggested that the regulated production of such
isoforms may serve as an additional mechanism
for the regulation of protein expression (Lewis et
al. 2003; McGlincy & Smith 2008; Cuccurese et
al. 2008).

16.2.6 The central importance of
ncRNA and of “exotic” transcripts

for the emergence of organismal
complexity

Examples of previously unknown functional role
of ncRNAs and the complexity of metazoan
RNA biology have repeatedly been interpreted
as providing an explanation for the high sophis-
tication of organismal organization in complex
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multicellular animals, and even for the evolution
of human intelligence (Mattick & Gagen 2001;
Frith et al. 2005; Mattick 2004; Amaral et al.
2008; Mattick et al. 2010; Mattick 2007; Taft
et al. 2007; Mattick 2009; Mattick 2011; Liu et
al. 2013; Slack 2006). The latter is often based
on examples of the expression and activity of
such ncRNA species in brain tissue (Mercer et
al. 2008; Mehler & Mattick 2006).

These and other proposals of similar nature
paint a picture of the genome and organismal
evolution in which practically every detail of
genome and organismal biology is the product
of selective evolutionary forces and is of ma-
jor adaptive importance for organismal fitness.
Within this framework, a high level of complex-
ity of transcriptional and RNA biology is needed
in order for organismal complexity to emerge,
which in turn is understood to be vastly higher
in humans than in other animals, with a corre-
spondingly intricate, largely RNA-mediated reg-
ulatory mechanisms.

16.3 The nonadaptive view
of genome evolution

In contrast to the understanding of the human
genome as lacking “junk” DNA and consisting
almost entirely of functional sequence, a diverse
set of empirical observations and theoretical con-
siderations, starting in the middle of the 20th
century, and significantly enhanced more re-
cently with the advent of comparative genomics,
strongly suggest that a large portion of it is in-
deed junk. The key concept here is the idea of
the selection-drift barrier. A foundational result
in population genetics states that the power of
natural selection to influence allele frequencies
is constrained by the magnitude of the selective
coefficient s of a given mutation and the effective
population size Ne. Specifically, when:

|s| <
1

4Ne
(16.1)

in a diploid sexually reproducing species, mu-
tations evolve effectively neutrally and are “in-
visible” to natural selection. This has the impor-
tant consequences that first, mutations with neg-
ative effects on fitness will not be weeded out by
selection, and second, beneficial mutations are
not guaranteed fixation, provided the magnitude
of the selective disadvantage they confer is suf-
ficiently low. The value of s for which this is

true is increasingly higher the lower the effective
population size Ne is.

The general nature of this relationship has
been known since early on in the development
of population genetics (Wright 1931) but never
featured prominently in the Modern Synthesis,
and especially in the “hardened” panselectionist
version of it that eventually became widely pop-
ular. The development of the neutral and nearly
neutral theories of molecular evolution in the
1960s and 1970s (Kimura 1968; Kimura 1983;
King & Jukes, 1983; Ohta 1973) posed a chal-
lenge to panadaptationism, and combined with
early data on knowable at the time, even if im-
precisely, parameters such as mutation rates and
genome sizes, to the proposal that large por-
tions of the human genome are nonfunctional,
“junk DNA” (Ohno 1972). An enormous va-
riety in genome sizes, spanning orders of mag-
nitude, was observed between organisms with
similar level of organismal complexity and even
between closely related species (Mirsky & Ris
1951; Rothfels et al. 1966; Ohno & Atkin 1966),
a discrepancy eventually termed the “C-value
paradox” (Thomas 1971). It was best explained
by proposing that only a small fraction of the
genome consists of genes and other functional
sequences. In mammals, it was estimated that
the rate of deleterious mutations is ∼ 10−5 per
locus, and that the size of the human genome is
∼ 3 × 109 base pairs. Given these numbers the
maximum number of human genes was evaluated
to be ∼ 30, 000 and the fraction of the human
genome occupied by genes and their regulatory
elements to be∼6% (Ohno 1972). Notably, these
numbers are remarkably close to what was found
when the whole human and mouse genomes
were sequenced, annotated and compared (Lan-
der et al. 2001; Venter et al. 2001; Mouse
Genome Sequencing Consortium 2002; Harrow
et al. 2012), and by more recent efforts to
identify the sequence-constrained elements in a
much wider collection of sequenced mammalian
genomes (Lindblad-Toh et al. 2011). Also, con-
temporary studies on the mutation rate in the
human genome using more sophisticated mea-
surement tools have largely corroborated the old
estimates for the values of the key population
genetic parameters of our lineage (Lynch 2010b;
Keightley 2012).

The concept of “junk” DNA was further
strengthened by the improved understanding of
the nature of selfish transposable DNA elements
(Doolittle & Sapienza 1980; Orgel & Crick 1980),
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introns and pseudogenes and, eventually, by the
fraction of the fully sequenced genomes they oc-
cupy. A total of at minimum 45% of the hu-
man genome consists of transposable elements
(mostly decayed copies), and close to half of it
is introns (according to the most comprehen-
sive currently available annotation, GENCODE,
Harrow et al. 2012; note that introns, of course,
contain many transposons so these are overlap-
ping sets).

As genome sequencing costs went down with
continuous improvements in technology and an
ever increasing number of sequenced genomes
became available, it has in recent years be-
come possible to place our knowledge about the
genomes of humans and the few key model or-
ganisms in the context of a much wider phylo-
genetic sampling. This has enabled the com-
prehensive assessment of the driving forces of
genome evolution across the tree of life. A
pluralistic view of evolution, in which the non-
adaptive evolutionary forces play a major role,
has emerged from this research program (Lynch
2007c; Koonin 2011). Nonadaptive explanations
for the evolution of a large number features of
genomic organization and gene expression reg-
ulation that are fundamental to eukaryotic bi-
ology have been proposed based on the integra-
tive analysis of the selective and mutational pres-
sures influencing their evolution and the popu-
lation genetic environments of different lineages
(Lynch 2002; Lynch & Conery 2003; Lynch 2005;
Lynch 2006a; Lynch 2006b; Lynch 2007a; Lynch
2007b; Lynch 2007c; Koonin 2011). The fol-
lowing are most relevant to the debate about
the evolutionary forces that have shaped mam-
malian genomes.

16.3.1 Transposable element
content

Transposable elements have had a major influ-
ence over the evolution of eukaryotic genomes.
Their role has sometimes been “constructive”,
in cases when individual transposable element
insertions have been later exapted into novel reg-
ulatory and other functional elements, of which
a number of examples have been documented in
various species (Rebollo et al. 2012; Chen et al.
2009; Krull et al. 2007; Lynch et al. 2011; Med-
strand et al. 2001; Naito et al. 2009; Peaston
et al. 2004; Schmidt et al. 2012; Santangelo et
al. 2007; Bejerano et al. 2006; Kunarso et al.
2010; and many others). Global roles of trans-

posable elements in cellular processes have also
been described, for example the upregulation of
B2 SINE repeats in mouse and of Alu elements
in humans upon cellular stress and their role in
the subsequent global repression of transcription
(Singh et al. 1985; Espinoza et al. 2004; Allen
et al. 2004; Fornace & Mitchell 1986; Li et al.
1999; Mariner et al. 2008; Liu et al. 1995). Nev-
ertheless, the overall effects of transposable ele-
ments on organismal fitness are negative, which
is evident by the existence of vitally important,
dedicated to their silencing and the prevention
of their expansion systems, such as piRNAs (Ar-
avin et al. 2006; Aravin et al. 2007a; Aravin
et al. 2007b; Guzzardo et al. 2013). The detri-
mental effects of actively transposing repetitive
elements are obvious, as they can insert into and
disrupt the function of genes, but even decayed
copies confer a slight selective disadvantage as
they increase the size of the mutational target
in the genome (Lynch 2007c). The same mecha-
nisms that lead to the exaptation of transposons
into novel regulatory elements can also lead to
the misregulation of the expression of important
genes.

From the point of view that all of the con-
tent of genomes is adaptive, it would therefore
be expected that either genomes should contain
no transposons (as they would be weeded out
by natural selection) or that all transposon in-
sertions would have functional roles. However,
genomes display a wide variation in their trans-
posable element content, which is not straight-
forward to explain under that model. As a
rule, very few transposable elements are found
in prokaryote genomes. In contrast, on average
a much larger fraction of eukaryote genomes is
occupied by transposons, and a clear trend is
observed from unicellular to large multicellular
eukaryotes, with transposable elements compris-
ing a small portion of the genomes of the former
(and in some rare cases being completely absent;
Gardner et al. 2002) and a significant part of
the genomes of the latter, sometimes even the
majority. The maize genome, for example, con-
sists of 85% transposons (Schnable et al. 2009),
and the extremely large genomes in the tens and
hundreds of Gbs range, which have until very
recently been almost impossible to completely
sequence, likely contain even more transposable
elements (for example, Nystedt et al. 2013).
These variations in transposable element con-
tent are readily explainable by taking into ac-
count the population genetic environment of dif-
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ferent lineages. The long-term effective popula-
tion size Ne is typically ≥109 for prokaryotes,
∼107–108 for most single-celled eukaryotes, in
the neighborhood of 106 for small invertebrates
and annual plants, and in the 104–105 range for
large multicellular organisms such as mammals
and trees (Lynch 2006b; Lynch 2007c). Across
the tree of life, an inverse correlation is observed
between the abundance of transposons and Ne,
which makes sense considering that the selective
coefficient for each individual insertion is nega-
tive but small in absolute value, thus they are
visible to selection only in lineages with large
Ne, in which natural selection is highly efficient,
such as prokaryotes, while they are free to prolif-
erate in lineages with a low Ne, such as humans
and other mammals (Lynch 2007c).

16.3.2 The number and length of
introns

The presence of introns is one of the most re-
markable features of eukaryotic gene expression
but their existence also presents us with the puz-
zle of why eukaryotic genes have them in the
first place. The presence of introns poses nu-
merous challenges to the proper expression of
genes as they have to be properly spliced out,
which, as is the case with all biochemical pro-
cesses, cannot be relied on to occur with abso-
lute efficiency, and in addition, depends on the
presence of additional functional sequence ele-
ments to direct it. These elements can be and
often are a subject to mutations that disrupt
proper splicing with detrimental effects to fit-
ness, as demonstrated by the large number of
human genetic diseases that are due to muta-
tions affecting splicing (Cooper & Mattox 1997;
Douglas & Wood 2011; Lynch 2006b). In this
context, it is not clear why introns exist at all,
as gene expression would be carried out with sig-
nificantly less trouble and more faithfully with-
out them. A commonly cited reason for this is
the expansion of the protein repertoire afforded
by alternative splicing, however, while there cer-
tainly is a lot of complexity in the splicing prod-
ucts generated in mammals, it is far from clear
how much of it represents actual functionally
important alternative splicing events (to be dis-
cussed in more detail later). This explanation
also fails to account for the observed differences
in the distribution of the number of introns and
their length across the tree of life. Spliceosomal
introns are restricted to eukaryotes and absent

from prokaryotes. The latter instead contain
self-splicing introns but those are few in num-
ber in each prokaryotic genome, and even they
seem to be absent from archaea with a few ex-
ceptions that might be the result of horizontal
gene transfer (Dai & Zimmerly 2003). Within
eukaryotes, there are extremely large differences
in intron content, from the nearly intron-free
genomes of single-celled organisms such as En-
cephalitozoon cuniculi (Katinka et al. 2001) to
the long and numerous introns of mammals and
many green plants. A popular in the past expla-
nation for the existence of introns was that they
appeared very early in the evolution of life and
that genes were pieced together from individual
exons, each of which might have carried a sep-
arate protein domain or some other functional
unit. This has been known as the “introns-early”
hypothesis (Gilbert 1978; Gilbert 1987; Doolit-
tle 1978; Darnell 1978; Blake 1979; Gilbert et
al. 1997; de Souza et al. 1996) and is somewhat
corroborated by the observation that protein do-
mains are indeed sometimes encoded by separate
exons (Roy et al. 1999; Fedorov et al. 2003)
but this is far from true for all exons, and it is,
once again, difficult to reconcile with the com-
plete absence of spliceosomal introns in prokary-
otes. A more likely and consistent with data
scenario for their evolution has finally emerged
in recent years (Koonin 2006; Martin & Koonin
2006). Numerous studies have shown that the
last common ancestor of eukaryotes (LECA) was
very intron-rich as many intron positions are
shared between deeply diverging branches of the
eukaryote tree such as plants and animals (Fig-
ure 16.1), suggesting a common origin. Sub-
sequent intron gains have been largely limited
to individual lineages while many other clades
have primarily experienced intron losses (Carmel
et al. 2007a; Carmel et al. 2007b; Collins &
Penny 2005; Csuros et al. 2011; Fedorov et al.
2002; Rogozin et al. 2003; Rogozin et al. 2005;
Roy 2006; Roy & Gilbert 2005). In the same
time, it has long been known that structural
similarities exist between the self-splicing Group
II introns found in prokaryotes and sometimes
in eukaryotic organelles (Cech 1986; Lambowitz
& Zimmerly 2004) one one side, and spliceo-
somal RNAs on the other, strongly suggesting
that the current spliceosomal splicing system of
eukaryotic evolved from ancestrally self-splicing
introns, which eventually lost the ability to self-
splice leading to the evolution of mechanisms
to ensure their proper splicing in trans. The
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intron-rich nature of the LECA might have been
due to a wave of Group II intron insertions as-
sociated with the ancient endosymbiosis event
between an archaeal or archaea-like prokaryote
with the α-proteobacterial ancestor of mitochon-
dria (Koonin 2006; Martin & Koonin 2006).

Whatever the mechanisms of their initial es-
tablishment in eukaryotes, the subsequent evo-
lution and current distribution of introns within
them, and their minimal presence in prokary-
otes are well explained by the interplay between
mutations, selection and the population genetic
environment of different lineages (Lynch 2002;
Lynch 2006b; Lynch 2007c). The negative effect
on fitness of introns is dependent on the num-
ber of base pairs n that are critical for their
proper splicing and on the mutation rate µ,
which accounts for the probability of their in-
activation (Lynch 2002). This implies that in-
trons are only going to be “visible” to and re-
moved by natural selection when 1/n < Neµ
(Lynch 2006b). Organisms with low values of
Ne often have elevated mutation rates (Lynch
2010a; Sung et al. 2012) but the values of Neµ
in these lineages are still comfortably below this
threshold, while prokaryotes and some eukary-
otes with enormous effective population sizes are
well above it (Lynch 2006b; Lynch 2007c).

16.3.3 Variation in genome size

.

Another parameter that varies widely across
the tree of life is the total size of the genome.
Prokaryote genomes are very compact, with the
largest ones known barely exceeding 10Mb (Da-
gan et al. 2013; Chang et al. 2011). This is
still smaller than even the smallest genomes of
free-living eukaryotes (Derelle et al. 2006), with
typical genome sizes for unicellular eukaryotes in
the range of tens of Mbs. Invertebrate genomes
are on average hundreds of Mbs while vertebrate
genomes are typically a few Gb in size with ex-
treme examples of tens or even hundreds of Gb
also known (Gregory et al. 2007). Similar ex-
tent of variation in genome size is observed in
land plants.

There are several different ways in which
genomes can expand. This can happen through
the expansion of transposable elements, through
the proliferation and lengthening of introns,
through the expansion of other non-coding DNA,
and through the duplication of genes (these are,
of course, not mutually exclusive - introns, for

example, often contain numerous transposon in-
sertions). Of these, the duplication of genes
seems to have been a relatively minor compo-
nent as the number of genes only varies over
one to two orders of magnitude and the av-
erage mRNA length does not vary much be-
tween species. Most of the variation in genome
size across the tree of life is accounted for by
differences in transposon content, intron num-
bers and length and the amount of other non-
coding DNA, with transposons being the most
significant contributor. How mutation and ge-
netic drift have shaped the distribution of trans-
posons and introns in eukaryotes was discussed
above but it should be noted that expansion of
other non-coding DNA is also thought to carry
a slight negative fitness cost due to the increase
in the size of the mutational target it represents
(Lynch 2006b; Lynch 2007c). The increase in
genome size in some eukaryote lineages can then
be thought of as a direct consequence of their
low effective population size (indeed, as with
transposons and introns, a negative correlation
between Ne and genome size is observed). In
the absence of strong selection acting on muta-
tions with small selective effects, genomes are
free to expand provided the balance of muta-
tional forces (the rate of small insertions and
transposable elements insertions versus the rate
of deletions) is in that direction (Petrov 2002). It
has to be noted that it is possible that the story
is more complex - eukaryotes have not been able
to rid themselves of transposons through natural
selection on the level of individual transposable
element insertions, but they have developed sys-
tems for repressing their expression and prolifer-
ation (Aravin et al. 2007b), leading to a decrease
in the selective disadvantage of individual inser-
tions, greater tolerance to their presence, and,
somewhat paradoxically, likely opening the door
for their further proliferation (Fedoroff 2012).

16.3.4 The expansion in
regulatory and organismal

complexity

.
Gene regulation in multicellular eukaryotes

is very complex on multiple levels, in contrast to
the situation in prokaryotes and the yeast species
studied so far (the only unicellular eukaryotes for
which detailed understanding of gene regulation
has been worked out so far). In the latter organ-
isms, the expression of genes is typically con-
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trolled by short regulatory regions proximal to
the transcription start site. In marked contrast,
in addition to promoters, multiple other regu-
latory elements control the expression of genes
in eukaryotes, many of them situated at great
genomic distance from promoters. These reg-
ulatory elements serve as binding sites for and
integrate the input of multiple transcription fac-
tors. Transcription factors in turn, form highly
complex gene regulatory networks (GRNs), espe-
cially during development (Davidson 2006; Car-
roll 2008). Notably, different regulatory ele-
ments can be responsible for the expression of
the same gene in different cell types/tissues and
rewiring of GRNs has been a major mechanism
behind the diversification of metazoans in the
past (that being a major result of many years of
evo-devo research).

This is the basic picture that has been known
for some time; how our understanding of it has
been altered by genomics data will be discussed
later. Here, it should be noted that a major
question from an evolutionary perspective is how
this level of complexity came to be. It has of-
ten been by default assumed that it is adaptive
but solid arguments have been proposed for why
this might not be the case (Lynch 2007a; Lynch
2007b). It is indisputable that increases in reg-
ulatory complexity have led to adaptations of
organisms to their environment. However, first,
it is far from clear that the same result could not
be achieved with significantly less convoluted in
their workings systems, and second, the genomic
changes that lead to this complexification are
not themselves adaptive (Lynch 2007a; Lynch
2007b). There are several mechanisms through
which regulatory complexity can increase. First,
as previously mentioned, transposable element
insertions can lead to the generation of new reg-
ulatory elements. Second, novel such elements
can arise de novo. Third, duplication of exist-
ing regulatory elements followed by functional
divergence can lead to the evolution of new reg-
ulatory functions. The latter is in a way similar
to what happens during the evolution of paral-
ogous genes, one possible fate of which is de-
scribed by the divergence and subfunctionaliza-
tion model (Force et al. 1999; Force et al. 2005),
in which following duplication of a gene carrying
out multiple functions in the cell, each dupli-
cate copy is free to lose some of them as long
as the other retains that functionality, leading
to the system being locked in a state in which
both copies are essential (it is, of course, also

possible for paralogs to become neofunctional-
ized, acquiring new functionalities not present
in the ancestral gene). Something similar might
be happening with regulatory elements: follow-
ing duplication of an initial enhancer responsible
for the expression of a gene in multiple tissues,
the new copies diverge or acquire new functions,
by losing and/or accumulating new transcription
factor binding sites, with the end result being
that the expression of the gene is driven by dif-
ferent enhancers in different cell types, or that
the gene is expressed in cell types, in which it
previously was not. This might in the end be
adaptive, but importantly, the series of genomic
changes in all three types of events that lead
to increase of regulatory complexity are not -
they in fact have slightly negative effects on fit-
ness due to the increase in the size of the muta-
tional target they represent (Lynch 2007a) and
would therefore be expected to be weeded out
if the power of natural selection is sufficiently
strong. Indeed, this seems to be the case in lin-
eages with large Ne, in which this condition is
met - prokaryotes and many unicellular eukary-
otes have streamlined genomes in which genes
are regulated by promoter-proximal elements oc-
cupying limited amounts of genomic real estate,
in stark contrast to the situation in mammals.

This insight fundamentally changes the way
we view the evolution of complexity in biological
systems given the close relationship between in-
creases in regulatory complexity and correspond-
ing increases in organismal complexity. Tradi-
tionally, complexity is seen as adaptive, but it
seems that in fact the main reason it has evolved
is that because it could, in conditions of suf-
ficiently low effective population sizes to allow
it, through constructive neutral evolution mech-
anisms (Stoltzfus 1999; Stoltzfus 2012; Speijer
2011; Lukes et al. 2011; Gray et al. 2010),
rather than as the direct result of adaption. Of
course, there is a positive feedback loop operat-
ing here – the population genetic environment
most conductive to this kind of evolution is typ-
ical for large-bodied multicellular lineages, for
basic ecological reasons having to do with their
physical size and the resource requirements it
imposes. But large-bodied multicellular lineages
are also the ones that would be expected to be
most “complex” in their organization, and in
turn complex body plans are often conductive
to increases in body size and lowering of the ef-
fective population size. This likely also explains
why no prokaryotes ever evolved multicellular-
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ity – their large effective population and the re-
sulting very strong purifying selection to which
they are subjected made impossible the complex-
ification of gene regulation (and possibly gene
content too) necessary for it. In contrast, the
lowered compared to prokaryotes Ne of unicellu-
lar eukaryotes allowed in some lineages an evo-
lutionary ratchet of paired increases in size and
complexity and further lowering of Ne to take
place, leading to the eventual evolution of com-
plex multicellular organisms such as humans.

From these lines of observations and think-
ing, a very different view of genome evolu-
tion and complexity has emerged (Lynch 2007c;
Koonin 2004; Koonin 2009; Koonin 2011), in
which the interplay between selection, mutation
and drift is central, and the major role that
nonadaptive processes seem to have played in
the evolution of complexity is prominently fea-
tured. Lineages with large effective population
sizes tend to be small in size and with stream-
lined genome and this is the dominant mode of
evolution (Wolf & Koonin 2013) as it is these
lineages that comprise the majority of the di-
versity of life on the planet (Figure 16.1). In
contrast, complex large-bodied organisms have
large genomes, with lots of non-coding DNA,
large transposable element content, and complex
gene regulation, i.e. the have genomes existing in
what has been referred to as a “highly entropic”
state (Koonin 2011), in which the informational
content per unit of DNA is low. The appear-
ance of these traits is linked to the emergence
of organismal complexity, but is not a primary
causative agent for it. In fact, it would of course,
be quite remarkable that were thus proven to be
otherwise, natural selection has been unable to
drive the accumulation of such embellishments
in the lineages, in which it is strongest, as is
well known from firmly established population
genetics principles. Many other adaptive expla-
nations for the expansion of ncDNA within mul-
ticellular (such as buffering against mutations,
role in chromosome structure, selection for nu-
clear and cell size, and numerous others; Vino-
gradov 1998; Yunis & Yasmineh 1971; Zuck-
erkandl 1976; Zuckerkandl 1977; Comings 1972;
Cavalier-Smith 1978; Cavalier-Smith 2005; Pa-
trushev & Minkevich 2006; Beaton & Cavalier-
Smith 1999; Gall 1981) are also usually similarly
inconsistent with this reasoning. The nonadap-
tive understanding of how the human genome
evolved to its present state places the results
of the ENCODE project and functional genomic

data in general in a dramatically different per-
spective.

16.4 The cultural context of
the debate

As an important side note, the larger cultural
context of the debate has to also be mentioned,
as the panadaptationist point of view of the hu-
man genome (as well as any claim that a rad-
ically new theory of evolution overturning the
old “dogma” has been developed, whether it is
because of the impact of epigenetics, ncRNAs,
evo-devo, lateral gene transfer, mechanisms for
directed adaptive mutations of an almost Lamar-
ckian kind (Koonin & Wolf 2009), or something
else (examples in Shapiro 2002; Shapiro 2009;
Shapiro 2013) has unfortunately been coopted
by various creationist groups, especially Intel-
ligent Design proponents (see Dembski 1998;
Behe 2003; Wells 2011 for examples). The idea
that large portions of the human genome con-
sist of nonfunctional and even selfishly propa-
gated and slightly detrimental to an organism’s
fitness DNA does not sit well with the belief that
it was the product of a benevolent intelligent
designer, both because it implies and provides
more evidence for evolution, and because of the
theological implications of such a genome if it
was in fact designed in that form. For such rea-
sons, creationists have vehemently attacked the
concept of “junk DNA” (Walkup 2000; Wieland
1994; Woodmorappe 2000; Bergman 2001; Jerl-
ström 2000) and thus any portrayal of all of
the genome as being functional (see for exam-
ple von Sternberg 2002 and von Sternberg &
Shapiro 2005; Grossmann 2013), and more re-
cently the public portrayal of ENCODE results,
both of the pilot phase (ENCODE Project Con-
sortium 2007) and especially the first genome-
wide production phase (ENCODE Project Con-
sortium 2012), have been warmly welcomed by
them (Wells 2013). This outcome serves to em-
phasize the importance of the precise and clear
communication to the public of the most rigor-
ous scientific understanding of genome function,
otherwise there is a real danger that great harm
may be done to science education and the public
understanding of science, areas the current state
of which is already constantly decried (for exam-
ple, it has remained the case for many decades
that nearly half of the population of the United
States completely rejects both the theory and
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the fact of evolution; Miller et al. 2006), with the
corresponding long-term consequences for soci-
ety.

16.5 ENCODE results and
their interpretation

It is not easy to summarize the results of the EN-
CODE project in a few sentences as its greatest
contribution to date is probably the large num-
ber of individual interesting stories rather than
the emergence of overarching previously unrec-
ognized themes. Still, the sheer scale and com-
prehensiveness of the data helped shed light on a
number of issues previously debated but not fully
resolved (which does not mean all of them have
in fact been conclusively resolved). I list some
of the most contentious issues below and dis-
cuss the proper (and improper) interpretations
of ENCODE data with respect to them.

Before I do this, I have to point out that the
controversy around ENCODE and junk DNA
seems to have arisen mainly due to the large
amount of writings and commentaries about EN-
CODE and a few misinterpreted passages within
the main integration paper most of them have
been based on, not on the actual content of the
numerous ENCODE papers. The integrative pa-
per (ENCODE Project Consortium 2012) states
(emphasize mine):

These data enabled us to assign bio-
chemical functions for 80% of the
genome, in particular outside of the
well-studied protein-coding regions
. . .
Operationally, we define a func-
tional element as a discrete
genome segment that encodes
a defined product (for example,
protein or non-coding RNA)
or displays a reproducible bio-
chemical signature (for exam-
ple, protein binding, or a spe-
cific chromatin structure)
. . .
The vast majority (80.4%) of the
human genome participates in at
least one biochemical RNA– and/or
chromatin-associated event in at
least one cell type

Keeping this definition in mind, there can
be little controversy about the claim that >80%

of the genome has been assigned a “function”,
as clearly the word “function” was used in a
way different from how biologists have tradition-
ally understood it (Doolittle 2013). Regrettably,
the definition was separated from the 80% fig-
ure in the writings, press releases and commen-
taries about the project and the story communi-
cated to the public and the scientific community
was that ENCODE has debunked the concept of
“junk DNA” (Pennisi 2012; Hurtley 2012; Ko-
lata 2012; Jha 2012; Hall 2012a; Hall 2012b; Har-
mon 2012; Brown & Boytchev 2012). However,
the findings of ENCODE are in no way in con-
tradiction with the concept of “junk DNA”, they
can be comfortably interpreted within the non-
adaptive framework of understanding genome
complexity described above, and in certain ways,
they actually corroborate many of its compo-
nents.

16.5.1 Pervasive transcription

The reports of pervasive transcription in mam-
malian genomes in the early 2000s were all based
on microarray technology, which is well known to
suffer from a number of issues regarding its reso-
lution, dynamic range and noise levels (Royce et
al. 2005; see discussion in Van Bakel et al. 2010
and Clark et al. 2011). The advent of high-
throughput sequencing and the development of
RNA-seq eliminated a lot of these issues, provid-
ing base pair-resolution digital readout of tran-
scriptional products spanning nearly as many or-
ders of magnitude of expression levels as the se-
quencing depth of the dataset.

The pilot phase of the ENCODE project was
also microarray-based, as this was the only tech-
nology available at the time, and focused on only
1% of the human genome. (ENCODE Project
Consortium 2004; ENCODE Project Consor-
tium 2007). It delivered a message of pervasive
transcription, however, because of the aforemen-
tioned issues with arrays and also because only
1% of the genome was visible to it, what the re-
sults of an in-depth sequencing-based transcrip-
tomic study of the whole genome would be was
of great interest. The genome-wide production-
phase of the project involved both the sequenc-
ing of polyA-selected RNAs (which has tradi-
tionally been the most widely used approach for
studying the transcriptome as the presence of a
polyA tail is a common feature of mRNAs and
many lincRNAs), as well as the sequencing of the
polyadenylated and non-polyadenylated RNAs
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from various subcellular fractions (primarily the
nucleus and the cytosol, plus the chromatin, the
nucleolus and the nucleoplasm in some cells) rep-
resenting the less studied portion of the tran-
scriptome. This was done across a wide vari-
ety of cell types and it confirmed beyond any
doubt that the genome is indeed pervasively
transcribed (Djebali et al. 2012; ENCODE
Project Consortium 2012), with around 75% of
the genome being covered by reproducibly de-
tectable transcripts (Kellis et al. 2014).

The reality and functionality of pervasive
transcription has generated a lot of controversy
over the years (Struhl 2007; van Bakel et al.
2010; Mercer et al. 2011; Dinger et al. 2009;
Clark et al. 2011) but there is a clean resolution
of it, one that is well supported by the more re-
cent RNA-seq data, and recognized going back
to the time of the early C0t curve studies of the
transcriptome: pervasive transcription is indeed
real but it happens infrequently, the transcripts
it produces are present at quite low levels and in
all likelihood the vast majority of transcripts in
this expression range have no functional signifi-
cance. In addition to great sensitivity and base-
pair resolution, among the many advantages of
RNA-seq over microarrays is also its superior dy-
namic range (Mortazavi et al. 2008). When the
abundance of non-exonic transcript coverage in
ENCODE data is examined, it turns out that
the majority of it is indeed due to transcripts
present in very low amounts, often likely to be
significantly less than one transcript copy per
cell, and in subcellular fractions other than total
cellular polyadenylated RNA. The fraction of the
human genome covered by substantially abun-
dant transcripts is between 10 and 30%. This
is well above the ∼ 3% of the genome occupied
by exons (according to GENCODE), but a good
portion of it is due to instances of coverage in
intronic regions (which were already known to
be transcribed) and of transcription extending
beyond the known 3’ boundaries of annotated
genes, i.e. not examples of dramatically new
phenomena. In addition, strong positive corre-
lation between read coverage in RNA-seq data
and sequence conservation is observed (Kellis et
al. 2014), further corroborating this interpreta-
tion.

It is not at all surprising that large portions
of a large, “entropic” genome, such as ours, are
pervasively transcribed at some point in the life
of cells (Struhl 2007). Eukaryotic genomes have
to solve the complicated task of properly identi-

fying and regulating promoter regions and tran-
scription start sites within a vast genomic space.
To assume that only the annotated, highly ex-
pressed, protein coding and non-coding genes,
would ever be transcribed, is equivalent to as-
suming that these organisms have achieved per-
fection in the area of gene regulation. This
goes directly against what we know about the
population genetic environment of these lin-
eages. One of the deep insights derived from the
non-adaptive, population genetics-centric view
of genome evolution and complexity described
above has been that organisms can only increase
the precision and specificity of biochemical pro-
cesses to the extent that the power of natural se-
lection allows it. The power of natural selection
is inversely correlated with the effective popu-
lation size Ne and vertebrates have existed in
a state of very low Ne for hundreds of millions
of years. They are therefore among the organ-
isms for which the least amount of “perfection”
in the workings of their biochemical systems can
be expected. This has been best studied with re-
spect to the per-generation mutation rate, which
is indeed highest in lineages with low Ne (Lynch
2010a; Sung et al. 2012), and there have also
been initial studies on the rate of misincorpora-
tion of bases during transcription though gen-
eral conclusions cannot yet be drawn (Gout et
al. 2013). Still, the theoretical expectation is
that large-bodied eukaryotes with large genomes
will turn out to have the lowest transcriptional
fidelity per unit of transcribed sequence, includ-
ing with respect to the specification of sites of
transcription initiation. The sequence elements
specifying eukaryotic promoters (the TATA box,
Inr, DPE, BRE, etc.; Lifton et al. 1978; Bu-
ratowski et al. 1989; Deng & Roberts 2005; La-
grange et al. 1998; Burke & Kadonaga) are short
and degenerate and are far from restricted to an-
notated promoters. Given this fact, pervasive
low-level transcriptional initiation from cryptic
promoters, and possibly even the existence of rel-
atively stronger ones producing transcripts with
little functional consequence, is something to be
expected. This seems to be corroborated by
a recent study (Venters & Pugh 2013) which
used ChIP-exo-seq (Rhee & Pugh 2011; Rhee &
Pugh 2012) to generate high resolution genome-
wide binding maps of the TATA-binding protein
(TBP), a core general transcription factor in-
volved in transcription initiation, in multiple cell
lines also studied by the ENCODE project. It
found tens of thousands of TBP binding sites in
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non-coding regions, many of them containing the
promoter-associated sequence elements, produc-
ing RNAs, and with chromatin structure similar
to that of protein coding promoters. This was
interpreted as evidence for widespread function-
ality of these promoters; however, the TBP oc-
cupancy of these sites was markedly lower than
that over the promoters of protein coding genes.
This explains why they are not readily identifi-
able with the lower resolution provided by con-
ventional ChIP-seq, and means that such obser-
vations are entirely consistent with the major-
ity of them being non-functional. Such under-
standing is not contradicted by the observation
that the low-abundance pervasively transcribed
RNAs often exhibit cell-type specificity, as tran-
scription is in general repressed by the presence
of nucleosomes. Some chromatin states are more
conductive to cryptic transcription than others,
and chromatin states do differ between different
cell types.

16.5.2 “Exotic” transcription

The pervasiveness of “Exotic” transcripts is also
by no means an argument against most of the
genome being junk. Some of these (such as the
ones normally degraded by the exosome) likely
fall in the category discussed in the preceding
section. But various RNAs associated with the
promoters and termination sites of genes (tiR-
NAs, TSS-RNAs, PASRs, PALRs, TASRs, etc.)
could very well be well-defined RNA species and
this still does not serve as a valid argument
against “junk” DNA. First, they are associated
with the exons and promoters of genes and are
therefore mostly conserved at the sequence level.
Second they could well be, and in fact likely are,
a normal part of the transcriptional cycle, where
they may play functional roles or may be an in-
evitable side product of it (future research will
have to establish what, if any, these roles may
be).

In addition, transcription can have functions
on its own, without the RNA molecules pro-
duced being sequence-constrained. Numerous
examples of phenomena such as transcriptional
interference, where the transcription of other
genes, or of noncoding intergenic RNAs, either
interferes or aids the expression of downstream
genes (through the prevention of initiation or by
opening chromatin and enabling it) have been
presented in the past (Martens 2004; Petruk et
al. 2006; Shearwin et al. 2005; Hirota et al.

2008; Uhler et al. 2007; Kuehner & Brow 2008;
Thiebaut et al. 2008; Palmer et al. 2009). The
act of transcription in such cases is functional,
but the sequence of the transcripts produced
may be of little significance.

It is in similar light that RNA species like
eRNAs can be interpreted. There is indeed evi-
dence that the transcription of enhancers is im-
portant for their function (Ørom et al. 2010;
Melo et al. 2013; Li et al. 2013; Lam et al.
2013), but in the absence of detailed mecha-
nistic understanding why (something, which fu-
ture research will hopefully elucidate) and of
sequence conservation beyond the transcription
factor binding sites within the enhancer, such
observations are entirely consistent with the pro-
duction of such RNAs being the functionally im-
portant component in the process rather than
the RNAs themselves.

16.5.3 lincRNAs

In recent years, long non-coding RNAs have re-
ceived a great deal of attention, both in the sci-
entific community and outside of it. In popu-
lar communications, they have often been por-
trayed as overturning the foundations of our
understanding of how RNA functions in cells.
Even though this was most definitely not a
main message of it, the subject has often been
lumped together with the debate about the EN-
CODE project thus it is proper to discuss it
here too. We are at the beginning of exploring
the diversity and functional importance of these
molecules, with new examples of the vital bio-
logical roles they play in various systems being
described constantly and many more are certain
to come in the future. However, their existence
does not represent such a radical paradigm shift
as is often claimed.

First, the novel discovery has been how many
of them there are out there, not that they exist.
Long noncoding RNAs such as Xist and Tsix
(Borsani et al. 1991; Brown et al. 1991; Lee et
al. 1999, roX in Drosophila (Meller et al. 1997)
and multiple others have been known for nearly
more than two decades.

Second, at this point there have been multi-
ple studies identifying lincRNAs from RNA-seq
data in several mammals (Cabili et al. 2011;
Guttman et al. 2010; Derrien et al. 2012; Pauli
et al. 2012; Washietl et al. 2014; Necsulea et al.
2014) and they all identify at most around 10,000
putative lincRNA genes. Further sampling of
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rare cell types will likely yield some more, espe-
cially given the generally higher tissue specificity
of lincRNAs compared to protein coding genes
(Cabili et al. 2011). However, the total of all
lincRNA exons still occupies a minor fraction of
the human genome (many of them are shorter
than mRNAs; the average lincRNA transcript
in GENCODE V16 is ∼950bp long, while the
average GENCODE V16 transcript of a protein
coding gene is ∼1.7kb long), and it is far from
clear that all of them will turn out to be func-
tionally important. The expression levels of the
typical lincRNA are much lower than those of
protein coding genes (with the well-characterized
in the past ones being among the most highly ex-
pressed). Of course, low expression levels do not
necessarily imply absence of function on their
own – RNA molecules can certainly play vital
functions even at low abundance levels. This is
especially true if they act in cis. In many such
cases only a few copies would be expected to be
present at any time, and indeed cis mechanisms
for their action have been proposed (Koziol &
Rinn 2010).

Third, the first comparative studies of lin-
cRNAs within vertebrates have been recently
published (Washietl et al. 2014; Necsulea et
al. 2014). They found significant evolution-
ary malleability of the precise splicing patterns
of lincRNAs, which together with their gener-
ally low levels of sequence conservations suggests
that sequence constraint may exist for only some
portions of these transcripts, and they also ob-
served that significant fraction of human lincR-
NAs that are specific to our species, with these
human-specific lincRNAs exhibiting significantly
higher repeat content. There is evidence that
on average these lincRNAs are subject to pos-
itive selection in the human lineage (Washietl
et al. 2014), and some of them undoubtedly
are, but overall these patterns are also consistent
with an explanation for the existence of many of
them as the result of a normal process of birth
and death of noncoding genes within intergenic
space (especially mediated by transposable ele-
ment insertions), or from previously protein cod-
ing genes (famously, the Xist lincRNA seems to
have evolved as a result of the pseudogenization
of a protein-coding gene, Duret et al. 2006), with
some being exapted and conserved throughout
evolution and many others eventually decaying.

The detailed functional analysis of each indi-
vidual lincRNA using classical genetic tools will
be need to adequately answer the question of

how many of them have function, and what it is.
Recently, studies taking the first steps in that di-
rection have appeared; for example Sauvageau et
al. knocked out 18 lincRNAs in mouse and found
detectable phenotypes for 5 of them (Sauvageau
et al. 2013). These numbers, however, cannot
be extrapolated for all lincRNAs, first, because
the sample size is still small, and second, be-
cause lack of phenotype upon knockout in labo-
ratory conditions does not necessarily imply lack
of functions (for example, deletion of ultracon-
served sequence elements sometimes still results
in viable mice; Ahituv et al. 2007). Neverthe-
less, as whole the reports portraying lincRNAs
as completely overturning our understanding of
RNA and genome biology are definitely exagger-
ated.

16.5.4 Alternative splicing and
initiation

That the vast majority of human genes has the
capacity to and do sometimes produce more than
one isoform is at this point beyond dispute. The
GENCODE annotation contains nearly 150,000
isoforms of the 20,000 protein coding genes, and
more will likely be discovered when a deeper
sampling of rare cell types becomes available.
However, the functional significance of all this
splicing complexity is still unclear as the com-
pendium of actively regulated alternative splic-
ing events of validated functionally is still tiny
in comparison with the total number of isoforms.
The available data is entirely consistent with the
vast majority of isoforms detected in RNA-seq
being the result of errors of the splicing machin-
ery, the fidelity of which cannot be expected to
be perfect for the same reasons outlined above
with respect to pervasive transcription and the
transcriptional initiation machinery. One line
of possible evidence that functional alternative
splicing is indeed a highly prevalent phenomenon
would be the detection of widespread regulated
switching of isoforms between cell lines, and
some evidence in that direction has been pre-
sented (Wang et al. 2008).

The ENCODE transcriptome characteriza-
tion effort (Djebali et al. 2012) found multiple
transcripts to be expressed for each gene, with
the complexity of expressed splicing products in-
creasing with the complexity of its set of anno-
tated transcript models (i.e. how many isoforms
for the gene are present in the annotation), but
the question of isoform switching between cell
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lines was not prominently addressed. Further
analysis of some of the same data (Gonzàlez-
Porta et al. 2013) concluded that for most genes,
one major isoform is dominant and it is consis-
tently most highly expressed across many cell
types and tissues. Such results are fully compat-
ible with the interpretation of most of the minor
isoforms as noise (Melamud & Moult 2009; Sorek
et al. 2004). It should be noted that even if the
minor isoforms are highly variable between cell
types, this is not strong evidence for their func-
tionality, as this could be the result of the dif-
ferent sets of splicing regulators that these cells
express, which could have influence on the splic-
ing of genes other than their primary functional
targets.

Thus at present, the question of how
many functionally important alternative splic-
ing events there are in the human genome is not
fully resolved, and based on all the information
we have there are no grounds for claiming that
it is so widespread and functionally important
that it makes the difference between the human
species and “lower” life forms. For it to be ade-
quately addressed, both large-scale experimental
advances and detailed study of individual cases
will be needed. It should be heavily stressed
that all results from transcript-level quantifica-
tion and assembly efforts based on short-read
RNA-seq data are highly contingent upon the
ability of the software used in such studies to
accurately carry out these tasks. Unfortunately,
this is an extremely difficult computational prob-
lem and still a major challenge (Steijger et al.
2013; Engström et al. 2013), the only satis-
fying solution to which will be the advent of
long-read sequencing technologies capable of de-
livering the needed for the analysis of the tran-
scriptome sequencing depths. This will elimi-
nate the need to computationally assemble tran-
scripts from reads much shorter than the length
of mRNAs and parse reads between isoforms us-
ing statistical methods based on incomplete and
sometimes even misleading data due to various
read coverage biases in the data. Pioneering ef-
forts in that direction have recently been pub-
lished (Sharon et al. 2013; Au et al. 2013),
but much further progress is needed to fully re-
solve the issue. Even when this happens though,
only a list of candidate events to be further stud-
ied will be available, which will then have to be
subjected to detailed functional testing to assess
their functional importance.

16.5.5 The very large number of
putative regulatory elements

Regulatory elements in eukaryote genomes are
marked by occupancy by transcription factors
or insulator proteins, and are typically exhibit
increased DNAse hypersensitivity due to the oc-
clusion of nucleosomes caused by the binding of
these proteins to DNA. Global ChIP-seq and
DNAse-seq maps of transcription factor occu-
pancy and of DNAse hypersensitive sites in the
genome are a highly informative way of mapping
putative regulatory elements. The ENCODE
Project produced many such maps across a wide
variety of cell types (Gerstein et al. 2012; Wang
et al. 2012; Thurman et al. 2012; Neph et al.
2012a; Neph et al. 2012b), and they suggest the
existence of a very large number of potential dis-
tal regulatory elements. The reproducible sites
of enriched signal in these assays occupy up to
20% of the genome; however, the resolution of
ChIP-seq and DNAse-seq is lower than the foot-
prints of transcription factor binding sites, in-
flating this number somewhat. Still, ∼5.7% of
the genome was occupied by footprints as di-
rectly measured by digital genomic footprinting
(DGF), the high-resolution version of the DNAse
assay, which allows more precise identification of
DNAse-protected DNA (ENCODE Project Con-
sortium 2012). As with other ENCODE mea-
surements, these results by no mean invalidate
the concept that most of the genome is nonfunc-
tional.

First, such observations in fact corrobo-
rate the idea that extensive regulatory com-
plexification is facilitated by population ge-
netic environments characterized by very low Ne
(Lynch 2007a). As discussed above, the genomic
changes leading to expansion of regulatory com-
plexity are not directly adaptive but they can be
tolerated if they are not too deleterious relative
to the power of drift in a population. This allows
regulatory elements to be duplicated or arise de
novo, then subfunctionalize and/or be coopted
in the regulation of nearby genes. Subfunction-
alization eventually leads to the gene needing an
increased number of regulatory elements for its
proper expression in different cell types. Some-
thing very similar was observed by a recent study
(Kieffer-Kwon et al. 2013), in which distal regu-
latory elements in mouse ES and B cells were
identified. Functional dissection of individual
such elements was then carried out by knock-
ing them out using genome editing, and different
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enhancers were found to be responsible for the
expression of the same gene in the two different
cell types.

Second, it is far from clear whether all tran-
scription factor occupancy sites identified by
high-throughput studies are in fact functional.
There are multiple lines of evidence casting
doubt on such an interpretation. A broad ob-
servation of all ChIP-seq studies has been that
transcription factors bind to many sites near
genes that are of apparently little relevance to
the previously well-established functional roles
of the factor (Cao et al. 2010). It is entirely
possible that transcription factors bind to re-
gions of chromatin that are in state conductive
to their binding, but without having specified
selectively important effect on all of them; in
fact, this is quite likely given the degenerate na-
ture of the sequence recognition motifs of eu-
karyotic transcription factors. In addition, a
very wide dynamic range of occupancy strength
is seen in ChIP-seq assays (Landt et al. 2012),
which follows a power-law like distribution with
a small number of sites showing very strong oc-
cupancy and a very long tail of low-occupancy
sites. There is no simple relationship between
the strength of occupancy signal and functional-
ity, as both high- and low-signal functional sites
are observed, but ChIP-seq and DNAse-seq sig-
nal is generally correlated with sequence conser-
vation (Kellis et al. 2014), and studies suggest-
ing that low-occupancy sites in D. melanogaster
mostly lack enhancer activity have been pub-
lished (Fisher et al. 2012). It is thus prema-
ture to conclude that each and every ChIP-seq or
DNAse-seq peak is functionally important with-
out subjecting it to tests for enhancer activity
and other functional assays.

That the evolution of regulatory elements in
vertebrates is driven in large part by nonadap-
tive processes seems to be corroborated by re-
cent studies assessing the conservation and di-
vergence of transcription factor binding between
species (Villar et al. 2014). Such studies have so
far been carried out only in flies (Bradley et al.
2010; He et al. 2011; Ni et al. 2012) and in verte-
brates (Loh et al. 2006; Odom et al. 2007; Con-
boy et al. 2007; Kunarso et al. 2010; Schmidt
et al. 2010; Stefflova et al. 2013; Schmidt et al.
2012; Martin et al. 2011; The mouse ENCODE
Consortium 2014), which is admittedly a lim-
ited sample. Some patterns have nevertheless
already emerged: a significantly higher conser-
vation of transcription factor occupancy sites is

observed in flies than in vertebrates, with very
high rates of turnover found in the latter (Vil-
lar et al. 2014), although it should be stressed
that in many cases the turnover of binding sites
does not translate into turnover of the regula-
tion of their target genes, i.e. often regulatory
elements controlling a given gene are lost and
replaced by different regulatory elements puta-
tively playing the same role. These changes in
occupancy can be mediated by sequence alter-
ations in the recognition sequences targeted by
each factor but even more often they are the re-
sult in changes in the recognition sequence of
other factors occupying the same loci in a com-
binatorial fashion. The differences between flies
and vertebrates can be interpreted as the result
of the differences in the population genetic envi-
ronment of the two groups (Villar et al. 2014).
Flies have two orders of magnitude higher Ne
than most vertebrate species, the result of which
is an order of magnitude smaller genome, a much
higher fraction of which is under selective con-
straint (potentially more than 50% (Siepel et al.
2005; Andolfatto 2005; Drosophila 12 Genomes
Consortium 2007), compared to <10% in mam-
mals (Lindblad-Toh et al. 2011). The lowered
strength of selective constraint as a result of the
lowNe of vertebrates allows for a more rapid evo-
lution of regulatory elements in these lineages.
Of note, similar evolutionary factors might be
behind the rapid evolution of the lincRNA reper-
toire in our lineage, as discussed above (Nesculea
et al. 2014; Washietl et al. 2014).

It should be explicitly pointed out that the
reasoning outlined above concerns the origin
of regulatory complexity, not necessarily the
current functions of its individual components.
States of irreducible complexity, in which all
parts of the system are indeed vital for organ-
ism fitness, can be achieved via the mechanisms
of constructive neutral evolution. It is also true
that increases in complexity through nonadap-
tive means likely facilitate the emergence of or-
ganismal complexity as increases in the num-
ber of regulatory elements regulating genes al-
low for their expression in new cells/tissues or
the emergence of new cell types. However, it re-
mains true that regulatory complexity itself may
not be strictly necessary for increases in organ-
ismal complexity – it could very well be the case
that a fully functional human organism could be
“built” with a much more streamlined and effi-
cient system of regulatory relationships between
transcription factors and their targets than the
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one we observe in our genome.

16.5.6 The fraction of the human
genome that is functional

Much scientific and rhetorical effort has been in-
vested into trying to pin down a specific num-
ber for the fraction of the human genome that
is functional. There are good reasons to think
that the obsessive fixation on obtaining a pre-
cise number is misguided:

1. Any such number will ultimately depend
on the definition of what a “functional ele-
ment” is. However, it has been in practice
impossible to reach universal agreement on
such a definition.

2. Among others, one reason for this state of
affairs is that “functionality” is not a bi-
nary characteristic that a given DNA base
pair in the genome either does or does
not have. Changes in DNA sequence in
different regions of the genome can differ
vastly in the magnitude of their effect on
phenotypes and fitness. Thus “function-
ality” is best understood as being contin-
uously distributed, and consequently any
estimate for the total amount of “func-
tional” DNA in the genome will be highly
contingent upon an arbitrary threshold-
dependent definition of what function is.

3. On a most fundamental level, the impor-
tant question with major implications for
how we think about our genome is whether
most of it consists of “junk” DNA or not.
Most of the human genome indeed does
seem to be “junk” DNA and this is true
irrespective of whether we estimate the
amount of functional DNA to be 5%, 15%
or some other number constituting a mi-
nority fraction of it.

4. The unfinished (and monumental in its
magnitude) task, which does have real
importance, is to understand the role of
all candidate functional elements in the
genome in shaping phenotypes, largely
through the classical (though greatly
aided and sped up by technological ad-
vances such as genome editing and high-
throughput functional assays) approaches
that have produced the extensive amount
of knowledge we have about a handful

of loci in humans and some of the ma-
jor model systems. Agreeing on a pre-
cise number for how much of the human
genome is functional has little relevance
to these efforts as it does not necessarily
change the null hypotheses and the priors
with which the study of individual regu-
latory elements and ncRNAs will be ap-
proached.

16.5.7 The contributions of
ENCODE

The excessive focus on the “junk” DNA debate
has overshadowed the real scientific advances
that the ENCODE Project has contributed to
and it is therefore useful to summarize the ma-
jor ones here. While doing this, it should be re-
membered that the ENCODE Consortium was
set up with the goal of identifying the functional
elements in the human genomes, and not with
the goal of finding radically new principles of
gene regulation as there was no a priori reason
to think such mechanisms would be discovered.
That no such discovery was made was therefore
no surprise and no reason for disappointment;
significant progress towards the main goal of the
project was made though it has become apparent
that reaching it is going to be significantly more
complicated and laborious than perhaps hoped
for in the beginning. Specifically, ENCODE de-
livered:

1. Lists of candidate functional ele-
ments. The complexity of the tran-
scriptome and of the transcription fac-
tor binding landscape in the genome, es-
pecially when interpreted in the light of
the nonadaptive view of genome evolution,
means that no candidate functional ele-
ment identified through a high-throughput
functional genomic assays, whether it is an
enhancer, a noncoding RNA or an alter-
natively spliced isoform of a gene, can be
considered functional without subsequent
confirmation of its significance and dissec-
tion of its functional components. This
is a necessary activity, without the com-
pletion of which a complete understanding
of gene regulation in the human genome
will be difficult to achieve. Fortunately,
while such testing has previously been very
labor-intensive, highly parallel reporter as-
says (Melnikov et al. 2012; Patwardhan et
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al. 2012; Smith et al. 2013; Kheradpour et
al. 2013; Arnold et al. 2013) and readily
applicable genome editing tools (Jinek et
al. 2012) have recently become available,
promising to greatly speed up the process
of validation.

2. Annotation of noncoding variants
associated with human phenotypic
variation. Genome-wide association
studies (GWAS) of phenotypic variation in
the human population have revealed that
the majority of trait-associated sequence
variants reside in the noncoding portions
of the genome and are preferentially asso-
ciated with regulatory regions (Hindorff et
al. 2009; Nicolae et al. 2010; Zhong et
al. 2010). The intersection between the
GWAS annotations of such variants and
ENCODE maps of candidate functional el-
ements, especially those of transcription
factor occupancy, has been (Maurano et
al. 2012; Ward & Kellis 2012a; Ward &
Kellis 2012b; Boyle et al. 2012; Vernot
et al. 2012; Schaub et al. 2012; Hardi-
son 2012) and will be a highly informative
source of understanding of the mechanisms
through which sequence variation impacts
phenotype (examples in Bauer et al. 2013;
Hardison & Blobel 2013).

3. The development of the functional
genomics toolkit. The development
of many of the functional genomics as-
says that have become the workhorses of
research in the field was driven by re-
searchers within the ENCODE Consor-
tium (Mortazavi et al. 2008; Nagalakshmi
et al. 2008; Kodzius et al. 2006; Fullwood
et al. 2009; Johnson & Mortazavi et al.
2007; Mikkelsen et al. 2007; Robertson et
al. 2007; Hesselberth et al. 2009; Song et
al. 2011; Gaulton et al. 2010; Neph et al.
2012a). The experience it has had working
with a large number of such datasets and
the need to analyze them jointly have led
to the development of standardized best
practices for their execution (Kharchenko
et al. 2008; Landt et al. 2012; Marinov et
al. 2014; Jung et al. 2014; Ernst & Kel-
lis 2010; Ernst et al. 2011; Ernst & Kel-
lis 2012; Mortazavi et al. 2013; Hoffman
et al. 2013). The Consortium has also
pioneered many of the existing tools for
integrative analysis of functional genomic

datasets (Ernst & Kellis 2010; Buske et al.
2011; Ernst et al. 2011; Ernst & Kellis
2012; Hoffman et al. 2012; Mortazavi et
al. 2013; Hoffman et al. 2013; Xie et al.
2013). These methods will serve as a foun-
dation for large scale functional genomics
study of many systems in the future as I
extensively discuss below.

16.6 The Tree-of-Life
ENCODE

The question in the heart of the debate sur-
rounding the results of the ENCODE Project
is the relationship between the complexity of
genome architecture and the complexity of or-
ganismal organization. Through the lens of
panadaptationism, the experimentally demon-
strated biochemical complexity of transcrip-
tional regulation, the products of transcription,
and of RNA biology, is viewed as an integral
causative component agent behind the organis-
mal complexity of humans. This is especially
true if the common view of the human species as
the highest achievement of evolution is adopted.
As already discussed, one way of looking at
the relationship of genomic and organismal com-
plexity sees the two as forming a positive feed-
back loop, in which increased organismal com-
plexity leads to larger organismal size, lowered
Ne, and increased tolerance towards further in-
creases in genomic complexity. This in turn may
facilitate more regulatory innovations leading to
further complexification of organismal organiza-
tion. However, this is at present only a gen-
eral trend observed largely based on the com-
parison of the very general features of sequenced
genomes. Even at this level, it remains to be
generalized across the whole tree of life – the
sampling of completely sequenced genomes is
nowhere near complete in terms of coverage of
the major eukaryote lineages and the multicel-
lular groups that independently evolved within
them – but more importantly, it has not yet
been tested by direct biochemical measurements
of functional genomic complexity. The integra-
tion of the results of the ENCODE and modEN-
CODE and mouse ENCODE projects will pro-
vide many insights into these questions. How-
ever, all of these species are metazoans and an-
imals are only one of a very large number of
deeply diverging lineages of eukaryote (Figure
16.1). In addition to these four major model
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organisms, the yeast Saccharomyces cerevisiae
has been subject of extensive functional genomic
characterization (Lee et al. 2002), and signifi-
cant amount of work has been done on the plant
model organism Arabidopsis thaliana, but even
in the latter case a large scale dissection of reg-
ulatory complexity has not been embarked on.
Thus we have a significant (yet still far from
complete) functional genomic knowledge of only
a handful of species belonging to only three ma-
jor lineages (out of many dozens) within two of
the five to eight major subdivisions of the eu-
karyotes (Parfrey et al. 2005; Adl et al. 2012).
A major expansion of this list is highly desirable
for a number of overlapping reasons discussed
below. Fortunately, the work done by the EN-
CODE Project combined with current techno-
logical developments has now enabled such stud-
ies. Based on the history of biology in recent
decades, there are reasons to believe that they
will provide deep insights into these questions,
and potentially open up many new research di-
rections.

16.6.1 The
any-organism-ENCODE

One of the less appreciated consequences of the
advent of next-generation sequencing and the
phasing out of microarray technology has been
that now any organism is in principle accessi-
ble for functional genomic dissection as all that
is needed is a sequenced genome, without the
need to go through the slow, complex and expen-
sive procedure of generating microarrays for each
species. The availability of sequenced genomes
is not exactly a solved problems for eukary-
otes, especially for those with larger and repeat-
rich genomes, where the nature of short-read se-
quencing has made obtaining anything signifi-
cantly better than highly fragmented assemblies
extremely difficult (Alkan et al. 2011). However,
this situation is set to improve considerably with
increased throughput from existing long-read se-
quencing technologies (Eid et al. 2009; Schadt
et al. 2010; Kuleshov et al. 2014) and the long-
awaited arrival of functioning nanopore sequenc-
ing (Kasianowicz et al. 1996; Deamer & Akeson
2000; Branton et al. 2008; Clarke et al. 2009;
Cherf et al. 2012; Manrao et al. 2012). It is
reasonable to assume that in the coming years it
will become possible to assemble at high quality
and contiguity all genomes, even the very large
ones that are now outside of the realm of the

possible and the current gaps in our sampling of
the phylogenetic diversity will be filled.

Once a genome is sequenced, the various *seq
assays (Wold & Myers 2008) can be carried out
on it, and most of them are at this point mature.
By their very nature most techniques assaying
the occupancy of proteins on nucleic acids are
tailored to short-read technologies as the DNA
or RNA fragments subjected to sequencing are at
most a few hundred base pairs in size. For these
reasons long-read sequencing is of little utility to
ChIP-seq, DNAse-seq, CLIP-seq and other such
assays, and of even less utility to high-resolution
versions of them such as ChIP-exo-seq (Rhee &
Pugh 2011; Rhee & Pugh 2012). The approaches
and methodologies developed so far for process-
ing, quality evaluation, analysis and integration
of these kinds of data developed as part of the
ENCODE Project will therefore continue to be
relevant long into the future.

While DNAse, Hi-C and RNA-seq assays are
generic in nature in the sense that no special
reagents are needed, ChIP, ChIA-PET and CLIP
assays require antibodies specific to the targeted
protein. Many histone modifications are highly
phylogenetically conserved and the same anti-
bodies can be used in deeply divergent species,
but working ChIP-validated antibodies are gen-
erally only available for a small fraction of hu-
man transcription factors and other chromatin-
associated proteins and for even fewer such tar-
gets in the major model systems. The advent of
genome editing will hopefully alleviate this prob-
lem. CRISPR-mediated genome editing (Jinek
et al. 2012) has recently emerged as a power-
ful tool for manipulating genomes and has been
successfully used in a very wide variety of sys-
tems (Dickinson et al. 2013; Chen et al. 2013;
Auer et al. 2014; Jiang et al. 2013a; Jiang
et al. 2013b; Mali et al. 2013; DiCarlo et al.
2013; Friedland et al. 2013; Gratz et al. 2013;
Hwang et al. 2013; Chang et al. 2013; Jao et
al. 2013; Cong et al. 2013; Li et al. 2013a; Li
et al. 2013b; Li et al. 2013c; Nekrasov et al.
2013; Shan et al. 2013; Tzur et al. 2013; Waai-
jers et al. 2013; Wang et al. 2013; Chiu et al.
2013; Lo et al. 2013; Katic & Großlhans 2013;
Kondo & Ueda 2013), including for the knock-in
of tags such as GFP into endogenous loci (Dick-
inson et al. 2013; Chen et al. 2013; Auer et
al. 2014). Such approaches, when combined
with recently developed high-throughput chro-
matin immunoprecipitation methods (Aldridge
et al. 2014; the R-ChIP protocol described ear-
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lier here) open the door to potentially assaying
the whole set of transcription factors of a species,
especially in unicellular eukaryotes.

The major area in which significant changes
are both expected and needed is transcriptomics.
Most RNA molecules are far too long to be se-
quenced from end to end with current short-read
sequencers (with the various small RNA species
being the major exception). This has posed im-
mense difficulties for the assembly of full-length
transcripts from RNA-seq data, a problem the
accurate solution of which is of crucial impor-
tance for annotating genomes and for the study
of alternative transcription initiation, splicing
and other RNA processing events. The ability to
generate large numbers of very long reads cover-
ing full-length transcripts should solve many of
these problems.

Still, many of the tools are already in place to
enable the generation of ENCODE-level in their
size and scope functional genomic compendiums
for pretty much any species of interest, and this
can be quite rapid and inexpensive compared to
the scale of the effort and investment it took to
carry out the first genome-wide phase of the EN-
CODE and modENCODE projects. Thanks to
the continued advances in technology and au-
tomation in the near future it will be feasible
(both in terms of manpower and in terms of cost)
for the comprehensive large-scale functional ge-
nomic characterization of a whole organism to be
carried out by individual laboratories, especially
in the cases of unicellular eukaryotes. It should
be noted though, that for the integration of such
efforts between laboratories to be possible, stan-
dardized protocols and stringent control of data

quality will be needed, of the kind that large
consortia such as ENCODE have invested sig-
nificant effort in developing (Landt et al. 2012;
Marinov et al. 2014).

The major promise this holds is the ability
to learn a lot about the genome biology of pre-
viously non-model organisms orders of magni-
tude faster and cheaper than the decades of ef-
fort that had to be invested into accumulating
the knowledge we have about the human genome
and the genomes of the major model systems.
The ENCODE Project did not reveal fundamen-
tally new paradigms of gene regulation and the
functional organization of the human genome,
however, first, given the depth in which our
genome has been studied in the past, it would
have been a major, and not entirely pleasant
surprise if it had in fact done so; and second, it
did recover a lot of what was previously known
about it. For example, the integrative analysis
of multiple histone marks did return the known,
in some cases from detailed mechanistic stud-
ies, correlations between these marks and be-
tween the marks and various genic and intergenic
features in the genome, in addition to finding
some new chromatin states that were not recog-
nized before. Of course, not everything about
how a genome functions can be learned from
high-throughput functional genomics, as evident
by the above-mentioned interpretative difficul-
ties we face when trying to assess the functional
importance of all observed biochemical activity.
Still, it remains true that first, obtaining the list
of potential parts is always a major step forward,
and second, that the general principles of func-
tional organization can be inferred without the

Figure 16.1 (preceding page): Major eukaryotic clades, their established and putative
relationships with each other, and the place of the human lineage within them. The
tree is derived from Keeling 2013. A variety of other topologies differing in both minor and major
ways have been proposed by other authors and it is likely that the true phylogenetic relationships
differ from the ones shown here; continued revisions are therefore to be expected for the foreseeable
future, especially with the continued discovery of previously unknown deeply diverging lineages
and whole-genome sequencing of representatives of lineages for which genome sequences are not
available at present. The clades to which the major model organisms that have been the workhorses
of functional genomic research belong are highlighted: Metazoans (Homo sapiens, Mus musculus,
Drosophila melanogaster, Caenorhabditis elegans; Fungi (Saccharomyces cerevisiae), and land plants
(Arabidopsis thaliana). These lineages comprise a fairly small portion of the known eukaryotic
diversity. Note that not all major clades are shown and that almost certainly not all major clades
are even known as new lineages continue to be identified, the discovery of Chromera velia as a sister
lineage of apicomplexans and its importance to understanding the evolution of parasitism in the
latter being a very good example (Moore et al. 2008; Oborńık et al. 2009; Dorrell et al. 2014;
Weatherby & Carter 2013).
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detailed annotation of each and every candidate
functional element.

16.6.2 Understanding the biology
of crops and pathogens

While the focus of this text is on the origins,
evolution and significance of genome complex-
ity, questions the answers to which may neces-
sitate the study of obscure organisms the main
claim to fame of which lies in the amazing evo-
lutionary innovations their lineages have come
up with, the genomic approaches described in
the previous section will be of even greater prac-
tical relevance for figuring out the biology of
plant crops, eukaryotic pathogens (protists such
as Plasmodium, Toxoplasma, Leishmania, Tri-
chomonas, Trypanosoma, Entamoeba, and Gi-
ardia, various parasitic worms, and numerous
others) and any species of importance to hu-
mans, the genome of which contains significant
amounts of at present poorly annotated noncod-
ing DNA (although it should be noted that the
genome biology of many such species is deeply
intriguing on its own).

One of the major contribution to understand-
ing human biology that the ENCODE Project
has made has been the annotation of some non-
coding GWAS variants, as discussed above. This
work is by no means finished – the next round
of the project should bring us closer to the final
goal – but it does represent a pioneering effort
in this direction.

To the extent that the same genomic archi-
tecture is shared between mammals and plants,
it is quite likely that the same problem of a
lot of explanatory variants residing in noncod-
ing regions of the genome will be faced by large-
scale sequencing studies aiming at understand-
ing the genetic basis of variation between differ-
ent plant cultivars and between different strains
of other economically important species, in pro-
portion with the amount of functional noncod-
ing DNA they possess. Based on ENCODE’s
experience with the human genome, it can be
expected that comprehensive mapping of tran-
scription factor binding sites and other regu-
latory elements will be needed to understand
the trait-associated variants in these genomes,
with the approaches developed for tackling these
questions in humans providing invaluable help.

Similarly, functional genomic approaches will
be of tremendous benefit for dissecting the reg-
ulatory biology of pathogen species. This is

not only of practical, but also of fundamen-
tal biological importance, given that as a rule,
pathogens have the most complicated life cycles
of all organisms, and the same genome is ca-
pable of encoding the development of morpho-
logically very different life forms. While multi-
ple such genomes have already been sequenced,
at present knowledge of how their gene regula-
tion intersects with developmental mechanisms
remains very limited.

16.6.3 Mapping the rewiring of
gene regulatory networks in

evolution

A major results of extensive studies in the field
of evolution of development (evo-devo) over the
last few decades has been that the evolution of
body plans seems to be in larger extent the result
of changes in the regulation of genes, especially
developmental regulators, rather than being pri-
marily due to changes in the gene repertoire of
different lineages. Often the same molecules are
repeatedly utilized in the development of very
different structures, both across the metazoan
phylogeny and within the same organism. The
rewiring of gene regulatory networks has been at
the core of these changes (Davidson 2006; Peter
& Davidson 2011). While the detailed functional
characterization of individual loci using classi-
cal genetic approaches (Davidson et al. 2002a;
Davidson et al. 2002b) will remain indispens-
able, the path towards a complete understand-
ing of the evolution of development will be sig-
nificantly more easily traveled if the targets of
the major developmental regulators are compre-
hensively mapped and their conservation and di-
vergence during the evolution of different groups
studied in detail. Given that regulatory elements
are often not conserved on the sequence level
(Romano & Wray 2003; Balhoff & Wray 2005;
Ludwig et al. 2005; Hare et al. 2008; see also
discussion above on transcription factor binding
site turnover), functional genomics methods for
mapping transcription factor binding sites and
other regulatory elements of the kind that the
ENCODE Project Consortium has extensively
used will be required to accomplish this task.
At present such studies face major hurdles due
to the lack of suitable immune reagents and
the difficulty of obtaining material of sufficient
quantities and purity from specific developmen-
tal stages and tissues/cell types in many lineages
of key interest for understanding metazoan evo-
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lution. In some systems, these challenges may
remain unsolved for a very long time, yet tech-
nological advances in genome editing and in the
isolation of specific subsets of cells/nuclei from
embryos/tissues (Deal & Henikoff 2010; Steiner
et al. 2012; Henryet al. 2012; Southall et al.
2013; Schauer et al. 2013) should make such
studies feasible in many others.

16.6.4 Understanding the
evolutionary origins and the

diversity of eukaryotic regulatory
biology

As their answers are what is needed to enable the
manipulation of biological systems, the questions
asked in biochemical and molecular biology re-
search tend to be of the “what” and “how” kind,
i.e. we pick apart the individual components of
these systems and identify the relationships be-
tween them. From an evolutionary perspective
the “why” questions are just as important. Be-
hind a lot of the arguments about the ENCODE
Project and what its results mean about our
view of our genome stands the question “Why
is mammalian regulatory biology the way it is?”.
A perfectly valid possible answer to this question
might be that “this is the only way it could be”
and if we did not have any examples of signifi-
cant deviations from the regulatory principles we
observe in our genome, there would be no way
to reject that explanation. On the other hand,
if such deviations do in fact exist, then we know
that there are other ways the system might op-
erate and we are forced to find an explanation
for why it has diverged between different lin-
eages. The classic model systems already give
us plenty of examples of such deviations from
the organization of the human genome. As men-
tioned above, all known prokaryotes have com-
pact streamlined genomes with little intergenic
DNA, no spliceosomal introns, few repetitive el-
ements, genes organized in operons, and in gen-
eral, very little that could be potentially classi-
fied as “junk” DNA and far less of the baroque
regulatory complexity of vertebrates. Within eu-
karyotes, the model yeast species also have small
compact genomes, with little intergenic DNA,
their introns are fewer in number and short in
length, and gene regulation seems to be oper-
ating mostly through promoter-proximal regula-
tory elements. The genomes of D. melanogaster
and of C. elegans are more similar in organiza-
tion to ours but are still and order of magnitude

more compact, and in C. elegans many genes
are transcribed as polycistronic units and then
trans-spliced to splicing leader sequences to gen-
erate mRNAs.

We do have a general theory that explains
many of these differences as a result of the inter-
play between natural selection, mutational bi-
ases and genetic drift (Lynch 2007c). But not
all aspects of regulatory biology have been ex-
amined through an evolutionary lens, and far
from all of eukaryotic diversity has been stud-
ied from such perspective. It could well be, and
is in fact, highly likely that novel insights into
the origins and functions of the core features of
eukaryotic transcription regulation and RNA bi-
ology will be derived from the comparative study
of regulatory mechanisms across the tree-of-life,
including all deeply diverging eukaryote lineages
that have received little attention so far.

This approach has already proven invaluable
in understanding the deep evolutionary origins
and functional significance of some core features
of mammalian genome biology. A prime ex-
ample is DNA methylation. The primary role
of 5-methylcytosine DNA methylation has been
traditionally understood to be repression (Fuks
2005; Miranda & Jones 2007), based on exten-
sive research on the scale of individual genes and
the whole genome in mammals and in flowering
plants (Lister et al. 2008; Lister et al. 2009).
Significant differences in the patterns of methy-
lation have been uncovered between the two lin-
eages (Law & Jacobsen 2010). In mammals,
cytosines are methylated in the context of CG
dinucleotides, by the de novo DNA methylases
DNMT3a and DNMT3b (Okano et al. 1998;
Okano et al. 1999), and by the maintenance
DNA methylase DNMT1 (Bestor et al. 1988).
All CG dinucleotides in mammalian genomes
are methylated, including gene bodies, except
for the so called CpG islands, clusters of ele-
vated density of CG nucleotides associated with
the promoters of genes (Bird 1986; Gardiner-
Garden & Frommer 1987), in contrast with the
rest of genome where CG nucleotides tend to
be eliminated as methylated cytosines can un-
dergo spontaneous deamination an turn into
thymines. CpG islands are differentially methy-
lated in the context of the developmental repres-
sion of lineage-specific genes and methylation is
also important for the silencing of transposons
but the methylation of gene bodies of less un-
derstood significance (Kulis et al. 2013). In ad-
dition, whole-genome profiling of 5mC in embry-
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onic stem cells has also revealed that cytosines
in the CHG and CHH sequence contexts (where
H stands for A, T or G) can also be methylated
(Lister et al. 2009). In contrast, in flowering
plants, methylation is restricted to transposons
and other repetitive elements, where it serves
repressive function and occurs in all three se-
quences contexts. It is deposited de novo by the
DRM2 enzyme and maintained by DMT1 in the
CG context, CMT3 in the CHG context, and
by persistent de novo methylation in the CHH
context, with all these proteins belonging to the
same family of enzymes (Law & Jacobsen 2010).

Even though 5mC methylation has been lost
on more than one occasion (for example, yeast
such as Saccharomyces cerevisiae and the ne-
matode C. elegans), the presence of methyla-
tion and DNA methylation enzymes of the same
family in very deeply diverging lineages suggests
deep evolutionary conservation of the methyla-
tion pathway going back to the LECA, where
it likely played a role in silencing transposons.
However, whether different methylation patterns
and functions exist in other organisms had not
been clear until several studies in the last few
years used genome-wide bisulphite sequencing to
profile the genome-wide distribution of 5mC in
multiple species, both in the major eukaryotic
groups that model organisms belong to and in
more deeply diverging lineages (Zemach et al.
2010; Feng et al. 2010; Huff & Zilberman 2014).
These studies found some examples of unusual
methylation patterns (for example, in the green
alga Chlamydomonas, non-CpG methylation is
highly enriched within the exons of genes) and
concluded that both gene-body and non-CpG
methylation were ancestral to eukaryotes, with
this pattern then undergoing modification in di-
verging lineages, likely due to differential con-
straints on TE proliferation experience by them
(Zemach et al. 2010).

A more recent study of DNA methylation
(Huff & Zilberman 2014) extended the taxon
sampling to diatoms (Phaeodactylum tricor-
nutum, Fragilariopsis cylindrus, Thalassiosira
pseudonana), the pelagophyte stramenopile Au-
reococcus anophagefferens, the haptophyte Emil-
iania huxleyi, and the prasinophyte chlorophytes
Bathycoccus prasinos, Ostreococcus lucimarinus,
and Micromonas pusilla. Remarkably, it found
a completely novel methylation pattern in some
of these species (A. anophagefferens, E. huxleyi,
B. prasinos, O. lucimarinus, and M. pusilla)
characterized by DNA methylation of CpG dinu-

cleotides situated in linker histone regions, with
a periodicity corresponding to the length of nu-
cleosome spacing in each species. CpG methyla-
tion was coupled to and directly influenced a cor-
respondingly tight nucleosome positioning pat-
tern, as the methylated cytosines disfavor the
formation of nucleosomes. Even more remark-
ably, CG dinucleotides were actually enriched
in nucleosome linker regions and overall in the
genomes of these organisms, contrary to what is
observed in the genomes of most other lineages
(where CG nucleotides are typically depleted due
to the spontaneous deamination of methylcyto-
sine) indicating that they are subject of active
maintenance by selective forces. Another impor-
tant surprise was that these novel DNA methyla-
tion patterns were generated by a different DNA
methylase, DNMT5, which is of the same family
as the DNMT3 and DNMT1 enzymes (Ponger
& Li 2005), while DNMT1, and often DNMT3
too, is not present in their genomes. Given that
DNMT5 is found in very deeply diverging groups
of eukaryotes, it is likely that the last common
ancestor eukaryotes contained both DNMT1 and
DNMT5. Apparently, DNMT5’s enzymatic ac-
tivity is highly biased against methylating nu-
cleosomal DNA, which explains its preference
for nucleosome linker DNA. It has been known
for quite some time that nucleosomes disfavor
methylation (Robertson et al. 2004; Gowher et
al. 2005; Takeshima et al. 2006; Takeshima et al.
2008; Felle et al. 2011; Jiang et al. 2011; Kelly
et al. 2012), and specific amino acids changes
in Dnmt3b have been identified that confer en-
hanced nucleosome methylation ability in mam-
mals (Shen et al. 2010). In contrast, Dnmt5
seems to have evolved in the opposite direction,
disfavoring nucleosomes to an much greater ex-
tent, and candidate amino acid residues respon-
sible for this shift in preferences were identified
(Huff & Zilberman 2014).

This linker histone methylation pattern ob-
served in these organisms has been interpreted
as arising due to selective pressure towards com-
pactness of the nucleus. All of these species
are marine algae, the lifestyle of which favors
small cell sizes and compact nuclei (as this might
confer enhanced light absorption and quicker
growth). Using DNA methylation to position
nucleosomes was suggested to eliminate the need
for bulky chromatin remodeling complexes (Huff
& Zilberman 2014). Whether this is the case re-
mains to be confirmed by future studies (and is,
of course, a hypothesis that is well suited for test-
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ing by identifying the components of the chro-
matin remodeling complexes in the genomes of
these organisms and globally mapping their ge-
nomic occupancy). Nevertheless, these results
are highly intriguing for a few reasons:

1. A completely novel DNA methylation pat-
tern was found, one that has apparently
evolved independently and convergently in
deeply diverging eukaryote lineages

2. This pattern is governed by a previ-
ously poorly characterized member of the
DNMT family.

3. It provided further insight into the rela-
tionship between DNA methylation and
nucleosome positioning, including in mam-
malian systems .

4. A potential connection between evolution-
ary constraints on cell and nuclear size and
genome architecture was identified.

5. A plausible explanation for the high ge-
nomic GC content in these species was
found, in contrast to most eukaryotic
genomes, which tend to be AT-rich.

We can be reasonably certain that many
other such surprises await discovery in the
genomes of unicellular eukaryotes, and they will
have significant impact on our thinking about
the core features of mammalian regulatory biol-
ogy. Several instances of the evolution of radical
departures from the standard model of eukary-
otic genomic organization and gene regulation
are already known, although they have rarely
been studied in detail.

The genome biology of ciliates provides one
such example. Ciliates are unicellular eukary-
otes belonging to the alveolates clade, together
with two other major groups, the dinoflagellates
and the apicomplexans (Figure 16.1). The cili-
ate Tetrahymena thermophila has been a model
system for many decades, the study of which
has resulted in a number of fundamental bio-
logical discoveries, such as the discovery of self-
splicing RNAs (Kruger et al. 1982), the rela-
tionship between histone acetylation and gene
activation (Brownell et al. 1996), telomerase
(Greider & Blackburn 1985), and others. One
of the defining features of ciliates is the presence
of a macronucleus and a micronucleus. The mi-
cronucleus is diploid and transcriptionally inert
while the macronucleus is highly polyploid and

is where gene expression takes places. The mi-
cronucleus can divide mitotically and meiotically
and in effect constitutes the “germline”, while
the “somatic” macronucleus divides amitotically
(Wolfe 1967; Ammermann 1971), with no known
mechanisms of guaranteeing equal separation of
genetic material; instead its high polyploidy is
what ensures that each daughter macronucleus
receives the full set of genes. The most strik-
ing feature of this system is that the macronu-
cleus is derived from the micronucleus through
a complex process involving the excision of large
portions of the micronuclear genome, from 20-
30% in some ciliate groups, such as Tetrahymena
and Paramecium, to more than 95% in oth-
ers such as Euplotes, Stylonychia and Oxytricha
(Jahn & Klobutcher 2002). The excised frag-
ments (called internal eliminated sequences or
IESs) are both often similar to transposons in
structure and generally enriched for transpos-
able elements (Baird et al. 1989; Wuitschick et
al. 2002; Fillingham et al. 2004). The pro-
cess of IES elimination is dependent on trans-
posase enzymes (Baudry et al. 2009; Cheng et
al. 2010; Nowacki et al. 2009) and is carried out
through complex small RNA- (Mochizuki et al.
20012; Mochizuki & Gorowsky 2004; Mochizuki
& Gorowsky 2005; Aronica et al. 2008; Lepere
et al. 2008; Lepere et al. 2009; Schoeberl et
al. 2012; Fang et al. 2012; Zahler et al. 2012)
and long RNA-mediated (Prescott et al. 2003;
Nowacki et al. 2008) epigenetic mechanisms that
guide their excision.

The macronuclear genomes of several cili-
ates have been sequenced: Tetrahymena ther-
mophila (Eisen et al. 2006), Paramecium tetrau-
relia (Aury et al. 2006), Ichthyophthirius mul-
tifiliis (Coyne et al. 2011), and most recently,
Oxytricha trifallax (Swart et al. 2013). From
these and prior studies, multiple differences
in the genome reduction patterns and mecha-
nisms between the different ciliates lineages have
emerged. In all species, the elimination of IESs
results in the fragmentation of the micronuclear
chromosomes into smaller micronuclear chromo-
somes, a process that involves the addition of
new telomeric sequences to the ends of the new
chromosomes (Nowacki et al. 2009). How-
ever, while macronuclear chromosomes are still
a relatively small number in Tetrahymena (225),
Ichthyophthirius (71) and Paramecium (∼200),
each of them contains many genes and is gener-
ally organized like a typical eukaryotic chromo-
somes.
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In contrast, in Oxytricha and in related cil-
iates such as Stylonychia and Euplotes, the
macronuclear genome exists in the form of thou-
sands of nanochromosomes (Lawn et al. 1978;
Swanton et al. 1980; Swart et al. 2013), which
in the Oxytricha macronuclear genome contain
just a single gene, rarely 2 or more (Swart et al.
2013). Not only that, but in Oxytricha IESs are
not just excised, but the genes exist in a scram-
bled nonlinear form in the micronucleus and
have to be “unscrambled” and put back together
in the correct order when the macronucleus is
formed (Prescott 1999; Fuhrmann et al. 2013).
This processes can lead to the formation of al-
ternative nanochromosome isoforms for the same
gene, some of which are incomplete and likely
nonfunctional (Herrick et al. 1987a; Herrick et
al. 1987b; Klobutcher et al. 1988), and even
allows for the possibility of “alternative DNA
splicing” (Fass et al. 2011). The organization
of single-gene nanochromosomes is most curious,
as they consist of a 20bp-long telomere sequence
on each end, a 5’ untranscribed sequence (UTS)
that is on average 73bp long, the gene, and a
3’UTS that is on average 25bp long. UTRs are
also very short (on average 34bp for the 5’UTR
and 25bp for the 3’UTR). Very little research
has been done on the mechanisms of gene regula-
tion in these organisms, however such extremely
small noncoding regions pose obvious questions
regarding the way transcriptional regulation is
mediated by transcription factors and histone
modification patterns in these systems. The
regulatory noncoding regions surrounding tran-
scription start sites in other eukaryotes are usu-
ally significantly longer, and transcription initi-
ation stats and regions of transcriptional elonga-
tion are marked by nucleosomes (each of which
occupies between 150 and 200bp of DNA) con-
taining specific histone marks (these modifica-
tions are present in the macronuclei of Tetrahy-
mena and Paramecium but little work has been
done on Oxytricha and not much is known about
its macronuclear chromatin). One possibility
is that some part of gene expression regulation
may be accomplished at the level of the con-
trol of DNA copy number. Substantial varia-
tion in copy number is observed between dif-
ferent nanochromosomes, nanochromosome copy
number is somewhat correlated with the expres-
sion of their genes (Xu et al. 2012) and mecha-
nisms for the RNA-mediated epigenetic regula-
tion of DNA copy number have been proposed
(Nowacki et al. 2010; Heyse et al. 2010). How-

ever, regulation of copy number would be ex-
pected to be slower than the direct regulation of
transcription, and to be somatically heritable,
thus it would not be well suited to situations in
which fast response to quickly changing environ-
mental conditions is needed, and transcriptional
and/or post-transcriptional regulation has to be
playing a significant role in the biology of these
organisms. In the future, it will of great interest
to explore it in more detail as well as the evolu-
tion of the nanochromosome format and all the
associated changes in nuclear and regulatory bi-
ology it necessitates within the ciliate clade. Per-
haps even more intriguing are the possibilities
such systems offer for understanding gene regu-
lation in general – the holy grail of the field has
always been the ability to build detailed com-
putational models of the regulation of gene ex-
pression that are fully predictive of its outcome,
but this has turned out to be very difficult in
practice, one of the main reasons for which has
been our absence of good understanding of the
roles of transcription factor binding cooperativ-
ity, the integration of long-range interactions be-
tween distal enhancers and promoters, and the
effect of preexisting chromatin states on tran-
scription factor binding. It is certainly possible
that all these phenomena are also important in
the biology of nanochromosomes but if this is not
the case and gene regulation in these organisms
is governed by the binding of just a few TFs
to few and mostly promoter-proximal sites, as
suggested by the limited sequence space around
nanochromosome promoters, many of the cur-
rently confounding variables would be absent,
providing us with a simplified system allowing
us to better understand the interplay between
the remaining ones (in particular, the interac-
tions between transcription factors and between
histone states), knowledge that can later be used
in more conventional eukaryotic systems.

While ciliates engage in complex rearrange-
ments of their genomes, on more than one occa-
sion the even more unusual direction of dispens-
ing with most gene regulation at the transcrip-
tional level has been followed. One relatively
well-studied lineage, in which this has happened,
is the trypanosomatid kinetoplastids. Kineto-
plastids as a whole are a group of excavates (Fig-
ure 16.1) that contains both free-living and par-
asitic lineages (with parasitism apparently hav-
ing evolved multiple times in their evolution-
ary history; Simpson et al. 2006), but only the
trypanosomatids have been extensively studied
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as they include several major human pathogens
(Trypanosoma and Leishmania). Several Try-
panosoma and Leishmania genomes have been
sequenced Ivens et al. 2005; Downing et al.
2011; Berriman et al. 2005; El-Sayed et al. 2005;
Peacock et al. 2007), as well as the genome
of the Phytomonas spp. trypanosomatid, which
parasites on plants (Porcel et al. 2013). These
genomes display an unusual genome organiza-
tion – they are compact, containing very few
introns, and most strikingly, genes are grouped
in long units of several dozens to more than a
hundred, which are transcribed as single poly-
cistronic transcripts. These transcripts are then
subject to trans-splicing through the addition
of splicing leader (SL) sequences to the 5’ ends
of the individual genes. Trans-splicing on its
own is found in a few other eukaryotic groups
(most notably, in nematodes; Krause & Hirsh
1987; Huang & Hirsh 1989), but in trypanosomes
the whole genome is transcribed as polycistronic
units, the units contain exceptionally large num-
ber of genes, the genes within individual units
have no discernible functional relationship with
each other, and most importantly, there seems
to be no regulation of gene expression at the
level of transcription (reviewed in Campbell et
al. 2003; Mart́ınez-Calvillo et al. 2010; Kramer
2012). This is in marked contrast with the com-
plex life cycles of these organisms, which cer-
tainly requires a lot of regulation of gene expres-
sion, meaning that it has to happen at the post-
transcriptional level. One mechanism might be
differential trans-splicing (Gupta et al. 2013), in
which the addition of SL sequences to different
positions leads to functionally distinct proteins,
and indeed differential trans-splicing seems to be
widespread (Siegel et al. 2010; Nilsson et al.
2010; Kolev et al. 2010) though whether it has
functional significance in all cases is not known.
Another mechanism is the regulation of mRNA
stability, evidenced by the fact that changes in
mRNA levels are observed for a portion of try-
panosomatid genes in different stages of the life
cycle (Leifso et al. 2007; Saxena et al. 2007;
Minning et al. 2009; Queiroz et al. 2009; Ka-
bani et al. 2009; Jensen et al. 2009; Veitch et
al. 2010; Lahav et al. 2011; Depledge et al.
2009; Rochette et al. 2009; Srividya et al. 2007;
Alcolea et al. 2010;). Such regulation might
be mediated by RNA binding proteins (Estévez
2008; Dallagiovanna et al. 2008), riboswitches,
or other mechanisms. Finally, regulation at the
translational and possibly the post-translational

level seems to be widespread (Bente et al. 2003;
Nugent et al. 2004; McNicoll et al. 2006; Leifso
et al. 2007; Rosenzweig et al. 2008; Vasquez et
al. 2014).

While we know enough to conclude that the
regulatory biology in trypanosomatids seems to
be happening almost entirely at the RNA level,
overall we know very little about the inner work-
ings of these systems, the nature of the cis-
acting regulatory elements and the logic of reg-
ulatory circuits that operate in them, and the
evolutionary pressures the drove/allowed their
evolution. The independent evolution of trans-
splicing in nematodes and in other groups is of-
ten explained as a consequence of their com-
pact genomes and fast generation times, and the
parasitic lifestyle of trypanosomatids might have
something to do with their unusual genomic or-
ganization. The study of free-living kinetoplas-
tids and the related diplonemid and euglenid
lineages should shed light on some of these is-
sues. Limited published genomic data on the
free-living kinetoplastid Bodo saltans (Santana
et al. 2001; Jackson et al. 2008), belonging to
the eubodonids, the closest to trypanosomatids
lineage (Deschamps et al. 2011), suggests that
trans-splicing is an ancestral feature of all kine-
toplastids, however, whether the lack of tran-
scriptional regulation is also ancestral remains
to be seen. The tools for studying the func-
tional genomics of RNA-protein interactions are
approaching maturity (Rinn & Ule 2014; Mittal
& Zavolan 2014; McHugh et al. 2014), and al-
though they remain more difficult to carry out
than ChIP and other chromatin assays, they will
be crucial for the untangling of the regulatory
networks in these organisms. Of note, the next
round of the ENCODE Project features as one
of its goals the large-scale identification of the
binding sites of a large number of human pro-
teins; the insights from this effort will be infor-
mative for the study of kinetoplastid biology and
vice versa.

The dinoflagellates are another group that
has evolved in a similar direction (in fact, there
are many convergent features common to kineto-
plastids and dinoflagellates; Lukes et al. 2009);
however while they share certain features with
other groups, dinoflagellates go beyond anything
observed elsewhere and reach wholly new levels
of “oddness”, exhibiting the most radical known
departures from our conventional view of the
way an eukaryotic cells operates in numerous as-
pects of their biology (Hackett et al. 2004; see
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discussion of organellar genome biology below
for more examples), to an extent that they used
to be thought as intermediates between prokary-
otes and eukaryotes (Dodge 1965). The dinoflag-
ellates are a highly successful and diverse lineage
of alveolates, containing both heterotrophic and
autotrophic groups, with photosynthetic capac-
ity being the result of secondary and even serial
secondary endosymbiosis (Keeling 2009; Keeling
2010). They are unique among all eukaryotes
in that their nuclei seem to contain little or no
histones (Rizzo & Nooden 1972; Rizzo 2003),
chromatin is permanently condensed (Dodge &
Greuet 1987), chromosomes exist in a liquid
crystalline state (Rill et al. 1989), and up to
70% of thymine bases in DNA are replaced by 5-
hydroxymethylcytosine (Rizzo et al. 1987). The
negative charge of DNA has been suggested to
be neutralized by divalent cations instead of his-
tone proteins (Levi-Setti et al. 2008). For a long
time it was thought the histones are completely
absent from their genomes, but EST and tran-
scriptome sequencing efforts have conclusively
shown that dinoflagellates in fact do possess his-
tone genes (Hackett 2005; Jaeckisch et al. 2012;
Roy & Morse 2012; Bayer et al. 2012). These
results, however, by no means resolve the mys-
tery of dinoflagellates genome biology as the rea-
son histones were believed to be absent is that
they were not detectable biochemically and that
the protein-to-DNA ration in dinoflagellate chro-
matin is about 1:10, compared to the typical 1:1
ratio in all other eukaryotes, i.e. even though
histones are present, they are either expressed
only at certain stages of the life cycle or they
are only bound to a tiny fraction of the genome.
More recently, an abundant nuclear protein that
might be playing a histone-like role of apparent
Phycodnaviridae viral origin was found (Gornik
et al. 2012).

Unfortunately, knowledge of dinoflagellate
genome organization and gene regulation is very
limited owing to their extremely large genomes,
which have so far precluded whole genome se-
quencing. The smallest genomes in the group
are ∼1.5Gb (for example, Symbiodinium; LaJe-
unesse et al. 2005), with most other species pos-
sessing larger genomes, up to more than 100Gb
(for example, Prorocentrum micans; Veldhuis et
al. 1997). What little is known is derived from
transcriptome sequencing (Hackett 2005; Jaeck-
isch et al. 2012; Roy & Morse 2012; Bayer et al.
2012) and the sequencing of small portions of the
genome (McEwan et al. 2008). The available in-

formation suggests that these genomes contain
large numbers of genes (larger than the 20,000
protein coding genes in the human genomes, po-
tentially up to 40,000 or more); however, due
to its very large total size, the genome has low
gene density. Genes are often organized in tan-
dem arrays (Bachvaroff & Place 2008); however,
unlike those found in kinetoplastids, dinoflagel-
late genes arrays usually consist of the same gene
repeated many times. Trans-splicing of SL se-
quences is widespread (Lidie & van Dolah 2007;
Zhang et al. 2007; McEwan et al. 2008; Lin
et al. 2010) and it seems that transcriptional
regulation is limited, similarly to kinetoplastids,
though much further work will be needed to un-
derstand to what extent.

These peculiarities pose numerous ques-
tions regarding the nature of gene regula-
tion, whether and what role histones, other
chromatin-associated proteins, and transcription
factors (which seem to be limited in number
and diversity in dinoflagellates) play in it, the
three-dimensional organization of dinoflagellate
genomes, how it compares to that of other eu-
karyotes and what influence it has on gene ex-
pression, and most importantly, what evolu-
tionary forces shaped these genomes in such a
strange from our perspective way. The tran-
scriptome of Perkinsus marinus, the represen-
tative species of the closest to the dinoflagellates
lineage, the perkinsids, has been sequenced and
it too uses splice leader trans-spicing. Perkin-
sids, however, have a full set of histones and use
them as all other eukaryotes do (Gornik et al.
2012). Fortunately, the whole-genome sequenc-
ing of dinoflagellates genomes is expected to be-
come feasible in the near future thanks to the ad-
vent of long-read sequencing technologies. This
will in turn enable the application of functional
genomics tools to the study of these fascinat-
ing organisms and their closest relatives, which
should shed light on the evolution of this out-
standing section of the eukaryote tree.

16.6.5 The evolution of the
histone code

In the last nearly two decades, much progress
has been made in deciphering the histone code
(Kouzarides 2007). The association of a num-
ber of histone modifications with certain tran-
scriptional states and chromatin processes is
now well known. For examples, methylation
of lysine 4 on histone 3 (H3K4me3) is a signa-
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ture mark of active promoters (Bernstein et al.
2002; Santos-Rosa et al. 2002; Guenther et al.
2007), enhancers are marked by H3K4me1 and
H3K27ac (Heintzman et al. 2007; Heintzman et
la. 2009; Creyghton et al. 2010; Rada-Iglesias et
al. 2009), H3K27me3 is associated with repres-
sion mediated by Polycomb proteins (Simon &
Kingston 2013; Zheng & Chen 2013), H3K9me3
is found in repressed heterochromatin and has
a positive feedback loop relationship with DNA
methylation (Hashimoto et al. 2010), etc. In
some cases, we have a quite detailed mechanis-
tic understanding of the role histone modifica-
tions play in these processes; a classic exam-
ple is H3K36me3, which is associated with tran-
scribed genes, where it is deposited in the pro-
cess of transcriptional elongation and functions
to recruit histone deacetylases. The deacety-
lases in turn remove the acetylation marks also
deposited during elongation in order to prevent
intragenic transcription from cryptic promoters,
as acetylated histones exist in a more open and
conductive to transcription conformation (Lee
& Shilatifard 2007). However, in addition to
the few well studied examples, a large number
of poorly understood histone modifications have
been detected through mass spectrometry (Fre-
itas et al. 2004), thus the deciphering of the
code is very far from complete, especially at the
level of understanding the mechanistic biochem-
ical roles individual modifications play. Notably,
histone marks are consistently found in particu-
lar combinations (though not necessarily physi-
cally on the same histone tails and at the same
time) constituting specific chromatin “states”
associated with certain parts of genes and with
intergenic features such as regulatory elements
(Ernst & Kellis 2010; Ernst et al. 2011; Ernst &
Kellis 2012; Mortazavi et al. 2013).

The sequence of histone proteins is very
deeply conserved and most of the well-known
histone modifications are accordingly shared by
deeply diverging lineages, suggesting they were
ancestral to all eukaryotes. However, it is far less
clear whether the less known modifications are
also similarly conserved, and more importantly,
whether the chromatin states observed in meta-
zoans are also ancestral to all eukaryotes. Based
on what we know from the available data, the
answer seems to be that they can be evolution-
arily malleable, even within animals. For exam-
ple, comparison of modENCODE ChIP data on
a number of histone modifications revealed that
while H3K27me3 and H3K9me3 colocalize in the

fly genome, they are found in distinct domains in
C. elegans. Studies in other organisms have dis-
covered a number of other deviations from the
well-known patterns of mammalian chromatin
structure.

H2A.Z is a variant of H2A well-known for
its association with promoter regions in ani-
mals, yeast and plants (Henikoff 2008; Jin et al.
2009). But in Plasmodium falciparum H2A.Z in-
stead demarcates all intergenic regions (Bártfai
et al. 2010; Hoeijmakers et al. 2012), and in
Trypanosoma brucei H2A.Z together with the
unique to kinetoplastids variants H2BV, H3V,
and H4V marks the boundaries of the poly-
cistronic units (Janzen et al. 2006; Mandava
et al. 2008). As is the case with H3K9me3,
H3K9me2 is generally a repressive mark, but in
diatom genomes, it has been found to be associ-
ated with actively transcribed genes (Lin et al.
2012). A region either free of nucleosomes or
containing labile nucleosomes (Jin et al. 2009)
is found around promoters in most model sys-
tems, but in Dictyostelium discoideum it has
been reported that extended such regions are
found both around the 5’ and the 3’ end of genes,
where they are precisely demarcated by Poly-A
tracts and Poly-T tracts, respectively (Chang et
al. 2012).

From the perspective of understanding the
origins of the histone code and the reasons for its
current form in mammalian genomes, it will be
of great interest to carry out a systematic epige-
nomic analysis of chromatin modifications and
chromatin states across the tree of life, identify
the major deviations from the familiar patterns,
and, if possible, the evolutionary forces behind
their appearance. Integrative methods for an-
alyzing histone mark ChIP-seq data will be of
invaluable help in this endeavor (Ernst & Kellis
2010; Ernst et al. 2011; Ernst & Kellis 2012;
Mortazavi et al. 2013).

16.6.6 Testing the competing
theories for the origin of genomic

complexity

At this point in time we have a very general, well
supported by multiple lines of evidence theory
of the evolution of genome complexity, in which
the concept of “junk DNA” and the role of non-
adaptive processes in shaping genome architec-
ture have a prominent place (Lynch M. 2007c;
Koonin 2011), organismal complexity is not un-
derstood to be the direct result of adaptive in-
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creases in genomic complexity, and humans are
not perceived to be the pinnacle of evolutionary
progress (Koonin 2004). These lines of evidence
include:

1. Population genetics theory and what is
known about the population genetic envi-
ronment of different lineages. Population
genetics predicts that lineages with lower
long-term effective population size Ne will
accumulate larger numbers of neutral and
slightly disadvantageous genomic changes
as the efficiency of natural selection is re-
duced when Ne is low.

2. The C-value paradox, the observation that
there is no relationship between organis-
mal complexity and genome size (Thomas
1971), that orders of magnitude of dif-
ferences in genome size between species
of comparable morphological complexity
are observed, and that many species with
genomes vastly larger than the human
genome, including unicellular ones, exist.

3. The g-value paradox, the observation that
the number of protein coding genes that
organisms have does not correlate with or-
ganismal complexity (Hahn & Wray 2002).
Many plants and even unicellular eukary-
otes have more genes that mammals do.

4. The general inverse correlation between
genome size and Ne in different lineages
across the tree of life.

5. The closely related general inverse corre-
lation between Ne and genomic features
such as transposable element content, in-
tron length and size.

This view is not shared by all researchers,
with vocal opinions in support of the position
that “junk DNA” does not exist having been re-
peatedly raised (for example, Mattick & Dinger
2013). However, there are numerous reasons
why such a position is untenable. First, the
null hypothesis should always be neutral evo-
lution and neutral adaptive significance for any
trait examined, as is the standard practice in
molecular evolution research. Functionality has
to be demonstrated in a positive way by reject-
ing this null hypothesis. This is despite sugges-
tions that the null hypothesis should be reversed
and lack of function is what should be demon-
strated explicitly (see discussion in Bhattachar-
jee 2014). Second, all adaptive explanations for

the evolution of certain genomic features will
have to be supported by population genetics ar-
guments (because “nothing in evolution makes
sense except in the light of population genetics”;
Lynch M. 2007b). This has so far typically not
been done – all such arguments have been ver-
bal rather than quantitative and that is when
evolution was even considered, which has not
always been the case. In contrast, population
genetics-oriented analysis has mostly returned
results pointing in the completely opposite direc-
tion. Third, to argue that there is no junk DNA
in the human genome is equivalent to arguing
that there is no junk DNA anywhere in the tree
of life, otherwise one would have to elevate the
human genome to a very special position com-
pared to other organisms, directly contradicting
one of the most fundamental insights of evolu-
tionary biology, that humans (or, in a more re-
laxed version of the same statement, vertebrates
in general) are part of a continuum with all other
life forms (as a curious side note, it should be
noted that the “junk” DNA debate pops up pri-
marily when the human genome is discussed but
significantly less often when the genomes of other
organisms are concerned – for example, the pub-
lication of the modENCODE papers generated
no such controversy – suggesting that our view
of ourselves as a species has a lot to do with
the persistent resurfacing of this discussion every
time we probe deeper into our genome). Thus in
order to reject the existence of junk DNA, it will
have to be shown to not exist not only in humans
but in all other lineages, and there are numer-
ous cases in which it is much more difficult to
even suggest possible functions for certain DNA
sequences than it is for the vast noncoding por-
tions of mammalian genomes. A good example
of such an objection is the “onion test” (Gre-
gory 2007) requiring that proposals that all eu-
karyotic DNA is the result of adaptive evolution
should be able to explain why onion species in
the Allium genus need more DNA than humans,
and why the DNA content of different Allium
species varies more than five-fold; many other
such examples are also known, from the giant
genomes of lingfish and salamanders (40 times
bigger than the human genome) to the equally
gigantic genomes of the unicellular dinoflagel-
lates mentioned previously. It is not clear why
these species would need orders of magnitude
more noncoding DNA, with all the proposed
adaptive roles it might be playing than mam-
mals. And then there is what can be considered
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the ultimate example of junk DNA – DNA that
is deleted in somatic genomes, an example of
which are the transposon-rich IESs of ciliates (as
well as what happens in some other species, re-
viewed in Kloc & Zagrodzinska 2001), which are
present in the inert and transcriptionally silent
“germline” micronuclear genome of these organ-
isms and are excised and absent from the “so-
matic” macronuclear genome. While genes are
scrambled and alternative DNA splicing might
be happening in some ciliates, in others the ex-
cision of IESs results in a reliably colinear splic-
ing of the functional DNA segments, thus argu-
ments that larger protein diversity is produced
in this way (which have also been used to sup-
port the adaptive significance of RNA splicing)
do not apply. Even if we adopt the biochemical
criterion for assessing the functionality of DNA
sequences (i.e. that if a DNA sequenced is tran-
scribed or bound by transcription factors) as our
sole guide, IESs largely fail to qualify as being
functional as the micronucleus is generally tran-
scriptionally silent (though it should be noted
that high-resolution functional genomic analysis
of micronuclear gene expression in species like
Oxytricha has not been carried out). Numerous
other examples can be presented (see discussion
below on organellar genomes).

Yet while the general nonadaptive theory
is sound, there are still numerous incompletely
resolved issues both regarding the details of
genome evolution in particular groups and the
general forces behind the evolution of genomic
and organismal complexity across the tree of life.
Also, it has not been comprehensively tested
with respect to many aspects of functional ge-
nomic complexity and other features of genome
biology. Despite the controversy surrounding
the project, thanks in no small part to the ef-
forts of the ENCODE Project Consortium, we
are now in a position, in which the experimental
and analytical tools to obtain conclusive answers
to many of these questions are in existence, by
unleashing this functional genomics machinery
on the large known eukaryotic diversity. Below
I list and discuss some of them.

16.6.6.1 The relationship between
genome size, genome complex-
ity and organismal complexity

From the limited genomic sampling of organisms
we have at our disposal, we know that there
is a general pattern of correlation between or-

ganismal size and organismal complexity on one
side, and genomic size and functional genomic
complexity, on the other. This is understood to
be the result of the lowered Ne associated with
larger physical size, as already outlined. How-
ever, setting aside all other considerations, the
adaptive view of genome complexity is also con-
sistent with this general pattern, and indeed the
vast amount of non-coding RNA and the gen-
erally increased complexity of genomic architec-
ture in large multicellular organisms has often
been interpreted as evidence for the existence
of a relationship between the two that is both
causal and adaptive (Liu et al. 2013).

It is possible to conclusively distinguish be-
tween these two competing explanations thanks
to the existence of natural control groups. One
of them are the metazoans with extremely large
(much larger than ours) genomes. Few would
consider these species to be more “complex”
than humans, and so if all the hallmarks of ge-
nomic complexity listed below scale up in corre-
lation with genome size, then this would be solid
evidence for the absence of absolute functional
and causal relationship between the complexity
of organismal organization and that of gene reg-
ulation and gene expression (Doolittle 2013). So
far it has been technically and economically in-
feasible to generate high-quality assemblies for
any genome much larger than the mammalian
genome size, but steps forwards toward making
this a real possibility have already been made
(Nystedt et al. 2013; Neale et al. 2014; Zimin
et al. 2014; Wegrzyn et al. 2014), and advances
in sequencing technology promise to eventually
solve the problem. Of note, for such a compar-
ison to be valid, the large genome size should
not be the result of extensive polyploidy, which
might be the case with some of the known species
with huge genomes, but this is unlikely to be the
case for all of them.

Even better, we have multiple natural con-
trols for testing our theories explaining the asso-
ciation of genomic complexity with the complex-
ity of multicellular organisms, as multicellularity
arose in more than one lineage, and the extent
of variation of parameters of the population ge-
netic environment such as Ne is comparable be-
tween some of them. Within these large clades,
we observe large variations in genome size be-
tween different species of lineages at comparable
levels of organismal complexity (Gregory et al.
2007).

Multicellularity evolved on at least six occa-
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sions, in metazoans, the land plants lineage, in
red algae, in brown algae and on multiple sepa-
rate occasions in fungi (Knoll 2011). In two of
these groups, the land plants and the animals,
a remarkable convergence of the genome char-
acteristics correlated in very similar ways with
values of Ne is seen. The Ne of invertebrates is
on the order of 106 while it goes down to 104 in
large-bodied vertebrates (Lynch 2007c), and the
genomes of the former are on average an order of
magnitude smaller (few hundred megabases) and
contain much less noncoding DNA that those of
the latter (which are gigabase-sized). Similar
differences in the average Ne are observed be-
tween trees and annual plants. Groups like the
gymnosperms have some of the biggest on av-
erage genomes of all eukaryotes (between 2 and
36Gb; Murray et al. 2012), while many annual
plants have small genomes. However, a number
of small annual flowering plants also have giant
genomes, complicating the picture (even after
accounting for the rampant polyploidy in plants)
suggesting much remains to be learned about
the balance between their effective populations
size, the direction of mutational biases, and the
tolerance of the biology of these organisms to-
wards genomic expansion. Still, it remains true
that many similarities between the extremes of
genomic size in plants and animals exist and
it will be very informative to study and com-
pare the functional complexity of these lineages.
The smallest known land plant genomes are just
63Mb in size (Genlisea margaretae; Greilhuber
et al. 2006) and the size of the model organism
Arabidopsis thaliana genome is also quite small,
at 120−150Mb (Arabidopsis Genome Initiative
2000). More recently, an even more highly com-
pressed plant genome was sequenced, that of
Utricularia gibba at 82Mb (Ibarra-Laclette et al.
2013) and it revealed marked reduction of non-
coding DNA and little transposable element ac-
tivity. At the other extreme, plant genomes as
big as 152Gb are known (Paris japonica; Pel-
licer et al. 2010) and many species with genomes
in the tens of Gb range are known (Zonneveld
2009; Zonneveld 2010). In animals, genomes
as small as 20Mb are known (in some para-
sitic nematodes; Leroy et al. 2007) and as big
as 130Gb (the lungfish Protopterus aethiopicus;
Pedersen 1971), and large variation is seen even
within the major animal phyla. For example,
the smallest arthropod genomes are on the or-
der of 100Mb (the Strepsiptera insects, John-
ston et al. 2007; the mite Tetranychus urticae

at 90Mb; Grbic et al. 2011), but species with
truly massive genomes are also known (the am-
phipod Ampelisca macrocephala at 63.2Gb; Rees
et al. 2007). Within vertebrates, amphibians
range from 0.95Gb for some frogs (Limnody-
nastes ornatus; Olmo & Morescalchi 1978) to
more than 120Gb in some salamanders (Nec-
turus lewisi ; Olmo 1973). The smallest fish
genomes are on the order of 360Mb, such as
the sequenced genomes of Tetraodon nigroviridis
(Jaillon et al. 2004) and Fugu rubripes (Apari-
cio et al. 2002) and the even smaller genome
of Tetraodon fluviatilis (Brainerd et al. 2001),
while the >130Gb genomes of lungfish were al-
ready mentioned. Significant variation is ob-
served even within mammals: bat genomes tend
to be smaller that the typical for mammal ∼3Gb
(the smallest known bat genome is that of Min-
iopterus schreibersi at 1.7Gb; Capanna & Man-
fredi Romanini 1971), while the genome of viz-
cacha rat Tympanoctomys barrerae is 8.4Gb, al-
though it, unusually for a mammal, seems to
be tetraploid (Gallardo et al. 1999), and thus
the title of largest mammalian genome belongs
to the 6.3Gb genome of the cape golden mole
Chrysochloris asiatica (Redi et al. 2007). Re-
markably, the genome size of birds is typically
significantly smaller than that of mammals, in
convergence with what is seen in bats, with the
largest bird genome being that of the flight-
less and large-sized ostrich Struthio camelus at
2.16Gb (Eden et al. 1978) suggesting that fly-
ing may be a common reason for this reduc-
tion (Tiersch & Wachtel 1991; Hughes & Hughes
1995; Smith & Gregory 2009). It will be highly
intriguing to know what the functional complex-
ity of genomes across these extremes of genome
size occurring at otherwise similar levels of or-
ganismal organization is. Of note, the other lin-
eages that have evolved multicellularity also dis-
play wide variation in genome size but not to the
same extent: the known genome sizes of red al-
gae are between 100Mb and 2.8Gb (Kapraun &
Freshwater 2012), those of brown algae are be-
tween 200Mb and 3.6Gb (though at the high end,
polyploidy may play a role; Phillips et al. 2011),
and the largest fungal genomes reach 800Mb
(Kullman et al. 2005).

Perhaps even more intriguing though are the
giant genomes of unicellular organisms. The
Ne of unicellular eukaryotes is larger than that
of invertebrates and correspondingly on average
they have smaller genomes (usually <100Mb),
fewer and shorter introns and fewer transposons
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(Lynch 2007c). However, examples of very big
genomes are known among them. An estimate
of more than 700Gb is often quoted for some
free-living amoebas (Friz 1968) but it is quite
likely that this is due to high levels of polyploidy.
Yet plenty of other, more reliable examples of
giant genomes exist. The enormous dinoflagel-
lates genomes were already discussed, but large
genomes have been reported for other algae too:
for example, while the two sequenced diatom
genomes, those of Phaeodactylum tricornutum
and Thalassiosira pseudonana stand at 27Mb
and 34Mb respectively, ((Bowler et al. 2008;
Armbrust et al. 2004), a value of >25Gb has
been reported for Coscinodiscus asteromphalus
(Shuter et al. 1983). The existence of such
large genomes in organisms with algal lifestyle is
a bit puzzling; dinoflagellates are a highly suc-
cessful and diverse group presumably subjected
to some of the same evolutionary pressures as
other algal lineages, which have generally lead
to genome streamlining and reduction (for exam-
ple, the smallest genome of a free-living eukary-
otes is the 12.6Mb genome of Ostreococcus tauri,
Derelle et al. 2006; the smallest known eukary-
otic genome in general belongs to the parasite
Encephalitozoon intestinalis at 2.3Mb (Vivarès
& Méténier 2000). Thus it is not far from clear
what drove the evolution of such large genomes,
although it has been suggested that dinoflagel-
late effective population size may in fact be very
low (Watts et al. 2013). Even more intrigu-
ing is the question of what the content of these
genomes is. As mentioned above, because organ-
ismal complexity typically correlates both with
low Ne and with increased genome size, it is still
possible to claim adaptive significance of all the
extra noncoding DNA. However, this argument
is much more difficult to make in the case of
a unicellular species with a very large genome,
as while such organisms may have far from sim-
ple lifestyles, they do not have to execute an
incredibly complicated developmental program
and specify hundreds of different cell types, each
with its own gene expression program, the rea-
sons usually cited as a reason for the functional-
ity of all noncoding DNA and RNAs in humans.
The functional genomic study of dinoflagellates
and especially of other more “normal” in their
biology protists, should be highly illuminative
with respect to these questions.

16.6.6.2 The number and complexity of
regulatory elements

The large number of putative regulatory ele-
ments has been a major result of the ENCODE
Project (Neph et al. 2012; Thurman et al. 2012).
As discussed above, whether all of them are in
fact functional is an open question, but their ex-
istence can be interpreted both as the result of
the need for them for the specification of the
complex vertebrate body plan with all its nu-
merous cell types (Levine & Tjian 2003), and
as a nonadaptive consequence of the greater tol-
erance towards genomic changes conferred by
the low Ne of vertebrates. The two explana-
tions are far from mutually exclusive, and in
fact both are likely to be correct to an extent,
but in order to parse their relative contribu-
tion, natural control groups within vertebrates
with larger and smaller genomes will have to
be studied using ENCODE-like approaches for
mapping putative regulatory regions. Exam-
ples of such groups include the salamander and
lungfish species with huge genomes, the larger
mammalian genomes, the fish species with small
genomes such as fugu, and birds and bats with
their on average two-fold reduced compared to
the mammalian mean genomes, as well as the
giant and compressed genomes within the differ-
ent invertebrate groups. If the number of puta-
tive regulatory elements scales up with genome
size then this would be convincing evidence in
support of the nonadaptive origin of regulatory
complexity in large multicellular species.

The other key control group would be plants.
Historically, the study of enhancers has been
a metazoan-centric enterprise, with little work
having been done in plants, and it would be of
great biological interest and practical relevance
to learn more about them, especially if any ma-
jor differences in the general architecture of long-
range gene regulation exist in the larger plant
genomes compared to what is seen in mammals.
With respect to functional complexity, as plants
present a similarly wide range of genome sizes
to animals, if a similar scaling of the number
of regulatory elements with genome size and Ne
is observed in them (as is seen for the number
of introns and transposons), this would further
corroborate their nonadaptive origin. The non-
adaptive hypothesis would be strengthened even
further if the same is seen in unicellular species.
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16.6.6.3 The genomic changes associated
with the evolution of multicellu-
larity

A defining feature of multicellularity is the differ-
entiation of cells into distinct cell types, which
is traditionally understood to require increases
in regulatory complexity. At present we do not
have a detailed genomic understanding of how
multicellularity evolved but from the genomes of
representatives of the closest to metazoans lin-
eages, the choanoflagellates Monosiga brevicollis
(King et al. 2008) and Salpingoeca rosetta (Fair-
clough et al. 2013), and the filasterean Capsas-
pora owczarzaki, we do know that these lineages
already possessed members of a number of com-
mon metazoan transcription factor families. Un-
derstanding what regulatory networks look like
in these organisms and how they were rewired
later in metazoan evolution, as well as similar
studies in the other lineages where multicellular-
ity arose should be highly informative regarding
its origins.

16.6.6.4 The prevalence of functional
regulated alternative splicing
and the general level of splicing
complexity

The inverse-correlation relationship between Ne
and intron number and size is well understood
(Lynch 2002; Lynch 2006b; Lynch 2007c). How-
ever, how many introns there are in a gene
is a different question from how many alter-
native splice products are generated and what
their functional significance is. Whether a simi-
lar inverse-correlation relationship between the
complexity of splicing and population genetic
parameters exists is highly relevant to the de-
bate about the functional significance of most of
the observed alternative splicing events in mam-
malian genomes. Under the nonadaptive model
of the evolution of splicing complexity, improve-
ments in the fidelity of the splicing machinery
would be limited by the minimum value of the
level of negative effect on fitness such errors
have that is visible to selection (which in turn
is constrained by Ne). Comparison of RNA-
seq datasets across the eukaryotic tree of life
should shed light on these questions. It should
be noted that because of issues with the variable
complexity of cell type composition in the sam-
ples that can be practically obtained from dif-
ferent species, such questions are best answered
by single-cell sequencing. For example, a pop-

ulation of unicellular organisms can exist in a
reasonably uniform cell state but for a multicel-
lular organism, only samples from whole organs
containing many cell types with presumably dif-
ferent splicing patterns could be available, mak-
ing the direct comparison of splicing complexity
problematic as it would be artificially elevated in
the latter case. At present, single-cell RNA-seq
is not yet up to this task due to the large stochas-
tic noise levels of current protocols (Marinov et
al. 2014) but future improvements in experimen-
tal techniques should resolve these issues and en-
able such studies.

Notable curious cases are already known.
The genome of the chlorarachniophyte
Bigelowiella natans was recently sequenced and
its transcriptome analyzed using RNA-seq (Cur-
tis et al. 2012). Remarkably, while the genome
as a whole is highly streamlined, it contains nu-
merous introns and exhibits very high levels of
alternative splicing, similar to what is seen in
human brains (it also contains more protein-
coding genes than the human genome, more
than 21, 000). Why a single-celled organism
would need so much alternative splicing is not
clear, and indeed most of it has been interpreted
as the result of errors in the splicing machinery
(Curtis et al. 2012), but why this is tolerated
in Bigelowiella natans and not in other algae
is not clear. It is also curious that as a chlo-
rarachniophyte, Bigelowiella natans possesses
another eukaryotic genome, that of the nucleo-
morph remnant of the nucleus of its photosyn-
thetic secondary endosymbiont (see discussion
below). While nucleomorph genomes provide
the most extreme example of the reduction of
an eukaryotic genome (Archibald & Lane 2009),
the Bigelowiella natans nucleomorph genome
is intron-rich even though the introns are ex-
tremely short, 18-21bp on average (Gilson et al.
2006).

16.6.6.5 The number of lncRNAs

As discussed above, one explanation for the
number and fast evolution of lncRNAs in ver-
tebrate genomes is that many of them are the
product of an evolutionary treadmill of gene
birth and death, which is allowed to generate
much larger numbers of lncRNAs in big genomes
due to looser constraints on this process. There-
fore whether the number of lncRNAs scales up
with genome size and whether this is true across
all eukaryotic groups is of major importance for
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the way we think of these RNAs. The work on
lncRNAs outside of vertebrates has been lim-
ited so far. An RNA-seq study revealed 164
novel lncRNAs in the streamlined genome of
Plasmodium falciparum (Liao et al. 2014), and
60 lncRNA candidates were identified in a prior
tiling array-based work (Broadbent et al. 2011),
numbers that vastly smaller than the up to
10,000 lincRNAs found in humans. Another re-
cent study (Li et al. 2014) found 1,704 high-
confidence lncRNAs in the 2.3Gb maize genome
(Zea mays; Schnable et al. 2009) but much more
data points are needed to draw general conclu-
sions.

16.6.6.6 The prevalence, nature and
conservation of “exotic” RNA
species

Work on “exotic” RNAs such as the various pro-
moter and transcription termination-associated
RNAs and on eRNAs has been limited to mam-
mals and other traditional model systems. and
even in these organisms, the functional signifi-
cance of these molecules has not been investi-
gated, with some exceptions (Melo et al. 2013;
Li et al. 2013; Lam et al. 2013; Mousavi et
al. 2013; Memczak et al. 2013; Hansen et al.
2013). Major unresolved questions remain re-
garding whether these RNAs are universal fea-
tures of eukaryotic gene expression and if not,
what the patterns of their evolution across dif-
ferent lineages are. For example, large genomes
with low gene density, in which genes are reg-
ulated by distantly located enhancers, seem to
have evolved multiple times from an ancestral
state characterized by a much more compact ge-
nomic architecture. Whether features such as
eRNAs are present in all such lineages, and if
yes, whether they were ancestral or evolved con-
vergently and why, is of significant interest. As
with other aspects of eukaryote biology, some no-
table deviations from what is observed in tra-
ditional model systems are already known, one
of them being promoter-associated bidirectional
transcription. It is a common features of mam-
malian promoters (Core et al. 2008; Seila et
al. 2008; Xu et al. 2009), however, antisense
transcripts are unstable and preferentially de-
graded, perhaps due to the differences in the
frequency of polyadenylation and splice sites in
the sense and antisense direction, which help the
transcriptional machinery determine the proper
orientation (Almada et al. 2013). But in the

diplomonad Giardia lamblia sterile, noncoding
bidirectional antisense transcripts have been re-
ported to be abundant and polyadenylated, rep-
resenting up to 20% of total cDNA (Elmendorf et
al. 2001; Teodorovic et al. 2007). Diplomonads
are a very deeply diverging lineage (Figure 16.1)
and the Giardia genome is highly compressed
(Morrison et al. 2007), with its transcriptional
apparatus being simplified compared to other
eukaryotic and missing a number of components.
The details of this unusual transcriptional bi-
ology and the reasons for its evolution are at
present unknown.

16.7 Organellar genomes
and the principles of genome

evolution

Finally, a few words need to be said about or-
ganellar genomes and what they tell us about the
relative contribution of the different evolutionary
forces shaping genomes. While organelles were
not a focus of the ENCODE and modENCODE
projects, there is little reason to think the an-
swers to the questions whether the existence of
“junk DNA” in large amounts is permissible by
evolution, and whether the picture of genome
organization derived from metazoans and other
opisthokonts is representative of all eukaryotes,
would be different with respect to their genomes.
Just as it is true that if there is no junk DNA is
the human genome then no junk DNA should be
expected in the genomes of all other organisms,
it is also true that if there is no junk DNA in
the human genome then there should be no junk
DNA in organellar genomes. It so happens that
both very difficult to refute examples of “junk
DNA” and a large diversity of genome organi-
zations and complicated embellishments in gene
expression and RNA processing are found in the
organellar genomes of various organisms (Bar-
brook et al. 2010). Organelles are also one of the
systems the evolution of which provides a text-
book example supporting the mutation burden
hypothesis for the evolution of genomic organiza-
tion and complexity (Lynch 2006). The study of
the diversity of organellar genomes should there-
fore provide some very helpful insights into these
issues.

We should first briefly review our knowledge
of organellar genomes and their structure across
the tree of life. Organelles evolved as a result of
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endosymbiosis (Altmann 1890; Mereschkowsky
1905; Sagan 1967), and their genomes are a rem-
nant of their free-living past. There were two
primary endosymbiotic events in the history of
eukaryotes. First, mitochondria evolved as a re-
sult of the endosymbiosis of a α-proteobacterial
prokaryote (John & Whatley 1975; Yang et al.
1985) and the ancestor of modern eukaryotes,
which was most likely either an archaeon or an
archaeon-like lineage (Lake et al. 1984; Ribeiro
& Golding 1998; Cox et el. 2008; Williams et
al. 2013; Embley & Martin 2006; Gribaldo et
al. 2010). This event may have in fact even
provided the primary evolutionary driving force
behind the origin of modern eukaryotes and their
features (Martin & Koonin 2006; Koonin 2006).
All modern eukaryotes possess either mitochon-
dria, which with very few exceptions (Abraham-
sen et al. 2004; Henriquez et al. 2005) con-
tain their own genome (Nass et al. 1965), or
the remnants of mitochondria in the form of hy-
drogenosomes (Lindmark & Müller 1973) and
mitosomes (Tovar et al. 1999; Tovar et al. 2003;
Williams et al. 2002) that, with few exceptions
(Boxma et al. 2005), have lost it (Embley &
Martin 2006; Embley et al. 2003; van der Giezen
2009). Later in eukaryote evolution, one lineage
acquired a second endosymbiont of cyanobacte-
rial origin (Keeling 2004), which evolved into the
modern chloroplast. Chloroplasts were later lost
in multiple lineages and acquired again several
times through secondary endosymbiosis (the en-
gulfment of a plastid-containing eukaryotes by
another eukaryote) and even tertiary endosym-
biosis (Cavalier-Smith 2002; Stoebe & Maier
2002; Archibald & Keeling 2002; Keeling 2009;
Keeling 2010).

The main theme in the evolution of organel-
lar genomes has been the transfer of genes from
them to the nucleus. There seems to be a con-
stant, ongoing process of integration of parts
of the mitochondrial genome into the nuclear
genome, evidenced by the presence of multiple
partial copies of the mitochondrial DNA in mam-
malian genomes (NUMTs, Hazkani-Covo et al.
2010). A similar process acts on the plastid
genome (Ayliffe et al. 1998; Huang et al. 2003).
Some of these nuclear insertions of organellar
genes subsequently evolve regulatory elements
enabling their expression in the nucleus and se-
quences ensuring their targeting and importing
into organelles. The organellar copy of the gene
can then be lost without fitness consequences. It
has to be noted that this process is not unidirec-

tional - organellar proteomes also contain many
genes that did not originate from the genome of
the original endosymbiont but are instead either
of nuclear origin or come from other organelles
(for example, a significant fraction of the plas-
tid proteome is of non-cyanobacterial ancestry;
Suzuki & Miyagishima 2010). The end result
has been the great reduction of gene content in
organellar genomes in all lineages studied. The
most gene-rich mitochondrial genomes are those
of Reclinomonas americana, which contains 62
protein coding genes (including its own appar-
ently ancestral bacterial-type RNA polymerase),
and of other jacobid species(Lang et al. 1997;
Burger et al. 2103). At the other extreme, the
mitochondrial genomes of Plasmodium and other
apicomplexans, and those of dinoflagellates are
extremely reduced in terms of gene content, con-
taining as little as 3 genes (Vaidya & Mather
2009; Nash et al. 2007). Plastid genomes have
generally retained a larger number of genes, be-
tween 90 and 250 genes (Green 2011), with a few
exception associated with the loss of photosyn-
thetic capacity (for example, the apicomplexans;
Sato 2011).

These differences in gene content are confined
within a relatively narrow band of variability
compared to the extreme differences in organel-
lar genome size and organization observed within
the known eukaryotic diversity. The best studied
and most familiar organellar genomes are those
of mammalian mitochondria. The human mito-
chondrial genome is 16,571bp long and contains
13 protein coding genes, 22 tRNAs and 2 rRNAs
(Anderson et al. 1981; Bibb et al. 1981). It is
circular mapping (meaning that it can be rep-
resented as a circle but it does not necessarily
adopt a single-circle conformation in vivo; Ben-
dich 1993) and extremely densely packed with
genes, with no introns and only one non-coding
region, referred to as the D-loop, which plays
a central role in the initiation of transcription
and replication. Transcription is carried out
by a dedicated polymerase (POLRMT), which
is encoded in the nucleus and is of apparent
phage origin (Masters et al. 1987), and three
polycistronic transcripts are produced from both
strands, which are subsequently posttranscrip-
tionally processed to produce the mature mes-
sage molecules. This economy of DNA content
is a common feature of all animal mitochondrial
genomes: the size of the smallest ones is ∼11kbp
(for example, the chaetognath Sagitta decipens;
Miyamoto et al. 2010), while the largest ones
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are ∼43kbp long (in Trichoplax ; Dellaporta et
al. 2006). More significant variations in struc-
ture exist within animals (see discussion below)
but they are dwarfed by the extraordinary di-
versity in the size and organization of mitochon-
drial genomes within other eukaryotes. The best
known contrast is that between the mitochon-
drial genomes of animals and green plants. The
latter have large genome (typically several hun-
dred kb) but comparable gene content, with the
difference being largely due to the presence of
large amounts of repeats and intronic sequences.
Plant mitochondrial genomes can in some cases
reach truly extreme sizes, sometimes consider-
ably larger than the genomes of free-living bac-
teria. For example, Cucurbitaceae mitochondrial
genomes, of which that of Cucumis sativus was
recently fully sequenced (Alverson et al. 2011),
can reach up to 3Mbp (Ward et al. 1981).
The Cucumis sativus mitochondrial genome was
found to be 1685kb long, yet it still has only 37
genes, with the rest of the genome consisting of
repeats, expanded introns and apparently inac-
tive sequences of nuclear, plastid and viral ori-
gin. An even more extreme example is provided
by the mitochondrial genomes of angiosperms
in the Silene genus, two of which, Silene con-
ica and Silene noctiflora were recently sequenced
and found to be 6.7 and 11.3Mb long, respec-
tively, which is again due primarily to extreme
expansion of repetitive sequences (Sloan et al.
2012).

The differences in mitochondrial genome size
between plants and animals are theoretically ex-
plained as a non-adaptive consequence of the dif-
ferences in the mutation rate in mitochondria
between the two lineages (Lynch et al. 2006).
The mitochondrial mutation rate µ in plants and
mammals have evolved in opposite directions,
and is orders of magnitude lower in the former
than it is in the latter. Recall from the discussion
of introns above that the removal of noncoding
DNA such as introns by selection is facilitated by
large values of Neµ; the values of Ne are similar
between multicellular animals and multicellular
plants but the large differences in µ explain well
the observed disparities in noncoding DNA con-
tent. Of note, there are animal lineages in which
µ is low compared to other metazoans (for ex-
ample, cnidarians) and they happen to also be
an exception of the general rule that animal mi-
tochondria do not contain introns (Shearer et al.
2002; van Oppen et al. 2002). The true pic-
ture is likely to be more complex: for example,

the aforementioned giant Silene mitochondrial
genomes seem to have very high mutation rates
combined with extreme bloating with noncod-
ing DNA but it is not clear whether these mea-
surements represent the long-term population-
genetic environment of the lineage, and whether
the repeat expansion in them is not driven by
other factors.

Nevertheless, organellar genomes provide
some of the at present most difficult to explain
from an adaptive perspective cases of “junk”
DNA. The smallest mitochondrial genomes are
only 6-7kb long (Plasmodium yoelii, Vaidya et
al. 1989; Theileria parva, Kairo et al. 1994), the
largest are as big as the largest known genomes
of free-living prokaryote, yet they never pos-
sess more than 60 protein coding genes and
around 100 genes in total after taking tRNAs
and rRNAs into account. Very large differences
in non-coding DNA content are observed be-
tween closely related species. For example, the
sizes of the mitochondrial genomes of different
Schizosaccharomyces yeast species differ by as
much as 4-fold, with little difference in gene
content (Bullerwell et al. 2003). Even more
strikingly, the two Silene species mentioned
above differ by 4.5Mb in terms of mitochondrial
genome size, while other species in the same
genus (Silene vulgaris and Silene latifolia) have
an order of magnitude smaller mitochondrial
genomes than either of them (427kb and 253kb
respectively). It is hard to imagine what func-
tional role all this additional, mostly repetitive-
element sequence, might be playing. Most adap-
tive hypotheses for the role of transposable
repetitive elements, introns, and pseudogenes
have been specifically tailored to large nuclear
genomes packaged by histones. But organellar
genomes evolved from prokaryote genomes, in
which long-range regulatory interactions are not
the norm, and subsequently underwent drastic
reduction, as a result of which today they only
contain a few dozen genes. It is far from clear
how hundreds of kilobases and even megabases
of non-coding DNA could all conceivably func-
tion, let alone be necessary, for their regula-
tion, expression and processing. They also do
not score highly according to the biochemical
criterion for functionality. A great illustration
of this was recently provided by the sequenc-
ing of the genome of Amborella trichopoda, the
sister lineage of all other flowering plants (Am-
borella Genome Project 2013). The Amborella
mitochondrial genome (Rice et al. 2013) con-
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sists of five circular-mapping chromosomes, is
3.9Mb in size, and apparently got so big by ac-
quiring large regions (even full-length copies) of
mtDNA from other plant species (totaling about
six genome-equivalents), as well as plastid DNA.
Many of these foreign mitochondrial genes have
been pseudogenized. Notably, the expression of
the endogenous and foreign genes was assayed
(by targeted RT-PCR on total RNA) and only
the endogenous ones were found to be expressed.
These foreign mtDNA insertions therefore ex-
hibit all the classic features of “junk DNA”.

There is, however, a lot to be learned about
organelle genomes, their organization and mech-
anisms of gene expression. This is in many
ways even more so regarding mitochondria and
plastids than it is about the diversity of nu-
clear genomes discussed above, because of the
stunning diversity of organelle genome structure
and organization observed within eukaryotes. As
stark as the differences between eukaryotes and
prokaryotes are, the nuclear eukaryotic genomes
are still most likely derivatives of an ancestral
genome similar in its general features to the
typical blueprint a modern prokaryotic genome.
Organelle genomes represent another diversifi-
cation of such an ancestral state, albeit one
that developed under very different evolution-
ary pressures. Understanding the many ways in
which these genomes have been dramatically re-
organized in different lineages would greatly im-
prove our knowledge of the driving forces, and
the possibilities and limitations of genome evo-
lution.

As is the case with nuclear genomes, the
best studied systems are confined to the classical
model systems representing just a few of the ma-
jor eukaryotic lineages. However, the textbook-
example, highly compacted metazoan mitochon-
drial genome consisting of a single circular-
mapping molecule of mtDNA generating a few
long polycistronic messages is far from represen-
tative. A single circular-mapping molecule is,
of course, a very common configuration, as this
was the most likely ancestral state, but within
it there are large variations in terms of non-
coding DNA content, as discussed above. It is
highly unlikely that polycistronic messages are
generated in genomes in which individual genes
are separated by large stretches on non-coding
DNA; instead they are likely transcribed and
regulated individually, but much less is known
about the detailed workings of such systems
than it is for mammalian mitochondria. And

even within metazoans, very different topolo-
gies are observed. For example, the mitochon-
drial genome in Hydra consist of two linear
pieces of mtDNA (Warrior & Gall 1985; Voigt
et al. 2008), in the human louse Pediculus hu-
manus it is composed of 18 individual circular
molecules (Shao et al. 2009) and in the meso-
zoan Dicyema shimantoense, the initially circu-
lar mtDNA is fragmented in somatic cells into
minicircles containing single genes (Watanabe et
al. 1999). Other examples of fragmented and/or
linear mitochondrial genomes in metazoans are
also known (Smith et al. 2012; Shao et al. 2012;)

The most famous example of “weird” mito-
chondrial genomes are the kinetoplasts of kine-
toplastids, which are composed of multiple iden-
tical maxicircles, on which the genes reside, plus
hundreds of minicircles containing guide RNAs
(gRNAs), with these circles being physically in-
tertwined (Simpson 1997; Simpson et al. 1989;
Lukes et al. 1998). The gRNAs are necessary for
the massive amounts of RNA editing that the
genes need to undergo in order to be properly
expressed (Benne et al. 1986; Simpson & Thie-
mann 1995; Blum et al. 1990). Kinetoplastid
RNA editing has been usually interpreted as a
classic example of constructive neutral evolution.
The most widely accepted model for its origins
involves the initial acquiring of the capacity for
RNA editing, which allows the mutation of cod-
ing nucleotides, which in turn leads to the even-
tual locking of the system into a state in which
editing is essential (Covello & Gray 1993), al-
though adaptive explanations for its origin have
also been proposed (Speijer 2006).

Even more unusual is the mtDNA organiza-
tion of diplonemids, a closely related to kineto-
plastids lineage (see Figure 16.1). The mitochon-
drial genome of Diplonema papillatum is very
large (>600kbp), consisting of about 100 circular
6-7kb molecules (Marande et al. 2005), and the
organization is similar in other diplonemids (Roy
et al. 2007; Kiethega et al. 2011). Most remark-
ably, the protein coding genes in these mitochon-
dria are broken into small individual pieces (up
to a dozen per gene) each residing on a separate
minichromosome (Vlcek et al. 2011), with the
rest of the minichromosome containing a highly
regular and similar between different minicircles
pattern of repeat motifs. The pieces are subse-
quently joined to produce the full-length mes-
sage (Kiethega et al. 2011; Marande & Burger
2007). Another interesting case are the mito-
chondrial genomes of ichthyosporeans, of which
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Figure 16.2: Towards a general understanding of genome function.

the Amoebidium parasiticum one has been se-
quenced. It is >200kb long consisting of hun-
dreds of numerous linear minichromosomes and
contains both full-length and fragmented copies
of genes (Burger et al. 2003).

As is often the case, dinoflagellates present
the farthest deviation from the norm. Their mi-

tochondrial genomes have presented a huge chal-
lenge to sequencing because they apparently ex-
ist as multiple circles of varying size and compo-
sition, with the same genes occurring in different
sequence contexts, likely due to very high levels
of recombination (Norman and Gray 2001; Jack-
son et al. 2007; Nash et al. 2008; Waller and
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Jackson 2009; Slamovits et al. 2007; Kamikawa
et al. 2009). The three protein-coding genes
they contain occur in both full-length copies as
well as in multiple varying in length and com-
position fragments. Remarkably, this results in
the production of partial transcript fragments
that are not only transcribed and polyadeny-
lated separately, but are likely not trans-spliced
as in diplonemids, with the exception of the cox3
gene, as well as polycistronic transcripts and
transcripts without stop codons (Jackson et al.
2007).

Dinoflagellates also display an amazing con-
figuration of their plastid genome. The typical
plastid genome is circular-mapping, between 100
and 200kb long, containing between 100 and 200
genes (depending on the lineage) and is orga-
nized into a large and small single-copy regions
separated by two inverted repeats (Kolodner &
Tewari 1979). Polycistronic transcripts are gen-
erated from multiple promoters, by two different
RNA polymerases, one plastid-encoded and of
cyanobacterial origin (PEP), and another one of
phage origin and nucleus-encoded (NEP) (Yagi
& Shiina 2014). Plastid genomes display less
variation in their structure compared to mito-
chondria, yet in dinoflagellates the chloroplast
genome is of most unusual nature: it is split into
multiple minicircles, which are transcribed into
polycistronic messages by a rolling circle mech-
anism (Zhang et al. 1999; Barbrook & Howe
2000; Nisbet et al. 2008; Barbrook et al. 2012).

In general, little is known about the de-
tailed mechanisms of transcriptional and post-
transcriptional regulation of organellar genomes
and, in turn, what evolutionary forces have
shaped them, except for some of the well-studied
model organisms (though even in those latter
cases much still remains to be learned). Func-
tional genomic tools for characterizing the tran-
scriptome and the protein-DNA and protein-
RNA interaction landscapes in organelles should
greatly facilitate advances in that area (Smith
2013), and initial studies have already shown the
power of these approaches (Sanchez et al. 2011;
Mercer et al. 2011; Liu et al. 2013; Wang et al.
2013; Marinov & Wang et al. 2014; Tanifuji et
al. 2014; Hotto et al. 2013).

This is even more so the case for nucleomorph
genomes. Nucleomorphs are the result of sec-
ondary endosymbiosis between two eukaryotes
(Gibbs 1978; Hibberd & Norris 1984; Cavalier-
Smith 2002). In most lineages with a history of
such events, the nucleus and the nuclear genome

of the endosymbiont have been lost following
massive gene transfer to the host nucleus (Mar-
tin et al. 1998), but in two modern groups, the
chlorarachniophytes and the cryptophytes, the
endosymbiotic nucleus persists in the form of a
nucleomorph. The chlorarachniophyte nucleo-
morph is of green algal origin, while the crypto-
phyte one is of independent red algal origin, yet
these genomes display remarkable convergence in
their characteristics (Moore & Archibald 2009).
They are highly reduced, <1Mb in size, (Douglas
et al. 2001; Gilson et al. 2006; Lane et al. 2007;
Tanifuji et al. 2011; Curtis et al. 2012), and con-
tain only a few hundred genes. All sequenced
nucleomorph genomes consist of three chromo-
somes, each of which contains (typically sub-
telomeric) rRNA genes (Silver et al. 2007), with
very short intergenic spaces and often overlap-
ping genes (Williams et al. 2005) that are them-
selves compacted (Lane et al. 2007), though in-
trons are also present in most cases, sometimes
in substantial numbers such as in Bigelowiella
natans. These features represent the most ex-
treme known case of eukaryotic genome reduc-
tion and pose very intriguing questions about the
transcriptional and regulatory biology of nucle-
omorphs. The transcriptomes of several nucle-
omorphs have been recently characterized on a
global scale (Tanifuji et al. 2014; Hirakawa et al.
2014), but given the extremely limited intergenic
and noncoding space in these genomes, it will be
also of great interest to know their chromatin
structure, the histone code operating in them
and its states (Müller et al. 1994; Löffelhardt
2011; Hirakawa et al. 2011), their transcription
factor binding patterns, and as mentioned above,
the biology of introns and splicing in them. This
should shed light on the evolutionary limits on
the process of gene regulation imposed by ex-
treme genome compaction.

16.8 Conclusions

While we are still a long way from having a
complete understanding of genome function and
evolution, we do at this point have a quite ro-
bust explanatory framework accounting for the
driving forces behind the appearance of many
of the major features of eukaryote biology, and
for many of the differences in genome organi-
zation, content and structure observed within
the known organismal diversity. The concept of
“junk” DNA features prominently in this frame-
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work, and it is by no means debunked by the re-
sults of the ENCODE Project. ENCODE data
is entirely consistent with our previous under-
standing of mammalian genome biology, which
it does not overturn but instead adds to and en-
riches. Indeed, it would have been quite dis-
tressing if major rethinking was necessary, given
the immense amount of research on and knowl-
edge about the subject that has accumulated
over many decades. The real contribution of the
ENCODE Project to understanding human biol-
ogy has been the identification of the candidate
functional elements in the genome, each of which
will, however, have to be subsequently function-
ally dissected to fully understand its role in the
normal functioning of the cell, development and
disease.

Another major, and so far overlooked, con-
tribution of the ENCODE has been the role it
has played in the development of the tools and
techniques to carry out large-scale functional
genomic characterization of genomes. This is
critical for achieving the goal of complete un-
derstanding of the fundamental principles driv-
ing the evolution of eukaryote genomes and
the mechanisms of carrying out and regulating
gene expression that they use. From this per-
spective, the study of the comparatively well-
characterized human genome served as a proof
of principle: the ENCODE Project did not nec-
essarily find completely new principles of gene
regulation and RNA biology, but it recovered a
lot of what was previously known about the func-
tional organization of our genome, and added
further pieces to the puzzle opening new research
directions to be pursued in the future. While

the detailed study of the individual components
of gene expression and gene regulatory systems
using classical genetic and biochemical tools will
always remain essential, it is now possible to use
functional genomic tools to advance the under-
standing of how a genome works by decades com-
pared to the trajectory this process followed for
the traditional model systems.

This would be of little significance if all
genomes were the same in their organization, but
fortunately, this is very far from being the case.
The last two decades have revealed a breathtak-
ing diversity of approaches that different lineages
have adopted to solving the problem of being an
eukaryote cell, some of them representing truly
drastic deviations from the classical textbook de-
piction of these processes. This diversity pro-
vides a great opportunity to understand the evo-
lutionary forces and limitations shaping genome
architecture. Thanks to the rapid advances in
sequencing and functional genomic methods (to
which researchers working on ENCODE Project
have made major contributions), all genomes
are now either accessible to study (or poised to
soon become so) using the powerful tools avail-
able to us, allowing the tackling of these ma-
jor questions, at the deepest level. Such an en-
deavor should feature the close integration of
the disciplines of comparative genomics, popu-
lation genetics and functional genomics (Lawrie
& Petrov 2014), and a fully fleshed, universally
agreed upon, theory of genome evolution should
eventually emerge from it, together with the de-
tailed understanding of the function of individ-
ual genomes (Figure 16.2).
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A complex interplay between transcription factors (TFs) and the genome regulates transcription. However, connecting
variation in genome sequence with variation in TF binding and gene expression is challenging due to environmental
differences between individuals and cell types. To address this problem, we measured genome-wide differential allelic
occupancy of 24 TFs and EP300 in a human lymphoblastoid cell line GM12878. Overall, 5% of human TF binding sites have
an allelic imbalance in occupancy. At many sites, TFs clustered in TF-binding hubs on the same homolog in especially open
chromatin. While genetic variation in core TF binding motifs generally resulted in large allelic differences in TF occupancy,
most allelic differences in occupancy were subtle and associated with disruption of weak or noncanonical motifs. We also
measured genome-wide differential allelic expression of genes with and without heterozygous exonic variants in the same
cells. We found that genes with differential allelic expression were overall less expressed both in GM12878 cells and in
unrelated human cell lines. Comparing TF occupancy with expression, we found strong association between allelic oc-
cupancy and expression within 100 bp of transcription start sites (TSSs), and weak association up to 100 kb from TSSs. Sites
of differential allelic occupancy were significantly enriched for variants associated with disease, particularly autoimmune
disease, suggesting that allelic differences in TF occupancy give functional insights into intergenic variants associated with
disease. Our results have the potential to increase the power and interpretability of association studies by targeting
functional intergenic variants in addition to protein coding sequences.

[Supplemental material is available for this article.]

Variation in protein coding sequence is interpretable, owing to our

knowledge of gene models and the triplet code. Recent studies that

utilize exome sequencing take advantage of this knowledge to

predict loss-of-function and nonsense mutations (Meyerson et al.

2010; Teer and Mullikin 2010). However, predicting the effects of

DNA sequence variation in the large noncoding parts of the ge-

nome remains a largely unsolved problem. While transcription

factors (TFs) preferentially bind DNA at definable sequence motifs,

the motifs are often degenerate and are rarely predictive of binding

(Tompa et al. 2005). Recent advances in DNA sequencing tech-

nologies allow genome-wide empirical measures of TF occupancy

(i.e., chromatin immunoprecipitation followed by sequencing, or

ChIP-seq; Johnson et al. 2007; Robertson et al. 2007), revealing

that differences in TF occupancy between individuals are common

(Kasowski et al. 2010; McDaniell et al. 2010). Furthermore, com-

bining ChIP-seq with personal human genome sequencing has

identified instances in which a TF preferentially binds one allele

over the other in the same cell type (McDaniell et al. 2010), which

we call differential allelic occupancy. Because differential allelic

occupancy compares TF binding between alleles in the same nu-

cleus, it is controlled for environmental differences between in-

dividuals and cell types and therefore provides a more direct con-

nection between genome sequence and regulatory function than

do population-based studies.

To understand the functional consequences of allelic differ-

ences in TF occupancy, it is important to measure allelic differences

in expression in the same cells. Numerous approaches have been

developed to measure differential allelic expression in select genes

(e.g., Yan et al. 2002; Gimelbrant et al. 2007; Serre et al. 2008; Main

et al. 2009; Zhang and Borevitz 2009; Zhang et al. 2009), with

current estimates that 10% of human genes have allele-specific

expression (Gimelbrant et al. 2007; Zhang et al. 2009). High-

throughput sequencing can identify allelic imbalances in expres-

sion when complete genome sequences for both the parents are

available, for example in F1 fly hybrids (McManus et al. 2010).

When a complete genome sequence is available for a trio of related

humans, RNA-seq (Mortazavi et al. 2008) can be used to measure

genome-wide allelic imbalances in human gene expression

(Degner et al. 2009; Pickrell et al. 2010). However, measurement of

differential allelic expression with RNA-seq is limited to genes with

heterozygous exonic sequences, which represents less than half of

human transcripts.

In this work, we sought to better understand the functional

consequences of genomic variation, both on TF occupancy and on

gene expression. To do so, we first characterized differential allelic
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occupancy for 24 TFs and the cofactor

EP300, as well as heritability of TF occu-

pancy for a subset of those factors. In ad-

dition, we measured differential allelic

expression using both RNA-seq as well as

ChIP-seq of RNA polymerase II (RNA

Pol2). The latter enabled prediction of

differential allelic expression of genes

with homozygous exons but heterozy-

gous introns (Knight et al. 2003), re-

vealing many additional otherwise un-

detectable instances of differential allelic

expression. Together, the results provide

many insights into how genome se-

quence impacts TF occupancy, and the

extent to which that occupancy impacts

downstream gene expression. The results

may also have the potential to improve our

understanding of disease, as we found nu-

merous intergenic variants associated with

autoimmune diseases to also be differen-

tially bound by TFs. Ultimately, targeting

intergenic regions shown to have func-

tional consequence may improve future

microarray- and sequencing-based associa-

tion studies by increasing coverage with

only a modest effect on statistical power.

Results

Transcription factors often cluster
together on the same alleles in regions
of open chromatin

To survey the allelic cis-regulatory

landscape, we performed ChIP-seq on

24 sequence-specific human TFs and

the transcriptional co-activator EP300

in a lymphoblastoid cell line (LCL),

GM12878, generated by EBV immortaliza-

tion of cells from a female (Supplemental

Table 1). Whole genome sequencing has been performed on this cell

line and on LCLs derived from both of her parents (The 1000 Ge-

nomes Project Consortium 2010), and we aligned sequence reads to

both the maternal and paternal versions of the genome (see Methods;

Figure 1A). We identified 157,586 high-confidence TF occupied re-

gions, of which 20,013 (13%) overlap at least one heterozygous single

nucleotide polymorphism (SNP). We found 1094 (5.5%) of hetero-

zygous sites with a significant difference in occupancy between pa-

rental chromosomes for at least one TF (false discovery rate, or FDR,

<5%) (Supplemental Table 2). When a single binding site covered

multiple variants, we observed a consistent allelic imbalance across

all variants in the binding site (Supplemental Fig. 1). Differential

allelic occupancy was also reproducible between biological replicates

(Supplemental Fig. 2), evenly distributed across autosomes (Supple-

mental Fig. 3), and not substantially biased in favor of the reference

allele (Supplemental Table 3). On the X chromosome, TFs pre-

dominantly bound the maternal homolog (Supplemental Fig. 4),

consistent with reports of a strong bias toward paternal X in-

activation in the GM12878 cell line (McDaniell et al. 2010).

We found evidence that TFs commonly interact with each

other on the genome, especially at regions with differential allelic

occupancy. Overall, 30% of autosomal TF binding sites with sig-

nificant differential allelic occupancy overlapped another such site

(Supplemental Table 4), and the overlaps appeared to follow a

power-law distribution (Supplemental Fig. 5). In comparison, we

found on average 15% of binding sites overlapping one another

among an equal number of sites for which we did not detect sig-

nificant differential allelic occupancy. The greater overlap in sites

of differential allelic occupancy was unlikely to occur by random

(P = 8 3 10�6) according to permutation tests that take into ac-

count potential biases resulting from antibody-specific variation in

ChIP-seq signal strength and the average size of binding sites be-

tween different factors and between binding sites with and without

differential allelic occupancy (see Supplemental Methods). When

multiple TFs bound the same heterozygous SNP, they frequently

resided on the same allele, as indicated by positive correlations be-

tween allelic occupancy at co-bound SNPs (Fig. 1B; Supplemental

Figs. 6, 7). On the contrary, in no case did we observe pairs of TFs that

regularly bound the same position on alternate autosomes. In some

cases, the factors may bind together in heteromeric complexes. For

example, occupancy of the transcriptional co-activator EP300 cor-

related with that of many TFs. However, overall, we did not find

Figure 1. (A) Diagram of method used to measure differential allelic TF occupancy. First, chromatin
was formaldehyde-fixed and sonicated. Cross-linked TF-binding complexes were then immunopre-
cipitated with an antibody specific for the TF of interest. The co-precipitated DNA was recovered and
subjected to high-throughput single-end sequencing. Reads were aligned to maternal and paternal
versions of the GM12878 genome according to data from the 1000 Genomes Project (The 1000 Ge-
nomes Project Consortium 2010). For each binding site, differential allelic occupancy was called when
reads aligned to a single allele significantly more often than would be expected by random. (B)
Spearman correlation of allelic imbalance at sites of TF co-occupancy throughout the genome. The color
of the boxes indicates the correlation coefficient, with white indicating nonsignificant correlation (P >
0.05). The tree shows complete linkage hierarchical clustering. (C ) We classified heterozygous variants
by the number of TFs binding at that variant. Shown is the cumulative distribution of DNase I hyper-
sensitivity signal at all occupied heterozygous variants in each class, as indicated in the legend. (D) For
each class of heterozygous variants (as defined in C ), the fractions of variants with phastCons score >0.5.
Asterisks ([**] P < 0.01; [*] P < 0.05) indicate statistical significance compared to the uniquely bound
variants as described in Methods.
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evidence of known protein–protein interactions supporting our

observed correlated occupancy (Persico et al. 2005). Instead, the TF

hubs may either include novel TF–TF associations or may be a more

general feature of the genomic landscape (MacArthur et al. 2009).

Chromatin state may also play a role either in increasing TF occu-

pancy at variants bound by multiple TFs, or in maintaining a state

established by pioneer factors. In support of this hypothesis, the

DNA near TF hubs had increased sensitivity to DNase I when

compared with regions bound by a single factor (Fig. 1C). The result

indicates either that these regions of open chromatin were more

accessible to TFs before binding, or that the recruitment of many TFs

to these regions resulted in more extensive and stable chromatin

remodeling. The co-occupied variants may also have particular

functional significance, as they were more likely to be evolutionarily

conserved than variants bound by a single factor (Fig. 1D). Together,

the results reveal the existence of hubs of coordinated differential

allelic gene regulation involving multiple TFs throughout the hu-

man genome.

Most differential allelic occupancy results from variation
outside the DNA binding motif

To better understand the mechanisms underlying differential al-

lelic occupancy, we investigated the genetic contributions to allelic

occupancy. Kasowski and colleagues previously found that varia-

tion of NFKB binding between different individuals significantly

associated with disruption of the NFKB binding motif (Kasowski

et al. 2010), and others have suggested a similar relationship may

be found for differential allelic occupancy (McDaniell et al. 2010).

We therefore sought to determine generally across many TFs how

often differences in the primary TF binding site correspond to

differential allelic occupancy. We first evaluated the location of

heterozygous SNPs in autosomal TF binding sites. We found that,

after controlling for biases in read coverage and variant density,

differentially occupied sites were strongly enriched for heterozy-

gous SNPs within 50 bp of the position of maximal ChIP signal

(Fig. 2A), indicating that they may be the most functionally im-

portant nucleotides. We then compared the rate at which hetero-

zygous SNPs occurred at motif versus non-motif intergenic posi-

tions (Supplemental Table 5), a ratio we designate dM/dI. Generally

across all factors and limited to autosomes, we found that hetero-

zygous variants in motifs were nearly three times more likely to

occur in differentially bound sites (dM=d1 = 2.47) than in equally

bound sites (dM=d1 = 0.80) (Fig. 2B). Compared with an estimated

background rate calculated from randomly chosen 5-kb promoter

regions (dM=d1 = 0.98), we found motif-disrupting mutations were

significantly enriched in differentially bound regions and signifi-

cantly depleted in equally bound regions (P < 1 3 10�100 for both

cases; see Methods). As expected and consistent with reports of in-

ter-individual variation of NFKB binding (Kasowski et al. 2010), the

bound alleles were overall more similar to the consensus motif than

the unbound alleles (Supplemental Fig. 8). Differential allelic oc-

cupancy ranged from subtle to absolute. Binding sites with the

greatest allelic difference in occupancy corresponded to the presence

of a canonical binding motif and to mutation of that motif (Fig. 2C,D).

However, variants in known binding motifs explained only ;12% of

instances of differential allelic occupancy. While the exact per-

centage is dependent on many factors, it appears that the minority

of differential allelic occupancy can be attributed to mutation of

a canonical TF binding motif. Instead, our results suggest that there

are different regimes of variation in TF binding. At the minority of

differentially occupied binding sites, mutation of a canonical bind-

ing motif drives strong allelic differences in TF occupancy. Mean-

while, at the majority of differentially occupied sites, TFs bind DNA

at weak or noncanonical binding motifs. In such cases, smaller dif-

ferences in occupancy occur, perhaps via genetic disruption of a co-

factor binding site or differences in chromatin structure (McDaniell

et al. 2010; Gertz et al. 2011)

RNA Pol2 occupancy predicts differential allelic expression
of genes with homozygous exons

To evaluate the effects of differential allelic occupancy on expres-

sion, we used ultrahigh-throughput mRNA sequencing (RNA-seq)

(Mortazavi et al. 2008) to measure differential allelic gene expres-

sion across the human genome (Pant et al. 2006; Gimelbrant et al.

2007; Zhang et al. 2009). To avoid biases from mapping to the

reference genome (Degner et al. 2009; Pickrell et al. 2010), we as-

sembled complete paternal and maternal GM12878-specific ver-

sions of all RefSeq transcripts. We then sequenced the transcriptome

and aligned the reads to the parental transcripts (Fig. 3A; Supple-

mental Table 6). We identified significant (FDR < 5%) differential

allelic expression for 381 (9%) of the 4194 expressed RefSeq tran-

Figure 2. (A) Histogram of the distance of heterozygous SNPs from the
location of maximal ChIP-seq signal for sites with (orange) and without
(blue) differential allelic TF occupancy. To control for potential observa-
tion biases resulting from high read coverage at variants near the center of
binding sites, the sites of equal allelic occupancy were chosen to match the
differential allelic occupancy in two ways. First, for each site of differential
allelic occupancy, we required the total number of aligned reads covering
heterozygous variants in the matched site to be equivalent. Second, we
required that the total number of variants in each binding site was also
equivalent. If a suitably matched site did not exist, the site was excluded
from the sites of differential allelic occupancy for this analysis. Using this
strategy, the distribution of aligned reads at heterozygous variants was not
significantly different between the sites of differential allelic occupancy
and the matched set of equal allelic occupancy (P = 0.15, two-sided
Wilcoxon rank-sum test). (B) The ratio of the rate of motif-disrupting to
non-motif-disrupting intergenic mutations (dM/dI) across all sited of dif-
ferential allelic TF occupancy (orange), and at TF binding sites that lack
significant differential allelic occupancy (blue). To allow comparison with
cis-regulatory DNA, the distribution of dM/dI is also shown for regions 5
kbp upstream of 10,000 randomly chosen TSSs (white). Whiskers show
95% confidence intervals. We excluded TFs for which we only observed
a single motif-disrupting variant across all binding sites. (C ) For the bound
(black) or unbound (gray) allele at all sites of differential allelic occupancy,
the similarity to TF binding motif (as a fraction of the optimal match) at
sites of heterozygosity (y-axis) plotted against relative binding (the ratio
of reads aligning to the bound vs. unbound allele; x-axis). Data were
smoothed over a 32-data-point sliding window. The shaded region la-
beled D indicates the amount of difference in motif similarity between
bound and unbound alleles, and is plotted in panel D.

Reddy et al.

862 Genome Research
www.genome.org

491



scripts with heterozygous variants in exonic regions (Fig. 3B). The

results were reproducible between biological replicates (r2 = 0.88,

P < 2 3 10�27) (Supplemental Fig. 9), and validation with Sanger

sequencing reproduced results from six of six tested genes (Supple-

mental Fig. 10; Gertz et al. 2011). Differences in allelic expression

were often subtle: 166 (52%) of the 322 autosomal genes identified

had less than a twofold difference in expression between alleles.

Known imprinted genes (Morison et al. 2005; Pollard et al. 2008)

and X-linked genes were the exception, nearly all of which had

a greater than twofold allelic expression difference. Most X-chro-

mosomal genes were transcribed from the maternal copy (Supple-

mental Figs. 11, 12), as expected, given the paternal X inactivation

bias in GM12878 cells (McDaniell et al. 2010; Kucera et al. 2011). We

also identified differential allelic expression of seven long non-

coding RNAs (Supplemental Fig. 13). Monoallelic expression of XIST

(Brown et al. 1991) and KCNQ1OT1 (Weksberg et al. 2003; Nagano

and Fraser 2009) is necessary for silencing gene expression on the

opposite alleles, and it remains to be seen if any of the additional

five that we identified have a similar function (Mohammad et al.

2009; Malecova and Morris 2010).

Allelically imbalanced gene regulation likely results from reg-

ulatory sequences that are not in exons, and therefore both het-

erozygous and homozygous genes may have differential allelic ex-

pression. However, measurement of differential allelic expression

with RNA-seq is limited to genes with heterozygous exonic se-

quences, which represents only 39% of the transcripts in GM12878.

Chromatin immunoprecipitation of RNA Pol2 isolates DNA from

both exons and introns, enabling genome-wide prediction of dif-

ferential allelic expression of genes with homozygous exons but

heterozygous introns (Knight et al. 2003). Aggregating allelic RNA

Pol2 ChIP-seq signals across gene bodies, we predicted differential

allelic expression for 654 (6.3%) of the 10,353 genes with suffi-

cient coverage of RNA Pol2 at heterozygous variants. The genes

included 456 autosomal that lacked exonic heterozygous variants

and could not be evaluated with RNA-seq. When we found signifi-

cant differential allelic expression of X-linked genes, we predicted

expression from the expected allele giving us perfect specificity (Fig.

3C). However, not all X-linked genes reached our significance

threshold, some of which may escape inactivation. Comparing to

a chromosome-wide study of genes subject to or escaping from X

inactivation (Carrel and Willard 2005), we estimated that our

analysis of RNA Pol2 occupancy achieves 66% sensitivity in pre-

dicting X inactivation or escape. Given the perfect specificity,

relaxing our significance criteria combined with deeper sequencing

may improve the sensitivity. However, for the purposes of this study,

we were more concerned with ensuring a high true positive rate. As

a further positive control, we measured differential allelic expres-

sion and RNA Pol2 occupancy in complementary clonal isolates of

GM12878 with paternal or maternal X

chromosomes inactivated. For both RNA-

seq and RNA Pol2 occupancy, we pre-

dicted that >80% of genes with differen-

tial allelic expression were transcribed

from the expected X chromosome in

these clonal cell populations (Supple-

mental Figs. 14–16). On the autosomes,

however, we see strong concordance in

allelic expression among clonal isolates as

well as with the original cell population

(Supplemental Fig. 17). Searching for ev-

idence of random monoallelic expression

that could explain the observed differen-

tial allelic expression (Gimelbrant et al.

2007), we found that 13.5% of genes with

differential allelic expression in one clone

were either bi-allelic or expressed from

the homologous chromosome in a differ-

ent clone (Supplemental Table 7). While

only a limited number of clones were

studied, the result suggests that the mi-

nority of differential allelic expression

results from random monoallelic expres-

sion. Across the autosomes, allelic differ-

ences in RNA Pol2 across the gene body

positively predicted allelic differences in

expression for 135 (92%) of the 146

genes that were also detected in RNA-seq

(P = 1 3 10�27, Fisher’s exact test). That

variation in differential allelic RNA Pol2

occupancy significantly but imperfectly

explains variation in gene expression (r2 =

0.48, P < 1 3 10�16) (Supplemental Fig.

18) may result both from technical noise

in genome-wide measurements of allelic

RNA Pol2 occupancy as well as from bi-

ological sources such as differential rates

Figure 3. (A) Diagram of our method for using RNA-seq to measure differential allelic expression.
First, poly(A)+ RNA was isolated using magnetic beads conjugated to oligo(dT) nucleotides. After RNA
fragmentation, dsDNA was synthesized and subjected to paired-end sequencing on an Illumina Ge-
nome Analyzer. Reads were then aligned to GM12878-specific maternal and paternal versions of all
RefSeq transcripts. Differential allelic expression was called when significantly more reads aligned to
a single allele than would be expected by random. (B) Distribution of the fraction of maternal expression
for all heterozygous genes (black), autosomal genes with differential allelic expression (orange), and
X-chromosomal genes with differential allelic expression (white). (C ) Prediction of differential allelic
expression (y-axis) along the X chromosome (x-axis) using allelic occupancy of RNA Pol2. (Black lines)
Significant differential allelic RNA Pol2 occupancy; (gray lines) nonsignificant binding. The shaded
region on the left indicates the pseudoautosomal region that is not inactivated. All significant differ-
ential allelic occupancy predicted expression as expected. Genes that do not achieve statistical sig-
nificance in the inactivated region of the X were a mix of genes that are known to escape inactivation
as well as false negatives.
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of transcriptional initiation or elongation, or by allelic differences

in RNA stability. Combining evidence of differential allelic ex-

pression from RNA-seq and from RNA Pol2 ChIP-seq, we thus

identified 910 genes with differential allelic expression in

GM12878. The list of all genes with differential allelic expression is

provided in Supplemental Materials.

Transcription factor occupancy is more directly inherited
than gene expression

While differential allelic occupancy and expression are prevalent

in an individual, understanding the extent to which these traits are

inherited is critical to understanding how they contribute to her-

itable disease risk. To investigate, we measured genome-wide both

the occupancy of five TFs (GABPA, POU2F2 a.k.a. OCT2, PAX5,

SPI.1 a.k.a. PU.1, and YY1) and also gene expression in LCLs de-

rived from both the mother and the father of the GM12878 donor.

When a TF had differential allelic occupancy at a heterozygous

autosomal variant in GM12878, and each parent was homozygous

for one of the alleles, the allele with stronger binding in GM12878

had greater ChIP-seq signal in the corresponding parent in 81% of

cases, significantly more often than previously reported for CTCF

(McDaniell et al. 2010) (P = 1.5 3 10�5, binomial test). We also

found that the extent of differential allelic occupancy in GM12878

strongly correlated with differential occupancy between the pa-

rental LCLs (Spearman’s r = 0.75) (Fig. 4A). On the contrary, dif-

ferential allelic expression of autosomal genes was less directly

heritable than differential allelic occupancy (r = 0.24, P = 2.1 3

10�6) (Fig. 4B), with the more highly expressed allele in GM12878

having greater expression in the corresponding parental cell line

for 60% of genes (P = 3 3 10�4; Fisher’s exact test). The reduced

heritability of expression likely reflects the integration of a com-

plex mixture of regulatory contributions from both parents, acting

both in cis and in trans, as well as epigenetic contributions. In

comparison, individual TF binding sites appear to be more strongly

determined by local sequence signals and less affected by the sur-

rounding genomic milieu.

Genes with differential allelic expression are expressed at lower
levels in many human cell lines

To investigate the comparatively weak inheritance of gene ex-

pression, we first looked for evidence of mechanisms that com-

pensate for allelic differences in the expression of autosomal genes.

To do so, we used RNA Pol2 occupancy to identified genes with and

without evidence of differential allelic expression, and used RNA-

seq to compare expression between the two sets of genes. To control

for potential biases due to sample size and RNA Pol2 coverage, for

each gene with differential allelic expression we selected a matched

gene with a similar amount of RNA Pol2 coverage at heterozygous

positions (see Supplemental Methods). If allelic imbalances in au-

tosomal gene expression were compensated, we would expect an

overall similar level of expression between the two sets of genes.

Contrary to this hypothesis, we found that genes with differ-

ential allelic expression have substantially and significantly

lower expression than genes expressed equally from both alleles

(Fig. 4C). The result is independent of the read coverage threshold,

as we have reproduced the result at the RNA Pol2 ChIP-seq cov-

erage threshold ranging from 253 to 1203 (Supplemental Table 8).

To see if the increased allelic variability of lowly expressed genes

was specific to GM12878 cells, we measured gene expression of eight

additional cell lines and found that the same genes were significantly

less expressed in those cell lines as well (Supplemental Fig. 19).

Therefore, it appears that genes with differential allelic occupancy

generally have lower expression, perhaps due to fundamental dif-

ferences in the cis-regulatory landscape surrounding these genes.

With the exception of immunoglobulin genes and the proto-

Figure 4. (A) Inheritance of allelic TF occupancy. The log-ratio of oc-
cupancy of the indicated TFs in the maternally versus paternally derived
LCLs (y-axis) is plotted against the allelic occupancy of the same factors in
GM12878 (x-axis). For each site plotted (N = 85), we required that both
parents were homozygous for alternate alleles. Combining all points to-
gether, the overall correlation is r = 0.75, and for 88% of sites, the more
bound allele in GM12878 was also more bound in the corresponding
parent. (B) Similar to A, the log-ratio of expression from the parental LCLs
plotted as a function of the allelic expression in GM12878. (C ) Genes with
differential allelic expression have overall lower expression in GM12878.
For each gene with expression >0.25 RPKM, the gene expression (y-axis)
is shown as a function of differential allelic RNA Pol2 occupancy (x-axis).
(Darker shading) Greater density of values; (magenta line) less smoothing
over the data.
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cadherin-gamma cluster, both known to

exhibit monoallelic expression patterns

(Kaneko et al. 2006), we did not find

evidence that genes with differential al-

lelic expression were enriched for par-

ticular classes or functions of proteins.

Transcription factor occupancy
explains expression up to 100 kb
from transcription start sites

One of the major advantages of studying

differential allelic occupancy and expres-

sion is the potential to link intergenic

variants implicated in diseases with func-

tional changes in TF occupancy and gene

expression. It is therefore important to

know the extent to which allelic TF occu-

pancy correlates with allelic gene expres-

sion, especially considering our finding

that gene expression was weakly heritable.

Overall, we found more TF and cofactor

occupancy at variants associated with reg-

ulation of gene expression (Montgomery

et al. 2010) than would be expected by

random (see Supplemental Methods),

strongly suggesting that the occupancy we

measured does indeed impact gene ex-

pression. To investigate further, we evalu-

ated the local cis-regulatory landscape of

autosomal genes to determine if differen-

tial allelic TF occupancy occurred near

genes with differential allelic expression.

We found that differential allelic occu-

pancy was significantly closer to genes

with differential allelic expression than without (P = 5.0 3 10�15,

Wilcoxon test comparing the distance to the nearest TSS of a gene

with differential vs. equal allelic expression) (Fig. 5A). In contrast,

binding sites with equal allelic occupancy were on average no closer

to genes with imbalanced or balanced allelic expression (P = 0.21,

two-sided Wilcoxon test) (Fig. 5B). The fact that differential allelic

occupancy occurred closer to genes with differential allelic expres-

sion did not result from differences in the total number of observed

binding sites, but instead from a greater fraction of the TF binding

sites around genes with differential allelic expression having differ-

ential allelic occupancy. Specifically, 6.8% of sites within 100 kb of

a TSS with differential allelic expression had differential allelic oc-

cupancy, compared to 3.9% of sites within 100 kb of a TSS without

differential allelic expression (P < 1 3 10�20, Fisher’s exact test). Fi-

nally, we did not observe a significant difference in the total number

of binding sites in the same regions. The association between dif-

ferential allelic occupancy and expression suggests we may be able to

observe a functional relationship between the two.

Limited to autosomal cases in which we found allelic imbal-

ance both in occupancy and in expression, the ability of allelic

occupancy to explain allelic expression depended on the proxim-

ity of binding to the transcription start site (TSS). In the few cases

where we observed allelic occupancy within 100 bp of the TSS, we

found strong positive correlation between allelic occupancy and

expression from the same allele (r = 0.91, N = 13). Meanwhile, al-

lelic occupancy at intervals between 1 and 100 kb from the TSS

weakly explained expression (r = 0.45, N = 290). More than 100 kb

from the TSS, differential allelic occupancy did not significantly

explain expression (r = 0.06, N = 760) (Fig. 5B). The results show

that differential allelic occupancy does indeed correspond to dif-

ferential allelic expression, and may therefore give functional hy-

potheses to intergenic disease-associated variants. Notably, while

the analysis included binding from all TFs and did not attempt to

distinguish activating from repressive binding sites or factors, we

observed an overall positive correlation. The result suggests either

that the TFs chosen in the study are more commonly activating

than repressing, or alternatively that activating sites are more

amenable to detection by ChIP-seq.

Allelic variation in TF occupancy in GM12878 provides insights
into autoimmune disease

The majority of genomic variants associated with disease using

genome-wide association studies (GWAS) are intergenic and have

unclear regulatory consequences. TF binding sites may give func-

tional insights into the variants identified. Using our observations

of TF binding and differential allelic occupancy, we investigated

a compilation of disease-associated variants (Hindorff et al. 2009)

for potential overlaps that suggest function. Overlap with differen-

tial allelic occupancy is particularly interesting because the variant

may also explain the difference in TF occupancy between the two

alleles. We found 155 unique autosomal variants that were either

directly associated with disease, or that were in perfect linkage dis-

equilibrium (R2 = 1) with a disease-associated variant, that also oc-

Figure 5. (A) Cumulative distribution of the distance from the TSS (x-axis) to the nearest site of dif-
ferential allelic occupancy for all autosomal genes with differential allelic (orange) or equal allelic (blue)
expression. (Left) All genes with differential allelic expression, where the difference between the two
distributions is highly significant. (Right) Genes with equal allelic expression, and there is no significant
difference between the two distributions. (B) Spearman’s correlation (y-axis) of allelic occupancy with
allelic expression within the distance from autosomal TSSs indicated on the x-axis. For each point, we
aggregated all allelic occupancy (both for sites with and without a significant allelic imbalance) at the
indicated distance around all genes with significant differential allelic expression. Then, for every gene
with at least a single site with a significant differential allelic occupancy, we calculate Spearman’s cor-
relation coefficient and plot. Detailed scatter plots are included in Supplemental Figure 20. (C ) Differ-
ential allelic occupancy of multiple factors at variants either directly or through perfect linkage
disequilibrium (R2 = 1; red dash) with celiac disease. Nearby, RMI2 (also known as C16orf75) is pre-
dominantly expressed from the maternal allele, and the regulatory interaction is supported by ex-
pression quantitative trait loci (eQTL) mapping. (D) Similar to C, allelic occupancy of EBF1 at a variant
associated (via linkage disequilibrium) with psoriasis corresponds with differential allelic expression of
COG6. Again, the regulatory interaction is supported by eQTL analysis.
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curred in a heterozygous TF binding site. The overlap was unlikely to

occur by random when compared to a set of variants matched on

distance relative to a TSS and on minor allele frequency (Supple-

mental Table 9). Of those variants, we found 21 instances of disease-

associated variants that occurred in a site of differential allelic oc-

cupancy. More than 75% of the disease-associated variants are as-

sociated with autoimmune diseases, including variants associated

with multiple sclerosis, celiac disease, Type 1 diabetes, systemic

lupus erythematosus, and psoriasis (Supplemental Table 10). The

result is especially compelling considering that the functional

differences are identified in a cell type relevant for immune

modulation (B-cells), and is in agreement with recent findings of

a study evaluating genome-wide chromatin states in the same

cells (Ernst et al. 2011). As an example, we found a cluster of TFs

including EBF1 and PAX5—two key factors in B-cell devel-

opment—binding with a more than twofold preference to the

maternal (protective) allele at variants in complete linkage dis-

equilibrium with the celiac disease-associated variant rs12928822

(Dubois et al. 2010). The variants are found near isoforms of

RMI2, a gene important for genomic stability. In our study, RMI2

also shows differential allelic expression, but from the opposite

homolog. Furthermore, evidence from expression quantitative

trait loci (eQTL) mapping (Dubois et al. 2010) substantiates the

presence of a regulatory interaction between the variant and the

RMI2 (Fig. 5C). In another example, we found differential allelic

occupancy of EBF1 at the psoriasis-associated variant rs9603612

and expression of the nearby gene COG6, a gene involved in the

structure of the Golgi apparatus, again from the opposite homolog

(Fig. 5D; Liu et al. 2008). Again, eQTL linkage between the variant

and COG6 supports the presence of a regulatory interaction (Zeller

et al. 2010).

Discussion
Understanding the impact of genetic variation on gene regulation

remains a major challenge in deciphering the human transcrip-

tional regulatory code. To uncover functional noncoding variants

we used ultra-high throughput sequencing to measure genome-

wide gene expression and occupancy of RNA Pol2, of the tran-

scriptional co-activator EP300, and of 24 sequence-specific TFs in

the female LCL GM12878. By aligning sequence reads to versions

of the reference human genome modified to include homozygous

and heterozygous variants identified by the 1000 Genomes Project

(The 1000 Genomes Project Consortium 2010), we measured al-

lelic differences both in gene expression and in TF occupancy. In

doing so, we have produced an extensive and detailed map of

transcripts that show allelic bias in expression and alleles that

impact TF binding.

Comparing genomic occupancy between multiple TFs, we

found that hubs of TF occupancy occur frequently in the human

genome: ;15% of the TF binding sites in our study overlapping

a binding site for another factor. An abundance of TF-binding hubs

have also been found in fly (MacArthur et al. 2009) and may be

a common feature of the cis-regulatory landscape in complex ge-

nomes. The hubs often exhibited a coordinated reaction to func-

tional variants. In such cases, the co-occupying factors bound

similarly to the same allele, suggesting a cooperative behavior at

such sites. The overabundance of allelically imbalanced hubs also

suggests that TF hubs are particularly sensitive to genetic variation,

and that genetic polymorphism can destabilize occupancy across

the entire hub as opposed to that of a single factor. We also found

that the DNA in the most populated hubs had greater evolutionary

conservation, suggesting they may play an important role as en-

hancers of distal gene regulation.

To link allelic TF occupancy to gene expression outcomes, we

also characterized differential allelic gene expression across the

genome. We used a combination of techniques to measure allelic

gene expression. While RNA sequencing gives a direct measurement

of allelic gene expression, we found that the majority of protein-

coding genes have no heterozygous variants in their exons.

Leveraging the ability of ChIP-seq to detect elongating RNA Pol2

at heterozygous variants in introns and to serve as a proxy for

gene expression, we developed a complementary approach to

measure genome-wide allelic expression of exonically homozy-

gous genes. Our findings suggest that differential allelic expres-

sion is as common in genes with genetically identical transcripts

as in genes with genetically different transcripts, and that the

majority of differential allelic expression is therefore not detect-

able by comparing mRNA abundance. Comprehensively charac-

terizing such cases of cryptic differential allelic expression may be

important in better understanding haploinsufficiency-based disease

by revealing many more instances of monoallelic gene expression

than are currently known.

Looking across all genes with differential allelic expression,

we found that such genes are more likely to be lowly expressed,

even in unrelated cell lines. The finding may indicate a closer link

between gene expression and evolutionary conservation than has

previously been shown. The protein-coding sequences of highly

expressed genes are in general more conserved than that of lowly

expressed genes (Pal et al. 2001; Subramanian and Kumar 2004;

Wall et al. 2005), and our findings suggest that the transcriptional

regulation of highly expressed genes is also more conserved. Sim-

ilarly, it has also been shown that genes with expression limited

to specific tissues have less constrained protein coding sequence

(Duret and Mouchiroud 2000), and we found evidence that genes

with differential allelic expression are expressed in fewer tissues

(Supplemental Fig. 21). It may be that the evolutionary pressures or

other mechanisms of constraint introduced by increased and or-

ganism-wide expression act more broadly than protein coding

sequence and also limit allelic variation in the regulation of the

same genes.

With a more complete characterization of differential allelic

expression, we were able to link allelic TF occupancy to these genes,

showing that differential allelic occupancy is more prevalent near

differential allelic expression. Ultimately, we found allelic occu-

pancy within 100 bp of the TSS to be highly predictive of ex-

pression. However, while we detected significant associations

between occupancy and expression up to 100 kb away from a TSS,

the associations were comparatively very weak. The finding high-

lights the ongoing challenge of understanding the extent to which

distal cis-regulatory elements contribute to expression, and may

underlie the weak penetrance that genetic variation at many inter-

genic variants has in genome-wide association studies. It is also

important to note that, while many factors are known to act both as

an activator and a repressor, we did not observe any systematic in-

verse relationships between allelic TF occupancy and expression.

The result may be explained by studies in inducible systems that

have found the repressive activity of TFs to be predominantly as-

sociated with occupancy distal to the TSS (e.g., Cheng et al. 2009;

Reddy et al. 2009).

Targeted exon sequencing is becoming a common tool for

identifying rare coding variants that may be associated with dis-

ease. From genome wide association studies it is clear that many

regulatory variants are also associated with disease, but due to their
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predominantly intronic or intergenic location (Hindorff et al. 2009)

as well as the complex nature of cis-regulation, such variants are

more difficult to functionally interpret. The compendium of func-

tional noncoding variants we have identified provide a resource for

identifying noncoding polymorphisms that are likely to have an

effect on genomic function, suggesting a compromise between

GWAS and exon sequencing. By using a capture approach that

includes functional intergenic regions in addition to exons, tar-

geted sequencing can explore a greater fraction of the potentially

functional genome while limiting the number of hypotheses being

tested. By expanding exon sequencing to include targeted regulatory

regions, it may therefore be possible to identify rare intergenic variants

that are significantly associated with disease. Meanwhile, the prior

knowledge of particular TFs bound in each region provides a mecha-

nistic hypothesis to investigate in more detail, overcoming another of

the major challenges in existing association studies (Freedman et al.

2011). That many of the functional variants identified in this study

overlap with previously identified disease associated SNPs provides

hope that augmenting disease studies with targeted sequencing of

functional regulatory variation will ultimately be a successful strategy.

Methods

Cell growth
Biological replicates of GM12878, GM12891, and GM12892 cells
were grown in RPMI 1640 media with 2 mM L-glutamine, 15%
fetal bovine serum, and 1% penicillin-streptomycin at 37°C under
5% carbon dioxide.

ChIP-seq

We performed ChIP experiments and prepared the immunopre-
cipitated DNA for sequencing on an Illumina Genome Analyzer
as described (Johnson et al. 2007). We selected factors to include
both ubiquitous TFs and cofactors (e.g., SP1 and EP300), and fac-
tors specific to the development of B-cells (e.g., POU2F2, SPI1,
PBX3, BCL3, and EBF1). Antibodies used are listed in Supple-
mental Table 1. For each factor, we produced $12 million 36
nucleotide reads per biological replicate. We aligned reads to the
GM12878-specific reference genome using Bowtie (Langmead
et al. 2009) with options ‘‘-n 2 -l 36 -k 1–best’’, and removed align-
ments mismatching at any heterozygous SNP. To avoid potential
biases resulting from amplification artifacts, we collapse all sequences
identified multiple times to a single instance. To define binding re-
gions, we used QuEST (Valouev et al. 2008) with ‘‘stringent peak
calling parameters’’. For each binding region, we estimated the frac-
tion of maternal (paternal) occupancy as the fraction of mini-contig
alignments that mapped to the maternal (paternal) chromosome.

For RNA Pol2, we produced 64 million additional paired-end
100-bp reads by using a similar protocol and the Illumina HiSeq
2000 sequencer. We aligned each end independently against the
GM12878-specific reference genome using Bowtie (Langmead et al.
2009) with options ‘‘–best–strata -n 2 -m 10 -k 1’’, and excluded
alignments that mismatched at any heterozygous SNP. We predicted
the fraction of maternal expression as the fraction of mini-contig
alignments across each RefSeq gene that mapped to the maternal
allele. To ensure stringency, we only considered genes with reads
aligning to at least three heterozygous SNPs.

RNA-seq

Paired-end RNA-seq experiments were performed in biological
replicate as described previously (Trapnell et al. 2010). Replicate

one and two were sequenced to a depth of 44 and 25 million
paired-end 75-bp reads, respectively. We aligned reads to the ref-
erence transcriptome using Bowtie (Langmead et al. 2009) with
parameters ‘‘-a–best–strata’’ and default paired-end settings. The
parameters were chosen to allow alignment to multiple isoforms.
We then removed any alignments that resulted in mismatches at
heterozygous SNPs. Finally, we aligned RNA-seq reads to the ref-
erence transcriptome, and estimated the fraction of expression from
the maternal (paternal) chromosome as the fraction of reads map-
ping to a heterozygous SNP that contain the maternal (paternal)
allele.

Sequence alignment and determination of differential allelic
occupancy and expression

To measure differential allelic occupancy, we constructed a GM12878-
specific reference genome that allowed concurrent alignment to both
the maternal and paternal genome as suggested by Degner et al.
(2009). Maternal and paternal genome sequences were de-
termined using variants in the March 2010 data release by the
1000 Genomes Project (The 1000 Genomes Project Consortium
2010). To construct the maternal and paternal genomes, we first
altered homozygous SNPs in the hg18 reference genome to match
the GM12878 genotype. Then, for each heterozygous SNP with
discernable parent-of-origin, we replaced the SNP and the flank-
ing 35 bp (for a 36-bp read length) with a paternal and a maternal
version of the sequence. We then combined overlapping se-
quences such that any read aligning to a parental sequence will
overlap a heterozygous SNP and vice versa. For RNA Pol2, we used
RefSeq genes instead of peak calls, and only considered genes with
reads aligning to at least three heterozygous SNPs.

To measure differential allelic expression, we aligned RNA-
seq reads to a GM12878-specific reference transcriptome that
included both maternal and paternal versions of all transcripts
with a heterozygous variant in an exon. To do so, we first assembled
sequences for all RefSeq transcripts from the hg18 reference human
genome. We then corrected all homozygous SNPs to match the se-
quence of GM12878. Then, we created a paternal and maternal
version of each transcript with a heterozygous exon by changing
heterozygous nucleotides to match the parental chromosome, if
known.

We performed a number of additional filtering steps to remove
false positives. First, to remove artifacts due to incorrect genome
sequence and copy number variation, we removed from analysis
variants with a substantial allelic bias in sequencing of input
control DNA (i.e., DNA from chromatin that was cross-linked and
sonicated, but not immunoprecipitated). We also removed vari-
ant calls that were discordant with sequencing of the GM12878
genome as performed by Complete Genomics (Drmanac et al.
2010). Next, we filtered reads that aligned to positions in the
genome for which either the maternal or paternal sequence were
not unique and could have therefore arisen from a different lo-
cation, as sequences aligning to such positions are inherently
biased to a single allele (Degner et al. 2009). To do so, we simu-
lated every possible 36-bp read that would overlap a heterozygous
variant. We then aligned all such reads to the maternal and pa-
ternal genomes, and noted every genomic position that did not
have a unique 36-bp alignment for either the maternal or paternal
version (i.e., reads for which the maternal or paternal variant
could also align elsewhere in the genome, or could originate from
elsewhere in the genome). The additional screening step reduced
the number of sites of differential allelic occupancy by 1.5%. Lastly,
we removed 10 (<0.05% of total) SNPs that overlapped regions of
aneuploidy as measured by microarray experiments (Supplemental
Table 11).
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To determine statistical significance of differential allelic ex-
pression or occupancy, we used a binomial test against the null
hypothesis that an equal number of reads maps to each chromo-
some. For all statistical testing, we require a 73 coverage threshold
because it is the minimum number of reads required to achieve
significance with a binomial test. We corrected for multiple hy-
potheses using the method of Benjamini and Hochberg (Benjamini
and Hochberg 1995) implemented in the R statistical package.

Identification of differential allelic occupancy
at disease-associated variants

Disease-associated variants were obtained from the National Hu-
man Genome Research Institute’s Catalog of Published Genome-
Wide Association Studies on April 19, 2011. We then expanded the
list to include all variants known to be in perfect linkage disequi-
librium (R2 = 1) in individuals of central European ancestry accord-
ing to the HapMap project. Comparing the list with resequencing of
the GM12878 genome, we identified all disease-associated variants
that are heterozygous in GM12878. Finally, we identified all such
variants that also had significant differential allelic occupancy by
one or more TFs at the same SNP.

To determine if the overlap with TF occupancy was greater
than expected by random, we used a permutation approach. To do
so, we randomly assigned disease association among the phased
(i.e., where the inheritance of each allele is unambiguous) het-
erozygous variants in GM12878, controlling for observation biases
in GWAS studies in three ways: (i) maintaining a matched distri-
bution of minor allele frequencies (with 5% absolute value differ-
ence), (ii) maintaining a matched distance to the TSS of the nearest
RefSeq gene (with 1 kb), and (iii) maintaining both similar minor
allele frequency (within 10% absolute value difference) and similar
distance to the nearest RefSeq TSSs (within 2 kb). For the third
group, we used relaxed stringency in order to assure that we could
find enough matched sets. For (i) and (ii), we performed 1000
random sets and for (iii) we used 150 random sets. We then count
the number of unique variants that overlap TF binding from our
study, and describe the resulting distribution in Supplemental
Table 9.

Data access
All ChIP-seq and RNA-seq data are publicly available from the
ENCODE repository on the UCSC Genome Browser. Details of ac-
cession numbers can be found in Supplemental Tables 12 and 13. In
addition, processed data specific to our study including allele-specific
alignments, aggregation over variants, binding site calls, and aggre-
gation of allelic alignments over those called binding sites are avail-
able online at http://hudsonalpha.org/sites/default/files/DataSets/
Myerslab/Differential_allelic_occupancy_and_expression.
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The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is
unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription,
transcription factor association, chromatin structure and histone modification. These data enabled us to assign
biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many
discovered candidate regulatory elements are physically associated with one another and with expressed genes,
providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical
correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation.
Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an
expansive resource of functional annotations for biomedical research.

The human genome sequence provides the
underlying code for human biology. Despite
intensive study, especially in identifying
protein-coding genes, our understanding of the
genome is far from complete, particularly with
regard to non-coding RNAs, alternatively spliced transcripts and reg-
ulatory sequences. Systematic analyses of transcripts and regulatory
information are essential for the identification of genes and regulatory
regions, and are an important resource for the study of human biology
and disease. Such analyses can also provide comprehensive views of the
organization and variability of genes and regulatory information across
cellular contexts, species and individuals.

The Encyclopedia of DNA Elements (ENCODE) project aims to
delineate all functional elements encoded in the human genome1–3.
Operationally, we define a functional element as a discrete genome
segment that encodes a defined product (for example, protein or
non-coding RNA) or displays a reproducible biochemical signature
(for example, protein binding, or a specific chromatin structure).
Comparative genomic studies suggest that 3–8% of bases are under
purifying (negative) selection4–8 and therefore may be functional,
although other analyses have suggested much higher estimates9–11.
In a pilot phase covering 1% of the genome, the ENCODE project
annotated 60% of mammalian evolutionarily constrained bases, but
also identified many additional putative functional elements without
evidence of constraint2. The advent of more powerful DNA sequencing
technologies now enables whole-genome and more precise analyses
with a broad repertoire of functional assays.

Here we describe the production and initial analysis of 1,640 data
sets designed to annotate functional elements in the entire human
genome. We integrate results from diverse experiments within cell types,
related experiments involving 147 different cell types, and all ENCODE
data with other resources, such as candidate regions from genome-wide
association studies (GWAS) and evolutionarily constrained regions.
Together, these efforts reveal important features about the organization
and function of the human genome, summarized below.
. The vast majority (80.4%) of the human genome participates in at
least one biochemical RNA- and/or chromatin-associated event in at
least one cell type. Much of the genome lies close to a regulatory event:

95% of the genome lies within 8 kilobases (kb)
of a DNA–protein interaction (as assayed by
bound ChIP-seq motifs or DNase I footprints),
and 99% is within 1.7 kb of at least one of the
biochemical events measured by ENCODE.

. Primate-specific elements as well as elements without detectable
mammalian constraint show, in aggregate, evidence of negative selec-
tion; thus, some of them are expected to be functional.
. Classifying the genome into seven chromatin states indicates an initial
set of 399,124 regions with enhancer-like features and 70,292 regions
with promoter-like features, as well as hundreds of thousands of qui-
escent regions. High-resolution analyses further subdivide the genome
into thousands of narrow states with distinct functional properties.
. It is possible to correlate quantitatively RNA sequence production
and processing with both chromatin marks and transcription factor
binding at promoters, indicating that promoter functionality can
explain most of the variation in RNA expression.
. Many non-coding variants in individual genome sequences lie in
ENCODE-annotated functional regions; this number is at least as
large as those that lie in protein-coding genes.
. Single nucleotide polymorphisms (SNPs) associated with disease by
GWAS are enriched within non-coding functional elements, with a
majority residing in or near ENCODE-defined regions that are out-
side of protein-coding genes. In many cases, the disease phenotypes
can be associated with a specific cell type or transcription factor.

ENCODE data production and initial analyses
Since 2007, ENCODE has developed methods and performed a large
number of sequence-based studies to map functional elements across
the human genome3. The elements mapped (and approaches used)
include RNA transcribed regions (RNA-seq, CAGE, RNA-PET and
manual annotation), protein-coding regions (mass spectrometry),
transcription-factor-binding sites (ChIP-seq and DNase-seq),
chromatin structure (DNase-seq, FAIRE-seq, histone ChIP-seq and
MNase-seq), and DNA methylation sites (RRBS assay) (Box 1 lists
methods and abbreviations; Supplementary Table 1, section P, details
production statistics)3. To compare and integrate results across the
different laboratories, data production efforts focused on two selected

*Lists of participants and their affiliations appear at the end of the paper.
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sets of cell lines, designated ‘tier 1’ and ‘tier 2’ (Box 1). To capture a
broader spectrum of biological diversity, selected assays were also
executed on a third tier comprising more than 100 cell types including
primary cells. All data and protocol descriptions are available at
http://www.encodeproject.org/, and a User’s Guide including details
of cell-type choice and limitations was published recently3.

Integration methodology
For consistency, data were generated and processed using standardized
guidelines, and for some assays, new quality-control measures were
designed (see refs 3, 12 and http://encodeproject.org/ENCODE/

dataStandards.html; A. Kundaje, personal communication). Uniform
data-processing methods were developed for each assay (see
Supplementary Information; A. Kundaje, personal communication),
and most assay results can be represented both as signal information
(a per-base estimate across the genome) and as discrete elements
(regions computationally identified as enriched for signal). Extensive
processing pipelines were developed to generate each representation
(M. M. Hoffman et al., manuscript in preparation and A. Kundaje,
personal communication). In addition, we developed the irreproducible
discovery rate (IDR)13 measure to provide a robust and conservative
estimate of the threshold where two ranked lists of results from bio-
logical replicates no longer agree (that is, are irreproducible), and we
applied this to defining sets of discrete elements. We identified, and
excluded from most analyses, regions yielding untrustworthy signals
likely to be artefactual (for example, multicopy regions). Together, these
regions comprise 0.39% of the genome (see Supplementary
Information). The poster accompanying this issue represents different
ENCODE-identified elements and their genome coverage.

Transcribed and protein-coding regions
We used manual and automated annotation to produce a compre-
hensive catalogue of human protein-coding and non-coding RNAs as
well as pseudogenes, referred to as the GENCODE reference gene
set14,15 (Supplementary Table 1, section U). This includes 20,687
protein-coding genes (GENCODE annotation, v7) with, on average,
6.3 alternatively spliced transcripts (3.9 different protein-coding tran-
scripts) per locus. In total, GENCODE-annotated exons of protein-
coding genes cover 2.94% of the genome or 1.22% for protein-coding
exons. Protein-coding genes span 33.45% from the outermost start to
stop codons, or 39.54% from promoter to poly(A) site. Analysis of
mass spectrometry data from K562 and GM12878 cell lines yielded 57
confidently identified unique peptide sequences in intergenic regions
relative to GENCODE annotation. Taken together with evidence of
pervasive genome transcription16, these data indicate that additional
protein-coding genes remain to be found.

In addition, we annotated 8,801 automatically derived small RNAs
and 9,640 manually curated long non-coding RNA (lncRNA) loci17.
Comparing lncRNAs to other ENCODE data indicates that lncRNAs
are generated through a pathway similar to that for protein-coding
genes17. The GENCODE project also annotated 11,224 pseudogenes,
of which 863 were transcribed and associated with active chromatin18.

RNA
We sequenced RNA16 from different cell lines and multiple subcellular
fractions to develop an extensive RNA expression catalogue. Using a
conservative threshold to identify regions of RNA activity, 62% of
genomic bases are reproducibly represented in sequenced long (.200
nucleotides) RNA molecules or GENCODE exons. Of these bases, only
5.5% are explained by GENCODE exons. Most transcribed bases are
within or overlapping annotated gene boundaries (that is, intronic), and
only 31% of bases in sequenced transcripts were intergenic16.

We used CAGE-seq (59 cap-targeted RNA isolation and sequencing)
to identify 62,403 transcription start sites (TSSs) at high confidence
(IDR of 0.01) in tier 1 and 2 cell types. Of these, 27,362 (44%) are within
100 base pairs (bp) of the 59 end of a GENCODE-annotated transcript
or previously reported full-length messenger RNA. The remaining
regions predominantly lie across exons and 39 untranslated regions
(UTRs), and some exhibit cell-type-restricted expression; these may
represent the start sites of novel, cell-type-specific transcripts.

Finally, we saw a significant proportion of coding and non-coding
transcripts processed into steady-state stable RNAs shorter than 200
nucleotides. These precursors include transfer RNA, microRNA,
small nuclear RNA and small nucleolar RNA (tRNA, miRNA,
snRNA and snoRNA, respectively) and the 59 termini of these pro-
cessed products align with the capped 59 end tags16.

BOX 1

ENCODE abbreviations
RNA-seq. Isolation of RNA sequences, often with different purification
techniques to isolate different fractions of RNA followed by high-
throughput sequencing.
CAGE. Captureof themethylated cap at the 59 end of RNA, followed by
high-throughput sequencing of a small tag adjacent to the
59 methylated caps. 59 methylated caps are formed at the initiation of
transcription, although other mechanisms also methylate 59 ends of
RNA.
RNA-PET. Simultaneous capture of RNAs with both a 59 methyl cap
and a poly(A) tail, which is indicative of a full-length RNA. This is then
followed by sequencing a short tag from each end by high-throughput
sequencing.
ChIP-seq. Chromatin immunoprecipitation followed by sequencing.
Specific regions of crosslinked chromatin, which is genomic DNA in
complexwith itsboundproteins,are selectedbyusinganantibody toa
specific epitope. The enriched sample is then subjected to high-
throughput sequencing to determine the regions in the genome most
often bound by the protein to which the antibody was directed. Most
often used are antibodies to any chromatin-associated epitope,
including transcription factors, chromatin binding proteins and
specific chemical modifications on histone proteins.
DNase-seq. Adaption of established regulatory sequence assay to
modern techniques. The DNase I enzyme will preferentially cut live
chromatin preparations at sites where nearby there are specific (non-
histone) proteins. The resulting cut points are then sequenced using
high-throughput sequencing to determine those sites ‘hypersensitive’
to DNase I, corresponding to open chromatin.
FAIRE-seq. Formaldehyde assisted isolation of regulatory elements.
FAIRE isolates nucleosome-depleted genomic regions by exploiting
the difference in crosslinking efficiency between nucleosomes (high)
and sequence-specific regulatory factors (low). FAIRE consists of
crosslinking, phenol extraction, and sequencing the DNA fragments in
the aqueous phase.
RRBS. Reduced representation bisulphite sequencing. Bisulphite
treatment of DNA sequence converts unmethylated cytosines to
uracil. To focus the assay and save costs, specific restriction enzymes
that cutaroundCpGdinucleotidescan reduce thegenome toaportion
specifically enriched in CpGs.This enrichedsample is thensequenced
to determine the methylation status of individual cytosines
quantitatively.
Tier 1. Tier 1 cell types were the highest-priority set and comprised
three widely studied cell lines: K562 erythroleukaemia cells;
GM12878, a B-lymphoblastoid cell line that is also part of the 1000
Genomesproject (http://1000genomes.org)55; and theH1embryonic
stem cell (H1 hESC) line.
Tier 2. The second-priority set of cell types in the ENCODE project
which included HeLa-S3 cervical carcinoma cells, HepG2
hepatoblastoma cells and primary (non-transformed) human
umbilical vein endothelial cells (HUVECs).
Tier 3. Any other ENCODE cell types not in tier 1 or tier 2.
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Protein bound regions
To identify regulatory regions directly, we mapped the binding loca-
tions of 119 different DNA-binding proteins and a number of RNA
polymerase components in 72 cell types using ChIP-seq (Table 1,
Supplementary Table 1, section N, and ref. 19); 87 (73%) were
sequence-specific transcription factors. Overall, 636,336 binding
regions covering 231 megabases (Mb; 8.1%) of the genome are
enriched for regions bound by DNA-binding proteins across all cell
types. We assessed each protein-binding site for enrichment of known
DNA-binding motifs and the presence of novel motifs. Overall, 86%
of the DNA segments occupied by sequence-specific transcription
factors contained a strong DNA-binding motif, and in most (55%)
cases the known motif was most enriched (P. Kheradpour and
M. Kellis, manuscript in preparation).

Protein-binding regions lacking high or moderate affinity cognate
recognition sites have 21% lower median scores by rank than regions
with recognition sequences (Wilcoxon rank sum P value ,10216).
Eighty-two per cent of the low-signal regions have high-affinity recog-
nition sequences for other factors. In addition, when ChIP-seq peaks
are ranked by their concordance with their known recognition
sequence, the median DNase I accessibility is twofold higher in the
bottom 20% of peaks than in the upper 80% (genome structure
correction (GSC)20 P value ,10216), consistent with previous
observations21–24. We speculate that low signal regions are either
lower-affinity sites21 or indirect transcription-factor target regions
associated through interactions with other factors (see also refs 25, 26).

We organized all the information associated with each transcrip-
tion factor—including the ChIP-seq peaks, discovered motifs and
associated histone modification patterns—in FactorBook (http://www.
factorbook.org; ref. 26), a public resource that will be updated as the
project proceeds.

DNase I hypersensitive sites and footprints
Chromatin accessibility characterized by DNase I hypersensitivity is
the hallmark of regulatory DNA regions27,28. We mapped 2.89 million
unique, non-overlapping DNase I hypersensitive sites (DHSs) by
DNase-seq in 125 cell types, the overwhelming majority of which lie
distal to TSSs29. We also mapped 4.8 million sites across 25 cell types

that displayed reduced nucleosomal crosslinking by FAIRE, many of
which coincide with DHSs. In addition, we used micrococcal nuclease
to map nucleosome occupancy in GM12878 and K562 cells30.

In tier 1 and tier 2 cell types, we identified a mean of 205,109 DHSs
per cell type (at false discovery rate (FDR) 1%), encompassing an
average of 1.0% of the genomic sequence in each cell type, and 3.9%
in aggregate. On average, 98.5% of the occupancy sites of transcription
factors mapped by ENCODE ChIP-seq (and, collectively, 94.4% of all
1.1 million transcription factor ChIP-seq peaks in K562 cells) lie within
accessible chromatin defined by DNase I hotspots29. However, a
small number of factors, most prominently heterochromatin-bound
repressive complexes (for example, the TRIM28–SETDB1–ZNF274
complex31,32 encoded by the TRIM28, SETDB1 and ZNF274 genes),
seem to occupy a significant fraction of nucleosomal sites.

Using genomic DNase I footprinting33,34 on 41 cell types we iden-
tified 8.4 million distinct DNase I footprints (FDR 1%)25. Our de novo
motif discovery on DNase I footprints recovered ,90% of known
transcription factor motifs, together with hundreds of novel evolutio-
narily conserved motifs, many displaying highly cell-selective occu-
pancy patterns similar to major developmental and tissue-specific
regulators.

Regions of histone modification
We assayed chromosomal locations for up to 12 histone modifications
and variants in 46 cell types, including a complete matrix of eight
modifications across tier 1 and tier 2. Because modification states
may span multiple nucleosomes, which themselves can vary in position
across cell populations, we used a continuous signal measure of histone
modifications in downstream analysis, rather than calling regions
(M. M. Hoffman et al., manuscript in preparation; see http://code.
google.com/p/align2rawsignal/). For the strongest, ‘peak-like’ histone
modifications, we used MACS35 to characterize enriched sites. Table 2
describes the different histone modifications, their peak characteristics,
and a summary of their known roles (reviewed in refs 36–39).

Our data show that global patterns of modification are highly vari-
able across cell types, in accordance with changes in transcriptional
activity. Consistent with previous studies40,41, we find that integration
of the different histone modification information can be used system-
atically to assign functional attributes to genomic regions (see below).

DNA methylation
Methylation of cytosine, usually at CpG dinucleotides, is involved in
epigenetic regulation of gene expression. Promoter methylation is
typically associated with repression, whereas genic methylation cor-
relates with transcriptional activity42. We used reduced representation
bisulphite sequencing (RRBS) to profile DNA methylation quantita-
tively for an average of 1.2 million CpGs in each of 82 cell lines and
tissues (8.6% of non-repetitive genomic CpGs), including CpGs in
intergenic regions, proximal promoters and intragenic regions (gene
bodies)43, although it should be noted that the RRBS method pref-
erentially targets CpG-rich islands. We found that 96% of CpGs
exhibited differential methylation in at least one cell type or tissue

Table 1 | Summary of transcription factor classes analysed in
ENCODE

Acronym Description Factors
analysed

ChromRem ATP-dependent chromatin complexes 5
DNARep DNA repair 3
HISase Histone acetylation, deacetylation or methylation

complexes
8

Other Cyclin kinase associated with transcription 1
Pol2 Pol II subunit 1 (2 forms)
Pol3 Pol III-associated 6
TFNS General Pol II-associated factor, not site-specific 8
TFSS Pol II transcription factor with sequence-specific DNA

binding
87

Table 2 | Summary of ENCODE histone modifications and variants
Histone modification

or variant
Signal

characteristics
Putative functions

H2A.Z Peak Histone protein variant (H2A.Z) associated with regulatory elements with dynamic chromatin
H3K4me1 Peak/region Mark of regulatory elements associatedwithenhancersand otherdistal elements,but alsoenricheddownstreamof transcription starts
H3K4me2 Peak Mark of regulatory elements associated with promoters and enhancers
H3K4me3 Peak Mark of regulatory elements primarily associated with promoters/transcription starts
H3K9ac Peak Mark of active regulatory elements with preference for promoters

H3K9me1 Region Preference for the 59 end of genes
H3K9me3 Peak/region Repressive mark associated with constitutive heterochromatin and repetitive elements
H3K27ac Peak Mark of active regulatory elements; may distinguish active enhancers and promoters from their inactive counterparts

H3K27me3 Region Repressive mark established by polycomb complex activity associated with repressive domains and silent developmental genes
H3K36me3 Region Elongation mark associated with transcribed portions of genes, with preference for 39 regions after intron 1
H3K79me2 Region Transcription-associated mark, with preference for 59 end of genes
H4K20me1 Region Preference for 59 end of genes
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assayed (K. Varley et al., personal communication), and levels of
DNA methylation correlated with chromatin accessibility. The most
variably methylated CpGs are found more often in gene bodies and
intergenic regions, rather than in promoters and upstream regulatory
regions. In addition, we identified an unexpected correspondence
between unmethylated genic CpG islands and binding by P300, a
histone acetyltransferase linked to enhancer activity44.

Because RRBS is a sequence-based assay with single-base resolu-
tion, we were able to identify CpGs with allele-specific methylation
consistent with genomic imprinting, and determined that these loci
exhibit aberrant methylation in cancer cell lines (K. Varley et al.,
personal communication). Furthermore, we detected reproducible
cytosine methylation outside CpG dinucleotides in adult tissues45,
providing further support that this non-canonical methylation event
may have important roles in human biology (K. Varley et al., personal
communication).

Chromosome-interacting regions
Physical interaction between distinct chromosome regions that can be
separated by hundreds of kilobases is thought to be important in the
regulation of gene expression46. We used two complementary chro-
mosome conformation capture (3C)-based technologies to probe
these long-range physical interactions.

A 3C-carbon copy (5C) approach47,48 provided unbiased detection
of long-range interactions with TSSs in a targeted 1% of the genome
(the 44 ENCODE pilot regions) in four cell types (GM12878, K562,
HeLa-S3 and H1 hESC)49. We discovered hundreds of statistically
significant long-range interactions in each cell type after accounting
for chromatin polymer behaviour and experimental variation. Pairs
of interacting loci showed strong correlation between the gene
expression level of the TSS and the presence of specific functional
element classes such as enhancers. The average number of distal ele-
ments interacting with a TSS was 3.9, and the average number of TSSs
interacting with a distal element was 2.5, indicating a complex net-
work of interconnected chromatin. Such interwoven long-range
architecture was also uncovered genome-wide using chromatin inter-
action analysis with paired-end tag sequencing (ChIA-PET)50 applied
to identify interactions in chromatin enriched by RNA polymerase II
(Pol II) ChIP from five cell types51. In K562 cells, we identified 127,417
promoter-centred chromatin interactions using ChIA-PET, 98% of
which were intra-chromosomal. Whereas promoter regions of 2,324
genes were involved in ‘single-gene’ enhancer–promoter interactions,
those of 19,813 genes were involved in ‘multi-gene’ interaction com-
plexes spanning up to several megabases, including promoter–
promoter and enhancer–promoter interactions51.

These analyses portray a complex landscape of long-range gene–
element connectivity across ranges of hundreds of kilobases to several
megabases, including interactions among unrelated genes (Supplemen-
tary Fig. 1, section Y). Furthermore, in the 5C results, 50–60% of long-
range interactions occurred in only one of the four cell lines, indicative
of a high degree of tissue specificity for gene–element connectivity49.

Summary of ENCODE-identified elements
Accounting for all these elements, a surprisingly large amount of the
human genome, 80.4%, is covered by at least one ENCODE-identified
element (detailed in Supplementary Table 1, section Q). The broadest
element class represents the different RNA types, covering 62% of the
genome (although the majority is inside of introns or near genes).
Regions highly enriched for histone modifications form the next
largest class (56.1%). Excluding RNA elements and broad histone
elements, 44.2% of the genome is covered. Smaller proportions of
the genome are occupied by regions of open chromatin (15.2%) or
sites of transcription factor binding (8.1%), with 19.4% covered by at
least one DHS or transcription factor ChIP-seq peak across all cell
lines. Using our most conservative assessment, 8.5% of bases are
covered by either a transcription-factor-binding-site motif (4.6%)

or a DHS footprint (5.7%). This, however, is still about 4.5-fold higher
than the amount of protein-coding exons, and about twofold higher
than the estimated amount of pan-mammalian constraint.

Given that the ENCODE project did not assay all cell types, or all
transcription factors, and in particular has sampled few specialized or
developmentally restricted cell lineages, these proportions must be
underestimates of the total amount of functional bases. However,
many assays were performed on more than one cell type, allowing
assessment of the rate of discovery of new elements. For both DHSs
and CTCF-bound sites, the number of new elements initially increases
rapidly with a steep gradient for the saturation curve and then slows
with increasing number of cell types (Supplementary Figs 1 and 2,
section R). With the current data, at the flattest part of the saturation
curve each new cell type adds, on average, 9,500 DHS elements (across
106 cell types) and 500 CTCF-binding elements (across 49 cell types),
representing 0.45% of the total element number. We modelled
saturation for the DHSs and CTCF-binding sites using a Weibull
distribution (r2 . 0.999) and predict saturation at approximately
4.1 million (standard error (s.e.) 5 108,000) and 185,100 (s.e. 5 18,020)
sites, respectively, indicating that we have discovered around half of the
estimated total DHSs. These estimates represent a lower bound, but
reinforce the observation that there is more non-coding functional
DNA than either coding sequence or mammalian evolutionarily con-
strained bases.

The impact of selection on functional elements
From comparative genomic studies, at least 3–8% of bases are under
purifying (negative) selection4–11, indicating that these bases may
potentially be functional. We previously found that 60% of mammalian
evolutionarily constrained bases were annotated in the ENCODE pilot
project, but also observed that many functional elements lacked
evidence of constraint2, a conclusion substantiated by others52–54. The
diversity and genome-wide occurrence of functional elements now
identified provides an unprecedented opportunity to examine further
the forces of negative selection on human functional sequences.

We examined negative selection using two measures that highlight
different periods of selection in the human genome. The first measure,
inter-species, pan-mammalian constraint (GERP-based scores;
24 mammals8), addresses selection during mammalian evolution.
The second measure is intra-species constraint estimated from the
numbers of variants discovered in human populations using data from
the 1000 Genomes project55, and covers selection over human evolu-
tion. In Fig. 1, we plot both these measures of constraint for different
classes of identified functional elements, excluding features overlapping
exons and promoters that are known to be constrained. Each graph also
shows genomic background levels and measures of coding-gene con-
straint for comparison. Because we plot human population diversity on
an inverted scale, elements that are more constrained by negative selec-
tion will tend to lie in the upper and right-hand regions of the plot.

For DNase I elements (Fig. 1b) and bound motifs (Fig. 1c), most
sets of elements show enrichment in pan-mammalian constraint and
decreased human population diversity, although for some cell types
the DNase I sites do not seem overall to be subject to pan-mammalian
constraint. Bound transcription factor motifs have a natural control
from the set of transcription factor motifs with equal sequence poten-
tial for binding but without binding evidence from ChIP-seq experi-
ments—in all cases, the bound motifs show both more mammalian
constraint and higher suppression of human diversity.

Consistent with previous findings, we do not observe genome-wide
evidence for pan-mammalian selection of novel RNA sequences
(Fig. 1d). There are also a large number of elements without mammalian
constraint, between 17% and 90% for transcription-factor-binding
regions as well as DHSs and FAIRE regions. Previous studies could
not determine whether these sequences are either biochemically active,
but with little overall impact on the organism, or under lineage-
specific selection. By isolating sequences preferentially inserted into
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the primate lineage, which is only feasible given the genome-wide scale
of this data, we are able to examine this issue specifically. Most primate-
specific sequence is due to retrotransposon activity, but an appreciable
proportion is non-repetitive primate-specific sequence. Of 104,343,413
primate-specific bases (excluding repetitive elements), 67,769,372
(65%) are found within ENCODE-identified elements. Examination
of 227,688 variants segregating in these primate-specific regions
revealed that all classes of elements (RNA and regulatory) show
depressed derived allele frequencies, consistent with recent negative
selection occurring in at least some of these regions (Fig. 1e). An alterna-
tive approach examining sequences that are not clearly under pan-
mammalian constraint showed a similar result (L. Ward and
M. Kellis, manuscript submitted). This indicates that an appreciable
proportion of the unconstrained elements are lineage-specific elements
required for organismal function, consistent with long-standing views
of recent evolution56, and the remainder are probably ‘neutral’ elements2

that are not currently under selection but may still affect cellular or
larger scale phenotypes without an effect on fitness.

The binding patterns of transcription factors are not uniform, and
we can correlate both inter- and intra-species measures of negative
selection with the overall information content of motif positions. The
selection on some motif positions is as high as protein-coding exons
(Fig. 1f; L. Ward and M. Kellis, manuscript submitted). These
aggregate measures across motifs show that the binding preferences
found in the population of sites are also relevant to the per-site beha-
viour. By developing a per-site metric of population effect on bound
motifs, we found that highly constrained bound instances across
mammals are able to buffer the impact of individual variation57.

ENCODE data integration with known genomic features
Promoter-anchored integration
Many of the ENCODE assays directly or indirectly provide informa-
tion about the action of promoters. Focusing on the TSSs of protein-
coding transcripts, we investigated the relationships between different
ENCODE assays, in particular testing the hypothesis that RNA
expression (output) can be effectively predicted from patterns of
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Figure 1 | Impact of selection on ENCODE functional elements in
mammals and human populations. a, Levels of pan-mammalian constraint
(mean GERP score; 24 mammals8, x axis) compared to diversity, a measure of
negative selection in the human population (mean expected heterozygosity,
inverted scale, y axis) for ENCODE data sets. Each point is an average for a
single data set. The top-right corners have the strongest evolutionary constraint
and lowest diversity. Coding (C), UTR (U), genomic (G), intergenic (IG) and
intronic (IN) averages are shown as filled squares. In each case the vertical and
horizontal cross hairs show representative levels for the neutral expectation for
mammalian conservation and human population diversity, respectively. The
spread over all non-exonic ENCODE elements greater than 2.5 kb from TSSs is
shown. The inner dashed box indicates that parts of the plot have been
magnified for the surrounding outer panels, although the scales in the outer
plots provide the exact regions and dimensions magnified. The spread for DHS
sites (b) and RNA elements (d) is shown in the plots on the left. RNA elements

are either long novel intronic (dark green) or long intergenic (light green)
RNAs. The horizontal cross hairs are colour-coded to the relevant data set in
d. c, Spread of transcription factor motif instances either in regions bound by
the transcription factor (orange points) or in the corresponding unbound motif
matches in grey, with bound and unbound points connected with an arrow in
each case showing that bound sites are generally more constrained and less
diverse. e, Derived allele frequency spectrum for primate-specific elements,
with variations outside ENCODE elements in black and variations covered by
ENCODE elements in red. The increase in low-frequency alleles compared to
background is indicative of negative selection occurring in the set of variants
annotated by the ENCODE data. f, Aggregation of mammalian constraint
scores over the glucocorticoid receptor (GR) transcription factor motif in
bound sites, showing the expected correlation with the information content of
bases in the motif. An interactive version of this figure is available in the online
version of the paper.
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chromatin modification or transcription factor binding (input).
Consistent with previous reports58, we observe two relatively distinct
types of promoter: (1) broad, mainly (C1G)-rich, TATA-less promoters;
and (2) narrow, TATA-box-containing promoters. These promoters
have distinct patterns of histone modifications, and transcription-fac-
tor-binding sites are selectively enriched in each class (Supplementary
Fig. 1, section Z).

We developed predictive models to explore the interaction between
histone modifications and measures of transcription at promoters,
distinguishing between modifications known to be added as a con-
sequence of transcription (such as H3K36me3 and H3K79me2) and
other categories of histone marks59. In our analyses, the best models
had two components: an initial classification component (on/off) and a
second quantitative model component. Our models showed that
activating acetylation marks (H3K27ac and H3K9ac) are roughly
as informative as activating methylation marks (H3K4me3 and
H3K4me2) (Fig. 2a). Although repressive marks, such as H3K27me3

or H3K9me3, show negative correlation both individually and in the
model, removing these marks produces only a small reduction in
model performance. However, for a subset of promoters in each cell
line, repressive histone marks (H3K27me3 or H3K9me3) must be used
to predict their expression accurately. We also examined the interplay
between the H3K79me2 and H3K36me3 marks, both of which mark
gene bodies, probably reflecting recruitment of modification enzymes
by polymerase isoforms. As described previously, H3K79me2 occurs
preferentially at the 59 ends of gene bodies and H3K36me3 occurs
more 39, and our analyses support the previous model in which the
H3K79me2 to H3K36me3 transition occurs at the first 39 splice site60.

Few previous studies have attempted to build qualitative or quant-
itative models of transcription genome-wide from transcription
factor levels because of the paucity of documented transcription-
factor-binding regions and the lack of coordination around a single
cell line. We thus examined the predictive capacity of transcription-
factor-binding signals for the expression levels of promoters (Fig. 2b).
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Figure 2 | Modelling transcription levels from histone modification and
transcription-factor-binding patterns. a, b, Correlative models between
either histone modifications or transcription factors, respectively, and RNA
production as measured by CAGE tag density at TSSs in K562 cells. In each case
the scatter plot shows the output of the correlation models (x axis) compared to
observed values (y axis). The bar graphs show the most important histone

modifications (a) or transcription factors (b) in both the initial classification
phase (top bar graph) or the quantitative regression phase (bottom bar graph),
with larger values indicating increasing importance of the variable in the model.
Further analysis of other cell lines and RNA measurement types is reported
elsewhere59,79. AUC, area under curve; Gini, Gini coefficient; RMSE, root mean
square error.
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In contrast to the profiles of histone modifications, most transcription
factors show enriched binding signals in a narrow DNA region near
the TSS, with relatively higher binding signals in promoters with
higher CpG content. Most of this correlation could be recapitulated
by looking at the aggregate binding of transcription factors without
specific transcription factor terms. Together, these correlation models
indicate both that a limited set of chromatin marks are sufficient to
‘explain’ transcription and that a variety of transcription factors might
have broad roles in general transcription levels across many genes. It is
important to note that this is an inherently observational study of
correlation patterns, and is consistent with a variety of mechanistic
models with different causal links between the chromatin, transcrip-
tion factor and RNA assays. However, it does indicate that there is
enough information present at the promoter regions of genes to
explain most of the variation in RNA expression.

We developed predictive models similar to those used to model
transcriptional activity to explore the relationship between levels of
histone modification and inclusion of exons in alternately spliced
transcripts. Even accounting for expression level, H3K36me3 has a
positive contribution to exon inclusion, whereas H3K79me2 has a
negative contribution (H. Tilgner et al., manuscript in preparation).
By monitoring the RNA populations in the subcellular fractions of
K562 cells, we found that essentially all splicing is co-transcriptional61,
further supporting a link between chromatin structure and splicing.

Transcription-factor-binding site-anchored integration
Transcription-factor-binding sites provide a natural focus around
which to explore chromatin properties. Transcription factors are often
multifunctional and can bind a variety of genomic loci with different
combinations and patterns of chromatin marks and nucleosome organ-
ization. Hence, rather than averaging chromatin mark profiles across all
binding sites of a transcription factor, we developed a clustering pro-
cedure, termed the Clustered Aggregation Tool (CAGT), to identify
subsets of binding sites sharing similar but distinct patterns of chro-
matin mark signal magnitude, shape and hidden directionality30. For
example, the average profile of the repressive histone mark H3K27me3
over all 55,782 CTCF-binding sites in H1 hESCs shows poor signal
enrichment (Fig. 3a). However, after grouping profiles by signal
magnitude we found a subset of 9,840 (17.6%) CTCF-binding sites
that exhibit significant flanking H3K27me3 signal. Shape and orienta-
tion analysis further revealed that the predominant signal profile for
H3K27me3 around CTCF peak summits is asymmetric, consistent
with a boundary role for some CTCF sites between active and
polycomb-silenced domains. Further examples are provided in
Supplementary Figs 5 and 6 of section E. For TAF1, predominantly
found near TSSs, the asymmetric sites are orientated with the direction
of transcription. However, for distal sites, such as those bound by
GATA1 and CTCF, we also observed a high proportion of asymmetric
histone patterns, although independent of motif directionality. In fact,
all transcription-factor-binding data sets in all cell lines show
predominantly asymmetric patterns (asymmetry ratio .0.6) for all
chromatin marks but not for DNase I signal (Fig. 3b). This indicates
that most transcription-factor-bound chromatin events correlate with
structured, directional patterns of histone modifications, and that pro-
moter directionality is not the only source of orientation at these sites.

We also examined nucleosome occupancy relative to the symmetry
properties of chromatin marks around transcription-factor-binding
sites. Around TSSs, there is usually strong asymmetric nucleosome
occupancy, often accounting for most of the histone modification
signal (for instance, see Supplementary Fig. 4, section E). However,
away from TSSs, there is far less concordance. For example, CTCF-
binding sites typically show arrays of well-positioned nucleosomes on
either side of the peak summit (Supplementary Fig. 1, section E)62.
Where the flanking chromatin mark signal is high, the signals are
often asymmetric, indicating differential marking with histone
modifications (Supplementary Figs 2 and 3, section E). Thus, we

confirm on a genome-wide scale that transcription factors can form
barriers around which nucleosomes and histone modifications are
arranged in a variety of configurations62–65. This is explored in further
detail in refs 25, 26 and 30.

Transcription factor co-associations
Transcription-factor-binding regions are nonrandomly distributed
across the genome, with respect to both other features (for example,
promoters) and other transcription-factor-binding regions. Within the
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Figure 3 | Patterns and asymmetry of chromatin modification at
transcription-factor-binding sites. a, Results of clustered aggregation of
H3K27me3 modification signal around CTCF-binding sites (a multifunctional
protein involved with chromatin structure). The first three plots (left column)
show the signal behaviour of the histone modification over all sites (top) and
then split into the high and low signal components. The solid lines show the
mean signal distribution by relative position with the blue shaded area
delimiting the tenth and ninetieth percentile range. The high signal component
is then decomposed further into six different shape classes on the right (see ref.
30 for details). The shape decomposition process is strand aware. b, Summary
of shape asymmetry for DNase I, nucleosome and histone modification signals
by plotting an asymmetry ratio for each signal over all transcription-factor-
binding sites. All histone modifications measured in this study show
predominantly asymmetric patterns at transcription-factor-binding sites. An
interactive version of this figure is available in the online version of the paper.
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tier 1 and 2 cell lines, we found 3,307 pairs of statistically co-associated
factors (P ,1 3 10216, GSC) involving 114 out of a possible 117 factors
(97%) (Fig. 4a). These include expected associations, such as Jun and

Fos, and some less expected novel associations, such as TCF7L2 with
HNF4-a and FOXA2 (ref. 66; a full listing is given in Supplementary
Table 1, section F). When one considers promoter and intergenic

P
ro

m
o

to
r 

p
ro

x
im

a
l 
re

g
io

n
s

In
te

rg
e
n

ic
 r

e
g

io
n

s

A (K562) B (K562)

Confidence

Degree of co-association

(z-score)

High

Medium

Low
0 10 20 30 40 50 60 70 80 90 ≥100

(H1 hESC)

a

A

B

bWhole genome 

JUNB

JUND

JUN

FOSL1

J
U

N
B

J
U

N
D

J
U

N

F
O

S
L

1

J
U

N
B

J
U

N
D

J
U

N

F
O

S
L

1

JUNB

JUND

JUN

FOSL1

HDAC2

GABPA

CHD2

POLR2A

GTF2F1

MXI1

MYC

HDAC2

GABPA

CHD2

POLR2A

GTF2F1

MXI1

MYC

HDAC2

NANOG

EP300

SP1

HDAC2

NANOG

EP300

SP1

H
D

A
C

2

G
A

B
P

A

M
X

I1

M
Y

C

C
H

D
2

H
D

A
C

2

G
A

B
P

A

M
X

I1

M
Y

C

C
H

D
2

E
P

3
0

0

S
P

1

H
D

A
C

2

N
A

N
O

G

E
P

3
0

0

S
P

1

H
D

A
C

2

N
A

N
O

G

TAF1
TBP
YY1

ELF1
MAX
E2F4
E2F6
IRF1

EGR1
ZBTB7A

ETS1
SIN3A

CCNT2
HMGN3
HDAC2
GABPA

CHD2
POLR2A
GTF2F1

MXI1
MYC

THAP1
SP1
SP2

NRF1
REST
SIX5
SRF
SPI1

RAD21
SMC3
CTCF

CTCFL
ZNF263
BCLAF1

TAF7
RDBP

ZBTB33
BCL3
ATF3
USF2
USF1
NFE2

GATA1
GATA2

TAL1
EP300

SMARCA4
SMARCB1

SIRT6
JUNB
JUND

JUN
FOSL1

FOS
MAFK

CEBPB
HDAC8

SETDB1
TRIM28
NR2C2

ZNF274
STAT1
STAT2
BDP1

POLR3A
BRF1

GTF3C2
BRF2

T
A

F
1

Y
Y

1
T

B
P

E
2

F
4

E
2

F
6

E
L

F
1

M
A

X
P

O
L

R
2

A
H

M
G

N
3

Z
B

T
B

7
A

C
C

N
T

2
E

G
R

1
E

T
S

1
S

IN
3

A
H

D
A

C
2

G
A

B
P

A
M

X
I1

M
Y

C
C

H
D

2
IR

F
1

G
T

F
2

F
1

T
H

A
P

1
S

P
2

R
E

S
T

N
R

F
1

U
S

F
1

F
O

S
S

P
1

S
R

F
S

P
I1

S
IX

5
C

T
C

F
R

A
D

2
1

S
M

C
3

C
T

C
F

L
Z

N
F

2
6

3
B

C
L

A
F

1
T
A

F
7

R
D

B
P

Z
B

T
B

3
3

B
C

L
3

A
T

F
3

U
S

F
2

N
F

E
2

S
E

T
D

B
1

T
R

IM
2

8
Z

N
F

2
7

4
N

R
2
C

2
G

A
T
A

1
G

A
T
A

2
T
A

L
1

E
P

3
0

0
S

M
A

R
C

A
4

S
M

A
R

C
B

1
S

IR
T

6
J
U

N
B

J
U

N
D

J
U

N
F

O
S

L
1

M
A

F
K

C
E

B
P

B
H

D
A

C
8

S
T
A

T
1

S
T
A

T
2

B
D

P
1

P
O

L
R

3
A

B
R

F
1

G
T

F
3
C

2
B

R
F

2

Figure 4 | Co-association between transcription factors. a, Significant co-
associations of transcription factor pairs using the GSC statistic across the entire
genome in K562 cells. The colour strength represents the extent of association
(from red (strongest), orange, to yellow (weakest)), whereas the depth of colour
represents the fit to the GSC20 model (where white indicates that the statistical
model is not appropriate) as indicated by the key. Most transcription factors have
a nonrandom association to other transcription factors, and these associations are
dependent on the genomic context, meaning that once the genome is separated
into promoter proximal and distal regions, the overall levels of co-association

decrease, but more specific relationships are uncovered. b, Three classes of
behaviour are shown. The first column shows a set of associations for which
strength is independent of location in promoter and distal regions, whereas the
second column shows a set of transcription factors that have stronger associations
in promoter-proximal regions. Both of these examples are from data in K562 cells
and are highlighted on the genome-wide co-association matrix (a) by the labelled
boxes A and B, respectively. The third column shows a set of transcription factors
that show stronger association in distal regions (in the H1 hESC line). An
interactive version of this figure is available in the online version of the paper.

Table 3 | Summary of the combined state types
Label Description Details* Colour

CTCF CTCF-enriched element Sites of CTCF signal lacking histone modifications, often associated with open chromatin. Many
probably have a function in insulator assays, but because of the multifunctional nature of CTCF, we
are conservative in our description. Also enriched for the cohesin components RAD21 and SMC3;

CTCF is known to recruit the cohesin complex.

Turquoise

E Predicted enhancer Regions of open chromatin associated with H3K4me1 signal. Enriched for other enhancer-
associated marks, including transcription factors known to act at enhancers. In enhancer assays,

many of these (.50%) function as enhancers. A more conservative alternative would be cis-
regulatory regions. Enriched for sites for the proteins encoded by EP300, FOS, FOSL1, GATA2,
HDAC8, JUNB, JUND, NFE2, SMARCA4, SMARCB1, SIRT6 and TAL1 genes in K562 cells. Have

nuclear and whole-cell RNA signal, particularly poly(A)2 fraction.

Orange

PF Predicted promoter flanking region Regions that generally surround TSS segments (see below). Light red
R Predicted repressed or low-activity region This is a merged state that includes H3K27me3 polycomb-enriched regions, along with regions that

are silent in terms of observed signal for the input assays to the segmentations (low or no signal).
They may have other signals (for example, RNA, not in the segmentation input data). Enriched for
sites for the proteins encoded by REST and some other factors (for example, proteins encoded by

BRF2, CEBPB, MAFK, TRIM28, ZNF274 and SETDB1 genes in K562 cells).

Grey

TSS Predicted promoter region including TSS Found close to or overlapping GENCODE TSS sites. High precision/recall for TSSs. Enriched for
H3K4me3. Sites of open chromatin. Enriched for transcription factors known to act close to promoters

and polymerases Pol II and Pol III. Short RNAs are most enriched in these segments.

Bright red

T Predicted transcribed region Overlap gene bodies with H3K36me3 transcriptional elongation signal. Enriched for phosphorylated
form of Pol II signal (elongating polymerase) and poly(A)1 RNA, especially cytoplasmic.

Dark green

WE Predicted weak enhancer or open
chromatin cis-regulatory element

Similar to the E state, but weaker signals and weaker enrichments. Yellow

*Where specific enrichmentsor overlaps are identified, these are derived from analysis in GM12878and/or K562 cells where the data for comparison is richest. The colours indicated are used in Figs5 and7 and in
display of these tracks from the ENCODE data hub.
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Figure 5 | Integration of ENCODE data by genome-wide segmentation.
a, Illustrative region with the two segmentation methods (ChromHMM and
Segway) in a dense view and the combined segmentation expanded to show
each state in GM12878 cells, beneath a compressed view of the GENCODE
gene annotations. Note that at this level of zoom and genome browser
resolution, some segments appear to overlap although they do not.
Segmentation classes are named and coloured according to the scheme in
Table 3. Beneath the segmentations are shown each of the normalized signals
that were used as the input data for the segmentations. Open chromatin signals
from DNase-seq from the University of Washington group (UW DNase) or the
ENCODE open chromatin group (Openchrom DNase) and FAIRE assays are
shown in blue; signal from histone modification ChIP-seq in red; and
transcription factor ChIP-seq signal for Pol II and CTCF in green. The mauve

ChIP-seq control signal (input control) at the bottom was also included as an
input to the segmentation. b, Association of selected transcription factor (left)
and RNA (right) elements in the combined segmentation states (x axis)
expressed as an observed/expected ratio (obs./exp.) for each combination of
transcription factor or RNA element and segmentation class using the heat-
map scale shown in the key besides each heat map. c, Variability of states
between cell lines, showing the distribution of occurrences of the state in the six
cell lines at specific genome locations: from unique to one cell line to ubiquitous
in all six cell lines for five states (CTCF, E, T, TSS and R). d, Distribution of
methylation level at individual sites from RRBS analysis in GM12878 cells
across the different states, showing the expected hypomethylation at TSSs and
hypermethylation of genes bodies (T state) and repressed (R) regions.

ARTICLE RESEARCH

6 S E P T E M B E R 2 0 1 2 | V O L 4 8 9 | N A T U R E | 6 5

Macmillan Publishers Limited. All rights reserved©2012

508



regions separately, this changes to 3,201 pairs (116 factors, 99%) for
promoters and 1,564 pairs (108 factors, 92%) for intergenic regions,
with some associations more specific to these genomic contexts (for
example, the cluster of HDAC2, GABPA, CHD2, GTF2F1, MXI1 and
MYC in promoter regions and SP1, EP300, HDAC2 and NANOG in
intergenic regions (Fig. 4b)). These general and context-dependent
associations lead to a network representation of the co-binding with
many interesting properties, explored in refs 19, 25 and 26. In addition,
we also identified a set of regions bound by multiple factors represent-
ing high occupancy of transcription factor (HOT) regions67.

Genome-wide integration
To identify functional regions genome-wide, we next integrated ele-
ments independent of genomic landmarks using either discriminative
training methods, where a subset of known elements of a particular class
were used to train a model that was then used to discover more instances
of this class, or using methods in which only data from ENCODE assays
were used without explicit knowledge of any annotation.

For discriminative training, we used a three-step process to predict
potential enhancers, described in Supplementary Information and
ref. 67. Two alternative discriminative models converged on a set of
,13,000 putative enhancers in K562 cells67. In the second approach,
two methodologically distinct unbiased approaches (see refs 40, 68
and M. M. Hoffman et al., manuscript in preparation) converged on a
concordant set of histone modification and chromatin-accessibility
patterns that can be used to segment the genome in each of the tier 1
and tier 2 cell lines, although the individual loci in each state in each
cell line are different. With the exception of RNA polymerase II and
CTCF, the addition of transcription factor data did not substantially
alter these patterns. At this stage, we deliberately excluded RNA and
methylation assays, reserving these data as a means to validate the
segmentations.

Our integration of the two segmentation methods (M. M. Hoffman
et al., manuscript in preparation) established a consensus set of seven
major classes of genome states, described in Table 3. The standard
view of active promoters, with a distinct core promoter region (TSS
and PF states), leading to active gene bodies (T, transcribed state), is
rediscovered in this model (Fig. 5a, b). There are three ‘active’ distal
states. We tentatively labelled two as enhancers (predicted enhancers,
E, and predicted weak enhancers, WE) due to their occurrence in
regions of open chromatin with high H3K4me1, although they differ
in the levels of marks such as H3K27ac, currently thought to
distinguish active from inactive enhancers. The other active state
(CTCF) has high CTCF binding and includes sequences that function
as insulators in a transfection assay. The remaining repressed state (R)
summarizes sequences split between different classes of actively
repressed or inactive, quiescent chromatin. We found that the
CTCF-binding-associated state is relatively invariant across cell types,
with individual regions frequently occupying the CTCF state across all
six cell types (Fig. 5c). Conversely, the E and T states have substantial
cell-specific behaviour, whereas the TSS state has a bimodal behaviour
with similar numbers of cell-invariant and cell-specific occurrences.
It is important to note that the consensus summary classes do not
capture all the detail discovered in the individual segmentations con-
taining more states.

The distribution of RNA species across segments is quite distinct,
indicating that underlying biological activities are captured in the
segmentation. Polyadenylated RNA is heavily enriched in gene
bodies. Around promoters, there are short RNA species previously
identified as promoter-associated short RNAs (Fig. 5b)16,69. Similarly,
DNA methylation shows marked distinctions between segments,
recapitulating the known biology of predominantly unmethylated
active promoters (TSS states) followed by methylated gene bodies42

(T state, Fig. 5d). The two enhancer-enriched states show distinct
patterns of DNA methylation, with the less active enhancer state
(by H3K27ac/H3K4me1 levels) showing higher methylation. These

states also have an excess of RNA elements without poly(A) tails and
methyl-cap RNA, as assayed by CAGE sequences, compared to
matched intergenic controls, indicating a specific transcriptional
mode associated with active enhancers70. Transcription factors also
showed distinct distributions across the segments (Fig. 5b). A striking
pattern is the concentration of transcription factors in the TSS-
associated state. The enhancers contain a different set of transcription
factors. For example, in K562 cells, the E state is enriched for binding
by the proteins encoded by the EP300, FOS, FOSL1, GATA2, HDAC8,
JUNB, JUND, NFE2, SMARCA4, SMARCB1, SIRT6 and TAL1 genes.
We tested a subset of these predicted enhancers in both mouse and
fish transgenic models (examples in Fig. 6), with over half of the
elements showing activity, often in the corresponding tissue type.

The segmentation provides a linear determination of functional
state across the genome, but not an association of particular distal
regions with genes. By using the variation of DNase I signal across cell
lines, 39% of E (enhancer associated) states could be linked to a
proposed regulated gene29 concordant with physical proximity
patterns determined by 5C49 or ChIA-PET.

To provide a fine-grained regional classification, we turned to a self
organizing map (SOM) to cluster genome segmentation regions based
on their assay signal characteristics (Fig. 7). The segmentation regions
were initially randomly assigned to a 1,350-state map in a two-
dimensional toroidal space (Fig. 7a). This map can be visualized as
a two-dimensional rectangular plane onto which the various signal
distributions can be plotted. For instance, the rectangle at the bottom
left of Fig. 7a shows the distribution of the genome in the initial
randomized map. The SOM was then trained using the twelve differ-
ent ChIP-seq and DNase-seq assays in the six cell types previously
analysed in the large-scale segmentations (that is, over 72-dimensional
space). After training, the SOM clustering was again visualized in two
dimensions, now showing the organized distribution of genome seg-
ments (lower right of panel, Fig. 7a). Individual data sets associated
with the genome segments in each SOM map unit (hexagonal cells)
can then be visualized in the same framework to learn how each
additional kind of data is distributed on the chromatin state map.
Figure 7b shows CAGE/TSS expression data overlaid on the randomly
initialized (left) and trained map (right) panels. In this way the trained
SOM highlighted cell-type-specific TSS clusters (bottom panels of
Fig. 7b), indicating that there are sets of tissue-specific TSSs that are
distinguished from each other by subtle combinations of ENCODE

ba

Figure 6 | Experimental characterization of segmentations. Randomly
sampled E state segments (see Table 3) from the K562 segmentation were
cloned for mouse- and fish-based transgenic enhancer assays. a, Representative
LacZ-stained transgenic embryonic day (E)11.5 mouse embryo obtained with
construct hs2065 (EN167, chr10: 46052882–46055670, GRCh37). Highly
reproducible staining in the blood vessels was observed in 9 out of 9 embryos
resulting from independent transgenic integration events. b, Representative
green fluorescent protein reporter transgenic medaka fish obtained from a
construct with a basal hsp70 promoter on meganuclease-based transfection.
Reproducible transgenic expression in the circulating nucleated blood cells and
the endothelial cell walls was seen in 81 out of 100 transgenic tests of this
construct.
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chromatin data. Many of the ultra-fine-grained state classifications
revealed in the SOM are associated with specific gene ontology (GO)
terms (right panel of Fig. 7c). For instance, the left panel of Fig. 7c
identifies ten SOM map units enriched with genomic regions
associated with genes associated with the GO term ‘immune response’.
The central panel identifies a different set of map units enriched for the
GO term ‘sequence-specific transcription factor activity’. The two
map units most enriched for this GO term, indicated by the darkest
green colouring, contain genes with segments that are high in

H3K27me3 in H1 hESCs, but that differ in H3K27me3 levels in
HUVECs. Gene function analysis with the GO ontology tool
(GREAT71) reveals that the map unit with high H3K27me3 levels in
both cell types is enriched in transcription factor genes with known
neuronal functions, whereas the neighbouring map unit is enriched in
genes involved in body patterning. The genome browser shots at the
bottom of Fig. 7c pick out an example region for each of the two SOM
map units illustrating the difference in H3K27me3 signal. Overall, we
have 228 distinct GO terms associated with specific segments across
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Figure 7 | High-resolution segmentation of
ENCODE data by self-organizing maps (SOM).
a–c, The training of the SOM (a) and analysis of the
results (b, c) are shown. Initially we arbitrarily placed
genomic segments from the ChromHMM
segmentation on to the toroidal map surface,
although the SOM does not use the ChromHMM
state assignments (a). We then trained the map
using the signal of the 12 different ChIP-seq and
DNase-seq assays in the six cell types analysed. Each
unit of the SOM is represented here by a hexagonal
cell in a planar two-dimensional view of the toroidal
map. Curved arrows indicate that traversing the
edges of two dimensional view leads back to the
opposite edge. The resulting map can be overlaid
with any class of ENCODE or other data to view the
distribution of that data within this high-resolution
segmentation. In panel a the distributions of genome
bases across the untrained and trained map (left and
right, respectively) are shown using heat-map
colours for log10 values. b, The distribution of TSSs
from CAGE experiments of GENCODE annotation
on the planar representations of either the initial
random organization (left) or the final trained SOM
(right) using heat maps coloured according to the
accompanying scales. The bottom half of b expands
the different distributions in the SOM for all
expressed TSSs (left) or TSSs specifically expressed
in two example cell lines, H1 hESC (centre) and
HepG2 (right). c, The association of Gene Ontology
(GO) terms on the same representation of the same
trained SOM. We assigned genes that are within
20 kb of a genomic segment in a SOM unit to that
unit, and then associated this set of genes with GO
terms using a hypergeometric distribution after
correcting for multiple testing. Map units that are
significantly associated to GO terms are coloured
green, with increasing strength of colour reflecting
increasing numbers of genes significantly associated
with the GO terms for either immune response (left)
or sequence-specific transcription factor activity
(centre). In each case, specific SOM units show
association with these terms. The right-hand panel
shows the distribution on the same SOM of all
significantly associated GO terms, now colouring by
GO term count per SOM unit. For sequence-specific
transcription factor activity, two example genomic
regions are extracted at the bottom of panel c from
neighbouring SOM units. These are regions around
the DBX1 (from SOM unit 26,31, left panel) and
IRX6 (SOM unit 27,30, right panel) genes,
respectively, along with their H3K27me3 ChIP-seq
signal for each of the tier 1 and 2 cell types. For
DBX1, representative of a set of primarily neuronal
transcription factors associated with unit 26,31,
there is a repressive H3K27me3 signal in both H1
hESCs and HUVECs; for IRX6, representative of a
set of body patterning transcription factors
associated with SOM unit 27,30, the repressive mark
is restricted largely to the embryonic stem (ES) cell.
An interactive version of this figure is available in the
online version of the paper.
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one or more states (A. Mortazavi, personal communication), and can
assign over one-third of genes to a GO annotation solely on the basis of
its multicellular histone patterns. Thus, the SOM analysis provides a
fine-grained map of chromatin data across multiple cell types, which
can then be used to relate chromatin structure to other data types at
differing levels of resolution (for instance, the large cluster of units
containing any active TSS, its subclusters composed of units enriched
in TSSs active in only one cell type, or individual map units signifi-
cantly enriched for specific GO terms).

The classifications presented here are necessarily limited by the
assays and cell lines studied, and probably contain a number of
heterogeneous classes of elements. Nonetheless, robust classifications
can be made, allowing a systematic view of the human genome.

Insights into human genomic variation
We next explored the potential impact of sequence variation on
ENCODE functional elements. We examined allele-specific variation
using results from the GM12878 cells that are derived from an indi-
vidual (NA12878) sequenced in the 1000 Genomes project, along with
her parents. Because ENCODE assays are predominantly sequence-
based, the trio design allows each GM12878 data set to be divided by
the specific parental contributions at heterozygous sites, producing
aggregate haplotypic signals from multiple genomic sites. We
examined 193 ENCODE assays for allele-specific biases using
1,409,992 phased, heterozygous SNPs and 167,096 insertions/dele-
tions (indels) (Fig. 8). Alignment biases towards alleles present in
the reference genome sequence were avoided using a sequence
specifically tailored to the variants and haplotypes present in
NA12878 (a ‘personalized genome’)72. We found instances of pref-
erential binding towards each parental allele. For example, com-
parison of the results from the POLR2A, H3K79me2 and H3K27me3
assays in the region of NACC2 (Fig. 8a) shows a strong paternal bias for
H3K79me2 and POL2RA and a strong maternal bias for H3K27me3,
indicating differential activity for the maternal and paternal alleles.

Figure 8b shows the correlation of selected allele-specific signals
across the whole genome. For instance, we found a strong allelic
correlation between POL2RA and BCLAF1 binding, as well as nega-
tive correlation between H3K79me2 and H3K27me3, both at genes
(Fig. 8b, below the diagonal, bottom left) and chromosomal segments
(top right). Overall, we found that positive allelic correlations among
the 193 ENCODE assays are stronger and more frequent than nega-
tive correlations. This may be due to preferential capture of accessible
alleles and/or the specific histone modification and transcription
factor, assays used in the project.

Rare variants, individual genomes and somatic variants
We further investigated the potential functional effects of individual
variation in the context of ENCODE annotations. We divided
NA12878 variants into common and rare classes, and partitioned
these into those overlapping ENCODE annotation (Fig. 9a and
Supplementary Tables 1 and 2, section K). We also predicted potential
functional effects: for protein-coding genes, these are either non-
synonymous SNPs or variants likely to induce loss of function by
frame-shift, premature stop, or splice-site disruption; for other
regions, these are variants that overlap a transcription-factor-
binding site. We found similar numbers of potentially functional
variants affecting protein-coding genes or affecting other ENCODE
annotations, indicating that many functional variants within
individual genomes lie outside exons of protein-coding genes. A more
detailed analysis of regulatory variant annotation is described in
ref. 73.

To study further the potential effects of NA12878 genome variants
on transcription-factor-binding regions, we performed peak calling
using a constructed personal diploid genome sequence for NA12878
(ref. 72). We aligned ChIP-seq sequences from GM12878 separately
against the maternal and paternal haplotypes. As expected, a greater

fraction of reads were aligned than to the reference genome (see
Supplementary Information, Supplementary Fig. 1, section K). On
average, approximately 1% of transcription-factor-binding sites in
GM12878 cells are detected in a haplotype-specific fashion. For
instance, Fig. 9b shows a CTCF-binding site not detected using the
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Figure 8 | Allele-specific ENCODE elements. a, Representative allele-specific
information from GM12878 cells for selected assays around the first exon of the
NACC2 gene (genomic region Chr9: 138950000–138995000, GRCh37).
Transcription signal is shown in green, and the three sections show allele-
specific data for three data sets (POLR2A, H3K79me2 and H3K27me3 ChIP-
seq). In each case the purple signal is the processed signal for all sequence reads
for the assay, whereas the blue and red signals show sequence reads specifically
assigned to either the paternal or maternal copies of the genome, respectively.
The set of common SNPs from dbSNP, including the phased, heterozygous
SNPs used to provide the assignment, are shown at the bottom of the panel.
NACC2 has a statistically significant paternal bias for POLR2A and the
transcription-associated mark H3K79me2, and has a significant maternal bias
for the repressive mark H3K27me3. b, Pair-wise correlations of allele-specific
signal within single genes (below the diagonal) or within individual
ChromHMM segments across the whole genome for selected DNase-seq and
histone modification and transcription factor ChIP-seq assays. The extent of
correlation is coloured according to the heat-map scale indicated from positive
correlation (red) through to anti-correlation (blue). An interactive version of
this figure is available in the online version of the paper.
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reference sequence that is only present on the paternal haplotype
due to a 1-bp deletion (see also Supplementary Fig. 2, section K).
As costs of DNA sequencing decrease further, optimized analysis of
ENCODE-type data should use the genome sequence of the indi-
vidual or cell being analysed when possible.

Most analyses of cancer genomes so far have focused on character-
izing somatic variants in protein-coding regions. We intersected four
available whole-genome cancer data sets with ENCODE annotations
(Fig. 9c and Supplementary Fig. 2, section L). Overall, somatic variation
is relatively depleted from ENCODE annotated regions, particularly for
elements specific to a cell type matching the putative tumour source (for
example, skin melanocytes for melanoma). Examining the mutational
spectrum of elements in introns for cases where a strand-specific
mutation assignment could be made reveals that there are mutational
spectrum differences between DHSs and unannotated regions (0.06
Fisher’s exact test, Supplementary Fig. 3, section L). The suppression
of somatic mutation is consistent with important functional roles of
these elements within tumour cells, highlighting a potential alternative
set of targets for examination in cancer.

Common variants associated with disease
In recent years, GWAS have greatly extended our knowledge of
genetic loci associated with human disease risk and other phenotypes.

The output of these studies is a series of SNPs (GWAS SNPs) corre-
lated with a phenotype, although not necessarily the functional
variants. Notably, 88% of associated SNPs are either intronic or
intergenic74. We examined 4,860 SNP–phenotype associations for
4,492 SNPs curated in the National Human Genome Research
Institute (NHGRI) GWAS catalogue74. We found that 12% of these
SNPs overlap transcription-factor-occupied regions whereas 34% over-
lap DHSs (Fig. 10a). Both figures reflect significant enrichments relative
to the overall proportions of 1000 Genomes project SNPs (about 6% and
23%, respectively). Even after accounting for biases introduced by selec-
tion of SNPs for the standard genotyping arrays, GWAS SNPs show
consistently higher overlap with ENCODE annotations (Fig. 10a, see
Supplementary Information). Furthermore, after partitioning the
genome by density of different classes of functional elements, GWAS
SNPs were consistently enriched beyond all the genotyping SNPs in
function-rich partitions, and depleted in function-poor partitions (see
Supplementary Fig. 1, section M). GWAS SNPs are particularly
enriched in the segmentation classes associated with enhancers and
TSSs across several cell types (see Supplementary Fig. 2, section M).

Examining the SOM of integrated ENCODE annotations (see
above), we found 19 SOM map units showing significant enrichment
for GWAS SNPs, including many SOM units previously associated
with specific gene functions, such as the immune response regions.
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Figure 9 | Examining ENCODE elements on a per individual basis in the
normal and cancer genome. a, Breakdown of variants in a single genome
(NA12878) by both frequency (common or rare (that is, variants not present in
the low-coverage sequencing of 179 individuals in the pilot 1 European panel of
the 1000 Genomes project55)) and by ENCODE annotation, including protein-
coding gene and non-coding elements (GENCODE annotations for protein-
coding genes, pseudogenes and other ncRNAs, as well as transcription-factor-
binding sites from ChIP-seq data sets, excluding broad annotations such as
histone modifications, segmentations and RNA-seq). Annotation status is
further subdivided by predicted functional effect, being non-synonymous and
missense mutations for protein-coding regions and variants overlapping bound

transcription factor motifs for non-coding element annotations. A substantial
proportion of variants are annotated as having predicted functional effects in
the non-coding category. b, One of several relatively rare occurrences, where
alignment to an individual genome sequence (paternal and maternal panels)
shows a different readout from the reference genome. In this case, a paternal-
haplotype-specific CTCF peak is identified. c, Relative level of somatic variants
from a whole-genome melanoma sample that occur in DHSs unique to
different cell lines. The coloured bars show cases that are significantly enriched
or suppressed in somatic mutations. Details of ENCODE cell types can be
found at http://encodeproject.org/ENCODE/cellTypes.html. An interactive
version of this figure is available in the online version of the paper.
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Thus, an appreciable proportion of SNPs identified in initial GWAS
scans are either functional or lie within the length of an ENCODE
annotation (,500 bp on average) and represent plausible candidates
for the functional variant. Expanding the set of feasible functional
SNPs to those in reasonable linkage disequilibrium, up to 71% of
GWAS SNPs have a potential causative SNP overlapping a DNase I
site, and 31% of loci have a candidate SNP that overlaps a binding site
occupied by a transcription factor (see also refs 73, 75).

The GWAS catalogue provides a rich functional categorization
from the precise phenotypes being studied. These phenotypic cate-
gorizations are nonrandomly associated with ENCODE annotations
and there is marked correspondence between the phenotype and the
identity of the cell type or transcription factor used in the ENCODE
assay (Fig. 10b). For example, five SNPs associated with Crohn’s
disease overlap GATA2-binding sites (P value 0.003 by random
permutation or 0.001 by an empirical approach comparing to
the GWAS-matched SNPs; see Supplementary Information), and
fourteen are located in DHSs found in immunologically relevant cell

types. A notable example is a gene desert on chromosome 5p13.1
containing eight SNPs associated with inflammatory diseases.
Several are close to or within DHSs in T-helper type 1 (TH1) and
TH2 cells as well as peaks of binding by transcription factors in
HUVECs (Fig. 10c). The latter cell line is not immunological, but
factor occupancy detected there could be a proxy for binding of a
more relevant factor, such as GATA3, in T cells. Genetic variants in
this region also affect expression levels of PTGER4 (ref. 76), encoding
the prostaglandin receptor EP4. Thus, the ENCODE data reinforce
the hypothesis that genetic variants in 5p13.1 modulate the expression
of flanking genes, and furthermore provide the specific hypothesis
that the variants affect occupancy of a GATA factor in an allele-
specific manner, thereby influencing susceptibility to Crohn’s disease.

Nonrandom association of phenotypes with ENCODE cell types
strengthens the argument that at least some of the GWAS lead SNPs
are functional or extremely close to functional variants. Each of the
associations between a lead SNP and an ENCODE annotation
remains a credible hypothesis of a particular functional element
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Figure 10 | Comparison of genome-wide-association-study-identified loci
with ENCODE data. a, Overlap of lead SNPs in the NHGRI GWAS SNP
catalogue (June 2011) with DHSs (left) or transcription-factor-binding sites
(right) as red bars compared with various control SNP sets in blue. The control
SNP sets are (from left to right): SNPs on the Illumina 2.5M chip as an example
of a widely used GWAS SNP typing panel; SNPs from the 1000 Genomes
project; SNPs extracted from 24 personal genomes (see personal genome
variants track at http://main.genome-browser.bx.psu.edu (ref. 80)), all shown
as blue bars. In addition, a further control used 1,000 randomizations from the
genotyping SNP panel, matching the SNPs with each NHGRI catalogue SNP
for allele frequency and distance to the nearest TSS (light blue bars with bounds
at 1.5 times the interquartile range). For both DHSs and transcription-factor-
binding regions, a larger proportion of overlaps with GWAS-implicated SNPs
is found compared to any of the controls sets. b, Aggregate overlap of

phenotypes to selected transcription-factor-binding sites (left matrix) or DHSs
in selected cell lines (right matrix), with a count of overlaps between the
phenotype and the cell line/factor. Values in blue squares pass an empirical
P-value threshold #0.01 (based on the same analysis of overlaps between
randomly chosen, GWAS-matched SNPs and these epigenetic features) and
have at least a count of three overlaps. The P value for the total number of
phenotype–transcription factor associations is ,0.001. c, Several SNPs
associated with Crohn’s disease and other inflammatory diseases that reside in a
large gene desert on chromosome 5, along with some epigenetic features
indicative of function. The SNP (rs11742570) strongly associated to Crohn’s
disease overlaps a GATA2 transcription-factor-binding signal determined in
HUVECs. This region is also DNase I hypersensitive in HUVECs and T-helper
TH1 and TH2 cells. An interactive version of this figure is available in the online
version of the paper.
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class or cell type to explore with future experiments. Supplementary
Tables 1–3, section M, list all 14,885 pairwise associations across the
ENCODE annotations. The accompanying papers have a more
detailed examination of common variants with other regulatory
information19,25,29,73,75,77.

Concluding remarks
The unprecedented number of functional elements identified in this
study provides a valuable resource to the scientific community as well
as significantly enhances our understanding of the human genome.
Our analyses have revealed many novel aspects of gene expression and
regulation as well as the organization of such information, as illu-
strated by the accompanying papers (see http://www.encodeproject.
org/ENCODE/pubs.html for collected ENCODE publications).
However, there are still many specific details, particularly about the
mechanistic processes that generate these elements and how and
where they function, that require additional experiments to elucidate.

The large spread of coverage—from our highest resolution, most
conservative set of bases implicated in GENCODE protein-coding
gene exons (2.9%) or specific protein DNA binding (8.5%) to the
broadest, most general set of marks covering the genome (approxi-
mately 80%), with many gradations in between—presents a spectrum
of elements with different functional properties discovered by
ENCODE. A total of 99% of the known bases in the genome are within
1.7 kb of any ENCODE element, whereas 95% of bases are within 8 kb
of a bound transcription factor motif or DNase I footprint.
Interestingly, even using the most conservative estimates, the fraction
of bases likely to be involved in direct gene regulation, even though
incomplete, is significantly higher than that ascribed to protein-
coding exons (1.2%), raising the possibility that more information
in the human genome may be important for gene regulation than
for biochemical function. Many of the regulatory elements are not
constrained across mammalian evolution, which so far has been one
of the most reliable indications of an important biochemical event
for the organism. Thus, our data provide orthologous indicators for
suggesting possible functional elements.

Importantly, for the first time we have sufficient statistical power to
assess the impact of negative selection on primate-specific elements,
and all ENCODE classes display evidence of negative selection in these
unique-to-primate elements. Furthermore, even with our most conser-
vative estimate of functional elements (8.5% of putative DNA/protein
binding regions) and assuming that we have already sampled half of the
elements from our transcription factor and cell-type diversity, one
would estimate that at a minimum 20% (17% from protein binding
and 2.9% protein coding gene exons) of the genome participates in these
specific functions, with the likely figure significantly higher.

The broad coverage of ENCODE annotations enhances our under-
standing of common diseases with a genetic component, rare genetic
diseases, and cancer, as shown by our ability to link otherwise
anonymous associations to a functional element. ENCODE and
similar studies provide a first step towards interpreting the rest of
the genome—beyond protein-coding genes—thereby augmenting
common disease genetic studies with testable hypotheses. Such
information justifies performing whole-genome sequencing (rather
than exome only, 1.2% of the genome) on rare diseases and investi-
gating somatic variants in non-coding functional elements, for
instance, in cancer. Furthermore, as GWAS analyses typically asso-
ciate disease to SNPs in large regions, comparison to ENCODE non-
coding functional elements can help pinpoint putative causal variants
in addition to refinement of location by fine-mapping techniques78.
Combining ENCODE data with allele-specific information derived
from individual genome sequences provides specific insight on the
impact of a genetic variant. Indeed, we believe that a significant goal
would be to use functional data such as that derived from this project
to assign every genomic variant to its possible impact on human
phenotypes.

So far, ENCODE has sampled 119 of 1,800 known transcription fac-
tors and general components of the transcriptional machinery on a
limited number of cell types, and 13 of more than 60 currently known
histone or DNA modifications across 147 cell types. DNase I, FAIRE and
extensive RNA assays across subcellular fractionations have been under-
taken on many cell types, but overall these data reflect a minor fraction of
the potential functional information encoded in the human genome. An
important future goal will be to enlarge this data set to additional factors,
modifications and cell types, complementing the other related projects
in this area (for example, Roadmap Epigenomics Project, http://
www.roadmapepigenomics.org/, and International Human Epigenome
Consortium, http://www.ihec-epigenomes.org/). These projects will
constitute foundational resources for human genomics, allowing a
deeper interpretation of the organization of gene and regulatory
information and the mechanisms of regulation, and thereby provide
important insights into human health and disease. Co-published
ENCODE-related papers can be explored online via the Nature
ENCODE explorer (http://www.nature.com/ENCODE), a specially
designed visualization tool that allows users to access the linked papers
and investigate topics that are discussed in multiple papers via them-
atically organized threads.

METHODS SUMMARY
For full details of Methods, see Supplementary Information.
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Eric D. Green34, Roderic Guigó22,39, Ross C. Hardison25,26, Timothy J. Hubbard8,
Manolis Kellis19, W. James Kent15, Jason D. Lieb18, Elliott H. Margulies31{, Richard M.
Myers14, Michael Snyder12, John A. Stamatoyannopoulos40, Scott A. Tenenbaum5,
Zhiping Weng23, Kevin P. White41, Barbara Wold29,42; Boise State University and
University of North Carolina at Chapel Hill Proteomics groups (data production and
analysis) Jainab Khatun10, Yanbao Yu43, John Wrobel10, Brian A. Risk10, Harsha P.
Gunawardena43, Heather C. Kuiper43, Christopher W. Maier43, Ling Xie43, Xian Chen43,
Morgan C. Giddings10; Broad Institute Group (data production and analysis) Bradley
E. Bernstein6,33, Charles B. Epstein6, Noam Shoresh6, Jason Ernst19{, Pouya
Kheradpour19, Tarjei S. Mikkelsen6, Shawn Gillespie33, Alon Goren6,33, Oren Ram6,33,
Xiaolan Zhang6, Li Wang6, Robbyn Issner6, Michael J. Coyne6, Timothy Durham6,
Manching Ku6,33, Thanh Truong6, Lucas D. Ward19, Robert C. Altshuler19, Matthew L.
Eaton19, Manolis Kellis19; Cold Spring Harbor, University of Geneva, Center for
Genomic Regulation, Barcelona, RIKEN, Sanger Institute, University of Lausanne,
Genome Institute of Singapore group (data production and analysis) Sarah Djebali22,
Carrie A. Davis4, Angelika Merkel22, Alex Dobin4, Timo Lassmann28, Ali Mortazavi30,
Andrea Tanzer22, Julien Lagarde22, Wei Lin4, Felix Schlesinger4, Chenghai Xue4, Georgi
K. Marinov29, Jainab Khatun10, Brian A. Williams29, Chris Zaleski4, Joel Rozowsky21,
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USA. 44Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, Torre I,
Barcelona, Catalonia 08028, Spain. 45Genomics, Affymetrix, Inc., 3380 Central
Expressway, Santa Clara, California 95051, USA. 46Center for Integrative Genomics,
University of Lausanne, Genopode Building, 1015 Lausanne, Switzerland. 47Genome
Technology and Biology, Genome Institute of Singapore, 60 Biopolis Street, 02-01,
Genome,Singapore 138672,Singapore. 48Computational and Systems Biology,Genome
Institute of Singapore, 60 Biopolis Street, 02-01, Genome, Singapore 138672, Singapore.
49Department of Genetic Medicine and Development, University of Geneva Medical
School, and University Hospitals of Geneva, 1 rue Michel-Servet, 1211 Geneva 4,
Switzerland. 50Department of Genetics, The University of North Carolina at Chapel Hill,
5078 GMB, Chapel Hill, North Carolina 27599-7264, USA. 51Department of Biostatistics,
GillingsSchool ofGlobalPublicHealth, TheUniversity ofNorthCarolinaatChapelHill, 408
Fordham Hall, Chapel Hill, North Carolina 27599-7445, USA. 52Center for Advanced
Computing Research, California Institute of Technology, MC 158-79, 1200 East California
Boulavard, Pasadena, California 91125, USA. 53Department of Statistics, Stanford
University, Sequoia Hall. 390 Serra Mall, Stanford, California 94305-4065, USA. 54DOE
Joint Genome Institute, Walnut Creek, California, USA. 55Genomics Division, Lawrence
Berkeley National Laboratory, One Cyclotron Road, MS 84-171, Berkeley, California
94720, USA. 56Structural Computational Biology, Spanish National Cancer Research

Centre (CNIO), Melchor Fernandez Almagro, 3, 28029 Madrid, Spain. 57School of Life
Sciences, Tsinghua University, School of Life Sciences, Tsinghua University, 100084
Beijing, China. 58Department of Pathology and Laboratory Medicine, Institute for
Computational Biomedicine, Weill Cornell Medical College, 1305 York Avenue, Box 140,
New York, New York 10065, USA. 59Computer Science and Engineering, Washington
University in St Louis, St Louis, Missouri 63130, USA. 60Department of Genetics, Albert
Einstein College of Medicine, 1301 Morris Park Avenue, Room 353A, Bronx, New York
10461, USA. 61Center for Biomolecular Science and Engineering, Howard Hughes
Medical Institute, University of California, Santa Cruz, 1156 High Street, Santa Cruz,
California 95064, USA. 62Genome Center, University of California-Davis, 451 Health
Sciences Drive, Davis, California 95616, USA. 63Department of Molecular, Cellular, and
Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, Connecticut
06511, USA. 64Biological Chemistry and Molecular Pharmacology, Harvard Medical
School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA. 65Biochemistry and
Molecular Biology, University of Southern California, 1501 San Pablo Street, Los Angeles,
California 90089, USA. 66Department of Biomedical Informatics, Ohio State University,
3172C Graves Hall, 333 W Tenth Avenue, Columbus, Ohio 43210, USA. 67Department of
Genetics, Yale University, Yale University School of Medicine, 333 Cedar Street, New
Haven, Connecticut 06510, USA. 68Department of Cellular and Structural Biology,
Children’sCancerResearch Institute–UTHSCSA,Mail code 7784-7703FloydCurlDr,San
Antonio, Texas78229,USA. 69Centre forOrganismalStudies (COS)Heidelberg,University
of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany. 70Basic Sciences
Division, Fred Hutchinson Cancer Research Center, 825 Eastlake Avenue East, Seattle,
Washington 98109, USA. 71Department of Medicine, Division of Medical Genetics, Box
357720, University of Washington, Seattle, Washington 98195-7720, USA. 72Division of
Human Biology, Fred Hutchinson Cancer Research Center, 825 Eastlake Avenue East,
Seattle, Washington 98109, USA. 73Department of Psychiatry and Behavioral Sciences,
Box 356560, University of Washington, Seattle, Washington 98195-6560, USA.
74Microarray Informatics Group, European Bioinformatics Institute (EMBL-EBI),
Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK. 75Genomics
and Regulatory Systems Group, European Bioinformatics Institute (EMBL-EBI), Wellcome
Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK. 76Department of
Pathology, Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford,
California 94305, USA. 77Department of Computer Science and Engineering, 185
Stevens Way, Seattle, Washington 98195, USA. 78Department of Electrical Engineering,
University of Washington, 185 Stevens Way, Seattle, Washington 98195, USA. 79Center
for Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston,
Massachusetts 02115, USA. 80Departments of Biology and Mathematics and Computer
Science, Emory University, Atlanta, Georgia 30322, USA. {Present addresses: Computer
Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32
Vassar Street, Cambridge, Massachusetts 02139, USA (A.K.); UCLA Biological Chemistry
Department, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell
Research at UCLA, Jonsson Comprehensive Cancer Center, 615 Charles E Young Dr
South, Los Angeles, California 90095, USA (J.E.); Department of Statistics, 514D Wartik
Lab, Penn State University, State College, Pennsylvania 16802, USA (Q.L.); Department of
Biostatistics and Bioinformatics and the Institute for Genome Sciences and Policy, Duke
University School of Medicine, 101 Science Drive, Durham, North Carolina 27708, USA
(T.E.R.); Department of Computer Science and Engineering, The Chinese University of
Hong Kong, Shatin, New Territories, Hong Kong (K.Y.Y.); Department of Genetics,
Washington University in St Louis, St Louis, Missouri 63110, USA (R.F.L.); Department of
Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
20742, USA (L.A.L.D.); National Cancer Institute, National Institutes of Health, Bethesda,
Maryland 20892, USA (J.Z.); University of California, Davis Population Biology Graduate
Group, Davis, California 95616, USA (J.R.W.); Illumina Cambridge Ltd., Chesterford
Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK (E.H.M.);
BlueGnome Ltd., CPC4, Capital Park, Fulbourn, Cambridge CB21 5XE, UK (F.K.); Institut
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Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular
compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their
characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the
genetic information encoded by genomes and a significant proportion of a cell’s regulatory capabilities are focused on
its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for
understanding genome function. Here we report evidence that three-quarters of the human genome is capable of
being transcribed, as well as observations about the range and levels of expression, localization, processing fates,
regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated
RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.

As the technologies for RNA profiling and for
cell-type isolation and culture continue to
improve, the catalogue of RNA types has grown
and led to an increased appreciation for the
numerous biological functions carried out by
RNA, arguably putting them on par with the functional importance
of proteins1. The Encyclopedia of DNA Elements (ENCODE) project
has sought to catalogue the repertoire of RNAs produced by human
cells as part of the intended goal of identifying and characterizing the
functional elements present in the human genome sequence2. The
five-year pilot phase of the ENCODE project3 examined approxi-
mately 1% of the human genome and observed that the gene-rich
and gene-poor regions were pervasively transcribed, confirming
results of previous studies4,5. During the second phase of the
ENCODE project, lasting 5 years, the scope of examination was broa-
dened to interrogate the complete human genome. Thus, we have
sought to both provide a genome-wide catalogue of human transcripts
and to identify the subcellular localization for the RNAs produced.
Here we report identification and characterization of annotated and
novel RNAs that are enriched in either of the two major cellular

subcompartments (nucleus and cytosol) for
all 15 cell lines studied, and in three additional
subnuclear compartments in one cell line. In
addition, we have sought to determine whether
identified transcripts are modified at their 59

and 39 termini by the presence of a 7-methyl guanosine cap or
polyadenylation, respectively. We further studied primary transcript
and processed product relationships for a large proportion of
the previously annotated long and small RNAs. These results con-
siderably extend the current genome-wide annotated catalogue of
long polyadenylated and small RNAs collected by the GENCODE
annotation group6–8. Taken together, our genome-wide compilation
of subcellular localized and product-precursor-related RNAs serves as
a public resource and reveals new and detailed facets of the RNA
landscape.
. Cumulatively, we observed a total of 62.1% and 74.7% of the human
genome to be covered by either processed or primary transcripts,
respectively, with no cell line showing more than 56.7% of the union
of the expressed transcriptomes across all cell lines. The consequent
reduction in the length of ‘intergenic regions’ leads to a significant
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Chemical Engineering, Norwegian University of Science and Technology, Trondheim NO-7491, Norway. 12Affymetrix, Inc, 3380 Central Expressway, Santa Clara, California 95051, USA. 13University of North
CarolinaatChapelHill, DepartmentofBiochemistry&Biophysics,120MasonFarmRoad,ChapelHill,NorthCarolina27599,USA. 14University ofLausanne,Center for IntegrativeGenomics,Genopodebuilding,
Lausanne 1015, Switzerland. 15University of Geneva Medical School, Department of Genetic Medicine and Development and iGE3 Institute of Genetics and Genomics of Geneva, 1 rue Michel-Servet, Geneva
1211, Switzerland. 16Genome Institute of Singapore, Genome Technology and Biology, 60 Biopolis Street, 02-01, Genome, Singapore 138672, Singapore. 17St Laurent Institute, One Kendall Square,
Cambridge, Massachusetts 02141,USA. 18DepartmentofComputer Science, Yale University, Bass 432,266 Whitney Avenue,New Haven,Connecticut06520,USA. 19DepartamentdeCiències Experimentals i
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overlapping of neighbouring gene regions and prompts a redefinition
of a gene.
. Isoform expression by a gene does not follow a minimalistic
expression strategy, resulting in a tendency for genes to express many
isoforms simultaneously, with a plateau at about 10–12 expressed
isoforms per gene per cell line.
. Cell-type-specific enhancers are promoters that are differentiable
from other regulatory regions by the presence of novel RNA tran-
scripts, chromatin marks and DNase I hypersensitive sites.
. Coding and non-coding transcripts are predominantly localized in
the cytosol and nucleus, respectively, with a range of expression span-
ning six orders of magnitude for polyadenylated RNAs, and five
orders of magnitude for non-polyadenylated RNAs.
. Approximately 6% of all annotated coding and non-coding tran-
scripts overlap with small RNAs and are probably precursors to these
small RNAs. The subcellular localization of both annotated and
unannotated short RNAs is highly specific.

RNA data set generation
We performed subcellular compartment fractionation (whole cell,
nucleus and cytosol) before RNA isolation in 15 cell lines (Supplemen-
tary Table 1) to interrogate deeply the human transcriptome. For the
K562 cell line, we also performed additional nuclear subfractionation
into chromatin, nucleoplasm and nucleoli. The RNAs from each of
these subcompartments were prepared in replica and were separated
based on length into .200 nucleotides (long) and ,200 nucleotides
(short). Long RNAs were further fractionated into polyadenylated and
non-polyadenylated transcripts. A number of complementary tech-
nologies were used to characterize these RNA fractions as to their
sequence (RNA-seq), sites of initiation of transcription (cap-analysis
of gene expression (CAGE)9) and sites of 59 and 39 transcript termini
(paired end tags (PET)10; Supplementary Fig. 1). Sequence reads were
mapped and post-processed using a variety of software tools (Sup-
plementary Table 2 and Supplementary Fig. 2). We used the mapped
data to assemble and quantify de novo elements (exons, transcripts,
genes, contigs, splice junctions and transcription start sites (TSSs)) as
well as to quantify annotated GENCODE (v7) elements. Elements
and quantifications were further assessed for reproducibility between
replicates using a non-parametric version (npIDR, Supplementary
Information) of the irreproducible detection rate (IDR) statistical
test11. Only elements deemed to be reproducible with at least 90%
likelihood were used in most analyses. The raw data, mapped data
and elements were then made available by the ENCODE Data
Coordination Center (DCC, http://genome.ucsc.edu/ENCODE/
dataSummary.html) (Supplementary Fig. 2). These data, as well as
additional data on all intermediate processing steps, are available on
the RNA Dashboard (http://genome.crg.cat/encode_RNA_dashboard/).

Long RNA expression landscape
Detection of annotated and novel transcripts
The GENCODE gene (Supplementary Fig. 3a) and transcript
(Supplementary Fig. 3b) reference annotation8 captures our current
understanding of the polyadenylated human transcriptome. In the
samples interrogated here, we cumulatively detected 70% of anno-
tated splice junctions, transcripts and genes (Fig. 1 and Table 1a). We
also detected approximately 85% of annotated exons with an average
coverage by RNA-seq contigs of 96%. The variation in the proportion
of detected elements among cell lines was small (Fig. 1, width of box
plots). Consistent with earlier studies, most annotated elements are
present in both polyadenylated (Supplementary Table 3a) and non-
polyadenylated (Supplementary Table 3b) samples12–15. Only a small
proportion of GENCODE elements (0.4% of exons, 2.8% of splice
sites, 3.3% of transcripts and 4.7% of genes) are detected exclusively
in the non-polyadenylated RNA fraction.

Beyond the GENCODE annotated elements, we observed a
substantial number of novel elements represented by reproducible

RNA-seq contigs. These novel elements covered 78% of the intronic
nucleotides and 34% of the intergenic sequences (Supplementary Fig. 4).
Overall, the unique contribution of each cell line to the coverage of the
genome tends to be small and similar for each cell line (Supplementary
Fig. 5). We used the Cufflinks algorithm (see Supplementary Informa-
tion), and predicted over all long RNA-seq samples 94,800 exons, 69,052
splice junctions, 73,325 transcripts and 41,204 genes in intergenic and
antisense regions (Table 1b). These novel elements increase the
GENCODE collection of exons, splice sites, transcripts and genes by
19%, 22%, 45% and 80%, respectively. The increase in the number of
genes and the relatively low contribution of novel splice sites is primarily
caused by the detection of both polyadenylated and non-polyadenylated
mono-exonic transcripts (Supplementary Table 3). Detection of
unspliced transcripts could partially be an artefact caused by low levels
of DNA contamination or by incomplete determination of transcript
structures.

Independent validation of multi-exonic transcript models and the
associated predicted coding products were carried out using overlapping
targeted 454 Life Sciences (Roche) paired-end reads and mass spectro-
metry. Of approximately 3,000 intergenic and antisense transcript
models tested, validation rates from 70% to 90% were observed, depend-
ing on the number of reads and IDR score. In addition, these experi-
ments led to the identification of more than 22,000 novel splice sites not
previously detected, meaning an almost eightfold increase in detection
compared to the sites originally detected with RNA-seq (Supplementary
Fig. 6). Using mass spectrometric analyses, we investigated what fraction
of the novel Cufflinks transcript models show evidence consistent with
protein expression. We produced 998,570 spectra from two cell lines
(K562 and GM12878; J. Khatun et al., manuscript in preparation), and
mapped them to a three-frame translation of the novel Cufflinks models
(Supplementary Material). At a 1% false discovery rate (FDR), we iden-
tified 419 novel models with 5 or more spectral and/or 2 or more peptide
hits, of which only 56 were intergenic or antisense to GENCODE genes
(Supplementary Table 4 and Supplementary Fig. 7). Thus, most novel
transcripts seem to lack protein-coding capacity.

The transcriptome of nuclear subcompartments
For the K562 cell line, we also analysed RNA isolated from three
subnuclear compartments (chromatin, nucleolus and nucleoplasm;
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Figure 1 | A large majority of GENCODE elements are detected by RNA-seq
data. Shown are GENCODE-detected elements in the polyadenylated and
non-polyadenylated fractions of cellular compartments (cumulative counts for
both RNA fractions and compartments refer to elements present in any of the
fractions or compartments). Each box plot is generated from values across all
cell lines, thus capturing the dispersion across cell lines. The largest point shows
the cumulative value over all cell lines.
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Supplementary 5). Almost half (18,330) of the GENCODE (v7) anno-
tated genes detected for all 15 cell lines (35,494) were identified in the
analysis of just these three nuclear subcompartments. In addition,
there were as many novel unannotated genes found in K562 subcom-
partments as there were in all other data sets combined (Supplemen-
tary Table 5 and Table 1b). For all annotated (Supplementary
Table 5.1) or novel (Supplementary Table 5.2) elements, only a small
fraction in each subcompartment was unique to that compartment
(Supplementary Table 6).

The interrogation of different subcellular RNA fractions provides
snapshots of the status of the RNA population along the RNA proces-
sing pathway. Thus, by analysing short and long RNAs in the different
subcellular compartments, we confirm that splicing predominantly
occurs during transcription. By using RNA-seq to measure the degree
of completion of splicing (Fig. 2a), we observed that around most
exons, introns are already being spliced in chromatin-associated
RNA—the fraction that includes RNAs in the process of being
transcribed (Fig. 2b). Concomitantly, we found strong enrichment
specifically of spliceosomal small nuclear RNAs (snRNAs) in this
RNA fraction (see ‘Short RNA expression landscape’ later). Co-
transcriptional splicing provides an explanation for the increasing
evidence connecting chromatin structure to splicing regulation, and
we have observed that exons in the process of being spliced are
enriched in a number of chromatin marks16,17.

Gene expression across cell lines
The analyses of RNAs isolated from different subcellular compart-
ments also provide information concerning compartment-specific
relative steady-state abundance and the post transcriptional proces-
sing state (spliced/unspliced, polyadenylated/non-polyadenylated,
59 capped/uncapped) for each of the detected transcripts. The
observed range of gene expression spans six orders of magnitude
for polyadenylated RNAs (from 1022 to 104 reads per kilobase per
million reads (r.p.k.m.)), and five orders of magnitude (from 1022 to
103 r.p.k.m.) for non-polyadenylated RNAs (Fig. 3 and Supplemen-
tary Fig. 8a). The distribution of gene expression is very similar across
cell lines, with protein-coding genes, as a class, having on average
higher expression levels than long non-coding RNAs (lncRNAs).
Assuming that 1–4 r.p.k.m. approximates to 1 copy per cell18, we find
that almost one-quarter of expressed protein-coding genes and 80% of
the detected lncRNAs are present in our samples in 1 or fewer copies
per cell. The general lower level of gene expression measured in
lncRNAs may not necessarily be the result of consistent low RNA
copy number in all cells within the population interrogated, but
may also result from restricted expression in only a subpopulation
of cells. In some cell lines, individual lncRNAs can exhibit steady-state
expression levels as high as those of protein-coding genes. This is, for
example, seen in the expression of the protein-coding gene actin,
gamma 1 (ACTG1), and the non-coding gene, H19 (Fig. 3). ACTG1
transcripts are part of all non-muscle cytoskeleton systems within
cells and show a steady-state expression level at the population level
that is at least 1–2 logs greater than H19, a cytosolic non-coding RNA
(ncRNA). However, when measured at the individual transcript level,
expression of lncRNA transcripts is comparable to that of individual
protein-coding transcripts (Supplementary Fig. 8b).

Novel antisense and intergenic genes predicted in this study com-
prise a third clustering of RNAs with levels of expression ranging from
1024 to 1021 r.p.k.m. As a class, only protein-coding genes seem to be
enriched in the cytosol, making the nucleus a centre for the accumula-
tion of ncRNAs (Fig. 3). Other gene classes, such as pseudogenes and
small annotated ncRNAs, also show subcellular compartmental
enrichment (Supplementary Fig. 9).

Higher variability and lower pairwise correlation of expression
across all cell lines is consistent with lncRNAs contributing more to
cell-line specificity than protein-coding genes. Indeed, a considerable
fraction (29%) of all expressed lncRNAs are detected in only one of the

cell lines studied when considering the whole cell polyadenylated
RNAs, whereas only 10% were expressed in all cell lines. Con-
versely, whereas a large fraction (53%) of expressed protein-coding
genes were constitutive (expressed in all cell lines), only ,7% were
cell-line specific (Supplementary Table 7 and Supplementary Fig. 10).

Patterns of splicing
The analysis of the expression of alternative isoforms resulted in
several observations. First, isoform expression does not seem to follow
a minimalistic strategy. Genes tend to express many isoforms simul-
taneously, and as the number of annotated isoforms per gene grows,
so does the number of expressed isoforms (Fig. 4a). The increase,
however, is not linear and seems to plateau at about 10–12 expressed
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isoforms per gene. However, we cannot obviously distinguish whether
this is the result of multiple isoforms expressed in the same cell or of
different isoforms expressed in different cells within the interrogated
population. Second, alternative isoforms within a gene are not
expressed at similar levels, and one isoform dominates in a given
condition—usually capturing a large fraction of the total gene
expression (at least 30%, even for genes with many isoforms;
Fig. 4b). Third, about three-quarters of protein-coding genes have
at least two different dominant/major isoforms depending on the cell
line (Supplementary Fig. 11a). Fourth, the number of major isoforms
per gene grows with the number of annotated isoforms; indeed, the
proportion of genes with n isoforms that express only one major
isoform is strikingly proportional to 1/n (Supplementary Fig. 11b).
Fifth, variability of gene expression contributes more than variability
of splicing ratios to the variability of transcript abundances across cell
lines (Supplementary Information).

Alternative transcription initiation and termination
On the basis of RNA-seq analysis of polyadenylated RNAs, a total of
128,021 TSSs were detected across all cell lines, of which 97,778 were

previously annotated and 30,243 were novel intergenic/antisense
TSSs (Supplementary Table 3a). CAGE tags, filtered by a hidden
Markov model (HMM)-based algorithm to differentiate between 59

capped termini of polymerase II transcripts and recapping events19

(Supplementary Information), identified a total of 82,783 non-
redundant TSSs (Supplementary Table 8). Approximately 48% of
the CAGE-identified TSSs are located within 500 base pairs (bp) of
an annotated RNA-seq-detected GENCODE TSS, whereas an addi-
tional 3% are within 500 bp of a novel TSS (Supplementary Fig. 12).
Notably, only ,72% of all CAGE sequencing reads map to TSSs,
indicating that the remaining 30% may originate from recapping
events or from a new class of TSS.

Using data collected within the ENCODE consortium20, we carried
out a comparison of the GENCODE/RNA-seq and CAGE-determined
TSSs and correlated them to chromatin and DNA features characteristic
of initiation of transcription, such as DNase hypersensitivity21, chro-
matin modification and DNA binding elements22,23. All GENCODE/
RNA-seq-determined TSSs were examined in each of the cell lines
(Supplementary Fig. 13, column 1). Of these redundant positions,
44.7% (199,146) of the RNA-seq-supported TSSs also displayed
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evidence of CAGE. Approximately half of these TSS positions are assoc-
iated with at least one of the other characteristic features of transcription
initiation (DNase I, H3K27ac and H3K4me3 chromatin modifications).
Thus, only a small minority of the TSSs identified by either CAGE or
RNA-seq/GENCODE displayed all of the characteristics of the start of
transcription (presence of DNase I, H3K4me3, H3K27ac sites and either
TAF1 or TBP binding). This is consistent with the possibility that reg-
ulatory regions proximal to TSSs are of more than one type.

At the 39 end, a total of 128,824 sites mapping within annotated
GENCODE transcripts were identified as potential sites of polyade-
nylation after trimming unmapped RNA-seq reads with long terminal
polyadenine stretches24. About 20% of these mapped proximal to
annotated polyadenylation sites (PAS) whereas the remaining 80%
correspond to novel PAS of annotated genes, raising the average
number of PAS per gene from 1.1 to 2.5. Generally, we observed a
cell-type preference for proximal PAS (closest to the annotated stop
codon) in the cytosol compared to the nucleus (Supplementary
Information).

Short RNA expression landscape
Annotated small RNAs
Currently, a total of 7,053 small RNAs are annotated by GENCODE,
85% of which correspond to four major classes: small nuclear
(sn)RNAs, small nucleolar (sno)RNAs, micro (mi)RNAs and transfer
(t)RNAs (Table 2a). Overall we find 28% of all annotated small RNAs
to be expressed in at least one cell line (Table 2a). The distribution of
annotated small RNAs differs markedly between cytosolic and
nuclear compartments (Supplementary Fig. 14a). We found that the
small RNA classes were enriched in those compartments where they
are known to perform their functions: miRNAs and tRNAs in the
cytosol, and snoRNAs in the nucleus. Interestingly, snRNAs were
equally abundant in both the nucleus and the cytosol. When specif-
ically interrogating the subnuclear compartments of the K562 cell
line, however, snRNAs seem to be present in very high abundance
in the chromatin-associated RNA fraction (Supplementary Fig. 14b, c).
This striking enrichment is consistent with splicing being predomi-
nantly co-transcriptional16,25.

Unannotated short RNAs
We detected two types of unannotated short RNAs. The first type
corresponds to subfragments of annotated small RNAs. Because we
performed 36-nucleotide end-sequencing of the small RNA fraction,
we expected RNA-seq reads to map to the 59 end of the small RNAs.
Supplementary Figure 15 shows the mapping profile of reads along
small RNA genes. In both the nuclear and cytosolic compartments, we
indeed detected accumulation of reads at the start of snoRNAs and at
the guide and passenger sequences of annotated miRNAs. For
snRNAs, however, we observed three prominent peaks: the expected
one at the 59 end and two smaller ones at the middle and at the 39 end of
the gene, indicating fragmentation of some snRNAs. Finally, tRNAs
seem not to have any prominent sets of 59 end fragments present at
levels greater than what is seen at the annotated 59 termini. Whereas
subfragments of mature tRNAs have been reported previously, these
reports were confined to distinct alleles of only a few tRNA genes26–28.

The second and largest source of unannotated short RNAs corre-
sponds to novel short RNAs (Table 2b) that map outside of annotated
ones. Almost 90% of these are only observed in one cell line and are
present at low copy numbers. Nearly 40% of these unannotated
short RNAs are associated with promoter and terminator regions of
annotated genes (promoter-associated short RNAs (PASRs) and
termini-associated short RNAs (TASRs)), and their position relative
to TSSs and transcription termination sites is similar to previous results4.

Genealogy of short RNAs
Genome wide, 27% of annotated small RNAs reside within 8% of
protein-coding and 5% within 3% of lncRNA genes (Supplementary

Fig. 16). Overall, about 6% of all annotated long transcripts overlap with
small RNAs and are probably precursors to these small RNAs. Although
most of these small RNAs reside in introns, when controlling for relative
exon/intron length, we found that exons from lncRNAs are compara-
tively enriched as hosts for snoRNAs (Supplementary Fig. 17a).
Additionally, 8.4% of GENCODE annotated small RNAs map within
novel intergenic transcripts, with most overlapping annotated tRNAs.
The enrichment for tRNAs was mostly in novel intergenic transcripts
derived from non-polyadenylated RNAs (Supplementary Fig. 17b).
Many long RNAs, both novel and annotated, thus seem to have dual
roles, as functional (protein coding) RNAs, and as precursors for many
important classes of small RNAs. Using RNA-seq data from the K562
cell line, we investigated the preferential cellular localization of these
RNA precursors (Supplementary Fig. 18). For mature miRNAs and
tRNAs (cytosolic enrichment), the potential RNA precursors, iden-
tified as RNA-seq contigs overlapping the small RNAs, were detected
to be predominantly nuclear (Supplementary Fig. 18a, d). Notably,
whereas mature snRNAs were both nuclear and cytosolic, the overlap-
ping long RNAs were observed to be primarily nuclear (Supplementary
Fig. 18c). Finally, for snoRNAs (nuclear enrichment), potential long
RNA precursors were decidedly observed to be both nuclear and
cytosolic (Supplementary Fig. 18b). Unannotated short RNAs were
found overall not to be enriched in either the nuclear or cytosolic
compartment (Supplementary Fig. 18e).

RNA editing and allele-specific expression
The sequence of transcripts can differ from the underlying genomic
sequence as the result of post-transcriptional editing. We developed a
pipeline to filter sequencing artefacts and identify genes that are RNA
edited29. Focusing first on GM12878, a cell line that has been deeply
re-sequenced, we find a total 51,557 RNA consistent single nucleotide
variants (SNVs) within genic boundaries, 65% of which are present in
dbSNP. Of the remainder, 1,186 SNVs in 430 genes (Supplementary
Fig. 19a) survive our most stringent filters and 88% of these are
candidate adenosine to inosine A.G(I) changes. Notably, the next
highest frequency of SNVs is for T.C (5%) and these occur primarily
in regions with detectable antisense transcription29. We find similar
A.G(I) frequencies of 75–84% in seven additional cell lines
(Supplementary Fig. 19b). The remaining non-canonical edits amount
to very few events in each cell line and are relatively evenly distributed
(G.A is the third highest). These results do not support a recent report
of a substantial number of non-canonical SNV edits in the RNA of
human lymphoblastoid cells30.

Using the AlleleSeq pipeline31 on the SNPs in the GM12878 genome,
we found that approximately 18% of both GENCODE annotated
protein-coding and long non-coding genes exhibit allele-specific
expression. The proportion of genes with allele-specific expression
was similar in the three investigated RNA fractions (whole-cell,
cytoplasm and nucleus; Supplementary Table 9 and Supplementary
Information).

Repeat region transcription
About 18% (14,828) of CAGE-defined TSS regions overlap repetitive
elements. More precisely, we find 322, 315, 507 and 1,262 intergenic
CAGE clusters overlapping long interspersed element (LINE), short
interspersed element (SINE), long terminal repeat (LTR) and other
repeat elements, respectively (see Supplementary Information).
Measuring Shannon entropy across cell lines, we found that CAGE
clusters mapping to repeat regions were noticeably more narrowly
expressed than CAGE clusters mapping within genic regions
(Supplementary Fig. 20a). We represented the correlation of levels
of expression compared to cell types as heat maps drawn separately
for each of the three repeat element families (LINE, SINE and LTR)
(Supplementary Fig. 20b–d). Although a large proportion of the tran-
scripts in the human genome is thought to be initiated from repetitive
elements (especially retrotransposon elements32), these data clearly
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point to cell-line specificity as the main characteristic of transcripts
emanating from repeat regions.

Characterization of enhancer RNA
It has recently been reported that RNA polymerase II binds some
distal enhancer regions and can produce enhancer-associated tran-
scripts named eRNA33–35. We used our RNA assays to detect and
characterize transcriptional activity at enhancer loci predicted
genome-wide from ENCODE chromatin immunoprecipitation and
high-throughput sequencing (ChIP-seq) data20,36.

Figure 5a shows the aggregate pattern of RNA-seq and CAGE
signal in a strand-specific manner around the subset of predicted
gene-distal enhancers containing DNase I hypersensitive sites and
centred on those sites. In these plots, as denoted by the accumulation
of CAGE tags signifying TSSs, transcription initiation within the
enhancer region is observed, and continues outwards for several

kilobases (kb). This behaviour can be observed for the polyadenylated
and non-polyadenylated RNA fractions mapping in both intronic
and intergenic regions. As previously reported33, we observe a large
diversity of expression levels at each of the transcribed enhancers.
Polyadenylated to non-polyadenylated RNA ratios, as well as nuclear
to cytoplasmic ratios, vary at individual enhancers (Supplementary Fig.
21a, b). However, contrary to some previous reports, although most
eRNAs are prevalent in the nuclear non-polyadenylated RNA fraction,
some eRNAs seemed to be polyadenylated in the nucleus. This pattern
was significantly different compared to transcripts from GENCODE
annotated and novel predicted20 promoters (Fig. 5b).

Transcribed enhancers on average show a significantly different
pattern of chromatin modification than non-transcribed ones37–40.
The enhancer regions displayed stronger signals for H3K4 methyla-
tion, H3K27 acetylation and H3K79 dimethylation along with
higher levels of RNA polymerase II binding, all associated with
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Figure 5 | Transcription at enhancers. a, The pattern of RNA elements
around enhancer predictions20,36 containing DNase I hypersensitive sites. The
lines represent the average frequency of RNA elements (top, polyadenylated
long RNA contigs; middle, CAGE tag clusters; bottom, non-polyadenylated
long RNA contigs) in a genomic window around the centre of the enhancer
prediction as determined by DNase I hypersensitive sites. Elements on the plus
strand are shown in red, and on the minus strand in blue. b, Enhancer
transcripts differ from promoter transcripts. The box plots compare the
features of transcripts at predicted enhancer loci compared to predicted novel
intergenic promoters20 and annotated promoters8. H3K4me3, poly(A)1 and
nucleus denote the three following ratios: H3K4me3/(H3K4me3 1 H3K4me1),
polyadenylated/(polyadenylated 1 non-polyadenylated), nuclear/(nuclear 1

cytosolic). Enhancers are marked by higher levels of H3K4me1 compared to

H3K4me3 than novel or annotated promoters (left). Enhancer transcripts show
higher levels of non-polyadenylated (middle) and nuclear (right) RNA relative
to promoters. c, Chromatin state at transcribed enhancers. Enhancer
predictions with evidence of transcription (in blue; Cage tags present at
predicted locus) show a different pattern of histone modification and higher
levels of RNA polymerase II binding than non-transcribed predictions (red).
They are enriched for H3K27 acetylation, H3K4 methylation, H3K79
dimethylation and depleted for H3K27 trimethylation. d, Enhancer activity and
transcription is cell-type specific. Loci predicted to be active transcribed
enhancers in GM12878 cells show low signal for CAGE tags (top) and for
H3K27 acetylation (bottom) in other cell lines. The whiskers are defined as Q1
21.5 3 IQR to Q3 11.5 3 IQR, where IQR is the interquartile range, and Q1
and Q3 the first and third quartile, respectively.
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transcriptional initiation and elongation (Fig. 5c). Both the transcripts
and the chromatin states are cell-type specific (Fig. 5d). Taking the
GM12878 cell line as an example, the enhancer loci producing eRNA
demonstrate enrichment of CAGE tag detection (Fig. 5d, top) and the

presence of H3K27ac histone modification (Fig. 5d, bottom) in this
cell line compared to five other analysed cell lines. This strongly
suggests that the regulatory regions governing the expression of
enhancer transcripts are distinguished from regulatory regions
located at the beginning of genic regions.

Concluding remarks
The cumulative coverage of transcribed regions in the 15 cell lines
across the human genome is 62.1% and 74.7% for processed and
primary transcripts, respectively (Supplementary Table 10 and
Supplementary Fig. 22). On average, for each cell line, 39% of the
genome is covered by primary transcripts and 22% by processed
RNAs. No cell line showed transcription of more than 56.7% of the
union of the expressed transcriptomes across all cell lines. When
mapping the current RNA-seq data to the ENCODE pilot regions
(Supplementary Table 10), we observed a similar, albeit higher, extent
of transcriptional coverage of 73.3% for processed RNAs and 84.5%
for primary transcripts. Previously reported estimates in these regions
for processed and primary transcripts were 24% and 93%, respectively
(Supplementary Table 2.4.3 and ref. 3). The increased genome
coverage by processed RNAs stems largely from the inclusion of
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Table 1 | Long polyadenylated and non-polyadenylated RNAs
Expression of GENCODE (v7) annotated elements (a)

Gene type Detected exons{
(annotation no.)

Detected splice
junctions{ (annotation

no.)

Detected transcripts{
(annotation no.)

Detected genes{
(annotation no.)

Exon
nucleotide
coverage{

(%)

Number of
genes

expressed
in at least

one cell line

Number of
genes

expressed
in only one

cell line

Proportion
over genes
expressed1

(%)

Number of
genes

expressed
in 14 cell

lines

Proportion
over genes
expressedI

(%)

Long non-coding 22,381 (41,467) 8,017 (26,872) 6,521 (14,880) 5,906 (9,277) 87.5 5,906 1,386 23.5 631 10.7
Protein coding 288,322 (318,514) 194,752 (244,158) 59,822 (76,006) 18,939 (20,679) 98.1 18,939 1,082 5.7 10,571 55.8
Other* 102,000 (133,937) 19,277 (47,663) 45,410 (71,113) 10,649 (21,750) 95.2 10,649 2,453 23.0 1,896 17.8
Total annotated 412,703 (493,918) 222,046 (318,693) 111,753 (161,999) 35,494 (51,706) 96.7 35,394 4,921 13.9 13,098 37.0

Expression of GENCODE (v7) intergenic and antisense elements (b)

Category Detected exons{ Detected splice
junction{

Detected transcripts{ Detected genes{

Mono-exonic 55,683 NA 55,682 33,686
Multi-exonic 39,117 69,052 17,643 7,518
Total 94,800 69,052 73,325 41,204

NA, not applicable.
* Includes pseudogenes, miRNAs, etc.
{All elements that passed npIDR (0.1).
{Cumulative detected nucleotide in detected exons/total nucleotides in detected exons.
1 Proportion for genes expressed in only one cell line.
I Proportion for genes expressed in 14 cell lines.

Table 2 | Short RNAs
Expression of GENCODE (v7) annotated small RNA genes (a)

Gene type* GENCODE total Detected genes
(% detected)

No. genes expressed in
only one cell line (%

detected)

No. genes expressed in
12 cell lines (% detected)

miRNA guide
fragment{

miRNA passenger
fragment1

Internal fragmentsI of
annotated small RNA

(average per detected gene)

miRNA 1,756 497 (28) 59 (12) 147 (30) 454 (454) 175 (175) 18
snoRNA 1,521 458 (30) 73 (16) 223 (49) NA NA 60
snRNA 1,944 378 (19) 123 (33) 41 (11) NA NA 36
tRNA 624 465 (75) 29 (6) 197 (42) NA NA 52
Other{ 1,209 191 (16) 69 (36) 24 (13) NA NA 32
Total GENCODE 7,054 1,989 (28) 353 (18) 632 (32) NA NA 40

Expression of unannotated short RNAs (b)

Cell compartment Unannotated
short RNAs

Exonic Intronic Exon–intron boundaries Genic Gene–intergene
boundaries

Intergenic

Cell 57,393 14,116 13,773 1,818 29,707 13,048 25,906
Nucleus 82,297 19,334 40,136 5,248 64,718 7,417 16,289
Cytosol 25,455 6,183 5,605 665 12,453 6,631 12,447
Three compartments 150,165 38,969 55,061 7,552 101,582 23,185 45,081

NA, not applicable.
* Includes all other GENCODE small transcript biotypes except for pseudogenes.
{All elements that have passed npIDR (0.1).
{Number of detected miRNAs with an expressed annotated guide (with an annotated guide in mirbase).
1 Number of detected miRNAs with an expressed annotated passenger (with an annotated passenger in mirbase).
IShort RNA-seq mapping for which the 59 end starts 5 bp after the start and ends 5 bp before the end of a detected gene.
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non-polyadenylated RNAs in the current study. Other than that,
given the differences in the samples studied, the selection of pilot
regions with high genic content, the increase of annotated genomic
regions over time, and the different technologies used to interrogate
transcription, both estimates are in reasonable agreement.

As a consequence of both the expansion of genic regions by the
discovery of new isoforms and the identification of novel intergenic
transcripts, there has been a marked increase in the number of inter-
genic regions (from 32,481 to 60,250) due to their fragmentation and a
decrease in their lengths (from 14,170 bp to 3,949 bp median length;
Fig. 6). Concordantly, we observed an increased overlap of genic
regions. As the determination of genic regions is currently defined
by the cumulative lengths of the isoforms and their genetic association
to phenotypic characteristics, the likely continued reduction in the
lengths of intergenic regions will steadily lead to the overlap of most
genes previously assumed to be distinct genetic loci. This supports
and is consistent with earlier observations of a highly interleaved
transcribed genome12, but more importantly, prompts the reconsid-
eration of the definition of a gene. As this is a consistent characteristic
of annotated genomes, we would propose that the transcript be con-
sidered as the basic atomic unit of inheritance. Concomitantly, the
term gene would then denote a higher-order concept intended to
capture all those transcripts (eventually divorced from their genomic
locations) that contribute to a given phenotypic trait. Co-published
ENCODE-related papers can be explored online via the Nature
ENCODE explorer (http://www.nature.com/ENCODE), a specially
designed visualization tool that allows users to access the linked
papers and investigate topics that are discussed in multiple papers
via thematically organized threads.

METHODS SUMMARY
For full details of Methods, see Supplementary Information.
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Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable
and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications
in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how
the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These
practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq
experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP
experiments that are updated routinely. The current guidelines address antibody validation, experimental replication,
sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in
these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing
and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.
org/) portals.

[Supplemental material is available for this article.]

Methods for mapping transcription-factor occupancy across the

genome by chromatin immunoprecipitation (ChIP) were devel-

oped more than a decade ago (Ren et al. 2000; Iyer et al. 2001; Lieb

et al. 2001; Horak and Snyder 2002; Weinmann et al. 2002). In

ChIP assays, a transcription factor, cofactor, or other chromatin

protein of interest is enriched by immunoprecipitation from cross-

linked cells, along with its associated DNA. Genomic DNA sites

enriched in this manner were initially identified by DNA hybrid-

ization to a microarray (ChIP-chip) (Ren et al. 2000; Iyer et al. 2001;

Lieb et al. 2001; Horak and Snyder 2002; Weinmann et al. 2002),

and more recently by DNA sequencing (ChIP-seq) (Barski et al.

2007; Johnson et al. 2007; Robertson et al. 2007). ChIP-seq has

now been widely used for many transcription factors, histone

modifications, chromatin modifying complexes, and other chro-

matin-associated proteins in a wide variety of organisms. There is,

however, much diversity in the way ChIP-seq experiments are

designed, executed, scored, and reported. The resulting variability

and data quality issues affect not only primary measurements,

but also the ability to compare data from multiple studies or to

perform integrative analyses across multiple data-types.

The ENCODE and modENCODE consortia have performed

more than a thousand individual ChIP-seq experiments for more

than 140 different factors and histone modifications in more

than 100 cell types in four different organisms (D. melanogaster,

C. elegans, mouse, and human), using multiple independent

data production and processing pipelines (The ENCODE Project

Consortium 2004, 2011; Celniker et al. 2009). During this work, we

developed guidelines, practices, and quality metrics that are ap-

plied to all ChIP-seq work done by the Consortium (Park 2009).

Here we describe these, together with supporting data and illus-
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trative examples. We emphasize issues common to all ChIP-seq

studies: immunoprecipitation specificity and quality, impact of

DNA sequencing depth, scoring and evaluation of data sets, ap-

propriate control experiments, biological replication, and data

reporting.

ChIP overview
The goals of a genome-wide ChIP experiment are to map the bind-

ing sites of a target protein with maximal signal-to-noise ratio and

completeness across the genome. The basic ChIP-seq procedure is

outlined in Figure 1A, and detailed protocols (and data) from our two

consortia can be obtained from the ENCODE and modENCODE

production groups listed at the UCSC Genome Browser: http://

encodeproject.org/ENCODE/ and http://www.modencode.org/,

respectively. Cells or tissues are treated with a chemical agent,

usually formaldehyde, to cross-link proteins covalently to DNA.

This is followed by cell disruption and sonication, or in some cases,

enzymatic digestion, to shear the chromatin to a target size of

100–300 bp (Ren et al. 2000; Iyer et al. 2001). The protein of interest

(transcription factor, modified histone, RNA polymerase, etc.) with

its bound DNA is then enriched relative to the starting chromatin

by purification with an antibody specific for the factor. Alterna-

tively, cell lines expressing an epitope-tagged factor can be gener-

ated and the fusion protein immunoprecipitated via the epitope tag.

After immuno-enrichment, cross-links are reversed, and the

enriched DNA is purified and prepared for analysis. In ChIP-chip,

the DNA is fluorescently labeled and hybridized to a DNA

microarray, along with differentially la-

beled reference DNA (Ren et al. 2000;

Iyer et al. 2001). In ChIP-seq, the DNA is

analyzed by high-throughput DNA se-

quencing. The ENCODE Consortium

chose ChIP-seq for human and mouse

experiments because it permits compre-

hensive coverage of large genomes and

increases site resolution ( Johnson et al.

2007; Robertson et al. 2007). For organisms

with small genomes, the modENCODE

Consortium has used both ChIP-chip

and ChIP-seq, as modern arrays can pro-

vide high-resolution coverage of small

genomes (Gerstein et al. 2010; Roy et al.

2010). In all formats, we identified pu-

tatively enriched genomic regions by

comparing ChIP signals in the experi-

mental sample with a similarly processed

reference sample prepared from appro-

priate control chromatin or a control

immunoprecipitation.

Different protein classes have dis-

tinct modes of interaction with the ge-

nome that necessitate different analytical

approaches (Pepke et al. 2009):

1. Point-source factors and certain chro-

matin modifications are localized at

specific positions that generate highly

localized ChIP-seq signals. This class

includes most sequence-specific tran-

scription factors, their cofactors, and,

with some caveats, transcription

start site or enhancer-associated his-

tone marks. These comprise the ma-

jority of ENCODE and modENCODE

determinations and are therefore the

primary focus of this work.

2. Broad-source factors are associated

with large genomic domains. Exam-

ples include certain chromatin marks

(H3K9me3, H3K36me3, etc.) and chro-

matin proteins associated with tran-

scriptional elongation or repression

(e.g., ZNF217) (Krig et al. 2007).

3. Mixed-source factors can bind in point-

source fashion to some locations of

Figure 1. Overview of ChIP-seq workflow and antibody characterization procedures. (A) Steps for
which specific ENCODE guidelines are presented in this document are indicated in red. For other steps,
standard ENCODE protocols exist that should be validated and optimized for each new cell line/tissue
type or sonicator. (*) A commonly used but optional step. (B) Flowchart for characterization of new
antibodies or antibody lots. (C ) Flowchart for use of antibody characterization assays.
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the genome, but form broader domains of binding in others.

RNA polymerase II, as well as some chromatin modifying pro-

teins (e.g., SUZ12) behave in this way (Squazzo et al. 2006).

Below, we report our experience with ChIP-seq experimental

design, execution, and quality assessment. We offer specific rec-

ommendations, based on current experience, as summaries in

boxes.

ChIP-seq experimental design considerations

Antibody and immunoprecipitation specificity

The quality of a ChIP experiment is governed by the specificity

of the antibody and the degree of enrichment achieved in the af-

finity precipitation step. The majority of ENCODE/modENCODE

ChIP experiments in human cells and in Drosophila embryos were

performed with antibodies directed against individual factors and

histone modifications. A total of 145 polyclonal and 43 mono-

clonal antibodies had been used to successfully generate ChIP-seq

data as of October 2011.

Antibody deficiencies are of two main types: poor reactivity

against the intended target and/or cross-reactivity with other

DNA-associated proteins. For these reasons, we have developed

a set of working standards and reporting guidelines designed to

provide measures of confidence that the reagent recognizes the

antigen of interest with minimal cross-reactivity toward other

chromosomal proteins. Widely accessible methods for measuring

antibody specificity and sensitivity range from semiquantitative

to qualitative, and each can have noise and interpretation issues.

We therefore emphasize reporting of antibody characterization

data so that users of the ChIP data, or the reagent itself, can

make informed judgments. We also recognize that a successful

experiment can be performed with reagents that fail to strictly

comply with these guidelines. For example, cross-reacting pro-

teins detected in an immunoblot assay might not interfere in

ChIP, because the protein is not attached to chromatin. Sec-

ondary tests of diverse types can help to provide confidence

concerning the acceptability of an antibody that fails an initial

assessment.

Two tests, a primary and a secondary test, are used to char-

acterize each monoclonal antibody or different lots of the same

polyclonal antibody. The ordering of the primary and secondary

tests are influenced by the effort required to execute each, with the

primary assay being easier to perform on large numbers of anti-

bodies. The tests differ for antibodies against transcription factors

vs. those against histone modifications. A detailed description of

the tests is provided in Box 1, and a typical workflow is presented in

Figure 2, B and C. For transcription-factor antigens, we adopted the

immunoblot as our primary assay, with immunostaining as the

alternative. The former can give more information about cross-

reacting material or multiple isoforms; the latter is typically less

sensitive, but provides information about nuclear location. Ex-

amples of antibodies that pass and fail these tests are shown in

Figure 2A.

Our consortia also include one of five criteria as a secondary

characterization: (1) factor ‘‘knockdown’’ by mutation or RNAi, (2)

independent ChIP experiments using antibodies against more

than one epitope on a protein or against different members of the

same complex, (3) immunoprecipitation using epitope-tagged

constructs, (4) affinity enrichment followed by mass spectrometry,

or (5) binding-site motif analysis. Motif enrichment is the easiest

assay to perform, but requires pre-existing information about the

sequences to which a protein binds and assumes that the motif is

uniquely recognized in a given cell source by the factor of interest.

ChIP with a second antibody or against an epitope-tagged con-

struct and siRNA experiments coupled with ChIP provide in-

dependent evidence that the target sites are bound by the factor

of interest. We found that mass spectrometry is particularly useful

for cases where multiple or unexpected bands are observed on

an immunoblot and the presence of spliced isoforms, post-trans-

lational modification, or degradation is suspected. Additionally, it

can precisely identify potential alternate sources of ChIP signal,

often with novel biological implications, which can be tested by

additional ChIP experiments. Due to the significant effort and

expense required to perform these assays, our standard for the

consortia requires only one secondary assay. We found that ;20%

(44 of 227) of the tested commercially available antibodies against

transcription factors meet these characterization guidelines and

also function in ChIP-seq assays.

To date, 55% of consortia antibodies have been submitted

with mass spectrometry data, 28% with ChIP data using a second

antibody, epitope tag, or alternate member of a known complex,

10% with data from motif analysis (this standard has only been

used by ENCODE for 1 yr), and 7% with siRNA knockdown data.

A summary of motif detection for all data sets is in preparation

(P Kheradpour and M Kellis, in prep.).

Validating histone modification antibodies involves multiple

issues (Egelhofer et al. 2011): (1) specificity with respect to other

nuclear/chromatin proteins, (2) specificity with respect to un-

modified histones and off-target modified histone residues (e.g.,

H3K9me vs. H3K27me), (3) specificity with respect to mono-, di-,

and trimethylation at the same residue (e.g., H3K9me1, H3K9me2,

and H3K9me3), and (4) lot-to-lot variation. For all consortia his-

tone measurements, we set the standard that immunoblot analysis

and one of the following secondary criteria are applied: Peptide-

binding tests (dot blots), mass spectrometry, immunoreactivity

analysis in cell lines containing knockdowns of a relevant histone

modification enzyme or mutants histones, or genome annotation

enrichment. The details of these standards are in Box 1.

Immunoprecipitation using epitope tagged constructs

Given the challenges in obtaining antibodies for suitable ChIP,

an attractive alternative is to tag the factor with an exogenous

epitope and immunoprecipitate with a well-characterized mono-

clonal reagent specific for the tag. Epitope-tagging addresses the

problems of antibody variation and cross-reaction with different

members of multigene families by using a highly specific reagent

that can be used for many different factors. However, this in-

troduces concerns about expression levels and whether tagging

alters the activity of the factor. The level of expression is typically

addressed by using large clones (usually fosmids and BACs) car-

rying as much regulatory information as possible to make the level

of expression nearly physiological (Poser et al. 2008; Hua et al.

2009). Higher expression is known to result in occupancy of sites

not necessarily occupied at physiological levels (DeKoter and

Singh 2000; Fernandez et al. 2003). In ENCODE/modENCODE,

tagged factors have been used most extensively thus far for C.

elegans studies, where factors have been tagged with GFP and

shown to complement null mutants; six of six tested to date have

been found to complement (Zhong et al. 2010; V Reinke, unpubl.).

In some cases, information regarding expression is not available

and expression from an exogenous promoter has been used

(P Farnham, unpubl.)

ChIP-seq guidelines used by ENCODE and modENCODE
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Box 1: ENCODE guidelines for antibody and immunoprecipitation characterization

Characterization of antibodies directed against transcription factors

Antibodies directed against transcription factors must be characterized using both a primary and secondary characterization; characterizations must
be repeated for each new antibody or antibody lot number that is used for ChIP-seq (Fig. 1B,C).

Primary mode of characterization

Antibodies are characterized by one of two primary methods, immunoblot analysis, or immunofluorescence.

Immunoblot analyses

Immunoblot analyses are performed on protein lysates from either whole-cell extracts, nuclear extracts, chromatin preparations, or
immunoprecipitated material (before proceeding to ChIP assays, it is helpful to demonstrate that the protein of interest can be efficiently
immunoprecipitated from a nuclear extract, see Fig. 2B). We use the guideline that the primary reactive band should contain at least 50% of the signal
observed on the blot. Ideally, this band should correspond to the size expected for the protein of interest (Fig. 2A). However, the electrophoretic
mobility of many factors can deviate significantly from the expected size due to modifications, isoform differences, or intrinsic properties of the factor.
Therefore, antibodies for which the main band differs from the expected size by >20% or for which multiple bands are seen (such that no band
represents >50% of the signal) can be used under certain circumstances. In these cases, further criteria must be met, such as (1) the unexpected
mobility must have been properly documented in published studies using the same antibody lot, (2) the signal in the band(s) is reduced by siRNA
knockdown or mutation, or (3) the factor can be identified in all band(s) by mass spectrometry.

Immunofluorescence

Some antibodies that work well for ChIP do not work well in immunoblots. If immunoblot analysis is not successful, immunofluorescence can be used
as an alternative method. Staining should be of the expected pattern (e.g., nuclear and only in cell types or under specific growth conditions that
express the factor) (Fig. 2C). Because immunofluorescence does not provide evidence that the antibody detects only one protein, this validation
method should be combined with a method that reduces the level of the protein, such as siRNA- or shRNA-mediated knockdown, or used with
a knockout cell line or organism (see below).

Secondary mode of characterization

In addition to the primary mode of characterization, the consortia performs at least one of the following five assays as an additional secondary test:

Knockdown or knockout of the target protein

Immunoblots or immunoprecipitations are performed in duplicate using extracts from siRNA or shRNA knockdowns or from knockout mutant cell
lines or organisms. We use the guideline that the primary immunoblot (or immunofluorescence) signal, along with additional immunoreactive bands,
should be reduced to no more than 30% of the original signal and any signal remaining after genetic mutation, RNAi, or siRNA is noted. As an
alternative, knockdown can also be measured with ChIP experiments. ENCODE data can be submitted if reduction of ChIP-chip or ChIP-seq signals by
>50% relative to control is observed. A suitable control knockdown (e.g. using ‘‘scrambled’’ siRNA sequences) should also be performed and the data
should be submitted; reduction of signal should not be observed in the control knockdown data set. The methodology used for binding-region signal
normalization (for instance, normalization against total read counts or using values from reference peaks quantified by qPCR under all experimental
conditions) should also be reported.

Immunoprecipitation followed by mass spectrometry

All immunoreactive bands identified by immunoblot analysis are analyzed (Fig. 2D). ENCODE passes such analyses if the protein of interest is identified
in such bands; if additional chromosomal proteins are identified in an immunoreactive band, the Consortium accepts the experiment as long as they
are present at lower prevalence than the desired protein (as measured by peptide counts or other methods) or can be demonstrated to arise from
nonspecific immunoprecipitation (e.g., also present in a control immunoprecipitation). All proteins identified by mass spectrometry and the number
of peptide counts for each are reported.

Immunoprecipitation with multiple antibodies against different parts of the target protein or members of the same complex

Different antibodies against different parts of the same protein or other members of a known protein complex can be used in analyzing the specificity
of antibodies. In the ENCODE Consortium, results of the different ChIP experiments are compared and significant overlap of enriched loci is expected
(ChIP-seq experiments are compared using the IDR-based standards in Box 3). Note that for different proteins that are members of a complex, there
may be some functions that are independent of one another. Thus, the targets lists for two different proteins may not entirely overlap. In this case,
specific evidence about limited overlap of binding specificity in the literature is presented to justify the significance of the overlap observed between
data sets for the factors in question.

Immunoprecipitation with an epitope-tagged version of the protein

An epitope-tagged version of the target protein may be used, preferably expressed from the endogenous gene promoter. ENCODE conducts and
analyzes such experiments as described above for the use of multiple antibodies.

Motif enrichment

For transcription factors, if a factor has a well-characterized motif derived from in vitro binding studies or another justifiable method, and if either no
paralogs are expressed in the cell lines being analyzed or if the antibody is raised to a unique region of the factor, motif enrichment can be used for
validation. Motif analysis can be performed using a defined set of high-quality peaks (a 0.01 IDR threshold is used), and for ENCODE data to be
submitted, motifs should be enriched at least fourfold compared with all accessible regions (e.g., DNase hypersensitive regions) and present in >10%
of analyzed peaks. Analysis of data sets deposited as of January 2011 identified data sets that meet these standards for 49 of 85 factors (Fig. 2E). We
note that due to differences in transcription-factor recruitment mechanisms, failure of a data set to meet the motif enrichment threshold does not
necessarily indicate poor quality data.

(continued)

Landt et al.

1816 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on September 5, 2012 - Published by genome.cshlp.orgDownloaded from 

531



Other considerations

1. For antibodies directed against members of a multigene family, the best practice is to prepare or obtain antibodies that recognize protein regions
unique to individual family members. For an ENCODE validated antibody, any potential cross-reaction is noted when reporting data collected using
that antibody.

2. For antibodies that have been previously characterized for one cell type, ENCODE has used only one validation method (such as immunoblot
analysis) when the antibody is used to perform ChIP in a new cell type or organism. If an antibody has been validated in at least three different
cell types, we do not require further validation for ChIP-seq experiments with additional cell types for ENCODE submission. Similarly, for whole
organisms, if the antibody has been characterized in three growth stages, no further characterization is required.

3. If antibodies derived from the same lot are used by different groups in ENCODE, they only need to be characterized once. However, antibodies from
different lots of the same catalog number are characterized as if they were new antibodies.

Epitope-tagged proteins

Epitope-tagged factors are introduced into cells by transfection of an expression construct. To help ensure that ChIP-seq results obtained using the
tagged factor are comparable to those expected for the endogenous factor, ENCODE uses the criteria that tagged factors are expressed at
a comparable amount to the endogenous factor. This is usually achieved by cloning into a low-copy number vector and using the natural promoter to
drive expression. If the tagged protein is expressed from a heterologous promoter, data comparing expression levels of the tagged and endogenous
proteins (i.e., immunoblots to measure protein levels or qPCR to measure RNA levels) are needed. There are special cases in which ChIP cannot be
obtained at endogenous protein levels, and here, elevated expression can provide useful information. ENCODE’s recommended control for epitope-
tagged measurements is an immunoprecipitation using the same antibody against the epitope tag in otherwise identical cells that do not express the
tagged factor.

Histone modifications

For ENCODE data to be submitted, all commercial histone antibodies are validated by at least two independent methods, as described below, and
new lots of antibody are analyzed independently. These validations are performed by the ENCODE laboratory performing the ChIP-seq or by the
antibody supplier, but only if the supplier provides data for the specific lot of antibody. The tests need only be performed once for each antibody
lot.

Primary test

All antibodies used in ENCODE ChIP experiments are checked for reactivity with nonhistone proteins and with unmodified histones by performing
immunoblot analysis on total nuclear extract and recombinant histones. To enable visual quantification of reactivity, a concentration series of
both extract and recombinant histones are analyzed using recombinant histone levels that are comparable to those of the target histone in
nuclear extract. Since cross-reactivity may vary between species, this test is performed using nuclear extracts from each species to be studied by
ChIP. To pass the criteria for submission in ENCODE, the specific histone band should constitute at least 50% of the signal in western blots of
nuclear extract, show at least 10-fold enrichment relative to any other single band, and show at least 10-fold enriched signal relative to
unmodified histone.

Secondary test

In addition to the primary test, antibody specificity is verified by at least one additional test. The pros and cons of each test are described. The first two
are the most commonly used.

Peptide binding tests

Peptide binding and peptide competition assays provide a fast method to initially evaluate the specificity and relative binding strength of antibodies
to histone tails with different modifications (e.g., H3K9 or H3K27 and me1, me2, and me3 levels of methylation). A potential drawback is that
antibodies may differ in their binding specificity toward histone tail peptides in vitro versus toward full-length histones in the context of chromatin in
IP experiments. Nevertheless, observing at least a 10-fold enriched binding signal for the modification of interest relative to other modifications
provides confidence in the antibody specificity. For these assays, histone tail peptides with particular modifications can be purchased commercially.
Alternatively, peptide binding and/or competition assays using the same lot of antibody can be performed by the company from which the antibody
is purchased.

Mass spectrometry

For antibodies generated against related and historically problematic modifications, the ability of the antibody to effectively distinguish between
similar histone marks (e.g., H3K9me and H3K27me) and between different levels of methylation (e.g., H3K9me1, H3K9me2, and H3K9me3)
can be tested by mass spectrometry analysis of material immunoprecipitated from histone preparations. For ENCODE data, the target
modification constitutes at least 80% of the immunoprecipitated histone signal. This test may often not be successful because IP for one
modification can simultaneously isolate coassociated histones with other modifications. Thus, only a positive result (i.e., a specific modification)
is interpretable.

Mutants defective in modifying histones

Strains or cell lines harboring knockouts or catalytically inactive mutants of enzymes responsible for particular histone modifications offer the
opportunity to test antibody specificity. Such mutants exist for S. cerevisiae, S. pombe, Drosophila, C. elegans and can, in cases where the modifying
enzymes are nonredundant, be created for mammalian cells. For submitted ENCODE/modENCODE data, antibody signal is reduced to below 10%
of wild-type signal in mutant samples, compared with wild type. RNAi or siRNA depletion of histone modifying activity may be substituted for
mutants. Mutant or RNAi or siRNA reduction of signal can be assayed by immunoblot analysis or by immunofluorescence staining. Mutant/RNAi/
siRNA tests usually do not allow testing antibodies for the ability to discriminate between mono-, di-, and trimethylation. In cases where more than
one enzyme modifies the same residue (e.g., H3K9 methylation in Drosophila), double mutants or RNAi may be required. Replicates of this test are
encouraged but not required for ENCODE/modENCODE data to be submitted. However, positive controls showing that the antibody works on

Box 1: Continued
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Replication, sequencing depth, library complexity,
and site discovery

Biological replicate experiments from independent cell cultures,

embryo pools, or tissue samples are used to assess reproducibility.

Initial RNA polymerase II ChIP-seq experiments showed that more

than two replicates did not significantly improve site discovery

(Rozowsky et al. 2009). Thus, the ENCODE Consortium set as our

standard that all ChIP measurements would be performed on two

independent biological replicates. The irreproducible discovery

rate (IDR) analysis methodology (Li et al. 2011) is now used to

assess replicate agreement and set thresholds (discussed further

below). For experiments with poor values for quality metrics de-

scribed in Section III, additional replicate(s) have been generated.

For a typical point-source DNA-binding factor, the number

of ChIP-seq positive sites identified typically increases with the

number of sequenced reads (Myers et al. 2011). This result is

expected, as studies of numerous factors by ENCODE and by other

groups have repeatedly found a continuum of ChIP signal strength,

rather than a sharply bounded and discrete set of positive sites

(Rozowsky et al. 2009; Myers et al. 2011). Weaker sites can be

detected with greater confidence in larger data sets because of the

increased statistical power afforded by more reads. Figure 3 shows

an analysis of peak calls for 11 human ENCODE ChIP-seq data

sets for which deep-sequence data (30–100 million mapped reads)

were obtained. Clear saturation of peak counts was observed for

one factor with few binding sites, but counts continued to increase

at varying rates for all other factors, including a case in which

>150,000 peaks were called using 100 million mapped reads. Ex-

amination of peak signals reveals that the signal enrichments

consistently plateau at greater sequencing depths. At 20 million

mapped reads, which we currently use as a minimum for all

ENCODE ChIP experiments for point-source transcription factors

(Box 2), five- to 13-fold median enrichments are the norm; new

peaks identified after 20 million reads give enrichments that are

;20% of the enrichment of the strongest peaks (Fig. 3C). In-

terestingly, many additional peaks, with enrichment values of

three- to sevenfold, can still be found by sequencing to much

greater depths. It is likely that many of these regions correspond

to low-affinity sites and/or regions of open chromatin that bind

TFs less specifically.

The relationship of ChIP signal strength to biological regula-

tory activity is a current area of active investigation. The biological

activity of known enhancers, defined in the literature independently

of ChIP data, is distributed quite broadly relative to ChIP-seq signal

strength (Ozdemir et al. 2011; G DeSalvo, G Marinov, K Fisher,

A Kirilusha, A Mortazavi, B Williams, and B Wold, in prep.). Some

highly active transcriptional enhancers reproducibly display modest

ChIP signals (Fig. 4B). This means that one cannot a priori set a

specific target threshold for ChIP peak number or ChIP signal

strength that will assure inclusion of all functional sites (see Dis-

cussion). Therefore, a practical goal is to maximize site discovery by

optimizing immunoprecipitation and sequencing deeply, within

reasonable expense constraints. For point-source factors in mam-

malian cells, a minimum of 10 million uniquely mapped reads are

used by ENCODE for each biological replicate (providing a mini-

mum of 20 million uniquely mapped reads per factor); for worms

and flies a minimum of 2 million uniquely mapped reads per rep-

licate is used. For broad areas of enrichment, the appropriate num-

ber of uniquely mapped reads is currently under investigation, but at

least 20 million uniquely mapped reads per replicate for mammalian

cells and 5 million uniquely mapped reads per replicate for worms

and flies is currently being produced for most experiments.

Site discovery and reproducibility are also affected by the

complexity of a ChIP-seq sequencing library (Fig. 4A). We define

library complexity operationally as the fraction of DNA fragments

that are nonredundant. With increased depth of sequencing of a

library, a point is eventually reached where the complexity will be

exhausted and the same PCR-amplified DNA fragments will be

sequenced repeatedly. Low library complexity can occur when

very low amounts of DNA are isolated during the IP or due to

problems with library construction.

A useful complexity metric is the fraction of nonredundant

mapped reads in a data set (nonredundant fraction or NRF), which

we define as the ratio between the number of positions in the ge-

nome that uniquely mappable reads map to and the total number

of uniquely mappable reads; it is similar to a recently published

redundancy metric (Heinz et al. 2010). NRF decreases with se-

wild-type samples processed in parallel, and positive controls showing that the mutant extract is amenable to the assay employed are included for
data to be submitted.

Mutant histones

Mutant histones (e.g., histone H3 with Lys4 mutated to Arg or Ala) expressed in yeast provide another avenue to test specificity by immunoblot
analysis or even by ChIP. When analyzing a strain containing a mutated histone that cannot be modified, we expect at least a 10-fold reduction in
immunoblot or IP signal relative to wild-type histone preparations. Mutant histone tests cannot distinguish whether antibodies discriminate between
mono, di, and trimethylation.

Annotation enrichment

Enrichment at annotated features (e.g., transcription start sites) can be used as a validation criterion for certain chromatin-associated modifications
and proteins. If a well-characterized modification (e.g. H3K4me3) is analyzed, the observed localization to annotations are expected to be similar to
that of known overlap standards derived from the literature or existing ChIP-seq data sets (for point source peaks, overlap with known annotations can
be assessed using the IDR guidelines in Box 3).

Use of two different antibodies

Even if antibodies pass the specificity tests described above, observing similar ChIP results with two independent antibodies provides added
confidence. We therefore aspire to obtain ChIP-seq data from two independent antibodies whenever possible, providing statistical comparisons of the
results and presenting the intersection of the peak sets obtained with the two antibodies. The reasons for a significant discordance can be either
biological or technical, and merit further dissection.

Box 1: Continued
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Figure 2. Representative results from antibody characterization assays. (A) Immunoblot analyses of antibodies against SIN3B that (left) pass quality
control (Santa Cruz sc13145) and (right) fail quality control (Santa Cruz sc996). Lanes contain nuclear extract from GM12878 cells (G) and K562 cells (K).
Arrows indicate band of expected size of 133 kDa. Molecular weights (MW) are in kilodaltons. (B) Immunoblot analysis of an antibody against TBLR1
(Abcam ab24550) that passes quality control and can be used for immunoprecipitation. Immunoprecipitations (IPs) were performed from nuclear lysates
of K562 cells. Arrow indicates band of expected size (56 kDa) that is detected in the input lysate (lane 1) and is efficiently (cf. lanes 3 and 2) and specifically
(absent in lane 4) immunoprecipitated. (*) IgG light and heavy chains. (C ) Immunofluorescence analyses of antibodies that pass (left) and fail (right) quality
control. (D) Immunoprecipitation/mass spectrometry analysis of an antibody against SP1 (Santa Cruz sc-17824). Whole-cell lysates (WCL) of K562,
GM12878, and HepG2 were immunoprecipitated, and a band of expected size (;106 kDa) was detected on a Western blot with SP1 primary antibody.
The immunoprecipitation was repeated in K562 WCL, separated on a gel, stained with Coomassie Blue, and the band previously detected on the Western
blot was excised and analyzed by mass spectrometry. Peptides were identified using MASCOT (Matrix Science) with probability-based matching at
P < 0.05. Subsequent analysis was performed in Scaffold (Proteome Software, Inc.) at 0.0% protein FDR and 0.0% peptide FDR. SP1 protein was detected
(along with common contaminants that are often obtained in control experiments) (data not shown) and is highlighted in bold and light blue. (E)
Histogram depicting motif fold-enrichment (blue) for all transcription factors for which ENCODE ChIP-seq data is available (85 factors). Enrichments are
relative to all DNase-accessible sites and were corrected for sequence bias using shuffle motifs. Motif searches were conducted with a matching stringency
of 4–6. Where multiple data sets are available for a factor, the data set with the highest enrichment was counted. Data sets that meet the ENCODE standard
of fourfold enrichment (indicated by blue line) were found for 60% of factors. Motif representation, as a percentage of all analyzed peaks, is shown in red
for all factors for which a data set exists that exceeds the enrichment standard. A total of 96% of these data sets meet the ENCODE standard of >10% motif
representation (red line). All calculations were carried out on peaks identified by IDR analysis (0.01 cut-off ).
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quencing depth, and for point source TFs,

our current target is NRF $0.8 for 10

million (M) uniquely mapped reads (Box

2). We expect that, as sequencing tech-

nology improves and read numbers in the

hundreds of millions per lane become fea-

sible, even complex libraries from point-

source factor libraries may be sequenced at

depths greater than necessary. To maxi-

mize information that can be obtained for

each DNA-sequencing run and to prevent

oversequencing, barcoding and pooling

strategies can be used (Lefebvre et al.

2010).

Control sample

An appropriate control data set is critical

for analysis of any ChIP-seq experiment

because DNA breakage during sonication

is not uniform. In particular, some re-

gions of open chromatin are preferen-

tially represented in the sonicated sam-

ple (Auerbach et al. 2009). There are also

platform-specific sequencing efficiency

biases that contribute to nonuniformity

(Dohm et al. 2008). There are two basic

methods to produce control DNA sam-

ples, each of which mitigates the effects

of these issues on binding-site identifica-

tion: (1) DNA is isolated from cells that

have been cross-linked and fragmented

under the same conditions as the immu-

noprecipitated DNA (‘‘Input’’ DNA); and

(2) a ‘‘mock’’ ChIP reaction is performed

using a control antibody that reacts

with an irrelevant, non-nuclear antigen

(‘‘IgG’’ control). For both types of con-

trols, ENCODE groups sequence to a

depth at least equal to, and preferably

larger than, that of the ChIP sample.

While the IgG control mimics a ChIP

experiment more closely than does an

‘‘input’’ control, it is important that IgG

control immunoprecipitations recover

enough DNA to build a library of suffi-

ciently high complexity to that of the ex-

perimental samples; otherwise, binding-

site identifications made using this control

can be significantly biased.

Regardless of the type of control

used, ENCODE and modENCODE groups

perform a separate control experiment

for each cell line, developmental stage,

and different culture condition/treatment

because of known and unknown differ-

ences in ploidy, genotype, and epigenetic

features that affect chromatin prepara-

tion. To serve as a valid control, we use

identical protocols to build ChIP and

control sequencing libraries (i.e., the same

as the number of PCR amplification cycles,

Figure 3. Peak counts depend on sequencing depth. (A) Number of peaks called with Peak-seq
(0.01% FDR cut-off) for 11 ENCODE ChIP-seq data sets. (B) Called peak numbers for 11 ChIP-seq data
sets as a function of the number of uniquely mapped reads used for peak calling. (Inset) Called peak
data for the MAFK data set from HepG2 cells, currently the most deeply sequenced ENCODE ChIP-
seq data set (displayed separately due to the significantly larger number of reads relative to the other
data sets). Data sets are indicated by cell line and transcription factor (e.g., cell line HepG2, tran-
scription factor MAFK). (C ) Fold-enrichment for newly called peaks as a function of sequencing
depth. For each incremental addition of 2.5 million uniquely mapped reads, the median fold-en-
richment for newly called peaks as compared with an IgG control data set sequenced to identical
depth is plotted.
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fragment size, etc.). Although rare in our experience, control li-

braries with particularly strong sonication biases have been ob-

served and they can adversely affect peak calling (Supplemental

Fig. S1). As much as possible, ENCODE/modENCODE groups also

generate a separate control for each batch of sonicated samples to

control for possible sonication variation.

Peak calling

After mapping reads to the genome, peak calling software is used

to identify regions of ChIP enrichment. We have used several

peak calling algorithms and corresponding software packages, in-

cluding SPP, PeakSeq, and MACs (Ji et al. 2008; Valouev et al. 2008;

Zhang et al. 2008; Rozowsky et al. 2009). The resulting output of

these algorithms generally ranks called regions by absolute signal

(read number) or by computed significance of enrichment (e.g.,

P-values and false discovery rates). Because ChIP signal strength is

a continuum with many more weak sites than strong ones (Fig.

4B), the composition of the final peak list depends heavily on the

specific parameter settings and the algorithm used as well as the

quality of the experiment itself. Thresholds that are too relaxed

lead to a high proportion of false positives for each replicate, but as

discussed below, subsequent analysis can strip false positives from

a final joint peak determination. Different peak-calling algorithms

rely on different statistical models to calculate P-values and false

discovery rates (FDR), meaning that significance values from dif-

ferent software packages are not directly comparable. When using

standard peak-calling thresholds, successful experiments generally

identify thousands to tens of thousands of peaks for most TFs in

mammalian genomes, although some exceptions are known

(Frietze et al. 2010; Raha et al. 2010). In all cases, it is important to

use an appropriate control experiment in peak calling.

Calling discrete regions of enrichment for Broad-source factors

or Mixed-source factors is more challenging and is at an earlier stage

of development. Methods to identify such regions are emerging

(e.g., ZINBA [Rashid et al. 2011] [installation package at http://

code.google.com/p/zinba/], Scripture [Guttman et al. 2010], and

MACS2, an updated version of MACS that is specifically designed

to process mixed signal types [https://github.com/taoliu/MACS]).

Standards for the identification of broad enrichment regions are

currently in development.

Evaluating ChIP-seq data
The quality of individual ChIP-seq experiments varies considerably

and can be especially difficult to evaluate when new antibodies are

being tested or when little is known about the factor and its binding

motif. The ENCODE Consortium has developed and uses metrics

for several aspects of ChIP-seq quality, together with traditional

site-inspection-based evaluation. When applied and interpreted as

a group, these metrics and approaches provide a valuable overall

assessment of experimental success and data quality.

Browser inspection and previously known sites

A first impression about ChIP-seq quality can be obtained by local

inspection of mapped sequence reads using a genome browser.

Although not quantitative, this approach is very useful, especially

when a known binding location can be examined; read distribu-

tion shape and signal strength relative to a control sample can

provide a sense of ChIP quality. A true signal is expected to show

a clear asymmetrical distribution of reads mapping to the forward

and reverse strands around the midpoint (peak) of accumulated

reads. This signal should be large compared with the signal of

the same region from the control library. Of course it is not feasible to

inspect the whole genome in this manner, and evaluating a limited

number of the strongest sites may overestimate the quality of the

entire data set (Supplemental Fig. S2). The genome-wide metrics

discussed below provide more objective and global assessments.

Measuring global ChIP enrichment (FRiP)

For point-source data sets, we calculate the fraction of all mapped

reads that fall into peak regions identified by a peak-calling algo-

rithm (Ji et al. 2008). Typically, a minority of reads in ChIP-seq

experiments occur in significantly enriched genomic regions (i.e.,

peaks); the remainder of the read represents background. The

fraction of reads falling within peak regions is therefore a useful

and simple first-cut metric for the success of the immunoprecipi-

tation, and is called FRiP (fraction of reads in peaks). In general,

FRiP values correlate positively and linearly with the number of

called regions, although there are exceptions, such as REST (also

known as NRSF) and GABP, which yield a more limited number of

Box 2: ChIP experimental design guidelines

Sequencing and library complexity

For each ChIP-seq point-source library, ENCODE’s goal is to obtain $10 million uniquely mapping reads per replicate experiment for mammalian
genomes, with a target NRF (nonredundancy fraction) $0.8 for 10 million reads. The corresponding objective for modENCODE point-source factors
is to obtain $2 M uniquely mapped reads per replicate, $0.8 NRF. The modENCODE target for broad-source ChIP-seq in Drosophila is $5 million
reads, and the ENCODE provisional target for mammalian broad-source histone marks is $20 million uniquely mapping reads at NRF $0.8. The
distribution of NRF values for all ENCODE data sets is shown in Figure 7.

Control libraries

ENCODE generates and sequences a control ChIP library for each cell type, tissue, or embryo collection and sequences the library to the appropriate
depth (i.e., at least equal to, and preferably greater than, the most deeply sequenced experimental library). If cost constraints allow, a control library
should be prepared from every chromatin preparation and sonication batch, although some circumstances can justify fewer control libraries.
Importantly, a new control is always performed if the culture conditions, treatments, chromatin shearing protocol, or instrumentation is significantly
modified.

Reproducibility

Experiments are performed at least twice to ensure reproducibility. For ENCODE data to pass criteria for submission, concordance is determined from
analysis using the IDR methodology (current ENCODE criteria are in Box 3), and a third replicate is performed if the standard is not reached. Cut-offs
for identifying highly reproducible peaks for use in subsequent analyses can be determined by IDR (typically using a 1% threshold).
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called regions but display very high enrichment (Fig. 4C). Most (787

of 1052) ENCODE data sets have a FRiP enrichment of 1% or more

when peaks are called using MACS with default parameters. The

ENCODE Consortium scrutinizes experiments in which the FRiP

falls below 1%.

The 1% FRiP guideline works well when there are thousands

to tens of thousands of called occupancy sites in a large mammalian

genome. However, passing this threshold does not automatically

mean that an experiment is successful and a FRiP below the threshold

does not automatically mean failure. For example, ZNF274 and hu-

man RNA polymerase III have very few true binding sites (Frietze et al.

2010; Raha et al. 2010), and a FRiP of <1% is obtained. At the other

extreme, ChIP experiments using antibody/factor pairs capable of

generating very high enrichment (such as REST and GABP men-

tioned above) and/or binding-site numbers (CTCF, RAD21, and

others) can result in FRiP scores that exceed those obtained for most

factors (Fig. 5C), even for experiments that are suboptimal. Thus,

FRiP is very useful for comparing results obtained with the same

antibody across cell lines or with different antibodies against the

same factor. FRiP is sensitive to the specifics of peak calling, in-

cluding the way the algorithm delineates regions of enrichment

and the parameters and thresholds used. Thus, all FRiP values that

are compared should be derived from peaks uniformly called by

a single algorithm and parameter set.

Cross-correlation analysis

A very useful ChIP-seq quality metric that is independent of peak

calling is strand cross-correlation. It is based on the fact that a high-

quality ChIP-seq experiment produces significant clustering of

enriched DNA sequence tags at locations bound by the protein of

interest, and that the sequence tag density accumulates on forward

and reverse strands centered around the binding site. As illustrated

in Figure 5D, these ‘‘true signal’’ sequence tags are positioned at a

distance from the binding site center that depends on the fragment

size distribution (Kharchenko et al. 2008). A control experiment,

such as sequenced input DNA, lacks this pattern of shifted stranded

tag densities (Supplemental Fig. S1). This has made it possible to

develop a metric that quantifies fragment clustering (IP enrich-

ment) based on the correlation between genome-wide stranded

tag densities (A Kundaje, Y Jung, P Kharchenko, B Wold, A Sidow,

S Batzoglou, and P Park, in prep.). It is computed as the Pearson

linear correlation between the Crick strand and the Watson strand,

after shifting Watson by k base pairs (Fig. 5E). This typically pro-

duces two peaks when cross-correlation is plotted against the shift

value: a peak of enrichment corresponding to the predominant

fragment length and a peak corresponding to the read length

(‘‘phantom’’ peak) (Fig. 4E; Heinz et al. 2010; A Kundaje, Y Jung,

P Kharchenko, B Wold, A Sidow, S Batzoglou, and P Park, in prep.).

The normalized ratio between the fragment-length cross-

correlation peak and the background cross-correlation (normalized

strand coefficient, NSC) and the ratio between the fragment-

length peak and the read-length peak (relative strand correlation,

RSC) (Fig. 4G), are strong metrics for assessing signal-to-noise ra-

tios in a ChIP-seq experiment. High-quality ChIP-seq data sets

tend to have a larger fragment-length peak compared with the

read-length peak, whereas failed ones and inputs have little or no

such peak (Figs. 4G, 5A,B; Fig. 7, below). In general, we observe

a continuum between the two extremes, and broad-source data sets

are expected to have flatter cross-correlation profiles than point-

sources, even when they are of very high quality. As expected, the

NSC/RSC and FRiP metrics are strongly and positively correlated for

the majority of experiments (Fig. 4F). As with the other quality

metrics, even high-quality data sets generated for factors with few

genuine binding sites tend to produce relatively low NSCs.

These measures form the basis for one of the current quality

standards for ENCODE data sets. We repeat replicates with NSC

values <1.05 and RSC values <0.8 and, if additional replicates

produce low values, we include a note with the reported data

set (Box 3). We illustrate the application of our ChIP-seq quality

metrics to a failed pair of replicates in Figure 5, A–E. Initially, two

EGR1 ChIP-seq replicates were generated in the K562 cell line.

Based on the cross-correlation profiles, FRiP score, and number of

called regions, these replicates were flagged as marginal in quality.

The experiments were repeated, with all quality control metrics

improving considerably. On this basis, the superior measurements

replaced the initial ones in the ENCODE database.

Consistency of replicates: Analysis using IDR

As noted above, the modENCODE and ENCODE consortia gener-

ate two independent biological replicates, with each experiment

passing the basic quality control filters. As another measure of

experiment quality, we take advantage of the reproducibility in-

formation provided by the duplicates using the IDR (irreproducible

discovery rate) statistic that has been developed for ChIP-seq

(Li et al. 2011; discussed in detail in A Kundaje, Q Li, B Brown,

J Rozowsky, A Harmanci, S Wilder, S Batzoglou, I Dunham,

M Gerstein, E Birney, et al., in prep.).

Given a set of peak calls for a pair of replicate data sets, the

peaks can be ranked based on a criterion of significance, such as the

P-value, the q-value, the ChIP-to-input enrichment, or the read

coverage for each peak (Fig. 6A–E). If two replicates measure the

same underlying biology, the most significant peaks, which are

likely to be genuine signals, are expected to have high consistency

between replicates, whereas peaks with low significance, which are

more likely to be noise, are expected to have low consistency. If the

consistency between a pair of rank lists that contains both signif-

Figure 4. Criteria for assessing the quality of a ChIP-seq experiment. (A) Library complexity. Individual reads mapping to the plus (red) or minus strand
(blue) are represented. (B) Distribution of functional regulatory elements with respect to the strength of the ChIP-seq signal. ChIP-seq was performed
against myogenin, a major regulator of muscle differentiation, in differentiated mouse myocytes. While many extensively characterized muscle regulatory
elements exhibit strong myogenin binding, a large number of known functional sites are at the low end of the binding strength continuum. (C ) Number
of called peaks vs. ChIP enrichment. Except in special cases, successful experiments identify thousands to tens of thousands of peaks for most TFs and,
depending on the peak finder used, numbers in the hundreds or low thousands indicate a failure. Peaks were called using MACS with default thresholds.
(D) Generation of a cross-correlation plot. Reads are shifted in the direction of the strand they map to by an increasing number of base pairs and the
Pearson correlation between the per-position read count vectors for each strand is calculated. Read coverage as wigglegram is represented, not to the
same scale in the top and bottom panels.) (E ) Two cross-correlation peaks are usually observed in a ChIP experiment, one corresponding to the read length
(‘‘phantom’’ peak) and one to the average fragment length of the library. (F ) Correlation between the fraction of reads within called regions and the
relative cross-correlation coefficient for 1052 human ChIP-seq experiments. (G ) The absolute and relative height of the two peaks are useful determinants
of the success of a ChIP-seq experiment. A high-quality IP is characterized by a ChIP peak that is much higher than the ‘‘phantom’’ peak, while often very
small or no such peak is seen in failed experiments.
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Figure 5. Quality control of ChIP-seq data sets in practice. EGR1 ChIP-seq was performed in K562 cells in two replicates. ChIP enriched regions were
identified using MACS. However, the cross-correlation plot profiles (A) indicated that both IPs were suboptimal, with one being unacceptable. In
agreement with this judgment, ChIP enrichment (C ) and peak number (D) also indicated failure. The ChIP-seq assays were repeated (B), with all quality
control metrics improving significantly (B,D), and many additional EGR1 peaks were identified as a result. (E ) Representative browser snapshot of the four
EGR1 ChIP-seq experiments, showing the much stronger peaks obtained with the second set of replicates. (F ) Distribution of EGR1 motifs relative to the
bioinformatically defined peak position of EGR1-occupied regions derived from ChIP-seq data in K562 cells. Regions are ranked by their confidence scores
as called by SPP.
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icant and insignificant findings is plotted, a transition in consis-

tency is expected (Fig. 6C,F). This consistency transition provides an

internal indicator of the change from signal to noise and suggests

how many peaks have been reliably detected.

The IDR statistic quantifies the above expectations of con-

sistent and inconsistent groups by modeling all pairs of peaks

present in both replicates as belonging to one of two groups: a re-

producible group, and an irreproducible group (Li et al. 2011). In

general, the signals in the reproducible group are more consistent

(i.e., have a larger correlation coefficient) and are ranked higher

than the irreproducible group. The proportion of identifications

that belong to the ‘‘noise’’ component and the correlation of the

significant component are estimated adaptively from the data. The

IDR provides a score for each peak, which reflects the posterior

probability that the peak belongs to the irreproducible group.

A major advantage of IDR is that it can be used to establish

a stable threshold for called peaks that is more consistent across

laboratories, antibodies, and analysis protocols (e.g., peak callers)

than are FDR measures (A Kundaje, Q Li, B Brown, J Rozowsky,

A Harmanci, S Wilder, S Batzoglou, I Dunham, M Gerstein, E Birney,

et al., in prep.). Increased consistency comes from the fact that IDR

uses information from replicates, whereas the FDR is computed on

each replicate independently. The application of IDR to real-life data

is shown in Figure 6. A pair of high-quality RAD21 ChIP-seq repli-

cates display good consistency between IDR ranks for a large number

(;28,000) of highly reproducible peaks (Figs. 6A,B), with a clear in-

flection between the signal and noise populations near the 1% IDR

value (Fig. 6C). In contrast, a pair of SPT20 replicates, which had

already been flagged as low-quality based on the individual FRiP and

NSC/RSC metrics, display very low IDR reproducibility, with very few

significant peaks, and no visible inflection in the IDR curve (Fig. 6F).

It is important that the peak-calling threshold used prior to

IDR analysis not be so stringent that the noise component is entirely

unrepresented in the data, because the algorithm requires sampling

of both signal and noise distributions to separate the peaks into two

groups; thus relaxing the default stringency settings when running

a given peak caller is advised if IDR analysis will follow.

A caution in applying IDR is that it is dominated by the weakest

replicate (A Kundaje, Q Li, B Brown, J Rozowsky, A Harmanci,

S Wilder, S Batzoglou, I Dunham, M Gerstein, E Birney, et al., in

prep.). That is, if one replicate is quite poor, many ‘‘good’’ peaks

from the higher quality replicate will be rejected by IDR analysis,

because they are not reproducible in the weak replicate. To ensure

similar weighting of individual replicates, the number of significant

binding regions identified using IDR on each individual replicate

(obtained by partitioning reads into two equal groups to allow the

IDR analysis) is recommended to be within a factor of 2 for data sets

to be submitted to UCSC by ENCODE (Box 3).

ENCODE has begun applying IDR analysis to all ChIP ex-

periments. For all submitted ENCODE ChIP-seq data sets, the

number of bound regions identified in an IDR comparison be-

tween replicates is at least 50% of the number of regions identified

in an IDR comparison between two ‘‘pseudoreplicates’’ generated

by randomly partitioning available reads from all replicates (Box 3).

Guidelines for reporting ChIP-seq data
To facilitate data sharing among laboratories, both within and

outside the Consortium, and to ensure that results can be repro-

duced, ENCODE has established guidelines for data sharing in

public repositories. Raw data can be submitted to the Short Read

Archive (SRA) and ChIP results are submitted to GEO. Through

Box 3: ChIP-seq quality assessment guidelines

Within ENCODE, a set of data quality thresholds has been established for submission of ChIP-seq data sets. These have been constructed based on the
historical experiences of ENCODE ChIP-seq data production groups with the purpose of balancing data quality with practical attainability and are
routinely revised. The current standards are below and the performance of ENCODE data sets against these thresholds is shown in Figure 7.

Cross-correlation analysis

The current ENCODE practice is to calculate and report NSC and RSC for each experiment. For experiments with NSC values below 1.05 and RSC
values below 0.8, we currently recommend that an additional replicate be attempted or the experiment explained in the data submission as adequate
based on additional considerations.

Irreproducible discovery rate (IDR)

The following guidelines have been established for mammalian cells (optimal parameter may differ for other organisms). Biological replicates are
performed for each ChIP-seq data set and subjected to peak calling. IDR analysis is then performed with a 1% threshold. For submission to ENCODE,
we currently require that the number of bound regions identified in an IDR comparison between replicates to be at least 50% of the number of
regions identified in an IDR comparison between two ‘‘pseudoreplicates’’ generated by pooling and then randomly partitioning all available reads
from all replicates (Np/Nt < 2) (Fig. 7). To ensure similar weighting of individual replicates for identifying binding regions, we further recommend that
the number of significant peaks identified using IDR on each individual replicate (obtained by partitioning reads into two equal groups for the IDR
analysis) be within a factor of 2 of one another (N1/N2 < 2) (Fig. 7). Data sets which fail to meet these criteria may still be deposited by ENCODE
experimenters, provided that at least three experimental replicates have been attempted and a note accompanies these data sets explaining which
parameters fail to meet the standards and providing any technical information that may explain this failure. This guideline is for point source features;
metrics are still being determined for broad peak analyses.

Updated information about the performance of ENCODE data sets against these quality metrics and tools for determining these metrics will be
forthcoming through the ENCODE portal (http://encodeproject.org/ENCODE/).

Historical note

A simpler heuristic for establishing reproducibility was previously used as a standard for depositing ENCODE data and was in effect when much of the
currently available data was submitted. According to this standard, either 80% of the top 40% of the targets identified from one replicate using an
acceptable scoring method should overlap the list of targets from the other replicate, or target lists scored using all available reads from each replicate
should share more than 75% of targets in common. As with the current standards, this was developed based on experience with accumulated
ENCODE ChIP-seq data, albeit with a much smaller sample size.
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April 2012, 478 ChIP-seq data sets had been submitted to GEO

at accession ID PRJNA63441, with submission of all current

ENCODE data to be completed by June 2012. UCSC houses the

ENCODE data (Rosenbloom et al. 2011) and modMine houses

the modENCODE data (Contrino et al. 2011).

Box 4 provides a detailed description of the data and experi-

mental and analytical details to be shared so that others can re-

produce both experiments and analyses. Shared information includes

the experimental procedures for performing the ChIP, antibody in-

formation and validation data, as well as relevant DNA sequencing,

peak calling, and analysis details. For ENCODE experiments that do

not meet the guidelines described above, data and results may be

reported, with a note indicating that the criteria have not been met

and explaining why the data are nevertheless released.

Discussion
The ENCODE and ModENCODE standards and practices presented

here will be further revised as the protocols, technologies, and our

understanding of the assays change. Updated versions will be re-

leased and made available at http://encodeproject.org/ENCODE/

experiment_guidelines.html. We have begun to address the central

but vexing issue of immune reagent specificity and performance

by establishing a menu of primary and secondary methods for

antibody characterization, including performance-reporting prac-

tices. We also developed and applied global metrics to assess the

quality of several aspects of an individual ChIP-seq experiment:

Library complexity can be measured by the nonredundant fraction

(NRF); immunoenrichment can be measured by the fraction of reads

in called peaks (FRiP) and by cross-correlation analysis (NSC/RSC);

and replicate significance can be measured by IDR. We related these

global quality measures to more traditional inspection of ChIP-seq

browser tracks (Fig. 5) and discuss below how different aspects of

data quality interact with specific uses of ChIP-seq data.

How good can a ChIP-seq experiment be?

Thus far, the most successful point-source factor experiments

for ENCODE have FRiP values of 0.2–0.5 (factors such as REST,

GABP, and CTCF) (Fig. 4C) and NSC/RSC values of 5–12. Al-

though these quality scores and characteristics were routinely

obtained for the best-performing factor/antibody combinations,

they are not the rule; for most transcription factors, the ChIP

quality metrics were substantially lower and more variable (Fig. 7).

We believe that multiple issues contribute to the variability; the

quality of antibody (affinity and specificity) is surely important, but

epitope availability within fixed chromatin, sensitivity of the anti-

body to post-translational modifications of the antigen, how long and

how often the protein is bound to DNA, and other physical charac-

teristics of the protein–DNA interaction likely also contribute. Further

work with epitope-tagged factors, for which the antibody is not

a variable, should begin to sort among the possibilities.

Figure 6. The irreproducible discovery rate (IDR) framework for assessing reproducibility of ChIP-seq data sets. (A–C ) Reproducibility analysis for a pair
of high-quality RAD21 ChIP-seq replicates. (D,E ) The same analysis for a pair of low quality SPT20 ChIP-seq replicates. (A,D) Scatter plots of signal scores
of peaks that overlap in each pair of replicates. (B,E ) Scatter plots of ranks of peaks that overlap in each pair of replicates. Note that low ranks correspond
to high signal and vice versa. (C,F ) The estimated IDR as a function of different rank thresholds. (A,B,D,E ) Black data points represent pairs of peaks that pass
an IDR threshold of 1%, whereas the red data points represent pairs of peaks that do not pass the IDR threshold of 1%. The RAD21 replicates show high
reproducibility with ;30,000 peaks passing an IDR threshold of 1%, whereas the SPT20 replicates show poor reproducibility with only six peaks passing
the 1% IDR threshold.
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When measurements differ in quality, the higher-quality

replicate often identifies thousands more sites than the lower. Do

sites present only in the superior ChIP experiment reflect true

occupancy? Motif analysis suggests that many do. In Figure 5F, the

position of EGR1 motifs relative to EGR1 ChIP-seq peaks is shown.

The known binding motif is prominent and concentrated centrally

under the ChIP peaks, as expected if the motif mediates occu-

pancy; importantly, the central location of the motif is observed,

even in the low-ranking peaks. The trend continues below the

peak-calling cut-offs, suggesting additional true occupancy sites.

Depending on the goals of an analysis, users may want to be more

or less conservative in defining the threshold for inclusion. Motif

presence could be used as one criterion for ‘‘rescuing’’ candidate

sites identified in only one experiment.

Box 4. Data reporting guidelines

Data should be submitted to public repositories. The following information is currently used by ENCODE/modENCODE to submit data to public
repositories.

Metadata
For submission of basic experimental data by ENCODE, the following information is minimally included:

• Investigator, organism, or cell line, experimental protocol (or reference to a known protocol).

• Indication as to whether an experiment is a technical or biological replicate.

• Catalog and lot number for any antibody used. If not a commercial antibody, indicate the precise source of the antibody.

• Information used to characterize the antibody, including summary of results (images of immunoblots, immunofluorescence, list of proteins

identified by mass spec, etc.).

• Peak calling algorithm29 and parameters used, including threshold and reference genome used to map peaks.

• A summary of the number of reads and number of targets for each replicate and for the merged data set.

• Criteria that were used to validate the quality of the resultant ChIP-seq data (i.e., overlap results or IDR29).

• Experimental validation results (e.g., qPCR).

• Link to the control track that was used.

• An explanation if the experiment fails to meet any of the standards.

High-throughput sequencing data

• Image files from sequencing experiments do not need to be stored.

• Raw data (FASTQ files) should be submitted to both GEO and SRA.

• Each replicate should be submitted independently.

• Target region and peak calling results.

Point source peaks
For point source peaks (e.g. experiments with antibodies to sequence-specific transcription factors), common features that are reported by ENCODE
researchers include:

• Peak position, defined as a single base pair.

• Start and end positions, defined as specific base pairs.

• Signal value (e.g., fold enrichment) using an algorithm chosen by the submitter.

• Significance/accuracy measures:

u P-value determined using a method chosen by the submitter.

u Q-value (false discovery rate correction) determined using a method chosen by the submitter.

• Metadata, including peak caller approach and genome reference used, plus methods for determining signal values, P-values,

and Q-values, as applicable.

Broad regions

• Start and end positions, defined as specific base pairs.

• Signal value (e.g., fold enrichment) using an algorithm chosen by the submitter.

• Significance/accuracy measures:

u P-value determined using a method chosen by the submitter.

u Q-value (false discovery rate correction) determined using a method chosen by the submitter.

• Metadata, including peak caller approach and genome reference used, plus methods for determining signal values, P-values,

and Q-values, as applicable.

• Point-source peaks can be called in addition to broad regions (i.e., one can have ‘‘peaks’’ and potentially ‘‘valleys’’ within ‘‘regions’’).

The investigator should determine whether their data best fits the broad region/point source peak data or both.

29For uniform peak calling within ENCODE, the MACS peak caller, version 1.4.2
was used. Scripts used for IDR analysis are at https://sites.google.com/site/
anshulkundaje/projects/idr.
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How good does a ChIP-seq experiment need to be?

We have observed that some biologically important sites can have

modest ChIP-seq signals (Fig. 4B), while some sites with very high

enrichment fail to give positive functional readouts in follow-up

experiments. Given this, the best practical guidance for setting

thresholds of sensitivity, specificity, and reproducibility will depend

on how the data are to be used. Below, we outline four different

common ChIP uses, ranging from more relaxed to stringent in

their requirements toward data quality and site-calling sensitivity.

Figure 7. Analysis of ENCODE data sets using the quality control guidelines. (A–C) Thresholds and distribution of quality control metric values in human
ENCODE transcription-factor ChIP-seq data sets. (A) NSC, (B) RSC, (C ) NRF. (D) IDR pipeline for assessing ChIP-seq quality using replicate data sets. (E,F ) Thresholds
and distribution of IDR pipeline quality control metrics in human ENCODE transcription factor ChIP-seq data sets. (Dashed lines) Current ENCODE thresholds
for the given metric, which are NSC > 1.05 (A); RSC > 0.8 (B); NRF > 0.8, N1/N2 $ 2 (where N1 refers to the replicate with higher N) (E ); Np/Nt $ 2 (F ).
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Motif analysis

Deriving DNA sequence motifs for a ChIP-assayed factor is rel-

atively simple and has been performed successfully for most

ENCODE ChIP-seq data sets (Fig. 2E). Experiments that pass the

thresholds we use for NRF, FRiP, and NSC/RSC typically produce

thousands to tens of thousands of regions, a sub-sample of which

can be readily used to deduce the recognition motif, although

more than one motif subfamily is sometimes found by additional

analysis (Johnson et al. 2007). Causal motifs are typically cen-

trally positioned and this can be used as a confirming diagnostic

(Fig. 6F). Notably, motif derivation can also be successful from

marginal quality data that fall below recommended quality

metric thresholds (especially if only the top-ranked peaks are used).

However, the risk of artifacts increases, and results from such anal-

yses should be cautiously interpreted and stringently validated.

Discovering regions to test for biological function such as transcriptional
enhancement, silencing, or insulation

Biologists often use ChIP-seq data to identify candidate regulatory

regions at loci of interest. When the goal is to find a few examples

of regulatory domains bound by a factor, data of modest quality

can still be useful if combined with close inspection of ChIP signals

and the corresponding controls before investing in functional

and/or mutagenesis studies. However, if the aspiration is to iden-

tify a comprehensive collection of all candidate regulatory regions

bound by a factor, very high-quality and deeply sequenced data

sets are required.

Deducing and mapping combinatoric occupancy

Typical cis-acting regulatory modules (CRM) are occupied by

multiple factors (Ghisletti et al. 2010; Lin et al. 2010; Wilson et al.

2010; A He et al. 2011; Q He et al. 2011; Tijssen et al. 2011) and

associated with multiple histone modifications (Barski et al. 2007;

Mikkelsen et al. 2007; Wang et al. 2008). A frequent goal of ChIP-

seq studies is to deduce a combination of factors that mediate

a common regulatory action at multiple sites in the genome. This

is a very quality-sensitive use of ChIP data since the presence of

one or more weak data sets that fail to identify significant frac-

tions of the true occupancy sites can seriously confound the

analysis; therefore we recommend only the highest quality data

sets be used for such analyses.

Integrative analysis

A new frontier of whole-genome analysis is the integration of

data from many (hundreds or thousands) experiments with the

goal of uncovering complex relationships. These endeavors typi-

cally use sophisticated machine learning methods (Ernst and Kellis

2010; Ernst et al. 2011; A Mortazavi, S Pepke, G Marinov, and

B Wold, in prep.) with complex and varying sensitivity to ChIP

strength; and such efforts can be very sensitive to data quality.

Conclusion
Our goal in developing these current working guidelines for

ChIP-seq experiments, now applied over a large number of factors,

was to provide information about experimental quality for users of

modENCODE and ENCODE data. The strongest ChIP-seq data-sets

that readily meet all quality specifications should be especially

useful for regulatory network inference and for diverse integrative

analyses, including the effects of genetic variation on human traits

and disease. The metrics, methods, and thresholds might also be

useful to the wider community, although our intention in out-

lining our approaches was not to imply that ENCODE criteria must

be applied rigidly to all studies. As discussed above, some ChIP data

and antibodies can and do fall outside these guidelines for varied

reasons, yet are highly valuable. In such cases it is critical to try

to understand why a data set looks unusual, and to assess the

implications for specific uses of those data or reagents. Similar

guidelines exist in ENCODE for RNA-seq, DNase-seq, FAIRE-seq,

ChIA-PET, and other related assays; the working standards and

protocols for these techniques can be found at the ENCODE

and modENCODE websites (http://encodeproject.org/ENCODE/

experiment_guidelines.html).

Data access
All data sets used in the analysis have been deposited for public

viewing and download at the ENCODE (http://encodeproject.org/

ENCODE/) and modENCODE (http://www.modencode.org/)

portals.
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Gene regulation by DNA binding small molecules could have impor-
tant therapeutic applications. This study reports the investigation
of a DNA-binding pyrrole-imidazole polyamide targeted to bind
the DNA sequence 5′-WGGWWW-3′ with reference to its potency
in a subcutaneous xenograft tumor model. The molecule is capable
of trafficking to the tumor site following subcutaneous injection
and modulates transcription of select genes in vivo. An FITC-la-
beled analogue of this polyamide can be detected in tumor-derived
cells by confocal microscopy. RNA deep sequencing (RNA-seq) of
tumor tissue allowed the identification of further affected genes,
a representative panel of which was interrogated by quantitative
reverse transcription-PCR and correlated with cell culture expres-
sion levels.

tumor RNA-sequencing ∣ eXpress ∣ in vivo circulation ∣ efficacy

Pyrrole-imidazole (Py-Im) polyamides represent a class of
modular DNA minor groove binders with affinity and speci-

ficity comparable to the values observed with typical DNA bind-
ing proteins (1, 2). Our previous investigations have established a
framework for molecular recognition of the minor groove of
DNA by polyamides that can target predetermined DNA binding
sites (3–5). Cell culture experiments have shown that cellular up-
take of Py-Im polyamides targeting six-base pair sequences can be
observed (6). Subsequent studies demonstrated that Py-Im poly-
amides could antagonize DNA binding of transcription factors in
live cells. Interrogated transcription factors include the androgen
receptor (AR) (7), hypoxia inducible factor 1 alpha (HIF-1α) (8),
the glucocorticoid receptor (GR) (9), and nuclear factor kappa B
(NF-κB) (10).

Although there is more knowledge to be gained from deeper
genome-wide cell culture studies, the next frontier for Py-Im
polyamides as medicinally relevant small molecules lies in in vivo
applications. Our recent studies demonstrated that the pharma-
cokinetics and toxicity of Py-Im polyamides in mice depend on
architecture (11). Micromolar levels of compounds were observed
in mouse plasma for up to 48 h following either intraperitoneal
(i.p.) or subcutaneous (s.c.) injection. Efforts of Nagashima et al.
established that Py-Im polyamides of different architecture were
detectable in rat serum several hours after intravenous (i.v.)
administration (12). Matsuda et al. further showed that a Py-Im
polyamide targeted to the TGF-β1 promoter affected target gene
expression in vivo (rat renal cortex) without evidence of systemic
toxicity (13, 14). The present study focuses on the question of
whether Py-Im polyamides affect gene expression in vivo, speci-
fically in a xenograft model environment, employing a luciferase-
expressing derivative of the commonly used lung nonsmall cell
carcinoma line A549.

Results
Acetylated Py-Im Polyamide 1 is More Potent in Cell Culture Than the
Analog 2. The first set of experiments compared the in vitro gene
regulation activity of Py-Im polyamides 1 and 2, both targeted to
bind to the sequence 5′-WGGWWW-3′ (Fig. 1A). Our previous

efforts established that the polyamide 2 was capable of modulat-
ing a subset of TNF-inducible genes (10). Among the strongly
affected genes we had identified CCL2 and SERPINE1 as highly
repressed targets of 2.

The basal expression levels of CCL2 and SERPINE1 were suf-
ficiently high to enable the study of polyamide effects in the un-
induced state. We found that both 1 and 2 reduced the levels of
the two transcripts, but the effects exerted by 1 were substantially
more pronounced (Fig. 1B). In line with the previous study, pro-
longed incubation times resulted in stronger down-regulation of
the target genes—up to fivefold withCCL2 and 14-fold with SER-
PINE1. Furthermore, 1 was significantly more cytotoxic in vitro
than 2 against the chosen cell line with IC50 values of 13� 5 μM
and 33� 2 μM, respectively (SI Text, Fig. S1A). The more potent
Py-Im polyamide 1 was, therefore, chosen for in vivo gene reg-
ulation experiments. Cellular uptake measurements clearly
showed that the FITC-labeled analogue 3 was readily taken up
by A549-luc-C8 cells, resulting in characteristic nuclear fluores-
cence (SI Text, Fig. S1B).

Py-Im Polyamides 1 and 2 Reach Comparable Plasma Levels with Simi-
lar Circulation Times Following S.C. Injection. Prior to conducting in
vivo tumor xenograft experiments the pharmacokinetic profiles
of 1 and 2 were compared. Our previous investigations showed
that 2 could circulate in wild-type mice for several hours at mi-
cromolar plasma concentrations but dropped below the limit of
detection after 24 h (11). The compound was administered by
either the s.c. or the i.p. route and blood collected retro-orbitally.
The circulation experiment was conducted for the Py-Im polya-
mide 1 using subcutaneous administration conditions analogous
to those previously reported for 2. The observed plasma levels
compared well with those reported for 2 (Fig. 2 and Fig. S2).
Maximum plasma concentrations of 10 μM were attained for
both compounds 3 h post injection. The plasma elimination phase
appeared slightly shallower for the acetylated Py-Im polyamide 1
than for its close analog 2, but neither was detectable 24 h post
injection.

FITC-Labeled Py-Im Polyamide 3 Can Be Detected in Xenograft-Derived
Cell Nuclei. We proceeded to synthesize the fluorescent tagged
derivative of 1, Py-Im polyamide 3 (see SI Text, Fig. S1 for struc-
ture). Previous experiments had shown that a closely related
compound was stable in vivo and circulated in mice for several
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hours (15). The resultant mouse plasma was found to contain
the compound at micromolar concentrations and could be used
to produce characteristic nuclear staining of A549 cells in cul-
ture (15).

Immunocompromised mice (SCID-beige) were grafted subcu-
taneously (in the flank) with the commercially available A549-de-
rived luciferase expressing cell line A549-luc-C8 (see Materials
and Methods for details). In order to ensure that the Py-Im poly-

amide 3 was entering the tumors through the vascular system, the
animals were injected with the polyamide from a site distal to the
site of implantation. A representative experiment is depicted in
Fig. 3A. The tumor-derived cells from the treated animals were
found to display strong and characteristic nuclear staining, closely
resembling those in the cell culture experiments. Tumors from
vehicle-treated mice were prepared and found to be devoid of
nuclear fluorescence. This finding provided the impetus to per-
form treatment of xenografted animals with 1 and investigate
whether polyamide treatment could result in gene expression
changes of CCL2 and SERPINE1 in vivo.

Py-Im Polyamide 1 Represses CCL2 and SERPINE1 Transcription in Vivo.
We followed up by testing the potency of 1 to repress CCL2 and
SERPINE1 in the tumor xenograft setting. To ensure primer
selectivity towards human target genes, we isolated total RNA
from mouse spleens obtained from the SCID-beige strain and
conducted control quantitative reverse transcription-PCR (qRT-
PCR) experiments. None of the primers employed in this study
exhibited any substantial amplification of mouse RNA.

All experiments were performed in accord with the treatment
schedule displayed in Table S1 (SI Text) and following the general
humane endpoints criteria (see Materials and Methods). Mild an-
imal toxicity was observed with an overall weight loss not exceed-
ing 10% as a result of treatment. The transcript levels of CCL2
and SERPINE1 were reduced by a factor of 2.3 and 2.0, respec-
tively, by 1 (Fig. 3B). Gene expression changes were the same
whether normalized toGUSB or PPIA as the housekeeping gene.
Because the IC50 of Py-Im polyamide 1 against growth of A549-
luc-C8 was 13� 5 μM and plasma levels of the compound up to

Fig. 1. (A) Hairpin Py-Im polyamides 1 and 2. (B) In vitro qRT-PCR (A549-luc-
C8 cell culture). Cells were incubated with 10 μM final 1 or 2 for 48 h or 72 h,
where indicated. All treatments were conducted with 0.1% DMSO as vehicle.

Fig. 2. Plasma values of 1 and 2 as obtained from analytical HPLC traces
(C57Bl/6 wild-type mice, four animals per data point, all injections were done
subcutaneously at 120 nmol∕animal). The levels were normalized to the in-
ternal reference 4 (Fig. S2). Datapoints shown for Py-Im polyamide 2 have
been previously reported (11).

Fig. 3. (A) FITC-labeled Py-Im polyamide 3 localizes to engrafted A549-luc-
C8 cells (SCID-beige mice). (B) qRT-PCR of tumor samples showing repression
of CCL2 and SERPINE1. Three independent experiments with N ¼ 5 animals
per treatment condition (vehicle vs 1) were averaged.
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10 μM were attainable for several hours post injection, it was
conceivable that 1 could affect tumor growth. Tumor size was
therefore assessed by luciferase imaging as outlined in Materials
and Methods. A linear correlation between tumor size and photon
number over several orders of magnitude has been previously
demonstrated for the cell line used (www.caliperls.com/assets/
018/7635.pdf). The luciferase output remained within experimen-
tal error between the two groups, suggesting that the gene expres-
sion changes did not stem from cytotoxicity (SI Text, Fig. S3).

Genome-Wide Effects of the Py-Im Polyamide 1. In order to establish
the global effects of 1 in a xenograft setting, we measured changes
in gene expression using RNA-seq in tumors from treated and
untreated mice (see Materials and Methods for details). As our
RNA-seq libraries contained a mixture of human and mouse
RNA derived from the xenograft as well as the host cells infiltrat-
ing it, we faced the challenge of accurately determining the tran-
scripts and genes fromwhich sequencing reads originate (Table S2
and discussion in the SI Text). We therefore designed an analysis
pipeline based upon mapping reads to a combined human and
mouse transcriptome and using the recently developed eXpress
software package (bio.math.berkeley.edu/eXpress/index.html) to
quantify probabilistically transcript abundance for both species
simultaneously (Fig. 4). The eXpress output was used as input
for differential expression analysis using DESeq (16).

Out of 22,092 genes, 618 (2.8%) experienced a statistically sig-
nificant change in expression at a confidence level of p < 0.05.
Within this subpopulation, 115 (0.52%) genes were repressed
at least twofold, whereas 53 genes (0.24%) showed at least a two-
fold up-regulation. For quality control purposes, one replicate was
resequenced using paired-end read sequencing with the read
length set at 100 nt. High correlation coefficients were determined
between the effective counts obtained by single- and paired-end
read sequencing, withR2 values of 0.97 and 0.94 for vehicle and 1,
respectively (see SI Text, Fig. S4 for correlation plots).

Comparison of RNA-seq and qRT-PCR for a Panel of Selected Genes in
Vivo. A representative panel of genes studied by RNA-seq was
further interrogated by qRT-PCR (Fig. 5, Upper and Table 1).
In addition to CCL2 and SERPINE1 that were discussed above,
we investigated the effects of 1 on transcription of NPTX1,
ROBO1, ATM, EGFR, and MMP28. The genes were selected
so as to range from strongly repressed (NPTX1) through weakly
down-regulated (ATM and EGFR) to up-regulated upon polya-
mide treatment (MMP28). NPTX1 experienced a 3.3-fold repres-
sion upon treatment with 1, whereas the expression of ATM was
reduced only 1.5-fold. The expression changes in EGFR detected
by qPCR lie close to the error of the experiment (1.2-fold down).
The expression of MMP28 on the other hand was up-regulated
1.5-fold upon treatment with the Py-Im polyamide 1. The genes
CCL2, NPTX1, SERPINE1, and MMP28 were categorized as dif-
ferentially expressed by both techniques (Table 1). Changes in ex-
pression of ATM and ROBO1 were only statistically significant
assessed by qRT-PCR, not by RNA-seq (p-values over 0.05)

Comparison of in Vivo and in Vitro Effects of 1 by qRT-PCR on a Panel
of Selected Genes. The gene expression changes in the in vivo
xenograft setting were compared to those observed in cell culture
(Fig. 5, Lower and Table S3). Prolonged incubation with Py-Im
polyamide 1 in cell culture generally led to more pronounced ef-
fects (48 h vs 72 h), the only exception being MMP28, for which
no effect was observed in cell culture regardless of the incubation
time. The correspondence between the in vivo experiment and
the cell culture control was found to depend strongly on the tran-
script interrogated. The in vitro effect of 1 on NPTX1 expression
at 72 h incubation was very close to that observed in vivo (3.5-fold
vs 3.3-fold), whereas for CCL2 the gene repression in xenografts
resembled more closely the 48 h incubation time point from cell
culture experiments (2.3-fold vs 2.2-fold). While MMP28 expres-
sion was unchanged in cell culture, all other interrogated genes
were affected more strongly than in the xenograft setting. The
largest difference was noted for SERPINE1, which was repressed
2.0-fold in vivo but experienced a down-regulation in cell culture
amounting to as much as 15.7-fold.

Discussion
The present study shows that the polyamide 1 is capable of traf-
ficking to a xenografted tumor and yielding measurable gene
expression changes. Following the establishment of pharmacoki-
netic properties of Py-Im polyamides targeted to the sequence 5′-
WGGWWW-3′ (11), this is the next important step towards the
application of Py-Im polyamides in a setting relevant to disease.

Comparison Between Xenografts and Cell Culture. Quantitative
correlation between the two settings is of high interest, but dif-
ferences in exposure times and concentrations of the Py-Im poly-
amide 1 between cell culture and at the tumor site need to be kept
in mind. Typical exposure times in cell culture range from 48 h to
72 h whereas final treatment concentrations do not exceed 10 μM
(10). Most of the polyamide remains in the medium so that the
concentration is effectively invariant over the experimental time-
course. One fundamental difference in the in vivo experiment is
that the serum concentration of 1 does change as a function of
postinjection time. Whereas a concentration maximum of ap-
proximately 10 μM is typically attained under chosen administra-
tion conditions, the circulating levels of 1 drop below the level of
detection (high nanomolar) 24 h postinjection. This results in os-
cillatory compound levels over the course of the 10 d experiment
(Fig. 2 and Table S1). Another difference is the inherent hetero-
geneity of cancerous tissue. Some subpopulations of xenografted
cells lie in closer proximity to newly formed blood vessels and
hence may be more readily accessible to the drug than others
(17, 18). Interactions with the host may also lead to additional
complexity (19).

Comparison of the three genes that were most strongly af-
fected in the in vivo experiment to their behavior in cell culture
is of interest. Among the genes that were examined by qRT-PCR,
NPTX1 experienced the strongest in vivo repression (3.3-fold
down). This was similar to the effects observed in cell culture,
namely 2.6-fold and 3.5-fold repression at 48 h and 72 h, respec-
tively. The effect of the Py-Im polyamide 1 against cells in culture
was rather similar for both exposure times tested. By contrast,
SERPINE1 was less strongly affected in vivo compared to in vitro.
While the in vivo repression amounted to 2.0-fold, the down-reg-
ulation was substantially more pronounced in cell culture. Tran-
scription was reduced 8.3-fold after 48 h incubation and 15.7-fold
after 72 h. Expression of CCL2 was down-regulated 2.3-fold in
the xenograft experiment whereas the cell culture repression was
2.2-fold (48 h) and 4.4-fold (72 h). This comparative analysis
prompts a note of caution, for it is evident that there can be sig-
nificant variability between gene expression changes observed in
vitro and in vivo. We conclude, however, that cell culture data can
be used to support in vivo findings in most cases.

Fig. 4. Schematic representation of the pipeline for RNA-seq analysis of tu-
mor-derived RNA. Three independent experiments for each of which N ¼ 5

animals per treatment condition (vehicle vs 1) were averaged, were jointly
analyzed.
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Tumor RNA-seq.Because of tumor heterogeneity, stemming mostly
from host-derived tumor infiltrating cells, the fraction of sequen-
cing reads unambiguously originating from the human transcrip-
tome was at most only 60%, the rest being mouse-derived (see
SI Text, Table S2). The computational pipeline described here
solves this problem by applying simultaneous probabilistic map-
ping to both the human and the mouse transcriptome. Moreover,
we have confirmed the viability of this approach by conducting
qRT-PCR on a representative panel of genes, showing good
correlation between the two methods (Table 1) and we expect
it to be widely useful to researchers conducting similar types of
experiments in different settings. Genome-wide analysis showed a
total of 168 genes to be affected by the Py-Im polyamide 1 in
xenografts, which corresponds to 0.76% of the NCBI reference
sequence (refSeq) annotation (p < 0.05, at least twofold change).
For comparison, Matsuda et al. reported gene expression changes
in rat kidney cortex for 3% of genes interrogated by microar-
ray (14).

Effects on Tumor Size.The tumor sizes were the same (within error)
between the animal groups that received repeated injections of
Py-Im polyamide 1 and vehicle (Fig. S3). The absence of any
significant effect on tumor size could be due to a variety of fac-

tors. The compound might not reach sufficient average levels in
the tumor. The IC50 value of 1 is 13� 5 μM (Sulforhodamine B
assay, 72 h incubation, 24 h recovery; see also SI Text, Fig. S1A).
Although micromolar levels of 1 can be maintained for several
hours postinjection, the overall exposure to the compound may
still be too low to produce any measurable effect on size. Treat-
ment efficiency could be enhanced by using more potent Py-Im
polyamides or changing the route of administration, e.g., by em-
ploying osmotic pumps to maintain steady compound levels over
the course of the experiment (20). Alternatively, Py-Im polya-
mide 1may not penetrate the tumor to a sufficient depth because
of tissue inhomogeneity. Tissue penetration rates can depend on
compound lipophilicity and flexibility. Py-Im polyamide substitu-
ent variation affords a means to alter binding site preference,
affinity, specificity, lipophilicity, and cellular uptake rates (21).
Finally, the treatment schedule may be too short. Initial tumor
growth is rather slow, the A549-luc-C8 tumors typically entering
the exponential growth phase only several weeks after grafting
(www.caliperls.com/assets/018/7635.pdf).

Conclusions
This study reports the ability of Py-Im polyamide 1 and its fluor-
escent labeled analogue 3 to traffic to the subcutaneously grafted
A549-luc-C8 tumor. Unambiguous nuclear staining of tumor-
derived cells with the FITC-analogue 3 evidenced the ability of
the compound to remain at the site several days after injection.
The nonfluorescent parent Py-Im polyamide 1 was capable of
affecting gene expression in the tumor, and most trends corre-
lated satisfactorily with cell culture data. From the panel of genes
examined by qRT-PCR, the strongest effect was measured for
NPTX1, which was repressed 3.3-fold. MMP28 on the other hand
experienced a small but significant induction of 1.5-fold upon
treatment. It is of the highest importance to increase the potency
of a compound at the tumor site, while minimizing its toxic effects
to the host. Strategies to that end include testing of Py-Im poly-
amides targeted to different sequences, incorporating further
modifications, development of formulations that would enhance
selectivity of delivery and testing of alternative treatment
schedules.

Fig. 5. A panel of genes affected by 1 in an A549-luc-C8 xenograft in SCID-bg animals (Upper) and cell culture (Lower). Xenograft: three independent
experiments with N ¼ 5 animals per treatment condition (vehicle vs 1) were averaged. Cell culture: where indicated, the cells were incubated with Py-Im
polyamide 1 at 10 μM final concentration in 0.1% DMSO as vehicle.

Table 1. Comparison of qRT-PCR and RNA-seq of A549-luc-C8
tumor xenograft gene expression levels normalized to GUSB
as the housekeeping gene (qRT-PCR). Brackets indicate gene
upregulation upon treatment. Three independent
experiments with N ¼ 5 animals per treatment condition
(vehicle vs 1) were averaged. RNA-seq was performed with
single-end reads of 50 nt length. See SI Text for annotation of
these gene products

Gene Fold change (qPCR) Fold change (RNA-seq)

ATM 1.5 ± 0.2 1.5 (p > 0.05)
NPTX1 3.3 ± 0.6 2.9 (p < 0.001)
ROBO1 1.5 ± 0.2 1.7 (p > 0.05)
MMP28 [1.5 ± 0.3] [2.0] (p < 0.05)
EGFR 1.2 ± 0.2 1.3 (p > 0.05)
CCL2 2.3 ± 0.4 1.7 (p < 0.001)
SERPINE1 2.0 ± 0.2 1.8 (p < 0.001)
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Materials and Methods
Polyamide Synthesis and Characterization. The polyamides 1–3 were synthe-
sized following modified solid phase synthesis protocols (22). Typically, yields
between 25 and 40% were observed. Compound purities were confirmed
by analytical HPLC. Compounds 1 and 3 were characterized by MALDI-TOF
MS as singly protonated species. Following masses were determined: 1 cal-
culated for C67H79N22O13 ½Mþ H�þ 1,399.6, found 1,399.5; 3 calculated for
C80H86N23O15S ½Mþ H�þ 1,640.6, found 1,642.3. Analytical data for 2 were
in agreement with what has been previously reported (10).

In Vitro Cell Culture Experiments. All experiments were conducted with A549-
luc-C8 cells, unless specifically mentioned otherwise. Cells were grown in
RPMI medium 1640, which was supplemented with 10% FBS and 1% peni-
cillin/streptomycin, and did not exceed 25 passages. Confocal imaging, cellu-
lar proliferation and viability experiments as well as gene expression analyses
by quantitative RT-PCR were performed following our previously published
protocols (7, 10, 21, 23). Gene expression was normalized against GUSB as
housekeeping gene. All primers yielded single amplicons as determined by
both melting denaturation analysis and agarose gel electrophoresis. The fol-
lowing primer pairs were used. CCL2: fwd 5′-AGT GTC CCA AAG AAG CTG
TGA-3′ rev. 5′-AAT CCT GAA CCC ACT TCT GCT-3′; SERPINE1: fwd. 5′-AGA
ACA GGA GGA GAA ACC CA-3′ rev. 5′-AGC TCC TTG TAC AGA TGC CG-3′
GUSB: fwd. 5′-CTC ATT TGG AAT TTT GCC GAT T-3′ rev. 5′-CCC AGT GAA
GAT CCC CTT TTT A-3′. ATM: fwd. 5′-GCT GTG AGA AAA CCA TGG AA-3′
rev. 5′-TTC AAA GGA TTC ATG GTC CAG-3′; EGFR: fwd. 5′-GGG CTC TGG
AGG AAA AGA AA-3′ rev. 5′-TCC TCT GGA GGC TGA GAA AA-3′; MMP28:
fwd. 5′-CCT GCA GCT GCT ACT GTG G-3′ rev. 5′-CTT TGG GGA CCT GTT
CAT TG-3′; NPTX1: fwd. 5′-ACC GAG GAG AGG GTC AAG AT-3′ rev. 5′-GTG
GGA ATG TGA GCT GGA AC-3′; ROBO1: fwd. 5′-CAA TGC ATC GCT GGA
AGT AG-3′ rev. 5′-TTC TTC CAT GAA ATG GTG GG-3′.

Mouse Experiments. Pharmacokinetics. Analyses for Py-Im polyamide 1 were
conducted following our recently established protocols (11). Briefly, the
compound was injected subcutaneously into C57/Bl6 mice as a PBS∕DMSO
solution (4∶1, 200 μL per injection, four animals per group). Blood was col-
lected retro-orbitally at the indicated time points. Plasma was obtained by
centrifugation, precleared from protein by methanol precipitation and com-
pound levels determined by analytical HPLC. The plasma levels obtainedwere
compared with those previously reported for 2. Xenografts. Grafting with
A549-luc-C8. Experiments were performed in female SCID-beige mice
(Charles River) between 8 and 12 wk of age. Cells were injected into the left
flank area of the animals as suspensions of 25 × 106 mL−1 in RPMI, 200 μL per
injection. Treatment and tumor proliferation monitoring. Mice were treated

following the schedule delineated in SI Text (Table S1). Tumor proliferation
was monitored using the XENOGEN imaging device. The animals were
anesthetized with 2–5% isoflurane and subsequently transferred to the ima-
ging chamber, whereupon the isoflurane levels were reduced to 1–2.5%. The
floor of the imager was heated to þ37 °C to avoid hypothermia. Breathing
frequency was monitored and not allowed to drop below 1 s−1, adjusting the
isoflurane levels accordingly at all times. Endpoint criteria and euthanasia.
Animal endpoint criteria encompassed weight loss of over 15%, restriction
of motor function by the engrafted tumor, dehydration of over 10%, and
moribund behavior. Where appropriate, the animals were euthanized by
asphyxiation in a CO2 chamber. Tumor tissue harvest. Animals were resected
and tumors excised using standard forceps, scissors, and surgical blades. The
tumors were combined into one sample per condition and mechanically
sheared in TRIzol, employing a specialized device (tissue tearer, model
985370). Total RNA workup was performed following the standard TRIzol
procedure, followed by a DNAse digest.

RNA-seq Sample Preparation and Data Processing. Double polyA-selection was
used in order to enrich for mRNA. RNA-seq libraries were prepared using
standard Illumina reagents and protocols (24) All experiments were carried
out in triplicate and 35 million–50 million single-end sequences of 50 bp were
generated for each library. One replicate was additionally sequenced as
100 bp paired-end reads for quality control purposes. Sequencing data were
mapped to a combined human and mouse transcriptome index (using the
hg19 and mm9 refSeq annotations) using Bowtie version 0.12.7 (25) with
two mismatches and an unlimited number of locations a read can map
to. Alignments were quantified on the transcript level using eXpress 1.0.0
(bio.math.berkeley.edu/eXpress/index.html); for each gene the quantifica-
tion values of all its transcripts were summed and the eXpress-determined
“effective counts” were used as input for differential expression analysis
using DESeq (16).
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Many cancer therapeutics target DNA and exert cytotoxicity
through the induction of DNA damage and inhibition of transcrip-
tion. We report that a DNA minor groove binding hairpin pyrrole-
imidazole (Py-Im) polyamide interferes with RNA polymerase II
(RNAP2) activity in cell culture. Polyamide treatment activates p53
signaling in LNCaP prostate cancer cells without detectable DNA
damage. Genome-wide mapping of RNAP2 binding shows re-
duction of occupancy, preferentially at transcription start sites,
but occupancy at enhancer sites is unchanged. Polyamide treat-
ment results in a time- and dose-dependent depletion of the
RNAP2 large subunit RPB1 that is preventable with proteasome
inhibition. This polyamide demonstrates antitumor activity in
a prostate tumor xenograft model with limited host toxicity.

minor groove binder | small molecule transcription inhibitor | ChIP-Seq

Several chemotherapeutics, including the anthracyclines and
cisplatin, exert part of their cytotoxicity through the in-

hibition of transcription (1). Transformed cells often require
constant expression of antiapoptotic genes for survival, making
transcription inhibition a relevant therapeutic strategy in oncol-
ogy (1, 2). Many radio- and chemotherapy treatments that target
DNA, including UV irradiation, cisplatin, and the topoisomerase
inhibitors, introduce obstacles to RNA polymerase II (RNAP2)
elongation by generating bulky or helix-distorting lesions (3–5).
In cell culture experiments, transcription blockade has been
shown to induce degradation of the RNAP2 large subunit
(RPB1), and function as a signal for p53-mediated apoptosis (6,
7). Although many DNA-targeted therapeutics effectively inhibit
transcription and induce apoptosis, clinical treatment with gen-
otoxic agents can also damage DNA in normal cells, increasing
symptomatic toxicity and potentially leading to secondary can-
cers (8). The question arises whether high-affinity, noncovalent
DNA-binding ligands offer an approach to transcription in-
hibition without DNA damage.
Hairpin pyrrole-imidazole (Py-Im) polyamides are synthetic

oligomers with programmable sequence recognition that bind
the minor groove of DNA with high affinity (9). Py-Im poly-
amide-DNA binding induces allosteric changes in the DNA helix
that can interfere with protein–DNA interactions (10, 11). Py-Im
polyamides have been used as molecular probes in cell culture to
modulate inducible gene-expression pathways (12–15). In
rodents, eight-ring hairpin Py-Im polyamides circulate in blood
for several hours after administration and affect changes in gene
expression in tissues (16–18).
We have previously reported that polyamide 1 (Fig. 1), which

targets the sequence 5′-WGWWCW-3′ found in the androgen
response element, inhibited a subset of dihydrotestosterone
(DHT)-induced genes in LNCaP cells (12). In this article we
explore the effects of this polyamide on the RNAP2 transcription
machinery. We find that RNAP2 is preferentially reduced from
transcription start sites genome-wide without significant pertur-
bation at enhancer loci. This reduction is accompanied by pro-
teasome-dependent degradation of RPB1. Polyamide treatment
induces p53 accumulation that is consistent with what is observed
for other transcription inhibitors that interact with DNA (4, 5), but
without evidence of DNA damage. This polyamide demonstrates

efficacy in vivo against prostate cancer xenografts in mice with
limited host toxicity.

Results
Effects of Polyamide 1 on Global Occupancy of RNAP2. Polyamide 1
was previously shown to inhibit the induction of a subset of
DHT-driven genes in LNCaP cell culture (12). We interrogated
the effects of 1 on the RNAP2 transcription machinery by
mapping the global occupancy of RNAP2 using ChIP-seq. Under
DHT induction, select androgen receptor (AR)-driven genes,
such as KLK3, showed increased RNAP2 occupancy over genic
regions, but this was decreased in the presence of 1 (Fig. 2A).
Although RNAP2 occupancy across constitutively expressed
genes, such as GAPDH, did not change with DHT induction,
cotreatment with 1 reduced RNAP2 occupancy across these
genes (Fig. 2B). This reduction in RNAP2 occupancy by 1 was in
the context of a global decrease of RNAP2 occupancy across
genic regions (Fig. S1), particularly at transcription start sites
(Fig. 2C). However, 1 did not significantly change RNAP2 oc-
cupancy at enhancer loci (Fig. 2D), suggesting 1 may affect the
active elongation of RNAP2 without disturbing the transcription
apparatus anchored at enhancers, and that the observed differ-
ences in RNAP2 occupancy are not a result of technical variation
in ChIP success between experiments. Reduction in DNA oc-
cupancy of RNAP2 has also been reported in cells treated with
α-amanitin, a cyclic octapeptide inhibitor of RPB1 (19).
Inhibition of RNAP2 elongation can be caused by a multitude

of genotoxic agents and often results in the degradation of the
RPB1 subunit (3, 20, 21). Indeed, in addition to reduced RNAP2
DNA occupancy, immunoblot analysis of LNCaP cells treated
with 1 shows depletion of RPB1 in a time- and concentration-
dependent manner (Fig. 2E). To examine if the effect on RPB1
protein were a result of decreased transcription of this gene, we
measured levels of RPB1 mRNA (Fig. 2F). The expression of
RPB1 modestly increased with polyamide treatment, suggesting
this depletion is posttranscriptional.

Polyamide Cytotoxicity Is Reduced by Proteasomal Inhibition and
Serum Starvation. Inhibition of RNAP2 has been reported to in-
duce apoptosis (4, 6, 22), and may contribute to polyamide cy-
totoxicity observed in LNCaP cells cultured with 1 (Fig. 3A). A
previous study with trabectidin, a DNA minor groove alkylator
that causes RPB1 degradation, showed the toxicity induced by
the molecule can be reduced by cotreatment with the protea-
some inhibitor MG132 (22). To evaluate if polyamide-induced
toxicity was also reducible by proteasomal inhibition we treated
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LNCaP cells with 2 in the presence and absence of MG132. We
developed analog 2 specifically for this application because
prolonged incubation with MG132 alone is cytotoxic, and con-
jugation of an aryl group to the γ-aminobutyric acid turn have
been shown to improve cellular uptake and cytotoxicity of pol-
yamides. Cell-viability experiments showed that 2 induced cell
death more rapidly than 1 without significant change to DNA
binding (Fig. S2 A and B). Cell culture experiments revealed
coincubation with MG132 reduced cytotoxicity induced by 2
(Fig. 3B) and prevented degradation of RPB1 (Fig. 3C). Poly-
amide nuclear uptake was not affected by MG132 (Fig. S2 C and
D). In addition, cytotoxicity studies of cells treated with UV
radiation and α-amanitin have shown increased cellular sensi-
tivity to transcription inhibition upon S-phase entry (6, 23).
Similarly, 2 was less toxic to LNCaP cells arrested in G1/G0 by

serum starvation compared with cells grown in normal media
(Fig. 3D and Fig. S2E).

Accumulation of p53 and Expression of p53 Targets in the Absence of
DNA Damage. Previously published microarray data of LNCaP
cells cotreated with DHT and 1 revealed the induction of several
p53 target genes (12). Despite depletion of RPB1, treatment of
LNCaP cells with 1 alone induced expression of p53 genes that
are characteristic of genotoxic stress (Fig. 4A) (24). Many of
these genes were previously observed to be induced in A549 cells
treated with polyamide as well as polyamide-alkylator conjugates
(14, 25). To examine if direct DNA damage was contributing to
p53 activity, we looked for evidence of DNA damage in LNCaP
cells after extended treatment with 1. Alkaline comet assay
showed no evidence of DNA fragmentation (Fig. 4B). Addi-
tionally, treatment with 1 did not induce cellular markers of
DNA damage, including phosphorylation of γH2A.X, ATM,
DNA-PKcs, p53, or Chk2 (Fig. 4C). However, modest accu-
mulation of p53 and poly(ADP-ribose) polymerase (PARP)
cleavage were observed. These data suggest that 1 activates
p53 through transcriptional inhibition without DNA damage,
a mechanism that has been observed for non-DNA targeting
agents that exert transcriptional stress such as the protein ki-
nase inhibitor 5,6-dichlorobenzimidazole (DRB) and α-amani-
tin (5, 6, 26).

Effects of Polyamide Treatment on Prostate Cancer Xenografts. We
recently reported the toxicity and pharmacokinetic (PK) profile
of 1 in mice (17). Subcutaneous injection of 1 also results in
detectable circulation (Fig. S3). We thus selected this molecule
for further testing against xenografts in vivo. Male NOD scid-γ
(NSG) mice bearing LNCaP xenografts were treated with either
vehicle or 20 nmol (∼1 mg/kg) 1 by subcutaneous injection once
every 3 d for a cycle of three injections. At the experimental end
point, mice treated with 1 had smaller tumors and lower serum
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prostate-specific antigen (PSA) compared with vehicle controls
(Fig. 5 A and B). Immunohistological analysis of selected tumors
showed evidence of cell death by TUNEL stain (Fig. 5C). Al-
though tumor-free NSG mice treated with 1 under this regimen
showed no signs of distress or weight loss, LNCaP tumor-bearing
NSG mice exhibited weight loss by the experimental end point
(Fig. S4). This weight loss was accompanied by an elevation in
serum uric acid that was not observed in either control group
(Fig. 5D).

Discussion
DNA targeting agents, including cisplatin, the anthracyclines,
minor groove binders, and UV radiation have been demon-
strated to affect a multitude of DNA-dependent enzymes, such
as the RNA polymerases, DNA polymerase, topoisomerases, and
helicases (21, 27). Our research group and others have used
polyamides as molecular tools to modulate gene-expression
programs (12–15). The programmable sequence specificity of Py-
Im polyamides offers a unique mechanism to target specific
transcription factor–DNA interfaces and thereby modulate par-
ticular gene-expression pathways. In previous studies we have
focused our analysis on specific changes to inducible pathways of
gene expression. For example, we have shown polyamide 1
affects ∼30% of the DHT-induced transcripts in LNCaP cells,
which may result from inhibition of the transcription factor AR-
DNA interface (12). However, the cellular cytotoxicity of this
polyamide may not only be a result of inhibition of DHT-induced
gene expression because analogs of 1 exhibit toxicity in a variety
of cancer cells (28). It is more likely that polyamides perturb
multiple DNA-dependent cellular processes (transcription, rep-
lication) that contribute to cytotoxicity. In this study we show
that 1 interferes with RNAP2 elongation resulting in the

degradation of RPB1, activation of p53, and triggering of apo-
ptosis, without detectable genomic damage.
Our previous study has shown polyamide 1 decreased the ex-

pression of a large number of genes in LNCaP cells (12). To
examine the effect of 1 on the transcription machinery, we per-
formed genome-wide mapping of RNAP2 occupancy by ChIP-
seq. We found that although DHT induction increased RNAP2
occupancy at select AR-driven genes, cotreatment with 1 caused
a genome-wide decrease of RNAP2 occupancy across genic
regions. The effect was most pronounced at transcription start
sites. Interestingly, RNAP2 occupancy at enhancer loci, where
the transcription assemblies may be attached via contacts
through other proteins, was not significantly affected by poly-
amide treatment. This finding suggests polyamide 1 may pref-
erentially affect RNAP2 loading at regions where RNAP2 is
actively engaged, a mechanism that has been previously pro-
posed for the gene regulatory activity of polyamides (29).
The displacement of RNAP2 from DNA is caused by many

DNA damaging agents that pose an impediment to RNAP2
elongation. This effect is normally coupled with the degradation
of the large RNAP2 subunit RPB1. Indeed, the cellular level of
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RPB1 in LNCaP cells was found to decrease in both a time- and
concentration-dependent manner when treated with polyamide
1. Polyamide 2, a more cytotoxic analog of 1, also reduced cel-
lular RPB1 in LNCaP cells and induced cell death. Cotreatment
of 2 with a proteasomal inhibitor MG132 was able to prevent the
degradation of RPB1 and reduce the toxicity of 2 in cell culture.
In addition, the cytotoxic effects of other RNAP2 inhibitors are
reported to be attenuated by preventing S-phase entry. LNCaP
cells arrested in G0/G1 by serum starvation also exhibited re-
duced sensitivity to 2 compared with cells grown in normal me-
dia. The finding that cytotoxicity is partially rescued by MG132
treatment and G0/G1 arrest suggests RPB1 degradation con-
tributes to cytotoxicity; however, contributions from other DNA-
dependent processes are not ruled out.
Although transcription inhibition can activate p53 signaling,

both events can be caused by DNA damage. Analysis of pre-
viously published microarray data revealed the induction of
several p53 target genes in LNCaP cells cotreated with DHT and
1 (12). Further validation of transcript levels of the genes in this
study also showed a time-dependent increase in the expression of
GADD45A, MDM2, IGFBP3, P21, BAX, and DDIT3 (Fig. 4A).
Because these genes are also markers of genotoxic stress (24)
and were found to be induced in A549 cells treated with alky-
lating polyamide derivatives (25), we searched for signs of DNA
damage to determine if it was causing transcription inhibition
and p53 activation. Interestingly, both comet assay and immun-
blot analysis of cellular DNA damage markers showed no sig-
nificant signs of DNA damage. Although faint phosphorylation
of γH2A.X was visible, it is likely caused by cellular apoptosis as
indicated by the concurrent PARP cleavage. These data are
consistent with studies in yeast mutants that are hypersensitive to
DNA damage, which showed no increased sensitivity to poly-
amide treatment, suggesting these reversible DNA binders do
not compromise genomic integrity (30).
The activation of p53 by transcription inhibition in the absence

of DNA damage has been observed for DNA-independent
inhibitors of RNAP2, such as DRB, α-amanitin, and various
RNAP2-targeted antibodies (5, 6, 26). Distamycin A, the natural
product that provided the structural inspiration for Py-Im poly-
amides, inhibits the initiation of RNA synthesis in cell-free assays
(27). In cell culture, distamycin also induces degradation of
RPB1 and activates p53 (31, 32). However, low antitumor po-
tency and poor stability limit its utility.

To assess the therapeutic potential of polyamide 1 as an an-
titumor agent, LNCaP xenografts in a murine model were trea-
ted with 1 or PBS vehicle. After three rounds of treatment,
tumor growth was reduced by 64% in the treated group. Al-
though treatment with 1 alone did not cause changes in animal
body weight or obvious signs of toxicity in tumor-free animals,
treatment in tumor-bearing animals resulted in weight loss after
three treatments. The accompanied elevation in serum uric acid
may be an indication of tumor lysis syndrome (33), which is as-
sociated with rapid tumor cell turnover upon polyamide treat-
ment. We anticipate that Py-Im polyamides could also demonstrate
efficacy in additional xenograft models.

Methods
Compounds and Reagents. Py-Im polyamides 1, 2, and 3 were synthesized on
oxime resin, as described previously (28, 34, 35). (R)-MG132 (MG132) was
from Santa Cruz Biotechnology.

Cell Viability Assays. LNCaP cells were plated in clear bottom 96-well plates at
5,000–7,500 cells per well. The cells were allowed to adhere for 24–36 h
before compounds were added in fresh media. Cell viability was determined
by the WST-1 assay (Roche) for 1 and 2 after 24- or 72-h incubation with cells.
Cells in cytotoxicity rescue experiments were treated with 2 alone or with 3
μM MG132 for 24 h. For cell-cycle arrest experiments, LNCaP cells were
seeded at 2,500–5,000 cells per well in normal media and allowed to adhere
for 24–36 h. The media was replaced with normal media or media supple-
mented with 0.5% (vol/vol) FBS and incubated for 48 h before treatment
with compound.

In Vivo Xenograft Experiments. All mice experiments were conducted under
an approved protocol by the Institutional Animal Care and Use Committee of
the California Institute of Technology. Male NSG mice were purchased from
The Jackson Laboratory. The animals were individually caged andmaintained
on a standard light-dark cycle. NSGmice were engrafted with LNCaP cells (2.5
million cells) in a mixture of 1:1 media and matrigel in the left flank. Tumors
were grown to ∼100 mm3 (L × W2) before beginning treatment with com-
pound or vehicle. Py-Im polyamide 1 was administered once every 3 d at 20
nmol per animal (∼1 mg/kg) in a 5% (vol/vol) DMSO:PBS vehicle solution
until the experiment endpoint.

Serum Measurements. To investigate if polyamide 1 could be detected in
peripheral blood after subcutaneous injections, 120 nmol of 1 [in 5% (vol/
vol) DMSO/PBS] was injected into the right flank of four C57BL/6J mice.
Blood was collected from anesthetized mice via retroorbital collection at 5
min, 4 h, and 12 h after injection, then processed by methods previously
described and analyzed by HPLC (36). For measurement of serum PSA (KLK3)
and uric acid, blood was collected from anesthetized mice via retroorbital

Veh 1

Tu
m

or
 m

as
s 

(m
g)

Veh 1

Pretreatment Posttreatment
Veh 1

P
S

A
 in

 s
er

um
 (n

g/
m

l)

0

5

10

15

20

25

0

100

200

300

400

500

Veh 1

S
er

um
 u

ric
 a

ci
d 

(m
g/

dL
)

0

5

10

15

20

25

DBA

Tumor H & E (20X) TUNEL (100X)

Veh

1

1

Tumor
bearing

Tumor
free

C

Posttreatment

Fig. 5. Polyamide 1 demonstrates antitumor activity in prostate cancer xenografts. (A) Male immunocompromised mice were engrafted with LNCaP cells and
observed until tumors reached ∼100 mm3. Tumor-bearing mice were then treated with 20 nmol 1 (n = 12) or vehicle (n = 13) by subcutaneous injections into
the flank distal to the tumor once every 3 d for a total of three injections. Mice were killed and tumors resected and weighed 2 d after the final injection.
Tumors from mice treated with 1 were smaller (mean: 112 mg; median: 94 mg; range: 47–201 mg) than those of vehicle treated mice (mean: 310 mg; median:
292 mg; range: 173–440 mg). Error bars represents maximum and minimum; boxes represents the upper and lower quartiles and median. P = 1.6E-5. (B) Serum
PSA measured by ELISA pre- and posttreatment. Serum PSA is lower in the posttreatment serum of mice treated with 1 compared with vehicle. P = 0.024. (C)
Selected tumors and histological stains of tumor cross-sections from mice treated with vehicle or 1. (D) Treatment of LNCaP tumor bearing mice with 1
increases serum uric acid compared with vehicle controls and polyamide-treated, nontumor-bearing mice. P = 3.2E-9.

1866 | www.pnas.org/cgi/doi/10.1073/pnas.1222035110 Yang et al.

557



collection at experimental endpoint and serum was separated from blood by
centrifugation. Serum PSA (KLK3) was measured by ELISA (R&D Systems)
according to the manufacturer’s instructions. Uric acid was measured as
previously described (37).

Chromatin Immunoprecipitation. Genomic occupancy of RNAP2 was de-
termined by ChIP with the 4H8 antibody (Abcam). LNCaP cells were plated at
35 million cells per plate in RPMI supplemented with 10% (vol/vol) CTFBS and
allowed to adhere for 24–36 h. The cells were treated with compound 1 in
fresh media (10% CTFBS) for 48 h. Cells treated and untreated with 1 were
incubated with 1 nM DHT for 6 h. Two-step cross-linking was performed as
previously described (38). After DSG removal, chromatin was immunopre-
ciated by previously published methods (39). DNA was harvested by phenol
chloroform extraction and purified with the QIAquick purification kit (Qia-
gen). Quantitative PCR was used to validate enrichment at the GAPDH
transcription start site (Primers: F-GGTTTCTCTCCGCCCGTCTT, R-TGTTCGA-
CAGTCAGCCGCAT) compared with an internal negative locus (Primers: F-
TAGAAGGGGGATAGGGGAAC, R-CCAGAAAACTGGCTCCTTCTT). Each sam-
ple was immunoprecipated as five technical replicates. The three most
consistent samples were combined and submitted for sequencing on an
Illumina genome analyzer. Biological replicates were acquired.

Data Processing and Analysis. Sequencing reads were trimmed down to 36 bp
and then mapped against the male set of human chromosomes (excluding all
random chromosomes and haplotypes) using the hg19 version of the human
genome as a reference. Bowtie 0.12.7 was used for aligning reads (40), with
the following settings: “-v 2 -t–best–strata”. Signal profiles over genomic
locations were generated using custom written python scripts; the refSeq
annotation was used for gene coordinates. Enhancers and promoters were
defined using previously published histone marker data (41). ChIP-seq peaks
were called using MACS2 with default settings (42). Enhancers were defined
as H3K4me1+ regions that did not intersect with H3K4me3+ regions and
promoters as H3K4me3+ regions that did not intersect with H3K4me1+

regions. Clustering was performed with Cluster 3.0 (43) and visualized with
Java TreeView (44).

Comet Assay. LNCaP cells were plated at 1 million cells per 10-cm plate and
allowed to adhere for 24–36 h. Cells were then incubated with either 10 μM 1
for 48 h or 5 μM doxorubicin for 4 h. DNA damage was assayed using the
Trevigen CometAssay system and samples were prepared from harvested
cells according to the manufacture protocol. Comets were imaged on
a confocal microscope (Exciter, Zeiss) at 10× magnification. Percentage of
DNA in the tail was determined using Comet Assay Lite IV (Perceptive
Instruments). More than 100 comets were scored for each condition.

Immunoblot Assay. Samples for immunoblot analysis were prepared by
plating LNCaP or DU145 cells at 1 million cells per 10-cm plate. Cells were
allowed to adhere for 24–36 h before incubation with compound. After the
appropriate incubation time, cells were washed once with ice-cold PBS and
harvested in ice-cold 125 μL lysis buffer (50 mM Tris•HCl pH 7.4, 150 mM
NaCl, 1 mM EDTA, 1% Triton X 100) containing protease inhibitor mixture
(Roche), 1 mM PMSF (Sigma), and phosphatase inhibitors (Sigma). Samples
were incubated on ice for 10 min with vortexing once every 3 min. Cellular
debris was pelleted by spinning at 21,000 × g for 15 min to collect the su-
pernatant. Samples were then quantified for protein content with the
Bradford assay (Bio-Rad) and boiled with 4× sample buffer (Li-Cor) for 5 min.
Protein electrophoresis was performed in 4–20% precast Tris•glycine SDS
gels (Bio-Rad) and transferred to PVDF membranes. Membrane blocking was

done with Odyssey Blocking Buffer (Li-Cor). The following antibodies used to
probe changes in protein levels or phosphorylation states: RBP1 (Santa Cruz
Biotechnology; N20), p53 (Santa Cruz Biotechnology; DO1), phospho-Chk2-
Thr68 (Cell Signaling Technology), Phospho-p53-Ser15 (Cell Signaling Tech-
nology), phospho-H2A.X-Ser139 (Cell Signaling Technology), phosphor-
ATM-Ser1981 (Abcam), phospho-DNA-PKcs-Ser2056 (Abcam), and β-actin
(Abcam). Near-IR secondary antibodies (Li-Cor) were used for imaging.
Experiments were performed in biological triplicate except for DNA-
PKcs (replicate).

Flow Cytometry. To determine cell cycle distribution of LNCaP cells grown in
normal media or under serum-starved conditions, 1 million cells were seeded
to each 10-cm plate and allowed to adhere for 24–36 h. Media was then
replaced with fresh normal media [10% (vol/vol) FBS] or serum-starved
media [0.5% (vol/vol) FBS] and incubated for an additional 48 h. Cells were
then trypsinized and prepared for analysis as previously described (45).
Samples were analyzed in biological triplicate on a FACSCalibur (Becton-
Dickinson) instrument. Data analysis was performed using FlowJo 7.6.5.

Quantitative RT-PCR. RNA was extracted using RNEasy columns (Qiagen)
according to the manufacturer’s protocols. cDNA was generated from RNA
by reverse transcriptase (Transcriptor First Strand cDNA kit; Roche). Quan-
titative real-time RT-PCR was performed using SYBR Green PCR Master Mix
(Applied Biosystems) on an ABI 7300 instrument. mRNA was measured rel-
ative to β-glucuronidase as an endogenous control. Experiments were per-
formed in biological quadruplicates. For primer sequences see Table S1.

Confocal Microscopy. Cells were plated in 35-mm optical dishes (MatTek) and
dosed with polyamide 3 at 2 μM for 24 h with or without 3μM MG132. Cells
were then washed with PBS and imaged on a confocal microscope (Exciter;
Zeiss) using a 63× oil immersion lens. Confocal imaging was performed
following established protocols (34).

Histology and Immunohistochemistry. Tumors were resected immediately
after euthanasia and fixed in neutral buffered formalin. Selected samples
were embedded in paraffin, sectioned and stained with H&E. Selected sec-
tions were assessed by TUNEL, as previously described (46).

Thermal Denaturation Assays. Polyamides 1 and 2 were incubated with du-
plex DNA 5′-CGATGTTCAAGC-3′, which contains the predicted target site for
these compounds (underlined). Melting temperature analyses were per-
formed on a Varian Cary 100 spectrophotometer as described (47). Melting
temperatures were defined as a maximum of the first derivative of absor-
bance at 260 nm over the range of temperatures.

Statistical Analysis. Statistical significance was calculated using the Student t
test with two tailed variance. Results were considered significant when
P < 0.05.
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Piwi induces piRNA-guided transcriptional
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chromatin state
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In the metazoan germline, piwi proteins and associated piwi-interacting RNAs (piRNAs) provide a defense system
against the expression of transposable elements. In the cytoplasm, piRNA sequences guide piwi complexes
to destroy complementary transposon transcripts by endonucleolytic cleavage. However, some piwi family
members are nuclear, raising the possibility of alternative pathways for piRNA-mediated regulation of gene
expression. We found that Drosophila Piwi is recruited to chromatin, colocalizing with RNA polymerase II (Pol II)
on polytene chromosomes. Knockdown of Piwi in the germline increases expression of transposable elements that
are targeted by piRNAs, whereas protein-coding genes remain largely unaffected. Derepression of transposons
upon Piwi depletion correlates with increased occupancy of Pol II on their promoters. Expression of piRNAs that
target a reporter construct results in a decrease in Pol II occupancy and an increase in repressive H3K9me3 marks
and heterochromatin protein 1 (HP1) on the reporter locus. Our results indicate that Piwi identifies targets
complementary to the associated piRNA and induces transcriptional repression by establishing a repressive
chromatin state when correct targets are found.
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Diverse small RNA pathways function in all kingdoms of
life, from bacteria to higher eukaryotes. In eukaryotes,
several classes of small RNA associate with members of
the Argonaute protein family, forming effector complexes
in which the RNA provides target recognition by se-
quence complementarity, and the Argonaute provides the
repressive function. Argonaute–small RNA complexes
have been shown to regulate gene expression both transcrip-
tionally and post-transcriptionally. Post-transcriptional re-
pression involves cleavage of target RNA through either
the endonucleolytic activity of Argonautes or sequester-
ing targets into cytoplasmic ribonucleoprotein (RNP)
granules (Hutvagner and Simard 2008).

The mechanism of transcriptional repression by small
RNAs has been extensively studied in fission yeast and
plants. Several studies showed that Argonaute–small RNA
complexes induce transcriptional repression by tether-
ing chromatin modifiers to target loci. In fission yeast,

the effector complex containing the Argonaute and the
bound siRNA associates with the histone H3 Lys 9 (H3K9)
methyltransferase Clr4 to install repressive H3K9-dimethyl
marks at target sites (Nakayama et al. 2001; Maison and
Almouzni 2004; Sugiyama et al. 2005; Grewal and Jia 2007).
Methylation of histone H3K9 leads to recruitment of the
heterochromatin protein 1 (HP1) homolog Swi6, enhanc-
ing silencing and further promoting interaction with the
Argonaute complex. The initial association of Ago with
chromatin, however, requires active transcription (Ameyar-
Zazoua et al. 2012; Keller et al. 2012). Plants also use
siRNAs to establish repressive chromatin at repetitive
regions. Contrary to yeast, heterochromatin in plants is
marked by DNA methylation, although repression also
depends on histone methylation by a Clr4 homolog
(Soppe et al. 2002; Onodera et al. 2005). Although siRNA-
mediated gene silencing is predominant on repetitive
sequences, it is not limited to these sites. Constitutive
expression of dsRNA mapping to promoter regions re-
sults in production of corresponding siRNAs, de novo
DNA methylation, and gene silencing (Mette et al. 2000;
Matzke et al. 2004).

In metazoans, small RNA pathways are predominantly
associated with post-transcriptional silencing. One class
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of small RNA, microRNA, regulates expression of a large
fraction of protein-coding genes (Friedman et al. 2009). In
Drosophila, siRNAs silence expression of transposable
elements (TEs) in somatic cells (Chung et al. 2008;
Ghildiyal et al. 2008) and target viral genes upon infection
(Galiana-Arnoux et al. 2006; Wang et al. 2006; Zambon
et al. 2006). Another class of small RNAs, Piwi-interact-
ing RNAs (piRNAs), associates with the Piwi clade of
Argonautes and acts to repress mobile genetic elements
in the germline of both Drosophila and mammals (Siomi
et al. 2011). Analysis of piRNA sequences in Drosophila
revealed a very diverse population of small RNAs that
primarily maps to transposon sequences and is derived
from a number of heterochromatic loci called piRNA
clusters, which serve as master regulators of transposon
repression (Brennecke et al. 2007). Additionally, a small
fraction of piRNAs seems to be processed from the mRNA
of several host protein-coding genes (Robine et al. 2009;
Saito et al. 2009). The Drosophila genome encodes three
piwi proteins: Piwi, Aubergine (AUB), and Argonaute3
(AGO3). In the cytoplasm, AUB and AGO3 work together
to repress transposons through cleavage of transposon
transcripts, which are recognized through sequence com-
plementarity by the associated piRNAs (Vagin et al. 2006;
Agger et al. 2007; Brennecke et al. 2007; Gunawardane
et al. 2007).

In both Drosophila and mammals, one member of the
Piwi clade proteins localizes to the nucleus. Analogously
to small RNA pathways in plants, the mouse piRNA
pathway is required for de novo DNA methylation and
silencing of TEs (Carmell et al. 2007; Aravin et al. 2008;
Kuramochi-Miyagawa et al. 2008); however, the exact
mechanism of this process is unknown. In Drosophila,
DNA methylation is absent; however, several studies in-
dicate that elimination of Piwi from the nucleus causes
changes in histone marks on TEs (Klenov et al. 2011;
Pöyhönen et al. 2012), yet a genome-wide analysis of
Piwi’s effect on chromatin marks and transcription is
lacking.

Here we show that Piwi interacts with chromatin on
polytene chromosomes in nurse cell nuclei. We found
that Piwi exclusively represses loci that are targeted by
piRNAs. We show that Piwi-mediated silencing occurs

through repression of transcription and correlates with
installment of repressive chromatin marks at targeted
loci.

Results

To analyze the role of Piwi in the nucleus, we generated
transgenic flies expressing a GFP-tagged Piwi protein
(GFP-Piwi) under the control of its native regulatory re-
gion. GFP-Piwi was expressed in the ovary and testis in
a pattern indistinguishable from the localization of native
Piwi and was able to rescue the piwi-null phenotype as
indicated by ovarian morphology, fertility, transposon
expression, and piRNA levels. GFP-Piwi was deposited
into the mature egg and localized to the pole plasm; how-
ever, contrary to a previous observation (Brower-Toland
et al. 2007), we did not detect Piwi expression outside of
the ovary and testis in third instar larvae or adult flies. We
also did not observe the association of Piwi with polytene
chromosomes in salivary gland cells of third instar larvae.
In both follicular and germline cells of the Drosophila
ovary, GFP-Piwi localized exclusively in the nucleus,
with slightly higher concentrations apparent in regions
enriched for DAPI, indicating a possible interaction with
chromatin. To gain further insight into Piwi localization
in the nucleus, we took advantage of the fact that nurse
cell chromosomes are polytenized and can be visualized
on the otu mutant background (Mal’ceva et al. 1997).
Analysis of polytene chromosomes from nurse cells
demonstrated that GFP-Piwi associates with chromatin
in a specific banding pattern. Interestingly, coimmuno-
staining showed that a GFP-Piwi signal on polytene
chromosomes generally overlaps with the RNA poly-
merase II (Pol II) signal, which marks sites of active
transcription (Fig. 1A).

In order to identify factors that might be responsible
for targeting Piwi to chromatin, we immunoprecipitated
Piwi complexes from the Drosophila ovary and analyzed
Piwi interaction partners by mass spectrometry. We
purified Piwi complexes from ovaries of three different
transgenic lines expressing GFP-Piwi, myc-Piwi, or Flag-
Piwi using antibodies against each respective tag. As a
control, we used flies expressing free GFP in the ovary.

Figure 1. Piwi associates with chromatin and nuclear
transcripts. (A) Polytene chromosomes from Drosophila

nurse cells expressing GFP-Piwi on the otu[7]/otu[11]
background. Piwi pattern on chromosomes correlates
with Pol II staining. (B) Mass spectrometry analysis of
Piwi interaction partners. Piwi complexes were pre-
cipitated in the presence and absence of RNase A. The
outer circle represents classification of Piwi-associated
proteins based on GO term analysis. The inner pies
represent the fraction of each group whose association
with Piwi depends on RNA (percentage indicated). Note
that chromatin, splice, and mRNA export factors are
virtually absent after RNase A treatment.
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We identified >50 factors that showed significant enrich-
ment in all three Piwi purifications but were absent in the
control. We were unable to identify chromatin-associated
factors that directly associate with Piwi but identified
several RNA-binding proteins that associate with na-
scent transcripts, such as splicing (Rm62, Pep, Ref1, Yps,
CG9684, CG31368, CG5728, and Mago) and nuclear ex-
port (Tho2 and Hpr1) factors (Fig. 1B). Upon RNase A
treatment prior to immunoprecipitation, the presence
of most of these RNA-binding proteins in purified Piwi
complexes was eliminated.

Piwi proteins are believed to find their targets through
sequence complementarity of the associated piRNA. In
fact, it has been proposed that lack of the associated
piRNA leads to destabilization of piwi proteins and to
Piwi’s inability to localize to the nucleus (Saito et al.
2009; Haase et al. 2010; Olivieri et al. 2010; Handler et al.
2011; Ishizu et al. 2011). On the other hand, Piwi has been
proposed to have functions that are independent of its
role in transposon control by regulating stem cell niche
development (Cox et al. 1998; Klenov et al. 2011). To ad-
dress the role of piRNA in translocation of Piwi into the
nucleus and its function, we generated transgenic flies
expressing a point mutant Piwi—referenced as Piwi-YK—
that is deficient in piRNA binding due to a substitution
of two conserved amino acid residues (Y551L and K555E)
in the 59 phosphate-binding pocket (Kiriakidou et al.
2007; Djuranovic et al. 2010). The Piwi-YK mutant was
expressed in Drosophila follicular and germ cells at levels
similar to that of wild-type Piwi but was completely
devoid of associated piRNA (Fig. 2A). In contrast to wild-
type Piwi, Piwi-YK could be found in the cytoplasm,
supporting the existence of a quality control mechanism
that prevents entrance of unloaded Piwi into the nucleus
(Ishizu et al. 2011). Nevertheless, a significant amount of
piRNA-deficient Piwi localized to the nucleus (Fig. 2B).
Similar to wild-type Piwi, Piwi-YK seemed to associate
with chromatin, as indicated by its localization in DAPI-
stained regions of the nuclei, and this is consistent with
fluorescence loss in photobleaching (FLIP) experiments
that demonstrated reduced nuclear mobility compared
with free diffusion (Supplemental Fig. S1). Based on ster-
ility and ovarian morphology, the piwi-YK transgene was
unable to rescue the piwi-null phenotype despite its
nuclear localization (Fig. 2C), indicating that while
piRNA binding is not absolutely essential for stability
and nuclear localization of Piwi, it is required for Piwi
function.

To directly test the function of Piwi in the nucleus, we
analyzed the effect of Piwi deficiency on gene expression
and chromatin state on a genome-wide scale. Piwi mu-
tant females have atrophic ovaries caused by Piwi defi-
ciency in somatic follicular cells (Lin and Spradling 1997;
Cox et al. 1998), which precludes analysis of Piwi func-
tion in null mutants. Instead, we used RNAi knockdown
to deplete Piwi in germ cells while leaving it functionally
intact in somatic follicular cells. The Piwi knockdown
flies did not exhibit gross morphological defects in the
ovary; however, they showed drastic reduction in GFP-
Piwi expression in germ cells and were sterile (Fig. 3A,B).

To analyze the effect of Piwi deficiency on the steady-
state transcriptome as well as the transcription machin-
ery, we performed RNA sequencing (RNA-seq) and Pol II
chromatin immunoprecipitation (ChIP) combined with
deep sequencing (ChIP-seq) experiments from Piwi knock-
down and control flies.

In agreement with previous observations that impli-
cated Piwi in transposon repression (Saito et al. 2006;
Aravin et al. 2007; Brennecke et al. 2007), we found that
steady-state transcript levels of several TEs were increased

Figure 2. Piwi function, but not its nuclear localization, re-
quires piRNA association. (A) The Piwi-YK mutant does not
associate with piRNA. Immunoprecipitation of Piwi–piRNA
complexes was performed with GFP antibody on ovaries from
GFP-Piwi and GFP-Piwi-YK transgenic flies and a control strain.
Small RNAs were isolated, 59-labeled, and resolved on a de-
naturing gel. The same amount of 42-nucleotide RNA oligonu-
cleotides was spiked into all samples prior to RNA isolation to
control for loss of RNA during isolation and labeling. piRNAs
(red arrow) are absent in the Piwi-YK complex. (B) GFP-Piwi-YK
is present in the nuclei of nurse cells and colocalizes with
chromatin (DAPI-stained areas). (C) The Piwi-YK mutant does
not rescue the morphological changes caused by the piwi-null
mutation. Dark-field images of ovaries where either the wild-
type piwi or the piwi-YK transgene has been backcrossed onto
the piwi-null background.
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upon Piwi knockdown in germ cells (Fig. 3C,D; Supple-
mental Fig. S2). We found little to no change of RNA
levels for transposons whose activity is restricted to
follicular cells of the ovary, indicating that the observed

changes are indeed due to loss of Piwi in the germline
(Supplemental Fig. S2). The analysis of Pol II ChIP-seq
showed that Pol II occupancy increased over promoters of
multiple TEs (Fig. 3D–F; Supplemental Fig. S3). Indeed,

Figure 3. Piwi transcriptionally represses TEs. (A) Piwi knockdown is efficient and specific to ovarian germ cells as indicated by GFP-
Piwi localization. GFP-Piwi; Nanos-Gal4-VP16 flies were crossed to control shRNA (shWhite) or shPiwi lines. Piwi is specifically
depleted in germ cells and not in follicular cells, consistent with expression of the Nanos-Gal4-VP16 driver. (B) Piwi expression as
measured by RNA-seq in the Piwi knockdown and control lines. Note that Piwi expression is unaffected in follicular cells, leading to
relatively weak apparent knockdown in RNA-seq libraries from whole ovaries. (C) Effect of Piwi knockdown on the expression of TEs.
Two biological replicate RNA-seq experiments were carried out, and differential expression was assessed using DESeq. Transposons
that show significant change (P < 0.05) are indicated by dark-red circles. Out of 217 individual RepeatMasker-annotated TEs, 15 show
a significant increase in expression upon Piwi knockdown. (D) The change in the levels of TE transcripts and Pol II occupancy on their
promoters upon Piwi knockdown. Twenty up-regulated and 10 down-regulated transposons with the most significant changes in
expression level are shown. Note the low statistical significance for down-regulated transposons. For a complete list of transposons, see
Supplemental Figure S2. (E) Pol II signal over the Het-A retrotransposon in control flies (shWhite; red) and upon Piwi knockdown
(shPiwi; blue). (F) Increased abundance of transposon transcripts upon Piwi depletion correlates with increased Pol II occupancy over
their promoters (r2 = 0.21). Note that the majority of elements do not show significant change in either RNA abundance or Pol II
occupancy.
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the change in steady-state levels of transposon transcripts
upon Piwi depletion correlated with changes of Pol II
occupancy (Fig. 3F). This result demonstrates that Piwi
ensures low levels of transposon transcripts through a
repressive effect on the transcription machinery.

To test whether Piwi-mediated transcriptional repres-
sion is accompanied by a corresponding change in chroma-
tin state, we used ChIP-seq to analyze the genome-wide
distribution of the repressive H3K9me3 mark in the ovary
upon Piwi knockdown. We identified 705 genomic loci
at which the level of H3K9me3 significantly decreased.
More than 90% of the regions that show a decrease in the
H3K9me3 mark upon Piwi depletion overlapped TE se-
quences, compared with the 33% that is expected from
random genome sampling (Fig. 4A). Furthermore, these
regions tend to be located in the heterochromatic por-
tions of the genome that are not assembled on the main
chromosomes (Fig. 4B). Only 20 of the identified regions
localized to the euchromatic parts of the genome. Of these,
15 (75%) contained potentially active annotated copies
of transposons. Taken together, our results indicate that
Piwi is required for installment of repressive H3K9me3
chromatin marks on TE sequences of the genome.

While the vast majority of protein-coding host genes
did not show significant changes in transcript level or
Pol II occupancy upon Piwi knockdown, the expression
of a small set of protein-coding genes (150 genes with a

P-value <0.05) was significantly increased (Fig. 5A; Sup-
plemental Table 1). There are several possible explanations
for Piwi’s effect on host gene expression. First, failure in
the piRNA pathway might cause up-regulation of several
genes that generate piRNAs in wild-type ovaries (Robine
et al. 2009; Saito et al. 2009). However, the genes up-
regulated in Piwi-deficient ovaries were not enriched in
piRNAs compared with other genes. Second, H3K9me3
marks installed on TE sequences in a Piwi-dependent
manner might spread into neighboring host genes and
repress their transcription, as was recently demonstrated
in a follicular cell culture model (Sienski et al. 2012). To
address this possibility, we analyzed genomic positions
of the genes whose expression was increased upon Piwi
knockdown relative to genomic regions that showed a
decrease in H3K9me3 marks. We found that up-regulated
genes did not show a significant change in the H3K9me3
mark (Fig. 5B; Supplemental Fig. S4). Furthermore, the
few genes located close to the regions that show a de-
crease in H3K9me3 signal had unaltered expression levels
upon Piwi knockdown. Next, we analyzed the functions
of up-regulated genes using gene ontology (GO) term
classifications and found significant enrichment for pro-
teins involved in protein turnover and stress and DNA
damage response pathways (Fig. 5C). Particularly, we
found that 31 subunits of the proteasome complex were
overexpressed. Therefore, our analysis indicates that up-
regulation of specific host genes is likely a secondary re-
sponse to elevated transposon levels and genomic damage.

In contrast to host genes, transcripts of TEs are targeted
by piRNA. To directly address the role of piRNA in Piwi-
mediated transcriptional silencing, we took advantage
of a fly strain that expresses artificial piRNAs against
the lacZ gene, which are loaded into Piwi complexes and
are able to repress lacZ reporter expression in germ cells
(Fig. 6A; Josse et al. 2007; Muerdter et al. 2012). Expres-
sion of piRNAs that are antisense to the reporter gene
caused transcriptional silencing of the lacZ gene as
measured by Pol II occupancy (Fig. 6B). Furthermore,
we found that piRNA-induced silencing of the reporter
gene was associated with an increase in the repressive
H3K9me3 mark and HP1 occupancy and a decrease in the
abundance of the active H3K4me2/3 marks at the re-
porter locus (Fig. 6C). This result is in good agreement
with the genome-wide effect of Piwi depletion on distri-
bution of the H3K9me3 mark and suggests that tran-
scriptional silencing correlates with the establishment
of a repressive chromatin structure and is mediated by
piRNAs that match the target locus.

Discussion

Little is known about the function of nuclear piwi pro-
teins. The nuclear piwi in mice (Miwi2) affects DNA
methylation of TEs (Carmell et al. 2007; Aravin et al.
2008; Kuramochi-Miyagawa et al. 2008). Several recent
reports implicate Drosophila Piwi in regulation of chro-
matin marks on transposon sequences (Lin and Yin 2008;
Klenov et al. 2011; Wang and Elgin 2011; Sienski et al.
2012). The mechanism of these processes is unknown in

Figure 4. Piwi-induced transcriptional repression correlates
with establishment of a repressive chromatin state. (A) Overlap
between genomic regions of H3K9me3 depletion upon Piwi
knockdown and TEs. Two replicates of H3K9me3 ChIP-seq ex-
periments were carried out on control and Piwi-depleted ova-
ries, and enriched regions were identified using DESeq (see the
Materials and Methods for details). A total of 705 regions show
significant (P < 0.05) decrease in H3K9me3 occupancy upon Piwi
knockdown, while only 30 regions showed a similarly signi-
ficant increase. Out of the 705 regions that show a decrease in
H3K9me3 marks upon Piwi knockdown, 91% (646) overlap with
TE sequences compared with the 33% expected from random
genome sampling. (B) Genomic positions of H3K9me3-depleted
regions upon Piwi depletion (outer circle) and RepeatMasker-
annotated transposons (inner circle). Note that almost all re-
gions are localized in heterochromatic and repeat-rich portions
of the genome (Het, chrU, and chrUExtra chromosomes).
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both organisms. Previously, Piwi was shown to associate
with polytene chromosomes in salivary gland cells and
colocalize with HP1, a chromodomain protein that binds
to heterochromatin and a few loci in euchromatin, sug-
gesting that HP1 mediates Piwi’s interaction with chro-
matin (Brower-Toland et al. 2007). However, recent results
showed that the putative HP1-binding site on Piwi is
dispensable for Piwi-mediated transposon silencing (Wang
and Elgin 2011).

We did not detect Piwi expression outside of the ovary
and testis, including in salivary gland cells, using a GFP-

Piwi transgene expressed under native regulatory ele-
ments. We detected GFP-Piwi on polytene chromosomes
in ovarian nurse cells that have a germline origin; how-
ever, it localizes in a pattern that largely does not overlap
with HP1. FLIP experiments with GFP-Piwi indicated
a relatively fast rate of fluorescence redistribution as
compared with histone H2A (Supplemental Fig. S1), im-
plying a transient interaction of Piwi with chromatin.
Our proteomic analysis of Piwi complexes isolated from
Drosophila ovaries did not identify chromatin-associated
factors but revealed several RNA-binding proteins, such
as splicing and nuclear export factors that bind nascent
RNA transcripts (Fig. 1B). Importantly, the interaction of
most of these RNA-binding proteins with Piwi was
dependent on RNA, indicating that Piwi associates with
nascent transcripts. As Piwi itself lacks DNA- and RNA-
binding domains (beyond the piRNA-binding domain),

Figure 5. Piwi does not directly repress protein-coding genes.
(A) Effect of Piwi knockdown on the expression of genes. Two
replicate RNA-seq experiments were carried out, and differen-
tial expression was assessed using DESeq. Genes that show
significant change (P < 0.05) are indicated by black circles. The
vast majority of genes does not change significantly upon germ-
line Piwi knockdown (shPiwi) compared with control (shWhite).
(B) H3K9me3 mark density does not change over genes that
show a significant change in expression upon Piwi knockdown
(see Fig. 3C). Up-regulated and down-regulated genes are plotted
separately. Signal indicated is after background subtraction. (C)
Functional analysis of up-regulated genes by the Database for
Annotation, Visualization, and Integrated Discovery (DAVID)
reveals activation of the protein degradation and DNA damage
response pathways. Percentages of all up-regulated genes are
indicated.

Figure 6. piRNA-dependent targeting of Piwi to a reporter
locus leads to establishment of a repressive chromatin state
and transcriptional silencing. (A) The mechanism of trans-
silencing mediated by artificial piRNA and a schematic repre-
sentation of the repressor and reporter lacZ constructs. The
repressor construct is inserted in a subtelomeric piRNA cluster,
leading to generation of piRNA from its sequence. Primers
mapping to both constructs used for the Pol II and H3K4me2/3
ChIP-quantitative PCR (qPCR) are shown by light-gray arrows;
primers specific to the reporter locus used for the H3K9me3,
H3K9me2, and HP1 ChIP-qPCR are indicated by dark-gray
arrows. (B) piRNAs induce transcriptional repression of the lacZ

reporter. Pol II and H3K4me2/3 signals decreased on the lacZ
promoter in the presence of artificial piRNAs as measured by
ChIP-qPCR. Shown is the fold depletion of signal in flies that
carry both repressor and reporter constructs compared with
control flies that have only the reporter construct. The signal
was normalized to RP49. (C) piRNAs induce an increase in
H3K9me3 and H3K9me2 marks and HP1 binding as measured
by ChIP-qPCR. Shown is the fold increase of corresponding
ChIP signals downstream from the lacZ reporter in flies that
carry both repressor and reporter constructs compared with
control flies that have only reporter construct. The signal was
normalized to RP49.
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it is likely that the recruitment of Piwi to chromatin is
through interactions with other RNA-binding proteins
or sequence-specific interactions between Piwi-bound
piRNA and nascent transcripts.

Using specific Piwi knockdown in germ cells of the
Drosophila ovary, we analyzed the effect of Piwi deple-
tion on gene expression, the transcription machinery,
and H3K9me3 chromatin marks genome-wide. In agree-
ment with previous results (Klenov et al. 2011), we
found up-regulation of several TEs upon Piwi knock-
down (Fig. 3C). The TEs that did not change their ex-
pression upon germline knockdown of Piwi might be
expressed exclusively in somatic follicular cells of the
ovary, such as the gypsy retrotransposon. Alternatively,
some elements present in the genome might not have
transcriptionally active copies, or the cytoplasmic AUB/
AGO3 proteins may efficiently silence them at the post-
transcriptional level.

The increase in steady-state levels of RNA upon Piwi
depletion strongly correlates with an increase in Pol II
occupancy on the promoters of transposons (Fig. 3D,F;
Supplemental Fig S2). This result suggests that Piwi re-
presses transposon expression at the transcriptional level,
although we cannot completely exclude the possibility
of an additional post-transcriptional effect. It was shown
previously that depletion or mutation of Piwi leads to
depletion of the repressive H3K9me3 mark and an in-
crease in the active H3K4me2/3 marks on several trans-
poson sequences (Klenov et al. 2011; Wang and Elgin
2011). Our ChIP-seq data extend these results to a genome-
wide scale, proving that transposons are indeed the
sole targets of Piwi, and demonstrate that changes in
histone marks directly correlate with transcriptional
repression.

Piwi depletion in the germline does not affect expres-
sion of the majority of host genes, although a small frac-
tion of genes changes expression (Fig. 5A). One possible
mechanism of the effect Piwi has on host genes is the
spreading of repressive chromatin structure from trans-
poson sequences to adjacent host genes. Indeed, such a
spreading and the resulting repression of host gene tran-
scription were observed in an ovarian somatic cell (OSC)
culture model (Sienski et al. 2012). However, we did not
find significant changes in the H3K9me3 mark for genes
that are up-regulated upon germline depletion of Piwi,
arguing against this mechanism playing a major role in
host gene regulation. Instead, we found that the majority
of host genes whose expression is increased as a result of
Piwi depletion participate in protein turnover (e.g., pro-
teasome subunits) and stress and DNA damage response
pathways, indicating that they might be activated as a
secondary response to cellular damage induced by trans-
poson activation. The different effect of Piwi depletion on
host gene expression in ovary and cultured cells might be
explained by the fact that silencing of host genes due to
transposon insertion would likely have a strong negative
effect on the fitness of the organism but could be tolerated
in cultured cells. Accordingly, new transposon insertions
that cause repression of adjacent host genes should be
eliminated from the fly population but can be detected

in cultured cells. In agreement with this explanation, the
majority of cases of repressive chromatin spreading in
OSCs were observed for new transposon insertions that
are absent in the sequenced Drosophila genome. Indeed,
it was shown that the vast majority of new transposon
insertions is present at a low frequency in the Drosophila
population, likely due to strong negative selection (Petrov
et al. 2003). Such selection was primarily attributed to the
ability of TE sequences to cause recombination and ge-
nomic rearrangements. We propose that in addition to the
effects on recombination, the selection against transpo-
sons can be driven by their negative impact on host gene
expression in the germline linked to Piwi-mediated chro-
matin silencing.

How does Piwi discriminate its proper targets—
transposons—from host genes? In the case of cytoplas-
mic Piwi proteins AUB and AGO3, recognition and post-
transcriptional destruction of TE transcripts is guided
by associated piRNAs. Our results indicate that piRNAs
provide guidance for transcriptional silencing by the nu-
clear Piwi protein as well. First, in contrast to host genes
that are not targeted by piRNAs, TE transcripts, which
are regulated by Piwi, are recognized by antisense Piwi-
bound piRNA (Brennecke et al. 2007). Second, a Piwi
mutant that is unable to bind piRNA failed to rescue the
piwi-null mutation despite its ability to enter the nu-
cleus. Finally, expression of artificial piRNAs that target
a reporter locus induced transcriptional silencing associ-
ated with an increase in repressive H3K9me3 and HP1
chromatin marks and a decrease in the active H3K4me2/3
marks (Fig. 6B,C). In contrast, the tethering of Piwi to
chromatin in a piRNA-independent fashion by fusing
Piwi with the lacI DNA-binding domain that recognizes
lacO sequences inserted upstream of a reporter gene did
not lead to silencing of the reporter (data not shown).
Together, our results demonstrate that piRNAs are the
essential guides of Piwi to recognize its targets for tran-
scriptional repression.

It is tempting to propose that, similar to Argonautes in
fission yeast, Drosophila Piwi directly recruits the enzy-
matic machinery that establishes the repressive H3K9me3
mark on its targets. Establishment of repressive marks
can lead to stable chromatin-based transcriptional silenc-
ing that does not require further association of Piwi with
target loci. This model explains why we found that Piwi
is relatively mobile in the nucleus, indicative of only a
transient interaction with chromatin. The Piwi-mediated
transcriptional silencing has an interesting parallel in
Caenorhabditis elegans, where the Piwi protein PRG-1
and associated 21U RNAs are able to induce stable trans-
generational repression that correlates with formation of
silencing chromatin marks on target loci. Interestingly,
PRG-1 and 21U RNAs are necessary only for initial es-
tablishment of silencing, while continuing repression
depends on siRNA and the WAGO group of Argonautes
(Ashe et al. 2012; Bagijn et al. 2012; Buckley et al. 2012;
Shirayama et al. 2012). Future studies should reveal the
pathway that leads to transcriptional repression down-
stream from Piwi in Drosophila and the differences from
and similarities to other species.
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Materials and methods

Drosophila stocks

Nanos-Gal4-VP16 (BL4937), UASp-shWhite (BL33623), UASp-

shPiwi (BL 33724), and Chr. I and II Balancer (BL7197) were
purchased from the Bloomington Stock Center. GFP-Piwi-
expressing flies (see below) were backcrossed onto the piwi1/

piwi2 (available from Bloomington Stock Center) background
or the otu7/otu11 (available from Bloomington Stock Center)
background, respectively. LacZ reporter lines were a generous
gift from S. Ronsseray.

Generation of transgenic fly lines

The GFP-Piwi, 3xFlag-HA-Piwi, and myc-Piwi constructs were
generated using bacterial recombineering (Gene Bridges Counter
Selection kit) to insert the respective tag after the start codon of
the Piwi genomic region cloned in BAC clone BACN04M10. The
KpnI–XbaI genomic fragment that contains the Piwi gene and
flanking sequences was transferred to corresponding sites of the
pCasper4 vector to create pCasper4/tagged Piwi.

The pCasper4/GFP-Piwi construct was used to generate
pCasper4/GFP-Piwi-YK with two point mutations, Y551I and
K555E. Mutations were introduced by PCR, amplifying products
corresponding to a 3.1-kb upstream fragment and a 2.58-kb down-
stream fragment. The upstream fragment included a unique XbaI
site at the 59 end of the amplicon and overlapped 39 base pairs
(bp) with the downstream fragment, which included a unique
BamHI site at its 39 end. The single XbaI–BamHI fragment was
generated by overlap PCR with outside primers and cloned
into corresponding sites of pCasper4/GFP-Piwi to replace the
wild-type fragment. Transgenic flies were generated by P-element-
mediated transformation (BestGene).

Immunoprecipitation of Piwi proteins and RNA gel of piRNA

Dissected ovaries were lysed in lysis buffer (20 mM HEPES at pH
7.0, 150 mM KCl, 2.5 mM MgCl, 0.5% Triton X-100, 0.5%
Igepal, 100 U/mL RNasin [Promega], EDTA-free Complete Pro-
tease Inhibitor Cocktail [Roche]) and supernatant clarified by
centrifugation. Supernatant was incubated with anti-eGFP poly-
clonal antibody (Covance) conjugated to Protein-G Dynabeads at
4°C. Beads were spiked with 5 pmol of synthesized 42-nucleotide
RNA oligomer to assess purification efficiency, proteinase
K-digested, and phenol-extracted. Isolated RNA was CIP-treated,
radiolabeled using PNK and g-P32-labeled ATP, and run on a
15% urea-PAGE gel. Western blots of ovary lysate and anti-eGFP
immunoprecipitates were obtained from 8% SDS-PAGE gels and
probed with polyclonal rabbit anti-eGFP antibody to confirm
expression of the full-length transgene.

Mass spectrometric analysis of Piwi interaction partners

Lysis and clarification of ovary samples were performed as de-
scribed above using lysis buffer with reduced detergent (0.1%
Triton X-100, 0.1% Igepal). Piwi proteins with Flag, Myc, or GFP
tag were purified from Drosophila ovaries using correspond-
ing antibodies covalently coupled to M-270 epoxy Dynabeads
(Invitrogen) (Cristea et al. 2005). Immunoprecipitation of free
GFP from GFP-expressing ovaries was used as a negative control.
Immunoprecipitations were performed in the presence or ab-
sence of RNase A (100 mg/mL; 30 min at 25C). Piwi and copurified
interacting proteins were resolved on NuPAGE Novex 4%–12%
Bis-Tris gels and stained with colloidal Coomassie blue. Gel
fragments that contained protein bands were excised and in-gel-

trypsinized, and the peptides were extracted following the
standard protocol of the Proteome Exploration Laboratory at
California Institute of Technology. Peptide analyses were per-
formed on an LTQ-FT Ultra (Thermo Fisher Scientific) equipped
with a nanoelectrospray ion source (Thermo Fisher Scientific)
connected to an EASY-nLC. Fractionation of peptides was per-
formed on a 15-cm reversed-phase analytical column (75-mm
internal diameter) in-house-packed with 3-mm C18 beads
(ReproSil-Pur C18-AQ medium; Dr. Maisch GmbH). Acquired
spectra were searched against the Drosophila melanogaster

proteome using the search engine Mascot (Matrix Science,
version 2.2.06), and protein inferences were performed using
Scaffold (Proteome Software, version 3). For an Excel file of Piwi
interaction partners, see the Supplemental Material.

ChIP, ChIP-seq, and RNA-seq

ChIP was carried out using standard protocols (Moshkovich and
Lei 2010). ChIP-seq and RNA-seq library construction and se-
quencing were carried out using standard protocols following
the general principles described by Johnson et al. (2007) and
Mortazavi et al. (2008), respectively. Data analysis was carried
out using a combination of publicly available software tools and
custom-written python scripts. Additional details regarding
high-throughput data analysis are described in the Supplemental
Material. For quantitative PCR (qPCR) primers, see Supplemen-
tal Table 2. GO term analysis of genes up-regulated upon Piwi
knockdown was performed using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) (Huang et al.
2009a,b) and FlyBase for additional assignment of GO terms.
Sequencing data is available through Gene Expression Omnibus
(accession no. GSE43829).

Antibodies

eGFP antibody (rabbit polyclonal serum; Covance) was affinity-
purified in our laboratory. Anti-myc (Millipore), anti-Flag
(Sigma), Pol II (ab5408), and Pol II pSer5 (ab5131) are commer-
cially available.

Imaging of ovaries

Ovaries were fixed in 4% PFA in PBS for 20 min, permeabilized
in 1% Triton X-100 in PBS, DAPI-stained (Sigma-Aldrich),
washed, and mounted in 50% glycerol/PBS. Images were captured
using an AxioImager microscope; an Apotome structured illumi-
nation system was used for optical sections (Carl Zeiss).

FLIP

FLIP time series were captured on an LSM510 confocal micro-
scope equipped with a 403/0.9 NA Imm Corr multi-immersion
objective. Ovaries were dissected into halocarbon 700 oil (Sigma)
and mounted under a 0.17-mm coverslip (Carl Zeiss) immedi-
ately before imaging. Two initial baseline images were captured,
followed by 80–100 iterations consisting of two bleach iterations
at 100% laser power (488 nm or 543 nm for GFP- and RFP-tagged
proteins, respectively), followed by two images with reduced
illumination intensity. FLIP series were cropped and median-
filtered with a 2-pixel radius to reduce noise using FIJI
(Schindelin et al. 2012) and the ‘‘Rigid Body’’ function of the
StackReg plugin (Thévenaz et al. 1998) to correct drift when
needed. Using Matlab software (The Mathworks), images were
background-subtracted and corrected for acquisition bleach-
ing. A value representing the true loss of intensity relative to
the initial prebleach images, where 0 indicates no change in
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intensity and 1 represents complete photobleaching, was calcu-
lated for each pixel and each bleach/capture cycle and plotted
with a color lookup table and calibration bar. Scale bars and
annotations were made in Inkscape (http://inkscape.org).

Preparation of polytene squashes for immunofluorescence

Flies carrying the GFP-Piwi BAC construct were backcrossed
onto the otu[7] and otu[11] background. Progeny from the cross
of the two lines were grown at 18°C. Stage 7–12 egg chambers
were separated and transferred to a polylysine-coated micro-
scopic slide into PBST. From here, the ‘‘smush’’ protocol was
followed (Johansen et al. 2009), but PFA cross-linking was re-
duced to 10 min. Slides were imaged using an AxioImager mi-
croscope and a 633 oil immersion objective (Carl Zeiss).
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Abstract

Mitochondria contain a 16.6 kb circular genome encoding 13 proteins as well as mitochondrial tRNAs and rRNAs.
Copies of the genome are organized into nucleoids containing both DNA and proteins, including the machinery
required for mtDNA replication and transcription. The transcription factor TFAM is critical for initiation of transcription
and replication of the genome, and is also thought to perform a packaging function. Although specific binding sites
required for initiation of transcription have been identified in the D-loop, little is known about the characteristics of
TFAM binding in its nonspecific packaging state. In addition, it is unclear whether TFAM also plays a role in the
regulation of nuclear gene expression. Here we investigate these questions by using ChIP-seq to directly localize
TFAM binding to DNA in human cells. Our results demonstrate that TFAM uniformly coats the whole mitochondrial
genome, with no evidence of robust TFAM binding to the nuclear genome. Our study represents the first high-
resolution assessment of TFAM binding on a genome-wide scale in human cells.
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Introduction

Mitochondria are essential eukaryotic organelles, serving as
the epicenter of ATP production in the cell through oxidative
phosphorylation. To perform this bioenergetic function,
mitochondria utilize gene products encoded by the
mitochondrial genome, a circular DNA that is 16.6 kb long. This
genome is organized into DNA/protein structures termed
nucleoids [1]. Mitochondrial DNA (mtDNA) encodes thirteen
components of the electron transport chain, as well as 22
tRNAs and two ribosomal RNA genes. These gene products
are essential for the proper function of the respiratory chain,
and therefore maintenance of mtDNA levels and sequence
fidelity is essential for cellular bioenergetics. In a human cell,
there are hundreds to thousands of copies of the mtDNA
genome [2,3]. Damage or depletion of mtDNA causes
numerous inherited disorders, including Alpers’ Disease, ataxia
neuropathy spectrum, and progressive external
ophthalmoplegia [4,5]. Furthermore, loss and damage to
mtDNA has been implicated in cardiovascular disease [6–9],
diabetes [10–12], neurodegenerative disorders such as
Alzheimer’s [13,14], and aging [15,16]. Strikingly, increasing
mtDNA copy number promotes cell survival or function in many
models of disease associated with decreased mtDNA

abundance, such as diabetes [12,17], aging [18], Alzheimer’s
[19], and Parkinson’s [20,21]. Thus, it is critical to understand
how mtDNA copy number and integrity are maintained.

Mitochondrial transcription factor A (TFAM) is a DNA binding
protein that plays multiple roles in regulating mtDNA function.
As a sequence-specific transcription factor, it binds upstream of
the light strand promoter (LSP) and heavy strand promoter 1
(HSP1) to activate initiation of transcription. At these sites, the
footprint of TFAM binding is ~22 bp long [22,23]. As a result,
TFAM is essential for production of gene products from the
mitochondrial genome. In addition, TFAM is required for normal
mtDNA copy number, because RNA primers generated from
LSP are used to prime mtDNA replication [24,25]. Mice
heterozygous for a knockout of TFAM exhibit not only an
expected reduction (22%) in mitochondrial transcript levels in
the heart and kidney, but also a universal 34% reduction in
mtDNA copy number across all assayed tissues. Furthermore,
homozygous knockout mice have no detectable levels of
mtDNA and die during embryogenesis [26], highlighting the
importance of TFAM in maintenance of mtDNA levels and in
cellular and organismal viability.

Apart from its sequence-specific functions, TFAM is thought
to organize the mtDNA genome by coating it in a nonspecific
manner. Although how TFAM packages mtDNA is not well-
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understood, it is known to bind nonspecifically to DNA [27] and
is estimated to be sufficiently abundant to coat the genome
completely [28–30]. One model suggests that nonspecific
binding radiates from the TFAM LSP binding site, which acts as
a nucleation site for subsequent cooperative binding in a
phased pattern to yield an inter-genome homogeneous pattern
of binding [31,32]. The packaging function of TFAM appears to
have important consequences for maintenance of the mtDNA
genome. A TFAM variant that is deficient in transcriptional
activation but competent in DNA binding is capable of
preventing mtDNA depletion [33]. Therefore, as a prominent
component of mtDNA nucleoids, TFAM appears to coat the
mitochondrial genome, perhaps protecting it from turnover or
deleterious damage.

Despite the importance of the associations of TFAM with
mtDNA in the maintenance of mtDNA integrity and in cellular
viability, these interactions have only been visualized in vivo at
low resolution [34]. Therefore, to capture a high-resolution
profile of TFAM-mtDNA interactions across the entire
mitochondrial genome, we performed chromatin
immunoprecipitation followed by massively parallel sequencing
(ChIP-seq) for TFAM in human HeLa cells.

Results

Detection of TFAM-DNA interactions using ChIP-seq
To characterize TFAM binding to both the mitochondrial and

nuclear genomes in an unbiased manner, we performed ChIP-
seq targeting TFAM in HeLa cells. Because ChIP-seq data is
highly dependent on the use of high-quality antibodies, we
generated two new TFAM monoclonal antibodies (20G2C12
and 20F8A9) that efficiently immunoprecipitated TFAM (Figure
1A). Both of these antibodies gave clean mitochondrial and
nucleoid signals in immunofluorescence experiments with
cultured HeLa cells (Figure 1C,D). The 20G2C12 antibody also
performed well in Western blots of whole-cell lysates,
recognizing a single protein band of ~23 kDa (Figure 1B).

Given the high efficiency of 20G2C12 in immunoprecipitating
TFAM, as well as its high specificity, we used it to capture
TFAM-associated DNA fragments for ChIP-seq analysis. DNA
was sonicated prior to immunoenrichment and size-selected
prior to library building so that the average fragment length of
the final library was centered around 200 bp, a fragment
distribution allowing for high-resolution deconvolution of binding
events. We generated 3 replicates and matching controls. The
sequencing depth of all samples was between 18 million and
48 million mappable reads, which is generally sufficient for
comprehensive identification of transcription factor binding sites
[35].

A common concern with ChIP-seq datasets is the variability
of enrichment for true binding events as compared to
background. In a typical ChIP-seq experiment, a minority of
sequencing reads originates from binding events, with the
majority representing random genomic DNA. Even for the
same DNA binding factor, large variations in the strength of
enrichment can be observed, and therefore it is critical to
assess the degree of enrichment before downstream analysis.
A number of ChIP-seq quality control metrics have been

developed [35] for nuclear transcription factors. However,
TFAM is expected to bind to the mitochondrial genome, which
has very different characteristics from the nuclear genome. In
addition, it is predicted to bind both in the classical localized
manner [36] as well as broadly across the mitochondrial
genome. As a result, metrics for evaluating nuclear
transcription factors are not well-suited for analysis of TFAM
binding data. We therefore examined the fraction of
sequencing reads in our libraries mapping to the mitochondria
as a proxy for the enrichment of TFAM binding events.
Strikingly, between 30% and 75% of TFAM ChIP-seq reads
mapped to the mitochondrial genome, while less than 2% of
reads mapped to the mitochondrial genome in the input
samples, indicating that our TFAM ChIP-seq datasets are
indeed highly enriched for TFAM binding events (Figure 1B).
We note that 75% ChIP enrichment is extremely high (in fact,
practically unprecedented) for any transcription factor dataset
[35], thus underscoring the high experimental quality of our
datasets.

Because partial copies of the mitochondrial genome are also
present in the nuclear genome, not all reads originating from
mtDNA can be mapped uniquely. Therefore, we characterized
TFAM binding to mtDNA and to the nuclear genome
separately. We analyzed mitochondrial binding events by
aligning sequencing reads to the mitochondrial genome alone
(restricting our analysis to reads mapping perfectly without any
mismatches to further increase mapping accuracy), and
analyzed binding to the nuclear genome by aligning only the
reads which did not map to the mitochondrial genome, as
outlined in Figure 2A. For a standard nuclear transcription
factor, this approach may cause some reads originating from
the nuclear genome to artificially map to the mitochondrial
genome. However, given that TFAM is known to bind to the
mitochondrial genome and the extremely high enrichment for
TFAM binding to mtDNA in our TFAM ChIP-seq libraries, this
should not be a significant confounding factor.

TFAM coats the mitochondrial genome
As discussed above, TFAM has not only been proposed to

bind specifically to well-defined binding sites in the D-loop, but
has also been suggested to play a nonspecific packaging role
in the nucleoid that is essential for mtDNA integrity. However,
little is known about the pattern of non-specific binding of
TFAM to the mitochondrial genome. Localized binding at the D-
loop and diffuse binding across the rest of the genome are
expected to result in distinct ChIP-seq signal profiles.
Localized, “point-source” binding to DNA results in an
asymmetric distribution of reads mapping to the forward and
reverse strand around the binding site of the protein [36,37],
while diffuse binding does not produce such strand asymmetry.

To characterize TFAM binding to mtDNA, we examined the
forward and reverse strand read distribution after mapping
TFAM ChIP-seq and input library reads to the mitochondrial
genome. Strikingly, we did not observe regions of obvious
enrichment and strand asymmetry in the D-loop; in particular,
we did not see specific binding at the predicted HSP1 and LSP
sites. On the whole, the TFAM ChIP-seq signal was broadly
distributed over the whole mitochondrial chromosome, and
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Figure 1.  Characterization of TFAM monoclonal antibodies.  (A) Immunoprecipitation of TFAM from cell lysates. HeLa cell
lysate was applied to sheep anti-mouse Dynabeads conjugated to anti-Myc, 20G2C12 TFAM antibody, 20F8A9 TFAM antibody, or
a 50/50 mixture of 20G2C12 and 20F8A9 TFAM antibodies. The labeled bands are: 1) Antibody heavy chain; 2) antibody light chain;
3) TFAM. (B) Western blot using the 20G2C12 antibody detects a ~23kDa band. (C and D) Immunocytochemistry showing TFAM
localization. Mitochondria were identified by PPIF staining; mtDNA was identified by anti-DNA staining. There was no evidence for
nuclear localization of TFAM using either antibody.
doi: 10.1371/journal.pone.0074513.g001
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while coverage was not perfectly uniform, the amplitude of the
non-uniformity was not significant, and the signal profile closely
tracked that of the input sample (Figure 3). The low level of
non-uniformity likely results from sequencing biases, which has
been documented to skew coverage [38,39]. Because our
libraries were carefully size-selected for fragments in the 200
bp range, discrete TFAM binding sites would be expected to
yield discrete signal localizations. Therefore, we interpret these

results as evidence for the uniform coating of the whole
mitochondrial genome by TFAM. We observed one region of
apparent localized enrichment exhibiting strand asymmetry in
the ND2 ORF near the origin of light strand replication (OL)
(Figure 3F), which we discuss in the Discussion section.

To further verify our results, we carried out ChIP-seq against
TFAM with a second TFAM monoclonal antibody, 20F8A9. We
obtained similar results (Figure S1) and found significant

Figure 2.  ChIP-seq analysis of genome-wide TFAM binding.  (A) Overview of computational processing of data. Reads were
trimmed to 36 bp and then either mapped against the mitochondrial genome (ChrM), or the complete hg19 version of the genome.
After removing multireads and alignments to the mitochondrial genome, peaks in the nuclear genome were called using MACS2. (B)
The proportion of sequencing reads mapping to chrM in ChIP and input datasets. All replicates of the ChIP-seq resulted in at least
30% of reads mapping to the mitochondrial genome, much greater than the 0.4-1.9% of reads mapping to mtDNA in the input
datasets. Replicates 1-3 were performed using the 20G2C12 antibody, while Replicate 4 was performed using the 20F8A9 antibody.
doi: 10.1371/journal.pone.0074513.g002
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Figure 3.  Coating of the mitochondrial genome by TFAM in HeLa cells.  Circos plot of plus strand and minus strand TFAM
ChIP-seq and input read density signal over chrM. (A, E) Annotation of protein coding (green on forward/heavy strand, red on
reverse/light strand), ribosomal RNA (blue) and tRNA (blue on forward/heavy strand, grey on reverse/light strand) transcripts. (B) D-
loop (black), LSP promoter (large red tile), known LSP TFAM binding site (small red tile), HSP promoter (large blue tile), known
HSP1 TFAM binding site (small blue tile), and origins of heavy strand replication (Ori-b, orange tile; OH, yellow tile). (C) TFAM ChIP-
seq signal on forward (red) and reverse (blue) strands. (D) Input signal on forward (red) and reverse (blue) strands. (F) Origin of
light strand replication (yellow tile). Note that the input signal is exaggerated 60-fold relative to the ChIP-seq signal in order to
visualize coverage irregularities. The signal from the TFAM ChIP-seq largely follows that of the input, indicating generalized binding
across the mitochondrial genome.
doi: 10.1371/journal.pone.0074513.g003
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correlation between the 20F8A9 dataset and the three datasets
obtained from the 20G2C12 antibody datasets (p < 0.0001).

No evidence for binding to the nuclear genome
Previous studies have suggested that TFAM can be found in

the nucleus and that it modulates the transcription of nuclear
genes. In rat neonatal cardiac myocytes, TFAM was found to
bind to the promoter of SERCA2, the homolog of human
sarco(endo) plasmic reticulum calcium-ATPase 2 (ATP2A2),
and was implicated in regulating its transcription [40]. Given the
extremely high degree of TFAM binding enrichment in our
datasets, any robust nuclear TFAM binding events should be
readily detectable. To analyze nuclear binding, we excluded all
sequencing reads mapping to the mitochondrial genome and
used the resulting set of reads to identify putative TFAM
binding sites. We first looked for significant global read
clustering using cross-correlation between reads mapping to
the forward and the reverse DNA strands [35,36]. Cross-
correlation plots for input samples and for TFAM ChIP-seq
datasets were indistinguishable from each other (Figure 4A,B).
Next, we called putative TFAM binding sites using MACS2 [41].
Using default settings (corresponding to a q-value cut-off of
10-2), we identified 72, 137 and 153 sites respectively for the
three replicates generated with antibody 20G2C12, and a
single site for the 20F8A9 antibody. However, manual
inspection of each of the identified sites revealed that all were
likely to represent artifacts, mostly associated with repetitive
DNA sequences, as none had the expected strand asymmetry
of read distribution around a binding site. Instead, the two
strand profiles at each site were identical (summarized in
Figure 4D, with the classic nuclear transcription factor NRSF
shown for comparison in Figure 4C), and numerous
unmappable regions and repetitive elements were present in
the immediate vicinity of many of the called sites. Inspection of
the ATP2A2 gene revealed no TFAM enrichment neither in the
promoter region nor anywhere else in the neighborhood of the
gene (Figure 4E). Furthermore, we do not detect nuclear
localization of TFAM in our cells (Figure 1C). Therefore, in
HeLa cells under normal growth conditions, we find no
evidence for specific binding of TFAM to nuclear target genes.

Discussion

Previous in vitro studies have suggested that TFAM binds
specifically to LSP and HSP1, and that it may also bind
nonspecifically in a phased manner. Furthermore, evidence
has been presented for its nuclear localization and action as a
canonical nuclear transcription factor in rat neonatal cardiac
myocytes. However, no direct genome-wide measurements of
TFAM binding have been previously reported. Our TFAM ChIP-
seq data reveal very high enrichment for reads mapping to the
mitochondrial genome, but a binding pattern that largely mirrors
the read distribution observed in the input DNA, suggesting
broad, non-specific binding to mitochondrial genome. This
pattern is highly reproducible, indicating that the average
population-wide state of TFAM-mtDNA interactions is stable.
We found no correlation between irregularities in TFAM signal
distribution and characteristics of the mitochondrial genome

such as GC content (data not shown). Thus, we conclude that
TFAM binds to the mitochondrial genome nonspecifically and
without bias when cells are grown under typical culture
conditions. Although we do not observe the synchronized
phased binding seen in in vitro studies, we cannot rule out a
model where individual mtDNAs have such a pattern of binding
initiating from a non-universal nucleation site.

Strikingly, we did not observe localized enrichment of binding
at the known LSP and HSP1 TFAM binding sites. Peak
patterns mirrored that of the input in these regions, and no
ChIP-seq peaks displaying the canonical strand asymmetry in
read distribution were observed. This finding can be explained
by a model in which the interaction of TFAM with the LSP and
HSP1 binding sites is relatively transient and infrequent
compared to a more stable non-specific association with the
genome in its packaging state.

We did detect one site in the genome exhibiting the
characteristics of a specific, localized ChIP-seq peak, centered
at 5175 bp in the ND2 ORF. The localized nature of the ChIP
signal at this site suggests higher occupancy of TFAM. This
peak localizes to 546 bp upstream of the OL. Strikingly, TFAM
has previously been localized 520 bp upstream of the OL of rat
mtDNA [42–44]. We found no sequence similarity between the
rat and human sites, and in general this region of the mtDNA
genome shows low homology between the two species.
Further work will be required to understand the significance of
this putative TFAM binding site.

Finally, analysis of all datasets for TFAM binding to the
nuclear genome yielded no hits distinguishable from common
ChIP-seq artifacts. Although Watanabe et al. observed
regulation of the SERCA2 gene in rat myocytes, we did not
detect TFAM binding at the promoter of its ortholog in humans.
Previous studies have shown nuclear localization of TFAM in
rat hepatoma cells [45], as well as an alternate isoform of
TFAM in mouse testis nuclei [46]. We have thus far been
unable to detect nuclear TFAM localization in HeLa cells
(Figure 1C), suggesting that nuclear localization and
transcriptional regulation may be cell type or perhaps species-
dependent. ChIP-seq in different cell lines may be able to
detect such nuclear interactions.

We demonstrate here the first high-resolution ChIP-seq
analysis of TFAM binding to the mitochondrial genome. Aside
from generalized, largely non-specific binding across the
mitochondrial genome, we detected a putative specific binding
site upstream of the origin of light strand replication. We do not
observe the expected binding at the known HSP1 and LSP
sites, nor did we identify any nuclear binding sites. An area that
remains to be explored is the dynamic nature of TFAM-DNA
interactions with respect to both the nuclear and mitochondrial
genomes. ChIP-chip on the yeast mitochondrial genome has
shown that metabolic changes can lead to differential binding
of the yeast TFAM homolog, Abf2p [47]. It is possible that such
remodeling also occurs in the mammalian system, and further
studies will provide insight into the dynamic nature of the
mtDNA-protein interactions within the nucleoid that serve to
protect its integrity.
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Figure 4.  Absence of TFAM binding to the nuclear genome.  (A) Cross-correlation plot of input DNA computed over the nuclear
genome. (B) Cross-correlation plot of TFAM ChIP-seq computed over the nuclear genome. (C) Distribution of ChIP-seq reads
mapping to the plus and minus strand around called binding sites in a ChIP-seq dataset for the NRSF transcription factor [51] in
HeLa cells, generated by the ENCODE consortium [52]. (D) Distribution of TFAM ChIP-seq reads mapping to the plus and minus
strand around called binding sites indicates lack of real binding sites. (E) No ChIP-seq enrichment around the promoter of the
SERCA2/ATP2A2 gene, previously suggested to be a TFAM target.
doi: 10.1371/journal.pone.0074513.g004
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Materials and Methods

Cell growth and treatment
HeLaS3 cells were cultured in Dulbecco’s modified Eagle’s

medium (DMEM, Invitrogen #11995) containing 10% bovine
serum (Invitrogen #16170), penicillin and streptomycin, and
additional L-glutamine (2mM). Cells were fed 24 hours before
harvest for ChIP-seq, which was performed at 80-90%
confluency.

Antibody Production and characterization
Antibodies were produced by the Caltech Monoclonal

Antibody Facility and raised against the full-length TFAM
protein in mouse. Immunoprecipitation with 20G2C12 and
20F8A9 TFAM antibodies and Myc antibody (Santa Cruz
#sc-40) was performed according to established protocols
using M-280 sheep anti-mouse Dynabeads (Invitrogen
#11201D). Immunoblotting of IP products was performed using
a monoclonal TFAM 18G102B2E11 antibody, also custom
generated, at 1:2000, with goat anti-mouse HRP antibody
(1:10,000, Jackson ImmunoResearch #115-056-003).
Immunoblotting of HeLa whole cell lysate with 20G2C12 was
performed at a 1:200 dilution and with goat anti-mouse HRP
antibody.

Immunocytochemistry
HeLa cells cultured as described above were plated onto

poly-lysine coated glass coverslips 48 hours prior to fixation in
formaldehyde and permeabilization with 0.1% Triton X-100. For
colocalization of TFAM to mitochondria, 20G2C12 or 20F8A9
antibodies were used at 1:10 in conjunction with PPIF at 1:200
(ProteinTech #18466-1-AP). Secondary antibodies were goat
anti-mouse AF488 (1:500, Invitrogen #A11001) and donkey
anti-rabbit AF546 (1:500, Invitrogen #A10040). Cells were also
stained with DAPI to visualize nuclei. Immunocytochemistry to
visualize colocalization of mitochondrial nucleoids and TFAM
was performed sequentially due to both antibodies being raised
in mouse. Sequential immunostaining yielded no background
fluorescence due to cross-antibody reactivity (data not shown).
Order was as follows: anti-TFAM antibody (1:10); goat anti-
mouse AF488 (1:500, Invitrogen #A11001); anti-DNA antibody
(1:25, Millipore #CBL186); goat anti-mouse AF555 (1:500,
Invitrogen #A21426), DAPI. Images were acquired with a Zeiss
LSM 710 confocal microscope with PlanApochromat 63X/1.4
oil objective. Z-stack acquisitions were converted to maximum
z-projections using ImageJ software.

Chromatin immunoprecipitation and sequencing
ChIP experiments and preparation of DNA for sequencing

were performed following standard procedures [48] with some
modifications. Cells were fixed for 10min at RT in 1%
formaldehyde, harvested using a cell scraper, washed once in
ice-cold PBS, and resuspended in RIPA buffer with protease

inhibitor. The sample was then sonicated using a 3.2mm
microtip (QSonica Sonicator 4000) at 30s on/30s off intervals
and 40% amplitude for 180min while in a -30°C 3:1 isopropanol
and water bath containing dry ice. Subsequent steps were
performed as per the standard protocol. DNA was size-
selected during library building to an average fragment size of
200bp. Libraries were sequenced using Illumina GAIIx and
Illumina HiSeq 2000. Sequencing data is available under GEO
accession record GSE48176.

Sequencing data processing and analysis
Sequencing reads were trimmed down to 36 bp and then

mapped against either the female set of human chromosomes
(excluding the Y chromosome and all random chromosomes
and haplotypes) or the mitochondrial genome alone, using the
hg19 version of the human genome as a reference. Bow tie
0.12.7 [49] was used for aligning reads, not allowing for any
mismatches between the reads and the reference. ChIP-seq
peaks were called using MACS2 [41] with default settings
except for the mfold parameter, which was lowered to (2,30).
Circos plots were generated using Circos version 0.60 [50].
Additional data processing was carried out using custom-
written python scripts. ENCODE data was downloaded from
the UCSC browser (http://hgdownload-test.cse.ucsc.edu/
goldenPath/hg19/encodeDCC/wgEncodeHaibTfbs) and its use
here complies with its terms of usage. Pearson correlation
coefficient, t-test, and p values were calculated using
embedded and custom Microsoft Excel functions.

Supporting Information

Figure S1.  Comparison of profiles of TFAM binding to
mitochondrial genome.
Circos plots of TFAM ChIP-seq experiments: (1) 20F8A9
antibody ChIP-Seq; (2) 20G2C12 replicate 1; (3) 20G2C12
replicate 2; (4) 20G2C12 replicate 3. Read profiles are very
similar across replicates and antibodies.
(TIF)
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We tested whether self-organizing maps (SOMs) could be used to effectively integrate, visualize, and mine diverse ge-
nomics data types, including complex chromatin signatures. A fine-grained SOM was trained on 72 ChIP-seq histone
modifications and DNase-seq data sets from six biologically diverse cell lines studied by The ENCODE Project Consortium.
We mined the resulting SOM to identify chromatin signatures related to sequence-specific transcription factor occu-
pancy, sequence motif enrichment, and biological functions. To highlight clusters enriched for specific functions such as
transcriptional promoters or enhancers, we overlaid onto the map additional data sets not used during training, such as
ChIP-seq, RNA-seq, CAGE, and information on cis-acting regulatory modules from the literature. We used the SOM to
parse known transcriptional enhancers according to the cell-type-specific chromatin signature, and we further corrobo-
rated this pattern on the map by EP300 (also known as p300) occupancy. New candidate cell-type-specific enhancers were
identified for multiple ENCODE cell types in this way, along with new candidates for ubiquitous enhancer activity. An
interactive web interface was developed to allow users to visualize and custom-mine the ENCODE SOM. We conclude that
large SOMs trained on chromatin data from multiple cell types provide a powerful way to identify complex relationships
in genomic data at user-selected levels of granularity.

[Supplemental material is available for this article.]

Sequence-based functional genomics assays are generating vast

amounts of data that map the occupancy of specific transcription

factors, the chemical status (such as acetylation and methylation),

and positions of chromatin components such as core histones, the

loading of RNA polymerases, and domains of DNase I hypersen-

sitivity across the human genome at high resolution (Barski et al.

2007; Johnson et al. 2007; Mortazavi et al. 2008; Hesselberth et al.

2009; for review, see Pepke et al. 2009). Such measurements are

now being made for a myriad of cell types, states, and tissues by

individual laboratories and by large consortia such as ENCODE

and the Epigenome Roadmap (Bernstein et al. 2010; The ENCODE

Project Consortium 2012). This wealth of data contains rich, com-

plex, combinatoric information about the inputs and outputs of

gene regulatory networks (GRNs) that define each cell type and state.

However, it is not yet easy to extract and distill biologically mean-

ingful relationships, especially not on the multiple scales that range

from broad global relationships to fine-grained ones that affect small

groups of similarly behaving genes or subgenic regulatory elements.

Numerous prior studies have focused on understanding the

relationship between an increasingly complex histone modifica-

tion ‘‘code’’ and the activity state of DNA elements, such as tran-

scriptional enhancers, insulators, promoters, and more or less

vigorously transcribed regions for a given cell type or tissue (for

review, see Hon et al. 2009). Furthermore, apparent cross talk be-

tween context-dependent histone modifications suggests a com-

plex grammar (for review, see Lee et al. 2010). Pioneering analyses

focused on specific ad hoc combinations of modifications found in

the proximity of transcription start sites (TSS) or in selected distal

intergenic regions (Barski et al. 2007; Wang et al. 2008).

More recent approaches have been more general and agnos-

tic, dividing the entire genome systematically, either at regular

intervals or based on the data (i.e., ‘‘segmenting’’ the genome) and

then classifying the resulting genome segments (regions) into five

to 100 states of chromatin mark combinations (classes) by apply-

ing statistical or machine learning methods such as Hidden Markov
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Models (HMMs) or Dynamic Bayesian Networks (e.g., Ernst and

Kellis 2010; Hoffman et al. 2012). The resulting machine-derived

‘‘states’’ are then semi-manually annotated to relate them to func-

tions such as gene activation or repression. However, it is not clear

a priori if the limited numbers of states used in these analyses, partly

for ease of interpretation, fully or optimally capture the biological

richness in the data, especially for the much larger and more diverse

collections of data sets now being generated by projects such as the

ENCODE and NIH Roadmap Epigenomics Projects.

The self-organizing map (SOM) is an unsupervised machine-

learning method that was developed to cluster and visualize high-

dimensional data (for review, see Kohonen 2001). It projects high-

dimensional data onto a two-dimensional map composed of many

units, each of which can be regarded as a mini-cluster, defined by its

associated prototype vector of component weights. SOMs capture

similarity relationships present in the training data as map topology,

such that individual neighboring hex-units can subsequently be

clustered after training into ‘‘metaclusters’’ as appropriate. This is

analogous to the way biologists typically interact with RNA expres-

sion patterns and subpatterns in a classic two-way hierarchical clus-

tering (Eisen et al. 1998). Indeed, SOMs with modest map sizes of

less than 100 units have been used for more than a decade for clus-

tering gene expression data (Golub et al. 1999; Milone et al. 2010;

Newman and Cooper 2010; Spencer et al. 2011) or modest numbers

of other genomic data sets (Moorman et al. 2006; Suzuki et al. 2011).

While SOMs with small map sizes produce results that are generally

equivalent to K-means, SOMs with thousands of units on boundary-

less maps can show emergent behavior (Ultsch 1999). We reasoned

that large SOMs should be able to capture a greater variety of com-

bined chromatin mark patterns compared with methods that find

a relatively small number of chromatin states, and that the resulting

organization could be more readily visualized and ultimately mined

in an intuitive way. Specifically, we anticipated that a large SOM,

constructed from multiple genome-wide data types, collected across

biologically distinct ENCODE cell types, would begin to reveal pat-

terns of active, cell-type-specific transcriptional control elements

based on their associated chromatin signatures.

As a first test of these possibilities, the trained ENCODE

chromatin SOM presented here displayed distinct spatial organi-

zation that reveals how combinations of histone marks, DNase I

hypersensitivity, and RNA polymerase occupancy correlate with

gene features and activity, such as a relatively large supercluster of

transcription start sites (TSS) that are active in one or more cell

types, or a cluster of genes repressed in another cell type or types.

We show how additional ChIP-seq, RNA-seq, transcription factor

binding motifs, and other functional data can be placed on the

chromatin map to identify and interpret cell-type-specific regula-

tory elements and transcription start sites. We then hierarchically

cluster the SOM hex-units to explore global relationships of the

different data sets on the SOM. Gene Ontology (GO) analysis re-

veals distinct enrichments in individual, often neighboring, units

on the map related to cell-type-specific gene regulation. Finally, we

introduce an interactive web interface to facilitate further mining

of the ENCODE SOM and apply it to the analysis of cell-type-

specific EP300 (also known as p300)–enriched units.

Results

Chromatin SOM construction and overall organization

The workflow for building a chromatin-based SOM begins with

primary data mapping and genome segmentation and ends with

visualization and data mining (Fig. 1). Briefly, the first step is to

computationally break the genome into ‘‘segments’’ based on the

data. The goal of segmentation is to define, across the entire ge-

nome, DNA segments that share the presence and absence of

marks in the input data. To coordinate our results with other ENCODE

Project Consortium work (The ENCODE Project Consortium

2012), we used a specific genome segmentation generated on 84

preselected data sets of eight histone modifications, RNA poly-

merase II, and CTCF from ChIP-seq, ChIP input control, and three

open chromatin assays across six cell types using a ‘‘stacked’’ seg-

mentation generated with ChromHMM (Ernst and Kellis 2010).

We then constructed a training matrix consisting of the signal

density for 72 of these data sets for each of the 1.5 million indi-

vidual genome segments using only one of the DNase-seq assays

to represent open chromatin. The Methods and Supplemental

Figure S1 describe how the stacked segmentation differs from other

segmentations of the same data.

We used the resulting matrix of 1.5 million 72-dimensional

data vectors to train a SOM with map size of 30 rows of 45 columns

(1350 units), and selected the best out of 10 maps based on the

lowest quantization error (Methods) (Supplemental Fig. S2). The

size of the map was selected to allow us to recover at least a thou-

sand distinct states, if they were present in the data. In a uniformly

distributed untrained map, we would expect 1170 segments/unit

and 2.2 Mb/unit, on average. This map is a toroid, meaning that

the top units on the map are seamlessly connected to the bottom

units, and that the same applies to the leftmost and rightmost

units (Supplemental Fig. S3). We chose the toroid form because it

has no boundaries, which should prevent it from compressing

clusters into map corners. To display a toroid map in two dimen-

sions, we ‘‘slice it open,’’ and some clusters are therefore visually

split; that is, they ‘‘wrap around’’ the top edge to the bottom and

from the left edge to the right, as indicated by the arrows (Sup-

plemental Fig. S3). All assignments of segments to SOM hex-

units are available for this SOM as a single bed file (Supplemental

Table S1).

The distribution of DNA segments and nucleotides on the

untrained map was without pattern and relatively even, while the

trained map was much more uneven (Figs. 1, 2). This is expected

because the segments on the trained map have been organized into

clusters that contain differing segment numbers and nucleotide

densities. For example, many of the larger DNA segments had little

to no signal for any data set, and they were sequestered into a rel-

atively small fraction of the SOM; on this 30-by-45 map, 48 con-

tiguous units (3.5% of all units) captured 38% of the entire genome

sequence, and is shown as high nucleotide density and segment

count in Figure 2, A and B. The remainder of this map is dedicated

to more finely parsing segments that have some signal in at least

one of the training data sets. These overall organizational proper-

ties were not specific to this particular instance of the SOM nor to

the ENCODE chromatin data. The top-scoring ENCODE SOM was

very similar to the next nine best-scoring SOMs, each trained in-

dependently on the same input data, but from different random

initializations. Specifically, we found that, for all of the units and

regions of the SOM discussed below, segments within the same

unit were clustered on the other nine maps within the same unit or

adjoining units >80% of the time (Fig. 2C). We further analyzed the

effect of leaving individual data sets out by retraining SOMs with

72 combinations of 71 data sets each and repeating the repro-

ducibility analysis. We found that map reproducibility was robust

to the removal of any one of 29 data sets (listed in Supplemental

Table S2). While no single group of data sets was completely re-
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Figure 1. Training the self-organizing map and general overview of data analysis. The genome is first segmented based on the signal density of input
data sets. Any segmentation approach can be applied; in this case, the ChromHMM-derived segmentation in the primary publications by The ENCODE
Project Consortium was used. The signal density is calculated for each segment and each data set, resulting in an input matrix of M 3 N dimensions,
where M is the number of segments and N the number of data sets. The SOM is then initialized randomly from the input matrix, and trained. Additional
data sets, not used for training, can then be mapped to the SOM, and these mappings and the distribution of segments on the trained SOM can be mined
for interesting biological relationships.
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dundant, we found that three groups of data sets (H3K9ac,

H3K36me3, and Control) were redundant in four out of six cell

types, whereas another group of data sets (RNA Pol II, DNase I, and

H3K4me3) was redundant in only one of six cell lines. Inter-

estingly, the removal of these apparently redundant data sets still

affected the reproducibility of a distinct subset of units, suggesting

that they still contributed to the organization of the SOM in re-

stricted regions of the map. These results argue that our SOM is

robust and stable, and that segments with similar signatures are

stably located near each other on the map, even though such

segments do not always fall into a single hex-unit on indepen-

dently trained SOMs. Local differences of the latter kind are ex-

pected for a nondeterministic method and can be discriminated

from major differences, as shown below.

The SOM displayed several distinctive, very-low-segment-

count ‘‘boundaries,’’ usually just one unit wide and with as few as

30 segments/unit (Fig. 2A,B). These are, in effect, boundary units

that separate clusters located on either side and that are charac-

terized by distinct mark profiles. For example, H3K4me3-enriched

segments are segregated from CTCF-associated ones in an adjacent

map region (Supplemental Fig. S4).

We next explored where transcription start sites (TSS) map

on the ENCODE SOM. No explicit information on annotated TSSs

was used in building this SOM. Our expectations were that active

TSSs would share a set of features present in the training data, in-

cluding high DNase I hypersensitivity, RNA polymerase II occu-

pancy (in varying intensities), H3K9ac, and H3K4me3 marks. This

predicts that active TSSs would generally cluster together some-

Figure 2. Map organization. (A) The segment count distribution over the map is uneven. While the average number of segments per unit is 1170,
individual units range from 30 to 9334 segments. Note the distinct 1-unit-wide boundaries that contain very few segments separating denser regions.
(B) The nucleotide distribution reflects the segment count, with the units with the most segments also containing the most nucleotides. These segments
are also larger, thus accounting for the large portion of the genome that has little to no signal. (C ) Reproducibility of clustering of two segments in the same
unit or adjoining units as described in the text. (D) TSS-centric organization of active proximal promoters. The unit densities of points �2 kb,�1 kb, 0 bp,
+1 kb, and +2 kb of GENCODE 7 TSS show the distinct organization of active promoters driven primarily by a common set of genes expressed in more than
one cell type.
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where on the SOM. In contrast, inactive TSSs were expected to lack

these marks and, additionally, they might or might not show

a repressive mark signature. We therefore expected inactive TSSs to

occur elsewhere on the map, sequestered into one or a few clusters,

depending on whether they have no other data from the training

set or contain repressive mark data. A further expectation was that

the SOM would detect and subcluster segments according to the

intensity of their active-TSS signatures, since we had not reduced

the data to simple present–absent calls for signal, but had retained

all the quantitative information in the primary data. Finally, we

expected that the SOM would subcluster active TSSs according to

the cell type or combinations of types in which they were active.

All of the above expectations were met. A prominent region

of the map, having relatively low segment and nucleotide den-

sity, showed the highest fractional enrichment in the number

of GENCODE 7 (Harrow et al. 2012) TSS, with 27 units passing

a threshold of 0.8 TSS/segment (Fig. 2D). Note that each TSS in this

analysis was mapped as a single nucleotide, and was therefore

assigned to only one DNA segment, even if there were several

neighboring segments with very similar histone mark data. For this

reason, we do not expect every DNA segment with an active TSS

histone mark signature to score positive in this tally. As expected,

the prominent TSS domain in the lower-right quadrant of the SOM

corresponded with a domain of maximal DNase I hypersensitivity,

as illustrated by comparing this with H1-hESC DNase-seq data

(cf. Fig. 1 DNase I panels with Fig. 2D).

We next asked how DNA sequences located at varying dis-

tances from the nearest active TSS are organized on the map and

found that 35 units are enriched in segments within 2 kb of these

TSSs. We expected that near an active TSS, the chromatin signature

would be very similar to the TSS point nucleotide for many seg-

ments, but that some segments would now display ‘‘mixed’’ chro-

matin signatures that retain some qualities of a pure TSS and add

some characteristics of nearby chromatin. Such a ‘‘neighborhood’’

effect reflects properties of the original ChromHMM segmentation

process as well as the biology of the histone mark pattern in each

input cell type. As the distance from the TSS increases into the gene

body or into the upstream promoter region, the histone signatures

changed. On average, the distinct enrichments of single nucleo-

tides that are located at �2 kb, �1 kb, +1 kb, and +2 kb from the

TSSs in neighboring units demonstrates that the map has spatially

clustered active promoters and their immediate upstream and

downstream regions (Fig. 2D).

The prototype vectors for the units in the active-TSSs region

revealed that most DNA segments at the center of this region possess

signatures of expression in more than one cell type, although some

adjacent clusters are cell-type-specific. When examined for RNA

expression pattern and GO terms, the shared ones were house-

keeping and other genes common to the cell types in this study,

as expected. Investigating even more closely, we observed that in-

dividual units parse the levels of associated chromatin marks (e.g.,

high vs. medium vs. low H3K4me3) and the magnitude of the RNA

polymerase signal, in different data sets and cell types. As discussed

below, a user can drill even further down to select and extract DNA

segments from hex-units with particular signature characteristics

by using the SOM viewer and its associated DNA segment database.

Inspection of the SOM also reveals that multiple histone

modification marks, previously shown to be associated with active

transcription or active repression, drove the organization of the

majority of the map (e.g., H3K4 mono-, di-, and tri-methylation,

and H3K27me3 for activation and repression, respectively). This

emphasis was expected, as several histone marks associated with

active transcription tend to produce strong ChIP signals that are

localized over relatively short DNA regions. The information-rich

map regions typically show distinctive quantitative and qualita-

tive combinations of marks. Most component planes, such as the

ones shown for RNA polymerase II or H3K4me3 occupancy in the

cell line GM12878 (Supplemental Fig. S4), form a single, internally

connected cluster for their respective signal densities on the toroid.

However, several other marks such as H3K4me2 and H3K27me3

have more than one distinct cluster on the map. This pattern

suggests that they are found together with at least one other

different additional chromatin profiles(s), or that regions rich in

these marks are distinctive for individual cell types, or both (all

component weights are displayed in Supplemental Figs. S5–S10). We

return to dissecting the more complex patterns below.

Interactive SOM viewer for visualization and mining

We created an interactive JavaScript web-based SOM viewer with

an associated map segment database to facilitate these explora-

tions (http://woldlab.caltech.edu/ENCODESOM). It allows users

to visualize and compare units on the map with respect to any

input data set or to additional data types (see below), to find

properties of different regions of the map, such as Gene Ontology

enrichments, and to mine the segments in a given hex-unit or

cluster. The interface for version 1.0 consists of five tabs: Training

Data, TSS, GO, Other Data, and Clusters, which correspond to the

results in this manuscript. A tool for highlighting groups of hex-

units in one view and then seeing that outline on any subsequent

view aids in evaluating the relatedness of one distribution (RNA

polymerase II, for example) with another (TSS annotation or CAGE

tags). Users can click on individual units and find the associated

segments, genes, and GO-enriched genes. They can also select their

own set of units and flag them across the different views of the

data. This allows users, for example, to highlight a cluster of in-

terest in the Cluster tab and see the clustering reproducibility of

those highlighted units in the Other tab.

By using the viewer to ask how data from the input data sets

are clustered and how those clusters relate to each other, one im-

mediately sees the overlaps of units high in DNase I hypersensi-

tivity, H3K9ac, H3K27ac, H3K4me2, and H3K4me3. Had we not

known prior to this study that these chromatin signatures are af-

filiated with active promoters, the SOM would have allowed us to

readily discover these relationships. Even knowing these general

relationships, the SOM allows us to mine for fine structure that

includes more complicated profiles of cell type specificity.

In contrast, we detected little overall change in H4K20me1

across the cell types and little affiliation of this mark with other

signals, which leads segments high in those marks to cluster in

a single location (upper-left quadrant of the map, Supplemental

Fig. S11). Finally, we saw that the RNA Pol II component plane

enrichments showed a gradient of RNA Pol II signal centered on

a single unit that has the highest signal, which emphasizes that the

SOM is clustering on the presence of the signal and also on its

intensity. Units immediately around it have lower RNA Pol II in-

tensity, and a user could then mine these, asking what additional

information (possibly other marks and/or cell-type patterns) are

distinguishing them from the single peak RNA Pol II unit.

Overlaying other ChIP-seq and functional data to find
additional relationships

The SOM can also be used to test predictions, mine associations,

and map relationships for data sets that were not used to train the
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SOM. We began by exploring evidence for cell-type-specific cis-

regulatory modules (CRMs) in the erythroid/monocyte lineage

(K562) and in embryonic stem cells (H1-hESC) (Fig. 3). The tran-

scription factors GATA2 and SPI1 (also known as PU.1) are im-

portant in erythroid differentiation, while POU5F1 (also known as

OCT4) and NANOG are critical for defining embryonic stem cells.

ENCODE ChIP-seq occupancy data for each factor was mapped

onto the SOM (Fig. 3E–J). Occupancy for each factor was con-

centrated in two cell-type-specific clusters, one in the upper-left

quadrant, and the other in the lower right (wrapping around to the

top right, due to the continuous structure of the map). We then

asked how these clusters relate to each other within each cell type,

across cell types, and with underlying histone-mark signatures.

In K562 and H1-hESC cells, the upper-left quadrant of the

SOM was prominent for the concentration of histone marks

H3K27ac and H3K4me1, which have been affiliated with active

enhancers and some promoters in previous studies. When H3K4me1

domains are outlined for K562 and H1-hESC (hexagon and tri-

angle, respectively), prominent cell-type specificity is shown by

the fact that they are largely separated (Fig. 3C,D). However, there

is also a small domain of overlap, reflecting a few units in which

similar chromatin signatures exist in both cell types.

We next asked how SOM domains of enhancer-associated

histone marks are related to transcription factor occupancy data.

We used well-studied factors that regulate hematopoetic target

genes (GATA2 and SPI1) in K562 cells, and factors that regulate

pluripotence target genes (NANOG and OCT4) in H1-hESC cells.

When we overlaid the H3K4me1 chromatin outlines onto these

individual factor ChIP-seq data views (Fig. 3E–H), the factors

clearly coclustered with the enhancer histone marks in a cell-type-

appropriate manner.

These transcription factors, plus PAX5 and SPI1 in the cell line

GM12878 (Supplemental Fig. S12), also display some concentra-

tion of ChIP-seq signal in the lower-right portion of the map,

where active TSS and their adjacent promoters are concentrated

(Fig. 2D) and where H3K4me3, a mark of active and poised pro-

moters, is strongly concentrated (Fig. 3A,B). This active TSS and

peri-TSS domain of the SOM had especially prominent signals for

SPI1 and NANOG, suggesting that these factors are associated by

direct binding at or near promoters, or that they are otherwise

physically engaged with promoter/TSS bound proteins (i.e., through

protein:protein interactions that are recovered in ChIP). It is no-

table that there is a much weaker concentration of GATA2 in this

SOM region. Taken at face value, this suggests that GATA2 is

mainly associated with nonpromoter CRMs rather than with

the peri-TSS domains, and that SPI1 has the opposite preference

in K562.

Another expectation is that functionally active transcrip-

tion factor occupancy will be marked with enhancer signatures

(H3K4me1, H3K4me2, H3K27AC, and DNase I hypersensitivity).

Active transcription factor occupancy is expected to be a subset

of all sites of occupancy that should overlap with independently

validated cis-regulatory modules (CRMs). We therefore asked where

known CRMs are located on the SOM by taking advantage of a

manually curated set of 118 erythroid CRMs. This set contains

both distant enhancers and promoters. The CRMs localized prom-

inently to the enhancer- and TSS-proximate zones of the map in

K562 cells (Fig. 3K), with those in the enhancer area showing clear

preference for the GATA2-enriched cluster of units (Fig. 3E). As

would be predicted, the erythroid CRM map units are also enriched

for K562-specific active enhancer histone marks and EP300 occu-

pancy (Fig. 3C,I) that do not overlap with H1-hESC-specific en-

hancer marks and EP300 (Fig. 3D,J). A single hex-unit containing

979 genomic segments was most prominent for known erythroid

CRMs, and we investigated it further (Fig. 3M,N). Remarkably, this

single unit contained 11% of all high-confidence EP300 ChIP-seq

peaks in the genome for K562 (P-value < 10�100), and these

overlapped strongly with segments also occupied by GATA2. The

contents of this unit can now be further mined and tested to learn

whether features lacking EP300 occupancy nevertheless contain

active enhancers.

Functional CRMs are also expected to contain conserved se-

quence motifs that are targets for direct DNA binding. We used

motifs curated from the literature for PAX5 and GATA2, along with

closely related ones derived from ChIP-seq data, as defined by The

ENCODE Project Consortium (The ENCODE Project Consortium

2012). We used phastCons conservation scores (Siepel et al. 2005)

to compile a set of conserved motifs for each factor. We then

mapped the locations of conserved instances of these motifs onto

the SOM. As many transcription factor motifs in eukaryotes are

short, they can occur within conserved domains for reasons other

than being part of CRMs (i.e., being located with the coding por-

tion of genes). Other instances of the motif are expected to be

conserved on account of functioning in cell types or states other

than this one. For these reasons, a dispersed map is expected.

Nevertheless, NANOG motifs (Fig. 3L) and GATA motifs exhibited

clear clustering, concentrated around the stem-cell-specific and

erythroid-specific enhancer clusters of units.

Although we are herein primarily concerned with analyzing

the ChromHMM-derived segmentation, we have also tested the

behavior of the SOM using a naı̈ve, 200-bp segmentation, as de-

scribed in the Methods. We found that the map shows anisotropy,

with enhancer-like and repressed regions more likely to cocluster,

but with significant differences in some of the promoter regions.

We conclude that the details of the segmentation do matter to

a certain extent and that the particulars of each segmentation will

interact differently in a way that depends on the data itself.

Taken together, these observations demonstrate the ability of

a multi-cell chromatin SOM to concentrate and reveal cell-type-

specific regulatory regions, and to allow users to visualize impor-

tant patterns and relationships between transcription factor

occupancy, candidate binding sites, chromatin signatures, and

curated functional elements. Other relationships not shown in

this set, but strongly visible in the data, include DNase I hyper-

sensitivity and RNA Pol II occupancy. The ENCODE SOM-viewer

allows users to explore these relationships by selecting views and

marking the boundaries of one or more areas of interest based on

more than 96 data sets.

SOM metaclusters capture regional and global properties
of histone mark combinations

In addition to fine-grained unit-level clustering of relatively small

numbers of segments into each unit done by the SOM itself, we can

further cluster the unit prototype vectors across the entire map

into metaclusters. We expect this level of analysis to be useful for

further probing global genome-scale organization captured by the

structure of the SOM. This clustering emphasizes more complex

combinatoric chromatin signatures and thus augments the way we

have already observed groups of units that cluster together based

on the component plane of one training set (e.g., H3K4me1).

The full phylogenetic ordering of all units (Fig. 4A) is fine-

grained, and it can be interpreted by a user visually in much the

same manner as a phylogenetic ordering of genes. We also per-
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Figure 3. (Legend on next page)
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formed an automated clustering to produce a nonsupervised set of

boundaries for metaclusters of SOM units that are more similar to

each other (based on their unit vector) than they are to other SOM

units (see Methods). As with phylogenetic clustering of a single

measurement, such as gene expression, we expect the phyloge-

netic ordering to be composed of graded similarity groups, rather

than homogeneous and starkly bounded clusters. This is what we

observed when we surveyed a stepped series of similarity thresh-

olds versus metacluster number. The internal data structure iden-

tified several natural discontinuities as a function of clustering

threshold, and we then selected three of these for full clusterings

(Supplemental Fig. S13) to provide users with choices. Prominent

driving relationships for the 126 cluster set that we found to be the

most useful in our mining are shown in Figure 4B. Finally, we show

the specific composition of each cluster for the 126-cluster in-

stance (Supplemental Fig. S14).

The metaclusters showed enrichment patterns that are either

cell-type-specific or common across multiple cell types. For ex-

ample, cluster 1 contains 12 units that have high H3K36me3, RNA

Pol II, and H4K20me1 in HUVEC cells (Fig. 4C,D). Different units

within cluster 1 differ from each other based on which additional

data sets are enriched in that unit. For example, two of the 12 units

also show an additional enrichment for H3K36me3 and RNA Pol II

in H1-hESC cells. The metaclustering captured features described

in earlier sections, such as the active TSS region, and the K562-

specific TSS with SPI1 region that corresponds to specific

metaclusters, respectively.

Overall, the marks generally associated with active transcrip-

tion, either at promoters or distant transcriptional enhancers, such

as H4K4me1/2/3, H3K9ac, H3K27ac, and DNase I hypersensitivity,

clustered in a cell-type-specific manner, whereas H3K36me3 and

H4K20me1 clustered together by data type (Fig. 4E). The repressive

mark H3K27me3 component planes also clustered together to

form an outgroup. The SOM shows that while there is a strong

common core of units shared by all six CTCF component planes,

they each have more specific enriched units at the periphery.

Whether these reflect cell-type-specific CTCF binding or have an

alternative explanation such as changed chromatin marks near

consistently CTCF-occupied sites is uncertain, and both could be

at work. Interestingly, CTCF and RNA Pol II both displayed some

clustering by cell type, and some that joined with other active

marks from the same cell type.

Some Gene Ontology terms have distinctive chromatin mark
signatures

We asked if any Gene Ontology (GO) functional terms are enriched

in individual SOM units. Two hundred and twenty-eight GO terms

displayed statistically significant enrichment following a Bonferroni

correction (P-value < 10�10) at the unit level (Supplemental Table

S3). As might be expected, these included enrichments in GO

terms that correspond to actively transcribed genes, or to actively

repressed genes (for example, neuron-specific genes in non-

neuronal cells). Most GO terms (164) were enriched in <1% of the

map (13 units or less), and some of these are very specific. For

example, ‘‘extracellular matrix’’ is enriched in five neighboring

units (Fig. 5), and further inspection suggested that this enrich-

ment is driven by genes that are much more highly expressed in

HUVEC than in other cells. The regional GO enrichments typically

correlated with metacluster boundaries of the SOM. In the case

of ‘‘extracellular matrix’’ (Fig. 5A), four of the five units are part of

cluster 1 (Fig. 4C). Another 30 GO terms were enriched in >5% of

the map units, and these were typified by broad categories relating

to the housekeeping functions of the cell such as ‘‘cell cycle.’’ These

GO terms are particularly associated with units that are high in

H3K36me3 in one or more cell lines. Thirty-four GO terms were

enriched in 1%–5% of the map, and these were typically much

more specific, developmental terms in units with particular his-

tone mark combinations. The enrichment in specific units for

‘‘GTPase activator activity,’’ for example, is driven by gene families

that show similar signal profiles across cell lines; the top two hex-

units correspond to segments that have a high ratio of H3K4me1

over H3K4me2 in HUVECs that are candidate HUVEC-specific

regulatory elements. Similarly, ‘‘sequence-specific transcription

factor activity’’ (Fig. 5B) is enriched primarily in units that have

cell-type-specific H3K27me3, whether in all cell types or in only

some, such as H1-hESC cells and HUVEC. The two units with the

most enrichment in Figure 5B have many additional associated

developmental GO terms (Fig. 5C) and differ based on the presence

of H3K27me3 signal in embryonic stem (ES) cells for segments in

both units, but only H3K27me3 signal in HUVEC cells for one unit.

This fine parsing by the SOM is nicely illustrated within the HOXD

cluster, where the anterior and posterior parts of the cluster are

split between these two units (Fig. 5D).

EP300 ChIP-seq overlay and cell-type-specific candidate
enhancer segments

We extended our analysis of ENCODE EP300 data sets from K562

by including GM12878, H1-hESC, and HepG2 cells to identify 45

cell-type-specific and common EP300-high units, accounting for

1.4% of the genome and 1.9% of the segments. We found that

each cell type had its own specific set of units with high EP300

occupancy, whereas only a few units showed EP300 signal in more

than two cell types (Fig. 6). These common EP300 units correspond

to the common TSS region, whereas the cell-type-specific clusters

are primarily more than 2 kb from the TSSs (Fig. 2D). We showed

earlier (Fig. 3) that we found K562 EP300 ChIP-seq signal in

Figure 3. Organization of genomic functional elements on the SOM. A triangle, hexagon, and ellipse are superimposed to allow comparison between
maps. (A,B) H3K4me3 signal density in K562 and H1-hESC. (C ) The hexagon encompasses the K562 units high in H3K4me1. (D) The triangle and hexagon
capture the two disjoint regions that are high in H3K4me1 in H1-hESC. (E) GATA2 signal, which was not used in the training, is high in a subset of the
H3K4me10high units in C. (F) Similarly, POU5F1 is primarily found overlapping the H3K4me1 high units. (G,H) In contrast to GATA2 and POU5F1, SPI1
and NANOG are found primarily in units that are high in H3K4me3 (to the lower right of the ellipse) with less signal found at H3K4me1 high units. (I,J)
EP300 signal (also not used in the training) is found either primarily at enhancers in K562, but promoters in H1-hESC. (K) More than one-third of known
erythroid CRMs cluster into a single unit with coordinates (8, 6). (L) Conserved NANOG motifs (motif derived from NANOG ChIP-seq data). ChIP-seq
occupancy and motif occurrences were defined by the uniform ENCODE ChIP-seq binding site and motif calling pipelines. Conservation was assessed
using the 46-way vertebrate phastCons scores for hg19 downloaded from the UCSC Genome Browser. The scores for each unit in the motif maps were
normalized for the total number of base pairs in the unit to avoid the map being dominated by units with very high number of base pairs in them. (M) Ten
percent of EP300 ChIP-seq calls and 3.2% of GATA2 calls in K562 fall within the top erythroid-CRM enriched unit (8, 6). (N) Sixty-six percent of the EP300
peaks in unit (8, 6) overlap a GATA2 peak.

ENCODE SOM

Genome Research 2143
www.genome.org

590



Figure 4. Metaclustering of the SOM. (A) Hierarchical clustering of the ranked unit weights (rows) and components (columns) shows both the large-
scale and fine structure of the SOM unit ranked weights (yellow, high enrichment rank; blue, low enrichment rank). (B) Metaclustering of the SOM into
;120 clusters based on a consistency threshold of 2.6. (C ) Twelve units make up metacluster 1. (D) Ranked component weights of metacluster 1. All
12 units share enrichment in HUVEC RNA Pol II, H3K36me3, and H4K20me1. Individual units show additional distinct enrichments, which distinguish
them from one another. (E) Clustering of the component columns of Figure 5A, showing the relationships of the data sets to one another.
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a cluster of units in the upper-left quadrant of the map that did not

correspond to TSSs, but that did overlap with validated erythroid

CRMs. These units are high in H3K4me1 and H3K27ac that are

specific to each cell type. We then asked whether the segments

within these units show functional enrichment. For example,

three of the GM12878-specific units are enriched with the GO

term ‘‘immune response.’’ We can easily extend the analysis of the

SOM by pooling segments from multiple units and analyzing them

using tools such as GREAT (McLean et al. 2010) that associate cis-

regulatory regions with genes for enrichment in many functional

annotations besides GO. Applying GREAT to pooled segments

from the cell-specific enriched EP300 units returned a wealth of

enriched functional annotations that are predictably associated

with the cell-type tissue of origin (Fig. 6). We illustrate this by

showing enrichments in Pathway annotations for each cell type.

Whereas the units with EP300 signal in more than two cell types

are enriched in housekeeping pathways, the GM12878 units show

the most enrichment in ‘‘immune system’’ and ‘‘interferon sig-

naling,’’ which nicely captures the biology of the cells. This func-

tional enrichment of neighboring units on the map suggests

richness of the SOM.

Discussion
Rapidly growing bodies of functional genomics data require

methods to integrate and mine large numbers of data sets of mul-

tiple kinds. We constructed a self-organized map (SOM) of ENCODE

chromatin data from 72 ChIP-seq and DNase-seq data sets from six

ENCODE cell lines. Subsequent analyses and mining were facili-

tated by an interactive web-based SOM-viewer (http://woldlab.

caltech.edu/ENCODESOM), which allows users to extend the

analysis and extract groups of DNA segments that have charac-

teristics of interest for further computational or wet-bench analy-

sis. While most prior studies of global chromatin data have focused

on a specific cell type or tissue, the ENCODE collection allowed us

to explore relationships among multiple cell types in a single co-

herent analysis. By projecting high-dimensional chromatin data

onto the two-dimensional SOM, we identified clusters of units

Figure 5. Specific patterns of GO enrichment over the SOM. (A) Specific GO terms such as ‘‘extracellular matrix’’ are highly enriched in portions of the
map because of activity in one or more cell types. (B) Other GO terms are enriched because of their pattern of repression over the map. (C ) The map has
overall highly uneven distribution of GO enrichments away from the regions with the highest nucleotide density. (D) An example of the different patterns
of H3K27me3 distribution across cell lines captured by neighboring units in the map in the HOXD cluster.
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with chromatin mark combinations corresponding to promoter

activity and transcriptional enhancer activity. These were further

parsed into smaller clusters that were either cell-type-specific or

more ubiquitous. By overlaying data for specific transcription

factor binding, enhancer activity, and transcription start sites onto

the SOM, we show that the user can discover relationships and

mine corresponding genome segments of interest. This was dem-

onstrated for known and candidate erythroid CRMs (Fig. 3). To our

knowledge, this is the first use of self-organizing maps for multi-

cell data integration and mining. Although we used a specific,

‘‘stacked’’ genome segmentation generated by ChromHMM, the

overall approach can be applied to any segmentation. As discussed

below, we expect that the choice of segmentation strategy and the

mixture and quality of data sets used in training will affect the

resulting SOM.

We mined the SOM to address specific classes of questions.

First, individual training data sets revealed clusters that are cell-

type-specific or shared for individual marks. The same was true for

certain shared sets of marks. Second, units of the SOM were hier-

archically clustered based on their prototype vectors, to investigate

how multiple mark densities interact with each other. Third, ad-

ditional data not used in training were projected onto the SOM to

map their enrichment in one or more areas, and to relate the un-

derlying chromatin characteristics to map units and clusters where

other specific data features are concentrated. In this way, we

investigated how individual sequence-specific regulatory factor

occupancy for GATA2, SPI1, OCT4, and NANOG, their DNA

binding motifs, and the EP300 coactivator are related to each other

and to underlying chromatin signatures. Fourth, we mined the

SOM for specific functional classes using transcription start sites

(TSSs) as the best-defined test case, followed by a curated set of

CRMs. The SOM segregated TSSs that are commonly expressed in

multiple cell types from the TSSs with cell-type-specific activity

into subclusters. Finally, we found that some individual GO terms

are preferentially affiliated with different chromatin signatures.

To facilitate exploration of the ENCODE SOM by users, we pro-

vide a web interface SOM viewer that allows users to explore all

the data sets mapped here and to mine out the DNA segment

coordinates in any hex-cell or group of cells. We expect this web

interface to be the primary means by which users interact with

the SOM results.

At the highest level, most observations agreed with conclu-

sions of previous studies using other methods to integrate chro-

matin data such as hidden Markov models, which were applied to

these ENCODE data (The ENCODE Project Consortium 2012). The

SOM, however, provided an additional level of granularity that

is not accommodated by a relatively small number of states. The

SOM also lent itself well to visualizing relationships between the

chromatin data and additional data of any type that can be mapped

to specific points or intervals on the genome (and hence to the

DNA segments in the map). The fine structure of the SOM allowed

us to identify distinct combinations of marks and mark intensities

shared by only a small number of genomic regions, and did so

without any a priori decision about the number of states. For ex-

ample, the SOM easily separated the variety of different types of

TSS into a major cluster of active TSSs versus inactive ones. The

active TSSs were internally more finely parsed, based on levels of

H3K4me3, as well as distinct cell-type-specific units.

A summary analysis of new candidate transcriptional en-

hancers is shown in Figure 6. This aggregate analysis is the same

one performed for K562 cells (Fig. 3) and uses EP300 signal from

each cell type to further concentrate and focus on units active in

individual cell types, as well as units that correspond to activity in

multiple cell types. Just two units displayed activity in all partici-

pating cell types, while a surrounding set of units is variously

multitype. Analysis of these units by GREAT showed that those

active in all cell types are enriched for well-known housekeeping

functions such as protein synthesis. The cell-type-specific units

were enriched according to cell type (B lymphocyte, hepatocyte,

embryonic stem cell), just as K562 showed erythroid and mono-

cyte categories.

While much of the map organization was driven by histone

marks associated with active promoters and enhancers, we point

out that this is partly the result of the histone marks used in the

ENCODE study for genome segmentation and SOM training. Our

input histone marks to the ENCODE SOM clearly favored a fine

parsing of active regions over passive ones, and important re-

pressive marks such as H3K9me3 were not included. This makes

the ability of this SOM to parse differences in H3K27me3 in differ-

ent cell lines quite remarkable. Overall, the ENCODE integration

efforts showed that a relatively small number of HMM-derived

states can capture the broad landscape of active and repressed re-

gions in the ENCODE cell lines (The ENCODE Project Consortium

2012), while the SOM detailed here does this and also gives the

biologist access to a wealth of increased resolution and specificity

that we coupled with visualization and mining tools. We antici-

Figure 6. EP300 enrichment highlights cell-type-specific enrichments.
ChIP-seq signals of the transcriptional coactivator EP300 in four ENCODE
cell types were overlaid on the SOM. While some of the signal is common
to multiple/all cell types (orange/brown), each EP300 ChIP-seq data set
highlights a different set of adjoining units on the map that is specifically
enriched based on the cell type. These cell-type-specific units are also high
in H3K4me1 and H3K27ac, which suggest that they hold cell-type-spe-
cific enhancers. Segments from each of the colored clusters were pooled
and analyzed for functional enrichment with GREAT such as pathways
(top three terms per cluster shown). While the units common to multiple
cell types are enriched in genes involved in housekeeping pathways, those
in the cell-type-specific regions are enriched in pathways that are known
to be relevant to the biology of those cells.
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pate that this kind of analysis will be even more useful as the

number of cell types and diversity of chromatin marks increase in

future studies, making the challenge of combinatoric signatures

and their functional correlates greater. In a similar way, as tran-

scription factor location data for many more factors accumulates,

the SOM approach and tools developed here will enable end users

to better identify and stratify the functionally important and in-

teresting minority of occupied sites that are active in various sub-

sets of cell types.

Methods

Rationale for training matrix design
The joint analysis of multiple cell types presents additional chal-
lenges beyond the analysis of multiple data sets in a single cell line.
If each cell line is analyzed separately, one is left with the difficult
task of trying to reconcile the states found for each with different
definitions, before proceeding to analyze state changes between
cell lines. Alternatively, one can ‘‘concatenate’’ the data from
multiple cell lines (Ernst et al. 2011). Concatenation has the great
advantage that the states defined will be consistent across cell
lines, but this approach still requires intensive post-processing to
extract the segments that change states across cell lines; assuming
that a concatenated HMM had seven states in six cell lines, any
given genomic segment could be in one of 76 = 117,649 combi-
nations of states. Another solution, which we implement here, is
to train on all data jointly as a ‘‘stack’’ to learn a single set of states
with a single set of genomic boundaries. In this case, one is then
left only with the problem of how to interpret the states, whose
definitions are virtually certain to involve nonintuitive, complex
combinations of marks in one or more cell types and requires
additional methods to mine the results in a systematic and in-
tuitive way.

‘‘Stacked’’ training matrix implementation

To train the SOM, we first built a training matrix composed of
signal densities of all 72 data sets (columns) over all segments
(rows). The segments were taken from a ChromHMM segmenta-
tion of a ‘‘stacked’’ training set of 84 data sets (ChIP-seq for eight
histone modifications, RNA Pol II, and CTCF; and three open
chromatin data sets for each of six cell lines) using 25 states. We set
aside two of the open chromatin data sets to avoid overtraining on
open chromatin, and only used the UW DNase-seq data to repre-
sent open chromatin as the three experiments are effectively re-
dundant. We converted uniformly processed signal densities of the
remaining 72 data sets used for the SOM training into RPKM (reads
per kilobase per million reads) for every segment on each training
data set using the ERANGE 3.3 getDensity.py script. The training
matrix was built using the ERANGE 3.3 buildMatrix.sh script, with
a maximum threshold of 100 RPKM and the rescale option.

Training the SOM

The self-organizing maps were trained and analyzed using ERANGE
v3.3. For every SOM instance, we shuffled the training set, ran-
domly initialized the toroid map of hexagonal units from the
training set, and incrementally trained a SOM with map size 30 by
45 using 5 million iterations, which is equivalent to going through
the entire data set 3.3 times, starting with an update bubble radius
of 15 and a learning rate of 0.2, both of which decreased expo-
nentially over the course of training. Each segment was assigned to
its best matching unit based on the Euclidean distance. We selected
for analysis the best of 10 trials based on the lowest quantization

error, which is defined as the average Euclidean distance of all
segments to the prototype vector of their assigned unit. The other
nine instances were used to evaluate the reproducibility of the map
by analyzing the fraction of segments from each unit of our best
map that resided in the same unit or adjoining units in the other
nine map instances.

While we decided to use the entire training matrix for training
for the SOM discussed in the main text, the software supports
training on the training set and scoring on a distinct test set. In
particular, we trained 10 SOMs with half of the segments from the
200-bp naı̈ve segmentation (i.e., half of 1.5 million segments) for
25 million iterations, selected the best one based on the scoring of
the other half of the segments, and rescored the best SOM with the
ChromHMM segmentation to provide directly comparable geno-
mic coordinates.

There are no theoretical limits to the number of data sets,
segments, or map size that could be analyzed with the SOM.
However, the ERANGE implementation of the SOM was designed
for compatibility with the rest of the package rather than for
scalability or performance and will be significantly slower on
much larger data sets or number of training iterations. The final
training run for the main ENCODE SOM above took a couple of
hours, while the naı̈ve segmentation run took 1 d. The per-unit
gene-level analysis took significantly longer.

Gene-level analysis

We recovered the identity of the nearest gene within 20 kb of each
segment within a unit using the NCBI gene annotation, which is
conservative and means that in lower gene-density areas of the
genome, many segments were not affiliated with any gene. We
then analyzed every unit for Gene Ontology (GO) enrichment as
previously described (Mortazavi et al. 2006), adjusting for mul-
tiple-hypotheses testing by applying a Bonferroni correction
for both the number of tested Gene Ontology terms and the
map size.

Metaclustering methods

The unit prototype vectors were automatically aggregated into the
larger clusters using standard hierarchical clustering, subject to
the constraint that only adjacent clusters on the SOM could be
aggregated. A centered correlation distance and centroid linkage
were used. Prior to the hierarchical clustering, the prototype vector
values along each dimension were replaced with rank values nor-
malized to range between�1 and 1. Heat map visualizations of the
hierarchical clustering were rendered using Java Treeview (Saldanha
2004). The clustering itself and the SOM visualizations of it were
done using custom C++ and Python code (available at http://
woldlab.caltech.edu/;spepke/somclustering/).

Partitionings of the hierarchical clustering at varying levels
of detail were generated using the branch length inconsistency
criterion implemented in SciPy (depth = 6). The inconsistency of
a branch is the ratio of its length to the average length of branches
to clusters less then a specified depth below it. For a specified
threshold value t, the hierarchical clustering is cut at branches that
exhibit an inconsistency coefficient greater than t. Partitioning of
the unit vectors was performed over a broad range of values of t
up to that for which no branch’s inconsistency criterion exceeded
t, i.e., only one cluster resulted. Sharp drops in the number of
clusters as a function of the threshold value occur and are typ-
ically followed by plateaus that show little or no change in
cluster number. Such behavior suggests partitionings that are
relatively robust with respect to the threshold value (see Sup-
plemental Fig. S13).
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Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene
expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial
challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq
single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification
standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total
mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/
split design and find that there are significant differences in expression between individual cells, over and above technical
variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one
enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias
and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison.
Finally, we show that transcriptomes from small pools of 30–100 cells approach the information content and reproducibility
of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and com-
putational path forward for analyzing gene expression in rare cell types and cell states.

[Supplemental material is available for this article.]

Gene expression levels can differ widely between superficially

similar cells. One source of variation is stochastic transcriptional

‘‘bursting’’ (Elowitz et al. 2002; Ozbudak et al. 2002; Blake et al.

2003; Raser and O’Shea 2005; Kaufmann and van Oudenaarden

2007). Those studies mainly used fluorescent protein fusion genes

to monitor the expression of one or a few genes. They revealed

dynamic fluctuations through time that are seen as ‘‘salt-and-

pepper’’ variation across a cell population at any given time. In

addition to this bursting behavior, individual cells are expected

to display controlled and coordinated differences in the expres-

sion of genes engaged in dynamic physiologic processes, such

as cell cycle phase progression, paracrine or autocrine signaling

response, or stress response. Beyond such already appreciated

heterogeneity lie currently unknown cell-to-cell differences with

biological implications for defining cell states, metabolic func-

tion, and, in complex tissues, cell identity.

Measuring RNA transcripts in single cells is now done in

multiple ways, and similar conclusions about variability are emerg-

ing from the higher sensitivity methods. For individual genes,

single molecule RNA fluorescence in situ hybridization (SM-RNA

FISH) is highly informative (Femino et al. 1998; Raj et al. 2008),

and multiplexed versions now enable multiple genes to be mea-

sured in parallel (Lubeck and Cai 2012). In principle, an advan-

tage of SM-RNA FISH is the ability to accurately count the abso-

lute number of transcripts in a cell. A second and older approach

is multiplexed single-cell RT-qPCR (Cornelison and Wold 1997),

which has now been advanced to increasingly high-throughput

formats (White et al. 2011; Sanchez-Freire et al. 2012, Livak et al.

2013). It produces semiquantitative relative comparisons be-

tween individual cells. However, neither SM-RNA FISH nor the

current forms of multiplex RT-qPCR cover the entire transcriptome

or have the single-nucleotide resolution needed to study fine-

structure features of gene expression such as allele specificity,

RNA editing, and alternative splicing.

To address these and other limitations, elegant methods have

recently been developed for performing RNA-seq with very small

amounts of RNA, down to the level of individual cells. These are

broadly referred to as ‘‘single-cell RNA-seq’’ (Tang et al. 2009, 2010,

2011; Ozsolak et al. 2010; Islam et al. 2011; Brouilette et al. 2012;

Cann et al. 2012; Hashimshony et al. 2012; Pan et al. 2012; Qiu

et al. 2012; Ramsköld et al. 2012). Despite these significant ad-

vances, there are substantial shortcomings in these methods,

and a robust method for comprehensive and accurate measure-

ment of the transcriptome of a single cell is not yet available.

A particular challenge for single-cell methods is the efficiency

and uniformity with which each mRNA is copied into cDNA and

ultimately represented in the library. This challenge intersects in

crucial ways with transcriptome structure. Specifically, thou-

sands of genes are expressed in the range of 1 to 30 mRNA copies

per cell, including many essential mRNAs (for example, key

transcription factors) (Zenklusen et al. 2008). Even lower tran-

script levels, averaging <1 mRNA per cell on the population

level, are now being reliably detected by RNA-seq. This raises

questions whether very rare RNAs represent background biological

noise, or alternatively, are functional in only a small fraction of

cells. Single-cell RNA-seq has the potential to address these issues,

� 2014 Marinov et al. This article, published in Genome Research, is available
under a Creative Commons License (Attribution-NonCommercial 3.0 Unported),
as described at http://creativecommons.org/licenses/by-nc/3.0/.

4 These authors contributed equally to this work.
5Corresponding author
E-mail woldb@caltech.edu
Article published online before print. Article, supplemental material, and pub-
lication date are at http://www.genome.org/cgi/doi/10.1101/gr.161034.113.
Freely available online through the Genome Research Open Access option.

496 Genome Research
www.genome.org

24:496–510 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/14; www.genome.org

597



but their resolution depends on how faithfully and efficiently

RNAs are captured and represented in sequencing libraries (re-

ferred to throughout as the ‘‘single-molecule capture efficiency,’’

psmc). In addition, the uniformity of transcript coverage in early

single-cell RNA-seq protocols has typically been heavily biased

toward the 39 end, which affects both gene expression estimates

and the ability to analyze alternative splicing, RNA editing, and

allelic bias.

A second major use for single-cell RNA-seq is the tran-

scriptomic characterization of rare cells. The human body consists

of hundreds of distinct cell types, plus large numbers of neuronal

and transient developmental cell types. Many of these are nu-

merically minor components of complex tissues, making them

inaccessible to standard methods relying on large RNA inputs.

Isolation of single cells based on the cell surface markers or using

microdissection coupled with single-cell RNA-seq could fill this

gap in complex multicellular organisms. However, the feasibility

of this approach also depends on the experimental robustness of

single-cell RNA-seq protocols. Alternatively, single-cell resolution

may not be absolutely required for this purpose, and small pools of

cells may be sufficient to characterize rare cell-type transcriptomes.

An open unresolved question is how small such pools can be to

adequately meet that goal.

In this study, we address the issues highlighted above. We

used the SMART-seq protocol (Ramsköld et al. 2012) to measure

the transcriptome of single cells and small cell pools from the

GM12878 lymphoblastoid cell line. This line is derived from the

NA12878 individual, for which a fully sequenced genome with

completely phased heterozygous single nucleotide polymorphisms

(SNPs) and indels is available (The 1000 Genomes Project Con-

sortium 2012). GM12878 cells have also been the subject of an

extensive functional genomic characterization by the ENCODE

Consortium (The ENCODE Project Consortium 2011, 2012) and

have been used in prior population-level studies of allele-biased

gene expression and transcription factor occupancy (Rozowsky

et al. 2011; Reddy et al. 2012).

Using spike-in quantification standards of known abun-

dance (Mortazavi et al. 2008), we derive estimates for the absolute

number of transcript copies for each gene in each cell and directly

measure the average value of psmc. ‘‘Pool/split’’ experiments (con-

sisting of pooling RNA from multiple single cells, splitting the pool

into the same number of separate reactions and building libraries

from them) allowed us to measure the extent of and control for

technical variation. We find that the psmc value is quite low: ;0.1.

An analysis framework accounting for technical stochasticity is

described and used to assess variability in gene expression, allelic

bias, and alternative splicing between single cells. Distinct from

prior studies, our approach allowed us to parse findings into

those that are just as likely to be of technical origins and those

that are more likely to be of biological interest.

We report evidence of significant variability in the total

number of mRNA molecules per cell, and identify biologically

coherent modules of coexpressed genes specifically expressed in

individual cells or groups of cells. These include expected varia-

tion associated with cell cycle phases, and an unexpected module

enriched for mRNA processing and splicing genes. We observe

evidence of higher levels of autosomal allelic exclusion on the

single-cell level, potentially associated with transcription bursts;

however, it is at present difficult to confidently distinguish from

technical variability. In contrast, we find much stronger evidence

for widespread major splice site usage switches between individ-

ual cells. Finally, our analysis of similarly constructed small cell

pools (30–100 cells) reveals a high robustness and reproducibility,

approaching that of bulk RNA measurements. This presents a reli-

able path forward toward the future comprehensive transcriptomic

characterization of rare cell types.

Results

In silico examination of major variables affecting
informativeness of single-cell and small cell-pool RNA-seq

We began this study with two goals: first, to study gene expression

heterogeneity in GM12878 cells on the single-cell level, and sec-

ond, to determine the minimal optimal size of a cell pool that

is informative of the characteristics of the larger cell population,

with the goal of applying that approach to rare cell types in future

studies. How well these goals are achieved depends on several

parameters affecting biological and technical stochasticity and

detection sensitivity, the values of which were unknown. To un-

derstand their influence, we carried out a simulation of single-cell

and cell-pool transcriptomes (see Supplemental Methods for de-

tails) by varying the following parameters:

1. Single-molecule capture efficiency psmc. In contrast to bulk

RNA-seq libraries, an individual cell contains a very limited total

number of mRNA molecules. Individual genes can be present

in single-digit transcript numbers. If only a fraction of mRNAs

are successfully represented in a library, a technical stochasticity

component is introduced. Depending on its magnitude, data

interpretability can be significantly affected due to false nega-

tives and a distortion of relative gene abundance estimates. The

psmc parameter is the probability that any given original RNA

molecule is captured in the final library. We examined the effect

on expression quantification of psmc ranging from 0.01 to 1.

2. Total number of mRNA molecules per cell. The impact of low

psmc on expression measurements will be more severe if fewer

mRNA molecules are present in a cell. The average total number

of mRNA molecules in a single cell is not known for most cell

types, but it is expected to vary with cell size, metabolic status,

and even cell cycle phase. This means that single-cell expression

measurements in some cell types are likely to be more robust to

technical noise than in others. We varied the total number of

mRNAs from 50,000 to 1,000,000 (while keeping the number of

genes expressed constant).

3. Frequency of expression of individual genes in single cells. From

prior studies we expect that some genes will be expressed in

all or most cells, while others will be expressed in only a subset

of cells. Genes detected at lower levels in bulk RNA-seq are the

most obvious candidates to be expressed in a subset of cells in

a population, although we do not know what fraction of low-

abundance RNAs behave in such a way. This is particularly rel-

evant to cell pools: a gene expressed at 50 copies per cell but

only in 10% of cells would still be stochastically represented

in a pool of 10 cells even if psmc is high. In the absence of reliable

data on this, we modeled the probability of expression in a

given single cell with a distribution centered around very high

values for genes highly expressed in bulk RNA-seq measure-

ments, and progressively lower values with decreasing expres-

sion levels (details in Supplemental Methods).

The simulation results are summarized in Figure 1, A–C and

Supplemental Figures 1–25. As expected, low psmc has a profoundly

negative impact on gene expression quantification accuracy and

reliability, leading to frequent false negatives (Fig. 1A; Supplemental
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Fig. 1), and to poor estimates of expression levels. For example, in

a single cell with 100,000 mRNAs, psmc = 0.1 results in only 40% of

genes expressed at 100 FPKM receiving FPKMs within 20% of the

true value (Supplemental Fig. 1C), but this fraction rises to nearly

100% if psmc = 0.8 (Supplemental Fig. 1G). The quantification of

relative expression levels is similarly affected, with only the most

highly expressed genes being consistently well-quantified relative

to each other at low psmc (Supplemental Figs. 12–25).

In contrast, our simulation results indicate that cell pools are

much more robust to technical noise, with 90% of genes expressed

at 10 FPKM receiving FPKM estimates within 20% of their true

value (Supplemental Fig. 1C) at psmc = 0.1 in a pool of 100 cells.

They also represent the expression profiles of the general pop-

ulation reasonably well (Supplemental Fig. 1), even at low psmc,

starting from a size of ;30 cells (10-cell pools seem not to be suf-

ficient to achieve this). Finally, as expected, the larger the number

of total mRNA molecules per cell, the greater is the buffer against

technical noise, resulting in more robust quantification (Sup-

plemental Figs. 2–11).

Transcriptome measurements of individual single cells
and companion pool/splits

The simulation results informed our experimental design, which

aimed to gain a firm grasp on technical stochasticity in two ways

(Fig. 1D). First, we generated single-cell RNA-seq libraries and in

parallel carried out ‘‘pool/split’’ experiments. In a pool/split, mul-

tiple cells are pooled and lysed together, then split into the same

number of reactions, from which libraries are built. Variation be-

tween these libraries should be purely technical (with stochastic

splitting possibly playing a role at the low end). Variation observed

at similar levels in both single cells and pool/splits cannot be

confidently attributed to biological differences, although the

stringency of this criterion may cause some true biological vari-

ation to be obscured. However, variation above the pool/split

level can be identified and ascribed to biological sources with

high confidence.

We generated single-cell RNA-seq libraries from 15 single

GM12878 cells and from two pairs of 10-cell pool/split experi-

ments. We also sequenced replicates of pools of multiple cells (10,

30, and 100 cells), as well as 100-pg and 10-ng samples of bulk

RNA (corresponding to ;10 and ;1000 cells), to assess the stability

of measurements as a function of the amount of starting material.

We used the SMART-seq protocol (Supplemental Fig. 12;

Ramsköld et al. 2012) to generate our libraries. A detailed de-

scription of the protocol, as we implemented it, is presented in

Supplemental Methods. We obtained nearly uniform full-length

transcript coverage (Fig. 1E; Supplemental Fig. 29). Uniformity of

coverage, which depends on the intactness of RNAs and the suc-

cessful copying of full-length molecules, is highly desirable for

several reasons. First, RNA-seq data quantification using the

RPKM/FPKM metric (Mortazavi et al. 2008; Trapnell et al. 2010)

makes an implicit assumption of full coverage. Second, it enables

the analysis of alternative splicing and allelic bias, as read cov-

erage of 59-proximal splice sites and heterozygous positions is

ensured.

We added spike-in quantification standards of known abun-

dance (in absolute number of RNA copies) (Supplemental Table 2)

at the very beginning of cDNA synthesis. This allows us to, first,

estimate psmc, and second, derive gene expression estimates in

absolute numbers of copies per cell. The latter is important because

while FPKM is useful for comparing expression levels within a li-

brary, it can only be used to compare directly across different li-

braries when the total amount of RNA in each starting sample is

roughly the same (Anders and Huber 2010). This assumption is

usually only mildly violated when working with bulk samples, but

when single cells are compared, it becomes significantly more

problematic as the variation in the total amount of RNA in each

cell is expected to be much larger.

Figures 1 and 2 summarize the technical characterization of

the SMART-seq protocol applied to GM12878 cells. In addition to

the mostly complete coverage along transcript length, sequencing

libraries were also highly enriched for exonic sequences (Supple-

mental Fig. 28), indicating a high efficiency of enrichment for

polyadenylated molecules.

Gene detection in single cells versus pools of varied sizes

We compared single-cell and pool/split libraries, as well as cell

pools, with bulk RNA samples from GM12878 cells (Fig. 1F). In

bulk RNA libraries, we detect about 12,000 genes expressed at

more than 0.1 FPKM. A lower number of genes, between 4000 and

5000, is detected in both single-cell and pool/split libraries. These

differences between single cells and bulk libraries are due mostly

to genes expressed at low levels. Genes expressed at more than

100 FPKM in 10-ng bulk RNA samples are detected in almost all

libraries, while only ;30% of genes expressed at ;10 FPKM and

10% of genes expressed at ;1 FPKM were detected in any given

single-cell library (Fig. 1G). Notably, the number of genes detected

in both 100-cell and 30-cell pools was similar to that detected in

the 10-ng libraries (;11,000). In contrast, in the 10-cell pools and

100-pg libraries, lower numbers of genes were detected, between

Figure 1. Simulated and measured transcriptome profiles from individual cells and small cell pools. (A) Number of detected genes in simulated data sets
as a function of the number of cells pooled and the single molecule capture efficiency (psmc) (assuming 100,000 mRNA molecules per cell). See Sup-
plemental Figure 1 for full details. (B,C) Accuracy of gene expression estimation as a function of the number of cells pooled and the single molecule capture
efficiency; psmc = 0.1 in B and psmc = 0.8 in C, 100,000 mRNA molecules per cell assumed. Shown is the fraction of genes at the indicated expression levels
in FPKM, whose estimated expression level in FPKM in simulated libraries was within 20% of their true value, after modeling the stochasticity due to the
single-molecule capture efficiency of the library-building protocol. See the Methods section and Supplemental Figures 2–11 for full details. Note that the
simulation is intended to illuminate the relative effects of the various parameters studied, and the absolute numbers of genes should not be directly
compared to the real-life data shown in G. (D) Experimental design. Single cells are combined with spike-in quantification standards and SMART-seq
libraries are generated. In parallel, multiple single cells are pooled together and combined with spikes, then lysed and split into the same number of
reactions and converted into SMART-seq libraries. Libraries are then sequenced, data processed computationally, and estimates for the absolute number of
copies per cell are derived based on the spikes. Variation in pool/split experiments is due to technical stochasticity, while variation in single-cell libraries is
a combination of biological variation and technical noise. (E) Uniformity of transcript coverage. Shown is the average coverage along the length of an
mRNA for single cells and pool/split experiments. Only mRNAs longer than 1 kb from genes with a single annotated isoform in the RefSeq annotation
set were included. See Supplemental Figure 29 for more details. (F) Number of detected protein-coding genes for libraries built from 10 ng and 100 pg
of poly(A) RNA, pools of 100, 30, and 10 cells, representative pool/split experiments (individually and summed across all libraries), and representative
single cells (individually and summed across all libraries). (G) Fraction of genes from 100-ng bulk poly(A)+ RNA libraries that were detected in pools of 100,
30, or 10 cells, 100 pg of poly(A)+ RNA, pools/split experiments, and single cells. FPKM is shown on the x-axis.
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6000 and 7000. This is consistent with simulation results sug-

gesting that 30 cells is the lower limit of cell number at which the

transcriptome library complexity begins to approach that of the

larger cell population. This is corroborated by the correlation be-

tween the expression levels of replicate measurements (Fig. 2A;

Supplemental Fig. 50). In contrast, a sizable population of genes

present at high levels in one replicate and at very low levels or

completely absent in the other appears in 10-cell pools (Fig. 2B)

and especially in pool/split libraries (Fig. 2C). Finally, union sets

of genes detected in all individual cell libraries and in all pool/

split libraries was ;10,000, which was in the range seen for 30- to

100-cell pools.

Pool/splits measure technical variation and reveal biological
variation among single cells

The observed variations in gene expression levels and detection

can be explained as a combination of some genes not being

expressed in each and every cell and low psmc resulting in large

numbers of false negatives. We calculated the average psmc across

all libraries based on the detection of spike-ins (details in Methods).

This number is in our estimates: ;0.1. We also estimate that for

GM12878 single cells, one transcript copy corresponds to ;10

FPKM on average. This agrees well with the observation that de-

tection of genes becomes unstable below ;100 FPKM (Fig. 2B,C),

which is also consistent with previous observations (Ramsköld

et al. 2012).

We next compared expression measurements in single-cell

and pool/split libraries. Hierarchical clustering of each group is

shown in Figure 2, D and E (with two independent biological

replicate pool/split experiments shown in Fig. 2E). The distances

between the expression profiles within the same pool/split ex-

periment were significantly smaller than those for individual sin-

gle cells (branch lengths in Fig. 2D,E), and average correlations

between single cells were, accordingly, lower than those between

libraries from the same pool/split (Fig. 2F,G; Supplemental Fig. 32).

A notable feature of the data is small clusters of genes present at

high levels in only one library. These are more prominent in

single cells than in pool/splits, yet they are clearly present in all

samples. In single cells, this is due to a mixture of stochastic

capture effects and real biological variation. In pool/splits, sto-

chastic capture is the predominant source. It is important to note

that given the low psmc, it is difficult to determine the cause of

variation for any given gene. Nevertheless, the major conclusion

at the transcriptome level is that there are biological differences

between single cells because the technical stochasticity in pool/

splits is significantly less than variation across single cells.

Estimating absolute transcript levels in single cells

Absolute transcript counts are the biologically relevant values

ideally obtained from a single-cell gene expression profiling ex-

periment because, as discussed above, FPKM is a poor metric for

comparing gene expression levels between individual cells if the

total amount of RNA varies substantially. We derive transcript

number estimates for each gene based on the FPKM values of spike-

ins. We observed good agreement between the input number of

spike-in RNA copies and the corresponding FPKM values in the

final libraries (Supplemental Figs. 30, 31).

We use the transcripts-per-cell estimates for all subsequent

analyses. Previous studies have reported that genes can be sepa-

rated into two distinct groups based on their expression levels—

one group expressed at high (>1 FPKM) levels and one at very low

(<<1 FPKM) levels (Hebenstreit et al. 2011). We examined the

distribution of estimated copies per cell in single cells and in

pool/splits (Fig. 3A). We find that in individual cells, most protein-

coding genes are expressed at levels between 1 and ;50 copies

per cell. The distribution suggests a roughly equal number of

genes at each level except for a larger group of transcripts with

fractional transcript-per-cell values. Obviously, single-cell determi-

nations are constrained in a way that population level measure-

ments cannot be: One transcript per cell is the minimum nonzero

value possible. The lower values likely represent a combination of

mapping artifacts (due to high sequence homology of paralogs)

and RNAs that were present at low levels to begin with and then

poorly represented in the final library (due, for example, to the

fragmentation of a single original RNA molecule resulting in

artificially low FPKMs as a result of coverage only at the 39 end).

The distribution of estimated copies in pool/split libraries exhibited

a more linear decrease in the number of more highly expressed

genes, consistent with averaging of variation between cells.

We also examined the distribution of the expression levels

of long noncoding RNAs (lncRNAs) (Guttman et al. 2009). Con-

sistent with previous observations (Ramsköld et al. 2009; Guttman

et al. 2010; Djebali et al. 2012), lncRNAs have generally much lower

expression levels compared to protein-coding genes (Fig. 3B).

We were also able to directly assess the total number of

mRNAs present in each cell (Fig. 3C,D). Based on the average

mass of RNA in each cell (derived from bulk RNA samples from

a known number of cells) and the average length of mRNAs in

the human genome, we estimated that each GM12878 cell con-

tains, on average, ;80,000 mRNAs. However, we observed strik-

ing cell-to-cell differences in the total transcript number of single

cells, with some cells expressing <50,000 mRNAs and others al-

most 300,000. In contrast, pool/split experiments exhibited re-

markable uniformity (between 50,000 and 100,000 transcripts)

and agree well with prior expectations. It is therefore unlikely

that the observed cell-to-cell variability is due to technical noise.

Because transcriptional regulators play a crucial role in de-

fining the gene expression state of cells, we examined the expres-

sion of several well-known general transcription factors as well as

major regulators of B-cell differentiation (Fig. 3E). Remarkably,

except for IRF4, which was usually expressed at several dozen

copies, most factors were detected at <10 copies per cell, and were

often not detected at all. We stress that this does not mean that

they are not expressed. Given the 10% psmc of the protocol, these

Figure 2. Technical and biological variation in single-cell RNA-seq measurements of gene expression. (A) Correlation between expression levels (in
FPKM) between two pools of 100 cells. (B) Correlation between expression levels (in FPKM) between two pools of 10 cells. (C ) Correlation between
expression levels (in FPKM) between two representative pool/split libraries. A pseudocount of 0.001 was added to each data point in the scatter plots
for visualization purposes. (D,E) Hierarchical clustering of estimated copies-per-cell values for protein-coding genes in single-cell (D) and pool/split
(E) libraries. Pearson correlation was used as a distance metric, and only genes expressed at a level of at least one estimated copy in at least one library were
included. (F,G) Correlation between estimated copies-per-cell values for protein-coding genes in single-cell libraries (F) and pool/split libraries (G). Two
sets of pool/split experiments (1 and 2) are shown and ‘‘1-2’’ in the boxplot refers to correlations between the two sets, while ‘‘1’’ and ‘‘2’’ refer to
correlation within each experiment. Similar plots, but using the Spearman correlation, are shown in Supplemental Figure 32.
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observations are consistent with simple technical failure to detect

them. It is also possible that there are no mRNA copies in some

cells at the moment of harvest, especially if they are infrequently

transcribed. Extending these observations to other functional

groups, we assessed proteins involved in translation (as a major

group of genes with housekeeping functions) (Fig. 3F), splicing

regulators (Fig. 3G), and all transcription factors (Fig. 3H). The

median number of copies per cell was ;100 for translation pro-

teins, ;10 for splicing regulators, and strikingly, only ;3 for

transcription factors. Beyond their biological interest, these large

expression differences between functional gene categories mean

that quantification is inherently less robust and less informative

for some biological functions than it is for others.

Identification of modules of coexpressed genes

Cell-to-cell gene expression variability may occur on the level of

individual genes, but it can also occur in a coordinated fashion.

A well-studied example is cell cycle phase-specific gene expres-

sion. In an asynchronous culture, groups of genes expressed

highly at specific times during the cell cycle should be present in

a fraction of cells that is roughly proportional to the time cells

spend in each identified phase. Population data do not, however,

predict that most cells will be in a ‘‘pure’’ phase state nor that they

will express phase-class genes at peak levels.

To test whether we are able to identify cell cycle-associated

variation, and to search for any novel functional modules, we

carried out weighted gene coexpression network analysis (WCGNA)

(Zhang and Horvath 2005) using the copies per cell estimates for

single cells and removing genes that were highly variant in pool/

split libraries in order to minimize technical noise (see Methods;

Supplemental Figs. 33, 34). We identified 19 coexpression modules

containing $10 genes each (Supplemental Fig. 35). The expression

patterns of these modules were mostly well-differentiated among

single cells and were absent from pool/split libraries (Fig. 4B; Sup-

plemental Fig. 34).

We then determined the Gene Ontology (GO) category en-

richment of each module. The largest module (module 1) was

highly enriched for GO categories relating to housekeeping and

anabolic gene functions (Table 1; Supplemental Table 3). This in-

cluded some enrichment for the G1- and S-phase GO terms, and

also contained most genes that are generally highly expressed

(Fig. 4A). Module 6 was enriched for genes involved in the M phase

of the cell cycle. A single cell from the sample of 15 showed strong

coordinated expression of genes from the M-phase GO categories

enriched in this module. Transcripts from these M-phase genes

were not similarly coordinated in other individual cells or in

pool/split samples. We measured the fraction of unsynchronized

GM12878 cells in the G0 + G1, S, and M phases of the cell cycle

using flow cytometry (Fig. 4B). About 14% of cells were in M phase,

and the probability of capturing exactly one such cell out of 15 is

0.25; that is, these observations are consistent with this cell being

in the peak of M phase.

A more surprising observation was that the second largest

module (module 2) was enriched for genes involved in splicing

and mRNA processing. It is driven by an individual cell and two

additional cells with a somewhat similar expression profile. The

signature cell, however, was not an outlier when splice site usage

patterns were compared between individual cells (data not shown).

A simple interpretation of these observations is a general up-

regulation of splicing and mRNA processing factors in that cell

that does not result in a distinctive alternative splicing program.

Module 3 was enriched for metabolic cofactor and iron-sulfur

cluster binding proteins, including proteins involved in mito-

chondrial respiratory chains. This is an intriguing observation,

as module 3 was mostly driven by the two cells exhibiting the

highest total number of mRNA molecules per cell (Fig. 3C; fourth

and fifth columns in clustergram in Fig. 4A), consistent with a

generally elevated metabolic state.

We also carried out a mirrored WCGNA analysis in which the

pool/splits were treated as single cells and vice versa. We did not

observe significant GO enrichment beyond a few trivial terms in

the largest modules (Supplemental Fig. 54; Supplemental Table 4).

This is in contrast to the much more specific GO enrichment seen

in single cells.

In addition to the coexpression analysis, we also examined

the relationship between the expression variability of genes and

various genomic data about their promoters, including long-range

chromatin interactions, DNA methylation status, histone marks,

transcription start site sequence elements, and CpG islands. No

robust explanatory correlation was evident (Supplemental Figs.

46–-50), and we expect that data with less technical stochasticity

will be needed to illuminate relationships of this kind.

Allele-biased expression at the single-cell level

Allele-specific gene expression (either monoallelic or highly biased

toward one autosomal allele) has been previously reported to be

widespread (Gimelbrant et al. 2007; Zhang and Borevitz 2009;

McManus et al. 2010; Pickrell et al. 2010; Rozowsky et al. 2011;

Reddy et al. 2012). An intriguing phenomenon observed for hun-

dreds of genes in clonal lymphoblastoid cell lines (Gimelbrant

et al. 2007; Chess 2012) is the random monoallelic expression

of autosomal genes. However, those studies were conducted on

large pools of cells, producing a snapshot of average allelic bias in

the population, and leaving open the possibility that monoallelic

expression is even more widespread on the single-cell level.

GM12878 cells are a good system for addressing this issue,

as the fully phased heterozygous NA12878 genome sequence is

available (The 1000 Genomes Project Consortium 2012). We aligned

Figure 3. Absolute expression levels at the single-cell level. FPKM values converted to estimated copies per cell using the spike-in quantification
standards are shown. (A) Distribution of expression levels of RefSeq protein-coding genes in estimated copies per cell in single cells and pool/split
experiments. (B) Distribution of expression levels of GENCODE v13 lncRNA protein-coding genes in estimated copies per cell in single cells and pool/split
experiments. (C ) Total number of mRNA copies per cell in single cells. (D) Total number of mRNA copies in pool/split experiments. (E) Expression levels of
housekeeping and highly expressed genes (GAPDH, CD74, left panel), and general (CTCF, REST, YY1) and B-cell regulatory (PAX5, EBF1, BCL11A, ETS1, IRF4,
IKZF1, PBX3, POU2F2, RUNX3, TCF3, TCF12) transcription factors (right panel). Upper and middle panels show the estimated copies-per-cell numbers for
single cells and pool/splits, respectively. The lower panel shows FPKM values for cell pools and bulk RNA libraries. (F–H) Distribution of absolute expression
levels in copies per cell in single cells for translation initiation, elongation, and termination proteins (F), splicing regulators (G), and transcription factors (H).
The list of translation proteins was retrieved from the corresponding GO category annotations downloaded from FuncAssociate 2.0 (Berriz et al. 2009). The
list of splicing regulators was obtained from the SpliceAid-F database of human splicing factors (Giulietti et al. 2013). The list of transcription factors used
was the one from Vaquerizas et al. (2009). Note that only values $0.1 estimated copies per cell were included in these plots, i.e., libraries in which the
genes were not detected were excluded.
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RNA-seq reads in an allele-specific manner to the heterozygous

GM12878 transcriptome and calculated allelic bias for each gene

as the fraction of reads mapping to the maternal allele. As detailed

in the Methods and Supplemental Methods, we applied very

stringent criteria for determining statistically significant allele-

biased expression events based on the absolute transcript number

estimates and taking into account the challenges presented by the

nature of single-cell RNA-seq data. We observed good reproducibility

of allelic bias profiles in 10-ng bulk RNA libraries (Supplemental

Fig. 37A), with most genes being expressed from both alleles

(Supplemental Fig. 37D). Allelic bias was also highly reproduc-

ible in 30-cell and 100-cell pools (Supplemental Fig. 51). In

contrast, allelic bias profiles of single cells correlated poorly

with each other, and a large fraction of genes were apparently

monoallelically expressed from different alleles in different cells

(Supplemental Fig. 37B). The majority of highly expressed genes

($100 copies per cell) exhibited biallelic expression, while most

genes at low expression levels were measured as monoallelically

expressed (Supplemental Fig. 37F). We then compared allelic

bias variability for individual genes across individual single cells,

focusing only on cells in which statistically significant allelic

bias was observed, and observed frequent ‘‘switching’’ between the

two alleles (Supplemental Figs. 37G, 38A).

These observations can be explained as a combination of bi-

ological and technical factors. First, it has been previously reported

that allelic bias at the population level is more common among

genes expressed at low levels (Gimelbrant et al. 2007, Reddy et al.

2012). A second explanation is the phenomenon of ‘‘transcrip-

tional bursting’’ (Raj and van Oudenaarden 2008; Dar et al. 2012).

A single transcription burst produces several mRNA molecules

from a single allele. If all mRNAs from a gene in a given cell at a given

moment are the product of one or a linked series of such bursts, all

Figure 4. Gene coexpression modules derived from single GM12878 cells. Weighted gene correlation networks were constructed using the WCGNA R
package (Langfelder and Horvath 2008). (A) Expression levels and hierarchical clustering of genes within modules (modules are sorted by number, which
corresponds to their size) in single cells and pool/split experiments. Only genes are clustered (dendrograms on the left), and the identity of the cells and
pool/split experiments is the same in each column (two right panels). The absolute expression values of genes belonging to representative GO categories
associated with cell cycle phases (modules 1 and 6) and mRNA processing and splicing (module 2) are also shown. (B) Distribution of cell cycle states in
a representative GM12878 cell population, in growth media (GM), and picking media (PM). The fraction of cells in M phase is consistent with one such cell
being picked in a sample of 15.
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copies would originate from one allele. Finally, stochastic effects due

to the low single-molecule capture efficiency of the protocol un-

doubtedly play a role. The fewer founder molecules are captured, the

more likely it is that they come from only one allele. To help parse

these sources of variation, we performed the same analyses on pool/

split libraries and observed a broadly similar (although always lower)

fraction of genes passing all significance tests for allelic bias (Sup-

plemental Figs. 37C,E, 38). The quantitative trend within the pool/

split comparison suggests there is a component of allelic RNA bias

between cells that is biological in origin but that there is also a large

technical variation component. The widespread occurrence of ran-

dom monoallelic expression at the single-cell level should therefore

be viewed as a provisional conclusion.

Alternative splicing at the single-cell level

Previous studies have suggested that most genes in mammalian

genomes undergo some alternative splicing (Mortazavi et al. 2008;

Wang et al. 2008; Djebali et al. 2012). At present, however, the

biological relevance of the majority of these alternative isoforms is

still uncertain, and stochastic noise in the splicing machinery is

one explanation (Sorek et al. 2004; Melamud and Moult 2009).

Characterizing alternative splicing at the single-cell level should

bring clarity to the population-based observations, and perhaps

offer clues about the mechanistic origin of the multiple isoforms

observed within cell types.

We quantified alternative splicing using the intron-centric

splice inclusion c score approach (Pervouchine et al. 2013). Details

of our mapping and analysis pipeline are described in the Sup-

plemental Methods. For reasons given there, we adopted a con-

servative approach and only analyzed novel splice junctions for

which at least one of the donor or acceptor sites has already been

annotated in GENCODE v13 (Harrow et al. 2012), thus avoiding

library-building artifacts.

We detected between 200 and 2000 novel splice junctions

satisfying these criteria in each individual cell (Supplemental

Fig. 43). This number is certainly an underestimate, given the low

psmc. About 35% of novel junctions connected two annotated

exons (Fig. 5A); most of these represent novel exon skipping

events. In another 60%, the unannotated donor or acceptor site

was internal to the gene. These were concentrated close to al-

ready annotated splice sites (Supplemental Fig. 40B,C). In par-

ticular, novel acceptor sites peaked at the +3 and �3 position

downstream from annotated sites representing mostly instances

of NAGNAG tandem acceptor sites (Hiller et al. 2004; Bradley

et al. 2012). Novel 59 donor sites were fewer in number and

peaked at +4 and �4 positions relative to annotated donor sites,

thus shifting the coding frame of the transcript. This is a phe-

nomenon we have previously also observed in bulk RNA-seq data

(observations of the present study’s authors), the significance of

which is at present not clear. The proportions observed were in-

dependent of the read coverage and estimated number of copies

per cell thresholds applied (Supplemental Fig. 40A).

We also examined the distribution of unannotated splices

across individual single cells and found that the majority were

detected in only a single cell, with <10% found in two cells, and

very few in three or more cells (Fig. 5B). While this result could be

greatly affected by psmc issues, it was independent of the read and

estimated transcript copies threshold used (Supplemental Fig. 40),

suggesting that most novel splices are indeed only present in a

small fraction of cells.

We asked how often multiple alternative splice sites are used

at individual single cells. In bulk RNA-seq at a threshold of 15

distinct read fragments, a numeric minority of c scores was equal

to 1 (i.e., exclusive use of only one donor-acceptor pair). The

presence of alternative splice sites is thus widespread in the cell

population. Nevertheless, in most cases, c was close to 1, suggesting

quantitative dominance of one isoform. The vast majority of novel

splices received very low inclusion scores (Fig. 5C) and would

generally be considered to be the result of biological noise in the

splicing system. In contrast, in single cells, one dominant splice

site was the norm for annotated junctions, except for very highly

expressed genes ($100 copies per cell), for which a wide diversity

of splice site usage was seen (Fig. 5D; details in Supplemental Fig.

42). As this observation was true even for genes expressed at $50

copies per cell, we believe it is not a psmc artifact. It is an interesting

and open question why very highly expressed genes (enriched for

genes with housekeeping function) exhibit very high levels of al-

ternative splicing in single cells. These results differ significantly

from the same analysis carried out on novel splice junctions (Fig.

5E; Supplemental Fig. 43). Somewhat surprisingly, we found that

Table 1. Representative Gene Ontology categories enriched in
coexpressed gene modules

Adjusted
P-value GO attrib ID Attrib name

Module 1
<0.001 GO:0006415 Translational termination
<0.001 GO:0006414 Translational elongation
<0.001 GO:0070469 Respiratory chain
<0.001 GO:0071845 Cellular component disassembly

at cellular level
<0.001 GO:0004129 Cytochrome-c oxidase activity
<0.001 GO:0022904 Respiratory electron transport chain
<0.001 GO:0030964 NADH dehydrogenase complex
<0.001 GO:0072413 Signal transduction involved in mitotic cell

cycle checkpoint
0.019 GO:0006626 Protein targeting to mitochondrion

<0.001 GO:0048002 Antigen processing and presentation
of peptide antigen

<0.001 GO:0010467 Gene expression
<0.001 GO:0006839 Mitochondrial transport
0.007 GO:0006458 De novo protein folding

<0.001 GO:0016071 mRNA metabolic process
<0.001 GO:0000216 M/G1 transition of mitotic cell cycle
0.014 GO:0000502 Proteasome complex
0.005 GO:0060333 Interferon-gamma-mediated signaling

pathway
<0.001 GO:0000084 S phase of mitotic cell cycle
<0.001 GO:0000082 G1/S transition of mitotic cell cycle
0.005 GO:0000209 Protein polyubiquitination

<0.001 GO:0008380 RNA splicing

Module 2
<0.001 GO:0000398 Nuclear mRNA splicing, via spliceosome
0.017 GO:0005681 Spliceosomal complex

<0.001 GO:0006397 mRNA processing

Module 3
<0.001 GO:0051186 Cofactor metabolic process
0.002 GO:0051539 Four iron, four sulfur cluster binding
0.021 GO:0051536 Iron-sulfur cluster binding

Module 6
0.027 GO:0005680 Anaphase-promoting complex
0.001 GO:0007094 Mitotic cell cycle spindle assembly

checkpoint

Gene Ontology enrichment in modules was assessed using FuncAsso-
ciate2.0 (Berriz et al. 2009). The full list of enriched categories is available
in Supplemental Table 3.
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Figure 5. (Legend on next page)
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a significant proportion of novel splices had c scores of 1 in single

cells. This was true, however, only for genes expressed at lower

levels (#50 copies), where psmc artifacts are a likely cause. In con-

trast, in highly expressed genes, no novel junctions received

a dominant ($0.5) c score. However, the scores were still consis-

tently higher than what is observed for novel splices in bulk RNA

samples.

Finally, we evaluated the consistency of splice site usage be-

tween individual cells. We applied a statistical framework similar

to the one used to analyze allelic bias and derived a list of dom-

inant splice junctions in each cell, taking into account the esti-

mated absolute number of copies and the stochastic capture effects.

We asked how often the dominant splice site changes between dif-

ferent cells. We found 282 such genes in single cells, suggesting

the phenomenon may be widespread. The genes involved were

enriched for ribosomal and translation proteins, and also, in-

triguingly, for proteins involved in RNA splicing and processing

(Supplemental Table 6). We tested this single-cell variation against

pool/split experiments, in which we found very few genes with

different dominant splice sites across libraries. (Fig. 5F,G; Supple-

mental Fig. 44). This argues that much alternative splicing vari-

ation is in fact due to biological differences between cells, and is

in agreement with the bimodality of splicing in individual mouse

immune cells reported recently (Shalek et al. 2013).

Discussion
Two major goals for single-cell RNA-seq are to obtain high-reso-

lution transcriptomes for rare cell types or states and to measure

the differences in RNA expression and processing between in-

dividual cells. Here, we showed that the first goal can be achieved

by studying 30- to 100-cell pool samples even in the absence of

perfect capture of each and every individual RNA molecule. Our

conclusion is consistent with independent 80-cell measurements

(Ramsköld et al. 2012). The pools reproduce the expression pro-

files (Supplemental Fig. 53) and allelic-bias patterns (Supplemental

Fig. 51) of the larger population, and similar numbers of genes and

splice junctions are detected in them (Supplemental Figs. 52, 53).

The approach is applicable to cells collected by laser-capture (to be

presented elsewhere), micromanipulation (used here), or cell sorting

based on molecular markers or reporter-gene expression. This de-

fines a general and relatively economical path forward for the

transcriptomic characterization of many previously inaccessible

rare cell types and states, including transient cell types in em-

bryonic development, diverse neuronal types in the brain, and

cells in tumors.

In agreement with previous single-cell RNA-seq studies, we

observed high cell-to-cell variability in gene expression levels in

GM12878 B-cells. We found that some of this variation was attrib-

utable to coordinated differences in the expression of biologically

coherent sets of genes: for example, genes associated with the

M phase of the cell cycle or with mRNA processing and splicing.

Despite good data quality, evidenced by complete and rela-

tively uniform coverage across the mRNA length spectrum, our

results were similar to other published data in displaying sig-

nificant stochasticity. Stochasticity is expected to arise from a

combination of biological variation and technical measurement

variation. We present experimental and analytical approaches for

measuring and accounting for technical stochasticity. We intro-

duced and measured single-molecule capture efficiency, the key

parameter influencing technical stochasticity, and found that

its value was around 0.1 with the current SMART-seq protocol.

This low capture efficiency provides a parsimonious explanation

for the level of variation between single-cell measurements that

is technical in origin. We also measured technical variation by

carrying out pool/split experiments. This empirical test for non-

biological variation in the system is a stringent one, which includes

capture efficiency, PCR effects, and any other unspecified sources.

We then used the pool/split results to help parse biological vari-

ation between cells that is detectable over and above variation in

pool/split measurements.

We observed unexpected levels of cell-to-cell variation in

autosomal allelic expression bias and alternative splicing. The

observation of allele switching between single cells could be

explained as a technical artifact, given that a similar, although al-

ways lower, level of switching was observed in pool/split libraries.

We therefore consider this a provisional result in need of further

investigation with improved experimental protocols. The ob-

served frequency of major splice switching in single cells is a

stronger effect, and based on comparison with pool/split exper-

iments, it is unlikely to be the sole result of technical stochas-

ticity. It has also been independently reported in a different system

(Shalek et al. 2013).

Transcriptional bursting suggests an attractive biological ex-

planation for these observations. If a gene is expressed in a series

of infrequent (relative to the half life of its mRNAs) such bursts, at

any given time the population of mRNAs in the cell is likely to

originate from only one allele. Such bursting could also be the

source of cell-to-cell variation in alternative splicing. It is possible

that the same set of factors influencing splice-site choice maintain

physical association with the gene during a transcriptional burst,

leading to a particular splicing pattern being highly favored locally

in space and time, even if factors supporting a different splice

choice are present within the same nucleus. Alternatively, isoform

choice could be driven by temporal switching of factors and would

operate regardless of bursting behavior. These are testable alter-

natives for future studies.

Many specific biological processes, especially regulatory ones,

involve genes whose transcript levels are in the range highly af-

fected by technical variation, as shown by our survey of tran-

scription factors. While measurements with current methods can

give some important clues about coherent biological variation,

especially when large numbers of individual cells are assayed,

our results argue that considerable improvement in the single-

Figure 5. Alternative splicing at the single-cell level. (A) Classification of new junctions connecting known splice sites. (B) Frequency of detection of
novel splice junctions. Novel junctions for which neither the donor nor acceptor site has been annotated were excluded for reasons described in the main
text in both A and B. A threshold of 10 estimated copies and a coverage of 10 reads was applied, but results are essentially the same, independent of the
thresholds used (Supplemental Fig. 40A). (C ) Distribution of c scores in bulk RNA samples for annotated and novel splice junctions. A threshold of 15 reads
combined for all splice junctions in which a donor or acceptor site participates was applied. Note that for each c1 score there is at least one matching c2 # 1
� c1 score corresponding to the other alternative junction; in some cases, more than two alternative donor or acceptor sites exist; thus the relative height
of the 0 # c # 0.1 bar. (D, upper and lower). Distribution of 59 c scores for annotated splice junctions at two different detection thresholds in single-cell
libraries (see Supplemental Fig. 41 for more detail). (E, upper and lower) Distribution of 59 c scores for novel splice junctions at two different detection
thresholds in single-cell libraries (see Supplemental Fig. 42 for more detail). (F,G) Frequency of major splice site usage switches between individual cells (F)
and individual libraries in a pool/split experiment (G). Note the strong support for major splice site use switching across the collection of single cells.
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molecule capture efficiency would profoundly advance the field.

Based on our simulations and results from pool/split experiments,

we estimate that an increase in psmc from 0.1 to 0.5 would be a

major leap forward, while psmc $ 0.8 would provide sufficient re-

liability for virtually any biological use. We anticipate that this

empirical and analytical framework will be useful for evaluating

future improvements in protocols, such as the recently described

SMART-seq2 protocol (Picelli et al. 2013).

Finally, we found that the amount of mRNA per cell is highly

variable between individual cells. Beyond biological interest, these

differences in mRNA number are important for analysis pipelines.

RPKM-type metrics are not reliable when there are large differences

in total RNA per cell (Lin et al. 2012; Lovén et al. 2012). At present,

the direct relationship between the absolute number of mRNA

copies per cell and the number of sequencing reads in a library is

lost due to the fragmentation of amplified cDNA molecules that is

a common feature of available protocols, resulting in multiple

distinct but overlapping sequencing fragments for each founder

RNA molecule. mRNA copy number can be estimated back from

FPKMs with the help of spike-in sequences. However, this is far

from ideal, as it depends on the accuracy of quantification of the

spike-ins and assumes the absence of systemic differences between

spike-in RNAs and endogenous RNAs. If these assumptions are

wrong, we expect a systematic error in the calculated number of

mRNAs per cell, although the more interesting and important

differences between individual cells versus pool/splits would re-

main. The above considerations make it very clear that a future

ideal single-cell RNA-seq assay would combine a very high single-

molecule capture efficiency with an amplification-free, and pref-

erably also reverse transcription-free, direct RNA sequencing method

to achieve direct counting of intact transcripts. Emerging sequenc-

ing technologies (Branton et al. 2008; Schadt et al. 2010) already

hold promise for such radical improvements.

Methods

Cell growth and single-cell RNA-seq library construction
Individual GM12878 cells grown according to standard ENCODE
protocols were picked with a glass micropipette, deposited into
lysis buffer, and frozen. Cells were later lysed in reaction buffer, and
single-cell SMART cDNA was generated following the SMART-seq
protocol (Ramsköld et al. 2012) with the following modifications:
(1) Carrier yeast tRNA was added in the lysis buffer to reduce
handling losses and help maintain the integrity of the mRNA; (2)
spikes of known copy number were introduced; and (3) the PCR
cycle number was empirically titrated to accommodate the rela-
tively small GM12878 cells. The SMART cDNA was tagmented
using Illumina/Nextera reagents as described in Gertz et al. (2012).
A detailed description of experimental protocols is provided in
the Supplemental Methods.

Sequence alignment and gene expression quantification

Reads were aligned against a combined Bowtie index of the human
genome and spike-in sequences using TopHat (Trapnell et al. 2009,
2012). Gene expression was quantified using Cufflinks (Trapnell
et al. 2010, 2012). FPKMs were converted to copies-per-cell esti-
mates using the input and measured spike-in abundances.

Single-molecule capture efficiency estimation

We estimated the average psmc based on the number of libraries
with 0 FPKM for each spike and the number of input molecules

(accounting for the fact that the number of successful captures is
not known but only the number of complete failures; a detailed
description of the procedure is provided in the Supplemental
Methods). The average psmc for all spikes for which libraries with
0 FPKMs were observed was used, which is ;0.01.

Analysis of allele-biased expression

We used the diploid (May 2011 release) NA12878 genome con-
taining phased SNPs and indels based on the NCBI build 36
(hg18) version of the human genome (downloaded from http://sv.
gersteinlab.org/NA12878_diploid/). Heterozygous transcriptomes
containing two copies of each transcript were built, and reads were
aligned using Bowtie (Langmead et al. 2009) (version 0.12.7) with
zero mismatches allowed. Identical reads were collapsed, and reads
were assigned to an allele if they mapped only to one of the alleles
of a gene. Allele-biased expression was assessed by accounting for
all of the following: (1) significance of allelic bias on the level of
reads; (2) significance of allelic bias on the level of estimated
copies per cell for each allele (derived from the total number of
estimated copies for the gene); this is necessary, as a common
feature of all current single-cell protocols is the production of mul-
tiple overlapping fragments from each original molecule; and (3)
the possibility that the observed allelic bias is due to differential
stochastic capture of the two alleles. A detailed description of the
procedure is provided in the Supplemental Methods.

Alternative splicing analysis

We carried out alternative splicing analysis using the 59 and 39

splicing inclusion c scores described by Pervouchine et al. (2013),
and applying the same statistical procedure we used to assess allelic
expression bias to determine statistically significant splice variant
exclusion. A detailed description of the splicing analysis procedure
is provided in the Supplemental Methods.

Gene expression clustering and weighted correlation
network analysis

We used the WGCNA R package (Langfelder and Horvath 2008) to
carry out the weighted correlation network analysis. Gene Ontol-
ogy enrichment in modules was assessed using FuncAssociate2.0
(Berriz et al. 2009). Gene expression clustering was carried out using
Cluster 3.0 (de Hoon et al. 2004) and visualized using TreeView
(Saldanha 2004).

Data access
BAM files containing aligned and unaligned sequencing reads
have been submitted to the NCBI Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE44618.
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Ramsköld D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, Daniels GA,
Khrebtukova I, Loring JF, Laurent LC, et al. 2012. Full-length mRNA-Seq
from single-cell levels of RNA and individual circulating tumor cells.
Nat Biotechnol 30: 777–782.

Raser JM, O’Shea EK. 2005. Noise in gene expression: Origins,
consequences, and control. Science 309: 2010–2013.

Reddy TE, Gertz J, Pauli F, Kucera KS, Varley KE, Newberry KM, Marinov GK,
Mortazavi A, Williams BA, Song L, et al. 2012. Effects of sequence
variation on differential allelic transcription factor occupancy and gene
expression. Genome Res 22: 860–869.

Rozowsky J, Abyzov A, Wang J, Alves P, Raha D, Harmanci A, Leng J, Bjornson
R, Kong Y, Kitabayashi N, et al. 2011. AlleleSeq: Analysis of allele-specific
expression and binding in a network framework. Mol Syst Biol 7: 522.

Saldanha AJ. 2004. Java Treeview–extensible visualization of microarray
data. Bioinformatics 20: 3246–3248.

Sanchez-Freire V, Ebert AD, Kalisky T, Quake SR, Wu JC. 2012. Microfluidic
single-cell real-time PCR for comparative analysis of gene expression
patterns. Nat Protoc 7: 829–838.

Schadt EE, Turner S, Kasarskis A. 2010. A window into third-generation
sequencing. Hum Mol Genet 19: R227–R240.

Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury
R, Schwartz S, Yosef N, Malboeuf C, Lu D, et al. 2013. Single-cell
transcriptomics reveals bimodality in expression and splicing in
immune cells. Nature 498: 236–240.

Sorek R, Shamir R, Ast G. 2004. How prevalent is functional alternative
splicing in the human genome? Trends Genet 20: 68–71.

Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J,
Tuch BB, Siddiqui A, et al. 2009. mRNA-Seq whole-transcriptome
analysis of a single cell. Nat Methods 6: 377–382.

Genome Research 509
www.genome.org

Stochasticity in gene expression and RNA splicing610



Tang F, Barbacioru C, Nordman E, Li B, Xu N, Bashkirov VI, Lao K, Surani
MA. 2010. RNA-Seq analysis to capture the transcriptome landscape of
a single cell. Nat Protoc 5: 516–535.

Tang F, Lao K, Surani MA. 2011. Development and applications of single-cell
transcriptome analysis. Nat Methods (Suppl) 8: S6–S11.

Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: Discovering splice
junctions with RNA-Seq. Bioinformatics 25: 1105–1111.

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ,
Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and
quantification by RNA-Seq reveals unannotated transcripts and isoform
switching during cell differentiation. Nat Biotechnol 28: 511–515.

Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. 2012.
Differential analysis of gene regulation at transcript resolution with
RNA-seq. Nat Biotechnol 31: 46–53.

Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. 2009.
A census of human transcription factors: Function, expression and
evolution. Nat Rev Genet 10: 252–263.

Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF,
Schroth GP, Burge CB. 2008. Alternative isoform regulation in human
tissue transcriptomes. Nature 456: 470–476.

White AK, VanInsberghe M, Petriv OI, Hamidi M, Sikorski D, Marra MA,
Piret J, Aparicio S, Hansen CL. 2011. High-throughput microfluidic
single-cell RT-qPCR. Proc Natl Acad Sci 108: 13999–14004.

Zhang X, Borevitz JO. 2009. Global analysis of allele-specific expression in
Arabidopsis thaliana. Genetics 182: 943–954.

Zhang B, Horvath S. 2005. A general framework for weighted gene co-
expression network analysis. Stat Appl Genet Mol Biol 4: 17.

Zenklusen D, Larson DR, Singer RH. 2008. Single-RNA counting reveals
alternative modes of gene expression in yeast. Nat Struct Mol Biol 15:
1263–1271.

Received May 24, 2013; accepted in revised form November 20, 2013.

510 Genome Research
www.genome.org

Marinov et al. 611



612

K

Large-scale quality analysis of published ChIP-seq

data

Originally published as:

Marinov GK, Kundaje A, Park PJ, Wold BJ. Large-scale quality analysis of published ChIP-seq
data. G3. 2014. 4(2):209-223. doi: 10.1534/g3.113.008680.



INVESTIGATION

Large-Scale Quality Analysis of Published
ChIP-seq Data
Georgi K. Marinov,* Anshul Kundaje,**,††,1 Peter J. Park,†,‡,§ and Barbara J. Wold*,2

*Division of Biology, California Institute of Technology, Pasadena, California 91125, †Center for Biomedical Informatics,
Harvard Medical School, Boston, Massachusetts 02115, ‡Informatics Program, Children’s Hospital Boston, Boston,
Massachusetts 02115, §Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts 02115, **Computer
Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
and ††The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142

ABSTRACT ChIP-seq has become the primary method for identifying in vivo protein–DNA interactions on
a genome-wide scale, with nearly 800 publications involving the technique appearing in PubMed as of
December 2012. Individually and in aggregate, these data are an important and information-rich resource.
However, uncertainties about data quality confound their use by the wider research community. Recently,
the Encyclopedia of DNA Elements (ENCODE) project developed and applied metrics to objectively mea-
sure ChIP-seq data quality. The ENCODE quality analysis was useful for flagging datasets for closer in-
spection, eliminating or replacing poor data, and for driving changes in experimental pipelines. There had
been no similarly systematic quality analysis of the large and disparate body of published ChIP-seq profiles.
Here, we report a uniform analysis of vertebrate transcription factor ChIP-seq datasets in the Gene Expression
Omnibus (GEO) repository as of April 1, 2012. The majority (55%) of datasets scored as being highly successful,
but a substantial minority (20%) were of apparently poor quality, and another �25% were of intermediate
quality. We discuss how different uses of ChIP-seq data are affected by specific aspects of data quality, and we
highlight exceptional instances for which the metric values should not be taken at face value. Unexpectedly, we
discovered that a significant subset of control datasets (i.e., no immunoprecipitation and mock immunopre-
cipitation samples) display an enrichment structure similar to successful ChIP-seq data. This can, in turn, affect
peak calling and data interpretation. Published datasets identified here as high-quality comprise a large group
that users can draw on for large-scale integrated analysis. In the future, ChIP-seq quality assessment similar to
that used here could guide experimentalists at early stages in a study, provide useful input in the publication
process, and be used to stratify ChIP-seq data for different community-wide uses.
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Chromatin immunoprecipitation (ChIP) (Gilmour and Lis 1984;
Gilmour and Lis 1985; Solomon et al. 1988) experiments identify
sites of occupancy by specific transcription factors (TFs), cofactors, and
other chromatin-associated proteins as well as histone modifications.
Such proteins are concentrated at specific loci via direct binding to
DNA or by indirect binding mediated by other proteins or RNA
molecules. In most ChIP protocols, proteins are first cross-linked to
DNA, most often using formaldehyde. The fixed chromatin is sheared,
and an antibody specific for the protein or histone modification of
interest is used to retrieve protein:DNA complexes from which the
DNA segments are released and then assayed. The assay was first
applied to individual TF/promoter complexes by using qPCR to detect
enrichment over specific DNA segments (Hecht et al. 1996). Subsequent
adaptations extended it to large sets of promoters or other genomic
regions by using microarrays (ChIP-on-Chip/ChIP-Chip) (Ren et al.
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2000; Iyer et al. 2001; Lieb et al. 2001; Horak and Snyder 2002;
Weinmann et al. 2002). Ultimately, the entire genome became acces-
sible with the advent of high-throughput sequencing and the devel-
opment of ChIP-seq (Johnson et al. 2007; Barski et al. 2007;
Mikkelsen et al. 2007; Robertson et al. 2007).

In all cases, preferential enrichment of a given immunoprecipitated
DNA segment is detected and quantified by comparing it with a control
experiment in which there is no specific antibody enrichment step.
These controls can be generated from sonicated DNA before immuno-
precipitation (input) or a mock immunoprecipitation with an unrelated
antibody (IgG). Sequencing-based ChIP has become the method of
choice because it enables genome-wide coverage, even for large
genomes, and because of its superior signal-to-noise characteristics
compared to alternative methods. Since its initial development,
ChIP-seq has been used in hundreds of publications (778 in PubMed
as of December 18, 2012), including by the ENCODE consortium
(ENCODE Project Consortium 2011; ENCODE Project Consortium
2012), to map occupancy over 100 human TFs and cofactors in a di-
verse collection of cell lines (Gerstein et al. 2012; Wang et al. 2012).

A basic question for any ChIP-seq experiment is, how successful
was it? It has taken several years for the field to develop objective ways
to quantify key aspects of success in immunoprecipitation enrichment,
library building, and final sequencing. Poor datasets that have high
false-negative rates in peak calling are a predictable pitfall that has
significant downstream consequences for some kinds of biological and
computational analyses. For example, when lower-quality datasets are
used for integrative analyses that are sensitive to false-negative rates,
incorrect inferences and conclusions become likely (see Discussion). In
estimating data quality, the traditional approach of visual inspection at
a limited number of sites (often previously well-characterized using
low-throughput approaches) is inefficient, subjective, and ultimately
can be deceptive. It is also possible (and commonly observed in prac-
tice) that sites, the biological importance of which has been defined by
independent functional assays, can decrease to below the sensitivity
threshold of a poor or mediocre ChIP-seq experiment. Moreover, there
is no current way to predict, a priori, the number of sites in the genome
that should be detectable for a given factor and cell type. Most TFs
studied thus far reproducibly occupy thousands to tens of thousands of
sites (ENCODE Project Consortium 2012; Landt et al. 2012). Thus,
a dataset for which several thousand sites have been called might in fact
be capturing a minority of true positive interactions, or it might en-
compass virtually all biologically pertinent sites. To help address the
problem of data assessment as part of the ENCODE project, we and
others developed a set of ChIP-seq quality control (QC) metrics and
guidelines (Landt et al. 2012) that were adopted and applied to all of its
datasets. Substandard datasets were consequently replaced, flagged as
substandard, and/or removed from analysis (ENCODE Project Con-
sortium 2012; Landt et al. 2012).

Incorporating published datasets into an ongoing study can bring
new biological insights and avoid unnecessary duplication of work.
Variable quality of published data can be a significant barrier to these
uses of existing data. They are the products of work from many
different laboratories with invaluable expertise in specific biological
systems, but they also use many variations of ChIP-seq experimental
protocols and bioinformatics treatments. The extent and nature of the
variations have not been assessed globally and systematically. In this
work, we examined the GEO submission series containing vertebrate
TF ChIP-seq datasets and found that �20% of datasets scored as
being of low quality, with an additional �25% exhibiting intermediate
ChIP enrichment. We also noticed that approximately one-third of
studies have control datasets with a high degree of read clustering that

is normally expected only in ChIP-seq datasets. This was observed
more often for the IgG control design than for input DNA controls.
These and related observations argue for data quality measures rou-
tine characterization and reporting of ChIP-seq data quality measures.

MATERIALS AND METHODS

Sequencing read alignment
Raw sequencing reads for all non-ENCODE GEO series containing
ChIP-seq datasets against TFs and chromatin-modifying proteins
(submitted before April 1, 2012) were downloaded from GEO in SRA
format and converted to FASTQ format using the fastq-dump
program in the sratoolkit (version 2.1.9). Reads were aligned using
Bowtie (Langmead et al. 2009) version 0.12.7 with the following set-
ting: “-v 2 -t -k 2 -m 1 –best–strata,” which– allows for two mis-
matches relative to the reference and only retains unique alignments.
Human datasets were mapped against the male set of chromosomes
(excluding all random chromosomes and haplotypes) for version hg19
of the human genome; the mm9 version of the mouse genome was
used for mouse data, rn5 was used for rat data, danRer7 was used for
zebrafish data, susScr2 was used for pig data, and xenTro3 was used
for the clawed frog Xaenopus tropicalis data, and all assemblies were
downloaded from the UCSC genome browser (Kent at al. 2002).

ChIP quality assessment
ChIP quality assessment was performed on both ChIP and input
datasets using the general strategy described by Landt et al. (2012).
Because a library may score as an “unsuccessful ChIP” for reasons
other than IP failure (e.g. being performed in a knockout background,
in si/shRNA-treated cells, or in conditions under which the factor is
not expressed or not bound to DNA), the following additional criteria
were used to determine whether each library is expected to score
positively in the QC assessment:

1. All experiments claimed to be successful by authors are expected
to exhibit high level of read clustering.

2. All inputs (sonicated DNA and IgG mock IPs) are expected to
exhibit minimal read clustering (QC tag of 22 or 21).

3. All ChIP-seq experiments performed in a knockout background
for the factor are expected to exhibit minimal read clustering (QC
tag of 22 or 21).

4. Because knockdown efficiency varies and because it is unknown
what protein levels would be sufficiently high for the factor to be
successfully ChIP-ed, ChIP-seq experiments performed in cells
treated with si/shRNAs targeting the factor are set aside as
“unknown” and assessed for library complexity and sequencing
depth but not for ChIP quality.

5. Experiments against factors known to bind to DNA on some
stimulus performed in unstimulated cells are also tagged as
“unknown” because lower-level binding in unstimulated cells
cannot be ruled out (and is, in fact, often observed).

6. Experiments performed in conditions that may result in the fac-
tor not binding to DNA (time courses, knockdowns, or knock-
outs for other factors that may affect binding of the targeted
factor) are also tagged as “unknown.”

7. Other experiments not matching any of these categories are
expected to exhibit high levels of read clustering.

Cross-correlation analysis was performed using version 1.10.1 of
SPP (Kharchenko et al. 2008) and the following parameter: “2s =
0:2:400.” QC scores were assigned based on the relative strand
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correlation (RSC) values (integers ranging from 22 to 22, RSC 2 {0,
0.25} ⇒ QC ) 22, RSC 2 {0.25, 0.50} ⇒ QC ) 21, RSC 2 {0.50,
1.00} ⇒ QC ) 0, RSC 2 {1, 1.50} ⇒ QC ) +1, RSC $ 1.5 ⇒ QC )
+2, with 22 corresponding to minimal read clustering and 2 corre-
sponding to a highly clustered library) and used as a measure of ChIP
quality. These scores capture the extent of read clustering in a ChIP-seq
experiment in organisms whose genomes have similar size and structure
to those of mammals. We point out that these scores may not be
appropriate in genomes with very different size and/or structure. This
motivated us to discard data from nonvertebrate model organisms for
this analysis. Different values than those used here for RSC or normal-
ized strand correlation (NSC) coefficients may be needed for such
genomes, and this is a topic for future investigation. Cross-correlation
plots were manually examined to ensure no artifactual QC scores were
included because of size selection issues (such as, for example, a library
being fragmented to an average size close to the read length and con-
fusing the automated fragment peak assignment). In general, we rec-
ommend manual examination of cross-correlation plots in all cases.
This presents a deeper and more detailed view of the characteristics
of the dataset because the cross-correlation profile provides not only
information regarding ChIP enrichment but also regarding the frag-
ment length distribution in the datasets. For example, a dataset might
exhibit periodicity in the distribution of fragment size lengths, present-
ing itself as numerous smaller peaks along the curve (often seen when
chromatin is enzymatically digested rather than sonicated), or it can
deviate from the standard unimodal pattern (aside from the phantom
peak) indicating issues with size selection. The code for running
SPP and assigning QC scores is available at https://code.google.com/p/
phantompeakqualtools/.

MyoD and myogenin ChIP-seq peak calling
MyoD and myogenin datasets were generated by the Wold laboratory
and are available under GEO accession number GSE44824. We note
that the apparent weakness of the “myogenin 2” ChIP dataset is most
likely attributable to undersequencing and would be elevated to high-
quality status if sequenced deeper; undersequencing is one possible
reason for suboptimal quality metrics (A. Kundaje et al., unpublished
data). Reads were mapped as described above and peaks were called
using ERANGE3.2 (Johnson et al. 2007) with the following settings:
“2minimum 2 2ratio 3 2shift learn 2revbackground 2listPeak.”
ChIP-seq peak calls were counted as overlapping if their summits were
within 200 bp of each other. Read mapping statistics and QC metrics
for these datasets can be found in Supporting Information, Table S2.

RESULTS

Dataset collection, data processing, and quality metrics
We downloaded all GEO series containing ChIP-seq datasets for
vertebrate TFs or chromatin-modifying and remodeling proteins,
along with their corresponding control libraries, submitted before
April 1, 2012. We excluded ENCODE datasets because they have
previously been subjected to this quality assessment (ENCODE Pro-
ject Consortium 2012). We provide here a summary of ENCODE TF
ChIP-seq data quality from the two main production groups in Figure
S9 and Figure S10 (Landt et al. 2012).

For several reasons, we also excluded histone modifications and RNA
Polymerase II datasets. First, in our experience, ChIP-seq against these
targets is very robust to experimental variation and the success rate is
reliably high (provided the antibody reagents used are of high quality).
Second, an especially large proportion of published data are for histone
marks. The effect of including all of these in the survey is to obscure or

skew what is happening in the information-rich sample set that includes
diverse TFs and cofactors. Finally, the currently available QCmetrics were
designed and are best suited for TF data that produce highly localized
“point-source” occupancy (as they quantify the extent of read clustering
in the genome). This means that the metrics themselves need to be
interpreted differently if they are applied to, for example, repressive his-
tone marks such as H3K9me3 and H3K27me3, which form large “broad-
source” regions of enrichment (Pepke et al. 2009). Arguably, these data
will need their own metrics and this will be a challenge for the future.

The final collection of datasets contained 191 GEO series
containing a total of 917 ChIP-seq and 292 control libraries. Except
for a limited number of cases in which a GEO series was associated
with multiple publications, two or three GEO series were associated
with the same publication, or a GEO series has not yet been used in
a publication, and there is a one-to-one relationship between GEO
series and published articles in the literature (Robertson et al. 2007;
Chen et al. 2008; Marson et al. 2008; Bilodeau et al. 2009; Cheng et al.
2009; De Santa et al. 2009; Lister et al. 2009; Nishiyama et al. 2009;
Visel et al. 2009; Welboren et al. 2009; Wilson et al. 2009; Yu et al.
2009; Yuan et al. 2009; Barish et al. 2010; Blow et al. 2010; Blow et al.
2010; Cao et al. 2010; Chi et al. 2010; Chia et al. 2010; Chicas
et al. 2010; Corbo et al. 2010; Cuddapah et al. 2009; Durant et al.
2010; Fortschegger et al. 2010; Gotea et al. 2010; Gu et al. 2010; Han
et al. 2010; Heinz et al. 2010; Heng et al. 2010; Ho et al. 2009;
Hollenhorst et al. 2009; Hu et al. 2010; Johannes et al. 2010; Jung
et al. 2010; Kagey et al. 2010; Kassouf et al. 2010; Kim et al. 2010;
Kong et al. 2010; Kouwenhoven et al. 2010; Krebs et al. 2010; Kunarso
et al. 2010; Kwon et al. 2009; Law et al. 2010; Lee et al. 2010; Lefterova
et al. 2010; Li et al. 2010; Lin et al. 2010; Liu et al. 2010; Ma et al. 2010;
MacIsaac et al. 2010; Mahony et al. 2010; Martinez et al. 2010; Palii
et al. 2010; Qi et al. 2010; Rada-Iglesias et al. 2010; Rahl et al. 2010;
Ramagopalan et al. 2010; Ramos et al. 2010; Schlesinger et al. 2010;
Schnetz et al. 2010; Sehat et al. 2010; Steger et al. 2010; Tallack et al.
2010; Tang et al. 2010; Vermeulen et al. 2010; Verzi et al. 2010; Vivar
et al. 2010; Wei et al. 2010; Woodfield et al. 2010; Yang et al. 2010;
Yao et al. 2010; Yu et al. 2010; An et al. 2011; Ang et al. 2011;
Bergsland et al. 2011; Bernt et al. 2011; Botcheva et al. 2011; Brown
et al. 2011; Bugge et al. 2011; Ceol et al. 2011; Ceschin et al. 2011;
Costessi et al. 2011; Ebert et al. 2011; Fang et al. 2011; Handoko et al.
2011; He et al. 2011; Heikkinen et al. 2011; Holmstrom et al. 2011;
Horiuchi et al. 2011; Hu et al. 2011; Joseph et al. 2010; Kim et al. 2011;
Klisch et al. 2011; Koeppel et al. 2011; Kong et al. 2011; Little et al.
2011; Liu et al. 2011; Lo et al. 2011; Marban et al. 2011; Mazzoni
et al. 2011; McManus et al. 2011; Mendoza-Parra et al. 2011; Meyer
et al. 2012; Miyazaki et al. 2011; Mullen et al. 2011; Mullican et al. 2011;
Nakayamada et al. 2011; Nitzsche et al. 2011; Norton et al. 2011;
Novershtern et al. 2011; Quenneville et al. 2011; Rao et al. 2011; Rey
et al. 2011; Sahu et al. 2011; Schmitz et al. 2011; Seitz et al. 2011;
Shen et al. 2011; Shukla et al. 2011; Siersbæk et al. 2011; Smeenk
et al. 2011; Smith et al. 2011; Soccio et al. 2011; Stadler et al. 2011;
Sun et al. 2011; Tan et al. 2011a; Tan et al. 2011b; Teo et al. 2011;
Tijssen et al. 2011; Tiwari et al. 2011a; Tiwari et al. 2011b; Trompouki
et al. 2011; van Heeringen et al. 2011; Verzi et al. 2011; Wang et al.
2011a; Wang et al. 2011b; Wei et al. 2011; Whyte et al. 2011; Wu et al.
2011a; Wu et al. 2011b; Xu et al. 2011; Yang et al. 2011; Yildirim
et al. 2011; Yoon et al. 2011; Zhang et al. 2011; Zhao et al. 2011a; Zhao
et al. 2011b; Avvakumov et al. 2012; Barish et al. 2012; Boergesen et al.
2012; Bugge et al. 2012; Canella et al. 2012; Cardamone et al.
2012; Cheng et al. 2012; Chlon et al. 2012; Cho et al. 2012; Doré
et al. 2012; Fan et al. 2012; Feng et al. 2011; Fong et al. 2012; Gao et al.
2012; Gowher et al. 2012; Hunkapiller et al. 2012; Hutchins et al. 2012; Li
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et al. 2012; Lu et al. 2012; Miller et al. 2011; Ntziachristos et al. 2012;
Pehkonen et al. 2012; Ptasinska et al. 2012; Remeseiro et al. 2012;
Sadasivam et al. 2012; Sakabe et al. 2012; Schödel et al. 2012; Trowbridge
et al. 2012; Vilagos et al. 2012; Wu et al. 2012; Xiao et al. 2012; Yu

et al. 2012; unpublished at the time of completion of this manuscript
are the following GEO accession numbers: GSE33346, GSE33850,
GSE36561, GSE30919, GSE33128, GSE35109, GSE25426, GSE31951,
GSE26711, GSE23581, GSE26136, GSE26680, GSE15844, GSE21916,

Figure 1 Sequencing library characteristics. (A) Joint distribution of library complexity and sequencing depth for all datasets examined. Vertical
lines are drawn at 1 million, 5 million, and 12 million reads. Horizontal and vertical lines indicate quality classes discussed in the text. The upper
right domain (number of uniquely mappable reads $12 million and library complexity $0.8) passes current quality thresholds. (B) Distribution of
library complexity for ChIP-seq datasets, IgG controls, and inputs. (C) Distribution of sequencing depth for ChIP-seq datasets, IgG controls, and
sonicated inputs. (D) Fraction of ChIP-seq, IgG, and input datasets exhibiting high, medium, and low complexity. (E) Fraction of studies containing
libraries of high, medium, and low complexity (the distribution of the minimum library complexity observed is shown)
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GSE22303, and GSE29180; direct links to all GEO series can be found
in Table S1).

We discuss IgG and input controls separately because, to the best
of our knowledge, any potential general differences between the two
types of controls have not been investigated systematically in the
context of ChIP-seq (Peng et al. 2007 addressed these questions for
ChIP-Chip data; however, the nature of the background is substan-
tially different for microarrays).

We mapped all reads with uniform settings (see Materials and
Methods for details) and examined library and ChIP QC metrics for
each dataset. These criteria have already been discussed by Landt et al.
(2012), and a detailed treatment of cross-correlation is presented else-
where (Kundaje et al., unpublished data). Here, we provide a brief
overview of each.

Sequencing depth: If a ChIP-seq experiment achieves successful
immune enrichment and the resulting library adequately represents
the sample, then greater sequencing depth will produce a more
complete map of TF occupancy (Landt et al. 2012). At a greater depth,
the measurement will identify a larger number of reproducible sites
containing the corresponding DNA-binding sequence motif. Under-
sequencing of an otherwise successful library will lead to false-negative
results. It has been difficult to establish a universal minimal sequenc-
ing depth because of differences between factors. Any threshold is
going to be somewhat arbitrary but, in general, the major cost/benefit
trade-off is between sequencing individual samples more deeply and
generating more replicates; for most contemporary purposes, an in-
dependent duplicate measurement of 12 million reads arguably adds
greater overall value than a single determination with 24 million reads,
even though the higher number of reads will increase sensitivity. The
number of mapped reads less than 1–2 million for a typical TF will

usually be inadequate for capturing the complexity of an interactome
for a mammalian-size genome. Many datasets now in the public
domain were generated when sequencing throughput was lower than
it is now and costs were higher (between 2007 and 2013, sequencing
throughput has increased by approximately two orders of magnitude).
As a consequence, many early ChIP-seq libraries were sequenced to
a depth of only a few million reads. We therefore divided datasets into
sequencing bins by using thresholds of 1 million, 5 million, 12 million,
and 24 million uniquely mapped reads (taking into account sequenc-
ing depths recommended in the past by the ENCODE consortium for
TFs). Libraries having less than 1 million reads are considered severely
undersequenced, and those with more than 12 million are considered
reasonably deeply sequenced.

Library complexity: A second characteristic that influences the quality
of a ChIP-seq measurement is the sequence fragment diversity of the
sequencing library. This is often referred to as library complexity,
and low complexity is undesirable, although we note that much
better IP enrichment than what is now obtained could, in the future,
lead to very high-quality datasets with low library complexity.
Currently, low-complexity libraries mainly result from experimental
deficiencies: either too few starting molecules at the end of the
immunoprecipitation step or inefficient steps in subsequent library
building. As a result, the same starting molecules are sequenced
repeatedly. Very-low-complexity libraries will not contain enough
information to effectively sample the true positive occupancy sites
and they distort the signal position and intensity. This can confuse
peak callers (especially if the algorithm does not collapse pre-
sumptive PCR duplicates), leading to peak calling artifacts (Landt
et al. 2012). We calculate the following metric as an indicator of
library complexity (Landt et al. 2012):

Library  complexity ¼ Number  positions  in  the  genome  with  uniquely mappable  reads  in  dataset
Number  uniquely mappable  reads  in  dataset

(1)

Estimated in this simple way, library complexity is expected to
decrease eventually with increased sequencing depth because even
highly complex libraries become exhausted by very deep sequencing.
Reduced apparent complexity would also be observed with extremely
successful ChIP-seq experiments for TFs that bind to the genome in
a highly discriminative fashion to a limited number of locations. In
such libraries, the majority of reads would originate from the limited
genomic subspace around binding sites, resulting in low library com-
plexity. With current methods, this is a largely theoretical consider-
ation; in practice, in most ChIP-seq libraries only a minority of reads
originates from factor-bound sites, with the rest (the majority) rep-
resenting genomic background. Because the majority of libraries we
examined were in the sequencing depth range over which these values
represent library complexity reasonably well (Figure 1A and Figure
S2), we separated datasets into the following complexity groups: high
complexity (apparent library complexity $.8); medium to low com-
plexity (apparent library complexity between 0.5 and 0.8); and very
low complexity (apparent library complexity #.5). We also note that
in substantially smaller genomes, the apparent library complexity is
expected to be lower because the number of positions from which
sequencing library fragments can originate is smaller.

Cross-correlation analysis of read clustering and ChIP enrichment:
Because the majority of sequencing reads in a ChIP-seq library

represent nonspecific genomic backgrounds, these reads are expected
to be distributed randomly over the genome, to a first approximation.
In contrast, reads originating from specific occupancy events cluster
around the sites of protein–DNA interactions, where they are distrib-
uted in a characteristic asymmetric pattern on the plus and minus
strands (Kharchenko et al. 2008). Cross-correlation analysis is an ef-
fective way of measuring the extent of this clustering. It also captures
additional global features of the data, such as the average fragment
length and fragment length distribution (Kharchenko et al. 2008;
Landt et al. 2012). Specifically, the read coverage profiles on the two
strands are shifted relative to the other over a range of shift values
and the correlation between the profiles is calculated at each shift
(Kharchenko et al. 2008). The resulting plot has one (“phantom”) peak
corresponding to the read length and another peak corresponding to
the average fragment length; the height of the fragment-length peak is
highly informative of the extent of read clustering in the library and, in
turn, of the success of a ChIP-seq experiment. This feature is best
captured by the NSC and RSC metrics discussed by Landt et al. (2012).

We applied SPP (Kharchenko et al. 2008) to perform cross-correlation
analysis for all libraries in our survey. We then used the RSC cross-
correlation metric to assign integer QC tag values in the {22, 2} range
to datasets, with QC values of 2 corresponding to very highly clustered
(and most likely, also successful) datasets and QC values of 22 to
datasets exhibiting no to minimal read clustering; negative values are
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expected for input datasets. The RSC metric captures well the extent of
read enrichment in vertebrate genomes similar in size and structure to
humans, which this study focuses on. We provide representative
examples of cross-correlation plots for each of the five QC categories
in Figure S1A, and we use these tags as convenient general proxies for
ChIP quality throughout the following analysis. We note that the
discretization thresholds are not intended to be absolute determinants
of quality, but they do enable one to rapidly scan very large numbers
of datasets. In practice, examining the cross-correlation plots and the
continuously distributed NSC and RSC values and using those to-
gether with information about sequencing depth and library complex-
ity are always more informative and can provide valuable nuances for
understanding specific datasets. Direct examination of plots allows
one to detect datasets with odd cross-correlation profiles (we show
a few representative examples in Figure S11). It is possible in theory
for low-complexity libraries to produce artificially high cross-correla-
tion scores if stacks of reads on opposite strands are located close to
each other in regions of enrichment; however, the Pearson correlation
between library complexity scores and RSC values in the collection of
ChIP datasets surveyed here was 0.0084, indicating that such cases do
not feature significantly in this analysis.

An additional major component of the ChIP-seq QC pipeline
developed by the ENCODE consortium is reproducibility analysis of
replicates, based on the irreproducible discovery rate (IDR) statistic (Li
et al. 2011). However, because many of the studies we surveyed did
not have replicates, we only evaluated datasets on the level of indi-
vidual experiments. Single dataset evaluation is almost always a valu-
able precursor to evaluation of replicates because, typically, a second
replicate is generated after a successful first one. The full list of data-
sets, mapping, and QC statistics is provided in Table S1.

Sequencing depth and library complexity
Figure 1A shows the distribution of sequencing depth and library
complexity for ChIP-seq and control datasets. The upper right do-
main, bounded by 12 million reads per sample and a complexity value
of 0.8, is an arbitrary but useful definition of high quality according to
these measures. A majority of datasets had reasonably good complex-
ity and severely undersequenced libraries were rare (Figure 1C).
A minority (38.8%) of datasets had more than 12 million mapped
reads; however, as discussed, this is not unexpected, because a large
fraction of the datasets we surveyed were generated in times of sig-

nificantly higher sequencing cost and lower throughput. Strikingly, the
median complexity of IgG control datasets was less than 0.8 and
considerably lower than that of either ChIP-seq or sonicated input
libraries (Figure 1B). This is not a result of IgG datasets having been
sequenced much more deeply than the other two groups; in fact, the
median sequencing depth of IgG controls is lower (Figure S2). The
concern that some individual IgG inputs might provide insufficient
DNA mass to build highly complex libraries has been raised before
(Landt et al. 2012), and our observations are consistent with this,
although it is not a characteristic of all IgG controls.

Slightly more than half (54.3%) of ChIP-seq datasets had library
complexity more than 0.8, whereas very-low-complexity (, 0.5) librar-
ies comprised 12.9% of datasets; the fraction of very-low-complexity
libraries was higher and lower for IgG and input datasets, respectively
(Figure 1D). Because most GEO series contained multiple libraries, we
also asked, how common is the presence of low-complexity libraries in
individual studies? Figure 1E shows the distribution of the minimum
library complexity in each such series (for all types of datasets). One-
quarter (25.4%) of all studies contained very-low-complexity libraries.

Cross-correlation quality assessment of
ChIP-seq datasets
Next, we examined the distribution of SPP QC scores for ChIP-seq
datasets. Before doing this, we excluded a minority of datasets for
which there was a good reason to think high ChIP enrichment should
not be expected. For example, experiments executed in knockouts,
knockdowns, or settings in which the factor is not expressed are not
expected to produce a high-scoring measurement. And in a few cases,
the factor in question might be known to bind to only a small number
of sites in the genome; this has been proposed, for example, for some
ZNF TFs and Pol3 and its associated factors (Landt et al. 2012). Our
detailed criteria for inclusion are described in Materials and Methods.

Figure 2A shows the QC score distribution for all ChIP-seq data-
sets we retained. Strikingly, only 55% (482 out of 876) of datasets had
QC scores of 1 or 2, i.e., they were likely to be highly successful. An
additional 24.5% (215 out of 876) had a score of 0, indicating that they
were of intermediate quality, and 20.4% (179 out of 876) had low-
quality scores of21 and22. Sometimes multiple replicates for a factor
were submitted but only one scored poorly, so we also compiled
a second set of ChIP-seq experiments that only included the best
available replicate for each factor and condition (Figure 2B). This

Figure 2 ChIP QC assessment summary. The numbers
in each box indicate the total number of datasets/
studies belonging to it. SPP QC scores of +1 and +2
indicate a high degree of read clustering in a dataset.
(A) Distribution of SPP QC scores for all ChIP-seq
datasets examined. (B) Distribution of SPP QC scores
for the best replicates for a factor/condition combina-
tion in each study. (C) Distribution of the maximum SPP
QC scores for all ChIP-seq datasets in a study.
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set included 322 datasets (59%) with QC scores of 2 or 1. The fraction
of intermediate-quality or low-scoring datasets in this group decreased
as expected. However, the decrease was modest with 18% (97 out of
541) of the best available replicates scoring21 or22, and 22.5% (122
out of 541) scoring 0.

We then examined the distribution of the maximum QC score for
each study, regardless of the target identity (Figure 3C). The fraction
of low scores decreased further, though only 70.4% of studies (131 out
of 186) had a score of 1 or 2 for their best experiment. Finally, we
compiled a list of the top-scoring datasets from all studies that assayed
only a single TF; 19.7% (19 out of 96) of these studies had scores of
21 or22, 25% (24 of 96) had a score of 0, and 55.2% (53 of 96) were
marked as likely to be successful, with scores of 1 and 2 (Figure S3C).

Read clustering in control datasets
Control datasets serve the important purpose of helping to distinguish
read enrichment attributable to the immunoprecipitation step from

artifactual read clustering attributable to other experimental factors, both
known and unknown. It is, for example, well-appreciated that differential
chromatin shearing efficiency can lead to the overrepresentation of
areas of open chromatin (usually immediately surrounding transcribed
promoters) in sequencing libraries. This has been termed the “Sono-
seq” effect when attributed to sonication (Auerbach et al. 2009). In
addition, unknown copy number variants relative to the reference ge-
nome or sequence composition biases can give false-positive occupancy
calls. In particular, specifics of the amplification step in sequencing plat-
forms can introduce bias due to GC content (Ho et al. 2011).

In general, control datasets are not expected to exhibit a pattern
of significant read clustering similar in strength to that of successful
ChIP-seq datasets. In our own practice, under standard cross-linking
protocols, most do not. However, we noticed that a minority of control
datasets produce positive ChIP QCmetric scores along with prominent
cross-correlation peaks. Figure S1B shows examples of cross-correlation
plots for individual control datasets with all possible QC scores, from

Figure 3 Assessment of read cluster-
ing in control datasets. The numbers in
each box indicate the total number of
datasets/studies belonging to it. SPP
QC scores of 1 and 2 indicate a high
degree of read clustering in a dataset.
(A) Distribution of SPP QC scores for all
control datasets (IgG + input), IgG/
mock IP controls (IgG), and sonicated
inputs (inputs). (B) Fraction of studies
containing highly clustered inputs. The
distribution of the maximum SPP QC
score for all inputs in a dataset is
shown. (C) Examples of a highly clus-
tered input [mouse liver, upper two
tracks, (MacIsaac et al. 2010), QC
score of 2] and an input that does
not show high extent of read clustering
[mouse liver, lower two tracks (Soccio
et al. 2011), QC score of 21). The pro-
moter of theMASTL gene is shown. All
tracks are shown to the same scale and
reads mapping to the plus and minus
strands are displayed separately for bet-
ter visualization of the cross-correlation
between the two.
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22 to 2, and Figure 3C shows a browser snapshot of a region with
strong read enrichment in a highly clustered (QC score of 2) input
library. No such enrichment was observed in a different control library
from a similar biological source having a QC score of 21.

We asked how general this phenomenon is by examining the
distribution of QC scores of both IgG and input control datasets
(Figure 3A). Surprisingly, only 53.6% (156 out of 291) of control
datasets had QC scores of 22 or 21 and 25% (73 of 291) had a score
of 0, whereas 21.3% (62 of 291) exhibited a very high degree of read
clustering and received scores of 1 or 2. The highly clustered inputs
were notably more common among IgG controls than among input
chromatin controls (Figure 3A). Moreover, high read clustering was
more often found in low-complexity libraries (which are themselves
more common among IgG controls) (Figure S4, A and B).

We also examined how widespread control sample clustering is on
the level of individual GEO series/studies to see if the phenomenon is
restricted to a few larger studies. Figure 3B shows the distribution of the
maximal control sample QC score for all studies. Of the studies for
which control datasets were available, 32.8% (45 of 123) contained at
least one highly clustered control with a score of 1 or 2, and 29.2% (40
of 123) contained a control with a score of 0. Thus, control datasets
surprisingly often exhibit a high extent of read clustering similar to
that of ChIP-seq datasets. This is even more striking considering that
formaldehyde-assisted isolation of regulatory elements (FAIRE-seq) data
(an assay that is based on the preferential enrichment of open chromatin in
sonicated DNA and aims to achieve high read clustering) from ENCODE
usually have QC scores between 22 and 0, Moreover, the Sono-seq
datasets published by Auerbach et al. (2009) all have scores of 22.

We note that unless this effect is very strong and is associated with
notable genomic features such as promoters of genes, it can be difficult
to detect by the usual methods of visual inspection of signal tracks on
a genome browser. It is, however, readily apparent in cross-correlation
analysis and our results raise awareness of its existence. As mentioned,
one candidate explanation for this phenomenon is the previously
described “Sono-seq” effect. Using standard experimental protocols, this
effect has been rare in our experience; however, under more aggressive
cross-linking conditions, we have observed increased read clustering in
control samples (Figure S5). Notably, the original “Sono-seq” descrip-
tion focused on promoter regions, but we have also observed it over
distal regulatory elements, where its strength was even higher than at
promoters (Figure S5). Thus, variation in the extent of fixation, as well
as sonication, might be a substantial contributor to variation in read
clustering across the broader data collection. Another potential contrib-
uting factor is sequencing depth. Although the average sequencing
depth for highly clustered IgG and input controls is higher than that
of controls with negative QC scores (Figure S4, C and D) this by no
means explains all the clustering observed in controls. There are many
examples of more deeply sequenced input and IgG libraries with no
significant cross-correlation peaks and very few of them were sequenced
especially deeply (only eight control libraries had .4 · 107 reads not
desirable. Finally, “Sono-seq” need not be the only explanation. Whereas
a number of control datasets with QC scores of 2 exhibited higher read
coverage around promoters, others did not (Figure S6), suggesting at
least one additional source of unexplained read enrichment in control
samples. Because rich annotation of functional genomic elements out-
side promoter regions was not available for many cell types in our
survey, this phenomenon is a subject for future analyses.

DISCUSSION
We performed a systematic survey of ChIP quality for publicly
available vertebrate ChIP-seq datasets and found that more than half

score as high quality by our measures. This group comprises a set that
we believe can be used with confidence for integrative analyses. This
conclusion carries the important caveat that we could not assess the
specificity of the immune reagents used to perform the experiments.
which powerfully affects the biological meaning of the data.

A substantial minority of published datasets (between 20% and
45% of those examined) were of low or intermediate quality by our
metrics. This was true not only for individual libraries but also for the
best replicates from each study. In addition, we observed a substantial
number of low-complexity datasets and an unexpected group of highly
clustered control datasets. These observations underscore the wide-
spread variation in published ChIP-seq data. They also raised questions
about which kinds of conclusions in primary publications are more or
less sensitive to these aspects of data quality. In particular, global quality
analysis is useful for guiding subsequent re-use of published data that
require higher quality than was needed or achieved in the source study.

Data quality varied widely across “impact” levels. We separated
datasets into groups according to the 2011 Thomson Reuters Impact
Factor for the journal in which the corresponding article was pub-
lished and examined the distribution of QC scores in each group
(Figure S8). The group with highest impact factor ($25) contained
the largest fraction of datasets with a low QC score of 22 or 21. We
also examined the distribution of QC scores with respect to the year of
publication and found that the fraction of datasets with low scores has
stabilized in the past 3 yr at approximately 20% (Figure S7).

We emphasize that datasets scoring as low quality by the metrics
used here can, nevertheless, produce important biological discoveries.
For this reason, it would be an error to set a rigid “standard” that
every published dataset must meet. Instead, routine QC analysis can
make it easy to see when there is reason for concern about a given
dataset. It can also provide a first tier of guidance about what uses are
likely to be appropriate for a given dataset. As discussed previously,
the appropriate level of QC stringency depends on the specific goals of
the experiment and methods of analysis (Landt et al. 2012). In particular,
some analyses that are sensitive to false-negative results are particularly
vulnerable to inclusion of low-scoring datasets. For example, trying to
derive combinatorial TF occupancy rules is seriously compromised and
even misleading if a subset of the datasets included is suboptimal.

We illustrate this with a simple example from our own experience
(Figure 4). The MyoD and myogenin TFs are well-known regulators
of muscle differentiation (Yun andWold 1996) and C2C12 cells (Yaffe
and Saxel 1977) have been widely used to study the process because
they can be propagated in an undifferentiated myoblast state and
easily induced to differentiate into myocytes and myotubes. We have
performed several ChIP-seq experiments with these factors in differ-
entiated and undifferentiated C2C12 cells (G. DeSalvo et al., unpub-
lished data; A. Kirilusha et al., unpublished data; K. Fisher-Aylor et al.,
unpublished data), some of which have been highly successful,
whereas others were of poor or intermediate quality. Here, we exam-
ined the effect of weaker ChIP-seq datasets on combinatorial occu-
pancy analysis using a MyoD ChIP-seq dataset with very high QC
metrics and three myogenin datasets with very high, moderately good,
and very low metrics (Figure 4A). Using the best myogenin dataset,
we found a high degree of overlap between the binding sites of the two
factors (Figure 4B). When the medium-quality myogenin dataset was
used instead, a sizable group of MyoD-only sites emerged (Figure 4C)
and the erroneous conclusion that a substantial number of MyoD sites
lack myogenin binding could be reached if this was the only dataset
available for analysis. Finally, the poor-quality myogenin dataset con-
tains very few called peaks and, as a result, almost all MyoD sites show
no myogenin binding when it is used for analysis (Figure 4D).
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Recently, IDR analysis of replicate datasets (Li et al. 2011;
ENCODE Project Consortium 2012; Landt et al. 2012) emerged as a ro-
bust method for deriving lists of reproducible occupancy sites from
ChIP-seq datasets. IDR is based on differences in the consistency of
ranking (usually by signal strength as measured by read enrichment or
by statistical significance) for all identified peaks in a pair of ChIP-seq
replicates. A virtue of this approach is that it allows a statistically
robust set of binding sites to be derived largely independent of thresh-
olds and settings specific to a particular peak-calling algorithm. Ide-
ally, IDR would be used in conjunction with the quality metrics used
here (ENCODE Project Consortium 2012; Landt et al. 2012). How-
ever, replicate measurements do not exist for many of the datasets in
our survey of the historic. We expect that IDR will become common
practice as sequencing costs decline. Even when that happens, mea-
surements of the quality of individual datasets will remain important
because they capture specific information in addition to reproducibil-
ity and because IDR analysis is sensitive to the presence of poor-

quality replicates. An asymmetric pair consisting of one high-quality
and one poorer-quality dataset is dominated in IDR by the weaker
replicate, resulting in a shorter list of sites and a high false-negative
rate. Care should be exercised in such cases. Although the best ap-
proach is to obtain a second high-quality replicate, but if this is not
possible, special strategies for treating asymmetric replicates have been
devised (Landt et al. 2012).

The most perplexing observation was that a subset of control
datasets have extensive read clustering in the same range as successful
ChIP-seq experiments. In our own practice, we have rarely encoun-
tered such libraries and, to the best of our knowledge, there has been
no extensive treatment of this issue or its influence on data analysis
in the literature. The phenomenon occurred more frequently in
IgG controls than in input chromatin controls, although it is by no
means limited to the former. In theory, an IgG control should be
a superior representation of the true background noise in a ChIP-seq
sample because it incorporates biases introduced by the entire

Figure 4 Effect of suboptimal datasets
on combinatorial occupancy analysis.
The muscle-regulatory factors MyoD
and myogenin were assayed in
C2C12 myocytes at 60 hr after differ-
entiation. Shown are a single, highly
successful MyoD ChIP-seq dataset and
three myogenin ChIP-seq datasets,
one of which is similarly highly success-
ful (“myogenin 1”), a second weaker
one (“myogenin 2”), and a third one
that is an experimental failure (“myo-
genin 3”). (A) Quality control metrics.
(B, C, D) The extent of overlap of
MyoD and myogenin-binding sites as
determined using each of the three
myogenin datasets (see Materials and
Methods for data processing details).
MyoD and myogenin are mostly found
to bind to the same sites when inter-
actome determinations of comparable
strength are used. (B) A sizable group
of apparently MyoD-only sites emerges
when the medium-strength myogenin
dataset is used because of a large
number of false-negative myogenin
calls. (C) Finally, the unsuccessful myo-
genin ChIP reveals that most MyoD are
not shared by myogenin. (D) Numbers
listed in the red blocks corresponding
to each set of peak calls indicate size.
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immunoprecipitation process, in addition to any enrichments or
biases created by chromatin shearing. Using this logic, a simple
interpretation is that high read clustering in these controls correctly
identifies artifacts in the IP process. When high background sample
clustering is observed in control sample, we suggest that it merits
immediate investigation of its replicability and its impact on peak-
calling for the corresponding ChIP. samples. The fact that we also
observed a large number of IgG controls (Figure 3A) that showed no
such clustering, argues that this is not a general feature.

A crucial issue is the extent to which clustering in controls is also
present as experimental noise in ChIP libraries from the same
material. In other words, how well-matched are the control samples
with the corrresponding experimental samples, and how robust are
the controls? For example, a very strong Sono-seq effect in a control
sample is expected to give ChIP-seq libraries with high read clustering
that is a combination of true ChIP (antibody-specific) signal plus
Sono-seq-derived noise that covers promotors and enhancers in a non-
specific manner. Whereas most contemporary peak callers normalize
for enrichment in controls, very strong background noise will dimin-
ish the signal-to-noise ratio and adversely affect sensitivity. How se-
verely this affects the results will depend on the overlap between true
factor occupancy sites and regions of artifactual read enrichment (for
some factors this overlap may be negligible because they do not bind
to Sono-seq regions); on the magnitude of the Sono-seq effect; and on
the strength of the ChIP itself (sufficiently strong determinations are
not greatly affected). Conversely, if a ChIP-seq library has a strong
Sono-seq component and peak calling is performed against an imper-
fectly matched “control” sample in which the Sono-seq effect is of
significantly lower magnitude, false-positive peak calls will increase.
Unfortunately, in practice such cases are difficult to detect. They are
not flagged directly by current quality metrics and are best detected by
analyses specific to each study and factor, including specific motif
enrichment. especially when little is known about the expected true-
positive rates. Similar reasoning applies if the noise source is some-
thing other than Sono-seq.

Uniform retrospective quality assessment is resource-intensive and
will not be practically feasible because the number of ChIP-seq
datasets is growing exponentially. Retrospective analysis also comes
too late to influence the experiments themselves or to contribute to
the review process. A reasonable path forward would be to incorporate
routine data quality assessment into experimental analysis, review
for publication, and submission to public repositories, as a matter of
community practice. However, our results also strongly caution
against the blind and arbitrary application of our metrics (or others)
in the absence of experimental and biological context. The character of
the metrics used here reflects contemporary technology and the
quality scale has been calibrated based on factors and co-factors most
studied to date. We have seen that it is possible for good datasets to
receive low QC scores in certain special situations (e.g., very few sites
of occupancy in the genome). It is also possible for some poor or
mediocre datasets to receive high QC scores. For example, this can
happen as a side-product of strongly clustered backgrounds of the
kind discussed above. Some examples of datasets in which this might
be the case are shown in Figure S11. For factors that ChIP extremely
well, even datasets that are substantially suboptimal score highly. For
example, CTCF ChIP-seq datasets routinely identify 35,000–40,000
reproducible binding sites and have QC scores of 2; a dataset that
identifies only 15,000 sites is suboptimal given that knowledge; yet it
will still receive a positive QC score. For these reasons, the current
quality metrics are best used in the context of what is known about the
factor, the biological system, and the questions being asked.

Despite important nuances of interpretation, we suggest that using
ChIP quality metrics and making the results readily accessible will
facilitate better-informed data use by the wider community. An
important adjunct to routine QC annotation would be the ability, in
major public data repositories, to flag and explain the exceptional
cases for which QC scores should not be taken at face value. Finally,
quality metrics themselves will continue to improve as the field’s un-
derstanding of data structure, experimental artifacts, and the under-
lying biology all become more sophisticated. Provisions will be needed
for incorporating such advances into routine dataset annotation while
still achieving comparability through time.
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Abstract
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transcription factors with strong localized enrichment over the mitochondrial genome that was usually associated with the
corresponding recognition sequence motif. Notably, these sites of occupancy are often the sites with highest ChIP-seq
signal intensity within both the nuclear and mitochondrial genomes and are thus best explained as true binding events to
mitochondrial DNA, which exist in high copy number in each cell. We corroborated these findings by immunocytochemical
staining evidence for mitochondrial localization. However, we were unable to find clear evidence for mitochondrial binding
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Introduction

Mitochondria are the primary site of ATP production through

oxidative phosphorylation and are therefore critical to eukaryotic

cells. It is widely accepted that they arose as the result of an

endosymbiotic event [63] between the ancestor of modern

eukaryotes and a member of the a-proteobacteria clade [82].

Reflective of the organelle’s prokaryotic ancestry, mitochondria

retain their own reduced circular genome [55], although its size

has been greatly reduced in many eukaryotes through transfer of

genes to the eukaryotic nucleus. After transcription and translation

of nuclear components of the separate mitochondrial transcrip-

tion, replication and regulatory machineries, a number of which

retain evidence of their prokaryotic origin [74], the protein

products are then imported back into the mitochondria to

modulate organellar function.

The mitochondrial genome in mammals encodes 13 proteins,

all of which are components of the electron transport chain, as well

as 22 tRNAs and two rRNAs [3,5]. Mitochondrial DNA (mtDNA)

is organized in cells as macromolecular DNA-protein complexes

called nucleoids. Mitochondrial genes are densely packed along

the genome with the notable exception of the non-coding

displacement loop (D-loop) regulatory region [66], which is

located within the non-coding region (NCR). Transcription

initiates in the D-loop, is carried out by the mitochondrial-specific

RNA polymerase POLRMT, and results in long polycistronic

transcripts from each strand (called the Heavy- or H-strand and

the Light- or L-strand), from the light strand promoter (LSP) and

two Heavy strand promoters (HSP1 and HSP2) [9,52]. In

addition, the transcription factors mtTFA/TFAM [27,28] and

mtTFB2/TFB2M as well as the methyltransferase mtTFB1/

TFB1M [26,29,49] are required for initiation and regulation of

transcription [69]. Unlike many of the proteins involved in

regulation of the mitochondrial genome, these transcription factors

are generally accepted as not being of prokaryotic origin. Instead,

they are genes of eukaryotic ancestry, appropriated for their

function through co-evolution of the organellar and cellular

genomes and imported into mitochondria to regulate mtDNA

transcription.

In addition to these well-characterized regulators of mitochon-

drial transcription, multiple reports have suggested that transcrip-

tion factors that typically act in the nucleus might also have

regulatory functions in mitochondrial transcription [44,73]. The

glucocorticoid receptor (GR) was the first such factor reported to

localize to mitochondria and to interact with mtDNA

[18,19,40,59]. A 43 kDa isoform of the thyroid hormone T3

receptor T3Ra1 called p43 has been found to directly control

mitochondrial transcription [11,24,25,81]. Cyclic-AMP Response

element Binding protein (CREB) has been shown to localize to
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mitochondria and suggested to bind to the D-loop [8,17,43,62].

The tumor suppressor transcription factor p53 has been implicat-

ed in mtDNA repair and regulation of gene expression through

interactions with TFAM [1,34,47,48,83]. It has also been

proposed to play a proapoptotic role through association with

the outer mitochondrial membrane [76]. A similar role has been

also ascribed to the IRF3 transcription factor [12,46]. The

mitochondrial localization of the estrogen receptor (ER) is also well

established, for both its ERa and ERb isoforms, and it too has

been suggested to bind to the D-loop [13,51]. NFkB and IkBa
have been found in mitochondria and have been proposed to

regulate mitochondrial gene expression [16,36]. The AP-1 and

PPARc2 transcription factors have been proposed to localize to

mitochondria and bind to the genome. [10,57,58] and the

MEF2D transcription factor was found to regulate the expression

of the ND6 gene by binding to a consensus sequence recognition

motif within it [67]. Finally, the presence of STAT3 in

mitochondria has been found to be important for the function of

the electron transport chains and also to be necessary for TNF-

induced necroptosis [32,68,71,72,79], although direct mtDNA

binding has not been established. Mitochondrial localization has

also been reported for STAT1 and STAT5 [6,14].

However, direct in vivo chromatin immunoprecipitation evi-

dence for the binding of these factors to mtDNA exists only for

CREB [43], p53 [1] and MEF2D [67], and with the exception of

MEF2D characterization is limited to the D-loop region. No prior

studies have assayed transcription factor occupancy across the

entire mitochondrial genome in vivo with modern high resolution

techniques such as ChIP-seq (Chromatin Immunoprecipitation

coupled with deep sequencing, [35]). As a result, the precise

nature, and in many instances the existence, of the proposed

binding events remains unknown. The limited sampling of

transcription factors in previous studies also leaves uncertain

how common or rare localization to mitochondria and binding to

mtDNA is for nuclear transcription factors in general.

Here we survey the large compendium of ChIP-seq and other

functional genomic data made publicly available by the

ENCODE, mouseENCODE and modENCODE Consortia

[22,23,30,50,54] to identify transcription factors that associate

directly with mtDNA and to characterize the nature of these

interactions. We identify eight human and three mouse transcrip-

tion factors for which robust evidence of site-specific occupancy in

the mitochondrial genome exists. These sites exhibit the strand

asymmetry typical of nuclear transcription factor binding sites,

usually contain the recognition motifs for the factors in question,

and are typically the strongest (as measured by ChIP-seq signal

strength) binding sites found in both the nuclear and mitochon-

drial genome by a wide margin. Notably, these interactions are all

found outside of the non-coding D-loop region. The D-loop region

itself exhibits widespread sequencing read enrichment for dozens

of transcription factors. However, it does not show the aforemen-

tioned feature characteristics of true binding events. Though not

observed in control datasets generated from sonicated input DNA,

the high ChIP-seq signal over the D-loop is frequently seen in

control datasets generated using mock immunoprecipitation,

suggesting that it is likely to represent an experimental artifact.

Examination of available ChIP-seq data for the transcription

factors previously proposed to play a role in mitochondria (GR,

ERa, CREB, STAT3, p53) revealed no robust binding sites except

for enrichment in the D-loop. Resolving the functional significance

of the identified occupancy sites in future studies should provide

exciting insights into the biology of both mitochondrial and

nuclear transcriptional regulation.

Results

In the course of a study of TFAM occupancy in the

mitochondrial and nuclear genomes [78], we noticed that a

number of nuclear transcription factors exhibit localized enrich-

ment in certain areas of the mitochondrial genome in ChIP-seq

data (Figure 1). These events could be divided in two classes: high

ChIP-seq signal over the NCR, and localized high read density

over regions outside of it. Given prior reports suggesting that

nuclear transcription factors might act in mitochondria, this

Figure 1. Representative USCS Genome Browser snapshots of nuclear transcription factor ChIP-seq datasets exhibiting strong
enrichment in the mitochondrial genome. (A) GM12878 GCN5 shows high signal intensity in the D-loop (the region between coordinates 16030
and 580, i.e. the non-coding regions on the left and right ends of the snapshot) representative of the D-loop enrichment observed for a large number
of transcription factors (B) In contrast, a large MafK peak is observed in a coding region outside of the D-loop in HepG2 cells. Upper track (black)
shows reads aligning to the forward strand, lower track (gray) shows read aligning to the reverse strand.
doi:10.1371/journal.pone.0084713.g001

Nuclear Transcription Factors in Mitochondria

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e84713

630



prompted us to determine the general prevalence of the

phenomenon among transcription factors and investigate evidence

of occupancy in detail, as the power and resolution of ChIP-seq

have not previously been brought to bear on this somewhat

mysterious phenomenon. We took advantage of the wide

compendium of human, mouse, fly and worm functional genomics

data generated by the ENCODE [22,23], mouseENCODE [54]

and modENCODE [30,50] consortia.

Identifying transcription factor binding events in the
mitochondrial genome

We downloaded publicly available (as of February 2012)

ENCODE and mouseENCODE ChIP-seq and control data from

the UCSC Genome Browser and modENCODE data from ftp://

ftp.modencode.org, including ChIP-seq data for 151 transcription

factors in human cell lines [77], 31 in mouse and 35 in C.elegans

(see discussion on D. melanogaster below). We also downloaded

DNase hypersensitvity (both DNase-seq [75] and Digital Genomic

Figure 2. Unique mappability of the mitochondrial genome (chrM) in ENCODE and modENCODE species. (A) human; (B) mouse; (C) C.
elegans; (D) D. melanogaster. The 36 bp mappability track (see Methods for details) is shown. The annotated protein coding and rRNA and tRNA genes
are shown in the inner circles as follows: forward-strand genes are shown as green lines, while reverse-strand genes are shown as red lines, with the
exception of mouse and human rRNA and tRNAs (blue). The D-loop region in human is shown in black. Gene annotations were obtained from
ENSEMBL (version 66). Plots were generated using Circos version 0.60 [41].
doi:10.1371/journal.pone.0084713.g002
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Figure 3. Variation in mitochondrial DNA copy number in cell lines and tissues. The fraction of reads mapping to the mitochondrial
genome (chrM) is shown. (A,B) UW human (A) and mouse (B) UW ENCODE digital genomic footprinting (DGF) data; (C) UW human ChIP input
datasets; (D) LICR mouse ChIP input datasets. ‘‘UW’’ and ‘‘LICR’’ refers to the ENCODE production groups that generated the data. Inputs from the UW
and LICR groups were chosen because they are the largest ENCODE sets in terms of number of cell lines/tissues assayed by the same production
groups, thus avoiding possible variation between different laboratories. A general positive correlation between the expected metabolic demand of
the tissue type and the relative amount of reads mapping to chrM is observed.
doi:10.1371/journal.pone.0084713.g003

Nuclear Transcription Factors in Mitochondria

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e84713

632



Nuclear Transcription Factors in Mitochondria

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e84713

633



Footprinting (DGF) [56]), FAIRE-seq (Formaldehyde Assisted

Isolation of Regulatory Elements) [70] and MNase-seq data as

these datasets provide valuable orthogonal information about

potentially artifactual patterns of read enrichment over the

mitochondrial genome.

It is well known that the nuclear genome contains partial copies

of the mitochondrial genome (NUclear MiTochondrial sequences

or NUMTs) [20,33]. Depending on their levels of divergence from

the mitochondrial sequence, they can present an informatics

challenge for distinguishing binding events to the true mitochon-

drial genome from binding events to NUMTs. For this reason, we

aligned reads simultaneously against the nuclear and mitochon-

drial genomes. We then retained only reads that map uniquely,

and with no mismatches, relative to the reference for further

analysis (see Methods for details). As a consequence this stringent

mapping strategy, regions of the mitochondrial genome that are

also present as perfectly identical copies in the nuclear genome are

‘‘invisible’’ to our analysis; this was a necessary compromise in

order to focus only on a maximally stringent set of putative

mitochondrial binding events. However, before proceeding, we

examined how widely affected the mitochondrial genome is by this

treatment in the four relevant species by generating mappability

tracks (shown in Figure 2). The human mitochondrial genome

contains numerous small islands of unmappable sequence,

particularly concentrated between the ND1 and CO3 genes, but

it displays no large completely unmappable segments (Figure 2A).

The mouse genome contains a large unmappable stretch between

the CO1 and ND4 genes (Figure 2B). The C. elegans mitochondrial

genome is almost completely uniquely mappable (Figure 2C). In

contrast, the D. melanogaster genome is almost completely

unmappable, indicating the presence of very recent insertions into

the nuclear genome with high sequence similarity. We therefore

excluded fly datasets from further analysis and focused on human,

mouse and worm data.

Mammalian cells typically contain hundreds to thousands of

copies of mtDNA, with the precise number varying depending on

the metabolic needs of the particular cell type [7,64,80]. This

variation is relevant to our analysis because the relative read

density over the mitochondrial genome is expected to scale with

the mtDNA:nuclear DNA ratio for a given cell. Thus, cell types

with very high mtDNA copy number are expected to display

correspondingly elevated background read density over the

mitochondrial genome. Several types of ENCODE data provide

a rough proxy for the relative mitochondrial genome copy number

per cell. In particular, the fraction of reads originating from the

mitochondrial genome in DNase hypersensitivity and ChIP

control datasets is expected to scale accordingly. We examined

the distribution of this fraction in ENCODE and mouseENCODE

DGF datasets and observed very large differences between

different cell lines and tissues (Figure 3). For example, about half

of reads in K562 DGF data originated from mitochondria, while

the fraction was less than 2% in CD20+ B-cells (Figure 3A).

Notably, these differences are in many cases (though not always)

consistent with what is known about the cell lines, with certain

cancer cell lines (such as K562 and A549) and muscle cells

(LHCN) showing the largest number of mitochondrial reads, while

primary cells with small volumes of cytoplasm such as B-cells

showed the least.

Mouse DGF data was available mostly for tissues, and the

fraction of mitochondrial reads in these was much smaller

compared to both the human cell lines and the few mouse cell

lines assayed (Figure 3B). This is consistent with a significant

proportion of cells in tissues being in a less active metabolic state

than cell lines in culture. Still, we observed expected differences

between tissues. For example, one of the tissues that was most

enriched for reads mapping to the mitochondrial genome was the

heart. We observed similarly large differences in ChIP control

datasets (Figure 3CD), although the absolute number of reads was

much lower than it was in DGF data. Again, the mouse tissues

with the highest number of mitochondrial reads were the more

metabolically active ones, such as brown adipose tissue, cortex,

and heart.

These large differences in background read coverage between

different cells lines/tissues have two consequences for the analysis

of putative transcription factor binding to the mitochondrial

genome. First, peak calling algorithms usually used to identify

transcription factor binding sites from ChIP-seq data may not

work equally well in different cell lines due to the highly variable

background read density. Second, these differences render

comparing the strength of binding across cell lines difficult.

We therefore devised a normalization procedure (described in

Methods) to convert read coverage to signal intensity z-scores

reflecting how strongly regions of enrichment stand out compared

to the average background read density along the mitochondrial

genome for each dataset. We then used the maximum z-scores for

each dataset to identify datasets with very strong such enrichment,

which we then examined manually in detail.

Nuclear transcription factor binding to the mitochondrial
genome in human cell lines

The distribution of read density z-scores for transcription factor

ChIP-seq and control datasets in seven ENCODE human cell lines

(GM1278, K562, HepG2, HeLa, H1-hESC, IMR90 and A549) is

shown in Figures 4, 5 and 6. A wide range in the values of the

maximum z-score is observed, from less than 5, to more than 100.

Strikingly, most factors exhibit high read density in the NCR. One

obvious explanation for this observation is that it represents an

experimental artifact. This is likely, as the NCR contains the D-

loop [66], the unique triple-strand structure of which could

conceivably either cause overrepresentation of DNA fragments

originating from it in sequencing libraries or it could be non-

specifically bound by antibodies during the immunoprecipitation

process. To distinguish between these possibilities, we carried out

the same analysis on DNase, FAIRE and MNase data. As these

assays do not involve an immunoprecipitation step, they are a

proper control for sequencing artifacts. We did not observe

significant localized read enrichment in these datasets (Figure 7),

suggesting that the observed read enrichment over the D-loop is

not due to sequencing biases or overrepresentation of D-loop

fragments in ChIP libraries. Similarly, we did not observe

enrichment in the matched sonicated input ChIP-seq control

datasets. However, a number of mock-immunoprecipitation (IgG)

control datasets did exhibit high z-scores (up to .50 in K562 cells)

Figure 4. Signal distribution over the mitochondrial genome in human ChIP-seq datasets. The maximum z-score for each individual TF
ChIP-seq replicate in each cell line is shown on the left (factors are sorted by average z-score, with control datasets always shown on the bottom in
red, below the red horizontal line). The z-score profile along the mitochondrial chromosome for the replicate with the highest z-score is shown on the
right. ‘‘SYDH’’ and ‘‘HA’’ refer to the ENCODE production groups which generated the data. Z-scores $100 are shown as equal to 100. (A) GM12878
cells; (B) K562 cells.
doi:10.1371/journal.pone.0084713.g004
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and closely matched the signal profile over the D-loop of ChIP-seq

datasets (Figure 8B). We also examined the forward and reverse

strand read distribution in the NCR (Figure 8). Site-specific

transcription factor binding events display a characteristic

asymmetry in the distribution of reads mapping to the forward

and reverse strands, with reads on the forward strand showing a

peak to the left of the binding site and reads on the reverse strand

showing a peak to the right of it [39] (Figure 8C). Such read

asymmetry was not observed in the D-loop region (average profile

shown in Figure 8A, individual dataset profile shown in Figure 1).

These results suggest that while immunoprecipitation is

necessary for high enrichment over the D-loop, the enrichment

might not be mediated by the proteins targeted by the primary

antibody. This does not explain why a large number of factors

show little enrichment over the D-loop (Figures 4, 5 and 6) and

why some factors show enrichment that is much higher than that

observed in K562 IgG controls, with z-scores of up to 300

(compared to a maximum of 50 for the most highly enriched IgG

controls). Still, given the lack of clear hallmarks of site-specific

occupancy, and the IgG control results, enrichment over the D-

loop has to be provisionally considered to be primarily the result of

an experimental artifact, even if it cannot be ruled that at least in

some cases it is the result of real biochemical association with

nuclear transcriptional regulators.

In contrast to the widespread, but likely artifactual, read

enrichment over the D-loop, we observed strong enrichment,

exhibiting the canonical characteristics of a ChIP-seq peak over a

true transcription factor binding site, in other regions of the

Figure 5. Signal distribution over the mitochondrial genome in human ChIP-seq datasets. The maximum z-score for each individual TF
ChIP-seq replicate in each cell line is shown on the left (factors are sorted by average z-score, with control datasets always shown on the bottom in
red, below the red horizontal line). The z-score profile along the mitochondrial chromosome for the replicate with the highest z-score is shown on the
right. ‘‘SYDH’’ and ‘‘HA’’ refer to the ENCODE production groups which generated the data. Z-scores $100 are shown as equal to 100. (A) HepG2 cells;
(B) HeLa cells; (C) A549 cells.
doi:10.1371/journal.pone.0084713.g005

Figure 6. Signal distribution over the mitochondrial genome in human ChIP-seq datasets. The maximum z-score for each individual TF
ChIP-seq replicate in each cell line is shown on the left (factors are sorted by average z-score, with control datasets always shown on the bottom in
red, below the red horizontal line). The z-score profile along the mitochondrial chromosome for the replicate with the highest z-score is shown on the
right. ‘‘SYDH’’ and ‘‘HA’’ refer to the ENCODE production groups which generated the data. Z-scores $100 are shown as equal to 100. (A) H1-hESC
cells; (B) IMR90.
doi:10.1371/journal.pone.0084713.g006
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human mitochondrial genome for eight of the examined

transcription factors using a minimum z-score threshold of 20:

CEBPb, c-Jun, JunD, MafF, MafK, Max, NFE2 and Rfx5.

Figures 9 and 10 show the forward and reverse strand read

distribution for representative replicates of each factor in each

assayed cell line, as well as the occurrences of the corresponding

explanatory motifs (identified from the top 500 ChIP-seq peaks in

the nuclear genome, see Methods for details). The putative

binding sites outside of the D-loop are characterized by an

asymmetric forward and reverse strand read distribution, and in

most cases, the presence of the explanatory motif in a position

consistent with binding by the factor. We identified multiple

binding sites for CEBPb: a strong site of enrichment around the 59

end of the CYB gene, what seems to be two closely clustered sites

in the ND4 gene, a weaker site in the ND4L gene, and two other

regions of enrichment over CO2 and CO1 (Figure 9D). A single

very strong binding site over the ND3 gene was observed for c-Jun,

as well as two weaker sites, one coinciding with the ND4 CEBPb
sites and one near the 59 end of ATP6 (Figure 9B); the strong ND3

site was also observed for JunD in HepG2 cells. Max exhibited two

putative binding sites: one in the middle of the 16S rRNA gene,

containing a cluster of Max motifs, and another one around the 59

end of CO3, which also contains a cluster of Max motifs but is in a

region of poor mappability. A common and very strong MafK and

MafF binding site is present near the 39 end of ND5, though it

does not contain the common explanatory motif for both factors

(Figure 10AB). Several putative binding sites were identified for

NFE2: one close to the CEBPb site in the 59end of CYB, one over

the tRNA cluster between ND4 and ND5, one in the 59 end of

ATP6 and one in the 16S rRNA gene (Figure 10C). Finally, two

putative binding sites ar observed for Rfx5, at the 59 end of ND5

and in the middle of CO2 (Figure 10D). Intriguingly, these binding

events are not always present in all cell lines. For example, CEBPb
binding around CYB was absent in K562, A549 and H1-hESC

cells, while the MafK ND5 binding site was absent in GM18278

and H1-hESC cells, but present in the other cell lines for which

data is available.

Nuclear transcription factor occupancy to the
mitochondrial genome in model organisms

We carried out the same analysis as described above on mouse

and C. elegans ChIP-seq datasets. Figure 11 shows the distribution

of read density z-scores in mouse CH12 and MEL cells. Similarly

to the human data, we observe widespread but probably

artifactual read enrichment over the D-loop. In addition to that,

we saw that three transcription factors (Max, MafK, and USF2)

also exhibit strong enrichment elsewhere in the mitochondrial

genome (Figure 12). We observe a single MafK binding site,

containing the explanatory motif and situated over the tRNA

cluster between the ND2 and CO1 genes (Figure 12A). Max

displayed a strong binding site (possibly a cluster of closely spaced

binding sites) in the ND4 gene, and a weaker binding site near the

59 end of ND5; both sites contained the explanatory motif

(Figure 12B). Finally, a single site, also containing the explanatory

motif for the factor and situated near the ND5 Max site, was

present in CH12 USF2 datasets (but not in MEL cells)

(Figure 12C). MafK and Max were also assayed in human cells,

and, as discussed above, putative mitochondrial sites were

identified there for both, though not at obviously orthologous to

those found in the mouse data positions in the genome. We also

analyzed available ChIP-seq data for the mouse orthologs of c-Jun

and JunD, which in human cells exhibited putative mitochondrial

binding sites. In contrast to observation in human, we did not

detect strong sites for either protein in mouse.

Unlike the mouse and human datasets, most C. elegans ChIP-seq

datasets did not show very strong enrichment over the mitochon-

drial genome (Figure 13A), with the exception of DPY-27 and

W03F9.2. Of these, only W03F9.2 exhibited regions of enrich-

ment with the characteristics of transcription factor binding sites

(Figure 13B); however, very little is known about this protein and

the significance of its binding to the mitochondrial genome is

unclear.

ChIP-seq signal is significantly stronger over
mitochondrial occupancy sites than it is over nucleus
sites

The occupancy observations reported above for human and

mouse mitochondria do not formally rule out the possibility that

there are unannotated NUMTs in the genomes of the cell lines in

which binding is detected in our analysis and the observed binding

is in fact nuclear. Such an explanation is superficially likely, given

that binding to the mitochondrial genome was observed in some

cell lines and not in others. However, closer examination reveals

that this hypothesis would require different NUMTs in different

cell lines as the cell lines that lack binding are not the same for all

factors. For example, MafF and MafK binding is very prominent

in K562 cells but CEBPb and c-Jun seem not to bind to mtDNA in

those cells. While still possible, we consider the independent

insertion of multiple partial NUMTs in different cell lines to be an

unlikely explanation for the observed binding patterns.

Each chromosome in the nuclear genome exists as only two

copies in diploid cells, as compared to the hundreds of

mitochondria, each of which may contain multiple copies of the

mitochondrial genome [7,64], and although cancer cells may

exhibit various aneuploidies and copy number variants, the

number of mtDNA copies is still expected to be much higher.

Thus, higher read density over mitochondrial transcription factor

binding sites than over nuclear ones is expected, assuming similar

occupancy rates. We therefore used the strength of ChIP-seq

signal over mitochondrial occupancy sites in order to test the

hypothesis that they are in fact nuclear, and not mitochondrial in

origin. We compared the peak height (in Reads Per Million,

RPM) of the top 10 nuclear peaks (peak calls generated by the

ENCODE consortium were downloaded from the UCSC

Genome Browser) with that of the putatively mitochondrial

binding sites (Figure 14). We found that the mitochondrial binding

sites are usually the strongest binding sites by a wide margin, or at

least within the top three of all peaks. For example, while the

strongest nuclear MafK peak in mouse CH12 cells has a peak

height of 14.5 RPM, the mitochondrial binding site has a peak

height of 290 RPM. These observations are difficult to explain as

being the result of binding to unannotated NUMTs in the nuclear

genome, but are entirely consistent with the hypothesis that these

Figure 7. Signal distribution over the mitochondrial genome in human FAIRE-seq, DNAse-seq and MNAse-seq datasets. Shown is the
maximum z-score for each individual replicate for each cell line (left) and the z-score profile along the mitochondrial chromosome for the replicate
with the highest z-score (right). (A) FAIRE data; (B) DNAse data; (C) MNAse data. ‘‘UNC’’, ‘‘UW’’ and ‘‘SYDH’’ refer to the ENCODE production groups
which generated the data. Z-scores larger than 100 are shown as 100. No read enrichment over the D-loop is observed, suggesting that the D-loop
signal found in TF ChIP-seq datasets is not due to sequencing biases but is a result of the immunoprecipitation process.
doi:10.1371/journal.pone.0084713.g007
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Figure 8. Combined signal distribution profile for the forward and reverse strand in the D-loop region. Shown is the average signal (in
RPM) for each strand in human ChIP-seq datasets with z-scores $20 (A) and human IgG controls (B). Also shown for comparison is the plus and minus
strand read distribution around nuclear CTCF binding sites in H1-hESC cells (C).
doi:10.1371/journal.pone.0084713.g008
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factors indeed bind to the large number of copies of the

mitochondrial genome present in each cell.

Evidence for localization of transcription factors to
mitochondria

If the observed binding sites in ChIP-seq data are the result of

actual association of nuclear transcription factors with mtDNA,

then these transcription factors should exhibit mitochondrial

localization. We directly tested this by performing immunocyto-

chemistry (ICC) for MafK in HepG2 cells (Figure 15). It is

important to note that such an assay for localization to

mitochondria is potentially difficult to interpret if binding is the

result of only a few protein molecules entering mitochondria,

which would not yield sufficient signal for interpretation via ICC.

Figure 9. Human transcription factors with canonical ChIP-seq peaks (displaying the typical strand asymmetry in read distribution
around the putative binding site) outside of the D-loop. Reads mapping to the forward strand are represented in black, reads mapping to the
reverse strand are represented in yellow. The unique mappability track for the mitochondrial genome is shown in red in the outside track (see
Methods for details). Protein-coding, rRNA and tRNA genes are shown as colored bars. The innermost circle shows the motif occurrences in the
mitochondrial genome for each factor as black vertical bars. (A) JunD (B) c-Jun; (C) Max; (D) CEBPb. The reads per million (RPM) tracks are shown,
scaled to the maximum signal level (for both strands) for each dataset. Plots were generated using Circos version 0.60 [41].
doi:10.1371/journal.pone.0084713.g009
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However, strikingly, we observe clear colocalization of MafK to

mitochondira in 60% of cells (n = 124). These observations provide

independent corroboration for the mtDNA binding events

identified through ChIP-seq.

No robust mitochondrial occupancy in ChIP-seq data for
most previously reported mitochondrially targeted
nuclear factors

We note that none of the factors previously reported to be

localized to mitochondria and to bind to mtDNA was retrieved by

our analysis, even though CREB, GR, ERa, IRF3, NFkB,

Figure 10. Human transcription factors with canonical ChIP-seq peaks (displaying the typical strand asymmetry in read distribution
around the putative binding site) outside of the D-loop. Reads mapping to the forward strand are represented in black, reads mapping to the
reverse strand are represented in yellow. The unique mappability track for the mitochondrial genome is shown in red in the outside track (see
Methods for details). Protein-coding, rRNA and tRNA genes are shown as colored bars. The innermost circle shows the motif occurrences in the
mitochondrial genome for each factor as black vertical bars. (A) MafF; (B) MafK (note that MafK has been assayed using two different antibodies in
HepG2, both of which are shown); (C) NFE2; (D) Rfx5. The reads per million (RPM) tracks are shown, scaled to the maximum signal level (for both
strands) for each dataset. Plots were generated using Circos version 0.60 [41].
doi:10.1371/journal.pone.0084713.g010
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STAT1, STAT5A and STAT3 were assayed by the ENCODE

Consortium. This failure could be attributed to the use of too

stringent a z-score threshold when selecting datasets with

significant enrichment. We therefore examined available ChIP-

seq data against these factors more carefully (Figure 16, Figure S1).

We also performed the same analysis on published mouse and

human p53 ChIP-seq data [2,38,45] (Figure 17). Again, we did not

observe any major sites of enrichment outside of the D-loop. For

these factors, the D-loop region exhibits the same putatively

artifactual pattern discussed previously. And for STAT3 and p53,

even the enrichment over the D-loop was low. The one factor for

which binding to mtDNA is confirmed by ChIP-seq is MEF2D,

data for two of the isoforms of which in mouse C2C12 myoblasts

was recently published [65] (Figure 18). It exhibits a very complex

binding pattern over large portions of the mouse mitochondrial

genome, which is not straightforward to interpet, but nevertheless

a number of locations exhibit strand asymmetry and contain the

MEF2 sequence recognition motif. Notably, most of these are

outside the ND6 gene.

It is at present not clear how to interpret these discrepancies. It

is not surprising that some of these factors do not exhibit binding

to mtDNA, as they were reported to play a role in mitochondrial

biology through mechanisms other than regulating gene expres-

sion (for example, IRF3 and STAT3). However, this is not the case

for all of them. One possibility is that many prior studies reporting

physical association of transcription factors with the D-loop

suffered from the same artifactual read enrichment over that

region that we observe, but this would not have been noticeable

using the methods of the time. This would not be surprising, as it is

only apparent that D-loop enrichment is likely to be artifactual

when the high spatial resolution of ChIP-seq is combined with the

joint analysis of input and mock immunoprecipitation controls.

However, the mitochondrial localization of these factors has been

carefully documented in a number of cases [8,11,17]. Another

Figure 11. Signal distribution over the mitochondrial genome in mouse ChIP-seq datasets. Shown is the maximum z-score for each
individual replicate for each cell line (left) and the z-score profile along the mitochondrial chromosome for the replicate with the highest z-score
(right). Control datasets are shown in red on the bottom, below the red horizontal line. (A) CH12 cells; (B) MEL cells.
doi:10.1371/journal.pone.0084713.g011
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possiblity is that binding to mtDNA only occurs under certain

physiological conditions and the factors were assayed using ChIP-

seq only in cellular states not matching those. Further analysis of

ChIP-seq data collected over a wide range of conditions should

help resolve these issues.

Discussion

We report here the first large-scale characterization of the

association of nuclear transcription factors along the entire

mitochondrial genome by utilizing the vast ChIP-seq data resource

made publicly available by the ENCODE and modENCODE

consortia. We find two classes of signal enrichment events, neither

Figure 12. Mouse transcription factors with canonical ChIP-seq peaks (displaying the typical strand asymmetry in read distribution
around the putative binding site) outside of the D-loop. Reads mapping to the forward strand are represented in black, reads mapping to the
reverse strand are represented in yellow. The unique mappability track for the mitochondrial genome is shown in red in the outside track (see
Methods for details). Protein-coding, rRNA and tRNA genes are shown as colored bars. The innermost circle shows the motif occurrences in the
mitochondrial genome for each factor as black vertical bars. (A) MafK (note that the putative binding site is found in a region that is not completely
mappable, thus the read profiles loses the canonical shape but the strand asymmetry is nevertheless apparent and a motif is present); (B) Max; (C)
USF2. The reads per million (RPM) tracks are shown, scaled to the maximum signal level (for both strands) for each dataset. Plots were generated
using Circos version 0.60 [41].
doi:10.1371/journal.pone.0084713.g012
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of which is detected in high-throughput sequencing datasets that

do not involve immunoprecipitation and therefore they are not

due to sequencing biases. First, the majority of factors for which we

detect strong read enrichment over the mitochondrial genome

display high ChIP-seq signal only over the D-loop non-coding

region in both human and mouse datasets. However, these signals

do not have the characteristics of sequence specific occupancy and

are present in a number of mock-immunoprecipitation control

datasets. They are thus best explained as experimental artifacts,

although it remains possible that they represent real non-canonical

association with the D-loop for some factors. Second, for a subset

of factors, specific ChIP-seq peaks are observed outside of the D-

loop, and these display the additional hallmark characteristics of

sequence specific occupancy.

Nuclear transcription factors previously reported to localize to

mitochondria either did not exhibit significant enrichment in the

available ChIP-seq datasets or, when they did, it was over the D-

loop region with similar non-specific read distribution shape as

other factors. In contrast, applying conservative thresholds we

found eight human and three mouse transcription factors (two in

common between the two species) that strongly occupy sites

outside of the D-loop. They display the strand asymmetry pattern

around the putative binding site that typifies true nuclear ChIP-seq

peaks. Even more convincing is the fact that the explanatory motif

for the factor is usually found under the observed enrichment

peaks, further suggesting that they correspond to true in vivo

biochemical events.

There are three main explanations for our observations. First, it

is possible that despite our considerable bioinformatic precautions

the observed binding events are in fact nuclear, originating from

NUMTs present in the genomes of the cell lines assayed, but

absent from the reference genome sequence. We believe that this is

very unlikely. An experimental argument against unknown

NUMTs comes from the strength of the ChIP-seq signal we see

in the mitochondrial genome. These signals are much higher than

even the strongest peaks in the nuclear genome for the same factor

in the same dataset. This is expected for true mitochondrial

genome binding because of the presence of many copies of the

mitochondrial genome per cell, in contrast to the presence of only

two copies of the nuclear genome. Second, it is possible that

mitochondria are sometimes lysed in vivo, with mitochondrial

DNA spilling into the cytoplasm where transcription factors could

then bind. This cannot be ruled out based on the ChIP data alone

but we consider it unlikely, as this would need to happen with a

sufficient frequency to explain the remarkable strength of

mitochondrial occupancy sites. The third and most plausible

interpretation is that these nuclear transcription factors indeed

translocate to the mitochondria and interact with the genome, as

has been observed for the D-loop in some previous studies for

other factors. Indeed, immunocytochemistry experiments in our

study confirm the presence of MafK in mitochondria in a majority

of HepG2 cells.

Several major questions are raised by our results. First, it is not

clear how these nuclear transcription factors are targeted to the

mitochondria. Mitochondrial proteins are typically imported into

the mitochondrial matrix through the TIM/TOM protein

translocator complex, and are targeted to the organelle by a

mitochondrial localization sequence, which is cleaved upon

import. We scanned both human and mouse versions of our

factors for mitochondrial target sequences (MTS) with both

Mitoprot [15] and TargetP [21] (using default settings), but we

were unable to identify significant matches using either. This

seems to be a common feature of nuclear transcription factors

previously found to localize to mitochondria, most of which lack

import sequences and are instead imported through other means

[11,73]. Posttranslational modifications may be important for

Figure 13. Signal distribution over the mitochondrial genome in C.elegans ChIP-seq datasets. (A) Shown is the maximum z-score for each
individual replicate for each cell line (left) and the z-score profile along the mitochondrial chromosome for the replicate with the highest z-score
(right). Control datasets are shown in red on the bottom, below the red horizontal line; (B) Forward and reverse strand read distribution over the
C.elegans mitochondrial genome for W03F9.2 (‘‘Young Adult’’ stage). Reads mapping to the forward strand are represented in black, reads mapping
to the reverse strand are represented in yellow. The unique mappability track for the mitochondrial genome is shown in red in the outside track (see
Methods for details). Plots generated using Circos version 0.60 [41].
doi:10.1371/journal.pone.0084713.g013

Figure 14. Mitochondrial ChIP-seq peaks are generally significantly stronger than nuclear peaks. Shown is the maximum signal (in RPM)
for the top 10 nuclear peaks (‘‘N’’, smaller black dots), and the maximum signal intensity (also in RPM) in the mitochondrial genome (‘‘M’’, larger red
dot) for representative ChIP-seq datasets for each factor. (A) Mouse datasets (B) Human datasets.
doi:10.1371/journal.pone.0084713.g014
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import, as has been demonstrated for STAT3 in TNF-induced

necroptosis [68].

Second, it is unclear why the same factor binds detectably to the

mitochondrial genome in some cell types but not in others. It is

certainly possible that different splice isoforms or post-translation-

ally modified proteins are present in different cell types, with only

some capable of being imported into mitochondria, or that import

into mitochondria only happens under certain physiological

conditions only met in some cell lines.

Third, the question of the biochemical reality of transcription

factor binding at the D-loop remains open. Previous studies

understandably focused on the D-loop, given its well-appreciated

importance in regulating mitochondrial transcription. As a

consequence, the literature supporting a role for some nuclear

factors in mitochondria suggests that they do so through binding to

the D-loop. Our analysis of ChIP-seq data, which was carried out

in an agnostic manner, revealed that dozens of transcription

factors – many more than had been studied locally at the D-loop

alone – also show high level of enrichment over the D-loop.

However, the observed enrichment has characteristics suggesting

that these signals are mainly due to experimental artifacts. In

support of this judgment, the explanatory motifs for most of these

factors were generally not found under the area of strongest

enrichment in the D-loop. Therefore a conservative interpretation

is that enrichment over the D-loop is an artifact in most cases.

Finally, and most importantly, the functional significance of

factor occupancy observed by ChIP-seq remains unknown. It is

entirely possible that it represents biochemical noise, with

transcription factors entering the mitochondria because they have

the right biochemical properties necessary to be imported, then

Figure 15. Localization of MafK to the mitochondria (A) Immunocytochemistry showing MafK localization in HepG2 cells. Mitochondria were
identified by HSP60 staining. Shown are two representative images of cells showing that MAFK localizes strongly to the nucleus and mitochondria,
and exhibits diffuse staining in the cytoplasm. In 60% of cells (C), there is colocalization of HSP60 with MAFK staining at an intensity higher than that
of the surrounding cytoplasm. (B) An example of a cell exhibiting only nuclear and cytoplasmic MAFK localization.
doi:10.1371/journal.pone.0084713.g015
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Figure 16. Distribution of reads over the human mitochondrial genome for factors previously reported to bind to mitochondria in
ENCODE ChIP-seq data. Reads mapping to the forward strand are represented in black, reads mapping to the reverse strand are represented in
yellow. The unique mappability track for the mitochondrial genome is shown in red in the outside track (see Methods for details). Protein-coding,
rRNA and tRNA genes are shown as colored bars. The innermost circle shows the motif occurrences in the mitochondrial genome for each factor as
black vertical bars. (A) CREB; (B) STAT3; (C) GR in A549 cells treated with different concentrations of dexamethasone (Dex) [60,61]; (D) ERa in untreated
(DMSO) ECC1 cells and ECC1 cells treated with bisphenol A (BPA), genistein (Gen) or 17b-estradiol (E2) [31]; (E) IRF3; (F) NFkB in GM12878 cells treated
with TNFa [37]. The reads per million (RPM) tracks are shown, scaled to the maximum signal level (for both strands) for each dataset. Plots were
generated using Circos version 0.60 [41].
doi:10.1371/journal.pone.0084713.g016

Figure 17. Distribution of reads over the human and mouse mitochondrial genome for p53 in publicly available ChIP-seq datasets.
Reads mapping to the forward strand are represented in black, reads mapping to the reverse strand are represented in yellow. The unique
mappability track for the mitochondrial genome is shown in red in the outside track (see Methods for details). Protein-coding, rRNA and tRNA genes
are shown as colored bars. The innermost circle shows the motif occurrences in the mitochondrial genome for each factor as black vertical bars. (A)
p53 in mouse embryionic fibroblasts (MEFs), data from [38], GSE46240. (B) p53 in mouse embryonic stem cells (mESC), data from [45], GSE26361; (C)
p53 in human IMR90 cells, data from [2], GSE42728. The reads per million (RPM) tracks are shown, scaled to the maximum signal level (for both
strands) for each dataset. Plots were generated using Circos version 0.60 [41].
doi:10.1371/journal.pone.0084713.g017

Nuclear Transcription Factors in Mitochondria

PLOS ONE | www.plosone.org 20 January 2014 | Volume 9 | Issue 1 | e84713

648



binding to mtDNA but with little functional consequence.

Alternatively, nuclear transcription factors may in fact be playing

a regulatory role in mtDNA. It is difficult to imagine the exact

mechanisms through which they might be acting, aside from

interactions with the regulatory D-loop. While we do observe pairs

of related factor such as c-Jun and JunD, and MafK and MafF

binding to the same sites, binding events are overall widely

dispersed over the mitochondrial genome and are found outside of

the known regulatory regions. Plausible regulatory relationships

are therefore not obvious and our results suggest that biological

noise should be the working null hypothesis explaining the data.

The functional regulatory role of these nuclear transcription

factors in mitochondria is a very exciting possibility but it will have

to be demonstrated in subsequent studies. Direct functional tests

are the golden standard for establishing regulatory relationships,

using gain and loss of function experiments and genetic

manipulation of putative regulatory sites. The latter is at present

not possible for mitochondria while the former are difficult to

interpret in the case of the role of nuclear transcription factors in

mitochondrial gene regulation, as it is not easy to separate the

direct effects of binding to mtDNA from the indirect effects of

transcriptional changes in the nucleus. Thus, it may be some time

before definitive answers to these questions are obtained. In the

meantime, larger compendia of transcription factor ChIP-seq data

such as those expected to be generated by the next phase of the

ENCODE project will be a primary source of further insight by

providing binding data for additional nuclear transcription factors

that will clarify allowed or preferred occupancy patterns across the

mitochondrial genome.

Figure 18. Distribution of reads over the mouse mitochondrial genome for MEF2D isoforms MEF2Da1 and MEF2Da2 in C2C12
myoblasts. Reads mapping to the forward strand are represented in black, reads mapping to the reverse strand are represented in yellow. The
unique mappability track for the mitochondrial genome is shown in red in the outside track (see Methods for details). Protein-coding, rRNA and tRNA
genes are shown as colored bars. The innermost circle shows the MEF2D motif occurrences in the mitochondrial genome as black vertical bars. Data
was obtained from [65], GSE43223. Plots were generated using Circos version 0.60 [41].
doi:10.1371/journal.pone.0084713.g018
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Materials and Methods

Except for where indicated otherwise, all analysis was carried

out using custom-written python scripts.

Sequencing read alignment
Raw sequencing reads were downloaded from the UCSC

genome browser for ENCODE and mouseENCODE [54] data,

and from ftp://ftp.modencode.org for modENCODE data

[30,50] (data current as of February 2012). ChIP-seq data for

p53 was obtained rom GEO series GSE26361 [45], GSE46240

[38] and GSE42728 [2]. Reads were aligned using Bowtie [42],

version 0.12.7. Human data was mapped against either the female

or the male set of human chromosomes (excluding the Y

chromosome and/or all random chromosomes and haplotypes)

depending on the sex of the cell line (where the sex was known,

otherwise the Y chromosome was included), genome version hg19.

Mouse data was mapped against the mm9 version of the mouse

genome. modENCODE D. melanogaster data was mapped against

the dm3 version of the fly genome. modENCODE data for C.

elegans was mapped against the ce10 version of the worm genome.

Reads were mapped with the following settings: ‘‘-v 2 -k 2 -m 1 -t –

best –strata’’, which allow for two mismatches relative to the

reference, however for all downstream analysis only reads

mapping uniquely and with zero mismatches were considered, to

eliminate any possible mapping artifacts.

Mappability track generation
Mappability was assessed as follows. Sequences of length N

bases were generated starting at each position in the mitochondrial

genome. The resulting set of ‘‘reads’’ was then mapped against the

same bowtie index used for mapping real data. Positions covered

by N reads were considered fully mappable. In this case, N = 36 as

this is the read length for most of the sequencing data analyzed in

this study.

Signal normalization of ChIP-seq data over the
mitochondrial genome

Because the number of mitochondria per cell varies from one

cell line/tissue to another, direct comparisons between datasets

based on the absolute magnitude of the signal in RPM are not

entirely valid. For this reason, we normalized the signal as follows.

For each dataset, we fit a Gamma distribution over the RPM

coverage scores for the bottom Fb percentile of fully mappable

position on the mitochondrial chromosome. The estimated

parameters were then used to rescale the raw signal over all

position to a z-score. This results in datasets with strong peaks

receiving low z-scores over most of the mappable mitochondrial

genome, and very high z-scores over the regions with highly

localized enrichment. We used F = 0.8 for our analysis. As this

procedure is sensitive to datasets with very low total read coverage

over the mitochondrial genome, we restricted our analysis to

datasets with at least 5000 uniquely mappable reads (and with no

mismatches to the reference), i.e. $10x coverage. We used a z-

score cutoff of 20 to select datasets with high enrichment over the

mitochondrial genome, as it was the highest z-score observed in

sonicated input samples

Motif analysis
The peak calls for human and mouse ENCODE data available

from the USCS Genome Browser were used to find de novo motifs

for transcription factors from ChIP-seq data. The sequence

around the peak summit (using a 50 bp radius) was retrieved for

the top 500 called peaks for each factor in each cell line and motifs

were called using the MEME program in the MEME SUITE,

version 4.6.1 [4]. The MEME-defined position weight matrix was

then used to scan the mitochondrial genome for motif matches

following the approach described in [53].

Cell growth and immunocytochemistry
HepG2 cells were grown following the standard ENCODE

protocol (DMEM media, 4 mM L-glutamine, 4.5 g/L glucose,

without sodium pyruvate, with 10% FBS (Invitrogen 10091-148)

and penicillin-streptomycin). Cells were fixed in 10% formalin

(Sigma-Aldrich HT501128-4L) for 10 min, permeabilized with

0.1% Triton X-100, and blocked in 5% FBS. Primary antibodies

used were MafK (1:100, Abcam, ab50322) and Hsp60 (1:125,

Santa Cruz, sc-1052). Secondary antibodies used were donkey

anti-goat AF488 (Invitrogen A11055) and donkey anti-rabbit

AF546 (Invitrogen A10040). Imaging on a Zeiss LSM 710

confocal microscope with PlanApochromat 63X/1.4 oil objective,

and 0.7 mm optical sections were acquired.

Supporting Information

Figure S1 Distribution of reads over the human mito-
chondrial genome for STAT1 and STAT5A in ENCODE
ChIP-seq data. Reads mapping to the forward strand are

represented in black, reads mapping to the reverse strand are

represented in yellow. The unique mappability track for the

mitochondrial genome is shown in red in the outside track (see

Methods for details). Protein-coding, rRNA and tRNA genes are

shown as colored bars. The innermost circle shows the motif

occurrences in the mitochondrial genome for each factor as black

vertical bars. (A) STAT1; (B) STAT5A; The reads per million

(RPM) tracks are shown, scaled to the maximum signal level (for

both strands) for each dataset. Plots were generated using Circos

version 0.60 [41].

(PDF)
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With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement
to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts,
transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity
with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated
with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions,
raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of
biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated
genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic
coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we
need to use combinations of all three to elucidate genome function in human biology and disease.

Quest to Identify Functional Elements in
the Human Genome
Completing the human genome reference
sequence was a milestone in modern biology.
The considerable challenge that remained
was to identify and delineate the structures of
all genes and other functional elements. It
was quickly recognized that nearly 99% of the
∼3.3 billion nucleotides that constitute the
human genome do not code for proteins (1).
Comparative genomics studies revealed that
the majority of mammalian-conserved and
recently adapted regions consist of non-
coding elements (2–10). More recently, ge-
nome-wide association studies have indicated
that a majority of trait-associated loci, including
ones that contribute to human diseases and
susceptibility, also lie outside protein-coding
regions (11–16). These findings suggest that the

noncoding regions of the human genome
harbor a rich array of functionally significant
elements with diverse gene regulatory and
other functions.
Despite the pressing need to identify and

characterize all functional elements in the
human genome, it is important to recognize
that there is no universal definition of what
constitutes function, nor is there agreement
on what sets the boundaries of an element.
Both scientists and nonscientists have an
intuitive definition of function, but each
scientific discipline relies primarily on dif-
ferent lines of evidence indicative of func-
tion. Geneticists, evolutionary biologists,
and molecular biologists apply distinct ap-
proaches, evaluating different and com-
plementary lines of evidence. The genetic
approach evaluates the phenotypic conse-
quences of perturbations, the evolutionary
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approach quantifies selective constraint, and
the biochemical approach measures evidence
of molecular activity. All three approaches
can be highly informative of the biological
relevance of a genomic segment and
groups of elements identified by each
approach are often quantitatively enriched
for each other. However, the methods vary
considerably with respect to the specific
elements they predict and the extent of the
human genome annotated by each (Fig. 1).
Some of these differences stem from the

fact that function in biochemical and genetic
contexts is highly particular to cell type and
condition, whereas for evolutionary mea-
sures, function is ascertained independently
of cellular state but is dependent on envi-
ronment and evolutionary niche. The meth-
ods also differ widely in their false-positive
and false-negative rates, the resolution with
which elements are defined, and the through-
put with which they can be surveyed. More-
over, each approach remains incomplete,
requiring continued method development
(both experimental and analytical) and in-
creasingly large datasets (additional species,
assays, cell types, variants, and phenotypes).
It is thus not surprising that the methods
vary considerably with respect to the specific
elements they identify. However, the extent
of the difference is much larger than simply

technical limitations would suggest, chal-
lenging current views and definitions of
genome function.
Many examples of elements that appear

to have conflicting lines of functional evi-
dence were described before the Encyclo-
pedia of DNA Elements (ENCODE) Project,
including elements with conserved pheno-
types but lacking sequence-level conserva-
tion (17–20), conserved elements with no
phenotype on deletion (21, 22), and ele-
ments able to drive tissue-specific expression
but lacking evolutionary conservation (23,
24). However, the scale of the ENCODE
Project survey of biochemical activity (across
many more cell types and assays) led to a
significant increase in genome coverage and
thus accentuated the discrepancy between
biochemical and evolutionary estimates. This
discrepancy led to much debate both in the
scientific literature (25–31) and in online
forums, resulting in a renewed need to clarify
the challenges of defining function in the
human genome and to understand the
sources of the discrepancy.
To address this need and provide a per-

spective by ENCODE scientists, we review
genetic, evolutionary, and biochemical lines
of evidence, discuss their strengths and lim-
itations, and examine apparent discrepancies
between the conclusions emanating from the
different approaches.

Genetic Approach. Genetic approaches,
which rely on sequence alterations to estab-
lish the biological relevance of a DNA seg-
ment, are often considered a gold standard
for defining function. Mutations can be
naturally occurring and identified by screen-
ing for phenotypes generated by sequence
variants (13, 32) or produced experimen-
tally by targeted genetic methods (33) or
nongenetic interference (34). Transfection
studies that use reporter assays in cell lines
(35, 36) or embryos (37) can also be used to
identify regulatory elements and measure
their activities. Genetic approaches tend to
be limited by modest throughput, although
speed and efficiency is now increasing for
some methods (36, 38–40). The approach
may also miss elements whose phenotypes
occur only in rare cells or specific envi-
ronmental contexts, or whose effects are
too subtle to detect with current assays.
Loss-of-function tests can also be buffered
by functional redundancy, such that double
or triple disruptions are required for a
phenotypic consequence. Consistent with
redundant, contextual, or subtle functions,
the deletion of large and highly conserved
genomic segments sometimes has no dis-
cernible organismal phenotype (21, 22),

and seemingly debilitating mutations in
genes thought to be indispensible have been
found in the human population (41).

Evolutionary Approach. Comparative ge-
nomics provides a powerful approach for
detecting noncoding functional elements
that show preferential conservation across
evolutionary time. A high level of sequence
conservation between related species is
indicative of purifying selection, whereby
disruptive mutations are rejected, with the
corresponding sequence deemed to be
likely functional. Evidence of function can
also come from accelerated evolution across
species or within a particular lineage, re-
vealing elements under positive selection for
recently acquired changes that increase fit-
ness; such an approach gains power by in-
corporating multiple closely related genomes
because each species provides information
about sequence constraint. Multispecies
comparisons have been used in studies
of diverse clades, ranging from yeast to
mammals. Methods that detect sequences
likely under selection have had success
in recognizing protein-coding regions,
structural RNAs, gene regulatory regions,
regulatory motifs, and specific regulatory
elements (3, 42–48). The comparative ge-
nomics approach can also incorporate in-
formation about mutational patterns that
may be characteristic of different types
of elements.
Although powerful, the evolutionary ap-

proach also has limitations. Identification
of conserved regions depends on accurate
multispecies sequence alignments, which re-
main a substantial challenge. Alignments are
generally less effective for distal-acting regu-
latory regions, where they may be impeded
by regulatory motif turnover, varying spacing
constraints, and sequence composition biases
(17, 49). Analyzing aligned regions for con-
servation can be similarly challenging. First,
most transcription factor-binding sequences
are short and highly degenerate, making
them difficult to identify. Second, because
detection of neutrally evolving elements
requires sufficient phylogenetic distance, the
approach is well suited for detecting mam-
malian-conserved elements, but it is less
effective for primate-specific elements and
essentially blind to human-specific elements.
Third, certain types of functional elements
such as immunity genes may be prone to
rapid evolutionary turnover even among
closely related species. More generally, align-
ment methods are not well suited to capture
substitutions that preserve function, such
as compensatory changes preserving RNA
structure, affinity-preserving substitutions

low medium
(ENCODE, by level of activity)

high

Whole genome

Genetic evidence?
(generates phenotype)

Evolutionary evidence
(mammalian conservation)

Protein-coding

Biochemical evidence

Fig. 1. The complementary nature of evolutionary, bio-
chemical, and genetic evidence. The outer circle represents
the human genome. Blue discs represent DNA sequences
acted upon biochemically and partitioned by their levels of
signal [combined 10th percentiles of different ENCODE data
types for high, combined 50th percentiles for medium, and
all significant signals for low (see Reconciling Genetic, Evo-
lutionary, and Biochemical Estimates and Fig. 2)]. The red
circle represents, at the same scale, DNA with signatures of
evolutionary constraint (GERP++ elements derived from
34mammal alignments). Overlaps among the sequences
having biochemical and evolutionarily evidence were com-
puted in this work (Fig. 3 and SI Methods). The small purple
circle represents protein-coding nucleotides (Gencode). The
green shaded domain conceptually represents DNA that
produces a phenotype upon alteration, although we lack
well-developed summary estimates for the amount of ge-
netic evidence and its relationship with the other types. This
summary of our understanding in early 2014 will likely evolve
substantially with more data and more refined experimental
and analytical methods.
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within regulatory motifs, or mutations whose
effect is buffered by redundancy or epistatic
effects. Thus, absence of conservation cannot
be interpreted as evidence for the lack
of function.
Finally, although the evolutionary ap-

proach has the advantage that it does not
require a priori knowledge of what a DNA
element does or when it is used, it is un-
likely to reveal the molecular mechanisms
under selection or the relevant cell types or
physiological processes. Thus, comparative
genomics requires complementary studies.

Biochemical Approach. The biochemical
approach for identifying candidate func-
tional genomic elements complements the
other approaches, as it is specific for cell
type, condition, and molecular process.
Decades of detailed studies of gene reg-
ulation and RNA metabolism have defined
major classes of functional noncoding
elements, including promoters, enhancers,
silencers, insulators, and noncoding RNA
genes such as microRNAs, piRNAs, struc-
tural RNAs, and regulatory RNAs (50–53).
These noncoding functional elements are
associated with distinctive chromatin struc-
tures that display signature patterns of
histone modifications, DNA methylation,
DNase accessibility, and transcription
factor occupancy (37, 54–66). For exam-
ple, active enhancers are marked by specific
histone modifications and DNase-accessible
chromatin and are occupied by sequence-
specific transcription factors, coactivators
such as EP300, and, often, RNA poly-
merase II. Although the extent to which
individual features contribute to function
remains to be determined, they provide
a useful surrogate for annotating candidate
enhancers and other types of functional
elements.
The ENCODE Project was established with

the goal of systematically mapping functional
elements in the human genome at high res-
olution and providing this information as an
open resource for the research community
(67, 68). Most data acquisition in the project
thus far has taken the biochemical ap-
proach, using evidence of cellular or enzy-
matic processes acting on a DNA segment to
help predict different classes of functional
elements. The recently completed phase
of ENCODE applied a wide range of bio-
chemical assays at a genome-wide scale to
study multiple human cell types (69). These
assays identified genomic sequences (i)
from which short and long RNAs, both
nuclear and cytoplasmic, are transcribed;
(ii) occupied by sequence-specific tran-
scription factors, cofactors, or chromatin

regulatory proteins; (iii) organized in ac-
cessible chromatin; (iv) marked by DNA
methylation or specific histone modifications;
and (v) physically brought together by long-
range chromosomal interactions.
An advantage of such functional genomics

evidence is that it reveals the biochemical
processes involved at each site in a given
cell type and activity state. However,
biochemical signatures are often a conse-
quence of function, rather than causal. They
are also not always deterministic evidence of
function, but can occur stochastically. For
example, GATA1, whose binding at some
erythroid-specific enhancers is critical for
function, occupies many other genomic sites
that lack detectable enhancer activity or
other evidence of biological function (70).
Likewise, although enhancers are strongly
associated with characteristic histone mod-
ifications, the functional significance of such
modifications remains unclear, and the
mere presence of an enhancer-like sig-
nature does not necessarily indicate that

a sequence serves a specific function (71, 72).
In short, although biochemical signatures
are valuable for identifying candidate reg-
ulatory elements in the biological context
of the cell type examined, they cannot be
interpreted as definitive proof of function
on their own.

What Fraction of the Human Genome Is
Functional?
Limitations of the genetic, evolutionary, and
biochemical approaches conspire to make
this seemingly simple question difficult to
answer. In general, each approach can be
used to lend support to candidate elements
identified by other methods, although focus-
ing exclusively on the simple intersection set
would be much too restrictive to capture all
functional elements. However, by probing
quantitative relationships in data from the
different approaches, we can begin to gain
a more sophisticated picture of the nature,
identity, and extent of functional elements
in the human genome.
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Fig. 2. Summary of the coverage of the human genome by ENCODE data.The fraction of the human genome covered by
ENCODE-detected elements in at least one cell line or tissue for each assay is shown as a bar graph. All percentages are
calculated against the whole genome, including the portion that is not uniquely mappable with short reads and thus is
invisible to the analysis presented here (see Fig. S1). A more detailed summary can be found in Fig. S2. For transcripts,
coverage was calculated from RNA-seq–derived contigs (104) using the count of read fragments per kilobase of exon per
million reads (FPKM) and separated into abundance classes by FPKM values. Note that FPKMs are not directly comparable
among different subcellular fractions, as they reflect relative abundances within a fraction rather than average absolute
transcript copy numbers per cell. Depending on the total amount of RNA in a cell, one transcript copy per cell corresponds to
between 0.5 and 5 FPKM in PolyA+ whole-cell samples according to current estimates (with the upper end of that range
corresponding to small cells with little RNA and vice versa). “All RNA” refers to all RNA-seq experiments, including all
subcellular fractions (Fig. S2). DNAse hypersensitivity and transcription-factor (TFBS) and histone-mark ChIP-seq coverage was
calculated similarly but divided according to signal strength. “Motifs+footprints” refers to the union of occupied sequence
recognition motifs for transcription factors as determined by ChIP-seq and as measured by digital genomic footprinting,
with the fuscia portion of the bar representing the genomic space covered by bound motifs in ChIP-seq. Signal strength for
ChIP-seq data for histone marks was determined based on the P value of each enriched region (the –log10 of the P value is
shown), using peak-calling procedures tailored to the broadness of occupancy of each modification (SI Methods).
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Case for Abundant Junk DNA. The pos-
sibility that much of a complex genome
could be nonfunctional was raised decades
ago. The C-value paradox (27, 73, 74) refers
to the observation that genome size does not
correlate with perceived organismal com-
plexity and that even closely related species
can have vastly different genome sizes. The
estimated mutation rate in protein-coding
genes suggested that only up to ∼20% of
the nucleotides in the human genome can
be selectively maintained, as the mutational
burden would be otherwise too large (75).
The term “junk DNA” was coined to refer
to the majority of the rest of the genome,
which represent segments of neutrally
evolving DNA (76, 77). More recent work
in population genetics has further de-
veloped this idea by emphasizing how
the low effective population size of large-
bodied eukaryotes leads to less efficient
natural selection, permitting proliferation of
transposable elements and other neutrally
evolving DNA (78). If repetitive DNA ele-
ments could be equated with nonfunctional
DNA, then one would surmise that the hu-
man genome contains vast nonfunctional
regions because nearly 50% of nucleotides in
the human genome are readily recognizable
as repeat elements, often of high degeneracy.
Moreover, comparative genomics studies
have found that only 5% of mammalian
genomes are under strong evolutionary con-
straint across multiple species (e.g., human,
mouse, and dog) (2, 3).

Case for Abundant Functional Genomic
Elements. Genome-wide biochemical stud-
ies, including recent reports from ENCODE,
have revealed pervasive activity over an
unexpectedly large fraction of the genome,
including noncoding and nonconserved
regions and repeat elements (58–60). Such
results greatly increase upper bound esti-
mates of candidate functional sequences (Fig.
2 and Fig. S2). Many human genomic regions
previously assumed to be nonfunctional have
recently been found to be teeming with bio-
chemical activity, including portions of repeat
elements, which can be bound by transcrip-
tion factors and transcribed (79, 80), and are
thought to sometimes be exapted into novel
regulatory regions (81–84). Outside the 1.5%
of the genome covered by protein-coding
sequence, 11% of the genome is associated
with motifs in transcription factor-bound
regions or high-resolution DNase footprints
in one or more cell types (Fig. 2), indicative of
direct contact by regulatory proteins. Tran-
scription factor occupancy and nucleosome-
resolution DNase hypersensitivity maps
overlap greatly and each cover approximately

15% of the genome. In aggregate, histone
modifications associated with promoters or
enhancers mark ∼20% of the genome,
whereas a third of the genome is marked by
modifications associated with transcriptional
elongation. Over half of the genome has
at least one repressive histone mark. In
agreement with prior findings of pervasive
transcription (85, 86), ENCODE maps of
polyadenylated and total RNA cover in total
more than 75% of the genome. These already
large fractions may be underestimates, as
only a subset of cell states have been assayed.
However, for multiple reasons discussed
below, it remains unclear what proportion of
these biochemically annotated regions serve
specific functions.
The lower bound estimate that 5% of the

human genome has been under evolutionary
constraint was based on the excess conser-
vation observed in mammalian alignments
(2, 3, 87) relative to a neutral reference
(typically ancestral repeats, small introns,
or fourfold degenerate codon positions).
However, estimates that incorporate alternate
references, shape-based constraint (88), evo-
lutionary turnover (89), or lineage-specific
constraint (90) each suggests roughly two
to three times more constraint than pre-

viously (12–15%), and their union might be
even larger as they each correct different
aspects of alignment-based excess constraint.
Moreover, the mutation rate estimates of the
human genome are still uncertain and sur-
prisingly low (91) and not inconsistent with
a larger fraction of the genome under rela-
tively weaker constraint (92). Although still
weakly powered, human population studies
suggest that an additional 4–11% of the ge-
nome may be under lineage-specific con-
straint after specifically excluding protein-
coding regions (90, 92, 93), and these num-
bers may also increase as our ability to detect
human constraint increases with additional
human genomes. Thus, revised models,
lineage-specific constraint, and additional
datasets may further increase evolution-
based estimates.
Results of genome-wide association studies

might also be interpreted as support for more
pervasive genome function. At present, sig-
nificantly associated loci explain only a small
fraction of the estimated trait heritability,
suggesting that a vast number of additional
loci with smaller effects remain to be dis-
covered. Furthermore, quantitative trait locus
(QTL) studies have revealed thousands
of genetic variants that influence gene
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expression and regulatory activity (94–98).
These observations raise the possibility that
functional sequences encompass a larger
proportion of the human genome than
previously thought.

Reconciling Genetic, Evolutionary, and
Biochemical Estimates
The proportion of the human genome
assigned to candidate functions varies
markedly among the different approaches,
with estimates from biochemical approaches
being considerably larger than those of ge-
netic and evolutionary approaches (Fig. 1).
These differences have stimulated scientific
debate regarding the interpretation and
relative merits of the various approaches
(26–29). We highlight below caveats of each
approach and emphasize the importance
of integration and new high-throughput
technologies for refining estimates and
better understanding the functional seg-
ments in the human genome.

Although ENCODE has expended con-
siderable effort to ensure the reproducibility
of detecting biochemical activity (99), it is not
at all simple to establish what fraction of the
biochemically annotated genome should be
regarded as functional. The dynamic range of
biochemical signals differs by one or more
orders of magnitude for many assays, and the
significance of the differing levels is not yet
clear, particularly for lower levels. For ex-
ample, RNA transcripts of some kind can be
detected from ∼75% of the genome, but
a significant portion of these are of low
abundance (Fig. 2 and Fig. S2). For poly-
adenylated RNA, where it is possible to
estimate abundance levels, 70% of the docu-
mented coverage is below approximately one
transcript per cell (100–103). The abundance
of complex nonpolyadenylated RNAs and
RNAs from subcellular fractions, which
account for half of the total RNA coverage
of the genome, is likely to be even lower, al-
though their absolute quantification is not

yet achieved. Some RNAs, such as lncRNAs,
might be active at very low levels. Others
might be expressed stochastically at higher
levels in a small fraction of the cell popu-
lation (104), have hitherto unappreciated
architectural or regulatory functions, or
simply be biological noise of various kinds.
At present, we cannot distinguish which
low-abundance transcripts are functional,
especially for RNAs that lack the defining
characteristics of known protein coding,
structural, or regulatory RNAs. A priori, we
should not expect the transcriptome to
consist exclusively of functional RNAs. Zero
tolerance for errant transcripts would come
at high cost in the proofreading machinery
needed to perfectly gate RNA polymerase
and splicing activities, or to instantly eliminate
spurious transcripts. In general, sequences
encoding RNAs transcribed by noisy tran-
scriptional machinery are expected to be
less constrained, which is consistent with
data shown here for very low abundance
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Fig. 4. Epigenetic and evolutionary signals in cis-regulatory modules (CRMs) of the HBB complex. (Upper) Many CRMs (red rectangles) (106) have been mapped within
the cluster of genes encoding β-like globins expressed in embryonic (HBE1), fetal (HBG1 and HBG2), and adult (HBB and HBD) erythroid cells. All are marked by DNase
hypersensitive sites and footprints (Gene Expression Omnibus accession nos. GSE55579, GSM1339559, and GSM1339560), and many are bound by GATA1 in peripheral
blood derived erythroblasts (PBDEs). (Lower, Left) A DNA segment located between the HBG1 and HBD genes is one of the DNA segments bound by BCL11A (109, 110)
and several other proteins (ENCODE uniformly processed data) to negatively regulate HBG1 and HBG2. It is sensitive to DNase I but is not conserved across mammals.
(Center) An enhancer located 3′ of the HBG1 gene (red line) (108) is bound by several proteins in PBDEs and K562 cells (from the ENCODE uniformly processed data) and
is sensitive to DNase I, but shows almost no signal for mammalian constraint. (Right) The enhancer at hypersensitive site (HS)2 of the locus control region (LCR) (red line)
(107) is bound by the designated proteins at the motifs indicated by black rectangles. High-resolution DNase footprinting data (116) show cleavage concentrated
between the bound motifs, which are strongly constrained during mammalian evolution, as shown on the mammalian phastCons track (48).
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RNA (Fig. 3). Similarly, a majority of the
genome shows reproducible evidence of
one or more chromatin marks, but some
marks are in much lower abundance, are
preferentially associated with nonconserved
heterochromatin regions (e.g., H3K9me3;
Fig. 3B), or are known to act at a distance by
spreading (105). Indeed, for any given bio-
chemical assay, the proportion of the ge-
nome covered is highly dependent on the
signal threshold set for the analysis (Fig. 2
and Fig. S2). Regions with higher signals
generally exhibit higher levels of evolution-
arily conservation (Fig. 3 and Fig. S3). Thus,
one should have high confidence that the
subset of the genome with large signals for
RNA or chromatin signatures coupled with
strong conservation is functional and will be
supported by appropriate genetic tests. In
contrast, the larger proportion of genome
with reproducible but low biochemical sig-
nal strength and less evolutionary conser-
vation is challenging to parse between
specific functions and biological noise.
Another major variable underlying the dif-

ferences in genome coverage is assay resolu-
tion. Biochemical methods, such as ChIP or
DNase hypersensitivity assays, capture ex-
tended regions of several hundred bases,
whereas the underlying transcription factor-
binding elements are typically only 6–15 bp
in length. Regulatory motifs and DNase foot-
prints within bound regions show much
stronger evidence of constraint than sur-
rounding nucleotides that nevertheless fall
within the region. Functional elements pre-
dicted from chromatin-state annotations tend
to span even larger regions (e.g., the median
length of enhancer states is ∼600 bp), al-
though the driver nucleotides can be simi-
larly few. Biochemical activity may also spread
from neighboring regions, in genomic coor-
dinates or 3D genome organization, making
it even more difficult to establish the poten-
tial nucleotide drivers. Nonetheless, imme-
diately consigning a biochemically marked
region to the nonfunctional bin for lack of
a driver motif would be premature. Genetic
tests by deletion or sequence substitution are
needed to resolve the question of their func-
tional significance.
Thus, unanswered questions related to

biological noise, along with differences in the
resolution, sensitivity, and activity level of the
corresponding assays, help to explain di-
vergent estimates of the portion of the human
genome encoding functional elements. Nev-
ertheless, they do not account for the entire
gulf between constrained regions and bio-
chemical activity. Our analysis revealed
a vast portion of the genome that appears
to be evolving neutrally according to our

metrics, even though it shows reproducible
biochemical activity, which we previously
referred to as “biochemically active but se-
lectively neutral” (68). It could be argued that
some of these regions are unlikely to serve
critical functions, especially those with lower-
level biochemical signal. However, we also
acknowledge substantial limitations in our
current detection of constraint, given that
some human-specific functions are essential
but not conserved and that disease-relevant
regions need not be selectively constrained to
be functional. Despite these limitations, all
three approaches are needed to complete the
unfinished process of inferring functional
DNA elements, specifying their boundaries,
and defining what functions they serve at
molecular, cellular, and organismal levels.

Functional Genomic Elements and
Human Disease
Presently, ∼4,000 genes have been associated
with human disease, a likely underestimate
given that the majority of disease-associated
mutations have yet to be mapped. There
is overwhelming evidence that variants in
the regulatory sequences associated with
such genes can lead to disease-relevant
phenotypes. Biochemical approaches provide
a rich resource for understanding disease-
relevant functional elements, but they are
most powerful as part of a multifaceted
body of evidence for establishing function.
Three specific examples from the β-globin
locus illustrate how biochemical data can
be integrated with evolutionary constraint
and genetic assays of function (Fig. 4). The
expression of globin genes at progressive
stages of development is controlled by
transcription factors binding at multiple
cis-regulatory modules (CRMs) (106), but
these CRMs differ dramatically in epige-
netic signals and evolutionary history. For
example, the independently acting enhancer
LCR hypersensitive site 2 (HS2) (107) shows
strong constraint on the motifs bound
by transcription factors and strong DNase
footprints. A second CRM, HBG1 3′ en-
hancer (108), is also bound in vivo by
GATA1 (and other proteins) and is active
as an enhancer, but shows almost no con-
straint over mammalian evolution. Last,
a third location, HBG1-D (109, 110),
shows DNase hypersensitivity but lacks

biological activity in enhancer assays.
Rather, binding of this and other CRMs in
the locus by BCL11A leads to a reorga-
nization of the chromatin interactions and
repression of genes encoding the fetally
expressed γ-globins in adult erythroid
cells. This CRM is virtually devoid of ev-
idence of mammalian constraint, at least
in part because the adult-stage silencing
of γ-globin genes is specific to primates.
These vignettes illustrate the comple-
mentary nature of genetic, evolutionary,
and biochemical approaches for under-
standing disease-relevant genomic ele-
ments and also the importance of data
integration, as no single assay identifies all
functional elements.

Conclusion
In contrast to evolutionary and genetic evi-
dence, biochemical data offer clues about
both the molecular function served by un-
derlying DNA elements and the cell types
in which they act, thus providing a launch-
ing point to study differentiation and de-
velopment, cellular circuitry, and human
disease (14, 35, 69, 111, 112). The major
contribution of ENCODE to date has been
high-resolution, highly-reproducible maps of
DNA segments with biochemical signatures
associated with diverse molecular functions.
We believe that this public resource is far
more important than any interim estimate
of the fraction of the human genome that
is functional.
By identifying candidate genomic elements

and placing them into classes with shared
molecular characteristics, the biochemical
maps provide a starting point for testing
how these signatures relate to molecular,
cellular, and organismal function. The data
identify very large numbers of sequence ele-
ments of differing sizes and signal strengths.
Emerging genome-editing methods (113,
114) should considerably increase the
throughput and resolution with which
these candidate elements can be evaluated
by genetic criteria. Given the limitations of
our current understanding of genome func-
tion, future work should seek to better define
genome elements by integrating all three
methods to gain insight into the roles they
play in human biology and disease.
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Bohnert R, Rätsch G. 2010. rQuant.web: a
tool for RNA-Seq-based transcript quanti-
tation. Nucleic Acids Res 38(Web Server
issue):W348–351.

Bolduc N, Yilmaz A, Mejia-Guerra MK, Moro-
hashi K, O’Connor D, Grotewold E, Hake S.
2012. Unraveling the KNOTTED1 regula-
tory network in maize meristems. Genes Dev
26(15):1685–1690.

Boley N, Stoiber MH, Booth BW, Wan KH,
Hoskins RA, Bickel PJ, Celniker SE, Brown
JB. 2014. Genome-guided transcript as-
sembly by integrative analysis of RNA se-
quence data. Nat Biotechnol Nat Biotechnol
32(4):341–346.

Booth MJ, Branco MR, Ficz G, Ox-
ley D, Krueger F, Reik W, Balasub-
ramanian S. 2012. Quantitative se-
quencing of 5-methylcytosine and 5-
hydroxymethylcytosine at single-base reso-
lution. Science 336(6083):934–937.

Borsani G, Tonlorenzi R, Simmler MC, Dandolo
L, Arnaud D, Capra V, Grompe M, Pizzuti
A, Muzny D, Lawrence C, Willard HF, Avner
P, Ballabio A. 1991. Characterization of a
murine gene expressed from the inactive X
chromosome. Nature 351(6324):325–329.

Botcheva K, McCorkle SR, McCombie WR,
Dunn JJ, Anderson CW. 2011. Distinct
p53 genomic binding patterns in normal
and cancer-derived human cells. Cell Cycle
10(24):4237–4249.

Bougdour A, Braun L, Cannella D, Hakimi MA.
2010. Chromatin modifications: implications
in the regulation of gene expression in Toxo-
plasma gondii. Cell Microbiol 12(4):413–423.

Boveri TH 1904. Ergebnisse über die Konsti-
tution der chromatischen Substanz des Zelk-
erns. Fisher, Jena.

Bowler C, Allen AE, Badger JH, Grimwood J,
Jabbari K, Kuo A, Maheswari U, Martens C,
Maumus F, Otillar RP, Rayko E, Salamov
A, Vandepoele K, Beszteri B, Gruber A, Hei-
jde M, Katinka M, Mock T, Valentin K, Ver-
ret F, Berges JA, Brownlee C, Cadoret JP,
Chiovitti A, Choi CJ, Coesel S, De Martino
A, Detter JC, Durkin C, Falciatore A, Four-
net J, Haruta M, Huysman MJ, Jenkins BD,
Jiroutova K, Jorgensen RE, Joubert Y, Ka-
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chia AM, Picardi E, Zambelli F, Principato
G, Pavesi G, Pesole G. 2013. SpliceAid-
F: a database of human splicing factors and
their RNA-binding sites. Nucleic Acids Res
41(D1):D125–131.

Gnerre S, Maccallum I, Przybylski D, Ribeiro
FJ, Burton JN, Walker BJ, Sharpe T, Hall
G, Shea TP, Sykes S, Berlin AM, Aird D,
Costello M, Daza R, Williams L, Nicol R,
Gnirke A, Nusbaum C, Lander ES, Jaffe DB.
2011. High-quality draft assemblies of mam-
malian genomes from massively parallel se-
quence data. Proc Natl Acad Sci U S A
108(4):1513–1518.

Goffeau A, Barrell BG, Bussey H, Davis RW,
Dujon B, Feldmann H, Galibert F, Hoheisel
JD, Jacq C, Johnston M, Louis EJ, Mewes
HW, Murakami Y, Philippsen P, Tettelin H,
Oliver SG. 1996. Life with 6000 genes. Sci-
ence. 274(5287):546,563–567.

Goldberg AD, Allis CD, Bernstein E. 2007. Epi-
genetics: a landscape takes shape. Cell
128(4):635–638.

Gommers-Ampt JH, Van Leeuwen F, de Beer
AL, Vliegenthart JF, Dizdaroglu M, Kowalak
JA, Crain PF, Borst P. 1993. β-D-glucosyl-
hydroxymethyluracil: a novel modified base
present in the DNA of the parasitic protozoan
T. brucei. Cell 75(6):1129–1136.
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S, Rouzé P, Grbic V, Osborne EJ, Dermauw
W, Ngoc PC, Ortego F, Hernández-Crespo
P, Diaz I, Martinez M, Navajas M, Sucena
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2012. The GEM mapper: fast, accurate and
versatile alignment by filtration. Nat Meth-
ods 9(12):1185–1188.

Mardis ER. 2010. Cancer genomics identifies de-
terminants of tumor biology. Genome Biol
11(5):211.

Margulies EH, Blanchette M; NISC Compara-
tive Sequencing Program, Haussler D, Green
ED. 2003. Identification and characteriza-
tion of multi-species conserved sequences.
Genome Res 13(12):2507–2518.



721

Margulies M, Egholm M, Altman WE, Attiya
S, Bader JS, Bemben LA, Berka J, Braver-
man MS, Chen YJ, Chen Z, Dewell SB, Du
L, Fierro JM, Gomes XV, Godwin BC, He
W, Helgesen S, Ho CH, Irzyk GP, Jando SC,
Alenquer ML, Jarvie TP, Jirage KB, Kim JB,
Knight JR, Lanza JR, Leamon JH, Lefkowitz
SM, Lei M, Li J, Lohman KL, Lu H, Makhi-
jani VB, McDade KE, McKenna MP, Myers
EW, Nickerson E, Nobile JR, Plant R, Puc
BP, Ronan MT, Roth GT, Sarkis GJ, Simons
JF, Simpson JW, Srinivasan M, Tartaro KR,
Tomasz A, Vogt KA, Volkmer GA, Wang SH,
Wang Y, Weiner MP, Yu P, Begley RF, Roth-
berg JM. 2005. Genome sequencing in mi-
crofabricated high-density picolitre reactors.
Nature 437(7057):376–380.

Mariner PD, Walters RD, Espinoza CA,
Drullinger LF, Wagner SD, Kugel JF,
Goodrich JA. 2008. Human Alu RNA is
a modular transacting repressor of mRNA
transcription during heat shock. Mol Cell
29(4):499–509.

Marinov GK, Kundaje A, Park PJ, Wold
BJ. 2014. Large-Scale Quality Analysis of
Published ChIP-seq Data. G3 (Bethesda)
4(2):209–223.

Marinov GK, Wang YE, Chan D, Wold BJ. 2014.
Evidence for site-specific occupancy of the
mitochondrial genome by nuclear transcrip-
tion factors. PLoS One 9(1):e84713.

Marinov GK, Williams BA, McCue K, Schroth
GP, Gertz J, Myers RM, Wold BJ. 2014.
From single-cell to cell-pool transcriptomes:
Stochasticity in gene expression and RNA
splicing. Genome Res 24(3):496–510.

Marioni JC, Mason CE, Mane SM, Stephens
M, Gilad Y. 2008. RNA-seq: an assessment
of technical reproducibility and comparison
with gene expression arrays. Genome Res
18(9):1509–1517.

Marson A, Levine SS, Cole MF, Frampton GM,
Brambrink T, Johnstone S, Guenther MG,
Johnston WK, Wernig M, Newman J, Cal-
abrese JM, Dennis LM, Volkert TL, Gupta
S, Love J, Hannett N, Sharp PA, Bartel DP,
Jaenisch R, Young RA. 2008. Connecting
microRNA genes to the core transcriptional
regulatory circuitry of embryonic stem cells.
Cell 134(3):521–533.

Martens PA, Clayton DA. 1979. Mechanism of
mitochondrial DNA replication in mouse L-
cells: localization and sequence of the light-
strand origin of replication. J Mol Biol

135(2):327–351.
Martens JA, Laprade L, Winston F. 2004. Inter-

genic transcription is required to repress the
Saccharomyces cerevisiae SER3 gene. Na-
ture 429(6991):571–574.

Martin D, Pantoja C, Fernández Miñán A,
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Alcina A, Cañón S, Fedetz M, Blasco MA,
Pereira PS, Ovcharenko I, Recillas-Targa F,
Montoliu L, Manzanares M, Guigó R, Ser-
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Moore RB, Oborńık M, Janouskovec J,
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D, Monniaux M, Blanchet S, Bastien O,
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Picelli S, Björklund ÅK, Faridani OR, Sagasser
S, Winberg G, Sandberg R. 2013. Smart-seq2
for sensitive full-length transcriptome profil-
ing in single cells. Nat Methods 10(11):1096–
1098.

Picelli S, Faridani OR, Björklund AK, Winberg
G, Sagasser S, Sandberg R. 2014. Full-length
RNA-seq from single cells using Smart-seq2.
Nat Protoc 9(1):171–181.

Pickrell JK, Marioni JC, Pai AA, Degner JF,
Engelhardt BE, Nkadori E, Veyrieras JB,
Stephens M, Gilad Y, Pritchard JK. 2010.
Understanding mechanisms underlying hu-
man gene expression variation with RNA se-
quencing. Nature 464(7289):768–772.

Piehler AP, Hellum M, Wenzel JJ, Kaminski E,
Haug KB, Kierulf P, Kaminski WE. 2008.
The human ABC transporter pseudogene
family: Evidence for transcription and gene-
pseudogene interference. BMC Genomics
9:165.

Pierro P, Capaccio L, Gadaleta G. 1999. The 25
kDa protein recognizing the rat curved region
upstream of the origin of the L-strand replica-
tion is the rat homologue of the human mito-
chondrial transcription factor A. FEBS Lett
457(3):307–310.

Pink RC, Wicks K, Caley DP, Punch EK, Jacobs
L, Carter DR. 2011. Pseudogenes: pseudo-
functional or key regulators in health and dis-
ease? RNA 17(5):792–798.

Plessy C, Bertin N, Takahashi H, Simone R, Sal-
imullah M, Lassmann T, Vitezic M, Severin
J, Olivarius S, Lazarevic D, Hornig N, Or-
lando V, Bell I, Gao H, Dumais J, Kapra-
nov P, Wang H, Davis CA, Gingeras TR,
Kawai J, Daub CO, Hayashizaki Y, Gustin-
cich S, Carninci P. 2010. Linking promot-
ers to functional transcripts in small samples
with nanoCAGE and CAGEscan. Nat Meth-



734

ods 7(7):528–534.
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wari VK, Schübeler D. 2011. DNA-binding
factors shape the mouse methylome at distal
regulatory regions. Nature 480(7378):490–
495.

Stamm S, Ben-Ari S, Rafalska I, Tang Y,
Zhang Z, Toiber D, Thanaraj TA, Soreq H.
2005. Function of alternative splicing. Gene
344:1–20.

Stefflova K, Thybert D, Wilson MD, Streeter I,
Aleksic J, Karagianni P, Brazma A, Adams
DJ, Talianidis I, Marioni JC, Flicek P, Odom
DT. 2013. Cooperativity and rapid evolution
of cobound transcription factors in closely re-
lated mammals. Cell 154(3):530–540.

Steger DJ, Grant GR, Schupp M, Tomaru T,
Lefterova MI, Schug J, Manduchi E, Stoeck-
ert CJ Jr, Lazar MA. 2010. Propagation
of adipogenic signals through an epigenomic
transition state. Genes Dev 24(10):1035–
1044.

Steijger T, Abril JF, Engstrm PG, Kokocinski
F; RGASP Consortium, Abril JF, Akerman
M, Alioto T, Ambrosini G, Antonarakis SE,
Behr J, Bertone P, Bohnert R, Bucher P,
Cloonan N, Derrien T, Djebali S, Du J, Du-
doit S, Engstrm PG, Gerstein M, Gingeras
TR, Gonzalez D, Grimmond SM, Guigó R,
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D. 2011a. Target genes of Topoisomerase IIβ
regulate neuronal survival and are defined by
their chromatin state. Proc Natl Acad Sci U
S A 109(16):E934–943.

Tiwari VK, Stadler MB, Wirbelauer C, Paro R,
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F, Namane A, Séraphin B, Libri D, Jacquier
A. 2005. Cryptic pol II transcripts are de-
graded by a nuclear quality control pathway
involving a new poly(A) polymerase. Cell
121(5):725–737.

Xia Z, Wen J, Chang CC, Zhou X. 2011.
NSMAP: a method for spliced isoforms iden-
tification and quantification from RNA-Seq.
BMC Bioinformatics 12:162.

Xiao S, Xie D, Cao X, Yu P, Xing X, Chen CC,
Musselman M, Xie M, West FD, Lewin HA,
Wang T, Zhong S. 2012. Comparative epige-
nomic annotation of regulatory DNA. Cell
149(6):1381–1392.

Xie D, Boyle AP, Wu L, Zhai J, Kawli T, Snyder
M. 2013. Dynamic trans-acting factor colo-
calization in human cells. Cell 155(3):713-
724.

Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu
S, Huang W, He G, Gu S, Li S, Zhou X, Lam
TW, Li Y, Xu X, Wong GK, Wang J. 2014.
SOAPdenovo-Trans: de novo transcriptome
assembly with short RNA-Seq reads. Bioin-

formatics 2014 [Epub ahead of print].

Xing D, Wang Y, Xu R, Ye X, Yang D, Li QQ.
2013. The regulatory role of Pcf11-similar-
4 (PCFS4) in Arabidopsis development by
genome-wide physical interactions with tar-
get loci. BMC Genomics 14:598.

Xing Y, Lee CJ. 2005. Protein modularity of
alternatively spliced exons is associated with
tissue-specific regulation of alternative splic-
ing. PLoS Genet 1(3):e34.

Xing Y, Yu T, Wu YN, Roy M, Kim J, Lee
C. 2006. An expectation-maximization algo-
rithm for probabilistic reconstructions of full-
length isoforms from splice graphs. Nucleic
Acids Res 34(10):3150–3160.

Xu C, Fan ZP, Müller P, Fogley R, DiBiase
A, Trompouki E, Unternaehrer J, Xiong F,
Torregroza I, Evans T, Megason SG, Da-
ley GQ, Schier AF, Young RA, Zon LI.
2011. Nanog-like regulates endoderm forma-
tion through the Mxtx2-Nodal pathway. Dev
Cell 22(3):625–638.

Xu K, Doak TG, Lipps HJ, Wang J, Swart EC,
Chang WJ. 2012. Copy number variations
of 11 macronuclear chromosomes and their
gene expression in Oxytricha trifallax. Gene
505(1):75–80.

Xu Q, Modrek B, Lee C. 2002. Genome-wide de-
tection of tissue-specific alternative splicing
in the human transcriptome. Nucleic Acids
Res 30(17):3754–3766.

Xu S, Zhong M, Zhang L, Wang Y, Zhou Z, Hao
Y, Zhang W, Yang X, Wei A, Pei L, Yu Z.
2009. Overexpression of Tfam protects mi-
tochondria against beta-amyloid-induced ox-
idative damage in SH-SY5Y cells. FEBS J
276(14):3800–3809.

Xu X, Hou Y, Yin X, Bao L, Tang A, Song L,
Li F, Tsang S, Wu K, Wu H, He W, Zeng L,
Xing M, Wu R, Jiang H, Liu X, Cao D, Guo
G, Hu X, Gui Y, Li Z, Xie W, Sun X, Shi
M, Cai Z, Wang B, Zhong M, Li J, Lu Z, Gu
N, Zhang X, Goodman L, Bolund L, Wang J,
Yang H, Kristiansen K, Dean M, Li Y, Wang
J. 2012. Single-cell exome sequencing reveals
single-nucleotide mutation characteristics of
a kidney tumor. Cell 148(5):886–895.

Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng
Y, Liu Z, Zeng Q, Cheng L, Sun YE, Liu
JY, Horvath S, Fan G. 2013. Genetic pro-
grams in human and mouse early embryos
revealed by single-cell RNA sequencing. Na-
ture 500(7464):593–597.



757

Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-
Mnster S, Camblong J, Guffanti E, Stutz F,
Huber W, Steinmetz LM. 2009. Bidirectional
promoters generate pervasive transcription in
yeast. Nature 457(7232):1033–1037.

Yaffe D, Saxel O. 1977. Serial passaging
and differentiation of myogenic cells iso-
lated from dystrophic mouse muscle. Nature
270(5639):725–727.

Yagi Y, Shiina T. 2014. Recent advances in the
study of chloroplast gene expression and its
evolution. Front Plant Sci 5:61.

Yakubovskaya E, Chen Z, Carrodeguas JA,
Kisker C, Bogenhagen DF. 2006. Func-
tional human mitochondrial DNA poly-
merase gamma forms a heterotrimer. J Biol
Chem 281(1):374–382.

Yamanaka S. 2010. Elite and stochastic models
for induced pluripotent stem cell generation.
Nature 460(7251):49–52.

Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese
CR. 1985. Mitochondrial origins. Proc Natl
Acad Sci U S A 82(13):4443–4447.

Yang F, Babak T, Shendure J, Disteche CM.
2010. Global survey of escape from X
inactivation by RNA-sequencing in mouse.
Genome Res 20(5):614–622.

Yang F, Nickols NG, Li BC, Marinov GK, Said
JW, Dervan PB. 2013. Antitumor activity
of a pyrrole-imidazole polyamide. Proc Natl
Acad Sci U S A. 110(5):1863–1868.

Yang XP, Ghoreschi K, Steward-Tharp SM,
Rodriguez-Canales J, Zhu J, Grainger JR, Hi-
rahara K, Sun HW, Wei L, Vahedi G, Kanno
Y, O’Shea JJ, Laurence A. 2011. Oppos-
ing regulation of the locus encoding IL-17
through direct, reciprocal actions of STAT3
and STAT5. Nat Immunol 12(3):247–254.

Yang Y, Lu Y, Espejo A, Wu J, Xu W, Liang
S, Bedford MT. 2010. TDRD3 is an effec-
tor molecule for arginine-methylated histone
marks. Mol Cell 40(6):1016–1023.

Yanofsky C, Carlton BC, Guest JR, Helinski
DR, Henning U. 1964. On The Colineairty of
Gene Structure and Protein Structure. Proc
Natl Acad Sci U S A 51:266–272.

Yant L, Mathieu J, Dinh TT, Ott F, Lanz C,
Wollmann H, Chen X, Schmid M. 2010. Or-
chestration of the floral transition and flo-
ral development in Arabidopsis by the bi-
functional transcription factor APETALA2.
Plant Cell 22(7):2156–2170.

Yao H, Brick K, Evrard Y, Xiao T, Camerini-
Otero RD, Felsenfeld G. 2010. Mediation of

CTCF transcriptional insulation by DEAD-
box RNA-binding protein p68 and steroid
receptor RNA activator SRA. Genes Dev
24(22):2543–2555.

Yasukawa T, Reyes A, Cluett TJ, Yang MY,
Bowmaker M, Jacobs HT, Holt IJ. 2006.
Replication of vertebrate mitochondrial DNA
entails transient ribonucleotide incorporation
throughout the lagging strand. EMBO J
25(22):5358–5371.

Yasukawa T, Yang MY, Jacobs HT, Holt IJ.
2005. A bidirectional origin of replica-
tion maps to the major noncoding region
of human mitochondrial DNA. Mol Cell
18(6):651–662.

Yelin R, Dahary D, Sorek R, Levanon EY,
Goldstein O, Shoshan A, Diber A, Biton S,
Tamir Y, Khosravi R, Nemzer S, Pinner E,
Walach S, Bernstein J, Savitsky K, Rotman
G. 2003. Widespread occurrence of antisense
transcription in the human genome. Nat
Biotechnol 21(4):379–386.

Yildirim O, Li R, Hung JH, Chen PB, Dong X,
Ee LS, Weng Z, Rando OJ, Fazzio TG. 2011.
Mbd3/NURD complex regulates expression
of 5-hydroxymethylcytosine marked genes in
embryonic stem cells. Cell 147(7):1498–
1510.

Yoon OK, Brem RB. 2010. Noncanonical tran-
script forms in yeast and their regulation dur-
ing environmental stress. RNA 16(6):1256–
1267.

Yoon SJ, Wills AE, Chuong E, Gupta R,
Baker JC. 2011. HEB and E2A function
as SMAD/FOXH1 cofactors. Genes Dev
25(15):1654–1661.

Yoshida Y, Izumi H, Torigoe T, Ishiguchi H,
Itoh H, Kang D, Kohno K. 2003. P53
physically interacts with mitochondrial tran-
scription factor A and differentially regu-
lates binding to damaged DNA. Cancer Res
63(13):3729–3734.

Yu GL, Bradley JD, Attardi LD, Blackburn
EH. 1990. In vivo alteration of telom-
ere sequences and senescence caused by mu-
tated Tetrahymena telomerase RNAs. Na-
ture 344(6262):126–132.

Yu M, Hon GC, Szulwach KE, Song CX,
Zhang L, Kim A, Li X, Dai Q, Shen
Y, Park B, Min JH, Jin P, Ren B, He
C. 2012. Base-resolution analysis of 5-
hydroxymethylcytosine in the mammalian
genome. Cell 149(6):1368–1380.



758

Yu M, Mazor T, Huang H, Huang HT, Kathrein
KL, Woo AJ, Chouinard CR, Labadorf A,
Akie TE, Moran TB, Xie H, Zacharek S,
Taniuchi I, Roeder RG, Kim CF, Zon LI,
Fraenkel E, Cantor AB. 2012. Direct recruit-
ment of polycomb repressive complex 1 to
chromatin by core binding transcription fac-
tors. Mol Cell 45(3):3303–3343.

Yu M, Riva L, Xie H, Schindler Y, Moran TB,
Cheng Y, Yu D, Hardison R, Weiss MJ,
Orkin SH, Bernstein BE, Fraenkel E, Cantor
AB. 2009. Insights into GATA-1-mediated
gene activation versus repression via genome-
wide chromatin occupancy analysis. Mol Cell
36(4):682–695.

Yu S, Cui K, Jothi R, Zhao DM, Jing X, Zhao
K, Xue HH. 2010. GABP controls a critical
transcription regulatory module that is es-
sential for maintenance and differentiation of
hematopoietic stem/progenitor cells. Blood
117(7):2166–2178.

Yuan P, Han J, Guo G, Orlov YL, Huss M, Loh
YH, Yaw LP, Robson P, Lim B, Ng HH. 2009.
Eset partners with Oct4 to restrict extraem-
bryonic trophoblast lineage potential in em-
bryonic stem cells. Genes Dev 23(21):2507–
2520.

Yun K, Wold B. 1996. Skeletal muscle determi-
nation and differentiation: story of a core reg-
ulatory network and its context. Curr Opin
Cell Biol 8(6):877–889.

Yunis JJ, Yasmineh WG. 1971. Heterochro-
matin, satellite DNA, and cell function. Sci-
ence 174:1200-1209.

Zahler AM, Neeb ZT, Lin A, Katzman S. 2012.
Mating of the stichotrichous ciliate Oxytricha
trifallax induces production of a class of 27
nt small RNAs derived from the parental
macronucleus. PLoS One 7:e42371.

Zahn K, Blattner FR. 1987. Direct evidence for
DNA bending at the lambda replication ori-
gin. Science 236(4800):416–422.

Zalzman M, Falco G, Sharova LV, Nishiyama A,
Thomas M, Lee SL, Stagg CA, Hoang HG,
Yang HT, Indig FE, Wersto RP, Ko MS.
2010. Zscan4 regulates telomere elongation
and genomic stability in ES cells. Nature
464(7290):858–863.

Zambon RA, Vakharia VN, Wu LP. 2006. RNAi
is an antiviral immune response against a
dsRNA virus in Drosophila melanogaster.
Cell Microbiol 8:880-889.

Zang C, Schones DE, Zeng C, Cui K, Zhao K,
Peng W. 2009. A clustering approach for

identification of enriched domains from his-
tone modification ChIP-Seq data. Bioinfor-
matics 25(15):1952–1958.

Zaphiropoulos PG. 1996. Circular RNAs from
transcripts of the rat cytochrome P450 2C24
gene: correlation with exon skipping. Proc
Natl Acad Sci U S A 93(13):6536–6541.

Zaphiropoulos PG. 1997. Exon skipping and cir-
cular RNA formation in transcripts of the
human cytochrome P-450 2C18 gene in epi-
dermis and of the rat androgen binding pro-
tein gene in testis. Mol Cell Biol 17(6):2985–
2993.

Zaret KS, Carroll JS. 2011. Pioneer tran-
scription factors: establishing competence for
gene expression. Genes Dev 25(21):2227–
2241.

Zemach A, McDaniel IE, Silva P, Zilberman
D. 2010. Genome-wide evolutionary analy-
sis of eukaryotic DNA methylation. Science
328(5980):916-919.

Zeng PY, Vakoc CR, Chen ZC, Blobel GA,
Berger SL. 2006. In vivo dual cross-linking
for identification of indirect DNA-associated
proteins by chromatin immunoprecipitation.
Biotechniques 41(6):694, 696, 698.

Zenklusen D, Larson DR, Singer RH. 2008.
Single-RNA counting reveals alternative
modes of gene expression in yeast. Nat Struct
Mol Biol 15(12):1263–1271.

Zerbino DR, Birney E. 2008. Velvet: algorithms
for de novo short read assembly using de
Bruijn graphs. Genome Res 18(5):821-829.

Zhang B, Horvath S. 2005. A General Frame-
work for Weighted Gene Co-expression Net-
work Analysis. Stat Appl Genet Mol Biol
2005, 4:Article 17.

Zhang G, Guo G, Hu X, Zhang Y, Li Q, Li R,
Zhuang R, Lu Z, He Z, Fang X, Chen L, Tian
W, Tao Y, Kristiansen K, Zhang X, Li S,
Yang H, Wang J, Wang J. 2010. Deep RNA
sequencing at single base-pair resolution re-
veals high complexity of the rice transcrip-
tome. Genome Res 20(5):646–654.

Zhang H, Dungan CF, Lin S. 2011. Introns,
alternative splicing, spliced leader trans-
splicing and differential expression of pcna
and cyclin in Perkinsus marinus. Protist
162(1):154–167.

Zhang H, Hou Y, Miranda L, Campbell DA,
Sturm NR, Gaasterland T, Lin S. 2007.
Spliced leader RNA trans-splicing in di-
noflagellates. Proc Natl Acad Sci U S A
104(11):4618–4623.



759

Zhang X, Borevitz JO. 2009. Global analy-
sis of allele-specific expression in Arabidopsis
thaliana. Genetics 182:943-954.

Zhang X, Robertson G, Krzywinski M, Ning K,
Droit A, Jones S, Gottardo R. 2011. PICS:
probabilistic inference for ChIP-seq. Biomet-
rics 67(1):151–163.

Zhang Y, Lameijer EW, ’t Hoen PA, Ning Z,
Slagboom PE, Ye K. 2012. PASSion: a
pattern growth algorithm-based pipeline for
splice junction detection in paired-end RNA-
Seq data. Bioinformatics 28(4):479–486.

Zhang Y, Laz EV, Waxman DJ. 2011. Dy-
namic, sex-differential STAT5 and BCL6
binding to sex-biased, growth hormone-
regulated genes in adult mouse liver. Mol
Cell Biol 32(4):880–896.

Zhang Y, Liu T, Meyer CA, Eeckhoute J, John-
son DS, Bernstein BE, Nusbaum C, My-
ers RM, Brown M, Li W, Liu XS. 2008.
Model-based analysis of ChIP-Seq (MACS).
Genome Biol 9(9):R137.

Zhang Y, Mayba O, Pfeiffer A, Shi H, Tepper-
man JM, Speed TP, Quail PH. 2013. A quar-
tet of PIF bHLH factors provides a transcrip-
tionally centered signaling hub that regulates
seedling morphogenesis through differential
expression-patterning of shared target genes
in Arabidopsis. PLoS Genet 9(1):e1003244.

Zhang Y, McCord RP, Ho YJ, Lajoie BR, Hilde-
brand DG, Simon AC, Becker MS, Alt FW,
Dekker J. 2012. Spatial organization of the
mouse genome and its role in recurrent chro-
mosomal translocations. Cell 148(5):908-
921.

Zhang Z, Green BR, Cavalier-Smith T. 1999.
Single gene circles in dinoflagellate chloro-
plast genomes. Nature 400:155-159.

Zhang Z, Green BR, Cavalier-Smith T. 2000.
Phylogeny of ultra-rapidly evolving dinoflag-
ellate chloroplast genes: a possible common
origin for sporozoan and dinoflagellate plas-
tids. J Mol Evol 51:26-40.

Zhao B, Zou J, Wang H, Johannsen E, Peng
CW, Quackenbush J, Mar JC, Morton CC,
Freedman ML, Blacklow SC, Aster JC, Bern-
stein BE, Kieff E. 2011a. Epstein-Barr virus
exploits intrinsic B-lymphocyte transcription
programs to achieve immortal cell growth.
Proc Natl Acad Sci U S A 108(36):14902–
14907.

Zhao J, Ohsumi TK, Kung JT, Ogawa Y,
Grau DJ, Sarma K, Song JJ, Kingston RE,
Borowsky M, Lee JT. 2010. Genome-wide

identification of polycomb-associated RNAs
by RIP-seq. Mol Cell 40(6):939–953.

Zhao L, Glazov EA, Pattabiraman DR, Al-
Owaidi F, Zhang P, Brown MA, Leo PJ,
Gonda TJ. 2011b. Integrated genome-wide
chromatin occupancy and expression analy-
ses identify key myeloid pro-differentiation
transcription factors repressed by Myb. Nu-
cleic Acids Res 39(11):4664–4679.

Zheng B, Chen X. 2011. Dynamics of histone
H3 lysine 27 trimethylation in plant develop-
ment. Curr Opin Plant Biol 14(2):123–129.

Zheng Q, Rowley MJ, Böhmdorfer G, Sandhu
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